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Abstract

This thesis is concerned with the quality of surface waters in rural catchments across northern
England and the mitigation of Diffuse Water Pollution from Agriculture (DWPA). Runoff
Attenuation Features (RAFs) are a range of soft-engineered DWPA transport management
options, which target hydrological flow pathways for the purpose of slowing, storing and
filtering water. This study demonstrates the potential of RAFs to significantly reduce losses of

suspended sediment (SS), phosphorus (P) and nitrate (NOs) in agricultural runoff.

To implement RAFs effectively it is vital to understand how, where and when to best target
mitigation efforts. This relies on knowledge of the sediment and nutrient regime and
hydrological functioning of a catchment. In response to this a stratified, synchronous grab
sampling programme was implemented over two consecutive years in the upper Eden
catchment (334 kmz), Cumbria, covering thirteen sub-catchments of multiple scales. No
relationship was found between sediment/nutrient yield and catchment area but it was
recognised that certain lowland sub-catchments deliver a disproportionate amount of the
pollutant load, particularly SS and P, due to increased agricultural activity, and that there were

large variations in flux affected by season and hydrological conditions.

One particular sub-catchment dominated by improved grassland, Blind Beck (9 km?), exhibited
both higher nutrient and SS concentrations per unit runoff and higher yields compared with
any other sub-catchment. The Blind Beck sub-catchment was selected in which to implement a
more detailed investigation of SS and nutrient delivery, which included event sampling. High
flows (accounting for 10% of flow duration) contributed 84% of the annual SS load, 76% of the
total P and 68% of the soluble reactive P, but just 32% of the NOs load. This highlights the
acute nature of the SS and P diffuse pollution problem and demonstrates the need to target

storm events for effective mitigation.

A number of RAFs were constructed in two established research catchments in
Northumberland with a similar mixed land use to the Eden: Belford (15 ha) and Netherton (80
ha). Synchronous inlet and outlet water samples were collected during storm events. Results
demonstrate that relatively small RAFs, principally sediment traps, constructed in farm ditches
(<1 km? catchment area) can reduce mean SS, TP, SRP and NOs loads during storm events by
30-49%, 23-37%, 12-27% and 8-14%, respectively. The potential of RAFs designed to reduce
DWPA in key locations and at certain scales will be proposed based on the findings of the PhD

study.
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1. Introduction

1.1 Background

The quality of the aquatic environment is of significant importance - good quality waters for
bathing, angling and other activities play a substantial role in supporting tourism and
recreation; water of good chemical and biological status supports diverse ecosystems.
Conversely water of poor quality requires more energy to treat and evokes higher costs to
reach a potable standard. The negative impact of excessive sediment and nutrients on the
aquatic environment is a recognised catchment management issue. As the dominant land use
in the UK, diffuse water pollution from agriculture (DWPA) is a major contributor to excessive
suspended sediment (SS), phosphorus (P) and nitrate (NO;) loads which regularly cause water
quality issues in freshwaters, and mitigation of the impacts of DWPA is crucial to meet the

requirements of the European Water Framework Directive (WFD).

Sediment and nutrient losses should be prevented at source where possible; however, it is
acknowledged that this is not wholly effective, and water quality problems caused by DWPA
may result even when applying good agricultural management. Contaminant transport
management, targeting polluted runoff pathways, has the potential to mitigate a significant
proportion of DWPA in a catchment. Runoff Attenuation Features (RAFs) are a range of soft-
engineered landscape interventions designed to reduce losses of SS, P and NO; in agricultural

areas by slowing, temporarily storing and filtering runoff.

To be able to recommend RAFs as viable DWPA mitigation options it is vital that evidence is
gathered in the form of quantitative (as well as qualitative) data. This PhD study achieves this
by investigating the design, construction and functioning of a number of RAFs in rural
catchments across the north of England. Moreover, it addresses the current insufficiency of
data associated with DWPA transport management options in the UK and presents design

criteria for the future application of RAFs.

As a prerequisite to determining the efficacy of RAFs it is vital to understand the sediment and
nutrient regime and hydrological functioning of a catchment to ensure that intervention(s) are
targeted effectively. However, the spatio-temporal heterogeneity of catchment processes that
control sediment and nutrient fluxes is complex and not fully understood. To address this
problem a multiple-scale, nested basin monitoring campaign is employed in this thesis to
characterise SS, P and NO; regimes in the upper River Eden catchment, Cumbria. The upper
Eden catchment provides an excellent case study site: it is representative of the upland

catchments common to large areas of northern and western England, Wales and Scotland, as
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well as being a river of important ecological status in its own right (attributes which have led to
its status as one of the Demonstration Test Catchments, selected by Defra). There is an
established long-term monitoring network and hydrological dataset on which to base the

investigation.

This thesis describes where sediment and nutrients come from in slowly permeable, mixed
land use agricultural catchments typically found in the north of England, how and when they
are delivered to watercourses, and how to address these losses appropriately. A detailed
understanding of dominant runoff and contaminant flow pathways is gained, which
demonstrate the importance of storm hydrology and land cover/use as key controlling factors
over the export of sediment and nutrients. This allows for the identification of many locations

in the rural landscape where RAFs can be implemented.

Runoff Attenuation Features, as relatively low-cost measures, are shown to have the potential
to remove significant amounts of SS, P and NO; from agricultural runoff, targeting storm
events as a priority, and also offer secondary benefits such as flood mitigation and habitat

creation.

1.2 Research aims

1. Characterise the SS, P and NO; transport regime of the mixed land use upper Eden
catchment across a range of scales (1 km? - >100 km?) to inform the targeting of DWPA
mitigation efforts; including the determination of contaminant yields and the influence
of spatio-temporal scale and controlling factors such as land use and storm events on

these yields.

2. Investigate the efficacy of a number of RAFs as DWPA transport mitigation options;
detailing their capacity to reduce concentrations/loads of SS, P and NO;, along with

important design and construction criteria for future application.

Objectives

1.1 Use an appropriate grab sampling methodology to quantify SS, P and NO;
concentrations at a range of catchment areas covering three orders of magnitude
(micro = 1 Km?, mini = 10 Km?” and meso-scale = 100 Km?) in the upper River Eden
catchment, Cumbria. Select an appropriate means to calculate annual SS, P and NO;

loads and specific yields



1.2 Investigate how determinand concentrations/loads vary with spatial scale, as well as
with changes in various controlling processes, such as precipitation/runoff and land

cover/use, inter alia.

1.3 Compare calculated sediment/nutrient yields with export coefficients from the
literature. Determine the representativeness of the data collected in the upper Eden
catchment and evaluate the selected methodology for water quality monitoring at the

catchment scale.

1.4 Select a sub-catchment within the Upper Eden catchment. Use a spatially intensive
sampling campaign to identify pollutant sources within the catchment, and employ
automatic storm sampling equipment to determine the importance of storm events

on contaminant transfer.

2.1 Describe the design and construction of a number of RAFs in agricultural catchments.
Using field measurements, evaluate the efficacy of RAFs to reduce SS, P and NO;
concentrations/loads in runoff during storm events — measure sedimentation volumes

and calculate annual sediment/nutrient removal rates where possible.

2.2 Review the use of RAFs on the larger catchment scale, taking account of lessons
learned on sediment/nutrient source pathways, RAF suitability and appropriate
spatial scale for implementation. Consider the potential multiple-benefits of RAFs and

recommend design criteria for future implementation.

1.3 Thesis outline

Chapter 2 - presents a literature review covering the relevant subject areas, including:
hydrological processes and catchment connectivity; the sources, pathways and potential
impacts of SS, P and NO; on fresh water quality; current legislation governing the management
of DWPA, including current thresholds and guideline contaminant concentrations; DWPA
mitigation options, including RAFs; and the influence of scale on the operation of runoff,

sediment and nutrient regimes and their management.

Chapter 3 — outlines the methodological approach used to meet Aim 1. It provides a
description of the upper Eden study catchment (334 km?) and describes the experimental
design used to attain sediment/nutrient concentration and hydro-meteorological data. The

laboratory techniques used to determine SS, P and NO; concentrations are detailed.



Chapter 4 — reports the hydrological, SS, P and NO; regimes of thirteen upper Eden sub-
catchments. Annual sediment and nutrient yields for each sub-catchment are calculated and
presented. Spatial and temporal patterns in flux are discussed as well as the influence of land
use and other catchment variables. Calculated yields are also compared with export
coefficients from the literature and export coefficients used to estimate the sediment/nutrient

loss from an unmonitored part of the catchment.

Chapter 5 — presents the methods and results of a detailed sub-catchment study (within the
upper Eden catchment — Blind Beck, 9 km?). A spatially high-resolution grab sampling campaign
is carried out to identify sediment/nutrients source-pathways, and event-level automatic
water sampling to evaluate the importance of storm events in sediment/nutrient fluxes. The
Blind Beck catchment was also selected for the implementation of a number of RAFs. However,
due to unforeseen circumstances only one intervention was completed and is described here.
Further DWPA mitigation experiments were relocated to surrogate sites and this work forms

the basis of the two subsequent chapters.

Chapter 6 — is the first of two case studies that focus on the testing of RAFs; this chapter
describes investigations carried out in the Belford catchment (5.9 km?). The first part involves
the evaluation of existing flood RAFs and whether they also function to mitigate DWPA. A
number of important lessons are learned and a grab sample campaign carried out in a 15 ha
sub-catchment provides an insight into the sediment/nutrient regime of the area. Based on
these findings a multi-stage stage RAF was constructed in an agricultural drainage ditch to
target both sub-surface drain and overland flow pathways. The multi-stage RAF is monitored
to determine its ability to reduce SS, P and NO; losses during storm events and the results are

presented.

Chapter 7 — describes the second case study, carried out in the Netherton Burn catchment (10
km?), where both flood and DWPA mitigation RAFs were implemented in a real-world project.
It details the design and construction of several sediment traps commissioned to treat the
runoff from an 80 ha sub-catchment; the design of the features was informed by findings from
the Belford case study. The results from event-scale monitoring of the feature are presented

and discussed.

Chapter 8 — contains an overall discussion that links the findings from Chapters 4 and 5 with
the results from the mitigation experiments (Chapters 6 and 7). The use of RAFs is considered
at the wider catchment scale and how they could be successfully integrated into catchment
management plans to mitigate for concentrated agricultural runoff pathways such as drainage

outfalls, farm ditches and channelled overland flow.



The potential use of RAFs in conjunction with source and mobilisation mitigation options is
evaluated, along with their practicability for farmers and the ability to deliver secondary

benefits such as flood attenuation and habitat provision.

Chapter 9 — concludes the thesis with a summary of findings and recommendations for further

work.



2. Literature Review

2.1 Introduction

“The unseen threat to water quality” - this is how the Environment Agency describes diffuse
pollution. It is also the title of a pivotal document (Environment Agency, 2007) in which the

agency list their main concerns regarding the freshwater environment. The list includes:

e High levels of nutrients in rivers, lakes, estuaries and coastal waters, which can cause
eutrophication.

e Nitrate contamination of water used for drinking water.

e Pesticides and sheep dip from agriculture entering rivers, lakes and groundwater.

e Oxygen depletion in water due to organic pollution from livestock manure.

e Sediments from soil erosion smothering habitats in rivers, lakes and estuaries.

e Bacteriological contamination of bathing waters and shellfish waters from farm waste

and illegally connected sewers.

All of the above can be linked with the agricultural industry. Excess sediment and nutrients in
aquatic environments have detrimental impacts, which affect both natural flora and fauna,
and also society, which depend on them economically and socially. In this chapter the current
state of research on the topics relevant to the study will be examined. Eutrophication is
discussed first; specifically how agricultural practices have led to increased sediment and
nutrient losses from land to water by increasing soil nutrient concentrations and increasing soil
erosion due to hydro-geomorphological impacts. There is a brief review of the hydrological
processes responsible for generating runoff, which then focuses on the concept of ‘catchment
connectivity’ as a means of identifying DWPA source areas. Then follow three sections that
examine P, NO; and SS in turn; evaluating impacts caused by their excessive inputs, how they
are mobilised and transferred from the land to water bodies, and what relevant legislation is

currently in place to manage agricultural practice.

The next section is concerned with the mitigation of DWPA and looks at the source-pathway-
receptor model before providing a critique of the various management options available to
farmers and land owners. Runoff attenuation features are then introduced as a type of
mitigation that aims to reduce the loss of sediment and nutrients by targeting polluted
overland flow pathway; the mitigation experiments conducted in this study are specifically
focused on the functioning of RAFs. The final section will discuss the influence of scale (spatial
and temporal) on the operation of fluvial geomorphic systems and how this affects both

monitoring and management of sediment and nutrient regimes at the catchment scale.
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The water quality of our streams and rivers is largely determined by human activity. Regulation
of major point sources of pollution such as sewage treatment works and industrial-
manufacturing plants, through the introduction of legislative directives such as the Urban
Wastewater Treatment Directive (991/271/EEC) and the Industrial Emissions Directive
(2010/75/EU) resulted in a significant and relatively rapid improvement in the chemical and
biological status of the UK’s waterways (Neal and Jarvie, 2005). The reduction in point source
pollution has meant that the impacts of diffuse sources of water pollution became increasingly

prominent (Foy, 2005; Kronvang et al., 2005).

Diffuse pollution, also known as non-point source pollution, occurs when there is no discrete
point of discharge and pollution enters the environment by a multitude of pathways. In
comparison with point-source discharges diffuse pollution is more often intermittent and
linked to seasonal activities or events such as heavy precipitation, major construction or
agricultural tillage. As DWPA often derives from extensive areas of land and is transported to
the receiving watercourse via a multitude of pathways, it is difficult to source and quantify and
therefore much more difficult to regulate and control than point source pollution (Carpenter et
al., 1998). Agricultural activities, such as applying mineral fertiliser and ploughing, inter alia
give rise to some of the most harmful kinds of diffuse pollution (e.g., Carpenter et al., 1998;
Sharpley, 2002; Novotney, 2003; Mainstone et al., 2008; Howarth, 2011) and are discussed in

more detail in Section 2.3.

2.2 Eutrophication

Eutrophication is the enrichment of surface waters with nutrients, principally P and NO;,
deriving from human activities (Sharpley, 2002; Sharpley et al., 2003; Neal et al., 2008). This
enrichment increases the biological productivity of the water body, i.e., the excessive growth
of diatoms, algae and large rooted plants (macrophytes), which in turn stimulates production
at higher trophic levels with increases in zooplankton and fish biomass (Foy, 2005; Hilton et al.,
2006). Eutrophication can lead to an increase in BOD and the expansion of the anoxic zone;
few aquatic macro-invertebrates or vertebrates can survive sustained anoxic conditions
(Ferguson, 1996). Agricultural wastes can have particularly high BOD; silage effluent has a BOD
value 200-times greater (30000-80000 mg I™*) and cattle slurry 50 times greater (10000—20000
mg 1) than domestic sewage (Skinner et al., 1997). Table 2.1 lists a number of potential

impacts of eutrophication.



Table 2.1: Potential impacts of eutrophication (adapted from Foy, 2005).

Potential impacts of eutrophication

Increase in primary production either as algae or macrophytes

Reduction in water clarity

Replacement of submerged macrophytes by phytoplankton

Increased dominance by blue-green algae which are liable to form surface algal blooms
Increased respiratory demand for dissolved oxygen

Fish kills and reduction in biodiversity at all trophic levels

Increased water treatment costs to remove taste and odour problems

Algal toxins which can threaten public and animal health

Damage to recreational potential and amenity

Hilton et al. (2006) estimated the overall annual cost of eutrophication in England and Wales
to be approximately £155 million, which includes the cost of water treatment for drinking
purposes, loss of biodiversity and amenity value, and also includes the probable cost of
remediation. The potential increase in cyanobacteria, or blue-green algae, can have adverse
impacts on human and animal health. Toxins have been linked with liver cancer and tumour
promotion (Yu, 1995) but perhaps the most dramatic incidence was recorded in 1997 in a
Brazilian hospital, where 55 persons died within seven months of exposure to cyanobacterial

toxins following routine dialysis treatment (Foy, 2005).

Stevens et al. (1999) estimate that if total nitrogen (TN) concentrations in fresh water are at
least 0.5 mg I, and all other conditions for algal growth are satisfied, total P (TP)
concentrations of 0.1 mg I (or greater) have a high probability of causing eutrophic conditions
and algal blooms. Thus, while both NO; and P contribute to eutrophication, there is ample
evidence that the main focus for reducing eutrophication should be directed at P (Foy, 2005;

Withers and Haygarth, 2007).

2.3 Diffuse water pollution from agriculture

Increased incidence of eutrophication in the UK has largely been attributed to the
intensification of agriculture following the Second World War (Lanyon, 1994); specifically the
increased use of fertilisers (Kay et al., 2012). Table 2.2 lists a number of key trends associated
with post-war agricultural intensification. The Department for the Environment, Food and
Rural Affairs - Defra (2005) estimated that agriculture accounts for over 70% of the land area
of England and Wales; the geographic extent of the industry means it is inevitable that it will

have a significant impact on the environment.



Intensively managed, lowland grasslands, typified by intensive dairy systems (similar to the
lowland parts of the upper Eden catchment) occupy 29% of the land area of England and
Wales (Defra, 2007b). Activities such as land tillage, spreading of slurry and farm yard manure
(FYM), and the use of chemical fertilisers can all give rise to the eutrophication of water
supplies. Agriculture is estimated to contribute 60% of NO; (Defra, 2009), 25% of P and 75% of
SS (Defra, 2007c).

Howarth (2011) reported that between 2004 and 2009 English water companies spent around
£189 million removing NO3, and an unquantifiable amount removing bacterial contamination.
On top of this, the EA spent over £140 million on water quality ‘issues’ in England in 2008-2009
and an estimated £8 million directly on managing DWPA, plus a significant additional
expenditure on water quality monitoring. However, with increasing environmental legislation
and mounting popular concern for the environment, the importance of good environmental
management has now been recognised (Withers and Haygarth, 2007; Defra, 2009). With the
introduction of the WFD (discussed in more detail in section 2.8) there is a legislative
framework, along with a number of decision support tools and measures, to implement

catchment controls over DWPA (Environment Agency, 2007).

Table 2.2: Post World War Il agricultural trends.

Post-war agricultural trends

Introduction of winter cropping in the 1960s meant more bare ground at times of maximum rainfall

Cheap mineral fertiliser in the 1970s led to increased amounts spread on the land

Increased use of pesticides to boost productivity and the quality and quantity of food, and for pest control
Switch from unimproved grassland to improved pasture (increased tillage) to feed burgeoning livestock numbers
Increased amounts of farm waste with the need of disposal

Installation of land drains to improve usability and profitability of land

Introduction and expansion of the use of heavy farm machinery led to soil degradation/compaction

Removal of riparian vegetation to create more profitable land

2.3.1 Agricultural practices and water quality

Agricultural activities contribute to water pollution in two principal ways:

e The application of organic and inorganic fertiliser to the land, which increases the
amount of nutrients in the soil (available to leaching).
e Hydro-geomorphological impacts, which affect the way that sediment and associated

nutrients are mobilised and transferred from land to water.



2.3.1.1 Excess soil nutrients

At the catchment scale, excess inputs of NO; and P to agricultural land relative to outputs in
produce are closely linked to eutrophication of surface waters (Withers and Lord, 2002; Neal et
al., 2008). The application of mineral fertiliser to arable and horticultural crops has, until
recently, been very cost-effective. This was, in no small part, a result of the political decision to
establish the Common Agricultural Policy (CAP) in 1973 meaning that agricultural subsidies
were directly linked to production. Addiscott (2005) provides a detailed review of how the CAP

influenced agricultural practices.

One example is of decreasing fertiliser costs as a proportion of profit per unit area of land, to
the degree that excess applications of fertiliser were applied to ensure maximum vyield rather
than maximum efficiency. Applying more fertiliser than is required for the optimum vyield
greatly increases the opportunity for losses to water bodies, particularly during autumn and
winter (Withers and Hodgkinson, 2009). In a 10 ha study catchment in Nigeria, Olarewaju et al.
(2009) analysed and compared soil and stream water samples throughout a year and reported
that high concentrations of NO; and P in the topsoil were significantly correlated with high

stream water concentrations.

Intensive animal production generally involves the import of feedstocks and the generation of
large volumes of animal waste. Disposal problems are comparable to those for raw human
sewage, but the regulatory standards for animal waste are generally far less stringent. While
nutrients are generally recycled by application to cropland, manure yields from concentrated
livestock operations often exceed crop requirements and lead to losses to water (Heathwaite

et al., 1998).

2.3.1.2 Hydro-geomorphological impacts

Agricultural activities can have a direct influence on the hydrological functioning of the
environment by decreasing the infiltration capacity of the soil and increasing surface runoff
(Sharpley, 2002; O'Connell et al., 2005; O' Connell et al., 2007). This also has to be considered
alongside a possible increase in soil erosion. Winter cropping means that fields are ploughed
and seeded in the autumn, allowing limited crop establishment prior to winter dormancy. The
soil is susceptible to erosion as there is limited vegetation cover to protect against detachment

processes (Harrod and Theurer, 2002).

Tillage and high stocking densities can lead to soil degradation, compaction, and capping of the
surface; reducing the infiltration capability thus generating more surface runoff and erosion

(Bilotta et al., 2007b; Withers et al., 2007; Withers and Hodgkinson, 2009). Heavy farm
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machinery can create ‘wheelings’, or ‘tramlines’. These ubiquitous features reduce local
infiltration rates due to soil compaction and can act as a channel for runoff and any diffuse
pollutants (Basher and Ross, 2001; Heathwaite et al., 2005). Thus tramlines can increase the
hydrological connectivity between distant parts of the catchment and a watercourse and as
they often run perpendicular to the hillslope, the potential to act as fast, polluted runoff

pathway is significant (Deasy et al., 2009; Deasy et al., 2010).

The degradation of wet areas and riverbanks caused by cattle and sheep has increased in
relation to rising livestock numbers (Bilotta et al., 2007a). Poaching is the term used to
describe the slurry-like soil conditions that occur on very wet soil when trampled by animals
(Drewry, 2006). The majority of damage occurs in wet seasons or during storm events and is
when most sediment will be made available for export by surface runoff. The poaching of
riverbanks is closely related to the increasing loss of protected riparian zones (where livestock
are not excluded). The removal of vegetation diminishes the surface protection layer between
animal’s hooves and the soil, and the binding effects of roots upon the soil (Bilotta et al.,
2007a). It also causes a reduction in the hydraulic roughness and a subsequent increase in flow
velocity near the bank (Novotney, 2003). Such situations invariably lead to accelerated channel

erosion during periods of high flow.

Perhaps the most significant rural land use factor that changed runoff characteristics of the
land was artificial subsurface drainage (Hooda et al., 1999). Withers et al. (2000) estimated
that 50% of the productive agricultural land in England and Wales has been under drained at
some stage. Field drains (also called ‘tile’ and ‘mole’ drains) were installed to allow access to
fields during wet seasons and to increase the amount of productive land on the farm by
reducing surface wetness problems, (Herzon and Helenius, 2008). The impact of drainage on
surface water quality may be either positive or negative; as the water table is lowered and
infiltration rates increase, the potential for surface runoff, including sediments and associated
contaminant losses, are reduced. Conversely, allowing water to by-pass attenuation processes
in riparian zones and natural wetlands offsets this potential benefit (Chapman et al., 2003;
Sukias and Tanner, 2011). Deasy et al. (2009) argue that field drains decrease nutrient
sorption/storage by the soil; and connect distant catchment zones directly to the main

channel.

A secondary, but highly significant, impact of the increasing use of field drains was the decline
in surface drainage ditches on agricultural land. Bradbury and Kirby (2006) argue that there is
a widespread need for the reversion of subsurface to surface drainage and the reconciliation
of management of ditches for their drainage functions with the support of biodiversity and
associated ecosystem services. Herzon and Helenius (2008) concluded that ditches, if managed
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appropriately, could be used to control water flow and agrochemical transfer as well as
provide habitats and increase biodiversity. Management may require periodic de-silting and
vegetation removal, the timing of which may have to take into account conservation of certain

species and seasonal nutrient uptake.

2.4 Hydrological processes

To understand sediment and nutrient fluxes at the catchment outlet, it is crucial to have an
appreciation of the land-water dynamics that contribute to them. The two main preconditions
for a chemical element to be transported in a catchment are the availability of material and
energy; both are controlled by landscape factors (Gergel et al., 2002). The following section
provides a review of the hydrological processes responsible for generating runoff, both surface
and subsurface. The level of catchment ‘connectivity’ is very important when assessing the risk
of terrestrial pollutants reaching watercourses and will be described in section 2.4.2. The
section will culminate in a review of the critical source area concept, which highlights its

importance in the management of DWPA at the catchment scale.

2.4.1 Runoff generation

In the late nineteenth and early twentieth century it was recognised that different parts of the
catchment produced different amounts of river flow, both spatially and temporally. This idea
of ‘lag’ in response to rainfall was developed into the unit hydrograph model. This required the
hydrograph to be divided into stormflow — from a rainfall event, and baseflow — from
groundwater stores. This concept of storage in the catchment proved to be very important as
it had vital implications for not only the volume of water, but also the water quality variations

and ecological impacts of storm events (Shaw et al., 2011).

Horton (1933) first introduced the concept of runoff generation as the result of rainfall
exceeding the infiltration capacity of the soil and producing surface runoff at the hillslope
scale. This is referred to as ‘infiltration excess’, or ‘Hortonian’ overland flow (depicted as HOF
in Figure 2.1 a). It was assumed that this occurred uniformly across the catchment and
provided a very simple way of back-calculating the amount of infiltration during a storm.
However, Betson (1964) brought the Hortonian concept into question saying that infiltration
excess overland flow could not occur everywhere, except very rarely during the largest storm
events. He demonstrated how small, spatially distributed areas within the catchment are
responsible for the majority of overland flow as they become saturated more quickly. This will

be discussed further below.
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In terms of DWPA transport these processes, particularly Hortonian flow, provide little contact
time between the soil and flowing water meaning that determinand concentrations will be low

when they reach a receiving watercourse. This is sometimes referred to as ‘new water’.

The tailing recessional limb of the hydrograph indicates that not all of the water from the
catchment is conveyed through the system at the same speed. Hewlett (1961) observed that
storm hydrographs could be recorded in catchments where no overland flow occurred and
suggested that the runoff was being transported by subsurface pathways. Weyman (1973)
introduced a new mechanism called subsurface stormflow, or ‘throughflow’ that took into
account the water table and slope (Figure 2.1 b). As the soil profile becomes saturated by
water moving though the soil matrix and/or macropores, a perched water table, or ‘saturated
wedge’, forms at the foot of the slope. As this water has to percolate through the soil its
residence time is greater and its contaminant concentration potentially higher as a result. This
concept of displacing stored water in the ground was termed ‘translatory’ or ‘piston’ flow

(Hewlett and Hibbert, 1967) and the resulting water referred to as ‘old water’.

In certain situations (e.g., areas of permeable soils) it was believed that subsurface runoff
could account for much if not all the storm runoff leaving a catchment (Burt and Pinay, 2005).
However, Dunne and Black (1970) demonstrated circumstances when overland flow can be
generated on soils with high infiltration capacities; they termed the phrase ‘saturation
overland flow’ (depicted as SOF in Figure 2.1 c). This process described how areas of the
catchment could become saturated by both the downward flow of water within a hillslope and
precipitation falling directly onto the area. These saturated areas, also referred to as ‘Variable
Source Areas’ (VSAs) (Hewlett, 1961; Ward, 1984) often occur where convergent flow paths
meet or where shallow soils overlay an impermeable subsurface layer and can remain close to
saturation for prolonged periods of time. In some instances the resulting overland flow could
have a component of ‘return flow’, where subsurface water is forced back onto the surface
through a seepage face (Shaw et al., 2011). This will result in the mixing of both ‘old’ and ‘new’

water.

New ‘event’ water may reach the channel quickly by Hortonian flow, saturation-excess
overland flow or where macropores discharge at the channel banks (not included in Figure
2.1). Water that does infiltrate the soil (recharge) by matrix or macropore flow causes the
water table to rise above its pre-event level. This causes flow within the formerly unsaturated

zone to become lateral, thus increasing throughflow.
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Saturation can also occur above a soil horizon of lower permeability, called a perched water
table (Weyman, 1973) and subsurface preferential flow pathways, e.g., pipes in the soil from
tree roots, animal burrows, etc., can transfer subsurface flow to the stream in relatively short

time periods.

Infiltration l l

Water table ==—e______
Infiltration

Subsurface flow

Figure 2.1: Runoff generation processes.

The major concepts of river flow generation are not mutually exclusive; they might all occur in
different events in the same catchment, or in the same event in different parts of a catchment
(Shaw et al., 2011). Topography, geology and soil type are critical to the geographic
distribution of catchment runoff. For example, subsurface runoff will dominate the storm
hydrograph where deep permeable soils overlie less permeable soil or bedrock, and where
steep hillslopes abut the stream (Anderson and Burt, 1990). Rainfall intensities and prior
wetness of the catchment (antecedent conditions) play a vital role in runoff response. A
hillslope may generate only subsurface flow during a gentle rainstorm; infiltration-excess
surface runoff during a deluge; or subsurface flow alone during a short rainstorm and
saturation-excess runoff during a long one (Heathwaite and Dils, 2000). Thus, hydrological
processes (and associated contaminant transfer) within catchments reflect a continuum of

pathways.
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2.4.2 Connectivity and the critical source area concept

The concept of ‘connectivity’ has evolved from the established runoff processes, i.e., HOF, SOF
and VSAs, and encompasses landscape, hydrological and sedimentological systems. It is the
coupling of hillslope—channel systems and highlights the important differences in catchment
response between hillslopes that are hydrologically ‘connected’ to a drainage line and those
that are disconnected. In terms of sediment and sediment-phase pollutants it is used to
describe the potential for sediment transfer from land areas to the water network (Bracken
and Croke, 2007). For example, Skinner et al. (1997) argued that the coarse fraction of the soil
(sand and stones) is likely to be transported short distances only, whereas the finer silt, clay
and organic matter can be moved well away from the site with greater potential to reach a

water body.

Figure 2.2 depicts the components of a framework that Bracken and Croke (2007) used to
conceptualise catchment connectivity. Within each of these components are a number of
factors including many complex spatial and temporal patterns, which influence the extent to
which a catchment may be regarded as connected. The climate, however, is the key overriding
factor; the nature and distribution of rainfall has a significant influence on the runoff regime.
These relate to the potential energy required to transport sediment and nutrients from a

source to the channel and the likelihood that this energy will be available.

Runoff
Potential
Lateral Delivery
Buffering Pathway
Landscape
Positioning
Eesssssssssssnsnsnsnnnnnnnnns Climate  prsssssssssssnsnssnnnnnnnnnnsd ;

Figure 2.2: The components of catchment connectivity (source: Bracken and Croke, 2007).

In a purely hydrological sense, areas of a catchment that have been influenced by land
management and subsequently generate (predominantly) surface runoff are referred to as
Critical Source Areas (CSAs) (Pionke et al., 2000; Novotney, 2003; Heathwaite et al., 2005).
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Concerning DWPA, CSAs can be further described as specific and identifiable locations within
the catchment that are most vulnerable to sediment and nutrient loss in surface runoff, or in
subsurface flow when it is an important part of the local hydrology. Consequently, CSAs are

often responsible for contributing disproportionate sediment and pollution loads.

The CSA concept is well known as a means of evaluating the spatial variation in the risk of
DWPA within a catchment (Gburek et al., 2000). It can be used to predict high pollution risk by
combining zones of high soil erosion, high nutrient inputs and/or high soil nutrient
concentration (pollution source) with the existence and degree of hydrological connectivity
(pollution transport). When attempting to mitigate DWPA, restoration of entire catchments
does not make economic sense (Brazier et al., 2005); there is a need to identify and focus on
those (relatively small) areas of a catchment that are pivotal in influencing the biological and

chemical response of a river system.

Chesapeake Bay is a well-known example of where the CSA concept has been applied. A
catchment area of nearly 180,000 km? drains into a relatively small area where 76% of NO; and
74% of P export was attributed to diffuse sources, of which 58% and 78% of NO; and P,
respectively, were exported from agricultural sources (Pionke et al., 2000). It became apparent
that much of the non-point sources of sediment and nutrients were originating from relatively
small and well-defined areas within the catchment, particularly with reference to SS and P,
also that most P export originated from relatively few larger storms. Conversely, management
of NO; depended more on balancing its use across the wider catchment, mainly due to highly
diffuse nature of N. Table 2.3 contains a list of system controls for the export of NO; and algae
available P, based on the Chesapeake dataset. This highlights a potential problem with the
targeting of CSAs for mitigation efforts, where solving one water quality problem may lead to

the exacerbation of another.

Table 2.3: Systems control on algae available phosphorus and nitrogen export from agricultural land
(source: Pionke et al., 2000).

Controls Algae available P NO;

Process Mostly in surface runoff (90%), and in large part Mostly in subsurface runoff (70-90%)
dissolved (25-50%) as NO3

Spatial Primary sources of export (90%) are small in area (10%) N balance/use distribution (land use
and predictable distribution)

Temporal Most export (90%) by stormflow (10%), and mostly None, except most (70%) occurs in
(70%) during late winter-spring winter-spring

Storm Most export (70%) by largest storms (7 yr''), with most  Little to none

large storms (5/7) during late winter-spring
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2.5 Phosphorus

Phosphorus is one of the most important mineral nutrients for biological systems, yet it is also
one of the scarcest nutrients in terms of its demand in both terrestrial and freshwater
environments. A water body that is deprived of P is often referred to as oligotrophic; this is
reported to have an adverse environmental and economic impact by reducing fish populations
(Foy, 2005). Conversely, eutrophication has been correlated with high concentrations of P

(Carpenter et al., 1998; Sharpley et al., 2003; Withers and Haygarth, 2007).

2.5.1 Phosphorus forms

In the field of water quality chemistry, P is described using several terms and it is vital to have
a sound understanding of the terminology. Some of these terms are chemistry based and
others are methods based. Orthophosphate is a chemistry-based term that refers to the
phosphate molecule all by itself. Soluble reactive P (SRP) is a corresponding method-based
term that describes what is actually measured when the test for orthophosphate is performed.
Soluble reactive P, sometimes referred to as biologically available P, is considered by many to
be almost entirely available for algal growth (Bostrém et al., 1988; Reynolds and Davies, 2001)
and the most important form in terms of eutrophication and its management. As a result, Foy
(2005) argues that measures to reduce eutrophication should be targeted at reducing SRP
rather than total P (TP). The relationship between P fractions and what constitutes biologically
available P for algal growth is complex partly because the precise chemical composition of
each P fraction is indeterminate and varies with time and between individual water sources.

The operational (methods) defined P fractions are summarised in Figure 2.3.

Total P in water samples is a measure of all the forms of P in the sample (orthophosphate,
condensed P, and organic P) and is usually determined by means of the peroxodisulphate
oxidation method, as described by Murphy and Riley (1962). Physical P fractioning is based on
filtration through a sub-micron filter, for which a pore size of 0.45 pum is most commonly used.

Filtration is used to define soluble P (SP) (<0.45 um) and particulate P (PP) fractions (>0.45

pum).

Some caution has to be taken, however, as Haygarth et al. (1998) and Withers and Haygarth
(2007) demonstrated this to be not strictly correct. This is because water can contain a
continuum of particles below 0.45 um, referred to as colloids (particles with diameters
between 1 nm to 1 um). Nevertheless, the terminology of SP and PP, as opposed to filtered

and unfiltered P, is still seen as the conventional terminology.
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Figure 2.3: Operationally defined phosphorus fractions determined in water (directly determined fractions with
bold borders, fractions determined by difference with thin borders) (source: Leinweber et al., 2002).

Chemical fractioning allows the TP (both filtered and unfiltered) to be split into reactive P (RP)
and unreactive P (UP). The determination of RP uses the same ascorbic acid/molybdate
method as TP but does not require digestion. Although the intention of this method is the
determination of soluble inorganic P, the procedure tends to over-estimate concentrations
because other forms of P such as labile organic species can also be hydrolysed and
subsequently included in the detection, while interference from silica and sample turbidity has
also been noted (Condron et al., 2005). Soluble unreactive P (SUP) is often referred to as
organic P. However, this is not strictly true, since it can also contain inorganic forms that do
not react with molybdate. Therefore, (Leinweber et al., 2002) suggested that it is incorrect to

describe RP as inorganic and UP as organic.

2.5.2 Phosphorus in the soil

There has been a perception that fertiliser P is strongly held in the soil matrix in forms
unavailable to plants (Baldwin et al., 2002). As a result, fertiliser P input recommendations are
generally far above the requirements of plants and have not adequately considered inputs
from other sources such as organic matter mineralisation. The P content of many European
soils has gradually increased as a consequence forming a reservoir for possible future loss to

water (Kronvang, 2007; Ulén et al., 2007). A potential implication of this is that it could take
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considerable time to see reductions in runoff P concentrations in response to reduced P inputs
(as a possible form of water quality mitigation). It has been suggested that 10 years would be
needed to see a reduction in SP while a number of decades would be required in order to
observe a decline in PP concentrations reaching waters (Withers et al., 2000; Haygarth et al.,
2002). Unfortunately, P concentrations in lake waters above 0.02 mg I, and river waters
above 0.1 mg I, are considered to accelerate eutrophication; these values are an order of
magnitude lower than plant sustaining soil P concentrations. This disparity between critical soil
and water P concentrations highlights the importance of controlling P loss for the terrestrial

environment (Sharpley et al., 2003).

Phosphorus is removed from the soil primarily by plant growth followed by crop removal.
However, Sharpley et al. (2003) suggest that, on average, only 30% of the fertiliser and feed P
input to farming systems is output in crops and animal produce. Erosion and surface runoff
account for a proportion of P loss, along with leaching to a lesser degree. Phosphorus loss in
agricultural runoff is of little agro-economic importance because it typically amounts to only 1-
2% of the P applied (Sharpley et al., 2003), but as described above, off-site impacts can be

much more significant.

Phosphorus cycling in soils is influenced by soil chemistry (e.g., pH, redox potential), soil
moisture content, temperature and biological activity - where soils, plants and microorganisms
all play an important role. Soil solution P concentrations typically range from <0.01 mg I™* to 1
mg I'* in well fertilised soils but can be as high as 7 to 8 mg I'*. Soil drying and wetting has an
important control over microbial P mobilisation which can release substantial amounts of
organic P to solution (Condron et al., 2005). Several studies have reported a pronounced
seasonal pattern in organic P transfer from soil in a range of environments, with maximum
concentrations in the spring and autumn periods. Turner and Haygarth (2000) found organic P
concentrations in leachate from cut grassland to be greatest in the spring period; Turner et al.
(2003) also found that pulses of organic P occurred in first order streams draining UK uplands
in the spring. This phenomenon is almost certainly explained by microbial processes (Condron

et al., 2005).

In a study that included 22 catchments representative of different agricultural land use
practices, Sharpley and Smith (1990) demonstrated how SP concentration decreased with an
increase in SS concentration of individual runoff events from unfertilised catchments.
Particulate P content decreased as SS concentration of individual runoff events increased. This
was attributed to an increased transport of silt-sized (>2um) particles, of lower P content than
the finer clay-sized (<2um) particles. Larger particles have an increased proportion of primary
mineral P (i.e., apatite) that is less bio-available than the P sorbed to clay.
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2.5.3 Mobilisation and transport

2.5.3.1 Mobilisation

Before P is transported it has to be mobilised. There are two conceptual processes, described

by Haygarth and Jarvis (1999), whereby this occurs:

1. Solubilisation (operationally defined as the P form after < 0.45um filtration) where the
driving mechanism is chemical non-equilibrium
2. Physical detachment of soil particles and colloids with attached P, where the driving

mechanism is force exerted by moving water.

The process of solubilisation may be either chemical - resulting from an excess of P in relation
to the soils buffering capacity, or biological - resulting in the rapid release of P from organic
matter and soil biomass following perturbation (Haygarth et al., 2002). Soil P levels affect
chemical solubilisation and thus concentrations of P in drainage. Any increase or decrease in
soil P level will broadly be reflected in the export, since there is a general logarithmic
relationship between soil P status and solubilisation (Haygarth et al., 2002). Thus, management
of P loss by targeting solubilisation has to take this into account and form part of a long-term

plan for a catchment.

Detachment is the physical release of soil particles and colloids (>0.45 um), with P attached.
Soil erosion is a selective process, enriching runoff sediment in finer-sized (silt and clay)
particles and organic matter (Sharpley and Smith, 1990). As P is strongly sorbed to clay
particles (with a larger surface area) (Barrow, 1978; Heathwaite and Dils, 2000) and organic
matter contains relatively high concentrations of P, particulate P constitutes the major
proportion of P transported in runoff from cultivated land (Kronvang, 1990). Haygarth et al.
(2002) describe how the detachment process occurs on two tiers. The first involves the
steadier, enduring erosion during ‘normal’ winter rainfall via ‘sheet washing’, while the second
tier involves significant erosion losses during heavy rainfall events. The contact time between
runoff water and P source is important in determining the P concentration in runoff. Typical
runoff flow velocities are of the order of 0.3 to 15 cm s™ (Dunne, 1983), while typical velocities
for pastures are at the low end of this range. Increasing slope length and slow-flowing water
will increase contact time and so will be expected to have greater concentrations of P in runoff
(Haygarth and Sharpley, 2000; Dougherty et al., 2004). See section 2.7.2 for a more thorough

discussion of soil erosion processes.

Preedy et al. (2001) and Haygarth et al. (2002) also pose a third type of mobilisation, which is

concerned with anthropogenic P sources (e.g., manure, fertiliser, etc.), called ‘incidental’
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mobilisation. This is a more direct movement of the P source itself (Gburek et al., 2005) and
could include losses from farmyards, hard standings and fields directly after spreading, which
coincide with high water flows. Large P applications left on the surface of wet, frozen,
compacted, and intensively drained soils are particularly vulnerable to incidental losses.
Occurrence depends on the timing and magnitude of runoff events following application.
Withers et al. (2003) estimate that when incidental P losses occur, they often make the

dominant contribution (50-98%) to measured P loads in surface and subsurface runoff.

2.5.3.2 Transport

‘Transport’ refers to P movement by flowing water once it has been mobilised. ‘Transfer’ is
often used to describe the integration of P mobilisation with the spatial and temporal
dynamics of hydrology and resulting transport at the soil and hillslope scale, ultimately to
move P to surface waters (Gburek et al., 2005). Beven et al. (2005) also used the term
‘delivery’, usually represented as the ratio of what arrives at a point of interest along a
particular transport pathway to the P that was mobilized into that pathway. The term ‘loss’ is
also used and can best describe the transfer of P from one component to another, for
example, from a soil or agronomic system to a stream or reservoir. These terms are
interchangeable and will all be used hereafter. Pathways of P transfer can be broadly classified
into surface and subsurface pathways. The greatest P losses, in association with soil particles,
are generally considered to be associated with the former (Haygarth and Sharpley, 2000). Ulén
et al. (2007) estimated that 40-88% of TP transfer in agricultural catchments is via surface
pathways while Pionke et al. (2000) reported a 90% loss associated with surface runoff in the

Chesapeake Bay catchment.

Surface runoff is an important pathway for P loss but is often spatially limited and temporarily
confined to high magnitude, high intensity rainfall events. In a grassland surface runoff
experiment in the Pistern Hills, UK, Heathwaite and Dils (2000) measured runoff P losses from
top-, mid-, and base-slope plots and recorded TP concentrations of 0.08, 0.11, and 0.15 mg I
respectively. As well as hillslope position, temporal factors also influence the magnitude of P
loss in surface runoff. Higher mean TP concentrations (0.16 — 0.19 mg |™") were recorded in
September and October; autumn storms are often responsible for the greatest losses of P due
to high P concentrations in the soil in summer months as a result of fertiliser applications,
increased grazing activity and escalated microbial activity due to higher temperatures and soil
re-wetting. Conversely, TP concentrations often decrease during the winter months due to

source exhaustion, despite increasing larger storms.
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Until relatively recently, subsurface pathways have been viewed as fairly insignificant for P
transfer owing to the tendency of P to be adsorbed to soil particles. However, research has
shown that subsurface pathways can also contribute 12-60% P losses from agricultural fields
(Ulén et al., 2007). Groundwater discharge can be an important source of P, particularly
organic P, when stream flow is dominated by base flow (a high base flow index — BFI)

(Tesoriero et al., 2009).

Preferential flow pathways, particularly soil macropores and field drains, can be important
contributors to the overall P load. Again, in the Pistern Hills catchment experiment,
Heathwaite and Dils (2000) recorded high P concentrations (mean: 1.2 mg TP I™!) in macropore
flow in the upper 0-15 cm of a grassland soil but found that P concentration generally declined
with increasing soil depth. Drainflow is a similar mechanism to macropore flow but with
significantly greater potential to connect distant parts of the land unit to the stream network;

there is also no buffer to ameliorate their impact (Deasy et al., 2009; Sukias and Tanner, 2011).

Figure 2.4 summarises the data gathered by Heathwaite and Dils (2000), showing the variation

in magnitude and form of P loss in different hydrological pathways in a grassland catchment.
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Figure 2.4: Variation in the magnitude and form of P loss in different hydrological pathways for the Pistern Hill
catchment, UK (source: Heathwaite and Dils, 2000).
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2.5.4 The influence of land use and storm flow

Russell et al. (1998) reported a P loss range of 160-210 kg km™ yr for agricultural catchments
in the UK and Jarvie et al., (2003) calculated the annual TP export from different sub-
catchments in the Herefordshire Wye basin varying between 2 and 90 kg km™ yr™. Wood et al.
(2005) working in the predominantly grassland Taw catchment estimated an export of 120 kg
km™ yr™. Ulén et al. (2007) also reported that the UK suffered some of the highest P losses in
Europe. Thus on average, the typical loss of P to water is estimated at around 100 kg km™ yr™

for grassland farms.

Arable losses are predominantly in particulate form while soluble P is the most important form
exported from grasslands and forestry; this is supported by the results of Lemunyon and
Gilbert (1993) and McGuckin et al. (1999). Grasslands lose most P in soluble form due to their
dense vegetative cover, which impedes particulate losses (Haygarth et al., 1998). Investigating
two major river catchments in Northern Ireland, the Upper Bann and the Colebrooke,
McGuckin et al. (1999) found that TP exports from improved and unimproved grasslands to be
the same (80 kg km™ yr™) while SRP exports from unimproved grassland were higher than
improved grassland (40-85 kg km™ yr* and 12-40 kg km™ yr, respectively). This is partly
attributed to unimproved grassland often being undrained with compacted soils, which can
encourage surface runoff. Haygarth et al. (1998) suggests that artificial drainage, often
associated with improved grasslands, may increase the proportion of PP lost via surface
pathways. Drainage (of improved grasslands) can also lead to increased sorption of SRP in the
upper soil horizons while opportunity for SRP sorption in unimproved grasslands is limited due

to increased amounts of organic carbon (McGuckin et al., 1999).

In a study looking at sediment associated P transport from two intensively farmed catchment
areas in Denmark, Kronvang (1990) identified that the annual transport of PP during storm
flows was as large, or larger, than the transport during background flow, despite the fact that
storm runoff volume comprises only 14-18% of the total runoff. Also that the onset of storms
produces high PP transport rates, at least in part as a result of the resuspension of particulate
matter accumulated on the bed (possibly during a previous summer drought). The availability
of sediment also exerts a strong control on the PP transport; thus reoccurring events in
January may give rise to low PP fluxes despite high proportions of storm flow (this issue is
discussed in further detail in Section 2.7.4). It was found that 56-66% of the annual P fluxes
consisted of PP. 70-90% of the monthly PP fluxes was contributed by short-term storm events;
thus, seasonal trends largely reflect changing storm frequencies (Kronvang, 1990). The
exhaustion effects (Walling and Webb, 1987) and the resuspension of accumulated sediments

further complicate measurement of the P transport.
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During a six-month continuous TP monitoring campaign in a 5 km? sub-catchment of the Lough
Neagh basin (grassland agriculture, impermeable soils and under-drainage), Northern Ireland,

Jordan et al. (2007) categorised TP transfer into three ‘event-types’:

Type 1) A Long-term trend associated with baseflow periods where TP concentration was
inversely related with stream discharge, thus indicating point sources of P and a concentration
effect. Spikes in the TP record were attributed to manure/fertiliser applications and also to
small rainfall events that had little or no impact on the stream flow. A diurnal pattern in TP
concentrations was caused by either physical/biological interactions that depend on

temperature/light, and/or by point source activity during the day.

Type 2) TP transfers driven by storm events, which showed a positive correlation and were
typically associated with diffuse runoff from P-rich agricultural soils. Storm-dependent transfer
was responsible for the bulk of observed TP; however, contiguous storms demonstrated a
decrease in P concentrations indicating a depletion of the P source. This fits with the ‘supply
limited’” model described by Haygarth et al. (2004), where hysteresis plots showed a clear
‘flushing’ effect in early storms where TP concentrations were higher and peaks on the rising
limb of the hydrograph. In later storms the TP concentrations closely followed the pattern of

the discharge for both rising and falling limbs.

Type 3) Discrete, high magnitude TP transfers unrelated to rainfall or changes in discharge and

were caused by pollution incidents.

2.5.5 Phosphorus cycling in water

According to Baldwin et al. (2002), P exists in the aquatic environment in one of the following

pools:

e Dissolved in the water column.
e Associated with suspended sediment.
e Deposited in bed sediments.

e Incorporated into the biota.

The arrows in Figure 2.5 indicate the exchanges between each of these ‘pools’ in a conceptual
form. Only a brief explanation is provided here, as the chemical cycling and pollutant-sediment
interactions associated with P are lengthy and complex. A more detailed explanation can be

found in Baldwin et al. (2002) and Bowes et al. (2003).
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Figure 2.5: A conceptual framework of the phosphorus cycle in aquatic systems.
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Upstream inputs (A) into a water body can add P into any of the four defined pools. Water and
sediment chemistries and biological activity then control the exchange between each of the
pools in the water body. Adsorption and desorption exchanges occur between the dissolved
pool and the sediment bound pools (B and C). Phosphorus exchanges between the bed
sediment and the suspended sediment pools occur through the processes of sedimentation
and re-suspension (D) (Baldwin et al., 2002) and P is released from the sediment pools to the
dissolved pool by the mineralisation of organic matter present both in the bed and in
suspended sediment. Phosphorus is incorporated into the biological pool from the dissolved
pool through the growth of algae, bacteria and aquatic plants (E). The release of P from the
biological pool back to the dissolved pool occurs either through direct excretion (E) or

mineralisation during decomposition following the death of the organism (F to C, and G to B).

Unpolluted freshwaters usually exhibit TP concentrations below 0.025 mg I%; TP
concentrations above 0.05 mg I'* are assumed to be the result of anthropogenic influences.
The critical P concentration in water above which eutrophication is likely to be caused is

approximately 0.1 mg TP I, or 0.03 mg SRP I (Leinweber et al., 2002).

2.6 Nitrate

Like P, N is an essential nutrient to both plants and animals, being a vital component of amino
acids, proteins and nucleic acids. Although N (atmospheric N: N,) makes up 78.1% (by volume)
of the atmosphere and is a significant component of all soils, it is often a major limitation to

the growth of plants (Heathwaite, 1993).

To ensure that plant N availability does not limit crop yields, additional N is often applied in

large amounts to agricultural lands as inorganic forms such as nitrate (NO;) or ammonium
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(NH,) in fertilisers, and in organic forms such as FYM and slurry (Hatch et al., 2002). Figure 2.6
shows a representation of the interaction between crop N uptake and soil mineral N level for

arable crops.

However, NO; is extremely soluble and can be transferred from terrestrial to aquatic
environments with relative ease, causing increasing concentrations in receiving waters
(Olarewaju et al., 2009). Historically, concern with elevated NO; levels in drinking water
stemmed from its potential danger as a cause of methaemoglobinaemia, or blue baby
syndrome, in infants (Addiscott et al., 1991). As a result, the EC Drinking Water Directive
(98/83/EC) set a maximum limit of 50 mg NO3 I (equivalent to 11.3 mg NOs-N I"") and since
the 1970s there have been no reported cases in the UK (O’Shea and Wade, 2009).

More recently, the concern with NO3 pollution arises from its role in the eutrophication of
waterways. Seventy per cent of NO; entering English waters is estimated to come from
agricultural land (Defra, 2007b). Thirty or forty years ago, loss of NO; simply implied the loss
from the soil of a resource that the farmer would need to replace. Today, however, the
concern has shifted from ‘loss from’ to ‘loss to’, as well as ‘where’ has the N gone and in ‘what
form’ (Addiscott, 2005). The agricultural Nitrates Directive (91/676/EEC) and more recent WFD
have targeted NO;, along with P, as a key nutrient whose concentration/load in aquatic
environments should be reduced in order to improve and/or maintain ecological status. These

legislative directives will be discussed in Section 2.8.
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Figure 2.6: Example timeline of nitrogen dynamics showing the leaching risk and synchronicity between N supply
from the soil and crop uptake (source: ADAS (2007).
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2.6.1 Nitrogen forms and the nitrogen cycle

Forms of N that are of known concern in the context of water pollution are ammonia (NH;) —
which dissolves to form NH,, nitrite (NO,) and NOs. A simplified nitrogen cycle is depicted in
Figure 2.7. During the conversion of atmospheric N, cyanobacteria will first convert N, into
ammonium which is then rapidly nitrified to ammonia by soil micro-organisms and is also held
tightly on the negative charges of clay minerals and soil organic matter, and so is relatively
immobile and harmless. This is referred to as the nitrogen fixation process. After nitrogen
fixation, the NH; and NH, that is formed will be transferred further, during the nitrification
process. Nitrosomonas bacteria first convert NH; to NO,, but as it has a short half-life it does
not usually pose a problem to the environment. However, under conditions of high
temperature and poor aeration, NH, oxidation exceeds NO, oxidation and the latter can
accumulate. Other factors, including high NO3; concentrations and pH >7.5, or combinations of
these factors, can also lead to nitrite accumulation and subsequent leaching (Hatch et al.,
2002). Subsequently, nitrobacter convert NO, into NO;. Plants absorb NH, and NO; during the
assimilation process, after which they are converted into N-containing organic molecules, such

as amino acids and DNA.
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Figure 2.7: A simplified representation of the nitrogen cycle.

Animals cannot absorb nitrates directly; they receive their nutrient supplies by consuming
plants or plant-consuming animals. When nitrogen nutrients have served their purpose in
plants and animals, specialised decomposing bacteria will start a process -called
ammonification, to convert them back into ammonia and water-soluble ammonium salts. After
the nutrients are converted back into ammonia, anaerobic bacteria will convert them back into
nitrogen gas, during a process called denitrification (Vinten and Smith, 1993). Denitrification,
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as described by Seitzinger et al. (2006), is the microbial oxidation of organic matter in which
nitrate or nitrite is the terminal electron acceptor. It is a process of anaerobic respiration
(suboxic conditions - environments with <0.2 mg O, I'!) conducted by bacteria, which can also
respire aerobically, and the end product is N,. Bacteria capable of denitrification are
ubiquitous, thus denitrification occurs widely throughout terrestrial, freshwater, and marine
systems where the combined conditions of NO; and/or NO, availability, low oxygen
concentrations, and sufficient organic matter occur. Finally, N is released into the atmosphere
again. However, nitrous oxide (N,O) can also be released from the soil during the breakdown
of organic matter and nitrogen fertilisers. Nitrous oxide has a global warming potential over

200 times greater than that of CO, (Hatch et al., 2002).

2.6.2 Nitrate in the soil

Only legume species of plants can obtain N that has been fixed from atmospheric N, via a
symbiotic relationship with specialised organisms (called Rhizobia) that colonise the roots.

Therefore, plants generally take up N as NO; or NH, from the soil solution.

The NO; loss problem occurs because water (rainwater or irrigation water) carries it in solution
when it passes through and out of the soil. Nitrification is a key process that mobilises NO; and
promotes losses to watercourses. Within agricultural soils, the rate of NO; production is
usually non-limiting, meaning that pool sizes can be considerable. Nitrate is relatively stable,
very soluble and does not become fixed on clays or organic matter because of its negative
charge; it therefore remains highly mobile. Nitrite is very reactive, toxic to aquatic life, but is
usually present in soils and waters in only small quantities. Figure 2.8 depicts the four ultimate

fates of NOs.
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Figure 2.8: The four ultimate fates of nitrate (shaded squares). The size of the square is proportional to the quantity
of NOj involved (source: Addiscott et al., 1991).
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2.6.3 Mobilisation and transport

As NOj; is the most important form of N in terms of water quality impairment and the one used
most often in studies of DWPA as a water quality indicator, the rest of the chapter will focus on
NO; only. Nitrate is found in most natural waters: in rain, rivers, lakes, the sea, and importantly

in water stored in porous rocks such as chalk and sandstone.

There are two main general hydraulic pathways by which mobile forms of NO; can be

transferred from diffuse sources into water bodies:

1. Overland and subsurface lateral runoff.

2. Vertical leaching.

Surface runoff is an important transport mechanism for particulate organic NO; and NH,
adsorbed on to suspended particles in heavily grazed grasslands. Nevertheless, studies have
shown that most of the NO; lost from both grasslands and crop fields moves through
subsurface flow rather than in surface runoff (Heathwaite, 1993; Stevens et al., 1999;
Andersen et al., 2001). As a result, Cherry et al. (2008) suggested that NO; export can only be
minimised by limiting inputs and the availability of excess nutrient. Leaching is the major
process of NO; transfer from hillslope to streams. Downward flow into groundwater is
dominant in well-drained soils, while lateral losses predominate in impermeable soils although
vertical flow through the soil profile can occur either via bypass flow in large macropores and
cracks in heavy textured soils. As a consequence NO; is the most common contaminant in
aquifer systems (Burkart and Stoner, 2002). Tesoriero et al. (2009) found the major source of
NO; in baseflow-dominated streams was groundwater, while rapid flow pathways were the

major source of nitrate in streams with low BFI values.

Specific agricultural activities which contribute substantially to losses of NO; include the
ploughing of permanent pasture, which releases large amounts of NO; through the
mineralisation of soil organic matter; leaving land fallow over winter, and application of animal
manures or N fertilisers during the autumn when plant uptake is low and over-winter rainfall
will increase leaching (Addiscott et al., 1991; Skinner et al., 1997; Addiscott, 2005). Nitrate
concentrations in rivers are usually greatest in the autumn, reflecting the first flushes of water
from agricultural land. Concentrations in winter often decline during heavy rainfall periods,
because a proportion of the flow moves rapidly with limited interaction with the soil and the
NO; it contains. Sometimes sharp rises in NO; concentrations are seen in spring, reflecting
applications of fertiliser and organic manures as well as mineralization of readily available soil

nitrogen pools (Armstrong and Burt, 1993).
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As grassland nearly always has a well-established root system to retrieve NOs, ten Berge et al.
(2002) argue that they can be given substantial applications of N fertiliser, up to about 400 kg
ha™ yr', without appreciable NO; losses from the soil. However, this is not to say that NO;
leaching from grasslands is not a problem. Ryden et al. (1984) showed unequivocally that the
process occurred because of the non-uniform deposition of urine and dung by cattle and
sheep. As more NOs is applied to the fields, higher grass yields can support higher stocking
densities. However, due to the animals’ inefficiency at converting NO; into useful products,

around 80% consumed by animals is excreted.

2.6.4 A nitrate paradigm shift

In their book ‘Farming, Fertilisers and the Nitrate Problem’, Addiscott et al. (1991) were
advocates of the ‘nitrate time bomb’ and reported both the potential health risks of excess
NOj; to humans and the risks to the environment. However, in his more recent work, Addiscott
(2005, pp. 165) stated, “the link between nitrate and stomach cancer is intellectually and
administratively dead”. Not only that, he also claims, “methaemoglobinaemia is not caused by
nitrate in water, but by nitric oxide produced in a defensive reaction against bacterial
gastroenteritis”. While NO; has been shown to cause algal blooms and excessive growth of
benthic macroalgae in coastal and estuarine waters, many believe that P not NO; is the limiting
nutrient for freshwater algal blooms due to the presence of N fixing algal species in these
environments. Therefore, the current limit of 50 mg NO; | has to be questioned. The World
Health Organisation (WHO) set European standards for NO; in drinking water in 1970, which
stated that less than 50 mg I was ‘satisfactory,’ 50-100 mg | was ‘acceptable’ and more than
100 mg I" was ‘not recommended.” The EC adopted 50 mg NO; I'* as its upper limit; a
seemingly arbitrary decision given that there was little medical evidence of any risk at 100 mg
NO; I". As a consequence of this limit huge sums of money have been spent in trying to

reduce NO; levels.

However, Addiscott (2005) concluded that despite the possible fallacy that NO; was ever a real
threat to humans, it inadvertently provided a reason to reform agricultural practices in order
to better protect the aquatic environment. Many of these changes have also decreased P and
SS exports and without them the state of the impact on the aquatic environment could be a

great deal worse.

2.7 Sediment

Soil erosion generates both on-site and off-site impacts and each year millions of tonnes of soil

are washed from the Earth’s surface into receiving bodies of water. Driven by the demands of
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the WFD and the need to ensure water quality there has been a shift in emphasis in England
and Wales from the on-site impacts of soil erosion (e.g., surface lowering, loss of soil
productivity) towards off-site impacts (Brazier et al., 2007). In 2002, the Environment Agency
(2002) estimated that soil erosion cost the UK economy around £90 million per annum.
Problems arise when the sediment input into streams is increased and accelerated by
anthropogenic activities (such as agriculture, forestry, construction and mining) that disturb
and expose the land surface and increase erosion rates (Skinner et al., 1997; Novotney, 2003).
The main impacts of excess sediment on receiving watercourses are summarised in Table 2.4.
However, as this study is concerned with water quality, only the ecological impacts are

discussed in more detail in Section 2.7.4.

Table 2.4: Impacts of excess sediment on the aquatic environment.

Potential impacts on watercourses of excess sediment

Increased turbidity cause reduced photosynthetic activity in the stream (Mainstone et al., 2008)

Sediments can damage aquatic habitats such as fish spawning (Harrod & Theurer, 2002)

Deposition can lead to bed aggradation which reduces the conveyance capacity of the channel and may increase
flood risk

The high sorption capacity of fine sediment fractions (<0.45um) means that it is a primary carrier of other pollutants
e.g., such as organic components, metals, ammonium ions, phosphates (Owens, et al., 2005; Baldwin et al, 2002)

Economic impacts in terms of increased cost of drinking water purification, the siltation of reservoirs and water
abstraction plants, and the loss of income from recreational tourism (Skinner et al., 1997)

‘Muddy flood' damage to property (Boardman et al., 1994)

The ‘transport’ of sediment in rivers makes a distinction between SS and bedload sediment. As
the transport mechanism of sediments of a given size fraction in water can vary temporally
with stream transport capacity, this distinction is not helpful with regard to the issue of
excessive agricultural sediment inputs. This study is concerned only with the fine sediment
fraction (<63 um), for which the term ‘suspended sediment’ is used interchangeably, as the
main ecological problems are caused by fine sediment deposition on the bed (rather than

when the material is suspended).

The Environment Agency (2007) believe that 23% of rivers in the UK are at risk from excessive
inputs of SS. Suspended sediment is also crucial in the transport of sediment-associated
pollutants, including particulate nutrients, toxic metals and pathogens, which may bind to fine
sediment particles (Edwards and Withers, 2008). For this reason Collins and McGonigle (2008)
argued that SS should be given a higher profile in diffuse pollution policy. The rate of SS
delivery in a catchment is dependent on the rate of production and the level of connectivity

between the source and the channel (as discussed in Section 2.4.1).
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2.7.1 Sources

The SS load transported by a watercourse will commonly represent a mixture of sediment
derived from different locations and from different source types within the contributing
catchment (Walling, 2005). Sediment loss is a naturally occurring process; however, increased
water erosion rates on agricultural land occur due to damage to the soil caused by ill-timed, or
ill-sited, use. Mostly it happens under wet conditions, by animals’ hooves, cultivations,
excavations and vehicles travelling on the land (Harrod and Theurer, 2002). All these can take
place both on stream banks and more widely throughout the catchment. This section will
review the natural processes before considering how they are modified by agricultural

activities.

Soil erosion processes within a catchment can initially be divided into either hillslope or
channel process. Hillslope processes comprise sheet erosion, rill and gully erosion, and mass
movement. Channel processes encompass bed and/or bank erosion. Sheet erosion comprises
two processes. The first is raindrop impact (splash) where the loss of kinetic energy as the
raindrop hits the soil surface causes the detachment and mobilisation of soil particles. The
second is transport of mobilised material via overland flow. Overland flow can also detach
particles but in sheet erosion is more important in the transport of soil eroded by the

raindrops (Morgan, 2004).

Whereas sheet erosion is normally associated with a uniform degradation of the soils surface,
rilling occurs due to a localised concentration of flow and erosive energy. Rills can increase
local erosion and the speed in which sediment-laden water can reach the receiving
watercourse. Gully erosion is similar to rilling but on a larger scale. It occurs where there is a
concentration of flows and forms channels that are too large to be removed by normal
agricultural activities. The erosive power of gullying is high on a local scale but often small by
comparison with sheet erosion on a basin scale (e.g., 1-5% in agricultural catchments - Harrod
and Theurer (2002)). Mass movement is the movement of soil downslope under the influence
of gravity. It can either be a slow creep of the soil mass or a rapid collapse of a large soil/rock

mass as a landslide.

Channel erosion takes place along the bed and banks of the stream. It involves the natural
process of meandering as well as the accelerated erosion due to channel incision and
widening. Streams that have increased flow volumes and velocities (possibly due to land use
changes in the catchment) are particularly susceptible to increased bed and bank erosion

(Novotney, 2003).
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The relative importance of each of the above (natural) soil erosion processes and the
magnitude of the resulting ‘gross’ erosion is a function of climate, vegetation, soil type and

topography.

Rainfall intensity and droplet size determine the erosive power of the rain. Rainfall seasonal
distribution also has an indirect effect on erosion in that it is closely related to vegetation
extent and growth. Vegetation is a very effective form of protection against erosion. It shields
the soil surface from raindrop impact, binds the soil structure, and improves the infiltration
capacity of the soil (thus reducing surface runoff). Conversely, bare soil is the most vulnerable
to erosion. Soil hydrology strongly influences the generation and transport of sediment. Soil
texture, organic matter content, soil structure and permeability are all factors in soils

erodibility (Harrod and Theurer, 2002).

Slope pitch and slope length are the most important topographical factors controlling erosion.
Generally the steeper and longer the slope, the greater the risk of erosion due to higher flow
velocity and associated higher erosive energy of flowing water (Owens, 2005). Walling (2005)
described how a relatively small area of the catchment could contribute most of the SS load at
the catchment outlet if it was underlain by an erodible geology and/or susceptible land use;
examples include bank collapses or poached areas, which might contribute most of a storm’s

yield.

Riverbank erosion is the main in-channel source of sediment, the natural occurrence of which
depends on the shear stress of the flow causing mechanical failure. There are many variables
leading to the spatial variability and rate of bank erosion, which will not be discussed in detail
here. However, agricultural activities, particularly the presence of livestock in riparian areas,
can accelerate bank erosion through poaching (discussed below). Other sources of sediment in
agricultural catchments include drainage ditches, especially when poached by livestock;
unpaved roads and farm tracks have also been identified as sediment sources as well as
potential transfer pathways (Sheridan and Noske, 2007). Upland afforestation/deforestation

has been reported as posing a serious threat to water quality (e.g., Zheng et al., 2005).

In an attempt to apportion sediment to different source categories, Collins et al. (2009), using
the PSYCHIC (Phosphorus and Sediment Yield CHaracterisation In Catchments) model,
suggested that the agricultural sector contributed 76% of the total SS load delivered to all
rivers across England and Wales (Figure 2.9). It is notable however, that the focus of this
assessment is on lowland catchments and does not include assessment of moorland and
forestry activities. Although believed to be relatively robust at the national scale, the model

outputs should be used conservatively at the catchment scale.
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Figure 2.9: National scale sediment source apportionment for England and Wales (year 2000 conditions)
(source: Collins et al., 2009).

At the catchment scale, Walling et al. (1999) conducted a study into the contribution of
different types of sediment sources to SS yield in the River Ouse and its tributaries in Yorkshire,
UK. Using a ‘fingerprinting’ method they calculated the relative contributions from
uncultivated topsoil, cultivated topsoil and channel banks to the sediment yield to be 25%,
38% and 37% respectively. Thus surface sources, particularly those associated with cultivated

areas, dominated in the Ouse catchment.

Also using fingerprinting techniques, Russell et al. (2001) investigated sediment sources in two
small underdrained agricultural catchments in the UK over two years. One of which
(Rosemaund) was dominated by arable land use, and the other (Smisby) was a mixture of
arable and dairy pasture. The findings apportioned 10% of SS yield to bank erosion, 55% to
field drains and 34% to surface sources in the Rosemaund catchment: and 10% to bank
erosion, 30% to field drains and 65% to surface sources in the Smisby catchment. Unlike the
Rosemaund catchment, where arable land use was the dominant surface source, pasture areas
were considered to be more significant in the Smisby catchment due to the proximity of the
pasture areas to the watercourse coupled with high incidence of poaching (also found to be

the case in the same catchment by Heathwaite et al. (1990)).

2.7.2 Mobilisation and transport

All of the processes described above are influenced, and often exacerbated, by agricultural
activities (as introduced in Section 2.3.1). Owens (2005) estimated that human activity might
be directly or indirectly responsible for 80-90% of the fluvial sediment delivered to the coastal
oceans. Pathways of sediment transport have already been discussed in Section 2.5.4, as P and
SS movement is inextricably linked and strong correlations between stream water SS and PP

concentrations exist (Kronvang, 2007). Overland flow is the hydrological process that would be
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implicated in the transport of SS to streams, as the energy associated with the overland flow
acts as the driving force for the potential removal of soil particulate matter from the land
surface (Scanlon et al., 2004). Walling (2005) found that the highest surface soil contributions
were associated with intensively cultivated lowland catchments. This is due to a combination
of vulnerable soils, cultivation frequency, timing and method, and lack of crop cover during

storm events (Withers et al., 2007).

Semi-permanent tractor wheelings (discussed in Section 2.3.1.2) have the potential to connect
distant parts of the catchment to a watercourse and act as fast, polluted runoff pathways. In a
survey conducted between 1989 and 1994 by Chambers et al. (2000), the presence of
tramlines was the major causal factor in 34% of 146 surveyed fields where soil erosion
occurred. Bilotta et al. (2007b) suggested that overland and/or subsurface flow from
grasslands could also contain relatively high concentrations of <0.45 um sediment particles,
both organic and inorganic, especially those in the colloidal size range (0-1-1 um). This is due
to the vegetation cover providing filtration of the coarser particles along with the addition of
colloidal-rich material, such as manure and slurry, to grasslands as fertilisers. Pastoral land use
often equates to greater stocking densities, relative to arable operations. Animal trampling
and poaching can physically detach and mobilise sediment particles; this process is more
significant in areas that are well connected to adjacent water bodies. Heathwaite et al. (1990)
described how heavily grazed and trampled pastureland produced greater surface runoff
quantities and also higher SS concentrations, compared with an undisturbed area, in a rural

catchment in southwest England.

Relatively recent research has highlighted the potential of field drains to transport such
particles. Russell et al. (2001) estimated that field drains could be responsible for up to 55% of
SS loads in lowland catchments. Chapman et al. (2005) recorded concentrations of up to 2600
mg I, and Dils and Heathwaite (1999) recorded concentrations of up to 650 mg ™. Deasy et al.
(2009) conducted an experiment in the Jubilee catchment, UK, and found that field drains
were the dominant pathways for the transfer of runoff and sediment to the stream; surface
runoff pathways drained 6.2% of the catchment area and transported around 1% of the
catchment sediment load, while subsurface runoff in field drains draining 26.5% of the
catchment transported around 24% of the sediment load. Although SS concentrations were
found to be higher in surface runoff, the volume of water transported by the drains meant that

the overall load was greater.
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2.7.3 Sediment in water

In many river systems, most of the suspended load is <2 mm (i.e., sand-sized or less) in size,
with much of this being <63 um (i.e., silt- and clay-sized material) (Baldwin et al., 2002). The
<63 um fraction is of key importance to biochemical fluxes within river systems because the
majority of contaminants and nutrients are associated with silt- and clay-sized particles.
Conventional water analysis approaches define an arbitrary boundary between ‘solute’ and
‘suspended’ load, often at a threshold of either 0-:45 um or 0-7 um, with particles above these
thresholds assumed to travel in suspension and particles below this threshold in solution
(Owens, 2005). For the majority of cohesive solids, research has demonstrated that transport
frequently occurs in the form of larger aggregates (pedological process), or flocs (waterborne
process) (Bilotta and Brazier, 2008). Thus, in a situation where clay would not settle due to low
settlement velocity, significant quantities may indeed be deposited if the particles are
aggregated with larger particles (Walling, 1990). This has important implications for the
mitigation of SS in water bodies (e.g., sediment trap design) and will be discussed in further

detail in Section 2.9.3.

2.7.3.1 Ecological Impacts

High concentrations of SS can negatively impact on macrophyte and algal growth, primarily
through increased turbidity affecting the amount of light penetrating through the water
column, but also by scouring organisms from substrates and by acting as a vector for
potentially damaging nutrients, pesticides and herbicides (Bilotta and Brazier, 2008). This can
have a direct impact on primary consumers; for example, increased SS concentrations are
associated with an increase in invertebrate drift (down- or up-channel migration of organism)
and the clogging of feeding structures of filter-feeding invertebrates. Increased turbidity can
also impair the vision of many animals relying on sight for catching prey or avoiding predators

(Mainstone et al., 2008).

The impact of SS on salmonid fish (trout, whitefish, salmon and grayling) has been extensively
researched (e.g., Sear (1993)) mainly because fish are an important economic resource and
human food resource. Perhaps the most commonly quoted influence is the deposition of fine
material, which can block the pores in the gravel-redd spawning structure and reduce the
chance of fish egg survival. Excess sediment can also act as an abrasive to a fish’s gills, suppress

their immune system and interfere with their natural migration.

The particle size and organic content of the SS also has an important bearing on ecological risk,
with organically enriched silts able to exert more oxygen demand and reduce fish egg survival

rates (Greig et al., 2005). Heaney et al. (2001) found that survival rates of early life stage
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salmonids declined rapidly as the silt content of spawning gravels increases, particularly over

the range from 10 to 15%, mainly due to a decline in oxygen supply to the eggs.

2.7.3.2 Transport

The capacity of rivers to transport SS is very high, although the SS yields of British rivers lie
typically in the range 50-100 t km™ yr* - low by world standards (Walling and Webb, 1987).
Upland rivers have higher energy and can transport larger quantities of silt (and more coarse
material) than lowland rivers where fine sediment tends to be deposited naturally (Mainstone
et al., 2008). This may lead to the conclusion that fine sediment deposition occurs primarily in
low-energy lowland rivers; however, Milan et al. (2000) argued that considerable amounts of
fine sediment can also be deposited in upland rivers during recessional flows and during
baseflow conditions, particularly in areas of aggravated bank erosion (i.e., livestock trampling).
Unlike sediment from the wider catchment, which enters the river during rainfall events; that
from livestock-induced bank erosion enters the river at a time when scouring forces are
minimal and is less likely to be transported further down the river system (Mainstone et al.,

2008).

Suspended sediment yield per unit runoff is also dependent on between-storm periods and
not just the magnitude of the storms. It is common for rapidly consecutive storms to yield
lower SS concentrations for the same, or higher, discharges in later storms (Walling and Webb,
1987; Asselman, 1999; Nistor and Church, 2005). In order for concentrations/loads to increase
again there has to be a period to allow the replenishment of sediment sources. This will then
lead to a relatively high SS export during the subsequent flood event (Walling and Webb,
1987). Suspended sediment yield is also influenced indirectly by the antecedent catchment
conditions. For example, a saturated catchment could exhibit connectivity between a critical
sediment source which is not connected in previous events and the river (Seeger et al., 2004),
meaning there is an increase in yield per unit runoff in consecutive storms. These opposing
conditions complicate between-storm SS concentration variability and ultimately, the response
depends on the relative influences of catchment wetness and sediment exhaustion on

sediment supply (Mills, 2009).

Over a wider temporal scale, seasonality can cause variability in SS concentration and yield due
to varying land use and associated vegetation type (Lefrancois et al., 2007), or over an inter-

annual scale, the total amount of precipitation.
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2.7.3.3 Hysteresis

Fluvial SS transport dynamics are strongly dependent on the dynamics of sediment supply.
Walling and Webb (1981) plotted SS concentrations against river discharge and found that SS
concentrations increased with discharge and ranged from about 1 mg I"* during low-flows to
approximately 1000 mg I during extreme flood discharges. However, in other cases the
relationship between discharge and SS concentration is often poor (Walling and Webb, 1987;
Lenzi and Marchi, 2000), the result of exhaustion of sediment supply. Hysteresis loops are used
to describe the non-linear relationship between discharge and SS concentration during storm
events and can be highly valuable for making inferences on sediment sources and transport
mechanisms (Seeger et al., 2004), although only a brief description will be given here.
Hysteresis loops are produced either by a lagged response of one variable, or by an
asymmetric response of the two variables, so that a different SS concentration occurs for

equivalent discharges in different parts of the storm.

Prowse (1984) described ‘true hysteresis’ as when the sediment wave lags behind the water
wave as a result of energy dissipation in the system; this can only ever cause an anticlockwise
loop in the SS/water discharge relationship. Generally, anticlockwise hysteresis indicates that
SS concentrations are higher during the latter stages of a hydrograph. This could be the result
of water moving through the system faster than the sediment, causing a time lag downstream
(Asselman, 1999; Lenzi and Marchi, 2000). A sediment lag could also be caused by a
predominance of sediment sources from land areas with relatively high travel time to the

catchment outlet.

