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  Abstract 
Multivariate statistical modelling and monitoring is an active area of research and 

development in both academia and industry. This is due to the economic and safety 

benefits that can be attained from the implementation of process modelling and 

monitoring schemes. Most industrial processes in the chemistry-using sector exhibit 

complex characteristics including process dynamics, non-linearity and changes in 

operational behaviour which are compounded by the occurrence of non-conforming data 

points. To date, modelling and monitoring methodologies have focussed on processes 

exhibiting one of the aforementioned characteristics. This Thesis considers the 

development and application of multivariate statistical methods for the modelling and 

monitoring of the whole process as well as individual unit operations with a particular 

focus on the complex dynamic nonlinear behaviour of continuous processes. 

Following a review of Partial Least Squares (PLS), which is applicable for the analysis 

of problems that exhibit high dimensionality and correlated/collinear variables, it was 

observed that it is inappropriate for the analysis of data from complex dynamic 

processes. To address this issue, a multivariate statistical method Robust Adaptive PLS 

(RAPLS) was proposed, which has the ability to distinguish between non-conforming 

data, i.e. statistical outliers and a process fault. Through the analysis of data from a 

mathematical simulation of a time varying and non-stationary process, it is observed 

that RAPLS shows superior monitoring performance compared to conventional PLS. 

The model has the ability to adapt to changes in process operating conditions without 

losing its ability to detect process faults and statistical outliers. 

A dynamic extension, RADPLS, using an autoregressive with exogenous inputs (ARX) 

representation was developed to model and monitor the complex dynamic and nonlinear 

behaviour of an Ammonia Synthesis Fixed-bed Reactor. The resultant model, which is 

resistant to outliers, shows significant improvement over other dynamic PLS based 

representations. The proposed method shows some limitations in terms of the detection 

of the fault for its full duration but it significantly reduces the false alarm rate. 

The RAPLS algorithm is further extended to a dynamic multi-block algorithm, 

RAMBDPLS, through the conjunction of a finite impulse response (FIR) representation 

and multiblock PLS. It was applied to the benchmark Tennessee Eastman Process to 

illustrate its applicability for the monitoring of the whole process and individual unit 

operations and to demonstrate the concept of fault propagation in a dynamic and 

nonlinear continuous system. The resulting model detects the faults and reduces the 

false alarm rate compared to conventional PLS. 
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Chapter 1 

Thesis Introduction and Overview 

The focus of this thesis is on the application of multivariate statistical projection based 

techniques for the monitoring of complex and dynamic behaviour of industrial 

continuous process. Two aspects were considered, the monitoring of the whole process 

and individual unit operations using multivariate performance monitoring techniques 

based on partial least squares and the extension of these to incorporate dynamic 

behaviour and ensure the monitoring scheme is robust to outliers. The aim of this 

chapter is to provide an overview of the research problem and the challenges addressed 

as well as provide an overview of the thesis structure and the main contributions of the 

research. 

1.1 Introduction 

The chemicals sector is of strategic importance in the European Union and as shown in 

Figure 1.1 it was the most important trading region compared to the rest of the world 

(Cefic: the European Chemical Industry Council, 2012). The chemicals sector faces 

several challenges including improving production efficiency, coping with varying 

production requirements (product demand), competing with emerging producers such as 

China and India and the need for improved health and safety in the production 

environment. One tool to assist in the delivering of these goals is that of process 

performance monitoring. 

 

Figure 1.1 - World exports and imports of chemicals by regional share (source: Cefic, 

the European Chemical Industry Council (2012)) 
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1.1.1 Process Performance Monitoring 

Process performance monitoring is an important topic in the highly competitive 

chemicals sector (Gosselin and Ruel, 2007; Kruger and Xie, 2012). It is a means for 

assessing the performance and identifying the potential sources of variation inherent 

within the process of interest. Process monitoring is implemented to maintain high 

quality consistent production and for improving the performance of the process. In 

addition, process monitoring provides the operator with critical information about the 

progress of the process and hence early warning of the onset of an operational change 

thereby enabling correction action to be taken in a timely manner thereby ensuring 

process efficiency is preserved and there is no loss of product and energy, health and 

safety are not compromised. 

A number of monitoring methods have been proposed and these are briefly summarised 

in the following section. The very first process performance monitoring scheme was 

known as statistical process control (SPC) and was proposed by Walter A. Shewart in 

1920s. It was based on an individual control chart that monitors the performance of the 

quality products. It has been used for maintaining and improving the performance of 

industrial processes (Raich and Çinar, 1996; Montgomery, 2005; Summers and Donna, 

2010) 

1.1.2 Process Monitoring Methods 

Process monitoring can be based on one of three strategies: model based, knowledge 

based and data driven approach. A detailed description of the three methods can be 

found in Ge et al. (2013) with a three part review by Venkatasubramanian et al. (2003a; 

2003b; 2003c)  

 Model based methods are based on a first principles model of the physical and/or 

chemical relationships between the inputs and outputs of a process. Hence a 

mathematical model representing the process underpins the process performance 

monitoring scheme, i.e. the actual process behaviour is compared to the mathematical 

model and any deviation between them is expressed as a residual and this is used for 

process monitoring and fault detection. Even though model based methods provide a 

representative model, the development of theoretical models requires significant time, 

effort and financial resources and is challenging for complex processes (Seborg et al., 

1989). 
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Knowledge based methods depend on a detailed understanding of the system and is 

expressed in terms of facts, rules and the known nominal behaviour. This information is 

organized into a scheme that is utilised for process monitoring. The idea is to compare 

the actual behaviour of the system with the information contained within the monitoring 

scheme and any inconsistency indicates a system abnormality (Frank, 1990; Ramesh et 

al., 1992). Unlike model based methods, it does not involve mathematical models or 

detailed physical and chemical relationships. However, it is time consuming since it 

requires detailed knowledge and experience of the system to develop the monitoring 

scheme. 

Data driven methods are primarily constructed from process measurements and contain 

information about the process. They do not require any knowledge of the physical and 

chemical relationships hence they have been termed black-box methods. In contrast to 

model based and knowledge based methods, they can be implemented on processes 

which exhibit complex characteristics and high dimensions in a shorter time-frame 

(Chiang et al., 2001). One of the main data based monitoring methods is that of 

multivariate statistical process control.  

1.1.3 Statistical Process Performance Monitoring Methods  

Statistical process control (SPC) was initially introduced by the pioneering work of 

Walter A. Shewhart in 1920, who worked for Bell Telephone laboratories. He proposed 

the philosophy of process monitoring, i.e. to monitor the performance of a process and 

identify source of process variability through the development of monitoring charts 

(Montgomery, 2005; Kruger and Xie, 2012). Process variability can be subdivided into 

background noise that is present in the process due to the nature of the process, i.e. 

common cause variation, and uncontrolled variation that is caused by assignable causes 

and is not part of the process and hence, that should be isolated and eliminated 

(Kaskavelis, 2000). A process is considered to be in a state of statistical control if the 

variation is from common causes (Oakland, 2008). The traditional SPC tools are well 

established and their primary role is to indicate whether product quality is satisfactory. 

They compare current performance against process behaviour when the process 

represented normal operating condition which is defined in terms of in statistical control 

limits. Examples of univariate SPC charts are Shewhart chart (  -bar and range chart), 

cumulative sum (CUSUM), and exponentially weighted moving average (EWMA) 

charts. Significant paybacks have been realised through the implementation of 



4 
 

univariate SPC (Montgomery, 2005; Summers and Donna, 2010). However, it has been 

criticized for the following reasons: 

- Inability to handle high dimensional data as it is based on the individual charting 

of a limited number of process variables, most often product quality resulting in 

an inaccurate analysis of process performance (MacGregor and Kourti, 1995; 

Nomikos and MacGregor, 1995; Kruger and Xie, 2012). By monitoring only the 

quality variable, the information on the process variables is ignored. 

Additionally by only considering the process variables the relationships between 

these variables (i.e. the interactions) are ignored (Reynolds and Lu, 1997). 

- If implemented, a large number of control charts would be required for large 

scale processes and it can be difficult to be monitor and interpret these 

simultaneously (Martin et al., 1996; Bersimis et al., 2007). In summary, ignoring 

interactions can be misleading in terms of identifying process malfunction and 

an excessive number of false alarms may materialise. This results in acceptable 

quality product being destroyed or reworked and time wasted in seeking out 

process issues which were not present. 

The aforementioned aspects have lead to the introduction of Multivariate SPC which 

aims to tackle the limitations of the univariate version of SPC. In the last two decades, 

the statistical multivariate projection techniques of Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) have been widely applied for the monitoring of 

industrial processes (Jackson, 1991; MacGregor et al., 2005; Cinar et al., 2007; Mujica 

et al., 2008; Kourti et al., 2009; Tavares et al., 2011; Kruger and Xie, 2012; Qin, 2012; 

Yin et al., 2012). The philosophy underpinning their use was: 

- They are able to transform high dimensional, correlated and noisy variables, 

which are typical characteristics of modern industrial data, into a limited number 

of new latent variables that are uncorrelated. 

- The resulting latent variables are linear combinations of the original variables 

and are used to capture the information relating to the process variation and 

hence, a simplified yet representative process model is developed (Kourti et al., 

1996; Simoglou et al., 2000).  

- The most significant feature is that a limited number of control charts are 

required to monitor the process based on the statistical monitoring indices of 

Hotelling’s T² and the squared prediction error (SPE) (Kourti and MacGregor, 
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1995; Gallagher and Wise, 1996; Martin et al., 1996; Raich and Çinar, 1996; 

Qin, 2003) 

Principal Component Analysis (PCA) aims to transform the original variables (input 

data matrix) into a new set of principal components, PCs, by exploiting the correlation 

structure between the process variables to reduce the dimensionality of the data set 

without loss of information (Jolliffe, 2002). The PCs, which capture the sources of 

variation in the data are orthogonal and are ordered in terms of decreasing levels of 

variability. An overview of PCA is given in Chapter 2. Although PCA has been 

successfully applied to many processes, it only considers the input data matrix and thus 

where the interest is in monitoring the output, it is not applicable. As the aim of the 

thesis is to monitor the outputs of the whole process as well as individual unit 

operations, PCA is not considered in detail and the focus is on partial least squares 

(PLS). 

Partial Least Squares (PLS) is the most commonly applied multivariate statistical 

modelling technique, with the goal of predicting a set of quality variables from a high 

dimensional input space (Wold et al., 2001; Vinzi et al., 2007; Abdi, 2010). In contrast 

to PCA, the PLS latent variables are constructed using both the input and output data 

matrices and the aim is to maximize the covariance between the two matrices and hence 

predict the quality variables. PLS has been widely applied for the modelling and 

monitoring of multivariate industrial data (Kaskavelis, 2000; Wold et al., 2001; Yacoub and 

MacGregor, 2003; Wold et al., 2004). A detailed description of PLS is given in Chapter 3. 

By utilising projection based statistical techniques, an empirical model of the process is 

developed from experimental data and from this monitoring metrics are calculated 

including Hotelling’s T² and Squared Prediction Error (SPE). It has been stated that 

statistical monitoring approaches based on empirical models are effective tools due to 

their reliability, speed of development and implementation, degree of knowledge 

required and cost of implementation (Kano et al., 2002; Qin, 2003; Cinar et al., 2007; 

Alghazzawi and Lennox, 2008; Kourti et al., 2009; Kruger and Xie, 2012). 

 

1.1.4 Industrial Processes and Multivariate Projection Methods 

Multivariate statistical projection approaches, PCA and PLS, are designed to handle 

data from steady state processes. MacGregor (1997) summarised some of the challenges 

associated with handling industrial data including data set size, quality of the data and 
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variable correlations. Monitoring schemes for steady state process can be developed 

based on PCA and PLS and although these approaches show superior performance 

compared to traditional SPC methods in terms of extracting information from large data 

sets in the presence of correlated variables, other challenges materialises. Most modern 

industrial processes exhibit complex behaviour including dynamic, non-stationary, 

nonlinear and time varying (Gallagher et al., 1997; Choi et al., 2006). Hence the steady 

state approaches need to be extended or modified to produce reliable monitoring 

schemes for more complex systems, which exhibit dynamic, non-linear and changing 

operational behaviour. These extensions have been developed based on understanding 

the nature of the data collected from the system under study. Therefore understanding 

process characteristics is an important factor in the construction of statistical monitoring 

systems.  

Another important aspect is the type of operation namely batch or continuous (Ge et al., 

2013). Sharratt (1997) defined a batch process as a series of operations that are carried 

out over a finite period of time on a separate and identifiable portion of materials. Batch 

processes are favoured when producing high value products. It is also favoured because 

of the flexibility in production process and low cost of equipment. However, Rippin 

(1983) stated that several issues are associated with batch processes including lack of 

reproducibility, fluctuations in product quality and high specific power consumption. 

Examples of batch processes include fine chemical production and process within the 

bio-chemical industry. On the other hand, a continuous process is a process where all 

the operations are executed continuously based on un-identifiable portions of material. 

These processes are operated at the optimal conditions after start up and produce 

consistent output. Although the cost of equipment used for continuous processes is high, 

the production rate and quality are high (Plumb, 2005). They can be operated 

automatically to produce large quantities of products and reduce the work force 

required. Examples of continuous processes include chemical processes such as 

petroleum refining, cement, commodity chemical such as ammonia and fertilizer 

Industry. Although both types are widely implemented, continuous systems are the 

focus of this thesis and application of the techniques to batch processes would be a 

further area of research.   

The research to date has primarily focussed on the monitoring of individual unit 

operations as opposed to multiple units comprising the whole process. A product from a 

continuous process is typically manufactured from a series of operational units. The 
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product will be processed in a number of unit operations which are connected through 

transfer streams and control loops for example. Consequently the functionality of an 

individual unit operation will be affected by other operations. As a result, if an 

abnormal event has occurred in a specific unit, it will propagate through to the other 

unit operations hence it is essential to understand the whole process as well as the 

individual unit operations. The interactions between individual units, the time delay 

between different units, the recycling strategies, the control system and the nature of the 

task itself are all factors that increase the complexity of the monitoring task of 

continuous systems.  

1.2 Thesis Motivation 

Multivariate statistical process monitoring methods have been shown to be efficient for 

the early detection of abnormal behaviour. One family of approaches to handle steady 

state process that exhibits linear relationships between the process measurements are 

these based on Partial Least Squares (PLS). A number of extensions to PLS have been 

proposed to address specific characteristics including dynamic PLS. Negiz and Çlinar 

(1997a) reported that in some cases, these dynamic extensions were unable to capture 

small changes in the process dynamics. Furthermore, limited attention has been given to 

the application of recursive projection based approaches with adaptive confidence limits 

to model and monitor dynamic and nonlinear processes in real time and is a focus of 

this thesis. An issue in recursive monitoring is the presence of statistical outliers in the 

data as it is important to detect and handle these appropriately with respect to the model 

updating. 

As mentioned continuous processes comprise a number of unit operations and hence the 

monitoring of such process is challenging when the totality of the process is considered. 

Research in this area has focused on the application of multiblock approaches (Wangen 

and Kowalski, 1989; MacGregor et al., 1994; Qin et al., 2001; Westerhuis and Smilde, 

2001; Smilde et al., 2003). However, there are still issues that need to be investigated 

including how to incorporate process dynamics into the multiblock algorithm and how a 

fault propagates through a dynamic large scale processes. These aspects are also 

considered in this thesis. 

Figure 1.2 summarises a number of challenges relating to the implementation of PLS 

for industrial process performance monitoring and those that were addressed in this 

thesis. Figure 1.2 also provides some of the currently available PLS based algorithms 
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which address individual aspects including the use of multiblock PLS methods for the 

modelling and monitoring of large scale processes and the use of recursive PLS with 

adaptive confidence limits for the modelling and monitoring of process that exhibits 

changing behaviour such as time varying or non-stationary. The next level (coloured 

level) presents the solutions proposed in this thesis to address a combination of the 

issues. For example, robust adaptive PLS (RAPLS) is proposed to develop a recursive 

model that is resistant to outliers and thus is able to model processes that exhibit 

changing behaviour. Multi block Dynamic PLS (MBDPLS) based on a finite impulse 

response time series is developed to model a large scale dynamic process. Robust 

adaptive multiblock dynamic PLS (RAMBDPLS) is proposed to model and monitor all 

unit operations simultaneously as well as individual unit operation of a large scale 

dynamic process in a recursive manner where the model is robust to statistical outliers. 
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Figure 1.2 - Challenges that are addressed in this thesis 
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1.3 Aims and Objectives of the Thesis 

The ultimate goal of this thesis is to address the applicability of multivariate statistical 

projection based approaches as well as a number of extensions for the monitoring of 

complex dynamic behaviour of both the whole process and individual unit operations 

for a continuous process. More specifically the objectives of this research include: 

- To review the current multivariate projection based approaches that have been 

applied for the monitoring of continuous systems which are based on Partial 

Least Squares (PLS), more specifically Dynamic PLS (DPLS), Multiblock PLS 

(MBPLS) and Recursive PLS (RPLS) 

- To model and monitor complex dynamic behaviour using different variants of 

multivariate projection based techniques to demonstrate how different process 

characteristics impact on the developed monitoring schemes.  

- To model and monitor the complex characteristics of multivariate processes that 

exhibit time varying and non-stationary behaviour in a recursive manner and in 

the presence of outliers. This materialised in the development of a robust 

adaptive partial least squares (RAPLS) algorithm. 

- To model and monitor the complex characteristics of multivariate processes 

including the dynamic behaviour of large scale processes. A multiblock dynamic 

partial least squares based on Finite impulse response (MBDPLS) was 

developed. 

- To describe how the current approach of RAPLS, can be modified and extended 

to address current limitations such as accounting for process dynamics. Robust 

adaptive dynamic Partial Least Squares (RADPLS) was proposed. 

- To statistically evaluate the quality and capabilities of the models and 

monitoring charts developed based on different projection approaches using the 

statistical indices of Root Mean Squared Error (    ), Average Run Length 

(   ), False Alarm Rate (   ) and Fault Detection Rate (   ).   

- To develop a methodology, Robust Adaptive Multiblock Dynamic PLS 

(RAMBDPLS), based on current extensions to PLS, including dynamic PLS, 

recursive PLS and multiblock PLS that has the ability to handle unusual samples 

(i.e. outliers) when monitoring a unit operation and the whole system.  

- Demonstrate the application of PLS and the existing and proposed extensions, 

Dynamic PLS (DPLS), Adaptive Dynamic PLS (ADPLS) and Robust Adaptive 

dynamic PLS (RADPLS), to monitor the complex behaviour of an ammonia 
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synthesis reactor. This is an example of the monitoring of a unit operation that 

exhibit complex process dynamics. 

- Monitoring of both the whole process and the individual unit operations of the 

Tennessee Eastman process using Dynamic PLS based on a finite impulse 

response (FIR) model, Adaptive Multiblock Dynamic PLS (AMBDPLS) and 

Robust Adaptive Multiblock Dynamic PLS (RAMBDPLS) and the investigation 

of fault propagations in a continuous system.   

 

1.4 Contributions of the Thesis 

The contributions of this thesis are based on the application of the multivariate 

statistical projection based technique of Partial Least Squares (PLS) and its extension 

for the real time monitoring of complex behaviour of multivariate dynamic systems. 

More specifically the contributions are: 

- A number of multiblock PLS algorithms have been proposed in the literature for 

monitoring large scale process. They aim to divide the process into meaningful 

blocks to simplify the interpretation and monitoring of the process. In particular, 

the multiblock PLS algorithm proposed by Westerhuis and Coenegracht (1997) 

is analysed and extended to multiblock dynamic PLS through the incorporation 

of a finite impulse response time series representation. The rational for selecting 

this algorithm, (Westerhuis and Coenegracht, 1997), is that it is well known that 

its parameters can be calculated from the application of conventional PLS hence 

it can be extended to monitor large scale dynamic process through the 

application of dynamic PLS based on a time lagged approach. 

- Several recursive PLS algorithms have been proposed in the literature to update 

the PLS reference model to account for changes in process operations. In 

particular, the recursive PLS algorithm with adaptive confidence limits (APLS) 

by Wang et al.(2003) is analysed. The reason for selecting this algorithm is that 

it is well known for its ability to reduce the number of false alarms compared to 

conventional PLS and sample wise recursive PLS proposed by Qin (1993). In 

addition, because this algorithm can be extended to monitor the whole process as 

well as individual unit operations by incorporating it with multiblock PLS. The 

adaptive PLS (APLS) algorithm has been extended to account for auto-

correlated measurements hence an adaptive dynamic PLS (ADPLS) algorithm 

was developed.  
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- As the recursive approaches aim to update a PLS model whenever new data 

become available, it is important to identify whether to implement the recursive 

update step due to the presence of statistical outliers. A novel robust adaptive 

PLS (RAPLS) algorithm for the modelling and monitoring of a continuous 

process was developed. The approach has the ability to distinguish between 

normal, non-conforming observations (fault) and outliers. The approach was 

extended to robust adaptive multiblock dynamic (RAMBDPLS) for modelling 

and monitoring of dynamic systems and the monitoring  of individual unit 

operations as well as whole process  

- A comparative assessment of different extensions to PLS (conventional, 

adaptive and robust adaptive PLS) in terms of model prediction, fault detection 

and false alarm rate using data from a mathematical simulation of time varying 

and non-stationary processes was performed.   

- The algorithm, APLS, proposed by Wang et al.(2003) was incorporated with an 

Autoregressive with exogenous input model to account for process dynamic 

behaviour caused by autocorrelation and it was extended to a robust variant for 

the modelling and monitoring of the complex dynamic behaviour of an ammonia 

synthesis reactor. To the knowledge of the author, no existing studies have been 

conducted to model the complex behaviour and detect faults of ammonia 

synthesis fixed-bed reactor using dynamic partial least squares and the 

extensions.  

- In the same study, several scaling techniques and time series structures were 

considered along with PLS to investigate the most appropriate model for the 

ammonia synthesis fixed-bed reactor. The developed models and monitoring 

schemes were evaluated using the statistical indices of root mean squared error, 

average run length and false alarm and fault detection rates. 

- The algorithm, APLS, proposed by Wang et al.(2003) was incorporated with a 

Finite impulse response model to account for process dynamics. It was extended 

to a robust variant to be enabled to distinguish between normal operating 

condition samples, outliers and abnormal samples. It was also extended using 

multiblock PLS to monitor the whole process and individual unit operations and 

was applied to the Tennessee Eastman Process (TEP). 

- In most applications of recursive PLS, the aim is to account for process changes. 

In this thesis, the recursive PLS along with its variants to account for process 
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non-linearity in the two case studies, ammonia synthesis fixed-bed reactor and 

the TEP. 

 

1.5 Thesis Layout  

Chapter 1 provided a brief introduction to the research problem and introduces the aims, 

objectives, challenges and contributions. 

A general procedure for process performance monitoring and a brief introduction to 

multivariate statistical projection based technique, Principal Component Analysis 

(PCA) with associated limitations are discussed in Chapter 2. In addition, the complex 

characteristics of industrial processes are described as these provided the need for the 

extensions to steady state multivariate projection based approaches.  

Chapter 3 is a review of partial least squares (PLS) with the historical background and 

theoretical aspect of PLS being presented as well as the limitations of conventional 

PLS. Conventional PLS is then used to model data from both a mathematical simulation 

of a time varying process and a non-stationary process. This chapter also presents a 

number of extensions to PLS including dynamic PLS and multiblock PLS  

In Chapter 4, the recursive partial least squares (RPLS) algorithm is reviewed along 

with its variants and the limitations of RPLS when applied to real time monitoring. The 

main theoretical contributions of the thesis are also presented in this chapter with the 

conjunction of recursive PLS and adaptive confidence limits resulting in robust adaptive 

PLS (RAPLS). The developed approach is applied to distinguish between normal and 

non-conforming operational behaviour and outliers when monitoring the complex 

dynamics of a continuous chemical processes. This is a novel approach which has not 

previously been reported in the published literature. 

The modelling and monitoring of the complex dynamic behaviour of an Ammonia 

Synthesis fixed-bed Reactor using partial least squares and its extensions is investigated 

in Chapter 5. In this chapter, the proposed approach, RAPLS, is extended through the 

incorporation of AutoRegressive with eXogenous (ARX) time series to account for the 

process dynamics and hence, RAPLS is extended to robust adaptive dynamic PLS 

(RADPLS).  

In Chapter 6, the proposed approach (RAPLS) is incorporated with a Finite Impulse 

Response (FIR) time series representation to model the dynamic behaviour of the 
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Tennessee Eastman Process (TEP). In addition, the approach is extended to handle 

multiple unit operations as well as the whole process. The concept is applied to the 

Tennessee Eastman Process (TEP). 

The Fault detection capability of the approaches described in Chapter 6 is investigated 

through considering a series of fault types introduced to the Tennessee Eastman Process 

is presented in Chapter 7. The fault detection ability is evaluated by using statistical 

metrics of fault detection and false alarm rate.  Additionally, the fault detection delay 

within the whole process and individual unit operations is investigated. 

Chapter 8 is reports on the conclusions, recommendations and future research.  

The overall thesis layout is presented in Figure1.3. 

1.6 Chapter Summary and Conclusions 

In this chapter, the research problem and the challenges to be addressed in the 

subsequent chapters of the thesis are briefly presented. More specifically, the chapter 

has presented the main limitations of univariate statistical process control and how it has 

been extended resulting in multivariate statistical process control. In addition, an 

overview of statistical projection based techniques to monitor individual industrial unit 

operations as well as whole process is discussed. Furthermore, a brief outline of each 

chapter and the contributions were summarised. Chapter 2 describes the general 

monitoring procedure and a briefly introduces principal component analysis. In 

addition, it also describes the main industrial characteristics a process and more recent 

multivariate monitoring methods. 
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Figure 1.3 – Thesis layout and linkage
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Chapter 2 

Review of Data-Based Process Performance Monitoring 

2.1 Introduction   

Statistical process performance monitoring has become an important element in terms 

of attaining an enhanced understanding of the process and hence for its monitoring. 

These two elements ensure that the process and production are satisfactory in terms of 

safety, quality, environmental and economic requirements. In this chapter a general 

procedure for process performance monitoring is described. In addition, a brief 

introduction to the multivariate statistical projection based technique, Principal 

Component Analysis (PCA) is described and its associated limitations. The challenges 

resulting from the complex characteristics of industrial processes are used as a basis to 

introduce more recent research in the field of performance monitoring.  

2.2 Process Monitoring Procedure 

The general framework for the development of a monitoring procedure is summarised in 

Figure 2.1. Attaining data is the initial and crucial step in the development of any data 

based monitoring representation. In the data generation step, three aspects should be 

considered: analysis and understanding of the process characteristics, generation or 

collection of training and validation data sets and ensuring that the data quality is 

satisfactory and the data is representative of the process. Data quality in terms of 

addressing issues including missing data, measurement magnitudes and sampling 

interval is fundamental and hence, it is crucial to have an understanding of the nature of 

process thereby ensuring the data is informative and interpretable. In addition, data 

should be collected at an appropriate sampling interval thereby ensuring it captures 

information that is representative and relevant to the process (Martens et al., 1989; 

Miletic et al., 2004). This issue is investigated in Chapters 5 and 6 where the data is 

collected from two simulations, an Ammonia Synthesis Fixed-bed Reactor and the 

Tennessee Eastman Process. The use of data set that are not representative results in a 

monitoring model that does not represent the industrial process and can materialise in 

unacceptable false alarms or the missed detection of abnormal events (Martens et al., 

1989; Ge et al., 2013).  
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The literature indicates that there is no established criterion for selecting an appropriate 

monitoring technique (Chen, 2010; Ge et al., 2013). It is therefore important to consider 

the characteristics of the process to provide an insight into the level of complexity of the 

required process monitoring model. The next step is to determine among available 

techniques which one is more appropriate. At this stage the monitoring method is 

applied to a training data set which is generated or collected based on normal process 

operating conditions (Martens et al., 1989; Qin, 2012; Ge et al., 2013). 

 

Industrial process

Attain data 

data selection/ representation

(Reference or training data set)

Modelling and monitoring technique 

Training of the model

Validation (Validation data set)
Process monitoring

Fault detection

Other monitoring objectives 

(fault diagnosis/identification

reconstruction)

Online data (Test data set)

 

Figure 2.1 – Process monitoring procedure 

Validation of the model is an important step prior to its use for online monitoring to 

ensure the model developed based on the training data performs in a similar manner to 

new unseen data (Martens et al., 1989; Qin, 2012; Ge and Song, 2013; Ge et al., 2013). 

Two procedures can be implemented for the validation step. First the model can be 

applied to a new data set, the validation data set, generated under the same operating 

conditions. Alternatively, cross validation can be used where the training data set is 

divided into a number of subsets, all subsets are used for the model development with 

an excluded subset being used for validation. This is repeated for all subset 
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combinations (Diana and Tommasi, 2002; Li et al., 2002). A description of cross-

validation technique is given in Chapter 3 (§3.3.4). 

After constructing a process monitoring model, monitoring indices are developed based 

on the model and are used for monitoring the process. The monitoring of any process 

consists of four tasks: fault detection, fault diagnosis, fault reconstruction and fault 

identification (Chiang et al., 2001; Qin, 2003; Kruger and Xie, 2012; Ge et al., 2013). 

Fault detection is the initial and essential step of process monitoring and is where a 

decision is taken with regards to the state of the process as to whether an abnormal 

event has occurred (Himmelblau, 1978; Qin, 2003). Monitoring indices and their 

confidence limits play an important role in fault detection as violating the limits 

indicates the potential presence of an abnormal event. Fault diagnosis is the next step 

where the aim is to identify the relevant component or the root cause of the abnormal 

event (Weighell et al., 1997; Chiang et al., 2001). This task is challenging as the 

variables are correlated and hence the fault may impact on more than one variable. Qin 

(2003) and Ge et al. (2013) defined fault reconstruction as the step where the direction 

and the magnitude of the fault can be explored to examine detailed information 

pertaining to the fault which will help isolate the fault and recover the process. In 

addition, it might prevent the occurrence of further related faults. Finally, fault 

identification involves the assigning of the fault to its corresponding class. This step is 

of greatest importance as it helps the process operator to implement appropriate 

corrective action. In this work the focus is on the initial step of process monitoring (i.e. 

fault detection) in complex industrial processes.  

2.3 Multivariate Statistical Projection Techniques   

Central to the development of multivariate statistical process control (MSPC) were the 

statistical projection techniques of Principal Component Analysis (PCA) and Partial 

Least Squares (PLS). These approaches have been successfully applied for the 

monitoring of industrial processes. The underlying philosophy is to transform high 

dimensional data into a limited number of latent variables, which can be used as the 

basis for the development of the monitoring statistics of Hotelling’s T² and the Squared 

Prediction Error (    . The following section introduces the principal component 

analysis (PCA) whilst a detailed description of partial least squares is presented in 

Chapter 3.  
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2.3.1 Principal Component Analysis 

Industrial processes are typically well instrumented and hence the resulting data will be 

of high dimension and correlated variables. The multivariate statistical technique of 

Principal Component Analysis (PCA) has been shown to be an efficient method for 

monitoring the behaviour of industrial processes (Martin et al., 1996; Wold and 

Sjöström, 1998; Brauner and Shacham, 2000; Kano et al., 2001; Kruger and Xie, 2012). 

It was originally introduced by Pearson in 1901, and further developed by Harold 

Hotelling in 1933. It is also termed Singular Value Decomposition (SVD) in numerical 

analysis, characteristic vector analysis in physical science and Hotelling transformation 

in image analysis (Wold et al., 1987). A number of books and papers provide a detailed 

description of the methodology including Wold et al. (1987), Jackson (1991), Jolliffe 

(2002), and Kruger and Xie (2012).  

The basic concept underpinning principal component analysis is the application of a 

linear transformation of the original variables resulting in a new set of factors called 

principal components (Jackson, 1991; Jolliffe, 2002). These principal components 

capture the main source of variability in the data and are used for calculating the 

monitoring statistics of Hotelling’s   and square prediction error.  

The original data matrix   comprises n rows and m columns, where each variable is 

represented by a column and each sample is represented by a row. Mathematically, PCA 

can be calculated by number of algorithms including Singular Value Decomposition 

(SVD), §2.3.1.1, and the Non-Linear Iterative Partial Least Squares (NIPLAS) 

algorithm (§2.3.1.2) (Wold et al., 1987). In both cases, the data matrix   is decomposed 

into the sum of a product of   pairs of scores and loadings vectors (   and   ) plus a 

residual matrix  : 

  ∑      
   

 

   
       

(2.1) 

 

where the columns of the matrix   are the scores vectors, which are the coordinates of 

the original samples in principal component (PCs) space. The columns of the matrix   

are the loadings vectors, which are the weights of the original variables in the PCs and 

can be used to identify both the relationships between variables and the importance of 

each variable in individual PCs (Wold et al., 1987).   is the number of retained PCs and 

           and   is the residual matrix which contains the noise (Jackson, 1991; 
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Jolliffe, 2002). One of the major benefits of modelling a multivariate process using PCA 

is the ease of visualization of multivariate data though the interpretation of the loading 

and scores plots.  

2.3.1.1 Singular Value Decomposition 

Singular value decomposition is one method for the calculation of the scores and 

loadings of the data matrix  : 

SVD( )=     (2.1) 

where   is a matrix containing the eigenvectors (i.e. loadings) and   is a diagonal 

matrix which contains the square root of the ordered eigenvalues (i.e. singular values) of 

the covariance matrix of  . The scores are the column of the matrix    (Wold et al., 

1987) 

2.3.1.2 Non-Linear Iterative Partial Least Squares (NIPALS) for PCA 

The NIPALS algorithm is an alternative method for calculating the scores and loadings 

of the data matrix  . The NIPALS algorithm for PCA (Wold et al., 1987), is as follows: 

Step 1. Set    , ( i=1,2,..a) and     , “Tol” is the convergence threshold 

Step 2. Select    to be a column of      

Step 3. Calculate the loading vector     by projecting      onto   : 

  
    

       
 ⁄    

Step 4. Normalize    to unity: 

     ‖  ‖⁄  

Step 5. Calculate the new scores vector    by projecting      onto   : 

           
   ⁄  

Step 6. Check for convergence, if the difference between the eigenvalue      (       

and      from last iteration) is larger than “Tol”, return to step 3, otherwise proceed to 

step 7 

Step 7. Calculate the residual:  
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Step 8. If additional principal component are required to be calculated set       and 

return to step 2. 

Dimensionality reduction is achieved by retaining these principal components that 

explain main source of process variability. A number of approaches have been proposed 

including the SCREE plot, parallel analysis, broken stick rule, cross validation as well 

as an empirical rule for selecting the number of PCs (Jackson, 1991; Kaskavelis, 2000; 

Diana and Tommasi, 2002; Kruger and Xie, 2012). The cross validation approach is 

described in Chapter 3 as it is used to determine the number of latent variables to be 

retained in Partial Least Squares (PLS). 

2.3.1.3 Limitations of Principal Component Analysis 

PCA has been successfully applied to many processes for monitoring purposes. For 

example, Kruger and Xie (2012) applied PCA to data generated from a process that 

produced solvent chemicals, and showed that PCA efficiently detects and diagnoses 

process faults. Chiang et al. (2001) used PCA for the detection and diagnoses of faults 

using the Tennessee Eastman Process. However, PCA is not directly applicable to these 

processes as the underlying processes exhibiting complex behaviour (§2.4) since the 

underlying assumption of PCA is steady state behaviour. If applied to processes that do 

not satisfy this assumption, it may result in missed detection of process operational 

changes or an increase in the number of false alarms.  

Secondly PCA only considers the   data matrix and thus where interest is in monitoring 

the output, partial least squares (PLS) should be considered as it considers both the data 

matrix   and the output matrix  . Therefore, for the monitoring of the whole process, 

PLS is appropriate and form the basis of the work in this thesis and a detailed 

description is given in Chapter 3.  

2.4 Industrial Process Characteristics 

The monitoring of industrial processes is challenging due to the complex nature of the 

data (Kourti and MacGregor, 1995; MacGregor and Kourti, 1995; Kaskavelis, 2000; 

Alghazzawi and Lennox, 2008). A brief analysis of some of the characteristics of the 

measurements from industrial processes is presented in the following subsections and 

these are used as a basis to introduce more advanced monitoring methods in the 

subsequent chapters. A more detailed description of the characteristics of industrial data 
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and more recently proposed methods for process monitoring is given in Kruger and Xie 

(2012), Qin (2012), Ge and Song (2013) and Ge et al. (2013). 

The MSPC techniques based on PCA and PLS have limitations in terms of their basic 

configurations as they are designed to model steady state processes. For example, for 

the monitoring of industrial processes that has dynamic relationships between the 

measurements, a dynamic model is required (Ku et al., 1995; Lakshminarayanan et al., 

1997a). Therefore, the characteristics of the data collected from an industrial process is 

an important factor in terms of determining the basis of the monitoring system and 

hence extensions to PCA and PLS have been proposed including non-linear algorithms, 

recursive algorithm, multi-block approaches and dynamic variants. Other data-based 

methods that have been combined with MSPC techniques are proposed in the literature 

for the monitoring processes that exhibit complex characteristics. For example, Support 

Vector Data Description (SVDD) is a classification based method which is used to 

construct a monitoring scheme for non-Gaussian processes. However, the main focus of 

this thesis is the direct extensions of the traditional MSPC techniques.   

 2.4.1 Data Autocorrelation 

Autocorrelation between samples is a typical feature of data from most industrial 

chemical processes, i.e. samples are related to previous samples due to the use of 

feedback control systems and disturbances (Ku et al., 1995; Kourti et al., 1996; Runger, 

1996; Qin, 2012; Ge et al., 2013). The level of the time dependency is dependent on the 

nature of the process.  

Applying statistical methods, which assume that the samples are independent in time, is 

inappropriate and can materialise in an increase in the number of false alarms and 

incorrect information on the status of the process (Montgomery and Mastrangelo, 1991; 

Christina and Douglas, 1995; Negiz and Çlinar, 1997a; Qin, 2012). For example, Ku et 

al. (1995) applied steady state PCA to data from two case studies; a mathematical 

simulation and the Tennessee Eastman process. They showed that by applying 

conventional PCA to data from a process containing dynamic information, the 

underlying relationships between the process variables will not be revealed and hence 

an excessive number of false alarms were generated.  

Process dynamics can be addressed by collecting the data at a higher sampling interval. 

However, this can result in the loss of significant information relating to the process and 
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unreliable monitoring performance (Seborg et al., 1989). Therefore, the monitoring of 

dynamic processes requires process monitoring methods that consider the time 

dependency. Several approaches have been proposed including dynamic PCA and 

dynamic PLS, time series analysis and state-space modelling methods. One dynamic 

MSPC approach is to incorporate into the data matrix historical lags of the original 

variables and apply the original algorithm to the modified matrices (Kaspar and Ray, 

1993; Ku et al., 1995) However, determining the appropriate time history is challenging 

and is discussed in Chapters 5 and 6 where level of time dependency is determined for 

two dynamic processes; an ammonia synthesis fixed-bed reactor and the Tennessee 

Eastman Process. On the other hand, other methods such as state-space models and time 

series analyses have been proven to be effective for the monitoring of dynamic 

processes (Alwan and Roberts, 1988; Negiz and Çlinar, 1997b; Negiz and Çlinar, 

1997a). These methods are not considered in this thesis. 

2.4.2 Changing Behaviour 

Gallagher et al. (1997) stated that the behaviour of most industrial processes changes 

over time. The rationale for this can be the switching from one operating condition to 

another due to seasonal effects, changes in operating conditions or raw materials for 

example. Switching from one operating condition to another has been termed 

multimode operation whilst changes in process behaviour over time is referred to as 

time varying behaviour (Ge and Song, 2013; Ge et al., 2013). Both scenarios require 

advanced methods to construct reliable monitoring representations. 

Several methods have been proposed to account for the time varying behaviour of a 

process. For example, several forms of recursive and adaptive PCA and PLS have been 

proposed (Helland et al., 1992; Qin, 1993; Dayal and MacGregor, 1997b; Qin, 1998b; 

Wang et al., 2003). The recursive methods can be seen as a linearization method as they 

aim to update the model and hence reflect current operating conditions. Although these 

methods are cost effective in terms of updating the model instead of identifying new 

models whenever new data becomes available, these methods are implemented without 

consideration of sample type and hence outliers or process faults may be included in the 

model updating process. Therefore, it is important to develop criterion to ensure that 

only representative data are used for model updating.  

Multi-mode techniques have also been proposed to model processes exhibiting changes 

in the operation mode. The aim is to develop a different model for each operational 
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mode, store them in a library and switch between these models based on the current 

operational mode. A description of data based monitoring methods for multimode 

processes is given by Qin (2012), Ge and Song (2013) and Ge et al. (2013) 

2.4.3 Outliers  

A further feature of industrial processes is the existence of outliers. Outliers are samples 

that exhibit behaviour that is different compared to that of other samples. Many 

definitions have been proposed in the literature. For example, Barnett and Lewis (1994) 

defined outliers as “an observation which appears to be inconsistent with the remainder 

of the dataset”. Another definition of an outlier is “An observation that deviates so 

much from other observations as arouse suspicions that is was generated by a different 

mechanism” (Cateni et al., 2008). The existence of such samples could significantly 

change the results of the statistical monitoring approach. A considerable amount of 

literature has been published on the impact of data type when developing monitoring 

schemes (Geladi and Kowalski, 1986; Wold et al., 2001; Haenlein and Kaplan, 2004; 

Hodge and Austin, 2004; Kruger and Xie, 2012; Vinzi and Russolillo, 2012). 

Therefore, most statistical techniques required a pre-processing step to initially identify 

and treat outliers. Several methods have been proposed to detect and treat outliers 

offline including filtering, detection based on monitoring statistics, application of the 

Mahalanobis distance and the use of robust estimators (Cummins and Andrew, 1995; 

Kaskavelis, 2000; Pell, 2000; Hubert and Branden, 2003; Kruger et al., 2008a).  

In the case where a model is continuously updated whenever new data becomes 

available such as recursive modelling, real time outliers may occur and hence, they will 

contribute to the model updating process. Therefore, it is important to distinguish 

between different types of samples and hence, only representative data is used for 

updating the process monitoring model. Therefore, there is a need for an online 

methodology that helps to detect outliers in real time to ensure reliable monitoring 

results. This feature is investigated in detail in Chapter 4.  

2.4.4 Data Quality 

Another common characteristic is the quality of the data in terms of missing data and 

variables of different magnitude. Missing data is a characteristic in industrial data and 

can occur periodically due to device failure or maintenance for example. Two types of 

missing values can be found in industrial data, missing at random and not missing at 
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random. In the first case no further analysis is required in terms of identifying the cause. 

For the non-random missing values, an enhanced analysis to determine the reason why 

they are missing requires to be undertaken (Kaskavelis, 2000). Several methods have 

been proposed to account for missing data and their treatment prior to developing a 

monitoring system (Nelson et al., 1996; Lakshminarayan et al., 1999; Schafer and 

Graham, 2002; Scheffer, 2002). This is discussed in §3.3.6.  

Other important characteristics when building the monitoring model is whether the 

variables are comparable. Many measurements can be collected including temperature, 

pressure, compositions, flow rates and level indicators, which have different magnitudes 

and units. The impact of this can be that measurements with the greatest ranges 

dominate the process model and potentially dilute the importance of those variables 

with a smaller range. Therefore, scaling of the data is important and is application 

dependent (Wold et al., 1987). For example, when process variables have the same 

magnitude, the scaling of variables is not required, however this is not the norm and 

hence different scaling methods have been proposed including mean centring and 

normalization. The effect of scaling on process modelling is investigated further in 

Chapter 5. Figure 2.2 shows the impact of normalization on the process variables that 

have different magnitudes. Figure 2.2 (a) shows variables from different ranges whilst 

Figure 2.2 (b) shows the scaled variables and that these variables (Figure 2.2 (a)) cannot 

be compared in terms of process behaviour.    

  

Figure 2.2 (a) -Time series of non scaled 

data 

Figure 2.2 (b) -Time series of scaled data 
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2.4.5 Nonlinear Relationships 

Nonlinear relationships between process’s measurements (process variable and quality 

product) are common in industrial processes. Such relationships are difficult to model 

and monitor compared to linear relationships. The change in the operating conditions of 

a process exhibiting non-linear behaviour increases the complexity of the monitoring 

task. Several methods have been proposed to model and monitor nonlinear processes 

including neural networks, kernel based approaches and linear approximation methods 

(Ricker, 1995; Baffi et al., 2000; Cho et al., 2005; Geng and Zhu, 2005; Iketubosin, 

2011; Qin, 2012).  

While all these methods are applied to construct monitoring systems for nonlinear 

process, the linear MSPC methods of PCA and PLS, which are the central focus of this 

work, may be applicable. The rationale for this is that stable production is key to the 

manufacture of consistent high quality product and typically it is produced under steady 

state operating conditions. It is argued that a process can be linearized even if the 

relationship between the process measurements are nonlinear (Qin, 2012; Ge and Song, 

2013; Ge et al., 2013). Therefore, although fundamentally most industrial processes are 

nonlinear, linear MSPC has been extensively applied to monitor those processes. For 

example, Yin et al. (2012) and Chiang et al. (2001) applied a number of linear 

monitoring approaches to monitor the Tennessee Eastman process which exhibits non-

linear behaviour. In this work RPLS approaches are used to account for process 

nonlinearity by breaking down the modelling period to small enough intervals thereby 

ensuring process operated under steady state hence accounting for process nonlinearity.  

2.4.6 Multiple Unit Operations 

Most industrial processes comprise multiple operational units. These operational units 

typically interact and hence, these interactions increase the complexity of the 

monitoring task. By developing a monitoring system for the whole process, it can be 

determine as to how a fault affects the overall performance. Process faults typically 

occur in a specific part of the process, but fault propagation will materialise due to the 

inter-relationship between the unit operations. As a result, the detection of the source of 

the fault is a challenging task. Therefore, understanding the whole process requires the 

understanding of the individual unit operations and this will help detect failures more 

rapidly and identify the primary source of the operational issue thereby improving the 

overall performance of the process. Several approaches have been proposed to construct 
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monitoring systems for the whole process utilising the individual process units based on 

MSPC including hierarchal and multiblock monitoring methods (Wangen and 

Kowalski, 1989; MacGregor et al., 1994; Wold et al., 1996; Westerhuis et al., 1998; Qin 

et al., 2001; Wang et al., 2001; Westerhuis and Smilde, 2001; Lee and Vanrolleghem, 

2002; Ge and Song, 2013). One of the unexplored areas is the analysis of fault 

propagation in industrial processes with multiple unit operation that exhibit dynamic 

behaviour. Chapter 6 discusses an example of fault propagation through the application 

of dynamic and recursive variants of PLS on a process that comprises multiple 

operational units.  

2.5 Recent Data Based Monitoring Methods 

As mentioned in the previous subsections, the main issue with the traditional approach 

to MSPC is that it does not consider the complex characteristics of modern industrial 

processes. Ge et al. (2013) presented a review of different data based monitoring 

methods for batch and continuous processes which is summarised in Figure 2.3. It 

shows some of the most common characteristics of industrial processes including 

dynamic, time varying and multimodal, nonlinear and non-Gaussian processes. The 

review comprises a discussion of different data based methods including direct 

extensions of the traditional MSPC techniques and other methods that unrelated to 

projection based approaches. Examples of direct extension of MSPC include dynamic 

PCA and PLS and recursive PCA and PLS with support vector data description being an 

example of a non multivariate approach to monitor non- Gaussian processes.  