Arguably, however, the most common type of hysteresis is the clockwise loop direction (Lenzi
and Marchi, 2000; Seeger et al., 2004), which may occur for several reasons. Often it is due to
the depletion of the sediment supply during the storm event but can also be attributed to in or
near channel sources providing easily mobilised sediment on the rising limb, which becomes
diluted as water from more distant parts of the catchment begins to contribute to outlet
discharge (Jansson, 2002). Asselman (1999) described how different tributaries within a larger
catchment contribute different SS concentrations and different travel times to the catchment
outlet can result in both clockwise and anticlockwise hysteresis. There are many factors that
can complicate the hysteresis type of a catchment and if an area is usually dominated by one
type, there is no reason why it could not exhibit another. Multiple or complex loops are usually
associated with longer duration/wider coverage storms, which have the potential to mobilise
sediment from a greater number of sources and from increasing distances within the
catchment. A non-hysteretic response (i.e., where SS concentration is correlated to discharge)

indicates that the sediment transport is not supply-limited. This could occur in short-duration
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storms or in small catchments during extreme events (e.g., Nistor and Church (2005)). Thus, it
is important to remember that hysteresis loops alone cannot determine the sediment sources
in a catchment due to the large number of factors operating and because a number of

scenarios could cause a hysteresis loop of the same shape (Jansson, 2002).

2.8 Current Legislation

2.8.1 The Water Framework Directive

Introduced in 2000 and transposed into UK law in 2003, the EC Water Framework Directive
(2000/60/EC) (European Commission, 2000) adopts a comprehensive, integrated catchment
management approach whereby land and water are managed as one inter-connected system.
The WFD is strongly target-orientated, the overall objective being for all Member States to
achieve good ecological and chemical status of water bodies (including groundwater and
coastal waters) by 2015 (the first review - the final deadline is 2027). Good status is defined by
the UK Technical Advisory Group (UK TAG) on the WFD (2008a p.14) as: “the values of the
biological quality elements for the surface water body type show low levels of distortion
resulting from human activity, but deviate only slightly from those normally associated with

the surface water body type under undisturbed conditions”.

As the ‘competent authority’ in England and Wales, the EA is responsible for delivering the
Directive and where issues have been identified, Programmes of Measures (PoMs) have been
devised for each River Basin District (RBD). For the past two decades the EA have used a
general quality assessment (GQA) scheme to assess river water quality in terms of chemistry,
biology and nutrients. However, the WFD brought about the need for a more sophisticated
way of assessing the whole water environment in order to help direct action to where it's most
needed. The EA now use a risk-based classification monitoring system where ‘poor’ individual
results drive the overall classification for a water body. It reports on over 30 measures,

grouped into ecological and chemical status. Ecological status comprises:

e The condition of biological elements, e.g., fish.
e Concentrations of supporting physico-chemical elements, e.g., N, P, BOD.
e Concentrations of specific pollutants, e.g., copper.

e And for high status, largely undisturbed hydromorphology.

It is recorded on the scale of ‘high’, ‘good’, ‘moderate’, ‘poor’ or ‘bad’. ‘High’ denotes largely
undisturbed conditions and the other classes represent increasing deviation from this natural
condition, or ‘reference condition’ (Environment Agency, 2009). Using the new classification

system, results for assessed rivers in England and Wales show that for overall ecological
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classification 26% of rivers are good or better, 60% are moderate, 12% are poor and 2% are
bad (Environment Agency, 2012). The Environment Agency (2009) reported that in the North
West river basin district (including the upper Eden catchment), 30% of surface waters met
good ecological status or better, meaning that 70% (512 water bodies) did not meet good
status. Twenty-two per cent of groundwater bodies were at good overall status with the rest
being poor status. The reason for failure in surface waters was chiefly attributed to the

invertebrates and fish elements of classification.
2.8.2 Thresholds and guidelines

2.8.2.1 Suspended sediment

The first guideline for SS in rivers was the annual mean concentration of 25 mg I cited in the
EC Freshwater Fish Directive (78/659/EC), based on the sensitivity of key indicator species such
as salmonid fish. This value was later adopted by Natural England before being used in England
and Wales under the WFD, in an attempt to realise the goal of ‘good ecological status’
(although it is not a legal obligation to meet this target). The appropriateness of this annual
mean concentration as a threshold target is perhaps questionable considering the general
consensus that the majority of the catchment sediment load is transported during a relatively
small number of large storm events (meaning the figure is heavily skewed by irregular events
and long term averages are likely to differ significantly from annual figures). The UK TAG
(2008b) proposed that the guideline standard for SS in the Freshwater Fish Directive should

not move directly into the definition of good ecological status under the WFD.

Bilotta and Brazier (2008) also questioned the use of the 25 mg I annual mean concentration
threshold target and instead proposed an alternative classification based on the duration of
exceedance of that threshold. Collins and Anthony (2008) modeled the likelihood of
exceedance of the 25 mg I target in rivers in England and Wales; they estimated that
sediment losses from diffuse agricultural sources need to be reduced by 20% on average in
non-compliant catchments, and by as much as 80% in some areas. An alternative classification
scheme was proposed by Natural England (Cooper et al., 2008) (Table 2.5), which uses upper-
and lower-quartile SSYs as critical thresholds and targets respectively, based on catchment

typology as proposed by Walling et al. (2008).

40



Table 2.5: Catchment typology and sediment thresholds (after Cooper et al., 2008).

Catchment type Target SS yield Critical SS yield
(permeability/rainfall/soils) (tkmZyr?) (t km 2 yr") (upper quartile)
High wet and low peat 50 >150

Low wet other 40 >70

Low dry other 20 >50

High wet and high dry other 10 >20

Low dry and low wet Chalk 2 >5

2.8.2.2 Nitrate

The EU Agricultural Nitrates Directive (91/676/EEC), which superseded the voluntary pilot NO;
scheme under the Water Resources Act in 1991, was introduced to address both the human
health issues related to NO; contamination and the environmental ones, particularly
eutrophication (Withers and Haygarth, 2007; Neal et al., 2008). It was one of the earliest
pieces of EU legislation aimed at controlling pollution and improving water quality (Worrall et
al. (2009) provide a succinct account). While NO; levels have stabilised in many member
states, the European Union (2010) reported that generally, farming remains responsible for

over 50% of the TN discharge into surface waters.

The EC Drinking Water Directive (98/83/EC) provides the basis for national legislation
concerning the quality of drinking water. It states that NO; concentrations in all public water
supplies must be kept below the maximum permissible concentration permitted by the EC of
50 mg I (equivalent to 11.3 mg NO5-N I'). The recommended limit is 25 mg NO; . The
Nitrates Directive allows mandatory controls on agricultural activities in areas with high NO;
levels in the water, areas known as Nitrate Vulnerable Zones (NVZs). In 2009 the area of land in

England classed as a NVZ was increased from 55% to 68% (Defra, 2007b).

2.8.2.3 Phosphorus

Setting standards for P has been less clear than for NO;, where health risks prompted action
and a maximum water concentration. A water body with a TP concentration of 0.04 mg I is
considered to be mesotrophic, which means it has an intermediate level of productivity and a
medium level of nutrients. A total P concentration above 0.1 mg I means that a water body is
considered eutrophic, therefore anything above this should aim to reduce concentrations to

below 0.1 mg I"".

The UK TAG on the WFD originally developed standards for P levels in rivers in 2006 based on
analysis carried out on diatoms, as they show greater levels of sensitivity to nutrient pressures

than macrophytes. Table 2.6 contains revised standards for SRP (as mean annual
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concentrations) based on the latest research (UK TAG, 2013). The revised standards were
identified using a larger dataset and a new methodology and better match the average

biological response to P. The proposed new standards would decrease the proportion of sites

with a phosphorus class of good or high from around 80% to 65% (UK TAG, 2013).

Table 2.6: UK Technical Advisory Group standards for phosphorus in rivers
(Lowland means <80 m asl; Upland means >80 m asl

Low alkalinity with a concentration CaCO; of <50 mg r High alkalinity with a concentration CaCO; of 250 mg I’l).
The numbers in parentheses are the upper and lower 5th and 95th percentiles (source: UK TAG, 2013).

Type

Annual mean Soluble Reactive Phosphorus (mg I'l)

Ecological status

High Good Moderate Poor

Lowland, low alkalinity 0.019 0.040 0.114 0.842
(0.013-0.026)  (0.028-0.052) (0.087-0.140) (0.752-0.918)

Upland, low alkalinity 0.013 0.028 0.087 0.752
(0.013-0.020)  (0.028-0.041) (0.087-0.117) (0.752-0.851)

Lowland, high alkalinity 0.036 0.069 0.173 1.003
(0.027-0.050)  (0.052-0.091) (0.141-0.215) (0.921-1.098)

Upland, high alkalinity 0.024 0.048 0.132 0.898
(0.018-0.037)  (0.028-0.070) (0.109-0.177) (0.829-1.012)

2.9 Mitigation of diffuse water pollution from agriculture

The second half of this thesis is concerned with the mitigation of DWPA. The following section
will provide a background to the topic by introducing the source-pathway-receptor conceptual
model commonly used in environmental pollution studies and management. It will then
provide a review of the various mitigation options available to farmers, which have been
developed specifically for reducing DWPA risk. Case studies and examples are provided from
the literature along with an introduction to and review of runoff attenuation features, as
sediment/nutrient ‘transport’ mitigation options, as they form the basis of the DWPA

mitigation portion of this work.

2.9.1 The source-pathway-receptor concept

The source-pathway-receptor conceptual model is a risk-based approach that provides a
framework to manage environmental pollution. The ‘source’ is the place of origin of a
contaminant, or substance, which is located in, on or under the land and has the potential to
cause harm to human health, water resources, or the wider environment. The ‘pathway’ is the
means, or route, by which the contaminant can migrate. The receptor is something that could
come to harm, including human health, a watercourse or the wider environment, if the
contaminant reaches it. In water quality terms, the model seeks to determine what risk, if any,
is created by the presence of contaminants, in this case SS, P and/or NOs, through determining

if there are pathways, or ‘pollutant linkages’ through which the contaminants may impact
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upon sensitive receptors, and if the risk is acceptable or not. For example, a bare arable field
may pose a high risk of soil erosion (i.e., potential sediment source) and there may be a
watercourse nearby favoured by salmonid fish for spawning (i.e., sensitive receptor); however,
the risk of sediment loss from the terrestrial to the aquatic environments will depend on the
level of hydrological connectivity between the two (as discussed in section 2.4.2). In other
words, a soil erosion risk does not necessarily equate to a sediment loss risk. Adopting the
source-pathway-receptor model for pollution management, specifically the control of DWPA,
should help to select the most suitable mitigation option, or suite of options, for a given

circumstance.

2.9.2 Mitigation options review

Mitigation options can be conceptually divided in two ways; the first is into ‘in-field’, ‘field
margin’ or ‘in-channel’ measures; and the second is into pollutant ‘source’ (including
mobilisation) and ‘transport’ management options — derived from the source-pathway-
receptor model described above. This review will take the form of the latter division, although
there is an overlap between the two groupings, where in-field options seek to manage sources
and the mobilisation of sediment and nutrients, and field margin and in-channel measures
mostly target pollutant transport, i.e., once it has been mobilised from the land. The most
appropriate option, or combination of options, will vary according to the DWPA source,

pathway, desirability and cost implication from a farming system perspective.

The aim of this section is to provide an account of the nature of the main DWPA mitigation
options and also give examples of their success or performance; in this instance, their efficacy
in reducing the SS, P and NO; losses to water. It is important to note that the mitigation
practices, while intended to reduce pollution, should not at the same time decrease farmer
income. As this study is primarily interested in ‘transport’ mitigation options a more in-depth
review of these mitigation measures will be given. This will be preceded by an introduction to

and critique of ‘source’ mitigation options.

2.9.2.1 Source management

Conservation agriculture

Conservation agriculture is an in-field management option with three core principles: minimal
soil disturbance, permanent vegetation cover and crop rotation. The term is often used as a
general collective descriptive for mitigation practices such as no tillage, reduced (or minimal)

tillage, residue retention and establishment of cover crops in between successive annual crops

(European Conservation Agriculture Federation, 2012). These practices are almost exclusively
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applied to arable systems meaning that they are not necessarily relevant to the majority of the
upper Eden catchment but are more applicable to areas in north-east England. A large
literature exists, albeit from plot studies mostly, to support the benefits of these practices in
controlling soil erosion (e.g., Fawcett et al. (1994); Uri et al. (1999)), mainly adopted in the
United States. Zhou et al. (2009) reported that zero tillage agriculture could reduce sediment
loss by over 90% in susceptible catchments on the basis of Water Erosion Prediction Project

(WEPP) simulations.

Studies of the effect of conservation principles in the UK are limited, while more exist on the
effects on soil erosion than on the effects on sediment loss. In response, the Defra funded
Mitigation Options for Phosphorus and Sediment (MOPS) projects (1 and 2)
[http://mops2.diffusepollution.info] were designed to investigate the efficacy of different
mitigation measures in England and Wales, and evaluate their cost-effectiveness (Deasy et al.,
2009b; Deasy et al., 2010). Options tested in MOPS 1 included: crop residue incorporation,
contour cultivation, minimum tillage, beetle banks on the contour, and tramline modifications.

MOPS 2 examines transport management options and is discussed later.

Mitigation trials were undertaken at the hillslope-scale over three years. Crop residue
incorporation (in this case cereal straw) results suggested it can be just as effective at
preventing soil erosion on poorly-structured sandy soils as cover cropping, with overwinter SS,
TP and TN losses reduced by 40%, 35-50%, and 40-55%, respectively (Deasy et al., 2009b). A
reported downside to this option was the potential long-term release of soluble P as the straw
decomposed. Contour cultivation resulted in SS reductions of 40-43% and was found to be
more effective for ploughed clay soils; however, it was concluded that the practice might
increase sediment and nutrient losses if cultivation does not take place exactly on the contour
(Deasy et al., 2009b) . Beetle banks were combined with contour cultivation (on gentle slopes
only) to enhance the buffering effect; results showed a reduction in runoff, SS, TP and TN
losses by a further 9-97 %. Minimum tillage was found to be the only option to have net cost
savings for the farmer (all the others were roughly neutral) but didn’t take account of possible
farm yield decrease; it resulted in a 45-79% reduction in SS loss. In all cases there was a similar
reduction in runoff (Deasy et al., 2009b), which indicated that a large proportion of the benefit

was in maintaining infiltration rates to prevent HOF.

Stevens et al. (2009) tested the effect of shallow depth disk cultivation, in comparison with
conventional ploughing methods, and reported no significant reduction in SS losses. It is
believed that minimal soil disturbance measures have to be used in conjunction with residue
retention in order to reduce surface runoff generation and soil mobilisation (e.g., Blanco-
Canqui et al. (2009)). Tramline management was believed to offer the greatest mitigation
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potential for reducing sediment loss in MOPS 1 (Deasy et al., 2010); a simple tine/disc was run
through wheelings to reduce near-surface compaction and thus, increase infiltration capacity
(other tramline management techniques are discussed by Silgram et al. (2010)). Results
demonstrated overwinter runoff, SS, TP and TN reductions of 70-99%, although it should be
noted that the trial took place in sandy and silty soils only. Withers and Hodgkinson (2009)
consider tramline management to be relatively cost effective at the farm scale but that

effectiveness depends on soil type.

It is apparent that the adoption of conservation agriculture is dependent upon economic
justification, i.e., it is only cost-effective when there are high rates of soil erosion to mitigate,
as this has to offset a potential loss of farm productivity. Where soil erosion rates are lower

the benefits are more limited (e.g., Leys et al. (2007)).
Land use change

Targeted land use change usually involves the reversion of an area of farmed land from
erosion-prone, high-risk cultivation activities such as vegetables or maize, to lower risk
activities such as cereals or grass. Land use change on a large scale is not particularly viable but
when targeted at specific areas on a farm or in a catchment (i.e., individual fields) may make
sense environmentally and economically (in terms of making changes to the farming system).
Grassland reversion is more commonplace in the United States, particularly in severe soil
erosion areas. For example, Kuhnle et al. (2008) reported a reduction in annual sediment yield
of greater than 60% following a 20% conversion of the Goodwin Creek watershed in Mississippi
from cropland to permanent cover between 1982 and 2005. Under arable land use, a change
from winter to spring sown cereals may have the potential to reduce soil erosion risk as it
reduces the period of time when the soil is vulnerable to erosion by heavy rainfall. This relies
on the maintenance of ground cover, be it grass, residue retention or cover cropping, during

this period.

Although no data is available for UK studies, experiments in Norway have yielded significant
reductions in stream SS and TP loads (e.g., Bechmann and Stalnacke (2005)) and Lundekvam
and Skoien (1998) reported a reduction in soil loss of 90% as a result of changing from autumn
to spring tillage. Boardman et al. (2009) assessed available options for sediment loss mitigation
in regard to prevention of muddy floods in the South Downs, UK, and pointed out that while
reversion to grass is effective, it is not a farming system that farmers would consider in the
area, due to local circumstances. Research has implied that farmers would be more willing to

make land use changes if benefits were on-site (i.e., resource protection on their farm) as
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opposed to off-site (i.e., elsewhere in the catchment) (e.g., Posthumus et al. (2011)). Incentives

may be required if the latter were to be the case.

Livestock management

Research has suggested that in livestock dominated catchments bank erosion can be the
primary sediment (and associated nutrients) source and that it can reach problematic levels
with regards to aquatic ecosystem health (e.g., Walling et al. (2003)). In a catchment in
southwest England, where bank erosion had been shown to be the biggest contributor of
sediment to the river, Collins et al. (2010) inferred that bank fencing (ten years after
installation) was responsible for a dramatic reduction in sediment loss from the banks. Owens
et al. (1996) investigated a 26 ha catchment in Ohio for 7 years where cattle were allowed
access to the stream after which the watercourse was fenced off. Monitoring during the
subsequent 5 year period revealed that the annual sediment concentration decreased by more

than 50% and the amount of soil lost decreased by 40%.

Perhaps more obvious are the benefits of excluding stock from the watercourse itself in order
to prevent animal excreta entering the channel. This may involve the re-routing of stock
(and/or vehicle) crossing points over watercourses using a hard crossing point or culvert.
Related to this is to (re)site feeding rings and drinking troughs on flat ground as far away as is

practical from watercourses to minimise dung and urine gaining direct access to the water.

Intensive grazing can reduce vegetation cover and lead to compaction of near-surface soil.
These effects can cause an increase in runoff (Bilotta et al., 2007a), especially where animal
movement is concentrated, e.g. around feeding and drinking troughs, in gateways and along
paths (Heathwaite et al., 1990; Cuttle et al., 2007). While it is very difficult to avoid topsoil
compaction, tillage and natural processes can re-loosen the topsoil. Subsoil compaction is
much more persistent and difficult to remove. Artificial loosening of the subsoil with subsoiling
equipment (used to break up compacted layers and return the soil’s structure to a more
natural state) is available but no data on its effectiveness could be found at the time of writing.
Thus, it may be preferable that subsoil compaction should be prevented instead of being

repaired or compensated and reducing livestock density could be one way of achieving this.

Evans (2005) provided evidence gathered from long term studies in the Peak District, which
indicated that erosion caused by overstocking slows rapidly once livestock densities are
reduced. This effect may be more prominent in upland areas where topographic and climatic

controls mean that relatively high sediment losses can result from vegetation damage.
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On a positive note, Posthumus and Morris (2010) allege that livestock farming enterprises are
likely to become more extensive (as opposed to intensive) due to the CAP reform and changing
economic circumstances; they believe that extensification will lead to a reduction in erosion

(and runoff) pressures.

Nutrient management

Nutrient management, or budgeting, can help a farmer save money and reduce DWPA by
controlling excess nutrients in the system (Lanyon, 1994). Appropriate timing of fertiliser
applications is important to optimise plant uptake and avoid losses due to rainfall-induced
runoff or leaching. It is vital to establish nutrient levels in soil, manure and slurry in order to
assess the appropriate level of fertiliser applications. By siting field (manure) heaps away from
sandy or gravely sites, recently drained land, at least 10m away from any watercourse, and
50m away from a spring, well or borehole will also help reduces nutrient losses to water. In a
study covering eight agricultural catchments in Norway, Bechmann et al. (2008) found that
decreasing trends in nutrient application may have contributed to decreasing trends in N and P
losses, but for P the process is generally more long-term because of the build-up of soil P

(Kronvang, 2007).

Farmyard management

Although a general awareness exists regarding farmyards as potential contributors of
contaminants, especially pesticides and nutrients to surface and groundwater, few actual
measurements of runoff composition or fluxes exist. However, Dunne et al. (2005) and
Edwards et al. (2008) both studied runoff from dairy farms and suggested that farmyard dirty

water contains considerable amounts of nutrients and contaminants.

Although the composition of runoff varied between individual farms generally there were no
seasonal variation in volumes and concentrations of contaminants, and all studied yards
showed a potential for a dynamic and rapid linkage with adjacent surface waters, even during
relatively light rainfall events. A number of options are available to farmers to help reduce

incidental losses of sediment and nutrients from farm buildings, hard standings and tracks.

These options include roofing of manure storage, slurry storage, stock gathering areas and
silage stores, roof water should then be directed away into a clean water drain; yard works for
clean and dirty water separation; relocation of gateways; stock tracks constructed using wood
chippings and hardcore to reduce the amount of poaching and runoff. A full list of options can
be found in Defra (2007a). While it is difficult to quantify the benefits of such actions on water

quality in terms of numerical evidence, it is assumed that they have a positive impact. Their

47


http://adlib.everysite.co.uk/adlib/defra/content.aspx?doc=253270&id=253361
http://adlib.everysite.co.uk/adlib/defra/content.aspx?doc=95405&id=98375

application should be considered on a case-by-case basis and administered where certain

potential pollution issues are identified.

2.9.2.2 Transport management

Buffer strips

A buffer strip, or zone, or sometimes a riparian buffer, can be considered a permanently
vegetated area of land usually 2-10 metres in width, most likely but not exclusively adjacent to
a watercourse and managed separately from the rest of the field or catchment. The aim of a
buffer strip is to reduce the connection between a potential pollution source (most often a
cultivated field) and a receiving water body (Muscutt et al., 1993). They are designed to
function as a biochemical and physical barrier against pollution. The low-cost and general
simplicity of buffer strips have made them attractive mitigation options to farmers; their
efficacy in erosion and pollution control has been the subject of numerous studies, which
generally show a positive effect on reducing the transfer of SS, pesticides, and nutrients to

surface waters.

As runoff water reaches a buffer strip it is forced to slow down due to the increased surface
roughness of vegetation, which may promote sedimentation; this vegetation also increases the
infiltration capacity of the soil with the presence of its root system. Nitrate retention in a grass
strip is dependent on the level of denitrification, degradation and decomposition (Dorioz et al.,
2006). Particulate P retention is related to the trapping of fine sediment; however, the finest
particles are not always deposited (Uusi-Kdmppa et al., 1997); the process of infiltration
retains soluble P. The rate of sediment and nutrient retention is also controlled by the
concentration, or loading, in the runoff entering the buffer strip, slope width of the buffer,
vegetation type and management, source area, and the ratio of a buffer area to a source area

(Hoffmann et al., 2009).

Based on a number of experiments, Dorioz et al. (2006) reported sediment retention ranging
from 40 to 100%, with more than 50% reduction in more than 95% of the cases. The same
range of variation was found for PP, with a reduction rate ranging from 50 to 97%; however,
they report a very different situation for the soluble forms of P, whose retention percentage
varied from -83 to +95, with the most common values being around 20-30%. This means that
the load of soluble P can actually increase during transfer across the grass buffer strip due to
processes such as reductive dissolution of ferric hydroxides carrying P under anaerobic
conditions (Shenker et al., 2005), release from organic P and microbial pools (Dorioz et al.,
2006), and drying/wetting, freezing/thawing and associated microbial activity (Perrott et al.,

1990). Hoffmann et al. (2009) reported that sedimentation was the main physical process in

48



buffer strips and may account for P retention rates of up to 128 kg P ha™* yr™. Leeds-Harrison et
al. (1999) investigated the effectiveness of buffer strips to reduce losses of NOs-N in paired
buffered and unbuffered headwater catchments at three sites (with conditions representative
of much of the agricultural land in England and Wales) and showed that they did not

substantially reduce concentrations entering the streams.

A number of findings suggest that grassed riparian buffer strips may not be effective in
controlling DWPA unless the hydrology of the strip allows for a suitable environment. Owens
et al. (2007) used Astroturf mats located at various points across the width of six buffer strips
and found that the majority that collected sediment were at the front of the buffers and that
most of the collected sediment was sand-sized (>63 um). As a consequence they believed that
a significant amount of fine sediment (enriched in P) may have passed straight through the
buffers. Both Liu et al. (2008) and Yuan et al. (2009) in their detailed review of the evidence
reported that concentrated flow significantly compromises the effectiveness of riparian buffer
strips because much of the sediment/nutrients transported by these higher energy pathways is

not effectively ‘treated’.

The issue of flow concentration, leading to ‘break-points’, indicates that the effectiveness of
buffers is negatively correlated with the degree of runoff occurring along concentrated
pathways. As during large events these pathways may account for the majority of runoff (Qiu,
2009), the effectiveness of the buffers may be regarded as much lower than plot derived
figures would suggest. Overall, the use of buffer strips appears to provide useful short-term
functions in the reduction of SS and P transport to surface waters. However, Dorioz et al.
(2006) argues that the long-term benefits remain questionable given the relatively short-term

use of the approach and the lack of long-term experimental results.
Grassed waterways, bunds, fences and hedges

Grassed waterways (GWWs), or ‘swales’, are permanent uncultivated strips which follow
recurrent flow pathways, particularly in valley bottoms. They operate to reduce DWPA using
similar processes as those described for buffer strips: permanent vegetation acts to slow
runoff velocity while increasing the infiltration capacity of the soil. As runoff conduits in the
agricultural landscape, when compared to cultivated land and/or open ditches, they also offer
increased levels of erosion and sediment remobilisation resistance. Evidence has indicated that

they may be highly effective in reducing sediment losses.

In a seven year study in Germany, runoff and sediment delivery were measured in paired
catchments with and without GWWs; runoff volume was reduced by 90% and 10%,
respectively, and sediment delivery by 97% and 77%, respectively (Fiener and Auerswald,
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2003). The reductions were attributed to increased infiltration and a reduction in flow energy;
they also suggested that GWW efficiency was improved when the channel width was doubled
with a flat-bottom, as opposed to being v-shaped. Grain sizes >50 um were settled due to
gravity in both GWWs while smaller grain sizes were primarily removed due to infiltration,
which increased with a more effective runoff reduction. Zhou et al. (2009) also found that
GWWs could potentially reduce SS losses in agricultural catchments but were only
economically viable options in high-risk erosion areas, or in the absence of other measures,
such as reduced tillage; based on WEPP simulations for arable catchments in lowa, they
calculated a reduction in SS yield from 5.09 to 2.67 t ha™. However, Evrard et al. (2008)
observed no infiltration into GWWs and for their study in Belgium suggested that grass strips
have a lower infiltration rate and higher runoff coefficient (62—73%) than most cultivated soils.
This means that soluble P and NO; mitigation potential would be vastly reduced and that SS

reduction would rely on filtration by vegetation and reduction in flow energy alone.

The use of field-edge structures, such as small dams, has the advantage that no major changes
to land management are required; they have been used specifically to address problems of
ephemeral gully erosion (e.g., Boardman (2003)) but also have the potential to reduce peak
flows if structures are carefully designed. Fiener et al. (2005) monitored four field-edge
detention ponds for 8 years and found that they trapped 54-80% of the incoming sediment;
lowered peak runoff during heavy rains by a factor of three and lowered peak concentrations
of agrochemicals by a factor of two. Chow et al. (1999) evaluated the use of terraces and
GWWs to reduce sediment losses from potato farms in Canada; they reported a reduction in
runoff volume as well as a reduction in soil loss from 2000 to 100 t km™ yr'l. However,
Boardman (2003) judged the use of dams as unsuccessful in the South Downs due to their
small size and lack of storage capacity during large events. Although the removal of hedgerows
and field boundaries during agricultural intensification is an often cited cause of accelerated
erosion in the UK in particular (Boardman, 2002), evidence regarding the effectiveness of
traditional or modified field boundary structures in mitigating sediment and nutrient losses is

lacking.
Sediment traps and basins

Sediment traps are generally excavations (deepening and/or widening) in the bed of a small
watercourse and/or small dams constructed across the channel, designed to limit the
downstream movement of sediment from upstream sources. Fiener et al. (2005) reported
numerous positive effects of such features, which included the sediment trapping from

upslope, the enrichment of major nutrients in the trapped and delivered sediments, the
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amount of runoff retained temporarily, the amount of runoff reduced by infiltration, the
decrease in peak runoff rate and the decrease in peak concentrations of agrochemicals due to
the mixing of different volumes of water within the mitigation features. By confining sediment
(and associated nutrient) deposition to a confined area of channel, ditch management costs
can be significantly reduced. In a case where a distinct pollution vector is identified, for
example runoff from farm hard standings, along tracks and in small ditches, sediment traps
may offer an effective solution, although they should be viewed as a mitigation option to be

used alongside other (source) management options.

A certain amount of cross-over exists in the literature between sediment traps and small
constructed wetlands (CWs). Generally, sediment traps are smaller (thus require significantly
less land take) and often deeper with a lower retention time, while CWs are more extensive
and are designed to retain runoff for longer time periods. To reduce sediment and nutrient
concentrations in runoff, sediment traps rely predominantly on particle settlement (for
sedimentation of solids down to coarse- and medium-silt) whereas wetlands utilise other
physical, chemical and biological processes (to remove the fine sediment, and dissolved and
finely dispersed contaminants). See below for more details on wetlands. A coarse sediment
trap is often required as the upstream component of a constructed wetland system in order to
prevent the wetland from becoming ‘choked up’ with coarse sediment; the sediment trap
should be quicker/easier to empty and cause less disruption to the surrounding environment,

in comparison to a wetland.

The impact of farm dams/ponds was simulated using the WATEM/SEDEM model by
Verstraeten and Prosser (2008), who estimated a 47% reduction in SS delivery to the rivers in
the Murrumbidgee catchment (New South Wales, Australia). Boix - Fayos et al. (2008), using
the same model, predicted that check dams (without any other land use changes) would have
reduced sediment yield by 77% between 1956 and 1997 in a 47 km? catchment in southeast
Spain. On a smaller scale, Wang et al. (2009) reported that the use of over 200 gulley plugs
(check-dams along eroding channels) contributed to a 52% reduction in runoff and an 86%
reduction in sediment loss in a 22.5 km” Texan catchment. Xiang-zhou et al. (2004) estimated
the amount of sediment retained by check-dam systems was the largest of all methods trialled
in the Loess Plateau, China. They also welcomed the formation of productive farmlands (with
enriched fertile soil and ample water), increased flood control and water storage for irrigation.
In England, the MOPS 2 project (on-going at the time of writing) is investigating the role of
ponds and constructed wetlands as potential mitigation options. Based on two years’ worth of
data, collected after the construction of ten unlined ponds, sediment trapping rates of 1-7 t

km? yr™ at a clay soil site, 2-40 t km™ yr™ at a silt soil site and >50 t km™ yr™ at a sandy soil site
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have been reported (Ockenden et al., 2012). Phosphorus retention was also found to be
highest at the sandy soil site, with P trapping rates ranging from 0.6 — 100 kg km™ yr™ across all

ten sites in the first year.

As trapping efficiency is a function of basin size and related detention time (Braskerud, 2002b;
Braskerud, 2002a; Braskerud et al., 2005), this can severely reduce their sediment and nutrient
trapping potential (e.g. Owens et al. (2007); Boardman et al. (2009)) and in some
circumstances turn features into pollutant sources. This occurs when previously deposited,
easily eroded material (deposited during residual flow conditions and small storm events) is
remobilised by high discharges. As storm events are predicted to increase in both frequency
and magnitude in the UK as a result of climate change, the need to control emissions during

high runoff periods will be increasingly important (Mainstone et al., 2008).

Evidence suggests that sediment traps can be highly effective in reducing sediment/nutrient
losses to watercourses if constructed in the correct location and where pollutant
concentrations are relatively high. Their ability to attenuate runoff peaks makes them
attractive options particularly where DWPA risk is combined with flood risk. There is an
important implication for long-term management as traps need to be periodically emptied to
remain effective and to help reduce remobilisation of previously trapped material during
storm events. Certain design criteria should be adhered to in order to maximise the trapping
potential of a sediment trap feature; these principles also apply to wetlands and thus are

described below.
Constructed wetlands

Mitsch and Gosselink (2007) describe wetlands as ‘the kidneys of the catchment’ as they have
the capacity to attenuate water flows and improve water quality. The CW concept is based on
the holistic use of land to control water quality (Scholz et al., 2007), and when positioned
strategically within a farmscape can intercept and ‘filter’ agricultural runoff (Kadlec et al.,
2000; Woltemade, 2000; Zedler, 2003). Wetlands also provide numerous secondary benefits,
which include the provision of flood storage, increased groundwater recharge, new wildlife
habitat and improved aesthetic value (Diaz et al., 2012). Constructed wetlands are traditionally
used to ‘treat’ regulated inflows from industrial sources; however, less information is available

on their performance when supplied by unregulated event-driven inflows.

Within a wetland, the dominant retention processes include: physical filtration of suspended
solids; settling of particulate matter; uptake, transformation and breakdown of nutrients,
hydrocarbons and pesticides by biomass, plants and microbes; accumulation and
decomposition of organic matter; microbial mediated processes such as nitrification and
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denitrification; and chemical precipitation and sorption of nutrients such as P by soil (Reddy et
al., 1999; Koskiaho et al., 2003; Carty et al., 2008). The use of wetlands for the effective
treatment of minewater was reported by Younger (2000) and Jarvis and Younger (2000), but
their use for the mitigation of DWPA has been relatively limited in the UK to date. However,
research carried out in countries such as Norway and Sweden provides strong evidence that
CWs have the potential to deliver cost-effective water quality amelioration, although a

significant variation in performance is reported across the literature.

Johannesson et al. (2011) studied SS and P retention in a 2.1 ha (2% of the catchment area) CW
in Sweden using in- and out-flow sampling over 4 years; results revealed a P retention of 17%
(280 kg km™ yr). They also discovered the sediment thickness was over four-times higher at
the inlet and that the sediment P corresponded to almost 80% of the P load; this suggested an
efficient settling of PP, also reported by Braskerud (2003). Despite the efficient removal of
inflowing PP, Johannesson et al. (2011) also highlighted periods of net P release from the
wetland. These periods occurred during cold months and were related to relatively high flows,

an effect observed by other authors (e.g., Braskerud et al. (2005)).

Fisher and Acreman (2004) collated the results of 57 wetland studies from around the world
and concluded that 80% of the wetlands reduced NO; loading while 84% reduced P loadings in
the water flowing through them. Mitsch and Gosselink (2007) also reviewed the results from a
number of wetland studies and reported a NOj; retention range of 40%-95%, while for P, a
much greater variation ranging from 0% (in some cases a net loss was recorded) to 99%
retention. Based on case studies carried out in the United States, Woltemade (2000) reported
removal rates of up to 68% for NO3-N and 43% for P, but that these values were highly

variable, mainly as a result of varying flows affecting retention times.

Carty et al. (2008) provides a comprehensive guide to the design, operation and maintenance
of CWSs and an extensive list of principles have been collated for the design of an effective
wetland; these include: increasing storage volume to catchment area ratio (CW/CA ratio) in
order to increase residence time (Kadlec et al., 2000; Koskiaho et al., 2003); the use of
vegetation and obstructions to slow the velocity of the runoff and avoid preferential flow
(Braskerud, 2001) to help promote particle settlement (Uusitalo et al., 2003) and mitigate the
resuspension of sediment (Braskerud, 2001); and the provision of a support structure for
microbial colonies to develop. The lower the CW/CA ratio, the greater the significance of a
hydraulically efficient design; the geometry and arrangement of wetland cells has an important
role governing the flow patterns and hydraulic efficiency of the feature (e.g., Koskiaho et al.
(2003). On balance, supported by a growing source of data, CWs used in agricultural
landscapes can result in significant improvement of runoff quality.
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Woodchip filters

The use of a woodchip filter, or ‘bioreactor’, is a relatively novel method for removing NO;
from agricultural runoff. An existing drainage ditch or tile drain is dug out to approximately 1.5
metres deep and up to a metre wide, lined with a water-tight barrier, back-filled with
woodchips and finally sealed under a soil cap. Under anaerobic conditions bacteria on the
wood chips metabolize available oxygen, feed on the carbon, and denitrify NO; from the runoff
water. They are designed to treat much smaller areas than CWs and work best as field-edge

features, thus requiring less land take.

Studies in the upper Midwestern US and have shown them to effectively reduce NO; levels by
33% on average, but up to 100% during certain conditions (Woli et al., 2010). Greenan et al.
(2009) and Saliling et al. (2007) report positive results from a series of laboratory experiments
using woodchips. The Minnesota Department of Agriculture (MDA) monitored a site with a
contributing area of 26 acres with a bioreactor 70 m long, 1.8 m deep, and 1 m wide. Results
revealed an overall reduction in NO; of 28%, which was lower in the winter due to colder air
and water temperatures. Although originally designed to reduce specifically the amount of
NOs, they reported that TP average load was also reduced by 79% (Minnesota Department of
Agriculture, 2013). They suggested that the longevity of the woodchips is related to the
continuous presence of water in the bioreactor, which helps keep the carbon to nitrogen (C/N)

ratio high.

The cost effectiveness and practicality of bioreactors depends considerably on the topography
and cost of digging the trench and obtaining woodchips. Based on an experiment carried out
by the University of Minnesota, the operators estimated that the cost would be £600 ha™
(which included flow control structures, trenching and woodchip costs) (Minnesota

Department of Agriculture, 2013).

2.9.3 Runoff Attenuation Features

Runoff Attenuation Features, or RAFs, are soft-engineered landscape interventions developed
by the Proactive team at Newcastle University [http://research.ncl.ac.uk/proactive/belford/].
They are designed to intercept or modify a hydrological flow pathway for the purpose of
mitigating the impacts of diffuse pollution and flooding. Key design attributes include: easy
accommodation into the landscape with little/no impact on farming practices; relatively small
size (<500m?); low cost construction from local materials wherever possible; potential multiple
benefits, for example, reduce sediment/nutrient losses (Jonczyk et al., 2008; Barber and
Quinn, 2012; Wilkinson et al., in press); provide Natural Flood Management (NFM) (Wilkinson
et al., 2010; Nicholson et al., 2012); and habitat creation (Shaw et al., 2011).
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There are several RAF types, including bunds, ponds, traps, leaky dams, physical filters and

small CWs - all of which seek to ‘slow, store and filter’ runoff from agricultural land.

A number of RAFs were trialled at Nafferton Farm (294 ha), Northumberland, to establish their
ability to reduce SS, P and NO; losses in agricultural runoff. Quinn et al. (2007) reported a
reduction in TP concentrations of approximately 40% from a combined sediment and P trap
during a number of average-sized storms. However, directly following the installation of the P
trap (ochre pellets were used to chemically bind soluble P) high SS (> 90%) and TP removal (>
80%) rates were recorded. This was attributed to the physical filtering performed by the ochre
pellets and not by chemical processes for which it was originally intended. Negligible removal
of NO; was attributed to the short residence time in the feature. Field corner scrapes/bunds
designed to temporarily store overland flow and farm track runoff and increase infiltration
were found to retain approximately 50 m® of sediment per annum. A 25 m long in-stream
sedge wetland yielded a wide range of results ranging from net losses of SS and TP, during
large storms, up to 43% removal of TP during a small event recorded (Jonczyk et al., 2008). The
wetland was found to have little impact on NO; concentrations; this was attributed mainly to

the cold temperatures during the study period.

The RAF approach advocates the use of many (small) features located throughout the
landscape, with the benefits accrued by the network of features rather than one large
scale/dominant intervention. They are not to be used as a one-stop solution but instead

should be applied alongside source/mobilisation options in a holistic, integrated manner.

2.9.4 Legislation and initiatives

This section has described a number of DWPA mitigation options available to farmers and land
owners but it is also important to know how these measures are administered and who is
responsible for coordinating it. The WFD is the most important, over-riding piece of legislation
concerning the improvement and protection of fresh water quality in England and Wales.
While the WFD has made the abatement of DWPA a priority, there are several government
initiatives that focus more directly on the matter. These are not separate from the WFD but
operate alongside and within its framework; they represent the combined efforts of Defra, the

EA and Natural England (NE).

Following the CAP reform in 2003, farmers continued to receive direct income payments to
maintain income stability, known as the Single Payment System (SPS), but the link to
production was severed (Defra, 2005). In addition, farmers now have to respect
environmental, food safety and animal welfare standards by complying with a set of Statutory

Management Requirements (SMRs) and demonstrate that land is kept in Good Agricultural and
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Environmental Condition (GAEC) by following a Code of Good Agricultural Practice (CoGAP) for
farmers (Europa, 2010). The England Catchment Sensitive Farming Delivery Initiative (ECSFDI),
or Catchment Sensitive Farming (CSF) for brevity, is an agri-environmental scheme which raises
awareness of DWPA issues and is responsible for the administration of appropriate mitigation
options through Environmental Stewardship schemes, of which there is an entry level and a
higher level. By entering into an Entry Level Stewardship (ELS) scheme a farm is committed to
adhering to a number of environmental criteria for which it receives an annual payment.
Higher Level Stewardship (HLS) aims to deliver significant environmental benefits in priority
areas with agreements lasting for ten years. Under the HLS scheme there are a number of
options specifically designed for resource protection and protection of fresh water bodies and
funding is available on a case-by-case basis. Both ELS and HLS schemes are administered by NE
and adopted by farmers on a voluntary basis. There are also a number of schemes such as
LEAF (Linking Environment and Farming) and SOWAP (Soil and Water Protection) which

provide advice to farmers but are also voluntary.

At present a lot of conjecture is used in predicting the effectiveness of these measures
and their impacts on water quality at the catchment scale is uncertain (Kay et al., 2009). Both
Bechmann et al. (2008) and Kay et al. (2009) call for further research into combinations of
different mitigation options at the catchment scale, which is of course crucial; however, Deasy
et al. (2010) highlight that few studies into mitigation effectiveness have yet been trialled even
at the field scale. It is thus extremely important to establish the physical effectiveness of these

different measures, but also their practicability for farmers.

2.9.5 Summary of mitigation options

This section of the review has indicated that all the available management options described
have the potential to mitigate DWPA and thus aid in the improvement and protection of
freshwater quality. Conservation measures appear effective in reducing the mobilisation of
sediment and nutrients but are more appropriate in arable farming systems or in high risk
areas where sediment/nutrient losses threaten sustainability. Better nutrient management,
farmyard operations and livestock handling should be promoted as general best practice

despite the lack of numerical evidence proving their effectiveness.

In mixed agricultural landscapes, the prevention of animals from entering watercourses in
areas where there is a water quality concern would appear to be a simple solution. The fencing
off of streams will allow riparian areas to establish and provide natural buffering capacity, will
reduce the incidence of bank collapse, and stop animal waste directly entering the water.

Other infrastructure improvements related to this issue are improved crossing points (e.g.,
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bridges, armoured crossings) and new water feeders. The use of buffer strips has arguably
received the greatest amount of research attention, possibly due to their positive results in
reducing sediment and nutrient losses, relative low-cost, and ability to deliver multiple
benefits. However, caution should be exercised when using them as they are likely to function
less well in areas with concentrated runoff and also where subsurface drains are present.
Field-edge bunds and GWWSs have a narrower range of application potential as they require
specific landscape forms and hydrological regimes in order to target concentrated overland
flow pathways. This may entail higher costs and management restrictions but these features

have been shown to return positive results in terms of DWPA mitigation.

Sediment traps, CWs and woodchip filters (and RAFs) have all exhibited the ability to retain
significant amounts of sediment and nutrients in agricultural runoff. However, they offer more
specialised solutions at higher capital costs (particularly CWs and woodchip filters) and their
application is more justified in areas of concentrated pollutant-rich runoff and where flood
mitigation is also desirable. When wetlands, sediment traps and buffer strips are combined
they can also offer conservation benefits. Policy makers, catchment managers and
stakeholders must be aware that despite increased acceptance of mitigation methods by
farmers due to various drivers, downstream water quality may not demonstrate a trend of
improvement, at least in the short-term (Bechmann et al., 2008). Comprehensive management
changes are required and more long-term monitoring programmes are clearly needed to assist

analyses of catchment response to mitigation.

2.10 The influence of scale on the operation of fluvial geomorphic systems

The influence of scale (spatial and temporal) on process understanding in fluvial
geomorphological systems is well recognised (Klemes, 1983; Bloshchl, 2001).
Environmentalists are interested in spatial patterns because they are essential in scaling-up
from localised measurements to provide assessments of pollutant losses, and mitigation
impacts, at the catchment, regional or national scale for policy purposes. A particular difficulty
is that a change in scale often results in a change in a range of factors such as hydrological
pathways, sources, and viable measurement methods (Dougherty et al., 2004). Temporal
patterns are particularly important with regards to the monitoring of DWPA mitigation efforts,
as there can be a significant time lag between the implementation of an intervention and its
impact at the catchment outlet; for example, NOs;, as leaching pathways between sails,
groundwater and rivers are generally long and complex (Collins and McGonigle, 2008). The
main components of lag time include the time required for an installed practice to produce an

effect, the time required for the effect to be delivered to the water resource, the time
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required for the water body to respond to the effect, and the effectiveness of the monitoring

program to measure the response (Meals et al., 2009).

The WEFD stipulates that the management of rivers and their catchments, including DWPA
mitigation, should be holistic in its approach and undertaken at the catchment scale. However,
for practical reasons the majority of studies on sediment and nutrient sources, mobilisation
and transportation, and mitigation measures are conducted at a smaller scale
(lysimeters/plot/hillslope - <1km?) (Brazier et al., 2005). Therefore, while there is a relatively
good understanding of the relevant processes at these scales, there is considerable uncertainty

in the application of such findings at the catchment scale.

Slaymaker (2006) described how geomorphic systems are more than the sum of their parts;
the problem of discontinuity (Addiscott et al., 1991) means catchment modellers cannot
simply ‘multiply up’ from small-scale measurements. For example, Parsons et al. (2006)
demonstrated how soil erosion rates estimated from field scale measurements cannot be
multiplied to give catchment scale sediment yields as these estimates ignored the fact that
travel distances to receptors increase with scale; so proportionally less sediment reaches the
outlet as the area of measurement increased. That is not to say that these smaller-scale
processes are not occurring, just that they are operating in combination with each other and

that new processes become apparent at larger scales.

These are referred to as ‘emergent properties’ (Klemes, 1983; Cammeraat, 2002; Slaymaker,
2006). This means that processes that are dominant at the plot/hillslope scale are not
dominant at the catchment scale (Sidle, 2006); there are in fact different process domains at
different scales within a catchment (Slaymaker, 2006). For example, in terms of sediment (and
associated nutrient) loss, sheet and rill erosion may dominate at the small (hillslope-field
scale), while at larger scales, geomorphic processes such as gully and channel erosion, and

mass movement account for much larger transfers.

Slaymaker (2006) refers to this problem as the ‘scale linkage problem’ (see Figure 2.10), which
begs the question: ‘to what extent is it possible to transfer findings from one scale of
investigation to another’? Soulsby (2006) suggested that the hydrological dynamics at the
catchment scale represent an averaging of the smaller scale heterogeneous processes;
therefore experiments to understand large-scale catchment function must be designed to be

representative of the overall system, rather than being site-specific.
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Figure 2.10: The scale linkage problem (source: Slaymaker, 2006).

Nested catchment studies, such as the Catchment Hydrology And Sustainable Management
(CHASM) programme (see Chapter 3) and the Demonstration Test Catchments [DTC -
http://www.demonstratingcatchmentmanagement.net/], represent an attempt to understand
how processes in catchments function at different scales and how these relate to each other.
For convenience, such studies have often been arbitrarily divided on the basis of the most
likely processes occurring at each scale (Dougherty et al., 2004); they can be categorised as

laboratory-, profile-, plot-, field-, and catchment-scale studies.

2.10.1 Relationships between scale and the transfer of sediment and nutrients

The specific yield of a catchment, be it SS, NO; or P, is the total load of the river divided by the
catchment area and is therefore an expression of the mean rate of production per unit area
per unit time (usually in t km™ yr™ for SS, or sometimes kg km™ yr for P and NOs). Verstraeten
and Poesen (2001) found no significant correlations between SS yield and seemingly important
factors such as mean slope, soil erodibility, and proportion of the catchment under agricultural
production. Catchment area was found to be the dominant control on SS yield, with this
particular parameter masking a number of relevant factors thought to control sediment
transport. They observed a decrease in yield with increasing catchment area (an inverse
relationship) and attributed it to the fact that the proportion of the catchment acting as a

sediment sink increases with increasing catchment area.
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The negative relationship between SS yield and catchment area is widely recognised (Schumm,
1977; Walling, 1983) and assumes that hillslopes are the main sediment source and that
sources are uniformly distributed. It occurs if hillslopes or gullies are the main sediment supply
because erosion is greatest in the headwaters, while sediment deposition increases with
distance downstream (Church et al., 1999). The downstream decrease is accentuated if, as is
often the case, rainfall (and thence erosive energy) is also higher in the headwaters than in the

lower catchment (Birkinshaw and Bathurst, 2006).

However, a positive (or direct) relationship can occur if channel bank erosion is the main
sediment source as channel bank height generally increases downstream and therefore has
greater potential to collapse and supply sediment. Also, elevation controlled non-uniformity of
land use (e.g., moorland or forestry at higher elevations, arable at lower elevations) can
produce an upward trend (Birkinshaw and Bathurst, 2006). Bull et al. (1995) found the
contribution of channel sources increased the SS yield downstream in the upper River Severn,
UK, which more than compensated for the decreasing contribution of sediment from other
sources. Church et al. (1999) and Dedkov (2004) showed that sediment yield tended to
increase with catchment area in undisturbed catchments but that the relationship was

negative in disturbed (e.g., cultivated) catchments.

Concerning P, Wood et al. (2005) carried out an experiment in the Taw catchment, UK, and
recorded significantly lower P concentrations at the catchment scale than plot-scale losses,
which suggested dilution from other lower yielding catchment areas. The major source of this
dilution was likely to be water from the high-rainfall upland areas of the Taw catchment,
known to be low in P. However, it was concluded that although this dilution meant P impacts
on aquatic ecology were not of immediate concern in the catchment, in the neighbouring
Torridge and Tamar catchments, where there was no dilution from upland headwaters, algal
blooms resulting from eutrophication had been observed. Uncertainty still exists over the
intensity of agricultural diffuse pollution required within the catchment system to cause
significant eutrophication response (Jarvie et al., 2008b). For example, excessive P loads can be
measured in runoff from an individual field due to poor management of manures, but only a
few hundred metres downstream they may have dissipated due to the effects of dilution from

‘good’ quality water.

It is well known that detecting trends in this type of data is difficult because the natural

variation is large; the retention of nutrients in the system is high, causing delays in the effect;

and there is large inherent uncertainty in the determination of agricultural contribution

because it is often estimated as the residual when all other contributors are subtracted from

the measured total load (Kronvang, 2007). Soil P decline was estimated by Schulte et al. (2010)
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using data from Irish plot-scale experiments; a model was developed to predict the time
required to move from excessive (Index 4) to the upper boundary of the optimum (Index 3) soil
P concentration range. For worst-case scenarios, average time to the boundary was estimated
at 7-15 years. Maguire et al. (2009) report that despite more than 25 years of efforts to
decrease agricultural P surpluses in the soil in Denmark, a surplus of 11 kg P ha™ remains.
Concerning NO;, Howden et al. (2010) find no system recovery in the last 40 years working on
a 140 year fluvial NO3 concentration record for the River Thames, while Lord et al. (2007)
calculate a 58-131 year delay before borehole NO; concentrations fall to 50% of their initial
values. This suggests that conclusions drawn from short-term monitoring could be erroneous
and that such delays are difficult to quantify. The potential extended life span make
conduction of experiments demanding (Meals et al., 2009) and time frames may be

substantially greater than that for achieving good ecological status under the WFD.

Haygarth (2010) described the considerable lag time between the occurrence of the initial
starting event in the landscape and the water quality impact at the catchment outlet as
extremely important. This means that changes made at source, for example, the application of
DWPA mitigation measures, may take considerable time to register a signal at the catchment
outlet due to catchment buffering and long transit times (>50 years) (Cherry et al., 2008). Thus,
it is unlikely that responses to intervention will be observed by 2015 in many water bodies.
Realistic timescales for achievement of good status for groundwaters or groundwater
dominated surface waters must be based on estimates of catchment specific time lags (e.g.,

Fenton et al., 2011).

2.11 Summary

This chapter has provided information on the main subjects of the thesis with references and
examples from the relevant literature. It has described the importance of both improving and
protecting freshwater bodies for social, economic and environmental benefits. Diffuse Water
Pollution for Agriculture has been identified as posing a significant threat to the WFD goal of
achieving good ecological status by 2015. A number of DWPA mitigation options have been
deliberated, all of which have merits and limitations. However, the focus of this study is on the
use of RAFs as a form of contaminant ‘transport’ management. It is considered that
interventions such as RAFs have received relatively less research attention and their scope to
deliver multiple-benefits, by targeting polluted flow pathways, could make them desirable to

both farmers and funding bodies.
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To be justifiable for wider application, any mitigation measure, including RAFs, requires
guantitative evidence confirming its effectiveness. Further research is required to understand
the integrated impact of DWPA mitigation measures on the water quality of larger scale
catchments. However, the heterogeneity of hydrological processes and controlling factors
between catchments, which cause environmental ‘noise’ at the larger catchment scale, makes
it more difficult to detect a change in pollutant signal due to intervention. The influence of
spatial and temporal scale only confounds this issue further due to, for example, the problem
of response delay. So while the gathering of data at larger scales is of high importance the
pressure of the WFD requires more imminent action. Thus, it is thus apparent that delivering
on the WFD requires coordination that transcends a continuum of scales (e.g., Winter et al.,
2011). In other words, the appropriate scale for monitoring catchments differs from that for
testing, and management at the field- and farm-scale remains crucial to water quality

outcomes.

As such this thesis will assess the efficacy of RAFs at the local scale, using input/output
measuring techniques. It will also involve catchment-scale monitoring to describe, with
sufficient accuracy, the relevant catchment processes leading to the export of DWPA and how
they behave temporally by using a data-driven approach. This will allow better understanding
of the influence of spatial scale, land cover and management, and other catchment properties
on runoff, sediment and nutrient regimes. The outcomes of this will help identify ailing sub-
catchments in which to target mitigation efforts, and provide representation of the dominant
pollutant source-pathways in order to select the most appropriate type of mitigation

intervention.
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3. General methodology

3.1 Introduction

The aim of this chapter is to describe the methods used to ascertain SS, P and NO;
concentration and hydrometeorological data for a number of sub-catchments, which are then
examined in detail in Chapter 4. The first part describes the study area, including topographic,
geological, pedological and climatic characteristics. This is followed by the methodological
approach, which includes the experimental design adopted in the project. The experimental
design provides details on the location of water quality monitoring sites, how samples were
collected and the laboratory analyses used to determine concentrations of SS, P and NOs. It
also describes the collection and handling of hydrometeorological data, including precipitation,

river discharge and evapotranspiration.

3.2 The Study Area

The River Eden catchment (Figure 3.1) in Cumbria covers an area of 2288 km® and drains parts
of the Lake District and Pennine Hills of northwest England. The area includes 90 Sites of
Special Scientific Interest (SSSI), two Areas of Outstanding Natural Beauty (AONB), parts of two

National Parks (The Yorkshire Dales and Lake District), and Hadrian’s Wall World Heritage Site.

The River Eden itself rises on the limestone hills of Mallerstang Common (675 m AOD — above
ordinance datum), on the border of Cumbria and Yorkshire, and flows 130 kilometres in a
north-westerly direction before discharging into the Irish Sea, via the Solway Firth. The river
and its tributaries are a Special Area of Conservation (SAC). They are excellent for salmon
fishing, support a sea trout run (as well as many other species of fish) otters and native
crayfish (Walsh, 2004). A high diversity of breeding birds is also supported. The Eden is also
host to an unusual and exceptionally rich aquatic flora with 183 plant species recorded, the
highest of all rivers in Britain, apparently due to the degree of variation in the physical and
chemical character of the river, resulting from the variety in underlying geology (Eden Rivers

Trust, 2011).

The upper Eden catchment study area is highlighted in black outline in Figure 3.1.
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Figure 3.1: The River Eden catchment. The upper Eden study catchment is indicated by the black outline
(adapted from the Eden Rivers Trust, 2011).

3.2.1 The CHASM project

The upper Eden catchment has been the subject of dense, nested instrumentation since 2003

as a result of the Catchment Hydrology And Sustainable Management (CHASM) project. The

principal aim of the project was to investigate many of the fundamental issues in catchment

hydrology and management (e.g., land use, flooding, abstractions, water quality and ecology)

and to bridge the gap between micro (~1 km?), mini (~10km?), and meso catchment (~100 km?)
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scale response, using nested, multi-scale monitoring networks (Quinn et al., 2000; Mayes et al.,
2006). The Eden was one of four catchments investigated by the CHASM program, the others
being: the upper Severn (Wales), the Oona (Northern Ireland) and the Feshie (Scotland). A
number of PhD studies have been conducted in the upper Eden as a result of the CHASM
program. These include the simulation and analysis of flow regimes (Walsh, 2004), the
investigation of spatial behaviour of rainfall and flooding (Wilkinson, 2009), groundwater and
recharge processes (Fragala, 2009), and the study of scale dependency of sediment yield (Mills,

2009).

3.2.2 Topography

The Pennine Hills and Howgill Fells dominate the eastern and southern parts of the upper Eden
catchment respectively, reaching altitudes of over 700 m AOD (Figure 3.2). The central part of
the study catchment, from Kirkby Stephen to Appleby-in-Westmorland, consists of lowland
topography and lies between 175 and 123 m AOD. Devensian ice flows left behind a gentle,
undulating topography in the basin bottom along with an extensive field of drumlins (Allen et
al., 2010). The river to the town of Appleby drains a catchment of 334 km”and will be the

focus for this study.

Elevation (m)

Value
High : 745

Low : 122 0 125 25 5 Kms

Figure 3.2: Digital Elevation Model of the upper Eden catchment (50 m resolution)
(source: EDINA Digimap Ordnance Survey Service).
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3.2.3 Geology

The Eden valley is aligned approximately southeast-northwest (in the direction of flow), is 56
km long and varies between 5 and 15 km in width. The valley sits between two upland areas:
the Pennines to the east and the Lakeland Fells to the west, separated by the Pennine Fault.
The valley is an inter-montane basin in which a thick Permo-Triassic sedimentary sequence
accumulated from the late Carboniferous period. This sequence includes two important
sandstone hydrostratigraphic units: the Permian Penrith Sandstone and the Triassic St. Bees
Sandstone (Younger and Milne, 1997). Both of these are significant aquifers; the Penrith
Sandstone formation supplies large quantities of groundwater for public supply in the
northern part of the catchment (Butcher et al., 2006) and also provides the baseflow
component to the River Eden and its tributaries. Eden Shales separate the Penrith Sandstone
from the St. Bees sandstone and Carboniferous Limestone and Millstone Grit surround, and to
a large extent, underlie the Eden Valley. Millstone grit (mudstones, sandstones, thin
limestones and thin coal seams) overlies the Lower Carboniferous limestones and form the
Cumbrian Fells to the east. The solid geology of the upper Eden catchment is depicted in Figure

3.3.

Superficial deposits (Figure 3.4) cover the valley floor with a thickness up to 30 metres. The
southern part of the valley is dominated by glacial till with small areas of post-glacial Holocene
fluvial deposits; forming terraces adjacent to the River Eden. The till, comprising chaotically
interbedded clays, silts, sands and gravels (Younger and Milne, 1997), forms hummocky
moraines and drumlins, which may act locally to prevent recharge to the underlying aquifers
(Fragala and Parkin, 2010). Conversely, high permeability fluvial deposits will promote

recharge where they directly overlay deeper aquifers (Butcher et al., 2006).

66



Solid geology Drift geology A
I Vudstone - Alluvium
I conglomerate 0 125 25 8 Kms - Till & i34 5% —_—
B Limestone Lot - Peat | SR .|
B Senisione - River terrace deposits
Tuff and microgabbroic rock
- No cover
Figure 3.3: Catchment solid geology map. Figure 3.4: Catchment drift geology map.

3.2.4 Soils

Soil Association and Hydrology of Soil Type (HOST) maps are depicted in Figure 3.5 and 3.6,
respectively. The uplands are dominated by Winter Hill Association blanket peat and peaty
gley soils. Due to almost permanent waterlogging (Wetness Class VI) the soils do not absorb
excess rainwater meaning runoff is rapid. On the valley sides and upland valley bottoms are
Wilcocks 1 Association: slowly permeable, wet, and very acid upland soils with a peaty surface.
In the lowlands, from Kirkby Stephen to Appleby, there are two main soil types that are
roughly divided by the River Eden. To the northeast of the river lies Wick 1 Association: coarse
loamy soils formed in sands and gravels. It has a HOST classification of 5, meaning that it is free
draining (Wetness Class 1). To the south-west of the river lies Clifton Association: mainly slowly
permeable fine textured soils formed in glacial till. This Association has a HOST classification of
24, meaning it is a non-calcareous mineral gley with a wetness class Il or IV. Perforating these
dominant soils is a small area of Wharfe Association to the southwest of Great Musgrave: a
free-draining alluvial soil with a wetness class of I, and small stretches of Enborne Association:
a loamy and clayey, poorly drained alluvial soil with naturally high groundwater (wetness class
IV) that follows the river channel. In atransitional zone to the south and southwest of Kirkby
Stephen, between the uplands and lowlands, lies Eardiston 1 Association. This is a reddish,

well-drained, coarse loamy and fine silty brown earth with a wetness class of I.
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Figure 3.5: Catchment soil association map. Figure 3.6: Catchment HOST classification map.

3.2.5 Land cover and land use

The upper Eden is largely rural, as depicted in Figure 3.7 - the Centre of Ecology and Hydrology
(CEH) Land Cover Map 2000 (LCM2000) for the upper Eden catchment. Permanent pasture and
moorland account for 48% and 40% of the land cover respectively, while a small amount of
cultivated land (7.5%) occupies the lowlands and small pockets of deciduous woodland (2.5%)
exist usually in steep-sided tributary valleys. Farming is the main land use in the catchment.
Stocking densities of cattle and sheep are higher in the lowlands due to the better quality of
grass (Wilkinson, 2009). The main urban areas in the catchment are Appleby-in-Westmorland
(population circa. 2500) and Kirkby Stephen (population circa. 1900), although they occupy
only 0.4% of the total catchment area. A proportion of the northern part of the catchment
(mainly moorland) is an infantry training ground owned by the Ministry of Defence, thus has
restricted access. The upland areas in the south and east are dominated by natural vegetation
such as moorland and marsh grass as well as peat bog and a small amount of limestone
pavement. Low-density sheep grazing is the principal agricultural activity in the moorland area.

Grouse shooting takes place between August and December.
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Figure 3.7: Land use map of the upper Eden catchment (source: Centre for Ecology and Hydrology, 2000).

3.2.6 Climate

The Eden catchment is located in the northwest of England, the wettest region in the country
due to frontal systems bringing moist air from the Atlantic Ocean. Average annual rainfall in
the valley is approximately 1000 mm yr™" with in excess of 2000 mm yr* on higher ground
(Wilkinson, 2009). This large variation is caused mainly by differences in elevation, but may
also be influenced by rain shadow effects, with higher rainfall occurring on the leeward side of
the Lakeland Fells. Temperature in the winter months can fall to -15°C and in the summer
months can reach 30°C. There are 0-5 snow days on average in the lowlands but up to 15-30

days in the uplands (>300 m).

3.2.7 River Characteristics

The River Eden is predominantly a gravel bed river, comprising riffle and pool sequences with

bed material ranging from fine sand to coarse gravel. The river flows northwards from the
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Carboniferous Limestone fells of Mallerstang Common down a steep sided valley to Kirkby
Stephen (circa. 20 km), where the catchment area is 69 km®. Between Kirkby Stephen and
Great Musgrave three monitored sub-catchments enter the Eden. The Eden reaches Great
Musgrave Bridge at 26 km where the catchment area is 233 km?. Around this point the river
enters its lowland zone with a much wider floodplain present where agricultural activities
become more intensive with increased stocking densities, more improved pasture, larger farm
steadings and some arable land use. The river also becomes much wider with large meanders
as it flows towards Appleby where only small tributaries enter the Eden, which are not
monitored in this study. The Appleby monitoring site defines the outfall of the study

catchment (334 km?).

Storm hydrograph response in the Eden is flashy, owing particularly to the steep slopes and
thin and/or poorly drained soils in the uplands (Mills, 2009), combined with relatively frequent
intensive rainfall events (Wilkinson, 2009). The Base Flow Index (BFl) for the Eden at Kirkby
Stephen is 0.26. The mean annual flow at Kirkby Stephen is 2.59 m® s™* and the catchment has
a SPRHOST (standard percentage runoff — based on HOST classification) value of 46%. Other
selected hydrometric statistics are listed in Table 3.1. The annual hydrograph for the River
Eden at Kirkby Stephen from 2010 is shown in Figure 3.8, the relatively low flow period

between April and July being particularly notable.

Table 3.1: Hydrometric data for the Kirkby Stephen catchment. BFI = Base Flow Index; SAAR = Seasonally Adjusted
Annual Rate (source: National River Flow Archive (Centre for Ecology and Hydrology, 2012)).

Descriptor Value Period of

record
Mean annual flow 259m’s? 1971-2010
Q95 0.166 m’s™ 1971-2010
Q50 1.015m’s™ 1971-2010
Q10 6.52m’s™” 1971-2010
BFI 0.26 1961-1990
SAAR 1483 mm 1961-1990
SPRHOST 46 % 1961-1990
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Figure 3.8: Hydrograph of gauged daily flows on the River Eden at Kirkby Stephen during 2010, with maximum and
minimum daily mean flows from 1971 to 2010 (source: Centre for Ecology and Hydrology, 2012).

3.3 Experimental design, network and monitoring

The aim of the first section of this thesis is to investigate sediment and nutrient regimes across
the upper Eden catchment and how they are affected by spatial and temporal scale. To allow
this, data (both hydrometeorological and sediment/nutrient) need to be collected across a
range of spatial scales, physical catchment characteristics and land uses. Thus, an experimental
design that is fit for purpose is vital. The selected monitoring regime incorporates a multi-scale,
nested approach where stratified water sampling is used to provide sediment/nutrient fluxes

representative of a wide range of flow conditions and seasonal patterns.

3.3.1 Monitoring locations

Thirteen sub-catchments were selected to monitor sediment and nutrient concentrations and
yields within the upper Eden catchment (Figure 3.9) with the experimental design strongly
informed by the original CHASM programme and associated follow-up projects. This study uses
two nested catchments - one along the main River Eden (sites 1-4, Figure 3.9) and the other
that incorporates Scandal Beck (sites 5-7) and River Eden sites 3 and 4. A further six sub-
catchments outside the nested system (sites 8-13, Figure 3.9) were also selected. The sub-
catchments cover the full range of spatial scales set out under the CHASM project, ranging in
area from 1.1 to 334 km?. The purpose of the nested system is to investigate how SS, P and
NO; yield varied with increasing catchment area along a continuous stretch of river. The six
non-nested catchments allowed the effects of spatial variability in catchment characteristics
(e.g., elevation — upland and lowland, land use, geology, etc.) on yields to be taken into

account. Figure 3.10 provides a simplified schematic of the monitored river network.
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Figure 3.9: Location of water quality monitoring sites in the upper Eden catchment
(see Table 3.2 for site information).
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Figure 3.10. Schematic of upper Eden catchment monitored river network (not to scale).
Numbers and colours correspond to Figure 3.9.
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Table 3.2 provides summary information for the monitoring sites depicted in Figure 3.9. Site 1
was chosen to represent the River Eden that exclusively drains upland areas with very little
urban settlement. It also marks the start of the first nested catchments along the main River
Eden. Site 2 is downstream of the town of Kirkby Stephen and coincides with an EA river
gauging station (installed in 1971). The catchment is high relief and drains Carboniferous
Limestone, which forms most of the watershed, with the middle reaches underlain by Permian
Sandstone. There is a variable boulder clay cover in the lowlands. The uplands are dominated

by hill peat and moorland land use. Some livestock pasture can be found in the valley bottom.

Site 3 at Great Musgrave is also an EA river gauging station, installed more recently in 2000.
Site 4 is just downstream of the town of Appleby and marks the outfall of the 344 km? study
catchment. Site 5 at Gais Gill is the first site on the nested sampling system on Scandal Beck,
which rises on the Howgill Fells in the south of the catchment. It was selected in the CHASM
project as a micro (~1 km?) catchment that represents the uplands. Scandal Beck flows through
Ravenstonedale (population circa. 600), a narrow gorge at Smardale where site 6 is located,
and finally Soulby (population circa. 200), where Site 7 is located downstream of the village.
Sites 8-13 are outside the nested system. Site 8 is at the outfall of Blind Beck, a lowland mini
(~10 km?) catchment dominated by improved grassland and pastoral land use. Site 9 is on
Helm Beck, a lowland sub catchment with relatively high levels of agricultural activity,

including dairy farming.

Site 10 is on Coupland Beck, which drains the Hilton and Murton Fells to the north. There are
two small hamlets, Hilton and Murton, located in the catchment and the land use is low-
intensity sheep grazing. This catchment was previously unmonitored by the CHASM project but
it was felt that its relatively large 27.5 km?* catchment area was too large to omit from this
study. Swindale Beck drains the north east of the catchment, which contains upland peat bogs
and moorland on the Pennine plateaux, before flowing through the village of Brough
(population circa. 700). There is some improved pasture in the lower reaches upstream of the

monitoring point at site 11.

Site 12 is on the River Belah, which also contains uplands on the Pennine plateaux. The
catchment hosts only low-density sheep grazing. Sites 11 and 12 were not part of the original
CHASM network but were added in 2007 by Mills (2009) as part of a sediment yield
investigation. Site 13 is at the outfall of another micro (~1 km?) catchment, selected by the
CHASM project to be a comparison to site 5 at Gais Gill. The Low Hall stream, which flows into
Blind Beck just upstream of site 8, represents the lowlands with a relatively low relief and

increased agricultural activity; a large dairy operation exists in the catchment.
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Table 3.2: Sub catchment characteristics calculated using ArcMAP 10 GIS software.

No.onmap Name Catchment Mean elevation Maximum
(Figure 3.9) area (km?) (m) elevation (m)
1 Upland Eden 48 442 707
2 Eden at Kirkby Stephen 69 385 707
3 Eden at Great Musgrave 223 345 707
4 Eden at Appleby 334 307 745
5 Gais Gill 11 470 602
6 Scandal Beck at Smardale 37 331 707
7 Scandal Beck at Soulby 40 316 602
8 Blind Beck 9 220 376
9 Helm Beck 18 252 374
10 Coupland Beck 28 434 745
11 Swindale Beck 32 410 650
12 River Belah 53 377 660
13 Low Hall stream 1.25 154 162

3.3.2 Hydrometeorological data collection

Hydrology plays an essential role in the transfer of sediment and nutrients from land to water
and also their movement through the fluvial system. Thus, in order to characterise this
movement accurately it is vital to have records of the main inputs to and outputs from the

catchment; principally precipitation and discharge.

The author was responsible (unless otherwise indicated) for maintaining and downloading the
CHASM hydrometric network, as well as archiving the data, during the study period

(November 2009 to December 2011, inclusive).

Water samples were collected in order to determine SS, P and NO; concentrations at the

Newcastle University laboratory, also carried out by the author.

3.3.2.1 Flow

Discharge was not measured directly at any site in the Eden. Instead, stage was recorded at 15
minute resolution, which was converted to flow by way of an existing stage-discharge
relationship, or rating curve. Figure 3.11a depicts the locations of the stage gauges in the
upper Eden catchment. Eight sites were equipped with CHASM owned stage recorders, which
included: three OTT Thalimedes float and counterweight shaft encoders (referred to as
‘Thalimedes’ for brevity), five pressure transducers (referred to as ‘divers’ — produced by Van
Essen Instruments), and one Horizontal Acoustic Doppler Current Profiler (H-ADCP) at Appleby.
Barometric pressure was measured using barometers at various locations in the catchment.

These data are needed to ‘correct’ those recorded by the divers to ensure the latter showed
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only changes in water level, not atmospheric pressure. Stage gauges (and barometers) were
downloaded every two months on average along with manual stage measurements, which
were used to check the data from the corresponding instrument (after ‘correction’); thus

ensuring a more accurate stage time series.

The EA monitor river stage at several fixed structure sites along the River Eden; stage data is
converted by the EA to 15 minute flow records by way of a rating curve. Data from three EA
stations were used in this study; from upstream to downstream the sites are: Kirkby Stephen,
Great Musgrave and Temple Sowerby. Table 3.3 contains a summary of the upper Eden flow
monitoring instrumentation. Further information on the EA gauging stations can be found at
http://www.environment-agency.gov.uk/hiflows/91727.aspx. Flow data from Temple Sowerby
were not used to calculate sediment and nutrient loads as the site is outside the study
catchment; however, the data provided a means by which to compare runoff values to help

improve calculated catchment water balances.

Rating curves for the Eden sites were established during the CHASM project (2003-2005) and
updated by Mills (2009) in 2007-2008. In order to construct the stage-discharge relationships
discharge was gauged at a range of flows using an impeller flow meter operated whilst wading.
Where flow was too deep to allow safe wading, a float-mounted ADCP was used. It was
decided that updating the rating curves was beyond the remit of this study due to time
constraints. Thus, sites with fewer gaugings and less reliable rating curves should be treated
with a greater degree of uncertainty. The only site that was flow gauged during the study was
Blind Beck (site 8); the highest gauged stage as a percentage of the highest recorded stage was

increased from 71 to 84%. Rating curve coefficients can be found in Appendix Al.

Three sites were not instrumented with stage gauges: Scandal Beck at Soulby, Coupland Beck
and the upper Eden. Discharges for the upland Eden and Scandal Beck at Soulby were down-
and up-scaled, respectively, from the Eden at Kirkby Stephen and Scandal Beck at Smardale,
respectively, using catchment area. Discharge at Coupland Beck was estimated by down-
scaling the Kirkby Stephen discharge record (as above) followed by the application of a
multiplier value, based on the SPR HOST values for each site, to take into account soil and
runoff property differences between the two catchments. More details of this can be found in

Chapter 4.2.3.
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Figure 3.11: Hydrometric instrumentation maps of the upper Eden catchment: a = stage gauges; b = rain gauges; ¢ = AWSs.
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Table 3.3: Details of flow monitoring sites in the upper Eden catchment.

No. Site Catchment Length of Site manager  Instruments Highest gauged stage R2 value of stage-

area (kmz) record (years) as % of max. recorded discharge relationship
1 Upland Eden 48 - CHASM None Ungauged -
2 Eden at Kirkby Stephen 69 29 EA Float and counterweight 95 N/A
3 Eden at Great Musgrave 223 11 EA Float and counterweight 95 N/A
4 Eden at Appleby 334 7 CHASM Pressure transducer, H-ADCP 58 0.92
5 Gais Gill 1.1 8 CHASM Pressure transducer 61 0.94
6 Scandal Beck at Smardale 37 9 CHASM Thalimedes 42 0.99
7 Scandal Beck at Soulby 40 - CHASM None Ungauged -
8 Blind Beck 9 8 CHASM Thalimedes 84 0.96
9 Helm Beck 18 9 CHASM Thalimedes 51 0.96
10 Coupland Beck 28 - CHASM None Ungauged -
11 Swindale Beck 32 4 CHASM Pressure transducer 29 0.74
12 River Belah 53 4 CHASM Pressure transducer 19 0.52
13 Low Hall stream 1.25 5 CHASM* Pressure transducer 57 0.93 and 0.76**

*maintained by Ockenden (2010) **two part rating curve (No. refers to the location in Figure 3.11 A).
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3.3.2.2 Precipitation

Rainfall was monitored using a network of twelve rain gauges (Figure 3.11b): five CHASM
owned ARG100 tipping bucket gauges and seven EA operated gauges; Table 3.4 provides
details of the rain gauges. The original CHASM network consisted of 25 rain gauges (including
EA gauges); this was necessary, as spatial variability in rainfall was being investigated as part of
the project (Wilkinson, 2009). However, since then many gauges have been damaged or had
logger problems, and subsequently been removed. It was also deemed unnecessary in this
study to conserve such a large number of gauges as maintaining them would be very time
consuming, especially those in hard to reach, distant locations. It was felt that the reduced
network was sufficient to give a reliable estimation of areal rainfall across the catchment in

order to calculate catchment water balances.

Table 3.4: Details of rain gauges in the upper Eden catchment used in this study
(No. refers to the location in Figure 3.11b).

No. Rain gauge Type Resolution Site Elevation  OS grid
manager reference

1 Aisgill TBR 15 minute EA 360 NY 778963
2 Appleby Castle TBR Daily EA 148 NY 684200
3 Barras TBR 15 minute EA 343 NY 845121
4 Brackenber TBR 15 minute EA 176 NY 722195
5 Brakes Hall TBR 15 minute CHASM 175 NY 701139
6 Crosby Garrett TBR Daily EA 198 NY 728097
7 Gais Gill TBR 15 minute CHASM 390 NY 714009
8 Great Musgrave TBR 15 minute CHASM 155 NY 757138
9 Kirkby Stephen TBR Daily EA 183 NY 772078
10 Scalebeck TBR 15 minute EA 183 NY 673144
11 Sykeside TBR 15 minute CHASM 180 NY 747122
12 West Clove Hill TBR 15 minute CHASM 510 NY 835194

Thiessen polygons

Areal rainfall for each sub-catchment was interpolated from spot measurements using the
Thiessen Polygon method in ArcGIS. This method assigns weights to each gauge station in
proportion to the catchment area that is closest to that gauge. Figure 3.12 depicts the

Thiessen polygons created in ArcGIS for the Appleby catchment, i.e., the entire study area.
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Figure 3.12: Thiessen polygon map of the upper Eden catchment.

Wilkinson (2009) highlighted a potential issue with the method when applied to the Kirkby
Stephen sub-catchment. As the catchment contains only two rain gauges the Thiessen polygon
has a bias towards the Kirkby Stephen raingauge with that polygon covering 57% of the
catchment and the Aisgill polygon accounting for only 43% (Figure 3.13). As the Kirkby Stephen
rain gauge is at a relatively low elevation, and therefore with lower storm rainfall totals, this
would reduce the actual areal average rainfall totals. A method was applied that used an
elevation-weighted SAAR map (produced by Wilkinson, 2009) to synthesise rainfall for four
additional rain gauges that used to operate in the catchment: Angerholme Potts, Lunds Fell,

Nateby Common and Outhgill.

A multiplier value was derived from the map for each additional gauge, which was
proportional to the increase/decrease in elevation with reference to either the Kirkby Stephen
or Aisgill gauge (whichever was closest); this multiplier value was then applied to the
corresponding ‘actual’ dataset to synthesise a new one. A new Thiessen polygon was then
created using all six gauges (Figure 3.14), which meant that the Kirkby Stephen raingauge

accounted for only 31% of the catchment rainfall.
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Figure 3.13: Kirkby Stephen Thiessen polygon map. Figure 3.14: Kirkby Stephen Thiessen polygon map

using synthetic rain gauges.

3.3.2.3 Evapotranspiration

Two Environmental Measurement (EM)-Ltd Automatic Weather Stations (AWSs) are located in
the upper Eden catchment; one in the uplands at Gais Gill (440 m AOD), and the other in the
lowlands at Great Musgrave (148 m AOD) (Figure 3.11 c¢). The AWS measure maximum and
average wind speed, wind direction, air temperature, relative humidity and net radiation;
these parameters are used to calculate evapotranspiration. The AWS also have a raingauge
attached to them and form part of the raingauge network. Each parameter is averaged and
stored every 15 minutes and these data are stored on a Campbell’s CR10X logger, which can
store up to 50 days’ worth of data. Fifteen-minute potential evapotranspiration (PE) was
calculated using a modified version of the Penman-Monteith equation (parameterised for the
upper Eden catchment by Wilkinson (2009)) using air temperature, relative humidity and net

radiation data collected by the Great Musgrave AWS.

3.3.2.4 Data archiving

Hydrolog 4, a database manufactured by HydroLogic was used to archive all stage, rainfall and
meteorological data. This software uses a GIS interface to store and access data, as well as
facilitating some data analysis. Stage-discharge relationship coefficients are stored in the
program therefore allowing it to calculate flow time series. Diver Office, software specific to
the diver instruments, was used to correct for barometric pressure and also put the

information in the database.
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3.3.3 Water sample collection

Water samples were collected from the thirteen sites (Figure 3.9) using a synchronous grab
sample method. Although not taken at exactly the same time, significant effort was made to
collect samples from all sites in the shortest time period possible in order to provide a multi-
scale snap shot of the sediment and nutrient concentrations while the catchment was under
the same, or similar, flow conditions. Where possible the sample was taken from the centre of
the watercourse using a 1 litre acid washed polyethylene bottle. When wading was not
possible due to fast/deep river flow samples were collected from the bank using a bottle
attached to a pole. Acid washing of the bottles was necessary to ensure no phosphate residue
from detergent was left in the bottle after washing. All sample bottles were stored in a cool,
dark plastic carrier to be returned to the laboratory where they were stored below 4 degrees

centigrade.

Monitoring took place between November 2009 and December 2011 (inclusive), across as
wide a range of flow conditions as possible. On average, samples were collected at fortnightly
intervals during ‘residual’ flow periods. Additional targeted sampling was made during high
discharges in order to produce representative pollutant rating curves and allow accurate
estimation of yields (e.g., Horowitz (2003) — this issue is discussed in more detail in Chapter
4.3.1 and 4.4.1). This was achieved by regularly monitoring the weather forecast. In total, grab

samples were collected on 49 separate occasions.

In addition to the grab sample campaign, Teledyne ISCO 3700 automatic water samplers were
deployed in the Blind Beck sub-catchment, at Sykeside Farm. These were triggered during high
flows and collected up to 24 x 1-litre water samples. More detail on this can be found in

Chapter 5.2.4. Samples were treated as above and subjected to the same laboratory analyses.

3.3.4 Laboratory analysis

All laboratory analysis was carried out at Newcastle University by the author. To reduce the
opportunity for changes in nutrient concentrations due to chemical transformations, reactive P
concentrations were determined within 24 hours of collection. Concentrations of NO; and
other P fractions (requiring digestion) were determined within 48 hours whenever possible. On
five occasions NO; determination was not possible due to equipment failure (e.g., Dionex 100
lon Chromatograph — described below). Suspended sediment analysis could take place at any

time following collection but was usually conducted alongside nutrient analysis.

A QC/QA program usually incorporates the collection and analysis of blank, duplicate, replicate

and/or spiked samples, reference materials to ensure the integrity of the analyses, and regular
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inspection of the equipment to ensure it is operating properly. Due to the time-consuming
nature of the laboratory analysis and associated high costs, duplicate analysis could not be
conducted in this study. However, certain measures were taken to mitigate for any
inaccuracies and thus ensure the precision and ultimately the representativeness of the data.
Nitrate analysis was carried out on a Dionex 100 ion chromatography machine that was
calibrated and maintained to a very high standard by the Newcastle University laboratory
technicians. Every sample run was carried out with deionised water blank and standard
solutions. Phosphorus was also determined alongside a deionised water blank and five
standard solutions of known P concentration, which were made up every time analysis was

performed.

3.3.4.1 Suspended Sediment

Suspended sediment was determined using standard gravimetric filter analysis. Filter papers
(Whatman GF/C 70 mm) were pre-dried in the oven at 105°C for 20 minutes before being
weighed. A 200 ml (whenever possible) aliquot was passed through the filter before the filters
were dried in oven at 105 °C for 2 hours. Finally, the filters were cooled in a desiccator, and

then re-weighed. The suspended sediment concentration is obtained using:

Equation 3.1
_ WB _WA (Eq )

C
SS Vf
where C is the suspended sediment concentration (mg ™), Wyg is the weight of filter paper

before filtration (mg), W, is the weight of filter paper after filtration (mg), and V, is the

volume of sample filtered (l).

3.3.4.2 Phosphorus

Phosphorus concentration fractions measured in this study include: SRP - a measure of the
inorganic monomeric P and easily-hydrolysable P in the less than 0.45um fraction; TSP - the
combination of SRP and SUP, released by potassium peroxodisulphate digestion on a filtered
sample; and TP - the fraction released by potassium peroxodisulphate digestion (as described

by Murphy and Riley (1962)) on an unfiltered sample.

Phosphorus concentration was determined colourimetrically by UV spectrometry (at a
wavelength of 880 nm) on all P fractions according to British Standard methods (BS 6068: 2.28:
1986, 1SO 6867/1 1986). Total P was determined on unfiltered samples and SRP and TSP after

filtering through a 0.45um cellulose acetate membrane filter.
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3.3.4.3 Nitrate

Nitrate concentrations were determined using a Dionex 100 lon Chromatograph. Prior to
analysis samples were filtered through 0.45um cellulose acetate membrane filters; dilution

was unnecessary due to the relatively low NO3; concentrations encountered in this study.

3.4 Summary

This chapter has introduced the upper Eden catchment and emphasised its importance as a
highly valued ecological area. The catchment comprises a variety of land uses, which are linked
to its topographic, geological, pedological and climatic characteristics. The experimental design
has been selected to best complement the aim of the next chapter, which is to characterise
the sediment and nutrient regimes of the upper Eden catchment across a range of spatial and

temporal scales.

Thirteen sub-catchments have been selected that cover a range of land uses, which will allow
examination of the effects of varying physical attributes on sediment/nutrient dynamics. To
enable the calculation of sediment/nutrient loads and yields that are representative of actual
in-situ conditions, and to understand the patterns, processes and magnitudes observed, a
synchronous, multi-scale grab sampling campaign is used. Reliable precipitation, discharge and
evapotranspiration data are also vital and details of their measurement have been described.
In the next chapter the methods used for the quantification of yields will be described and the

results obtained using these methods presented.
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4. Characterising the nutrient and sediment regimes of the upper

Eden catchment

4.1 Introduction

The main aim of this chapter is to characterise the SS, P and NO; regime of the upper Eden
catchment in 2010 and 2011, and to identify the important factors controlling water quality
variability. This includes the examination of spatio-temporal variability in nutrient and
sediment concentrations, and in total and specific yields. Export coefficients are derived for a
number of sub-catchments within the River Eden and used to investigate the effect of spatial
and temporal scale, as well as sub-catchment specifics such as land use. Sources of uncertainty

in the measurement and calculation of nutrient/sediment budgets are discussed.

4.2 Methodology

4.2.1 Nutrient and sediment concentration characterisation

Water quality monitoring to assess non-point source pollution is particularly difficult because
there is a large degree of natural variability to account for, including spatial and temporal
variability in weather, hydrological conditions, and land use and management practice. The
best way to account for this variability is to monitor pollutant concentrations on a continuous
(or near-continuous) basis. However, this requires highly specialised and (often) expensive on-
site automatic sampling and analysing equipment, which is normally feasible only in relatively
small-scale, funded research projects (Johnes, 2007; Rozemeijer et al., 2010; Cassidy and

Jordan, 2011).

Traditionally, water quality monitoring has relied heavily upon the collection of grab samples,
including the EA’s GQA scheme, which provide ‘snapshots’ of concentrations. However, to
capture the dynamic behaviour of surface water quality and fully represent the ‘actual’
pollutant flux in a river over a longer time period (e.g., a month or a year) a large number of
samples are needed (Webb et al., 1997). Increasing sampling frequency is associated with
increased field sampling, sample transport and laboratory procedures, which are laborious and
expensive. As a consequence, surface water quality monitoring will continue to rely

predominantly on (relatively) low-frequency grab sampling data (Rozemeijer et al., 2010).

Marking a new era of environmental measurements, the UK Demonstration Test Catchments
(DTC)  [http://www.demonstratingcatchmentmanagement.net] and Irish  Agricultural

Catchments Programme (IACP) [http://www.teagasc.ie/agcatchments] are two large-scale,
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government funded projects, which have invested in state of the art automatic monitoring
equipment capable of recording a multitude of water quality parameters on a near-continuous
basis (Owen et al., 2012). While this level of investment is beyond the remit of the majority of
monitoring programmes, such as the EA’s GQA scheme, one of the goals of the DTC and IACP is
to develop and determine surrogates for pollution such as turbidity (e.g., suspended sediment
— Gray and Gartner (2009) and Minella et al. (2007), and total P — Nairn and Mitsch (1999)),

which would be more economically viable for widespread use.

4.2.1.1 Method selection and sources of uncertainty

For this study, monitoring at a single site (the stream outlet) was believed to be adequate to
broadly characterise the water quality of a particular catchment. With this approach, the effect
of the point and non-point source pollution processes occurring throughout the catchment is
integrated. A strategy which takes samples at regular but infrequent intervals (e.g. weekly or
fortnightly) is unlikely to sample over a full range of discharge and sediment and nutrient
concentration values and is thence liable to under- or over-predict average concentrations and
loads (Walling et al., 1992; Phillips et al., 1999; Horowitz, 2003; Johnes, 2007; Cassidy and
Jordan, 2011). In order to address this, an effort was made to collect samples during high flow

events.

During a sample collection campaign, a significant effort was made to visit all the monitoring
sites within a few hours (particularly during or shortly after a storm event) to provide a multi-
scale, synchronous snapshot of sediment and nutrient concentrations across the entire study
catchment. This assumes some behavioral similarity between sites and reduces random errors

caused by sampling on different days

Taking a point measurement (in this case the collection of a grab sample but also relevant to
automatic water samplers that draw water from a fixed point in the river) is making an
assumption that it is representative of the entire river cross-section at that instantaneous
moment in time. However, particularly during high flows, vertical and horizontal velocity
gradients will exist within the cross-section and changes in sediment/nutrient concentrations
are directly related to these velocity variations (Ingram et al.,, 1991). It is suggested that
multiple depth-integrated samples should be taken at intervals across the river cross-section
to take account of this. However, this is often not practical due to time/resource constraints,
the size of the river, or the depth of flow (especially during high-flow events). A study carried
out in the Yorkshire Ouse catchment showed very little SS concentration variation in samples

taken at 0.5 m vertical intervals.
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However, it did reveal that depth-integrated samples taken across river sections exhibit a
systematic increase in concentration towards the centre of the channel (Evans et al., 1997,

Wass and Leeks, 1999).

The use of stage-discharge rating curves, especially when extrapolated above measured flows,
is a particular problem as high discharges are often related to the largest transfers of
sediment/nutrients. Even if a site has a reliable rating curve (gauged to a high percentage of
the maximum stage, i.e., bank full) it cannot account for out of bank flows. Summer weed
growth and physical changes can also affect a river cross-section, which can subsequently alter

the stage-discharge relationship.

4.2.2 Quantifying sediment and nutrient yield

4.2.2.1 Method selection and sources of uncertainty

Knowledge of a catchment’s sediment/nutrient yield (also referred to as export, load or flux) is
important for detecting trends in annual transport rates and assessing the effects of measures
taken to reduce their export. However, calculation of an accurate yield value from non-
continuous data is problematic due to the many sources of uncertainty involved. This
uncertainty derives from both the sampling strategy (continuous, regular or stratified — as
previously described) and the method of yield calculation employed (interpolation or

regression/extrapolation — discussed below).

A number of studies on the reliability of mass load estimates indicate that no individual
estimation method is superior and that poor accuracy can be obtained using individual
estimation methods on a specific stream for a given determinand and year. Refer to Dolan et
al. (1981), Kronvang and Bruhn (1996) and Johnes (2007) for a comprehensive explanation of

the available methods.

In its most basic form, an interpolation method takes the known (measured) determinand
concentration and multiplies it by the corresponding instantaneous flow, or the mean of the
instantaneous flow observations for a given time interval. This is then integrated over a
specific time period (e.g. a year). A correction factor can also be applied (e.g., Beales’ Ratio
Estimator). This can provide reasonable TP yield estimates for streams with a high BFl but large
errors for low BFI, ‘flashy’ streams. Thus, catchments with a lower BFI tend to return a wider
range of load estimates. As the upper Eden catchment has a medium (in lowland catchments)
to low (in upland catchments) BFI (see Table 4.6 and Table 4.7) it was deemed inappropriate to
use an interpolation calculation method, especially as sampling frequency was relatively low

(fortnightly on average).
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Johnes (2007) found that an extrapolation method using a log-log rating produced
underestimates of annual TP yield — even when based on daily samples, and Walling et al.
(1992) demonstrated that SS load estimates based on rating curves could be associated with
substantial underestimation (in the order of 75%). The greatest bias is associated with sites
where there is a poor discharge-concentration correlation. However, Johnes (2007) also found
that extrapolation methods returned the most accurate yield estimates when stratified
sampling was employed. Webb et al. (1997) found that extrapolation using a rating curve
produced the most accurate SS load estimates for rivers in eastern England and Jordan et al.
(2007) argued that annual P fluxes calculated from relationships between discharge and

concentration are acceptable if the data set is of sufficient size and covers all flow percentiles.

As described previously, water quality grab sampling did not include sampling at or near to
peak flows at all sites (Table 4.9), meaning some ratings will have to be applied with significant
extrapolation, which may be a source of load over/underestimation. This should be
acknowledged when analysing the calculated yields of SS, TP, SRP and NOj; they may be of
value when comparing with other annual exports but may be limited when comparing short-
term or event scale fluxes, e.g., following mitigation measures. They may also not be reliable

enough to allow comparison with catchments outside the study area.

4.2.2.2 Sediment and nutrient rating curve development

In order to calculate sediment and nutrient yield, a rating curve is used to complete the SS, TP,
SRP and NO; concentration dataset at times when only discharge records exist (i.e.,

infrequently sampled water chemistry data at a site where continuous discharge is monitored).
The standard model is the equation:
C = aQb (Equation 4.1)

where C is the concentration, Q is the discharge and a and b are empirical constants. Linear
regression is often used for water quality data analysis. However, the application of linear
regression requires normally distributed data. If data are not normally distributed, then one
must use data transformation techniques or non-linear models. Anderson-Darling normality
tests confirmed that all concentration data in this study were not normally distributed (p >
0.005). The most common method of rating curve construction in this instance is to log-
transform the discharge and concentration data (Cooke et al., 2005) and then perform linear

least squares regression (Phillips et al., 1999; Asselman, 2000), whereby:

log1oC = a + blog, (Equation 4.2)
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This method assumes that the concentration data are log-normally distributed, that there is a
log-linear relationship between C and Q and that the residuals are log-normally distributed.

The regression is then back-transformed to give a prediction of Cin the form:
C = 10aQb (Equation 4.3)

Asselman (2000) found that the use of a power function between SS C and Q, fitted using non-
linear regression, gave the most accurate results. Thus, in this study the C and Q data for each

site were log-transformed and rating curves calculated in the form of Equation 4.2.

4.2.2.3 Calculation of yield

Rating coefficients were applied to each site’s discharge record (2010 and 2011) to provide an
estimation of continuous (15 minute interval) SS, TP, SRP and NO; concentrations. With
corresponding continuous values of discharge and sediment/nutrient concentration the total
yield of a determinand transported in the river over a given time period is given by:

Y = ftendt Q(t)C(t)dt (Equation 4.4)

st

where Y is the total yield over the sampling period (ts.: t0 t.ng), Q is the discharge and C the
concentration at sample time t. The specific yield (yield per unit area) is simply the total yield
divided by the catchment area. For clarity, from this point forth specific yield will be referred to

simply as yield, and total yield will be referred to as load.

4.2.3 Comparison of yields with long term estimates - flow duration curve method

In order to investigate the inter-annual differences in calculated determinand exports, long-
term yields were calculated for Kirkby Stephen (as it has the longest available discharge
dataset and is representative of the rest of the catchment). Eleven years of 15 minute

discharge data (2000-2011) were used to construct a FDC.

Following the methodology described by Julien (1998), discharges at 15 flow duration intervals
were extracted from the FDC (Table 4.17). Intervals are more closely spaced at the higher
discharges as they account for a greater proportion of the overall sediment/nutrient transport
and at a higher discharge there is greater sensitivity of concentration to a given change in
discharge (particularly for SS and P). Equation 4.1 was used to calculate the SS, TP, SRP and
NO; concentration for each discharge value; the annual load is then calculated as the sum of
the product of each paired discharge and concentration value, together with the time

occupied (in seconds) by each discharge interval.
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4.2.4 Reconciliation of total loads with export coefficients from the literature

The export coefficient modeling approach was initially developed to determine the origin of
increased nutrients to North American lakes (Beaulac and Reckhow, 1982) and is used to
predict the sediment and/or nutrient loading of a catchment as a function of the export from
each individual source within that catchment (Johnes, 1996). Coefficients are used for
delineating pollutant loads to different land use types. Values are determined by monitoring
land uses, such as forest, arable or urban and are expressed as mass of pollutant per unit area

per year (e.g., kg km? yr'') (Reckhow et al., 1980).

Although relatively simple, the model can provide an inexpensive approach with minimal data
requirements (McGuckin et al., 1999), which has been used to predict TP loadings from a
number of catchments in England to within 5% of observed loads (Johnes, 1996). It also allows
scaling up from plot scale to larger catchment size (Hanrahan et al., 2001). The annual load of
SS, TP, SRP and NO; for a catchment (L) can be estimated using export coefficients of each land

cover type (i) using:

L=Y,(A;E) (Equation 4.5)

where A; is the area (km?) of the ith land cover type with an annual export of E; (t or kg km? yr™).
For diffuse sources, losses of sediment and nutrients are often assumed to be proportional to
discharge in the river. Equation 4.6 is also used to predict the export of a determinand in a
month (E,) while taking account of the discharge of water from the catchment during that

month (Q,,) and that derived from baseflow (B,,) (both in m?), as follows:

Ep = Bpcp + QQ";:?: YiAE; (Equation 4.6)

where @ is the total annual discharge of water (m?) and B,is the total annual contribution of
baseflow water (m?) with a fixed determinand concentration of c,. Annual load is the sum of
the calculated monthly outputs. This method (adapted from May et al., 2001) assumes that

there are no point source inputs of SS, TP, SRP and NO; in the catchment.

This is justified in the upper Eden due to the low population density, although it is accepted
that there are a number of sewage treatment works that are unaccounted for. Domestic septic
tanks are also a known source of P and NO;, particularly during low flow conditions (Withers et
al., 2012) but they are a notoriously difficult point source to locate and quantify and are also
omitted from these analyses. Without point inflows of nutrients, river waters are expected to
be closer to a dynamic equilibrium with respect to natural internal exchange processes (e.g.,
uptake/release by sediments, plants and algae; losses/gains due to deposition/re-suspension

of sediment); therefore no further formulae are necessary. Traditionally, TP has been used in
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most model calculations due to the operational problems associated with measuring SRP
caused by its rapid exchange with particulate matter (Hanrahan et al., 2001). Here, TP is used
for the export coefficient model and the exchange between phosphorus fractions during
export is not considered. To allow comparison with the literature NO; has been converted to

total N - by applying a conversion factor of 62/14.

Land classification for the upper Eden catchment (refer to Chapter 3.2.5 for map) was further
simplified into four groups: urban and rural development, unimproved grassland, improved
grassland, and tilled land (Figure 4.1). Table 4.1 contains the areal extent of each land class for
each sub-catchment. Suspended sediment, TP and TN export coefficients were selected from
the literature (summarised in Table 4.2 - comprehensive lists of coefficients for each water
quality determinand can be found in Appendix E3) and combined with areal extents using
Equation 4.4 to calculate pollutant loads for each sub-catchment. Total P coefficients were
selected from a number of studies conducted by McGuckin et al. (1999), Jordan et al. (2000),
May et al. (2001) and Johnes (1996); the former two having defined them based on the Co-
ORdination of INformation on the Environment (CORINE) classification and the latter two using

the LCM2000.

Table 4.1: Sub-catchment land classification by areal extent.

Sub-catchment Catchment Area (km?)

Urban and rural  Unimproved Improved Tilled land Total

development grassland grassland

Upland Eden 1 31 14 2 48
Eden at Kirkby Stephen 2 38 25 4 69
Eden at Great Musgrave 9 100 96 18 223
Eden at Appleby 13 137 160 24 334
Gais Gill 0 1.1 0 0 11
Scandal Beck at Smardale 1 23 11 2 37
Scandal Beck at Soulby 1.5 22 14 2.5 40
Blind Beck 0.5 1 7 0.5 9
Helm Beck 0.5 5.5 10.5 1.5 18
Coupland Beck 1 20 6 1 28
Swindale Beck 1 19 10 2 32
River Belah 1 32 18 2 53
Low Hall stream 0 0 1 0.25 1.25
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Figure 4.1: Reclassified land classification map (please refer to Figure 3.7 for original LCM 2000 map).

Table 4.2: SS, TP and TN export coefficients selected for simplified land cover types in the upper Eden catchment.

Land classification Export coefficient (km? yr™)

SS (t) TP (kg) TN (kg)
Urban and rural development 20 83 2000
Unimproved grassland 15 10 400
Improved grassland 25 30 1300
Tilled 60 66 3500

4.3 Results

4.3.1 Hydrological characterisation

To put the sediment/nutrient fluxes calculated in this study into a wider context, it is crucial to
understand the hydrological conditions of the study period in comparison with long-term
averages. To assess the accuracy of precipitation and discharge data, evapotranspiration is
estimated in order to calculate catchment water balances. Accurate discharge records are
important for calculating reliable pollutant vyields and understanding the dominant

hydrological controls.
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Precipitation

Rainfall totals were calculated for each sub-catchment using Thiessen polygons. The two study
years, 2010 and 2011, can be considered dryer and wetter than average, respectively, in
comparison to the corresponding SAAR values for the period 1961-1990 (Table 4.3). The SAAR
value for the entire study catchment (Appleby - 334 km?) is 1188 mm, while 856 mm (28% less)
was recorded in 2010 and 1336 mm (12% more) in 2011. On average 40% more rainfall was

recorded in 2011 than in 2010.

There is a positive correlation between rainfall and elevation (R* = 0.57 (SAAR), 0.53 (2010),
0.31 (2011) - Figure 4.2) with an approximate rainfall-elevation gradient of 2 mm m™, which is
in the range of, but lower than, the value of 3.1 mm m™ reported for the Lake District by
Brunsdon et al. (2001). Walsh (2004) showed that total annual rainfall in the upper Eden
catchment could be linearly related to elevation. The Gais Gill catchment has the highest

average elevation and the highest corresponding SAAR value.

However, in both 2010 and 2011 the rainfall at Gais Gill was lower than the precipitation in the
upper Eden and Kirkby Stephen catchments. This is most likely attributed to wind affected
undercatch at the CHASM operated Gais Gill rain gauge (also reported by Wilkinson (2009)).

Table 4.3: Upper Eden catchment precipitation parameters (see Figure 3.9 for locations).

Catchment Mean catchment  SAAR (mm)

Site area (kmz) elevation (m)  (1961-1990) Measured precipitation (mm)

2010 2011
Upland Eden 48 413 1610 1293 2178
Eden at Kirkby Stephen 69 395 1492 1070 1913
Eden at Great Musgrave 223 351 1270 913 1404
Eden at Appleby 334 319 1188 856 1336
Gais Gill 11 478 1906 1013 1740
Scandal Beck at Smardale 37 336 1515 985 1670
Scandal Beck at Soulby 40 322 1456 985 1670
Blind Beck 9 214 1018 779 1429
Helm Beck 18 252 1159 785 1450
Coupland Beck 28 371 1169 858 1431
Swindale Beck 32 393 1132 1014 1788
River Belah 53 385 1116 856 1066
Low Hall stream 1.25 153 854 719 1131
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Figure 4.2: Total annual precipitation (2010 and 2011) compared with Standard-period Average Annual Rainfall
(SAAR 1961-1990) against mean elevation for 13 study catchments.

Discharge

The River Eden at Kirkby Stephen has been selected to describe the hydrological regime for the
entire upper Eden study catchment for the two-year study period. It was chosen as it has a
long-term continuous discharge record (monitored by the EA), derived from a well established
stage-discharge rating curve (gauged to 94% of maximum recorded stage — CEH, 2000). The
catchment has representative land cover/use and is used as a ‘control’ with which to compare
and quality assure the rest of the data collected in the study programme. Figure 4.3 depicts
the daily precipitation and discharge hydrograph for the entire study period, as well as the
days when samples were collected for sediment and nutrient analysis. The first half of 2010
was relatively dry and only 295 mm of rainfall was recorded in the Kirkby Stephen catchment,
28% of the annual total. In the second half of the year 27% of the total annual flow occurred in

a series of storms between October 22nd and November 13th.

Figure 4.4 shows cumulative precipitation and runoff at Kirkby Stephen for 2010 and 2011.The
low runoff accumulation between April and September 2011, despite a steadily increasing
cumulative precipitation line, indicates increased soil moisture recharge in the summer, hence
a decrease in rainfall-runoff ratio. Significant increases in runoff in January 2010, November
2010 and January 2011, are the result of snow melt events. As the two study years run from
January to December, greater runoff than rainfall in the first half of both 2010 and 2011 is
attributable to base flow time lag. Twenty years of mean daily discharge data (1991-2010)
were used to produce a flow duration curve (FDC) for the River Eden at Kirkby Stephen (Figure

4.5) and accompanying flow statistics (Table 4.4).

93



Daily discharge (m3s?)

120 +

T Ty ey
0 - L;M_J.LL l MU MR A.JL‘A ' . AN A/ LLMJLLA~M

Jan Feb  Mar Apr  May Jun Feb  Mar Apr  Ma

2010 2011

Figure 4.3: River Eden at Kirkby Stephen daily discharge and precipitation record 2010-2011. Markers indicate water quality sampling dates.
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Table 4.4: Flow statistics for the River Eden at Kirkby Stephen (based on mean daily discharge).

Period Daily discharge (m3 s'l)
Maximum Q10 Q50 Q95
2010 38.3 4.2 0.74 0.12
2011 60.8 7.6 1.47 0.34
1991-2010 (average) 43.6 6.9 1.07 0.20
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Missing discharge data

As described in Chapter 3, discharge was not recorded at every site. The Eden at Kirkby
Stephen and Great Musgrave were monitored by the EA and the majority of other sites were
gauged by the author (as part of the CHASM program). There were three sites that were
ungauged (for neither stage nor discharge). Besides the two EA monitored sites, complete
records exist for the Eden at Appleby, Blind Beck and Scandal Beck at Smardale (see Table 4.5).
Discharges for the ungauged sites of the upland Eden and Scandal Beck at Soulby were down-
and up-scaled, respectively, from the Eden at Kirkby Stephen and Scandal Beck at Smardale,
respectively, using catchment area. This was applied to discharge values recorded every 15
minutes. Discharges at the third unmonitored site, Coupland Beck, were estimated by down-
scaling the Kirkby Stephen discharge record (as above) and then applying a multiplier based on
the SPR HOST values for each site, to take into account soil and runoff property differences
between the two catchments. For example, the multiplier was calculated as Coupland Beck
SPR HOST value divided by Kirkby Stephen SPR HOST value; in this case 38.74/45.76 = 0.847.
SPR HOST values were obtained for each sub-catchment using the Flood Estimation Handbook
(Institute of Hydrology, 1999) CD_ROM and can be found, along with other FEH catchment

descriptors, in Appendix C1.

The Helm Beck, River Belah and Low Hall sites all suffered instrumentation malfunctions. At
Helm Beck this was discovered when quality assuring the data later in the study period
meaning that 2011’s data were disregarded. Blind Beck data were used to estimate the missing
discharge values as the two catchments are the most similar in terms of physical
characteristics; they are in relatively close proximity and are of approximate catchment areas.
The data were up-scaled using catchment area and adjusted according to the SPR HOST values

(as described above).

Following detailed analysis the River Belah stage record was also deemed unreliable,
particularly during recessional and low flows as a result of inappropriate instrument siting.
Thus the entire two year record was disregarded and a surrogate discharge hydrograph was
scaled and adjusted from the Eden at Kirkby Stephen. The Low Hall discharge record contained
a number of erroneous spikes, particularly during low flow conditions. The data were plotted
alongside that of Blind Beck (as the two catchments are located next to each other they are
assumed to exhibit similar hydrological responses to precipitation) in order to identify and
remove spikes believed to be due to instrumental error. Subsequent data gaps were in-filled

by interpolation.
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At the Swindale Beck site, a large section of bank collapsed and buried the stream gauge in
May 2011. A new stream gauge was installed but insufficient time meant that a stage-
discharge rating relationship could not be established for the site and the change in river cross-
section meant that the old rating equation was no longer applicable. The discharge record
from Kirkby Stephen was scaled and adjusted to match the 2010 record. Linear regression
between the two site’s overlapping data had a R? value of 0.73. The stream gauge at Gais Gill
was found to be missing in September 2011 (last downloaded in June 2011). Similarly to
Swindale Beck, a new gauge was installed but a revised rating curve was not developed due to
time constraints. To in-fill the missing discharge record data from a downstream stream gauge
at Artlegarth Beck (2.9 km?) was downscaled according to catchment area. Linear regression

between the two site’s overlapping data had a R® value of 0.96.

The Kirkby Stephen discharge record is thus vital. It is preferential to have local stream gauges
at all sites but due to instrumentation malfunction and error, it is assumed that Kirkby Stephen

provides a reasonable indicator of the hydrological catchment response.

Table 4.6 and Table 4.7 contain calculated hydrological statistics based on the finalised
discharge and precipitation time series for each monitoring site for 2010 and 2011,
respectively. As a means of checking consistency between discharge data normalised annual

FDCs were constructed for each site (for each study year) and can be found in Appendix D1.
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Table 4.5: Upper Eden catchment discharge records for 2010 and 2011.

Site Source Complete/Issue Comment

Upland Eden No gauge - Discharge down-scaled from Kirkby Stephen

Eden at Kirkby Stephen EA flow Complete -

Eden at Great Musgrave EA flow Complete -

Eden at Appleby CHASM rating curve Complete -

Gais Gill CHASM rating curve Missing stream gauge June 2011 2011 discharge down-scaled from Artlegarth Beck

Scandal Beck at Smardale
Scandal Beck at Soulby
Blind Beck

Helm Beck

Coupland Beck

Swindale Beck

River Belah

Low Hall stream

CHASM rating
No gauge
CHASM rating
CHASM rating
No gauge
CHASM rating

CHASM rating

CHASM rating

Complete

Complete

Gauge failure May 2011

Bank collapsed on gauge October 2010

Gauge untrustworthy

Gauge malfunction 2011

Discharge up-scaled up from Smardale

2011 discharge adjusted from Blind Beck
Discharge adjusted from Kirkby Stephen

New gauge installed but no stage-discharge rating curve.

Discharge adjusted from Kirkby Stephen

Gauge recorded flow peaks but recession and base flow inaccurate.
Discharge adjusted from Kirkby Stephen

Gauge recorded flow peaks but recession and base flow inaccurate.
2011 discharge missing
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Table 4.6: Upper Eden catchment flow parameters 2010. “calculated using Institute of Hydrology method (Gustard et al., 1992).

. Catchment Mean daily Max hourly Q10 Q50 Q95 Q10/Q95 . ,i\nn_ual Annual Percentage

Site 2 flow flow 3 1 3 1 3 -1 . BFI* precipitation runoff
area (km") 3 4 3 1 (m”s™) (m”s™) (m”s™) ratio runoff

(m”s™) (m°s™) (mm) (mm)
Upland Eden 48 1.26 69 2.33 0.47 0.083 28 0.25 1293 897 69
Eden at Kirkby Stephen 69 1.89 103 3.5 0.71 0.125 28 0.38 1070 862 81
Eden at Great Musgrave 223 5.27 247 10.8 2.39 0.620 17 0.31 913 714 78
Eden at Appleby 334 6.92 322 12.5 3.30 1.194 10 0.33 856 653 76
Gais Gill 1.1 0.033 1.12 0.051 0.023 0.014 4 0.56 1013 942 93
Scandal Beck at Smardale 37 0.838 41.23 1.458 0.418 0.189 8 0.38 985 714 72
Scandal Beck at Soulby 40 0.881 43.37 1.534 0.440 0.199 8 0.38 985 695 71
Blind Beck 9 0.164 3.46 0.248 0.117 0.071 3 0.61 779 576 74
Helm Beck 18 0.31 6.58 0.471 0.223 0.134 4 0.42 785 532 68
Coupland Beck 28 0.636 34.84 1.181 0.239 0.042 28 0.25 858 646 75
Swindale Beck 32 0.884 43.55 1.479 0.299 0.053 28 0.25 1014 889 88
River Belah 53 1.361 75.81 2.527 0.510 0.090 28 0.25 1016 810 80
Low Hall stream 1.25 0.018 0.184 0.035 0.011 0.008 4 0.63 719 460 64

Table 4.7: Upper Eden catchment flow parameters 2011.

. Catchment ~ Meandaily  Maxhourly Q10 Qs0 Q95  Q10/Q95 Annual - Annual -, tage
Site area (kmz) glo_\:v glo_\:v (m3 5.1) (m3 5.1) (m3 5.1) ratio BFI* precipitation runoff runoff

(m”s™) (m”s™) (mm) (mm)
Upland Eden 48 2.34 81 5.0 0.90 0.223 22 0.21 2178 1668 77
Eden at Kirkby Stephen 69 3.5 122 7.5 1.35 0.335 22 0.21 1913 1604 84
Eden at Great Musgrave 223 9.03 275 20.1 4.05 1.140 18 0.26 1404 1222 87
Eden at Appleby 334 12.3 355 24.1 5.94 1.559 15 0.27 1336 1164 87
Gais Gill 1.1 0.058 1.58 0.087 0.035 0.018 5 044 1740 1649 95
Scandal Beck at Smardale 37 1.469 62.46 2.440 0.575 0.290 g 0.27 1670 1252 75
Scandal Beck at Soulby 40 1.545 65.69 2.566 0.605 0.305 g 0.27 1670 1218 73
Blind Beck 9 0.295 3.50 0.580 0.142 0.071 g 039 1429 1035 72
Helm Beck 18 0.87 6.65 1.102 0.269 0.135 8 0.25 1450 983 68
Coupland Beck 28 1.184 41.42 2.531 0.456 0.113 22 0.21 1431 1202 84
Swindale Beck 32 1.563 51.88 3.170 0.571 0.142 22 0.21 1788 1475 82
River Belah 53 2.451 87.434 5.415 0.975 0.242 22 0.21 1548 1491 96
Low Hall stream 1.25 0.028 0.190 0.073 0.021 0.009 g 0.52 1131 902 80
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Water Balances

A catchment water balance is a simple method of checking the accuracy of
hydrometeorological data for a certain catchment area, over a given period of time. Assuming
that there are no losses from the catchment (e.g., to groundwater) and thus negligible changes

in storage, the water balance is defined as:

Q=P-—E (Equation 4.7)
where Q is discharge, E is actual evapotranspiration and P is precipitation (all in mm — after
discharge has been divided by catchment area). Potential evapotranspiration was calculated
using a modified version of the Penman-Monteith equation, parameterised for the upper Eden
catchment by Wilkinson (2009). Inputs for the calculation were hourly measurements of
relative humidity, net radiation and temperature — all recorded by the Great Musgrave AWS.
The actual evapotranspiration is here assumed to be equal to the potential evapotranspiration.
For the headwaters this may be more acceptable than for the lower lying sub-catchments, as
the water table of upland peat is near the surface for most of the year (Evans et al., 1999).

Annual water balances were calculated for all thirteen study catchments (Appendix D2).

The water balance is regarded as being sufficiently accurate when recorded Q is within +/- 10%
of calculated P-E (Table 4.8); a positive value indicates that Q < P-E and a negative value
indicates that Q > P-E. From this check, 15 out of 26 values are within +/- 10% and the
remaining 11 are relatively close (apart from Upland Eden 2010). Thus, it is concluded that the
error in the hydrometric data is acceptable considering the simplifying assumptions made for

the water balance.

Possible error could to be attributed to an underestimation of total precipitation (undercatch
by the raingauge in strong winds) or an error in the calculation of evapotranspiration
(assuming that the runoff total is correct). An alternative explanation could be discharge over-
or underestimated as a result of rating curve extrapolation. This may be an issue at CHASM
sites but is assumed not to be a problem at the EA sites due to largely complete stage-
discharge rating curves (i.e., gauged to a high percentage of the maximum recorded stage —

Kirkby Stephen = 94%).
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Table 4.8: Kirkby Stephen catchment annual water balances.

Site % diff. between Q and P-E

2010 2011
Upland Eden 19 12
Eden at Kirkby Stephen 3 2
Eden at Great Musgrave 2 -9
Eden at Appleby 3 -10
Gais Gill -14 -13
Scandal Beck at Smardale 11 10
Scandal Beck at Soulby 13 12
Blind Beck 3 10
Helm Beck 11 16
Coupland Beck 4 -4
Swindale Beck -7 2
River Belah 3 -18
Low Hall stream 14 -6

4.3.2 Concentration characterisation

Table 4.9 contains information on the maximum discharge (peak 15 minute discharge value)
recorded at each site during the study period along with the maximum discharge at which a
water sample was collected (to the nearest 15 minute interval). This is expressed as a
percentage of the maximum discharge and ranged from 29-92% - the lowest percentage is
associated with Coupland Beck. Due to its position in the catchment Coupland Beck was often
the last to be sampled during a sample collection day, meaning that it was perhaps further into

recessional flow if the sampling campaign was in response to an earlier high-flow event.

Despite an effort to collect grab samples during high flow events only two out of the top
twelve discharge events were captured. Table 4.10 contains the date and time of the largest
flow peaks recorded at the Kirkby Stephen gauging site and shows whether the event was
sampled. The largest sampled event was on 04/02/2011, which was the fifth largest discharge
event overall. The only other significant event to be sampled was on 12/10/2011 but the flow
peaked at 08:00 am meaning that sampling occurred on the recession. This highlights another
important issue as to whether samples are taken on the rising or falling limb of a storm and is
discussed further in section 4.3.3.1. Table 4.10 shows that half of the twelve largest high flow
events occurred during night time hours and a further two over the weekend, both of which

were impractical to sample.
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Table 4.9: Percentage of maximum discharge sampled for water quality analysis.

Max discharge Max discharge Percentage of

Site recorded sampled max discharge
(m3 s9) (m3 s9) sampled

Upland Eden 82 42 51
Eden at Kirkby Stephen 123 60 49
Eden at Great Musgrave 281 98 35
Eden at Appleby 358 127 36
Gais Gill 1.71 0.74 43
Scandal Beck at Smardale 64 23 36
Scandal Beck at Soulby 69 21 30
Blind Beck 3.5 3.1 89
Helm Beck 12.3 10.1 82
Coupland Beck 49 14 29
Swindale Beck 43 15 35
River Belah 71 31 44
Low Hall stream 0.182 0.167 92

Table 4.10: Time/date of 12 largest flow peaks (defined as the largest 15 minute discharge value) at the Eden at
Kirkby Stephen (2010-2011) and whether they were sampled.

f:s: t Date/time Peal((r:;s;l:)a ree ::IT;ZLZ: Comment

1 08/12/2011 11:30 123 No Not available

2 15/01/2011 14:15 109 No Saturday

3 04/11/2010 18:45 105 No Not available

4 06/02/2011 14:15 77 No Sunday

5 04/02/2011 12:30 69 Yes Largest event sampled
6 06/09/2011 00:15 68 No Time

7 05/04/2011 05:15 63 No Time

8 12/10/2011 08:00 57 Yes Sampled on recession
9 02/11/2010 20:00 56 No Time

10 13/12/2011 03:15 46 No Time

11 23/10/2010 01:00 42 No Time

12 10/01/2011 22:15 39 No Time

Figure 4.6 summarises diffuse pollutant concentrations within the upper Eden.
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Figure 4.6: Maps depicting mean SS, TP, SRP and NO; concentrations. Concentration is proportional to the darkness
of the colour (i.e., light = low concentration, dark = high concentration).
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Blind Beck shows up as having the highest mean concentrations of all water quality
determinands, with the exception of NO; where the Low Hall stream (a tributary of Blind Beck)
is greater. Higher SS concentrations (relative to the rest of the catchment) are found in central
areas. These catchments include Gt. Musgrave and Appleby and to a slightly lesser extent
Helm Beck and Kirkby Stephen. Gais Gill, Smardale and Coupland Beck exhibit the lowest SS
concentrations. Total P concentrations are relatively high in the Gt. Musgrave and Appleby
catchments and a similar pattern can be seen for SRP, with the addition of Swindale Beck. Gais
Gill has the lowest mean P concentration for both fractions. The highest NO; concentrations
were found in the Low Hall stream and Blind Beck sub-catchment with the Gt. Musgrave, Helm
Beck and Swindale Beck catchments also having elevated concentrations relative to the rest of

the catchment. Again, Gais Gill stands out as having the lowest overall mean concentration.

Suspended sediment, TP, SRP and NO; concentration data are summarised in turn by boxplots
in the following section; sites have been ordered considering Figure 3.10 to better visualise
how the concentrations vary along the river system (from upstream to downstream).
Tabulated concentration and discharge data can be found in raw form in Appendix E1.
Suspended sediment concentration data is summarised in Figure 4.7. Mean SS concentration
increases site-by-site along the River Eden continuum (upstream to downstream), with 6.7 mg
I"* at the upland Eden and 16.4 mg I"* at the Eden at Appleby site. Despite the increase in mean
SS concentration between Kirkby Stephen and Gt. Musgrave, all the sub-catchments that enter
the main river between these points have lower mean concentrations. Gais Gill has the lowest

mean concentration. The River Belah and Swindale Beck have comparable mean and maximum

SS concentrations along with a similar standard deviation.

Blind Beck has a higher mean SS concentration (29.2 mg I™!) than both Gt. Musgrave (t = 2.70; p
= 0.009) and the Eden at Appleby (t = 2.48; p = 0.017). In fact Blind Beck had the highest mean
concentration of all the study sites as well as the highest maximum SS concentration of 276.5
mg SS I'. After Blind Beck, Helm Beck has the second highest mean SS concentration of the

sub-catchment sites, albeit by a small amount.
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Figure 4.7: Box and whisker plot summarising suspended sediment concentrations across all upper Eden sites.

Total phosphorus concentration data is summarised in Figure 4.8. Mean TP concentrations
exhibit a similar pattern to those of SS. Figure 4.9 shows a positive correlation between SS and
TP (Pearson’s R = 0.493; p = 0.001) using corresponding data from all 13 study sites. There is a
significant increase along the River Eden continuum from 0.027 mg TP I at upper Eden to
0.046 mg TP I at Appleby (t = -7.20; p < 0.001). Blind Beck has the highest mean TP
concentration of 0.098 mg I, significantly greater than the second highest at Appleby (t = 3.13;
p = 0.003). Gais Gill and Coupland Beck have the lowest mean concentrations of 0.017 and
0.024 mg TP I"* respectively. Along the Scandal Beck nested system, there is a significant
increase in mean TP concentration between Gais Gill and Scandal Beck (0.017 —0.024 mg TP I"*
—t=-4.95; p < 0.001). Mean concentrations from the outfalls of Scandal Beck, at Soulby, and
the River Belah were both lower than that at Kirkby Stephen, while Swindale and Helm Beck

were both higher.
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Figure 4.8: Box and whisker plot summarising total phosphorus concentrations across all upper Eden sites.

1.000 -

0.100

TP conc. (mg )

0.010

0.001 T T T ]
0.1 1.0 10.0 100.0 1000.0

SS conc. (mg %)

Figure 4.9: Correlation between SS and TP concentrations from all sites
(zero values not included on the log-log plot).

The pattern of SRP mean concentrations also follows that of TP. The correlation between TP
and SRP concentrations (across all sites — see Figure 4.11) is strong and positive (Pearson’s R =
0.755; p < 0.001). Figure 4.10 summarises the SRP data. The greatest mean of 0.029 mg | and
the greatest maximum of 0.159 mg I"* were both recorded at Blind Beck. The Low Hall stream

has the second highest mean concentration followed by the Eden at Appleby and Helm Beck.
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Figure 4.10: Box and whisker plot summarising soluble reactive phosphorus concentrations
across all upper Eden sites.
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Figure 4.11: Correlation between TP and SRP concentrations from all sites
(zero values not included on the log-log plot).

Mean NO; concentrations also steadily increase along the River Eden continuum but on the
whole remain low (Figure 4.12). A mean of 1.66 mg NOs I"* (with a maximum of 3.55) was
recorded at the upper Eden site and a mean of 3.24 mg NO; I"* (with a maximum of 6.6) was
registered at Appleby over the two-year period. Gais Gill has the lowest mean concentration
and the Low Hall stream has the highest, at 14.13 mg NOs |™". The highest single concentration

was also recorded at Low Hall stream: 24.5 mg I*. Blind Beck has the highest mean NO;
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concentration of all the sub-catchments that discharge directly into the River Eden
(Significantly greater than the second highest, Helm Beck (t = 10.67; p < 0.001)). This is likely

due to the influence of the Low Hall stream.
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Figure 4.12: Box and whisker plot summarising nitrate concentrations across all upper Eden sites.

4.3.2.1 Seasonality

Figure 4.13 presents SS, TP, SRP and NO; concentration data arranged by month, recorded at
Kirkby Stephen. The plots exhibit a very general pattern that is subject to variability in storm
events and droughts; however, SS displays a peak between October and February with an
intervening trough centred on June. A similar pattern is observed for TP and SRP. For NOs,

there is a slight increase in winter and early spring but the range is only between 2 and 5 mg

NOs I,
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Figure 4.13: Monthly a) SS, b) TP, ¢) SRP and d) NO; concentrations recorded at Kirkby Stephen.

4.3.3 Sediment and nutrient rating curve development

Correlations of instantaneous SS, TP, SRP and NO; concentrations with discharge for the River
Eden at Kirkby Stephen are depicted in Figure 4.14. Determinand concentration-discharge
rating coefficients for each site can be found in Appendix E2. A certain amount of scatter can
be attributed to measurement error but is mainly due to the complexity and time-varying
nature of sediment and nutrient supply and delivery rates, which confound the discharge-

concentration relationship. This was discussed in the Chapter 3.

Variability in concentration/instantaneous load at low discharges is not seen as overly
problematic, however, as the effect on estimation of total exports is minimal. Pearson’s
correlation coefficients for all water quality determinands at all sites can be found in Table
4.11. All the SS, TP and SRP rating curves are statistically significant (at a minimum of the 5%

level), but only NO; ratings from Blind Beck, Low Hall and Appleby are statistically significant.
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Figure 4.14: Relationship between a) SS; b) TP; c) SRP; d) NO; and discharge for the River Eden at Kirkby Stephen.

Table 4.11: Pearson’s correlation coefficients for SS, TP, SRP and NO; against discharge.

Site SS TP SRP NO;
Upland Eden 0.729%** 0.790%** 0.585%** -0.274
Eden at Kirkby Stephen 0.856***  (0.793***  (0.589***  -0.202
Gais Gill 0.933%** 0.596%** 0.474%** 0.089
Scandal Beck at Smardale 0.860***  0.840***  0.577***  -0.268
Scandal Beck at Soulby 0.911***  (0.828***  0.617***  -0.233
River Belah 0.904***  0.743***  (0.315* -0.332
Swindale Beck 0.912%** 0.896%** 0.576%** -0.289
Eden at Great Musgrave 0.888***  (0.859***  (0.673***  -0.426
Low Hall stream 0.827***  0.862***  0.762***  -0.737***
Blind Beck 0.927***  0.888***  (0.728***  -0.605***
Helm Beck 0.931%** 0.891%** 0.743%** -0.156
Coupland Beck 0.921*%**  (0.819***  0.767***  -0.306
Eden at Appleby 0.913***  (.829***  (.726***  -0.439**

Significance levels: *p<0.05 **p<0.01 ***p<0.001
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4.3.3.1 The influence of sample collection timing on rating curves

The effect of season and the position on the hydrograph (i.e., whether the sample was
collected on the rising or falling limb) on the discharge-concentration relationship will be
considered. The number of samples collected for each site ranged between 35 and 50, which
limits the level of analysis that can be carried out. It is clear from the data that the majority of
samples were collected on the falling limb (80-85% - depending on the number of samples
collected at the individual site). This is mainly due to the time needed to collect samples
following the onset of a storm event. Owing to the nature of the hydrographs in the upper
Eden catchment (see example from Kirkby Stephen - Figure 4.15, where the time to peak is 3
hours 45 minutes while the recessional lasts for over 24 hours), rising limbs occupy much less
time than falling limbs, thus it was much more difficult to collect samples on the rising limb of
storm events. This effect has already being highlighted as an issue at Coupland Beck in
particular, which had the lowest discharge sampled (as a percentage of the maximum

recorded discharge).

Figure 4.16 shows scatterplots of SS, TP, SRP and NOj; against discharge from Kirkby Stephen,
but with the data split between rising and falling limb. Suspended sediment concentrations are
marginally higher on the rising limb, for a given value of discharge, when comparing the linear
regression lines. There is no visual difference for TP and SRP, and although there is no
correlation between discharge and NO; concentration, concentrations appear marginally

higher on the falling limb than on the rising limb.
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Figure 4.15: Typical River Eden hydrograph recorded at Kirkby Stephen.
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Figure 4.16: Scatter plots of a) SS; b) TP; c) SRP and d) NO; concentration against discharge;
divided into rising and falling limb for Kirkby Stephen.

Data from each site is grouped according to season. May to September constitute the summer,
and October to April the winter. Separate linear regression lines between SS, TP, SRP and NO;
concentration and discharge were plotted for the summer and winter periods; below are
examples from Kirkby Stephen (Figure 4.17). Visual examination of the regression lines reveals
that SS and TP concentrations are higher in the winter, for a given discharge value; there is no
discernible difference for SRP; and that in winter NO; concentrations have no correlation with
discharge while there is a slight negative correlation in the summer. However, there is
insufficient data and too much scatter to have any significant confidence in this pattern. Given
the low numbers of samples in this study it was believed that separating the rating curves

would not significantly improve the accuracy of the yields based on them.
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Figure 4.17: Scatter plots of SS, TP, SRP and NO; concentration against discharge;
divided into summer and winter for Kirkby Stephen.

4.3.4 Yield characterisation

Figure 4.18 summarises diffuse pollutant yields within the upper Eden.

The maps are based on 2011 data, which has higher yields than 2010, but the relative
difference between the sub-catchments is very similar. Blind Beck has the highest SS yield,
with Gt. Musgrave, Kirkby Stephen and the River Belah also having higher yields than the other
catchments. Gais Gill, Low Hall and Coupland Beck are the sub-catchments with the lowest
yields. Blind Beck also stands out as having the highest TP yield and is again followed by Gt.
Musgrave and Kirkby Stephen. However, unlike SS, Swindale Beck and Helm Beck stand out
from the remaining sub-catchments as having elevated yields. Gais Gill and Low Hall have the

lowest.
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Figure 4.18: Maps depicting mean SS, TP, SRP and NO; specific yield. Yield is proportional to the darkness of the
colour (i.e., light = low yield, dark = high yield).

114



Blind Beck has the highest SRP yield but the pattern for the other catchments is slightly
different to that of TP. The Kirkby Stephen catchment is again highlighted as having a higher
yield but also along with the upper Eden. Helm Beck is also in the same classification. SRP yield
is lowest at Gais Gill and the River Belah while the Low Hall stream is showing to have a higher
SRP yield relative to its TP yield. Nitrate yield is highest for the Low Hall stream and lowest for
the upper Eden. Blind Beck also shows up as having elevated NO; yield, possible as a result of
the input from the Low Hall stream, and Helm Beck is also has levels elevated above the

remaining sub-catchments.

Table 4.12, Table 4.15, Table 4.14 and Table 4.16 contain the calculated loads and yields of SS,
TP, SRP and NO;, respectively, for each sub-catchment for 2010 and 2011. For all water quality
determinands, yield is significantly higher in 2011 than 2010 (p < 0.001). The outlet to the
study catchment (the River Eden at Appleby) had the greatest total annual loads, as expected,
as it is the largest catchment. There is a strong positive correlation between SS load and
catchment area (Pearson’s R = 0.983 (2010) and 0.987 (2011); p < 0.001). The SS load at the
River Eden at Great Musgrave is over three-times greater than that at Kirkby Stephen in both

years, although this is roughly proportional to catchment area.

There is, however, a discrepancy when the difference in loads is compared with the sum of the
loads from the sub-catchments that enter the main river between these points. There is an
increase of 2105 tonnes and 4435 tonnes of sediment between Kirkby Stephen and Gt.
Musgrave in 2010 and 2011, respectively. The sum of the totals from the contributing sub-
catchments between Kirkby Stephen and Great Musgrave (Scandal Beck, River Belah and
Swindale Beck) is 783 t and 2649 t for 2010 and 2011; leaving a discrepancy of 1322 and 1786
tonnes, respectively. This could be attributed to an area of approximately 11 km? that lies
between Kirkby Stephen and Great Musgrave and is not part of the three sub-catchments. This

issue is considered in more detail in section 4.3.6.
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Table 4.12: Calculated SS yields and loads for 2010 and 2011.

Site Catchment SS yield SS load

area (kmz) (t km? y'l) (t yr'l)
2010 2011 2010 2011
Upland Eden 48 6.77 17.10 325 821
Eden at Kirkby Stephen 69 10.53 27.84 727 1921
Gais Gill 1.1 3.10 8.50 3.1 8.5
Scandal Beck at Smardale 37 4.70 15.60 174 577
Scandal Beck at Soulby 40 4.64 14.90 186 596
River Belah 53 7.40 29.70 392 1574
Swindale Beck 32 6.47 16.70 205 529
Eden at Great Musgrave 223 12.70 28.50 2832 6356
Low Hall stream 1.25 2.33 7.34 2.9 9.2
Blind Beck 9 8.73 35.35 79 318
Helm Beck 18 4.04 22.36 73 402
Coupland Beck 28 4.54 11.35 125 312
Eden at Appleby 334 9.60 22.80 3206 7615

Figure 4.19 shows cumulative SS load for the two study years at Kirkby Stephen. This provides
a good example of the seasonal distribution of sediment delivery throughout the year and is
applicable to all of the study sites. As continuous SS concentration is calculated as a function of
discharge, the temporal pattern is very much controlled by the hydrology. It should be noted
that significant snowmelt events occurred in January and November 2010 and January 2011.
As a result there is a very strong positive correlation between cumulative discharge and
cumulative SS load (R = 0.982, P <0.001 (2010) and R = 0.979, P <0.001 (2011). There is a
marked difference between 2010 and 2011 in terms of total export but there are similarities in

the timing of significant sediment fluxes.

Suspended sediment yields are compared with those calculated for the upper Eden catchment
by Mills (2009), where yield values represent a long-term average (derived from 6-years’ worth
of discharge data) (Table 4.13). On the whole, the yields calculated in this study are low,
particularly 2010 values. However, 2011 yields are much more in agreement; Kirkby Stephen,
Great Musgrave, Scandal Beck at Smardale and Soulby, and the River Belah are all similar.
However, Mills (2009) reports higher yields for Swindale Beck, Helm Beck, Blind Beck, Gais Gill
and Appleby.
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Figure 4.19: Cumulative SS load for 2010 and 2011 at Kirkby Stephen.

Table 4.13: Long-term SS yields calculated by Mills (2009).

Highest discharge

Site Caar:;h(r:;r;; SS yield (t km™ y‘l) samplec! as % of

max discharge
Eden at Kirkby Stephen 69 26 61
Gais Gill 1.1 23%* 29
Scandal Beck at Smardale 37 12 47
Scandal Beck at Soulby 40 11 47
River Belah 53 35 35
Swindale Beck 32 26 53
Eden at Gt. Musgrave 223 22 73
Blind Beck 9 73%* 67
Helm Beck 18 46 34
Eden at Appleby 334 46* 100

*sites equipped with automatic storm sampling equipment.

Total P yield and load data is summarised in Table 4.15. The highest yield is for Blind Beck
(119.5 kg km™ yr™* in 2011), significantly higher than all the other sub-catchments. Gais Gill has
the lowest yield of all the study sites while Coupland Beck, River Belah and Scandal Beck have
the lowest of the sub-catchment that discharge directly into the River Eden. Total P yield
increases along the main River Eden (highest at Gt. Musgrave in 2010 and Kirkby Stephen in
2011), but then decreases at Appleby. This is despite the relatively high yield from Blind Beck,
which in absolute terms is only supplying a small proportion of the TP load due its small

catchment size.

Swindale Beck and Helm Beck have yields elevated above the rest of the sub-catchments, but
not as high as for Blind Beck. Soluble reactive P yield data is summarised in Table 4.14.
Similarly to TP, SRP yield generally increases along the main River Eden (peaking at Gt.
Musgrave) before decreasing slightly at Appleby. Blind Beck has the highest yield in both 2010

and 2011: 13.4 and 31.2 kg km? yr, respectively. All the other sub-catchments have relatively
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low SRP yields of around 7 kg km™ yr™ in 2010 and 15 kg km™ yr'* in 2011, with the River Belah
being the lowest and Swindale Beck being slightly higher. The value for Helm Beck appears

relatively elevated in 2011.

Table 4.14: Calculated SRP yields and loads for 2010 and 2011.

Site Catchment SRP yield SRP load

area (kmz) (kg km? yr'l) (kg yr'l)
2010 2011 2010 2011
Upland Eden 48 11.1 24.2 531 1159
Eden at Kirkby Stephen 69 12.1 25.0 835 1723
Gais Gill 1.1 6.7 13.6 7 14
Scandal Beck at Smardale 37 6.7 14.0 246 519
Scandal Beck at Soulby 40 6.9 14.7 277 589
River Belah 53 4.2 13.4 221 711
Swindale Beck 32 9.9 19.5 314 617
Eden at Great Musgrave 223 12.1 22.8 2825 5313
Low Hall stream 1.25 7.7 20.1 10 25
Blind Beck 9 13.4 31.2 120 280
Helm Beck 18 6.8 24.5 122 440
Coupland Beck 28 7.3 15.4 201 423
Eden at Appleby 334 11.2 22.4 3751 7489

Table 4.15: Calculated TP yields and loads for 2010 and 2011.

Site Catchment TP yield TP load

area (kmz) (kg km™ yr'l) (kg yr'l)
2010 2011 2010 2011
Upland Eden 48 26.8 57.4 1288 2755
Eden at Kirkby Stephen 69 34.6 73.7 2387 5082
Gais Gill 1.1 17.8 36.2 18 36
Scandal Beck at Smardale 37 18.8 42.9 695 1585
Scandal Beck at Soulby 40 21.2 46.6 846 1863
River Belah 53 14.3 46.9 756 2483
Swindale Beck 32 334 70.9 1059 2246
Eden at Great Musgrave 223 37.2 72.8 8669 16966
Low Hall stream 1.25 15.8 43.0 20 54
Blind Beck 9 38.3 119.5 345 1076
Helm Beck 18 18.7 68.8 337 1239
Coupland Beck 28 19.8 414 544 1138
Eden at Appleby 334 31.0 62.6 10353 20920

Nitrate yield data is summarised in Table 4.16. The highest NO; yield (6.36 and 10.83 t km™ yr*
for 2010 and 2011, respectively) is from the Low Hall catchment. The lowest NO; yields were
recorded at the upland Eden site, the River Belah and Coupland Beck with the other
catchments being marginally higher. There is a slight increase in yield along the main River
Eden continuum but unlike the SS and P, NO; does not decrease between Gt. Musgrave and

Appleby.
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Figure 4.20 describes cumulative NO; load at Kirkby Stephen. Although NO; export is clearly
driven by discharge events, when compared with cumulative SS (Figure 4.19) the accumulation

is ‘smoother’ with less distinct responses to high flow events.

Table 4.16. Calculated NO; yields and loads for 2010 and 2011.

Site Catchment Specific NO; yield NO; load
area (kmz) (t km? yr'l) (t yr'l)
2010 2011 2010 2011
Upland Eden 48 1.11 1.98 53.5 95.0
Eden at Kirkby Stephen 69 2.12 3.91 146.3 270.1
Gais Gill 1.1 2.24 3.51 2.2 3.5
Scandal Beck at Smardale 37 1.93 3.23 71.5 119.3
Scandal Beck at Soulby 40 1.94 3.24 77.5 129.6
River Belah 53 0.98 2.79 51.7 147.7
Swindale Beck 32 1.80 3.22 57.0 102.1
Eden at Great Musgrave 223 2.07 3.38 483.4 786.8
Low Hall stream 1.25 6.36 10.83 8.0 135
Blind Beck 9 5.65 8.26 50.9 74.3
Helm Beck 18 2.03 5.74 36.6 103.4
Coupland Beck 28 1.35 2.34 37.2 64.3
Eden at Appleby 334 2.09 3.36 699.6 1121.5
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Figure 4.20: Cumulative NO3 load for 2010 and 2011 at Kirkby Stephen.

4.3.4.1 Cumulative load exceedance

Figure 4.21 depicts cumulative SS loads (as percentages) for 2010 and 2011 for Kirkby Stephen.
Ninety per-cent of the SS load was delivered in 14 % of the time in 2010 and in just 6.5 % of

the time in 2011.
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Very similar values are returned for TP, SRP and NOs, apart from being 5.5% of the time in
2011. These low values indicate the importance of infrequent, high magnitude events in the

transport of sediment and nutrients in the upper Eden catchment.
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Figure 4.21: Cumulative SS load (as percentage) exceedance at Kirkby Stephen.

Cumulative TP load exceedance for Blind Beck is depicted in Figure 4.22. Even for a different
sub-catchment (with a totally separate discharge record) a similar pattern to Figure 4.21 is
observed. Ninety per-cent of the total TP load was accounted for by 13 % and 5.5 % of the time
in 2010 and 2011, respectively. Similar values are found for TP and SRP while 90 % of NOs is
delivered in just 10 % of the time in 2010 and 5% in 2011.
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Figure 4.22: Cumulative TP load (as percentage) exceedance at Blind Beck.
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4.3.4.2 Flow duration curve method

Results for SS only are shown in Table 4.17. All determinand loads and yields calculated using
the 11 year FDC are displayed in Table 4.18. They are taken to be the best long-term yield
estimates and because long term variability in flow is likely to be similar at each sub-catchment
due to the relatively small catchment size, it is apparent that 2010 produced lower yields and

2011 produced higher yields than the 11 year, long-term average.

Table 4.17: Flow duration curve intervals and discharges with corresponding SS concentrations and loads for Kirkby
Stephen.

Start - end (%) Interval Discharge (m3 s'l) SSC (mg I'l) Load (t)

0-0.002 0.0002 120.6 60.2 45.8
0.002-0.1 0.0008 93.4 51.6 121.7
0.1-0.5 0.004 52.6 36.5 242.7
0.5-1.5 0.01 29.1 25.6 234.7
1.5-5 0.035 15.1 17.2 287.0
5-15 0.1 6.40 10.3 207.1
15-25 0.1 2.96 6.45 60.2
25-35 0.1 1.99 5.07 31.8
35-45 0.1 1.35 4.02 17.1
45 - 55 0.1 0.97 3.29 10.0
55 - 65 0.1 0.72 2.75 6.23
65 - 75 0.1 0.56 2.35 4.13
75 - 85 0.1 0.40 1.94 2.48
85 - 95 0.1 0.26 1.50 1.24
95-98.5 0.035 0.16 1.10 0.19
Total (t) 1272

Specific yield (t km™ yr™) 18.4

Table 4.18: 2010 and 2011 yields and loads compared with those calculated
using the FDC method for Kirkby Stephen.

Annual yield (per km?) Annual load
FDC 2010 2011 FDC 2010 2011
SS (t) 18.4 10.53 27.84 1272 727 1921
TP (kg) 53.6 34.6 73.65 3697 2387 5082
SRP (kg) 18.4 12.1 24.96 1269 835 1723
NO; (t) 3 2.12 3.91 208 146 270
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4.3.5 Relationships between load/yield and spatial scale, land use and precipitation

A principal aim of this study was to investigate the influence of spatial scale on sediment and
nutrient yields. There is a significantly strong positive relationship (P<0.001) between
catchment scale and SS, TP, SRP and NO; loads (combined total over the two-year study period)

(Figure 4.23).
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Figure 4.23: Correlation between a) SS; b) TP; ¢) SRP and d) NO; load and catchment area.

When correlations of SS, TP, SRP and NO; yield against catchment area were plotted (Figure
4.24), there is no clear trend and this is reinforced by Pearson’s correlation coefficients (Table
4.19); P values indicate that there is a higher degree of scatter in 2011, the wetter of the two
study years. This may mean that whatever processes/factors are responsible for controlling
sediment and nutrient export, they are being positively influenced by increased levels of
hydrologic activity (i.e., more rainfall, total runoff and possibly different flow pathways).
Results presented in section 4.4.3 suggested that SS, TP and SRP vyields increased along the
main River Eden but then started to decrease again at the catchment outfall at Appleby, while

NO; yield remain relatively constant.
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Figure 4.24: Correlation between a) SS; b) TP; ¢) SRP and d) NO; yield and catchment area.

Table 4.19: Pearson correlation coefficients and P-values for correlations between sediment/nutrient yield and
catchment area.

Determinand Year Pearson's R P-value
2010 0.668 0.013*
ss 2011 0.318 0.290
2010 0.531 0.062
™ 2011 0.114 0.711
2010 0.411 0.164
SRP
2011 0.180 0.557
2010 -0.284 0.347
NO; 2011 -0.373 0.210

*significant correlations (P<0.05)

The data suggest that catchment area does not have a significant role in determining the
sediment and nutrient yield of a catchment; it is more likely an effect of position in the
catchment and/or the local characteristics. The relationship between land class and SS, TP, SRP
and NO; yield is examined by plotting yields against the percentage of improved agriculture
(improved grassland and tilled land combined). An assumption is made that this land class is
more intensively farmed (e.g., a higher stocking density, involve arable rotations and/or silage
cutting and reseeding, receive higher nutrient loading, etc.) hence potentially more likely to

export higher quantities of sediment/nutrients.
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When all study sites were included in the analysis no significant correlation was found for any
water quality determinand (P > 0.05 in all cases). The analysis was repeated on the non-nested
sub-catchments only (Figure 4.25) (i.e., omitting the River Eden sites) but with Low Hall
removed as it is an anomaly - 100% improved agricultural land but low SS, TP and SRP yields.
However, Low Hall was included in the NO; plot; this site will be discussed in section 4.6. With
the above exclusions considered, the scatterplots suggest that there is a positive correlation
between the percentages of improved agriculture and vyield, for all determinands. These

correlations are all significant (at the 5% level) apart from for SS, TP and SRP in 2010 (Table

4.20).
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Figure 4.25: Correlation between a) SS; b) TP; c¢) SRP and d) NO; yield and percentage of improved grassland and
tilled land.
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Table 4.20: Pearson correlation coefficients and P-values for correlations between sediment/nutrient yield and
percentage of improved grassland and tilled land.

Determinand Year Pearson's R P-value
2010 0.614 0.105
Ss 2011 0.825 0.012*
2010 0.385 0.347
™ 2011 0.882 0.004*
2010 0.504 0.203
SRP
2011 0.814 0.014*
2010 0.811 0.008*
NO; 2011 0.88 0.002*

*significant correlations (P<0.05)

The export of SS, TP, SRP and NO; is closely linked to precipitation in the upper Eden
catchment. Figure 4.26 a and b shows the relationship between total monthly precipitation
and SS and NO; load, respectively. There is a significant positive correlation for all water
quality determinands (Table 4.21). Thus, in order to accurately predict sediment and nutrient
exports a good hydrological/land use based index is vital. Export coefficients are examined

below.
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Figure 4.26: Correlation between a) SS; b) NO; load and total monthly precipitation.

Table 4.21: Pearson correlation coefficients and P-values for the relationship
between sediment/nutrient load and total monthly precipitation.

Determinand Pearson’s R P-value
SS 0.666 <0.001
TP 0.725 <0.001
SRP 0.734 <0.001
NO; 0.743 <0.001
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4.3.6 Reconciliation with published export coefficients

Suspended sediment, TP, SRP and NO; loads have been calculated for thirteen sub-catchments
in the upper Eden catchment. Correlation analysis has indicated that there is a general trend of
increasing sediment/nutrient yield with increasing percentage of improved agricultural land in
a catchment, although this effect is not applicable across all sites. The following section

attempts to reconcile these loads with those calculated using simple export coefficient models.

Table 4.22 contains a summary of diffuse pollutant loads calculated from grab samples
collected in this study (2010 and 2011 observed loads - see section 4.3.4) and loads predicted
using Equation 4.5. Suspended sediment predictions are within an acceptable range (general
mixture of over- and under-predictions) but much closer to 2011 values than 2010 ones. The
method over-predicts SS loads for Gais Gill and Low Hall and under-predicts the 2011 SS load
in Blind Beck, Kirkby Stephen and Gt. Musgrave. The prediction for Appleby is within 10% of
the 2011 ‘actual’ load.

The majority of TP predictions are within the ranges calculated for 2010 and 2011, although
they are in much more agreement with 2011 values. The model under-predicts for Gais Gill,
Upland Eden, Swindale Beck, Blind Beck and most significantly so for Kirkby Stephen; and over-
predicts for Scandal Beck, River Belah, Helm Beck and Low Hall. The catchment outfall at
Appleby is also over predicted (compared to 2011) but by 15% only. Predictions for Coupland
Beck and Great Musgrave are in very close agreement. Total N predictions are within the same
magnitude with a mixture of over- and under-predictions, although within an acceptable range
for the majority of sites. However, the River Eden at Gt. Musgrave and Appleby are

significantly over-predicted, while Low Hall, Blind Beck and Helm Beck are all under-predicted.

126



Table 4.22: Observed (2010 and 2011) and predicted SS, TP and TN loads.

SS load (t) TP load (kg) TN* load (kg)
2010 2011 Predicted 2010 2011 Predicted 2010 2011 Predicted
Upland Eden 325 821 955 1288 2755 2297 12081 21452 39600
Eden at Kirkby Stephen 727 1921 1475 2387 5082 4156 33035 60990 65700
Gais Gill 3.1 8.5 16.5 18 36 11 497 790 440
Scandal Beck at Smardale 174 577 760 695 1585 2019 16145 26939 32500
Scandal Beck at Soulby 186 596 860 846 1863 2494 17500 29265 38750
River Belah 392 1574 1070 756 2483 2571 11674 33352 45200
Swindale Beck 205 529 675 1059 2246 1913 12871 23055 29600
Eden at Great Musgrave 2832 6356 5160 8669 16966 16903 109155 177665 245800
Low Hall stream 2.9 9.2 40 20 54 189 1806 3048 2175
Blind Beck 79 318 230 345 1076 759 11494 16777 12250
Helm Beck 73 402 445 337 1239 1525 8265 23348 2210
Coupland Beck 125 312 522 544 1138 1136 8400 14519 20500
Eden at Appleby 3206 7615 7755 10353 20920 24769 157974 253242 372800

*Nitrate converted to total nitrogen by applying a factor of 14/62.
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To add a hydrological component to the calculation of catchment loads, and to disaggregate
them into monthly totals, Equation 4.6 was used. Fixed baseflow pollutant concentrations for
each site were defined by the concentration data collected in section 4.3.2. The effect of
adding in a discharge and baseflow component to the equation (which acts as a multiplier of
the L value calculated by Equation 4.6) was to increase the loads, compared with those
calculated using Equation 4.5. On average, SS and TP predictions were increased by 5-10% but

NO? predictions significantly more so. The greatest increase was in 2011.

Predicted monthly loads (2010 and 2011) for Kirkby Stephen are compared with observed
loads calculated in section 4.3.4 (Figure 4.27). For SS and TP the model appears to over-predict
loads in the winter months (November — February) in 2010 and under-predict them in 2011.
Over predictions occur in the majority of months compared to 2010 load values (SS and TP),
which is accountable to either measured loads being too low or the model not being able to
match the true values, or both. Total N predictions are very high in comparison to observed
loads for both years, particularly in winter months, perhaps overemphasizing the influence of

increase rainfall and runoff.
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Figure 4.27: Monthly observed and predicted a) SS; b) TP, and c) TN loads for the River Eden at Kirkby Stephen.

4.3.6.1 Use of export coefficient to predict unaccounted for losses

In Section 4.3.4 a significant discrepancy was identified between the sum of the total yields (of
all determinands) from the headwater sub-catchments (Scandal Beck, River Belah and
Swindale Beck) and the increase in loads between Kirkby Stephen and Great Musgrave. A
similar disparity was also reported by Vogel (2003), who used a mixing equation to determine
SS and TP concentrations at Gt. Musgrave, only to find that they were significantly lower than
the observed concentrations. Bathurst et al. (2005) described how during low flow occasions in
summer 2004, the combined average SS input of the four headwater catchments (including
Kirkby Stephen) was similar to the average output from Great Musgrave. However, for a

(single) high flow event, the Great Musgrave output was three times greater than the
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combined headwater input. Figure 4.28 depicts a map of the area in question and highlights a
25 km” lowland zone that is not part of the three monitored headwater sub-catchments. The
discrepancy in load is illustrated by Figure 4.29, which depicts the annual SS budget for the
study catchment, based on 2011 data, where ‘other sources’ account for the largest SS

contribution between Kirkby Stephen and Great Musgrave.

River Belah

Scandal Beck 5\ Kirkby Stephen

0 05 1Kms

Figure 4.28: Map indicating the 25 km? lowland area between Kirkby Stephen and Gt. Musgrave unaccounted for by
monitored upland sub-catchments.

According to Figure 4.1 this 25 km? area contains 74% improved grassland, 15.5% tilled land,
10% unimproved grassland and 0.5% urban and rural development. Equation 4.7 was used to
see if the simple export coefficient model could account for the SS, TP and TN loads
unaccounted for by the headwater sub-catchments (Table 4.23). The model only predicts 55%
of the unaccounted for load in 2010 and 41% in 2011, while TP predictions are improved: 81%
and 55%, respectively. Conversely, NO; is over-predicted by the model: 115% of the
unaccounted for load in 2010 and 126% in 2011.
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Figure 4.29: Suspended sediment budget schematic for the upper Eden catchment based on 2011 data where bar
width is proportional to the magnitude of the sub-catchment’s annual SS load. Numbers indicate total annual load
(t yr'l) and numbers in parentheses indicate the specific yield (t km yr'l).
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Table 4.23: Predicted load for 25 km” of land between Kirkby Stephen and Gt. Musgrave.

Determinand Load predicted Load unaccounted for Percentage of unaccounted
using export by sub-catchments load predicted by model
coefficient model
2010 2011 2010 2011
SS (t) 730 1322 1786 55 41
TP (kg) 2922 3621 5292 81 55
TN (kg) 39100 34075 31003 115 126

4.4 Discussion of findings

4.4.1 Discharge and precipitation

The upper River Eden shows large annual variability in pollutant concentrations and vyields,
which appear to be attributable to highly variable precipitation. Data collected in this study
show that the average monthly precipitation patterns described by Wilkinson (2009) are not
always withheld. The second lowest monthly total in 2010 occurred in December while the
third and fourth highest totals in 2011 were recorded in August and May, respectively. Rainfall
totals recorded for 2010 and 2011 are dryer and wetter, respectively, than the long-term
average and this is reflected in the annual FDCs. A statistically significant correlation exists
between total monthly rainfall and yield for all measured water quality determinands and

generally a positive correlation between discharge and pollutant concentration.

Annual runoff ratios calculated in this study are circa 0.7 for the majority of catchments. It is
expected to find between 0.7 and 0.8 for upland peat land catchments in the UK (Holden and
Burt, 2003), while Ward (1981) reported ratios between 0.5 and 0.75, in general, for
catchments in northwest England. Data collected in this study showed that rainfall-runoff
ratios can be very high in some storm events (up to 100%) in the Eden catchment - highest in
the winter and particularly in smaller, upland sub-catchments, but also in larger catchments

(Gt. Musgrave and Appleby) during long-duration precipitation events.
4.4.2 Sediment and nutrients

4.4.2.1 Sediment

Mean sub-catchment SS concentrations measured in this study ranged between 1.8 (Gais Gill)
and 6.2 mg I" (Blind Beck). The average concentration for the other non-nested sub-
catchments was circa 5 mg I, which may reflect their closeness in geographical location, land
cover and land use. This concentration is within the range quoted by Walling and Webb (1987)

for other UK catchments and by Bronsdon and Naden (2000) for sites on the Rivers Tweed and
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Teviot (6.6 to 8.0 mg ). After Blind Beck, Helm Beck has the second highest mean SS
concentration of the sub-catchment sites, albeit by a small amount. This is a reflection of
having a larger proportion of lowland area, therefore an increased likelihood of agricultural
activity (e.g., greater livestock density - Bathurst et al., 2005), which increases the existence of
both sources and pathways of diffuse pollutants in the catchment. Coupland Beck and Scandal
Beck exhibited relatively low mean SS concentrations, possibly due to their low population
density and high proportion of upland area. As the SS concentrations in Scandal Beck are
notably lower than in the Eden at Gt. Musgrave, Scandal Beck is not the main source of the SS

in the Eden.