Kruger and Xie (2012) also reviewed the basic monitoring methods of PCA and PLS 

and its variants for the monitoring of time varying process. Yin et al. (2012) reviewed 

the basic MSPC methods and their variants including dynamic PCA and PLS and other 

data based techniques including Fisher Discriminant analysis, which is dimensionality 

reduction technique that has been well studied in the field of pattern classification. The 

aim was to evaluate the performance of the reviewed techniques based on their 

application to the Tennessee Eastman Process. Qin (2012) also reviewed recent 

advances in MSPC techniques that are used to address more complex process 

characteristics including nonlinearity, changing operational behaviour and data 

autocorrelation.   
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Figure 2.3 - Systematic view of different data-based process monitoring methods (Ge et al., 2013)
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2.6 Chapter Summary and Conclusions 

This chapter has described a general procedure for the implementation of statistical 

monitoring. It also has provided an overview of Principal Component Analysis (PCA) 

and highlighted that PCA only considers the variations related to input data matrix and 

for process monitoring the output variables should be taken into account as they contain 

information on the process. Therefore, PCA is inappropriate in this case and Partial 

Least Squares (PLS) is more applicable. This chapter also presented an evaluation of 

various data characteristics including data autocorrelation, changing operational 

behaviour, the presence of outliers, data quality and process nonlinearity. The 

multivariate statistical techniques with appropriate extensions can be considered as a 

practical method for monitoring complex modern industrial process. One of the key 

areas to be investigated in this thesis is the monitoring of the dynamic behaviour, caused 

by measurements autocorrelation, industrial processes which increases the complexity 

of the monitoring task. 

Chapter 3 presents a detailed description of Partial Least Squares and two of its variants 

dynamic PLS and multiblock PLS. These approaches can be employed for both the 

monitoring of the whole process as well individual unit operations. These approaches 

can be combined to offer enhanced monitoring of complex industrial applications. 

Chapter 3 also presents the application of conventional PLS to a time varying and non-

stationary processes and evaluates the monitoring charts using the statistical metrics of 

false alarm and fault detection rates. 
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Chapter 3 

Review of Partial Least Squares and Extensions with Application for 

Process Complex Behaviour 

3.1 Introduction 

In this chapter, partial least squares (PLS) and two extensions, dynamic PLS (DPLS) 

and multiblock PLS (MBPLS) are reviewed. Partial least squares is one of the most 

widely applied statistical projection technique for the modelling and monitoring of 

multivariate data (Kaskavelis, 2000; Wold et al., 2001). Once the data has been 

collected, a model is developed based on latent variables (a linear combination of the 

original variables). These latent variables are extracted to capture most of the 

information contained in the process variables that is useful for the prediction of the 

response variables. A number of approaches have been proposed to calculate the PLS 

latent variables. The most popular being Non-linear Iterative Partial Least Squares 

(NIPLAS).  

Reviews of the application of PLS for industrial process analysis, process control and 

fault detection have been given in Abdi (2010), Helland (2001), Wold et al. (2001), 

Höskuldsson (1988) and Geladi and Kowalski (1986). The fundamental PLS algorithm 

is designed to model a process that is operating at steady-state which is not the case for 

most process applications and hence a number of variants have been proposed for the 

modelling of time varying, non-stationary, non-linear and dynamic processes including 

dynamic PLS and recursive PLS. In addition, when the process comprises multiple unit 

operations multiblock PLS is applicable.  

3.2 Objectives 

The goal of this chapter is to review conventional PLS as it forms the basis for the 

subsequent chapters. The first stage is to introduce the PLS algorithm prior to describing 

the application of Partial Least Squares (PLS) for the monitoring of processes that 

exhibit complex behaviour including dynamic, time varying and non-stationary 

behaviour. The next step is to introduce monitoring schemes that monitor both the whole 

process and individual unit operation. Finally, the monitoring charts introduced are 

evaluated in terms of their performance. The key areas addressed include: 
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- Is the multivariate statistical technique of PLS an effective process monitoring 

tool for the modelling and monitoring of complex process behaviour, i.e. time 

varying and non-stationary?  

- How do the PLS approaches perform in terms of prediction and monitoring for 

time varying and non-stationary processes? The results are assessed using the 

statistical metrics of root mean squared error (RMSE), the average run length 

(   ), fault detection rate (   ) and false alarm rate (    .  

 

3.3 Partial Least Squares 

3.3.1 Historical Background to Partial Least Squares 

Figure 3.1 summarises the historical development of Partial Least Squares (PLS). PLS 

was originally proposed by Herman Wold in the 1960’s. The original algorithm Non-

linear Estimation by Iterative Least Squares (NILES) was an iterative algorithm that 

extracted latent variables for two situations: principal component analysis and two 

blocks (quality and process data for example). In 1973, the algorithm was renamed 

NIPALS (Non-linear Iterative Partial Least Squares) and was modified by Wold and 

Martens in the early 1980s (Wold et al., 2001). PLS was originally applied in the social 

and economical sciences but application extended to the field of chemistry and 

chemometrics (Höskuldsson, 1988). PLS is applicable for chemical studies due to its 

ability to extract information from ill-conditioned data unlike ordinal least squares. This 

was demonstrated in the application of PLS to multi-collinear data by Svante Wold and 

Harald Marten  (Wold et al., 2001). In the late 1980’s and 1990’s, some of the 

challenges associated with PLS including the interpretation of the PLS model and the 

use of a PLS model for control system design were addressed (Höskuldsson, 1988; 

Kaspar and Ray, 1992).  

PLS was initially designed to model steady state processes, but this is not the case for 

many industrial application. Therefore in the 1990’s modifications and extensions to 

PLS were proposed including non-linear PLS, neural network PLS and dynamic PLS 

(Kresta, 1992; Wold, 1992; Kaspar and Ray, 1993; Lakshminarayanan et al., 1997b) 

and recursive PLS (Helland et al., 1992; Qin, 1993; Qin, 1998b). Applications of PLS to 

both industrial batch and continuous processes have been widely reported (Kaspar and 

Ray, 1992; Simoglou et al., 2000; Yacoub and MacGregor, 2003; Marjanovic et al., 

2006; Mu et al., 2006; Tang et al., 2011) with a detailed description of PLS given in 
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Vinzi, E. V. and Russolillo, G. (2012), MacGregor et al.(2005), Garthwaite(1994), 

Höskuldsson (1988) and Geladi and Kowalski (1986). 

Figure 3.1- Historical development of PLS 

3.3.2 PLS Methodology 

The basic philosophy of PLS is to project high dimensional data down onto a low 

dimensional subspace defined in terms of latent variables. In contrast to principal 

components, the latent variables are constructed using the predictor variables   together 

with the response variables  . The latent variables are calculated to maximize the 

covariance between the process variables and response variables with the goal of 

predicting the response by retaining a limited number of latent variables (  . For 

illustration, consider a process variable matrix  , with   rows and   columns and a 

product quality (output) matrix  , with   rows and   columns. A PLS model consists of 

two types of relationships, an outer relationship, which deals with   and   individually, 

and an inner relationship, which relates the   block and the   block. PLS defines a set 

of latent variables    and              ) as follows: 

 

                                             ) 
 

(3.1) 
        

 

1960's 

•Original concept of PLS proposed by Herman Wold - Introduction of the first PLS 
algorithm NILES (1966) 

1970's 

•Wold changed the name of NILES to NIPALS in 1973 

•First reference to PLS by R.W. Gerlach, R.R: Kowalski, and Herman Wold (1979) 

early 
1980's 

•Modification of the original PLS by  Wold and Marten (1980) 

•Application of NIPALS to address issues of collinearity (Wold et al., 2001) 

late  
1980's -
1990's  

•Höskuldsson, Kasper and Ray addressed some of the PLS challenges including the 
interpretation of the PLS model and the use of PLS for control design (1988,1992) 

1990's 

•Nonlinear PLS, Recursive PLS, Dynamic PLS were proposed 

•Application of PLS for process control  

2000's 
•Start of series of international symposiums on PLS and related methods  
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where    and    represent the weight and loading vectors of   and   respectively. Both 

   and    have unit length and are determined by maximizing the covariance between    

and   , i.e. maximize (  
   ) for ‖  ‖  ‖  ‖               ). Equation 3.1 is 

referred to as the outer relationship for the   and   blocks respectively. An inner linear 

relationship is defined as: 

                                    )   (3.2) 

 

where    is the coefficient of the ith inner regression estimated by  ̂      
     

    
   . 

The next step is to deflate   and   as follows: 

             
  ,                                        

 (3.3)           ̂     
  ,                   

 

Letting  ̂   ̂    be the prediction of    , the matrices   and   can be decomposed as: 

       
      

(3.4)     ̂   
     

 

where       and      are the loadings,       and  ̂    are the scores and estimated 

scores for the input and output spaces respectively and      and      are the residuals 

matrices of   and   respectively. A graphical representation of the PLS decomposition, 

Equation 3.4, is shown in Figure 3.2. 

X

m

n

= T

a

n

m

a + E

Y

k

n

= U

a

n

k

a + F

k

n

m

n

'
P

'
Q

 

Figure 3.2 - Graphical representation of PLS decomposition (Geladi and Kowalski, 

1986) 
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PLS is termed PLS1 where there is only one output, i.e.     and PLS2 when    . 

When    , a separate PLS1 model can be developed for each quality variables or 

alternatively all quality variables can be included, i.e. PLS2 develops a model 

incorporating all the outputs. 

3.3.3 PLS Algorithms 

A number of different algorithms have been proposed for the calculation of the PLS 

latent variables. The most popular is the NIPALS (Non-linear Iterative Partial Least 

Squares) algorithm, and it forms the basis of this work (Figure 3.3). It is also known as 

the standard partial least square algorithm and it is summarised as follows: 

Step 1. Set         and         and i =1 (i=1,2,3,…,a) with      

 And      ,  Set    equal to any column of    

Step 2. Regress the columns of    on    to calculate the weight coefficients   : 

  
     

          

Step 3. Normalise    to unit length: 

      ‖  ‖ 

Step 4. Calculate the input scores, the latent variables of   : 

              

Step 5. Regress    on    to calculate the output loading coefficients: 

                

Step 6. Normalise    to unit length: 

      ‖  ‖ 

Step 7. Calculate the new output scores     : 

                

Step 8. Check convergence of  , if yes continue to step 9, else go to step 2 and replace 

   by      

Step 9. Regress the rows of      on    to calculate the input loadings   : 



34 
 

                  

Step 10. Regress the column of   on    to find the inner regression coefficients    for 

the latent variable: 

                

Step 11. Deflate the matrices by calculating the input and output residuals: 

               ,                  

Step 12. To calculate additional latent variable by repeating steps 1 to 11. This step is 

important as in PLS, each latent variable contains independent information about the 

inputs and outputs of the process. Therefore, the contribution of the first latent variable 

must be subtracted from the matrices   and   before proceeding to the calculation of the 

next latent variables. 
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Figure 3.3 – NIPALS algorithm 
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For PLS1, the convergence in step 8 is no longer necessary as    . The predictors in 

the   block are related to the response variables in   through the estimate of the PLS 

regression coefficients given by: 

 ̂         
        

  (3.5) 

 ̂    ̂    (3.6) 
 

A number of publications have investigated the performance of PLS1 and PLS2. They 

concluded that PLS1 showed superior performance for the applications considered 

(Garthwaite, 1994; Breiman and Friedman, 1997). Therefore, building an individual 

model in the case of two or more quality variables may result in a better process model 

in term of prediction accuracy. In this thesis PLS1 forms the basis for all the algorithmic 

extensions and application studies whilst PLS2 is used in the mathematical simulations. 

For convenience the following notation is used to represent the application of PLS: 

{   }
   
→ {           } (3.7) 

 

There are a number of alternative PLS algorithms, Table 3.1, including the statistically 

inspired modification of PLS, SIMPLS (De Jong, 1993) the algorithm is given in 

Appendix A. The main differences compared to NIPALS, is there is no need to deflate 

the data matrices   and   individually since the deflation is carried through the 

covariance matrix      . Additionally, De Jong (1993) calculated the score vectors 

using the original data matrix   whilst in NIPALS they are calculated in terms of 

residuals. The advantage of SIMPLS over NIPALS is that the calculation of the scores 

and loadings is conducted directly from the original variables and thus the algorithm is 

not iterative resulting in faster computation of the latent variables. However, through 

the use of computers, the limitations in terms of algorithm speed can be overcome.  

Another approach is kernel PLS (Lindgren et al., 1993) which calculates the PLS 

parameters based on the kernel function (        and the deflation is conducted on the 

covariance matrices (     and (    . The kernel PLS algorithm was modified by 

De Jong and Ter Braak (1994) and Dayal and MacGregor (1997a) through the 

simplification of the deflation step thereby reducing computational effort. The first 

modification, kernel PLS 1, by De Jong and Ter Braak (1994) simplifies the deflation 

procedure for both (     and (     whilst the second modification, kernel PLS 2, by 

Dayal and MacGregor (1997a) showed that the necessary deflation can be carried for 
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either (     or (    . The advantage of the kernel PLS algorithms over NIPALS is 

computational effort where NIPALS is calculated in an iterative manner whilst kernel 

PLS is calculated directly from the covariance matrices. However, by the use of 

computer this limitation can be overcome. The kernel PLS algorithm and its modified 

variant are given in Appendix A. Table 3.1 presents a summary of the main PLS 

algorithms.  

Table 3.1 – Summary of the conventional PLS algorithms.  

Method Author Comments 

NILES Wold (1966) - Original PLS algorithm 

Modified 

NIPALS 

Wold (1982) - PLS algorithm - based on an iterative 

procedure 

SIMPLS De Jong (1993) - Deflation is performed on the matrix  

      

- PLS loadings and scores are calculated 

directly from the original variables. 

Kernel PLS Lindgren et al.(1993) - PLS parameters are calculated based on the  

kernel function 

- Deflation based the covariance matrices 

Modified 

kernel PLS 1  

De Jong and Ter 

Braak (1994) 

- Modification of the original kernel PLS 

algorithm proposed by Lindgren et al.(1993)    

- The equations used for deflation of the 

covariance matrices are modified to reduce 

the computational effort. 

Modified 

kernel PLS 2 

Dayal and 

MacGregor (1997a) 

- Modification the kernel PLS 1 algorithm 

proposed by Dayal and MacGregor (1997a) 

- For the kernel PLS algorithm, either (     

and (      is deflated to reduce the 

computational effort. 

 

3.3.4 Selection of the Number of Latent Variables 

In general, one latent variable is not sufficient to capture the variation contained within 

the process for the prediction of the quality variables  . Therefore, it is necessary to 
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determine the desirable number of latent variables to retain to describe the major 

sources of variation in the data and hence predict the quality variables.  

Retaining a large number of latent variables can cause over fitting due to the inclusion 

of latent variables that explain process noise thereby impacting on the quality of the 

model prediction when the resulting model is applied to new unseen data. In contrast, 

retaining too few latent variables will result in a model under fitting hence process 

behaviour is not captured and the resulting prediction will be poor. 

A number of approaches have been proposed for selecting the appropriate number of 

latent variables. For example, Akaike’s Information Criteria, which is calculated based 

on the residual sum of squares and Wold’s   criteria and adjusted Wold’s   criteria, 

which are based on cross validation. A comprehensive comparison between these 

approaches was conducted (Li et al., 2002) and it was concluded that the adjusted 

Wold’s   criteria resulted in more representative models compared to the other two 

approaches based on two case studies. The philosophy of the adjusted Wold’s 

  criterion is to include a latent variable in a PLS model if and only if it results in 

significantly improved model prediction. The methodology is based on cross validation 

(Wold, 1978) and is as follows: 

- Divide the data into a number of subsets   (      subsets as used for training 

and the excluded set is used for testing). 

- A one latent variable model is built from the training subsets and applied to the 

test data set. An individual PRedicted Error Sum of Squares (PRESS) is 

calculated. By repeating this procedure until that each set is excluded once, a 

series of individual PRESS values is calculated and the total PRESS is 

calculated. 

- The procedure is repeated for 2, 3,….          latent variables and a 

corresponding total PRESS is calculated. 

The adjusted Wold’s   metric is given by  

  
          

         
    

 

(3.8) 

 

where   is the number of latent variable and the threshold   is 0.95. Several cross 

validation algorithms have been proposed which differ based on way the subsets are 
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formed for model building and testing (Wold, 1978). Although cross validation is time 

consuming especially for large data sets, it has been used extensively in the literature for 

selecting the number of PC’s and latent variables for PCA and PLS respectively. 

Figure 3.4 shows an example of the predicted error sum of squares versus latent variable 

where the PRESS decreases rapidly for the first four latent variables and after that the 

rate of decrease in PRESS becomes quite small. Table 3.2 shows the value of the 

adjusted Wold’s criteria, Equation 3.8, for   = 0.95. Based on the adjusted Wold’s 

criteria 4 latent variables would be selected. 

 

Figure 3.4 – Example of the predicted error sum of squares for each latent variable 

 

Table 3.2 – Results for adjusted Wold criteria for    = 0.95 

Latent 

variable 

1 2 3 4 5 6 7 8 9 10 

R 0.39 0.63 0.42 0.96 1.005 1.00 1.00 1.00 1.00 1.00 

 

Another approach for selecting the number of latent variables is by considering the 

variance captured by the model relating to  . This approach was adopted by Kresta et 

al. (1991). The data used for calculating the number of latent variables using adjusted 

Wold’s criteria is again used and Figure 3.5 shows the variance captured by the model 

relating to the   block, again 4 latent variables were selected. It can be observed that the 

fifth latent variable does not add any significant information since the variance captured 

by the fifth latent variable is less than 1%. Hence 4 latent variables is appropriate for the 
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PLS model. In this thesis, the variance captured and the adjusted Wold’s criteria based 

on cross validation are used to determine the number of latent variables to retain in the 

model.  

 

Figure 3.5 - Example of latent variable selection approach 

3.3.5 Advantages of PLS 

PLS can handle the typical characteristics of multivariate industrial processes, for 

example, measurement noise and high dimensionality. The handling of measurement 

noise is achieved by projecting the high dimensional data onto a lower dimensional 

subspace and the variation related to noise is captured in the last few latent variables 

and through their exclusion, measurement noise is addressed. Therefore, it is important 

to retain the appropriate number of latent variables ( ) (section 3.3.4).  

A further advantage of PLS is that it can handle correlated variables which are typical in 

industrial process (Wold et al., 1984; Fyfe, 2005). This is a consequence of the latent 

variables being linearly independent (orthogonal). Additionally, PLS has the ability to 

handle collinearity which occurs when some variables are linearly dependent, i.e. when 

at least one variable can be written as an approximate or exact linear combination of 

other variables (Martens et al., 1989). Collinearity is a serious issue for ordinary least 

squares since it causes the estimation of the regression coefficients              to 

be ill-conditioned due to the singularity of the matrix         and hence the estimation 

of   becomes unstable and a small change in the analysed data can caused a large 

change in   (Wold et al., 1984; Martens et al., 1989). To address the issue of 

collinearity, two solutions are available. The first is to remove highly correlated 
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variables consequently the redundant information is removed. Secondly, through 

implementation of PLS, the highly correlated and collinear variables are incorporated in 

uncorrelated components (Wold et al., 1984).  

A further advantage of PLS is that it can be applied in the case where the number of 

samples is less than the number process variables. This is a major issue in multiple 

linear regression and in such case a unique solution cannot be calculated. Geladi and 

Kowalski (1986) described PLS as a remedy for the weak points of regression methods 

due to its robustness and ability to handle ill conditioned data.  

Unlike many statistical analysis techniques, there are no underlying constraints in terms 

of the distribution of the data for PLS modelling (Fornell and Bookstein, 1982; 

Haenlein and Kaplan, 2004). However, the calculation of confidence limits for 

monitoring charts requires the data to be normally distributed, Nomikos and MacGregor 

(1995) stated that the confidence limits can be calculated even if the original data are 

non-normal since the latent variables are linear combinations of the original variables 

and by the central limit theorem they are approximately normally distributed, thereby 

addressing the issue of non-normality.  

3.3.6 Pre-processing of Process Data 

Prior to the application of the PLS algorithm, the data may be required to be pre-

processed. This is an additional step where a preliminary analysis is conducted to attain 

a general overview of the data however, it is important for two reasons. First because 

the performance of the PLS model depends on the quality of the data and secondly it 

helps eliminate some data problems such as outliers and missing data. Pre-processing 

procedures include the treatment of missing data, outlier detection, centring and scaling. 

The first step in pre-processing is the visual inspection of the original data signals to 

investigate whether the data contains problems such as missing data. 

The presence of missing data is most likely to be due to instrumentation problems and 

one possible treatment for the missing data is the use of the in-filling techniques. A 

number of methods have been proposed for in-filling of missing values, for example 

mean imputation, zero-order linear interpolation and prediction of missing data methods 

(Nelson et al., 1996; Kaskavelis, 2000; Schafer and Graham, 2002).  

- Mean imputation: missing value is replaced by the average value of the available 

data. 
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- Zero-order linear interpolation: missing value is replaced by the last point 

available before the missing value. 

- Prediction method: missing value is replaced by the predicted value through 

auto-regressive time series models, for example.  

A detailed description of other methods can be found in Schafer and Graham (2002), 

Kaskavelis (2000) and Nelson et al. (1996).  

As defined in Chapter 2, an outlier is a sample differs significantly from the rest of the 

data due to a recording error. Several methods have been proposed for detecting outliers 

including Mahalanobis distance, which is a measure of how far the sample is from the 

centre of multivariate space, as well as through the use of basic plots, time series or 

scatter plot. The scores plot from principal component analysis can also be used to 

identify outliers. A detailed description of outlier detection methods is given by Hodge 

and Austin (2004). Once an outlier is detected, it should be either ignored or corrected 

prior to model development (Barnett and Lewis, 1994). A considerable amount of 

literature has been published on the treatment of outliers in PLS modelling and methods 

to address them have included filtering and the use of robust estimators (Kruger et al., 

2008a; Kruger et al., 2008b; Wang and Srinivasan, 2009). 

Centring and scaling is another important pre-processing step that is used when the 

collected data represent different measurements and units. Centring and scaling 

techniques should be implemented with care as it is important to preserve the 

information contained within the process. Also, inappropriate pre-processing may 

introduce additional variation into the process and result in the loss of important 

features in the original signals (Bro and Smilde, 2003). The impact of different scaling 

methods is investigated in Chapter 5. 

3.4 Performance Evaluation of PLS Model 

A core step in PLS modelling is to assess the performance of the resulting model. 

Model assessment should be conducted in three stages, i.e. training, validation and 

testing. The training stage is the first stage and is where the model is built based on a 

data set that is representative of the process, i.e. a historical data set, and the number of 

latent variables to be retained is determined (§3.3.4). The model fit for the training is 

assessed through the root mean squared error of the training data (    ): 
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     √
∑      ̂    

   

 
 

 

(3.9) 

 

where      ̂  are the measured and predicted values of the     sample respectively and   

is the total number of samples used in the training data set. The training model is 

validated by applying the model to unseen data (validation data set) that is generated 

under normal operating conditions. Then the model is assessed using      to check the 

consistency of the model and the ability to explain the characteristics of the validation 

data. The test stage involves the application of the model to a totally independent test 

set of samples, which may have different characteristics compared to the training data 

set and it is used to test the ability of the model to detect abnormal events. 

3.5 Process Monitoring Based on a PLS Representation 

One application of PLS is for process monitoring, the two key monitoring statistics are 

Hotelling’s T² and the squared prediction error (SPE) (Qin, 2003; Qin, 2012). Based on 

historical data from nominal process operation, a PLS model is constructed (§3.3) and 

the confidence limits for Hotelling’s T² (§3.5.1) and SPE (§3.5.2) are attained. Future 

behaviour is then compared to these statistics (Gallagher and Wise, 1996; Qin, 2003; 

Qin, 2012). PLS monitoring has been reported for a number of industrial applications. 

For example, Kruger and Xie (2012) constructed monitoring charts based on PLS for a 

distillation process whilst Yin et al. (2012) applied several methods including PLS to 

compare their performance based on data generated from the Tennessee Eastman 

process. Tavares et al. (2011) applied PLS to a municipal solid waste (MSW) for 

process control and monitoring. Kresta (1992) applied PLS to data collected from a 

fluidized bed reactor and Methanol-Acetone water distillation column. They concluded 

that PLS performed well in terms of detecting process abnormal events.   

Three metrics form the basis of PLS monitoring; Hotelling’s T² which is based on the 

input scores ;      which is calculated from the residuals of the input variation and 

     which is based on the residuals of the output variation (Qin, 2003; Kruger and 

Xie, 2012). Hotelling’s T² and the squared prediction error      complement each 

other. Hotelling’s T² detects a disturbance within the identified model whilst      

detects a disturbance outside the identified model, i.e. residuals. 
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3.5.1 Hotelling’s T² Chart 

Hotelling’s T² is constructed from the scores of the PLS model: 

  
     

   
     (3.10) 

 

where    represents the vector of  -scores for the ith data point (i=1,2,3….n) and    is 

the covariance matrix of the   retained latent variables. The associated confidence limit 

is given by: 

  
    

     (3.11) 

 

where    is chi-squared distribution with degree of freedom  , equal to the number of 

latent variables retained and alpha (α) is the significance level (Nomikos and 

MacGregor, 1995; Qin, 2003). Details are provided in Appendix A. Hotelling’s T² 

describes the overall process variation within the monitoring model. Consequently, 

values of Hotelling’s T² lying outside the confidence limits represent a change in the 

variation of the variables and hence is an indicative of a change in the process 

(Gallagher and Wise, 1996; Qin, 2003; Kruger and Xie, 2012). 

3.5.2 Squared Prediction Error Charts 

The squared prediction error is the squared difference between the measured and 

predicted values:  

    
   

 ‖    ̂ ‖ 
  

 

(3.12) 

    
   

 ‖    ̂ ‖ 
  

 

(3.13) 
 

where        and  ̂ ,  ̂  represent the vectors of the measured and predicted values of the 

predictor and response variables of the   th  data point, (i=1,2,3….n) respectively. ‖ ‖ 
  

represents the squared norm of a vector. For a significance level α, the confidence limit 

is given by: 

        
     (3.14) 

where    is the chi-squared distribution with degree of freedom  ,    
  

  
 ,   

  
 

  
 and 

   ∑   
  

      , and    is the eigenvalue of the covariance matrix (Box, 1954; Jackson 

and Mudholkar, 1979; Nomikos and MacGregor, 1995; Qin, 2003). Values of the 

       for individual samples, that lie outside of the confidence limits indicates a change 
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in the relationship between the predictor variables whilst values of       that breach the 

confidence limit is an indication of a mismatch between past process operation when the 

PLS was determined and current process operation (Nomikos and MacGregor, 1995; 

Qin, 2003).  Alternative confidence limit is provided in Appendix A.  

 

3.6 Evaluation of PLS Monitoring Charts 

3.6.1 Average Run Length 

The Average Run Length (   ) is a performance measure which is defined as the 

expected number of samples that occur before an out of control is detected. It has been 

used as a means of comparison to assess the performance of monitoring schemes. The 

average run length can be calculated in a number of ways including the use of Markov 

chain (Brook and Evans, 1972). In this work the average run length is calculated using a 

Monte Carlo approach (Javaheri and Houshmand, 2001). The aim of the Monte Carlo 

approach is to generate a large number of control charts under the same conditions and 

then to calculate the run length (RL) for each chart, i.e. the number of samples that 

remain within the statistical limits from the start of monitoring period until an out of 

control is detected. The average run length is then calculated as the average of the 

values of the run length (RL) that are obtained from different control charts. 

For each control chart there are two types of    : the in-control            and the 

out-of-control           .      is the average number of samples from the start of 

the monitoring period until an out of control signal is detected given that there is no 

change affecting the process. On the other hand,      is the average number of 

samples from the occurrence of the change in the process until an out of control signal 

is detected. An effective control chart should have a high      when a process is 

operating under normal operating conditions and a low      when a change has been 

introduced into a process, i.e. the change in the process is detected rapidly.  

 

3.6.2 False Alarm and Fault Detection Rates 

False alarm rate (     and fault detection rate (   ) are statistical indices also used to 

evaluate the efficiency of monitoring charts (Chiang et al., 2001; Lee et al., 2006b; Yin 

et al., 2012). A false alarm is generated when the control chart identifies an out of 
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control signal while in practice the process is operating normally.     and     are 

given by: 

     
                      |    

                   
      

 

(3.15) 

     
                      |    

                   
      

 

(3.16) 
 

where   represents the value of the statistic used to construct the monitoring chart 

(i=1,2,3….n), “   ” is the corresponding confidence limit and   indicates the occurrence 

of the fault. Since the fault may be detected in either Hotelling’s T² or Squared 

prediction error (    ), it useful to calculate a joint    , which take into account both 

univariate statistics. Additionally a joint     is also useful as the false alarm may be 

occurred in both monitoring chart.  

3.7 Dynamic PLS 

PLS was proposed to model steady state processes but for many industrial process the 

relationship between the measurements is dynamic, i.e. the current state of the process 

not only depends on the current values of the variables, it is also dependent on the 

previous values. A dynamic model thus captures the relationships between variables at 

time   and also at previous time points         …). A number of algorithms have 

been proposed for dynamic PLS (DPLS) including the modification of the PLS inner 

relationship, the augmentation of time lagged measurements and a filter approach 

(Ricker, 1988; Kaspar and Ray, 1993; Lakshminarayanan et al., 1997a).  

One approach is to include lagged measurements in the input block, through the 

incorporation of a time series representation (Ricker, 1988; Qin, 1993; Qin and 

McAvoy, 1993). If the input matrix includes only lagged values of the input variables, it 

is termed a PLS finite impulse response (FIR) model while an auto-regressive with 

exogenous input (ARX) model is built if both lagged input and output values are 

included in the input matrix (Ricker, 1988; Qin, 1993; Qin and McAvoy, 1993; Ljung, 

1999). Although the use of lagged variables approach is widely adopted, the size of the 

input matrix can be large and hence the computational load increases. In addition, 

including a large number of lagged values can materialise in the generation of additional 

noise that may be difficult to characterize (Chiang et al., 2001). This can be observed 

from the increase of variance captured by the model whilst model prediction was not 



46 
 

significantly improved as shown in Chapter 6. In this thesis, dynamic PLS is examined 

through both an auto-regressive with exogenous inputs (ARX) approach and a finite 

impulse response (FIR) representations for the modelling of an ammonia synthesis 

reactor (Chapter 5) and the Tennessee Eastman Process (Chapter 6) respectively. In 

addition, the two dynamic PLS approaches are extended to adaptive and multiblock 

algorithms and applied for modelling and monitoring. The general framework of 

dynamic PLS based on lagged variables is introduced in this subsection and a detailed 

description of the approaches is presented in Chapter 5 and Chapter 6. 

Another dynamic PLS method proposed by Kaspar and Ray (1993) aims to model 

dynamic processes by the finding a dynamic transformation of the input data and relate 

the transformed input to the output hence an algebraic relationship is attained. The 

dynamic filter, i.e. dynamic transformation, can be designed either through prior 

knowledge of the system or by minimizing the sum of squares of the output residual. 

The next step is to apply the conventional PLS to the matrix of the dynamic 

transformation. Kaspar and Ray (1993) demonstrated their approach through the 

application of the method for control purposes to a distillation column at the University 

of Wisconsin and to a heated rod process. Kaspar and Ray (1993) stated that the 

limitation of this approach is that the filter order must be specified, otherwise no 

dimensional reduction is conducted in the dynamic part of the model, i.e. the dynamic 

transformation may result in increase in the dimensions of the matrix used for PLS in 

the next step.   

 Another dynamic PLS modelling approach was proposed by Lakshminarayanan et al. 

(1997b) which is based on the modification of the inner relationship of the conventional 

PLS algorithm (Equation 3.2), i.e. instead of relating    and    using a linear model, 

they proposed the use of a dynamic model such as autoregressive with exogenous input. 

Consequently, the dynamic representation of the decomposition of the response   

(Equation 3.4), is given by: 

  ∑        
 

 

   

   
 

(3.17) 

 

where    denotes the linear dynamic model (e.g. ARX). The approach was primarily 

designed for controller synthesis employing univariate controller design and tuning 

techniques. This method was applied to the Wood and Berry distillation column (Wood 



47 
 

and Berry, 1973), an acid-base neutralization process and a multivariable distillation 

column. Table 3.3 provides an overview of the dynamic PLS approaches.  

Table 3.3 - Overview of the dynamic PLS algorithms. 

Methods Author Comments 

DPLS 

lagged variables 

Ricker (1988) 

Qin (1993) 

Qin and McAvoy 

(1993) 

- The advantage of this approach is that the 

steady state PLS method can be used to 

develop the dynamic model. 

- A limitation is that the computational effort 

is increased if a large number of lagged 

variables is included  

DPLS 

Modification of 

inner 

relationship 

(Lakshminarayanan 

et al., 1997b) 

- The inner relationship of the PLS 

algorithm is modified. 

- Primarily applied in control application 

DPLS 

Filter approach 

(Kaspar and Ray, 

1993) 

- Based on the dynamic filtering of the input 

data  

- Prior knowledge of the process is required 

to design the filter. 

- Primarily applied in control application 

 

3.7.1 Lagged Variables Method 

A finite impulse response (FIR) representation is denoted by: 

     ∑        

  

   

      

 

(3.18) 

whilst an auto-regressive with exogenous input (ARX) representation is denoted by: 

      ∑        

  

   

 ∑            

  

   

      

 

(3.19) 

where            and    ) are the process output, input and noise vectors respectively. 

   and    are the matrices of the coefficients that are identified using PLS regression 

hence steady state PLS is applied to model the dynamic process.    and    are the 

number of time lags for the output and input data vectors respectively;   is the time 
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delay between the input and output variables in the system and is typically 1 if there is 

no dead-time in the system. In practical applications, the delay should be taken into 

account. This is investigated in Chapter 5 where a dynamic PLS method based on an 

ARX representation is used to model the dynamic behaviour of an ammonia synthesis 

fixed-bed reactor. 

For a FIR model, the regressor row vector      comprises lagged input data values and 

is defined as:  

                                         (3.20) 
 

and for an ARX model, the regressor row vector      comprises lagged output and input 

data values and is defined as: 

                (    )                                 (3.21) 

 

Both representations can be written as: 

                              (3.22) 
 

where   for the FIR representation is given by: 

               
          (3.23) 

 

and for the ARX representation  is given by: 

               
             

               (3.24) 

 

The input and output matrices for the PLS model can be arranged in the following 

matrix format: 

  [
    

 
    

]    [
    

 
    

]    [
    

 
    

] 
 

       (3.25) 

 

and are related through:  

                       (3.26) 
 

A number of applications and extensions of DPLS, through the incorporation of a time 

series representation have been reported in the literatures. For example, Baffi et al. 

(2000) extended the DPLS algorithm described above to the non-linear case to model 
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non-linear dynamic processes. They applied the new approach to a simulation of a pH 

neutralization process and concluded that the prediction capabilities of the DPLS 

algorithm improved when a non-linear regression model is used. Chen and Liu (2002) 

employed the idea of lagged variables to improve the performance of multiway PLS for 

batch process, hence a batch dynamic PLS was developed. They applied the proposed 

method to a DuPont industrial batch polymerization process, more specifically a semi-

batch emulsion polymerization and an exothermic batch chemical reactor. The proposed 

approach accounted for serial correlation within each batch and cross-correlation 

between batches. In this thesis, dynamic PLS is extended by combining it with recursive 

PLS to model the complex behaviour of two dynamic and nonlinear processes in 

Chapters 5 and 6. 

 

3.8 Multiblock PLS 

Industrial process typically comprise a large number of variables that are associated 

with different operational units, and for the modelling and monitoring of these process a 

variant of PLS, Multiblock PLS (     ), was proposed. The first multiblock PLS 

method was termed PLS path modelling, Gerlach et al. (1979). The basic concept 

of       is to divide the input data matrix into informative blocks that may relate to 

different unit operations. It is primarily used to simplify the interpretation of a PLS 

model when a process is complex and can be used for any number of blocks with any 

kind of relationships existing between the blocks (Westerhuis and Coenegracht, 1997). 

However, there are no specific rules for dividing a process into different blocks 

consequently engineering knowledge is required to determine the block structure. The 

main advantage of       in term of process monitoring is it enables the identification 

of the block where the fault has occurred.  

The general idea of the       method is summarised in Figure 3.6. The basic 

algorithm is similar to that of conventional PLS, however, the matrix of input variables 

is divided into a number of blocks    and b =1,2,3….B as shown in Figure 3.6. The 

latent variable for the     block is denoted by    and for the response block,  . A 

number of       algorithms have been proposed and are based on different criteria, 

deflation, construction of super scores and weight and score normalization (Frank and 

Kowalski, 1985; Wangen and Kowalski, 1989; MacGregor et al., 1994; Westerhuis and 

Coenegracht, 1997; Westerhuis et al., 1998). The basic algorithm (Figure 3.6) is 
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presented prior to the description of the different variants of       and is summarized 

as follows: 

Step 1. Set   equal to any column of   

Step 2. Regress the   on each block    (b =1,2,3….B) to attain block weights   : 

     
        (b =1,2,3….B) 

Step 3. Normalize the block weights    to length one and calculate the block latent 

variable,   : 

      ‖  ‖ 

         

Step 4. Combine the latent variables to form a super block  : 

                   

Step 5. Calculate the super weights and normalize them: 

  
      

      ‖  ‖ 

Step 6. Calculate the super scores: 

         

Step 7. Regress matrix   on    to calculate the output loading coefficients: 

          
    

Step 8. Calculate the new output scores as: 

         

Step 9. Go to step 2 until convergence of   

 

Step 10. After convergence of  , calculate the block loading   . 

 

Step 11. Deflate the data matrices, the response and blocks matrices, and calculate the 

next factor if required.  

The deflation formula differs based on the discussion given below.  
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Figure 3.6 – Multiblock PLS method (Vinzi et al., 2007) 

 

MacGregor et al. (1994) and Wangen and Kowalski (1989) proposed a       

algorithm, referred to as block score updating       , that uses the block scores,   , 

for the calculation of the of loadings and residuals: 
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Wold et al. (1996) proposed a hierarchical multiblock PLS algorithm,       , the aim 

of which is to block the variables and then employ the hierarchical PLS algorithm. The 

algorithm consists of two levels, super level and sub-level. The sublevel contains the 

input and output blocks and each bock is modelled in terms of its block scores and 

loadings. At the super level, the input and output matrices are replaced by the block 

scores from the sub-level. Finally the super level matrices are used in conventional PLS 

and the output scores are normalized. Details of         can be found in Wold et al. 

(1996). 

Frank and Kowalski (1985) proposed a       algorithm, super scores updating 

algorithm       , that calculates the block loadings and the residuals based on the 

super scores   : 

           
    

             
  

Westerhuis and Coenegracht (1997) showed that this method results in exactly the same 

result as conventional PLS when all the variables are combined in one large block. 

Consequently, conventional PLS can be used directly to calculate the parameters of 

      . Qin et al. (2001) introduced a further analysis on        and         and 

demonstrated how the algorithms can be used for statistical monitoring. The        

method proposed by Westerhuis and Coenegracht (1997) is used as the basis of the 

subsequent chapters. Hence, the algorithm is first introduced and then the relationship 

between conventional PLS and        is given. 

Applications of variants of       have been widely reported in the literature. For 

example, Westerhuis and Coenegracht (1997) applied       to model a 

pharmaceutical process comprising wet granulation and tableting. Wold et al. (1996) 

applied a hierarchical        to data collected from a residue catalytic cracker (RCCU) 

unit at the Statoil Mongstad refinery in Norway. They concluded that the application of 

      provided enhanced interpretation compared to conventional PLS as it enabled 

them to investigate which part of the process caused a certain event. 
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3.8.1 Multiblock PLS -        

For a given output variable matrix      and process variable matrix      where      

can be sub-divided into multiple blocks   according to: 

                                            (3.27) 
 

The number of variables in each block is    where   ∑   
 
   . The        

approach calculates the loadings, scores, and weights for each block and also the super 

weights and supper scores (Equation 3.28), and uses these to deflate the input and 

output matrices.  The parameters of         are: 

{              }
      
→      {                  },             

 

(3.28) 

 

where    is a matrix of block loadings,     and    are the matrices of the block 

weights and super weights respectively,    and     are the matrices of the block scores 

and super scores respectively and   and   are the output weights, scores matrices 

respectively. The        algorithm is implemented as follows: 

Step 1. Set         ,      and     

Step 2. Choose a starting    and iterate through the following steps until convergence: 

 

           
    ‖    

   ‖ 

                 

             ,     ,…….     ] 

        
    ‖  

   ‖ 

               

          
           

      

               
       and                       

Step 3. Deflate residuals 

             
           

      

                    
    and                      
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Step 4. Set       and return to step 2. 

 

The        algorithm is related to conventional PLS algorithm and the parameters of 

the individual blocks can be calculated directly from the PLS algorithm as shown by 

Westerhuis and Coenegracht (1997) and Qin et al. (2001). The theoretical proofs is 

given by Qin et al. (2001), Appendix A, and the relationships are summarised as 

follows:  

Step 1. The first step was to combine all variables into one block   and PLS is then 

applied: 

{   }
   
→ {           } 

where   and   are the input scores and loadings matrices,   and   are the output scores 

and loadings matrices,   is matrix of weights and   is the diagonal matrix of the PLS 

inner regression coefficients following the application of conventional PLS. Then the 

PLS parameters, loadings and scores, were divided into the corresponding blocks hence 

the parameters of the individual blocks are attained following the steps: 

Step 2. The        super scores    was identical to the score of the conventional PLS 

 : 

     (3.29) 
 

Step 3. The conventional PLS weights    for the  th latent variable were sub-divided:  

   

[
 
 
 
 
 
    

    

 
    

 
    ]

 
 
 
 
 

 

 

(3.30) 

Step 4. The         block weights for the  th latent variable are then given by: 
 

           ‖    ‖ (3.31) 

 

Step 5. The        super weights      for the  th latent variable are given by: 

     

[
 
 
 
 
 
‖    ‖

‖    ‖
 

‖    ‖
 

‖    ‖]
 
 
 
 
 

 

 

 

(3.32) 
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Step 6. The        block loadings      for the  th latent variable is given by: 

             (3.33) 

 

Step 7. The        block scores      for the  th latent variable: 

                        (3.34) 

 

Step 8. The        output weights for the  th latent variable: 

       

 

         (3.35) 

By using conventional PLS parameters for the calculations of the monitoring statistics, 

the overall process performance can be described whilst monitoring charts for the 

individual blocks can be constructed based on individual block parameters derived 

based on Equations 3.29 to 3.35. Hence, monitoring charts for both the whole process as 

well as the individual units are attained. This approach is used in this thesis and has 

been extended to multiblock dynamic PLS (MBDPLS) based on FIR representation, 

adaptive multiblock dynamic PLS (AMBDPLS) and robust adaptive multiblock 

dynamic PLS (RAMBDPLS) (Chapter 6). 

Like PLS, the monitoring statistics for        utilise the univariate statistics of 

Hotelling’s T² and square prediction error (    . Qin et al.(2001) concluded that as a 

consequence of the equivalence between        and conventional PLS, monitoring 

indices for the overall process and the individual blocks are calculated as: 

- The squared prediction error for the individual blocks can be calculated as 

                ‖    ̂ ‖
 
 (3.36) 

 

            where   ̂  is the prediction of the process measurements in block b. 

- The Hotelling’s T²  for the individual block is calculated based on the scores 

from       : 

              
    

   
     (3.37) 

          

where    is the block scores and   
   is the inverse of the covariance matrix of   

the score matrix   . If the covariance matrix is singular, a pseudo-inverse should 

be used.  

- The squared prediction error of the overall process can be calculated either from 

       or conventional PLS since the residuals from        and 
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conventional PLS are identical (Qin et al., 2001). Therefore Equation 3.12 is 

used and the confidence limit is calculated according to Equation 3.14. 

- Since the super scores of        are used to calculate the overall Hotelling’s 

T² metric and are identical to the scores from conventional PLS (Equation 3.28),  

the overall Hotelling’s T² can be calculated according to Equation 3.10 and the 

confidence limit is calculated according to Equation 3.11.  

 

3.9 Application of PLS to a Time Varying Process 

3.9.1 Time Varying Behaviour 

When the process operating conditions change as a consequence of changes in the raw 

materials, disturbances such as a drift in the set point or the ageing of the main 

components for example, the process behaviour is characterized as being time varying. 

It has been noted that most industrial process are time variant (Gallagher et al., 1997; 

Choi et al., 2006). In this section, it is demonstrated that a steady state PLS approach is 

not appropriate for the modelling and monitoring of a process that exhibits time varying 

behaviour through a simulation study. 

3.9.2 Simulation of Time Varying Process 

A data set from a simulation of a time varying process comprising two predictor 

variables and two response variables             and     respectively is considered. 

The first step is the generation of the initial predictor signals   . These are generated 

from an Autoregressive Moving Average (    ) model: 

    
    

      

      
        

(3.38) 

 

where   and   are 0.5 ,        is obtained from a standard normal distribution and     

is a back shift operator. The predictor and response variables are then defined as: 

(
   

   
)
 
 [

      

      
] (

   

   
)
 
 (3.39) 

(
   

   
)

 
 (

  

  
)  (

   

   
) (3.40) 

 

where             and     are constant parameters and are -0.2, 0.3, 0.1 and -0.05 

respectively.    and     are uncorrelated random signals from a          distribution 
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and    is an      signal of the     time instance defined according to Equation 3.38. 

The subscript   refers to the actual process values. A random signal from a          

distribution was augmented to the actual signal for both the predictor and response 

variables to mimic measurement noise: 

(
   

   
)
 

 (
   

   
)
 
 (

   

   
) 

 

(3.41) 

(
   

   
)

 
 (

   

   
)
 
 (

   

   
) 

 

(3.42) 

 

where m denotes the measured values and    ,    ,     and     are random signals. 

Time varying behaviour was attained through the introduction of a ramp signal with an 

increment         added to the     coefficent at t = 300.  

     {
        

          
 

(3.43) 

 

This simulation is taken from Wang et al. (2003). In this study, 200 samples were used 

for model development and 800 samples for validation. A further data set was generated 

which included a step change in the second input variable at time instance t=500. This 

additional data set was generated to test the ability of the PLS monitoring charts to 

differentiate between time varying behaviour and a step change that is not considered as 

normal operation. Model development and the monitoring charts are presented in the 

subsequent sections. 

3.9.3 Model Development 

The data are generated from the same signal hence there are no issues pertaining to 

different measurement units hence scaling was not considered. The results from the 

application of PLS to the calibration data set are summarized in Table 3.4, Figures 3.7 

and 3.8. Each raw provides the amount of variation captured by the latent variables and 

the total variation, Cumulative variation, captured by the retained latent variables. The 

number of latent variables to retain was identified as one from cross validation. From 

Table 3.4, the PLS model with one latent variable captures 95.36% of the total variation 

in the X-block and explains 88.33% of the variation in the Y-block. The second latent 

variable does not add any improvement to the model as it only captures 4.64% of the 

variation in the X-block and explains 0.01% of the variation in the Y-block as shown in 

Table 3.4.  
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Table 3.4 - Percentage variance captured from PLS model for time varying process 

LV X-block Y-block 

LV Cumulative LV Cumulative 

1 95.36 95.36 88.33 88.33 

2 4.64 100.00 0.01 88.34 

 

Figures 3.7 and 3.8 show the time series plots for the two quality variables for the 

calibration data set with each plot has a zoomed in plot (residuals plots are given in 

Appendix A). An offset is observed in both plots indicating that the underlying 

behaviour is not fully captured by the model. When the model is applied to the 

validation data set (Figures 3.9 and 3.10), it fails to predict the time varying behaviour 

as seen from the second quality variable (Figure 3.10). When the model is applied to a 

test data set which contains both time varying behaviour and a step change, the model 

again fails to predict the process behaviour (Figure 3.11 and 3.12).  