Using Kirkby Stephen as a representative, SS concentrations in excess of 25 mg I (the
Guideline Standard for SS in the Freshwater Fish Directive; although this annual mean is not
directly associated with failure of good ecological status) only occur for 4% of the time. This
would suggest that levels of SS on the upper Eden are not a serious concern. Even at Blind
Beck, which has the highest mean and maximum SS concentrations and highest SS yields, 25
mg SS I is only exceeded 4.4% of the time. However, despite these relatively low values it is
clear that the number of larger storms is vital to calculating the export as this is when the

highest concentrations occur.

The annual SS yields measured in the upper Eden catchment ranged from 35.3 t km™ yr™ (Blind
Beck, 2011) to just 2.3 t km™ yr™* (Low Hall, 2010). These values are likely to be underestimates
of the true yield, at least for the smaller basins; Walling and Webb (1981) quote measured
yields of up to 250 t km? year™ for small north Pennine basins. Although Labadz et al. (1991)
presented SS yield estimates for upland catchments in the UK (areas between 42 ha and 7.7
km?) of between 0.7 and 66 t km™ yr!, and Bronsdon and Naden (2000) calculated yields (over
the 3 years) of 17.3 t km™ yr™ for the Upper Tweed and 19.7 t km™ yr™ for the Teviot

catchments in northeast England.

Suspended sediment yields were compared with those calculated for the upper Eden
catchment by Mills (2009) (whose values represented long-term estimations); on average
values in this study are lower. 2010 values were significantly lower but there was a general
agreement between 2011 values and the long-term estimates. At sites where significant
underestimations were apparent, this can be largely attributed to the difference in sampling
methodology used in the two studies. Automatic water samplers were utilised by Mills (2009)

at Gais Gill, Blind Beck and Appleby to collect water samples during high-discharge events.
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This would have a profound effect on the discharge-sediment rating curves and it is somewhat
unrepresentative to compare these sites directly with those that weren’t subjected to the

same sampling regime.

Accepting that calculated export values may be underestimates of the actual annual loads, the
values represent upper and lower ends of the range in SS yield likely to be experienced in this
catchment as they represent relatively dry (2010) and wet (2011) years. In most cases the
highest yields come from catchments with the highest percentage of improved agricultural
land (improved grassland and tilled land) and these areas tend to be located in the lowlands.
This relationship was also found by Wass and Leeks (1999), who suggested that this land type

has a higher erosion rate than uncultivated, or unimproved, grassland.

There is a significant correlation between SS yield and catchment area in 2010 but not in 2011,
the fact that there is one in 2010 is possibly due to the low amount of precipitation that would
otherwise place a stronger emphasis on the land use of the catchments through increased soil
erosion and the operation of alternative flow pathways (e.g., overland flow). The data highlight
temporal variations in SS yield, both on an annual and sub-annual timescale; for example the
SS yield for Kirkby Stephen varied between 10.5-27.8 t km” yr™ in successive years, with similar
variability observed at all sites. At sub-annual timescales, SS transport was limited primarily to
the winter months with 59% (2010) and 69% (2011) of the load being discharged during the

months November-February at Kirkby Stephen.

4.4.2.2 Phosphorus

Mean SRP concentrations ranged between 0.005 mg I (Gais Gill) and 0.029 mg I"* (Blind Beck).
Gais Gill had the lowest mean P concentrations as was expected due to the low population
density and dominance of unimproved grassland in the catchment. Along the Scandal Beck
nested system, there is a significant increase in mean TP concentration between Gais Gill and
Scandal Beck (0.017-0.024 mg TP I — t = -4.95; p < 0.001), possibly resulting from Smardale’s
position downstream of the Ravenstonedale settlement. Soluble reactive P yields at the upland
Eden site and the study catchment outfall at Appleby were surprisingly similar. Naturally, it
may be expected that the influence of increased urban and agricultural activity would mean
that the upland Eden would have a lower yield than further downstream; this appears not to

be the case.

The average SRP concentration for the non-nested sub-catchments is circa 0.015 mg I"*. The
SRP values in this study are relatively low compared with the long-term UK average (Table

4.24). Blind Beck, the sub-catchment with the highest P concentrations, only has TP
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concentrations greater than 0.1 mg | for 5.3% of the time. The greatest mean and maximum
SRP concentrations of 0.029 mg I'* and 0.159 mg I, respectively, were both recorded at Blind
Beck. Low Hall has the second highest mean concentration followed by the Eden at Appleby
and Helm Beck. All of these catchments are predominantly in the lowlands. Data shows that
the pattern of annual P accumulation is similar to the SS. This suggests that either P moves in
association with SS or flow, or both, and that times of greatest export are mainly in winter

months.

Haygarth et al. (2012) report a TP loss of 60 kg km™ yr'from a22 ha freely draining, mixed
grassland catchment but a loss of 600 kg km™ yr'' from 48 ha slowly permeable catchment with
a mixture of grassland and arable management, both in the Southwest of England. Jarvie et al.
(2003) report a TP loss range of 2 - 90 kg km™ yr™ for unimproved and improved grasslands,
and Wood et al. (2005) measured a mean TP loss of 120 kg km™ yr™* for the 1242 km?
predominantly slowly permeable, mixed agriculture Taw catchment. The overall mean TP yield
of 42.4 kg km™ yr™* for the upper Eden catchment calculated in this study is at the lower end of
this range. McGuckin et al. (1999) report SRP yields of 40-85 kg km™ yr* (improved grassland)
and 12-40 kg km™ yr'* (unimproved grassland), thus the overall mean SRP yield of 14.5 kg km™

yr’* for the upper Eden catchment also falls at the lower end of the range.

Table 4.24: UK annual average concentrations of nitrate and orthophosphate (SRP) by landscape type 1980 to 2011
(from data.gov.uk: http://www.defra.gov.uk/statistics/environment/inland-water/).

Land type Mean concentration (mg I'l)

SRP NO;
Lowland arable 0.434 23.58
Lowland pastoral 0.298 15.44
Uplands 0.053 5.68

4.4.2.3 Nitrate

Mean NOj; concentrations in the upper Eden ranged from 0.67 (Gais Gill) to 14.13 mg I"* (Low
Hall) with the range of maximum concentrations varying from 3.55 (Upper Eden) and 4.81
(Gais Gill) to 24.5 mg I (Low Hall). Compared with the long-term average data from the UK
(Table 4.24), concentrations in the Eden are relatively low, with the exception of the Low Hall
and the Blind Beck catchments, which are in a similar range to the value for lowland pastoral.
Nitrate loads for the upper Eden catchment ranged from 251 — 2447 kg km™ yr™ for the upper
Eden and Low Hall, respectively. Blind Beck had relatively high yields compared with the other
sub-catchments (based on 2011 data); 1866 kg km™ yr* compared with around 600 — 700 kg
km™ yr, with the exception of Helm Beck that had a yield of 1296 kg km? yr'’. The high vyield
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from Low Hall explains why Blind Beck has a yield greater than the other non-nested sub-
catchment. Analysis of major and minor ions and trace elements in the Low Hall and Blind Beck
sub-catchments by Ockenden (2010) showed that concentrations of most ions were higher by
7-26% in the former, but that NO; was approximately twice as high. It was hypothesised that
the Low Hall stream has an input of water from the sandstone aquifer in the bottom of the
Eden Valley, which is reported to have a rising NO; concentration (Butcher et al., 2006).
Although NO; export is clearly driven by discharge events, when compared with annual
accumulation of SS and P, the accumulation is ‘smoother’ with less distinct responses to high
flow events. This is due to the weak correlation between discharge and NO; concentration.
Despite NO; concentrations not significantly increasing as a result of high flow (or in some
instances decreasing), the load increases simply due to the greater volume of water, probably

tied to the leachate and/or deeper runoff pathways (e.g., Tesoriero et al. (2009)).

In order to contextualise the NOj; yields they have been converted to TN, as this is how the
majority of studies report N exports. Total N yield values from the literature ranged from 200 -
8000 kg km™ yr'* with means ranging between 500 and 1650 kg km™ yr™, although these values
are all from the USA and are for improved pasture, arable and mixed agriculture. Kyllmar et al.
(2006) reported TN yields ranging between 200 and 4100 kg km™ yr from a study in Sweden
covering a wide extent of catchment scales and land uses. These values largely agree with

those found in this study.

4.4.3 Spatial and temporal variability

Sediment and nutrient data collected in this study exhibit high spatial variability in both
concentrations and yields. However, the data show that no relationship exists between SS, P
and NO; yield and catchment area. Strong positive correlations between percentage improved
agriculture and yield in 2011 suggest that land use has a stronger influence over yield in wetter
conditions and this compliments the findings from the yield—catchment area correlation
analysis. Conversely, in relatively dry years the lack of rainfall/runoff may mean that sediment
and nutrients are not being transferred to the river system as they would in a wet year,
assuming that the agricultural activity (pollutant source) was the same. It could be argued that
the larger River Eden catchments have a heterogeneous mixture of land uses therefore any
obvious trend is lost (above a certain spatial scale). The Low Hall catchment also opposes the
general trend as despite consisting of 100% improved agricultural land it only exhibits a high

NO; yield, while the other determinands are relatively low.

The greater variability in exports is associated with the non-nested sub-catchments. Blind Beck

has a relatively high yield for all determinands. The two smallest sub-catchments, Gais Gill and
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Low Hall, both have correspondingly low yields of SS and P; however, Low Hall has the highest
NO; yield of all the study sites. This indicates that the greater heterogeneity of landscape
characteristics in larger catchments has a buffering or ‘averaging’ effect on the yields. Smaller
catchments are likely to be more homogeneous, therefore have greater potential to produce
extreme values of sediment/nutrient yield. Larger catchments have larger annual loads but
tend to exhibit lower specific yields compared with small catchments. This is attributed to the
increasing input of ‘clean’ water from low intensity agriculture headwater sub-catchments

and/or increasing deposition of sediment and assimilation of nutrients in the lowlands.

4.4.3.1 Dilution

The majority of sub-catchments in the upper Eden have a significant upland zone meaning that
they are more likely to exhibit lower sediment and nutrient concentrations/loads due to the
dilution effect of the clean water originating from these parts. If this source of ‘clean’ water is
absent then the dilution effect is reduced, resulting in higher pollutant yields. Does this mean
that the main Eden gets polluted downstream, or are the problems contained within specific
sub-catchments, such as Blind Beck? The data collected in this study suggest that the upper
Eden catchment has a potential chronic pollution problem but is mitigated by the runoff
originating from the uplands. However, this system is vulnerable to low rainfall as it would

equate in reduced dilution.

Wood et al. (2005) report a similar effect on P in the Taw catchment, UK, where it was
concluded that although dilution meant that P impacts on aquatic ecology were not of
immediate importance, in neighbouring catchments where there was no dilution from upland
headwaters, algal blooms resulting from eutrophication had been observed. In the upper Eden,
Mannix (2005) suggests that groundwater NO;z; concentrations in the lowland portion of the
catchment were significant to the point that they could cause eutrophication in the main river
under low flow conditions. This idea was supported in summer 2005 when significant algal
growth occurred in the River Eden following a prolonged dry spell (Plate 4.1) and gives insight
into what may happen if dryer/warmer summers become more common as a result of climate
change, and/or the quality of water from the uplands is compromised, perhaps due to

agricultural intensification.
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Plate 4.1: The River Eden at Gt. Musgrave with significant algal growth (date: 22/07/2005 - source: Mannix, 2005).

4.4.3.2 Seasonal trends

Seasonal trends are exhibited by SS and P concentration with a less obvious pattern observed
for NOs. Higher SS concentrations generally occur during the autumn as erosion rates increase
due to increased precipitation and also because of first flushing of any material deposited in-
steam during summer low flows. There is also evidence of sediment exhaustion in contiguous
storms (this is discussed in more detail for Blind Beck in the subsequent chapter). A similar
pattern is observed for TP, probably due to its propensity to move in association with fine-
sediment, and also SRP. This is perhaps more unusual for SRP as higher discharges (most often
in the winter) can lead to a reduction in concentration due to the dilution, especially if the
origin of SRP is a point source (e.g., a sewage outflow, farm slurry store). However, considering
that the majority of the upper Eden catchment has relatively low urbanisation and low

intensity agricultural activity, there are relatively few potential point sources.

In many agricultural catchments, concentrations are often greatest in early winter, reflecting
the first flushes of water from farm land, but this is not evident in the upper Eden (there is a
slight increase in winter and early spring but the range is only between 2 and 5 mg NO; I™).
Nitrate concentration exhibits little seasonal variation, as its movement is associated with
more continuous base flow. Also sharp rises in NO; concentrations are sometimes seen in
spring reflecting applications of fertiliser but this effect is not immediately clear in this instance

either, possibly due to low nutrient loading in the catchment.
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4.4.4 Sources of uncertainty

Catchments that were ungauged or suffered data loss due to equipment loss/failure had
discharge records derived from a surrogate catchment. This is assumed to provide an
acceptable estimate of the discharge volume but doesn’t necessarily take account of spatio-

temporal variation due to inconsistency in rainfall distribution across the entire catchment.

The limitations of using a grab sample campaign to estimate sediment/nutrient annual exports
has been discussed earlier in this chapter but perhaps the main source of error is from the
sediment/nutrient rating curves. Errors are likely to be greater where the curve is based on
fewer samples and where the curve is extrapolated to predict concentrations for high
discharges. Due to relatively low numbers of samples collected at high discharges it is highly
likely that the loads/yields presented in this chapter underestimate the true values. The use of
rating curves also hides any hysteretic effects; limb analysis demonstrated that concentrations
of SS were generally higher on the rising limb and NO; was higher on the falling limb, but no

significant effect was identified. No clear pattern was observed for TP or SRP.

Despite these methodological limitations, the difference within the results has significance
beyond this, and the data are sufficient to characterise the sediment and nutrient regime of
the upper Eden catchment in order to identify ailing sub-catchments. Relationships between
DWPA flux and land use, and the reliance on storm events for contaminant transfer, have also
been determined. Automatic water samples are utilised in Chapter 5 (alongside grab samples)
to allow the collection of water samples during high-flow events; the effect of this on the

calculation of annual determinand exports and on hysteresis will be investigated.

4.4.5 Export coefficients

The basic export coefficient model shows potential for predicting sediment and nutrient loads
even in catchments with mixed land uses, especially when taking into account its simplicity.
The selection of export coefficients for each land cover/use is crucial to the performance of the
model but generally it predicted SS, TP and TN exports that lie between measured 2010 and
2011 values, which is acceptable as these years are dryer and wetter than average,
respectively. The use of the basic model could be considered sufficiently accurate for general
management in the upper Eden catchment as it captures the upland/lowland split (based on
land use) and the dilution effects of scale. The model performs well for the study catchment
outlet at Appleby (the largest catchment area measured), which suggests there is a need for an

areal distribution of land use for a good export estimate.
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When using the extra hydrological component, the model is not very sensitive to hydrological
extremes (i.e., wet and dry months) and the difference between monthly SS and TP loads in
2010 (dry) and 2011 (wet) are much greater for measured values compared with those
predicted using export coefficients. Moreover, the model over-predicts in dry periods and
under-predicts in wet ones — this effect is more prominent in the winter months. Total N
predictions are significantly increased using the extra baseflow component and consistently
over-predict the measured loads as a result. Overall, export coefficient modelling offers a
reasonable method for general farming intensity but lacks local detail; however, this is
inherent of the method. The Eden may be very atypical due to density of dairy cows and slurry
(on heavy soils), and some pristine, non-agricultural land in a complex mix. The Low Hall sub-
catchment, which has 100% improved agricultural land, exhibits very low SS and TP yields but
the highest TN export and could be considered a local phenomenon in the Eden. The Low Hall

catchment is considered in more detail in the following chapter.

In a practical application where the model was used to predict sediment/nutrient losses from a
25 km? area of lowland (with relatively high livestock density) between Kirkby Stephen and Gt.
Musgrave, predicted SS and TP exports were low while TN was slightly high, compared with
the actual discrepancy derived from the measured data. It is hypothecated that at low flows
there is little net supply or deposition along the reach but during higher transport events the
middle reaches were contributing a proportionally higher SS and P load, with possible sources
being ditches and minor streams, bank erosion and the channel bed. Thence, in a risk-based
system precipitation, runoff and land use is a good start but representation of what happens
within a storm event is vital to accurately predict losses. There is a need for the export
coefficient model to include a flow pathway component, with both baseflow and storm events

represented.

4.5 Summary

The principle aim of this chapter was to gain understanding of the spatio-temporal patterns of
sediment and nutrient flux as a means of focusing future mitigation efforts in the upper Eden
catchment. The process of quantifying SS, P and NO; yields of sub-catchments of varying
spatial area has been described, including the calculations used to estimate yields. Final
estimates are shown and potential sources of error acknowledged, as accurate quantification

is highly dependent on the quality of the sampling regime.

Calculated sediment and nutrient yields are likely to be underestimated due to lack of water

samples collected during high-discharge events. A small degree of scatter exhibited in the
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determinand concentration-discharge rating curves is attributed to seasonal and limb effects
but the remaining unaccounted for scatter serves to demonstrate the complexity of the
sediment/nutrient supply and delivery process operating in the catchment. All determinand
yields did not show a clear trend with catchment area suggesting that the influence of other
variables is more important. A number of relationships between sediment/nutrient yield and
rainfall amount, and land use were found, but are all subject to localised noise. Thus, the
general methodology is deemed sufficient to broadly characterise the upper Eden catchment

but has important limitations considering its intended purpose.

Comparison of calculated annual yields with published sediment/nutrient export coefficients
showed good general agreement, whereby the model was capable of representing different
agricultural land uses with sufficient accuracy. However, the export coefficient model was less
reliable on a monthly basis where extremes in rainfall, both wet and dry, occurred -

particularly during the winter.

The data collected in this chapter demonstrate how many local factors in space and time
dominate the actual export rates. Firstly, there is a need to target intense agricultural sub-
catchments, such as Blind Beck. However, it has identified the need for a more fundamental
insight into the cause of sediment/nutrient loss in order to target mitigation efforts. The
measurement of wet and dry years indicated that a better representation of the influence of
storm hydrology is required, including the number of storms, their size and timing, the
operation of different flow pathways, and antecedent conditions. This necessity forms the
basis of the subsequent chapter, which will focus on the Blind Beck sub-catchment and employ

a spatial-intensive sampling regime and storm event monitoring.
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5. Blind Beck sub-catchment study

5.1 Introduction

Results presented in Chapter 4 demonstrate that Blind Beck has consistently higher nutrient
and sediment concentrations per unit runoff as well as higher total yields per unit area than
any other monitored sub-catchment in the upper Eden. However, the results did not help
determine where or indeed what the pollutant source-pathways are within the catchment.
This knowledge is crucial in ensuring that efforts to mitigate sediment and nutrient pollution

are administered effectively.

Since eutrophication (chiefly P) and excessive fine sediment are the main pollution pressures
affecting water quality in the Upper Eden, Blind Beck was selected for 1) a detailed evaluation
of nutrient and sediment regimes and 2) as a case study catchment within which to carry out
mitigation experiments. The former comprises the increase of grab sampling locations along
the river system (as opposed to just the catchment outlet) and also the use of automatic water
samplers to collect samples during storm events. These data will allow the identification of
pollutant source areas within the catchment, as well as the examination of sediment and
nutrient behaviour during storm events and the importance of high-flows in the determination

of annual fluxes.

While it is prescribed under the WFD that rivers are best managed (in terms of water quality,
flooding, etc.) at the catchment scale, it can be argued that the farm is the most logical unit for
the administration of actions to tackle DWPA. One reason is that the landowner could
potentially be held responsible for the quality of water leaving their farmed areas, if an issue is
identified. Previous studies (Gravier, 2004; Barber, 2008; Mills, 2009) have highlighted one
particular farm in the Blind Beck catchment - Sykeside Farm (located at the downstream end of
the catchment) as being not only a potential source of sediment/nutrients, but also a suitable
location to deploy a suite of RAFs in an attempt to mitigate DWPA for the entire 9 km?’

catchment.

A well-established working relationship with the farmer at Sykeside Farm existed from
previous work in the area (the CHASM project). The farmer granted permission for the
construction of a number of RAFs on the grounds that they could be integrated into a HLS
funding scheme. The RAFs were to deliver water quality benefits as well as flood mitigation
and ecological gains. However, following the part-completion of a wetland RAF all future HLS
funding in England was temporarily withheld by Natural England (in 2010) and the full

mitigation plan could not be executed.
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As a result, the decision was made to transfer the mitigation trials to other existing
instrumented study catchments in northeast England. The results of these experiments are

presented in Chapters 6 and 7.

In the absence of experimental testing of mitigation features, the objectives of this chapter are

threefold:

1. Investigate temporal patterns and source-pathways of sediment and nutrients using a
spatially high-resolution grab sampling campaign.

2. Examine the influence of different water quality monitoring regimes (i.e., event
sampling vs. non-event sampling) on the estimation of annual sediment/nutrient loads.

3. Evaluate the success of a single, large-scale installed mitigation feature.

5.2 Methodology

5.2.1 The study area

Although described with the rest of the upper Eden catchment (see Chapter 3), the Blind Beck
catchment will be considered here in more detail. The location of Blind Beck in relation to the
wider study catchment is depicted in Figure 5.1. Blind Beck rises on a limestone pavement
situated on the fells to the southwest of Crosby Garrett (population circa 120); catchment
elevation ranges between 142-376 m AOD (Figure 5.2). The catchment is situated
predominantly in the lowlands with only a small proportion accounted for by the fells (uplands)
to the southwest. The Beck flows for approximately 8 km in a north-easterly direction and joins
the River Eden at Little Musgrave (OS grid reference: NY375513), just downstream of the EA
river gauging station at Great Musgrave. The Beck falls approximately 140 m in the first

kilometre but then just 90 m between Crosby Garrett and the confluence with the River Eden.

The Beck has two main tributaries: Wygill Beck (C.A. 1.1 km?), which joins from the west
approximately mid-way along its length; and Low Hall stream (C.A. 1.25 km?), which drains part
of the lowlands to the north of the catchment and enters the main Beck just before the outlet
monitoring site. Blind Beck has a catchment area of 9 km” with approximately 7 km? lying
upstream of Sykeside Farm. A railway embankment bisects the southwest third of the

catchment (see Figure 5.1).

143



iy B,
LEA)

[ :] Blind Beck catchment '
- ——— Blind Beck -
. -'li;x" E Sykeside Farm ey L
] wygill Beck

4

Fell

Figure 5.1: Blind Beck catchment map, also showing the extent of Sykeside Farm (source: Ordinance Survey).

5.2.1.1 Geology and soils

Solid geology consists of Carboniferous Limestone in the headwaters and Permian Penrith
Sandstone further downstream (see Appendix F for geology and drift geology maps). The Vale
of Eden was the location of a major ice flow in the late Devension (Mitchell and Clark, 1994);
there is a significant thickness (10-20 m) of quaternary drift along the valley floor, with
hummocky moraines and drumlins forming a mix of diamicts, clays, sands and gravels (Younger

and Milne, 1997).
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Soils are described below following the path of the river (from upstream to downstream) and
are depicted in Figure 5.3. Crwbin Association soils, shallow and well drained, overlay the
limestone pavement. The Beck then flows over loamy and fine silty soils formed over
sandstone of the Eardiston 1 Association in the area around Crosby Garrett; this is followed by
an area of Wick 1 Association soils: deep, well drained coarse loamy and sandy soils formed in

coarse textured glacio-fluvial drift (Jarvis et al., 1984).

After about 3 km the river begins to flow around the southern perimeter of a drumlin, which
divides the soil type on each side of the river. To the west, overlying the flanks of the drumlin
is the Clifton Association — a seasonally waterlogged soil developed in slowly permeable fine
loamy till and thin overlying glaciofluvial deposits. To the east of the present channel Wharfe
Association - mainly deep, well-drained, fine loamy alluvial soils are recorded on the level
floodplain. The sub-catchment of the Wygill Beck tributary which joins from the north consists
mainly of Brickfield 3 Association: slowly permeable seasonally waterlogged fine loamy over

clayey soils formed in glacial till, and Clifton Association soils (Jarvis et al., 1984).

Elevation
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Figure 5.2: Blind Beck catchment DEM.
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5.2.1.2 Land cover/use

Figure 5.4 shows land cover of the catchment, based on the CEH LCM2000, and summarised in
Table 5.1. However, catchment walkovers revealed some inconsistency in the LCM2000 map,
particularly the amount of tilled land (which is over-estimated), especially around Wygill Beck.

An updated detailed land use map was created based on real time observations (Figure 5.5).

Tilled land includes any field parcel that was ploughed during the study period.

Soil Type

Figure 5.3: Blind Beck catchment Soil Association
map.
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Figure 5.4: Blind Beck catchment land use map (derived
from the LCM2000; CEH, 2011).

Table 5.1: Blind Beck catchment land use percentage.

Land use class

Perce ntage cover

Unclassified 0.3
Urban and rural development, woodland 1.2
Unimproved pasture 11.2
Improved pasture 80.8
Tilled land 6.6

The upland area upstream of Crosby Garrett is moorland and is used for extensive sheep

grazing. Crosby Garrett is the only settlement. There are nine farms located in the catchment:

e Two small holdings in Crosby Garrett, both sheep and beef cattle farms.

e Soulby Grange Farm, a dairy and sheep operation (located near sample site 3).
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e Stockbar Farm (at the top of the Wygill Beck catchment), a small beef cattle farm.

e Bonnygate Farm (near the village of Soulby), a sheep and beef cattle farm.

e Low Hall Farm (in the Low Hall catchment), an intensive dairy operation.

e Sykeside Farm, a relatively small sheep and beef cattle farm.

e Wood House Farm and View Farm (both located in Little Musgrave - downstream of
the Blind Beck monitoring site but have some sheep grazing some of the fields

upstream of the outlet).

As a general rule the stocking density in the catchment increases further downstream. So to
does the number of fields used for silage/hay production and areas that are periodically
ploughed/reseeded. Soulby Grange and Low Hall are the most significant farms in terms of
animal numbers as they are both dairy operations. Sheep and beef cattle density is also
relatively high around Sykeside Farm as Bonnygate use this land for grazing. Blind Beck is not

fenced and animals have free access to the river along its length.

—— Blind Beck

|:] Sykeside Farm

. Water quality sampling site

- Farmyard
Improved grassland

- Moorland
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- Settlement
B Tited
/3}7// Wetland

- Woodland

Figure 5.5: Blind Beck custom land use map from catchment walkovers. Refer to Table 5.2 for sampling location key.
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Table 5.2: Blind Beck sampling location names and description.

No. on map Name Catchment Stream
(Figure ) area (kmz) length (km)
1 BB - Crosby Garrett 1.08 0.8
2 BB - Blind Bridge 4.46 3.14
3 Wygill Beck 11 7.85
4 BB - Sykeside Farm in 7.05 493
5 BB - Downstream Sykeside Farm 7.57 5.31
6 BB - Sykeside Farm out 7.78 5.61
7 Wetland out 0.01 0
8 Low Hall stream 1.25 1.05
9 BB - out 9 6.7

5.2.1.3 Sykeside Farm

Sykeside Farm occupies 0.5 km? circa 5.5% of the Blind Beck catchment. The area is
predominantly of low relief apart from Strutforth Hill to the west (Figure 5.6). Land cover is
almost exclusively improved grassland with the exception of a small woodland area and a few
rough grazing fields. One of the rough grazing fields became the site for the wetland RAF (see

below). The principal land use is sheep and beef cattle grazing pasture with a small number of

fields used for silage/hay production.

0 0.1 0.2Kms
I B

DEM (m aod)

High : 180
B

e Low : 150

G Wetland RAF location

Figure 5.6: Sykeside Farm DEM (resolution 5 m) (see Figure 5.5 for location).
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5.2.1.4 Monitoring a modified wetland RAF for DWPA mitigation

Prior to this study, an area of rough grazing land (circa 2 ha) on Sykeside Farm prone to surface
water ponding had been selected by the Proactive group from Newcastle University and the
farmer as the location to construct a wetland (Figure 5.6 for location). The final wetland design
and location were not decided as part of this study but the feature was included in the
monitoring campaign in order to determine its impact on the sediment and nutrient regime of
Blind Beck. Wetlands are widely reported as multifaceted landscape features with numerous
social, economic and environmental benefits associated with them (e.g., Mitsch and Gosselink

(2007)).

The rationale behind the creation of the feature was three-fold; 1) there was a need stated by
the farmer to better control the movement of water across this area of the farm (S Wharton,
pers. comm.); Figure 5.7 depicts a number of issues, which include flooding of a gateway and a
neighbouring farm’s fields. It was believed that water from Blind Beck itself was conveyed into
the area via a ditch network during high flow events and that the wetland would provide
temporary water storage. 2) by temporarily storing a portion of the (high) flow from the main
river the wetland would reduce concentrations of sediment and nutrients through
sedimentation and other natural attenuation processes (please refer to Chapter 2.9.2), and 3)
the feature would provide some flood peak temporary storage/attenuation therefore helping
to reduce flood risk. Notwithstanding the potential of the wetland to deliver multiple benefits,
this study is concerned with sediment and nutrient regimes and their management; therefore

the feature is evaluated for water quality purposes only.

A local contractor constructed the wetland using locally sourced earth and rubble. A 1 m high
(at the highest point) bund was built around the field perimeter, to the south and east, to
provide approximately 3000 m> storage capacity. The gateway previously in the southeast
corner of the field was relocated further along the fence line and the operation of the sluice
was improved (see Figure 5.8). A timber dam was keyed into the ground and surrounding bund,
where a v-notch weir was installed. A pressure transducer was located next to the weir to
monitor water stage thus allowing the calculation of continuous (15 minute interval) discharge
(the V-notch weir specification and discharge calculation equation can be found in Appendix
B1). An auto-sampler was also deployed at the outfall to take water samples during high flow
events; results are presented in section 5.3.6. Plate 5.1 shows a photograph of the completed

wetland bund and outlet structure.
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Water by-passing ineffective sluice

* ‘Water from Blind Beck .- - ./

L LT Water flowing
- scrapés and pond - - L \ - intolow Hall
. previously built by farmer. . L

Standing water
- === causing flooding of
neighbouring field
and gateway

Figure 5.7: Schematic of wetland area prior to modification with issues highlighted (not to scale) (see Figure 5.6 for
location).
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Figure 5.8: Schematic of wetland after modification (not to scale).

Out flow structure

o
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Plate 5.1: Wetland RAF after modification with the outflow structure and monitoring equipment visible on the left.
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5.2.2 Hydrometeorological data collection

Figure 5.9 shows the instrumentation on Sykeside Farm, which includes a rain gauge (a second
EA-operated rain gauge is located in Crosby Garrett — see Table 3.6 for locations), stream
gauges, piezometers and two automatic water samplers. Catchment rainfall was calculated
using Thiessen polygons and discharge using stage recorded at 15 minute intervals by a
Thalimedes float and counterweight shaft encoder, and stage-discharge rating curve, as

described in Chapter 3.3.1.

A transect of four shallow water table (<3 m) piezometers were installed at Sykeside Farm (see
Figure 5.9) to monitor the soil water level between the stream and the wetland. Holes were
sunk using a soil auger until solid gravel was reached, then lined with PVC tubing. The tubes
were sealed at the bottom, 5 mm holes drilled in the side to allow water to enter the well, and
the hole surrounding the top of the tube was sealed using bentonite clay. Pressure transducers

were installed in each piezometer to log at 15 minute intervals.

|:] Sykeside Farm

@ Water quality sampling sites
Stream gauge
Rain gauge

Auto sampler

o + > n

Piezometers
0 0.1 0.2Kms
1 ) ] m Wetland

Figure 5.9: Sykeside Farm instrumentation map.
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5.2.3 Sediment and nutrient concentration characterisation

5.2.3.1 Spatially intensive grab sampling

Nine grab sampling locations were selected (including the catchment outlet used in the
previous chapter — previously referred to as Blind Beck, now noted as site number 9). Figure
5.5 shows the location of the sampling sites and Table 5.2 includes site names and additional
information. Site 1 is upstream of the Crosby Garrett hamlet; site 2 is at 4.46 km? — so
represents approximately half of the total catchment area (although a good proportion of this
is on the west of the railway embankment). Site 3 is on Wygill Beck, a 1.1 km? sub-catchment
with relatively steep valley sides to the north. Site 4 is where Blind Beck enters Sykeside farm;
Sykeside Farm house and hard standings are situated alongside the river, between sites 4 and
5, with the nearest farm building less than 10 m away from the channel. Site 6 is where Blind
Beck leaves the Sykeside Farm area before it turns to the north-east and flows alongside the
road towards Little Musgrave. Site 7 is located at the outfall of the modified wetland feature
on Sykeside Farm; this also marks the start of the Low Hall stream. Site 8 is the same as the
‘Low Hall’ site in the previous chapter, which drains the land owned by the Low Hall dairy farm;

and site 9 is the Blind Beck catchment outfall.

Grab samples for sediment/nutrient analysis were collected on the same dates as those in
Chapter 4 (see Appendix G1 for sample dates) using the same methodology outlined in
Chapter 3. The laboratory methods described in Chapter 3.3.4 were used for the

determination of SS, TP, SRP and NO; concentrations.

5.2.3.2 Event sampling

Automatic water samplers were deployed to take hourly samples during high-flows from Blind
Beck and the modified wetland outlet. A float switch installed in the stream/wetland (located
next to pressure transducers to record water stage) activated the sampler program. Upon
initialisation a maximum of 24 x 1 litre samples could be taken as long as the water depth
remained above the chosen stage threshold. The wetland sampler drew water from the outlet
(defined by the V-notch weir) thus enabling the calculation of sediment/nutrient loads (using
corresponding discharge data). The Blind Beck sampler was located at manual sample site 6
and not at the catchment outfall (site 9). This was because site 9 is next to a public road and
the security of the monitoring equipment could not be guaranteed. Discharge for site 6 was
estimated by down-scaling the discharge from site 9, using catchment area, thus allowing the

calculation of pollutant loads.
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5.2.3.3 Comparison between actual and predicted concentrations

Water samples were collected on a daily basis (at 12:00) from Site 6 over a 36 day period
(28/09/2011 — 02/10/2011) using a programmed auto-sampler. Samples were analysed for SS
and TP concentrations. These actual concentration values are then compared with predicted
concentrations calculated using the developed sediment/nutrient — discharge rating curves, in

order to test the accuracy of the method.

5.2.4 Revised annual load/yield estimation

Sediment and nutrient loads and yields for the blind beck catchment are calculated according
to the method outlined in Chapter 4.2.2.3, using the revised rating curves. The revised
loads/yields are then compared with those presented in Chapter 4 to examine the influence of

event sampling on the estimation of determinand export.

5.2.5 Comparison of interpolation and extrapolation methods for calculating loads

The daily actual SS and TP concentration data (see 5.2.3.3 above) are used to compare two
methods of load calculation — extrapolation (i.e., the rating curve method used throughout this

study) and interpolation (please refer to Section 4.2.2.1 for more information).

The standard interpolation methodology used for load estimation where daily data sets are
available (see for example Kronvang and Bruhn (1996), Webb et al. (1997) and Johnes (2007))

uses the following method:

— k Z?=1(CiQi) — Equation 5.1

L
ie1 Qi "

where: L is load, C; is instant concentration, Q; is instant discharge, Q, is mean discharge for

period and K is the conversion factor for the time period.
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5.3 Results

5.3.1 Hydrological characterisation

Flow parameters for Blind Beck are reported in Chapter 4. Figure 5.13 depicts the precipitation
and discharge hydrograph for the two-year study period; red markers indicate days when grab
samples were collected and blue markers indicate when the auto-samplers were operational.
The hydrograph suggests a flashy runoff regime. Ockenden (2010) described how the time
constant at Blind Beck (10.9 hours) was most similar to the River Eden at Temple Sowerby
(catchment area 616 km?). This was attributed to similar geology (38% sandstone and 62%
limestone in Blind Beck, and 28% sandstone and 69% limestone in Temple Sowerby). Eleven
separate high-flow events (A - J) were captured with the Blind Beck auto-sampler, the

precipitation and discharge statistics of which are summarised in Table 5.4.

According to the Flood Estimation Handbook (Institute of Hydrology, 1999) (summary statistics
for Blind beck can be found in Appendix C), the Standard Percentage Runoff derived from
HOST (SPR HOST), defined as the percentage of rainfall that causes a short-term increase in
flow, is 35% for the Blind Beck catchment; the Base Flow Index derived from HOST (BFI HOST),
the long-term average of flow that occurs as base flow, is 0.56; and the Standard Period (1961-
1990) average annual rainfall is 1018 mm. Based on the data collected during this study, the
average runoff percentage for Blind Beck was calculated as 74% and 72% for 2010 and 2011
respectively (compared to 81% and 84% for Kirkby Stephen — reported in Tables 4.5 and 4.6,
section 4.2), and 100% runoff is possible during storm events; for example, storm event
14/01/2011 lasted 41 hours, 42.8 mm of precipitation fell and 43.7 mm of runoff was recorded.
Daily precipitation totals exceeding 10 mm occurred on average 33 days per year (Figure 5.10);

Qsois 0.125 m* s and Qs is 0.7 m® s™ (Figure 5.11).

High discharges occur predominantly in the winter months; especially in 2010 when relatively
little rainfall fell between May and October. This pattern is less apparent in 2011 as a number
of significant storms occurred in the summer; annual cumulative precipitation and runoff plots

depict the difference between the two study years (Figure 5.12).
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Figure 5.11: Blind Beck 15 minute flow duration curve (2010-2011).
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Figure 5.10: Blind Beck daily rainfall exceedance frequency (2010-2011).
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Figure 5.12: Blind Beck cumulative runoff and precipitation (2010-2011).

5.3.1.1 Catchment water balance

Water balances were calculated for both study years according to the method described in
Chapter 4.2 — Equation 4.1. The water balance is acceptable for both years as recorded Q is
within +/- 10% of calculated P-E, but recorded Q in 2011 is relatively low, compared with
calculated P-E (Table 5.3). Some possible error could to be attributed to an underestimation of
discharge resulting from extrapolation of the stage-discharge rating curve; Blind Beck is flow-

gauged at 84% of the maximum recorded stage.

Table 5.3: Blind Beck catchment annual water balances.

Year P (mm) Q (mm) E (mm) P-E (mm)
2010 779 576 184 595
2011 1429 1035 280 1149
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Figure 5.13: Blind Beck daily discharge and precipitation record 2010-2011. Markers indicate water quality sampling dates.
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5.3.1.2 Soil water level and wetland discharge

Soil water level and discharge from the modified wetland is depicted in Figure 5.14. Significant
wetland discharge is restricted to winter months only. Soil water levels remain low until
November 2010, when they suddenly increase and the wetland produces a small amount of
discharge (04/11/2010). Heavy precipitation on 15-16/01/2011 and 04-05/02/2011 causes soil
water levels at site 3 and 4 to reach the ground surface, which coincide with discharges in the
wetland of over 80 | s*. The wetland ceases to flow after April and apart from a small number
of low discharges in response to heavy summer storms, does not flow again until a period of
heavy precipitation at the beginning of October. The wetland discharges into the Low Hall

stream.
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Figure 5.14: Soil water level and wetland response to precipitation at Sykeside Farm, Blind Beck 2010-2011
(see Figure 5.9 for instrument locations — 1, 2, 3 and 4).

158



5.3.2 Sediment and nutrient concentration characterisation

5.3.2.1 Variability along the river network

The following section presents SS, TP, SRP and NO; concentration data from grab samples
collected along the Blind Beck river network (Figure 5.15 - logarithmic scales are used for plots
a and b to account for the large variation between minimum and maximum SS and TP
concentrations, respectively). Mean SS concentration generally increases along Blind Beck
reaching a maximum at site 5 (downstream of Sykeside Farm — 42.5 mg I'*) and then decreases
to 29.2 mg I at the catchment outlet. The maximum-recorded SS concentration of 342.5 mg I™*
was recorded at Site 6 — as Blind Beck leaves Sykeside Farm. The lowest SS concentrations are

found at Site 1 (6.1 mg1™), closely followed by Low Hall and Wygill Beck.

Total P and SRP both have elevated mean concentrations at Site 1, which then attenuate
slightly downstream until reaching Site 6 where mean concentrations peak (TP = 0.117 mg I,
SRP = 0.038 mg I'). Wygill Beck and Low Hall stream have the lowest mean P concentrations.
Mean NOj; concentrations increase between Sites 1 and 6 (2.66 and 4.81 mg I, respectively).
Low Hall has the highest mean concentration of 14.1 mg I* (and the highest recorded
maximum concentration of 24.5 mg |). Blind Beck outfall mean NO; concentration is

significantly greater (t = -1055; p < 0.001) than that at Site 6.

Grab sample data tables including date, contaminant concentration and discharge can be

found in Appendix G1.
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Figure 5.15: Concentrations of a) SS, b) TP, ¢) SRP and d) NOj3 along the Blind Beck river network
(see Table 5.2 for sample site explanation).
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5.3.2.2 Storm eventdata

Data are selected to illustrate sediment/nutrient losses in relation to events of different
magnitude and temporal occurrence (event data not reported graphically in the following
section can be found in Appendix G2). Samples were collected across the whole discharge
range (Figure 5.13) meaning that concentrations and derived loads (see section 5.3.4) are a
good representation of the full range of hydrological conditions. Table 5.4 contains discharge
and precipitation summary data for all eleven sampled events (raw data can be found in
Appendix G3). The maximum-recorded discharge during the monitoring period was 3.52 m®s™*
and the maximum discharge at which a sample was taken was 3.25 m?® s™, which equates to

92.3% of the maximum recorded.

Table 5.4: Blind Beck precipitation, discharge and sampling event summary 2010-2011.

Duration Total Peak hourly Peak Peak

Date Event sampled precipitation precipitation  discharge runoff
(hrs) (mm) (mm) (m3 s'l) (mm hr'l)

20/07/2010 A* 10 20 2.8 0.704 0.241
01/10/2010 B 12 10.2 2.4 0.418 0.142
06/10/2010 C 13 23.8 9.2 0.499 0.169
11/11/2010 D* 24 24.6 3.6 2.736 0.944
10/12/2010 E 14 14 4.2 0.92 0.314
14/01/2011 F* 20 42.4 2.4 3.245 1.115
09/03/2011 G* 21 9.4 2.8 1.715 0.616
04/04/2011 H 12 9.4 3.4 2.861 0.985
23/05/2011 I* 10 12 3.8 0.791 0.260
22/06/2011 J 19 17.4 10.4 3.171 1.099
24/11/2011 K 18 13.2 3.4 2.399 0.832

*Event analysed in text.

Event A took place in July 2010 following a prolonged dry period. It is a relatively short
duration, low magnitude event that exhibits a significant hydrograph lag behind peak
precipitation intensity (Figure 5.16). Samples were collected for 10 hours on both the rising
and falling limb but only examined for SS and TP concentrations due to a time delay between
collection and laboratory analysis. Suspended sediment and TP concentrations peak at 375 and
0.53 mg I}, respectively. Peak TP concentration corresponds with peak discharge but peak SS is

one hour previous; falling limb measurements correlate well with the hydrograph.
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Figure 5.16: Discharge, SS and TP concentration record — Event A.

Event D (Figure 5.17) occurred in November 2010, it is a relatively high magnitude, multi-
peaked event that followed two similar sized contiguous storms. Twenty-four samples were
taken in total. Suspended sediment concentration peaked (at 546 mg |™") after four hours, one
hour after the first discharge peak and circa one hour following peak intensity rainfall. Total P
(the total height of the stacked columns) reaches 1 mg I"* after seven hours, three hours later
than the SS peak concentration. Particulate P accounts for circa 80% of the peak TP
concentration and SRP makes up the majority of the soluble fraction. Soluble P (SRP plus SUP)
peaks in the ninth sample hour. Both SS and P concentrations generally decline despite the
second and third discharge peaks, which elicit a far more limited response. The second and
third peaks in discharge occur in response to lower intensity rainfall (higher catchment runoff
coefficient). Nitrate concentrations demonstrate very little variation over the 24-hour period,

rising from 4.3 to 5.1 mg I"* (peaks at 15 hours) before declining slightly.
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Figure 5.17: Discharge, SS and P and NO; concentration record — Event D.

Event F (Figure 5.18), which took place in January 2011, is a high-magnitude (second-highest
discharge recorded during the study period) event in response to relatively low intensity, high
magnitude precipitation (42.4 mm in 20 hours), where peak discharge is maintained for circa
nine hours. Runoff greater than 1 mm hr™ was recorded at the peak, which is relatively rare in
the catchment. Peak SS (387 mg I™) and TP (0.63 mg I') concentrations occur 2-3 hours before

peak discharge. Circa 80% of peak TP concentration consists of PP, while soluble P (80%

163



reactive) peaks at seven hours and accounts for 62% of TP. Similarly to Event D, NO;

demonstrates very little overall variation throughout the storm but in this instance does show

a slight decrease (negatively correlated with discharge) reaching a minimum concentration

(3.75 mg I'") at seven hours, and then increases to a maximum of 5.27 mg | at 14 hours.
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Figure 5.18: Discharge, SS and P and NO; concentration record — Event F.
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Event | (Figure 5.19) occurred in May 2011. It is a relatively intense, short duration summer
event following a month of very little rainfall. There is significant hydrograph lag behind high

peak intensity rainfall.
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Figure 5.19: Discharge, SS and P and NO; concentration record — Event |.
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Although discharges less than 1 m*s™ were recorded, this event exhibits the highest recorded
SS concentration (881 mg I™), which coincides with peak discharge, and relatively high TP.
Particulate P accounts for circa 88% of TP. Both SS and TP (and PP) decrease with strong
correlation with the falling limb. Nitrate exhibits a similar pattern to previous events whereby
concentration decreases on the rising limb before increasing again on the recession. Maximum

NOj; concentration (6.1 mg I™) is recorded three hours after peak discharge.

5.3.2.3 Hysteretic behaviour

Hysteretic behaviour of sediment/nutrient concentrations in Blind Beck is described using
Event G as an example; a medium magnitude event recorded in March 2011 (Figure 5.20). For
SS and TP concentrations, hysteresis loops were predominantly clockwise (for 9 out of 11 and
8 out of 11 recorded events, respectively). A low magnitude event that was mostly sampled on
the falling limb exhibited anticlockwise loops, and a multi-peaked event resulted in no clearly
defined loop direction for both determinands. Another anticlockwise loop was recorded for TP
and was the result of increasing SRP concentrations during the latter part of the monitored
event. SRP concentrations exhibited anticlockwise loops on 4 out of 7 occasions, while the
other three demonstrated no clear patterns. NO; concentrations showed no pattern during 3
out of 5 events and anticlockwise loops during the other two. Hysteresis plots for all

determinands from all recorded events can be found in Appendix G4.
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Figure 5.20: Hysteresis at Blind Beck a) SS, b) TP, ¢) SRP, and d) NO; — Event G.
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Predominance of clockwise hysteresis of SS and TP concentrations during storm events in Blind
Beck means that concentrations peak before peak discharge. Conversely, anticlockwise
hysteresis of SRP and NO; concentrations indicates that there is a lag of peak concentration

behind peak discharge.

5.3.2.4 Correlation between water quality determinands

Figure 5.21 depicts the correlation between SS and TP concentrations recorded at the Blind
Beck outlet; a strong positive relationship exists with a Pearson’s R-value of 0.817. Table 5.5
contains Pearson’s correlation coefficients for all the measured water quality constituents; all

correlations are significant (p<0.001).
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Figure 5.21: Correlation between SS and TP concentrations in Blind Beck.

Table 5.5: Pearson’s correlation coefficients to describe relationship between water quality determinand
concentrations.

TP SRP PP NO;
SS 0.817 0.286 0.912 -0.462
TP - 0.532 0.974 -0.471
SRP - - 0.417 -0.379
PP - - - -0.430

5.3.3 Revised sediment/nutrient rating curves

Concentration data collected by the Blind Beck auto-sampler were combined with grab sample
data (from the catchment outlet) to produce revised sediment/nutrient-discharge rating

curves for Blind Beck (Figure 5.22). All correlations are significant (p < 0.001 - Table 5.6).
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Considerable scatter is shown, particularly for SS and TP and especially at higher discharges.
This may be partly attributed to the hysteresis effect, which is discussed in section 5.5. Rating

coefficients can be found in Appendix G5.
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Figure 5.22: Relationship between a) SS; b) TP; ¢) SRP; d) NO; and discharge for the River Eden at Blind Beck.

Table 5.6: Pearson correlation coefficients and P-values for correlations between sediment/nutrient concentrations
and discharge at Blind Beck.

Constituent Pearson's R P-value
Ss 0.258 <0.001
TP 0.472 <0.001
SRP 0.411 <0.001
NO; -0.628 <0.001

The effect of using event-collected samples, as well as grab samples, is to increase the mean
and maximum concentrations of SS, TP and SRP for the same location over the sample period,
compared with using just grab samples (Table 5.7 and Table 5.8 contain constituent

concentration data for both grab and event samples, and just grab samples, respectively).
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Mean NOs; is decreased by 21%. Mean SS concentration is increased by over 300%, mean TP by
260% and SRP by 167%. A greater standard deviation is also associated with the event-sampled

data, but not for NO;.

Table 5.7: Blind Beck determinand concentrations (grab and event samples).

Constituent n Concentration (mg 1) o
min max  mean median

SS 218 2.5 686.4 118.4 65.7 140.8

TP 218 0.021 1.46 0.36 0.27 0.30

SRP 145 0.006 0.28 0.08 0.07 0.06

NO; 139 3.0 18.8 7.1 6.9 3.0

Table 5.8: Blind Beck determinand concentrations (grab samples).

Constituent n Concentration (mg I'l) c
min max mean median

SS 49 2.5 276.5 29.2 6.2 58.4

TP 49 0.02 0.72 0.10 0.05 0.14

SRP 49 0.006 0.16 0.03 0.02 0.02

NO; 38 1.1 18.8 9.6 9.4 3.8

5.3.3.1 Comparison between actual and predicted concentrations

Daily SS and TP concentrations (recorded at 12:00) are presented alongside corresponding

concentrations predicted using the sediment/nutrient rating curves (Figure 5.23).

Figure 5.23 a shows a strong agreement between actual and predicted SS concentrations
during residual flow conditions. There is one small rainfall event that occurs on the 02-
04/10/2011, which causes a slight increase in actual SS concentration, but as this doesn’t elicit
a response in discharge there is also no response in predicted SS concentration. During storm
events where discharge peaks occur there is a trend for the predicted SS concentrations to be
greater than the actual ones, varying between circa 10 and 25 mg "%, but on the whole the
representativeness of the predicted values is good. However, the discharge peak on
17/10/2011 has no corresponding peak in SS concentration as it occurred overnight (sampling

time was 12:00 pm), which highlights the major issue with samples collected on a daily basis.
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Figure 5.23: comparison of instantaneous a) SS and b) TP concentrations from daily collected samples and rating
curve predictions.

Figure 5.23 b indicates that actual TP concentrations during residual flow conditions exhibit
more fluctuation compared with SS concentrations. The same concentration increase due to
the rainfall event near the start of the monitoring period is seen as it was for SS. Predicted TP
concentrations during the series of storm events are also high in comparison with the actual
values, in one instance over 100% greater but there are also occasions where the actual TP

concentration is greater than the predicted one.

Over the 36 day period the sum of predicted SS concentrations is 12% greater than the sum of
the actual concentrations, and predicted TP is 16.5% greater. Generally there are strong
positive correlations between the two for both SS and TP (Figure 5.24) although this may be, in

part, due to the single ‘high’ concentration recorded on 12/10/2011.
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Figure 5.24: Correlation between predicted (using rating curves) and actual concentrations of a) SS and b) TP.

5.3.4 Revised load/yield estimation

5.3.4.1 Calculation of annual yields

Annual yields of SS, TP, SRP and NO; are presented in Table 5.9. Figure 5.13 indicates that
sampling took place over the full range of discharges during the study period and can therefore
be assumed to be representative. For comparison, Table 5.10 contains loads and yields

calculated for Blind Beck based on grab samples only (as presented in Chapter 4).

Table 5.9: Blind Beck sediment/nutrient loads and yields (event + grab samples).

Constituent Load (yr™) Yield (km™ yr?)

2010 2011 2010 2011
SS (t) 170 631 18.9 70.1
TP (kg) 746 2345 82.9 260.6
SRP (kg) 207 555 23 61.6
NO3 (t) 495 72.2 5.50 8.00

Table 5.10: Blind Beck sediment/nutrient loads and yields (grab samples only).

Constituent Load (yr'l) Yield (km'2 yr'l)

2010 2011 2010 2011
SS (t) 79 318 8.73 35.35
TP (kg) 345 1076 38.3 119.5
SRP (kg) 120 280 13.4 31.2
NO3 (t) 50.9 74.3 5.65 8.26
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Based on the revised rating curves SS yield in 2011 (70.1 t km? yr) is very close to that
proposed by Mills (2009) as a long-term estimate for the catchment (73 t km? yr'); although
the 2010 value is considerably lower. However, the effect of the event + grab sampling
method on SS load/yield is greater in 2010 (116% increase) than 2011 (98% increase),
compared to grab sample only. The addition of event sampling increases TP yields by 116%
and 118%, and SRP yields by 72% and 97% in 2010 and 2011, respectively. There is no

discernible difference for NO;.

5.3.4.2 Load exceedance

High, residual (medium) and low (base) flow threshold values were defined for Blind Beck by
analysis of the discharge hydrograph (Figure 5.13) and FDC (Figure 5.11). Daily base flow was
calculated using the IH method (Gustard et al., 1992) and an average value of 0.1 m> s was
taken; which is the flow range less than the discharge that is exceeded 70% of the time and
accounts for 11% of the total annual discharge (Table 5.11). The high flow threshold was taken
as the average value of troughs that lay between the largest contiguous discharge peaks; this
value of 0.4 m? s* defines the flow range greater than the discharge that is exceeded 10% of
the time, and accounted for 40% of the total discharge. By this definition 25 high flow events
occurred during the two-year study period: 7 in 2010 and 18 in 2011. By deduction, residual
flow occurred for 60% of the flow period ((but is not the flow exceeded for 60% of the time)

and contributed 49% of the overall discharge.

Cumulative exports of SS, TP, SRP and NOj; (based on estimated continuous loads) demonstrate
that the majority of SS, TP and SRP were derived from high-flow conditions (Figure 5.25 and
Table 5.11). The analyses show that 84% of SS is exported during high flow events; 76% of TP
and 68% of SRP. Conversely, low flow conditions contribute very small proportions of SS and P
loads. The majority of NO3 (54%) is transferred under residual flow conditions and high flows
only contribute 32% of the total flux. Low flows account for the lowest proportion of NO;

export but significantly more than for SS and P.
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Figure 5.25: Cumulative a) SS, b) NO3 export (2011) and c) FDC for Blind Beck.

Table 5.11: Contribution of different flow conditions to the export of SS, TP, SRP and NO; at the Blind Beck outlet.

Flow Time Discharge
e exceeded threshold Percentage contribution
condition 3 1
(%) (m”s7)
Discharge SS load TPload SRPload NO;load
High 10 >0.4 40 84 76 68 32
Residual 0.1><0.4 49 15 22 28 54
Low 70 <0.1 11 1 2 4 14
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5.3.4.3 Storm event load and transfer rate

The load and transfer rate of sediment/nutrients transported during storm events in Blind Beck
varies greatly between individual events (see Table 5.12), although there is a propensity for
the largest loads/highest rates to be in the winter months; for example Events D, F, H and K.
However, Events B, C and E all exhibited relatively small loads/low export rates and they too
occur in the winter. Event D (November 2010) exhibits the highest values for SS and also TP,
but the highest TP transfer rate was in Event H. The largest NO; load was transported in Event
F, although only approximately half of all sampled events included NO; analysis. Eleven events
out of approximately 25-30 definable storm events were sampled during 2010 and 2011. The
total loads of SS, TP and NO3; measured during these events account for 13%, 10% and 2%,

respectively, of the total estimated overall loads for 2010 and 2011 combined (Table 5.12).

Table 5.12: Summary of SS, TP and NO; loads recorded during 11 sampled storm events (2010-2011).

Sampled event Duration (hrs) Load Transfer rate (kg hr™)
SS(t) TP(kg) NO; (kg) sS TP NO;
A (July 2010) 9 3.8 6.3 423 0.7
B (Oct 2010) 11 1.8 3.5 103 165 0.3 9.4
C (Oct 2010) 12 1.1 5.3 92 0.4
D (Nov 2010) 23 34.1 84.6 801 1482 3.7 34.8
E (Dec2010) 13 5.4 10.4 417 0.8
F (Jan 2011) 19 22.7 69.8 935 1194 3.7 49.2
G (Mar 2011) 20 5.8 29.3 613 291 1.5 30.7
H (Apr2011) 11 11.2 57.1 1021 5.2
I (May 2011) 4.5 3.4 5.4 36 744 1.2 8.0
J (June 2011) 9 0.5 6.7 91 57 0.7 10.1
K (Nov 2011) 17.5 135 41.3 770 2.4
Total event load 103 320 2579
Total overall load (2010 and 2011) 801 3091 121700
Percentage of total overall load 13 10 2

5.3.5 Comparison of interpolation and extrapolation methods for calculating loads

Section 0 presented SS and TP instantaneous concentration data collected on a daily basis
from Site 6 over a 36 day period. These actual concentrations were compared with
corresponding predicted values derived from the revised rating curves, where it was found that
the sum of predicted SS concentrations was 12% greater than the sum of the actual

concentrations and predicted TP was 16.5% greater.
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The calculated SS and TP loads for the 36 day period using the extrapolation and interpolation
methods are presented in Table 5.13. As the rating curves predicted moderately higher
concentrations (compared with the measured concentrations) it could be expected that the
extrapolation method would estimate higher loads also. However, the interpolation method

gave the highest values for both SS and TP - 24% and 11% greater, respectively.

Table 5.13: Comparison of SS and TP loads calculated using extrapolation and interpolation (Equation 5.1) methods.

Methodology Load (kg)

SS TP
Extrapolation 56874 221
Interpolation 70603 245

5.3.6 Modified wetland RAF water quality analysis

Wetland discharge was mainly restricted to the winter (Figure 5.26) and all grab samples
except two were collected during the months of October to March. Suspended sediment, TP,
SRP and NO; data are summarised in Table 5.14. Values for all determinands are relatively low
and all mean values are significantly lower (p < 0.05) than those recorded in Blind Beck at Site
6 - the area where water was believed to leave Blind Beck and flow towards the wetland

during high flow events.
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Figure 5.26: Modified wetland discharge hydrograph; markers indicate dates when auto-samplers were operational.

Table 5.14: Modified wetland grab sample SS, TP, SRP and NO3 concentration summary.

Constituent n Concentration (mg I'l) c
min max mean med

SS 24 2.0 44.0 8.8 6.6 9.0

TP 23 0.010 0.075 0.038 0.031 0.020

SRP 22 0.005 0.041 0.017 0.015 0.011

NO; 21 0.1 114 3.2 2.2 2.6

175



Four high flow events were sampled using an auto-sampler at the wetland outlet (indicated in
Figure 5.26). Event 2 (Figure 5.27) takes place in January 2011 and corresponds with Event F in
Blind Beck (Figure 5.18), which was the second-highest discharge recorded during the study
period. Sampling was initiated in the Beck at 15/01/2011 06:30 but not in the wetland until
12:15. The piezometer located in the wetland area indicates that the soil water table reached
the ground surface at circa 11:30 (see Figure 5.14), suggesting that the entire catchment would
have been at or near to saturation during this storm event. This is reinforced by the runoff
value of greater than 1 mm hr, recorded at peak flow (in Blind Beck). Wetland discharge

peaked at 89.5 | s™ at 17:00, six hours later than the first defined peak in the Beck.

In Event 2, SS and TP concentrations increase and decrease in strong correlation with discharge
with SS peaking at approximately the same time, and TP circa two hours later. Maximum SS
and TP concentrations of 47 and 0.08 mg I were recorded, respectively. NO; exhibits a more
delayed response, increasing gradually, then dipping during peak flow, and peaking after 12
hours. Maximum-recorded NO; concentration was 7.2 mg I™". During the January 2011 event
(Event F in Blind Beck and Event 2 in the wetland) 22.7 t of SS, 69.8 kg of TP and 935 kg of NO;
were exported from the beck over a 19 hour sampling period. By comparison, in the wetland
0.1t of SS, 0.2 kg of TP and 30.5 kg of NO; were recorded over a 24 hour sampling period
(Table 5.15).
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Figure 5.27: Discharge, SS, TP and NO3 concentration record — Event 2.

Event 3 (Figure 5.28), the highest discharge event, occurs in February 2011, 19 days after Event
2. The initial discharge peak in Blind Beck (at 12:15 — event not sampled in Blind Beck) is
reflected in the wetland but to a lesser extent and circa 3 hours later. A second discharge peak
occurs in the Beck 12 hours later, but this time the wetland response to the precipitation is
faster and outlet V-notch reaches capacity flow (circa 100 | s). The SS and TP concentration

response is markedly different from that in Event 2 as they both decreased as discharge
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increased. Suspended sediment concentration fell to circa 7 mg I'* and remained at that level
for the duration of the storm, showing very little reaction to the main discharge peak. TP
concentration exhibited a small peak, which appears to be related to the initial modest
discharge rise, before falling again to circa 0.02 mg I"". As there is no accompanying rise in SS at
hours 5-7 it is assumed that the increase in TP is accounted for by soluble forms of P, which
were not measured in this instance. Nitrate response is also rather different as the
concentration increases relatively sharply, compared with Event 2. The rise in concentration
was circa 3 hours before the main discharge peak, and approximately 3 hours after the initial,
smaller peak. Following peak NO; concentration of 7.6 mg I'* at sampling hour 11, levels

decline gradually.

Total SS, TP and NOj; event loads of 41.1 kg, 93.4 g and 26.0 kg, respectively, were recorded

during Event 3, which are significantly lower than the exports in Event 2 (Table 5.15).

Table 5.15: Summary of modified wetland event SS, TP and NO; loads.

Event Date/time Hours sampled Event load Total discharge (m',')
SS (kg) TP(g)  NOs(kg)

1 04/11/2010 19:15 24 13.8 26.5 5.0 4880

2 15/01/2011 12:15 24 101.1 204.0 30.5 20935

3 04/02/2011 10:45 24 41.1 93.4 26.0 18774

4 08/12/2011 11:30 24 40.0 122.0 16.5 15898
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Figure 5.28: Discharge, SS, TP and NO3 concentration record — Event 3.
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5.4 Discussion of findings

5.4.1 Hydrological regime

As Blind Beck is part of the upper Eden catchment, much of the description of annual and
seasonal patterns of precipitation stated previously in Chapter 4 is withheld here. Blind Beck
has a higher BFI than the rest of the sub-catchments in the upper Eden according to FEH
descriptive statistics and values calculated in Chapter 4. Ockenden (2010) confirmed this by
demonstrating that Blind Beck had a time constant similar to the much larger Temple Sowerby
catchment (on the main Eden — 616 km?) - longer than the other upper Eden sub-catchments.
This was mainly attributed to the larger proportion of sandstone (circa 38%) underlying the
catchment and that circa 46% of discharge was estimated to move via a slower flow pathway,
i.e., subsurface flow. Despite this, overland flow (generated by saturation excess) was
observed in the catchment on several occasions (Plate 5.2) and can be expected to deliver
large quantities of sediment and sediment-phase nutrients to the stream. Overland flow is also
capable of connecting more distant parts of the catchment with the stream. However, as the

majority of the catchment is of low relief and has a high percentage of permanent grass cover,

the erosive potential of overland flow is relatively low.

Plate 5.2: Overland flow near Crosby Garrett Plate 5.3: Water from Blind Beck flowing along the
(04/02/2011 - largest recorded discharge during this adjacent road, just upstream of the outlet monitoring
event). station.

Calculated water balances for the Blind Beck catchment were acceptable (runoff within +/- 10%
of P-E) for both study years, but in 2011 discharge (in mm) was lower relative to 2010. This
could be attributed to an underestimation of discharge resulting from out-of-channel flow
during high-flow events, which runs along the adjacent road (Plate 5.3). As peak discharges are
potentially underestimated, this means that calculated sediment and nutrient loads would also

be underestimated as a consequence.
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5.4.2 Source-pathways and temporal patterns of sediment and nutrient losses

Managing agricultural diffuse pollution is notoriously troublesome as by definition, the source
is often dispersed across an extensive area. However, in many cases the reality involves trying
to identify ‘distributed point sources’, which can vary in both space and time, within a given
catchment. Mean SS concentrations were relatively low upstream of Sykeside Farm, after
which they significantly increased (from 12.7 to 42.5 mg | between Sites 4 and 5), particularly
during higher discharges. The highest P concentrations were also found downstream of
Sykeside Farm (increase from 0.06 to 0.11 mg ') although SRP and subsequently TP
concentrations were often found to be relatively high at Site 1. This was likely due to a point
source of soluble P, for example, discharge from a farmyard or a septic tank leak, and the lack
of dilution by ‘clean” water in this small catchment area meant that concentrations were high.
Subsequent dilution at downstream sites was apparent until the increase downstream of

Sykeside Farm.

This suggests that SS and P sources must exist between Sites 4 and 5, which may lie outside
and/or inside the channel. In-channel P sources refer to bed and channel bank sediments, on
which P may be bound and from which it can be re-released. A heavily silted streambed was
commonplace in the lower reaches of Blind Beck during low flow periods, particularly during
the summer (Plate 5.4). Both outside and inside channel sources are conceivable in Blind Beck.
Nitrate concentrations also increased along the river network but the magnitude and range
was generally low, increasing from circa 3 to 5 mg I at Site 1 and 6, respectively. The Low Hall
catchment consistently exported significantly higher concentrations of NO; (mean 14 mg I™}),

which will be discussed later in this section.

Suspended sediment and P concentrations decrease between Site 6 and 8 (Blind Beck outlet).
This is likely due to either dilution by the Low Hall stream (which exhibits significantly lower SS
and P concentrations) or in-stream deposition upstream of Site 8. This particular stretch of
river is fenced along the field side and has the road on the other (see Plate 5.3) and becomes
very overgrown with vegetation, particularly in the summer. This may act to reduce SS
concentrations by reducing the energy in the flow at certain points, which may lead to
sedimentation and some filtering effect (e.g., Jones et al. (2012)). Wygill Beck was found to
have low SS, P and NO; concentrations on average and loads could not be calculated, as
discharge was not measured at this site. However, the data collected are sufficient to

confidently rule out the 1.1 km? sub-catchment as a sediment/nutrient ‘hotspot’.
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5.4.2.1 Pollutant sources

The Sykeside farmyard and hard standings are located in very close proximity to Blind Beck
(Plate 5.5) and are perhaps the most obvious source of pollutants. With mere metres to
transfer sediment/nutrients to the watercourse there is a permanent high level of connectivity,
even small precipitation events would be adequate to mobilise and wash contaminants from
the yard and into the stream. However, no apparent sediment input point was identified
during the time spent at the site, nor was an obvious SS plume ever witnessed in the stream at
this location, although this is not to say that it didn’t occur. However, the same argument
cannot be applied to the transfer of soluble P and NOs, as there would be no visual indication

of their movement.

Plate 5.4: Heavily silted bed and algal growth Plate 5.5: Sykeside Farm hard standings in close
(02/06/2010). proximity to Blind Beck.

While the land cover is generally the same around Sykeside Farm as further upstream
(improved grassland), the stocking density of both sheep and cattle increases as the river
moves downstream through the catchment. Official stock numbers are unknown but the
pattern was obvious from time spent in the catchment. Vogel (2003), Gravier (2004) and Mills
(2009) also reported increased stocking densities in the Sykeside and Low Hall areas relative to
upstream areas. Blind Beck has no defined riparian area along its entire course and none of the
stream is fenced off apart from a small stretch along the road near Little Musgrave. Although
not an issue in itself, when combined with elevated numbers of animals the risk of poaching
and stream bank degradation is high. Poaching and bank degradation appears to be a major
problem in the lower parts of Blind Beck, particularly on and around Sykeside Farm (Plate 5.6

and Plate 5.7).
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Plate 5.6: Poaching near Site 5, Sykeside Farm Plate 5.7: Poaching and animal excrement in Blind
(05/05/2010). Beck near Site 6, Sykeside farm (07/06/2011).

Soil texture is arguably the most important soil property affecting soil erosion. To the west of
Sykeside Farm, overlying Strutforth Hill is Clifton Association; a soil developed in fine loamy till
with high clay content and slow permeability. This means that it has a propensity to produce
surface runoff (particularly if it’s on a slope) and also to poach easily when soils are at or above
field capacity (National Soil Resources Institute (NSRI), 2013). Poaching on sloping sites over
poorly drained soils is one possible explanation for increases in sediment derived from fields
adjoining the watercourse. Bank collapse is also linked to nature of bank-forming material,
although heavily influenced by degree of stock access and stocking density. Fine textured
poorly drained bank material (e.g., boulder clay) may also be more susceptible than coarse
textured well drained material (e.g., alluvium) to loss of stabilising vegetation due to poaching,
resulting in greater incidence of back collapse, despite the fact that coarser textured banks are
naturally less cohesive. It may be that boulder clay areas have steeper/higher banks than
alluvial areas making catastrophic collapses more frequent, or possibly a combination of
destabilised banks and flow accumulation, which means that critical shear strength is

exceeded by the stream.

Bank collapses are a common sight in the lower half of the Blind Beck catchment (Plate 5.8) as
well as instances of large-scale slumping at the foot of slopes (Plate 5.9). Although they both
are naturally occurring geomorphological processes, accelerated erosion can provide a huge
input of sediment and sediment-phase nutrients, which can remain in the channel to be
remobilised and transported in a subsequent storm. Research has suggested that in livestock
dominated catchments bank erosion can be the primary sediment (and associated nutrients)

source and that it can reach problematic levels with regards to aquatic ecosystem health (e.g.,
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Walling et al. (2003)). Large amounts of sediment retained within the stream network may also
cause water eutrophication problems through resuspension and/or the release of dissolved
nutrients (Owens and Walling, 2002; Stutter et al., 2007; Jones et al., 2012). It is believed that
a bank collapse was responsible for what was observed during Event |, which was sampled by
the auto-sampler at Site 6 in May 2011 (see Section 5.4.3). This was a relatively low magnitude
event following a period of very little precipitation. A short, high intensity storm caused a short,
sharp peak in discharge that exhibited the highest SS and TP concentrations recorded

throughout the entire study.

Plate 5.8: Bank collapse near Site 4, Sykeside Farm Plate 5.9: Bank slumping/mass movement at
(February, 2011). the base of Strutforth Hill, Sykeside Farm
(April, 2010).

5.4.2.2 Timing of pollution delivery

The majority of SS and TP (principally PP) was exported during short time periods, almost
exclusively associated with discharge peaks. Walling and Webb (1987) stated that 60% of the
overall sediment load was transported in 2% of the time in a review of the discharge of
contaminants to the sea in the River Exe catchment. Eleven separate storm events were
sampled during the study period, which covered a good range of hydrological conditions;
including short duration, high intensity summer events and high magnitude, long duration, low
intensity winter events. As expected the winter events were responsible for the largest exports

of SS, P and NOs, partly due to their longer duration and greater discharge values.

The greatest transfer rates were also exhibited in the winter with 1.5 t hr™* of SS lost during a
November storm and 5.2 kg hr'' of TP during a March event. However, Jarvie et al. (2006)
argued that although PP may form a significant proportion of the P load to rivers, it may have
little impact on river eutrophication. They showed that agriculturally derived bed sediments

(to which PP is attached) actually have the potential to reduce SRP concentrations from
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overlying river water during low flow/summer conditions (where SRP is already at elevated
levels). Conversely, Jarvie et al. (2006) also acknowledge that agricultural fine sediment is

harmful to riverine ecology if concentrations are excessive and thus needs to be controlled.

Relationships between intra-storm exports and (seasonal) land use and hydrological conditions
are difficult to recognise given the length of monitoring period/number of events captured.
However, sources of inter-event variability can include seasonal differences in land use
activities/timings of stock grazing and cultivations; bank collapses; the effect of antecedent
conditions; the remobilisation of fine bed material deposited during low/recessional flows; and

the occurrence of contiguous events in quick succession leading to exhaustion.

Despite these complications a number of patterns were exhibited by the monitored water

quality determinands during storm events:

e Discharge and SS concentration rose in response to rainfall, and P increased in line
with sediment concentration.

e SSand P concentrations peaked rapidly either with or just before peak discharge.

e NOs; initially fell due to dilution or stayed fairly constant, but increased during event

recessions as slower flow pathways reached the stream (and rapid pathways receded).

There was no discernible difference between summer and winter responses, either as a result

of the complications described above or perhaps due to the number of storms captured.

5.4.2.3 Hysteresis

Clockwise hysteresis dominated the response of SS and TP concentrations during the majority
of the storm events monitored (82% and 73% of the time, respectively). This indicates that
sediment supplies are abundant at the beginning of events but cannot be sustained (i.e.,
source limited), resulting in a concentration peak before peak discharge. Alternatively, these
sources may become diluted as water from more distant parts of the catchment contributes to
outlet discharge (Jansson, 2002). The widest loops are exhibited by SS meaning that there is a
greater difference between concentrations on the rising and falling limb (less well correlated
with discharge). This suggests that sources are either close to the channel, or within the
channel itself (or both) thence allowing for rapid mobilisation. Mills (2009) also found that
Blind Beck exhibited clockwise hysteresis for turbidity (which was used as a proxy for SS
concentration) in 75% of events. TP was seen to respond quickly to an increase in discharge
and generally peaked along with maximum flow (as with SS). Like sediment, the P (mainly PP)
is most likely to originate from within the channel (bed sediments) and from the riverbanks,

particularly in areas where there is poaching (e.g., Bowes et al. (2005)).
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Anticlockwise hysteresis of SRP concentrations occurred during 57% of monitored events and
indicates that there was a lag of peak concentration behind peak discharge. This could be due
to a more distant pollutant source or transfer pathway and subsequent travel time to the
catchment outlet. The peak in SRP after peak discharge could be explained by the subsurface
transport of soluble and potentially colloidal P, which has a delay in reaching the stream. The
majority of NO; concentration responses to discharge exhibited no hysteretic relationships but
anticlockwise loops did occur for 40% of monitored events. The shape of the loops were
characterised by a flat line (sometimes downwards sloping) where concentrations fall slightly
as discharge increases, before concentrations steadily increase as discharge decreases. This is
indicative of dilution of NO; concentration during the early stage of the event. Some studies
have found that shallow groundwater can contribute more NO; to stream water during the
recession period, after the rise of the saturation zone towards upper soil layers enriched by the

accumulated nitrate pool (Rozemeijer and Broers, 2007; Oeurng et al., 2010).

5.4.2.4 Low Hall sub-catchment

The Low Hall sub-catchment is an anomaly in the Blind Beck catchment as it consistently
exhibits low SS, TP and SRP concentrations but relatively high levels of NO;. It is the
contribution of runoff from this 1.25 km? area of farmland that causes the NO® concentrations
in Blind Beck to suddenly increase between Sites 6 and 9 (mean concentrations of 6.1 and 9.1
mg I, respectively). The mean NO; concentration recorded at Low Hall (Site 8) was 14.3 mg 1™,

with a maximum of 24.5 mg | ™.

Ockenden (2010) carried out several different types of investigation (a series of chemical tests
and rainfall-discharge model output analyses) in the Blind Beck catchment, specifically focusing
on the Low Hall sub-catchment. All the studies suggested that a significant proportion of water
in the Low Hall stream, which is entirely on the Permian Penrith Sandstone bedrock, was from
a groundwater source. The Low Hall stream had a higher specific conductivity than Blind Beck,
which was attributed to higher concentrations of calcium carbonate, thus suggesting that the
water in Low Hall stream spent longer in the ground, with longer contact with the rock.
Continuous monitoring of stream water temperature showed that the Low Hall stream was
warmer than Blind Beck in winter but colder in summer, also suggesting that a significant input
from a deeper source (the temperature of the rock deep below the surface remains relatively
constant throughout the year compared to the air temperature at the surface). Finally, End
Member Mixing Analysis (EMMA), using specific conductivity, revealed that that 69% + 10% of
the water in the Low Hall stream was ‘old’ water (slow pathway), compared with 46% + 8% in
Blind Beck. Previous to the work of Ockenden (2010), an investigation carried out by Mannix

(2005) of two boreholes (one shallow — 6m and one deep —211m) at Sykeside Farm and also of
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soil cores taken on the farm revealed ‘extremely’ high concentrations of NO; in the soil and
shallow borehole and relatively high concentrations in the deep borehole. This comprehensive
combination of analyses explains why the Low Hall stream is characterised by relatively high

NO; concentrations.

5.4.3 The effect of event sampling on load estimation.

One of the aims of this chapter was to investigate the influence of event sampling (to
complement the stratified grab sampling regime carried out in Chapter 4) on the calculation of
SS, P and NO; annual loads. Loads calculated in this study, using the revised rating curves, are
greater than those calculated in Chapter 4. Suspended sediment yield ranges between 18.9
and 70.1 t km? yr for 2010 and 2011 respectively; TP between 82.9 and 260.6 kg km? yr*, SRP
between 23 and 61.6 kg km? yr™, and NO; between 5.5 and 8.0 t km” yr™. Similarly to Chapter 4,
the differences in export magnitudes between the two years are chiefly attributed to the
difference in runoff volume - with 2011 being the wettest. This emphasises the importance of

hydrology as the main driver of DWPA losses from rural catchments.

Russell et al. (1998) reported a TP loss range of 160-210 kg km? yr™ for agricultural catchments
in the UK and Jarvie et al. (2003) calculated the annual TP export from different sub-
catchments in the Herefordshire Wye basin, which varied between 2 and 90 kg km” yr*. Wood
et al. (2005) working in the predominantly grassland Taw catchment, estimated an export of
120 kg TP km? yr'". Thus TP exports calculated in this study fall well within ranges quoted in the
literature. Labadz et al. (1991) reported SS yield estimates for upland catchments in the UK
(areas between 42 ha and 7.7 km?) of between 0.7 and 66 t km™ yr™, and Bronsdon and Naden
(2000) calculated yields (over 3-years) of 17.3 and 19.7 t km™ yr™" * for the Upper Tweed and
Teviot catchments in northeast England, respectively. The yields calculated in this study are in
general agreement with these values. Cooper et al. (2008) produced a SS vyield classification
system, which uses upper- and lower-quartile yields as critical thresholds and targets
respectively, based on catchment typology (described in section 2.8.2). According to this
classification, a catchment such as Blind Beck should have a target SS yield of 40 t km? yr* and
a critical yield of 70 t km? yr™. Therefore, in a wet year (such as 2011) Blind Beck could be
considered as yielding critical loads of SS, especially if the yields calculated in this study are

underestimates of the true export.

Intra-storm sampling using automatic water samplers meant that concentrations of SS, P and
NO; transported by short-duration peak flows could be measured. As expected, higher
concentrations of SS and P were found to be associated with these higher discharges (e.g.,

Jordan et al. (2007)), mainly due to the higher erosion and transportation capacity of the
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runoff. The impact of these auxiliary data on concentrations measured at the Blind Beck outfall,
when compared with grab samples only, was to increase mean SS concentration by over 300%,

mean TP by 260% and SRP by 167%. However, mean NO; was decreased by 21%.

Based on the revised rating curves the effect of the event sampling on calculated SS load/yield
is a 116% increase in 2010 and a 98% increase in 2011, compared with grab sample only values.
TP yields are increased by 116% and 118%, and SRP yields by 72% and 97% in 2010 and 2011,

respectively. There is no discernible difference for NOs.

The 36 day mini-study where daily water samples were collected in order to compare actual SS
and TP concentrations with values predicted by the revised rating curves showed that there
was a good general agreement between the two. On average the rating curves predicted
moderately higher SS and TP concentrations (compared with the measured concentrations),
which mainly stemmed from over-predictions during high-flow events. The short experiment
indicated that actual TP concentrations during residual flow conditions exhibit more
fluctuation compared with SS concentrations. This may be due to soluble fractions of P
affecting the TP concentrations whereas SS concentrations stay more stable during residual

flow conditions as there is insufficient energy to transport particulate substances in suspension.

The shortcoming of the extrapolation method is that the response of sediment/nutrients is
dependent on discharge. This was shown to not always be the case as a small two-day rainfall
event, which caused an increase in SS and TP concentrations (based on actual measurements),
did not elicit the same response in predicted concentrations, as there was no increase in
discharge, despite the rainfall. This effect is stronger in the summer or when soil moisture
deficit is high as rainfall-runoff ratios will be lower (meaning less or no increase in discharge)
but contaminants may still be washed into the river. This is particularly important for nutrients
as they can take soluble form and don’t rely on physical detachment to become mobilised,
thus can be transferred more easily. Domestic septic tanks have been identified as posing a
significant threat to water quality in rural areas (Macintosh et al., 2011; Withers et al., 2012)
and discharges from them would largely be ignored using the extrapolation method, as their

impact will be greater during low flow conditions.

As the rating curves predicted higher SS and TP concentrations, on average, it could be
expected that the extrapolation method would estimate higher loads also. However, the
interpolation method gave the highest values for both SS and TP - 24% and 11% greater,
respectively. Without measuring water quality determinand concentrations continuously (circa
15 minutes is most commonly used where such monitoring equipment is deployed (e.g.,

Cassidy and Jordan (2011), Johnes (2007), Owen et al. (2012)), along with corresponding

188



discharge, it is impossible to determine whether low-resolution data, using interpolation or

extrapolation calculation methods, over- or under-predict loads.

A stratified grab sampling regime, such as the one employed in Chapter 4, where efforts are
made to collect samples during high discharge events (as opposed to fixed-time interval
sampling, e.g., weekly, monthly, etc.) can provide sufficient data to estimate sediment and
nutrient loads. However, it should be understood that these estimates would likely be
underestimates, particularly for SS and sediment-phase nutrients due to the bias towards low
and residual flow sampling. This Chapter has shown the value of including event-level sampling,
using automatic-water samplers, in conjunction with a stratified grab sampling. Samples were
taken at discharges up to 93% of the maximum-recorded discharge at the catchment outlet,
compared with 89% in Chapter 4. Although this appears to be a small increase it is because a
grab sample was collected from Blind Beck during high flows; however this was not the case
for the majority of the other sub-catchments monitored in Chapter 4 (with percentages
ranging between 30 and 50). If circa 90% could be achieved in all catchments then this would
help improve the representativeness of the sediment/nutrient—discharge rating curves and

thus increase the accuracy of the estimated pollutant loads.

5.4.4 Evaluation of a constructed mitigation feature

As previously stated, the wetland design and location were not decided as part of this study
but the feature was included in the monitoring campaign in order to determine its impact of
the sediment and nutrient regime of Blind Beck. Data collected at the wetland outfall
suggested that SS, P and NO; concentrations and loads were significantly lower than those
measured in Blind Beck (at Site 6). However, as there was no clearly identifiable surface water
source/pathway to the wetland it is very difficult to put the wetland data into context, and it is
perhaps unrepresentative to compare it to concentrations/loads recorded in the main river.
The wetland appears to be its own source of sediment and nutrients as contiguous storms lead
to exhaustion of SS and P. Sheep graze the area and it is likely that soil disturbance occurs in
inter-storm periods, which provide rejuvenated sediment and associated nutrient sources.
Nitrate concentrations were relatively low and responses to discharge were more attenuated
in comparison, which indicates that NO; is being leached upwards through the soil as it
becomes saturated during storm events. Leaching requires a sufficient flow of water to
mobilise any available NO; and the presence of a lag between peak flow and an increase in
surface water concentration may indicate the build-up of storm water in the soil as a
prerequisite. On the grounds of water quality, specifically the ability of the wetland to reduce
losses of SS, P and NO; from the Blind Beck catchment, the wetland cannot be deemed a

success.
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In the absence of a draw-off swale connecting Blind Beck to the wetland, the input of water to
the RAF was attributed to a combination of direct precipitation, outflow from a spring that was
believed to be a (possibly broken) field drain, other unidentified springs, and return flow from
groundwater (as indicated by the piezometer data). After constructing and monitoring the
behavior of the wetland for some time it was realised that significant intervention, with the
potential for high financial cost, was needed to convey water from the beck to enter the
feature. The wetland was just one of a number of planned RAFs for the Sykeside Farm area. A
farm runoff management plan had been complied to complement a Higher Level Stewardship
application that the farmer was undertaking at the time. However, due to unforeseen
circumstances the HLS schemes lost financial backing and the plan to construct and monitor a
suite of different RAFs on Sykeside Farm had to be halted. This forced mitigation experiments

to be transferred to surrogate catchments, which provide the basis of Chapters 6 and 7.

5.4.4.1 Lessons learned

The grab sampling campaign carried out along the length of Blind Beck indicated that Sykeside
Farm was the main source area for SS and P by a significant increase in concentrations
between the sampling locations up- and downstream of the farm. A number of possible
explanations have been given for why this may be the case but the main issues have been
identified as accelerated bank collapses and poaching. As RAFs are designed to intercept
polluted surface pathways during storm events, in order to slow, store and filter runoff, they
are not the best solution to this particular problem. Where possible it is best to keep nutrients
and sediment on the farm, or source area, they are derived from. Bank collapses and poached
areas are obvious problems and a more appropriate strategy would to be to deal with the
visible critical sources individually and the diffuse chronic ones with RAFs. There is a strong
argument for the use of catchment walkovers in order to identify obvious critical pollution

sources and the mitigation of such sources can be seen as an ‘easy win’.

A befitting choice of mitigation option(s) should rely on their source-pathway suitability. In this
instance the most suitable strategy would be to stop animals entering Blind Beck (particularly
on Sykeside Farm) to lower the occurrence of poaching and to help stabilise the banks. The
most effective and cost-efficient way of doing this would be to introduce stock fencing. Owens
et al. (1996) and Collins et al. (2010) both reported reductions in sediment losses from bank
sources due to bank fencing. However, the farmer at Sykeside Farm was against this idea. This
raises an interesting discussion point about the amount of conclusive evidence with which to
force a landowner into action he doesn’t like; i.e., why should a farmer be allowed to

jeopardise the water quality of the stream with stock watering if it’s a WFD issue?
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The wetland experiment at Sykeside Farm also highlighted the importance of spatial scale for
the application and functioning of RAFs to reduce losses of sediment and nutrients. Attempting
to mitigate DWPA for the entire 9 km” Blind Beck catchment at Sykeside Farm is unrealistic due
to the amount of runoff conveyed by the main channel at this scale. It would be more feasible
to target smaller contributing areas, perhaps in the order <1 km?. Larger features could
perhaps be justified if they are part of a flood defense scheme. Despite the shortcomings of
the wetland RAF to deliver water quality benefits it has solved a number of runoff related
problems for the farmer by constraining surface water to one field (thus preventing the
inundation of a neighbouring farm’s field). It has also added temporary flood water storage
capacity to the catchment and has created a new wetland habitat, although these gains are

not quantified in this study.

No attempt was made in this study to mitigate NO; losses from the Low Hall sub-catchment,
which was identified as the main contributor to export at the catchment outlet. It is highly
likely, based on the findings of Ockenden (2010) that the majority of the NO; measured at the
Low Hall outfall is derived from a groundwater source. Options available for reducing NO;
concentrations would be: 1) to reduce inputs to the system at source, and/or 2) the treatment
of the runoff in the channel itself. The first option would require significant investigation to
identify the source of the NO; as a major proportion of the runoff in the catchment is believed
to move via slow, subsurface pathways. Reducing NO; concentrations in the channel could be
achieved using constructed wetlands and/or woodchip filters to provide conditions suitable for
denitrification (please refer to Chapter 2.9.2 for details). However, these are both relatively
high-cost options and may not be justifiable in this instance as the NO; input from the Low Hall
catchment is diluted firstly by Blind Beck and then by the main River Eden; thus its impact is

likely to be minimal under present hydrological conditions.

5.5 Summary

A grab sampling campaign carried out along the Blind Beck stream network allowed the source
area of SS and P to be identified as principally Sykeside Farm. Although specific sources proved
difficult to identify, site investigations revealed the existence of a significant number of in-
channel and near-channel sources in the lower catchment, suggesting the destabilising effect

of stock access to the stream.

Event-scale sampling at the catchment outlet allowed the examination of sediment and
nutrient storm dynamics and thresholds of activation. Suspended sediment and TP was

activated by high flows, most likely due to bank erosion. Nitrate and SRP appear to be
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mobilised by throughflow (subsurface) pathways. The employment of an auto-sampler meant
that water samples were taken across a wide range of discharges and produced discharge-
contaminant rating curves that are more representative (compared with those Chapter 4), of
the sediment and nutrient regime of the catchment; although more scatter was added to the
higher-value end of the rating curves. As a result of the revised rating curves, both mean
concentrations and annual loads/yields of SS and P for Blind Beck were increased when
compared with the values calculated in Chapter 4. There was no discernible difference in NO;

concentrations/loads.

A 36 day long experiment allowed the comparison between daily sampling (actual
concentrations of SS and TP) with corresponding concentrations estimated from discharge
using the appropriate rating curve. An interpolation method was used with the former and an
extrapolation method the latter to calculate total loads from the experimental period. Despite
the extrapolation method slightly over-estimating concentrations on average, the interpolation

method gave the highest total load estimates.

The plan to deploy a number of RAFs in the Blind Beck catchment, at Sykeside Farm, could not
be fulfilled. A single modified wetland RAF was completed but the absence of a clearly defined
inflow point made it difficult to contextualize the sediment and nutrient concentrations

measured at the wetland outfall.

The wetland had two main reasons for being unsuccessful at meeting its water quality
amelioration aims, besides not being the most appropriate way of treating the SS and P
source-pathways identified in the catchment (a more appropriate strategy would to be to deal
with the visible critical sources individually). Firstly it was too far away from the main Blind
Beck channel (to allow the hydrologic connection to be made between Blind Beck and the
feature a large swale is needed to convey high flows across the land surface). Secondly it was
administered at an unsuitable scale (i.e., too far downstream); the size of feature needed to
treat runoff from a 9 km? catchment is unfeasibly large. A contributing area of no greater than

1 km? is recommended, but this issue will require further investigation.

However, the wetland functions well as surface water management feature, reducing the
inundation of surrounding fields, and also as a wetland habitat. Importantly many vital positive
lessons have been learned during this study and several RAF design aspects improved, for
example the use many small RAFs close to runoff/pollution sources as opposed to one large
downstream feature. The aim of the Chapters 6 and 7 is to apply these to ensure an

appropriate, rigorous design is implemented.
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6. DWPA mitigation case study one: The Belford catchment

6.1 Introduction

The two successive chapters are concerned with the mitigation of DWPA. Moreover, they
provide case studies of where RAFs have been used to target overland flow pathways during

storm events in order to reduce losses of SS, P and NOj in agricultural runoff.

The Belford Burn catchment was selected due to the presence of existing RAFs constructed to
lower flood risk in the town of Belford, Northumberland. However, as the catchment
eventually discharges into a highly valued ecological zone (Budle Bay), which was experiencing
macro-algal blooms consistent with eutrophication, there was already a move to assess
whether existing RAFs were having an effect on sediment/nutrient losses. This chapter has two
components; the first part (Section 6.3) characterises the SS, P and NO; concentrations in a
sub-catchment of the Belford Burn catchment and assesses the impact of two existing flood-
related RAFs on the sediment/nutrient loss regime. The second part (Section 6.4) describes the
design, construction and performance of a multi-stage RAF built specifically for water quality

amelioration — with the design informed by the findings of the first work component.
The aims of this chapter are thus:

1. To characterise the sediment/nutrient regime of an intensive agricultural sub-
catchment and evaluate the effectiveness of RAFs designed primarily for flood

alleviation purposes to reduce losses of SS, P and NOs.

2. To construct and monitor trial RAFs specifically designed to mitigate DWPA.

6.2 Materials and methods

6.2.1 Site description

The Belford Burn catchment (5.9 km?) is located upstream of the village of Belford (OS Grid
Reference NU-339107), in northeast England (Figure 6.1). Catchment elevations range from 53
to 208 m AOD, with the majority below 200m (lowlands). Bedrock is chiefly Alston formation, a
mix of Carboniferous limestone and sandstone. The western upper slopes are formed of hard
impermeable sandstone of the Fell Sandstone formation and an outcrop of the dolerite Whin
Sill exists in the east, to the north of the town. Superficial geology is dominated by Devensian
till, which covers the majority of the catchment, excluding the elevated Fell Sandstone and

Whin Sill outcrops. The dominant (circa 95% coverage) soils are of the Dunkeswick Association
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- deep slowly permeable fine loamy and clayey soils formed in glacial drift (Jarvis et al., 1984).
This has resulted in extensive artificial under-drainage of the catchment using tile drains. Some
small areas of peat occur in the upper catchment. Land use is predominantly agricultural, split
between arable in the eastern (lower) half and pastoral in the western (upper) half of the
catchment. The small portions of steeper slopes host rough grazing and coniferous plantations
and there are areas of mixed deciduous and coniferous woodland mainly along the stream

corridor (Figure 6.2). Mean annual rainfall is 695 mm (Wilkinson et al., 2010).

Hydrometeorological data

River stage was recorded at 15 minute resolution using pressure transducers at several
locations (R1-R4, Figure 6.1) in the Belford catchment (as part of another study — Nicholson
(2013)) and discharge was calculated using a hydraulic model. The model was calibrated using
manual discharge measurements and constrained with channel gradient and cross-sectional
measurements to extrapolate discharges beyond bank full levels and improve estimates for
high flows. Discharge recorded at R3 is used in this study to demonstrate the prevailing
hydrological conditions during sampling, as continuous discharge is not measured in the Lady’s
Well sub-catchment for the entire study period. The R3 gauge was selected as it was the most
complete and reliable record. Rainfall is recorded using a tipping bucket rain gauge at the head

of the catchment (Figure 6.1).

The Lady’s Well sub-catchment (34 ha) located in the northeast of the Belford catchment is
highlighted in Figure 6.1; it provides the only permanent surface tributary to Belford Burn. The
sub-catchment was selected in which to test a number of RAFs for their effectiveness in
reducing DWPA (further details are given below). The catchment has previously been reported
to have a high capacity to absorb precipitation, but a rapid (short lag time), high amplitude
discharge response once soil storage capacity is exceeded, particularly in the winter when it is
more likely that soil saturation conditions are reached (Palmer, 2012). It could be considered
to be high risk in terms of SS (and associated nutrients) losses due to being a predominantly
lowland catchment (susceptible land use) with slowly permeable soils. As the Belford
catchment discharges into a sensitive, low-energy receptor (Budle Bay - more details below)
where there is potentially a long retention time, the impact of sediment (and associated

nutrients) may be highly important.
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Figure 6.1: Map of Belford Burn catchment and DEM.

Land use
. Arable

- Buffer strip

- Farm track/hard standing

Meadow/pasture

Figure 6.2: Land use map of the Belford catchment (as of spring 2011).
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6.2.2 Catchment issues

Flooding

Flooding in Belford presents a risk to thirty one properties, a caravan park and two major
transport links; the Al and the East Coast Mainline (Nicholson et al., 2012). Recent flood
events were recorded in 1997, 2002, 2005 and 2007 and all caused damage to properties,
infrastructure and/or local businesses. Factors increasing the risk of flooding in the town
include the constriction of the main river channel through the centre of the town by walls and
bridges, and increased runoff due to relatively intensive agricultural land use and associated
soil compaction/infiltration reduction effects (Wilkinson et al., 2010). Traditional flood
defences were not available for Belford due to the town failing to meet the criteria for Grant-
in-Aid funding. As a result an alternative scheme was proposed and funded by the EA’s Local
Flood Levy to construct a number of RAFs to temporarily store and attenuate flood peak runoff
in the catchment upstream of the town. The scheme was designed and implemented by the
Proactive team at Newcastle University in collaboration with the EA (Wilkinson et al., 2010).
Since the project began in August 2008 approximately 35 RAFs have been constructed in the
catchment. A detailed account of many of the features is provided at

[http://research.ncl.ac.uk/proactive/belford/] and by Nicholson et al. (2012).
Water quality

Belford Burn flows in a roughly easterly direction and joins two other streams east of Belford
Town to form Ross Low. These watercourses along with the Waren Burn to the south are
collectively known as the ‘Lindisfarne Coastal Streams’ and they discharge into Budle Bay (OS
Grid Reference NU-150356) on the northeast coast of England (Figure 6.3). Budle Bay is
located within a SAC under the Habitats Directive (92/43/EEC) and forms part of the
Lindisfarne Special Protection Area (SPA) protected under the Birds Directive (79/409/EEC). It
is also designated a Natura 2000 site and Ramsar wetland. The intertidal mudflats and sand
flats of the ecosystem support a diverse infauna, which in turn supports internationally
important populations of waterfowl (Palmer, 2012). The bay occupies an area of
approximately 315 ha and has a total catchment area of circa 94 km”. The town of Belford is

the only sizable settlement in the Budle Bay catchment with a population of circa 1000 persons.

Palmer (2012) described how over recent decades increasing summer blooms of macro-phytic
algae have occurred in Budle Bay, particularly in the area of the bay surrounding the mouth of
the Lindisfarne Streams. The algae forms thick mats, which can inhibit the growth of the native
sea grass and has the potential to negatively impact the food source for wading birds. This has

resulted in the ecological status of Budle Bay being graded as ‘moderate’ according to the WFD
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status indicators for England and Wales (UK TAG, 2008). Following the designation of the bay
as a SAC in 2000, a Habitat Management Plan drawn up by NE acknowledged that there was
indeed a freshwater eutrophication problem and that DWPA was the main concern. The River
Basin Management Plan (RBMP) for Northumbria River Basin District (Environment Agency,
2009) reported that the Budle Bay SPA was not achieving its environmental objectives and

attributed this to a water quality problem caused by agricultural runoff.
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Figure 6.3: Map of Budle Bay catchment.

6.2.3 The study area: Lady’s Well sub-catchment

The Lady’s Well sub-catchment (34 ha) located in the northeast of the Belford catchment
(Figure 6.4a) was selected in which to test a number of RAFs for their effectiveness in reducing
DWPA. This involved two separate components; firstly a grab sampling campaign to
characterise the sediment and nutrient concentrations in the catchment alongside evaluation
of the capacity of two existing RAF (designed and constructed principally for flood alleviation
purposes) to reduce SS, P and NO; losses. One RAF was evaluated by Palmer (2012) for its
ability to retain sediment and will also be referred to here. The second component involved
the construction and monitoring of a new multi-stage RAF designed specifically for DWPA

mitigation.
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Elevation ranges from 53 m AOD in the southeast to 111 m AOD in the northwest of the Lady’s
Well catchment (Figure 6.4b). Steep slopes running along the north-eastern side of the
catchment represent the Whin Sill outcrop. Similarly to the rest of the Belford catchment
artificial drainage has been installed, as a result of the clay-rich soil subsurface horizons. This
consists of a herringbone system where collector drains (6" clay ware tiles) are aligned along
the main slope and smaller diameter lateral drains run perpendicular to them (Figure 6.4b and
¢ show the location of the collector drains). The Lady’s Well stream is fed chiefly by one of
these drains and emerges in a surface drainage ditch approximately halfway along the length
of the catchment, with a contributing area of 15 ha. The stream has an average slope of 4.3%,
falling 55 m over a distance of 1270 m (Figure 6.4b). Land use in the catchment is
predominantly arable rotation — mainly cereals with some fields used for cattle and sheep

grazing.

(a)

Legend

:’ Lady's Well catchme
Lady's Well stream

_,MULTI-STAGE RAF

® RAF

------- Tile drains (collector)

Field lines
Upper contributing area (11 ha)
Lower contributing area (17.5 ha)
A  Grab sample point

Contours 5m

Figure 6.4: Maps of the Lady’s Well sub-catchment: a) location in the Belford catchment, b) grab sample locations
and 5m contours, and c) RAF locations.
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6.3 Sediment/nutrient characterisation and evaluation of existing RAFs

6.3.1 Grab sampling campaign

The water quality in Lady’s Well was characterised between January 2010 and February 2013
using a low-intensity synchronous grab sampling regime. Samples were collected from three
locations (S1, S2 and S3 - Figure 6.4b). S1 is a drain inspection point at the top of the
catchment; S2 is where the subsurface tile drain discharges into the surface ditch, and S3 is
from the ditch 300 metres downstream of S2 — just downstream of RAF 2 (Figure 6.4c). The
sampling and laboratory techniques described in Chapter 3.3 were used to determine SS, P
and NO; concentrations. Samples from all three locations were collected within 20 minutes of
each other, therefore can be considered to provide a representative ‘snapshot’ of the
determinand concentrations across the catchment. At this time no flow measurement
equipment was installed in the sub-catchment so the data only exist as concentrations. Section
6.3.3 contains a discharge (measured at R3) and precipitation record for the Belford catchment,
which provides a representation of the hydrological conditions on sample collection dates.
Few samples were collected during the summer, as there was no observed drain flow for the

majority of the time.

6.3.2 Flood management RAFs evaluated for DWPA mitigation

RAF 1 (see Figure 6.4c for location), constructed in November 2009, is a within-field retention
bund. It is built across the main valley thalweg (the line following the lowest part of the valley)
of an arable field (4.1 ha) and is designed to intercept and temporarily store overland flow
during storm events (Plate 6.1). The field has an average gradient of approximately 4 degrees
and its land cover (predominantly winter wheat during the study period) makes it susceptible
to soil erosion. The bund (maximum of 1 m high) provides a storage capacity of approximately
500 m>. The bund has a 220 mm diameter outlet pipe installed at mid-height to help prevent
over-topping and possible erosion of the bund. It also allows the feature to drain in several
hours; this is important in the event of a second flood peak. The RAF also doubles as a raised
farm track, which prevents the farmer trafficking this previously waterlogged area.
Construction was carried out by the farmer using locally-sourced materials, thus incurred
relatively low cost. While its ability to retain overland flow is obvious (Plate 6.1) its
sediment/nutrient trapping capabilities were more difficult to quantify. A pressure transducer
was installed in RAF 1 on 28/10/2011 (by Nicholson (2013)) to record when (and the depth of)
water was held behind the bund during a storm event; this data provides an insight into when
overland flow is occurring in the Lady’s Well catchment, as this is the principle pathway by

which water enters the feature.

199



Palmer (2012) was able to calculate the mass of sediment retained by RAF 1 following a storm
event in January 2011 by quantifying the sediment fan left behind the retention bund (Plate
6.2), It was estimated that 0.99 tonnes of sediment, mainly silt/clay and fine-sand, was
captured. Trapped sediment becomes re-incorporated back into the topsoil during annual
ploughing. However, it was acknowledged that a proportion of fine sediment was lost via the

feature’s outlet pipe and also bypassed by subsurface drains.

Bund

Plate 6.1: RAF 1, a within-field retention bund storing overland flow during a storm event (17/10/2012). Dashed
arrow indicates direction of overland flow.

Plate 6.2: Sediment retained in RAF 1 following January 2011 storm (photograph taken on 19/01/11). Dashed arrow
indicates direction of overland flow.
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RAF 2, constructed in November 2009, is a flood RAF but was designed to double as a
sediment trapping pond. It has two components (Figure 6.5 - see Figure 6.4c for location): a
permanent on-line pond feature to retain sediment (Plate 6.3) and a higher level separate
crescent-shaped pond to store flood water once the pond over-tops. The sediment-trapping
pond has a capacity of approximately 200 m>. After construction the pond quickly began to fill
with sediment and a delta could be seen developing at the inlet. A pressure transducer was
installed in the pond to record stage on 26/02/2010. Paired automatic samplers were
deployed at the inlet and outlet of the feature to determine whether it was retaining SS, P and
NO; during storm events. The samplers were programmed to take a sample every hour and a

float switch located next to the pressure transducer initiated sampling.

Component II:
Flood storage pond

Component I:
Auto-sampler Sediment trap/online pond ~ =T~
> Inlet Stage recorder &

sampler trigger

_

Outlet —>

Auto-sampler

Figure 6.5: Schematic of RAF 2 (not to scale).

Plate 6.3: RAF 2 —sediment trap/online pond component during a storm event
(sampled with auto-samplers — see data in 6.3.3). Black arrows indicate direction of flow.
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6.3.3 Results

Hydrology

The flow regime of Belford Burn (measured at R3) displays considerable inter-annual variability
in yield (Figure 6.6; Table 6.1). This may be explained by a more limited runoff response to
precipitation during the growing season (April-September) than in winter months. During 2010,
runoff events are limited to the winter period, which coincides with the greatest rainfall
(proportionally) while in 2012 the largest events are in response to extreme daily rainfall
events occurring in summer months. This is reflected in the higher percentage runoff value in
2010 compared with 2012 (70% and 64%, respectively). 2011 yielded the lowest total runoff,
which was in response to the lowest total precipitation. Proportionally the greatest amount of
precipitation fell in July-August but no obvious runoff response was observed (apart from on
11/08/2011), probably due to the effect described above. The 2011/2012 winter period
received relatively little precipitation with no significant discharge events occurring between

September 2011 and April 2012 (Figure 6.7).

Table 6.1: Belford Burn annual runoff and precipitation parameters 2010-2012.

Year Annual runoff (mm) Annual precipitation (mm) Percentage runoff
2010 617 883 70
2011 352 646 54
2012 669 1049 64
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Figure 6.6: Belford Burn cumulative runoff and precipitation (mm) 2010-2013.
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Figure 6.7: Discharge (measured at R3) and precipitation record for 2010-2012/13, with water quality sampling dates marked.
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Water stage recorded in RAF 1 is depicted in Figure 6.8 and can be used to signify when
significant overland flow occurred in the wider catchment (e.g., Plate 6.4). This indicates that
there were no major incidents of overland flow during the 2011-2012 winter period. The first
major storm event in 2012, following the prolonged dry spell, occurred on 26" April. The
unusually wet summer of 2012 caused the feature to fill on several occasions, most
significantly in June and July. The 2012-2013 winter period displays behaviour in line with what
would be expected under normal conditions with numerous occurrences of overland flow in
response to proportionally lesser precipitation (in comparison with the summer), in marked

contrast to the 2011-2012 winter.
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Figure 6.8: RAF 1 water stage (bottom panel) for October 2010-March 2013, compared with precipitation and
discharge response recorded at R3 (top panel).
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/ Lady’s Well ditch (S2)

Plate 6.4: Overland flow in the Lady’s Well catchment; photograph taken on 17/10/2012 at S2 looking northwest
towards RAF 1. Dashed arrows indicate direction of overland flow.

Grab sample campaign

Table 6.4 contains data from the grab sampling survey, collected on fifteen separate occasions
between January 2010 and February 2013 (see Figure 6.7). Samples cover a wide range of
hydrological conditions ranging from days of no rainfall and dry antecedent conditions, to
heavy rainfall preceded by wet antecedent conditions. On every date all determinand
concentrations increased significantly between S1 and S2 (Table 6.2 — for sample locations
refer to Figure 6.4 b). The highest SS and P (TP and SRP) concentrations (and largest increase
over S1 concentrations) were recorded at S2 on the days of greatest precipitation, most
notably 28/06/2012 and 17/10/2012. On 17/10/2012 14.6 mm of rain fell, which followed 54.4
mm of rain over the previous five days; SS and TP concentrations of 1315 mg I* and 1.34 mg I
were recorded, respectively — the highest overall. Overland flow occurred in the catchment on
this date (see Plate 6.4). The highest SRP concentration of 0.45 mg "' was measured on
28/06/2012. SS concentrations decreased on average between S2 and S3 but on approximately
half of the sample dates TP and SRP concentrations increased slightly. The highest NO;
concentrations did not correspond with those of SS and P, but occurred on days of little rainfall
that followed a prolonged wet period, e.g., 19/10/2010 and 28/06/2012. The highest NO;
concentration of 44.6 mg I'* was recorded at S3 on 19/10/2010. Similarly to P, NO;
concentrations were found to be higher at S3 than S2 on approximately half of the sample

dates.

To establish if there was a seasonal difference in determinand concentrations, the data were
divided according to whether samples were collected in the autumn or the winter (Table 6.4).

As the majority of samples were collected over the winter period (as the drains seldom flowed
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in the summer) autumn was taken as samples collected in September, October and November
(as well as one sample collected in June 2012). For all determinands across all three sample
locations, average concentrations were higher in the samples collected in the autumn months.
However, based on data collected at S2, only the differences between autumn and winter SS

concentrations were significant (at the 95% confidence level - Table 6.3).

Table 6.2: Paired T-test results for water quality data recorded at S1 and S2.

Determinand n T-value P-value
Ss 13 -3.21 0.007
TP 13 -4.35 0.001
SRP 11 -3.57 0.005
NO; 12 -3.38 0.006

Table 6.3: Two-sample T-test results for autumn and winter data recorded at S2.

Determinand T-value P-value
SS 2.47 0.029
TP 1.74 0.107
SRP 1.17 0.265
NO; 2.04 0.066
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Table 6.4: Grab sample data.

Date Rainfall on day/antecedent conditions Determinand concentration (mg I™)
SS TP SRP NO;

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
22/01/2010 8.8 mm rain/following 19.6 mm over 7 days 12.4 297.5 284.0 0.054 0.661 0.621 0.021 0.256 0.215 6.8 10.5 9.2
05/02/2010 5.6 mm rain/following 4 mm over 3 days 275.0 244.0 0.392 0.375 0.125 0.103 149 147
04/03/2010 No rain/4 days after large storm 5.6 40.0 32.0 0.031 0.192 0.221 0.027 0.121 0.146 8.5 12.0 10.9
19/10/2010 1.2 mm rain/following week of steady rain 44.0 400.8 283.6 0.062 0.249 0.329 0.054 0.110 0.132 147 40.8 446
09/11/2010 2 mm rain/following 39.8 mm over 7 days 10.6 475.0 302.2 0.065 0.488 0.449 0.038 0.122 0.143 5.6 8.8 9.4
18/11/2010 3.6 mm rain/following 26.2 mm over 5 days 17.5 112.7 80.6 0.060 0.200 0.175 0.016 0.069 0.073 7.4 124 136
17/01/2011 No rain/4 days after storm 10.7 64.0 75.0 0.056 0.286 0.168 0.033 0.054 0.054 13.7 15.8 16.3
07/02/2011 6.8 mm rain/following 20.6 mm over 5 days 125 312.2 305.0 0.042 0.388 0.394 0.028 0.187 0.195 6.6 9.5 9.9

06/09/2011 5 mm rain/following week of steady rain 34.8 748.8 722.0 0.061 0.812 0.830
28/11/2011 0.2 mm rain/following week of steady rain 12.0 137.0 131.0 0.052 0.446 0.395 0.019 0.184 0.171 12.0 19.1 19.0
15/02/2012 No rain/following relatively dry period 5.0 37.0 29.0 0.044 0.303 0.285 0.024 0.103 0.096 6.1 11.2 10.5
28/06/2012 27.4 mm rain/following 45 mm over 7 days 42.0 1188.0 1032.0 0.109 1.178 1.211 0.041 0.454 0.461 10.7 237 25.2
17/10/2012 14.6 mm rain/following 54.4 over 5 days 52.5 1315.0 1044.0 0.066 1.336 1.201 0.316 0.227 7.3 6.9
11/01/2013 No rain/following 4.4 mm previous day 24.0 17.0 0.089 0.072 0.023 0.018 7.7 9.4 9.1
12/02/2013 No rain/following 6.4 mm two days previous 6.0 19.0 24.0 0.035 0.075 0.059 0.011 0.029 0.032 5.5 12.0 10.9
n 13 15 15 13 15 15 11 14 14 12 14 14
Mean 20.4 247.2 200.8 0.053 0.357 0.341 0.031 0.131 0.133 9.0 15.6 16.1
c 16.6 415.0 348.4 0.019 0.376 0.366 0.012 0.120 0.111 3.2 8.7 9.8

Autumn
n 6 6 6 6 6 6 5 5 5 5 5 5
Mean 26.8 510.4 425.2 0.068 0.562 0.565 0.034 0.188 0.196 10.1 21.0 224
c 15.2 406.6 373.3 0.021 0.371 0.384 0.016  0.154 0.152 36 125 138
Winter

n 6 8 8 6 8 8 6 8 8 7 8 8
Mean 8.7 133.6 126.3 0.044 0.298 0.274 0.024  0.112 0.107 78 119 114
c 3.5 134.6 127.6 0.010 0.190 0.188 0.008  0.080 0.073 2.8 23 2.6
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RAF 2 event sampling

Two separate storm events were sampled at both the inlet and outlet of RAF 2 with the auto-
samplers during the monitoring period; Table 6.5 contains summary data for the two events
(26/02/2010 and 10/01/2011). Figure 6.9 shows data recorded in a 19 hour event on 26"
February 2010. Antecedent conditions were wet following steady rainfall (22 mm over the
previous 7 days) before 21 mm of rain fell on the 26™, with a peak rainfall intensity of 3 mm hr.
At the onset of sampling both SS and TP concentrations were slightly higher at the inlet than
the outlet but only for the first 3 hours. After this, concentrations were higher at the outlet. SS
peaks at 698 mg I (at the outlet), which coincides with the maximum pond stage after 4 hours.
Total P concentration peaks just after the maximum pond stage at 1.22 mg I (inlet) but the
highest TP concentration of 1.24 mg I'* was recorded 2 hours later at the outlet, at the start of
the recession. Suspended sediment concentrations remain higher at the outlet until the 11th
hourly sample, after which higher concentrations are recorded at the inlet. A similar pattern

happens with TP.

Nitrate concentrations differ only very slightly between the inlet and outlet for the entire
sampling duration. The overall pattern is a slight reduction during the rising limb followed by a
steady increase during the recession. The NO; concentration of 11 mg I'* may not represent the
peak as higher concentrations were recorded in the grab sample campaign (Table 6.4). In this
instance the sampling sequence was stopped due to a fall in pond stage, therefore less of the
recession was recorded. Overall, during this event, there was a net loss of SS and NOs, 2.3 and
2.5% respectively, and a small 1.6 % net retention of TP; these percentages are based on

concentrations alone as loads could not be calculated.

A 17 hour event was recorded on 10" January 2011; Palmer (2012) measured the mass of
sediment retained behind RAF 1 (described above) following this same event. The synchronous
data collected at the pond inlet and outlet demonstrated a very similar pattern as described
above, whereby no significant net retention of sediment/nutrients occurred. At peak pond
stage the highest concentrations of SS and TP were recorded: 1011 and 1.702 mg I,

respectively.
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Figure 6.9: RAF 2 inflow and outflow SS, TP and NO; concentrations during a storm.
Table 6.5: Summary of results recorded at RAF 2
Date/time Duration (hrs) Determinand retention (%)
SS TP NO;
Range Mean Range Mean Range Mean
26/02/2010 16:00 19 -21.6-34.1 -2.3 -17.6-23.3 1.6 -17-3.5 -2.5
10/01/2011 23:00 17 -11.4-15.8 0.3 -11.8-21.9 -1.2 -3.3-5.2 -1.7
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6.3.4 Discussion

Sediment and nutrient loss — patterns and processes

The grab sample and auto-sampler results provide evidence of the different processes
contributing to the export of sediment and nutrients from the Lady’s Well catchment. The grab
sample data demonstrate that relatively high concentrations of SS, P and NO; occur in the
catchment throughout the year (apart from the summer when the drains/ditch often stops
flowing). On nearly every occasion TP and SRP concentrations exceeded the EA recommended
maximum concentrations of 0.1 mg I, and SS concentrations as high as 400 mg I were
recorded that significantly surpass the 25 mg I acceptable threshold prescribed under the
Freshwater Fish Directive (2006/44/EC). An average NO; concentration of 16.1 mg I was
recorded, with a maximum of 44.6 mg I. Although below the 50 mg I"* prescribed under the
Drinking Water Directive (98/83/EC), Skinner et al. (2003) and Hickey and Martin (2009) argue

that such concentrations are potentially of ecological significance.

The results of the grab sampling campaign suggest that mean SS, P and NO; concentrations are
higher in autumn than winter. Other studies have reported a similar seasonal effect on
sediment and nutrient loss in surface runoff from agricultural land; Heathwaite and Dils (2000)
recorded highest mean concentrations (0.16 — 0.19 mg TP I) in September and October. This
is attributed to autumn storms, due to high P concentrations in the soil in summer months as a
result of fertiliser applications, increased grazing activity and escalated microbial activity due
to higher temperatures and soil re-wetting. Pollutant concentrations often decrease during the

winter months due to source exhaustion.

The export of diffuse pollution from the Lady’s Well sub-catchment (and most likely in the
wider Belford catchment) takes two forms; ‘chronic’ export, which takes place during residual
flow conditions where drainflow and shallow subsurface flow are the dominant flow pathways;
and ‘acute’ export, which occurs in larger storms and where overland flow is the major conduit.
The significant increase in all determinand concentrations between S1 and S2 strongly
suggests that the field drains are responsible for the transfer of a significant proportion of
polluted runoff. This is because the ditch (at S2) is principally drain-fed and there was no
known overland flow in the catchment during the majority of sample collections (28/06/2012
and 17/10/2012 being the exceptions). Data collected during storm events at RAF 2 show how
concentrations of SS and P increase in correlation with stage (assumed to be positively related
to discharge) therefore at times of elevated flow exponentially greater loads of SS and P are
being exported from the catchment. The same effect was reported by Deasy et al. (2009) in

the Jubilee catchment (with slowly permeable soils) and also by Deasy et al. (2008) in the clay
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soil Hampshire Avon. Large surface runoff events are relatively infrequent but are likely to
account for the majority of soil erosion and related sediment (and associated nutrient) losses

from the catchment.

Due to the level of sediment/nutrient monitoring and lack of discharge measurements in this
particular study it is not possible to estimate percentages losses according to different flow
pathways. However, Palmer (2012) predicted that on average 92% of the annual runoff in the
Lady’s Well catchment was delivered by drainflow. Research has shown how subsurface
pathways, including field drains, can play an important role in sediment/nutrient export.
Chapman et al. (2001) showed that large quantities of sediment were being lost via subsurface
flow from agricultural land during storm events and that the source of this sediment is usually
within the top 35 cm of the soil profile. They suggest that as a consequence PP losses can also
be substantial. The proposed mechanism for this was macropore flow, which can be especially
efficient at the end of summer dry periods, before the soil becomes re-wetted. This could
account for the elevated P concentrations recorded in the Lady’s Well grab sample campaign.
Ulén et al. (2007) reported that subsurface pathways could contribute 12-60% P losses from
agricultural fields and Deasy et al. (2009) argued that in the Jubilee catchment, subsurface
runoff pathways had higher discharges on average and flow for a greater proportion of the
time than surface runoff pathways. Hence they have the capacity to transfer larger
sediment/nutrient loads (for example, on an annual basis); event durations for drainflow are

also longer than for surface runoff.
Mitigation potential

It was clear from visual observations that sediment was accumulating in RAF 2. Plate 6.5 and
Plate 6.6 provide an example of an online pond RAF (also in the Belford catchment on the main
channel, but not measured as part of this study) that became silted up over a period of four
years and nine months. Plate 6.7 shows the same RAF after it was cleaned out by the farmer
(as the photographs were taken from different angles, the arrows indicate the direction of
water flow though the pond — from inlet to outlet). Plate 6.6 shows how the bulk of the
sedimentation occurred at the inlet of the feature and the same was seen to happening in RAF
2 (albeit to a lesser extent as it was not on the main stream channel). Johannesson et al. (2011)
also found that the majority of sediment was deposited near the inlet of a monitored wetland,
and that the P content of this sediment corresponded to almost 80% of the P load. However,
despite this evidence, the synchronous samples collected at the inlet and outlet of RAF 2
during storm events indicate otherwise. Higher SS and TP concentrations were recorded at the

outlet in comparison with the corresponding inlet sample during the early high flow
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component and peak of the event. Thus it is apparent that the feature (and probably other
online pond RAFs) may be functioning to reduce chronic losses of SS (and sediment-phase
nutrients), but are largly ineffective in storm events. This is likely attributed to the reduction in
residence time during high flows. It is also strongly suspected that remobilisation of previously

deposited material is the main reason for failure.

To improve pollutant retention without having to increase the overall size of the RAF (as
volume is positively correlated with residence time) the features could be modified by adding
baffles, or introducing vegetation (as reported by Braskerud (2001)). These would help prevent
flow from ‘shortcircuting’ the system and would reduce remobilisation. Also, in order to
maximise the lifespan and water storage capacity of the online pond RAFs it would be
favourable to construct upstream sediment traps to attenute the sedimentation rate in the

main ponds.

Plate 6.5: Online pond RAF after construction Plate 6.6: Online pond RAF filled with sediment (June
(September 2008). 2013).

Plate 6.7: Online pond RAF after sediment removed by farmer (June 2013).
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Visual observations suggetsed that RAF 1 was functioning to capture sediment duirng storm
events. Palmer (2012) was able to quantify this on a single occasion and estimated that
approximately 1 tonne of sediment was retained. Despite this positive finding, it is important
to note that this type of feature will only function in events that generate surface runoff,
although this is arguably when the largest pollutant loads are exported (e.g., Haygarth et al.
(2005)). However, in this particular location it is apparent from the grab sampling campaign
that high concentrations of pollutants are lost via the subsurface field drain (Ulén et al., 2007,
Deasy et al., 2009) and therefore by-pass the feature. In a situation such as this where field
drains have been identified as an important transfer route for sediment and sediment-phase

nutrients, the number of mitigation options available are limited.

Perhaps the most effective would be the reversion of land use from arable back to grass, but
this is unfavourable to the farmer. Another option, which would allow for the continuation of
arable land use, would be to ‘treat’ the runoff as it leaves the drains and enters the ditch

network as has been attempted with RAF 2.

6.4 The need for a bespoke ditch-based RAF

6.4.1 Multi-stage treatment RAF

A new RAF (see Figure 6.4c for location) was constructed in February 2011 in the 150 m length
of ditch directly upstream of RAF 2 and approximately 500 m down the catchment from RAF 1.
Prior to construction the ditch was cleaned out by the farmer, effectively removing all
accumulated sediment. The design represents the culmination of experience gained from work
described above and has the aim of mitigating polluted tile drain flow by achieving the

following objectives:

e reduce sediment/nutrient losses during residual flow and small storm events (with no
surface runoff).
e target specific locations for sedimentation and reduce the remobilisation of previously

settled material (and associated nutrients) during storm events.

To meet the above criteria the design was a multi-stage treatment RAF, which comprised an
upstream sediment trap, followed by a filtering system consisting of leaky willow barriers and

brash screens, and a final wood chip barrier/filter (Figure 6.10).
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Figure 6.10: Schematic of the multi-stage RAF constructed in Lady’s Well (not to scale).

RAF design and construction

Initial findings in Belford suggested that it was important to create more sediment traps,
especially upstream of online ponds to help reduce their sedimentation (with coarse sediment
- >125 pm), thus prolonging maximum flood storage capacity. Sediment traps also help to
determine where in the system material is stored. It is important the design is simple but
appropriate to allow quick construction and straightforward maintenance (i.e., sediment

removal).
Sediment trap design

The flow rate in the ditch was estimated based on the pipe size of the subsurface field drain

which feeds the surface ditch at S2 using:

1 Equation 6.1
Flow rate = i (pipe diameter)? velocity a

giving a value of 17.7 | s using an assumed velocity of 1 m s (this value is in close agreement
with the 16 | s flow capacity calculated by Palmer (2012) for the Lady’s Well subsurface field

drain).

Sediment traps rely predominantly on particle settlement to remove sediment from runoff.
One of the key factors that influence the ability of a trap to retain material is the residence

time. Sediment trap residence time is given by:

T = V/q Equation 6.2

where T is residence time, V is volume of system, g is flow into system. In order to improve the
design of effective sediment traps (i.e. to ensure that sufficient residence time is provided)
particle settling times for a range of particle sizes (Table 6.6) have been estimated based on

Stoke’s Law for settling velocity (Equation 6.3).
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v, = %(pp I: Pf) g R Equation 6.3
where v, is the particle's settling velocity (m s™) (vertically downwards if Pp > Py, upwards if
Pp < Pr), g is the gravitational acceleration (m s9), pp is the mass density of the particles (kg m?),
and py is the mass density of the fluid (kg m™). The following assumptions were made: water
temperature = 10°C; particle density = 2800 kg m™ (for silt/clay); fluid density = 1000 kg m™. It
should be acknowledged that Stoke’s Law assumes steady state flow, which may not always be

the case in RAFs.

Table 6.6: Particle size classification

Aggregate class Size range
Coarse sand 0.5-1 mm
Medium sand 0.25-0.5 mm
Fine sand 125-250 um
Very fine sand 62.5-125 pm
Silt 3.9-62.5 pm
Clay <3.9 um

According to Figure 6.11, in order to settle a particle of 3.9 um (clay) a distance of 0.5 m (a
value taken to represent the depth below the outflow pipe assumed sufficient for settlement
from the water column) it would take circa 9 hours 20 minutes; a particle of 30 um (median silt
sized) circa 9 minutes 30 seconds; and a 63 um particle (fine sand) circa 2 minutes 30 seconds.
Thus, with a target particle size for settlement of 30 um (it is not feasible to target clay) and a

flow rate of 17.7 | s™* a sediment trap with 10.1 m® storage capacity is required.

The ditch was both widened and deepened and a rock and earth bund constructed to dam the
water (Plate 6.8); the feature has a total storage capacity of circa 10 m®(6.25*2 .0¥0.8 — (m)
[*w*d). A 150 mm diameter riser pipe (Plate 6.9) was installed to drain the feature from the
surface in order to help minimise the remobilisation of previously deposited material. The riser
pipe orifice was situated at approximately 60% of the total depth to allow extra water storage
capacity during high flows (circa 4 m?). Concrete slabs (600 mm?) were used to partially line
the bottom of the trap in order to provide a solid bottom to aid sediment recovery by

mechanical digger and also enable the measurement of sediment accumulation depth.
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Figure 6.11: Steady state a) particle settling velocity, and b) time for particle to settle to 0.5 m, based on Stoke’s
Law (Equation 6.3).

Plate 6.8: Sediment trap after construction. Plate 6.9: Rock and earth dam with outlet pipe.

Three woven willow check dams (Plate 6.10) were installed in the channel downstream of the
sediment trap with brash screens placed upstream and pinned into place to prevent them
from being washed away. After only a few months the willow canes had taken root and had
sprouted leaves (Plate 6.11); a living dam should have a much longer lifespan compared with
one constructed from dead timber, which would decay. The rationale of this feature was to
reduce the velocity of the water in a particularly steep section of ditch and to have a partial

damming effect on the flow, causing it to back up and promote sedimentation.
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Also once pockets of larger sediment particles are trapped in the brash it is believed that these

may have a flocculation effect on the fine clay material.

Plate 6.10: Woven willow dam after Plate 6.11: Living willow dam circa two months after
construction (taken 23/03/2011). construction (taken 02/06/2011).

The fine filter was designed to remove fine sediment (particles <125 um) and associated
nutrients. To achieve a high level of filtration whilst ensuring that water can pass through
relatively easily, wood chippings were used as a cost-efficient filter media. The channel was
deepened and widened to accommodate around 6 m? of chippings, which were held in place
by a timber pen lined with wire mesh and supported by wooden stakes (Plate 6.12). The use of
a wood chip bioreactor is a method for removing NO; from drainage water by denitrification
(in which NOs is converted to nitrous oxide and nitrogen gas). Bioreactors have been studied
and have been shown to effectively reduce NO; concentrations in agricultural runoff through
denitrification (e.g., Saliling et al. (2007); Greenan et al. (2009); Woli et al. (2010) — see Chapter
2.9.2). The filter medium will require periodic renewal as it degrades, and can be spread to
land following removal. A spillway was created around the side of the feature to allow the

bypass of water during large runoff events, preventing overtopping and damage.
Cost

The overall construction cost of the multi-stage RAF was circa £1000. This included contract
digger hire = £250, wood chippings = £150, timber and wire = £100, and the cost of one day’s

work for two people = £500.
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Plate 6.12: Fine filter feature containing circa 6 m?® of wood chippings.

Instrumentation

The feature was originally instrumented with a pressure transducer and a rectangular flume at
the upstream end. To determine the performance of the RAF synchronous water samples were
taken during storm events using two auto-samplers located up and downstream of the feature.
Samples were analysed for concentrations of SS, P and NO; according to the methodology
described in Chapter 3.3. The samplers were set to a single float switch located adjacent to the
upstream pressure transducer; twenty-four x 1 litre samples were collected hourly from the
point of programme initiation. However, due to the flashy nature of the ditch it was difficult to
measure the discharge accurately over a range of flows using the rectangular flume. Thus, to
allow the calculation of flow-weighted concentrations and pollutant loads, v-notch weirs and
accompanying pressure transducers were installed at both the up and downstream monitoring
points at a later date (Figure 6.10). Discharge was calculated using the appropriate weir

equation (see Appendix B1 for details).
Measurement of sediment accumulation

The sediment trap was divided into three zones (inlet, central and outlet) and the volume of
retained sediment calculated by multiplying the surface area with the mean sediment
thickness of a single zone. Sediment thickness was determined by inserting a measuring rule
through the sediment until it hit the solid concrete slab (slab location was marked by wooden
posts); the depth was then read from the rule. Due care was taken when entering the trap so
as not to disturb the area of measurement. The total volume of trapped sediment is given by

the sum of the three-zone volumes.
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To convert sediment volume into mass it is necessary to measure the bulk density of the
sample. Bulk density is defined as the ratio of dry sediment mass to bulk sediment volume

(including pore spaces) given by:

Pd = MS/V Equation 6.4
where py is the bulk density, M; is the mass of the dry sample, and V is the total volume (of the
wet sample). The two most common methods used for obtaining a soil sample of known
volume are the core method (a cylindrical coring tool of known volume is driven into the soil to
a desired depth) and the excavation method (level soil surface and dig a hole to desired depth;
line hole with plastic, then fill it with measured volume of water). However, as the sediment
trap is partially filled with water the collection of an undisturbed sediment sample is far less
straightforward. Samples was dug up from the bottom of the trap using a spade and carefully
lifted through the water to keep disturbance to a minimum. Sample were then placed into
containers of known volume and mass and sealed before taking them to the laboratory where

the wet samples were weighed and then oven dried.

The available P content of the sediment was determined using British Standards Institute
method BS 775-3.6:1995 (BSI, 1995). Each sample was air-dried and ground to pass through a
2.0 mm mesh. The P content was extracted using the sodium hydrogen carbonate (NaHCO3)
extraction method developed by Olsen et al. (1954) (on a volume basis where a 5 ml of soil
was extracted with 50 ml of 0.5 M NaHCO3). The P concentration in the extract was
determined by the phospho-molybdate method proposed by Watanabe and Olsen (1965) and
Murphy and Riley (1962). The absorbance of the phospho-molybdate complex was measured
on a UV-Vis Spectrophotometer after calibration with P standard solutions at a wavelength of

825 nm.

6.4.2 Results

Hydrology

Data recorded by the pressure transducer in the original upstream flume was unreliable, due
to low water depths that occurred for a large proportion of the time, so was disregarded. As a
surrogate the pond stage from RAF 2 (directly downstream of the multi-stage RAF) is used as it
spans the entire monitoring period (Figure 6.12). The stage record shows how 2011 was
relatively dry and that only one significant high-discharge event occurred in August. This event
was not sampled. The 2011/2012 winter was also unseasonably dry and the first major runoff
event was not recorded until April 2012; for the period April 2011-March 2012 total

precipitation was 557 mm and for the corresponding 2012-2013 period precipitation was 1169.
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Three events were sampled before the V-notch weirs were installed; nine events were

sampled in total.

Table 6.7 summarises the hydrological conditions for the monitored events. Figure 6.13 depicts
the stage record measured at the upstream V-notch weir. Discharge response is very flashy in
relation to precipitation and a maximum discharge of 56 | s* was recorded. Discharges above
20 1 st only account for 5% of the flow duration and Qs is 3.02 | s'l(Figure 6.14). Manual
measurements of water stage were taken at both V-notch weirs whenever equipment was

downloaded to allow validation of the pressure transducer readings and increase accuracy.

Overall there was a very good agreement in recorded stage (and therefore discharge) records
in terms of shape, timing and magnitude between the upstream and downstream weirs. When
analysing the upstream/downstream discharge responses during monitored storm events (see
next section) it is apparent that the downstream hydrograph is less ‘spikey’, showing signs of a
buffered response. Examination of rising and falling limbs indicates a very slight attenuation of
flow at the downstream weir on rising limbs and steeper, shorter recessional limbs at the

upstream weir (Figure 6.16 — top panel).
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Figure 6.12: Stage recorded in RAF 2. Red markers indicate occasions when the auto-samplers were operational.
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Figure 6.14: Lady’s Well flow duration curve based inlet V-notch weir data.

Table 6.7: Lady’s Well precipitation, discharge and sampling event summary 2012-2013.

Event Start time/date Duration Total precipitation Peak hourly Peak discharge

sampled (hrs) (mm) precipitation (mm) (I s'l)
1 10/05/2012 00:00 24 33.6 2.8 -
2 17/06/2012 13:30 12 5.4 1.6 -
3 12/10/2012 01:30 14 24 5 -
4 25/11/2012 02:15 18 24.2 4.4 29.7
5 14/12/2012 15:30 14 24 3.6 53.5
6 07/01/2013 04:30 15 16.4 2.8 27.4
7 26/01/2013 21:15 24 31.8 4.8 52.8
8 17/03/2013 08:00 22 14.4 2.8 353
9 19/03/2013 05:45 24 18.8 2.2 46.5
Water Quality

Paired samples were collected from the inlet and outlet of the multi-stage RAF during nine
storm events (Figure 6.12, Figure 6.13 and Table 6.7). Tables containing raw discharge and

concentration data can be found in Appendix H1.

Event 4 (the first captured following the installation of the V-notch weirs) is depicted in Figure
6.15. It is a medium-magnitude discharge event in response to a large storm event following a
prolonged period of little precipitation. Suspended sediment concentration peaks early at the
RAF inlet relative to peak discharge; this is also when maximum SS reduction occurs (51.8%).
There are several points after peak concentration has passed through the RAF that outlet
concentration is slightly higher than inlet concentration. On average SS concentration is
reduced by 25% over the duration of the event. When combined with discharge, SS load is
reduced by a mean of 32%. Peak TP concentration (at the inlet) is recorded three hours after

peak SS but also decreases prior to peak discharge. Over the course of the event TP
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concentration is reduced by a mean of 15.2% (max. 36%) and load by 21%. Similarly to SS,
there are some occurrences where TP concentrations are slightly higher at the outlet
compared with the inlet, as overall concentrations fall. Nitrate concentrations exhibit no
correlation with discharge and increase gradually (at both the inlet and outlet) over the
duration of the event. A slight reduction in NOj; is recorded on the rising limb (max. 19%) with

a mean of 8% (concentration) and 9% (load) calculated for the entire event.
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Figure 6.15: Discharge and SS, TP and NO; concentration record — Event 4.
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Figure 6.16 depicts SS, TP, SRP and NO; concentrations recorded at the inlet and outlet during
Event 9, a relatively high magnitude, double peaked event in response to moderate but
prolonged rainfall. Generally SS and TP are closely related to discharge and peak conjointly.
Soluble reactive P concentration also increases with discharge but exhibits a more attenuated
and buffered response, peaking circa two hours after peak discharge. Nitrate shows little to no
relation to discharge but rather displays a slow and steady increase throughout the first 20
hours of the 24 hour sampling period. Suspended sediment, TP and SRP concentrations
recorded at the outlet sample site are generally lower than corresponding samples collected at
the inlet. In this instance SS, TP and SRP concentrations are reduced by an average of 26.2%,
13.9% and 15.2% over the 24 hour event, while loads are loads are reduced by 29.5%, 20.2%
and 14.7%, respectively. Nitrate reduction is negligible with a 3.9% decrease in concentration

and a 5.3% decrease in load recorded.

Time series charts for all monitored events can be found in Appendix H2. Summary tables of
RAF performance, including ranges and means of both concentrations and loads, can be found

in Appendix H3; observations indicate positive but variable effectiveness.

Some caution is required in the interpretation of sediment trap efficiency at low discharges,
when the residence time within the trap means samples taken at the same time are not paired.
However, over all the monitored events, maximum reduction in peak SS was 87.9%
(concentration) and 65.4% (load); maximum TP decrease was 89.9% (concentration) and 63.4%
(load); maximum SRP decrease was 62.0% (concentration) and 58.3% (load); maximum NO;
decrease was 48.9% (concentration) and 52.1% (load). However, it should be noted that the
highest concentration reductions (for all determinands) were recorded during Event 1 and that
discharge values are not available for this occasion. The largest reduction in SS and TP

occurred during the rising limb and at peak discharge.

Sediment/nutrient losses from the RAF (higher concentration recorded at the outlet compared
with the corresponding inlet value) were recorded during some hourly time steps. For SS, TP
and SRP this occurred predominantly during the recession. The event pattern for NO; showed
no discernible retention/net loss occurring during the rising limb. This was often followed by
limited retention on the recession and a switchover point following which inlet concentrations

decreased whereas outlet concentrations either stayed constant or increased slightly.
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Figure 6.16: Discharge and SS, TP, SRP and NO; concentration record — Event 9.
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Overall RAF performance is summarised in terms of inlet and outlet determinand
concentrations in Table 6.8, mean concentration reduction percentage and significance in
Table 6.9, and mean load removal percentage and significance in Table 6.10. For SS and TP
better efficiency is found in the reduction of loads and for SRP and NO; better efficiency is
found in the reduction of concentrations. A mean significant decrease in both concentration

and load reduction was found for all determinands.

Table 6.8: Summary statistics of RAF inlet and outlet determinand concentrations.

SS conc. (mg I'l) TP conc. (mg I'l) SRP conc. (mg I'l) NO; conc. (mg I'l)

Inlet Outlet Inlet Outlet Inlet  Outlet Inlet  Outlet

Minimum (mg I'l) 27.0 11.0 0.055 0.030 0.009 0.007 5.9 5.5
Maximum (mgl?) 1068.0 822.0 2.040  1.346 0.408  0.299 49.5 48.5
Mean (mg I'l) 391.6 280.9 0.716 0.564 0.190 0.149 14.8 13.3
Median (mg I'l) 329.0 245.0 0.635 0.521 0.184 0.141 9.5 8.8
o (mg I'l) 227.9 154.4 0.350 0.251 0.102 0.081 12.2 10.8
n 165 165 165 165 62 62 143 143

Table 6.9: Mean percentage concentration reduction and significance.

Determinand n Mean % reduction Paired T-Test
T-value P-value
SS 165 25.7 14.67 <0.001
TP 165 19.6 12.50 <0.001
SRP 62 18.9 9.86 <0.001
NO; 143 9.0 5.90 <0.001

Table 6.10: Summary of pollutant loads, mean percentage reduction and significance.

Determinand n Mean load (instantaneous) Mean % reduction Paired T-Test

Inlet Outlet T-value P-value
SS (g) 117 12.7 9.0 30.1 9.35 <0.001
TP (mg) 117 22.62 17.53 233 8.65 <0.001
SRP (mg) 38 5.550 4.84 12.4 4.87 <0.001
NO; (mg) 95 326.00 304.7 7.6 5.26 <0.001

Concerning SS, the greatest reductions occurred during events with high inlet concentrations
(Figure 6.17 a) but there was no clear correlation between SS reduction (RAF efficiency) and
discharge (Figure 6.17 b). Table 6.11 contains Pearson’s correlation coefficients for RAF

efficiency vs. both inlet concentrations and discharge, for all determinands.
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A weak positive correlation occurred between SRP inlet concentration and reduction, and a
weak negative correlation between discharge and reduction percentage. No correlation was

observed between NO; concentration and reduction, or between discharge and reduction

percentage.
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Figure 6.17: The relationship between SS reduction and a) inlet concentration
(measured at the RAF inlet), and b) discharge.
Table 6.11: Pearson’s correlation coefficients for RAF efficiency.
Determinand Inlet conc. vs. reduction (mg I'l) Inlet discharge vs. reduction (%)
Pearson's R P-value Pearson's R P-value
SS 0.876 0.000 -0.179 0.054
TP 0.803 0.000 0.075 0.419
SRP 0.339 0.105 -0.411 0.046
NO; -0.015 0.884 0.192 0.062

229



Figure 6.18 shows RAF performance (determinand concentration reduction percentage) over
the duration of the monitoring period. The analysis indicates that the feature’s ability to
reduce concentrations of sediment and nutrients was variable, with the scatter attributed to

the different magnitude and type of event, but importantly did not significantly decrease over

time.
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Figure 6.18: RAF performance over time (see Table 6.7 for event dates).

Sediment trap sediment accumulation

In the sediment trap component of the RAF, accumulated sediment depth increased along the
length of the feature (from inlet to outlet - Figure 6.19). The total volume of retained sediment

was measured as 2.21 m?, a total dry sediment mass of 2.01 tonnes.

Sediment P concentration was measured as 52.2 mg kg™ at the inlet zone and 32.7 mg kg at

the outlet zone. This equates to a P trapping rate of 0.004-0.007 kg ha™.

Sediment trap zone

Inlet Middle Outlet Total
Area (m?) 3.45 3.45 3.45 10.35
Sediment depth (m) 0.17 0.22 0.25
Sediment volume (m3) 0.59 0.76 0.86 2.21
Bulk density (g cm™) 0.941 0.915 0.888
Sediment mass (t) 0.56 0.70 0.76 2.01

Direction of flow

Figure 6.19: Sediment trap accumulated sediment.
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6.4.3 Discussion

Hydrology

The installation of V-notch weirs at the inlet and outlet of the RAF made the measurement of
discharge significantly more accurate and allowed the subsequent calculation of sediment and
nutrient loads. Comparison of the inlet and outlet discharge records during storm events
indicates that a small amount of flow attenuation was occurring at the downstream
monitoring location, this was evident on the rising limb and at peak discharge. However, as the
pressure transducers were logging at 15 minute intervals it is difficult to quantify the delay as
the small size of the ditch and short length of reach mean that any delay in time to peak is
going to be a maximum of 15 minutes or likely less. Logging discharge on a shorter time
interval would provide more insight into this matter but the evidence suggests that the ditch
interventions were acting to back up runoff and attenuate peak flows, despite the small size of
the features. V-notch weirs were selected for their ability to accurately measure low flows as
well as high flows. However, they have some disadvantages for this type of application that are
important to divulge. It may not be possible to install a V-notch weir large enough to convey
the largest discharges if the ditch is small and/or shallow. The V-notch weir also creates an
upstream backwater zone, which can act as a mini sediment trap. Rectangular weirs may be
more appropriate; the measurement of low flows will be less accurate compared with V-

notches, but the quantification of high-flows is arguably more important.

Sediment and Nutrient retention

The multi-stage ditch RAF consistently reduced concentrations and loads of sediment and
nutrients at the event scale. Overall, SS, TP, SRP and NO; concentrations were reduced by 26%,
20%, 19% and 9%, respectively, while respective loads were reduced by 30%, 23%, 12% and 8%.
The greater reduction in SS and TP loads, compared with concentrations, is attributed to the
positive correlation between SS (and associated P) and discharge, meaning higher
concentrations at higher discharges and subsequently greater load reduction. The opposite
effect occurs for SRP and especially NO; as an increase in discharge exhibits either an

attenuated response in concentration or even a reduction.

The largest overall SS and TP reductions occurred during events with high inlet concentrations
(higher loadings), also reported by Kadlec and Knight (1996) and Mitsch and Gosselink (2007).
RAF performance appears not to be severely negatively affected by high discharges but there
is an indication that SS and SRP removal efficiency is slightly lower at the highest of flows. The
majority of SS and TP removal occurs during the rising limb of storm events and at peak

discharge (e.g., Figure 6.16 and Appendix H2), which explains why load retention percentages
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are higher for these two determinands. The increase in PP retention at higher discharges is
likely due to the input of coarser PP while an increase in the SRP:TP ratio would see a decrease
in TP retention as less PP would settle (e.g. Braskerud et al. (2005)). The reduction in SRP
losses is perhaps more difficult to explain, although Braskerud et al. (2005) reported how SRP
retention was higher in young wetlands than older ones, and attributed this to a high iron
content in the water, which facilitated P retention by forming P-Fe complexes. This chemical
‘stabilisation’ process then becomes exhausted over time Kadlec (2005). The results in this
study are promising as one of the main design criterions was to reduce losses during high flows
— partly by preventing the remobilisation of previously deposited fine sediment (this was in

response to the event data recorded at RAF 2, reported in Section 6.3.3m - Figure 6.9).
Fine- and coarse-filter features

The inlet and outlet sampling regime using automatic water samplers has helped to evaluate
the multi-stage RAF as one feature. As the RAF consists of three separate components, which
target different sediment/nutrient removal processes, it would be desirable to monitor each
element individually. Thus it is difficult to identify which parts of the system were functioning

to reduce DWPA and possibly which were not.

However, visual evidence suggests that all three components were having some impact on
sediment removal (clearly it is not possible to see trapped nutrients). The woven willow
barriers/brash ‘coarse’ filters were observed during several high-flow events and were seen to
act as ‘leaky dams’, which created a back water zone. Overtime the brash filters became
increasing bound up with more brash and there was evidence of coarse sediment deposition.
The willow barriers have continued to grow and will require cutting back in the future but the
fact that they are living means that they will help provide stability to the steep ditch banks and
may help reduce in-channel erosion. The installation of woven willow barriers as leaky dams is
a low-cost approach to reducing flow velocities in ditch systems and can provide localized
sedimentation zones. A member of the Northumberland Rivers Trust commented that such
features could be very effective and importantly could be easily taken up by farmers (G. Dodds,

pers. comm.).

The wood chip fine-filter allowed the passage of low and residual flows through the filter
media but higher flows were forced to back-up in the ditch, and during large runoff events
water bypassed the feature via the spillway channel. The physical filtering of ditch runoff
during small-medium sized storms was almost certainly having a positive impact on the SS and
attached P concentrations. Periodically the wood chips were dug up to inspect their condition

and it was clear that significant amounts of fine sediment were being incorporated within the

232



chippings. However, the feature was not assessed for its biological and/or chemical impact on
nutrient cycling. Research suggests that denitrification could be occurring during low flow
conditions but it is highly unlikely that this would happen in storm events due to the low
contact time. However, some NO; retention was recorded on the rising limbs of some storm
events but this may due to subsurface pathways contributing NO; to different parts of the
ditch at different times as the soil wets up. It is also argued that NO; export is of less
importance during high flows due to dilution. There is an issue of maintenance related to this
feature, specifically that the chippings would require periodic renewal. The regularity of this
would depend largely on the sediment/nutrient loading of the filter and the frequency of

storm events.

To attain the level of denitrification needed to significantly reduce NO; concentrations the
wood chip filter would have to occupy a significant length of the ditch. This approach
(described in Chapter 2.9.2) is best suited to controlled discharges as it relies on the slow
passage of runoff through the system, thus it is not best suited to catchments with flashy flow
regimes capable of yielding high discharges. However, as NO3 export is not strongly correlated
with discharge then the targeting of low and residual flows is justified. If it was decided that
the NO; export from the Lady’s Well catchment was of ecological concern and required action
then a wood chipping bioreactor of appropriate size could be installed in the circa 150 m ditch
upstream of the multi-stage RAF (directly downstream of the field drain outlet). Higher
discharges that would otherwise overwhelm the filter could be bypassed around the feature
using a relief channel. Burt and Pinay (2005) described how land drainage results in drier soils,
enhanced nitrogen turnover and reduced denitrification; also that field drains transfer leached
NO; rapidly to the surface water network, reducing the potential for riparian zone
denitrification. This argument would also provide justification for the use of an in-ditch
bioreactor using wood chippings. However, considering the relatively high cost of installation
and potential high level of maintenance (thus incurring more costs) of the wood chip filter
feature is not recommended for situations such as this where relatively high, flashy discharges

are common.

Sediment trap feature

One component of the multi-stage RAF that can be part-evaluated individually is the sediment
trap. The feature functions to target sedimentation to a defined location as opposed to it
occurring along the entire length of the ditch. This should make maintenance quicker and thus
more cost-effective, although it would require more regular attention. In order to settle out

fine sediment the trap has to provide sufficient residence time as fine particles have a slower
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settling velocity. The settling of silt and clay is important as these fractions are associated with
the degradation of river beds (e.g., Kemp et al. (2011)) and nutrient losses. Phosphorus
concentrations of the trapped sediment were greater at the inlet zone compared with the
outlet zone, which is consistent with other research findings (e.g., Johannesson et al. (2011)). It
is probable that a large proportion of the fine particle load will move as part of larger
aggregates (e.g., Braskerud (2003)), meaning that the sedimentation of finer particles may be

more likely than primary particle diameter would otherwise suggest.

It is estimated that circa 2 tonnes of sediment were trapped in the feature between its
construction at the end of February 2011 and the end of monitoring in April 2013 — 25 months
later. Although it should be remembered that 2011 and the 2011-2012 winter was very dry in
comparison with the same periods one year later. If the assumption is made that the majority
of the sediment captured in the Lady’s Well sediment trap ocured in the second year it is
reasonable to estimate a trapping rate of 0.1 t ha™ yr?, based on a total of 1.5 tonnes. This
value falls well within the ranges described by Ockenden (2012) for sites with a similar soil type

(Palmer (2012) reported that the sediment retained in RAF 1 was predominantly clay and silt).

Although in this particular study SS reductions were not measured for the sediment trap on its
own, the 26% (concentration) and 30% (load) averages recorded for the entire multi-stage RAF
put it in the same range as other studies. Ockenden et al. (2012) reported SS concentration
reductions of circa 20% for a clay site and up to 60% for a silty loam site; the latter was a large
feature that represented 0.1% of the contributing catchment area. These reductions are within
the same range as the clay particle retention reported by Braskerud (2003) for two small
constructed wetlands on arable land in Norway (57% and 22%). Considering that the sediment
trap component of the RAF is relatively small in comparison to those described by Ockenden et
al. (2012) and Braskerud (2002), this suggests that the feature as a whole is fairly affective at
reducing losses of sediment and nutrients. Despite the problem that sediment traps don’t
remove 100% of the sediment from runoff, storing sediment even temporarily increases the
possibility of nutrient uptake by vegetation, thus lowering overall nutrient losses to the wider

riverine environment.

Sediment P concentration was measured as 52.2 mg kg™ at the inlet zone and 32.7 mg kg™ at
the outlet zone. By applying the same assumptions as described above this equates to a P
trapping rate of 0.004 — 0.007 kg ha™'yr™. Phosphorus retention rates ranging from 0.006 — 1
kg ha™ yr* across ten sites were recorded in the first year of monitoring in the MOPS project

(Ockenden et al., 2012), with P trapping rates also found to be highest at the sandy soil site.
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Analysis suggested (Figure 6.18) that RAF performance did not decrease over the course of the
monitoring period; Braskerud et al. (2005) also reported that increasing wetland age did not
negatively influence particulate P retention. However, sediment depth measurement showed
that the sediment trap had been reduced in capacity by circa 20% over the two year study
period, which would have a knock-on effect on the residence time afforded by the feature,
reducing its effectiveness in the longer term and increasing the risk of remobilisation.
Remobilisation of trapped sediment should be prevented by design and regular removal. Some
of the design principles used in constructed wetlands could be considered to improve

sediment and nutrient retention potential.
Sediment trap design

Despite providing a 30% reduction in sediment loss, the sediment trap was designed according
to an estimated inflow of 17.7 | s, which was of sufficient size to provide the residence time
to allow the settlement of particles >30 um. However, discharges up to 56 | s were recorded
at the inlet V-notch weir that would provide circa 3 minutes of residence time, compared with
the estimated 9 minutes 30 seconds. Analysis shows that 10.4 | s is exceeded for 10% of the
flow duration (assumed to be when the majority of SS and P is transferred), meaning that the
sediment trap would be providing a residence time of at least 16 minutes for 90% of the flow

period in autumn and winter.

Thus, according to the peak discharge measured in this study, if a new sediment trap was to be
installed in Lady’s Well, or the existing one dug out then increased in capacity, to target the
removal of medium silt particles (and coarser — requiring circa 9 minutes 30 seconds residence

time) a trap of 32m> would be required to function as designed during peak flow conditions.
(570 seconds*56 | s = 31,920/1000 = 32 m?)

This size of feature is not unfeasible in this environment, or alternatively the trap could be
divided into a number of separate smaller cells if it was more appropriate. Shallow cells have
shorter settling distances, meaning they may be more effective than deeper cells for trapping
sediment (Reinhardt et al., 2005) but will require more regular maintenance. Braskerud (2001)
suggests the use of vegetation and obstructions such as timber baffles to slow the velocity of
the runoff and stop short-circuiting of the flow. These could promote particle settlement and
resist remobilisation (Uusitalo et al., 2003). Based on the experiences gained in this study it is
suggested that sediment traps should be made as large as possible and woven willow leaky

dams could be constructed in the traps instead of as separate features.
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6.5 Summary

Concentrations of SS, P and NO; recorded in the Lady’s Well sub-catchment are potentially of
ecological significance in relation to WFD thresholds. Losses of all determinands were found to
increase during storm events. The main source of flow for the majority of the flow duration
was subsurface drainflow, particularly during smaller rainfall events and the rising limbs and
recessions of larger events. Therefore, the presence of artificial drainage could be increasing
the duration of exposure to ecologically significant diffuse pollutant concentrations. Large
storm events that generate overland flow are responsible for significantly elevated SS and P
exports but operate for much shorter time periods. However, as the study catchment
eventually discharges into a sensitive, low-energy environment receptor where large volumes
of fine sediment and associated nutrients may be retained and have a long term negative
ecological impact, having a mitigation plan which also targets surface runoff pathways (i.e.,

larger runoff events) appears appropriate.

Two RAFs installed in the Lady’s Well catchment for flood attenuation purposes were
evaluated for their ability to reduce losses of sediment and nutrients. An edge of field
retention bund RAF, which intercepts a concentrated surface flow pathway, demonstrated the
capacity to retain significant amounts of SS (and attached nutrients) but only functions during
large storm events that generate overland flow, thus addressing acute export. An online pond
RAF appeared to retain sediment during residual and low-flow conditions (adressing chronic
export) but displayed little-to-no sediment/nutrient retention capibility during high-flows. The
remobilisation of previously deposited fine material is most likely the principal reason that
outlet concentrations were often greater than inflow concentrations recorded on the rising

limb and at peak discharge.

A multi-stage RAF was constructed at a cost of circa £1000 in a 50 m length of ditch, with
design principles informed by the previous RAF studies in the catchment and in light of the
identified DWPA export regime. The feature, made up of a sediment trap, a series of coarse
filters (woven willow leaky dams), and fine filter system (using wood chippings), consistently
reduced concentrations and loads of sediment (up to 30%) and nutrients (up to 21%) at both

the small/medium and large event scale.

While wood chipping filters cannot be recommended due to relatively high costs and potential
high maintenance regime, woven willow dams, as well as being ecologically and aesthetically
pleasing, could be added to sediment traps as a component to improve trapping efficiency.
Sediment traps work effectively if appropriately designed and offer a simple, cost-effective

mitigation option to farmers, particularly if the identified sediment loss pathway is the surface
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ditch network (and/or the subsurface drainage network that feeds it). Ditches have to be
managed by farmers to maintain levels of land drainage. By adopting them to an optimum
design there is real potential to reduce ditch management costs by concentrating
sedimentation to localised ‘zones’, at the same time reducing losses of sediment and nutrients

to the wider aquatic environment.
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7. DWPA mitigation case study two: The Netherton catchment

7.1 Introduction

This chapter reports the outcomes of a case study implementation of RAFs in the Netherton
Burn catchment, Northumberland. The work was commissioned by Cheviot Futures, a non-
governmental organisation (NGO) working with land managers to help rural communities
located around the Cheviot Hills to improve their resilience to future climate change. This
includes providing practical solutions to flooding, droughts and water quality issues. Sediment
trap RAFs were developed as part of this study and form the second DWPA mitigation case
study. The design, construction and efficacy of the RAFs at reducing SS, P and NO; losses in

agricultural runoff are described in the following chapter.

7.2 Materials and methods

7.2.1 Catchment description

The Netherton Burn catchment (10 km?) is located upstream of the village of Netherton (OS
Grid Reference NT-081980) in Northumberland, northeast England (Figure 7.1). The Netherton
Burn, a tributary of Wreigh Burn, rises on the Cheviot Hills and flows into the River Coquet
upstream of the town of Rothbury. Catchment elevations range between 544 and 147 m AOD
(Figure 7.1). Biddlestone Burn rises on the fells to the north of the catchment and flows in a
southerly direction down a steep incised valley where it meets another headwater stream (at

Biddlestone) to form Netherton Burn.