  

Figure 3.7 – Time series plot of original and fitted values for the first quality variable 

for the calibration data set 

  

Figure 3.8 – Time series plot of original and fitted values for the second quality variable 

for the calibration data set 
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Figure 3.9 - Time series plot of measured and predicted values for the first quality 

variable for the validation data set 

  

Figure 3.10 - Time series plot of measured and predicted values of the second quality 

variable for the validation data set 

 

  

Figure 3.11– Time series plot of measured and predicted values for the first quality 

variable for the test data set 
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Figure 3.12– Time series plot of measured and predicted values for the second quality 

variable for the test data set 

 

Figures 3.11 and 3.12 show that both quality variables are affected by the step change at 

sample number 500 and lasts for 10 samples. However, the PLS model fails to predict 

the process behaviour during this period. The residuals plots for both quality variables 

for the validation and test data sets show that conventional PLS model fails to predict 

the time varying behaviour (Appendix A). 

Table 3.5 summarises the root mean squared error for the calibration, validation and test 

data sets. It can be seen that the root mean squared error of the first quality variable is 

not affected by the time varying behaviour and is well predicted and presents an 

acceptable value for the RMSE. However, the RMSE for the test data set is significantly 

large since the model fails to predict the behaviour of the quality variable under the 

introduced step change. The RMSE of the second quality variable has significantly 

increased since the model fails to predict both the time varying behaviour and the step 

change. It can be conclude that conventional PLS is inappropriate for modelling time 

varying process. The RMSE of the second quality variable is higher than the first 

quality variable due to the difference in the variability of the two variables, the first 

quality variable variability was ±0.3 whilst for the second quality variable, it was ±12. 

Table 3.5 -      of the calibration, validation and test data sets for the time varying 

process 

Quality 

variables 

Calibration data set Validation data set Test data set 

               

Y1 0.03 0.05 0.137 

Y2 0.09 2.62 3.49 
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3.9.4 Monitoring Charts  

The monitoring results for the simulation exhibiting time varying process using 

conventional PLS are illustrated in Figures 3.13 and 3.14 for the calibration and 

validation data sets respectively. Figure 3.13 shows the time series plot for Hotelling’s 

T² and the squared prediction error of the input and output spaces      and      

respectively. The three metrics indicate 1% and 5% of the signals lie out of statistical 

control for the 99% and 95% confidence limits respectively and this is statistically 

acceptable. More specifically the false alarm rate for Hotelling’s T² and the squared 

prediction error of the input and output spaces      and      are 5%, 5% and 5% 

respectively for the 95% confidence limits and 1% for the 99% confidence limit as 

shown in Table 3.6. 

 

Figure 3.13 – Monitoring statistics for the calibration data set for time varying process 

Table 3.6 -      and      based on conventional PLS 

Data set Calibration data set Validation data set Test data set 

Chart     -95%     -99%     -95%     -99%     -95%     -99% 

Hotelling’s    5% 1% 4.75% 1% 90% 90% 

     5% 1% 4.87% 0.2% 90% 90% 
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Figure 3.14 shows the monitoring charts for the validation data set where the time 

varying behaviour is observed in the      metric as the behaviour differs to that of the 

calibration data set. The 95% and 99% confidence limits were these attained from the 

calibration data set. For Hotelling’s T² and      indices, the number of out of statistical 

control signals was within the statistically acceptable limits of 5% and 1% of the total 

number of samples. The false alarm rate is 4.75% and 4.87% for Hotelling’s T² and 

     monitoring chart respectively for the 95% confidence limit and 1% for the 99% 

confidence limit as shown in Table 3.6. On the other hand, for the      which is 

affected by the time varying behaviour the number of false alarms is 33% and 31.8% 

which is not statistically acceptable as it exceeds 5% and 1% for the 95% and 99% 

confidence limits respectively as shown in Table 3.6.  

 

Figure 3.14 – Monitoring statistics for the validation data set for time varying process 

For the validation data set,      is calculated based on a Monte Carlo approach where 

the simulation was repeated 50 times and for each run the run length (RL) was recorded 

and the    0 was calculated (Table 3.7). It can be seen that the      for the 

Hotelling’s T² and      monitoring charts are satisfactory as the metrics remain within 

statistical control for a satisfactory number of samples prior to an out of statistical 

control being detected compared to the ideal      of 100 samples for the confidence 

level of 0.01. In contrast, the    0 for the      chart is unsatisfactory as the time 
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indicates that the monitoring charts based on conventional PLS are not appropriate for 

the monitoring of time varying processes. 

Table 3.7 - Average run length of the time varying process using PLS. 

Chart           

Hotelling’s T² 60 5 

     66 5 

     7 6 

 

Figures 3.15, 3.16 and 3.17 show Hotelling’s T²,      and      for the test data set 

respectively. The confidence limits are those from the calibration data set. It can be seen 

that all three statistics are affected by the step change in the second predictor variable 

whilst only the      is affected by the time varying behaviour, i.e. the behaviour of 

     differs compared to that of the calibration data set due to the introduction of the 

ramp signal. The      continuously violates the confidence limits, starting at t = 400, 

after the introduction of the ramp signal. During this period a step change was 

introduced at t = 500 and it can be seen that the signal violates the limit prior to, during 

and after the step change. The fault detection rate for the      is 100% since the 

monitoring index continuously violate the limit post t=500. This concludes that the 

     does not differentiate between the step change and time varying behaviour.  

Similar to the conclusions of Wang et al.(2003), it can be concluded that conventional 

PLS is not appropriate for monitoring processes that exhibit time varying behaviour. 

Hotelling’s T² and      monitoring charts are not affected by the time varying 

behaviour as the data is comparable to that used to the calibration data set. In addition 

both indices detect the step change successfully. The fault detection rate for both 

monitoring charts is 90 % (Table 3.6).  

For the test data set,      is calculated based on a Monte Carlo approach (Table 3.7). 

For the current case it can be seen from the charts that the step change (process fault) is 

detected 1 sample after the introduction of the step change for Hotelling’s T² and     . 

When the Monte Carlo method is applied, Table 3.7 shows the results for    1 which 

indicates that on average there is a delay in the fault detection. For example, Hotelling’s 

T² and      detect the fault after 5 samples and      detects the fault after 6 samples. 

These results are based on the 50 data sets generated under the same conditions. 
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Figure 3.15 - Hotelling’s T² for the test 

data set for time varying process 

Figure 3.16 -      for the test data set for 

time varying process 

 

 

Figure 3.17-      for the test data set for 

time varying process 

 

 

The main conclusions following the application of conventional PLS to a time varying 

process are as follows:  

- The conventional PLS algorithm fails to adapt to time varying behaviour. 

-  The prediction of the quality variables for the validation data set is poor 

compared to the calibration data set due to the failure of PLS to predict the time 

varying behaviour.  

-  The false alarm rate increases compared to the calibration data set 

- Although the fault detection rate was high, the model failed to differentiate 

between the effect of the time varying behaviour and the process fault. 
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3.10 Application of PLS to a Non-stationary Process   

3.10.1 Non-stationary Process Behaviour 

Non-stationary behaviour is another area that challenges standard modelling and 

monitoring techniques (Box and Tiao, 1965; Box et al., 2008). The statistical properties 

of a non-stationary process include a time varying mean or a time varying variance or 

both hence underlying behaviour is unpredictable. Non-stationary behaviour can be a 

random walk, a deterministic trend, cyclical or a combination. A random walk non-

stationary process is where there is a slow steady change in process behaviour and it can 

be with or without drift. A random walk with drift implies a change in the process mean 

and variance whilst a random walk without drift implies a change in the process 

variance. A deterministic trend is a non-stationary process where the process mean 

changes around a constant and is independent of a time trend. A cyclical non-stationary 

process implies that the process behaviour fluctuates around the mean. The non-

stationary behaviour can be a consequence of a number of reasons for example seasonal 

changes or a filling and emptying cycle. In this section, it is demonstrated that 

conventional PLS is not appropriate for the monitoring of a non-stationary process 

through a simulation study. 

3.10.2 Simulation of Non-stationary Process 

A data set from a simulation of a non-stationary processes comprising two predictor 

variables and two response variables                and     respectively is constructed. 

The first step is to generate the initial predictor signal    from an Autoregressive 

Integrated Moving Average (     ) model: 

    
    

      

               
        

              

     (3.44) 
 

where   and   are 0.5,        is obtained from a standard normal distribution        

and     is a back shift operator. The predictor and response variables are then defined 

as:  
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where             and     are constant and are -0.2, 0.3, 0.1 and -0.05 respectively.     

and     are uncorrelated random signals generated from a          distribution and    

is the       signal for the     time instant and the subscript   refers to the actual 

process values. A random signal from a          distribution was augmented to the 

actual signal of the both predictor and response variables to mimic measurement noise:  

(
   

   
)
 

 (
   

   
)
 
 (

   

   
) (3.47) 

(
   

   
)

 
 (

   

   
)
 
 (

   

   
) (3.48) 

 

where m denotes the measured values and    ,    ,     and     are random signals. 

This simulation is taken from Wang et al. (2003). In this study, 200 samples were used 

for model development and 800 samples for validation. A further data set was generated 

in this study which included a step change in the first input variable at sample t=500.  

This additional data set was generated to test the ability of the PLS monitoring charts to 

differentiate between non-stationary behaviour and a step change that is not considered 

as normal operation. Model development and the monitoring charts are presented in the 

following subsequent sections. 

3.10.3 Model Development 

The data is generated from the same signal, hence scaling was not considered as there is 

no issue resulting from different unit measurements. The results from the application of 

PLS to the calibration data are summarized in Table 3.8, Figures 3.18 and 3.19. The 

number of latent variables to retain was identified as one latent variable from cross-

validation. From Table 3.8, the PLS model with one latent variable captures 99.2% of 

the total variation in the X-block and explains 83.5% of the variation in the Y-block. It 

can be seen that the second latent variables dose not capture any additional variation 

hence, one latent variable is sufficient to describe the process.    

Table 3.8 - Percentage variance captured from PLS model for non-stationary process 

LV X-block Y-block 

LV Cum LV Cum 

1 99.2 99.2 83.5 83.5 

2 0.8 100 0.1 83.6 
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Figure 3.18 and Figure 3.19 show the time series plots for the quality variables 

respectively for the calibration data set. An offset can be seen between the original and 

fitted values which is expected as the model does not explain all the variation within the 

process. The residual plots are given in Appendix A showing the difference between 

measured and fitted values. 

  

Figure 3.18 - Time series plot of original 

and fitted values for the first quality 

variable for the calibration data set 

Figure 3.19 - Time series plot of original 

and fitted values for the second quality 

variable for the calibration data set 
 

When the PLS model is applied to the validation and test data sets, Figures 3.20, 3.21, 

3.22 and 3.23, it is evidence that there is an offset between the measured and predicted 

values. In addition, Figures 3.22 and 3.23 show that the model fails to predict the 

abnormal behaviour, step change at t=500. The residuals plots for the validation and test 

data sets, Appendix A, approved these observations.  

  

Figure 3.20 - Time series plot of measured 

and predicted values for the first quality 

variable for the validation data set 

Figure 3.21 - Time series plot of measured 

and predicted values for the second quality 

variable for the validation data set 
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Figure 3.22 - Time series plot of measured 

and predicted values for the first quality 

variable for the test data set 

Figure 3.23 - Time series plot of measured 

and predicted values for the second quality 

variable for the test data set 

 

Table 3.9 summarises the root mean squared error (    ) for the calibration, validation 

and test data sets. It can be seen that the      for the validation and test data sets are 

larger in magnitude compared to the      for the calibration data set for both quality 

variables. Although the prediction follows the trend for both quality variables, the 

number of false alarm is high when constructing the monitoring charts indicating that 

the model developed based on the calibration data set is inappropriate for the modelling 

of non-stationary processes. The results of the monitoring charts are presented in the 

following sections.    

Table 3.9 - RMSE for the calibration, validation and test data sets 

Quality 

variables 

Calibration data set Validation data set Test data set 

               

Y1 0.23 0.56 0.60 

Y2 0.58 1.42 1.46 

 

3.10.4 Monitoring Charts  

The monitoring results for the non-stationary behaviour using conventional PLS are 

given in Figures 3.24 and 3.25. Figure 3.24 shows the monitoring metrics of Hotelling’s 

T²,      and       for the calibration data set. It can be clearly seen that the charts 

show an acceptable number of out of statistical control samples as they are within the 

5% of for the 95% confidence limit. The false alarm rate is 5%, 5% and 4.5% for the 

Hotelling’s T²,      and       respectively as shown in Table 3.10. 
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Figure 3.24- Monitoring statistics for the calibration data set 

The monitoring result for the validation data set shows unsatisfactory performance as 

the number out of statistical control samples is more than 55% and for all the 

monitoring charts when the process represents nominal behaviour as shown in 

Figure 3.25. The false alarm rate confirms this as it is 58.1%, 59.9% and 60% for 

Hotelling’s T²,      and      respectively for the 95% confidence limit and 55.7%, 

58.1% and 58.7% for Hotelling’s T²,      and      respectively for the 99% 

confidence limit which is statistically unacceptable (Table 3.10). These issues are 

caused by the non-stationary nature of the process and hence demonstrating that 

conventional PLS is inappropriate for the modelling of a non-stationary process.   

Table 3.10-      and     based on conventional PLS 

Data set Calibration data set Validation data set Test data set 

Chart     – 95%     – 99%     – 95%     – 99%     – 95%     – 99% 

Hotelling’s T² 5% 2.5% 58.1% 55.7% - - 

     5% 0% 59.9% 58.1% 100% 100% 

     4.5% 0% 60% 58.7% 100% 100% 
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Figure 3.25- Monitoring results by PLS for validation data set 

The      is calculated for the validation data set based on a Monte Carlo approach 

where the simulation was repeated 50 times (Table 3.11). For the data set illustrated, it 

can be seen that the monitoring metrics violate the limits after a few samples during the 

monitoring period (Figure 3.25). More specifically, the Hotelling’s T²,      and       

metrics violate the confidence limits at t = 80, t = 13 and t=15 respectively. Following 

the implementation of the Monte Carlo method, the      is 47, 37 and 33 for 

Hotelling’s T²,      and      respectively (Table 3.11).This indicates that the 

monitoring charts based on conventional PLS tend to produce early false alarms 

compared to the ideal      of order of 100 samples, i.e. the monitoring metrics violates 

the confidence limits more rapidly while the process represents nominal operations. 

Table 3.11 - The average run length for the non-stationary process. 

 Chart            

Hotelling’s T² 47 5 

     37 3 

     33 4 
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The monitoring charts following the application of the model to the test data set where a 

step change was introduced at t = 500 are given in Figures 3.26, 3.27 and 3.28. 

Figures 3.27 and 3.28 show that the      and      charts detected the step change 

however, it can be seen that the samples prior to and after the step change are already 

out of statistical control due to a failure of PLS to model the non-stationary behaviour. 

Consequently, the PLS model fails to discriminate between a process fault, a step 

change, and the non-stationary nature of the process. The Hotelling’s T² monitoring 

chart (Figure 3.26) was not affected by the step change as there is no evidence of the 

presence of a step change at t = 500. Therefore, the fault detection rate is not calculated. 

Although the fault detection rate, Table 3.10, is 100% for the      and      

monitoring charts, it is unreliable as all the metrics violate the confidence limits from 

t = 320 due to the non-stationary nature of the process. 

  

Figure 3.26 – Hotelling’s T² for the test 

data set 

Figure 3.27 –      for the test data set 

 

 

Figure 3.28 –      for the test data set  
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The      is calculated for the test data set for all the monitoring charts based on the 

Monte Carlo method. For the illustrated test data set used for constructing the 

monitoring chart (Figures 3.26 to 3.28), it can be seen that the      is 0 for the      

and      monitoring charts. However, this occurred as the monitoring metrics in the 

period prior to the step change are already in violation of the confidence limits. This 

indicates that the fault is detected immediately. Following the implementation of the 

Monte Carlo method, it can be seen that the step change is detected after 5, 3 and 4 

samples for Hotelling’s T²,      and       charts respectively indicating that on 

average there is a time delay in the fault detection. 

The main conclusions following the application of conventional PLS to a non-stationary 

process are as follows: 

- The conventional PLS algorithm fails to model the non-stationary behaviour. 

-  The prediction of the quality variables for the validation and test data sets is 

poor compared to the calibration data set due to the failure of PLS to predict the 

non-stationary behaviour.  

- There is a significant increase in the number of false alarms. 

- The fault detection rate is high due to the nature of the process as most of the 

samples violate the confidence limits. Consequently, the model fails to 

distinguish between the fault and the nature of the process hence the fault 

detection rate is unreliable.  

 

3.11 Chapter Summary and Conclusions 

In this chapter, a general overview has been presented of the multivariate projection 

approach of partial least squares (PLS). A major part of the chapter focused on 

describing PLS and two of its extensions, dynamic PLS (DPLS) and multiblock PLS 

(MBPLS). These are the core methodologies that are combined and extended in the 

subsequent chapters. The motivation for reviewing these methodologies was based on 

the fact that most industrial processes exhibit dynamic characteristics and consist of 

multiple units operations and hence it is important to consider both characteristics 

simultaneously. These extensions help to achieve the ultimate goal of the thesis, the 

monitoring of the whole process as well as that of individual unit operations. In 

addition, two or three of the approaches can be combined to develop monitoring 

schemes for specific applications. For example the combination of multiblock PLS and 
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dynamic PLS is used for constructing a monitoring scheme for the Tennessee Eastman 

process in Chapter 6. 

It has been shown that conventional PLS is inappropriate to model time varying and 

non-stationary processes. This is a consequence of the model being developed from 

nominal data under specific operating conditions and being then applied to unseen data 

which were collected under different operating conditions due to the time varying or 

non-stationary behaviour of the process. Consequently monitoring performance 

deteriorates over time. This conclusion was previously reported by Wang et al. (2003). 

In this thesis, the statistical concepts of average run length (   ), fault detection rate 

(     and false alarm rate (     are used to evaluate the efficiency of the monitoring 

charts. The conclusions drawn from the metrics ARL,     and     indicate that the 

monitoring charts based on conventional PLS are inefficient for processes that exhibit 

time varying and non-stationary behaviour.  

An issue that is of increasing importance is that of the differentiation between changes 

in operating conditions and process faults as conventional PLS failed to do so. This was 

observed from the failure of the PLS to discriminate between a step change effect and 

time varying and non-stationary behaviour. This issue is often ignored in the published 

literature and it is important to investigate further extensions of PLS to meet this 

requirement. The next chapter presents recursive PLS approaches providing a critical 

review of the methodology and its adaptive limits and introduces a robust recursive PLS 

algorithm with adaptive limits. 
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Chapter 4 

Real Time Monitoring using Recursive PLS and its Extensions  

4.1 Introduction 

Most industrial processes exhibit changing behaviour over time materialising in time 

varying and non-stationary process behaviour. In some cases the process dynamics 

change as a result of a change in the relationship between process variables and hence 

the model that was built based on historical data is unable to describe the current state 

of the process. In the previous chapter, it was shown that conventional Partial Least 

Squares (PLS) was inappropriate for the monitoring of non-stationary and time varying 

processes. Furthermore, it has been shown in the literature that conventional PLS is 

unable to capture process dynamics caused by autocorrelation (Kaspar and Ray, 1993; 

Lakshminarayanan et al., 1997b) and model the nonlinear relationships between 

measurements (Wold, 1992; Dong and McAvoy, 1996). Despite the ability of 

conventional PLS to reduce the dimensionality of a problem and deal with ill-

conditioned data, the statistical indices of false alarm rate (     and average run length 

(   ) indicated that the false alarm was increased and it was unable to identify the 

onset of the fault when applied to industrial processes that did not exhibit steady state 

behaviour. 

One solution to the aforementioned issues, changing behaviour, is recursive PLS 

(RPLS) (Helland et al., 1992; Qin, 1998b). RPLS is an on-line modelling and 

monitoring approach that was proposed to capture dynamic changes in a system and its 

application has been extended to model time varying processes (Helland et al., 1992; 

Qin, 1993; Qin, 1998b). Different RPLS approaches have been proposed in the 

literature and these are reviewed in this chapter. One issue that can arise in online 

modelling is the presence of outlying samples and these are used to update the PLS 

model, then the resulting model will not be representative of process behaviour. 

In this chapter an improved methodology, robust adaptive PLS (RAPLS), is proposed 

that recursively updates the PLS model, if and only if the incoming sample represents 

nominal process behaviour. The proposed approach also enables the detection of 

outliers which is an enhancement over the approach proposed by Wang et al. (2003). 

This approach can be extended to, robust adaptive dynamic PLS (RADPLS), to account 

for autocorrelated data, i.e. where the process samples are not time independent. The 

concept has also been extended to deal with processes that comprise multiple 
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operational units (Chapter 6). The proposed approach is tested on a simulation of a time 

varying process and a non-stationary process and in Chapters 5 and 6 the concepts are 

applied to simulated industrial processes. 

4.2 Objectives 

Within this chapter 

- The existing RPLS methods for the real time modelling and monitoring of 

complex process behaviour are reviewed prior to extending the concept to 

incorporate adaptive confidence limits (APLS) (Wang et al., 2003) 

- The RPLS with adaptive confidence limits (APLS) approach is further extended 

adaptive dynamic PLS (ADPLS) to handle autocorrelated samples in a recursive 

manner and apply confidence limits that are updated based on the monitoring 

statistics of the processes,  

- A robust adaptive PLS (RAPLS) algorithm is developed to handle statistical 

outliers.  

- The Robust Adaptive PLS (RAPLS) concept is extended to handle 

autocorrelated samples, robust adaptive dynamic PLS (RADPLS).  

- The statistical indices of average run length (   ), false alarm rate     ) and 

fault detection rate (   ) are used to quantify the efficiency of the monitoring 

charts for APLS, RAPLS, ADPLS and RADPLS. 
 

4.3 Recursive PLS (RPLS) Methods 

Recursive PLS (RPLS) aims to update the calibration model (Equation 4.1) when new 

data {     }  becomes available:  

{   }
   
→ {           } (4.1) 

 

where   and    are the initial input and output matrices,   and   are the scores 

matrices;   and   are the loadings of the input and output matrices respectively;   is 

the matrix of PLS weights and   is a diagonal matrix of the inner model coefficients. 

The following section presents the historical development and a review of the existing 

RPLS approaches.  

The first step involves developing a reference model based on one of the existing PLS 

models previously reviewed in Chapter 3 (Table 3.1). Two families of recursive 
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algorithms are described in the literature to update a linear PLS model. The first one is 

based on the NIPLAS algorithm, where the PLS parameters are calculated in an iterative 

manner (Helland et al., 1992; Wold, 1994; Qin, 1998a; Wang et al., 2003). The second 

family utilises the kernel PLS algorithm (Lindgren et al., 1993; Dayal and MacGregor, 

1997b). In this thesis, the methods from the first family of algorithms are reviewed. 

Figure 4.1 summarises the different recursive PLS approaches and their specific 

features.  
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 Figure 4.1- Recursive PLS approaches 

The first recursive PLS (RPLS) algorithm was proposed by Helland et al. (1992). Their 

approach mainly comprised two steps. First, the original data sets        and        

were represented by their PLS loading matrices and diagonal matrix of inner model 

coefficients (i.e.  ,   and   matrices) and the new data    and    was appended to these 

loading matrices (Equation 4.2). PLS was then applied to the updated data matrices. 

Consequently, the previous PLS model is updated in a recursive manner.  

     [
  
  

]        [
   
  

] 
                 

(4.2) 
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Helland et al. (1992) stated that for their RPLS algorithm only a few latent variables 

should be retained. However, Qin (1993) pointed out that by retaining only a few latent 

variables during model updating, a loss of information may materialise. Consequently, 

he proposed retaining the number of latent variables equal to the rank of  . A limitation 

of the approach of Helland et al. (1992) was discussed by Dayal and MacGregor 

(1997b) who stated that the RPLS algorithm was slow compared to kernel based 

recursive PLS. 

Wold (1994) proposed an exponentially weighted moving average (EWMA) approach 

for both principal component analysis (EWMA-PCA) and partial least squares 

(EWMA-PLS). The EWMA-PLS approach consists of two main parts. The first is one 

step ahead forecasting of the scores and predicting of the response. Moreover, the initial 

model is conserved through memory matrices to control the updating process. The 

second part involves updating the existing PLS model and the memory matrices. The 

details of the EWMA-PLS algorithm are provided by Wold (1994) and in general the 

EWMA-PLS algorithm comprises the following steps: 

Step 1. Select the forgetting factor ( λ) based on the historical data or experience 

Step 2. Select the initial data matrices    and   , and calculate centring and scaling 

parameters, i.e. mean and standard deviation 

Step 3. Derive the initial PLS model from the normalized data with a latent variables 

Step 4. Initiate the EWM-PLS memory matrix by including initial data vectors that 

correspond to the maximum and minimum score values of each model dimension 

Step 5. Initiate the weight memory matrices        for each latent variable by 

including   
  as first raw. 

Step 6. Initiate the long memory matrices        identical to         

Step 7. Calculate a one-ahead forecast of the scores  ̂       using the forgetting factor as 

follows: 

 ̂              ̂  

Step 8. Calculate one-ahead predicted response  ̂    using Step 7 

Step 9. Get the observed sample at t+1 and check against spikes, unwarranted rotations 

by comparing with memory matrices in order to force the new updated model to not 
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differ compared to the initial model. The new observation is then normalized using 

scaling parameter from the previous step. The actual scores and residuals are then 

calculated. 

Step 10. Update the scaling parameters by means of residuals 

Step 11. Update PLS model by iterating until convergence 

Step 12.Update memory matrices as described in steps 4 to 6. Go for step 7 for the next 

time point.  

Wang et al. (2003) pointed out that the value of the weighting parameter,  , used to 

update the PLS model may control the outcome, since it determines the balance between 

the old and the new data in the updating procedure. This balance may not be appropriate 

all the time especially when implemented on an industrial process that exhibits complex 

behaviour. In addition, the use of initial model to control the updating process is not 

appropriate since the initial model does not reflect the current behaviour. Furthermore,  

Wold (1994) described the second part of the algorithm as complicated. Consequently, 

it is impractical to implement such an approach when a huge amount of data is available 

over a short time period due to the use of data acquisition systems.  

Qin proposed two recursive algorithms for the updating of a PLS model; sample-wise 

RPLS (1993) and block-wise RPLS (1998b). The aim of the block-wise RPLS 

algorithm is to develop a PLS sub-model using the NIPALS algorithm based on a block 

of new data. The block-wise RPLS procedure (Figure 4.2) comprises 3 steps, first a 

block size is selected, BL, that is used for the model updating process. Secondly, a PLS 

model is developed based on the reference data set {     } and the model is 

represented though its loadings and inner regression coefficients matrices, i.e.       and 

  . When a new block of data, {     }, the size being equal to that of the block size, a 

sub-model is developed and represented by its loadings and inner regression coefficients 

matrices, i.e.       and   . The next step is to combine the parameters of the first and 

second PLS models to form the recursive data matrices: 

     [
  

 

  
 ]       [

    
 

    
 ]  

The final step is to apply PLS to the new data matrices and represent the model by the 

loadings and inner regression coefficients matrices, i.e.         and    , consequently 

the previous model is updated and these steps are repeated whenever a new block of 
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data becomes available. Qin (1998b) extended this approach to block-wise RPLS based 

on a forgetting factor  , that is used to weight the parameters of the initial model and to 

discount the old information in favour of the information contained in the new block, 

and applied block-wise RPLS to an industrial application, a catalytic reformer to predict 

octane number.  

 

 

Figure 4.2 – A recursive process for Block-wise RPLS (Qin, 1998b) 
 

This procedure requires significant computational effort in terms of developing the sub-

models and then reapplying PLS to update the old model. This algorithm is considered 

to be a form of “blind” updating as the new data may contain non-conforming samples 

thereby influencing the model. Furthermore, the confidence limits of the reference 

model are used for the block-wise RPLS monitoring charts consequently they are not 

reflective of the updated model. Wang et al. (2003) discussed some limitations of block-

wise RPLS:  

- The number of the samples included in the sub-PLS model may affect the 

results. When the block size is small the PLS model is updated quickly whereas 

for large block sizes, model update is delayed. Consequently, different block 

sizes result in different PLS models.  

- The normal operating data used for modelling is discounted in favour of the new 

block that may not represent the process since the data can be generated during 

an abnormal event. 

- The forgetting factor may discount the old model based on specified weight 

which may not accurate all the time.  

The sample-wise RPLS algorithm proposed by Qin (1993) updates the PLS model 

whenever a new data sample is available. In addition, he proposed its extension to 
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system identification, consequently the RPLS model can account for process dynamics 

caused by autocorrelation. This approach updates the PLS model recursively to account 

for changes in the process and is used as a basis for developing the proposed methods in 

this thesis (§4.3.1). Issues that may arise include: 

- The confidence limits used are based on the historical or reference data which 

may not represent the current state of the process. 

- The new sample is allowed to contribute to model updating without considering 

that the sample may represent an outlying sample. Consequently, this form of 

RPLS may be viewed as “blind” model updating. This issue is discussed in 

detail in §4.3.3.1. 

Wang et al. (2003) extended the sample-wise recursive PLS algorithm to include 

adaptive confidence limits, Adaptive PLS (§4.3.2). The main idea besides model 

updating is to update the confidence limits of the monitoring statistics using a window 

of length (   of the previous monitoring statistics, i.e. Hotelling’s T²,      and     . 

These statistics will typically reflect the performance of the current sample and 

therefore, are more meaningful when calculating the confidence limits as they tend to 

exhibit same behaviour. However, both sample wise RPLS and APLS update the model 

without considering whether the sample is reflective of normal operation, i.e. the new 

coming samples may be an outlier or generated from abnormal event. These approaches 

are used as the basis for developing a new improved APLS algorithm in this work 

(§4.4). 

Lee et al. (2006a) extended the block-wise RPLS algorithm to robust adaptive block-

wise RPLS. The idea is to screen the incoming data based on the combined index, 

mainly combines the univariate monitoring statistics of Hotelling’s T² and squared 

prediction error       , prior to the development of a PLS sub-model. If the data 

represents nominal process operation, i.e. the combined index remains within a state of 

statistical control, the data will be used for the model updating process (Figure 4.3). 

They proposed two strategies to deal with outlying data. First when the combined index 

breaches the confidence limit, a hard threshold is proposed, i.e. all the outlying data are 

excluded from the model update, alternatively a soft threshold can be applied where the 

entire data is weighted prior to model updating process. The robust adaptive block-wise 

RPLS algorithm starts with the development of a reference model based on historical 

data. When a new block of data becomes available, the monitoring statistics including 
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Hotelling’s T², squared prediction error (      and the combined index are calculated. 

For the hard threshold, the outlying samples are discarded from the model updating 

process with the remaining new data used for model updating. For the soft threshold 

approach, a weight is calculated based on the combined index that results in the outlying 

samples behaving as they were generated from nominal process. The weight calculation 

is discussed in §4.3.3.1.   

Two issues associated with this approach materialise. First, all the data that violate the 

combined index threshold are considered to be outlying data and there is no 

distinguishing between whether they are generated as statistical outliers or due to 

process fault. This thus allows for a process fault to contribute to the RPLS model. 

Secondly, different block size will result in different models. 
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Figure 4.3 - Robust block-wise RPLS (Lee et al., 2006a) 

The other class of methods are based on the kernel PLS algorithm. The first recursive 

algorithm was exponentially weighted PLS (Dayal and MacGregor, 1997b). In this 

approach the model is updated in a recursive manner based on a forgetting factor, which 

helps determine how much previous information should be discounted in favour of new 

data. The forgetting factor can be either fixed or variable. In the case of a constant 

forgetting factor, the old data is discounted continuously without any investigation as to 
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whether the new data contains representative information hence, information may 

therefore be lost. On the other hand, for a variable forgetting factor the old data is only 

discounted when the new data contains information. The full algorithm is presented in 

Appendix B. 

Although this approach considers the relevance of the new data, it does not identify if 

the information in the new data results from a change in the process conditions or from 

outlying samples. The confidence limits of the monitoring statistics are assumed to be 

calculated based on the historical data as no information on this aspect was provided in 

the paper (Dayal and MacGregor, 1997b). 

4.3.1 Sample-wise Recursive PLS 

In sample-wise RPLS proposed by Qin (1993), a reference model (Equation 4.1) is 

developed based on normal operating data using the PLS algorithm (NIPALS). Once a 

new sample {     } becomes available, the PLS model is updated through the 

application of PLS to the new matrices: 

     [
  
  

]        [
   
  

] 
 

(4.3) 

 

where   and   are the loadings of the input and the output matrices   and   

respectively.   is a diagonal matrix of the inner regression coefficients. Qin (1993) 

pointed out that applying PLS to the data matrix in Equation 4.3 results in the same PLS 

model as would be attained when applying PLS to the following data matrices: 

     [
 
  

]        [
 
  

] 
 

(4.4) 

 

The approach proposed by Qin (1993) significantly reduces the computational effort 

and time required to identify the RPLS model compared to the approach based on 

Equation 4.4. This is because the dimension of the data matrices is reduced when using 

PLS parameters and hence the model can be identified faster than when using the whole 

data set each time to identify the RPLS model. In addition, it requires less memory as 

only the previous PLS parameters, which represent the old data, are retained for model 

updating. Qin (1993) stated that in practical applications, the number of latent 

variables     to be retained may vary and hence cross validation or variance explained 
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should be used. In this thesis, the effect of varying the number of latent variables is 

assessed in Chapter 5. 

Similar to conventional PLS, the monitoring statistics of RPLS are based on the 

univariate statistics of Hotelling’s T² and Squared Prediction Error (     and       of 

the input and output spaces respectively. For a new observation {     } the monitoring 

statistics can be calculated based on §3.5. 

Qin (1993) did not provide an updating procedure for calculating the confidence limits. 

Consequently, the confidence limits calculated from the reference model are used for 

the monitoring statistics of the new observation which may result in an increase or in 

some case a decrease in the number of false alarms. The calculation of the confidence 

limits was previously presented in Chapter 3 (Equation 3.9 and Equation 3.12). In 

addition, the algorithm updated ‘blindly’ as no investigation has been carried on the 

sample type. 

4.3.2 Adaptive PLS (APLS) 

Wang et al. (2003) further extended the sample-wise RPLS approach by  introducing 

adaptive confidence limits, adaptive PLS (APLS), and extending it to recursive 

multiblock PLS. The APLS algorithm is presented in Figure 4.4. As for sample-wise 

PLS, the first step in APLS is to develop a reference PLS model from historical data. 

When a new sample becomes available, Hotelling’s T² and Squared Prediction Error 

(     and       of the input and output spaces respectively are calculated according to 

§3.5.  
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Figure 4.4 - Recursive PLS with adaptive confidence limits (APLS) 

 

The adaptive confidence limits by Wang et al. (2003) were developed on the following 

basis: 

- MacGregor and Kourti (1995) noted that any univariate statistics   ) that are 

calculated based normally distributed process variables, follow a Chi-squared 

distribution. Based on that, the univariate monitoring statistics following the 

application of PLS follow the Chi-squared distribution. This is because they are 

calculated based on the latent variables, which are linear combination of the 

original variables and by the central limit theorem they are approximately 

normally distributed. 

- As each univariate statistic    , i.e. Hotelling’s T²,     and     ,  represents a 

sum  of squared values, Box (1954) and Jackson and Mudholkar (1979) stated 
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that the confidence limits of a univariate statistic      , which has a mean of  ̅ 

and a variance of   , can be obtained as: 

                (4.5) 

             where        represent the confidence limit,   and   are given by: 

         ̅  (4.6) 

     ̅      (4.7) 

 

Consequently, the confidence limits for Hotelling’s T² and Squared Prediction Error 

(     and       for the current sample   can be calculated as follows: 

1. Consider a window of length (   of the previous statistics given by  

   {             } (4.8) 

2. Calculate the mean (  ̅) and variance (    of    

3. The limits are then calculated according to Equations 4.5, 4.6 and 4.7. 

 

Through the implementation of this approach, adaptive confidence limits are obtained 

for the monitoring statistics. However, as noted by Wang et al. (2003) determination of 

the length of the window, used for the calculation of the adaptive confidence limits, is a 

challenge and is application dependent. Selecting a short window length may provide 

very sensitive confidence limits giving rise to false alarms, since it enables the 

confidence limits to adapt to strong variations. In contrast a wide window may make the 

confidence limits insensitive (Wang et al., 2003). To the researcher knowledge this area 

is required more investigation as there is no rule that can be generalized for all the 

applications and for different types of variation.  

 

Wang et al. (2003) applied the proposed approach to a mathematical simulation of a 

time varying and a non-stationary process. They noted that through the application of 

the APLS approach the number of false alarms decreased significantly compared to 

conventional PLS (§3.9 and §3.10). The application of APLS to the mathematical 

simulations is revisited and further analysed in this chapter (§4.6 and §4.7). 

Additionally Wang et al. (2003) applied APLS to two industrial simulations; a fluid 

catalytic cracking unit (FCCU) and a distillation unit for purifying butane. They 

concluded that APLS can accommodate the process variation and that abnormal 

behaviour introduced into the process was detected. Wang et al. (2003) further extended 
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this approach to monitor the individual blocks of a process through utilising the 

relationship between the conventional PLS algorithm and multiblock PLS based on the 

super scores (§3.8). They stated that the application of the APLS algorithm to a process 

with auto-correlated data required further investigation and this is addressed in 

(§4.3.2.1). 

4.3.2.1 Adaptive Dynamic PLS 

Most industrial processes exhibit dynamic behaviour as a result of measurements 

autocorrelation and hence it is useful to extend the recursive PLS with adaptive 

confidence limits (APLS) algorithm to adaptive dynamic PLS (ADPLS) as follows: 

- The reference model can be modified through the incorporation of a time series 

representation to account for the autocorrelation in the data hence a dynamic 

PLS model is developed. A detailed description of the development of a 

dynamic PLS model using time series was described in Chapter 3.  

- When a new sample becomes available, it has to be incorporated into a dynamic 

representation and the monitoring statistics and confidence limits are calculated 

as for the APLS algorithm.  

- The model is then updated by combining the new sample with the previous PLS 

model, Equation 4.3, and PLS is applied to the updated matrices. 

In this thesis, the ADPLS approach is based on two time series representations, Finite 

Impulse Response (FIR) and Auto-Regressive with eXogenous input (ARX) and this 

aspect is investigated in terms of model prediction and monitoring performance through 

their application to two industrial simulations (Chapter 5 and Chapter 6). The approach 

is also extended to adaptive multi-block dynamic PLS, Chapter 6. 

 

4.3.3 Limitations of Recursive PLS with Adaptive Confidence Limits 

The approach proposed by Wang et al. (2003) significantly decreases the number of 

false alarms compared to conventional PLS when the process is operated under normal 

operating conditions. However, if the APLS approach of Wang et al. (2003) is 

implemented for real time monitoring, the model is updated regardless of the type of 

new observation. This is an issue when the new data is not representative of nominal 

process behaviour. 
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4.3.3.1 Sample Types in Real Time Monitoring 

In real time monitoring, one of two types of samples can be generated, a sample from 

normal operating conditions or a sample which deviates from the nominal behaviour. 

With respect to model updating, the normal operating observations can be used. The 

issue is how to handle non-conforming samples and outliers. These two types of 

samples behave in a similar manner as both deviate from the rest of the samples and are 

defined as: 

- A statistical outlier is unlikely to be generated consecutively. Barnett and Lewis 

(1994) define an outlying sample as one that appears to deviate significantly 

from other members of a sample. This type of outlying sample can be recorded 

within normal operating conditions as a result of noise or an erroneous reading. 

One of the main issues with the existence of outliers is their impact on 

identifying the model and associated confidence limits. In some cases, it may 

contain useful information about the process and hence it is important to use 

such information (Barnett and Lewis, 1994; Pell, 2000; Kruger et al., 2008a; 

Kruger et al., 2008b). 

- Non-conforming samples that are generated consecutively will typically 

materialise due to a disturbance or process fault and thus represent abnormal 

behaviour Choi et al.(2006). This type of sample contains irrelevant information 

which is not useful for model development.   

 

In off-line PLS modelling, i.e. the development of a reference model, there is only a risk 

of including the first type of outlying samples since the data represents normal operating 

conditions. A number of papers have been published on the impact of data type when 

developing a PLS reference model (Geladi and Kowalski, 1986; Martens et al., 1989; 

Wold et al., 2001; Haenlein and Kaplan, 2004; Kruger and Xie, 2012; Vinzi and 

Russolillo, 2012). They all pointed out that a PLS model should be developed on data 

that is outlier free and that is representative of nominal process behaviour.  

A number of approaches have been proposed for the detection and treatment of outliers 

off-line including filtering, visual detection and application of robust estimator 

(Cummins and Andrew, 1995; Pell, 2000; Hubert and Branden, 2003; Kruger et al., 

2008a). Filtering can materialise in a change in a data structure to reduce the effect of 

outliers and hence it is not implemented in this work. Visual detection can be achieved 
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through monitoring charts such as Hotelling’s T² and the squared prediction error      

or through scores plots following the application of principal component analysis. A 

number of approaches have been proposed to calculate a representative value of a 

statistical outlier, robust estimator, thereby ensuring it behaves as generated from 

nominal process so that the statistical outliers can be included in the PLS modelling 

(Barnett and Lewis, 1994; Cummins and Andrew, 1995; Pell, 2000; Kruger et al., 

2008a; Kruger et al., 2008b).     

When recursive PLS is used to update a PLS model in real time, there is a risk of 

including both types of samples. If a PLS model is continually updated using outlying 

samples the following issues may materialise: 

- There is a risk of missed detection of future outlying samples as the inclusion of 

outliers in the model updating procedure may act as a mask and prevent the 

detection of future outliers and non-confirming data (Barnett and Lewis, 1994). 
 

- If a sequence of outlying samples is included, the model may be considered to 

be non-representative of the nominal operating conditions of the process and 

hence issues materialise with its ability to predict future observations and also 

detect process changes. 

In the APLS algorithm of Wang et al. (2003), there was no investigation into the type of 

samples used in the updating procedure. Consequently, it may be updated using 

statistical outliers or samples representing abnormal behaviour, furthermore the adaptive 

confidence limits will adapt to the abnormal behaviour. This issue is illustrated in 

Figure 4.5 which shows the results of the implementation of the APLS on the FCCU 

when the process was affected by one of the programmed faults (i.e. degradation in the 

flow of the regenerated catalyst). It can be clearly seen that the three monitoring 

statistics indicate the presence of the fault and since the fault lasted for approximately 

150 consecutive samples, the following issues are observed: 

- In terms of the fault, which affects the process at sample numbers 950 to 1100, 

during this period all the samples are included in the model updating procedure. 

Hence the model is not representative of nominal process behaviour during this 

period. 

- The monitoring statistics indicate the presence of the fault but violate the 

confidence limits for only few samples and then the confidence limits adapt to 
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this event, consequently no alarm is produced. This issue is described in 

§4.3.3.2. 

 

Figure 4.5 – APLS monitoring charts representing the degradation in the flow of 

regenerated catalyst (Wang et al., 2003) 

 

Two strategies can be used to deal with statistical outliers in adaptive modeling. One 

approach is to delete the sample and hold the model updating until the next new sample 

is considered. This approach may result in a loss of process information for PLS 

modeling as pointed out by Barnett and Lewis (1994), Lee et al. (2006a), Choi et al. 

(2006) and Kruger et al. (2008a). The second approach is to replace the outlier by a 

representative value to reduce its effect on the updated model as previously described 

for off-line PLS which form the basis of treating outliers in this work. 

There is only a limited amount of published literature on how to detect and treat outliers 

for real time multivariate statistical projection based monitoring. For example: 

- Liu et al. (2004) proposed an online filtering approach, the revised MT filter-

cleaner, to detect and address the presence of statistical outliers online to provide 

clean data for online PLS and PCA monitoring. The approach involves two 

steps, first the process model is estimated online using an autoregressive model 

and the second is to apply a Modified Kalman filter, which is an algorithm used 

to calculate a statistically optimal estimate of the process thereby removing 

outliers from the data. After cleaning outliers from the data, PLS or PCA can be 

applied. Liu et al. (2004) stated that this approach had been applied to different 
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types of data including auto-correlated data, non-stationary and time varying 

data. The main issue with this approach is that filters can change the structure of 

the raw data hence they are not considered in this work.  
 

- Galicia et al. (2012) proposed a multivariate approach based on principal 

component analysis (PCA) and a Bayesian supervisory approach to detect and 

then differentiate between types of outliers. They applied the proposed approach 

to the adaptive modelling and monitoring of data from a simulation of a Kamyr 

digester. Extending this approach to PLS when constructing a process model is a 

research area for future.  
 

- One way to check the presence of statistical outliers in real time is to check the 

monitoring charts of Hotelling’s T² and      (Choi et al., 2006). Lee et 

al.(2006a) proposed the use of a combined index, which is a combination of the 

univariate monitoring statistics of Hotelling’s    and squared prediction error, 

    , to detect outlying samples for block-wise RPLS. The aim is to use the 

combined index for detecting outlying sample and then for calculating a weight 

function that is used to reduce the impact of the outlying data on the block-wise 

RPLS model. More specifically, the combined index is used to calculate an 

estimated value to be included in the model updating process instead of the 

outlying sample. 
  

The idea of using a weight function was first proposed by Cummins and Andrew 

(1995). They selected the Cauchy and Fair weight functions to suppress the 

impact of an outlier on the static PLS model, (Table 4.1), i.e. they calculated a 

robust estimator based on the weight. However, their idea was to use the residual 

resultant from the application of cross validation technique to calculate the 

parameter   in the weight function. Pell (2000) adopted the same weight 

function for static PLS but instead of using the cross validated residual they used 

the fitted residual. Instead of residuals, Lee et al. (2006a) used the combined 

index and its limit as the combined index combines both the principal and 

residual variation of the process, which is contained in Hotelling’s T² and      

respectively (§4.4.1). They showed that the weight function based on the 

combined index results in improvement in the root mean squared error of block-

wise RPLS compared to conventional PLS and RPLS for a waste water 

treatment process.  
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Table 4.1 – Different weight function used for PLS and recursive PLS methods. 

*   is the residual divided by the median absolute deviation from the median -    is the 

value of the combined index,   is the correspondence confidence limits and c is tuning 

parameter. 

 

The value of the weight ranges from 0 to 1 in both cases, where a weight that is close to 

zero forces the outlying sample to behave as if generated from normal operating 

conditions. The weight initially is set to one and when the combined index violates the 

confidence limit, hence the value of the combined index and its confidence limits are 

used to calculate the weight (Table 4.1). In this case the entire samples are weighted 

prior to model updating. Each weight function has a tuning parameter   which is 

determined empirically based on the application under study to achieve the best 

performance in term of prediction (Cummins and Andrew, 1995; Pell, 2000; Lee et al., 

2006a).  

In this work, the combined index threshold is used along with sample wise recursive 

PLS to develop a new and improved APLS approach that recursively updates the PLS 

model and is robust to statistical outliers (§4.4). Additionally, the Robust Adaptive PLS 

(RAPLS) algorithm uses the adaptive confidence limits only when the samples are 

confirmed to be representative of nominal operating conditions. 

4.3.3.2 Adaptive Confidence Limits 

Chiang et al. (2001) pointed out that one of most important feature of monitoring charts 

is the need to detect the fault as soon as possible after occurrence to allow investigation 

of the source of the fault to be carried out. Otherwise, if the monitoring chart showed 

that the process is within a state of statistical control during the faulty period, it may be 

assumed that the fault is auto-corrected, i.e. the control system implements a corrective 

action and the process return to a state of statistical control. Consequently, the process 

continues to be operated under the fault effect without investigation.  