The majority of the catchment is formed in lowland terrain (<300 m AOD). The upland
northern slopes are formed of early Devonian Cheviot Andesite of the Cheviot Volcanic
Formation, while Carboniferous sandstone, siltstone and limestone of the Ballagan Formation
underlie the lowlands. Devensian till dominates lowland superficial geology, excluding a line of
alluvium along the river corridor and associated river terrace deposits. Soils in the valley
bottom are recorded as typical stagnogley seasonally waterlogged soils developed in loamy till
which have slowly permeable clay-enriched subsoils (Payton and Palmer, 1990). This has
resulted in artificial under-drainage of the catchment using tile drains. The lower slopes are
recorded as freely draining loamy, typical brown podzolic soils and the higher elevations as
soils with acid-peaty topsoils with little or no water storage capacity during the wet season

(Payton and Palmer, 1990).
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Land use is predominantly agricultural, with sheep grazing in the uplands and a mixture of
pasture and arable in the lowlands. Arable rotations are found chiefly, but not exclusively, to
the south of Netherton Burn where the land is of lower relief. There are relatively small areas
of mixed deciduous and coniferous woodland throughout the catchment. Six different
landowners own the farmland in the catchment but this particular study is focused on land
owned by Elilaw Farm, to the eastern-side of the catchment (outlined in red in Figure 7.1).
There is a quarry at Biddlestone where a red mica-porphyrite, called ‘Biddlestone Red’ is

extracted; it is particularly suitable for specialised use in road surfaces.

The SAAR value for the Coquet at Bygate (59 km?” — circa 15 km west of Netherton) is 1020 mm
and the value for Usway Burn at Shillmoor (21 km* — circa 10 km west of Netherton is 1056
mm (source: Environment Agency, Hiflows, 2013). Therefore the SAAR for the Netherton

catchment is assumed to be circa 1000 mm as maximum catchment elevation is slightly lower.
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Figure 7.1: Map of Netherton Burn catchment and DEM.
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Hydrometeorological data

A rain gauge and three stage gauges are installed in the Netherton catchment (Figure 7.1). At
the downstream location (circa 250 m upstream of the village) two pressure transducers are
installed side-by-side in the stream, one acting as a back-up. The main gauge is a vented
pressure transducer while the back-up gauge is not, thus requires a corresponding barometer

to correct for atmospheric pressure. All instruments are logging at 15 minute intervals.

7.2.2 Flood and DWPA mitigation scheme

Netherton village is prone to flooding (Plate 7.1 and Plate 7.2) and a number of phases of work
using the local floodplain to implement Natural Flood Management (NFM) were carried out
under the Netherton Project. Led by Cheviot Futures [http://www.cheviotfutures.co.uk/], in
close collaboration with the Proactive group from Newcastle University, the project relied on a
successful partnership and stakeholder engagement in order to ensure uptake and delivery. As
well as addressing the problem of flooding in Netherton, the project also aimed to tackle water
quality issues; thus becoming a multiple-benefit scheme. This chapter describes Phase One of

the project, specifically the design and implementation of the DWPA mitigation RAFs.

Plate 7.1: Netherton Burn in flood (September 2008). Plate 7.2: Netherton village flooded (September 2008).

7.2.3 Mitigation site description

The 80 ha Elilaw sub-catchment (Figure 7.2 - see Figure 7.1 for wider location) is of relatively
steep relief, falling from 326 to 158 m AOD over a distance of 2 km. The surface drainage
regime has been heavily modified in the past by a mill race constructed to supply water to
Netherton Mill. The mill race was designed to collect runoff from the hill to the north of Elilaw
Farm, and a channel constructed along the contour of the hill directs water into a pond located
at the Farm. Water is piped under the settlement and then flows in a surface ditch down the

hill to the mitigation site. The farm pond and piped drain both act to regulate the flow of the
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watercourse (P. Stott, landowner, pers. comm.). Over time the mill race channel has degraded
so that the majority of the flow enters into the Netherton Burn instead of taking its intended
course towards the mill (Figure 7.3). Besides the mill race, a number of subsurface drains
contribute water to the site, most of which enter the old mill race before spilling into the Burn

(Figure 7.3). Prior to RAF construction the mitigation site was used for rough grazing.

Legend
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Figure 7.2: Map of Elilaw sub-catchment; red square indicates mitigation area (Figure 7.4).

Figure 7.4 depicts the mitigation site post intervention. The channel from Elilaw Farm has been
re-directed to a large floodwater storage RAF via a three-tier sediment trap feature
(contributing catchment area of circa 70 ha). To the north of the site a single sediment trap
was constructed through which water from the mill race was re-directed before being
channelled to the main storage feature (contributing catchment area of circa 10 ha). Details of

the individual RAFs are given below.
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Figure 7.3: Elilaw mitigation site — before intervention.
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Figure 7.4: Elilaw mitigation site — after intervention.
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7.2.4 RAF design and construction

Flood storage pond

Cheviot Futures and the landowner agreed to construct a flood storage RAF through which to
re-direct and temporarily store runoff from the entire Elilaw catchment, before it discharges

into the Netherton Burn.

The RAF was excavated and the removed soil used to construct a bund (1 m max.); excess
material was moved to another part of the farm to be used in Phase Two of the project. An
island was built in the centre of the pond to provide new habitat (e.g., for wetland birds) and
to create a more natural appearance (Plate 7.3). The pond is drained by a riser pipe that
discharges into the Netherton Burn and holds approximately 1400 m® of water under normal
flow conditions. One-metre of freeboard was created to allow for an additional 1000 m* of
floodwater storage. An armoured spillway ensures that the bund is not overtopped and

subsequently eroded.

Pond outlet
(via pipe)ds.

Plate 7.3: Main pond RAF after construction (Feb 2012).

Sediment traps

Based on the experiences gained from the Lady’s Well experiments at Belford (Chapter 6), it
was decided to construct a number of sediment traps upstream of the flood storage pond. The
sediment traps offer a multiple level of attenuation that will improve water quality by reducing
DWPA, will allow for easier removal of sediment by the farmer when needed as well as slowing

the sedimentation rate in the main flood attenuation pond.

To estimate sediment trap volume for the multi-cell feature a model inflow was estimated

based on the discharge from a prolonged 1 mm hr* storm falling across the 70 ha catchment.
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Assuming 100% runoff this would produce 700 m® hr™, 0.19 m®s™, or 194 | s™. Using Equation
6.2 (T = V/q) it was estimated to take circa 9 minutes and 30 seconds to settle a 30 um (median
silt) particle 50 cm. Therefore, to retain medium silt particles (and larger) with an inflow of 194
I s, a storage volume of circa 110 m? is required (using Equation 6.2 - Chapter 6.4.1). This was
assumed to be a conservative estimate of inflow but as runoff from the catchment is partially

controlled by the mill race this is justified in this case.

A three-cell, terraced design (Figure 7.5) was selected for a number of reasons: dividing the
sediment trap into multiple cells (as opposed to one large pond) using bunds helps to reduce
short-cutting of flow during high discharge events, the raised outlet pipes also help to reduce
remobilisation by skimming clean water from the surface; smaller cells were deemed to be
easier to maintain as access by a mechanical digger is more straightforward (5-6 m is the
maximum reach of an averaged-sized machine); the terracing was necessary as the ground
between the inlet channel and the main pond was sloping, the area was surveyed in order to
provide the digger operator with long profile designs detailing excavation depths, bund heights

and outflow pipe heights.

Each cell was designed to measure 10*5*1 (m — I*w*d) in dimension to give a combined
storage volume of 150 m?, this equates to a sediment trap to catchment area ratio of circa
0.02%. As straight sides would be unsuitable due to erosion risk, the cells were excavated with
45 degree sloping banks, thus producing trapezoidal tank shapes (Plate 7.4). Following
construction the cells were surveyed and total storage volumes of 52.5, 44.5 and 59.2 m?(in an
upstream to downstream order) were calculated, giving a combined total storage volume of
156.2 m>. Outlet pipes of 150 mm (internal diameter) were laid through the bunds at a height
of 0.5 m (from the trap base to the bottom of the pipe) and at an angle of 1 degree. This

means that the combined minimum volume of stored water will be 74.9 m>.

Outlet/ Discharge into
—— main pond
7

Earth bund
Outlet pipe

Figure 7.5: Schematic of the three-cell RAF (not to scale).
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The maximum flow capacity of the outlet pipes is estimated using Equation 6.1 (Chapter 6.4.1)
as 17.7 | s, Under normal, steady state flow conditions it is estimated that between 2 and 5 |
s of water will discharge through the pipes. Residence time (calculated using Equation 6.2) is
thus between 10.4 and 4.2 hours, respectively. The freeboard above the outlet pipes provides
an additional 81.3 m® of storage capacity for storm runoff before water is released via
constructed spillway points so as not to overtop the bunds and potentially erode and weaken
them. Any excess water is directed alongside the feature and into the main pond. The
calculation of residence time during storm conditions is difficult due to a constantly changing

inflow discharge and storage volumes in each cell.

A second sediment trap RAF located to the north of the flood storage pond is a single-celled,
trapezoidal design with a storage capacity of 40 m?(Plate 7.5). Runoff entering this feature is
mainly from field drains, which discharge into the old mill race (which was modified to spill
into the new RAF) and from run-on from the farm track (Plate 7.6 and Plate 7.7). This feature

was not monitored as part of this study.

Plate 7.8 shows an overview of the three-cell sediment trap with the flood storage pond RAF in
the background (taken from the same location as Plate 7.4) taken circa seven months later, by
which time the site had fully re-vegetated — mainly naturally, with some re-seeding of the
earth bunds. Phase One of the project was completed in February 2012; the site was fenced
off to prevent animals entering and trees were planted by the Forestry Commission. The
overall construction cost for Phase One was £10,000. The cost of the two sediment trap
features was circa £1500, which includes a cost of £50/hour for a contractor and £50 per 6 m

length of drainage pipe.

Plate 7.4: Three-cell RAF with main pond in background Plate 7.5: Single-cell RAF after construction (Feb
after construction (Feb 2012). 2012).
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Plate 7.6: Farm track conveying runoff directly to Plate 7.7: Inlet made to allow track runoff to enter
Netherton Burn during a storm. single-cell RAF.

Plate 7.8: Overview of multi-cell RAF and main pond after re-vegetation (taken 11/09/2012).

7.2.5 RAF monitoring

The three-cell sediment trap RAF was monitored as part of this study and so all details from

henceforth will concern that feature only.

Hydrology

A trapezoidal flume was constructed in the RAF inlet channel to monitor inflow discharge using
a pressure transducer (and flume equation). The flume proved to be inaccurate and was
replaced by a V-notch weir in November 2012. RAF outflow discharge was first estimated using
a pressure transducer to measure the depth of water at the outlet pipe, which was to be
converted to discharge using a hydrostatic equation for discharge through an orifice of known

size (see Nicholson (2013) for details).
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This method also proved to be inaccurate so a V-notch weir was also retrofitted to the
downstream bund of the last sediment trap cell in November 2012, also equipped with a
pressure transducer (Plate 7.9). Details of the V-notch weirs can be found in Appendix B.
Water stage was recorded at 15 minute intervals and manual stage measurements were taken
at each V-notch weir on every instrument download occasion. Manual measurements helped

to ensure the accuracy of the pressure transducer data.

i

h
welr

Three-cell RAF - Cell 3

Plate 7.9: V-notch weir and automatic water sampler at the outlet of the three-cell RAF with main pond in
background (taken 16/11/2012).

Water quality

To assess the impact of the RAF on sediment/nutrient loss, two automatic water samplers
were deployed at the inlet and outlet. The samplers were triggered simultaneously during
storm events by a float switch located next to the inlet pressure transducer. Suspended
sediment, P and NO; concentrations were determined in the laboratory using the methods
described in Chapter 3.3.4. Where available, determinand concentrations were combined with

corresponding discharges to give pollutant loads.

Sediment accumulation plates were placed at four points along the bed of each cell, effectively
dividing them into four zones, to allow sediment depth measurement. Sediment thickness was
determined by carefully inserting a measuring rule through the sediment until it hit the
sedimentation plate; the depth was then read from the rule. The volume of trapped sediment
in a cell was calculated as the sum of the volumes in each of the four zones, which is given as

the zone’s cross-sectional area multiplied by the average sediment depth. Total trapped
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sediment for the RAF is given simply as the integration of the three sediment trap cells.
Recovered sediment was analysed for bulk density to allow the estimation of sediment mass.
The available-P content of the sediment was determined using British Standards Institute

method for Olsen-P - BS 775-3.6:1995 (BSI, 1995) (see Chapter 6.4.1 for methods).

7.3 Results

7.3.1 Hydrology

Discharge data for the three-cell RAF are only available from 01/11/2012 following the
installation of the V-notch weirs. As a surrogate the stage record from the downstream
monitoring point in the Netherton Burn (see Figure 7.1 for location) is used to show the
prevailing catchment hydrological conditions for the entire monitoring period (Figure 7.8), as
well as the times when water samples were collected from the RAF by the auto-samplers. The
back-up pressure transducer was required to infill missing data when the main instrument was

broken; the correlation between the two instruments (R* = 0.99 - Figure 7.6) validates its use.

Precipitation data is available until 07/01/2013 after which there was a fault with the rain
gauge. A total of 1142 mm of rainfall was recorded in 11 months between 01/02/2012 and
01/01/2013; this is significantly higher than the estimated SAAR of 1000 mm, particularly as
January 2013 is not included. Figure 7.8 indicates that 2012 was relatively wet with numerous
high-flow events occurring throughout the year, including the summer. The hydrograph
response is ‘flashy’ with steep rising limbs and relatively short recessions. According to the
Netherton Burn stage record (Figure 7.8) the three largest runoff events (assuming that stage
and discharge are positively correlated at the site) during the monitoring period occurred
before the installation of the V-notch weirs. The largest single event was recorded on 24-
25/09/2012 where a stage of 1.36 m was measured in the river. This provides some context to

the magnitude of the events captured at the RAF with corresponding discharge data.

Figure 7.9 depicts the RAF inlet and outlet discharges recorded at the V-notch weirs. There is a
strong agreement (R? = 0.89 - Figure 7.7) between the two records during low and residual
flow conditions, using corresponding data points (from the periods 01/11/2012-21/11/2012
and 18/02/2013-14/03/2013). There appears to be a threshold stage in the feature above
which the outlet discharge plateaus (circa 40 | s™ - indicated by blue ellipses in Figure 7.9). This
occurs on 26/11/2012, 20, 21, 27/12/2012, and 27/01/2013, and is attributed to water exiting
the feature via the spillways. Samples were collected during the 20/12/2012 storm (Event 9)
and the 27/01/2013 storm (Event 10); in order to correct for this loss of water and provide

more realistic estimate of input/output determinand loads, an assumption is made that
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outflow discharge equals inflow discharge. Discharge and precipitation summary statistics are

provided for the eleven sampled events in Table 7.1.
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Figure 7.6: Vented vs. non-vented pressure transducer stage gauges.

10 R?=0.89

Outlet discharge (I s?)
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0 2 4 6 8 10

Inlet discharge (I s)

Figure 7.7: V-notch weir inlet vs. outlet discharge during low flow conditions.

Table 7.1: Elilaw RAF precipitation, discharge and sampling event summary 2012-2013.

Event Start date/time Duration Total precip. Peak hourly Peak stage* Peak discharge**

sampled (hrs) (mm) precip. (mm) (m) (I s'l)
1 20/04/2012 11:45 11 14.4 6.2 0.53 -
2 26/04/2012 09:15 21 28.4 5 0.98 -
3 10/05/2012 04:45 15 31.4 3 0.39 -
4 06/07/2012 22:30 12 36 5.6 1.02 -
5 05/08/2012 10:15 9 26 21 0.78 -
6 24/09/2012 11:00 24 78.2 6.6 1.36 -
7 12/10/2012 03:00 13 24 4.2 0.61 -
8 22/11/2012 16:00 9 10 3.8 0.38 15.3
9 20/12/2012 09:00 20 28.4 1.6 0.61 59.6
10 27/01/2013 09:30 24 - - 0.55 67.3
11 18/03/2013 00:30 16 - - 0.54 22.3

* Recorded at Netherton Burn
** Recorded at RAF V-notch weirs

249



Stage (m)

Stage

Back-up stage & Automatic samples

2.0 ~

0.6 -

OOl

0.4 -

Precipitation (mm)

2V 2V 02 02 2V
% Ny % N3 % % Ny % N3
SR G GGG
O S S S S RS
NN S I N N AN I N A A G AT AT S AN SN

0
S S
Vv Qo,\“’ o\

9
'1‘3’\0 N '1‘9\0 & N

"
> >
>

S
O
\&\u\&
M

Figure 7.8: Netherton Burn stage and precipitation record. Red markers indicate the collection of automatic water samples from the RAF.
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7.3.2 Water quality

Up to 174 paired samples were collected and analysed from the three-cell RAF in total over the
monitoring period (less for SRP and NO; due to not bing able to analyse the samples in
sufficient time, and unavailability of the Dionex machine, respectively). Inlet and outlet
concentrations for all determinands are summarised in Table 7.2 (raw concentration and
discharge data (where available) can be found in Appendix I1). Maximum concentrations of SS,
TP, SRP and NO; of 599, 1.5, 0.26 and 9.9 mg |, respectively, were recorded at the RAF inlet.
Mean percentage concentration reductions of 42%, 26%, 15% and 5%, were calculated,

respectively, all of which were significant at the 1% level (Table 7.3).

Loads were derived for Events 8, 9 10 and 11 and included 69 paired samples (49 for NO3). As
highlighted previously, water was lost from the feature via the spillways during Events 9 and
10. Therefore loads calculated using discharges recorded at the outlet V-notch weir during
these events would produce under estimated determinand loads and thus over estimated load
reductions. In these instances the outflow discharges are assumed to equal those recorded at
the inlet V-notch weir. With this taken into account, mean percentage reductions for SS, TP,
SRP and NO; of 43%, 30%, 19% and 14% were calculated, respectively. All reductions were
significant at the 1% level (Table 7.4).

Table 7.2: Summary statistics of RAF inlet and outlet determinand concentrations for all monitored events.

Ss conc. (mg ™) TP conc. (mg ™) SRP conc. (mg 1) NO; conc. (mg 1)

Inlet Outlet Inlet  Outlet Inlet Outlet Inlet Outlet
Minimum (mg ™) 15.5 7.5 0.060  0.044 0.015  0.011 2.14 1.87
Maximum (mg I'") 598.7 208.3 1.497 1.028 0.256 0.197 9.90 8.99
Mean (mg I'l) 116.1 61.9 0.529 0.382 0.085 0.071 5.75 5.47
Median (mg ™) 85.3 44.6 0.505  0.368 0.072 0.060 6.29 5.80
n 174 174 174 174 122 122 108 108

Table 7.3: Mean percentage concentration reduction and significance.

Determinand n Mean % reduction Paired T-Test
T-value P-value
SS 174 42.4 11.53 <0.001
TP 174 25.7 13.88 <0.001
SRP 122 14.9 7.22 <0.001
NO; 108 5.2 7.01 <0.001
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Table 7.4: Summary of pollutant loads, mean percentage reduction and significance.

Determinand n Mean load (instantaneous) Mean % reduction Paired T-Test

Inlet Outlet T-value P-value
SS (g) 69 3.30 1.96 42.6 10.20 <0.001
TP (mg) 69 20.58 15.5 29.5 9.69 <0.001
SRP (mg) 69 3.53 3.07 19.2 9.49 <0.001
NO; (mg) 49 188.8 172.2 13.9 6.95 <0.001

7.3.2.1 Storm eventdata

Paired water samples were collected from the inlet and outlet of the three-cell RAF during

eleven storm events (Table 7.1). Time series charts for all events can be found in Appendix 12.
Event 6

This event occurred in September 2012 and is depicted in Figure 7.10; 24 samples were
collected. Antecedent conditions were relatively dry for the week before the event, apart from
a medium-sized storm three days previous. Stage data recorded at the inlet flume are shown

as the V-notch weirs were yet to be installed.

Both SS and TP inlet concentrations peak a considerable time before peak stage (circa 8 hours)
with maximum TP measured one hour later than SS. Peak SS and TP concentrations are
recorded at the outlet one and two hours later, respectively, and are 44% and 31% lower,
respectively, than peak inlet concentrations. A reduction in determinand concentration was
measured at every time step, with SS ranging between 14-61% retention and TP between 13-
41%; mean concentration reductions for the event of 40% and 25%, respectively, were
recorded (Appendix 13 contains determinand concentration/load reduction summary tables for

each event).
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Figure 7.10: Discharge, SS and TP concentration record — Event 6.
Event 8

This storm event occurred in November 2012. It was a relatively small storm but yielded the
largest mean reduction in SS concentration and in load for all determinands (Figure 7.11). The
inflow hydrograph exhibits a more ‘spikey’ response to precipitation while the out flow
response is more ‘smoothed’ and shows some evidence of attenuation. There is, however,
increased discharge recorded at the RAF outlet after peak discharge at the inlet for some time

as the recession is slower.

Samples were collected for nine hours and analysed for all determinands. A maximum SS

concentration reduction of 88% was recorded with a mean of 55% across the whole event;
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total SS load was reduced by 83%. The greatest reductions occurred on the rising limb and at
peak discharge. Total P reduction exhibited a similar pattern to SS with a mean reduction of
27%, no net losses, and a total load reduction of 67%. These values are greater than
corresponding ones for SRP (15% and 63% respectively) and the time to peak concentration
was observed to be shorter (Figure 7.11). There were occurances where outlet concentrations
of SRP were higher than corresponding inlet concentrations (up to 8%), which occurred at the
tail-end of the recession. Nitrate concentrations did not peak in relation with discharge but
instead increased gradually throughout the duration of the storm, although maximum
reduction was recorded at the same time as peak discharge. Concentration reduction ranged
between -0.8% and 24% (mean 6.8%) but a considerable load reduction of 57% was measured,

significantly greater than in any other event.
Event 10

This event yielded the highest discharge measured by the V-notch weirs with a peak discharge
of 67.3 | s™ (at the inlet - Figure 7.12). The loss of discharge via the feature’s spillways is clearly
evident. However, this is believed to have no significant impact on determinand concentration,

unlike load. Precipitation data are unavailable for this event due to rain gauge failure.

Peak SS and TP concentrations at the RAF inlet occur simultaneously circa one hour before the
first, smaller discharge peak, which is recorded at circa seven hours. The most significant
reductions in SS and P are on the rising limb and at the first discharge peak. The SS and TP
response at the outlet is both reduced and attenuated; SS concentrations are lowered by a
mean of 35% and TP is reduced by 25%. No hourly losses are recorded. Soluble reactive P
demonstrates a more ‘smoothed’ response to discharge at both the inlet and outlet with
relatively less retention. Peak SRP concentrations are recorded 2-3 hours after TP and coincide
more with the second larger discharge spike. Soluble reactive P concentration retention ranges
between -18% and 49% with a mean of 13%. Nitrate concentration exhibits a non-response to
the first minor discharge peak and only starts to increase following the second larger peak.
Concentrations then rise steadily from circa 4 mg I to circa 7 mg I™* and plateau after 20 hours.

Concentration reduction ranges between -10% and 22% with a mean of 5%.

Loads calculated using matching inflow and outflow discharges (to overcome water loss via the
spillway) give SS, TP, SRP and NO; reductions of 32.6%, 22%, 10% and 4%, respectively. This is
in contrast to the values calculated using the ‘actual’ discharge data recorded at the V-notch

weir, where reductions of 45.2%, 37.2%, 27% and 22%, respectively, are considerably higher.
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Figure 7.12: Discharge and SS, TP, SRP and NO; concentration record — Event 10.
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7.3.2.2 RAF efficiency in relation to determinand concentration and discharge

A strong positive correlation exists between inlet SS concentration and removal (Figure 7.13 a).
This correlation is also observed for TP and SRP, but with lower Pearson’s R values (Table 7.5);

all correlations are significant at the 1% level. No correlation exists for NOs.

Conversely, RAF efficiency is negatively correlated with inlet discharge for SS (Figure 7.13 b)
and TP (both significant at the 1% level - Table 7.5). Soluble reactive P exhibits a weak,

negative correlation and discharge appears to have no influence on NO; removal.

a Inlet SS conc. (mg I%)
0 100 200 300 400 500 600 700
500 1 1 1 1 1 1 J
X X
400 -
& 1
£ 300
©
3 200 - N X XX
aE> x X, xX  x
o 100 - x %%x} « X
I‘?‘(x& of ‘R
0 4 KX 3K
-100 -
b 100 ~
X
80 - N
— X
X x X
= 60 - X % X
© X X
3 e Sexx % % X *
£ 40 - X x Xy K xX %
9] x x X
2 x X« x
[%] X
n 20 -~ N X X
X
0 ;§X X
-20 T T T T T T T |
0 10 20 30 40 50 60 70 80

Inlet discharge (I s)

Figure 7.13: The relationship between SS reduction and a) inlet concentration
(measured at the RAF inlet) and b) discharge.

Table 7.5: Pearson’s correlation coefficients for RAF efficiency.

Determinand Conc. vs. reduction (mg I'l) Discharge vs. reduction (%)

Pearson's R P-value Pearson's R P-value
SS 0.930 <0.001 -0.608 <0.001
TP 0.821 <0.001 -0.566 <0.001
SRP 0.601 <0.001 -0.306 0.011
NO; 0.179 0.063 0.009 0.949
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Total P concentration during storm events appears to exhibit similar patterns to SS but
sometimes with a slightly delayed response. SS and TP concentrations (Figure 7.14) measured
at the RAF inlet and outlet exhibit a weak positive correlation with relatively few data points at
the high end of the concentrations scales. Figure 7.15 depicts the proportion of TP accounted
for by SRP at both the RAF inlet and outlet, the inverse of which can be used as a proxy for the
proportion of particulate P. On average SRP accounts for 21% of TP at the inlet and 28% at the

outlet.
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Figure 7.14: Relationship between SS and TP concentrations.
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Figure 7.15: Percentage TP made up of SRP - comparison between RAF inlet and outlet (n = 122 for each).
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7.3.2.3 Sediment trap sediment accumulation

The depth of accumulated sediment was measured in April 2013; Plate 7.10 depicts cell one,
where the height of the deposited material had reached the bottom of the outlet pipe. The
total volume of captured (wet) material is 22.25 m? (Figure 7.16). On average, sediment depth
was greatest in cell one (upstream) and lowest in cell three (downstream). Within cells one
and two sediment depth increased between the inlet and the outlet while the greatest depth

in cell three was found in the central zone.

The bulk density of the recovered sediment is highest at the inlet of cell one (1.105 g cm™) and
lowest at the outlet of cell three (0.859 g cm™). Combined with corresponding sediment
volumes this gives an estimated total of 22.02 tonnes of sediment (dry mass) retained

between March 2012 and April 2013, which equates to a trapping rate of circa 0.31t ha™ yr.

If average SS retention is 43% and 0.31 t ha™ was retained in the RAF, this suggests that the
unmitigated sediment loss rate for the catchment would be circa 0.72 t ha™ yr?, or 72 t km™? yr’
! This value falls above the range of SS export coefficients reported in Chapter 4, of 25 and 60
t km™ yr' for improved agricultural land and tilled land, respectively. Natural England
proposed critical and target SS vyields based on catchment typology. For a lowland
impermeable catchment, such as Netherton, the critical SS yield is 50 t km™ yr and the target
is 20 t km™ yr* (Cooper et al., 2008). Based on the trapping values for the three-cell RAF,
catchment sediment loss was reduced from 72 t km™ yr' to 41 t km? yr’; although not
reaching the target export, if repeated over long term it suggests a much healthier sediment

yield according to the NE classification.

Sediment available-P concentrations of 5.17, 7.3 and 5.05 mg I'* were recorded in cells one,
two and three, respectively, which equates to 51.7, 73.0 and 50.5 mg kg™ sediment. This gives
a P mass of 1.26 kg for the entire feature, 0.018 kg ha™ or 1.8 kg km™ yr™. Cell one yielded the
highest P trapping rate of 0.01 kg ha™ yr™, followed by 0.006 kg ha™ yr™ in cell two and 0.002

kg ha™ yr'tin cell three.
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Plate 7.10: Cell one of the three-cell RAF contain 1 circa one year’s worth of sediment (taken April 2013).

Cell1

Area (m’)

Sediment depth (m)
Sediment volume (m®)
Bulk density (g cm'3)
Sediment mass (t)

Cell 2

Area (m’)

Sediment depth (m)
Sediment volume (m®)
Bulk density (g cm'3)
Sediment mass (t)

Cell 3

Area (mz)

Sediment depth (m)
Sediment volume (m3)
Bulk density (g cm™)
Sediment mass (t)

Sediment trap zone

Inlet Outlet
12.10 13.64 12.40 10.20
0.19 0.27 0.29 0.31
2.30 3.68 3.60 3.16
1.105 1.105 0.992 0.992
2.54 4.07 3.57 3.14
8.40 10.07 12.78 6.93
0.12 0.15 0.19 0.19
1.01 1.51 2.43 1.32
0.953 0.953 0.932 0.932
0.96 1.44 2.26 1.23
12.60 14.35 14.88 11.10
0.06 0.07 0.07 0.04
0.76 1.00 1.04 0.44
0.878 0.878 0.859 0.859
0.66 0.88 0.89 0.38

Total sediment mass (t)

Direction of flow

Figure 7.16: Three-cell RAF accumulated sediment.
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7.4 Discussion

7.4.1 Hydrology

As hydrometeorological monitoring only took place in the Netherton catchment for circa one
year it is difficult to extrapolate the hydrological conditions during this study with reference to
long term patterns. However, circa 150 mm more rainfall than the estimated long term
average (SAAR) fell in just 11 months meaning that the study year was wetter than average.
There were also numerous medium-large storm events during the summer, which could be
classed as unseasonal. Thus, it should be acknowledged that the collected data, thence the

performance of the RAF, are only representative of the monitored period.

The installation of V-notch weirs at the inlet and outlet of the RAF made the measurement of
discharge significantly more accurate and allowed the subsequent calculation of sediment and
nutrient loads. Comparison of the inflow/outflow hydrographs demonstrated that the weirs
(and the pressure transducers) were in acceptable agreement during residual flow conditions,
thus giving confidence in their measurements during other flow conditions. Despite the
relatively long logging interval of the stage gauges, it is apparent that the three-cell RAF caused
some attenuation of rising limbs and peak flow between the inlet and outlet. This attenuation
effect is inversely proportional to increasing discharge, as an increase in flow will result in a

decrease in residence time, given a constant storage volume.

On average, event peak discharge during the monitoring period was approximately 70 | s,
which equates to an estimated residence time of 37 minutes for the given storage volume of
the three- cell RAF. The feature would provide a residence time of circa 23 minutes during the
maximum recorded discharge of 115 | s™. Without intervention along this 60 metre length of
ditch it is estimated that the time of travel for flow would be between one and five minutes.
According to the calculations carried out in Chapter 6 using Stoke’s law for particle settling
velocity, 23 minutes would be sufficient time to settle a 20 um particle (medium-fine silt) to a
depth of 50 cm. Braskerud (2003) reported how SS (principally clay particles) retention in small
wetlands often exceeded expectations based on calculations such as Stoke’s Law.
Experimental results showed how clay particles behaved as fine silt and medium silt (~20 pum)

particles, thus indicating strong aggregation. This will be discussed in more detail below.

The fact that a portion of inflow is lost from the RAF via the spillways during the highest
discharge events (Plate 7.11) has been taken into account when calculating determinand load
reductions. Otherwise in events where paired samples were collected and water was lost via
the spillways the calculated loads will be an underestimate of the true values. Figure 7.12

suggests that at discharges greater than 60-70 | s™ flow is lost from the RAF via the spillways;
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higher discharges than this were recorded at the outlet but quickly return to this ‘plateau’
value. However, it is not feasible to construct sediment traps large enough to accommodate
the full range of discharges due to size restrictions imposed by the landscape and neighbouring
farming practices. In this instance flow lost via the spillways is directed into the flood storage

pond over rough grass, thus is not entering the main burn untreated.

Flow direction

w

Flow discharged
via spillway

Plate 7.11: Three-cell RAF during a flood (taken 26/04/2012).

7.4.2 Sediment and Nutrient retention

Over a period of circa one year, based on four storm events of differing season, magnitude
and duration, the three-cell RAF reduced SS, TP, SRP and NOs loads by 43%, 30%, 19% and 14%,
respectively. These sediment and nutrient reduction values are within the ranges reported in
the literature: Fiener et al. (2005) described how small detention ponds in Germany trapped
54-85% of the incoming sediment load; Reinhardt et al. (2005) reported a TP load reduction of
23% in a small agricultural wetland in Switzerland but it is notable that SRP made up the
majority of TP in this instance, which may explain relatively poor performance. Uusi-Kamppa et
al. (2000) report that ponds and constructed wetlands reduced TP loads by 17 and 41%
respectively, and Moreno et al. (2007) reported 24-43% removal of TN using natural and

constructed wetlands of between 50 and 800 m”.
7.4.2.1 Retention efficiency

Suspended sediment, TP and SRP all demonstrated greater retention with increasing inlet
concentrations. As the concentrations recorded at this site are relatively low in comparison to

some other study sites (including Lady’s Well in Belford and Blind Beck in the upper Eden
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catchment) RAF performance may be expected to be higher at more polluted sites. Other
constructed wetland and detention pond studies have found that sediment retention often
increases with increasing inlet discharge (e.g., Braskerud (2003)); however, this was not the
case at Netherton. Data collected at the RAF show that sediment and nutrient peak
concentrations are often delivered before peak discharge (maximum SS and TP reduction also
occurred on the early stages of the rising limb), suggesting that pollutants are quickly
mobilised in the upstream channel. Suspended sediment and P concentrations are then seen
to decrease before and at peak discharge, which is likely due to dilution with cleaner water
from other parts of the catchment. Retention efficiency of SS and P also decreases at peak
discharge, thus is appears that the trap is efficient on the rising limb before residence time

gets too short

On average SRP accounts for 21% of TP measured at the inlet and 28% at the outlet. This
indicates that the retention of PP exceeded that of SRP and suggests that sedimentation was a
more important retention process than others such as uptake by algae and macrophytes.
However, although cell one trapped considerably more (126%) sediment than cell two, the
highest sediment available-P concentration (73.0 mg kg™) was found in cell two of the RAF,
compared with circa 50 mg kg™ in cells one and three. This is likely the result of the settling of
PP, which is associated with fine-texture sediment (i.e., cell one was filled with a higher
proportion of coarse sand and gravel, especially near the inlet). The overall P trapping rate for
the three-cell RAF was estimated at 0.018 kg ha™ yr™, compared with 0.004 — 0.007 kg ha™yr™
measured at Belford. The greater efficiency is most likely attributed to its increased sediment
trap to catchment area ratio (0.02% compared with 0.007%) providing more residence time for
the settlement of PP. All of these trapping rates fall within the range recorded across ten sites
in the first year of monitoring in the MOPS project of 0.006 — 1 kg ha™ yr* (Ockenden et al.,
2012).

The variations in retained sediment thicknesses in the three cells can be explained primarily by
the different hydrologic conditions of the ponds and secondly by the variation in sediment
texture between the deposits. Analysis of retained sediment revealed that bulk density
decreased from the inlet to the outlet (across each separate cell and across the RAF as a
whole), as one would expect due to the effects of settling velocities and residence time. When
considering the bulk density of pond sediments it is important to acknowledge the effects of
compactions by overlying material. Coarse sediments (sand and gravel) settle down with
relatively little available pore space and have an initial dry sediment bulk density close to their
final value. Fine sediments settle down with a lot of water occupying the space between the

grains, resulting in a low initial bulk density. Over time compaction (by overlying sediment)
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causes the particles to move closer together and water to be squeezed out, both of which
reduce the sediment volume (Verstraeten and Poesen, 2001). Thus, the difference between

initial and final bulk density for fine sediment can be significant.

Exposure of retained sediment to air (e.g., cell one, as depicted in Plate 7.10) can also have a
significant impact of the final bulk density (Verstraeten and Poesen, 2001). However, as this
occurred only in cell one, which was filled with relatively coarse material, the process is less
important due to the close proximity of their initial and final bulk density values. The finer-
grained sediment in cells two and three were not known to be exposed to the air during the

study period.

According to Walling (1990) and Slattery and Burt (1997) the runoff from agricultural
catchments produces sediment in aggregated form and Slattery and Burt (1997) reported that
the proportion of fine primary particles increased, and the proportion of sand decreased, with
increasing discharge. The fact that the concentration of P was greatest in cell two supports
these findings. Condron et al. (2005) reported that soil solution P concentrations typically
range between <0.01-1 mg I but can be as high as 7-8 mg I in well fertilised soils. Sediment
available P concentrations measured in this study are at the upper-end of this range. It is
probable that sediment enrichment in fine particles relative to topsoil explains the relatively
high P concentrations. The three-cell sediment trap captured circa 22 tonnes of sediment
during the monitoring period (one year), and cell one (containing circa 13 tonnes) required
emptying. The landowner was surprised at the rate at which the feature had filled and upon
learning the potential fertilising value of the trapped material, said that he would spread it

back to land once it was removed from the RAF (P. Stott, landowner, pers. comm.).

7.4.3 RAF design

An advantage of dividing the RAF into smaller cells, compared with one large feature is that
the upstream cell can be emptied of retained sediment with relative ease while the others can
be left undisturbed for longer. Sediment trap size vs. regularity of sediment recovery is a trade-
off. The regularity of maintenance will also vary according to the individual site but an
assumption is made that cell one at Netherton will need clearing out on an annual basis; cells
two and three on a bi-annual basis. Such a management regime does not appear too onerous a
task for the farmer to undertake. Another advantage of a multiple-celled RAF is that
downstream cells will help to mitigate the impact of emptying upstream ones, which will

inevitably cause some re-mobilisation of sediment and associated nutrients.

In the case of Netherton, where flood management is paramount, the sediment trap features

are all helping to extend the lifespan of the main floodwater attenuation feature, which would
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be very arduous and expensive to dredge due to its surface area and depth. If the 22 m® of
sediment retained in the traps were to reach the main pond at this rate it would reduce its

water storage capacity by circa 1% per annum.

7.5 Summary

Approximately 22 tonnes of sediment was captured in a three-cell sediment trap RAF, with a
surface area to catchment area ratio of 0.02%, in a single year. On average SS, TP, SRP and NO;
loads were reduced by 43%, 30%, 19% and 14%, respectively, across the full-range of flow

conditions experienced during the monitoring period.

Dividing the sediment trap RAF into separate cells is a more effective design at retaining
sediment and nutrients compared with a single-cell feature. This is because flow cannot ‘short-
circuit’ the system as easily (in a way that vegetation of baffles may function), particularly
during high flow events with increased velocities. Maintenance of the sediment trap RAFs will
include periodic emptying. Based on one-year of monitoring it is estimated that the upstream

cell of a three-cell trap will require annual attention and downstream cells biannually.

This relatively low-cost intervention (along with others at the same site) will serve to not only
improve water quality by mitigating sediment and nutrient losses to the main Netherton Burn,
but also will increase the lifespan of a large flood attenuation RAF by reducing sedimentation.
Thus, as a suite of RAFs can be considered a truly multi-functional scheme that is treating
runoff (and associated DWPA) delivered via a number of flow pathways from the 80 ha

catchment.

The subsequent chapter will provide an overall summary that draws together the sediment
and nutrient regime studies carried out in the upper Eden catchment and the DWPA mitigation
experiments conducted in the Belford and Netherton catchments. It will describe the lessons
learned throughout the study and provide better understanding of how to reduce losses of SS,
P and NO; in agricultural runoff using RAFs to target various runoff/pollutant pathways at a

range of spatial scales.
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8. Overall summary
This thesis has two principal aims that can be summarised by the following questions:
e How, where and when is sediment/nutrient pollution generated?
e How, where and when can DWPA mitigation be targeted best?

The following chapter will provide answers to these questions by compiling the outcomes of
the sediment/nutrient regime characterisation studies carried out across the upper Eden
catchment, and in the Blind Beck sub-catchment, with the results from the DWPA mitigation

case studies implemented in the Belford and Netherton catchments.

8.1 Sediment and nutrient regimes

This study has provided sediment and nutrient data across a range of catchment scales. The
upper Eden catchment sediment/nutrient regime has been characterised using a multi-scale,
stratified, synchronous grab sampling campaign that clearly identifies spatio-temporal
variability in SS, P and NO; fluxes; however, no relationship was found between
sediment/nutrient yield and catchment area. There appears to be more heterogeneity
between smaller sub-catchments, with an increased likelihood of extreme values, but a more
‘averaged’ pattern at the larger scale. It was recognised that certain lowland sub-catchments
deliver a disproportionate amount of the pollutant load, due to increased agricultural activity,
and that there were large variations in flux affected by season and hydrological conditions.
Dilution of potentially polluting lowland sub-catchments by relatively ‘clean’ water inputs from
headwater areas means that the upper Eden catchment (at larger catchment scales) is

currently on course to meet WFD targets.

The Blind Beck sub-catchment was singled out for more detailed study as it exhibited higher
nutrient and SS concentrations per unit runoff as well as higher sediment and nutrient yields
per unit area than any other sub-catchment. However it was recognised that a more intensive
grab sampling campaign was required to identify the main sources of sediment and nutrients
within the catchment. Blind Beck, particularly in the lower reaches (near Sykeside Farm) was
characterised by a high availability of SS and associated P, which was related to higher
agricultural intensity and a greater extent of superficial sediment deposits. These gave rise to
near-channel contaminant sources, such as bank collapses and areas of poaching, both of

which can be linked with livestock management.
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The use of automatic water samplers to collect storm event data demonstrated that sediment
and P losses were dominated by high flow events, with minimal inputs under dry weather
conditions. High flows (accounting for 10% of flow duration) contributed 84% of the annual SS
load, 76% of the total P and 68% of the soluble reactive P (SRP), but just 32% of the NO; load.
This highlights the acute nature of the SS and P diffuse pollution problem in the upper Eden.
Hysteresis analysis largely confirmed that sources were in relatively close proximity to the
watercourse, and that the source was either quickly exhausted or that subsequent dilution was
occurring, or both. Intra-storm variability in export was reliant on storm size, antecedent
conditions, and also the occurrence of contiguous events in quick succession leading to
exhaustion of near-channel sources. It was found that sediment/nutrient mean concentrations
and load estimates were significantly higher (for all determinands) when derived from both
event samples and grab samples. Thus the exports based solely on grab samples represent

significant underestimates.

The construction of a wetland RAF at Sykeside Farm in the Blind Beck sub-catchment, and
subsequent monitoring, highlighted the importance of selecting DWPA mitigation options that
are appropriate to the dominant pollutant source-pathways. The identified SS and P sources in
the catchment would be best managed using stream bank protection measures such as stock
fencing and riparian buffer strips, and not RAFs. This reinforces the need for an approach that

involves initial evaluation of whether this particular method is viable.

8.2 Appropriate choice of mitigation option

The source-pathway for sediment and nutrients in agricultural catchments is critical to the
identification of appropriate mitigation strategies. In catchments with slowly permeable soils,
such as Belford, sub-surface (tile) drainage networks appear often to be a significant
sediment/nutrient loss pathway, particularly as a result of permanent and high-level
connectivity between distant parts of the catchment and the watercourse. This scenario,
especially combined with a susceptible land use (e.g., arable), will lead to an increase in the
‘chronic’ loss of sediment and nutrients as transfers during low-medium magnitude events will
be greater in comparison with catchments without artificial drainage. However, landscape
processes such as concentrated overland flow also pose a significant threat to soil erosion
and/or sediment/nutrient loss. Monitoring at the event scale in this thesis has shown that SS, P
and NO; concentrations and loads are, to varying degrees, all positively correlated with
discharge, thus equating to significantly increased pollutant transfers during large storm
events. Although these events are often short in duration, the potential impact of the delivery

of high levels of sediment and nutrients will depend on the nature of the receptor. For
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example, if the polluted discharge from a sub-catchment is significantly diluted by the input of
downstream ‘clean’ sub-catchments (as appears to be the case in the upper Eden catchment)
then the need to target ‘acute’ events may be less. Conversely, in catchments such as Belford,
which discharge into ecologically sensitive ecosystems, the targeting of large events

synonymous with concentrated surface runoff is justified.

The literature review chapter gave an account of the many DWPA mitigation options available
to farmers and landowners. It appears that ‘source-mobilisation’ mitigation is arguably the
most effective measure, particularly conservation measures such as minimum tillage. For
arable systems reversion to grassland is perhaps the option most guaranteed to yield the best
results, but is only feasible in limited very high risk areas where high levels of
sediment/nutrient could severely threaten water quality. In a situation where population
growth, food shortage and potential climate change are serious pressures, the need for
farmers to produce food is ever increasing and it may not be wise to reduce the amount of
productive land. While many in-field mitigation options are available, , the use of RAFs (as an
example of DWPA ‘transport’ management, or ‘edge of field’ or ‘in-channel’ options) can be

justified on the level that their impact on normal farm operations is very small.

Riparian and field-edge buffer strips have received a relatively large amount of research
attention and real world uptake due to their perceived effectiveness, low cost and multi-
functionality. As a means of preventing the degradation of riparian areas and river banks,
buffer strips could be considered as adequate. However, they appear to be largely ineffective
where concentrated overland flow or subsurface field drains are the dominant contaminant
pathways. RAFs, including the ones described in this study and others including grassed water
ways, have received less attention, particularly in the UK. They are generally more specialised
and necessitate a degree of ‘design’ to ensure their suitability, which is associated with higher
costs and a need for on-going management. Considerate planning and/or a good knowledge of
the catchment’s hydrological functioning is expedient in order to best locate mitigation
features to insure maximum efficiency. The desired impact may be on water quality or flood

risk, or indeed both, as has been demonstrated in the Belford and Netherton catchments.

The multi-functionality of RAFs may go some way to offsetting their relatively high financial
cost and although not investigated in this study, they can potentially add to/enhance the
buffering capacity (in terms of flooding and DWPA) of catchments, which could help mitigate
for future agricultural intensification and/or climate change. In terms of uptake, a farmer
would be more willing to have RAFs constructed on their land, for example, as a form of

natural flood management (to lower flood risk in a downstream settlement) if they were
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simultaneously receiving the on-site benefits of sediment and nutrient retention. The funding
of RAFs is also more justifiable as more ‘win-wins’ are attainable; including habitat creation,

carbon sequestration and other ecosystem services.

Runoff Attenuation Features appear most viable used alongside ‘source-mobilisation’ options
and not instead of them. In the case of the Blind Beck catchment and Sykeside Farm (and other
livestock systems common in the upper Eden catchment), the prevention of animal access to
stream banks is the most simple and effective solution. Stock fencing can also be beneficial to
the animals themselves, particularly during flood events. In specific areas where
sediment/nutrient pollution risk has been identified infrastructure improvements such as new
bridges, armoured river crossing points and water feeders should be employed. To
complement these actions, RAFS could be used for the treatment of distributed point sources

such as field drains, small ditches and areas of concentrated overland flow.

8.3 Mitigation of DWPA using RAFs

The mitigation experiments in this study have all been monitored at the local scale using
inflow/outflow measurements of discharge and contaminant concentration during storm
events. This was considered the most accurate method in the absence of in-situ, continuous
water quality monitoring equipment; without which it would be very difficult to detect
changes in sediment/nutrient concentrations at the larger catchment, or even the farm scale.
Measuring the impact of DWPA mitigation interventions at the catchment scale is the ultimate
goal under the WFD; however, any change in contaminant signal (due to intervention) at this
scale is likely to be confounded by a multitude of natural variables and, in the case of NO;

particularly, system recovery is likely to take decades.

The evidence from this study demonstrates that relatively small RAFs, principally sediment
traps, constructed in farm ditches (<1 km? catchment area) can reduce mean SS, TP, SRP and
NO; loads during storm events by 30-43%, 23-30%, 12-19% and 8-14%, respectively. The
preeminent process of pollutant reduction is the settlement of SS and associated nutrients
(mainly PP), which is affected by the feature size to catchment area ratio (i.e., residence time)
and individual design criteria, (e.g., the number of wetland cells). Results suggest that
retention of finer sediment than would be predicted by particle settlement velocities occurred
and is likely attributed to the aggregation of soil particles and/or the flocculation of
waterborne sediment. Importantly, this finding suggests that even relatively small features can

result in a significant reduction in catchment diffuse pollutant load.
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Although the ability of RAFs to reduce losses of SS, P and NOj; in agricultural runoff has been
shown to be promising at the local scale, the significant challenge of providing such evidence
at the catchment scale still remains and there exists an insufficiency of data. It is hoped that
government-backed research programmes such as the Defra DTC and the IACP can help tackle
this by using state-of-the-art monitoring equipment that can provide continuous water quality
determinand data. One of the goals of projects such as these is to develop and determine
surrogates for pollution such as turbidity, which would be more economically viable for
widespread use. However, a question mark exits as to whether these projects can survive for
sufficient time to detect any change in sediment/nutrient signal at the catchment outlet as the
result of the ‘multiplier effect’ of a number of farm-scale interventions. This unknown makes
the local scale monitoring of RAFs (and other mitigation options) viable as they can be
recommended as ‘no regrets’ measures that will not have adverse impacts on the environment
without fully understanding their collective impact in the future, this is particularly important

in light of the urgent requirements of the WFD.

8.4 RAF maintenance

Remobilisation of fine sediment and associated nutrients has been identified as a problem
associated with in-channel features. It is highly important that RAFs do not become a net
source of sediment/nutrients and thus require management to ensure their long-term
effectiveness. Sediment traps installed in agricultural ditches will require periodic emptying to
reduce the risk of future release of sediment and P. Due to nutrient enrichment, the trapped
fine-sediment has fertilizing properties that make it worthwhile spreading back to land. As
trapped volumes of sediment are relatively small, it may be appropriate to stockpile material,
perhaps mixing it in with FYM. However, it is argued that this would be more time-efficient
than cleaning out significant lengths of ditch, as traps function to localise sedimentation.
Harvesting emergent vegetation would also reduce the risk for redox-induced release of
soluble P. Other RAF management duties could potentially include coppicing willow barriers,
removal and renewal of brash screens, ensuring outlet pipes are clear and repairing damaged
structures such as earth bunds. The fulfilment of these tasks is most important following a

large storm event.

Rules concerning the maintenance of RAFs are still under consideration; questions such as
‘who should remove the material’, ‘at what rate’ and ‘at what cost’ are important to their
uptake. It would be pertinent for farmers themselves to take ownership of features and
integrate upkeep with regular farm activities. However, this will require a compensation or

subsidy mechanism to be established. Low maintenance RAFs that require the least attention
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from farmers will be the most successful in terms of uptake. One of the key components of

durability is appropriate design and this study has provided a wealth of experience.

8.5 Lessons learned

It is strongly recommended that in-channel interventions should be located relatively close to
source (<2 km? catchment area) so as not to be overwhelmed by large discharge volumes. The
flooding of surrounding farmland, nearby roads, etc. is not acceptable. Building RAFs of
sufficient capacity to cope with the most extreme discharges is not feasible due to limited
space, increasingly complicated construction methods and inherent costs. The installation of a
network of smaller RAFs can achieve a desired storage volume without the need for a large

feature such as that installed at Netherton.

Spillways or overflow channels are a necessary feature to ensure that bunds, etc. are not
overtopped by uncontrolled overflow, which could lead to damage or failure. In the case of the
Netherton three-cell RAF, it became apparent that water was being spilled too early from the
final cell as levels rose. One solution would be to increase the height of the spillway, but
perhaps the best solution would be the installation of a larger diameter discharge pipe to
increase controlled discharge. For future applications it is highly recommended that initially a
large diameter pipe size be installed as it easier to reduce size at a later date by using a collar,

than to retrofit a larger pipe, which would be disruptive and costly.

Where large RAFs are desirable, such as treatment wetlands or flood storage ponds, it is
recommended that sediment trap features (including willow/brash dams) be installed directly
upstream. This will increase the lifespan of larger features (large features are extremely
difficult to dredge). A network of relatively small RAFs are less intrusive in the landscape,
simpler and cheaper to construct, easier to maintain by the farmer, and pose less risk in the

event of failure.

The use of wood chippings as a fine-filter media is not recommended for future use in farm
ditch applications. Besides being relatively expensive, they are time consuming to install due to
the need of a retaining structure, and also require regular renewal. The use of wood chippings
as bioreactors in sub-surface systems appears to be promising, but this method should be
reserved for situations where the financial investment can be justified (i.e., where good
ecological status is being compromised by high levels of NOs). In-channel willow dams and
brash screens, however, were deemed a success in that they were observed to attenuate high
flows within the ditch and overtime the brash became bound up with sediment. The willow

was locally sourced at no cost and installation was very simple, although some periodic
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management will be required to ensure the ditch does not get blocked. There is the potential
to combine the willow barriers with sediment traps to help reduce flow velocities within the

feature and reduce the incidence of system ‘short circuiting’.

8.6 A hypothetical catchment management plan using RAFs

This study has demonstrated how high intensity agriculture practices can vyield significant
losses of SS, P and NO;, and that storm events drive pollutant transfers via a number of
hydrological pathways. It has also identified where and how best to target these pathways
using RAFs, which have shown the potential to significantly reduce sediment and nutrient

losses at the local scale.

To incorporate all of the experiences gained during this study a hypothetical catchment
management plan using RAFs is proposed (Figure 8.2). This highlights the key catchment scales
at which different RAFs should be implemented and how a suite of RAFs can be used to

manage a plethora of flow pathways.
Key RAF design and implementation criteria are suggested:

e Overland flow interception bunds should be located in field margins across
concentrated runoff pathways (<1 km?). Bunds should be 1 m high (max.) and have an
outlet pipe installed to allow post-storm drainage and prevent storage capacity being
reached at low runoff discharges, which would limit effectiveness and damage crops.

e Ditch management RAFs (e.g., ditch widening, willow dams/brash, sediment traps —
see Figure 8.1) should be targeted slightly downstream of where sub-surface drains,
overland flow pathways, etc. emerge but before the main channel (<2 km?). All flow
should be contained within the ditch or directed through a spillway during high-flows.

o Lengths of drainage ditch should be widened (1.5 m max.) and given a flat base
to reduce flow velocities and promote sedimentation.

o Sediment traps should be constructed in the widened ditch sections by
excavating deep ‘cells’. Traps to be a maximum of 1 m deep, which includes
>250% freeboard to accommaodate high flows.

o Earth and/or rock bunds can be used as check dams to create within-ditch
pools; or they can be combined with sediment traps to create more storage
capacity. Appropriately sized outlet pipes should be installed above base level
to reduce remobilisation of previously settled sediment.

o An armoured spillway or high-flow channel should be constructed on the

top/around the side of any earth/rock bunds to allow the release of excess
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runoff (within the confines of the ditch) so that the bund structure is not
eroded and compromised.

o Woven willow screens and accompanying brash filters can function as check-
dams to reduce flow velocities and promote sedimentation. They can also be
used in conjunction with sediment traps, either upstream of them, or within
them to create separate cells.

e Larger flood storage RAFs should be situated adjacent to the main channel (<5 km?)
and connected using a swale, or grassed waterway, that only operates during high-
flows. Sediment trap(s) should be installed directly upstream. Outflow from the flood
pond is via a pipe and a spillway is essential.

e Wetland RAFs can be in-channel (<3 km?) but adjacent to channel is preferable (<5
km?). Features should be designed to receive runoff at all times but high-flows should
be by-passed around the feature. Sediment trap(s) should be installed directly
upstream.

e Riparian buffer strips and stock fencing should be used along all main channels and

indeed all channels where livestock are farmed.

Traditional V-shaped drainage ditch o s —

Optimised ditch

Widened with flat
1-15m

Figure 8.1: Optimised ditch schematic (not to scale).
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Legend

RAFS \ Main river

. Flood storage pond N _ Overland flow pathway
‘ Wetland ——— Drainage ditch
. Sedimenttrap - Sub-surface drain
4 Overland flow interception bund Riparian buffer strip/stock fencing

Figure 8.2: Schematic of a hypothetical catchment management plan using RAFs (not to scale).
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9. Conclusions and recommendations

Conclusions

This chapter will put forward the conclusions of the thesis in relation to the aims and

objectives, as stated in Chapter 1. Finally, recommendations for future research are provided.

The principal aims of the thesis were to characterise the sediment and nutrient transport
regime of the upper Eden catchment to inform the targeting of DWPA mitigation efforts, and to
investigate the efficacy of a number of RAFs to reduce concentrations/loads of SS, P and NO;in
agricultural runoff. The conclusions arising from each of the research objectives are stated

below.

1.1 Use an appropriate grab sampling methodology to quantify SS, P and NO;
concentrations at a range of catchment areas covering three orders of magnitude
(micro = 1 Km?, mini = 10 Km® and meso-scale = 100 Km®) in the upper River Eden
catchment, Cumbria. Select an appropriate means to calculate annual SS, P and NO;

loads and specific yields

Suspended sediment, P and NO; concentrations were measured at thirteen sub-catchments at
an unusually high spatial resolution for a catchment of its size. Stratified sampling meant that
efforts were made to collect water samples at high discharges (during storm events) in order
to reduce the bias associated with fixed-period grab sampling campaigns, which are
synonymous with being unrepresentative of actual concentration fluxes. By collecting samples
within a few hours of each other a representative ‘snapshot’ of sediment/nutrient
concentrations is taken while the catchment is under the same hydrological conditions. An
extrapolation method (using rating curves) was employed to estimate continuous (15 minute)
SS, P and NO; concentrations, which were subsequently used to calculate annual contaminant
loads/yields. It was deemed inappropriate to use an interpolation calculation method due to
relatively low sampling frequency and the flashy nature (low-medium BFI) of the upper Eden

catchment.

1.2 Investigate how determinand concentrations/loads vary with spatial scale, as well as
with changes in various controlling processes, such as precipitation/runoff and land

cover/use, inter alia.

Suspended sediment, P and NO; loads/yields were calculated for all sub-catchments but no
relationship was found between yield (of all determinands) and catchment area. Due to the

relative lack of samples collected at high discharges it is believed that loads/yields are likely to
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be underestimates of the true exports. However, the difference between the results is seen to
be more important than their level of uncertainty. As samples were collected within a short
timeframe (on the same sampling day) it can be assumed that the uncertainty is within the
same range for all the sites. The data suggest that greater variation in yield exists between
smaller sub-catchments and reach more similar values as the catchments scale increases,

reflecting an averaging effect at larger scales.

A strong positive relationship exists between total precipitation and export of SS, P and NOs.
The two study years — 2010 and 2011 were dryer and wetter than average, respectively, and
calculated loads of all determinands were significantly greater in 2011 compared with 2010.
The largest increases were for SS and TP. Higher concentrations of SS and P were recorded at
higher discharges, which equate to increasing loads. Although NO; export is clearly driven by
discharge events, loads are smaller relative to those of SS and P due to the weak correlation
between discharge and NO; concentration. Nitrate load increases simply due to the greater

volume of water, probably tied to the leachate and/or deeper runoff pathways.

The greater variability in exports is associated with the non-nested sub-catchments due to
increased heterogeneity of land use. Strong positive correlations between percentage
improved agriculture and yield in 2011 suggest that land use has a strong influence over yield
in wetter conditions, which is attributed to increasing mobilisation and transfer of
contaminants. The Low Hall catchment opposes the general trend as despite consisting of 100%
improved agricultural land it only exhibits a high NO; yield, while other determinands are

relatively low.

Seasonal trends are exhibited by SS and P with greater concentrations recorded in the autumn,
which is linked to increased precipitation and the first-flushing of contaminants from
agricultural land or the remobilisation of fine sediment deposited in the channel during
summer low flows. Nitrate concentration exhibits little seasonal variation, as its movement is

associated with more continuous base flow.

There is evidence of dilution in the upper Eden catchment as lowland sub-catchments with
increased intensity agriculture such as Blind Beck and Helm Beck, which yield relatively high SS
and P average concentrations and yields, appear to have no negative impact on the main river
Eden. Clean water from upland sub-catchments such as Scandal Beck and the River Belah, is
sufficient to dilute potentially polluting lowland areas. However, this system is vulnerable to

low rainfall, particularly if climate change results in dryer summers and warmer temperatures.
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1.3 Compare calculated sediment/nutrient yields with export coefficients from the
literature. Determine the representativeness of the data collected in the upper Eden
catchment and evaluate the selected methodology for water quality monitoring at the

catchment scale.

Calculated exports for the upper Eden are relatively low in comparison with other studies but
fall within the range of export coefficients reported in the literature. A simple export
coefficient model was used to predict annual SS, TP and TN yields for the thirteen upper Eden
sub-catchments based on a land cover type and the areal extent of that land cover. The model
results were acceptable with the majority of yield estimates falling between 2010 (dry year)
and 2011 (wet year) calculated exports. The model appears to perform best for the larger
catchments that have a more heterogeneous land cover (e.g., predictions for the Gt. Musgrave

and Appleby sub-catchments were in close agreement with measured exports).

A hydrological component was added to the model to take account of seasonal variation in
discharge and that derived from baseflow, which allowed monthly estimates of
sediment/nutrient yield to be made. The model over-predicted SS and TP in dry periods and
under-predicted in wet ones, with the effect being more prominent in the winter months. The
extra baseflow component served to significantly increase predicted TN export above

measured values.

It is understood that annual contaminant load/yield estimates based on grab samples only are
likely to be underestimates of true values. This is more prominent for SS and sediment-phase
nutrients due to the bias towards low and residual flow sampling. The employment of an auto-
sampler at the Blind Beck outlet meant that water samples were taken across a much wider
range of discharges and produced discharge-contaminant rating curves that are more

representative of actual conditions.

Accurate load estimations (and the high costs associated with measuring them) are important
for geomorphological purposes, but here it is questioned whether they are necessary for the
identification of potential DWPA mitigation locations. It is proposed that the use of an
appropriately designed grab sample regime along with automatic water sampling equipment is
sufficient to characterise the runoff, sediment and nutrient regime and identify the dominant

pollutant source-pathways to an extent that suitable DWPA mitigation options can be selected.
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1.4 Select a sub-catchment within the Upper Eden catchment. Use a spatially intensive
sampling campaign to identify pollutant sources within the catchment, and employ
automatic storm sampling equipment to determine the importance of storm events on

contaminant transfer.

Blind Beck was identified as consistently exhibiting the highest nutrient and sediment
concentrations per unit runoff as well as the highest total yields per unit area than any other
monitored sub-catchment in the upper Eden. The collected SS, P and NO; concentration data
located the principal source of SS and P as the area around Sykeside Farm. Nitrate
concentrations increased gradually along the river corridor but did not change significantly
until the confluence with the Low Hall stream, which consistently yielded the highest NO;
concentrations recorded in the upper Eden catchment during this study. Sources of SS and P
within the Sykeside Farm area were identified as the farmyard itself, as it is in very close
proximity to the stream; increased stocking densities of both cattle and sheep; increased
incidence of stream bank erosion/collapse and poaching. Bank degradation is linked to the lack
of stock fencing and riparian buffer zone along the length of Blind Beck. It is also associated
with the nature of bank-forming material (fine-textured, poorly drained boulder clay), which
despite being relatively cohesive is more susceptible to loss of stabilising vegetation and more

prone to bank collapse if higher/steeper banks are present.

Water samples collected during high-flow storm events revealed that the majority of SS and TP
(principally PP) was exported during short time periods, almost exclusively associated with
discharge peaks. Nitrate concentrations initially fell due to dilution or stayed fairly constant,
but increased during event recessions as slower flow pathways reached the stream (and rapid
pathways receded). Analyses of storm data revealed that discharge and SS concentration rose
in response to rainfall, and P increased in line with sediment concentration; and SS and P

concentrations peaked rapidly either with or just before peak discharge.

Contaminant-discharge rating curves were updated to include storm samples (along with grab
samples) for the Blind Beck outlet. Annual loads/yields were derived and compared with those
calculated from grab samples only. Suspended sediment yield was increased by circa. 110%, TP
increased by circa. 117%, SRP by circa. 80%, and there was no discernible difference for NOs.
Calculated SS and P yields were in agreement with values from the literature for catchments in
the north of England and southern Scotland. However, according to the Natural England
sediment loss thresholds (Cooper et al. 2008), Blind Beck exceeded the critical yield of 70 t km?
yrtin 2011.
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2.1 Describe the design and construct of a number of RAFs in agricultural catchments.
Using field measurements, evaluate the efficacy of RAFs to reduce SS, P and NO;
concentrations/loads in runoff during storm events — measure sedimentation volumes

and calculate annual sediment/nutrient removal rates where possible.

A wetland RAF was constructed at Sykeside Farm in the Blind Beck sub-catchment and
monitored as part of this study. A number of storm events were captured using automatic
sampling equipment but the ability of the wetland to retain sediment/nutrients could not be
examined, as there was no clearly identifiable inflow point to the feature. There is need of a
draw-off swale to convey a proportion of flow from Blind Beck to the wetland, but this was not
constructed due to lack of funding. Lessons learned from the catchment-wide monitoring in
Blind Beck and from observing the wetland RAF showed that a befitting choice of mitigation
option(s) should rely on the nature of the DWPA problem. In this instance where near-channel
sources appear to be dominant the use of RAFs is not ideal. The most effective and cost-
efficient way of solving the majority of the issues would be to introduce stock fencing. It was
also learned that RAFs should have smaller contributing areas than the wetland at Sykeside, to

ensure that runoff quantities are more easily manageable.

A number of RAFs were also examined in the Belford catchment, Northumberland. First, two
RAFs designed to reduce flood risk in the town of Belford were examined to establish whether
they also had the capacity to mitigate DWPA. An on-line pond RAF was visually accumulating
sediment but inlet/out samples collected during storm events showed that little-to-no SS, P or
NO; retention was occurring at higher discharges. This was attributed to reduced residence
time in the feature and the remobilisation of previously deposited material. An overland flow
interception bund constructed in a field margin was shown to be effective at trapping
sediment (and associated nutrients) during storm events that generated surface runoff.
However, the feature only functions during large storms and the presence of artificial sub-
surface drains in the catchment meant that significant losses of sediment/nutrients were

occurring during moderate-sized events (that don’t result in overland flow).

Based on the above realisations, there was a need to design and construct a RAF in the Belford
catchment that functioned in all hydrological conditions, treated runoff from sub-surface
drains, and reduced the amount of remobilisation occurring during high-flow events. The ideal
location was in the surface ditch drainage network as it was downstream of field drain
discharge points but upstream of the on-line pond RAF. The ditch was dredged prior to the
construction of a multi-stage RAF. The feature consisted of an upstream sediment trap with a

rock dam and riser pipe, a series of woven willow leaky-dams along with brash filter screens,
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and a downstream fine-filter consisting of wood chippings. The RAF was monitored during
storm events using auto-samplers; simultaneous inlet/outlet samples were collected along

with discharges were possible.

The multi-stage ditch RAF at Belford consistently reduced concentrations and loads of
sediment and nutrients at the event scale. Overall, SS, TP, SRP and NO; concentrations were
reduced by 26%, 20%, 19% and 9%, respectively, while respective loads were reduced by 30%,
23%, 12% and 8%. Greatest SS and P retention was recorded on the rising limb, which was
attributed to the settlement of relatively coarse sediment before residence time in the feature
was reduced by peak discharge. The sediment trap component yielded a trapping rate of circa.
0.1t ha™ yr", which is promising considering the relatively small size of the trap. Willow dams
and brash screens can be recommended due to their low cost and ability to reduce flow
velocities and promote sedimentation. The use of wood chippings as a fine filter cannot be
recommended for future use due to relatively high installation costs and the need to renew

the filter media on a semi-regualr basis.

The Netherton Project, commissioned by Cheviot Futures, involved the implementation of a
number of flood-related RAFs in conjunction with DWPA mitigation features. This study was
responsible for the design and construction of a series of sediment traps, situated in
agricultural ditches upstream of flood storage ponds; a three-cell tiered feature was subjected
to monitoring. The aim of the sediment traps was to reduce SS and P losses to the Netherton
Burn (with NO; reductions being an added bonus), but also to slow the sedimentation rate of

the flood storage ponds to maximise their lifespan.

The three-cell sediment trap at Netherton reduced SS, TP, SRP and NO; loads by 43%, 30%, 19%
and 14%, respectively. Sediment was trapped at a rate of circa. 0.31 t ha™ yr" with greatest
retention recorded in the upstream cell. The bulk density of trapped material was greatest in
the upstream cell and lowest in the downstream one; the P concentration of the sediment was
greatest in the middle cell. The division of the sediment trap at Netherton into three separate
terraced cells improved RAF efficiency as it reduces ‘short-circuiting’ of the feature during
high-flows. The ability of sediment traps to capture fine sediment of particle sizes smaller than
what would be expected due to their slow settlement velocities is explained by the

aggregation of soil particles and/or the flocculation of water-borne sediment particles.

2.2 Review the use of RAFs on the larger catchment scale, taking account of lessons
learned on sediment/nutrient source pathways, RAF suitability and appropriate spatial
scale for implementation. Consider the potential multiple-benefits of RAFs and

recommend design criteria for future implementation.
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Based on the outcomes of the Eden studies, including the more intensive monitoring carried
out in the Blind Beck sub-catchment, it is suggested that pollutant source and mobilisation
mitigation options would be more approriate than transport management ones, such as RAFs.
This is because the high-level of catchment connectivity in the Belford and Netherton
catchment is not present in the Eden and the ‘distributed point sources’ such as concentrated
overland flow and discharges from field drains are much less frequent. Based on the findings
of this study the most befitting management approach for Blind Beck would include stock
fencing and riparian zone protection. These would help prevent animals from entering the
watercourses thus reducing river bank degradation and poaching, and reduce the incidence of

bank collapse.

The use of RAFs to mitigate DWPA is best suited to relatively small catchments with
concentrated (polluted) runoff pathways and relatively low rainfall. The export of diffuse
pollution from the Lady’s Well sub-catchment (and most likely in the wider Belford catchment)
appears to take two forms: ‘chronic’ export, which takes place during residual flow conditions
where drainflow and shallow sub-surface flow are the dominant flow pathways; and ‘acute’
export, which occurs in larger storms and where overland flow is the major conduit. As this
catchment shows high levels of connectivity, as well as a sensitive downstream receptor (Budle
Bay) the use of RAFs is a viable option. The approach has also been shown to be suitable for

the runoff/DWPA regime at Netherton.

The multi-functionality of RAFs has not been explicitly tested in this thesis but their ability to
provide secondary benefits is clear. These include flood attenuation, increased biodiversity,

potential carbon sequestration, added amenity value, inter alia.

Throughout the course of this research a number of important lessons have been learned
concerning the use of RAFs as DWPA mitigation options. Firstly it is crucial to determine the
nature of the sediment/nutrient problem in a catchment before deciding whether the
implementation of the approach is appropriate. Understanding of the catchment’s
hydrological regime, including the dominant flow pathways, is necessary to be able to

effectively target RAFs.

Experience from the Belford and Netherton catchments has shown that agricultural drainage
ditches can be optimised to significantly reduce losses of SS and P and also positively impact
on the export of NO;. Not only will this have a water quality benefit the collateral impact on

the surrounding farm will be minimal.
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Suitable spatial scales for different types of RAFs have been provided; for example, overland
flow should be intercepted close to source and ditch RAFs should be located downstream of
field drain discharge points, but upstream of the main channel. Where required, larger RAFs
such as flood storage ponds and treatment wetlands should be accompanied by upstream
sediment traps. A number of important RAF design criteria have been reported and

maintenance schedules highlighted.

The number of RAFs required to ‘treat’ a catchment depends on many variables, including the
level of sediment/nutrient pollution, land use, soil type, precipitation regime, presence of
sensitive receptor, and many more. And while it is difficult to scale-up the findings from the
mitigation experiments to the larger catchment scale due to the heterogeneity and complex
nature of controlling processes, by proving the ability of RAF to significantly reduce losses of
sediment and nutrients at the local scale they can be recommended as ‘no-regrets’ options to

be used in conjunction with other DWPA mitigation approaches.

Recommendation for future study

Additional sampling at the thirteen upper Eden sub-catchments would improve the
contaminant concentration-discharge rating curves and thus reduce the errors associated with
the sediment/nutrient yield estimates. The use of auto-samples would allow high discharges to
be sampled that otherwise prove very difficult to measure using grab sampling alone. This
would allow stronger conclusions to be drawn about the spatial variability in DWPA vyield and
the relationships between yield and catchment characteristics. Improved data could also be

used to create concentration-duration-frequency curves.

Further work to investigate the finding that the majority of fine sediment is derived from
riparian sources in Blind Beck would be of value. A small-scale detailed study could determine
bank erosion rates and quantify their relative contribution. At the larger scale sediment

fingerprinting techniques could be employed.

More RAFs of all type should be tested at the local scale to add to the evidence base. It would
be highly beneficial to carry out a larger-scale investigation, possibly at the farm scale (e.g., <5
km?) where a large number of features could be installed. The use of intermittent grab
sampling and storm sampling is valid but will be limited to a relatively small number of

individual features.

To monitor impacts at a larger spatial scale the use of in-situ turbidity monitoring equipment is

recommended. Once a correlation between SS and turbidity (and P and turbidity) has been
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established the need for manual sampling is reduced. It is also important to establish the cost-

effectiveness of RAFs in order to evaluate them against other DWPA mitigation options.

The development of a simple, robust method to measure the accumulation of sediment in a
sediment trap would be valuable, as would a means of removing the trapped sediment that
would cause minimal disturbance to enable more representative analysis of dry bulk density. It
would also be beneficial to measure the particle-size distribution of the sediment to better
determine the settlement time and the sorption capacity of the SS. Finer particles tend to have
a higher sorption capacity due to a large surface area to volume ratio and surface charges.
Ultimately, this would determine the capacity of the SS loads to act as a vector of

contaminants.
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Appendix

Appendix A - Upper Eden catchment stage-discharge rating coefficients.

Site h min h max a b Note

Appleby 21.98 2.103
0.00 0.75 48.25 2.395

River Belah Estimated from FDC*
0.75 1.40 34.75 1.022

Blind Beck 2.135 2.296

Gais Gill 6.244 2.321
0.00 0.58 6.429 3.881

Helm Beck Estimated from FDC*
0.58 1.40 7.767 3.491
0.00 0.25 0.375 1.327

Low Hall stream**
0.25 0.70 0.137 0.027
0.00 0.60 4.297 1.717

Ravenstonedale Estimated from FDC*
0.60 1.40 11.45 3.511

Smardale Beck 41.86 2.557
0.00 0.37 13.73 3.059

Swindale Beck Estimated from FDC*
0.37 1.40 11.80 2.486

*Established by Mills (2009)
**Established by Ockenden (2010)
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Appendix B - V-notch weir specifications.

»

Head measurement section

e

Schematic representation of a v-notch weir (from BSI (1981)) not to scale.

Discharge Q (m>/s) is calculated from stage h (m) according to BS368: Part 4A: 1981 using the

Kindsvater-Shen formula:

Q= Ce%tan;/ZgnhWZ

Where: C, is the coefficient of discharge (non-dimensional), g, is the acceleration due to

gravity (m/s°), o is the notch angle (degrees) and h is the head measurement (m).
The limits of application of the Kindsvater-Shen formula for V-notch weirs are:

1. The ratio h/p should be equal to or less than 1.2.

2. The ratio h/B should be equal to or less than 0.4.

3. The head over the vertex of the notch should not be less than 0.05 m nor more than
0.60 m.

4. The height of the vertex of the notch above the bed of the approach channel should
not be less than 0.10 m.

5. The width of the rectangular approach channel should exceed 0.60 m.

6. The notch angle of a fully contracted weir may range between 25 and 100 degrees.

7. The tailwater level should remain below the vertex of the notch.
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B1. Sykeside wetland RAF V-notch weir specification.

Dimension Value
Width >1Im
Height 0.83m
Nappe of V to top 0.6m
Plate thickness 3 mm
P 0.23m
a % 90°
Ce 0.587

B2. Belford RAF V-notch weir specification.

Dimension Value
Width 0.7m
Height 0.5m
Nappe of V to top 03m
Plate thickness 3mm
P 0.2m
a % 90°
C. 0.578

B3. Netherton RAF V-notch weir specification.

Dimension Value
Width 0.7m
Height 0.55m
Nappe of V to top 0.35m
Plate thickness 3mm
P 0.2m
a 90°
Ce 0.579
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Appendix C - Upper Eden catchment FEH catchment descriptors

Descriptor Explanation (unit of measurement) Upland Eden at Eden at Eden at Gais Gill Scandal Scandal Blind Beck Helm Beck Coupland Swindale River Low Hall
Eden Kirkby Great Appleby Beck at Beck at Beck Beck Belah stream
Stephen Musgrave Smardale Soulby
OS GRIDREF Ordinance Survey grid reference NY 77200 NY 77300 NY 76500 NY 68100 NY 71800 NY 73900 NY 75050 NY 75250 NY 70950 NY 70550 NY 77550 NY 79550 NY 75250
07350 09700 13100 20450 01150 09100 10950 13050 14900 18350 13550 12150 13000
AREA (km?) 48 69 223 334 11 37 40 9 18 27.5 31.7 53 0.9
ALTBAR mean catchment altitude (m AOD) 413 395 351 319 478 336 322 214 252 371 393 385 153
ASPBAR dominant aspect (north = 0) 330 309 304 286 76 339 345 52 17 236 186 298 353
ASPVAR aspect variability (closer to 1 = one particular 0.1 0.2 0.15 0.12 0.44 0.22 0.23 0.43 0.25 0.41 0.43 0.26 0.43
direction)
BFIHOST Base flow index calculated from HOST 0.375 0.409 0.443 0.467 0.357 0.501 0.527 0.561 0.527 0.465 0.354 0.348 0.474
classification
DPLBAR Characterises catchment size and configuration. 9.5 10.34 13.65 24.31 1.07 8.35 10.42 4.48 5.93 7.13 7.86 9.22 1.2
Mean of distances between each node on
IHDTM grid and the catchment outlet (km)
DPSBAR mean of distances between nodes and 158.1 149 117.7 113.4 210.9 118.6 113.5 71.2 94.6 144.5 110.2 114.7 27.2
catchment outlet - characterises steepness
(m/km)
LDP longest drainage path (km) 20.19 23.33 29.82 45.64 2.06 15.04 18.08 8.65 12.23 12.93 14.62 15.36 2.32
PROPWET proportion of time SMD was <= 6mm during 0.7 0.68 0.66 0.67 0.71 0.71 0.71 0.71 0.71 0.65 0.64 0.63 0.71
1961-1990
RMED-1H mean annual maximum 1 hour rainfall (mm) 12.1 11.7 11 10.9 12.1 11.7 11.5 10.7 11 10.6 10.4 10.5 10.4
RMED-1D mean annual maximum 1 day rainfall (mm) 54.9 51 45.1 43 54.4 50.4 49.3 40.3 42 40.2 41.2 40.2 37.9
RMED-2D mean annual maximum 2 day rainfall (mm) 76.8 71.2 62.5 59.4 78 72.2 70.6 56.9 59.8 53.8 54.2 54.9 52.2
SAAR standard period (1961-1990) average annual 1610 1492 1270 1188 1906 1515 1456 1018 1159 1169 1132 1116 854
rainfall (mm)
SAAR4170 standard period (1941-1970) average annual 1450 1387 1318 1252 1742 1405 1367 1046 1178 1362 1374 1346 883
rainfall (mm)
SPRHOST standard percentage runoff derived from HOST 47.6 45.76 42.36 39.85 49.04 37.68 36.66 3491 29.25 38.74 47.21 46.17 40.38
URBEXT1990 Extent of urbanised area (%) 0.0001 0.0032 0.0018 0.0023 0 0.0007 0.0007 0.0017 0 0.0007 0.0032 0.0002 0
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Appendix D - Upper Eden catchment flow analyses

D1. Normalised flow duration curves (2010-2011).