Function  Residual weight function Combined index weight function 

Cauchy            ⁄   ]                             ⁄                       

Fair            ⁄                                  ⁄                        
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The use of adaptive confidence limits when the process is affected by a fault (non-

conforming samples) is an issue. Figure 4.5 shows that the monitoring statistics 

indicates the presence of the fault, however, it only violates the limits for the first few 

samples and then the adaptive confidence limits adapt to this abnormal event. This 

occurred because the adaptive confidence limits are calculated based on a window of 

the previous statistics under the fault conditions; consequently it accommodates the 

change in the monitoring statistics and indicates that the process is within a statistical 

control state whilst it is not. 

From the previous discussion, it can be concluded that adaptive confidence limits are 

useful only when the sample represent nominal process behaviour. Otherwise, the 

monitoring charts indicate that the process is within statistical control when it is affected 

by the fault. In the next section Robust Adaptive PLS algorithm is developed to 

overcome the limitations discussed in §4.3.3.1 and §4.3.3.2.  

4.4 Robust Adaptive PLS (RAPLS) 

This approach is proposed to overcome the limitations of the APLS algorithm i.e. to 

prevent the adaption of the model to outlying samples. Furthermore, it is extended to 

model and monitor processes that comprise autocorrelated observations.  The algorithm 

comprises two steps, first the screening of new samples (§4.4.1) and the second is to 

update the PLS model based on the threshold outcome. The algorithm is described in 

(§4.4.2). 

4.4.1 RAPLS Thresholds 

In adaptive modelling, a reliable PLS model have been developed in the previous step 

thus it is necessary to decide whether the new sample is an outlier. The combined index 

(Qin and Yue, 2001) threshold is used and is extended to distinguish between a 

statistical outlier and non-conforming sample. The basis of the combined index is a 

combination of the univariate statistics of Hotelling’s T² and the squared prediction 

error,     : 

  
  

  
 
 

    

    
      

(4.9) 

where    and      are the values of the univariate statistics Hotelling’s T² and the 

squared prediction error and   
  and      are the value of the corresponding confidence 
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limits for a significance level of   for a new sample. The vector   is the input values of the 

new sample and the matrix   is given by: 

  
      

  
  

     

    

 
(4.10) 

where   is the loading matrix and   is given by           ⁄ ) and T is the matrix 

of scores of the reference PLS model and   the number of sample in the reference data 

set. In the case of adaptive PLS, these matrices are obtained from the model at the 

previous time point. 

The confidence limits of the combined index are given in Qin and Yue (2001) are 

calculated based on                where   and   are given by:  

  
       

      
 

(4.11) 

  
         

       
 

(4.12) 

where S is        and   is the vector of the input values of the new sample.  

As mentioned in Chapter 3 that the Hotelling’s T² and      complements each other as 

the Hotelling T² represents the variation within the model, i.e. developed based on the 

retained scores, and the      represents the variation out of the model, i.e. developed 

based on the residuals. Therefore, in terms of monitoring charts there might be some 

samples violate the confidence limits of Hotelling’s T² but not the      limits and the 

opposite is materialised. Therefore, implementing a single index is preferred for 

monitoring (Qin and Yue, 2001) as it can detect all the point out of the joint range of the 

confidence limits for Hotelling’s T² and     . 

As described in §4.3.3.1, statistical outliers are unlikely to be recorded consecutively in 

contrast to samples from abnormal events. Therefore, by utilising the Western Electric 

rule, where consecutive violations are considered to be an indication of a process 

abnormality, therefore, discrimination between a fault and statistical outliers can be 

achieved. If the new sample is confirmed to be a statistical outlier, it requires further 

treatment prior to model updating, i.e. the combined index is utilised for the calculation 

of the weight to be used in the treatment of the outliers (Table 4.1). The RAPLS 

threshold can thus be summarised as shown in Figure 4.6.  
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 Figure 4.6 – RAPLS threshold 

 

Table 4.2 summarizes the different cases for RAPLS thresholds. In each case, the first 

threshold tests the statistical status of the current sample whereas the second threshold 

checks the statistical status of the previous and next samples. 

Table 4.2 - Different cases for RAPLS algorithm.  

Case First 

threshold 
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sample 
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sample 
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Sample 
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4.4.2 RAPLS Algorithm 

The RAPLS algorithm is summarized in Figure 4.7. The first step of the algorithm is to 

develop a reference model from historical data, using conventional PLS (NIPALS). 

Once a new sample becomes available, the threshold (§4.4.1) is examined and a 

decision, whether to update the PLS model and the confidence limits depends on the 

outcome of the threshold analysis (Table 4.2). The observation is discarded from the 

model updating process if the sample represents abnormal behaviour, i.e. the combined 

index violates its limits for 3 consecutive samples. If the sample represents a statistical 

outlier, i.e. the combined index is only violated by the current sample, the sample is 

weighted prior to updating the model (§4.4.1). 

Reference data

Pre-process data

Development of PLS 

Reference model

Calculate Monitoring statistics for reference 

data

Calculate monitoring statistics and confidence 

limits and Combined index

Check the combined index for 

the new sample if it exceeds it 

limit
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Start
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Figure 4.7 – Robust adaptive PLS algorithm 
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In this thesis, the RAPLS approach is extended to a dynamic variant where two time 

series representations are considered, Finite Impulse Response (FIR) and Auto-

Regressive with eXogenous input (ARX), and the performance of the algorithms are 

investigated in terms of model prediction and monitoring performance through their 

application to two industrial simulations (Chapters 5 and 6). The approach is also 

extended to robust adaptive multiblock dynamic PLS, Chapter 6. 

4.5 Evaluation of Recursive PLS Methods 

The purpose of a monitoring scheme based on RAPLS is to provide a model that 

represents process behaviour and to identify abnormal behaviour when it occurs. 

Therefore, the model needs to be evaluated as well as the monitoring charts. As for 

conventional PLS, the root mean squared error of calibration, validation and prediction 

is used for model evaluation whilst the monitoring charts are evaluated in terms of 

number of false alarms; fault detection ability and the time taken to indicate a fault. 

Therefore, the statistical indices of false alarm rate (    , fault detection rate (   ) 

and Average Run Length (ARL) are calculated. 

 

4.6 Application of Recursive PLS Approaches to a Time Variant Process 

In Chapter 3, it was shown that conventional PLS models and monitoring charts were 

inappropriate for processes that exhibit changing behaviour and the number of false 

alarm was significantly increased over that expected theoretically. This was determined 

through the application of conventional PLS to a simulation of a time variant process. In 

this section, the applicability of APLS and RAPLS for real time process monitoring of a 

time varying process is investigated. 

4.6.1 Application of APLS to a Time Variant Process 

The mathematical simulation representing time varying behaviour described in 

Chapter 3 (§3.9.2) forms the basis of this study. The first step in developing an APLS 

model is to attain a reference model. The PLS model comprising one latent variable 

developed in §3.9.3 is used as the basis of the analysis. For each new sample, the 

monitoring statistics, Hotelling’s T² and Squared Prediction Error (     and       and 

the adaptive confidence limits were calculated prior to model updating according to 

Equations 4.5, 4.6, 4.7 and 4.8. 
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The APLS algorithm was applied to two data sets, the validation and the test data sets 

(Chapter 3). The objective of using two data sets was to investigate the ability of APLS 

to discriminate between time varying behaviour and a step change in the process.  

Figures 4.8 and 4.9 show the time series plots of the measured and predicted values of 

the two quality variables where each plot has been zoomed in to show the differences. It 

can be seen that the APLS model has the ability to adapt to time varying behaviour 

compared to conventional PLS (Chapter 3). From Figure 4.8 an offset can be observed 

between the measured and predicted values for the first quality variable whilst the 

second quality variable shows small differences in the peaks as shown in Figure 4.9. In 

the case where a step change is introduced into the process at sample number t=500 and 

lasts for 10 consecutive samples, Figures 4.10 and 4.11 show the results in terms of time 

series plots of the measured and predicted quality variables. It can be seen that both 

variables were affected by the fault and they were well predicted through the 

implementation of APLS approach compared to conventional PLS. An offset can be 

seen between the measured and predicted values for both quality variables as shown in 

the Figures 4.10 and 4.11. 

  

Figure 4.8 – Time series plot of measured and predicted values for the first quality 

variable - APLS (Validation data set) 
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Figure 4.9 - Time series plot of measured and predicted values for the second quality 

variable - APLS (Validation data set) 

  

Figure 4.10 - Time series plot of measured and predicted values for the first quality 

variable - APLS (Test data set)  

  

Figure 4.11 - Time series plot of measured and predicted values for the second quality 

variable - APLS (Test data set)   
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improvement over those from conventional PLS, 0.05 and 2.62 respectively. The 

improvements in the prediction is also reflected in the RMSE for the test data set as for 

APLS, 0.11 and 0.64, were lower than those result from conventional PLS, 0.137 and 

3.49 for both quality variables. The RMSE of the second quality variable is higher than 

the first quality variable due to the difference in the variability of the two variables, the 

first quality variable variability was ±0.5 whilst for the second quality variable, it was 

±12 for the validation data set and was ±3 for the first quality variable whilst for the 

second quality variable, it was ±25 for the test data set. 

Table 4.3 -       of the validation and test data sets by APLS 

Quality variable Validation data set Test data set 

          

Y1 0.04 0.11 

Y2 0.57 0.64 
 

The monitoring results of the time varying process using the APLS model for the 

validation data set are illustrated in Figures 4.12, 4.13 and 4.14.  It can be seen that the 

     statistic is strongly affected by the time varying behaviour and in general the 

confidence limits adapt well to the change in process behaviour. This results in a 

reduction in the number of false alarms compared to conventional PLS results with the 

order of 5% and 1% out of statistical control samples corresponding to the 95% and 

99% confidence limits as respectively (Table 4.4). The quantitative results for the     

from the implementation of APLS shows a significant reduction compared to 

conventional PLS with the most noticeable difference being a drop of 32.25% for the 

     monitoring chart. 

For the test case, where a step change was introduced at t = 500 and which lasts for a 

duration of 10 samples, it can be seen that the three monitoring statistics were affected 

by the step change (Figures 4.15, 4.16 and 4.17). The monitoring charts indicate the 

presence of the step change for two samples and then the confidence limits start to adapt 

during the next few samples during which the process is still affected by the step 

change. Additionally, since the model and confidence limits were updated using 

samples and statistics generated during step change condition respectively, the model 

and the confidence limits were insensitive to the detection of further abnormal samples, 

i.e. after updating the model and the confidence limits with the first two samples of the 

step change, the monitoring charts failed to detect the full period of the step change.  
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Figure 4.12 – Hotelling’s T² for the 

validation data set – APLS 

Figure 4.13 -      for the validation data 

set – APLS 

 

 

Figure 4.14 -      for the validation data 

set – APLS 
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reality where the fault or disturbance lasts for a significant period, the process model 
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Figure 4.15 – Hotelling’s T² for the test data set – APLS 

 

Figure 4.16 -      for the test data set – APLS 

 

Figure 4.17 -      for the test data set –APLS 
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Table 4.4 -     and     based on APLS 

Chart     – 95%     – 99%     – 95%     – 99% 

Hotelling’s T² 40% 20% 4.00 % 1.00% 

     30% 10% 4.12% 1.37% 

     30% 10% 5.25% 1.50% 

 

As mentioned in Chapter 3, the results for      and      were calculated based on a 

Monte Carlo simulation where the experiment was repeated 50 times and in each run, 

the run length (RL) was recorded and the     calculated. The      was calculated 

from the monitoring charts constructed based on the validation data set since the time 

varying behaviour is considered normal process behaviour whilst      was attained 

from the test data set following the introduction of a step change at t=500. The results 

from the Monte Carlo simulation are summarised in Table 4.5. It can be seen that the 

implementation of APLS produced monitoring charts that detect the fault rapidly 

compared to conventional PLS where the fault was indicted after 5 to 6 samples. 

Consequently, the      is better compared to conventional PLS (Chapter 3).The results 

also indicate that the monitoring charts remain within a state of statistical control for a 

satisfactory number of samples when the process represents normal operating 

conditions, the ideal      for the 99% confidence limit is 100 samples.  

 

Table 4.5 - Average run length for the monitoring charts by APLS. 

Chart           

Hotelling’s T² 80 1 

     79 1 

     74 1 

 

Although the results from the application of APLS to the data representing time varying 

behaviour indicate that the number of false alarm was decreased, the fault detection rate 

was unsatisfactory as the monitoring charts detect 20% of the faulty samples hence the 

RAPLS is implemented.  
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4.6.2 Application of RAPLS to a Time Variant Process 

The procedure presented in §4.4.2 described the construction of monitoring charts for 

the simulation of a time varying process. As for APLS, the first step was to develop a 

reference model using conventional PLS (§3.9.3). Once a new sample becomes 

available, the univariate monitoring statistics and the combined index are calculated and 

the first threshold is implemented to prevent the model adapting to outlying samples. 

Similarly, the confidence limits are not updated when the sample is generated from 

abnormal process behaviour. Details of the used weight are provided in Appendix B. 

The results from the application of RAPLS for the validation data set are presented in 

Figures 4.18 and 4.19 where the first quality variable was unaffected by the time 

varying behaviour as the behaviour of the signal does not change compared to that prior 

to the introduction of the ramp signal (i.e. time varying behaviour) whilst the second 

variable was strongly affected by the time varying behaviour. It can clearly be seen that 

both quality variables are well predicted. The RMSE for the validation data set 

(Table 4.6) shows that the results are slightly improved compared to these of APLS 

(Table 4.3).  

By checking the time series plot of the combined index, Figure 4.20, it can be seen that 

there is a few violations, appointed by arrows, indicating the presence of statistical 

outliers. The number of the violations was quantified from the monitoring chart of the 

combined index to be 18 samples corresponding to 2.25% of the violations for the 99% 

confidence limit and 59 samples corresponding to 7.37% of the violations for the 95% 

confidence limit. These rates are higher than the statistically acceptable rate of order of 

5% and 1% for the 95% and 99% confidence limits respectively indicating that there is 

some samples is not caused by chance, i.e. outliers. Therefore, these outliers were 

weighted prior to model updating to reduce the impact on the RAPLS model. The time 

series plot and the calculations of the weight used for outlying samples are given in 

Appendix B. This approach results in the outliers behaving similar to the samples 

generated during normal operating conditions. Additionally, the treatment of the 

statistical outliers result in a slight improvement in the model predictions and this is 

reflected in the RMSE, 0.03 and 0.56 compared to APLS (0.04 and 0.57) for the first 

and second quality variables respectively. However, this improvement is still 

comparable to the result from APLS as the number of the outliers is small (18 samples) 

compared to the number of samples (800 samples). 
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Figure 4.18– Time series plot of measured and predicted values for the first  quality 

variable - RAPLS (Validation data set) 

  

Figure 4.19 – Time series plot of measured and predicted values for the second quality 

variable – RAPLS  (Validation data set) 

 

Figure 4.20 - Time series plot for the combined index - RAPLS (Validation data) 
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The results from the application of RAPLS to the test data set are presented in 

Figures 4.21 and 4.22. It can be observed that both quality variables are well predicted. 

However, during the step change period the model predicts the behaviour but with less 

accurately compared to APLS. This is because the samples during this period did not 

contribute to the model hence the accuracy of the prediction was less than that for 

APLS. From Table 4.6, the values of the RMSE, 0.12 and 1.16, were an improvement 

over those for conventional PLS (0.137 and 3.49) for the first and second quality 

variables respectively. However, the predictions for the test data set were slightly lower 

compared to the APLS results, RMSE= 0.11 and 0.64, for both quality variables. This 

was expected because the RAPLS approach prevents the abnormal samples (step change 

samples) from contributing to model updating and therefore the predictions during this 

period were calculated using the previous model. However, when the process returned 

to normal operating conditions, the prediction improved as shown in the time series 

plots (Figures 4.21 and 4.22). This shows that the model can discriminate between the 

step change (abnormal behaviour) and time varying behaviour (normal operating 

behaviour).  

 
 

Figure 4.21 – Time series plot of measured and predicted values for the first  quality 

variable - RAPLS (Test data set) 
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Figure 4.22 – Time series plot of measured and predicted values for the second  quality 

variable - RAPLS (Test data set) 

 

Table 4.6-      of the validation and test data set - RAPLS 

Quality variable Validation data set Test data set 

          

Y1 0.03 0.12 

Y2 0.56 1.16 

 

Figure 4.23 shows the combined index for the test data set and this will be used to 

determine whether to update the PLS model. The effect of the step change is evidence 

as the combined index violates the confidence limits during the step change period, 

hence the PLS model is not updated during this period. 

 

 

Figure 4.23 - Time series plot of the combined index - RAPLS ( Test data set)  
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The monitoring results using the RAPLS model for the validation data set are illustrated 

in Figures 4.24, 4.25 and 4.26. It can be seen that they are similar to these for APLS. A 

few out of statistical control signals were detected. The number of the violations is 

acceptable as they did not exceed the 5% and 1% for 95% and 99% confidence limits 

respectively. This is reflected in the false alarm rate (Table 4.7) where the     form 

RAPLS, 1%, 1.25 and 1.25% for Hotelling’s T²,      and      are approximately 

similar to these for APLS for the 99% confidence limit. The same observation can be 

concluded for the 95% confidence limit, the     form RAPLS, 4%, 4.25% and 5.12% 

for Hotelling’s T²,      and     , is comparable to those from APLS. 

   

Figure 4.24 - Hotelling’s T² 

for the validation data set 

Figure 4.25 -      for the 

validation data set 

Figure 4.26 -      for the 

validation data set 
 

Figures 4.27, 4.28 and 4.29 show the monitoring results following the application of 

RAPLS to the test data set. The monitoring charts indicate the step change and the 

adaption to the time varying behaviour. The abnormal samples, i.e. samples during the 

step change, are detected through the monitoring charts of Hotelling’s T²,      and 

     and they were not included in the model updating process since they are also 

indicated by the combined index chart (Figure 4.23). The quantitative results of the  

   , Table 4.7, indicates that the abnormal event is fully detected,     is 100%, by the 

three monitoring charts compared to the APLS monitoring charts where only 20%, 10% 

and 10% of the fault were detected by Hotelling’s T²,      and      respectively. 

Table 4.7 -     and     based on RAPLS 

Chart     – 95%     – 99%     – 95%     – 99% 

Hotelling’s T² 100% 100% 4% 1% 

     100% 100% 4.25% 1.25% 

     100% 100% 5.12% 1.25% 
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Figure 4.27- Hotelling’s T² 

for the test data set 

Figure 4.28 -      for the 

test data set 

Figure 4.29 -      for the 

test data set 

 

Table 4.8 summarises the results of the statistical indices for the average run length; 

     and      based on a Monte Carlo simulation comprising 50 experiments. It can 

be seen that both indices provide good results with the      not indicating any false 

alarms for a sufficient period of 83, 81 and 79 for the three monitoring statistics 

compared to the ideal      of 100 samples whilst the      immediately indicates the 

abnormal event compared to conventional PLS as shown in Table 4.8 

Table 4.8 - The average run length for the monitoring charts – RAPLS. 

Chart           

Hotelling’s T² 83 1 

     81 0 

     79 1 

 

The following observations can be made when comparing the performance of 

conventional PLS, APLS (Wang et al., 2003) and RAPLS algorithms. 

- Both adaptive algorithms, APLS and RAPLS, have the ability to adapt to the 

time variant behaviour compared to conventional PLS. 

- The quality variables are well predicted and the predictions from APLS and 

RAPLS are improvement over conventional PLS. The improvement identified 

by the adaptive algorithms is reflected in the lower values of the root mean 

squared error (RMSE). For the test data set, the prediction error of the RAPLS 
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model was slightly higher than the APLS as the samples from the abnormal 

event were discarded from model update.  

- The RAPLS model identified a few outlying samples which results in a slight 

improvement in the model predictions compared to APLS and conventional PLS 

for the validation data set. 

- The number of false alarms for all the monitoring charts decreased through the 

implementation of the adaptive approaches, APLS and RAPLS, compared to 

conventional PLS.  

- RAPLS and conventional PLS perform better than APLS in terms of fault 

detection as the APLS algorithm allows the confidence limits to adapt to 

changes without consideration the sample type. 

 

4.7 Application of Recursive PLS Approaches to a Non-stationary Process 

In this section, the efficiency of APLS and RAPLS for real time monitoring for a non-

stationary process is investigated. In Chapter 3, it was shown that conventional PLS is 

inappropriate for the modelling of processes exhibiting non-stationary behaviour with a 

large number of false alarms. One approach to account for non-stationary behaviour is 

the implementation of recursive PLS with adaptive confidence limits. 

 

4.7.1 Application of APLS to a Non-Stationary Process 

The mathematical simulation representing non-stationary process behaviour introduced 

in Chapter 3 (§3.10.2) forms the bases of this study. The APLS algorithm was applied 

to the validation data and the test data set previously discussed in Chapter 3. The 

objective of using two data sets is to investigate the ability of APLS to discriminate 

between non-stationary behaviour and a process fault, i.e. step change.  

Figures 4.30 and 4.31 shows the time series plots for the measured and predicted values 

for the two quality variables and it can be clearly seen that APLS has the ability to adapt 

to non-stationary behaviour. For the case when the process is affected by the step 

change at sample number t=500, Figures 4.32 and 4.33 show the resulting time series 

plots of the measured and predicted quality variables and again the behaviour is well 

predicted. This is expected as the prediction was calculated using the updated PLS 

model utilising the previous time points. The results for the RMSE for the validation 

and test data sets (Table 4.9) reflect this observation. From Table 4.9, the RMSE 
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following the application of APLS to the validation data set (0.01 and 0.06) decreases 

compared to conventional PLS (0.56 and 1.42) for both quality variables. The same 

observation can be made for the test data set, the RMSE following the application of 

APLS (0.05 and 0.08) decreases compared to the RMSE for conventional PLS (0.60 and 

1.46) for both quality variables respectively. 

 

  

Figure 4.30 -Time series plot of measured and predicted values for the first  quality 

variable - APLS (Validation data set) 

  

Figure 4.31 - Time series plot of measured and predicted values for the second  quality 

variable- APLS (Validation data set) 
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Figure 4.32-Time series plot of measured and predicted values for the first quality variable 

- APLS (Test data set) 

  

Figure 4.33-Time series plot of measured and predicted values of the second quality 

variable - APLS (Test data set) 

Table 4.9-      of the validation and test data set - APLS 

Quality Variables Validation data set Test data set 

          

Y1 0.01 0.05 

Y2 0.06 0.08 

 

The results from the monitoring of the non-stationary behaviour using the APLS model 

for the validation data set are illustrated in Figures 4.34, 4.35 and 4.36. In general the 

confidence limits adapt to the non-stationary behaviour. This result in a significant 

reduction in the number of false alarms compared to conventional PLS. A few samples 

fell outside of the 95% and 99% confidence limits and this was expected to be of the 

order of 5% and 1% respectively. This is reflected in Table 4.10, where the rate of false 

alarms, 5.87%, 4.37% and 4.62% for the 95% confidence limit and the    , 1.25%, 
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1.12% and 1.75% for the 99% confidence limit for Hotelling’s T²,      and      

respectively. Therefore, the number of the false alarms is greatly reduced compared to 

those from conventional PLS, 58.12%, 59.87% and 60% (Chapter 3).   

For the test data set where a step change was introduced, Hotelling’s T² does not 

indicate the presence of the step change whilst the      and      monitoring statistics 

indicated the presence of the step change at t = 500 (Figures 4.37, 4.38 and 4.39). 

However, they identified the first two samples and then the confidence limits started to 

adapt to the change. Consequently, the model and confidence limits were updated using 

samples that were affected by the step change hence the monitoring charts indicated that 

the process was back in statistical control whilst still affected by the abnormal event 

(step change). The quantitative fault detection rates (Table 4.10) reflect this as the 

monitoring chart of      and      detect 20% of the fault whilst Hotelling’s T² does 

not detect a fault as shown in Figure 4.37.  

  

Figure 4.34 - Hotelling’s T² for the 

validation data set 

Figure 4.35 -      for the validation data 

set 

  

Figure 4.36 -      for the validation data 

set 

Figure 4.37 - Hotelling’s T² for the test 

data set 
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Figure 4.38 -      for the test data set Figure 4.39 -      for the test data set 

 

Table 4.10 -      and     based on APLS 

Chart     – 95%     – 99%     – 95%     – 99% 

Hotelling’s T² - - 5.87 % 1.25 % 

     20% 20% 4.37 % 1.12 % 

     20% 20% 4.62 % 1.75 % 

 

Table 4.11 summarises the results from using a Monte Carlo simulation based on 50 

experiments to calculate the average run length (   ). The result shows that for the 

validation data set, the      indicated that the monitoring charts of the APLS model 

did not produce false alarms for an acceptable period of time, 59, 62 and 70 samples for 

the Hotelling’s T²,      and      compared to these following the application of 

conventional PLS (Chapter 3), which were 47, 37 and 33 samples respectively. The 

ideal      is approximately 100 samples which indicate that the APLS improved the 

monitoring charts compared to conventional PLS. On the other hand, the results of the 

     indicated that the abnormal event is indicated rapidly compared to the monitoring 

charts based on conventional PLS. On average      based on the APLS model 

indicates the abnormal event after a delay of one sample compared to a delay of 4 

samples following the application of conventional PLS. In addition,      constructed 

based on APLS indicates the abnormal event immediately compared to the same 

monitoring chart from conventional PLS which required 3 samples to indicate its 

presence. Hotelling’s T² was not affected by the abnormal event hence      is not 

calculated. 
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Table 4.11 - The average run length of the monitoring charts by APLS. 

Chart           

Hotelling’s T² 59 - 

     62 0 

     70 1 
 

4.7.2 Application of RAPLS to a Non-stationary Process 

The RAPLS algorithm described in §4.4.2 is used to develop monitoring schemes for a 

process exhibiting a non-stationary behaviour. The reference model developed based on 

conventional PLS (§3.10.3) is utilized. The univariate monitoring statistics and the 

combined index for every new sample are calculated and the RAPLS thresholds are 

implemented prior to model update to prevent a non representative sample from 

contributing to the model updating process. Details of the used weight is provided in 

Appendix B. 

Figures 4.40 and 4.41 show the measured and predicted values for both quality variables 

for the validation data set. It can be seen that the results are comparable to the results 

following the application of APLS. A few samples, 5 samples corresponding to 0.6% 

for the 99% confidence limit, can be detected based on the combined index 

(Figure 4.42). However, since only 5 samples are identified as outliers (when combined 

index violates its limit), there is no difference in the prediction results compared to the 

APLS algorithm. The RMSE of prediction (Table 4.12), i.e. 0.01 and 0.06 for both 

quality variables reflect this observation as it is similar to the RMSE following the 

application of APLS for the validation data set (Table 4.9)  

   

Figure 4.40 - Time series plot of measured and predicted values for the first quality variable - 

RAPLS (validation data set) 
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Figure 4.41 - Time series plot of measured and predicted values for the second  quality 

variable - RAPLS (validation data set) 

  

Figure 4.42- Time series plot of the combined index - RAPLS (validation data set) 

 

The results from the application of RAPLS to the test data set are presented in 

Figures 4.43 and 4.45. It can be clearly seen that both quality variables were well 

predicted. However, during the step change period the prediction accuracy is less 

compared to that for APLS. This was expected as these samples were discarded from 

the model updating process and the model prior to the step change was used to predict 

the behaviour of the process during this period, consequently, the RMSE decreased as 

shown in Table 4.12. However, it can be clearly seen that the value of the RMSE, 0.13 

and 0.16 for both quality variables following the application of RAPLS improved 

compared to that for conventional PLS, RMSE = 0.6 and 1.46, (Chapter 3).  
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Figure 4.43 - Time series plot of measured and predicted values for the first quality variable - 

RAPLS (test data set) 

  

Figure 4.44 -Time series plot of measured and predicted values for the second  quality 

variable - RAPLS (test data set) 

 

Figure 4.45 - Time series plot for the combined index - RAPLS (test data set) 
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Table 4.12-       of the validation and test data sets by RAPLS 

Quality variables Validation data set Test data set 

          

Y1 0.01 0.13 

Y2 0.06 0.16 

 

Figures 4.46, 4.47 and 4.48 show the monitoring charts following the application of 

RAPLS for the validation data set. The results for the validation data set are comparable 

to those for APLS. A few samples lie outside of the 95% and 99% confidence limits. 

Table 4.13 summarizes the quantitative results of the number of false alarms and it can 

be concluded that the rate of violations is acceptable for 95% and 99% confidence limits 

respectively. The     is 5.87%, 4.37% and 4.62% for the 95% confidence limit and 

1.25%, 1.12%  and 1.75% for the  Hotelling’s T²,      and      respectively for the 

99% confidence limit. In addition these rates reveal that the number of violations is 

greatly reduced compared to conventional PLS (Chapter 3).   

   

Figure 4.46- Hotelling’s 

T² for the validation data 

set 

Figure 4.47 -      for the 

validation data set 

Figure 4.48 -      for the 

validation data set 

 

The monitoring results following the implementation of RAPLS to the test data set are 

illustrated in Figures 4.49, 4.50 and 4.51. It can be clearly seen that the monitoring 

charts      and      are affected by the abnormal event and indicate the presence of 

the step change. Consequently, the confidence limits stop adapting process until the 

process is back to normal operating conditions. This is reflected in Table 4.13 where 

100% of the abnormal event was detected compared to 20% following the 

implementation of APLS. Hotelling’s T² is not affected by the step change and hence it 

does not violate the confidence limits and therefore the fault detection rate is not 
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calculated. This is because Hoteling’s T² reflects a different change in the process 

compared to those reflected by       and      monitoring charts. 

   

Figure 4.49- Hotelling’s T² 

for the test data set 

Figure 4.50 -      for the 

test data set 

Figure 4.51 -      for the 

test data set 

 

Table 4.13-     and     based on RAPLS 

Chart                                 

Hotelling’s T² - - 5.87 % 1.25 % 

     100% 100% 4.37 % 1.12 % 

     100% 100% 4.62 % 1.75 % 

 

The concept of average run length is used again based on Monte Carlo simulation for 50 

experiments, to evaluate the monitoring charts. Table 4.14 summarizes the results for 

     and     . It can be seen that the monitoring charts based on RAPLS remain 

within state of statistical control for a sufficient number of samples, compared to the 

ideal      of 100 samples, as reflected by the      ,62, 65 and 73, for Hotelling’s T², 

     and      respectively and the results are slightly different to those following the 

application of APLS, 59, 62 and 70.  

As only      and      indicated the presence of the step change, the      is 

calculated for these two metrics. On average, the      chart based on RAPLS detects 

the abnormal event immediately and after 1 sample for     . This result concludes that 

the monitoring chart is an improvement compared to that for conventional PLS. 
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Table 4.14 - The average run length of the monitoring charts by RAPLS. 

Chart ARL0 ARL1 

Hotelling’s T² 62 - 

     65 0 

     73 1 

 

The following conclusions can be drawn from comparing the performance of the 

adaptive approaches and conventional PLS for a non-stationary process: 

- The predictions following the application of the adaptive approaches are 

improved compared to those for conventional PLS. The root mean squared error 

(RMSE) of prediction reflects this observation as it lower than the corresponding 

values for conventional PLS. 

-  In term of the monitoring charts, the adaptive PLS (APLS) (Wang et al., 2003) 

monitoring charts indicate the presence of the abnormal events. However, the 

adaptive confidence limits are allowed to adapt to the new samples, 

consequently, the fault detection rate decreases. 

- An alternative adaptive method RAPLS algorithm which performs better than  

APLS (Wang et al., 2003) in terms of fault detection shows that the     is high 

compared to APLS. In addition, it has the ability to identify outliers and 

determine whether a new sample is generated during normal operations or is an 

abnormal event. 

- Both adaptive approaches, APLS and RAPLS, decrease the number of false 

alarms compared to conventional PLS. 

4.8 Chapter Summary and Conclusions  

A critical review of a number of recursive PLS methods presented in the literature was 

undertaken. From this analysis, the sample wise recursive PLS algorithm along with 

adaptive confidence limits proposed by Wang et al. (2003) was selected as the bases of 

the subsequent analysis for the following reasons: 

- The efficiency of the model updating procedure which resulted in more accurate 

predictions.  

- The ability of the model to account for changes in process behaviour. 
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- The ability of the model to be extended to construct monitoring charts for the 

whole process and individual unit operations as shown in Chapter 6. 

However, two issues arose, first, the presence of outlying samples when performing real 

time modelling and monitoring and their impact on the adaptive confidence limits. To 

account for these issues, robust adaptive PLS with adaptive confidence limits (RAPLS) 

was developed. The proposed approach is resistant to statistical outliers and the 

updating procedure is not implemented in the presence of non-conforming samples. The 

results from the case studies showed that this approach is an improvement over the 

APLS algorithm in terms of process monitoring and fault detection rate. 

Secondly, as most industrial processes have autocorrelated measurements and since 

conventional PLS does not deal with autocorrelated measurements, a dynamic extension 

to APLS and RAPLS was proposed. The recursive partial least squares models with 

adaptive confidence limits (APLS) proposed by (Wang et al., 2003)  and RAPLS were 

extended to model and monitor dynamic processes with adaptive confidence limits.  

The adaptive PLS (APLS) algorithm was applied to a time varying process and a non-

stationary process and it was shown that the adaptive PLS approach reduced the false 

alarm rate compared to conventional PLS. However, the fault detection rate was 

reduced since the model as well as confidence limits were updated using non-

conforming samples and hence out of control behaviour failed to be detected. Therefore, 

a RAPLS algorithm was proposed to overcome the aforementioned limitations. The 

adaptive PLS approach was used as the basis. But through the implementation of the 

combined index as a threshold, the model and the limits were only updated with 

samples representative of nominal operation.  

From the application of the APLS and RAPLS algorithms to the simulations of time 

varying and non-stationary process, it can be concluded that the adaptive approaches 

reduced the number of false alarms compared to conventional PLS as discussed 

previously. The most significance difference between conventional PLS and the 

adaptive algorithms is observed in the      chart for time variants processes. In 

addition, the RAPLS algorithm further decreased the number of false alarms compared 

to APLS for Hotelling’s T²,      and     . This is due to the ability of the RAPLS 

algorithm to identify the outlying samples and hence it can accurately investigate the 

new samples. In terms of fault detectability, it can be concluded that the monitoring 



121 
 

charts following the application of RAPLS provide reliable results as the fault detection 

rate was higher than these for APLS.  

In Chapters 5, the dynamic variants of PLS, adaptive PLS (APLS) and robust adaptive 

PLS (RAPLS) based on an Auto-Regressive with eXogenous input (ARX) are applied 

to model the complex dynamic behaviour of an ammonia synthesis fixed bed reactor.  
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Chapter 5 

Statistical Monitoring of Complex Behavior of the Ammonia Synthesis 

Reactor   

5.1 Introduction 

This chapter presents the statistical monitoring of a unit operation that forms part of a 

continuous process. The application study involves data generated from a simulation of 

an ammonia synthesis reactor published by Morud and Skogestad (1998). The 

simulation is based on first principle models that are complex and time consuming to 

develop and from the literature it has been shown that the ammonia synthesis reactor is 

a dynamic system (Brian et al., 1965; Morud and Skogestad, 1998). In addition, it is 

demonstrated that the presence of recycling in the ammonia synthesis process increases 

the level of complexity (Denn and Lavie, 1982; Morud and Skogestad, 1998). Although 

the first principle models offers a detailed understanding of the physical behaviour of 

the process, empirical modelling provides a faster result and is forward in some 

application. Partial Least Squares (PLS) is the most common statistical approach that 

has been used for the development of empirical models and form the basis of modelling 

and monitoring schemes discussed in this chapter. 

5.2 Objectives  

Two objectives form the bases of this study. The first was to demonstrate the 

application of the statistical modelling technique of partial least squares to an industrial 

process that exhibits dynamic and nonlinear behaviour. The second goal was to apply 

the extensions of PLS, dynamic PLS (DPLS), adaptive dynamic PLS (ADPLS) and 

robust adaptive dynamic PLS (RADPLS) to develop real time monitoring charts. The 

purpose of the monitoring charts is to provide better insight and immediate information 

on the state of the process by detecting special cause variation. The key questions 

addressed are:  

- Is the multivariate statistical technique of PLS or its variants DPLS, ADPLS and 

RADPLS appropriate for the understanding and prediction of reactor performance?  

- Which pre-processing techniques have a significant impact on the dynamic PLS 

algorithm in terms of predicting the concentration of ammonia? 

- Are the monitoring charts built, based on dynamic PLS and its variants, appropriate 

for detecting abnormal behaviour? 
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- Which PLS approach (conventional PLS, dynamic PLS, adaptive PLS or robust 

adaptive PLS) is more appropriate for monitoring performance and why?  

The following section provides a description of the process characteristics and the 

simulation study. 

5.3 Ammonia Synthesis Reactor 

In the chemical industry, ammonia is considered to be an important chemical compound 

with 15% of the ammonia produced worldwide being used by industry (Appl, 1999) 

with fertilizer industry using 80% of the total amount of produced ammonia in the USA 

(Riegel and Kent, 2007). Furthermore, it is used for the production of a range of 

industrial products including fibres, plastics, organics and explosive components. The 

production of ammonia has expanded outside the USA with China, Russia and India 

being the main producing countries and more recently the Middle East. According to 

the US Geological Survey (U.S. Geological Survey, 2008), the main producer countries 

produce 55% of the total world production of ammonia. 

5.3.1 Overview of the Ammonia Synthesis Reactor 

Figure 5.1 shows a schematic diagram of the ammonia synthesis reactor. Ammonia 

synthesis is performed in a fixed-bed reactor, which consists of two core elements; the 

first is that 3 consecutive fixed-beds with each bed comprising 10 segments in which 

the reaction is carried out. The second element is the heat exchanger where heat is 

exchanged between the inlet stream and the outlet stream. As a result, the heat is 

recycled to the process. The produced ammonia leaves the reactor at the bottom of the 

third bed with product quality being defined in terms of concentration of the produced 

ammonia.  

More specifically, the gases (     ) pass through the first bed and the reaction initially 

takes place slowly and the ammonia (     concentration is low. The reaction rate 

increases as the temperature increases along the bed reaching equilibrium when all the 

influences are balanced or stable (Figure 5.1). Hot gases (      and    ) are then 

passed out and the gas-mixture is cooled down by mixing with fresh feed (     ) at 

quench point   . In the second bed, the temperature increases again as the reaction 

takes place and once again reaches equilibrium and hot gas (      and    ) is passed 

out. This operation is repeated when the stream is transferred from the second to the 

third bed with the gas exiting from the third bed and entering the heat exchanger. Heat 
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is exchanged between the hot gases (      and    ) and the fresh feed (     ) with 

the heated gases being transferred back to the first bed. This is mixed again with the 

fresh feed at quench point,    (Figure 5.1), and passed to the first bed and process is 

repeated. 

Quench point 

Q1

First bed

- Ammonia concentration is low at start of the bed

-  Reaction rate is high

- Temperature increased along the bed 

Second bed

- Ammonia concentration is low at start of the bed

- Reaction rate is high

- Temperature increased along the bed 

Third bed

- Ammonia concentration is low at start of the bed
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- Temperature increased along the bed 
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Figure 5.1- Schematic diagram of ammonia synthesis fixed-bed reactor 

 

It is essential for the ammonia synthesis process to maintain the product concentration 

(ammonia) at the required level by maintaining the level of pressure of the reactor and 

the temperature of the total feed flow. In general to set up a controller for any process, it 

is necessary to understand the behaviour of the process under open loop control as a 

first step. Therefore, the statistical analysis of the ammonia synthesis undertaken is 

performed in the absence of a controller to enable process understanding. The findings 

and discussions in this chapter are based on the data generated from a simulation study 

published by Morud and Skogestad (1998). The purpose of using this simulation is to 

obtain data that is representative of dynamic behaviour of an industrial process.  
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5.4 Process Characteristics  

5.4.1 Dynamic System with Recycle  

The ammonia synthesis reactor considered in this case study is a dynamic system which 

exhibits complex dynamics due to recycling and quenching (Morud and Skogestad, 

1998). Energy recycling in the ammonia process occurs when the hot stream of 

ammonia enters the heat exchanger and heats up the fresh feed before entering the first 

bed. The presence of recycling results in the process operating under a feedback 

mechanism i.e. recycling is equivalent to feedback control. In general, recycling in any 

dynamic process increases its sensitivity to disturbances, response time and hence can 

result in instability (Denn and Lavie, 1982; Morud and Skogestad, 1994). It is shown 

that the ammonia reactor becomes unstable and its temperature oscillates rapidly in two 

situations (Morud and Skogestad, 1998). The first occurs when the overall pressure 

drops below 170     and the total fresh feed temperature is kept at steady state. The 

second occurs when the total fresh feed temperature drops below 235°  and the overall 

pressure is maintained at steady state. Table 5.1 summarizes the operating conditions 

resulting in the ammonia reactor becoming unstable. Morud and Skogestad (1998) 

pointed out that these large and rapid oscillations of the temperature damage the catalyst 

in the reactor. This behaviour is called limit cycle behaviour and it is shown in 

Figure 5.2 where the instability is caused by a drop in the overall pressure.  

Table 5.1- Situations where the ammonia reactor becomes unstable 

Instability caused by Total fresh feed temperature Pressure 

Case 1 Constant at 250°C Drops below 170 bar 

Case 2 Drops below 235°C Constant at 200 bar 

 

 

Figure 5.2 - Limit cycle behaviour of the ammonia synthesis reactor 
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In Figure 5.2, the reactor initially operates at 200     and then at t=0 sec the pressure is 

reduced from 200 to 170 bar and the temperature remains stable. The limit cycle 

behaviour starts when the overall pressure is reduced from 170 to 150     at 2000 sec. 

The temperature stabilises once the pressure is restored to 200    .   

The analysis of the unstable behaviour of the ammonia fixed-bed reactor is extensive in 

the field of control engineering. Table 5.2 summarizes three key papers where the 

dynamic behaviour of the ammonia synthesis fixed-bed reactor has been analysed using 

theoretical models, i.e. first principle models, and control strategies. First principle 

models are built based on the fundamentals of chemistry and physics of the process but 

such models are difficult to develop, especially for complex processes such as ammonia 

synthesis (Seborg et al., 1989; Morud and Skogestad, 1994; Morud and Skogestad, 

1998). 

Table 5.2 - Key literature on the analysis and control of the ammonia synthesis reactor.  

Type of analysis Purpose of the analysis References 

Steady state analysis 

Nonlinear dynamic analysis 

Root locus analysis 

Frequency analysis 

Explanation of dynamic 

behaviour of the reactor  

Development of  first principle 

model 

Morud and 

Skogestad  (1998) 

Simulation and control of the 

reactor using feedback control 

To prove the claim that the 

reactor could be controlled 

using feedback control 

Realfsen (2000) 

Simulation and application of 

different control strategies  

Different control designs were 

applied to stabilize the reactor. 

 

Holter (2010) 

 

Morud and Skogested (1998) performed an analysis on the instability of the behaviour 

of the ammonia reactor and they showed that steady state analysis is inappropriate. 

Nonlinear dynamic analysis was then used to study the cause of the instability of the 

ammonia reactor. Through the approaches of root locus analysis and frequency domain 

analysis, physical insight was attained into the cause of the instability. Finally they 

showed that the reactor can be stabilised through the implementation of a feedback 

controller (Morud and Skogestad, 1998). Realfsen (2000) also showed that a feedback 

controller can be used to stabilise the reactor. More recently Holter (2010) analysed the 

theoretical model developed by Morud and Skogested (1998) and applied different 
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control design including feed-forward and feedback control to stabilize the process. It 

was found that feed-forward design is inappropriate for stabilising the ammonia reactor.   

5.5 Complexity of Process Behaviour and PLS Modelling 

From the previous sections, it is clear that the complex dynamic behaviour of the 

ammonia fixed-bed reactor is a consequence of recycling. Moreover the theoretical 

modelling of such complex behaviour, which is based on a combination of differential 

and algebraic equations, requires significant effort, engineering experience and 

knowledge of the principles of chemistry and physics of the process to model process 

behaviour. Partial Least Squares (PLS) which is a black-box modelling approach 

provides an alternative approach for modelling such process behaviour. Moreover, it 

can be used to detect the onset of abnormal behaviour.  

Despite the widespread application of PLS to model industrial processes under steady 

state and dynamic behaviour, limited attention has been paid to the use of recursive 

dynamic PLS with adaptive confidence limits to model dynamic nonlinear processes in 

the presence of recycling. For example, Wang et al. (2003) applied Recursive PLS with 

adaptive confidence limits for the modelling of a fluid catalytic cracking unit and a 

distillation column for purifying butane. Both processes presented time varying 

behaviour. However, the level of process dynamics was limited and consequently they 

were able to model the processes using linear steady state and recursive linear 

approaches. Hence, Wang et al. (2003) suggested that further investigation on 

autocorrelated processes (i.e. dynamic behaviour) was required. Another example is the 

process of wastewater treatment which exhibits time varying behaviour. It was 

modelled using robust block-wise recursive PLS (Lee et al., 2006a). However, block-

wise recursive PLS results in different process models depending on block size. These 

approaches have been discussed in detail in Chapter 4. The ammonia synthesis reactor 

differs to the simulation studies in Chapter 4 showing strong dynamics due to the nature 

of the dynamic chemical equilibrium resulting from the continuous quenching of the 

fresh feed at the quench points. In this study, fixed parameter DPLS (conventional 

DPLS) and adaptive dynamic sample wise PLS were applied. The following sections 

provide a detailed description of the data collected from the ammonia synthesis 

fixedbed reactor and the development of fixed and adaptive dynamic PLS models.        
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5.6 Data Structure and Acquisition  

The data in this study was generated from the simulation study published by Mourd and  

Skogested (Morud and Skogestad, 1998). The simulation was written in MATLAB©. In 

the simulation, the reactor was operated without a controller to allow for the 

understanding of process behaviour. It is known that the process operations of the 

ammonia synthesis are affected by changes in the overall pressure or the total fresh feed 

temperature as summarised in Table 5.1. An undesired oscillation (limit cycle 

behaviour) occurs if the settings in Table 5.1 occur. The initial operating conditions and 

start up values can be found in the original published work (Morud and Skogestad, 

1998). For the development of an empirical model of the ammonia synthesis process 

using partial least squares regression, the data should be sampled on the basis of an 

appropriate sampling period, ∆t. This should be selected to preserve the dynamic 

information contained in the process measurements and to avoid the problem of 

aliasing. The phenomenon of aliasing, i.e. where significant information relating to the 

process measurements is lost, materialises as a result of a long sampling period (Seborg 

et al., 1989). Figure 5.3 shows a schematic of the aliasing phenomenon where the purple 

signal represents the actual signal generated from a process and the blue signal is the 

signal collected based on long sampling interval indicating that the dynamic information 

in the actual signal is lost. If the sampling is too frequent, it can impact on the 

computer’s ability to handle the data. In this study, the sampling period is determined 

based on the information from the time constant and is discussed in §5.6.1.  