10

e [pland Eden

= Eden at Great Musgrave

= Eden at Appleby
— (Gais Gill
e Scandal Beck at Smardale

e Scandal Beck at Soulby
0.1 -

e Blind Beck
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e Coupland Beck

Log!® noermalised discharge {m?3 s1)

0.01

= Swindale Beck

e River Belah

e Eden at Kirkby Stephen

0.001

Time exceeded (%)
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D2. Annual catchment water balances

2010
Site 2010

P(mm) Q(mm) E(mm) P-E(mm) % diff between Q and P-E
Upland Eden 1293 897 184 1109 19.1
Eden at Kirkby Stephen 1070 862 184 886 2.7
Eden at Great Musgrave 913 714 184 729 2.1
Eden at Appleby 856 653 184 672 2.8
Gais Gill 1013 942 184 829 -13.6
Scandal Beck at Smardale 985 714 184 801 10.9
Scandal Beck at Soulby 985 695 184 801 13.2
Blind Beck 779 576 184 595 3.2
Helm Beck 785 532 184 601 115
Coupland Beck 858 646 184 674 4.2
Swindale Beck 1014 889 184 830 -7.1
River Belah 1016 810 184 832 2.6
Low Hall stream 719 460 184 535 14.0
2011
Site 2011

P(mm) Q(mm) E(mm) P-E(mm) % diff between Q and P-E
Upland Eden 2178 1668 280 1898 12.1
Eden at Kirkby Stephen 1913 1604 280 1633 1.8
Eden at Great Musgrave 1404 1222 280 1124 -8.7
Eden at Appleby 1336 1164 280 1056 -10.2
Gais Gill 1740 1649 280 1460 -12.9
Scandal Beck at Smardale 1670 1252 280 1390 9.9
Scandal Beck at Soulby 1670 1218 280 1390 12.4
Blind Beck 1429 1035 280 1149 9.9
Helm Beck 1450 983 280 1170 16.0
Coupland Beck 1431 1202 280 1151 -4.4
Swindale Beck 1788 1475 280 1508 2.2
River Belah 1548 1491 280 1268 -17.6
Low Hall stream 1131 902 280 851 -6.0
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Appendix E - Water quality data

E1. Grab sample data tables: date, contaminant concentration and discharge.

See CD-ROM

E2. Determinand concentration-discharge rating coefficients.

Suspended sediment

Site 10a b R* n
Upland Eden 0.527 0.530 0.56 39
Eden at Kirkby Stephen 0.525 0.603 0.74 49
Eden at Great Musgrave 0.396 0.657 0.73 49
Eden at Appleby 0.331 0.660 0.61 49
Gais Gill 1.090 0.511 0.51 40
Scandal Beck at Smardale 0.444 0.702 0.75 48
Scandal Beck at Soulby 0.520 0.572 0.64 48
Blind Beck 1.516 1.117 0.86 49
Helm Beck 0.884 0.575 0.58 37
Coupland Beck 0.580 0.505 0.64 38
Swindale Beck 0.774 0.506 0.56 42
River Belah 0.472 0.882 0.66 46
Low Hall stream 1.935 0.852 0.69 49
Total phosphorus

Site 10a b R’ n
Upland Eden -1.635 0.238 0.60 39
Eden at Kirkby Stephen -1.577 0.229 0.63 49
Eden at Great Musgrave -1.622 0.290 0.70 49
Eden at Appleby -1.686 0.327 0.69 49
Gais Gill -1.529 0.182 0.30 40
Scandal Beck at Smardale -1.690 0.303 0.50 48
Scandal Beck at Soulby -1.629 0.264 0.57 48
Blind Beck -0.881 0.665 0.81 49
Helm Beck -1.431 0.219 0.43 37
Coupland Beck -1.627 0.199 0.50 38
Swindale Beck -1.364 0.223 0.52 42
River Belah -1.666 0.303 0.33 46
Low Hall stream -0.752 0.469 0.57 49
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Soluble reactive phosphorus

Site 10a b R n
Upland Eden -2.0458 0.273 0.40 39
Eden at Kirkby Stephen -1.9872 0.176 0.38 49
Eden at Great Musgrave -1.9957 0.199 0.30 49
Eden at Appleby -2.0969 0.303 0.36 49
Gais Gill -1.9547 0.180 0.17 40
Scandal Beck at Smardale -2.1024 0.217 0.22 43
Scandal Beck at Soulby -2.0969 0.227 0.28 43
Blind Beck -1.466 0.303 0.35 49
Helm Beck -1.8729 0.203 0.20 37
Coupland Beck -2.0655 0.213 0.27 33
Swindale Beck -1.8447 0.093 0.11 42
River Belah -2.1487 0.239 0.13 46
Low Hall stream -1.1669 0.401 0.35 49
Nitrate

Site 10a b R® n
Upland Eden 0.168 -0.078 0.05 36
Eden at Kirkby Stephen 0.400 -0.013 0.00 43
Eden at Great Musgrave 0.567 -0.101 0.21 43
Eden at Appleby 0.677 -0.258 0.24 43
Gais Gill 0.120 -0.158 0.01 37
Scandal Beck at Smardale 0.446 -0.063 0.05 40
Scandal Beck at Soulby 0.448 -0.060 0.06 40
Blind Beck 0.810 -0.266 0.46 43
Helm Beck 0.572 0.011 0.00 34
Coupland Beck 0.289 -0.125 0.11 36
Swindale Beck 0.453 -0.063 0.08 38
River Belah 0.456 -0.145 0.13 42
Low Hall stream 0.663 -0.291 0.46 43
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E3. Export coefficients from the literature

Suspended sediment

Author Country Land use SS(t km™ yr'l)

Average Range
Sharpley & Smith (1990) USA Native grass 25.3 3.1-79.1
Foster & Lees (1999) UK Pasture 7.7-17.7
Wass & Leeks UK Upland/unimproved 17.1
Sharpley & Smith (1990) USA Wheat 382.3 28.7 - 964
Foster & Lees (1999) UK Arable 16.5-24.6
Russell et al. (2001) UK Arable 77 -122
Wass & Leeks (1999) UK Mixed 12.6-33.5
Foster & Lees (1999) UK Mixed 52
Sharpley & Smith (1990) USA Mixed crop and grass 179.2 59.6-401.5
Foster and Lees (1999) UK Moorland 23.5-34.6

Total phosphorus
Author Country Land use TP (kg km? yr?)
Average Range

Reckhow et al (1980) USA Pasture (imp grass) 150 14 - 490
Loehr et al (1989) USA & Europe Pasture (imp grass) 5-60
Marsden et al (1995) UK Pasture (imp grass) 40 - 100
Smith et al (1995) Ireland Improved grassland 100
Johnes et al (1994) UK Pasture (imp grass) 10-80
McMuckin et al (1996) NI Improved grassland 80 60 - 100
Sharpley & Smith (1990) USA Native grass 314 3.1-95.1
Cooke (1976) UK Grassland 20
Kolenbrander (1972) Grassland 20-30
Haygarth and Jarvis (1996) UK Grassland 300
McMuckin et al (1996) NI Grassland 80 60 - 100
Sharpley & Smith (1990) USA Wheat 237.4 84.4-436.5
McMuckin et al (1996) NI Arable 497 383-611
Marsden et al (1995) UK Arable 80-250
Catt et al (1998) UK Arable 37-264
Loehr et al (1989) USA & Europe Rural cropland 6-290
Clesceri et al (1986) USA (Wisconsin) Agriculture 26.2
Dodd et al (1992) USA Agriculture 99
Reckhow et al (1980) USA Mixed agriculture 113 8-325
Rast & Lee (1978) USA Rural/agriculture 50
Sharpley & Smith (1990) USA Mixed crop and grass 1315 64 - 209
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Total nitrogen

Author Country Land use TN (kg km? yr'l)
Average Range

Reckhow et al (1980) USA Pasture (imp grass) 865 148 - 3085

Loehr et al (1989) USA & Europe Pasture (imp grass) 320 - 1400

Reckhow et al (1980) USA Row crops 1609 210-7960

Loehr et al (1989) USA & Europe Rural cropland 210- 7960

McFarland & Hauck (2001) USA (Texas) Forage fields 540

Clesceri et al (1986) USA (Wisconsin)  Agriculture 669

Dodd et al (1992) USA Agriculture 980

Reckhow et al (1980) USA Mixed agriculture 1653 282 - 4150

Rast & Lee (1978) USA Rural/agriculture 500
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Appendix F - Blind Beck geology and drift geology maps

Solid Geology

— Blind Beck

- Limestone
- Sandstone

Drift Geology

— Blind Beck

- Alluvium

- No cover

|:| River terrace deposits
B i
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Appendix G - Blind Beck water quality

G1. Grab sample data: date, contaminant concentration and discharge.

See CD-ROM.

G2. Storm event graphs.
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Event B—01/10/2010
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Event C—06/10/2010
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EventD—-11/11/2010
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Event E—10/12/2010
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Event F—15/01/2011
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Event G —09/03/2011
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Event H— 05/04/2011
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Event | —23/05/2011
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Event J—22/06/2011

Precipitation (mm)

50 - 0.0
40 -
- - 2.0
E 30
& - 4.0
@
5 2.0 A
]
o - 6.0
1.0 -
\

0.0 —_— L 80
22/06/2011  22/06/2011  22/06/2011  22/06/2011  22/06/2011  23/06/2011  23/06/2011
09:00 12:00 15:00 18:00 21:00 00:00 03:00
40 - - 800
% 30 - - 600 T

[32]
E ¢ w
g 20 e L 400 g
1% (%]
2 10 - A 200 4
*
*
0.0 T T ‘ T ‘ T ’ T ’ T ’ T . T ‘ 0
40 - - 12
— L 10
o 30 T
o - 0.8 Qo
£ E
@ 20 - 06 o
© c
5 - 04 S
2 10 - a
0.2
0.0 0.0
40 - - 0.12
— L 010 &
D30 ®
T - 008 E
o
® 20 - 006 S
2 S
3 L 004 &
8 10 | <
- 0.02
0.0 0.00
40 - - 10,0
> 30 80 ﬁé,
% - 6.0 —
@ 2.0 §
_2:: - 4.0 =)
i) o
8 10 20 %
0.0 — ——— ——— — 0.0
22/06/2011 15:45 22/06/2011 18:45 22/06/2011 21:45 23/06/2011 00:45

328



Event K—25/11/2011
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G3. Storm event raw contaminant concentration and discharge data.

See CD-ROM.

G4. Hysteresis graphs.
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EventD—-11/11/2010
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Event F—15/01/2011
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Event H— 05/04/2011
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Event K—25/11/2011

SS conc. (mg I%)
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G5. Revised determinand concentration-discharge rating coefficients.

Constituent 10a b R” Number of samples
SS 1.8511 0.9358 0.44 218
TP -0.5432 0.6757 0.45 218
SRP -1.1612 0.4693 0.4 145
NO; 0.7961 -0.268 0.54 139
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Appendix H - Belford

H1. Storm event raw contaminant concentration and discharge data.

See CD-ROM.

H2. Storm event graphs.
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Event 2 —
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Event 3—12/10/2012
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Event4—-25/11/2012
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Event 5 —14/12/2012
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Event 6 —07/01/2013
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Event 7 — 26/01/2013
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Event 8 —17/08/2013
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Event 9 —19/03/2013
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H3. Summary tables of multi-RAF performance (recorded during 9 sampled storm

events 2012-2013).

Suspended sediment
Event Date Duration (hrs) Suspended sediment reduction (%)
Concentration Load (hourly)
(instantaneous)

Range Mean Range Total
1 10/05/2012 24 12.2-87.9 37.6
2 17/06/2012 12 15.4-36.0 23.4
3 12/10/2012 14 -9.4-28.3 18.9
4 25/11/2012 18 -7.2-51.8 25.1 -13.6-65.4 31.8
5 14/12/2012 14 1.9-34.7 21.7 -4.1-64.2 23.8
6 07/01/2013 15 -3.6-42.5 28.0 12.1-55.5 31.6
7 26/01/2013 24 -16.3 - 50.2 20.2 -20-53.7 26.5
8 17/03/2013 22 22 -47 30.5 16.7-49.8 37.2
9 19/03/2013 24 15.2-45.3 26.2 11.6-48.9 29.5

Mean 25.7 30.1
Total phosphorus
Event Date Duration (hrs) Total phosphorus reduction (%)
Concentration Load (hourly)
(instantaneous)

Range Mean Range Total
1 10/05/2012 24 6.1-89.9 25.2
2 17/06/2012 12 8.1-50.7 24.8
3 12/10/2012 14 -4.0-44.2 15
4 25/11/2012 18 -11.0-35.5 15.2 -64 - 59.6 20.8
5 14/12/2012 14 8.6-33.4 18.3 -2.3-634 21.3
6 07/01/2013 15 -7.1-39.2 19.2 -24.2 -435 22
7 26/01/2013 24 2.0-41.7 18.3 0.2-45.8 214
8 17/03/2013 22 7.5-46.1 26.6 10.6 - 48.8 33.9
9 19/03/2013 24 1.8-35.8 13.9 2.0-415 20.2

Mean 19.6 233
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Soluble reactive phosphorus

Event Date Duration (hrs) Soluble reactive phosphorus reduction (%)
Concentration Load (hourly)
(instantaneous)
Range Mean Range Total
1 10/05/2012 24 9.3-62.0 27.8
2 17/06/2012 12
3 12/10/2012 14 6.6-44.4 235
4 25/11/2012 18
5 14/12/2012 14 -9.1-28.1 9.2 -20.6 - 58.3 10
6 07/01/2013 15
7 26/01/2013 24
8 17/03/2013 22
9 19/03/2013 24 6.6 -30.7 15.2 3.4-375 14.7
Mean 18.9 12.4
Nitrate
Event Date Duration (hrs) Nitrate reduction (%)
Concentration Load (hourly)
(instantaneous)
Range Mean Range Total
1 10/05/2012 24 -5.7-48.9 13.8
2 17/06/2012 12 -0.2-153 8
3 12/10/2012 14 3.0-40.8 14.5
4 25/11/2012 18 -4.4-19.0 7.9 -81.7-52.1 8.7
5 14/12/2012 14 -4.4-19.5 6.8 -16-48.3 6.3
6 07/01/2013 15 1.3-19.7 10.1 -11.5-333 9.4
7 26/01/2013 24 -12.2-28.6 6.6 -16.4-27.3 8.1
8 17/03/2013 22
9 19/03/2013 24 -1.8-7.7 3.9 -7.8-15.6 53
Mean 9.0 7.6
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Appendix I - Netherton

I1. Storm event raw contaminant concentration and discharge data.

See CD-ROM.

12. Storm event graphs.
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Event 2 - 26/04/2012
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Event 3 - 10/05/2012

Flume stage (m)

0.08 -0
0.06 - | | L1
0.04 - )
0.02 - -3
0.00 == —— —— ———— ———— —— 4
10/05/2012 10/05/2012 10/05/2012 10/05/2012 11/05/2012 11/05/2012
01:45 07:45 13:45 19:45 01:45 07:45
0.08
0.06 - £
E 5
Y 0.04 - =
© h=4
& s
0.02 - ]
a
0.00
250 -
A ASSinlet
T 200 1 A A B 0SS outlet
£ 150 %
£ 100 o 7
5] T o A A A
; [m] O g A A A A
%} 50 4 =] o o o o o o
0
0.40 -
A TP inlet
‘:0 0.30 4 A A A O TP outlet
£ A A
S 020 4 L, o
8 o O o NN
& 010 oo g & A & @
0.00
8.0 -
— A
®» 60 o 8 4 B3 By 6 a8 a8 8 @
£ A
S 40
8 A ANO3 inlet
g 207 0@ 0 NO3 outlet
0.0 T T T T T T T T T T T T T T
10/05/2012 04:45  10/05/2012 08:45  10/05/2012 12:45  10/05/2012 16:45

348

Precipitation (mm)



Event 4 - 06/07/2012
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Event 5 - 05/08/2012
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Event 6 - 24/09/2012
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Event 7 -12/10/2012
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Event 8-22/11/2012
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Event 9 - 20/12/2012
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Event 10 - 27/01/2013
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Event 11 - 18/03/2013
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13. Summary tables of three-cell RAF performance (recorded during 11 sampled storm

events 2012-2013).

Suspended sediment
Event Start time/date Duration Suspended sediment reduction (%)
sampled (hrs)
Concentration Load (hourly)
(instantaneous)
Range Mean Range Total
1 20/04/2012 11:45 11 43-81.4 38.8
2 26/04/2012 09:15 21 0.8-68.3 41.7
3 10/05/2012 04:45 15 25.4-66.7 48.7
4 06/07/2012 22:30 12 16.4-59.4 43.2
5 05/08/2012 10:15 9 37.6-62.4 48.7
6 24/09/2012 11:00 24 13.6-60.9 39.8
7 12/10/2012 03:00 13 8.3-53.8 36.6
8 22/11/2012 16:00 9 34.3-88.3 55.2 72.1-91 83.1
9 20/12/2012 09:00 20 -6.3-61.5 30 31.3-61.5 29.6
10 27/01/2013 09:30 24 3.5-58.2 35.4 16 —-58.2 32.6
11 18/03/2013 00:30 16 14.5-77.2 48.3 7.9-80.7 49.1
Total phosphorus
Event Start time/date Duration Total P reduction (%)
sampled (hrs)
Concentration Load (hourly)
(instantaneous)
Range Mean Range Total

1 20/04/2012 11:45 11 15.3-55.8 29.2
2 26/04/2012 09:15 21 10.9-71.5 30.5
3 10/05/2012 04:45 15 9.8-443 27.7
4 06/07/2012 22:30 12 -29.7-415 24.9
5 05/08/2012 10:15 9 5.7-38.4 235
6 24/09/2012 11:00 24 13.1-41.4 253
7 12/10/2012 03:00 13 9.2-32.2 21.6
8 22/11/2012 16:00 9 13.5-59.6 26.6 59.6-74.1 67.3
9 20/12/2012 09:00 20 -9.7-48.6 18.7 29.8-48.6 18.2
10 27/01/2013 09:30 24 8-50.6 24.7 16.1-50.6 22.0
11 18/03/2013 00:30 16 12.4-54.0 29.8 8.5-60.9 29.9

357



Soluble reactive phosphorus

Event Start time/date

Duration

sampled (hrs)

Soluble reactive P reduction (%)

Concentration Load (hourly)
(instantaneous)
Range Mean Range Total

1 20/04/2012 11:45 11 6.4-37.7 19.8
2 26/04/2012 09:15 21 -3.2-53.7 13.8
3 10/05/2012 04:45 15
4 06/07/2012 22:30 12 -5.6-39.4 20.4
5 05/08/2012 10:15 9 -6.5-28.2 10.1
6 24/09/2012 11:00 24
7 12/10/2012 03:00 13
8 22/11/2012 16:00 9 -8-42.3 15.3 42.1-72.3 62.7
9 20/12/2012 09:00 20 -16.7 - 40 13.1 17.1-40.0 12.9
10 27/01/2013 09:30 24 -18.2-48.6 131 2.4-48.6 9.9
11 18/03/2013 00:30 16 -46.9 - 53.8 13.3 -43.4 - 59.5 17.7
Nitrate
Event Start time/date Duration Nitrate reduction (%)

sampled (hrs)

20/04/2012 11:45
26/04/2012 09:15
10/05/2012 04:45
06/07/2012 22:30
05/08/2012 10:15
24/09/2012 11:00
12/10/2012 03:00
22/11/2012 16:00

W 0 N o u B W N R
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=
o
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18/03/2013 00:30

[
[

11
21
15
12

24
13
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16

Concentration

(instantaneous)

Load (hourly)

Range Mean Range Total

-0.9-29.6 9.2

-3.6-11.4 4

2.2-429 8.9

-8.7-9.7 -0.8

-0.8-24 6.8 32.6-60.9 56.7
-6.4-12.2 3.9 44-12.2 3.7
-10-21.6 4.7 -9.8-23 4.4
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Runoff attenuation features (RAFs) are low-cost, soft-engineered catchment modifications designed to
intercept polluted hydrological flow pathways. They are used to slow, store and filter runoff from
agricultural land in order to reduce flood risk and improve water quality, specifically by mitigating diffuse
water pollution from agriculture. This study focuses on a sub catchment (30 ha) of the Belford Burn
catchment (5.7 km?) where the capacity of two RAFs to reduce concentrations of suspended sediment
(SS), phosphorus (P) and nitrate (NOs) in runoff has been investigated. A field bund RAF, designed to
intercept overland flow during storm events, has been shown to retain significant volumes of sediment;
however, the underlying field drains are still exporting high concentrations of sediment and nutrients,
sometimes exceeding 500 mg SS I', 1mg TP I and 40 mg NO; I". An on-line sediment pond
is accumulating sediment during normal flow conditions, but event sampling has revealed a lack of
retention of any pollutants during storm events, which has been attributed to remobilisation of previously
deposited material. In order to address these problems and improve the quality of the water leaving the
sub catchment, a novel multi-stage RAF has been constructed in the ditch network. A low-cost filter trap,
using wood chippings, has been installed and will be the focus of on-going monitoring and investiga-
tions. The ability to help tackle flooding and pollution by managing runoff flow pathways does have great

potential, despite being somewhat difficult to evaluate.

Key words: diffuse pollution, mitigation, agriculture, catchment, sediment, nutrients

Introduction

The EU Water Framework Directive (2000/60/EC) has
made the abatement of diffuse water pollution from
agriculture (DWPA) a priority. Cuttle et al. (2007) provides
a comprehensive summary of management measures, the
vast majority of which focus on ‘source’” and ‘mobilisation’
management. However, despite these efforts, the operation
of preferential flow pathways, both surface (Sharpley 2002)
and sub-surface (Chapman et al. 2003; Deasy et al. 2009),
combined with the occurrence of heavy precipitation, will
always lead to ‘incidental’ nutrient (phosphorus — P and
nitrate — NOs) and suspended sediment (SS) losses that may
enter a watercourse unchecked. Thus, the principle aim of
‘transport’ management options is to intercept polluted
runoff, normally downstream of a known contaminant
source or upstream of a sensitive receptor, and improve the
quality of that water through a combination of physical,
chemical and biological processes.

Probably the best-known example of a ‘transport’ man-
agement option is the constructed wetland. Mitsch and
Gosselink (2007, 4) described wetlands as ‘the kidneys of
the catchment’ because they have the capacity to atte-
nuate water flows and improve water quality. Wetlands
positioned strategically within a farmscape can intercept
and filter agricultural runoff (Kadlec et al. 2000; Braskerud
2001 2002) as well as being able to provide numerous
secondary benefits, which include: flood storage, ground-
water recharge, new wildlife habitat and aesthetic value
(Diaz et al. 2012). Fisher and Acreman (2004) collated the
results of 57 wetland studies from around the world and
concluded that 80 per cent of wetlands reduced NO;
loading, while 84 per cent reduced P loadings in the
water flowing through them. However, a huge variation in
wetland performance has been reported across the litera-
ture. Mitsch and Gosselink (2007) also reviewed the
results from a number of wetland studies and reported a
NO; retention range of 40-95 per cent, while for P a
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much greater variation ranging from 0 per cent (in some
cases a net loss was recorded) to 99 per cent retention.
The use of wetlands for the mitigation of DWPA has been
relatively limited in the UK to date. However, the research
carried out in countries such as Norway and Sweden
provides strong evidence that wetlands and similar
features such as ponds have the potential to deliver
cost-effective water quality amelioration.

Kay et al. (2009, 72) reviewed agricultural stewardship
measures in England in terms of their efficacy to reduce
DWPA and concluded that there was a ‘striking lack of
scientific evidence’ on which to base political catch-
ment management decisions. In response to this, and
with the WFD requiring urgent action, significant invest-
ment has been made. The Department of Environment,
Food and Rural Affairs (Defra)-funded Mitigation Options
for Phosphorus and Sediment (MOPS) project was
initiated to gain evidence on the effectiveness of differ-
ent DWPA mitigation options. MOPS 1 (2005-2008)
focused on in-field mitigation options for winter cereals
(Deasy etal. 2010), while MOPS 2 (2008-2013; see
http://mops2.diffusepollution.info) will assess the use of
edge-of-field wetlands. Based on two years of data, col-
lected after the construction of ten unlined wetlands,
sediment trapping rates of 0.01-0.07 t ha yr' at a clay
soil site, 0.02-0.4 t ha yr™' at a silt soil site and >0.5 t ha
yr' at a sandy soil site have been reported (Ockenden
et al. 2012). Phosphorus retention was also found to be
highest at the sandy soil site, with P trapping rates
ranging from 0.006 to 1 kg ha™ yr™' across all ten sites in
the first year.

Runoff attenuation features

Runoff attenuation features are soft-engineered, low-cost,
catchment modifications that include bunds, ponds, traps,
leaky dams, physical filters and wetlands in order to slow,
store and filter runoff from agricultural land (Quinn et al.
2007). They are multi-functional in that they can be
developed to reduce flood risk (e.g. Nicholson et al. 2012;
Wilkinson et al. 2010), improve water quality by reducing
DWPA (Jonczyk et al. 2008), and also create new habitats
and increase biodiversity if an integrated approach to
land management is taken (Shaw et al. 2010). In 2006 the
‘Proactive’ research group' set up a project at Nafferton
Farm (294 ha) in Northumberland, to demonstrate full-
scale water-quality amelioration RAFs. Quinn et al. (2007)
reported a reduction in TP concentrations of approxi-
mately 40 per cent from a combined sediment trap and
phosphorus trap during a number of average-sized storms.
However, directly following the installation of the P trap
(ochre pellets were used to chemically bind dissolved P),
high SS (>90%) and total P (TP) removal (>80%) rates were
recorded (Jonczyk etal. 2008). This was attributed to
the physical filtering performed by the ochre pellets and
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not by chemical processes for which it was originally
intended. Removal of NO; was negligible, probably due
to the short residence time in the feature.

The Nafferton Farm project, and its use of RAFs, dem-
onstrated the potential to manipulate flow pathways and
thus runoff regimes, at the small catchment scale; work
that directly influenced the approach taken in the
Belford project. The Belford project’ was started in 2008
to alleviate flooding in the town of Belford using natural
flood management techniques (Wilkinson et al. 2010).
Since it began, the project has evolved to include the
use of RAFs to address water quality issues as well as
flooding. In the 2009 EA River Basin Management Plan
for Northumberland, the Belford Burn ecological status
was classed as ‘poor’. Without any mitigation it is
predicted that the watercourse will remain ‘poor” (Envi-
ronment Agency 2009), thus failing to meet the WFD
2015 targets. The aim of this research was to assess a
number of RAFs in terms of sediment and nutrient miti-
gation (their efficacy as flood features is discussed else-
where (Nicholson etal. 2012). This paper presents
results from two RAFs as well as describing the design
and construction of a new multi-stage water quality
feature that will be subjected to on-going monitoring
and investigation.

Materials and methods

The Belford study catchment

The Belford Burn catchment (5.7 km?) is located upstream
of the village of Belford (OS Grid Reference NU-339107),
in northeast England (Figure 1a). Land use is predomi-
nantly rural, split between arable in the eastern, lower half
and pastoral in the western, upper half of the catchment.
The catchment bedrock is chiefly Alston formation, a mix
of limestone, sandstone, siltstone and mudstone, and
superficial geology is dominated by Devension till. The
soil (95 per cent coverage) is Dunkeswick association, a
typical stagnogley soil with fine loamy topsoil and clayey
subsurface horizons (Jarvis et al. 1984), and described by
the National Soil Resources Institute’ as ‘slowly perme-
able, seasonally wet, basic loams and clays with impeded
drainage’. Mean annual rainfall is 695 mm (Wilkinson
etal. 2010). The Lady’s Well sub catchment (34 ha)
(Figure 1b), located in the north-east of the Belford catch-
ment, was selected to test two RAFs. Land use is a mixture
of arable, principally winter wheat, and pastoral. As a
result of the soil type, specifically the clayey subsurface
horizons, artificial drainage has been installed in the
catchment to improve the drainage. A herringbone system
has been used where collector drains (6” clay ware tile)
are aligned down the main slope and the lateral drains are
aligned across the slope at a slight angle to the contours
(only the main collector drains are shown in Figure 1b).
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4.?
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Figure 1
(S1, S2 and S3), 5-m contours, main tile drains and stream; (c) the Lady’s Well catchment showing RAF locations and
contributing areas

Lady’s Well has an average slope of 4.3 per cent, falling
55 m over a distance of 1270 m.

The water quality in Lady’s Well was characterised in
2010/2011 with 18 grab samples taken on six occasions
from three locations (ST, S2 and S3; Figure 1b). ST was
from a drain inspection point at the top of the catchment;
S2 was where the field drain discharges into a surface
ditch (the beginning of the stream with a contributing area
of 15 ha), and S3 from the stream 250 metres downstream
of S2 (17.5 ha contributing area). At this time no flow
measurement equipment was installed in the sub catch-
ment so the data only exist as concentrations. No samples
were collected during the summer, because there was no
observed drain flow; sampling was resumed in October
2010. Together the grab samples and event recordings
(described below) allowed the potential of the feature to
mitigate pollution to be evaluated.

N

= Belford Burn

E Lady's Well catchment
- Belford village

Field lines

0 1
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KM e Belford catchment

A Grab sample point

----- Tile drains (collector)

Lady's Well stream

——— Contours 5m
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I:l Lower contributing area (17.5 ha)

(a) The Belford Burn catchment; (b) the Lady’s Well study catchment showing grab sample locations

Runoff attenuation features

RAF 1 (for location see Figure 1c), constructed in Novem-
ber 2010, is a field bund designed to intercept and tem-
porarily store surface runoff during storm events (Plate 1).
Although this arable field is under-drained, overland
flow was known to occur during heavy precipitation and
act as a fast hydrological flow pathway. The bund was
constructed across the main drainage thalweg with a
maximum height of 1 m; this provides a storage capacity
of approximately 500 m?, 0.45 per cent of the 11 ha con-
tributing area. The bund has a 220 mm diameter outlet
pipe installed at mid-height to help prevent over-topping
and possible erosion of the bund. It also helps to drain the
feature in several hours; this is important in the event of a
second flood peak. The RAF also doubles as a raised farm
track, which prevents the farmer trafficking this previously
water logged area.
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Plate 1 Field bund RAF in operation during a storm
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Figure 2

The long-term accumulation of sediment in RAF 1 is
difficult to quantify because any retained sediment
is intentionally ploughed back in on an annual basis.
However, Palmer (2012) carried out a survey of deposited
material following an event in January 2011 when the
field had a low crop cover, meaning significant areas
of bare soil were exposed. An estimated 0.99 tonnes
of sediment had been retained in this single event
and consisted of clay/silt and fine-sand sediment
fractions.

RAF 2, also constructed in November 2010, has two
components (Figure 2): a permanent on-line pond feature
to retain sediment (Plate 2) and a higher level separate
crescent-shaped pond to store flood water once a stage
threshold has been exceeded and the pond spills. The
sediment-trapping pond has a capacity of approximately
200 m?, 0.11 per cent of the 17.5 ha contributing area.
After construction the pond quickly began to fill with
sediment and a delta could be seen developing at the
inlet. A pressure transducer was installed in the pond to
record stage at five-minute intervals and paired ISCO
automatic samplers were deployed on the inlet and outlet
of the feature in 2010. The samplers were programmed to
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Plate 2 RAF 2 sedimentation pond during a storm event

take a sample every hour. A float switch located next to
the pressure transducer initiated sampling.

Laboratory methods

All samples were analysed for suspended sediment (SS),
nitrate (NO;), total phosphorus (TP), soluble reactive
phosphorus (SRP) and total soluble phosphorus (TSP)
concentrations.  Suspended sediment concentrations
were determined using a standard method of filtration
and drying at 105°C to a constant weight. Nitrate con-
centrations were determined using ion chromatography
(Dionex 100) after filtration using a 0.45 um cellulose
acetate membrane filter. Phosphorus concentrations were
determined by the colorimetric molybdate-blue method
(British Standards Institute 1997); SRP after filtration
using a 0.45 um cellulose acetate membrane filter, TP
after digestion with peroxodisulphate and TSP after filtra-
tion and digestion.

Results

Grab sample campaign

Table 1 contains the results from the grab sampling survey.
There is a clear increase in all determinands between
S1 and S2.

Sediment and TP concentrations fell slightly, on
average, between S2 and S3, while SRP and NO;
increased slightly. This suggests that water from a sub-
surface pathway may be entering the ditch, but this would
take further investigation to verify. On every occasion, TP
concentrations exceeded the EA recommended maximum
concentration of 0.1 mg I"" and SS concentrations as high
as 400 mg I that significantly surpass the 25 mg I
acceptable threshold prescribed under the Freshwater
Fish Directive (2006/44/EC) were recorded. The data
strongly suggest that the field drains transfer a significant
proportion of polluted runoff; these findings are consistent
with other studies (Deasy etal. 2009). Although the
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Table 1

Grab sample data collected from three locations in Lady’s Well between January 2010 and February 2012 with

sample mean and standard deviation (refer to Figure 1b for sample locations)

Concentration (mg I

SS TP SRP NO;

Date S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

22/01/2010 124 2975 2840 0.054 0.661 0.621 0.021 0.256  0.215 6.8 10.5 9.2
04/03/2010 5.6 92.5 84.0  0.031 0.192 0.221 0.027  0.121 0.146 8.5 12.0 10.9
19/10/2010  44.0 400.8  283.6  0.062 0.249 0329 0.054 0.110 0.132 14.7 40.8 446
09/11/2010 10.6  475.0 302.2 0.065 0.488 0.449 0.038 0.122 0.143 5.6 8.8 9.4
17/01/2011 10.7 163.6 75.0 0.056 0.286 0.168  0.033 0.054  0.054 13.7 15.8 16.3
07/02/2011 12.5 312.2 305.0 0.042 0.388 0.394 0.028 0.187  0.195 6.6 9.5 9.9
Mean 16.0  290.3 222.3 0.052 0377  0.364 0.034 0.142 0.147 9.3 16.2 16.7
SD 14.0 142.9 111.0 0.013 0.174  0.164  0.012 0.070  0.056 3.9 12.3 13.9
N 6 6 6 6 6 6 6 6 6 6 6 6

majority of the grab samples were collected during rain-
fall events and soil conditions may have been nearing
saturation, there was no overland flow in the catchment
on these occasions. In a situation such as this where field
drains have been identified as an important transfer route
for sediment and sediment-phase nutrients, the number of
mitigation options available are limited. Perhaps the most
effective would be the reversion of land use from arable
back to grass, but this may be unfavourable to the farmer.
Another option, which would allow for the continuation
of arable land use, would be to ‘treat’ the runoff as it
leaves the drains and enters the ditch network. This idea is
developed further in the Discussion section.

Evaluation of RAF 1

Palmer (2012) estimated that 0.99 tonnes of sediment
were retained in RAF 1 during an event on 11 January
2011, the equivalent of 91 kg ha™. This is evidence that
the feature is working to retain sediment; in this case the
dominant fractions were clay/silt and fine-sand. However,
two issues occurred during large events; the discharge
pipe in the bund meant that a certain amount of water was
allowed to flow into the next field, and the tile drain that
underlies this feature was quickly surcharged, resulting in
fast, highly erosive overland flows that transferred any
pollutants not retained behind the bund to the lower ditch
system. It would be preferable therefore to construct a
second bund RAF in the next field to help address this
issue. However, construction was not allowed because of
planning restrictions.

Evaluation of RAF 2
Figure 3 shows inlet and outlet ISCO data from a 19-hour
event on 26 February 2010. Antecedent conditions were

wet following steady rainfall (22 mm over the previous
seven days) before 21 mm of rain fell on the 26 February,
with a peak rainfall intensity of 3 mm h™".

At the onset of sampling both SS and TP concentrations
were slightly higher at the inlet than the outlet, but only
for the first three hours. After this, concentrations were
higher at the outlet. SS peaked at 530 mg I”' (at the outlet),
which coincided with the maximum pond stage after
four hours. Total P concentration peaked just after the
maximum pond stage at 1.22 mg |™' (inlet), but the highest
TP concentration of 1.24 mg "' was recorded two hours
later at the outlet, at the start of the recession. Suspended
sediment concentrations remained higher at the outlet
until the 11th hourly sample, after which higher concen-
trations were recorded at the inlet. A similar pattern
occurred with TP. Nitrate concentrations differed very
slightly between the inlet and outlet for the entire sam-
pling duration. The overall pattern was a slight reduction
during the rising limb, followed by a steady increase; this
suggests a dilution effect followed by possible leaching of
NO; causing concentrations to increase during the
recession. The NO; concentration of 11 mg "' may not
represent the peak because higher concentrations were
recorded in the grab sample campaign (Table 1). In this
instance the sampling sequence was stopped because of a
fall in pond stage, therefore less of the recession was
recorded. Overall, during this event, there was a net loss
of SS and NO; (2.3 and 2.5 per cent respectively), and a
small 1.6 per cent net retention of TP; these percentages
are based on concentrations alone as loads could not be
calculated. Clearly higher downstream pollution levels
contradict the initial design goal of the feature. If this
effect is common in ponded features it may suggest that
this type of RAF needs further development work.
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Discussion and future work

Event data from RAF 2 suggest that the feature was not
functioning to retain significant levels of sediment and
nutrients during storm events, although more evidence,
including calculation of pollutant loads, is needed to
confirm this. However, it was observed that the feature was
accumulating significant amounts of silt throughout 2010,
particularly at the inlet. Johannesson et al. (2011) found a
similar pattern occurring in a wetland in Sweden where
sediment thickness was over four times higher at the inlet;
they also found that the P content of that sediment corre-
sponded to almost 80 per cent of the P load. In RAF 2 it is
hypothesised that the bulk of the sediment comes from
chronic runoff delivered by the field drains and deposited
in the pond in small events. Where higher concentrations
have been recorded at the RAF outlet than at the inlet,
during the rising limb and at peak runoff, it would appear
that previously deposited material is being remobilised.
This could be a fundamental problem with using ponds as
pollution traps. To overcome the problem, rapid removal of
sediment from the trap provides one possibility but the
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ISCO data recorded during an event (26-27 February 2010) at RAF 2 showing: (a) rainfall, (b) pond stage, and

ions of: (c) SS, (d) TP, (e) NOs

frequency would make this impractical. Increasing the
number and capacity of ponds is another option but avail-
able space is the biggest issue. Ponds that fully dry down (as
in RAF 1) do offer easier opportunities to remove sediment
or to plough sediment back into the field.

In response to these findings, it was thought that a suite
of secondary pollution RAFs were required to target
smaller events and long-term recessional flow. Drawing
upon experience from the experiments at Nafferton
Farm it was decided to use the ditch network itself to
manage the pollution. Some of the design principles used
in constructed wetlands were also considered to improve
sediment and nutrient retention potential, including
increasing storage volume to catchment area ratio in order
to increase residence time (Kadlec et al. 2000) and the use
of vegetation and obstructions to slow the velocity of the
runoff (Braskerud 2001) and promote particle settlement
(Uusitalo et al. 2003). It was decided to build a feature, or
set of features, specifically to retain the fine sediment
(<125 um) and reduce remobilisation. The design would
use a range of easily constructed sedimentation traps and
cheap filter materials.
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Multi-stage water quality RAF — ditch

management trial

A multi-stage RAF was constructed in a 150-m section of
ditch, upstream of RAF 2, in February 2011. The first
component was a sediment trap to remove the bulk of the
coarse sediment (>125 um), followed by a series of three
brash filters, and finally a fine-sediment filter. Figure 4
shows the location and a schematic representation of the
feature.

The sediment trap is of simple design to allow quick
construction and simple maintenance. The feature has a
capacity of 18 m’. The ditch was both widened and deep-
ened and a rock and earth bund constructed to dam the
water. A 150-mm diameter riser pipe was installed in
order to drain the feature from the surface to help mini-
mise the remobilisation of previously deposited material.
The pipe is situated at approximately 50 per cent of the
total depth, therefore allowing extra storage when flow
increases in the ditch. The sediment trap was partially
lined with 600 x 600 mm concrete slabs to provide a solid
bottom to aid sediment recovery by mechanical digger
and also enable the measurement of sediment accumula-
tion. Accumulation will be measured at the inlet and near
the outlet using incremented measuring posts. The volume
of retained sediment will be calculated by multiplying the
surface area with the mean sediment thickness. Additional
samples will be collected using steel cylinders for dry
density determination. Three woven willow check dams
were installed in the channel downstream of the sediment
trap with brash screens placed upstream and pinned into
place to prevent them from being washed away. This
feature will help to slow the flow in a particularly steep
section of ditch and will also have a partial damming
effect on the flow, causing it to back up and promote
sedimentation. Once small pockets of coarser sediment
are trapped, it is hoped that these may have a flocculation
effect on the fine clay material, as reported by Braskerud
(2002).

The final component is an in-channel fine filter fea-
ture designed to retain fine sediment (<125 um) and

associated nutrients. To achieve a high level of filtration
whilst ensuring that water can pass through easily, wood
chippings were used as a cost-efficient filter media. The
channel was deepened and widened to accommodate
around 5 m* of chippings that were held in place by a
timber pen lined with wire mesh and supported by
wooden stakes. It is important, however, that the feature
does not become a sediment source during high flow
events. To prevent this, a spillway channel was dug
around the feature to allow water to by-pass the filter
when the stream exceeds a certain stage. This does
mean that high flows will not be filtered and some esti-
mate of the proportion of events that can be mitigated
may be needed. However, there should be a suitable
crossover point that will allow the ditch mitigation fea-
tures to focus on smaller events and long-term recession
flow and the operation of overland flow interception
RAFs to target higher flow and flood events. The filter
media will require periodic renewal, the time-scale of
which is to be established during the experiment. Wood
chips can then be spread to land following removal.
Rules concerning the maintenance of RAFs are still
under consideration; questions such as ‘who should
remove the material’, ‘at what rate’ and ‘at what cost’
are important to the study.

Whilst semi-quantitative information has been helpful
to build the understanding of the features and aid in their
design, ultimately robust water quantity and quality data
will be needed to refine pollution mitigation approaches.
Rectangular flumes have been constructed in the ditch
upstream and downstream of the RAF and instrumented
with pressure transducers to provide a continuous
flow record using a measured stage-discharge rating
curve. ISCO samplers collect water samples from the
flumes during storms to allow the calculation of flow-
weighted concentrations and pollutant loads. A third
ISCO is located after the sediment trap. The ISCOs are
programmed to take samples at 30-minute intervals and
will be initiated by a float switch installed in the upstream
flume; the samplers will take synchronised samples.

150m
[ L
; ISCO sampler o E
I[ I E = a I | Il .,u..l.:.
e e e o
Flume & Coarse Brash Fine Flume &
N stage sediment filters sediment stage
A 0 150 300 recorder trap filter recorder
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Figure 4 Schematic of the multi-stage Lady’s Well RAF and its location in the catchment (not to scale)
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Conclusions and recommendations

Runoff attenuation features 1 and 2 were constructed in
the Lady’s Well sub-catchment principally for flood
attenuation purposes, but with water quality benefits
being designed in, using the prevailing evidence that fea-
tures could have multiple benefits. This study began as a
low-cost attempt to gain some quantitative evidence on
their impact on the catchment sediment and nutrient
regime, which led to some important interim results and
has begged a number of fundamental questions about
pollution mitigation approaches. RAF 1, the overland
flow field bund, has demonstrated the potential to retain
significant amounts of sediment during events. This type
of feature could be recommended for construction in
steep arable fields and could also be located in field
corners. Despite retaining 0.99 tonnes of sediment in
one event, data from the grab sample campaign strongly
suggest that the field drain underlying this part of the
catchment delivers significant concentrations of sediment
and nutrients to the ditch during the wet season. Land
use change would perhaps yield the biggest positive
impact on this issue, but may not be a realistic option for
the farmer. Therefore an attempt has to be made to miti-
gate the pollution in the surface ditch network. By tack-
ling the pollution problem coming from the drains, a
chronic issue is being addressed; however, we also need
to deal with the acute, overland flow events, which can
be responsible for increased concentrations of sediment
and nutrients.

The implication of adding storage capacity to catch-
ments and the requirement for filter materials is still
needed. The attributes that enable RAFs and wetlands to
be effective in reducing SS, NO; and P loadings need
consideration when constructing or managing wetlands.
Moreover, to provide the capacity necessary to give the
residence time required to remove high levels of SS, P and
NO; during peak flows, a catchment would require either
very large features or large numbers of smaller ones. It is
highly unlikely that this is a viable option for the majority
of farmers. To help overcome this issue, a ditch manage-
ment scheme has been designed and a physical filter is
being trialled. The maintenance costs of the RAFs are still
being determined and by whom and when the RAFs need
to managed is not fully known. Their effective use could
be an important strategy for meeting the WFD DWPA
requirements and perhaps a new means of assessing
‘success’ is needed. The ability to tackle flooding and
pollution by managing runoff flow pathways does have
great potential despite being somewhat difficult to
evaluate. The strength of the work so far in projects such
as Nafferton, MOPS and Belford is that the features have
been built and trialled at full-scale on real farms. The
willingness to re-design, modify and optimise features as
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part of the project is vital to gaining the evidence needed
for policy makers and stakeholders.
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Notes
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(Accessed 20 September 2011)

3 See the website: http://www.landis.org.uk (Accessed 24 August
2011)
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« A framework to achieve multiple-benefit catchment management plans is presented.
 Catchment Systems Engineering is an approach that seeks to manage flow pathways.

« Mitigation measures have been created that slow, store and filter catchment runoff.

« Several measures have been optimised for reducing diffuse pollution from agriculture.

* Results suggest that optimised features are reducing pollutant concentrations during storms.
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Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues
and flooding problems. There is potential for agricultural management to become a major part of improved strat-
egies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve
the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through
the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow path-
ways at source, such as overland flow, field drain and ditch function, a significant component of the runoff gen-
eration can be managed in turn reducing soil nutrient losses.

The Belford catchment (5.7 km?) is a catchment scale study for which a CSE approach has been used to tackle a
number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented
throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting
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Flooding flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within
Runoff o the channel, and riparian zone management.
g::f::gf;ﬁ(symms Engineering Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing
mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment
stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been
addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned
as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modifica-
tion and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from
these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus,
nitrate and suspended sediment losses during storm events.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction Reducing diffuse pollution caused by agricultural activities is a major

challenge in many European catchments where the sustainability of

Intensive farming practices have the potential to increase local run-
off rates, resulting in various water quality issues and local flooding
problems (e.g. O'Connell et al, 2004, 2007; Parrott et al, 2009).
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the ecosystems and water uses is compromised by intensive agriculture
(Laurent and Ruelland, 2011). The European Community Water Frame-
work Directive (WFD: 2000/60/EC) has highlighted the issues of diffuse
pollution and is intended to foster the improvement of the ecology and
amenity value of the UK surface waters. A central issue is excess nutrient
inputs from agriculture and households to surface waters, leading to eu-
trophication (Hilton et al., 2006; Neal et al., 2008), which is still the most
significant reason for water bodies failing to achieve good ecological
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status (GES) in 2015 and beyond (Scheuer and Naus, 2010). Agriculture
in the EU contributes circa 70% of the suspended sediment (SS), 40-80%
of the nitrate (NOs) and 20-40% of the phosphorus (P) entering surface
waters (OECD, 2001). Despite the 2009 deadline for the adoption of
river basin management plans (RBMPs) and programmes of measures
(PoMs) to meet GES by 2015, it is estimated by the European
Environment Agency (2012) that only 52% of European water bodies
will meet GES by 2015, with diffuse pollution from agriculture being
the significant pressure for 40% of European water bodies. River basin
management plans and PoMs, as key tools of WFD, take into consider-
ation the variability in ecosystem characteristics and as such a
catchment-specific approach for implementation of mitigation mea-
sures is required (Johnes et al., 2007; Doody et al., 2012). The latest re-
view of the RBMP by the European Commission in 2012, recommended
that member states should “step up ambition in taking measures to
achieve good status” and “in case of uncertainties in effectiveness, take
no-regret measures” (European Commission, 2012b). It is thus becoming
more expedient in agricultural catchments to implement the type of
management necessary to reduce sediment and nutrient losses to
standing water bodies (Jordan et al., 2007).

The Floods Directive (2007/60/EC) has created a platform for the
management of flood risk with aims to reduce the adverse conse-
quences to human health, economic activity, the environment and cul-
tural heritage associated with floods. Flooding is a significant hazard in
England and Wales with approximately 1.85 million homes, 185,000
commercial properties, circa 5 million people, and half of the most pro-
ductive agricultural land at some risk from flooding (Parker, 2000;
Environment Agency, 2001; Penning-Rowsell et al., 2006). There is
widespread concern that shifts in extreme weather events associated
with climate change could exacerbate damages globally or even reverse
development gains in some regions (UNDP, 2007; Wilby and Keenan,
2012). Sustainable flood risk management measures need to have a
prominent role in the implementation of the directive. In the UK, sus-
tainable flood risk management embodies a shift from a traditional, pre-
dominantly piecemeal and reactive method towards a catchment-based
approach that takes account of long-term social and economic factors,
which uses natural processes and natural systems to slow down and
store water (Scottish Environment LINK, 2007).

Methodologies for mitigating water quantity and quality share many
commonalities and these aspects should be considered together in
order to maximise benefits and persuade local actions. This idea is em-
braced in policy within the Blueprint to safeguard Europe's waters docu-
ment (European Commission, 2012a); however, it is rarely applied in
practice. Achieving water quality targets at minimum economic cost is
one of the underlying principles driving the selection of mitigation mea-
sures (Balana et al., 2012). However, there is an urgent need to tackle
multiple issues in a holistic way, whilst delivering more for less and
demonstrating the impact at the catchment scale. The current financial
constraints throughout Europe means that multi-objective measures to
meet the targets of the above directives are critical and action needs to
be taken. The commonality between many western European catch-
ments is in the intensity of the farming, the wide range of recognised
environmental concerns, a highly regulated governance regime and a
vulnerability to climate and demographic changes. Hence, there is po-
tential for agricultural management to become a major part of improved
strategies for controlling runoff for better water quantity and quality.

This paper presents a case study for which a framework has been de-
veloped for implementing multi-purpose measures in the Belford Burn
catchment, Northumberland, UK. It provides a guide to implementing
measures in the catchment, which could be easily applied to other
catchments of a similar scale. The key to this uptake is to have a demon-
stration catchment that has soft engineering features imposed on it and
to show stakeholders and regulators how the benefits were achieved
and at what cost. The paper presents the framework methodology and
a description of these steps. In the final two steps provisional assess-
ment and discussion of the data are performed.

2. Study area and catchment issues

The Belford Burn catchment (5.7 km?) lies in Northumberland in the
northeast of England and drains through the village of Belford (OS Grid
Reference NU-339107). The stream flows into Elswick Burn, which then
drains into Budle Bay (~30 km?). Over recent decades, increasing
summer blooms of macrophytic algae (mainly Enteromorpha/Ulva
intestinalis) have occurred in Budle Bay (Palmer, 2012). This is a concern
as it forms part of the Lindisfarne Special Protection Area protected
under the Birds Directive (79/409/EEC), and is also designated a Natura
2000 site and Ramsar wetland. The River Water Body WFD Ecological
Status in 2009 classed the Belford Burn as poor; without appropriate
mitigation it is predicted to remain so in 2015 (Environment Agency,
2009) and therefore fail the WFD targets. Table 1 indicates that average
annual (2006-2009) reactive P (RP) concentrations consistently
exceeded levels prescribed under the WFD, whilst other water quality
determinands were below recommended thresholds. The main sources
of water pollution were identified by the Environment Agency for
England and Wales (EA) as agricultural diffuse pollution and domestic
septic tanks.

The headwaters of the Belford catchment are predominately pasture
and cultivated grasslands. Grasslands and arable land dominate the
lowlands. The topography is relatively steep (elevation change of
150 m over 4 km river length), which is a contributing factor to the
flashy response to heavy rainfall. Belford has a long history of flooding;
the 2002 flood caused damage to a number of properties and
businesses, which culminated in the EA commissioned flood defence
pre-feasibility study (see Halcrow, 2007). The analyses concluded that
traditional flood defences were not suitable for Belford because of the
high-cost, lack of space for flood walls and banks, and the small number
of properties at risk; therefore the town did not meet the criteria for
Grant-in Aid funding. This situation is typical for many small rural vil-
lages that are at risk of flooding. Five months after the pre-feasibility
study was published, the July 2007 storm occurred and caused flooding
to more than 10 properties. The feeling in the village community was
highlighted by the local press headline “Sick of sandbags and sympathy”
(12th July 2007, Northumbrian Gazette). Owing to the high costs of tra-
ditional flood defences, there was a desire by the local EA Flood Levy
Team and the Northumbria Regional Flood Defence Committee at the
EA to deliver an alternative catchment-based solution to the problem
(Wilkinson et al., 2010b). The original work for this study was carried
out at the farm-scale (Nafferton Farm ~1 km?) where mitigation mea-
sures were installed for water quality management purposes (Quinn
et al., 2007; Jonczyk et al., 2008; Shaw et al., 2011).

3. Methodology: A runoff management framework

Applying upstream multi-purpose mitigation measures in Belford
was a new approach to flood risk management for the local EA Flood
Levy Team, whilst the primary goal was to reduce the risk of flooding
in Belford secondary objectives which included: to work with the com-
munity to design, locate and construct measures; to gain evidence from
the measures to investigate their effectiveness in reducing flood risk;
and to assess the multiple environmental benefits (e.g., modifying
flood measures to be better adapted to reduce diffuse pollution).

Table 1

Average (from 36 samples) yearly ammonia, dissolved oxygen, nitrate (N) and phosphate
(P) levels in Belford Burn at Ross Law, 2 km downstream of the village of Belford.
(Source: Environment Agency http://maps.environment-agency.gov.uk/wiyby/ accessed
December 2010.)

Average 2009 2008 2007 2006
Ammonia (mg 1-1) 0.125 0.116 0.101 0.094
Dissolved oxygen (%) 95.58 95.75 95.78 97.47
Nitrates (mg 1-1) 2243 22.89 23.05 23.68
Phosphates (mg 1) 0.13 0.12 0.1 0.16
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However, the framework methodology could be used in a catchment
where diffuse pollution is the primary issue and these features could
be adapted to offer flood reduction benefits. Evidence is vital for
influencing and informing policy and creating a local catchment plan.
In order for the lessons learned in the Belford catchment to be transfer-
able to other catchments, a runoff management framework has been
developed. The framework is based around implementing mitigation
measures that target crucial pathways, engaging with catchment stake-
holders and using evidence from field science and effective manage-
ment protocols. Stakeholder engagement is the foundation of the
framework (Fig. 1). Ensuring that all stakeholders are well informed
and can all actively contribute to solving the problems will lead to
greater stakeholder confidence and better outcomes being reached
(Collins et al., 2012). Only through engagement with stakeholders' con-
cerns can research output lead to improvements in farming practice and
realistic policy (Hewett et al., 2009). The framework aims to facilitate
cross-issue communication in order to find the most holistic solution.

Fig. 1 shows the runoff management framework that was developed
in the Belford case study; it is a modification of the Hewett et al. (2009)
model for a multi-scale framework for the strategic management of dif-
fuse pollution. The framework begins by identifying catchment environ-
mental issues; these issues are subject related and are usually poorly
connected in terms of communicating and achieving multiple benefits
(Fig. 1; top catchment). Within catchments there are many issues that
need to be resolved, but rarely is a project funded to deliver numerous
benefits. The steps of the framework as shown in Fig. 1 will be described
in the following sections. Finally, the loop commences again (via modi-
fication) and the long-term catchment plan evolves further; especially if
the future issues are made more ambitious, for example tackling water
quality and ecological issues downstream.

3.1. Step 1: The concept for catchment change — Catchment Systems
Engineering approach

The objective of the concept for catchment change step is to come to a
consensus, through engagement, on a vision for a local catchment man-
agement plan. In Belford a Catchment Systems Engineering (CSE) ap-
proach was used. CSE follows the principles of Earth Systems
Engineering and management (see Allenby, 2000, 2007; Schneider,
2001; Hall and O'Connell, 2007). CSE is an interventionist approach to
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altering the catchment scale runoff regime and nutrient dynamics
through the manipulation of hydrological flow pathways to manage
water quality and quantity sustainably (Quinn et al., 2010). It seeks
first to describe catchment function (or role) as the principal driver
for evaluating how it should be managed in the future. The term ‘sys-
tems’ in CSE relates to both the natural and human functioning of a
catchment as ultimately the stakeholders must agree with the interven-
tions proposed. The success of CSE depends upon long-term commit-
ment, which can only be sustained by building a consensus (Hall and
O'Connell, 2007).

Runoff Attenuation Features (RAFs) are a practical component of
CSE. On-farm impacts can be mitigated through good land use manage-
ment practices that delay or attenuate runoff (O'Connell et al., 2004;
O'Donnell et al,, 2011). RAFs are based on the concept of the storage,
slowing, filtering and infiltration of runoff on farms, at source, by
targeting surface flow pathways in fields and farm ditches (Quinn
et al,, 2007; Wilkinson et al., 2010a, 2010b; Barber and Quinn, 2012b;
Nicholson et al., 2012; Wilby and Keenan, 2012). RAFs have the poten-
tial to create a simple multi-purpose solution, which aims to cover all
the issues highlighted in Fig. 1. RAFs include bunds, drain barriers, run-
off storage features (both online — located within the main channel; and
offline — located adjacent to the channel), large woody debris dams,
buffer strip management, and willow barriers.

3.2. Step 2: Catchment characterisation

The objective of catchment characterisation is to set up a monitoring
platform in order to characterise the hydrological functioning of the
catchment and gather evidence on the effectiveness of mitigation strat-
egies. Moreover, evidence is required to determine the impact of the
CSE approach and to underpin future management plans. Evidence is
usually available in two forms: qualitative and quantitative. However,
policy makers have tended to favour quantitative forms of evidence
and systematic reviews of hydrological data often ignore the benefits
of soft evidence (e.g. Seibert and McDonnell, 2002). It is important to
characterise the catchment pre-, during and post-change. Ideally, it
would be useful to have a long period of pre-change data allowing the
catchment to be understood before any mitigation strategies are put
in place. In many cases this is not a feasible option, especially where
flood defence schemes require urgent execution. However, it is vital to
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Fig. 1. The runoff management framework developed in the Belford Burn catchment.
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characterise the catchment at the earliest stage possible to allow for
some pre-change data to be collected; this can be achieved whilst miti-
gation measures are being considered. Stakeholders have a large role to
play in providing expert opinion concerning the design of monitoring
networks; for example, in identifying which water bodies are at risk of
failing to achieve the WFD objectives and assessing the most appropri-
ate water quality elements to monitor at suitable surveillance monitor-
ing points (Collins et al., 2012).

A multi-scale, nested hydrometric experiment was deployed in the
Belford Burn catchment in November 2007 (Fig. 2). This consisted of a
rain gauge, five stream level stations and six water level recorders with-
in RAFs. There was a desire from the EA and Newcastle University to
show the multi-purpose potential of the approach. Thus, four automatic
water pump samplers (ISCO 3700 and 6700) were deployed in 2009 to
take samples from the stream during storm events. These were followed
by a further two samplers in 2011, to monitor a ditch management RAF.

3.3. Step 3: Education and knowledge exchange

The objective of the education and knowledge exchange step is to
share knowledge and use tools that help stakeholders understand infor-
mative concepts therefore helping to facilitate links between several is-
sues (Fig. 1). A decision support tool was used to help accelerate the
knowledge exchange process during stakeholder meetings. In acade-
mia, as well as in professional consultancy, a number of decision support
systems (DSS) for river basin management have been proposed to com-
ply with WED, but have rarely been used by the competent authorities
(de Kok et al., 2009; Klauer et al,, 2012). It is important that all stake-
holders are able to use and have an understanding of the DSS tool. Ini-
tially a combination of different conceptual runoff scenarios provided
end users with a number of ways to visualise the effects of different
land management practices. The Floods and Agriculture Risk Matrix
(FARM) tool is an example of an education tool that focuses on runoff
risk from farms (Wilkinson et al., 2013). The FARM tool was built
around the findings of the FD2114 Defra research project (O'Connell
et al.,, 2004) and was further refined during consultation with stake-
holders in the Ripon Multi-Objective Pilot project (Posthumus et al.,
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2008). Primarily used at farmer meetings, with regulators in attendance,
the tool reflects what stakeholders consider to be ‘slow and low’ and
‘fast and high’ runoff rates, respectively. Earlier forms of the same tool
exist for pollution management including the Nutrient Export Risk Ma-
trix (NERM) for NO3 losses (see Quinn, 2004 ), and the Phosphorus Ex-
port Risk Matrix (PERM) for P losses (Hewett et al., 2004 ). These tools
allow non-expert stakeholders to understand conceptually the underly-
ing issues behind the problems and empower them with adequate
knowledge to participate in formulating a solution.

3.4. Step 4: Demonstration and regulation

The objective at the demonstration and regulation step is to exhibit to
catchment stakeholders and regulators how catchment intervention
using RAFs will work. In Belford, a pilot/demonstration RAF site and de-
sign were agreed and constructed for this purpose (for more details
refer to Wilkinson et al. (2008, 2010b)). This proved to be a long process
with many regulators raising different issues about the design and loca-
tion of features as well as the environmental, ecological (for example, in
stream RAFs need to consider fish habitats and riparian zone features
needed to consider vole habitats), and archaeological impacts of the in-
terventions. At first, it was difficult to manage the plethora of EA advice,
regulation and administration; however, the engagement with all the
EA parties proved very useful and a robust solution was developed.
The pilot RAF is an offline intervention (capacity ~1000 m?), which con-
sists of a 1 m high wooden bund, crossing a hollow in the landscape
collecting both surface runoff and high flows spilled from the nearby
stream. If the RAF is full it is allowed to overflow via a controlled spill-
way slot at the end of the wooden bund, reducing the risk of soil erosion
from overspilling. The pilot RAF has performed well during the storms
presented in Table 3. During the September 2008 event (a storm with
a 24 h return period of 20 years) the pond was full at around the
same time as the main peak indicating that RAF was functioning well
(Wilkinson et al., 2010b). However, it is likely for a storm with a higher
return period that this pond may have overtopped earlier. Information
on the functioning of the pilot RAF during this event can be found in
Wilkinson et al. (2010b).
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Fig. 2. The Belford Burn catchment showing the hydrometric network and Runoff Attenuation Feature (RAF) sites.
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Table 2

A construction and operational summary of six instrumented RAFs in the Belford Burn catchment.

RAF number Type

Construction and operation

Capacity (approx.) m>

0 Offline flow storage/incepting fast overland Timber permeable barrier; disconnects major overland flow pathway and diverts 800
flow pathway high flows from stream

1 Offline flow storage Soil bund; high flows diverted from stream 310

2 Online flow storage/wetland area Earth dam; wetland pond with extra storage during high flows 700

3 Offline flow storage Soil bund; high flows diverted from stream 360

4 Incepting fast overland flow pathway Soil bund with wooden sluice; disconnects major overland flow pathway 3000

12 Online flow storage/wetland area Soil bund around wetland pond; wetland pond with extra storage during high flows 250

3.5. Step 5: Implementation

The implementation step involves the construction of RAFs across the
entire catchment in order to address the identified issues (Fig. 1). In a
three-year period (2008-2011) over 30 RAFs were constructed in the
Belford catchment (Fig. 2). A detailed summary of these features can
be found in Wilkinson et al. (2010a) and Nicholson et al. (2012) (also
see http://research.ncl.ac.uk/proactive/belford: accessed May 2012).
Six instrumented RAFs are selected for analysis with differing construc-
tion and operation regimes. These are summarised in Table 2 and cover
the broad range of features in the catchment.

Farmer participation was fundamental to the effective implementa-
tion of RAFs. Often farmers would suggest suitable sites and modify/op-
timise the initial design in order to gain the most advantageous
environmental and agri-economic benefits. Thus, the agreed final de-
sign was based on local knowledge on current details such as land
use; for example, woody debris was placed only in wooded channel sec-
tions, ponds were placed within existing riparian area buffer zones, and
arange of ditch barriers were created using wood within upland ditches
and willow within the lowland arable ditches. Usually, an attempt was
made to solve more than one environmental problem; for example,
bunds were placed across hollows in fields prone to overland flow.
One bund was constructed as a farm track thus removing the problem
of trafficking through a frequently saturated zone whilst also allowing
the feature to be much larger. Several of the features were instrumented
and assessed so that the RAF functioning could be understood. This
allowed a provisional assessment of the data to take place using the
methodology framework so far to understand whether the evidence
was sufficient for policy uptake.

4. Results and discussion
4.1. Provisional assessment of collected data

The provisional assessment of data feeds into the evidence and pol-
icy uptake step. If the provisional evidence suggests that the RAFs could
be optimised then appropriate changes could take place. Over a four
year period (2008-2012) that the Belford mitigation measures have
been in place, the catchment has witnessed an unusual high number
of flood level storm events (Table 3).

Initially, qualitative evidence (such as photographic evidence, videos
and two farmers visited some of the RAFs during the September 2008
flood) showed the stakeholders that the RAFs were clearly holding

Table 3
A summary of the top 3 extreme storm events in the Belford Burn catchment (during
2008-2011); storm return periods calculated using the Flood Estimation Handbook.

Rank Dates Storm Rainfall % of yearly 24 h rainfall
duration (hrs) (mm) average rainfall return period
1st  29-30th Mar 2010 30 624 9 12.5 years
(58.8 mm)
2nd  17th July 2009 43 1026 15 12.5 years
(58.2 mm)
3rd  5-7th Sept2008 45 996 14 20 years
(65.8 mm)

water upstream of the village despite the lack of quantitative evidence.
However, the numerous storms have subsequently provided a large
dataset of the RAF hydrological functioning; this is highlighted for the
largest recorded flood during the project, the March 2010 event
(Fig. 3; Table 3).

Fig. 3 shows the performance of six RAFs during the March 2010
event (the largest recorded during the catchment characterisation
period). Fig. 3 shows that RAFs 1, 3, 4 and 12 have a peak (in water
level) after the observed peak in the stream at R3 (Fig. 2). These RAFs
are located nearby stream monitoring point R3. RAF 4 is one of the last
features to peak and this occurs 2 h after the stream peaks (Fig. 3).
This is owing to its relatively large capacity and its ability to capture a
major overland flow pathway, which continues to produce runoff after
the peak of the flood (as seen in Fig. 4). The pilot feature (RAF 0)
peaks before the observed peak at R3, however, this site is located in
the headwaters near R1 and it is likely that the peak has passed this
site. Wilkinson et al. (2010b) found this feature to be functioning as
intended during the September 2008 event; data indicated that the
time of travel of a peak increased by 15 min over a 1 km stretch of the
stream by comparing data from several storm events before and after
the installation. Fig. 3 demonstrates that most RAFs are performing as
specified: storing runoff at and after the peak, and then emptying within
half a day of the last peak (Fig. 3). However, it is evident that RAF 2, an
in-stream dam/online pond feature, reaches storage capacity some time
before peak stream level, meaning that it has little-to-no effect on flow
storage/attenuation during this critical part of the storm. Despite this,
visual evidence suggested that RAF 2, along with other online features,
was accumulating sediment. RAF 2 was surveyed in May 2010 and
again 19 months later in December 2011, which revealed a reduction
in storage capacity of approximately 190 m> (Barber et al., 2011). This
could be translated into a long-term estimate of trapped sediment.

Fig. 4 shows cumulative runoff and rainfall recorded during the
March 2010 event. The photograph in Fig. 4 shows that overland flow
taking place before peak stage is observed in the main channel. The rain-
fall runoff ratio for this event was estimated at 91% (based on a runoff
calculation using an extrapolation of the rating curve at R3 [Fig. 2] to es-
timate runoff), which could be attributed to the land drain network be-
coming surcharged, leading to a rapid increase in overland flow.
Significant proportions of the catchment exhibit overland flow during
large events, which have the potential to cause significant soil erosion
and sediment (and associated nutrient) losses.

4.2. Modification and optimisation

All RAFs are under continuous review and a number of them are un-
dergoing varying degrees of modification and optimisation (Fig. 1). A
number of offline ponds have required the inlet level to be raised in
order to target the peak of storms in a more timely fashion (Nicholson
et al., 2012), thus ensuring a more efficient use of storage capacity. In
terms of optimisation, a number of new features will be built differently
based on the experience gained throughout the project; for example,
despite the relative high cost of using treated timber (as an alternative
to earth bunds) its versatility makes it easy to work with, its inherent
strength provides resistance to the attention of livestock (particularly
cattle), and it requires little in the way of space — thus having a lesser
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Fig. 3. The performance of six RAFs (see Table 2) during the March 2010 flood (observed at R3). RAF 0 collects runoff and stream spill, RAFs 1 and 3 collect stream spill, RAF 2 is in the stream
and RAF 12 is a combination of an in-stream feature with spill overflow. Solid vertical lines indicate the peak observed in the stream at R3.

impact on agricultural activities. Soil bunds also have their merits; they
can be low-cost and relatively simple to construct but suit locations
with fewer livestock and where space is available to build a wider
bund. Using other locally sourced materials, such as stone, from local
quarries or construction sites can build much stronger RAFs that can
carry the weight of vehicles. Visits from ecologists, RSPB officers and
wildlife groups, inter alia have provided insight into ways the features
can be further optimised to create niche habitats for valuable species.
For example, ensuring that a small amount of water remains perma-
nently in ponds can improve habitat diversity. There have been some
unverified local reports of Great Crested Newts in several of the on-
line ponds; if present this is positive in terms of biodiversity, but sedi-
ment removal from those features would be more difficult to justify
and maintenance of these features will, in future, need to consider the
lifecycle stage of any valuable inhabitants. Not all RAFs need to be
multi-functional; for example, there may be a need to sacrifice flood
storage capacity in order to enhance water quality amelioration
potential.

70
60 == Runoff
£ so — Rainfall
£
£ 40
=
2
s 30
8
£ 20
o
[+
10
0 === emo
S £ RS o
~3 &
K o RS o
o> o> o> o> o
¢ & &
> > Y Y N

The process of RAF modification and optimisation in order to provide
multiple benefits in the Belford catchment has raised an important
management issue that is summarised by the following questions:

1 Could a RAF designed for flood attenuation purposes be optimised for
water quality amelioration?or

2 Would new bespoke RAFs designed specifically for diffuse water pol-
lution management be required?

These questions will be addressed in the following section.

4.2.1. Collected evidence on the impact to water quality (based on RAF
modification)

As described previously, Belford Burn (along with other streams)
eventually discharges into Budle Bay, a sensitive downstream receptor.
The consensus view by the EA and Natural England was that eutrophica-
tion from freshwater tributaries was causing thick mats of marine
macroalgae to develop, which were a threat to benthic ecology and
the large populations of wading birds (Palmer, 2012). In response, an
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Fig. 4. Cumulative rainfall and runoff during the March 2010 flood event. The image shows overland flow occurring over the field before the main peak of the flood (red spot indicates the

time that the photograph was taken in relation to the data).
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investigation was begun in 2009 to establish the effectiveness of
existing RAFs to reduce losses of sediment and nutrients. The investiga-
tion included a catchment-wide grab sampling campaign to character-
ise the sediment and nutrient regime and to identify locations that
were contributing elevated levels of agricultural diffuse pollution.
Four auto-samplers were also deployed at two online ponds (RAFs 2
and 12 — two samplers per feature: one directly upstream and one di-
rectly downstream). The online features were chosen for monitoring
as a result of visual evidence that suggested that sedimentation was oc-
curring. It was therefore desirable to find out whether they were
retaining sediment and nutrients during storm events (please refer to
Barber and Quinn (2012b) for details of the methodology used for the
determination of SS, P and NOs concentrations).

Data from the grab sampling campaign indicated that background
sediment and nutrient concentrations in the main burn, during baseflow
conditions were of no ecological concern (under WED guidelines). How-
ever, it also highlighted that certain parts of the catchment were
characterised by significantly higher concentrations of SS, P and NOs.
At the outfall of one 17.5 ha sub-catchment TP concentrations exceeded
the EA recommended maximum concentration of 0.1 mg I~! on every
sampling occasion, and SS concentrations as high as 400 mg 1! were
recorded that significantly surpass the 25 mgl~! average annual
threshold prescribed under the Freshwater Fish Directive (2006/44/
EC). An average NO; concentration of 16.7 mg 1~ ! was recorded, with
a maximum of 44.6 mg1~! (Barber and Quinn, 2012b). Although
below the 50 mg 1~ ! maximum concentration prescribed by the Drink-
ing Water Directive (98/83/EC), Skinner et al. (2003) and Hickey and
Martin (2009) argue that such concentrations are potentially of ecologi-
cal significance. As this part of the catchment was fed principally by field
drains, the data highlighted the importance of subsurface drainage as a
significant conveyor of sediment and nutrients (also reported by Deasy
et al,, 2009), particularly during residual flow conditions when the ma-
jority of flow is being transferred by the drains.

Data collected by the auto-samplers during storm events drew atten-
tion to two important characteristics: firstly, that P and SS concentra-
tions increased significantly above background levels; and secondly,
that online ponds were not retaining pollutants during the rising limb
and peak of events. Maximum TP and SS concentrations of 1.24 mg 1!
and 530 mg 1=, respectively, were recorded during an ‘average’ sized
event in February 2010. The paired inflow and outflow concentration
data suggested that no sediment or nutrient retention occurred, particu-
larly during the early high-flow component of the event. Based on this
single event, net losses of SS, TP and NOs of 9%, 14.5% and 0.7%, respec-
tively, were recorded at RAF 2 (Barber and Quinn, 2012a). Results from
RAF 12 (recorded during the same event) showed that there were also
net losses of SS and NOs, 2.3 and 2.5%, respectively, but a small 1.6%
net retention of TP (based on concentrations) (Barber and Quinn,
2012Db). These results clearly contradict the observation that the online
ponds were filling with sediment in the long term. Thus, online features
appear to be functioning to reduce chronic losses of SS (and sediment-
phase nutrients), but are far less effective in (acute) storm events. It is
strongly suspected that remobilisation of previously deposited material
is the principle problem.

Another RAF that is considered to be multi-functional is the within-
field retention bund. Fig. 5 shows one example built across the main val-
ley thalweg (the line following the lowest part of the valley) of an arable
field (4.1 ha) designed to intercept and temporarily store overland flow.
The field has a gradient of approximately 4° and its land cover (predom-
inantly winter wheat during the study period) makes it highly suscepti-
ble to soil erosion. The RAF is located at the top of the 17.5 ha sub-
catchment draining into RAF 12 and also doubles as a raised track. Con-
struction was carried out by the farmer using locally-sourced materials,
thus incurred relatively low cost. Whilst its ability to retain overland
flow is obvious (the feature can store approximately 500 m? of flood
water) its sediment trapping capabilities were more difficult to quanti-
fy. However, following a large runoff event in January 2011, Palmer

(2012), by surveying the rills and gullys (erosion) and sediment fan
left behind the retention bund (deposition), and by determining the
particle size distribution and bulk density of the material, was able to
calculate the mass of sediment retained by the RAF. It was estimated
that 0.99 tonnes of sediment (consisting mainly of silt/clay and fine-
sand) was captured but that a proportion of fine sediment was lost via
the feature's outlet pipe and bypassed by sub-surface drains. Trapped
sediment becomes re-incorporated back into the topsoil during annual
ploughing.

In response to question 1, which asked if flood RAFs could be modi-
fied to ameliorate water quality, it has become evident that different
features operate to retain pollutants under contrasting flow conditions.
The flood RAFs were designed and constructed to intercept strategic
pathways, either surface or subsurface and as sediment/nutrient trans-
fer is driven chiefly by hydrology, it stands to reason that there is poten-
tial to intercept contaminants moving along the intercepted pathway.
The in-field retention bund has shown the potential to reduce diffuse
pollution but only functions to do so during overland flow events; al-
though this is arguably the case when the largest pollutant loads are
exported from a catchment (Haygarth et al., 2005). However, in this
particular location it is apparent (according to evidence presented by
Palmer (2012) and the grab sampling data described by Barber and
Quinn (2012b)) that a significant proportion of the pollution is lost via
the sub-surface field drains, therefore by-passing the feature. The sub-
surface drains could be broken and allowed to spill into the RAF, but
this would impact on the workability of the land, and could negatively
impact farm operations.

Intercepting the sub-surface pathway, in the existing ditch network
provides an alternative location that is more favourable to the farm. The
online pond RAFs were constructed to target and ‘slow and store’ the
subsurface pathway. They appear to retain sediment (and associated
nutrients) during residual flow conditions but not during flood peaks.
To improve pollutant retention, the residence time in the features
could be increased by adding baffles, or introducing vegetation
(as reported by Braskerud (2002)), to increase settlement time whilst
not having to increase the overall RAF size. Also, in order to maximise
the lifespan and water storage capacity of the online pond RAFs it
would be favourable to construct upstream sediment traps to attenuate
the sedimentation rate in the main ponds. Although these modifications
have not been made to existing RAFs, alterations will be made to
future designs based on the experience gained to further improve
performance.