 

Figure 5.3 - Schematic diagram of aliasing phenomena (Seborg et al., 1989) 
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Table 5.3 - Predictor and responses variables of the ammonia synthesis reactor.  

name  Tag Description Unit 

     1 Concentration of the ammonia  (Response variable) kg      

/kg gas 

      2 Inlet temperature (Input variable) º  

      3 Temperature of total fresh feed flow (Manipulated 

variable) 

º  

      4 Total fresh feed (Input variable) ton/h 

      5 First quench flow rate (Input variable) ton/h 

      6 Second quench flow rate (Input variable) ton/h 

      7 Third quench flow rate (Input variable) ton/h 

       8 Temperature of the first quench (Input variable) º  

       9 Temperature of the second quench (Input variable) º  

       10 Temperature of the third quench (Input variable) º  

      11 Operating pressure (Manipulated variable)     

 

Table 5.3 summarises the predictor and response variables. The response variable is the 

ammonia concentration,  . The manipulated variables are the operating pressure and 

temperature of total fresh feed flow. For the ammonia synthesis reactor, different 

measured variables have their own dynamic characteristics. Consequently, they may 

respond differently to the same step in one of the manipulated variables. Figures 5.4 

and 5.5 show the response of the inlet temperature and the concentration respectively 

for a step change in pressure. It appears that the response of the variables to reach a new 

steady state differ significantly. 

 
 

 

Figure 5.4 - The response of the inlet 

temperature for a step change in pressure 

Figure 5.5 - The response of ammonia 

concentration for a step change in pressure 
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5.6.1 Time Constant 

The time constant, τ, is important for determining the appropriate sampling frequency 

(i.e. sampling period). It is the time required by a system to reach 63.2% of a new 

steady state following a step change (Seborg et al., 1989). The time constant identifies 

how the process variables respond to a step change in the manipulated variables i.e. 

operating pressure or total fresh feed temperature in this study. The pressure and total 

fresh feed temperature are selected as they are the most common causes of disturbances 

in this system. Figure 5.6 shows a graphical determination of the time constant based on 

an open loop step response of the inlet temperature. From the graph, the following can 

be concluded: 

Step change introduced:  t =1200 sec 

Initial steady state value: 511.55 º  

Final steady state value: 502.5 º  

Differences between the two steady states: 9.05 º  

63.2% of the differences: 5.72 º  

63.2% of process (τ): 508.2 at t=1500 sec, 

300 sec after the step 

 

Figure 5.6 - Open loop step response and graphical determination of time constant 
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In Figure 5.6, the inlet temperature is used for calculating the time constant. Some of 

the other process variables such as second quench temperature give the same results for 

time constant. This can be observed from Figure 5.7 which shows an open loop 

response from the second quench temperature following a step change in the overall 

pressure. The time constant resulting from using the second quench temperature is 

exactly the same as for the inlet temperature, i.e. time constant, τ =300. 

 

Figure 5.7- Response of the second quench temperature for a step change in pressure 

5.6.2 Sampling Period 

The calculation of the sampling period ∆t is application based and in this work two 

criterion were used to help select the most appropriate sampling period (Seborg et al., 
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            (5.1) 

 

where   =300 and From Equation 5.1, any sampling period less than 30 sec would be 
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lower bound of the sampling period and for that Ziegler – Nichols control tuning rule 

(Seborg et al., 1989) is utilised:  

0.01< 
   

 
 < 0.05 (5.2) 

 

Table 5.4 gives the results for the Ziegler – Nichols tuning rule utilising different 

sampling periods for the ammonia synthesis reactor. From both criterion, it can be seen 

that any sampling period less than 15 sec and greater than 2 sec is appropriate for 

capturing the process dynamics. A sampling rate of 10 sec was selected and this was 

determined based on constructing different models across this range. The models RMSE 

for the calibration and validation data sets and the variance captured together indicated 

that the model based on 10 sec was appropriate as has the lowest RMSE. It is important 

to mention that models based on different sampling periods in the range of 5 sec to 

25 sec are performed well in terms of variance captured. The results from the different 

models are presented in Appendix C.   

Table 5.4 – Different sampling periods for the ammonia reactor based on Ziegler – 

Nichols tuning rule (Seborg et al., 1989) 

       

 
 0.01 

   

 
      

25 0.083 0.083 > 0.05 

20 0.067 0.067 > 0.05 

15 0.05 Equal to 0.05 

10 0.033 0.01 < 0.03 < 0.05 

5 0.016 0.01 < 0.016 < 0.05 

2 0.006 0.006<0.01 

 

Finally based on the previous discussion, the simulation was run over a period of 

14000 sec with the samples taken every 10 sec. The first 4000 sec were used to build 

the reference model while the rest of the data was used for validation. In the test data 

sets, two types of disturbance were introduced to investigate the ability of the 

calibration model to predict and identify abnormal events. The following table 

summarise the features of the data used in the analysis and Figures 5.8 to 5.10 shows 

validation data set and two cases of test data set. 
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Table 5.5 - Summary of the data used in the analysis under different operating 

conditions 

Whole time of running the simulation 14000sec 

t = 1 to t < 4000 4000< t <= 14000 

Calibration data set Validation data set t=1 to t=10000 

 

 

 

Process pressure, 

fresh feed 

temperature are kept 

at steady state 

 

Process pressure, fresh feed temperature are kept within 

steady state range 

Test data set t=1 to t=10000 

t >= 1 to t<=3200 3200< t< 10000 

Case 

1 

Pressure is dropped to 

150 bar 

Fresh feed temperature 

is  kept at steady state 

Process pressure is restored 

to steady state 

Fresh feed temperature  is 

kept at steady state 

Case 

2 

Process pressure is 

kept at steady state 

Fresh feed temperature 

is dropped to 235º C 

Process pressure is kept at 

steady state 

Fresh feed flow rate is 

restored to 250º C 

 

 

Figure 5.8  – Calibration and validation data sets 
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Figure 5.9 –   Calibration and test data sets – Case 1 

 

Figure 5.10 - Calibration and test data sets – Case 2 
 

5.7 Modelling of Ammonia Concentration 

Modelling the behaviour of the ammonia fixed-bed reactor is challenging because of the 

complex process dynamics and the presence of heat recycling along with the potential 

for the reactor to become unstable. The modelling was undertaken using the three PLS 

approaches described in Chapter 3 and Chapter 4 respectively (i.e. Conventional PLS, 

adaptive PLS and robust adaptive PLS). These approaches were modified to account for 

process dynamics caused by autocorrelation. The goal of the modelling task was: 

- To model the complex behaviour of the ammonia synthesis fixed-bed reactor 

and analyse its performance.  

- To predict ammonia concentration. 

0 2000 4000 6000 8000 10000 12000 14000

-5

0

5

Time(s)
In

pu
t v

ar
ia

bl
es

 

 

0 2000 4000 6000 8000 10000 12000 14000
-6

-4

-2

0

2

4

Time(s)

O
ut

pu
t v

ar
ia

bl
e

 

 

0 2000 4000 6000 8000 10000 12000 14000

-5

0

5

Time(s)

In
pu

t v
ar

ia
bl

es

0 2000 4000 6000 8000 10000 12000 14000
-5

0

5

Time(s)

O
ut

pu
t v

ar
ia

bl
e



135 
 

- To investigate the ability of the model to detect abnormal behaviour using 

dynamic PLS, adaptive dynamic PLS and robust adaptive dynamic PLS. 

Prior to the development of the PLS model, identification of the dynamic representation 

and pre-processing of the data was undertaken. The following section introduces these 

stages and the rationale for the different approaches. 

5.7.1 Identification of Reference Model using Dynamic PLS 

5.7.1.1 Data Pre-Processing 

Pre-processing of data is an important and recommended step prior to the modelling and 

monitoring stage (Bro and Smilde, 2003). However, it is important not to over treat the 

raw data otherwise information contained in terms of the original process is lost. In this 

study, the effect of pre-processing techniques on a dynamic PLS model is investigated 

with the goal of finding the most appropriate model for ammonia concentration. Pre-

processing in this case study was limited to various forms of data scaling. Three 

different pre-processing techniques were considered in addition to the case where no 

pre-processing was undertaken. Model building data were generated by running the 

simulation of the first principle model without the addition of noise to reduce model 

complexity in this case study. Consequently, there was no requirement to filter the data. 

The following sections introduce the pre-processing techniques used in this case study. 

5.7.1.1.1 Normalization 

The first scaling technique considered was that of normalization, also known as 

standardization. By adopting this approach, all variables have the same weighting in the 

dynamic PLS model. The original data from the ammonia synthesis fixed-bed reactor 

contained variables with different standard deviations and measurement units. Such 

differences in units and variability can lead to biased predictions and inaccurate models. 

More specifically, the dynamic PLS model represents the original variables in a few 

latent variables that capture most of the process variation. Consequently variable with 

larger standard deviations can influence the model as it is over represented. Therefore, 

the variables can be normalized prior to implementing of dynamic PLS modelling.  

         
       ̅  

   

 
 

(5.3) 

         
      ̅ 

  
 

(5.4) 
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where       and      are the input and output variables at time instance   respectively, 

 ̅ ,  ̅,    
and    are the mean and standard deviation of the input and output variables 

respectively. The original and normalized variables from the ammonia synthesis fixed-

bed reactor are shown in Figure 5.11 and Figure 5.12 respectively. 

5.7.1.1.2 Mean Centring 

Centring of variables involves the removal of the mean from each variable resulting in 

all variables taking a mean of zero. The centred variables are calculated by subtracting 

their average from the original values:  

                    ̅  (5.5) 

                  ̅ (5.6) 
 

where       and      are the input and output variables at time instance   respectively, 

 ̅  and  ̅ are the mean of the input and output variables respectively. The cantered 

variables from the ammonia synthesis fixed-bed reactor are shown in Figure 5.13. 

5.7.1.1.3 Mean Centring of Input Variables 

For this case the input variables are mean centred as described in the previous section 

(Equation 5.5) but no pre-processing was applied to the output variable. The centred 

variables from the ammonia synthesis fixed-bed reactor are shown in Figure 5.14. 

The difference between the original variables can be clearly seen in Figure 5.11 whereas 

in Figure 5.12 the variables are comparable following the application of the 

normalization approach. From Figures 5.13 and 5.14, it can be seen that there are 

differences in the ranges between the input variables and the output variables following 

the application of the mean cantering of the input and output variables and the 

application of mean cantering of the input variables respectively. The selection of the 

appropriate pre-processing approach was made based on the performance of the 

dynamic PLS model in terms of the Root Mean Squared Error (RMSE) and coefficient 

of determination,   , for the validation data set (§5.7.2). 
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Figure 5.11 - Time series of the original 

(input/output) variables 

Figure 5.12- Time series of the normalized 

(input/output) variables 

  

Figure 5.13- Time series of the mean 

centred (input/output) variables 

Figure 5.14-Time series of the mean 

centred input variables 

 

5.7.1.2 Identification of Data Structure  

In this process, the concentration of the ammonia was measured at the end of the third 

bed, therefore a time delay is expected between the process of measuring the input and 

output variables. The presence of the time delay has an impact on system stability 

(Kolmanovskii et al., 1999). From Table 5.6 it can be seen that there is approximately 

no correlation between the input and output variables at time instance   and hence a time 

delay between input and output variables exist as it is known that the variables are 

correlated and should be determined prior to PLS modelling. The presence of heat 

recycling and the time delay in the process increases the complexity of the dynamic 

behaviour as discussed in §5.4. Also as explained in Chapter 3, PLS assumes that the 

relationship between the variables is linear and static. However, the dynamic behaviour 

caused by autocorrelation of the process variables violates this assumption. 
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Therefore, it is necessary to include process dynamics and time delay in the structure of 

the data used for modelling and monitoring based on PLS through the application of a 

dynamic time series representation. 

Table 5.6 – The correlation coefficients between input and output variables at time 

instance   

                                                                   

     0.026 -0.042 0.0297 -0.016 0.016 0.016 0.0784 0.151 0.182 0.097 

 

It is mentioned in Chapter 3 that the PLS model can account for process dynamics 

through the incorporation of a time series representation (e.g. AutoRegressive with 

eXogenous inputs (   ) or Finite Impulse Response (FIR). In this study, an     model 

is used to build the dynamic representation. The advantage of an     model compared 

to FIR is the reduction in the number of parameters to be determined as the FIR model 

requires a large number of parameters to account for the process dynamics. The next 

section provides a brief description of the     representation and how it was 

implemented in terms of the data generated from the ammonia synthesis fixed-bed 

reactor simulation.  

5.7.1.2.1 AutoRegressive with eXogenous Inputs Representation 

An AutoRegressive with eXogenous input (   ) representation is a linear relationship 

between the output of the process      and past finite time series of the process output 

and process input     . The     representation is defined as: 

      ∑        

  

   

 ∑            

  

   

      

 

(5.7) 

 

where            and    ) are the process output, input and noise vectors respectively. 

   and    are the matrices of the coefficients to be identified using PLS regression 

hence steady state PLS is used to model the dynamic process.    and    are the number 

of time lags for the output and input data vectors respectively;   is the time delay in the 

system. The     model can be expressed in a simpler matrix format such that the 

regressor row vector which consist of lagged output and input data values time instance 

  is: 
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                (    )                       (5.8) 

 

and the     representation can be written as: 

                 (5.9) 
 

where   is the matrix of model coefficients given by: 

                     
  (5.10) 

 

The ammonia synthesis fixed-bed reactor process is a multi-input system therefore the 

entry        in Equation 5.8 is a row vector which consists of the process input 

variables listed in Table 5.3.  

                                 ] (5.11) 

 

whereas the entry        in Equation 5.8 is 

              ] (5.12) 

 

It can be seen that the structure of the     representation depends on 3 values; the time 

lagged values (i.e.    and   ) and the delay,  . Therefore an     model with    lagged 

values of output variables and    lagged values of the input variables and delay   is 

presented as    (       ). The order   ,    and   of the     representation is 

determined using Akaike’s Information Criterion AIC (Akaike, 1974). 

5.7.1.2.2  Akaike’s Information Criterion (   ) 

    is an information measure used to help identify the most appropriate model among 

a class of competing models specified from recorded data (Akaike, 1974). Initially a set 

of candidate models need to be identified based on knowledge of the system under 

study and then     for each model can be calculated using the residual sums of squares 

of the model: 

         (
   

 
)      

         (5.13) 

Where n is the number of samples used for calibration; RSS is the residual sum of 

squares and A  is the number of parameter in the ARX model. The model with the 

lowest AIC is then selected as the most appropriate model.  
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For identifying the most appropriate     representation for the data from the ammonia 

synthesis fixed-bed reactor, 11 sets of     representations were identified according to 

§5.7.1.2.1. 

 

Figure 5.15 - The     for different     structures and pre-processing methods 

Figure 5.15 shows a plot of     for the different     structures where the data is being 

processed according to the three aforementioned pre-processing approaches. The goal is 

to identify the structure associated with the lowest     value. It is important to mention 

that the value of     varies according to two factors; the structure of the     

representation and the pre-processing approach. From the chart, the normalization 

approach tends to produce smaller     values for most of the cases compared to other 

pre-processing approaches. The centred data (input, output) and the original data 

produce high     values in most cases which indicate that the model built based on 

them will not fit the process data. The values of     based on the centred input data are 

variable. Therefore, at this stage the structure selected based on the lowest     value for 

each pre-processing method is listed in Table 5.7. The selected structure for each pre-

processing approach is then used for PLS modelling in the following section. 

Table 5.7 –     structure for the pre-processing methods with smallest     
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The lowest     value based on the normalization approach is associated with an 

            structure which shows a large time delay between the input and the output 

variables. This value is close to the     value associated with the            structure 

which show only three samples delay. The structure             is used in this thesis 

as the modelling results of the ammonia synthesis fixed-bed reactor based on the  

           structure presented in Appendix C show that the structure based on an 

            produced more accurate modelling results in term of predictions of the 

ammonia concentration. Therefore             is used for the normalization data 

To ensure that the time delay identified in the ARX structure is appropriate, a step is 

introduced into the process manipulated variables and the corresponding time delay is 

investigated (Appendix C). It is found that the time taken for the variables to respond to 

a step change differ significantly as some variable respond within 10 sec to 30 sec (i.e. 1 

to 3 samples) and some of them respond within 180 sec to 200 sec (i.e. 18 to 20 

samples). Hence for models that have a small time delay (e.g.           , the 

dominant variables are these with a quicker response. However, for models that have a 

large time delay (e.g.            , the dominant variables are these which responded 

after 180 to 200 sec. 

5.7.2 Dynamic PLS Model 

The reference model is constructed from the data representing normal operating 

conditions (i.e. the calibration data set in Table 5.5). The calibration data was pre-

processed according to § 5.7.1.1. The data structure was selected based on the results 

provided in Table 5.7 (§5.7.1.2.2). The number of latent variables was determined based 

on cross validation. The model was then applied on unseen data representing normal 

operating conditions (i.e. the validation data set in Table 5.5) to test its ability to predict 

process behaviour. The selection of the appropriate model was based on the value of the 

Root Mean Squared Error (RMSE) and the coefficient of determination (   . The 

results from applying dynamic PLS on the calibration and validation data sets are 

summarised in Table 5.8. 
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Table 5.8 – RMSE and R² of PLS model based on different pre-processing approaches 

for calibration and validation data sets. 

Pre-processing RMSEC RMSEV             

Normalization 0.0003 0.0009 0.9632 0.9346 

Centring input and output 0.0006 0.0023 0.8787 0.7727 

Centring input 0.0006 0.0032 0.8706 0.5143 

No pre-processing 0.0004 0.0019 0.9297 0.8493 

 

The main conclusion drawn from Table 5.8 is that the dynamic PLS model for the 

normalized data performed better than the other models for the validation data. This 

indicates that the model build based normalized data is more appropriate to model the 

data from the ammonia synthesis fixed-bed reactor. The details of the dynamic PLS 

model based on the normalized data is discussed in the next section. The model is then 

tested on the test data sets (i.e. the test data set in Table 5.5) which contain a disturbance 

to investigate the ability of the monitoring charts to identify process faults. 

5.7.2.1 Dynamic PLS Model of Normalized Data  

Dynamic PLS (DPLS) was applied to the normalized data and the dynamic structure 

identified in §5.7.1 was used. The first step was to determine the number of latent 

variable (   ) through the application of cross validation. Figure 5.16 shows the RMSE 

of the calibration and RMSE of cross validation. Both indices indicate that four latent 

variables are appropriate. Table 5.9 shows that four latent variables correspond to 

94.6% of the total amount of variance explained in the X-block and 96.3% of the 

variance explained in the output. 

Figure 5.17 shows the time series of the original and fitted response, Figure 5.18 shows 

the original vs. fitted response and Figure 5.19 is the time series plot of the residuals. 

From Figure 5.18 it can be seen that the model fits the data. However, three samples are 

far from the regression line and by looking at the time series of the residuals, 

(Figure 5.19), it can be seen that the values of the residuals are close to zero which 

indicates that the model fits the data well with three peeks related to the points in 

Figure 5.18. This indicates that the model cannot cope with the change in the process at 

these points. 



143 
 

Table 5.9 - Percentage variance captured from DPLS model 

LV X-block Y-block 

%Variance % Cumulative  %Variance % Cumulative  

1 35.15 35.15 60.90 60.90 

2 29.48 64.64 24.97 85.87 

3 22.40 87.04 5.26 91.13 

4 7.59 94.63 5.19 96.32 

5 1.68 96.31 0.39 96.71 

6 3.05 99.36 0.00 96.71 

7 0.64 100.00 0.01 96.72 

8 0.00 100.00 0.00 96.72 

9 0.00 100.00 0.00 96.72 

10 0.00 100.00 0.00 96.72 

11 0.00 100.00 0.00 96.72 

  

Figure 5.16 - Cross-validation results for 

determining the number of LV (DPLS) 

Figure 5.17 - Time series plot of the 

original and fitted response (DPLS) 

 
 

Figure 5.18 – Original vs. fitted response 

(DPLS) 

Figure 5.19 –Time series plot of the 

residuals for reference model (DPLS) 
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Figure 5.20 – DPLS coefficients     Figure 5.21 – DPLS weights 

 

Figure 5.20 shows the DPLS coefficients, one past output variables and one past input 

contains 10 variables. It can be seen that the first variable coefficient is larger than the 

other variables. By analysing the process characteristics, other variables also seem to be 

important such as quench variables. However, from the DPLS coefficients they seem to 

less important compared to first variable. This is because of the strong correlation 

between some of the predictor variables which sometime cause the significant variable 

to appear as insignificant variable in the regression coefficients. One possible solution is 

to remove one of the correlated variables. But for the statistical analysis of the ammonia 

synthesis process, all the predictor variables are required as they are responsible for the 

process dynamics. For example, one of the correlated pair is the first and second quench 

variables (      . They are highly correlated and provide the same information. 

However they are important for the process, as they are a source of the dynamics in the 

process (§5.4.1).  One advantage of a PLS model is its ability to deal with correlated 

data, hence there is no need to remove any variable in the predictor matrix. From 

Figure 5.20, it can also be seen that the fourth and eleventh variables (i.e. total fresh 

feed and the overall pressure) are significantly affecting the ammonia concentration. 

The importance of the variables for the analysis can be investigated by looking to DPLS 

weights 

Figure 5.21 shows the DPLS weight for the first four latent variables. It is known the 

PLS weights give an indication of the correlation structure between the predictor and 

latent variables. From the figure, it is clear that for each retained latent variable, 

different sets of variables are of high importance. This concludes that all the variables 

included in the predictor matrix are important for the analysis and have an effect in the 

behaviour of the process. 
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The results from applying the DPLS model to the validation data is presented in 

Figures 5.22 to 5.24. It can be seen that the model fits the data well. However, a few 

samples lie far from the regression line and by looking at the time series of the residuals 

(Figure 5.24) it can be seen that the values of the residuals are close to zero which 

indicates that the model does fit the data well with a few peaks relating to the points in 

Figure 5.23. This is explained by looking at the time series plot of the original and fitted 

values (Figure 5.22) where the fitted value does not match the original for a few 

samples. The RMSE and    in Table 5.8 of the validation data set indicate that the 

model fits the data well. The next steps are to apply the model to the test data set and to 

construct a monitoring scheme based on the developed model. 

  

Figure 5.22 - Measured vs. predicted 

response for the validation data set 

(DPLS) 

Figure 5.23 – Time series of measured and 

predicted response for the validation data 

set (DPLS) 

 

 

Figure 5.24 - Time series plot of the 

residuals for the validation data set 

(DPLS) 

 

 

0.295 0.3 0.305 0.31 0.315 0.32 0.325 0.33
0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

Y Measured

Y
 P

re
d
ic

te
d

 

 

Calibration

Validation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Time(sec)

Y
m

e
a
s
u
re

d
 v

s
 Y

 p
re

d
ic

te
d
 

 

 

Measured

Predicted

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Time(sec)

R
e
s
id

u
a
ls

 

 

Residuals



146 
 

The results from applying the DPLS model to the two test data sets corresponding to 

case 1 and case 2 (Table 5.5) are presented in Table 5.10 and Figures 5.25 to 5.30. The 

major conclusions drawn are as follows: 

- The DPLS model performs well in terms of predicting the data in both cases 

where different operating conditions were impacting on the process. However, 

an offset can be seen in the time series plots of the measured and predicted 

response and this is confirmed by looking at the time series plot of the residuals. 

- The root mean squared error of prediction is increased compared to the RMSE 

for the calibration and validation data. However, the value is still considered to 

be small but it can potentially be improved by using an adaptive dynamic PLS 

approach (section 5.8).  

Table 5.10 - RMSE and R² of the test data sets by DPLS 

Case RMSE    

Case 1 0.0120 0.93 

Case 2 0.0235 0.91 

 

  

Figure 5.25- The measured vs. predicted 

response (case 1- DPLS) 

Figure 5.26 - Time series plot of the 

measured and predicted response (case 1 -

DPLS) 
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Figure 5.27 - Time series plot of the 

residuals (case 1 - DPLS) 
 

 

  

Figure 5.28 - The measured vs. predicted 

response (case 2 - DPLS) 

Figure 5.29 - Time series plot of the 

measured and predicted response (case 2 - 

DPLS) 

 

 

 
 
 

 

Figure 5.30 - Time series plot of the 

residuals (case2 - DPLS) 
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5.7.2.2 Monitoring Statistics Based on Dynamic PLS 

5.7.2.2.1 Monitoring Statistics for Calibration and Validation Data sets 

The results from the monitoring of the ammonia synthesis fixed-bed reactor using the 

dynamic PLS (DPLS) model developed in the previous section are illustrated in 

Figures 5.31 to 5.33. Each figure shows the time series plot of Hotelling’s    and the 

Squared Prediction Error of the input and output space      and      respectively. The 

99% and 95% confidence limits were calculated based on the reference data set. It can 

be seen that the three indices include a number of out of statistical control signal. 

However, they did not exceed 1% and 5% of the total number of samples for the 99% 

and 95% confidence limits respectively which is statistically acceptable based on the 

calculated false alarm rate (Table 5.11). The false alarm rate for Hotelling’s   , 

     and      are  5%, 5% and 2.25% for the 95% confidence limit and 1%, 0.75% 

and 1.75% for the 99% confidence limit respectively. The monitoring charts for the 

calibration data set presented in Figures 5.31 to 5.33 are used as the baseline monitoring 

charts for adaptive dynamic PLS and robust adaptive dynamic PLS.  

  

Figure 5.31 - Hotelling’s    for the 

reference data set (DPLS) 

Figure 5.32 -      for the reference data 

set (DPLS) 
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Figure 5.33 -      for the reference data 

set (DPLS) 

Figure 5.34 - Hotelling’s    for the  

validation data set (DPLS) 

  

Figure 5.35 -      for the validation data 

set (DPLS) 

Figure 5.36-      for the validation data 

set (DPLS) 

 

Figures 5.34 to 5.36 present Hotelling’s   and the Squared Prediction Error for the 

inputs and output space      and      for the validation data set (Table 5.5). It can be 

seen that      and       continuously violate the confidence limits even though the 

process represents nominal operating. The false alarm rates of the monitoring charts for 

the validation data set, 12 %, 92 % and 24.5 % for Hotelling’s   ,      and      are 

much higher than the acceptable level of 5% for the 95% confidence limits (Table 5.11). 

This is because the confidence limits for the validation were those from the calibration 

data which may not appropriate for reflecting the dynamics contained in the validation 

data. This concludes that the process requires advance dynamic modelling to produce 

reliable monitoring charts.  
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Table 5.11 - False alarm rate of monitoring charts for the calibration and validation data 

sets using dynamic PLS 

Chart False alarm rate 

95% confidence limits 

False alarm rate 

99% confidence limits 

Calibration data set 

Hotelling’s T² 5% 1% 

     5% 0.75% 

     2.25% 1.75% 

 Validation data set 

Hotelling’s T² 12 % 8 % 

     92 % 75.1% 

     24.5 % 9.5 % 

 

5.7.2.2.2 Monitoring Statistics for the Test Data Sets 

The model was applied to the test data sets (Table 5.5). Figure 5.37 presents Hotelling’s 

   and the Squared Prediction Error for the input and output space,      and      

respectively. The first part of the plot represents the monitoring statistics for the 

reference data set (i.e. the monitoring indices presented in Figures 5.31 to 5.33). The 

drop in the pressure and total feed temperature which resulted in rapid oscillations in the 

process variables, as discussed in section 5.4, was detected 1800 sec (180 samples) after 

the actual time of the occurrence of the event for Hotelling’s    and it continue to 

violate the 95% and 99% confidence limits until normal operating conditions are 

restored at t = 7200 sec. The      and      statistics detect the disturbance after 

500 sec (50 samples) and they continue to violate the confidence limits even after 

normal operating conditions were restored. The continuous violation of the squared 

prediction error metrics indicate that there is a significant event that was not captured in 

the reference model which is true for the period from t=4001 sec to t=7200 sec; 

however, after t=7200 sec the normal operating conditions were restored and the 

monitoring statistics should not violate the confidence limits. Figures 5.38 to 5.40 

present the monitoring statistics for the test data set when normal operating conditions 

were restored according to Table 5.5 (i.e. the Hotelling’s    and the Squared Prediction 

Error      and      after t = 7200 sec). It is clearly seen that the      and      

continue to violate the 95% and 99% confidence limits when the process operating 
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conditions are restored to the normal ranges. Therefore, it can be concluded that the 

dynamic PLS model has some limitations for modelling such dynamic process resulting 

in unreliable monitoring charts. 

Figure 5.37 – Monitoring statistics of ammonia synthesis rector for the test data set 

(DPLS) 

   

Figure 5.38 – Hotelling’s    

for the test data set after 

t =7200 sec (DPLS) 

Figure 5.39 -      for the 

test data set after t =7200 sec 

(DPLS) 

Figure 5.40 -       for the test 

data set after t = 7200 sec 

(DPLS) 
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charts are presented in Table 5.12. The overall conclusion is that the performance of the 

monitoring charts is unacceptable. This is because there is a delay in indicating the 

onset of the fault. For example, for Hotelling’s    the fault is indicated on average after 

110 samples from its onset. On the other hand, when the process is operating under 

normal operating conditions, the monitoring charts produce false alarm after a short 

period of time. It can be concluded that the monitoring charts based on dynamic PLS for 

the monitoring of the ammonia synthesis fixed-bed reactor are unreliable. 

Table 5.12 -      and      for Hotelling’s   ,      and      

Chart     DPLS 

Hotelling’s         45 

     110 

          20 

     50 

          30 

     50 

 

In the next sections, the application of adaptive sample-wise dynamic PLS and robust 

adaptive dynamic PLS approaches are presented. 

5.8 Adaptive Dynamic PLS (ADPLS) 

5.8.1 Modelling Using ADPLS 

The adaptive PLS (APLS) approach was summarised in Chapter 4. The main idea of 

APLS is to update the PLS model once a new observation becomes available and hence 

the monitoring charts are constructed based on the updated PLS model. Two 

modifications were introduced to the APLS algorithm as discussed in Chapter 4. Firstly, 

the reference model for APLS is developed based on a dynamic representation to 

account for process dynamics (i.e. the DPLS model developed based on calibration data 

§5.7.2.1 is used as a reference model). Secondly, once an observation becomes 

available, it has to be incorporated into the dynamic representation given in §5.7.1.2 

prior to model updating and hence the model is updated recursively in a sample-wise 

manner, i.e. it has to be presented in the form of ARX(1,1,20). In addition, the number 

of latent variables was updated using cross validation every time the model was updated 

to prevent over or under fitting when calculating the prediction. This is very important 
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at that step since the process behaviour changes significantly especially when the 

disturbance affects the process behaviour. The ADPLS algorithm for the ammonia 

synthesis fixed-bed reactor is presented in Figure 5.41. The reference model developed 

in § 5.7.2.1 with 4 latent variables is used as a reference model for ADPLS. The 

ADPLS was then implemented on unseen data, i.e. validation data set, which represents 

normal operating conditions. Two versions are implemented, the ADPLS with a fixed 

number of latent variables and the ADPLS with a variable number of latent variables.   

Generate data from Ammonia 

synthesis fixedbed reactor 

Identify the dynamic representation 

using ARX 

Develop a DPLS model

Cross validation to select the number 

of  LV 

New observation 
Incorporate it into the dynamic 

representation  

Calculate the monitoring statistics 

and confidence limits 

Create new matrices using previous 

PLS model

Cross validation to select the number of LV

Recursively update  the DPLS model

Start

End

Yes

No

 

Figure 5.41 – ADPLS approach for modelling ammonia synthesis reactor 

The results from the application of the modified ADPLS algorithm using a fixed and 

variable number of latent variables on the validation data set are summarised in 

Table 5.13. Compared to the DPLS model, the model fit and quality have improved. 

This can be concluded by comparing the RMSE and    of the DPLS and the ADPLS 

models. Figures 5.42 and 5.43 show the time series plot of the measured and predicted 

response for the ADPLS model for a fixed and variable number of latent variable 

respectively. From the figures, no differences can be observed between the time series 

of the ADPLS fixed and varied latent variable model. Although there is no significance 

difference between the models, however, it is critical to have an approach that can 

capture real changes in the process which can be achieved through the variation of 

number of latent variables. The residuals plots for both cases are given in Appendix C. 
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Table 5.13- RMSE and    of the validation data sets by ADPLS 

Fixed number of     Variable number of     

RMSE    RMSE    

0.00062 0.97 0.0006 0.98 

  
Figure 5.42 - Time series plot of measured 

and predicted response for the validation 

data set (fixed LVs-ADPLS) 

Figure 5.43 - Time series plot of measured 

and predicted response for the validation 

data set (variable LVs -ADPLS) 

 

  

Figure 5.44 - Number of     used by 

ADPLS - validation data set 

Figure 5.45 - Percentages of number of 

    used by ADPLS - validation data set 
 

Figure 5.44 shows the time series plot of the number of latent variables determined by 

cross validation and Figure 5.45 shows the percentage of latent variables used through 

the analysis. It can be seen that the number of latent variable lies between 3, 4 and 5. 

This variation results in no real improvement to the model prediction. 

Figures 5.46, 5.47, 5.48 and 5.49 show the time series plot of the measured and 

predicted response for case 1 and case 2 respectively. From Figures 5.46 to 5.49, no 
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difference can be observed between the time series of the ADPLS model for the fixed 

and variable number of latent variables. The RMSE and   of the prediction indicates 

that model quality is marginally better based on a variable number of latent variables 

(residuals are given in Appendix C) 

 
 

Figure 5.46- Time series plot of measured and 

predicted response (fixed LVs - ADPLS)- 

case1 

Figure 5.47- Time series plot of measured and 

predicted response (variable LVs - ADPLS) -

case1 

 
 

Figure 5.48- Time series plot of Measured and 

predicted response (fixed LVs - ADPLS) – 

case 2 

Figure 5.49- Time series plot of Measured and 

predicted response (variable LVs - ADPLS) –

case 2 

 

Table 5.14 - RMSE and R² of the prediction for the test data set by ADPLS 

Cases Fixed number of     Variable number of     

RMSE    RMSE    

Case 1 0.008 0.94 0.007 0.95 

Case 2 0.007 0.95 0.005 0.96 
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Figures 5.50 and 5.51 show the time series plot of the number of latent variables for the 

two cases determined by cross validation. Figures 5.52 and 5.53 show the percentage of 

the number of latent variables for case 1 and 2. It can be seen that the number of latent 

variable in both cases lies between 3 and 5 latent variables. This variation results in a 

slight improvement, marginal improvement, in the model prediction as observed from 

Table 5.14.  

  
Figure 5.50- Time series plot of number of 

LVs (case 1-ADPLS) 

Figure 5.51- Time series plot of number of 

    (case 2-ADPLS) 
 

  

Figure 5.52- Percentage of number of     

used by ADPLS – case 1 

Figure 5.53- Percentages of number of 

    used by ADPLS – case 2 

 

The difference in the number of latent variables included for the validation and test 

cases gives an indication that the number of latent variables selected is dependent on 

process behaviour. Since the results show that the ADPLS with a variable number of 

latent variables marginally improves the model quality, the monitoring results will be 

constructed based on the ADPLS with a variable number of latent variables. 
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5.8.2 Monitoring Statistics Based on ADPLS Model 

5.8.2.1 Monitoring Statistics for Validation Data set 

The results of monitoring the ammonia synthesis fixed-bed reactor with a scheme 

developed from the ADPLS algorithm for the validation data set are presented in 

Figures 5.54, 5.55 and 5.56. It can be seen that the monitoring charts adapt to the 

change in the process dynamics. The number of samples outside of the statistical control 

limits materialise but as it is the order 1% and a 5% corresponding to the 99% and 95% 

confidence limits. More specifically the false alarm rates, 4.95%, 4.91% and 4.1% for 

Hotelling’s   ,      and      respectively indicate that the number of violations are 

within the acceptable rate (5%) for the 95% confidence limits and 1.3%, 1% and 1% for 

Hotelling’s   ,      and      respectively for the 99% confidence limits (Table 5.15). 

 

  

Figure 5.54 – Hotelling’s    based on 

ADPLS for the validation data set 

Figure 5.55 –      for based on ADPLS 

for the validation data set 

 

 

Figure 5.56 –      based ADPLS for the  

validation data set 
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Table 5.15- False alarm rate of monitoring charts for the validation data set using 

ADPLS 

Chart False alarm rate 

95% confidence limits 

False alarm rate 

99% confidence limits 

Validation data set 

Hotelling’s T² 4.95% 1.30% 

     4.91% 1.00% 

     4.10% 1.00% 

 

5.8.2.2 Monitoring Statistics for the Test Data Sets 

The results for the test data sets are presented in Figures 5.57 to 5.62 for a variable 

number of latent variables included in the monitoring based on ADPLS model. The 

main observations drawn from the monitoring charts are: 

- The statistical metrics (Hotelling’s   ,      and     ) are affected by the fault 

(i.e. the drop in the pressure and the drop in the fresh feed temperature, case 1 

and 2 respectively) and successfully indicate the presence of fault.  

- The confidence limits adapt to the fault in the monitoring charts and indicate that 

the process remains within statistical control state. 

The purpose of confidence limits is to indicate whether a process is out of statistical 

control but in the case of monitoring of the ammonia synthesis reactor based on 

ADPLS, it can be seen that they adapt to the effect of the fault and do not indicate that 

the process is out of statistical control. Even though the prediction is improved using 

ADPLS, there is a need to include a threshold to prevent adaption to abnormal events. 

The fault detection rates of the monitoring charts for case 1 and case 2 are presented in 

Table 5.16 which shows that the monitoring charts detect less than 20% of the faulty 

samples. More specifically the fault detection rates for case 1, 7.4%, 10.9% and 14.4% 

for Hotelling’s   ,      and      for the 95% confidence limits respectively and 

4.2%, 6.3% and 4.7% for Hotelling’s   ,      and      for the 99% confidence limits 

respectively (Table 5.16). For case 2, the monitoring charts of Hotelling’s   ,      and 

     detect 3.8%, 12.5% and 9.1% for the 95% confidence limit respectively and 1.5%, 

2.2% and 3.1% for the 99% confidence limit respective. These indicate that the fault 
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was not detected by the monitoring charts. Therefore, Robust Adaptive Dynamic PLS 

(RADPLS) is applied to address this limitation.  

Table 5.16 – Fault detection rate for test data sets by ADPLS 

Chart Fault detection rate 

95% confidence limits 

Fault detection rate 

99% confidence limits 

Test data set - Case 1 

Hotelling’s T² 7.4% 4.2% 

     10.9% 6.3% 

     14.4% 4.7% 

 Test data set - Case 2 

Hotelling’s T² 3.8% 1.5% 

     12.5% 2.2% 

     9.1% 3.1% 

 

 
 

Figure 5.57 - Hotelling    based on 

ADPLS for the test data set – case 1 

Figure 5.58 –     based on ADPLS for 

the test data set- case 1 

  

Figure 5.59 –      based ADPLS for the  

test data set – case 1 

Figure 5.60 - Hotelling    based on 

ADPLS for the test data set – case 2 
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Figure 5.61 –     based on ADPLS for 

the test data set – case 2 

Figure 5.62 –     based on ADPLS for 

the test data set – case 2 
 

The results for      and      based on Monte Carlo simulation, 50 experiments, for 

the ADPLS monitoring charts are presented in Table 5.17. What is interesting in this 

table are the results for      for all the three monitoring metrics. From the monitoring 

charts of the test data sets, it can be clearly seen that the indices are affected by the 

disturbances. However, the confidence limits of the monitoring charts adapt to the 

change in the monitoring metrics and this results in a longer      as the monitoring 

metrics remain in a statistical control as shown in Table 5.17.  In contrast, the     , 

which is calculated for the validation data set shows satisfactory results for the 

monitoring charts as no false alarm was detected for sufficient period of time compared 

to the ideal      of 100 samples  (Table 5.17). 

Table 5.17 –      and      for Hotelling’s  ,      and      using ADPLS 

Chart     ADPLS 

Hotelling’s         80 

     30 

          75 

     20 

          82 

     35 
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5.9 Robust Adaptive Dynamic PLS (RADPLS) 

5.9.1 Modelling Using RADPLS  

The Robust Adaptive PLS (RAPLS) algorithm was summarised in Chapter 4. In this 

study, two modifications were introduced to the original RAPLS proposed in Chapter 4. 

First, the reference model was developed from a dynamic representation to account for 

the process dynamics hence a dynamic PLS (DPLS) model is developed. Secondly, 

once a sample becomes available, it has to be incorporated into a dynamic 

representation prior to model update. Once it is confirmed that the process is operating 

under normal operating conditions, the dynamic model is updated recursively in a 

sample-wise manner. The modified algorithm for the modelling of the ammonia 

synthesis fixed-bed reactor is summarised in Figure 5.63.  

Reference data
Identify dynamic 

representation (ARX)

PLS 

Reference model
Calculate Monitoring statistics of reference data

Calculate monitoring statistics and confidence 

limits and Combined index

combined index >= limit

HOLD the updating process and obtain the 

weighted statistics to be used for calculating the 

limits for the next two observations

Attain the next two observations

Yes

Calculate the monitoring statistics and 

confidence limits for the next two observations

3 consecutive violations

Sample is faulty, discard observation from 

updating procedure 

Keep the limits of the individual statistics 

constant and use the weighted statistics for 

calculating the limits of the new coming 

observation

Yes 

Create matrices for recursive update

No

Sample represents normal 

operating behaviour

Cross validation to choose the number of 

LV

Recursive Update

Treat outliers

Create data matrices

Cross validation to choose the number of 

LV

No

Sample is outlier

Start

yes

End

No

New sample

Incorporate into dynamic representation

 

Figure 5.63 - RADPLS approach for ammonia synthesis process 
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The reference model developed in §5.7.2.1 is used as a reference model for the 

RADPLS algorithm. It was built based on the calibration data set in Table 5.5. The next 

step was to update the model once a new sample became available. For this step, the 

validation and test data sets in Table 5.5 are used and the ability of the algorithm to 

distinguish between data from normal operating conditions and a disturbance is 

examined. The results from the application of RADPLS with a fixed and a variable 

number of latent variables for the validation data set are presented in Figures 5.64 and 

5.65. They show the time series plots of the measured and predicted response. It can be 

seen that the response is well predicted for both fixed and variable latent variables 

cases.   

  

Figure 5.64 - Measured and predicted 

response - validation data set (fixed 

number of     - RADPLS) 

Figure 5.65 - Measured and predicted 

response - validation data set (variable 

number of     - RADPLS) 

 

The prediction of the RADPLS model is not enhanced when the number of latent 

variables was allowed to vary within the adaption procedure. This is confirmed by 

investigating the values of the RMSE and coefficient of determination,   , for the 

validation data set where the difference is very small (Table 5.18) (residuals are given in 

Appendix C).  

Table 5.18 - RMSE and    of the validation data set by RADPLS 

Fixed Number of LV Variable number of LV 

RMSE    RMSE    

0.00059 0.98 0.00057 0.98 
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Figure 5.66 shows the time series plot of the number of the latent variables determined 

by cross validation and Figure 5.67 shows the percentage of latent variables. It can be 

seen that the number of latent variable lies between 3 and 5. This variation does not 

result in an improvement in the model prediction (Table 5.18). The rational for no real 

difference is that a very little variability was explained by the few latest latent variables. 

Hence adding one or more latent variable would not improve the model prediction. 

However, it is important to have a flexible approach that can capture real changes in the 

future. Therefore, the algorithm with variable number of latent variables was 

considered. 

 

 
 

Figure 5.66 - Number of     used by 

RADPLS - validation data set 

Figure 5.67- Percentages of number of 

    used by RADPLS- validation data set 

 

The results from the application of the modified RADPLS using a fixed and variable 

number of latent variables to the test data sets are summarised in Figures 5.68, 

5.69, 5.70 and 5.71. They show the time series plots of the measured and predicted 

response. It can be seen for both data sets, the fixed and variable number of latent 

variables cases, the response was well predicted. The prediction is not really improved 

when the number of latent is varied as shown in Table 5.19. 
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Figure 5.68 -Measured and predicted 

response (fixed LVs) - case1 RADPLS 

Figure 5.69 - Measured and predicted 

response (variable LVs)-case1 RADPLS 

  
Figure 5.70 - Measured and predicted 

response (fixed LVs) - case 2  RADPLS  

Figure 5.71 - Measured and predicted 

response (variable LVs) - case 2 RADPLS  
 

 Table 5.19- RMSE and R² for the test data sets using RADPLS 

Cases Fixed     Variable     

RMSEP    RMSEP    

Case 1 0.005 0.96 0.004 0.97 

Case 2 0.004 0.96 0.003 0.96 

 

 

The time series plots of the number of latent variables based on RADPLS for the test 

data sets are presented in Figures 5.72 and 5.73. The percentage of latent variables is 

presented in Figures 5.74 and 5.75. It can be seen that the number of latent variable lies 

between 3 and 5 with 3 latent variable being dominated. The variation in the number of 

latent variables results in no real improvements in model quality and model predictions 

as shown in Table 5.19. All monitoring results will be generated based on RADPLS 

using variable number of latent variables as it is important to capture any real change in 

the process operation that may results in a change in the underlying model. 
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Figure 5.72 - Number of LVs used by 

RADPLS – case 1 

Figure 5.73 - Number of LVs used by 

RADPLS – case 2 

  

Figure 5.74 - Percentage of number of     

by RADPLS – case 1 

Figure 5.75 - Percentages of number of     

by RADPLS – case 2 

 

5.9.2 Monitoring Statistics Based on RADPLS Model 

5.9.2.1 Monitoring Statistics for Validation Data Set 

The monitoring results from the application of RADPLS to the validation data set are 

presented in Figures 5.76, 5.77 and 5.78. It can be concluded that the process is in a 

state of statistical control since the statistical metrics (Hotelling’s   ,      and     ) 

lie within the statistical confidence limits. A few samples violate the 99% and 95% 

confidence limits. The false alarm rates are shown in Table 5.20 which indicate that the 

rate of violation is within the statistically acceptable rate of 1% and 5% respectively.  
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Table 5.20.False alarm rate of monitoring charts for the validation data set by RADPLS 

Chart False alarm rate 

95% confidence limits 

False alarm rate 

99% confidence limits 

Validation data set 

Hotelling’s T² 4.85% 1.11% 

     4.51% 0.90% 

     3.10% 0.80% 

 

The control chart of the combined index (Figure 5.79) which shows that the combined 

index remains within statistical control and the few violations identify the statistical 

outliers for the RADPLS algorithm. The False alarm rate for the combined index chart, 

6% and 1.7% for the 95% and 99% confidence limits respectively, indicate that there 

are some points which can be considered as outliers. This is because the     is higher 

than the statistically acceptable rate of order of 5% and 1% for the 95% and 99% 

confidence limits respectively. These samples are treated by implementing combined 

index weight prior to model updating, hence the impact of the outliers on model update 

is reduced. 

  

Figure 5.76- Hotelling’s    based on  

RADPLS for the validation data set 

       Figure 5.77 -      based on RADPLS 

for the validation data set 
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    Figure 5.78 -      based on RADPLS 

for the validation data set 

   Figure 5.79 - Combined index based on     

  RADPLS for the validation data set 

 

5.9.2.2 Monitoring Statistics for the Test Data Sets 

From Table 5.5, the process disturbance was introduce at t =1 sec after running the 

simulation for 4000 sec under normal operating conditions. The disturbances affect the 

process for 3200 sec and hence the number of samples affected by the fault is identified 

as 320 consecutive samples. The monitoring results based on the RADPLS are 

presented in Figures 5.80 to 5.87 for the test data sets (Table 5.5). In both cases the 

statistical indices are affected by the fault. For the first case, it can be seen that the 

monitoring indices clearly indicate that the process has deviated from statistical control. 

Hotelling’s    indicates the disturbance at t = 20 sec (i.e. second sample after 

introducing the disturbance), the      indicates it at t = 50 sec (i.e. fifth sample after 

the introduction of the disturbance) and      indicate it at t = 60 sec (i.e. sixth sample 

after introduction of the disturbance). For the second case, it can be seen that the 

monitoring indices clearly indicate that the process deviates from statistical control. 

Hotelling’s    indentifies the disturbance at t = 40 sec (i.e. forth sample after the onset 

of the disturbance),      at t=30 sec (i.e. third sample after the onset of the disturbance) 

and      t= 60 sec (i.e. sixth sample after introduction of the disturbance). The 

monitoring charts show the process is out of statistical control approximately until 

t=1800 sec and t= 1200 sec for the first and second cases respectively. However, in this 

period a few points are in statistical control when it was known that the disturbance lasts 

until t=3200 sec (i.e. all the samples from t=1 until 3200 are affected by the disturbance 

Table 5.5). This may have occurred for the following reasons: 
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- The model parameters have been updated incorrectly when the fault occurs for a 

few samples. During process oscillations, when the signal passes through the 

region of normal operation, it causes the model to update. However, at this time 

the dynamic characteristics of the process are not representative of normal 

operation. This situation becomes more severe the longer the fault persists as the 

magnitude and frequency of the oscillation both increase (Figure 5.69 and 5.71). 
 

- Rapid oscillations resulting from the fault (the fast dynamic behaviour of the 

signal) has an impact on the statistical indices as Hotelling’s T
2
 and      are 

calculated as a function of the measured value of the current sample and the 

parameters of the previous PLS model. 
 

- Additionally, the combined index was calculated as a function of the two 

statistics (Hotelling’s T
2
 and     ), their adaptive limits and the previous PLS 

model. Once an observation is identified as a statistical outlier, the observation 

itself is weighted prior to model updating. However, the adaptive limits are 

allowed to adapt to the statistical outlier. Hence the limits of the statistical 

outlier are used to calculate the combined index and its limit. This could have an 

impact on the functionality of the combined index as seen in Figure 5.83 and 

Figure 5.87 where an outlier was identified at time t=450 and t=1000 for case1 

and case 2  respectively. 

  

Figure 5.80 – Hotelling’s    based on 

RADPLS for the test data set – case 1 

Figure 5.81-      based on RADPLS for 

the test data set – case 1 
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    Figure 5.82-      based on RAPLS for 

the test data set – case 1 

Figure 5.83- Combined index based on 

RAPLS for the test data set – case 1 

 

The same observations can be seen for the second testing data set where the fresh feed 

temperature affects the behaviour of the ammonia reactor.  

  

Figure 5.84- Hotelling’s    based on  

RAPLS for the test data set – case 2 

     Figure 5.85-      based on RAPLS for 

the test data set – case 2 

  

     Figure 5.86-      based on RADPLS 

for the test data set – case 2 

 Figure 5.87- Combined index based on 

RADPLS for the test data set – case 2 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Time(sec)

S
P

E
y

 

 

SPEy

95% Confidence limit

99% Confidence limit

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

Time(sec)

C
o
m

b
in

e
d
 i
n
d
e
x

 

 

Combined index

95% Confidence limit

99% Confidence limit

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Time(sec)

H
o
te

ll
in

g
s
 T

2

 

 

Hotellings T2

95% Confidence limit

99% Confidence limit

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

Time(sec)

S
P

E
x

 

 

SPEx

95% Confidence limit

99% Confidence limit

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

Time(sec)

S
P

E
y

 

 

SPEy

95% Confidence limit

99% Confidence limit

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0   

200

400

600

800

1000

1200

Time(sec)

C
o
m

b
in

e
d
 i
n
d
e
x

 

 

Combined index

95% Confidence limit

99% Confidence limit



170 
 

A different fault duration was investigated (i.e. the pressure falls to 150 bar for 100 

recorded samples). From Figures 5.88 to 5.91 it can be observed that the fault was 

clearly identified.    

  
Figure 5.88. Hotelling’s    based on 

RADPLS for test data set (100 samples) 

Figure 5.89.      based on RADPLS for 

test data set (100 samples) 

  
Figure 5.90-      based on RADPLS for 

test data set (100 samples) 

Figure 5.91-Combined index based on 

RADPLS for test data set (100 samples) 

 

From Table 5.21, there is strong evidence that an improvement has materialised when 

comparing these results against the results based on ADPLS, where the fault detection 

rate were low (Table 5.16), and DPLS, where the false alarm rate were high 

(Table5.11). The fault detection rate is significantly increased when the fault occurs for 

a short duration as shown in Table 5.21. For case 1, the monitoring charts on average 

detect 60% and 57% of the process faults for the 95% and 99% confidence limits 

respectively whilst for case 2,  the monitoring charts on average detect 38.5% and 

36.5% of the process faults for the 95% and 99% confidence limits respectively. The 

fault detection rate has significantly increased when the faults occurs for a short 
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duration as the monitoring charts detect 93.5% and 90% of the process faults for the 

95% and 99% confidence limits respectively.  

Table 5.21 – Fault detection rate for monitoring charts based on RADPLS. 

 

Chart 

Fault detection rate 

95% confidence limits 

Fault detection rate 

99% confidence limits 

Test data set - Case 1 

Hotelling’s T² 59.68% 56.25% 

     58.12% 54.68% 

     62.18% 59.37% 

 Test data set - Case 2 

Hotelling’s T² 39.06% 35.93% 

     34.37% 33.75% 

     42.18% 39.68% 

 Test data set (100 samples) 

Hotelling’s T² 97% 95% 

     99% 95% 

     85% 80% 

 

Again the concept of average run length      and      is used to evaluate the 

monitoring charts based on RADPLS. There is a strong evidence of an improvement as 

can be seen in Table 5.22 where the value of      indicates the disturbance after few 

samples compared to      following the application of DPLS and ADPLS. On the 

other hand when the process was operating under normal operating conditions, the 

     was high compared to those following the application of the DPLS and ADPLS 

algorithms. The values of      and      were calculated on the basis of Monte Carlo 

approach (50 experiments).  
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Table 5.22 –      and      for Hotelling’s   ,      and      using RADPLS 

chart     RADPLS 

Hotelling’s         90 

     5 

          88 

     10 

          90 

     12 

 

5.10 Discussion  

In this Chapter, five statistical indices are used to assess model quality and the 

performance of monitoring charts. the root mean squared error (RMSE) and coefficient 

of determination (  ) are used for assessing the models whereas average run length 

(   ), false alarm rate (     and fault detection rate (     are used for assessing the 

monitoring charts. In the following sections the statistical metrics are assessed 

comparing DPLS, ADPLS and RADPLS to obtain a better understanding of the ability 

of each approach in terms of prediction and monitoring. 

5.10.1 Root Mean Squared Error (RMSE) 

The following sections provide a comparison of the RMSE following the application of 

the modelling approaches for the validation and test data sets (Table 5.5).  

  5.10.1.1 RMSE of Validation Data Set 

Figure 5.92- (a) shows a comparison between the RMSE of the modelling approaches 

and Figure 5.92- (b) shows a comparison between adaptive modelling approaches. Of 

all the approaches it can be seen that adaptive approaches give a bower RMSE 

indicating that the adaptive approaches result in better model predictions (Figure 5.92- 

(a)). Of the adaptive approaches, it can be concluded that the RADPLS approach with a 

variable number of latent variables results in slightly improved predictions as shown in 

Figure 5.92- (b). Although the improvements in the adaptive approaches are marginal, 

the monitoring results show that the RADPLS results in more reliable monitoring 

charts. 
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(a) (b) 

Figure 5.92 – RMSE of  PLS approaches for the validation data set 

5.10.1.2 RMSE of the Test Data Sets 

Figures 5.93 and 5.94 show the root mean square error of all PLS approaches for the 

test data sets (Table 5.5). Again the comparison was conducted on two bases. The first 

one was a comparison of all modelling approaches (Figures 5.93- (a) and 5.94 - (a)) and 

the second one was a comparison between the adaptive modelling approaches 

(Figures 5.93 - (b) and 5.94 - (b)). For both cases, it can be seen that RADPLS with a 

variable number of latent variables provides slight better predictions. Although the 

improvement is small compared to ADPLS however, the monitoring charts based on the 

RADPLS have the ability to detect the fault compared to ADPLS (Tables 5.16 and 

5.21). A significant difference between the RMSE of DPLS and the adaptive 

approaches is observed. This concludes that the adaptive approaches provide better 

results than the fixed parameter dynamic PLS (DPLS).  

  

(a) (b) 

Figure 5.93 – RMSE of  PLS approaches for the test data set – case 1 
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(a) (b) 

Figure 5.94 – RMSE of  PLS approaches for the test data set – case 2 
 

5.10.2 Coefficient of Determination   

The following sections provide a comparison of the Coefficient of Determination 

following the application of the modelling approaches for the validation and test data 

sets (Table 5.5).  

5.10.2.1    for the Validation Data Set 

The value of the coefficient of determination following the application of the modelling 

approaches to the validation data set is presented in Figure 5.95. It can be seen that the 

model quality of the adaptive approaches is better than the quality of the dynamic PLS 

model (Figure 5.95 – (a)). Of the adaptive approaches, the quality of the RADPLS 

models is marginally better than the ADPLS approaches as shown in Figure 5.95 – (b) . 

  

(a) (b) 

Figure 5.95 –    for the validation data set for all approaches 
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5.10.2.2    for the Test Data Sets 

Figures 5.96 and 5.97 show the coefficient of determination following the application of 

the DPLS variants to the test data sets. It can be concluded that the adaptive approaches 

are significantly better than DPLS as shown in Figures 5.96-(a) and 5.97-(a). Of the 

adaptive approaches (Figures 5.96-(b) and 5.97-(b)), the RADPLS models exhibit a 

slight enhanced performance compared to all approaches. 

  

(a) (b) 

Figure 5.96 –    for the test data set case 1 for all approaches 

  

(a) (b) 

Figure 5.97 –    for the test data set case 2 for all approaches 

 

Although the improvements in the adaptive approaches are marginal, the monitoring 

results show that the RADPLS results in more reliable monitoring charts. 
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5.10.3 Average Run Length 

The results of      and      for Hotelling’s   ,      and      are presented in 

Figures 5.98 to 5.100. Under normal operating conditions, Hotelling’s    (Figure 5.98) 

based on the adaptive approaches (ADPLS and RADPLS) perform better than DPLS. 

The same observation can be concluded for      and      (Figures 5.99 and 5.100). 

On the other hand, when the process was affected by the fault, Hotelling’s    based on 

RADPLS performed significantly better than ADPLS and DPLS.  This can be also seen 

in the      and      monitoring charts. 

        

Figure 5.98 – Average run length for Hotelling’s T² 

 

Figure 5.99 – Average run length for      
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Figure 5.100 – Average run length for      
 

5.10.4 Fault Detection Rate and Fault Alarm Rate 

Figures 5.101 and 5.102 show the     for the three approaches for the validation data  

set for the 95% and 99% confidence limits respectively. It can be seen that DPLS 

increased the     compared to the adaptive approaches. A slight improvement can be 

seen between ADPLS and RADPLS as shown in Tables 5.16 and 5.21.  

 

Figure 5.101 – False alarm rate for PLS approaches based on 95% confidence limits 

 

Figure 5.102 – False alarm rate for PLS approaches based on 99% confidence limits 
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Figures 5.103 and 5.104 show the     for the adaptive approaches for the test data sets 

for the 95% and 99% confidence limits respectively. It can be seen that there is a 

significant increase in the     based on RADPLS compared to the ADPLS approaches.  

 

Figure 5.103 – FDR for PLS approaches for 95% confidence limits (case 1) 

 

Figure 5.104 – FDR for PLS approaches for 99% confidence limits (case 2) 

5.11 Chapter Summary and Conclusions 

In this chapter, statistical modelling and monitoring of data generated from an 

ammonia synthesis fixed-bed reactor was preformed. Two main issues were addressed, 

the modelling of the complex dynamic behaviour of the ammonia synthesis fixed-bed 

reactor using statistical approaches and the building of monitoring schemes to monitor 

process behaviour.  

For the first part, the empirical model was built using DPLS. By calculating the 

appropriate sampling interval and identifying the most appropriate dynamic 

representation, the dynamics in the process were taken into account. Different scaling 

approaches were considered and normalization was adopting. Based on this work, the 

complex behaviour of the ammonia synthesis fixed-bed reactor was modelled and the 

DPLS method showed good performance in terms of fitting and prediction as 
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quantifying by the RMSE and   . However, the false alarm rates following the 

application of DPLS indicate that the ammonia synthesis fixed bed reactor requires an 

advanced techniques to construct reliable monitoring charts.    

The ADPLS and RADPLS approaches were used to regularly update the process 

model. ADPLS was used to update the reference model once a new sample became 

available. This showed an improvement in model fit and predictions. However, there 

was no threshold to prevent an abnormal event being included in the updating 

procedure. RADPLS was proposed to overcome this limitation. The results from 

ADPLS and RADPLS demonstration improved model fit and predictions compared to 

DPLS. RADPLS showed slightly improved performance compared to ADPLS. 

However, the performance of the monitoring charts following the application of 

RADPLS had the ability to decrease the number of false alarms compared to DPLS 

monitoring charts and increase the fault detection rate compared to the monitoring 

charts following the application of ADPLS.  

The only limitation on the application of the proposed method (RADPLS) was the 

effect of the complex dynamic behaviour of the ammonia fixed-bed reactor signal on 

the functionality of RADPLS. This was due to the very strong dynamics contained in 

the data generated from ammonia simulation. The strong dynamic characteristics force 

the monitoring statistics to pass through the normal operating conditions area whilst 

the process was affected by the fault. Hence, the model and the confidence limits were 

updated incorrectly causing the next faulty samples to be identified as generated from 

normal operating conditions.    

The performance of the RADPLS is tested on the benchmark of the Tennessee 

Eastman simulation process in Chapters 6 and 7. In addition, the extension of the 

RAPLS method to construct a scheme for monitoring the whole process as well as 

individual units is presented in Chapters 6 and 7. 
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Chapter 6 

Statistical Monitoring of Tennessee Eastman Process 

6.1 Introduction 

As discussed in the previous chapters, the rapid development of process monitoring 

methods is a consequence of the increasing demand for more reliable processes and the 

need to manufacture products of consistent quality. By detecting the onset of abnormal 

events, the root causes of operational issues can be addressed and hence process 

efficiency and quality is enhanced. For the analysis of different data-driven monitoring 

approaches, it is normal practice to use data generated from simulation studies. In this 

chapter the statistical monitoring of the Tennessee Eastman Process (TEP) is 

considered. The TEP simulator is widely accepted as a test-bed for investigating process 

monitoring and fault diagnoses methodologies. It is a complex dynamic and nonlinear 

process, which was developed as a result of a collaboration between the Eastman 

Chemical Company and University of Tennessee (Downs and Vogel, 1993). In this 

chapter, a number of Partial Least Squares (PLS) based monitoring techniques are 

developed for the monitoring of the whole process as well as the individual unit 

operations. Monitoring charts are evaluated through a number of statistical indices that 

quantify false alarm and fault detection rates. 

As discussed in previous chapters, monitoring based on PLS consists of two steps. First 

a process model that represents normal process behaviour is developed. Secondly, the 

developed model is used for constructing a monitoring scheme that has the ability to 

provide reliable detection of process abnormality. In Chapter 7, a number of operational 

changes are considered including a step change, random variation, change in reaction 

kinetics and an unknown change.  

6.2 Objectives 

The main objective of this chapter is to develop models and monitoring schemes based 

on the techniques discussed in Chapters 3 and 4 for the TEP in terms of both the whole 

process as well as the individual unit operations. More specifically the goals of the 

chapter are to: 
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- Apply and extend the PLS techniques introduced previously to develop process 

models that describe the performance of the TEP. Model fitting and prediction 

performance will be evaluated in terms of the root mean squared error (RMSE). 

- Investigate the efficiency of the PLS techniques with respect to process 

monitoring.  

- Develop monitoring schemes that allow for the monitoring of the whole process 

as well as the individual unit operations using multiblock PLS. 

The monitoring charts will be assessed using the statistical index of false alarm rate 

(   ) and fault detection rate (   ). Table 6.1 summarises the modified PLS 

techniques applied in this chapter while Table 6.2 provides the criteria used to assess the 

performance of the modelling and monitoring approaches. 

Table 6.1- Summary of the approaches applied and the underlying objectives. 

Approach Objective(s) 

Partial Least Squares (PLS) 

Original PLS method 

Modelling the process and monitoring the whole 

process using steady state fixed parameter PLS. 

Dynamic PLS (DPLS) and 

multiblock variants 

(MBDPLS) 

Modified by incorporating FIR 

Dynamic modelling of the process and monitoring of 

the whole process and individual unit operations 

using fixed parameter DPLS and MBDPLS 

Recursive dynamic PLS with 

adaptive confidence limits 

(ADPLS) and  

 multiblock variant 

(AMBDPLS) 

Modified by incorporating FIR 

Recursive dynamic model with real-time monitoring 

of the whole process and individual unit operations 

with adaptive confidence limits 

Robust recursive dynamic PLS 

with adaptive confidence limits 

(RADPLS) and multiblock 

variants (RAMBDPLS) 

Modified by incorporating FIR 

Recursive dynamic model that is robust to outlying 

samples for the real-time monitoring of the whole 

process and individual unit operations with adaptive 

confidence limits 
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Table 6.2- Assessment criteria for models and the statistical monitoring of the process 

Criteria Tool 

Goodness of fit RMSE of calibration data set 

Accuracy of prediction  RMSE of validation data set 

Monitoring efficacy Monitoring charts,      and     

 

6.3 Tennessee Eastman Process 

6.3.1 Background 

In 1993, Downs and Vogel summarized the potential applications of the TEP. These 

included the application of different control strategies, process optimization, predictive 

control, nonlinear control and process diagnostics. They also provided FORTRAN 

subroutines to be used for the aforementioned application areas and these subroutines 

are available in the public domain (Downs and Vogel, 1993). The TEP has been used in 

a wide variety of studies including the application of control strategies, process 

monitoring and fault diagnosis (Ricker, 1995; Kano et al., 2002; Lee et al., 2004; 

Molina et al., 2011; Yin et al., 2012). 
 

6.3.2 Process Description 

The TEP comprises five unit operations: reactor, condenser, compressor, separator and 

stripper. Figure 6.1 provides a detailed diagram of the process units and the positioning 

of the valves (Downs and Vogel, 1993). A description of the process as well as notation 

and symbols is given in Downs and Vogel (1993). 
 

The process has two quality products represented by G and H that are produced from 

four reactants, A, C, D and E. In addition to the products G and H, an inert, B, and a by-

product, F, are removed from the system. All the reactions are exothermic and 

irreversible and are given by: 

                        

                       

                                  

                                         

 

 

(6.1) 

 

The reactant (gas phase) is fed to the exothermic reactor where the main reaction is 

carried out. The reactor product stream is then cooled by the condenser and the 
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condensed components are transferred to the vapour/liquid separator with some of the 

unused materials in the vapour being recycled back to the reactor through a compressor. 

A portion of the recycle stream is purged to prevent the inert and by-product 

accumulating in the system (Downs and Vogel, 1993). Liquid components from the 

separator are sent to the stripper, where the remaining reacted components are further 

reacted and stripped. The quality products are produced in the striper and the unused 

material is recycled back into the reactor. 

For ease of understanding, a schematic of the TEP is presented in Figure 6.2. It shows 

the five unit operations with a simplified workflow and does not include the control 

structure. Additionally, it identifies the units that represent the process blocks used in 

the multiblock analysis. Figures 6.1 and 6.2 show the interactions between the process 

units (blocks). Since the process is continuous and some of the control loops are 

connected (dashed lines), it is expected that further interactions will materialise between 

process units. For example, when the condenser cooling water rate is increased, it has an 

effect on the amount of liquid exiting from the condenser outlet, thereby determining 

the liquid level in the separator. The separator has a set point for the liquid level and this 

is connected to the underflow of the separator via a valve. Whenever, the liquid level is 

increased in the separator, the excess liquid is purged by opening the valve to allow 

more liquid to flow into the stripper. This is an example of how a change in the state of 

one unit operation is transmitted to another unit (i.e. stripper). 

 

Figure 6.1 - Tennessee Eastman Process (Downs and Vogel, 1993) 
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Figure 6.2 - Simplified Tennessee Eastman work flow 
 

6.3.3 Data Acquisition 
 

For this study, the data sets published by Chiang et al. (2001) that had been generated 

from the FORTRAN formed the bases of the analysis. These data sets have previously 

been used for process monitoring and fault diagnoses studies in Yin et al. (2012) and 

Chiang et al. (2001). The data set comprises 53 variables recorded every 3 min of which 

22 are process measurements, XMEAS(1)…., XMEAS(22), 19 are composition 

measurements, XMEAS(23)….,XMEAS(41) and 12 are manipulated variables defined 

as XMV(1), XMV(2),…XMV(12). A description of the process variables and 

manipulated variables is presented in Tables 6.3 and 6.4.  
 

The composition measurements are taken from streams 6, 9 and 11 (Figure 6.1) and the 

compositions form streams 6 and 9 are recorded every 6 min whilst the compositions 

from stream 11 are recorded every 15 min. Chiang et al. (2001) provided 22 training 

data sets encompassing both normal operating conditions and abnormal behaviour. They 

used the same sampling interval, 3 min for all variables to simplify the implementation 

of data the driven methods (Chiang et al., 2001). Chiang et al. (2001) stated that by 
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applying the same sampling interval for all the variables, the measurement taken from 

stream 6 and 9 are available for every two samples and for stream 11, they are available 

every five samples. Chiang et al. (2001) sorted the differences in the sampling interval 

between process variables and the measurement taken from stream 6,9 and 11 to have a 

sampling period of 3 min for all the measurement. By preserving the measurement 

taken from stream 6, 9 and 11 until a new measurement is recorded. In this work, the 

quality variable (composition G) is the only measurement taken from stream 9 with a 6 

min time delay, i.e. a new measurement is available every two samples (3 min 

sampling). 
 

The normal operating condition data set was collected for 25 operational hours. The 

data sets that incorporated abnormal behaviour were collected for 48 hr and the 

abnormal event was introduced after 8 hr of the operating period. The total number of 

data sets comprising identified faults is 21 (Downs and Vogel, 1993; Chiang et al., 

2001). Table 6.5 summarises the abnormal data sets and the associated faults. 
 

For the development of the monitoring scheme, 22 measurements XMEAS(1)…., 

XMEAS(22) and only 11 manipulated variables XMV(1),…….XMV(11) were used to 

define input matrix,              . The manipulated variables were included as 

input variables because they are not independent of the process variables due to the 

process being operated under feedback control (Yin et al., 2012). In this study, the 

composition G (XMEAS(35)) is used to denote the product quality and is labelled,       

 

6.3.4 Process Characteristics 
 

The Tennessee Eastman Process (TEP) exhibits nonlinear and dynamic characteristics. 

Although the process is nonlinear, it is known from the literature that a nonlinear system 

can be approximated by a linear model if it is operated within a certain operating region 

(Ge and Song, 2013; Ge et al., 2013). The TEP is operated under closed loop control 

and hence the process measurements are auto and cross correlated. Consequently, a 

process monitoring method that takes into account the correlation structure in the 

process data is necessary. 
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Table 6.3 - Process measurements and manipulated variables 

Process Measurements 

Variables Description Label* 

XMEAS(1) 

XMEAS(2) 

XMEAS(3) 

XMEAS(4) 

XMEAS(5) 

XMEAS(6) 

XMEAS(7) 

XMEAS(8) 

XMEAS(9) 

XMEAS(10) 

XMEAS(11) 

XMEAS(12) 

XMEAS(13) 

XMEAS(14) 

XMEAS(15) 

XMEAS(16) 

XMEAS(17) 

XMEAS(18) 

XMEAS(19) 

XMEAS(20) 

XMEAS(21) 

XMEAS(22) 

A Feed (Stream 1) 

D Feed (Stream 2) 

E Feed (Stream 3) 

Total  Feed (Stream 4) 

Recycle Flow 

Reactor Feed Rate 

Reactor Pressure 

Reactor Level  

Reactor Temperature 

Purge Rate (Stream 9) 

Product Separator Temperature 

Product Separator Level 

Product Separator Pressure 

Product Separator Underflow 

Stripper Level 

Stripper Pressure 

Stripper Level Underflow 

Stripper Temperature 

Stripper Steam Flow 

Compressor Work  

Reactor cooling Water outlet temperature 

Separator cooling Water outlet temperature 

   

   

   

   

   

   

   

   

   

    

    

    

    

    

    

    

    

    

    

    

    

    

Label* denotes the variables used in the multivariate analysis. The manipulated variable 

XMV(12) is not used in the analysis  

  

Manipulated Variables 

Variable Description Label* 

XMV(1) 

XMV(2) 

XMV(3) 

XMV(4) 

XMV(5) 

XMV(6) 

XMV(7) 

XMV(8) 

XMV(9) 

XMV(10) 

XMV(11) 

XMV(12) 

D Feed Flow (Stream 1) 

E Feed Flow (Stream 2) 

A Feed Flow (Stream 3) 

Total feed (Stream 4) 

Compressor Recycle Valve  

Purge Valve (Stream 9) 

Separator Pot Liquid Flow (Stream 10)   

Stripper Liquid Product Flow (Stream 11) 

Stripper Steam Valve 

Reactor Cooling Water Flow 

Condenser Cooling Water Flow 

Agitator speed 

    

    

    

    

    

    

    

    

    

    

    

** 
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Table 6.4 - Composition measurements 

Variable Description Label Stream Sampling interval (min) 

XMEAS(23) 

XMEAS(24) 

XMEAS(25) 

XMEAS(26) 

XMEAS(27) 

XMEAS(28) 

XMEAS(29) 

XMEAS(30) 

XMEAS(31) 

XMEAS(32) 

XMEAS(33) 

XMEAS(34) 

XMEAS(35) 

XMEAS(36) 

XMEAS(37) 

XMEAS(38) 

XMEAS(39) 

XMEAS(40) 

XMEAS(41) 

Component A 

Component B 

Component C 

Component D 

Component E 

Component F 

Component A 

Component B 

Component C 

Component D 

Component E 

Component F 

Component G 

Component H 

Component D 

Component E 

Component F 

Component G 

Component H 

   

   
   
   
   
   
   
   
   
    
    
    
    
    
    
    
    
    
    

6 

6 

6 

6 

6 

6 

9 

9 

9 

9 

9 

9 

9 

9 

11 

11 

11 

11 

11 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

15 

15 

15 

15 

15 

 

 

Table 6.5 - Process faults 

Fault Description Type 

Fault (1) A/C feed ratio, B composition constant Step 

Fault (2) B composition, A/C feed ratio constant Step 

Fault (3) D feed Temperature Step 

Fault (4) Reactor cooling water inlet temperature Step 

Fault (5) Condenser cooling water inlet temperature Step 

Fault (6) A feed loss Step 

Fault (7) C header pressure loss-reduced availability Step 

Fault (8) A, B, and C feed composition Random variation 

Fault (9) D feed temperature Random variation 

Fault (10) C feed temperature Random variation 

Fault (11) Reactor cooling water inlet temperature Random variation 

Fault (12) Condenser cooling water inlet temperature Random variation 

Fault (13) Reaction kinetics Slow drift 

Fault (14) Reactor cooling water valve Sticking 

Fault (15) Condenser cooling water valve Sticking 

Fault (16) Unknown Unknown 

Fault (17) Unknown Unknown 

Fault (18) Unknown Unknown 

Fault (19) Unknown Unknown 

Fault (20) Unknown Unknown 

Fault (21) The valve fixed at steady state position Constant position 
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6.4 Statistical Monitoring of TEP 
 

 

A number of data driven methods have been applied to the TEP for monitoring purposes 

including partial least squares (PLS), principal component analysis (PCA) and 

independent component analysis (ICA). Recently Yin et al. (2012) undertook a 

comparative study on the application of a number of data driven methods to the TEP 

including PCA, PLS, ICA, Fisher Discriminant Analysis, total PLS (TPLS) and 

Subspace Aided Approach (SAP). They found that the SAP method provided better 

fault detection rate (     than the other methods. In addition they concluded that the 

number of parameters, components and latent variables, associated with PLS, PCA and 

ICA influence the performance of the process monitoring methods. However, the PLS 

methods used in their study did not consider the autocorrelation inherent within the 

process variables. In addition they did not provide any information with regards to 

model quality.  
 

Chiang et al. (2001) reviewed the application of multivariate statistical monitoring 

approaches to the TEP including PCA, Dynamic PCA (DPCA), and Canonical Variate 

Analysis (CVA). They found that CVA produced a high false alarm rate compared to 

PCA and DPCA.  Additionally, DPCA is sensitive to the TEP faults compared to 

standard PCA, i.e. it detects the small changes in the TEP rapidly. In general, they 

found that the performance of the multivariate process monitoring methods varied for 

the different test data sets, more specifically when the fault affects a large number of 

process variables, detection performance is improved. Other multivariate statistical 

monitoring studies have also been undertaken on the TEP (Raich and Çinar, 1996; Kano 

et al., 2002; Li et al., 2010; Liu et al., 2012).  

 

Within this study, the data driven methods presented in Table 6.1 are applied to the TEP 

for the purpose of monitoring. In contrast to previous studies, the approaches considered 

are based on the dynamics of the process and compared against the more traditional 

approaches of standard PLS. A further aspect of this study is to compare the results 

when monitoring the whole process as well as the individual unit operation. The 

multiblock PLS algorithm of Westerhuis et al. (1998) forms the bases of the monitoring 

of the individual unit operations and presented in Chapter 3. In the multiblock analysis, 

the first step was to divide the process variables and manipulated variables (Table 6.3) 

into five blocks namely reactor, separator, stripper, compressor and materials block 

respectively. The condenser unit data is combined with the reactor data since it contains 
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only one variable, condenser cooling water flow. Each block comprises a different 

number of variables (               and given in Table 6.6, i.e. the number of the 

variables is 7, 6, 7, 5 and 8 for the reactor, separator, stripper, compressor and materials 

block respectively.  
 

Prior to the implementation of statistical monitoring methods, pre-processing of the data 

was performed. In term of scaling, block scaling was applied, i.e. each variable in data 

block    is scaled to have zero mean and variance, 
 

  
. After scaling, the variant PLS 

methods were applied. 
 

Table 6.6 - Process variable assigned to corresponding blocks 

Block name Variables name Variable Labels 

Block 1 

Reactor  

Reactor Feed Rate   

Reactor Pressure 

Reactor Level 

Reactor Temperature 

Reactor cooling Water outlet temperature 

Reactor Cooling Water Flow 

Condenser Cooling Water Flow 

XMEAS(6) 

XMEAS(7) 

XMEAS(8) 

XMEAS(9) 

XMEAS(21) 

XMV(10) 

XMV(11) 

   

   

   

   

    

    
    

Block 2 

Separator 

Product Separator Temperature 

Product Separator Level 

Product Separator Pressure 

Product Separator Underflow 

Separator cooling Water outlet temperature 

Separator Pot Liquid Flow (Stream 10)   
 

XMEAS(11) 

XMEAS(12) 

XMEAS(13) 

XMEAS(14) 

XMEAS(22) 

XMV(7) 

    

    

    

    

    

    

Block 3 

Stripper 

Stripper Level 

Stripper Pressure 

Stripper Level Underflow 

Stripper Temperature 

Stripper Steam Flow 

Stripper Liquid Product Flow (Stream 11) 

Stripper Steam Valve 
 

XMEAS(15) 

XMEAS(16) 

XMEAS(17) 

XMEAS(18) 

XMEAS(19) 

XMV(8) 

XMV(9) 

    

    

    

    

    

    

    

Block4 

Compressor 

Recycle flow 

Purge Rate (Stream 9) 

Compressor Work 

Compressor Recycle Valve 

Purge Valve (Stream 9 

XMEAS(5) 

XMEAS(10) 

XMEAS(20) 

XMV(5) 

XMV(6) 
 

   

    

    

    
    

 

Block 5 

Materials 

A Feed (Stream 1) 

D Feed (Stream 2) 

E Feed (Stream 3) 

Total feed (Stream 4) 
D Feed Flow (Stream 1) 

E Feed Flow (Stream 2) 

A Feed Flow (Stream 3) 
Total  Feed (Stream 4) 
 

XMEAS(1) 

XMEAS(2) 

XMEAS(3) 

XMEAS(4) 

XMV(1) 

XMV(2) 

XMV(3) 

XMV(4) 
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6.4.1 Static PLS Model 
 

PLS was applied to the scaled TEP process data, where the data was collected on 3 min 

sampling period. The predictor matrix (      ) containing the predictor variables 

was sub-divided as follows: 

                   (6.2) 

 

The matrices             and    are the individual unit matrices (reactor, separator, 

stripper, compressor and materials respectively). The response vector, (       is 

given by: 

        (6.3) 

where     represent the quality variable (composition G).  

 

The results from the application of static PLS are presented in Table 6.7. The first step 

was to determine the number of latent variables      . Figure 6.3 shows the percentage 

of variance captured by the individual latent variables. From the scree plot, it appears 

that 3 latent variables is appropriate with 10.46% of the variation in the response 

variable   being explained by 44.12% of the variation in the predictor block   

indicating that the PLS model fails to capture the dynamics in the process and does not 

represent the behaviour of  the process. This can be clearly seen in Figures 6.4 and 6.6 

which shows the time series plot of the measured and predicted for the calibration and 

validation data sets. Figures 6.5 and 6.7 show the time series plot of the residuals from 

static PLS for the calibration and validation data set respectively. From Table 6.7, it can 

be seen that by increasing the number of latent variables to 6, only an additional 2% of 

the variability in the  -block is captured and thus it can be concluded that static PLS is 

not appropriate in this case. The root mean squared error of the calibration data set, 

0.9422, indicates along with Figure 6.4 that the model prediction is not appropriate.  
 

Table 6.7 - Percentage variance captured by the conventional PLS model 

Latent 

Variables 

 -block  -block 

LV Cum LV Cum 

1 16.13 16.13 8.55 8.55 

2 10.95 27.09 1.20 9.75 

3 17.03 44.12 0.71 10.46 

4 7.10 51.22 0.77 11.23 

5 4.79 56.02 0.66 11.89 

6 3.37 59.40 0.85 12.74 
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Figure 6.3 - Percent of variance captured 

by individual    

Figure 6.4 - Time series plot of the original 

and fitted data from static PLS (3   ) - 

Calibration data set 

  

Figure 6.5 - Time series plot of the residuals 

for static PLS (3   ) – Calibration data set 

Figure 6.6 - Time series plot of the measured 

and predicted data from static PLS (3   ) – 

Validation data set 

 

 

Figure 6.7 - Time series plot of the residuals 

from static PLS (3   ) - Validation data set 
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Zhou et al. (2010) and Yin et al. (2012) mentioned that for the same data sets utilising 

standard auto-scaling, a PLS model with 6 latent variables was appropriate. Table 6.8 

summarizes the model details generated on the basis of these suggestions. It can be seen 

that a PLS model based on 6 latent variables captures 12.53% of the variation in the  -

block and 42.10 % in the  -block. This is 0.21% lower than for a PLS model based on 6 

latent variables and block scaling and 2.07 % greater than for a PLS model based on 3 

latent variables and block scaling which indicates that the model that had been used was 

also inappropriate in terms of capturing the process dynamics and predicting the quality 

variable  . The RMSE of the calibration data set (RMSE=0.9425) indicates that the 

model prediction is not appropriate. Figures 6.8 and 6.9 show the time series plots of the 

measured and predicted response for the calibration and validation data sets based on a 

PLS model with 6 latent variables.  
 

Table 6.8 - Percentage variance captured from conventional PLS model 

Latent 

Variables 

 -block  -block 

LV Cum LV Cum 

1 16.11 16.11 8.72 8.72 

2 4.43 20.54 2.27 10.98 

3 5.92 26.46 0.48 11.46 

4 4.92 31.38 0.35 11.81 

5 5.71 37.09 0.30 12.11 

6 5.01 42.10 0.42 12.53 

 

  
Figure 6.8 - Time series plot of the original 

and fitted data from static PLS (6   ) - 

Calibration data set 

Figure 6.9 - Time series plot of the measured 

and predicted data from static PLS (6   ) - 

Validation data set 
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The monitoring statistics for the static PLS model with 6 latent variables based on auto-

scaled data and static PLS model with 6 latent variables based on block-scaled data set 

are presented in Appendix D. It was concluded that the monitoring charts following the 

application of static PLS produced a high false alarm rate which indicates that the static 

PLS model based on the different scaling methods was inappropriate to model the 

dynamics of the TEP. The false alarm rate (   ) shows small differences between the 

two models (Figure 6.10). The false alarm rate of the individual monitoring charts for 

the calibration and validation data sets is given in Appendix D. The overall false alarm 

rate     is calculated based on the joint use of the monitoring statistics, Hotelling’s T² 

and     . The overall     obtained from Yin et al. (2012) for the calibration data, 10, 

is very close to the     obtained from static PLS based on block-scaling, 9.5. The 

overall     for the validation data set following the application of PLS based on auto-

scaling and block-scaling, 47 and 45.7 respectively, was higher than the     for 

calibration data set. This indicates that both models produced high false alarm rates and 

they are inappropriate to construct monitoring scheme for the TEP. 

 

Figure 6.10 - False alarm rate from static PLS models (6   ) based on auto-scaled and 

block-scaled data for the calibration data set 
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From the above discussion, it can be concluded that static parameters and steady state 

PLS is inappropriate to model the TEP (dynamic process). Consequently, dynamic PLS 

models are developed in the following section. 

6.4.2 Dynamic PLS (DPLS)    
 

The TEP is a dynamic process due to the feedback control system and hence, a dynamic 

model is required to take into account the process dynamics thereby enhancing the 

performance of the monitoring statistics (Ku et al., 1995; Kano et al., 2002).  

 

A number of studies have reported the application of dynamic methods to the TEP. For 

example, Ku et al. (1995) developed a DPCA algorithm to deal with autocorrelation and 

their approach correctly identified a number of the faults introduced to the TEP. 

However, PCA does not consider the variation in the quality product variables. 

Juricek et al. (2001) used the TEP to compare multiple inputs, multiple outputs (MIMO) 

dynamic models identified using canonical variate analysis (CVA), autorgressive with 

exogenous input (ARX) and numerical algorithm for state space system identification 

(N4SID) methods. Their dynamic model included 7 inputs and 10 outputs. They found 

that the CVA and the state space algorithm give better results compared to the other 

methods. However, it is beyond the scope of this thesis to investigate dynamic models 

based on state space methods. Lee et al. (2004) combined system decomposition and 

dynamic PLS through an autoregressive moving average model for the diagnoses of 

multiple faults based on samples generated every 1 min. System decomposition is a 

fault diagnosis method where the process is decomposed based on the local qualitative 

relationship of each variable. Their diagnosis results for a single fault showed 

satisfactory accuracy in terms of fault diagnoses compared to the statistical methods 

used by Chiang et al. (2001) who applied PCA, DPCA and Independent component 

analysis (ICA) for fault detection and diagnosis. Lennox (2005) applied dynamic PLS, 

based on an ARX model and a 3 min sampling interval to integrate fault detection and 

isolation with model predictive control. He demonstrated that through the application of 

DPLS to the TEP, the diagnostic information relating to the control system can be 

extracted. Dynamic principal component analysis based on decorrelated residuals 

(DPCA-DR) has also been applied for fault detection on the TEP (Rato and Reis, 2013).  

 

 

In this work, dynamic empirical modelling through a Finite Impulse Response (FIR) 

time series representation is considered. By using a FIR representation, a steady state 

PLS approach can be used for the modelling and monitoring of the TEP. The reason for 
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selecting FIR to model the TEP rather than ARX is that the application of multiblock 

approaches requires the division of the input matrix, into corresponding unit operation. 

By using ARX, the output variables require being included in the input matrix and it 

was not deemed to be informative in terms of the behaviour of the unit operations. 

 

 

Figure 6.11 shows the systematic development of the PLS model using a dynamic 

representation for modelling and monitoring of TEP. The first step is to identify the 

model objectives and analyse the properties of the TEP. The goal is to develop a 

monitoring scheme for the whole process and the individual unit operation. The process 

exhibits dynamic nonlinear behaviour. Consequently, it is important to take this into 

account when developing a process model. Based on this, the data should be sampled 

such that it preserves the significant information in the process and captures the process 

dynamics. Three data sets are considered in the monitoring of the TEP, calibration data 

set which is used to develop the monitoring model, the validation data set which is used 

to ensure that the model captures the process behaviour and finally a test data set which 

is used for process monitoring and fault detection. 

 

 

Figure 6.11 - Systematic development of a TEP monitoring scheme. 
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6.4.2.1 Finite Impulse Response (FIR) model   
  

The use of a finite impulse response model for the modelling of process dynamics has 

been reviewed by a number of authors (Ricker, 1988; Kaspar and Ray, 1993; Dayal and 

MacGregor, 1996). A number of methods have been proposed to estimate the FIR 

coefficients. For example, ordinary least squares (OLS) but it can result in a biased 

estimation when the process input variables are correlated. This is because the inverse 

of the matrix     will be singular for correlated input. In 1984, Wold proposed the use 

of PLS to estimate the FIR model coefficients. Since then it has been applied by many 

authors to model dynamic systems (Ricker, 1988; Dayal and MacGregor, 1996; 

Nikolaou and Vuthandam, 1998; Baffi et al., 2000; Box et al., 2008). A FIR model 

accounts for process dynamics by including lagged input variables into the regressor 

matrix. The only limitation of the FIR approach is the need for a large number of 

parameters to be estimated. This can increase the computational complexity and the 

time required for identifying the model, especially when an adaptive dynamic PLS 

algorithm is implemented. Selecting the appropriate sampling interval can potentially 

reduce the number of parameters included in the FIR representation. The TEP data is 

generated based on a sampling interval of 3 min to allow for more rapid fault detection, 

identification and diagnosis (Chiang et al., 2001). On the other hand, from a system 

identification prospective (Ljung, 1999), one should sample according to: 

 

 

  
       

 

 
    

 

(6.4) 

 

where    is the sampling period and   is the process time constant. In the TEP, the 

estimated time constant under closed loop control was approximately two hours (Chiang 

et al., 2001). According to this the sampling interval would be the order of: 

             (6.5) 
 

 

 

The FIR approach requires approximately 3    of history to capture the process 

dynamics. Therefore, the appropriate number of lags for the FIR model needs to be 

identified. A general overview of FIR modelling is presented below followed by a study 

to identify the appropriate number of lags based on different sampling intervals. The 

goal is to find the FIR representation that can take into account the dynamics in the 
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system with the smallest number of coefficients to simplify the implementation of the 

adaptive and multi-block PLS approaches. 

The FIR representation is given by: 

     ∑        

  

   

      

 

(6.6) 

 

where      is the process input data vector,    is the number of time lags for the input 

data vectors;      is the noise vector at the current time point   and the    is the 

coefficient matrix. Steady state PLS can be used to model the dynamic process. From 

Qin (1993), the regressor vector which consists of lagged input values can be expressed 

as follows: 
 

                                (6.7) 

 

Equation 6.6 can be presented in a simplified form as: 
 

                 (6.8) 

 

where   is defined as : 

              
  (6.9) 

 

From Equations 6.7 and 6.8, the vectors     ,       and      can be arranged in matrix 

form: 
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(6.10) 

 

Consequently, Equation 6.6 is re-written as following: 

         (6.11) 

 

The values of   are determined using PLS regression. For the TEP, the regressor matrix 

without lagged variables is given in Equation 6.2. The graphical representation of the 

steady state PLS matrices and the DPLS based on a FIR representation (3 lags is used as 

an example) is shown in Figure 6.12 and Figure 6.13, respectively. 
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Figure 6.12 - Graphical representation of the input and output matrices for PLS 

 

 

Figure 6.13 - Graphical representation of the input and output matrices for DPLS using 

FIR representation with 3 lags as an example 
 

It is important to select the regressor matrix appropriately since by including additional 

lags in the regressor matrix the robustness of the model could be compromised. This 

occurs because the extra lags will increase the dimensionality of the matrix and noise 

may be being captured by the model (Chiang et al., 2001). On the other hand, it is 

known that FIR requires a large number of lags to capture the process dynamics, i.e. a 

history of 3(τ). According to this, the FIR representation requires approximately 6 hours 

of data to capture the dynamics in the TEP and hence the impact of including additional 

lags in the FIR model was also investigated.  

 

 

Table 6.9 summarizes the maximum number of lags and number of FIR coefficients 

corresponding to different sampling intervals. For example if the sampling interval was 
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selected at 3 min, the maximum number of lags required to capture the dynamics in the 

TEP is of the order of 120 lags with 3960 coefficients (based on a 6 hour time history). 

This essentially increases the computational complexity of implementing the adaptive 

and multiblock approaches and is time consuming. 

 

 

Table 6.9 - Number of FIR coefficient for different sampling intervals 

Sampling 

interval 

maximum number of lags  

(for 6 hour time history)  

Corresponding number of 

coefficients in FIR 

3 120 3960 

12 30 990 

18 20 660 

24 15 495 

 

In this study, the root mean squared error (RMSE) is used to evaluate the goodness of fit 

of the model. One approach to identifying the appropriate model is through an 

exhaustive search of all models. This requires significant computational time and effort. 

On the other hand, an experimental design approach could be applied to test the 

significance of increasing the number of lags and help to select the model structure. 

However, the use of data generated by Chiang et al. (2001), where only one data set is 

generated for calibration that represents normal operating conditions resultants in the 

application of an exhaustive search approach.  

 

 

For the identification of an appropriate model, the sampling intervals considered were 

3 min, 12 min, 18 min and 24 min based on Equations 6.4 and 6.5. The number of lags, 

  , considered were 1, 2 ,4  and 6 lags. The model was calculated based on the training 

data generated under normal operating conditions. The most important factor that needs 

to be considered is whether by sampling at a lower rate, the model can capture the 

important information contained in the process signals based on Equation 6.4. In 

addition, the number of FIR coefficients needs to be kept to a minimum to simplify the 

implementation of the adaptive and multiblock approaches.  

 

 

Table 6.10 summarises the effect of sampling intervals and number of lags on the 

development of the PLS model. The selection of the most appropriate model was made 

based on two criteria, the RMSE of the calibration and the variance captured in the  -

block by the model. From the different combinations considered, the best model from 
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each sampling interval category was selected and then compared with other intervals. 

From Figures 6.14 to 6.17 and Table 6.10, it can be seen that the calibration model 

based on an 18 min and 24 min sampling interval gives the best level of variance 

captured as well as RMSE of calibration. The sampling interval of 18 min with 6 lags 

was selected for 3 reasons; (1) although the model built based on 24 min gives more 

accurate predictions and captures more variation in the  -block, according to 

Equation 6.5, from a system identification prospective, the sampling interval should be 

less than 24 min. (2) The difference in RMSE of the models for both sampling intervals 

is minimal (3) It is known that the system measurements include Gaussian noise, hence 

incorporating more lags allows for the noise to contribute to the model (Chiang et al., 

2001). 