Concerning question 2, it was felt that a new, optimised RAF was re-
quired to meet some of the shortcomings highlighted above. A bespoke
multi-stage RAF was constructed in February 2011 in a 150 m length of
ditch, directly upstream of RAF 12 and approximately 500 m down the
catchment from the in-field retention bund (Fig. 5). The design repre-
sents the culmination of experience gained from the Nafferton Farm
and Belford projects and has the following objectives:

 mitigate polluted drain flow, which will help to

« reduce pollutant concentrations during residual flow conditions

« reduce remobilisation of previously settled sediment (and associated
nutrients) in ponds during storm events.

The RAF consists of an upstream sediment trap, followed by a filter-
ing system consisting of leaky willow barriers and brash screens, and a
wood chip barrier/filter (Fig. 6). The feature has been instrumented
with water level recorders and upstream/downstream auto-samplers
to determine its performance. Initial findings in Belford suggested that
it was important to create more sediment traps, especially upstream
of on-line ponds to help reduce their sedimentation, thus prolonging
maximum flood storage capacity. Sediment traps help to determine
where in the system material is stored; therefore it is vital to ensure
easy access to allow periodic emptying. Barber et al. (2011) reported
that six months after construction, the sediment trap (with an area of
12 m?) had an average sediment depth of 10 cm, giving a wet volume
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Direction of flow

Fig. 5. A field bund RAF storing water during a storm.

of circa 1.2 m?; sediment mass and P concentration are still to be deter-
mined. The willow dams and brash screens are designed to slow the
flow, reduce channel erosion, and provide a coarse level of filtration,
possibly aided by flocculation (as reported by Braskerud (2002)). The
wood chip filter is designed to remove fine sediment — particles less
than 106 um (fine sand, silt and clay), and associated nutrients. The
use of a wood chip bioreactor is a method for removing NO3 from drain-
age water by denitrification (in which NOs is converted to nitrous oxide
and nitrogen gas). Bioreactors have been studied in Illinois and have
been shown to effectively reduce NOs levels by 33% on average, but up
to 100% during certain conditions (Woli et al., 2010). Greenan et al.
(2009) also reported positive results from trials carried out in the Unit-
ed States, as did Saliling et al. (2007) who conducted a series of labora-
tory experiments using wood chips as a media for denitrification. The
bioreactor is designed to ‘treat’ the persistent low levels of NO3 that
can have subtle but important effects on aquatic species (Earl and
Whiteman, 2009).

Fig. 7 shows sediment and nutrient data taken simultaneously up-
stream and downstream of the multi-stage RAF during a May 2012
storm event. The average reduction in pollutant concentrations over
the duration of the storm (24 h) is as follows: 40% SS, 26% TP, 25%

soluble RP, and 15% NOs. Over the course of 2012, which included sev-
eral storm events of varying magnitudes and durations, inflow and out-
flow sampling has revealed reductions of 30-45% SS, 14-25% TP, 25—
30% soluble RP and 8-38% NOs concentrations. Thus, although based
on concentration only, these preliminary results suggest that the feature
is working to reduce sediment and nutrient losses from this part of the
catchment during storms. Ockenden et al. (2012) reported a 60% reduc-
tion in SS concentration during an event at a paired-pond sediment trap,
which formed part of the Mitigation Options for Phosphorus and Sedi-
ment (MOPS) project. Although the MOPS feature and the multi-stage
RAF had similar sized contributing areas, the MOPS sediment trap was
much larger (area = 200 m?) that may explain the higher percentage
removal. Of course, many other variables can influence the retention ca-
pacity of such features but residence time is arguably one of the most
important (Braskerud, 2002; Reinhardt et al., 2005).

The impact of all the RAFs on water quality is somewhat difficult to
prove, as monitoring can be extremely expensive and time consuming.
Also, it may take several years before any change in the sediment and
nutrient regime is detected at the catchment scale (Haygarth, 2010).
Therefore, management at the field- and farm-scale remains crucial
to water quality outcomes and delivering on the WFD requires

Fig. 6. Wood chip filter (left) and a sediment trap (right) placed in ditch upstream of RAF 12.
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Fig. 7. Storm sample data collected up- and downstream of the multi-stage RAF (Fig. 6)
during a May 2012 event.

coordination that transcends a continuum of scales (Winter et al., 2011).
However, a number of underlying design criteria are being determined
and some solid, local evidence is being accrued.

5. Conclusions

Many environmental issues have been identified in the Belford
catchment. The motivation for this project was to reduce the flood risk
in Belford whilst delivering multipurpose benefits. Natural, upstream
mitigation measures have been identified by the Floods Directive and
WED to reduce flood risk and improve water quality, respectively. How-
ever, there was a desire in Belford to create a catchment plan that would
have multi-purpose benefits meeting the aims for the two directives. A
framework has been developed throughout the project at Belford show-
ing how a catchment management plan can be achieved; to which the
CSE approach and stakeholder engagement are the key. RAFs are at
the heart of the CSE approach; they are soft-engineered structures
that could potentially provide a cost-effective solution to achieving mul-
tiple benefits. However, they do not offer a single solution and should be
considered alongside traditional flood defences. RAFs also require main-
tenance; the potential need to recover trapped sediment and whether it
is of agronomic value to the farmers is part of the on-going assessment.

The framework continues to show, step-by-step, how evidence can
be gathered to underpin new policy and how a catchment management
plan can be achieved using the CSE approach (Fig. 1). A provisional as-
sessment of the current data suggests that most RAFs are functioning
asintended and many fast flow pathways are being intercepted. The de-
gree to which the local catchment system has been ‘engineered’ is still
being determined. The overall performance of these RAFs in terms of ad-
dressing pollution and ecology is also difficult to quantify and requires a
further weight of evidence. As the initial findings are positive, with sed-
iment accumulating and the creation of new ecological niches, these
measures can be categorised as the ‘no-regret measures’ being pursued

by the European Commission. In the study shown here it is important to
stress the simple underlying concepts that flow pathway behaviour can
be changed using soft engineering. For flood flow, and nutrient losses,
the simple concept of disconnecting fast flow pathways, adding storage
and attenuating flow pathways can be applied to a catchment.

Finally, local stakeholders have had a say in creating a local catch-
ment plan. Many other stakeholders who have similar issues in their
own catchments are now assessing the Belford project. The framework
has been developed in Belford but it may have generic applicability to
many other catchments. Belford is not unique in its issues; many
other similar scaled catchments have flood risk and diffuse pollution is-
sues. Although initial water quality impacts proved to be complicated,
the dedicated sediment traps and filters are exhibiting positive impacts
on sediment and nutrient losses. CSE has endeavoured to change the
flood flow regime of the catchment whereby an adaptive approach is re-
quired and must continue in the future. Intervention is required at many
locations but with the help of local stakeholders and regulators the po-
tential framework for holistic environmental management has been
trialled at the small catchment scale.
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HiHEHHHHH
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HiHEHHHHH
HitHEH
HiHEHHHHH
HitHEH
HiHEHHHHH
HitHEH
HiHEHHHHH
HitHEH
HiHEHHHHH
HiHEH
HHHHHHHHH
HiHEH I
HHHHHHHHH
HiHEH
HHHHHHHHH
HiHEH I
HHHHHHHHH
HiHEH
HHHHHHHHH
HitHEHHHHI
HHHHHHHHH
HitHEHHHHI
HHHHHHHHH
HitHEHHHHI
HHHHHHHHH
HitHEHHHHI
HHHHHHHHH

Discharge (m3/s)

24.9
14.6
5.71
321
1.06
0.962
0.408
1.31
8.59
2.66
0.335
0.215
0.161
0.172
0.102
0.113
0.55
0.962
0.344
1.07
2
0.519
19.2
2
0.621
1.16
2.33
6.4
60
16.2
2.72
8.59
1.26
7.94
0.413
0.344
2.13
0.353
0.666
4.04
0.321
0.89
38.8
0.942
49.4
1.16
0.556
5.96

SS

45.0
19.2
7.0
23.0
2.0
3.5
4.0
2.2
12.9
2.4
2.2
1.1
0.8
2.0
0.4
0.8
6.4
2.1
1.0
3.0
14.6
2.5
35.8
5.5
2.1
7.2
6.6
8.9
44.5
11.0
5.0
5.5
5.5
6.0
4.8
2.0
4.8
3.5
0.7
8.8
2.8
4.0
18.5
1.0
68.5
2.0
4.0
28.5

NO3

Determinand concentration (mg/l)

2.466
2.237
3.215
2.517
2.144
2.158
2.668
2.148
1.970
2.050
2.940
2.110

2.360
2.240
2.840
1.550
2.400
1.080
1.870
1.080
2.390
1.550
2.554

2.370

4.986
1.640
4.220
3.540
3.750
5.670
2.210
3.650
3.770
3.340
2.880
2.440
3.660
2.450

2.030
3.430
1.890
2.250
3.380
2.050

TP

0.066
0.045
0.040
0.055
0.026
0.031
0.021
0.027
0.032
0.017
0.012
0.015
0.022
0.020
0.017
0.017
0.025
0.015
0.018
0.027
0.044
0.031
0.039
0.045
0.042
0.037
0.033
0.070
0.084
0.044
0.024
0.025
0.046
0.035
0.022
0.029
0.028
0.018
0.020
0.029
0.015
0.019
0.058
0.028
0.095
0.025
0.022
0.064

PP

0.021
0.004
0.007
0.006
0.005
0.006
0.007
0.007
0.005
0.003
0.006
0.005
0.019
0.006
0.013
0.009
0.016
0.013
0.017
0.018
0.049
0.016
0.010
0.018
0.022
0.021
0.011
0.008
0.007
0.006
0.005
0.015
0.005
0.009
0.033
0.008
0.061
0.010
0.013
0.035

SRP

0.018

0.02
0.014
0.018
0.016
0.011

0.01

0.01
0.007
0.008
0.005
0.006
0.012
0.009
0.005
0.006
0.010
0.010
0.005
0.020
0.011
0.017
0.019
0.022
0.019
0.017
0.012
0.029
0.026
0.022
0.010
0.011
0.010
0.012
0.005
0.015
0.011
0.009
0.011
0.006
0.008
0.008
0.020
0.011
0.021
0.011
0.005
0.011

SupP

0.004
0.005
0.000
0.003
0.005
0.005
0.005
0.004
0.010
0.002
0.007
0.002
0.014
0.008
0.007
0.014
0.007
0.007
0.004
0.023
0.009
0.006
0.005
0.005
0.014
0.002
0.006
0.006
0.010
0.003
0.004
0.008
0.002
0.002
0.015
0.009
0.019
0.004
0.004
0.018

TSP

0.011
0.013
0.005
0.009
0.017
0.014
0.010
0.010
0.020
0.012
0.012
0.022
0.025
0.025
0.026
0.036
0.026
0.024
0.016
0.052
0.035
0.028
0.015
0.016
0.024
0.014
0.011
0.021
0.021
0.012
0.015
0.014
0.010
0.010
0.025
0.020
0.034
0.015
0.009
0.029



HitH R 1.38 3.5 0.040 0.023 0.008 0.009 0.017



SS
1120.5
280.3
40.0
738.3
2.1
3.4
1.6
2.9
110.8
6.4
0.7
0.2
0.1
0.3
0.0
0.1
3.5
2.0
0.3
3.2
29.2
13
687.4
11.0
1.3
8.4
15.4
56.9
2670.0
178.2
13.6
47.2
6.9
47.6
2.0
0.7
10.2
1.2
0.5
35.6
0.9
3.6
717.8
0.9
3383.9
2.3
2.2
169.9

NO3

Determinand instantaneous load (g/s)

61.40
32.66
18.36
80.80
2.27
2.08
1.09
2.81
16.92
5.45
0.98
0.45

0.41
0.23
0.32
0.85
2.31
0.37
2.00
2.16
1.24
29.76
5.11

2.75

31.91
98.40
68.36
9.63
32.21
7.14
17.55
1.51
1.30
7.11
1.02
1.63
14.79
0.79

78.76
3.23
93.37
2.61
1.88
12.22

TP

1.643
0.657
0.228
1.766
0.028
0.030
0.009
0.035
0.275
0.045
0.004
0.003
0.004
0.003
0.002
0.002
0.014
0.014
0.006
0.029
0.088
0.016
0.749
0.090
0.026
0.043
0.077
0.448
5.040
0.713
0.065
0.215
0.058
0.278
0.009
0.010
0.060
0.006
0.013
0.117
0.005
0.017
2.250
0.026
4.693
0.029
0.012
0.381

PP

0.180
0.011
0.002
0.001
0.001
0.001
0.001
0.001
0.003
0.003
0.002
0.005
0.038
0.003
0.250
0.018
0.010
0.015
0.040
0.115
2.940
0.259
0.027
0.155
0.028
0.167
0.005
0.003
0.015
0.002
0.003
0.061
0.002
0.008
1.280
0.008
3.013
0.012
0.007
0.209

SRP

0.448
0.292
0.080
0.578
0.017
0.011
0.004
0.013
0.060
0.021
0.002
0.001
0.002
0.002
0.001
0.001
0.006
0.010
0.002
0.021
0.022
0.009
0.365
0.044
0.012
0.020
0.028
0.186
1.560
0.356
0.027
0.094
0.013
0.095
0.002
0.005
0.023
0.003
0.007
0.024
0.003
0.007
0.776
0.010
1.037
0.013
0.003
0.066

SupP

0.034
0.013
0.000
0.001
0.001
0.001
0.001
0.000
0.006
0.002
0.002
0.002
0.028
0.004
0.134
0.028
0.004
0.008
0.009
0.147
0.540
0.097
0.014
0.043
0.018
0.016
0.002
0.002
0.022
0.001
0.003
0.032
0.001
0.002
0.582
0.008
0.939
0.005
0.002
0.107

TSP

0.094
0.035
0.002
0.002
0.003
0.002
0.001
0.001
0.011
0.012
0.004
0.024
0.050
0.013
0.499
0.072
0.016
0.028
0.037
0.333
2.100
0.454
0.041
0.137
0.030
0.111
0.005
0.007
0.045
0.004
0.010
0.057
0.003
0.009
0.970
0.019
1.680
0.017
0.005
0.173



4.8

0.055

0.032

0.011

0.012

0.023



Date

19/11/2009
25/11/2009
08/12/2009
16/01/2010
27/01/2010
17/02/2010
23/02/2010
16/03/2010
31/03/2010
06/04/2010
21/04/2010
05/05/2010
18/05/2010
09/06/2010
21/06/2010
02/07/2010
26/07/2010
17/08/2010
02/09/2010
22/09/2010
05/10/2010
19/10/2010
02/11/2010
23/11/2010
01/12/2010
14/12/2010
10/01/2011
17/01/2011
04/02/2011
09/02/2011
23/02/2011
12/03/2011
16/03/2011
06/04/2011
21/04/2011
11/05/2011
25/05/2011
07/06/2011
29/06/2011
20/07/2011
03/08/2011
23/08/2011

Discharge (m3/s)

0.271
0.244
0.061
0.176
0.030
0.016
0.013
0.018
0.072
0.018
0.012
0.010
0.010
0.010
0.010
0.010
0.014
0.012
0.013
0.015
0.019
0.013
0.142
0.019
0.014
0.016
0.086
0.095
0.362
0.132
0.022
0.062
0.021
0.045
0.012
0.009
0.012
0.010
0.011
0.039
0.010
0.013

SS

Determinand concentration (mg/I)

8.6
23.6
2.3
14.5
7.3
2.0
0.0
4.5
15.0
3.0
2.0
2.0

0.0
0.0
4.4
4.6
2.5
1.0
2.0
8.6
1.5
18.5
3.0
2.2
3.5
9.5
5.8
28.0

4.2
4.5
4.1
3.5
2.5
0.0
2.8

1.2
8.8

3.5

TP

0.046
0.055
0.006
0.054
0.053
0.033
0.077
0.092
0.103
0.133
0.157
0.073

0.106
0.113
0.150
0.067
0.063
0.083
0.055
0.033
0.047
0.048
0.044
0.040
0.031
0.048
0.057
0.074

0.045
0.025
0.039
0.029
0.047
0.054
0.032

0.076
0.056

0.054

SRP

0.033
0.022
0.002
0.027
0.030
0.024
0.042
0.076
0.059
0.092
0.125
0.061

0.077
0.075
0.112
0.042
0.045
0.075
0.046
0.017
0.024
0.014
0.019
0.018
0.009
0.013
0.032
0.027

0.022
0.008
0.014
0.010
0.036
0.031
0.023

0.055
0.021

0.031

NO3

1.06
1.34
1.27

0.00
1.29
4.56
1.33
1.67
1.86
541
4.59

3.96
6.12
3.51
4.41
5.00
3.09
3.61
1.34
1.23
1.52
2.85

1.86

3.56
1.03
2,71
2.68
3.28
2.88
3.52
2.19
3.85
2.47
3.41
2.06
3.80



06/09/2011
28/09/2011
12/10/2011
08/11/2011
22/11/2011
14/12/2011
19/12/2011

0.182
0.018
0.334
0.018
0.013
0.220
0.035

12.5

19.5
2.9

0.034

0.066
0.033

0.013

0.015
0.021

1.34

0.00
1.97



Determinand instantaneous load (mg/s)

SS TP SRP NO3

2318.9 12.42 8.99 286.8
5751.7 13.41 5.29 327.2
141.2 0.38 0.15 77.5

2549.2 9.49 4.75
217.9 1.59 0.90 0.0
31.9 0.52 0.38 20.6
0.0 0.99 0.54 58.5
79.8 1.63 1.35 23.5
1072.7 7.37 4.22 119.4
54.1 2.40 1.66 33.5
24.9 1.96 1.56 67.4
20.4 0.74 0.62 46.8
0.0 1.02 0.74 38.1
0.0 1.11 0.74 60.1
42.0 1.43 1.07 335
64.8 0.94 0.59 62.0
29.9 0.75 0.54 59.9
134 1.11 1.00 41.3
29.2 0.80 0.67 52.8
159.2 0.61 0.31 24.8
20.1 0.63 0.32 16.4
2624.0 6.81 1.99 215.6
56.1 0.82 0.36 53.3

31.1 0.56 0.25
57.4 0.51 0.15 30.5

821.0 4.15 1.12
548.7 5.39 3.03 336.8
10146.9 26.82 9.78 373.3
356.4
92.8 0.99 0.49 59.2
280.1 1.56 0.50 204.1
84.7 0.81 0.29 59.5
157.6 1.31 0.45 158.4
29.6 0.56 0.43 25.9
0.0 0.46 0.26 32.8
33.1 0.38 0.27 29.2
33.9
13.1 0.83 0.60 22.5
340.4 2.17 0.81 147.0

45.1 0.70 0.40



2277.1 6.19 2.37 2441

6520.9 22.07 5.02 0.0
52.7 0.60 0.38 35.8
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O S S
w N - O

A W N R

Date/time
20/07/2010 23:15
21/07/2010 00:15
21/07/2010 01:15
21/07/2010 02:15
21/07/2010 03:15
21/07/2010 04:15
21/07/2010 05:15
21/07/2010 06:15
21/07/2010 07:15
21/07/2010 08:15

Date/time
01/10/2010 14:30
01/10/2010 15:30
01/10/2010 16:30
01/10/2010 17:30
01/10/2010 18:30
01/10/2010 19:30
01/10/2010 20:30
01/10/2010 21:30
01/10/2010 22:30
01/10/2010 23:30
02/10/2010 00:30
02/10/2010 01:30

Date/time
06/10/2010 07:05
06/10/2010 08:05
06/10/2010 09:05
06/10/2010 10:05
06/10/2010 11:05
06/10/2010 12:05
06/10/2010 13:05
06/10/2010 14:05
06/10/2010 15:05
06/10/2010 16:05
06/10/2010 17:05
06/10/2010 18:05
06/10/2010 19:05

Date/time
11/11/2010 06:30
11/11/2010 07:30
11/11/2010 08:30
11/11/2010 09:30

Discharge (m3/s)
0.502
0.616
0.624
0.704
0.643
0.575
0.548
0.498
0.454
0.415

Discharge (m3/s)
0.225
0.398
0.401
0.365
0.336
0.335
0.326
0.314
0.291
0.291
0.272
0.265

Discharge (m3/s)
0.436
0.480
0.397
0.355
0.380
0.460
0.439
0.380
0.380
0.390
0.420
0.427
0.393

Discharge (m3/s)
0.982
2.000
2.111
1.870

SS

SS

SS

SS

146.7
306.7
375.4
301.3
200.0
129.7
713
89.3
65.7
75.0

136.5
316.2
289.6
195.0
113.8
90.8
80.0
88.7
36.5
39.6
30.0
28.1

56.5
140
123.5
71
43
44
61.5
355
34
36
30.5
29
28.5

189.0
322.0
481.5
545.5

P

P

TP

P

TSP
0.306
0.388
0.445
0.526
0.293
0.203
0.163
0.122
0.177
0.148

TSP
0.262
0.334
0.401
0.339
0.276
0.253
0.224
0.285
0.191
0.145
0.120
0.097

TSP
0.332
0.536
0.439
0.322
0.267
0.233
0.178
0.260
0.244
0.209
0.201
0.184
0.177

TSP
0.092
0.306
0.497
0.808

Determin:

0.088
0.095
0.106
0.111
0.155
0.154
0.188
0.230
0.174
0.099
0.084
0.063

0.055
0.092
0.135
0.206



EVENT E

EVENT F

O 00 N O N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

O 00 N O U1 B WN B

I
D W N RO

O 00O NOO UL b WN B

11/11/2010 10:30
11/11/2010 11:30
11/11/2010 12:30
11/11/2010 13:30
11/11/2010 14:30
11/11/2010 15:30
11/11/2010 16:30
11/11/2010 17:30
11/11/2010 18:30
11/11/2010 19:30
11/11/2010 20:30
11/11/2010 21:30
11/11/2010 22:30
11/11/2010 23:30
12/11/2010 00:30
12/11/2010 01:30
12/11/2010 02:30
12/11/2010 03:30
12/11/2010 04:30
12/11/2010 05:30

Date/time
10/12/2010 15:00
10/12/2010 16:00
10/12/2010 17:00
10/12/2010 18:00
10/12/2010 19:00
10/12/2010 20:00
10/12/2010 21:00
10/12/2010 22:00
10/12/2010 23:00
11/12/2010 00:00
11/12/2010 01:00
11/12/2010 02:00
11/12/2010 03:00
11/12/2010 04:00

Date/time
15/01/2011 06:30
15/01/2011 07:30
15/01/2011 08:30
15/01/2011 09:30
15/01/2011 10:30
15/01/2011 11:30
15/01/2011 12:30
15/01/2011 13:30
15/01/2011 14:30

1.848
1.866
2.184
2.409
2.140
1.728
1.884
2.404
2.499
2.467
2.542
2.641
2.736
2.696
2.515
2.145
1.754
1.563
1411
1.253

Discharge (m3/s)
0.601
0.872
0.893
0.788
0.763
0.763
0.739
0.673
0.578
0.516
0.480
0.478
0.480
0.486

Discharge (m3/s)
0.578
1.250
2.174
2.548
2.902
3.056
3.110
3.189
3.239

SS

SS

502.4
450.4
393.0
296.0
198.0
158.0
151.0
142.5
117.0
112.5
102.0
76.0
61.0
80.0
85.5
56.4
36.4
30.7
27.5
29.5

TP
295.6
321.0
314.0
218.5
196.7
115.0
93.9
85.6
75.6
79.4
81.7
77.2
74.4
68.3

P
153.3
276.7
386.7
221.7
179.4
175.6
169.4
106.1
65.0

0.886
0.995
1.001
0.895
0.919
0.793
0.594
0.545
0.463
0.371
0.354
0.262
0.203
0.198
0.180
0.194
0.203
0.166
0.155
0.143

TSP
0.534
0.598
0.348
0.297
0.237
0.292
0.288
0.292
0.200
0.272
0.246
0.244
0.251
0.182

TSP
0.297
0.433
0.534
0.626
0.591
0.488
0.451
0.455
0.414

0.195
0.251
0.212
0.277
0.375
0.335
0.239
0.222
0.200
0.184
0.155
0.141
0.129
0.125
0.118
0.119
0.114
0.102
0.098
0.106

0.058
0.083
0.088
0.096
0.166
0.169
0.233
0.283
0.252



EVENT G

EVENTH

10
11
12
13
14
15
16
17
18
19
20

O 00N O U1 B WN -

NN P P R R R P R R R
R O LW NOWUL DM WNERO

O 00N O UL B WN B

[ERY
= O

15/01/2011 15:30
15/01/2011 16:30
15/01/2011 17:30
15/01/2011 18:30
15/01/2011 19:30
15/01/2011 20:30
15/01/2011 21:30
15/01/2011 22:30
15/01/2011 23:30
16/01/2011 00:30
16/01/2011 01:30

Date/time
09/03/2011 23:45
10/03/2011 00:45
10/03/2011 01:45
10/03/2011 02:45
10/03/2011 03:45
10/03/2011 04:45
10/03/2011 05:45
10/03/2011 06:45
10/03/2011 07:45
10/03/2011 08:45
10/03/2011 09:45
10/03/2011 10:45
10/03/2011 11:45
10/03/2011 12:45
10/03/2011 13:45
10/03/2011 14:45
10/03/2011 15:45
10/03/2011 16:45
10/03/2011 17:45
10/03/2011 18:45
10/03/2011 19:45

Date/time
05/04/2011 00:30
05/04/2011 01:30
05/04/2011 02:30
05/04/2011 03:30
05/04/2011 04:30
05/04/2011 05:30
05/04/2011 06:30
05/04/2011 07:30
05/04/2011 08:30
05/04/2011 09:30
05/04/2011 10:30

3.227
3.196
3.301
3.301
3.282
3.251
3.245
3.301
3.276
3.183
3.062

Discharge (m3/s)
0.146
0.230
0.902
1.789
1.754
1.538
1.294
1.294
1.182
1.147
1.189
1.030
0.920
0.869
0.800
0.825
0.902
0.814
0.681
0.580
0.519

Discharge (m3/s)
0.343
0.381
0.825
2.357
2.758
2.861
2.804
2.635
2.414
2.067
1.732

SS

SS

47.8
43.9
57.2
72.2
63.9
64.4
85.6
79.4
60.0
68.3
76.1

64.6
133.5
167.0
188.2
125.4
114.5
101.0

72.2

65.7

56.0

59.5

52.2

42.0

33.7

31.0

26.5

24.0

27.2

21.4

29.5

25.5

180.9
320.0
398.5
312.2
212.4
142.6
91.3
60.9
57.6
63.6
64.6

P

P

0.322
0.293
0.263
0.297
0.285
0.251
0.233
0.191
0.178
0.165
0.150

TSP
0.220
0.398
0.511
0.716
0.689
0.594
0.512
0.443
0.402
0.357
0.338
0.284
0.262
0.239
0.219
0.197
0.186
0.175
0.171
0.133
0.104

TSP
0.388
0.944
1.155
1.021
1.005
0.975
0.822
0.634
0.386
0.338
0.279

0.165
0.097
0.094
0.089
0.098
0.120
0.111
0.102
0.088
0.089
0.095



EVENT |

EVENTJ

EVENT K
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05/04/2011 11:30

Date/time
23/05/2011 11:30
23/05/2011 12:00
23/05/2011 12:30
23/05/2011 13:00
23/05/2011 13:30
23/05/2011 14:00
23/05/2011 14:30
23/05/2011 15:00
23/05/2011 15:30
23/05/2011 16:00

Date/time
22/06/2011 15:45
22/06/2011 16:15
22/06/2011 16:45
22/06/2011 17:15
22/06/2011 17:45
22/06/2011 18:15
22/06/2011 18:45
22/06/2011 19:15
22/06/2011 19:45
22/06/2011 20:15
22/06/2011 20:45
22/06/2011 21:15
22/06/2011 21:45
22/06/2011 22:15
22/06/2011 22:45
22/06/2011 23:15
22/06/2011 23:45
23/06/2011 00:15
23/06/2011 00:45

Date/time
25/11/2011 00:30
25/11/2011 01:30
25/11/2011 02:30
25/11/2011 03:30
25/11/2011 04:30
25/11/2011 05:30
25/11/2011 06:30
25/11/2011 07:30
25/11/2011 08:30
25/11/2011 09:30
25/11/2011 10:30

1.392

Discharge (m3/s)
0.104
0.127
0.519
0.715
0.499
0.392
0.326
0.298
0.272
0.244

Discharge (m3/s)
0.156
0.250
0.763
1.510
2.352
2.844
2.908
2.937
3.020
3.171
3.171
3.141
3.032
2.741
2.174
1.693
1.354
1.158
1.030

Discharge (m3/s)
0.966
2.357
2.399
1.963
1.253
0.920
0.715
0.601
0.521
0.478
0.443

SS

SS

SS

60.7

P
559.5
769.5
787.5
881
651
383
248
166.5
132
104

P
401
522

686.4
697
623
425

177.6

182.4

146.5
130

96.5
66.4
43
40.8
33.6
26.5
25
19.4
32

P
406.5
614.5
387
128
68.5
53
39
45
38
28
18

0.249

TSP
0.938
1.168
1.193
1.168
1.015
0.807
0.536
0.439
0.345
0.306

TSP
0.802
0.950
1.035
1.071
0.984
0.916
0.865
0.756
0.711
0.656
0.645
0.645
0.602
0.584
0.542
0.534
0.530
0.534
0.542

TSP
1.159
1.283
1.033
0.858
0.410
0.359
0.320
0.285
0.226
0.194
0.163

0.134
0.136
0.142
0.148
0.186
0.122
0.098
0.094
0.085
0.106

0.355
0.481
0.395
0.329
0.225
0.165
0.173
0.148
0.135
0.124
0.120



12
13
14
15
16
17
18

25/11/2011 11:30
25/11/2011 12:30
25/11/2011 13:30
25/11/2011 14:30
25/11/2011 15:30
25/11/2011 16:30
25/11/2011 17:30

0.443
0.653
1.114
1.283
0.950
0.720
0.601

325
30
64

80.5

50.5
32
27

0.099
0.154
0.290
0.293
0.262
0.212
0.194

0.075
0.078
0.088
0.095
0.116
0.110
0.105



and concentration (mg/I)

SRP

SRP

SRP

SRP

0.046
0.062
0.065
0.065
0.127
0.118
0.151
0.188
0.144
0.086
0.046
0.033

0.050
0.073
0.118
0.184

PP

PP

PP

PP

0.174
0.239
0.295
0.228
0.121
0.099
0.036
0.055
0.017
0.046
0.036
0.034

0.037
0.214
0.362
0.602

SupP

SUP

SUP

SupP

0.042
0.033
0.041
0.046
0.028
0.036
0.037
0.042
0.030
0.013
0.038
0.030

0.005
0.019
0.017
0.022

NO3

NO3

NO3

NO3

3.35
6.49
9.10
10.05
10.21
9.12
7.48
7.12
6.66
5.94
6.08
5.44

4.33
4.54
4.34
4.22



SRP

SRP

0.163
0.212
0.171
0.174
0.215
0.278
0.205
0.201
0.182
0.152
0.133
0.107
0.109
0.103
0.092
0.099
0.082
0.078
0.071
0.077

0.046
0.062
0.065
0.065
0.127
0.118
0.171
0.225
0.210

PP

PP

0.691
0.744
0.789
0.618
0.544
0.458
0.355
0.323
0.263
0.187
0.199
0.121
0.074
0.073
0.062
0.075
0.089
0.064
0.057
0.037

0.239
0.350
0.446
0.530
0.425
0.319
0.218
0.172
0.162

SUP

Sup

0.032
0.039
0.041
0.103
0.160
0.057
0.034
0.021
0.018
0.032
0.022
0.034
0.020
0.022
0.026
0.020
0.032
0.024
0.027
0.029

0.012
0.021
0.023
0.031
0.039
0.051
0.062
0.058
0.042

NO3

NO3

4.32
4.56
4.31
4.31
4.37
4.47
4.55
4.67
4.72
5.02
5.09
4.89
4.62
4.09
4.17
4.24
4.25
4.28
4.31
4.32

4.24
4.16
4.11
3.93
3.89
3.90
3.77
3.75
3.90



SRP

SRP

0.123
0.065
0.060
0.063
0.052
0.063
0.054
0.052
0.045
0.058
0.071

0.047
0.053
0.066
0.088
0.127
0.127
0.141
0.171
0.174
0.194
0.199
0.188
0.169
0.152
0.134
0.127
0.113
0.105
0.099
0.100
0.091

PP

PP

0.157
0.196
0.169
0.208
0.187
0.131
0.122
0.089
0.090
0.076
0.055

0.173
0.346
0.445
0.628
0.562
0.467
0.371
0.271
0.227
0.163
0.139
0.096
0.093
0.088
0.085
0.069
0.073
0.070
0.072
0.033
0.013

Sup

Sup

0.042
0.032
0.034
0.026
0.046
0.057
0.057
0.050
0.043
0.031
0.024

NO3

NO3

4.11
4.29
4.65
4.91
5.21
5.27
5.23
4.99
4.99
4.93
5.02

7.39
7.26
7.23
7.06
7.26
7.56
7.61
7.54
7.78
8.07
8.42
8.80
9.13
9.32
9.55
9.75
9.81
10.00
10.01
10.05
10.03



SRP

SRP

SRP

0.086
0.095
0.097
0.094
0.144
0.067
0.052
0.039
0.058
0.067

0.069
0.077
0.080
0.097
0.089
0.105
0.108
0.104
0.102
0.097
0.089
0.088
0.086
0.085
0.082
0.084
0.077
0.077
0.075

PP

PP

PP

0.804
1.032
1.051
1.020
0.829
0.685
0.438
0.345
0.260
0.200

0.804
0.801
0.638
0.529
0.185
0.194
0.147
0.136
0.091
0.071
0.043

Sup

Sup

Sup

0.048
0.041
0.045
0.054
0.042
0.055
0.046
0.055
0.027
0.039

NO3

NO3

NO3

5.348
4.968
5.135
5.288
5.787
5.912
6.109
6.055
5.989
6.102

7.79
5.69
4.95
4.42
3.93
4.12
4.66
5.50
6.27
6.91
7.60
8.09
8.42
8.56
8.54
8.53
8.31
7.99
7.49



0.024
0.075
0.202
0.198
0.145
0.102
0.090



Determinand concentrat

EVENT 1_INLET Date/time Discharge (I/s) SS TP SRP
1 10/05/2012 00:00 27 0.055 0.009
2 10/05/2012 01:00 56 0.063 0.014
3 10/05/2012 02:00 90 0.074 0.013
4 10/05/2012 03:00 169 0.166 0.016
5 10/05/2012 04:00 392 0.782 0.030
6 10/05/2012 05:00 466 1.323 0.073
7 10/05/2012 06:00 524 1.376 0.182
8 10/05/2012 07:00 491 0.861 0.316
9 10/05/2012 08:00 387 0.775 0.353
10 10/05/2012 09:00 229 0.566 0.408
11  10/05/2012 10:00 186 0.532 0.334
12 10/05/2012 11:00 150 0.511 0.206
13  10/05/2012 12:00 207 0.486 0.237
14 10/05/2012 13:00 282 0.815 0.329
15 10/05/2012 14:00 206 0.780 0.334
16 10/05/2012 15:00 172 0.711 0.338
17 10/05/2012 16:00 164 0.639 0.340
18 10/05/2012 17:00 125 0.626 0.323
19 10/05/2012 18:00 130 0.614 0.334
20 10/05/2012 19:00 168 0.550 0.376
21 10/05/2012 20:00 123 0.534 0.327
22 10/05/2012 21:00 82 0.524 0.318
23 10/05/2012 22:00 67 0.439 0.310
24 10/05/2012 23:00 55 0.396 0.297
EVENT 1_OUTLET
1 10/05/2012 00:00 13 0.033 0.007
2 10/05/2012 01:00 11 0.030 0.011
3 10/05/2012 02:00 15 0.035 0.009
4 10/05/2012 03:00 21 0.051 0.013
5 10/05/2012 04:00 72 0.079 0.016
6 10/05/2012 05:00 224 0.700 0.028
7 10/05/2012 06:00 270 0.706 0.090
8 10/05/2012 07:00 290 0.688 0.210
9 10/05/2012 08:00 245 0.621 0.235
10 10/05/2012 09:00 191 0.522 0.265
11 10/05/2012 10:00 139 0.485 0.227
12 10/05/2012 11:00 119 0.462 0.124
13  10/05/2012 12:00 129 0.444 0.184
14 10/05/2012 13:00 196 0.647 0.229
15 10/05/2012 14:00 181 0.704 0.237
16 10/05/2012 15:00 150 0.644 0.259
17 10/05/2012 16:00 140 0.600 0.280
18 10/05/2012 17:00 107 0.570 0.293
19 10/05/2012 18:00 105 0.547 0.278
20 10/05/2012 19:00 114 0.490 0.299



EVENT 2_INLET

EVENT 2_OUTLET

EVENT 3_INLET

EVENT 3_OUTLET

21
22
23
24

O 00 NOO UV & WN R

10

O 0O NO UL A WNR

=
o

O 00O NO UL A WNR

[ S S S
A WNR O

1
2
3

10/05/2012 20:00
10/05/2012 21:00
10/05/2012 22:00
10/05/2012 23:00

Date/time

17/06/2012 01:30
17/06/2012 02:30
17/06/2012 03:30
17/06/2012 04:30
17/06/2012 05:30
17/06/2012 06:30
17/06/2012 07:30
17/06/2012 08:30
17/06/2012 09:30
17/06/2012 10:30

17/06/2012 01:30
17/06/2012 02:30
17/06/2012 03:30
17/06/2012 04:30
17/06/2012 05:30
17/06/2012 06:30
17/06/2012 07:30
17/06/2012 08:30
17/06/2012 09:30
17/06/2012 10:30

Date/time

12/10/2012 01:30
12/10/2012 02:30
12/10/2012 03:30
12/10/2012 04:30
12/10/2012 05:30
12/10/2012 06:30
12/10/2012 07:30
12/10/2012 08:30
12/10/2012 09:30
12/10/2012 10:30
12/10/2012 11:30
12/10/2012 12:30
12/10/2012 13:30
12/10/2012 14:30

12/10/2012 01:30
12/10/2012 02:30
12/10/2012 03:30

Discharge (I/s)

Discharge (I/s)

SS

SS

80
63
52
44

P
175
192
266
342
237
218
185
154
142
153

148
162
195
219
185
161
137
116
118
115

P
497
646
880

1068
887
642
632
384
355
300
293
271
139
165

388
466
702

0.467
0.426
0.393
0.350

SRP
0.098
0.121
0.454
0.713
0.597
0.531
0.422
0.347
0.338
0.312

0.062
0.085
0.224
0.488
0.447
0.433
0.388
0.312
0.276
0.251

SRP
0.408
0.551
0.715
1.035
0.877
0.847
0.748
0.660
0.653
0.554
0.588
0.538
0.327
0.263

0.228
0.415
0.551

0.291
0.269
0.261
0.229

0.056
0.075
0.125
0.185
0.212
0.226
0.235
0.221
0.198
0.188
0.165
0.168
0.109
0.088

0.041
0.052
0.088



O 0 NO UV b

10
11
12
13
14

EVENT 4_INLET

O 0O NO UL A WNR
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EVENT 4 _OUTLET
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[ S S S = Y
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12/10/2012 04:30
12/10/2012 05:30
12/10/2012 06:30
12/10/2012 07:30
12/10/2012 08:30
12/10/2012 09:30
12/10/2012 10:30
12/10/2012 11:30
12/10/2012 12:30
12/10/2012 13:30
12/10/2012 14:30

Date/time

25/11/2012 02:15
25/11/2012 03:15
25/11/2012 04:15
25/11/2012 05:15
25/11/2012 06:15
25/11/2012 07:15
25/11/2012 08:15
25/11/2012 09:15
25/11/2012 10:15
25/11/2012 11:15
25/11/2012 12:15
25/11/2012 13:15
25/11/2012 14:15
25/11/2012 15:15
25/11/2012 16:15
25/11/2012 17:15
25/11/2012 18:15
25/11/2012 19:15

25/11/2012 02:15
25/11/2012 03:15
25/11/2012 04:15
25/11/2012 05:15
25/11/2012 06:15
25/11/2012 07:15
25/11/2012 08:15
25/11/2012 09:15
25/11/2012 10:15
25/11/2012 11:15
25/11/2012 12:15
25/11/2012 13:15
25/11/2012 14:15
25/11/2012 15:15
25/11/2012 16:15

Discharge (I/s)

7.30
11.66
15.68
21.68
22.54
24.10
25.72
26.91
26.91
25.48
27.15
29.14
27.89
24.33
21.26
18.63

9.45

7.63

3.92

8.63
11.70
17.02
21.56
23.50
25.10
25.81
25.88
25.96
26.43
27.64
27.47
25.47
23.04

SS

822
639
460
488
325
259
265
233
249
152
133

P
559
634
991
900
776
636
493
325
326
278
282
329
312
291
264
236
166
117

360
460
478
540
514
376
385
342
312
298
285
258
240
224
193

0.722
0.759
0.745
0.669
0.628
0.605
0.492
0.475
0.455
0.332
0.274

SRP
0.998
1.306
1.412
1.674
1.943
2.040
1.867
1.566
1.097
0.900
0.923
1.030
0.946
0.828
0.805
0.789
0.725
0.644

0.752
0.904
1.042
1.123
1.256
1.316
1.346
1.320
1.217
0.931
0.982
1.012
0.842
0.711
0.704

0.103
0.163
0.165
0.203
0.206
0.173
0.166
0.141
0.099
0.078
0.071



EVENT 5_INLET

EVENT 5_OUTLET

EVENT 6_INLET

16
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25/11/2012 17:15
25/11/2012 18:15
25/11/2012 19:15

Date/time

14/12/2012 15:30
14/12/2012 16:30
14/12/2012 17:30
14/12/2012 18:30
14/12/2012 19:30
14/12/2012 20:30
14/12/2012 21:30
14/12/2012 22:30
14/12/2012 23:30
15/12/2012 00:30
15/12/2012 01:30
15/12/2012 02:30
15/12/2012 03:30
15/12/2012 04:30

14/12/2012 15:30
14/12/2012 16:30
14/12/2012 17:30
14/12/2012 18:30
14/12/2012 19:30
14/12/2012 20:30
14/12/2012 21:30
14/12/2012 22:30
14/12/2012 23:30
15/12/2012 00:30
15/12/2012 01:30
15/12/2012 02:30
15/12/2012 03:30
15/12/2012 04:30

Date/time

07/01/2013 04:30
07/01/2013 05:30
07/01/2013 06:30
07/01/2013 07:30
07/01/2013 08:30
07/01/2013 09:30
07/01/2013 10:30
07/01/2013 11:30
07/01/2013 12:30
07/01/2013 13:30
07/01/2013 14:30

19.73
17.14
9.08

Discharge (I/s)
13.66
33.66
41.95
51.73
51.73
48.56
46.52
43.23
37.67
33.11
30.43
28.39
25.72
22.76

7.14
18.48
34.71
45.00
52.22
51.19
48.53
45.85
42.16
38.32
33.44
30.60
27.77
25.27

Discharge (I/s)

8.21
14.48
19.02
26.67
24.56
16.21
10.80

8.45

7.63
18.25
22.98

SS

SS

134
104
83

P
475
662
846
975
793
804
655
423
402
379
355
310
272
255

346
432
575
755
666
648
561
415
351
311
268
231
197
184

P
448
586
869
834
575
488
414
345
350
376
494

0.699
0.656
0.608

SRP
0.665
0.898
1.124
1.523
1.466
1.034
0.905
0.844
0.746
0.701
0.677
0.678
0.612
0.588

0.485
0.598
0.879
1.107
1.145
0.933
0.724
0.674
0.682
0.612
0.605
0.584
0.524
0.499

SRP
0.512
0.656
0.942
1.125
1.032
0.812
0.622
0.635
0.601
0.614
0.688

0.075
0.125
0.185
0.212
0.226
0.235
0.221
0.198
0.188
0.165
0.132
0.109
0.088
0.082

0.062
0.095
0.133
0.177
0.198
0.208
0.206
0.188
0.174
0.172
0.144
0.111
0.084
0.073
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EVENT 7_OUTLET

07/01/2013 15:30
07/01/2013 16:30
07/01/2013 17:30
07/01/2013 18:30

07/01/2013 04:30
07/01/2013 05:30
07/01/2013 06:30
07/01/2013 07:30
07/01/2013 08:30
07/01/2013 09:30
07/01/2013 10:30
07/01/2013 11:30
07/01/2013 12:30
07/01/2013 13:30
07/01/2013 14:30
07/01/2013 15:30
07/01/2013 16:30
07/01/2013 17:30
07/01/2013 18:30

Date/time

26/01/2013 21:15
26/01/2013 22:15
26/01/2013 23:15
27/01/2013 00:15
27/01/2013 01:15
27/01/2013 02:15
27/01/2013 03:15
27/01/2013 04:15
27/01/2013 05:15
27/01/2013 06:15
27/01/2013 07:15
27/01/2013 08:15
27/01/2013 09:15
27/01/2013 10:15
27/01/2013 11:15
27/01/2013 12:15
27/01/2013 13:15
27/01/2013 14:15
27/01/2013 15:15
27/01/2013 16:15
27/01/2013 17:15
27/01/2013 18:15
27/01/2013 19:15
27/01/2013 20:15

18.06
20.64
15.50
11.81

6.20
11.37
16.55
25.57
26.85
19.81
12.53

9.83

8.38
14.22
19.98
21.23
20.04
16.78
13.09

Discharge (I/s)
20.64
22.98
22.98
25.02
28.64
31.22
35.06
37.97
41.64
45.19
47.20
47.54
46.86
46.86
50.66
46.86
51.02
49.96
46.52
44.86
41.32
36.49
33.11
28.64

SS

461
346
224
189

264
361
525
571
447
385
322
241
235
253
284
294
241
232
184

TP
201
210
208
220
228
263
320
641
696
708
599
510
352
331
325
313
336
330
284
230
213
184
186
169

0.786
0.710
0.627
0.574

0.430
0.512
0.612
0.684
0.802
0.788
0.666
0.485
0.466
0.475
0.493
0.594
0.575
0.570
0.531

SRP
0.342
0.376
0.402
0.396
0.431
0.477
0.536
0.856
1.214
1.471
1.522
1.215
1.102
0.933
0.902
0.843
0.722
0.755
0.677
0.632
0.598
0.543
0.521
0.496



EVENT 8_INLET

1 26/01/2013 21:15
2 26/01/2013 22:15
3 26/01/2013 23:15
4 27/01/2013 00:15
5 27/01/2013 01:15
6 27/01/2013 02:15
7 27/01/2013 03:15
8 27/01/2013 04:15
9 27/01/2013 05:15
10 27/01/2013 06:15
11 27/01/2013 07:15
12 27/01/2013 08:15
13 27/01/2013 09:15
14 27/01/2013 10:15
15 27/01/2013 11:15
16 27/01/2013 12:15
17 27/01/2013 13:15
18 27/01/2013 14:15
19 27/01/2013 15:15
20 27/01/2013 16:15
21 27/01/2013 17:15
22 27/01/2013 18:15
23 27/01/2013 19:15
24 27/01/2013 20:15
Date/time
1 17/03/2013 08:00
2 17/03/2013 09:00
3 17/03/2013 10:00
4 17/03/2013 11:00
5 17/03/2013 12:00
6 17/03/201313:00
7 17/03/2013 14:00
8 17/03/2013 15:00
9 17/03/2013 16:00
10 17/03/2013 17:00
11 17/03/2013 18:00
12 17/03/2013 19:00
13 17/03/2013 20:00
14 17/03/2013 21:00
15 17/03/2013 22:00
16 17/03/2013 23:00
17 18/03/2013 00:00
18 18/03/2013 01:00
19 18/03/2013 02:00
20 18/03/2013 03:00
21 18/03/2013 04:00

20.65
21.33
21.76
23.40
26.42
29.33
32.42
35.32
38.09
44.54
48.34
49.32
48.23
47.69
50.96
50.10
50.31
51.52
48.12
45.24
42.57
37.89
33.98
30.35

Discharge (I/s)
14.15
22.54
18.83
13.99
11.81
10.52

8.70
8.70
8.10
8.21
7.63
16.75
22.11
35.34
30.17
24.56
20.64
32.83
22.98
18.83
16.93

SS

171
177
174
170
185
191
198
319
434
441
387
374
279
252
258
244
248
247
234
219
221
214
185
165

TP
236
595
435
275
259
240
239
215
203
188
246
276
476
840
626
376
327
506
329
228
216

0.335
0.328
0.331
0.339
0.329
0.349
0.402
0.499
0.754
0.890
0.939
1.021
0.967
0.789
0.721
0.689
0.633
0.615
0.601
0.576
0.534
0.519
0.494
0.467

SRP
0.621
1.121
1.020
0.746
0.556
0.388
0.355
0.358
0.347
0.335
0.339
0.388
0.655
1.225
1.054
0.891
0.744
0.875
0.607
0.588
0.549
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18/03/2013 05:00

17/03/2013 08:00
17/03/2013 09:00
17/03/2013 10:00
17/03/2013 11:00
17/03/2013 12:00
17/03/2013 13:00
17/03/2013 14:00
17/03/2013 15:00
17/03/2013 16:00
17/03/2013 17:00
17/03/2013 18:00
17/03/2013 19:00
17/03/2013 20:00
17/03/2013 21:00
17/03/2013 22:00
17/03/2013 23:00
18/03/2013 00:00
18/03/2013 01:00
18/03/2013 02:00
18/03/2013 03:00
18/03/2013 04:00
18/03/2013 05:00

Date/time

19/03/2013 05:45
19/03/2013 06:45
19/03/2013 07:45
19/03/2013 08:45
19/03/2013 09:45
19/03/2013 10:45
19/03/2013 11:45
19/03/2013 12:45
19/03/2013 13:45
19/03/2013 14:45
19/03/2013 15:45
19/03/2013 16:45
19/03/2013 17:45
19/03/2013 18:45
19/03/2013 19:45
19/03/2013 20:45
19/03/2013 21:45
19/03/2013 22:45
19/03/2013 23:45
20/03/2013 00:45
20/03/2013 01:45

14.99

13.22
24.10
18.02
13.46
11.77
10.16

8.96

8.19

7.80

7.62

7.44
14.39
20.84
31.75
30.54
24.22
20.57
31.13
23.22
18.83
16.86
14.74

Discharge (I/s)
13.34
19.42
21.68
30.69
44.53
45.19
42.91
40.39
36.79
30.17
34.21
39.17
40.70
37.37
34.49
30.69
25.25
26.91
28.89
26.43
24.56

SS

200

164
333
304
192
184
180
173
163
159
152
157
164
283
523
412
255
233
268
219
190
167
159

TP
275
309
556
895

1021
934
677
498
465
468
459
525
655
629
575
503
426
379
399
402
343

0.502

0.416
0.753
0.706
0.521
0.311
0.302
0.308
0.315
0.319
0.310
0.289
0.295
0.389
0.824
0.705
0.555
0.531
0.472
0.449
0.422
0.425
0.418

SRP
0.356
0.398
0.633
0.812
1.022
1.012
0.764
0.655
0.602
0.549
0.555
0.584
0.612
0.655
0.617
0.551
0.522
0.535
0.531
0.510
0.482

0.056
0.075
0.125
0.185
0.212
0.226
0.235
0.221
0.198
0.188
0.165
0.154
0.155
0.139
0.155
0.162
0.152
0.148
0.135
0.136
0.129
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20/03/2013 02:45
20/03/2013 03:45
20/03/2013 04:45

19/03/2013 05:45
19/03/2013 06:45
19/03/2013 07:45
19/03/2013 08:45
19/03/2013 09:45
19/03/2013 10:45
19/03/2013 11:45
19/03/2013 12:45
19/03/2013 13:45
19/03/2013 14:45
19/03/2013 15:45
19/03/2013 16:45
19/03/2013 17:45
19/03/2013 18:45
19/03/2013 19:45
19/03/2013 20:45
19/03/2013 21:45
19/03/2013 22:45
19/03/2013 23:45
20/03/2013 00:45
20/03/2013 01:45
20/03/2013 02:45
20/03/2013 03:45
20/03/2013 04:45

20.84
19.42
18.44

12.94
17.50
20.68
27.98
40.83
46.03
44.68
40.38
37.23
31.75
34.47
36.31
40.72
38.47
34.38
30.26
25.43
24.51
26.28
28.03
24.93
20.81
19.59
17.96

351
289
251

200
234
366
502
634
511
464
401
390
393
384
445
488
497
471
399
351
284
266
268
241
276
214
176

0.439
0.416
0.388

0.311
0.318
0.415
0.521
0.703
0.712
0.589
0.532
0.535
0.504
0.491
0.495
0.502
0.509
0.513
0.503
0.489
0.472
0.455
0.457
0.446
0.431
0.392
0.381

0.122
0.118
0.111

0.041
0.052
0.088
0.144
0.179
0.198
0.211
0.206
0.173
0.166
0.141
0.132
0.125
0.122
0.129
0.134
0.141
0.133
0.126
0.120
0.116
0.108
0.097
0.092



ion (mg/l)
TSP

NO3

6.67

6.76

6.79

6.97

6.82

6.27
19.82
33.75
32.11
31.31
41.55
46.26
46.89
49.09
49.05
49.03
49.23
49.48
49.34
49.03
49.25
49.48
48.62
46.19

6.59

6.65

6.74

6.99

7.21

6.31
10.12
19.29
20.25
21.68
24.13
28.48
32.75
40.38
41.09
43.99
46.75
48.34
48.48
48.22



TSP

TSP

NO3

NO3

48.10
47.91
47.12
45.32

7.12
7.09
7.34
7.35
8.13
8.55
8.92
9.23
9.68
10.49

7.09
7.10
7.15
7.24
7.29
7.30
7.55
7.96
8.91
9.11

8.46
8.43
9.15
9.55
10.51
7.77
8.64
10.93
13.10
15.83
16.16
20.84
21.66
21.03

8.11
7.89
7.51



TSP

NO3

6.70
6.23
6.25
7.42
10.61
12.28
14.52
14.46
16.22
18.48
19.80

6.11
6.24
6.90
7.45
8.02
8.12
8.33
8.66
8.61
8.46
8.84
8.89
8.85
8.77
8.52
8.49
8.85
8.98

5.46
5.54
5.69
6.55
6.75
6.98
6.99
7.01
7.45
8.33
8.36
8.39
8.42
8.77
8.79



TSP

TSP

NO3

NO3

8.86
8.87
8.69

6.45
6.58
7.25
7.59
8.35
10.22
12.47
13.34
13.90
14.22
14.19
13.87
13.85
13.12

6.38
6.45
6.47
7.02
7.35
8.82
10.03
11.85
12.22
13.66
13.70
13.70
13.72
13.71

5.88
6.02
6.12
6.10
6.35
6.84
7.35
8.31
8.62
9.21
8.95



TSP

NO3

8.56
8.68
8.93
9.45

5.57
5.50
5.68
6.02
5.88
6.11
6.36
6.75
6.93
7.88
7.93
8.11
8.16
8.21
8.18

6.02
6.10
6.10
6.16
6.16
6.07
6.14
6.19
6.23
7.12
8.45
9.54
10.34
11.83
11.86
12.12
12.10
12.12
12.34
12.57
12.33
11.51
12.23
12.12



TSP

NO3

6.04
6.04
6.09
6.08
6.07
6.09
6.11
6.10
5.99
6.07
6.64
7.41
7.97
8.44
9.61
10.35
10.56
10.87
11.44
12.22
12.85
12.91
12.89
12.89



TSP

NO3

8.46

8.43

9.15

9.55
10.51
10.49
10.79
10.93
13.10
14.34
15.66
16.65
17.25
18.80
19.24
19.98
20.35
22.05
22.24
20.90
21.45



20.41
19.65
19.24

8.11

7.89

9.17

9.66

9.86
10.00
10.01
10.61
12.28
14.52
14.46
16.22
16.20
17.55
18.54
20.12
20.23
21.02
21.23
21.24
20.78
20.41
20.01
19.35



Determinand concentration (mg

EVENT 1_INLET Date/time Discharge (I/s) SS TP SRP
1 20/04/2012 11:45 118.5 0.115 0.015
2 20/04/2012 12:45 261.5 0.221 0.028
3 20/04/2012 13:45 228.5 0.168 0.035
4 20/04/2012 14:45 189.5 0.112 0.032
5 20/04/2012 15:45 92 0.097 0.031
6 20/04/2012 16:45 168.2 0.122 0.028
7 20/04/2012 17:45 142.5 0.097 0.025
8 20/04/2012 18:45 74.2 0.095 0.029
9 20/04/2012 19:45 50.5 0.067 0.028
10 20/04/2012 20:45 43 0.060 0.026
11 20/04/2012 21:45 38.5 0.062 0.023
EVENT 1_OUTLET
1 20/04/2012 11:45 22 0.051 0.011
2 20/04/2012 12:45 108.5 0.119 0.017
3 20/04/2012 13:45 131 0.108 0.024
4 20/04/2012 14:45 118.5 0.093 0.026
5 20/04/2012 15:45 88 0.081 0.023
6 20/04/2012 16:45 68.4 0.088 0.023
7 20/04/2012 17:45 82.5 0.073 0.023
8 20/04/2012 18:45 67 0.068 0.023
9 20/04/2012 19:45 36.5 0.051 0.024
10 20/04/2012 20:45 32 0.051 0.023
11 20/04/2012 21:45 24 0.044 0.020
EVENT 2_INLET Date/time Discharge (I/s) SS TP SRP
1 26/04/2012 04:00 172.5 0.428 0.073
2 26/04/2012 05:00 190 0.256 0.084
3 26/04/2012 06:00 234.5 0.233 0.107
4 26/04/2012 07:00 186.5 0.226 0.094
5 26/04/2012 08:00 197 0.230 0.090
6 26/04/2012 09:00 86 0.239 0.086
7 26/04/2012 10:00 57 0.242 0.073
8 26/04/2012 11:00 62.5 0.297 0.077
9 26/04/2012 12:00 68 0.359 0.069
10 26/04/2012 13:00 71 0.193 0.067
11 26/04/2012 14:00 92 0.124 0.065
12 26/04/2012 15:00 91.5 0.131 0.065
13 26/04/2012 16:00 87.5 0.122 0.063
14 26/04/2012 17:00 68.5 0.113 0.063
15 26/04/2012 18:00 37.5 0.102 0.060
16 26/04/2012 19:00 35 0.097 0.062
17 26/04/2012 20:00 53.5 0.120 0.056
18 26/04/2012 21:00 28 0.113 0.060
19 26/04/2012 22:00 30.5 0.090 0.056
20 26/04/2012 23:00 48.5 0.127 0.054



EVENT 2_OUTLET

EVENT 3_INLET

EVENT 3_OUTLET
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27/04/2012 00:00

26/04/2012 04:00
26/04/2012 05:00
26/04/2012 06:00
26/04/2012 07:00
26/04/2012 08:00
26/04/2012 09:00
26/04/2012 10:00
26/04/2012 11:00
26/04/2012 12:00
26/04/2012 13:00
26/04/2012 14:00
26/04/2012 15:00
26/04/2012 16:00
26/04/2012 17:00
26/04/2012 18:00
26/04/2012 19:00
26/04/2012 20:00
26/04/2012 21:00
26/04/2012 22:00
26/04/2012 23:00
27/04/2012 00:00

Date/time

10/05/2012 04:45
10/05/2012 05:45
10/05/2012 06:45
10/05/2012 07:45
10/05/2012 08:45
10/05/2012 09:45
10/05/2012 10:45
10/05/2012 11:45
10/05/2012 12:45
10/05/2012 13:45
10/05/2012 14:45
10/05/2012 15:45
10/05/2012 16:45
10/05/2012 17:45
10/05/2012 18:45

10/05/2012 04:45
10/05/2012 05:45
10/05/2012 06:45
10/05/2012 07:45
10/05/2012 08:45
10/05/2012 09:45

Discharge (I/s) SS

104.5

83.6
107.825
113.05
94.05
64.125
60.8
56.525
48.925
32.775
33.25
38.95
28.975
28.5
27.55
36.1
33.725
33.25
25.175
17.575
28.025
39.9

TP
162.5
190
234.5
186.5
197
86
57
62.5
68
71
92
91.5
88.2
81.5
76.5

88.5
119
127

74.5

67.5

54

0.157

0.143
0.150
0.168
0.187
0.152
0.155
0.136
0.113
0.102
0.097
0.085
0.095
0.102
0.115
0.108
0.108
0.102
0.097
0.076
0.081
0.074

SRP
0.189
0.238
0.288
0.275
0.273
0.234
0.197
0.184
0.142
0.124
0.118
0.108
0.110
0.102
0.097

0.143
0.150
0.168
0.188
0.152
0.156

0.058

0.035
0.039
0.058
0.063
0.090
0.078
0.073
0.075
0.067
0.058
0.054
0.056
0.063
0.063
0.062
0.058
0.056
0.056
0.052
0.048
0.046



EVENT 4_INLET

EVENT 4_OUTLET

EVENT 5_INLET
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10/05/2012 10:45
10/05/2012 11:45
10/05/2012 12:45
10/05/2012 13:45
10/05/2012 14:45
10/05/2012 15:45
10/05/2012 16:45
10/05/2012 17:45
10/05/2012 18:45

Date/time

06/07/2012 22:00
06/07/2012 23:00
07/07/2012 00:00
07/07/2012 01:00
07/07/2012 02:00
07/07/2012 03:00
07/07/2012 04:00
07/07/2012 05:00
07/07/2012 06:00
07/07/2012 07:00
07/07/2012 08:00
07/07/2012 09:00

06/07/2012 22:00
06/07/2012 23:00
07/07/2012 00:00
07/07/2012 01:00
07/07/2012 02:00
07/07/2012 03:00
07/07/2012 04:00
07/07/2012 05:00
07/07/2012 06:00
07/07/2012 07:00
07/07/2012 08:00
07/07/2012 09:00

Date/time

05/08/2012 09:45
05/08/2012 10:45
05/08/2012 11:45
05/08/2012 12:45
05/08/2012 13:45
05/08/2012 14:45
05/08/2012 15:45
05/08/2012 16:45
05/08/2012 17:45

Discharge (I/s) SS

Discharge (I/s) SS

42.5
44.8
34.5
35
41
30.5
39.8
37.5
35

TP
112
158
198
319

274.5
206
176

164.5
104

85
36.5
38.5

55

78

94
142.5
136
126.5
127
84

64
34.5
30.5
27.5

P
165
220
162

137.5

92.5

63
42.5
215
15.5

0.136
0.113
0.103
0.097
0.085
0.095
0.090
0.092
0.081

SRP
0.456
0.542
0.703
0.922
1.037
0.962
0.815
0.768
0.616
0.509
0.410
0.274

0.344
0.385
0.411
0.561
0.678
0.620
0.611
0.568
0.459
0.400
0.306
0.355

SRP
0.858
1.083
0.987
0.752
0.568
0.431
0.416
0.350
0.309

0.065
0.082
0.087
0.098
0.106
0.122
0.110
0.095
0.079
0.072
0.069
0.073

0.049
0.052
0.058
0.062
0.069
0.074
0.084
0.085
0.081
0.076
0.068
0.065

0.065
0.071
0.085
0.075
0.078
0.062
0.055
0.046
0.035



EVENT 5_OUTLET

EVENT 6_INLET

EVENT 6_OUTLET
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05/08/2012 09:45
05/08/2012 10:45
05/08/2012 11:45
05/08/2012 12:45
05/08/2012 13:45
05/08/2012 14:45
05/08/2012 15:45
05/08/2012 16:45
05/08/2012 17:45

Date/time

24/09/2012 21:30
24/09/2012 22:30
24/09/2012 23:30
25/09/2012 00:30
25/09/2012 01:30
25/09/2012 02:30
25/09/2012 03:30
25/09/2012 04:30
25/09/2012 05:30
25/09/2012 06:30
25/09/2012 07:30
25/09/2012 08:30
25/09/2012 09:30
25/09/2012 10:30
25/09/2012 11:30
25/09/2012 12:30
25/09/2012 13:30
25/09/2012 14:30
25/09/2012 15:30
25/09/2012 16:30
25/09/2012 17:30
25/09/2012 18:30
25/09/2012 19:30
25/09/2012 20:30

24/09/2012 21:30
24/09/2012 22:30
24/09/2012 23:30
25/09/2012 00:30
25/09/2012 01:30
25/09/2012 02:30
25/09/2012 03:30
25/09/2012 04:30
25/09/2012 05:30
25/09/2012 06:30

Discharge (I/s) SS

62
97
96
69.5
44.5
32
26.5
13
7.5

TP
188
300

374.5
356

303.5
265
236

232.5

203.5
115

96
80.5
72.5

93

86

81

59
455
37.5
34.5
37.5

21

25

16

102.58
153.64
187.22
208.288
189.06
177.56
132.48
136.16
125.12
99.36

0.534
0.667
0.653
0.529
0.479
0.391
0.315
0.290
0.292

SRP
0.689
0.911
1.247
1.497
1.453
1.422
1.261
1.100
1.033
0.965
0.846
0.745
0.622
0.601
0.574
0.545
0.529
0.511
0.489
0.466
0.453
0.437
0.421
0.392

0.516
0.589
0.731
0.929
1.017
1.028
0.992
0.919
0.897
0.831

0.055
0.054
0.061
0.068
0.067
0.065
0.055
0.049
0.031



EVENT 7_INLET

EVENT 7_OUTLET

EVENT 8_INLET
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25/09/2012 07:30
25/09/2012 08:30
25/09/2012 09:30
25/09/2012 10:30
25/09/2012 11:30
25/09/2012 12:30
25/09/2012 13:30
25/09/2012 14:30
25/09/2012 15:30
25/09/2012 16:30
25/09/2012 17:30
25/09/2012 18:30
25/09/2012 19:30
25/09/2012 20:30

Date/time

12/10/2012 03:30
12/10/2012 04:30
12/10/2012 05:30
12/10/2012 06:30
12/10/2012 07:30
12/10/2012 08:30
12/10/2012 09:30
12/10/2012 10:30
12/10/2012 11:30
12/10/2012 12:30
12/10/2012 13:30
12/10/2012 14:30
12/10/2012 15:30

12/10/2012 03:30
12/10/2012 04:30
12/10/2012 05:30
12/10/2012 06:30
12/10/2012 07:30
12/10/2012 08:30
12/10/2012 09:30
12/10/2012 10:30
12/10/2012 11:30
12/10/2012 12:30
12/10/2012 13:30
12/10/2012 14:30
12/10/2012 15:30

Date/time

22/11/2012 17:00
22/11/2012 18:00

Discharge (I/s) SS

Discharge (I/s) SS
7.09
15.09

70.38
54.28
40.94
36.34
42.32
34.04
35.42
34.04
19.78
19.32

23
17.94
12.88
11.04

TP
101.5
161
131
117.5
90
78.5
73.5
69
51
39.5
325
26
18.5

60.3
74.34
85.95

63

52.2

47.7

47.7

40.5

34.2
27.45
21.15
23.85
16.65

TP
524.7
598.7

0.671
0.619
0.466
0.410
0.393
0.379
0.387
0.383
0.374
0.362
0.356
0.354
0.315
0.294

SRP
0.985
1.112
1.088
0.887
0.822
0.743
0.739
0.743
0.651
0.723
0.677
0.602
0.546

0.678
0.791
0.855
0.786
0.721
0.674
0.559
0.543
0.503
0.511
0.515
0.498
0.472

SRP
0.954
1.230

0.048
0.078



EVENT 8_OUTLET

EVENT 9_INLET

EVENT 9_OUTLET
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22/11/2012 19:00
22/11/2012 20:00
22/11/2012 21:00
22/11/2012 22:00
22/11/2012 23:00
23/11/2012 00:00
23/11/2012 01:00

22/11/2012 17:00
22/11/2012 18:00
22/11/2012 19:00
22/11/2012 20:00
22/11/2012 21:00
22/11/2012 22:00
22/11/2012 23:00
23/11/2012 00:00
23/11/2012 01:00

Date/time

20/12/2012 09:45
20/12/2012 10:45
20/12/2012 11:45
20/12/2012 12:45
20/12/2012 13:45
20/12/2012 14:45
20/12/2012 15:45
20/12/2012 16:45
20/12/2012 17:45
20/12/2012 18:45
20/12/2012 19:45
20/12/2012 20:45
20/12/2012 21:45
20/12/2012 22:45
20/12/2012 23:45
21/12/2012 00:45
21/12/2012 01:45
21/12/2012 02:45
21/12/2012 03:45
21/12/2012 04:45

20/12/2012 09:45
20/12/2012 10:45
20/12/2012 11:45
20/12/2012 12:45
20/12/2012 13:45
20/12/2012 14:45
20/12/2012 15:45

13.75
14.19
15.09
13.54
12.90
11.49
10.92

5.47
7.23
7.13
6.23
6.13
5.76
5.48
5.23
5.38

Discharge (I/s) SS
23.76
25.52
27.05
28.51
34.80
38.00
44.85
50.78
55.33
58.19
58.19
58.53
59.40
57.85
57.17
56.66
55.99
55.98
55.99
56.49

23.78
25.77
26.58
27.66
31.62
32.62
33.71

334.0
170.7
122.7
86.7
68.0
56.0
55.3

61.3
160.0
140.7

81.3

59.3

48.0

44.7

30.7

28.0

TP
42
55.5
56
87
62.5
50
435
45
37
35
315
28
24.5
345
26
29
29.5
29.5
325
27.5

22
27.5
25
335
39.5
40
36.5

0.793
0.499
0.357
0.292
0.286
0.263
0.244

0.385
0.663
0.559
0.431
0.301
0.239
0.237
0.209
0.200

SRP
0.274
0.309
0.334
0.357
0.309
0.256
0.212
0.209
0.182
0.166
0.168
0.163
0.159
0.155
0.147
0.147
0.163
0.159
0.166
0.154

0.166
0.170
0.173
0.184
0.200
0.203
0.193

0.066
0.053
0.037
0.031
0.028
0.030
0.025

0.036
0.045
0.049
0.037
0.031
0.029
0.030
0.028
0.027

0.035
0.048
0.075
0.082
0.086
0.084
0.081
0.074
0.062
0.053
0.054
0.046
0.042
0.042
0.037
0.032
0.035
0.034
0.039
0.035

0.029
0.039
0.045
0.052
0.055
0.060
0.061
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EVENT 10_OUTLET

N o bk 0N e

20/12/2012 16:45
20/12/2012 17:45
20/12/2012 18:45
20/12/2012 19:45
20/12/2012 20:45
20/12/2012 21:45
20/12/2012 22:45
20/12/2012 23:45
21/12/2012 00:45
21/12/2012 01:45
21/12/2012 02:45
21/12/2012 03:45
21/12/2012 04:45

Date/time

27/01/2013 06:30
27/01/2013 07:30
27/01/2013 08:30
27/01/2013 09:30
27/01/2013 10:30
27/01/2013 11:30
27/01/2013 12:30
27/01/2013 13:30
27/01/2013 14:30
27/01/2013 15:30
27/01/2013 16:30
27/01/2013 17:30
27/01/2013 18:30
27/01/2013 19:30
27/01/2013 20:30
27/01/2013 21:30
27/01/2013 22:30
27/01/2013 23:30
28/01/2013 00:30
28/01/2013 01:30
28/01/2013 02:30
28/01/2013 03:30
28/01/2013 04:30
28/01/2013 05:30

27/01/2013 06:30
27/01/2013 07:30
27/01/2013 08:30
27/01/2013 09:30
27/01/2013 10:30
27/01/2013 11:30
27/01/2013 12:30

34.08
35.40
33.89
34.17
33.72
34.64
35.31
34.55
35.30
35.60
34.27
33.98
35.31

Discharge (I/s) SS
12.69
15.70
19.25
21.42
24.65
32.29
47.67
47.96
59.99
59.33
60.51
62.88
64.97
67.29
66.04
65.68
63.57
62.88
60.66
59.49
57.18
54.00
52.91
50.47

9.26
12.80
15.97
19.56
22.75
25.25
30.16

33
37
34.5
335
29.5
23
21
23.5
17
15
14
16.5
14

75.5
84.5
112.6
156
198.5
262.5
178.5
182.2
164.5
126.6
108.7
99
102.5
95.2
85
76.7
74
69.5
67
70.2
64.4
72.5
68.5
62.2

42.24
47.696
54.12
83.248
95.48
109.648
116.16

TP

0.196
0.200
0.178
0.161
0.148
0.145
0.141
0.145
0.132
0.131
0.122
0.118
0.115

SRP
0.526
0.585
0.720
0.898
1.075
1.288
1.126
1.094
1.032
0.943
0.902
0.857
0.838
0.784
0.762
0.739
0.719
0.697
0.686
0.675
0.671
0.633
0.604
0.551

0.322
0.358
0.379
0.488
0.531
0.655
0.708

0.059
0.062
0.058
0.052
0.048
0.049
0.041
0.035
0.031
0.031
0.030
0.032
0.030

0.088
0.127
0.127
0.141
0.171
0.174
0.194
0.199
0.188
0.169
0.152
0.134
0.127
0.113
0.105
0.099
0.100
0.091
0.091
0.084
0.075
0.072
0.060
0.064

0.045
0.072
0.098
0.102
0.121
0.127
0.134
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27/01/2013 13:30
27/01/2013 14:30
27/01/2013 15:30
27/01/2013 16:30
27/01/2013 17:30
27/01/2013 18:30
27/01/2013 19:30
27/01/2013 20:30
27/01/2013 21:30
27/01/2013 22:30
27/01/2013 23:30
28/01/2013 00:30
28/01/2013 01:30
28/01/2013 02:30
28/01/2013 03:30
28/01/2013 04:30
28/01/2013 05:30

Date/time

18/03/2013 00:30
18/03/2013 01:30
18/03/2013 02:30
18/03/2013 03:30
18/03/2013 04:30
18/03/2013 05:30
18/03/2013 06:30
18/03/2013 07:30
18/03/2013 08:30
18/03/2013 09:30
18/03/2013 10:30
18/03/2013 11:30
18/03/2013 12:30
18/03/2013 13:30
18/03/2013 14:30
18/03/2013 15:30

18/03/2013 00:30
18/03/2013 01:30
18/03/2013 02:30
18/03/2013 03:30
18/03/2013 04:30
18/03/2013 05:30
18/03/2013 06:30
18/03/2013 07:30
18/03/2013 08:30
18/03/2013 09:30
18/03/2013 10:30

45.43
55.61
51.66
48.14
48.49
47.55
47.78
48.62
50.43
48.61
48.37
49.34
49.33
48.14
46.60
45.56
46.02

Discharge (I/s) SS

9.842
12.016
17.425
18.824
20.674
22.275
21.642
20.760
19.485
18.341
17.014
16.192
15.259
15.262
14.698
14.628

8.40
10.21
15.28
18.23
19.56
22.22
22.37
22.35
20.64
19.42
17.77

129.448
124.96
122.144
101.2
91.96
71.456
65.032
56.056
48.752
46.376
42.416
40.216
43.032
37.928
45.056
41.536
35.992

105.8
232.5
295.6
321.0
314.0
218.5
196.7
115.0
93.9
85.6
75.6
79.4
81.7
77.2
74.4
68.3

34.2
52.9
101.5
147.8
160.5
157.0
109.3
98.3
57.5
46.9
42.8

TP

0.741
0.786
0.710
0.734
0.741
0.709
0.712
0.690
0.651
0.622
0.588
0.544
0.541
0.535
0.538
0.522
0.507

SRP
0.648
0.845
1.034
1.125
0.977
0.797
0.737
0.792
0.788
0.792
0.712
0.701
0.675
0.623
0.533
0.501

0.301
0.389
0.507
0.620
0.675
0.586
0.591
0.588
0.611
0.615
0.624

0.151
0.159
0.162
0.164
0.158
0.144
0.120
0.101
0.085
0.081
0.082
0.073
0.071
0.067
0.069
0.068
0.061

0.061
0.082
0.136
0.202
0.231
0.246
0.256
0.241
0.216
0.205
0.180
0.145
0.098
0.076
0.071
0.064

0.041
0.048
0.063
0.105
0.155
0.178
0.190
0.195
0.197
0.185
0.166



12
13
14
15
16

18/03/2013 11:30
18/03/2013 12:30
18/03/2013 13:30
18/03/2013 14:30
18/03/2013 15:30

16.76
15.48
14.87
14.42
14.48

37.8
39.7
40.8
38.6
37.2

0.602
0.566
0.512
0.374
0.320

0.158
0.139
0.112
0.075
0.059



/)
NO3

NO3

2.49
3.65
4.11
4.09
3.92
3.78
3.78
3.55
3.23
3.19
3.15

2.04
2.57
3.56
3.90
3.95
3.73
3.31
3.22
3.09
3.01
3.00

7.02
7.46
8.00
7.61
7.40
7.20
7.20
7.06
6.93
7.42
7.77
7.96
8.21
8.39
8.91
8.97
9.03
9.49
9.51
9.90



NO3

9.73

6.89
7.39
7.42
7.23
7.01
6.85
6.77
6.89
7.17
7.33
7.75
7.82
7.97
8.22
8.37
8.64
8.87
8.79
8.99
8.83
8.62

3.27
5.01
7.22
6.44
5.88
6.37
7.11
6.65
5.95
6.10
6.08
6.16
6.25
6.38
6.44

1.87
4.68
6.10
5.98
5.61
5.61



NO3

NO3

6.62
6.12
5.65
5.88
5.78
5.82
6.11
6.09
6.16

2.61
2.57
2.29
2.14
2.25
2.41
2.69
2.81
2.73
2.53
2.36
2.39

2.58
2.60
2.43
2.31
2.27
2.17
2.49
2.71
2.81
2.57
2.57
2.42



NO3



NO3

NO3
5.49
7.87



NO3

7.87
7.94
7.88
7.51
7.41
7.35
7.34

4.80
5.98
6.79
7.55
7.59
7.57
7.46
7.27
7.15



NO3

4.35
4.39
4.55
4.51
4.42
4.36
4.26
4.56
4.61
4.54
4.78
5.07
5.42
5.80
6.13
6.32
6.55
6.75
6.81
7.00
6.95
6.72
6.60
6.63

4.15
4.24
4.37
4.35
4.25
4.28
4.10



NO3

4.12
4.18
4.47
4.41
4.45
4.88
5.11
5.47
5.78
6.02
6.55
6.86
7.22
7.19
7.14
7.02
6.95

3.23
3.29
3.62
3.79
4.17
5.11
6.24
6.67
6.95
7.11
7.09
6.94
6.92
6.56
6.65
6.72

3.15
3.19
3.18
3.23
3.52
4.33
4.89
5.67
6.55
6.81
7.18



7.36
7.32
7.22
7.13
7.00