 

Table 6.10 – The impact of sampling interval and number of lags on DPLS model 

Num Sampling interval Num of lags RMSE -Calibration Variance captured 

1 3 0 0.9422 10.46 

2 3 1 0.9250 11.90 

3 3 2 
0.8636 25.8021 

4 3 4 
0.8083 34.9972 

5 3 6 
0.5875 39.9065 

6 12 0 
0.8574 32.6302 

7 12 1 
0.8053 36.3717 

8 12 2 
0.7349 47.0142 

9 12 4 
0.6113 63.3365 

10 12 6 
0.5399 71.3499 

11 18 0 
0.7384 43.7319 

12 18 1 
0.6812 44.3853 

13 18 2 
0.6217 62.9014 

14 18 4 
0.4269 82.5087 

15 18 6 
0.2821 91.4618 

16 24 0 
0.6936 54.2931 

17 24 1 
0.6715 56.3781 

18 24 2 
0.4764 78.0396 

19 24 4 
0.3826 92.2723 

20 24 6 
0.2713 97.2255 
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Figure 6.14 - Original and fitted response 

based on 3 min sampling interval - 6 lags 

Figure 6.15 - Original and fitted response 

based on 12 min sampling interval - 6 lags 

  

Figure 6.16 - Original and fitted response 

based on 18 min sampling interval - 6 lags 

Figure 6.17 - Original and fitted response 

based on 24 min sampling interval - 6 lags 

 

6.4.2.2 Dynamic PLS Model 

 

From the previous section the PLS model based on an 18 min sampling interval and a 

1.8 hr time history was selected. The total number of coefficients is 198. Figure 6.18 

shows the variance captured by the individual latent variable and from this 5 latent 

variables were selected for the DPLS model giving a RMSE = 0.2821 for the calibration 

data set. Table 6.11 shows that five latent variables correspond to 28.7 % of the total 

variance explained in the  -block which is related to 91.43 % of the variance explained 

in the  -block. 
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Table 6.11 - Percentage variance captured by the dynamic PLS model 

Latent 

Variables 

 -Block  -block 

LV Cum LV Cum 

1 11.18 11.18 34.36 34.36 

2 4.85 16.03 32.61 66.97 

3 6.53 22.56 11.10 78.07 

4 2.68 25.24 9.03 87.10 

5 3.46 28.70 4.36 91.46 

 

Figure 6.19 and Figure 6.20 are the time series plots of the original and fitted response 

and the residuals respectively. It can be seen that the model fits the data from the 

residual values, which are randomly scattered around zero. The results from applying 

the DPLS model to the validation data set are presented in Figures 6.21 and 6.22. It can 

be seen that the model approximately follows the trend of the validation data set. 

However, the magnitude of the residuals has increased from a range of ± 0.6 to ± 3 and 

these are more significant due to the dynamic and non-linear characteristics of the TEP. 

Hence, the information in the calibration data set was insufficient to describe the 

dynamic and non-linear information in the validation data set. The RMSE = 1.3015 for 

the validation data set and shows a significant increase compared to the RMSE of the 

calibration data set. This is potential due to the fact the process dynamics differ to these 

in the calibration data set hence a more advance approach for the modelling of the 

dynamic behaviour is required. 

  

Figure 6.18 – Variance captured by latent 

variables 

Figure 6.19 - Time series plot of the  

original and fitted data from DPLS - 

Calibration data set 
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Figure 6.20 - Time series plot of the   

residuals from DPLS for the calibration 

data set 

Figure 6.21- Time series plot of the 

original and fitted data from DPLS - 

Validation data set 

 

 

Figure 6.22 - Time series plot of the 

residuals from DPLS – Validation data set 

  

6.4.2.3 Multiblock Dynamic PLS Model 

 

In this study, multiblock PLS (      ) was extended to multiblock dynamic PLS 

(       ) to allow for the monitoring of the individual unit operations of the process 

using a dynamic representation. An introduction to multiblock PLS (        was 

presented in Chapter 3. As described in Chapter 3 conventional PLS can be used to 

calculate the parameters of        and information about the individual unit operation 

of the process as well as the overall process can be attained (Westerhuis and Smilde, 

2001). As no constrains are imposed on the number of input variables used in this 

relationship, any number of input variable can be used to form the multiblock analysis. 

For the TEP, a dynamic reference model was developed based on the FIR 

representation,      model, in §6.4.2.2. This model can be extended to develop a 
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multiblock dynamic PLS model,         and for that the regressor matrix   which 

contains the lagged variables can be divided to multiple blocks   according to:  

                   (6.12) 

           

where            , contains the lagged variables for each block and each block 

comprises     variables. y is the response vector. 

  

For the TEP, there are 5 blocks,   =5, and these were defined in Table 6.6. Each block 

contains 6 lags of the original variables as discussed in §6.4.2.1. The total number of 

variables is thus 198. The parameters of the multiblock dynamic PLS model, i.e. 

loadings, scores, weights, super scores and super weights, can be calculated in similar 

manner to the        (§ 3.8.1). The monitoring statistics and the confidence limits for 

the whole process and the individual unit operations are calculated in a similar manner 

to those of PLS and        with the only difference being that the lagged matrices are 

used to construct the individual block model.  
 

 

An alternative to multiblock dynamic PLS (MBDPLS) proposed by Tessier et al. (2012) 

who used the idea of multiblock dynamic PLS for the monitoring of the performance of 

aluminium reduction cells based on a multiple input, multiple output system. However, 

in their approach they did not use a time series structure such as FIR or ARX instead 

they used their knowledge about the process to identify the number of lags to include 

into the regressor matrix, more specifically they ran the experiment until a process 

disturbance was observed, which usually occurs within 3 months for the aluminium 

reduction cells, and then included all the experimental results prior to fault occurrence 

into regressor matrix. In addition for some blocks, average values over a period of time 

were used instead of time lagged variables. Their approach to identifying the dynamic 

structure is only applicable to their experimental study. 

 
 

6.4.2.4 Monitoring Based on DPLS and         
 

 

 

 

Similar to conventional PLS, monitoring based DPLS approaches utilises the univariate 

statistics of Hotelling’s T² and the squared prediction error of the input and output 

spaces,      and      respectively. In addition, the monitoring statistics for multiblock 

dynamic PLS (       ) are calculated as for       . The calculation of these 

statistics and their corresponding confidence limits were discussed in Chapter 3 
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(§3.8.1). Through the use of the monitoring statistics from DPLS in conjunction with 

the monitoring statistics from        , the performance of both the overall process 

and the individual units can be monitored. 
 

 

 

 

 

 

 

 

 

The monitoring results from the application of DPLS and         for the TEP under 

normal operating conditions for the calibration data are presented in Figures 6.23 to 

6.25. The Hotelling’s T² and      statistics for the overall process (sub-plot 1) and the 

individual blocks (sub-plot 2 to 6) are presented in Figures 6.23 and 6.24 respectively 

and the      for the response variable is given in Figure 6.25. The 95% and 99% 

confidence limits were calculated based on the calibration data set. It can be seen that a 

few out of statistical control signals were detected in all the sub-figures. However, they 

did not exceed 1% and 5% of the total number of samples for the 99% and 95% 

confidence limits respectively which is statistically accepted since they are expected to 

violate the limits by chance.  

 

 

 

 

 

 
Figure 6.23 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

DPLS and         approaches – Calibration data set 
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Figure 6.24 -      for (1) overall process and (2-6) individual blocks based on DPLS 

and         approached – Calibration data set 

 

 

Figure 6.25 –     based on DPLS approach - Calibration data set 
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The false alarm rate (     defined in Chapter 3 (Equation 3.16) was calculated for the 

monitoring charts for the whole process and the individual chart based on DPLS and 

       . Table 6.12 summarises the results from the monitoring charts of the 

calibration data set, where a number of samples are expected to violate the confidence 

limits by chance. It can be seen that these percentage are within the acceptable range, 

5% and 1%, for the 95% and 99% confidence limits respectively. The overall     is 

calculated based on the joint use of the monitoring statistics of the whole process, 

Hotelling’s T² and     . It was 8.10 which is better than the     = 9.5 provided by 

static PLS based on block-scaled data (§6.4.1). In addition the     for Hotelling’s T², 

     and      are 4.05%, 2.70% and 4.05% respectively is decreased compared to the 

same rate by static PLS model given in Appendix D.  

 

Table 6.12 - False alarm rate for the monitoring charts for the calibration data set 

Part  Chart     95%     99% 

whole process Hotelling’s T² 5.40% 0 

     2.70% 1.35% 

     4.05% 0  

Block 1 

Reactor 

Hotelling’s T² 5.40% 0 

     4.05% 1.35% 

Block 2 

Separator 

Hotelling’s T²  4.05% 0 

      4.05% 0 

Block 3 

Stripper 

Hotelling’s T²   4.05% 0 

     2.70% 1.35% 

Block 4 

Compressor 

Hotelling’s T²  4.05% 0 

      5.40% 0 

Block 5 

Materials 

Hotelling’s T²   4.05% 0 

     4.05% 0 
 

 

The dynamic PLS model developed in §6.4.2.2 was applied to a validation data set 

corresponding to 48 hr of nominal operation. Figures 6.26, 6.27 and 6.28 present the 

results of Hotelling’s    and the squared prediction error of the input and output spaces 

     and      for the overall process (sub-figure 1) and the individual unit operation 

(sub-figures 2 to 6). It can be seen that the metrics violate the confidence limits for a 

large number of samples for the 95% and 99% confidence limits respectively. The 
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quantification of these violations is presented in Table 6.13 for the whole process and 

the individual unit operations respectively. It can be seen the     for the monitoring 

metrics is unsatisfactory since they exceeded the 1% and 5% for the 95% and 99% 

confidence limits respectively. Although the overall     = 24.66% based on the DPLS 

is an improvement compared to the     = 45.7% from static PLS (Appendix D), 

however, it is still high. The high     produced when the model is applied to the 

validation data set, which represents nominal behaviour, indicates that the dynamics of 

the calibration data set do not adequately explain the dynamics in the validation data set. 

In addition, the false alarm rate for the individual unit operations is also high as it is 

more than 30% for some units including materials and compressor blocks. Moreover, 

the     for the reactor, separator and stripper is more than 10% for the 95% confidence 

limit. This indicates that the monitoring charts based on         are unsatisfactory. 

Therefore, the TEP requires a more advanced method to account for the dynamics and 

non-linear characteristics.  

 

 

 

Figure 6.26 – Hotelling’s    for (1) overall process and (2-6) individual blocks based 

on DPLS and         approaches - Validation data set 
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Figure 6.27 –      for (1) overall process and (2-6) individual blocks based on 

        approach - Validation data set 

 

 

Figure 6.28 –      based on DPLS and         approaches - Validation data set 
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Table 6.13 - False alarm rate for the monitoring charts for the Validation data set. 

Part  Chart     95%     99% 

whole process Hotelling’s T² 5.34% 2.66% 

     20.66% 8.66% 

     74% 62.66% 

Block 1 

Reactor 

Hotelling’s T² 5.34% 2% 

     30.66% 24% 

Block 2 

Separator 

Hotelling’s T²  5.34% 0.66% 

      11.48% 0.66% 

Block 3 

Stripper 

Hotelling’s T²   10.6% 6.66% 

     17.33 % 8% 

Block 4 

Compressor 

Hotelling’s T²  4.66% 1.33% 

      32% 1.33% 

Block 5 

Materials 

Hotelling’s T²   6.66% 4% 

     37.33% 20% 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.3 Adaptive Multiblock Dynamic PLS 
 

Although dynamic PLS (DPLS) has the ability to predict the response variable (Product 

G), unsatisfactory performance is observed in terms of the monitoring metrics for both 

the whole process and the individual unit operations. The strong dynamics of the TEP 

requires a more advanced modelling method that accommodates the changes in the 

process dynamics and non-linear characteristics. The next step was to use the recursive 

PLS with adaptive confidence limits (APLS) as proposed in Chapter 4.  

Two modifications were introduced to the APLS algorithm. Firstly, the reference model 

for APLS is developed based on a dynamic representation to account for the process 

dynamics, i.e. the reference DPLS model developed in §6.4.2 is used as the reference 

model. Secondly, once an observation becomes available, it has to be arranged 

according to the FIR dynamic structure identified in §6.4.2.1, i.e. the sample input 

vector should include 6 past values of the input variables. In addition the sample is 

scaled based on block scaling, that is each variable is scaled to have zero mean and 

variance 
 

  
. The block scaling is used because the algorithm will be integrated in the 

next section into a multiblock version. In the case of other processes which only consist 
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of one unit operation, an appropriate scaling method should be selected and applied. 

Then, the monitoring statistics and the adaptive confidence limits are calculated prior to 

model updating according to §4.3.2. The model is then updated recursively in a sample 

wise manner and hence adaptive dynamic PLS (ADPLS) was developed within this 

thesis. The new ADPLS algorithm overcomes the DPLS model deficiency and 

accommodates the dynamic change in the TEP. It is presented in Figure 6.29. 

 

Pre-process data matrices 

(Block-scaling)

Identify the dynamic representation 

using FIR

Develop DPLS reference model

Calculate the monitoring statistics and 

confidence limits 

Create new matrices using previous 

DPLS model

Start

End

Yes

No

New observation 

Incorporate it into the dynamic 

representation 

Recursively update the DPLS model 

Calculate the monitoring statistics and 

the adaptive confidence limits

 

Figure 6.29 – The adaptive dynamic PLS algorithm (ADPLS) 

From this, the relationship between DPLS and         was implemented in a 

recursive manner. A flow diagram of the algorithm is presented in Figure 6.30. The 

block parameters are calculated in a recursive manner as follows: 

1. Calculate the reference model according to §6.4.2 

{                }
       
→        {                  } 
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2. Calculate the block parameters using the relationship between DPLS and 

        (§6.4.2.3). 

3. Once a new observation {         } becomes available, it should be 

incorporated into the dynamic representation according to §6.4.2.1, i.e. 6 past 

values of the input variables should be included. 

4. The monitoring statistics and the adaptive confidence limits are calculated 

according to §4.3.1 and §4.3.2 respectively. 

5. Create the recursive matrices for model updating: 

           [
  

    
]       [

   
    

] 
(6.21) 

      where   is the inner regression coefficients   and   are the weight and loadings  

      from the previous DPLS model 

6. Update the PLS model, the recursive matrices and return to step 2 for the 

calculation of the blocks parameters. 

Identify the dynamic representation 

using FIR

Develop a DPLS model 

Calculate the monitoring statistics 

and confidence limits 

Create new matrices using previous 

DPLS model
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End
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New observation 

Incorporate it into the dynamic 

representation

Scale based  on block-scaling

Calculate block parameters using 

TAMBDPLS

Recursively update the DPLS 

model

Calculate the monitoring statistics of 

the overall process and the individual 

unit operations 

Calculate block parameters using 

TAMBDPLS  

Figure 6.30 – The adaptive multiblock dynamic PLS algorithm 



213 
 

The results from the application of ADPLS to the validation data set show that the 

RMSE of the validation data set (RMSE = 1.2754) has improved compared to DPLS 

(RMSE = 1.3015). Hence the model fit and quality were improved. Figure 6.31- plot (1) 

shows the time series plot of the measured and predicted response for ADPLS. From 

Figure 6.31 and the RMSE of the validation data set, the application of ADPLS results 

in an improvement to the overall model. Figure 6.31- plot (2) shows the time series plot 

of the residuals where a few points can be considered as outliers. Although these points 

are not distinctive significantly from the samples in the validation data set, the results in 

Table 6.14 show that the false alarm rate exceeds the accepted level of violations (5% 

and 1% for the 95% and 99% confidence limits respectively). This increase in the false 

alarm rate could be a result of the identified outliers.  

 

  
(1) (2) 

Figure 6.31 – Results from ADPLS algorithm (1) Measured and predicted response 

from ADPLS algorithm (2) Time series plot of the residuals 

 

The monitoring results of the overall process for the TEP attained with ADPLS model 

and the individual blocks resulting from the application of          developed in 

§6.4.3 for the validation data set are presented in Figures 6.32 to 6.34.  

Figures 6.32, 6.33 and 6.34 show the Hotelling’s   ,      and      metrics for the 

overall process (sub-plot 1) and the individual blocks (sub-plot 2 to 6). The 95% and 

99% confidence limits were calculated adaptively. It can be seen that a few out of 

statistical control signals were detected in all sub-figures. It is expected to have 5% and 

1% violations for the 95 % and 99 % confidence limits by chance. The false alarm rate 

(   ) was calculated and the results are presented in Table 6.14. The most significant 

improvement is seen in the monitoring chart of the      (Figure 6.34), where the 

confidence limits adapt to the change and hence the     decreases compared to the 
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DPLS results, i.e.     = 8.66% based on ADPLS compared to 74% based on DPLS. 

The percentage of violations for the      plots, overall process and the individual unit 

operations, demonstrates a significant decrease compared to the fixed parameter DPLS 

(Table 6.13). The overall    , 9.33%, which is 15.33% less than the overall     from 

DPLS for the validation data set. These results along with the RMSE indicate that the 

process model has improved in terms of prediction and monitoring quality. In addition 

to the improvements in the monitoring charts of the overall process, the number of false 

alarm of the monitoring charts for the individual unit operations has decreased. This can 

be seen from the     of the monitoring charts in Table 6.14. The     for most of the 

charts is within the acceptable rate of 5% and 1% for the 95% and 99% confidence 

limits respectively.  

Although the application of ADPLS and          improved the monitoring charts, as 

mentioned in Chapter 4 the main limitation of the approach is the failure to take into 

consideration statistical outliers which is expected in this case study as the process 

measurements are incorporated with Gaussian noise. Consequently, robust adaptive 

dynamic PLS (RADPLS) and the multiblock variant (           were proposed and 

these algorithms are applied in the next section.  

 
Figure 6.32 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

      and          approach –Validation data set 
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Figure 6.33 -     for (1) overall process and (2-6) individual blocks based on 

      and          approach –Validation data set 

 

 
Figure 6.34 -      for overall process based on        Validation data set 
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Table 6.14 - False alarm rate for the monitoring charts of the validation data set 

Part  Chart     95%     99% 

whole process Hotelling’s T² 5.33% 1.33% 

     5.33% 1.33% 

     8.66% 4% 

Block 1 

Reactor 

Hotelling’s T² 5.33% 1.33% 

     4.6% 2 % 

Block 2 

Separator 

Hotelling’s T²  5.33% 2% 

      6.66% 3.33% 

Block 3 

Stripper 

Hotelling’s T²   6.66% 2% 

     5.33%   1.33% 

Block 4 

Compressor 

Hotelling’s T²  4.66% 0.66% 

      5.33% 1.33% 

Block 5 

Materials 

Hotelling’s T²   5.33% 1.33% 

     6% 1.33% 

 

6.4.4 Robust Adaptive Multiblock Dynamic PLS (RAMBDPLS) 

The Robust Adaptive Dynamic PLS (RADPLS) algorithm for the TEP is summarised in 

Figure 6.35. The main concept behind robust adaptive PLS method was previously 

presented in Chapter 4. In contrast to the approaches presented in Chapter 4, where 

steady state PLS was used for the development of the PLS reference model, dynamic 

PLS based on a time series representation is used here. This is to account for the 

dynamics associated with the TEP. The dynamic PLS model presented in §6.4.2 is used 

as the reference model. The main goal of the algorithm is to prevent the adaptive 

procedure including outlying samples and this was addressed through the combined 

index (Equation 4.12). The main difference between the RAPLS presented in Chapter 4 

and the RADPLS is the inclusion of the dynamic information though dynamic PLS and 

its integration into a multiblock algorithm where the monitoring charts of the overall 

process and individual unit operation can be constructed. 

The algorithm starts in a similar manner to ADPLS (§6.4.3). The differences are as 

follows:    
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- Once a new sample becomes available, the combined index (Equation 4.12) is 

calculated. 

- A threshold is used to check whether the new sample represents the normal 

operating conditions. If the sample violates the threshold, another test is 

conducted to identify whether the sample represents a statistical outlier or 

process abnormality. A detailed explanation of the thresholds is given in §4.4.1 

and calculation of observation weight is given in the Appendix. 

- The DPLS model is updated based on the threshold outcome, i.e. the model is 

only updated if the sample represents normal operating conditions or when the 

sample represents a statistical outlier which has been weighted prior to model 

update. The calculation of the weight was previously described in Chapter 4 

(Table 4.1).  

Reference data
Development of a

FIR Dynamic representation

DPLS 

Reference model

Calculate Monitoring statistics for the 

calibration data set 

Calculate monitoring statistics and confidence 

limits and Combined index

 Combined index >=  limit

HOLD the updating process and obtain the 

weighted statistics to be used for calculating the 

limits for the next two observations

Attain the next two observations

Yes

Calculate the monitoring statistics and 

confidence limits for the next two observations

3 consecutive violations

Sample is faulty, discard observation from 

updating procedure 

Keep the limits of the individual statistics 

constant and use the weighted statistics for 

calculating the limits of the new coming 

observation

Yes 

Create matrices for recursive update

No

Sample represents normal 

operating behaviour

Recursive Update

Calculate the weight based on combined 

index to reduce the impact of the outlier

Create data matrices for recursive update

No

Sample is statistical 

outlier

Start

yes

End

No

New sample

Incorporate into the dynamic representation

Sample is scaled based on block-scaling

Figure 6.35 - The robust adaptive dynamic PLS (RADPLS) algorithm 
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The RADPLS algorithm is extended to Robust Adaptive Multiblock Dynamic PLS 

(         ) for monitoring the overall performance of the TEP process and the 

individual unit operations (Figure 6.36). Two steps were included in the RADPLS 

algorithm: 

- The parameters of the individual unit operation were calculated for the first time 

after the development of the reference DPLS model and they were updated once 

the overall model has been updated. 

- The monitoring statistics and the corresponding confidence limits for the 

individual blocks were calculated whenever a new sample became available 

according to §3.8.1 and §4.3.2 respectively. 

 

Reference data

Block-scaling

Development of a

FIR Dynamic representation

DPLS 

Reference model

Incorporate into dynamic representation

Scale based on block-scaling

 Combined index >=  limit

HOLD the updating process and obtain the 

weighted statistics to be used for calculating the 

limits for the next two observations

Attain the next two observations

Yes

Calculate the monitoring statistics and 

confidence limits for the next two observations

3 consecutive violations

Sample is faulty, discard observation from 

updating procedure 

Keep the limits of the individual statistics 

constant and use the weighted statistics for 

calculating the limits of the new coming 

observation

Yes 

Create matrices for recursive update

No

Sample represents normal 

operating behaviour

Recursive Update

Calculate the weight based on combined 

index to reduce the impact of the outlier

Create data matrices

No

Sample is statistical 

outlier

Start

yes

End

No

New sample

Calculate the monitoring statistics of the 

individual block

update the parameters of the 

individual block

Calculate the block individual paramters

Calculate Monitoring statistics of reference data

Calculate monitoring statistics and confidence 

limits and Combined index

Calculate monitoring statistics and confidence 

limits for the individual blocks

 

Figure 6.36 - The robust adaptive multiblock dynamic PLS             algorithm  
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The results from the application of robust adaptive dynamic PLS (RADPLS) to the 

validation data set shows a slight improvement, RMSE = 1.2534, compared to DPLS 

and ADPLS in §6.4.2 and §6.4.3 respectively. Figure 6.37 – plot (1) shows the time 

series plot of the measured and predicted response, product G, from the application of 

RADPLS to the validation data set, which did not show a significant visual 

improvement. However, the RMSE showed a very slight improvement. This slight 

improvement in the RMSE was expected since the RADPLS identified a few statistical 

outliers as shown in Figure 6.37 – plot (2), time series plot of the residuals. These few 

points deviate slightly from the majority of samples were detected in the combined 

index plot (Figure 6.38) 
 

 

 

According to the RADPLS algorithm, these statistical outliers were treated prior to 

model updating to reduce the impact on the DPLS model. As mentioned in Chapter 4, if 

the PLS model is updated using statistical outliers continuously, this would potentially 

deteriorate the prediction of the model. In this case, only 8 outliers were identified and 

treated over a period of 150 samples; this will not result in a great improvement in the 

results. These violations are corresponding to 5.33% for the 95% confidence limit. In 

the case of ADPLS where the model was updated without inspection, the RMSE of the 

validation data set was higher than the RMSE based on RADPLS. 

 

  
(1) (2) 

Figure 6.37 - Results from application of RADPLS algorithm to validation data set (1) 
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Figure 6.38 – Combined index based on 

        Validation data set 

 

 

 

 

Figures 6.39 and 6.40 show the results for Hotelling’s    and      for the whole 

process (sub-plot 1) and the individual unit operations (subplot 2-6). Figure 6.41 shows 

the      of the process. It can be seen that there are few out of statistical control 

samples. However, the number of violation is acceptable as it is within the rate of 5% 

and 1% of the violations for 95% and 99% confidence limits respectively.  

 

Figure 6.39 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

       and           approach –Validation data set 
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Figure 6.40 -       for (1) overall process and (2-6) individual blocks based on 

       and           approach –Validation data set 

 

Figure 6.41 -       for the TEP based on        and           approaches –

Validation data set 
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The monitoring charts for the overall process and the individual blocks were evaluated 

using    , which quantify the number of violations (Table 6.15). Figure 6.39 shows 

Hotelling’s T² for the overall process (sub-figure 1) and individual blocks (sub-figure 2-

6). It can be seen that the metrics violate the confidence limits in all the sub figures with 

an acceptable range of 5% and 1% for the 95% and 99% confidence limits respectively. 

These violations are slightly less compared to Hotelling’s T² based on ADPLS. In 

particular the monitoring charts for block 3 where the     decreased from 6.66 % to 

3.33%. The same observation can be drawn for      monitoring charts. The most 

significant improvement compared to DPLS and ADPLS was seen in the     for the 

     metric, where the     decreased from 74% and 8.66% to 4.66%. Consequently 

the monitoring charts based on RADPLS bring the number of violations to the 

acceptable level. The overall    , which is calculated jointly based on  Hotelling’s T² 

and     , was 6.66% which is 2.67% less than the     based on ADPLS. 

 

Table 6.15 - False alarm rate for the monitoring charts of the Validation data set 

(RADPLS). 

Part  Chart     95%     99% 

whole process Hotelling’s T² 3.33% 1.33% 

     3.33% 1.33% 

     4.66% 1.33% 

Block 1 

Reactor 

Hotelling’s T² 3.33% 1.33% 

     2% 0.66% 

Block 2 

Separator 

Hotelling’s T²  6% 2% 

      6% 2% 

Block 3 

Stripper 

Hotelling’s T²   3.33% 0.66% 

     5.33% 1.33% 

Block 4 

Compressor 

Hotelling’s T²  3.33% 0.66% 

      5.33% 1.33% 

Block 5 

Materials 

Hotelling’s T²   4% 0.66% 

     4% 1.33% 
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6.5 Discussion 

In this Chapter, two statistical indices, Root Mean Square Error (RMSE) and False 

Alarm Rate (     are used to assess the model quality and the monitoring charts 

respectively. In the following section the three approaches proposed in this chapter are 

assessed to attain enhanced understanding of their performance in terms of model 

prediction and the monitoring charts.   

6.5.1 Root Mean Squared Error 

Figure 6.42 shows the RMSE for the validation data set based on DPLS, ADPLS and 

RADPLS. The figure indicates that the prediction based on the adaptive approaches is 

better than that for fixed parameter DPLS. This improvement resulted from the 

continuous updating of the PLS parameters. As previously described in §6.4.3, the 

identification of a few statistical outliers using RADPLS also contributes to this 

improvement. This is because the identification and the weight of the statistical outliers 

maintained the robustness of the PLS model. 

 
 

Figure 6.42 – RMSE based on DPLS, ADPLS and RADPLS 

 

6.5.2 False alarm Rate 

The concept of    , is used to assess the efficiency of the monitoring charts 
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Figure 6.43 shows comparative results for the     for      for the overall process and 

the individual blocks. It can be seen that the adaptive methods resulted in a low false 

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.3

1.31

DPLS ADPLS RADPLS

R
M

SE
 

Approches 

RMSE



224 
 

alarm rate compared to the fixed parameter DPLS. Consequently the monitoring charts 

based on the adaptive approaches are reliable in terms of describing the performance of 

the TEP process. In addition, the      monitoring charts of the overall process and 

blocks 1 and 2 based on RADPLS generated in a less false alarm rate compared to 

ADPLS.  

 
 

Figure 6.43 – False alarm rate for      charts  based on DPLS, ADPLS and RADPLS 

for the overall process and the individual bocks 
 

Figure 6.44 shows a     comparison between Hotelling’s T² charts based on the three 

approaches. It can be seen that the robust adaptive approach reduced the     compared 

to the fixed parameter DPLS and ADPLS approaches. Additionally, the     for the 

individual Hotelling’s T² charts based on RADPLS is lower than     following the 

application of DPLS and ADPLS. However, the     for block 2 following the 

application of RADPLS is higher than the DPLS and ADPLS but the percentage is 

within the acceptable rate. 

A similar observation can be concluded from a comparative figure for the      

monitoring charts based on DPLS, ADPLS and RADPLS (Figure 6.45). The     from 

the robust adaptive approaches reduced the false alarm compared to fixed parameter 

DPLS. In addition, there is a slight difference between the ADPLS and RADPLS results 

with the results following the application of RADPLS showing fewer false alarms as a 

consequence of the identification of potential outliers. 
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Figure 6.44 – False alarm rate for Hotelling’s T² charts  based on DPLS, ADPLS and 

RADPLS for the overall process and the individual bocks 

 

 
 

Figure 6.45 – False alarm rate for      charts  based on DPLS, ADPLS and 

RADPLS for the overall process and the individual bocks 
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state conditions and hence, exploit the linear methods ability to improve the monitoring 

of a nonlinear dynamic process. These extensions were applied to the Tennessee 

Eastman process to test their efficiency in terms of constructing a reliable monitoring 

system and to reduce the false alarm rate. The main contributions and conclusions were: 

- The first part of the chapter involved the identification of an appropriate 

dynamic representation that take into account the process dynamics caused by 

autocorrelation. Several models based on different sampling intervals and 

different time history were developed in order to identify the most appropriate 

model to describe the dynamic behaviour of the TEP. The selected model was 

acceptable in terms of fitting and prediction with respect to the root mean 

squared error.  

- Dynamic PLS, which was based on a FIR representation using an 18 min 

sampling period and 6 lags of time history, improved the model fit and 

prediction compared to static PLS and dynamic PLS using a 3 min sampling 

interval. However, the false alarm rate was high for the monitoring charts 

following the application of the model for the validation data due to changes in 

process dynamics and nonlinearity. This is not acceptable since the data set used 

at this stage was for validation of the model using normal operating condition 

data. Consequently, the process required a more advanced methods to construct 

a reliable monitoring scheme. 
 

 

- The first extension was the recursive version of multiblock dynamic PLS with 

adaptive confidence limits, i.e. adaptive dynamic PLS (       and adaptive 

multiblock dynamic PLS (        ) which updates the model and the 

confidence limits whenever a new sample becomes available. This extension 

improved model prediction and overcame the limitations presented in DPLS and 

        , however, it is criticised for the following reasons: 

- The model was updated blindly and hence there is a risk of including 

outlying observations that are generated either randomly or from a process 

disturbance. By including such a sample, the PLS model will be 

compromised. 

- The confidence limits were allowed to adapt all the changes in the process, 

consequently, the fault detection rate decreased as described in the next 

chapter. 
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- The second extension was robust adaptive dynamic PLS (        and adaptive 

multiblock dynamic PLS (         ) which aims to update the model and 

confidence limits based on an inspection of the incoming sample. The model and 

confidence limits will not be updated when the samples are generated from a 

disturbance. On the other hand, where the outlying samples are generated 

randomly, the model and the confidence limits are updated based on the 

weighted outliers. The main advantage is that the limitations observed following 

the application of      and       in terms of identifying statistical outliers 

was addressed and the false alarm rate is decreased. 

- Two statistical indices were used to assess the efficiency of the model and the 

monitoring charts, the root mean squared error (RMSE) and the false alarm rate 

(   ). Both metrics showed superior performance for the adaptive methods 

compared to fixed parameter DPLS 

The aforementioned process monitoring methods are evaluated in term of fault detection 

for the TEP process in Chapter 7. The statistical index of fault detection rate is used to 

quantify the detection rate for the overall process and the individual unit operations 

following the application of the monitoring methods.   
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Chapter 7 

Fault Detection Capability on Tennessee Eastman Process 

 

7.1 Introduction 

In this Chapter, the process monitoring methods proposed in Chapter 6, DPLS, 

       , ADPLS,         , RADPLS and          , are compared through 

their application to the Tennessee Eastman Process (TEP) for fault detection. The aim is 

to investigate fault detection ability of the algorithms with respect to the overall process 

and the individual unit operations. In addition, the issue of fault propagation in dynamic 

processes is investigated. 

The process description, definition of the process data and disturbances were previously 

described in Chapter 6. Of the 21 process faults identified in Table 6.5, four different 

categories of process faults were selected for investigation in this chapter. The first case 

study, Fault (18), represents an unknown process fault, the second case study, Fault (1), 

represents a step change in the feed ratio to the reactor unit, the third case study, 

Fault (13), represents a slow drift in the reaction kinetics and finally the last case study, 

Fault (10), represents random variation in the one of the material temperatures. The 

fault detection and false alarm rates are calculated to investigate the efficiency of the 

monitoring approaches.  

7.2 TEP Faults 

As mentioned in Chapter 6 data sets are available comprises data that represents normal 

process operating conditions and the remaining sets incorporate abnormal behaviour. 

Additionally, the faulty data sets were collected for 48 hr and the abnormal event was 

introduced after 8 hr of normal operation (§6.3.3). As the time constant of the TEP was 

approximately 2 hours, a delay is expected between fault occurrence and the response of 

the system. For example, by sampling every 3 min according to Chiang et al. (2001), 

Fault (1) has an impact on the system after 7 samples, which correspond to 21 min of 

operation post fault introduction.   
 

 

 

7.3 Evaluation of the Monitoring Charts 

In this chapter, two statistical indices are used to investigate the reliability of the 

monitoring charts, false alarm rate and fault detection rate. The false alarm and fault 
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detection rates were calculated as a combination of Hotelling’s T² and      for the 

period prior to and post fault occurrence respectively, i.e. the false alarm rate is 

calculated for the period of 8 hr prior to fault introduction whilst the fault detection rate 

is calculated post fault introduction. In addition, these metrics were calculated for the 

overall process and the individual unit operations (blocks). 

7.4 Results and Discussion 

7.4.1 Case Study on Fault (18) 

This fault represents an unknown fault. In reality the chance for getting unknown faults 

is high as the environment and conditions may change based on the experiment. In the 

case for the TEP, there is no information regarding this fault or which variables are 

related to the fault hence the DPLS approach and extensions are applied to detect the 

fault and provide details regarding its behaviour. 

7.4.1.1 Monitoring Charts by DPLS and         for Fault (18) 

The DPLS algorithm described in §6.4.2.2 was applied to the data generated in the 

presence of Fault (18). The resulting DPLS monitoring charts are given in Figures 7.1, 

7.2 and 7.3. The fault occurred after 8 hr of nominal operation hence the monitoring 

statistics are expected to remain within statistical control prior to this period. However, 

the monitoring indices,      and      violate the confidence limits prior to the onset 

of the fault, i.e. within the first 8 hr of nominal operations. This is confirmed through 

the calculation of the false alarm rate in this period (Table 7.1). The false alarm rate 

(   ) for the overall process is 33% and for      is 73.3%. In addition, the     for all 

the individual unit operations exceeds 5% as shown in Table 7.1. Even though the fault 

effect is indicated in almost all the monitoring charts as shown in Table 7.1, where the 

overall process and the quality product monitoring chart detect 92% and 86.5% of the 

faulty samples respectively, the     indicates that the implementation of DPLS and 

        increases the number of false alarms hence they are inappropriate for the 

monitoring of the TEP. Therefore, the ADPLS and           are implemented. 
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Figure 7.1 -       for the TEP based on      – Fault (18) 

 

 
 

Figure 7.2 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

     and         approaches – Fault (18) 
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Figure 7.3 -      for (1) overall process and (2-6) individual blocks based on      and 

        approach – Fault (18) 

 

Table 7.1 – Fault detection and false alarm rates based on      and         for 

Fault (18). 

Part Fault detection rate False alarm rate 

Overall process 92.4% 33.3% 

Block 1 – Reactor 88.9% 13.3% 

Block 2 -  Separator 94.8% 13.3% 

Block 3 – Stripper 88.1% 13.3% 

Block 4 – compressor 91.1% 6.7% 

Block 5 – Materials 81.2% 13.3% 

     86.5% 73.3% 
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7.4.1.2 Monitoring Charts by       and           for Fault (18) 

The results from the implementation of the ADPLS and          algorithms are 

given in Figures 7.4, 7.5 and 7.6. The quantitative results for all the monitoring charts 

are presented in Table 7.2. It can be seen that the ADPLS approach overcomes the 

limitation observed in DPLS and         algorithm, where the monitoring charts 

produced a high number of false alarms. The     following application of ADPLS and 

the          algorithm for the overall process and the      were reduced by 26.6% 

and 46.6% respectively. However, it can be seen that the process remains within the 

statistical control after the onset of the fault (Figures 7.4, 7.5 and 7.6). This is due to the 

fact the confidence limits are allowed to adapt to the change in the process. In addition, 

the       algorithm allows the samples produced from the unknown fault to contribute 

to the model updating process, consequently, the efficiency of the       monitoring 

charts in term of fault detection decreases. Table 7.2 shows a significant decrease in the 

    for the monitoring charts for the overall process and individual block compared to 

the DPLS and          algorithms. The monitoring charts of the overall process 

detect only 23.3% of the faulty samples with the individual blocks detecting 15 % to 

28% of the faulty samples as summarised in Table 7.2. The monitoring chart for      

detects only 26.7% of the faulty samples compared to the DPLS chart which detected 

86.5% of the faulty samples. This is a clear indication of the deficiency of the 

monitoring charts following the application of       and hence        algorithm 

was implemented. 

Table 7.2 – Fault detection and false alarm rates based on       and          for 

Fault (18). 

Part Fault detection rate False alarm rate 

Overall process 23.3% 6.7% 

Block 1 – Reactor 28.6% 6.7% 

Block 2 -  Separator 15.0% 13.3% 

Block 3 – Stripper 18.8% 6.7% 

Block 4 – compressor 24.8% 6.7% 

Block 5 – Materials 24.1% 6.7% 

     12.0% 26.7% 
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Figure 7.4 -       for the TEP based on       – Fault (18) 

 

 
Figure 7.5 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

      and A        approaches –Fault (18) 
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Figure 7.6 -      for (1) overall process and (2-6) individual blocks based on 

      and          approaches –Fault (18) 
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Figure 7.7 – Combined index for the TEP based on        and           

approaches – Fault (18) 
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addition, the application of        and           approaches decrease the false 

alarm rate compared to      as the      for the monitoring charts for the overall 

process and the      charts were reduced by 26% and 53% respectively. This a clear 

indication that the monitoring charts based on        and           are 

appropriate for the monitoring of the TEP. 

Table 7.3 – Fault detection and false alarm rates based on       and          for 

Fault (18). 

Part Fault detection rate False alarm rate 

Overall process 92.4% 6.7% 

Block 1 – Reactor 88.9% 6.7% 

Block 2 -  Separator 94.8% 13.3% 

Block 3 – Stripper 88.1% 6.7% 

Block 4 – compressor 91.1% 6.7% 

Block 5 – Materials 81.2% 6.7% 

     86.6% 20% 

Combined index 92.4% 0% 

 

From Figures 7.8, 7.9 and 7.10, it can be seen that the strongest response to the fault is 

observed in      which indicates that there is a significant change in the correlation 

structure of the predictor variables. The separator (2) and the compressor (4) blocks are 

the most affected units as shown in Figure 7.9. The rest of the blocks show less of a 

response to the fault. This behaviour is expected since the control valve connected to the 

separator and the compressor reacts to the fault and hence the impact would be less in 

units other than the source blocks. In addition it can be seen that the fault is detected 

earlier in the separator (i.e. detected at 11.36 hr) than for the other blocks. The fault is 

detected at 13.06 hr in the compressor, stripper and the reactor. The material block is the 

last unit and is affected by the fault (i.e. detected at 13.42 hr). The      chart detects 

the fault at 13.42 hr. This was expected again as the stripper is directly related to the 

product quality. The delay between the stripper and the quality product occurs because 

the stream exiting the stripper is sent to a unit which is not included in the analysis. The 

detection delays for      chart for the overall process and individual unit operation are 

summarized in Table 7.4. 
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The Hotelling’s    chart shows a much smaller response compared to     . It can be 

seen that the Hotelling’s    charts violate the limits which indicate that there is 

abnormal variation within the predictor variables or some of them and therefore an 

abnormal variation of the entire process but stabilize after sufficient time, i.e. it will 

reach a new steady state after a certain period of time, 12 hr to 19 hr from the onset of 

the fault. This is expected from engineering prospective because as the control loop 

reacts to the fault but stabilizes the process. During the stabilization process, the 

relationship between the predictor variables changes and this is reflected in Hotelling’s 

T². The detection delays for the Hotelling’s    charts are given in Table 7.4. As shown 

for      charts, the fault is detected earlier, at 12.12 hr, in the Hotelling’s    chart for 

the separator block compared to other units where the fault was detected at 13.24 hr, 

13.42 hr 13.42 hr for the compressor, reactor and stripper respectively. The materials 

block detects the fault at 14.18 hr as it the last unit to be affected by the fault.  

 

Figure 7.8 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

       and RA        approach – Fault (18) 
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Figure 7.9 -       for (1) overall process and (2-6) individual blocks based on 

       and           approach –Fault (18) 

 

Figure 7.10-       for the TEP based on        – Fault (18) 
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The detection delays recorded for Fault (18) following the application of         and 

           is less than the time delays provided by Chiang et al. (2001) for the same 

fault from the application of principal component analysis (PCA) and dynamic PCA. 

Chiang et al. (2001) noted that Fault (18) was detected in the Hotelling’s T² and       

monitoring charts for the overall process at 12.39 hr and 12.12 hr, which are 9 min and 

18 min respectively after the time recorded in this work.  

Table 7.4 – Detection delays for Fault (18) 

Part Chart Time delay 

(min) 

 

Detection 

time (hr) 

 

Time 

delay(sample) 

 

Overall 

process 

Hotelling’s T² 270 min 12:30 hr 15 samples 

     234 min 11:54 hr 13 samples 

     342 min 13:42 hr 19 samples 

Block 1 

Reactor 

Hotelling’s T² 342 min 13:42 hr 19 samples 

     306 min 13:06 hr 17 samples 

Block 2  

Separator 

Hotelling’s T² 252 min 12:12 hr 14 samples 

     216 min 11:36 hr 12 samples 

Block 3 

Stripper 

Hotelling’s T² 342 min 13:42 hr 19 samples 

     306 min 13:06 hr 17 samples 

Block 4 

compressor 

Hotelling’s T² 324 min 13:24 hr 18 samples 

     306 min 13:06 hr 17 samples 

Block 5  

Materials 

Hotelling’s T² 378 min 14:18 hr 21 samples 

     342 min 13:42 hr 19 samples 
 

The same observations can be observed following the application of              , 

               ,         and           for faults 1 and 13 as presented the 

following sections.  

7.4.2 Case Study on Fault (1) 

For Fault (1), a step change is introduced to the A/C ratio in stream 4. The process 

under normal operating conditions (NOC) has a 0.485, 0.005 and 0.510 mole fraction of 

A, B and C components in stream 4, respectively (Figure 7.1). When Fault (1) affects 

the process, an increase in the C feed ratio and decrease in the A feed ratio in stream 4 

occurs. Under fault conditions, all the variables associated with the material balance 

including the pressure and level change materialising in faulty conditions (Chiang et al., 

2001). Figure 7.11 show a comparison of the behaviour of variable A feed (   in Table 

6.3) under normal operating conditions (NOC) and under Fault (1). A significant 
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difference is observed between the two cases. Furthermore, half of the variables deviate 

from their normal operating conditions as a result of the fault (i.e. variables associated 

with material balance) 

  

Figure 7.11 – Comparison of A feed for NOC and Fault (1) 
 

The monitoring charts for the univariate statistics, Hotelling’s,      and       for the 

overall process and the individual units from the application of              , 

      and          are given Appendix E. The observations following the 

application of these approaches for Fault (1) are similar to these for Fault (18). The 

quantitative results (Table 7.5) show that the monitoring charts for the overall process 

and the quality variable following the application of      and         detect 97.8 % 

and 92.6% of the faulty samples respectively. More specifically, blocks 1, 3-5 detect 

97.2 % of the faulty samples and block 2 and the      detect 92.6 % of the faulty 

samples. However, the false alarm rates, for the period prior to the introduction of the 

fault, are very high for the overall process and the individual unit operations as shown 

in Table 7.5. The false alarm rate for the overall process is 33% and 60% for the reactor 

unit. In addition, the     for the      is also high with 73.3% of the samples that 

represent normal operating conditions violating the confidence limits. This occurs 

because the confidence limits used are calculated based on the calibration data set which 

may not contain sufficient information to describe the current behaviour of the process. 

The monitoring results from the application of ADPLS and          are given in 

Appendix E. As observed in Fault (18), the monitoring statistics indicate the presence of 

the fault in the overall process and the individual unit. However, in these charts the 

confidence limits are allowed to adapt to the change in the process resulting in the 

monitoring statistics remaining within statistical control. Consequently the process is 

considered within statistical control state. Not only do the limits adapt to the change, but 
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the samples generated during the process disturbance are included in the model update. 

This results in decreasing the significance of the fault’s effect on the monitoring charts.  

The quantitative results for fault detection and the false alarm rates are presented in 

Table 7.5. It can be seen that the false alarm rate is significantly decreased compared to 

the fixed parameter DPLS approach especially for the overall process, block 1 and the 

monitoring chart for the output space. However, the fault detection rate decreases since 

the confidence limits are allowed to adapt to the changes in the monitoring statistics. 

From Table 7.5, it can be seen that the fault detection rate for all the individual units 

decreased by more than 70% compared to DPLS. Moreover, the     for the overall 

process is 84% less than the     based on DPLS. This indicates that the adaptive 

property is an advantage for a process representing nominal operation but there is a need 

for an indicator to stop the adaption procedure when the process is affected by a fault. 

For that, RADPLS and           is used. 

The monitoring charts following the application of RADPLS and           are 

given in Figures 7.12, 7.13, 7.14 and 7.15. The combined index is presented in 

Figure 7.12 and it clearly indicates the process is out of statistical control. From the 

monitoring charts for the univariate statistics, it can be seen that the limitations 

observed following the application of DPLS and ADPLS, i.e. an increase in the false 

alarm rate when the process represents normal operation and a decrease in the fault 

detection rate when the process is under fault conditions respectively, are overcome and 

hence the monitoring charts can be interpreted appropriately. The     for the combined 

index is 97.8% (Table 7.5) 

Table 7.5 - False alarm and Fault detection rates based on monitoring approaches for 

Fault (1). 

Part DPLS 

        

ADPLS 

         

RADPLS 

          

FAR FDR FAR FDR FAR FDR 

Overall process 33.3 % 97.8 % 6.7 % 12.8 % 6.7 % 97.8% 

Block 1 – Reactor 60 % 97.0 % 6.7 % 16.5 % 6.7 % 97.0% 

Block 2  Separator 6.7 % 92.6 % 6.7 % 18.8 % 6.7 % 97.0% 

Block 3 – Stripper 6.7 % 97.0 % 6.7 % 20.3 % 6.7 % 97.8% 

Block 4 – compressor 13.3 % 97.0 % 13.3 % 22.6 % 13.3 % 97.0% 

Block 5  Materials 13.3 % 97.0 % 6.7 % 15.8 % 6.7 % 97.0% 

Quality variables 73.3 % 92.6 % 6.7 % 10.5 % 6.7 % 97.8% 

Combined index - - - - 0% 97.8% 
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Figure 7.12 – Combined index for the TEP based on        and           

approaches – Fault (1) 
 

From Figure 7.13, it can be seen that the most significant response in term of breaching 

the limits is observed in the      charts (Figure 7.13- subfigure 1). This indicates that 

the fault causes a significant change in the correlation structure of the predictor 

variables. This is correct since the fault occurs in the A/C ratio (total feed) and most of 

the predictor variables associated with the material balance including level, pressure and 

compositions in the process are affected. From the      plots for the individual blocks, 

it can be seen that the fault is detected in all the blocks but with different level of 

significance. Block 5 (materials) and block 3 (stripper), show the strongest response 

which is expected since the fault occurs in the materials block and thus affects the 

stream going to the stripper prior to its propagation to the remaining blocks. Since the 

operation in the stripper is directly related to the quality product, the monitoring 

statistics of the output space indicates that the product quality variable is also affected 

by the fault (Figure 7.14). The other blocks are also affected by the fault but the impact 

is less than for the materials and stripper blocks. This is expected since the control loops 

start to react to the fault and hence, the effect of the fault reduces. 
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Figure 7.13 -       for (1) overall process and (2-6) individual blocks based on 

       and           approaches – Fault (1) 

 

Figure 7.14 -       for the TEP based on        approach – Fault (1). 
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Figure 7.15 shows the Hotelling’s T² monitoring charts for the whole process (sub-

figure 1) and the individual blocks (sub-figures 2-6). Hotelling’s T² for the whole 

process indicates that there is abnormal variation within the predictor variables and the 

process stabilised after sufficient time. This is expected from an engineering prospective 

because as the control loop reacts to the fault and stabilizes the process, it will reach to a 

new steady state after a certain period of time, i.e. 7 hr post the onset of the fault. 

During the stabilization process, the variation within the predictor variables changes and 

this is reflected in Hotelling’s T². The same observation can be seen in the monitoring 

charts for the individual unit operations. The variation in the process variables has 

changed significantly as a result of the fault. However, the control system reacts to the 

fault and stabilizes the process.    

 
 

Figure 7.15 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

       and           approach – Fault (1) 
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Table 7.5 summarise the fault detection rate and false alarm rate following the 

application of        and the            This approach results in a reduction in the 

number of false alarms when the process represents nominal operation compared with 

DPLS. The most significant improvement is in the     with the level for the overall 

process decreasing by 26.3% and for      it falls by 66.6%. The fault detection rate 

improves compared to ADPLS as the overall process and all the individual part detect 

more than 95% of the faulty samples.  

The detection delays for Fault (1) are small, one to three samples corresponding to 

18 min to 54 min for most of the individual blocks, compared to the detection delay for 

Fault (18). This conclusion was also noted by Chiang et al. (2001) who stated that the 

detection delay for Fault (1) was 21 min for the overall process following the 

application of PCA and DPCA. The detection delays for the overall and individual unit 

monitoring charts are given in Table 7.6. It can be seen that fault is detected earlier in 

materials block and it then propagates to other blocks and detected after one sample in 

the reactor, stripper and then in the separator and compressor, i.e. 18 min difference. 

The presence of the detection delay for the TEP for all the faults is acceptable based on 

the time constant, approximately 2 hr, which indicates that the process requires time to 

respond to a change in the manipulated variables. Therefore, the fault is expected to be 

indicated in the monitoring charts after a period of time. In addition, this is a continuous 

system where the fault and the reaction of the control valves to the fault propagates 

between process units. Other important factors for fault propagation are the magnitude 

of the fault, the sampling interval and the blocking structure of the system. For example, 

Libo and Xiangdong (2009) show that the impact of Fault (1) for the TEP following the 

application of multiblock PCA was observed in different blocks at the same time.   

Chen and McAvoy (1998) showed that there is a time delay in fault propagation through 

the different units. In their case study, they applied a larger fault magnitude, i.e. 4 times 

larger step change compared to the original Fault (1), hence the impact and the transfer 

speed differs significantly. Chen and McAvoy (1998) pointed out that for larger faults 

and a 5 min sampling interval, the fault was detected in the stripper at sample number 

61 and it was detected in the separator at sample number 71, i.e. 10 samples difference. 

This corresponds to 50 min of operation, approximately 3 samples based on 18 

sampling interval.  
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Table 7.6 – Detection delays for Fault (1) 

Part Chart Time delay 

(min) 

 

Detection 

Time (hr) 

 

Time 

delay(sample) 

 

Overall 

process 

Hotelling’s T² 36 min 8:36 2 samples 

     18 min 8:18 1 samples 

      54 min 8:54 3 samples 

Block 1 

Reactor 

Hotelling’s T² 54 min 8:54 3 samples 

     36 min 8:36 2 samples 

Block 2  

Separator 

Hotelling’s T² 54 min 8:54 3 samples 

     54 min 8:54 3 samples 

Block 3 

Stripper 

Hotelling’s T² 54 min 8:54 3 samples 

     36  min 8:36 2 samples 

Block 4 

compressor 

Hotelling’s T² 3 min 8:54 3 samples 

     3 min 8:54 3 samples 

Block 5  

Materials 

Hotelling’s T² 54 min 8:54 3 samples 

     18  min 8:18 1 samples 

 

7.4.3 Case study on Fault (13) 

Fault 13 represents a slow drift in the reaction kinetics. Figure 7.16 shows a comparison 

between the separator temperature under normal operating conditions and during the 

fault period. However, a few variables behave in a similar manner to the separator 

temperature and the rest of the variables remain within the steady state. Although, few 

variables were affected by the fault, it can be seen that the magnitude of the variable 

response to the fault is large compared to the normal operating condition behaviour. 

  

Figure 7.16 – Comparison of separator temperature for NOC and Fault (13) 
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Fault (13) was introduced after 8 hr of nominal operation and hence, it is expected that 

the monitoring metrics will be statistical control. The DPLS monitoring charts are given 

in Appendix E. As for in Faults (18) and (1), the statistical indices,      for the overall 

process and individual unit operation and      violate the limits prior to the onset of 

the fault. Consequently, the number of false alarms for this period increased whilst the 

process was operating under normal conditions. The fault detection and false alarm rates 

are summarised in Table 7.7. It can be seen that the overall process, as well as the 

individual blocks, have the ability to detect more than 90% of the faulty sample. On the 

other hand, they generated a high false alarm as the     for the overall process and the 

individual charts is more than 33% of the samples. For the output space, the     is 

46.7%. Hence, the DPLS model gives raise the false alarms and is inappropriate for 

monitoring the process even though it successfully detects the fault.  

The monitoring results from the application of ADPLS and          are given in 

Appendix E where the same conclusion as from Faults (1) and (18) can be derived, i.e. 

they reduce the false alarm rate following the application of DPLS and         for 

the overall and individual unit operation monitoring charts. However, since the 

confidence limits are updated, the fault is included and hence the process remains within 

a state of statistical control and the fault detection rate decreases. The fault detection 

rate and the false alarm rate following the application of ADPLS are presented in 

Table 7.7. The false alarm rate has decreased significantly compared with that attained 

for DPLS. However, the fault detection rate as shown in Table 7.7 decreases indicating 

a limitation of the monitoring approach and the need for a threshold to stop the adaption 

procedure when the incoming samples are generated from a process disturbance. 

Therefore, RADPLS and            are considered. 

The monitoring results from the application of RADPLS and            are given in 

Figures 7.17, 7.18, 7.19 and 7.20 for the combined index, the whole process and the 

individual blocks. Table 7.7 summarise the fault detection and false alarm rates which 

indicate that the monitoring charts for the overall process detect more than 95.5% of the 

faulty samples. This rate is comparable to the     provided by Yin et al. (2012), 

95.25% which indicated that for Fault (13), the change in the sampling interval does not 

result in miss detection of the fault. The     for the individual unit operation indicate 

that 92% to 95% of the faulty samples were detected. This rate is higher compared to 

the     following the application of ADPLS and         . On the other hand, the 

    for the overall process and the individual unit operations decreased compared to 
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DPLS as shown in Table 7.7. Hence, the monitoring charts can monitor process 

performance appropriately. 

Table 7.7 - False alarm and Fault detection rates based on all monitoring approaches for 

Fault (13) 

Part DPLS 

        

ADPLS 

         

RADPLS 

          

FAR FDR FAR FDR FAR FDR 

Overall process 33.3% 93.3% 6.7% 27.8% 6.7% 95.5% 

Block 1 – Reactor 33.3% 92.4% 6.7% 25.6% 6.7% 92.4% 

Block 2  Separator 33.3% 93.3% 6.7% 25.6% 6.7% 95.5% 

Block 3 – Stripper 33.3% 93.3% 6.7% 33.3% 6.7% 95.5% 

Block 4 - compressor 20% 91.1% 13.3% 29.3% 13.3% 94% 

Block 5  Materials 13.3% 92.4% 6.7% 27.1% 6.7% 92.4% 

Quality variables 46.7% 89.6% 20% 12.0% 20% 75% 

Combined index - - - - 0% 95.5% 

 

Figure 7.17 shows the time series plot of the combined index. The monitoring chart for 

the combined index gives an enhanced fault detection index as it is calculated as a 

weighted combination of Hotelling’s    and      for the whole process. The combined 

index provides an indication as when to stop updating the model and the confidence 

limits because the process is affected by a fault thereby ensuring the robustness of the 

model, i.e. the model represent the process behaviour and it is resistance to outlying 

samples. 

Figure 7.18 shows the monitoring statistics of the quality variable,     , where it 

clearly indicates that the product quality variable is affected by the fault. It is shown that 

75% of the faulty samples related to the product quality were successfully detected. 

Figures 7.19 and 7.20 show the monitoring charts for Hotelling’s    and      of the 

whole process (sub-figure 1). It can be seen from the process monitoring charts that the 

process remains within statistical control prior to the introduction of the fault, the false 

alarm rate for the overall process decreased compared to monitoring charts following 

the application of DPLS. Additionally, they indicate that the process is affected by the 

fault as 95% of the faulty samples were successfully detected.  
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Figure 7.17 – Combined index for the 

TEP based on        and           

approach – Fault (13) 

Figure 7.18-       for the TEP based on 

       and           approaches – 

Fault (13) 

 
Figure 7.19 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

       and           approaches – Fault (13) 
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Figure 7.20 -       for (1) overall process and (2-6) individual blocks based on 

       and           approach – Fault13 
 

The strongest response to the fault was observed in the      metric. More specifically, 

the reactor block (1), separator block (2) and stripper block (3) show the most 

significant effect resulting from the fault with the other blocks being less affected. In 

addition, the first three blocks indicate the fault earlier than the compressor and 

materials blocks. This is expected from a chemical engineering prospective as the fault 

is in the reaction kinetics which has a direct relationship with the reaction rate. In 

addition, most of the predictor variables associated with the reaction rate such as level, 

pressure and temperature are affected by this fault and since these variables are 

contained in different blocks, the fault affects all the process units but with different 

levels of impact. Table 7.8 summarizes the detection delays for the overall process and 

the individual unit operations. The overall      chart detects the fault at 9.48 hr, i.e. 

108 min after the introduction of the fault. The recorded detection delay is 3 min earlier 

than the detection delay provided by Chiang et al. (2001) following the application of 

PCA and DPCA. Additionally, it can be seen that the fault was indicated at 9.12 hr, 9.48 
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A much smaller effect is observed in Hotelling’s T² and      but they are still 

significant. From Figure 7.19, it can be seen that the monitoring charts for the overall 

process and individual unit operations violate the confidence limits with different levels 

of significance. The      monitoring chart also violate the limits due to the fact that the 

operations in the stripper (block 3), which is related to the production of the quality 

variables, are affected by the fault and hence the product quality will be affected. 

Consequently the reaction in the stripper is affected by the slow drift and the production 

of product G is affected. 

The detection delays for the Hotelling’s T² and      charts are summarised in 

Table 7.8. The Hotelling’s T² chart for the overall process detects the fault at 10.24 hr, 

i.e. 144 min after the introduction of the fault. This delay is also comparable to the 

detection delay reported by Chiang et al. (2001) following the application of PCA and 

DPCA. The individual unit monitoring charts is detected earlier for the stripper and the 

reactor at 10.06 hr and 11.00 hr respectively. Other units detect the fault 18 min later 

than the reactor block as shown in Table 7.8. 

Table 7.8 – Detection delays for Fault (13) 

Part Chart Time delay 

(min) 

 

Detection 

Time (hr) 

 

Time 

delay(sample) 

 

Overall 

process 

Hotelling’s T² 144 min 10:24 hr 8 samples 

     108 min 9:48 hr 6 samples 

     126min 10:06 hr 7 samples 

Block 1 

Reactor 

Hotelling’s T² 198 min 11:18 hr 10 samples 

     108 min 9:48 hr 6 samples 

Block 2  

Separator 

Hotelling’s T² 198 min 11:18 hr 11 samples 

     72 min 9:12 hr 4 samples 

Block 3 

Stripper 

Hotelling’s T² 126 min 10:06 hr 7 samples 

     108 min 9:48 hr 6 samples 

Block 4 

compressor 

Hotelling’s T² 198 min 11:18 hr 11 samples 

     126 min 10:06 hr 7 samples 

Block 5  

Materials 

Hotelling’s T² 198 min 11:18 hr 11 samples 

     198 min 11:18 hr 11 samples 
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7.4.4 Case study on Fault (10) 

Fault (10) represents a random variation in the C feed temperature in stream 4. 

Figure 7.21 shows a comparison between a nominal stripper temperature and the 

behaviour pertaining to Fault 10. The investigation shows that most of the variables 

behave in a similar manner to the stripper temperature, i.e. large and fast oscillation 

resulting from the random variations.  

  

Figure 7.21 – Comparison of Stripper temperature for NOC and Fault (10) 
 

 

The DPLS algorithm described in §6.4.2.2 was applied to the data generated 

incorporating Fault (10). The DPLS monitoring charts are given in Appendix E. The 

results following the application of DPLS and         are similar to these for 

Faults (1), (13) and (18). They show an increase in the false alarm rate prior to the 

introduction of the fault (Table 7.9). For example, the false alarm rate for      is 40%. 

The violation was observed for the monitoring charts for the overall process and for the 

individual unit operation indicating that the monitoring charts are inefficient. In 

addition, the fault detection ability for the whole process is low, i.e. 86.5%, compared 

with the other faults. However, it is higher than the     provided by Yin et al. (2012), 

60.5%, 72% and 82.63% following the application of PCA, DPCA and conventional 

PLS respectively. Additionally, the fault detection ability of the individual unit 

operations was also less compared to the other faults with the     by 29.6 % and 

53.3 % for the separator and reactor blocks respectively. It can then be concluded that 

the DPLS and         are inappropriate for constructing monitoring charts to 

monitor process performance. 

The results from the application of ADPLS and          to the TEP for Fault (10) 

are given in Appendix E. From the figures and the quantitative results (Table 7.9) it can 
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be concluded that ADPLS overcomes the limitations of DPLS. This is clearly seen in 

the reduction of the false alarm rate when the process represents nominal operation. 

However, the process remains within statistical control because the ADPLS allows the 

confidence limits to adapt to the change in the process and hence is statistically in 

control. The fault detection rate for the overall process is less compared to DPLS as the 

overall monitoring charts and the quality variable chart detect 25.6% and 8.3% of the 

faulty samples respectively. Furthermore, the monitoring charts for the individual units 

detect 14.3% to 25.6% of the faulty samples as shown in the Table 7.9. This significant 

reduction in the     indicates that the ADPLS and          approaches are 

inappropriate for monitoring the TEP behaviour, hence RADPLS and           is 

considered.  

The results following the application of RADPLS and           are given in 

Figures 7.22, 7.23, 7.24 and 7.25. Figure 7.22 shows the combined index for the TEP 

for Fault (10). Different to Faults (1), (13) and (18), the combined index fails to identify 

all the faulty samples as it only detects 70.7% compared to the other faults, where more 

than 90% of the faulty samples were detected. This may be a consequence of the 

following reasons: 

- The process model updates incorrectly when the fault occurs due to the nature of the 

fault where the random variation, which represents large and fast oscillations, 

affects most of the variables and passes through the normal operating range. 

Consequently, some samples are identified as being generated from normal 

operation. 
 

- The combined index is calculated as a function of the statistics (Hotelling’s    and 

    ) and their limits. In the faulty period, some samples were identified as normal 

operating condition samples since they lie within the normal operating region, hence 

the limits are updated and used for the calculation of the combined index and its 

limit. This will have an impact on the functionality of the combined index as seen in 

Figure 7.22.  
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Figure 7.22  – Combined index for the TEP based on         – Fault (10) 

 

The overall process detects 70.7% of the faulty samples which is comparable to the     

provided by Yin et al. (2012), 60.5%, 72% and 82.63% following the application of 

PCA, DPCA and conventional PLS respectively. However, it is considered low 

compared to the detection ability for the other faults following the application of 

RADPLS and          . The monitoring charts for the individual unit operations 

detect 37.6% to 69.1% of the faulty samples as shown in Table 7.9. This rate is 

decreased compared to the     for the other faults indicating that the functionality of 

the RADPLS and           is affected by the nature of the fault. 

Table 7.9 - False alarm and fault detection rates based on all monitoring approaches for 

Fault (10). 

Part DPLS 

        

ADPLS 

         

RADPLS 

          

FAR FDR FAR FDR FAR FDR 

Overall process 13.3% 86.7% 6.7% 25.6% 6.7% 70.7% 

Block 1 - Reactor 20% 53.3% 6.7% 16.5% 6.7% 38.3% 

Block 2  Separator 6.7% 29.6% 6.7% 14.3% 6.7% 37.6% 

Block 3 - Stripper 20% 86.7% 6.7% 23.3% 6.7% 69.1% 

Block 4 - compressor 13.3% 70.4% 6.7% 21.8% 6.7% 47.4% 

Block 5  Materials 6.7% 60% 6.7% 25.6% 6.7% 45.8% 

Quality variables 40% 72.6% 26.7% 8.3% 26.7% 17.3% 

Combined index - - - - 0% 70.7% 
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The monitoring charts for the overall process and the individual unit operation are given 

in Figures 7.23, 7.24 and 7.25. It can be seen that the fault is partially detected by the 

overall process and the individual unit operations. This observation is evaluated by the 

calculation of the     (Table 7.9). The detection delays for the overall and the 

individual unit monitoring charts are summarised in Table 7.10. It can be seen that the 

Hotelling’s T²,      and      charts for the overall process detect the fault at 12.48 hr, 

10.06 hr and 12.24 corresponding to 288 min, 126 min and 144 min respectively. These 

delays are comparable to the time delay attained by Chiang et al. (2001) following the 

application of PCA and DPCA. Additionally, the detection delay for the individual unit 

operation indicates that the fault is detected earlier in the stripper compared to the other 

blocks as the      and Hotelling’s T² monitoring charts detect the fault at 10.24 hr and 

10.42 hr respectively. The fault is then detected by the separator, reactor, compressor 

and finally the materials blocks. It is noticed that the monitoring indices fall back into a 

state of statistical control in some blocks which is expected as the nature of the fault is 

that of random variations. These variations force the process to deviate from the normal 

operating conditions, however, it may lead the process lying within the normal 

operating region hence the statistical indices remain within a state of statistical control. 

 

Figure 7.23 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

       and           approaches – Fault (10) 
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Figure 7.24 -       for (1) overall process and (2-6) individual blocks based on 

       and           approaches – Fault (10) 

 

 
Figure 7.25-       for the TEP based on        – Fault (10) 
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Table 7.10 – Detection delays for Fault (10) 

Part Chart Time delay 

(min) 

 

Detection 

Time (hr) 

 

Time 

delay(sample) 

 

Overall 

process 

Hotelling’s T² 288 min 12:48 hr 16 samples 

     126 min 10:06 hr 7 samples 

     144 min 10:24 hr 8 samples 

Block 1 

Reactor 

Hotelling’s T² 234 min 11:54 hr 13 samples 

     180 min 11:00 hr 10 samples 

Block 2  

Separator 

Hotelling’s T² 162 min 10:42 hr 9 samples 

     216 min 11:36 hr 12 samples 

Block 3 

Stripper 

Hotelling’s T² 162 min 10:42 hr 9 samples 

     144 min 10:24 hr 8 samples 

Block 4 

compressor 

Hotelling’s T² 234 min 11:54 hr 13 samples 

     180 min 11:00 hr 10 samples 

Block 5  

Materials 

Hotelling’s T² 234 min 11:54 hr 13 samples 

     198 min 11:18 hr 11 samples 
 

7.5 Discussion and SWOT analysis 

The quantitative results from the above case studies are compared in Figure 7.26 which 

shows the fault detection rate and false alarm rate for the three approaches for the four 

case studies, sub-figures a, b, c and d. It can be seen that the performance of        

and the      are similar. However, in the case of Fault (10) (i.e. random variations) the 

performance of        is affected and it fails to detect the fault. The reasons behind 

this observation were previously discussed in section 7.6.3. In addition, the fault 

detection ability for ADPLS is low compared to DPLS and RADPLS due to the 

adaption of the confidence limits. 

On the other hand, it can be seen the false alarm rate which was calculated based on the 

three approaches for the different cases prior to the onset of the fault as the process was 

operated under normal operating conditions. In addition, the performance of the 

approaches is also compared for the validation data set. It can be seen that for DPLS the 

number of false alarms increases compared to ADPLS and RADPLS for both  the faulty 

and validation data sets. Additionally, the performance of        is very similar to 

      in the case of the faulty data sets. However, when the algorithms were applied to 

the validation data set, RADPLS shows better performance compared to DPLS and 

ADPLS. 
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(a) Case 1 – fault (18) (b) Case 2 – fault (1) 

  

(c) Case 3 – fault (13) (d) Case 4 – fault (10) 

Figure 7.26 - False alarm and fault detection rate for the three methods for the four 

different faults. 

 

It can be concluded that        is a compromise between the other approaches as it 

increases the fault detection rate compared to ADPLS and decreases the false alarm rate 

compared to DPLS. 

SWOT analysis (Strength, Weakness, Opportunities and Threat) is a tool used to 

structure qualitative or quantitative information and help organize information, present 

solutions, identify weaknesses and emphasize opportunities. In this work, a SWOT 

analysis is used to compare the performance of the proposed methods ADPLS and 
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ADPLS and RADPLS to the TEP process. 
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Table 7.11 – SWOT analysis 

 

 

 

 

 

 

 

 

 

 

Strengths Weaknesses 

ADPLS and AMBDPLS: 

- Adapts to process changes 

- False alarm rate is low 

- Easy to update the model and the confidence limits. 

- Ability to construct monitoring chart for the whole process 

and individual unit operations 

- Algorithm can deal with auto-correlated samples 

ADPLS and AMBDPLS: 

- Updates the model when the sample represents an outlier or 

abnormal behaviour.  

- Low fault detection rate as the confidence limits are updated 

continuously hence, the process remain in state of statistical 

control. 

RADPLS and RAMBDPLS: 

- Adapts to process changes 

- High false detection rate 

- Low false alarm rate 

- Resistant to statistical outliers 

- Resistant to non-conforming samples 

- Ability to construct monitoring chart for the whole process 

and individual unit operations 

- Enhanced monitoring system due to calculating an additional 

monitoring metric, the combined index. 

- Algorithm can deal with auto-correlated samples 

 

RADPLS and RAMBDPLS: 

- Fails to identify a fault that has random variation or is of an 

oscillatory nature.  

 

 

Opportunities Threats 

ADPLS and AMBDPLS: 

- Algorithm is useful when the  data set is outliers free 
ADPLS and AMBDPLS: 

- Most online data contain outliers 

-   

RADPLS and RAMBDPLS: 

- The algorithm can helps the process operator by indicating 

abnormal behaviour.  

- The algorithm can be improved by incorporating other 

metrics 

 

RADPLS and RAMBDPLS: 

- Time delay when sampling rate is too slow as it is required to 

check consecutive samples prior to model updating. 
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7.6 Chapter Summary and Conclusions 

The approaches proposed in Chapter 6 were applied to the Tennessee Eastman process 

to test their efficiency in terms of fault detection and the reduction in the number of 

unwanted alarms (i.e. false alarms). The main conclusions are:   

- From the implementation of the three methods to four different case studies, the 

       and            perform better than the other approaches. It can be seen 

as a compromise as it decreases the false alarm rate when the process represents 

nominal operations compared to      and the        . Furthermore, it increases 

the fault detection rate compared to       and          (§6.7).  

- However, the        and the           show a limitation when the fault 

represents random variation. This is due to the fact that the functionality of the 

combined index, which is affected by identifying samples which are faulty but 

would occur during normal operating conditions due to the oscillatory nature of the 

fault. Hence, the model and the confidence limits are updated incorrectly.  

- Fault propagation was investigated for a continuous dynamic process. From the case 

study, it can be concluded that fault propagation in continuous dynamic system can 

be investigated through the calculation of the time delay between the unit 

operations. In addition the significance level of the monitoring charts indicates the 

units that are affected by the fault. More investigation needs to be conducted 

through contribution plots to investigate the variables most related to the fault.    
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Chapter 8 

Conclusions and Future Work 

8.1 Summary 

The aim of this thesis was to contribute to the field of statistical monitoring of 

continuous systems exhibiting complex dynamic behaviour. The application of 

multivariate statistical projection approaches namely, Partial Least Squares and its 

extensions were investigated for the construction of monitoring schemes for both the 

whole process as well as for individual unit operations.  

Specifically, the first part of the thesis reviewed the underpinning multivariate 

projection technique of partial least squares which has been shown to be efficient for the 

construction of monitoring schemes for high dimensional industrial processes that 

comprise correlated/collinear variables. Through the application of PLS to mathematical 

simulations that exhibited time varying and non-stationary behaviour, it was noted that 

conventional PLS is inappropriate and an extension, Robust Adaptive Partial Least 

Squares was proposed. The proposed method also has the ability to discriminate 

between statistical outliers and process faults. Other PLS extensions including dynamic 

PLS and multiblock PLS were also reviewed. 

The second part of the thesis extended the proposed method and applied it to model the 

complex dynamic behaviour of two processes. The first one was an ammonia synthesis 

fixed-bed reactor, which represents a single unit operation whilst the second, was the 

Tennessee Eastman Process (TEP), which comprises multiple unit operations. Both 

processes exhibit dynamic and nonlinear behaviour. Finally the limitations of the 

developed methods and further work were identified. 

 

8.5 Key Contributions and Results 
 

- Most recursive PLS algorithms aim to update the PLS model whenever new data 

becomes available. In particular, for the recursive PLS with adaptive confidence 

limits (APLS) algorithm proposed by Wang (2003), the PLS model is updated in 

a sample wise manner. An issue that arises when the model is updated using 

statistical outliers or abnormal data results in a non-representative model of 

nominal process behaviour. To address this limitation, a novel technique, robust 

adaptive PLS (RAPLS) was proposed. In this algorithm the combined index as 
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well as Western electrical rule were utilised to enable the algorithm to 

distinguish between nominal samples, outliers and abnormal events. The 

application of conventional PLS, APLS and RAPLS to mathematical 

simulations that represented time varying and non-stationary processes showed 

that the RAPLS algorithm performs better compared to the conventional PLS 

and APLS algorithms in terms of model prediction, average run length, false 

alarm rate and fault detection rate. Following the application of RAPLS to test 

data sets, the prediction ability was observed to be slightly lower than for APLS 

which is expected as the algorithm prevents nonconforming data from 

contributing to the model. The APLS algorithm performs better compared to 

conventional PLS in terms of tracking the change in the process behaviour and 

reducing the number of false alarms. However, it fails to discriminate between a 

process fault and the change in the process behaviour. 

 

- PLS assumes a linear and static relationship between variables and therefore it is 

not suitable in cases where a process exhibits dynamic behaviour. In addition, 

dynamic process typically demonstrates a degree of nonlinearity and therefore a 

process model that accounts for process dynamics and nonlinearity is required. 

To address this issue, a time series representation is incorporated within the 

proposed method of RAPLS. Hence a robust adaptive dynamic PLS (RADPLS) 

is developed. Following the application of the RADPLS algorithm to two 

dynamic and non-linear processes, it was observed that processes behaviour is 

well predicted demonstrate that the recursive variants of DPLS can be used for 

nonlinear processes.   

 

- Identifying the dynamic structure of the process is application dependent so 

identifying the dynamic structure has been carried out separately for each 

industrial process simulation in this work. A number of dynamic structures have 

been considered and investigated to enable the selection of the most appropriate 

dynamic PLS model. The accurate prediction of process behaviour suggested 

that a dynamic structure was used, i.e. ARX (1,1,20) for the ammonia synthesis 

fixed-bed reactor and FIR with 6 lags based on 18 min sampling interval for the 

data generated from the Tennessee Eastman Process. In addition when this 

structure was applied along within the recursive technique, it showed significant 

improvement compared to the conventional PLS model in terms of fault 

detection, reducing the number of false alarms and model predictions. 
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- To the knowledge of the author, no studies have been conducted on the 

modelling and monitoring of the dynamic and nonlinear behaviour of the 

ammonia synthesis fixed-bed rector using PLS and its extension. Following the 

application of DPLS and the recursive variants, it was shown that the robust 

adaptive dynamic PLS algorithm based on an autoregressive with exogenous 

input time series model is more appropriate for constructing the monitoring 

scheme. It has the ability to detect statistical outliers, improve the predictions 

and reduce the number of false alarms when the process is operated under 

normal operating conditions. One limitation observed was when a disturbance 

affects the process and the threshold was unable to detect the full period of the 

faulty samples as the disturbance affect the process for a significantly long 

period. However, when the fault affects the process for shorter period, the 

RADPLS performs well with the fault detection rate being high compared to the 

adaptive dynamic PLS technique.  

 

- The ammonia reactor fault considered which can be caused by a drop in the 

overall pressure or feed temperature, results in a rapid oscillation in the 

temperatures and ammonia concentrations. These oscillations can damage the 

catalyst and hence damage the reactor. A monitoring system, which provides 

early detection of the fault and which reduces the number of false alarms, can 

impact on the many factors including the ability of the operator to restore normal 

operation conditions. Additionally, energy saving will be achieved in terms of 

controlling the temperatures, preserving the quality of the product in terms of 

controlling the concentration and finally financial savings in terms of not 

damaging processes equipment.  

 

- Several scaling techniques were considered. For the case studies considered, 

normalization was the most appropriate scaling approach for the data generated 

from the simulation of ammonia synthesis fixed-bed reactor. This conclusion 

was drawn following the application of DPLS to the normalised data and 

considering the root mean squared error (RMSE) and the coefficient of 

determination   .  

 

- To construct a monitoring scheme for large scale processes that comprise several 

unit operations, multiblock PLS was used along with robust adaptive dynamic 
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PLS. Consequently a robust adaptive multiblock dynamic PLS (RAMBDPLS) 

algorithm was proposed. The methodology was applied to data from the 

Tennessee Eastman Process which comprised 5 unit operations. The monitoring 

charts derived from the application of RAMBDPLS were reliable compared to 

multiblock dynamic PLS and adaptive multiblock dynamic PLS, since the false 

alarm rate was reduced and the fault detection rate increased. In addition, fault 

propagation in a dynamic and nonlinear system was investigated through the 

calculation of the time delay before the fault being detected in the various unit 

operations. More specifically the fault propagates through the system and from 

the monitoring charts; the impact of the fault on different unit operation is 

investigated and hence it is evident as to which part of the process is affected by 

the fault.  

 

8.6 Future work 

Based on the reported research, a number of issues need further investigation providing 

opportunities for future research. These issues include: 

- All the results presented in the thesis are based on simulated data which 

stimulate the behaviour of real industrial processes. Application of the proposed 

methods on data generated from real industrial process would give further 

verification of the results presented in the thesis. 

 

- Fault isolation is the next step after fault detection. This step helps identify the 

variable responsible for the onset of the detected fault. Hence a more detailed 

analysis of the root causes required to be conducted. One of the most popular 

methods for fault isolation is contribution analysis. Considering the application 

of contribution analysis for large scale process that exhibit dynamic and 

nonlinear behaviour is complicated due to the complex relationships between 

process variable. This is a major area of research. 

 

- In chapter 4, the threshold used was based on the combined index which showed 

some limitations especially in the context of oscillatory behaviour. Further 

research needs to be conducted into the use of different outlier detectors such as 

the Mahalnbios distance. 
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- In this work, the recursive algorithm was based on sample wise recursive PLS 

by Qin (1993). The application of a kernel based recursive algorithm as opposed 

to NIPALS based recursive algorithm is a further area of research 

 

- In Chapter 6, the division of the whole process into individual unit operations 

was based on engineering knowledge. Further research into how to split the 

process to multiple units in the absence of the engineering knowledge would be 

of interest. For example, correlation analysis could help in the blocking of a 

system for multiblock PLS. 

 

- The robust adaptive dynamic PLS (RADPLS) and robust adaptive multiblock 

dynamic PLS (RAMBDPLS) algorithm considered in this thesis are based on 

multiple inputs single output (MISO) data. Multiple inputs multiple outputs 

(MIMO) needs to be further investigated. 

 

- The issue of selecting the window size for the calculation of the adaptive 

confidence limits, which in this thesis has been selected empirically for the 

ammonia synthesis fixed-bed reactor and Tennessee Eastman processes needs to 

be investigated further. 

 

- The extension of the approach proposed by Galicia et al (2012), principal 

component analysis based on Bayesian supervisory approach to detect outliers 

for real time monitoring, to partial least squares when constructing a process 

model is research area of interest.    

 

8.7 Publication from the Thesis 

Conference 

Altaf, B., Montague, G., Martin, E.B. (2012) Monitoring of an industrial process using 

robust adaptive partial least squares. proceeding Royal Statistical Society Conference, 

Telford, United Kingdom, September 3-5. 

Altaf, B., Montague, G., Martin, E.B. (2012) Monitoring of an industrial process using 

robust adaptive multiblock partial least squares. proceeding Saudi Scientific 

International Conference, London, United Kingdom, October 11-14. 
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Altaf, B., Montague, G., Martin, E.B. (2013) Dynamic monitoring of the Tennessee 

Eastman process using PLS.  proceeding Northern Postgraduate Chemical Engineering 

Conference, Newcastle upon Tyne, United Kingdom, August 8-9. 

Altaf, B., Montague, G., Martin, E.B. (2013) Dynamic monitoring of the Tennessee 

Eastman process using Partial Least Squares and Extensions. proceeding Royal 

Statistical Society Conference, Newcastle upon Tyne, United Kingdom, September 3-5. 

Journal 

Altaf, B., Montague, G., Martin, E.B. (2013) Dynamic Process Monitoring of an 

Ammonia Synthesis Fixed-bed Reactor. Submitted to Journal of Chemical Engineering 

& Technology. 
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APPENDIX A 

1. Statistically Inspired Modification of PLS (SIMPLS) 

It is an alternative approach to partial least squares proposed in (De Jong, 1993) and 

it is summarised as follows: 

For each latent variable          and        ,                

1. Compute    the dominant eigenvector of       

2.         ,        ,   =  -mean (    

3.       ‖  ‖  and    =   ‖  ‖   

4.   =     and store    into   column 

5.   =      and store    into   column 

6.   =     and       

7. If h>1 

a.         
     

b.   =   -       

            Otherwise 

                                    
     

                            -            

8. Store         ,   ,       and go for the next dimension 

2. Kernel PLS 

It is an alternative approach to partial least squares proposed (Lindgren et al., 1993) 

and it is summarised as follows: 

1. For each latent variable           

2. Compute the kernel matrix         

3. Calculate the PLS weight vector    as the eigenvector corresponded to the 

largest eigenvalue of            using singular value decomposition (SVD) 

4. Calculate     for h>1 as                  )     

5. Calculate the first loading vector     for   as  

  
  

  
         

  
            

 

6. Calculate the first loading vector     for   as  

  
  

  
         

  
            

 

7. Update the covariance matrices as: 

                    
                ) 
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3. Modified kernel PLS (1) 

The original kernel PLS is modified by simplifying step 7, update the covariance 

matrices as: 

                        
     

                   

                       
     

      

 

4. Modified kernel PLS (2) 

 

This modification was proposed by Dayal and MacGregor (1997a). They proved 

that only one of the data matrices needs to be deflated, i.e. the only necessary 

deflation in step 7 is  

                       
     

       where      

 

5. Relation between Conventional PLS and        

5.1 scores relationship 

- Denote      ‖      ‖ ,           

- From the        in chapter 3, we have 

                            

                          
    

                                          ]                           

        =∑         
  

             since                  we have 

        =∑          
 
   

 
   (  

      )  since       =         ‖      ‖ we have 

        = ∑          
 
   

 
    (           since          =1 we have 

        = ∑         
 
         since      =              we have 

       = ∑     
 
          

       =                     ]                                   * 

Since    =             and      =1  and               

                                                                                ** 

Substituting * in ** we have 

                                 ]                                                                                     

Since the conventional PLS scores    and    are the eigenvalue of               and 
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              respectively. We need to show that         and                            

for each i and this can be proved from the identically of residuals. 

5.2 Residual relationship 

- Utilising the         residual relationship for the ith latent variable we have 

                      
    since                                

                                              

For the conventional PLS we have 

     (  
    

 

    
 )   

by partitioning the                       we got 

                               

And the similar derivation can be obtained for the output residuals 

                           since                
  and                     

                                   

Score and residual equivalence by induction 

Since      =     =     and   =   = Y  

From scores relations we have            
      

       and           
     

     

Hence both        and    are the first eigenvector of      
      

  and both    and    are 

the first eigenvector of     
     

 . This proves           and    =     

Assume      =    ,    =    ,                       and    =     and from residual 

relationship  

                                                                         

Therefore  

            ,       ……..       ] 

Similarly  

     (  
    

 

    
 )   =      

Applying these relations to scores relationship, it can be proved that 

             and             
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5.3 Equivalence of weight and loadings        and PLS   

From conventional PLS algorithm in Chapter 3 we have 

     
    ‖     ‖  

Partitioning                       we got 

     
    

   

‖  
     ‖

       
      * 

From the        algorithm and by Substituting     
  for     

   we have 

     
    

   

‖  
     ‖

  
    

   

‖  
     ‖

  
    

‖    ‖
 

 

From        algorithm 

    =
    

   

‖  
     ‖

 

By multiplying the previous step by          

‖  
     ‖=

    
   

    
     

   
    

   

‖  
     ‖

⁄  = ‖  
     ‖   

    
   

    
   

 = ‖  
     ‖  ‖  

     ‖      ** 

 

By multiplying the previous step by          

                            =          *** 

From        algorithm we have 

       
  

   

‖  
   ‖

         

Since                         we got  

      =                            

                                               

From *** 

      =                                                 

From ** 
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        ‖  
     ‖, ‖  

     ‖    ‖  
     ‖    Since       

    
   

‖  
     ‖

 

            ‖    ‖ ‖    ‖    ‖    ‖  

 5.4 Equivalence of loadings 

From        

                              

Since       and     are equivalence from 5.1 and 5.2 

  

                                  ** 

From conventional PLS algorithm 

                    

By partitioning                       we got 

                        *** 

By comparing ** and *** we got 

            

 

6. Residuals plots for time varying process – calibration data set 

  
Figure 1- Time series plot of the residuals 

for the first quality variable 
Figure 2 - Time series plot of the residuals 

for the second quality variable 
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7. Residuals plots for time varying process – validation data set 

 

  
Figure 3 -Time series plot of the residuals 

for the first quality variable 
Figure 4 - Time series plot of the residuals 

for the second quality variable 

 

8. Residuals plots for time varying process – test data set 

  
Figure 5 - Time series plot of the residuals 

for the first quality variable 
Figure 6 - Time series plot of the residuals 

for the second quality variable 

 

 

9. Residuals plots for non-stationary process – calibration data set 

  
Figure 7 - Time series plot of the residuals 

for the first quality variable 
Figure 8 - Time series plot of the 

residuals for the second quality variable 
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10. Residuals plots for non-stationary process – validation data set 

  
Figure 9 - Time series plot of the 

residuals for the first quality variable 
Figure 10 - Time series plot of the 

residuals for the second quality variable 
  

11. residuals plots for non-stationary process – test data set 

 

  
Figure 11-Time series plot of the residuals 

for the first quality variable 
Figure 12-Time series plot of the residuals for 

the second quality variable 
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Appendix B 

1.  Recursive Kernel Algorithm 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

  

 

Where          ,          are the covariance matrices at time t-1 

        ,   
      are the updated covariance matrices at time t 

  (1×m) new predictor vector,   (1× k) new response vector 

λ is a variable forgetting factor,      the minimum value of the forgetting 

 

Generate data          - Pre-process data  

              

Compute the covariance matrices 

 

Build PLS model using kernel algorithm 

Store scores, loadings and weights 

While new data is available (new data point) 

 

               λ =      (
       

     )   
  

    
  

   
⁄  

 

                        

                        

  Update the covariance matrix   

   
  

    

  
   

⁄  

 
Build PLS model by using updated covariance matrices   

  
  

   
⁄  

 Calculating the coefficient B=RQ’ 
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2.  Time varying process –Adaptive PLS – Validation data set 

  
Figure 13- Residual of first quality 

variable – APLS for validation data set 

 

Figure 14- Residual of second quality 

variable – APLS for validation data set 

 

3. Time varying process –Adaptive PLS – Test data set 

  
Figure 15 - Residual of first quality 

variable –APLS for test data set  

Figure 16 - Residual of second quality 

variable –APLS for test data set 

 

4.   Time varying process –RAPLS – Test data set 

  
Figure 17 - Residual of first quality 

variable –RAPLS for test data set 

 

Figure 18 - Residual of Second quality 

variable –RAPLS for test data set  
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5.   Residual of first quality variable –RAPLS for validation data set 

  
Figure 19 - Residual of first quality 

variable –RAPLS for validation data set 

 

Figure 20 - Residual of Second quality 

variable –RAPLS for validation data set  

 

6. Time series plot of outliers weight –RAPLS for validation data set 

 

Figure 21 - Outliers weight –RAPLS for validation data set 

7. Time series plot of outliers weight –RAPLS for test data set 

 

 Figure 22- Outliers weight –RAPLS for test data set 
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8.  Non-stationary process –Adaptive PLS –Validation data 

  
Figure 23 - Residual of first quality 

variable –APLS for validation data set 

 

Figure 24 - Residual of Second quality 

variable –APLS for validation data set  

9. Non-stationary process –Adaptive PLS –test data 

 
  

Figure 25 - Residual of first quality 

variable –APLS for test data set 

Figure 26 -Residual of Second quality 

variable –APLS for test data set  

 

10. Non-stationary process –Robust Adaptive PLS – Validation data 

  
Figure 27 - Residual of first quality 

variable – RAPLS for validation data set 

Figure 28 - Residual of Second quality 

variable –RAPLS for validation data set  
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11. Non-stationary process –Robust Adaptive PLS –test data 

  
Figure 29 - Residual of first quality 

variable –APLS for test data set 

 

Figure 30 - Residual of Second quality 

variable –APLS for test data set  

12.  Time series plot of outliers weight –RAPLS for validation data set 

 

 Figure 31 - Outliers weight –RAPLS for validation data set 

13.  Time series plot of outliers weight –RAPLS for test data set 

 

 
 Figure 32- Outliers weight –RAPLS for test data set 
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14. Confidence limits for Hotelling T² 

 

- As mentioned latent variables are linear combinations of the original variables. 

Therefore they approximately normally distributed. 

- T² related to F distribution, considering that mean and covariance are estimated 

from the data 
       

        
               

- For given α, the process is in state of statistical control if 

    
        

       
          

- If the mean is accurately  known and only the covariance are estimated, the 

control limit is given by: 

- If N is large, the estimations of the mean and the covariance are accurate hence 

the T² monitoring index will be approximated with    with a degree of freedom  

 

15. Confidence limits for Squared prediction error 

 

- Jackson, J. E. and Mudholkar, G. S. (1979) developed the following limits for 

the squared prediction error monitoring statistics. 

    =    
  √     

 

  
 +1+ 

          

  
   

            Where    ∑   
  

      and      
     

   
   

16.  Weight value for time variant and nonstationary processes  

Weight value used to weight the outlying samples – Time variant processes   

Weight type Value 1 Value 2 Value 3 Final used 

weight 

Caushy Weight = 1.7 

RMSEC=0.06 

RMSEV=0.59 

Weight = 0.99 

RMSEC=0.037 

RMSEV=0.57 

Weight = 0.3 

RMSEC=0.12 

RMSEV=0.97 

Fair 

function 

Weight 

value =0.99 

 
Fair Weight = 1.7 

RMSEC=0.06 

RMSEV=0.61 

Weight = 0.99 

RMSEC=0.03 

RMSEV=0.56 

Weight = 0.3 

RMSEC=0.1 

RMSEV=0.95 
 

Weight value used to weight the outlying samples – Nonstationary processes   

Weight type Value 1 Value 2 Value 3 Final used 

weight 

Caushy Weight = 1.7 

RMSEC=0.08 

RMSEV=0.085 

Weight = 0.99 

RMSEC=0.02 

RMSEV=0.07 

Weight = 0.3 

RMSEC=0.07 

RMSEV=0.085 

Fair 

function 

Weight 

value =0.99 

 
Fair Weight = 1.7 

RMSEC=0.09 

RMSEV=0.085 

Weight = 0.99 

RMSEC=0.01 

RMSEV=0.06 

Weight = 0.3 

RMSEC=0.07 

RMSEV=0.09 
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Appendix C 

1. Input matrix response to a step change in overall pressure at t=1000 sec 

 

Figure 33 – input variables 

2. Modelling results of different sampling periods and different dynamic 

structures 

Sampling 

frequency 

Dynamic structure RMSEC RMSEV % Variance 

captured 

25 sec No 0.000266 0.0014 95% 

25 sec ARX(1,1,3) 0.000265 0.0012 96.01% 

25 sec ARX(1,1,10) 0.00024 0.0011 94.18% 

25 sec ARX(3,3,1) 0.0004 0.0013 89.97% 

15 sec No 0.00049 0.0011 94.87% 

15 sec ARX(1,1,3) 0.00045 0.0010   95.51% 

15 sec ARX(1,1,10) 0.00044 0.00045 95.55% 

15 sec ARX(3,3,1) 0.00056 0.0011 85.17% 

10 sec No 0.0004 0.00098 95.00% 

10 sec ARX(1,1,3) 0.00034 0.00093 95.24% 

10 sec ARX(1,1,10) 0.00032 0.0009 97.29% 

10 sec ARX(3,3,1) 0.0004 0.00094 95.80% 

5 sec No 0.00048 0.0016 92.00% 

5 sec ARX(1,1,3) 0.00041 0.00089 93.89% 

5 sec ARX(1,1,10) 0.00041 0.00088 95.46 

5 sec ARX(3,3,1) 0.00039 0.00097 92.77% 
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Figure 34 - 25sec sampling interval-Static 

PLS 

Figure 35 - 25sec sampling interval  -

ARX(1,1,3) 

 
 

Figure 36 - sampling interval 25sec-

ARX(1,1,10) 

Figure 37 -  sampling interval  25sec -

ARX(3,3,1) 

  
Figure 38 - sampling interval 15 sec - 

Static PLS 

Figure 39 – Sampling interval 15sec 

ARX(1,1,3) 
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Figure 40 - Sampling interval 15sec 

ARX(1,1,10) 

Figure 41 - Sampling interval 15sec 

ARX(3,3,1) 

  
Figure 42  - Sampling interval 10 sec - 

Static PLS 

Figure 43  - Sampling interval 10sec 

ARX(1,1,3) 

  
Figure 44 - Sampling interval 10 sec 

ARX(1,1,10) 

Figure 45 - Sampling interval 10sec  

ARX(3,3,1) 
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Figure 46 - Sampling interval 5sec 

Static PLS 

Figure 47 - Sampling interval 5sec 

ARX(1,1,3) 

  
Figure 48 - Sampling interval 5sec 

ARX(1,1,10) 

Figure 49 - Sampling interval 5sec 

ARX(3,3,1) 

 

 

3. Modelling of ammonia Synthesis reactor based on 10 sampling period and 

ARX(1,1,3) 

Dynamic PLS (DPLS) was applied to the normalized data and the dynamic structure 

identified in Chapter 6(§ 6.7.1). The first step was to determine the number of latent 

variables     by the use of cross validation approach. Figure 1 shows the RMSE of the 

calibration and RMSE of cross validation. Both indices indicate that three latent 

variables are appropriate to model the process. Table 1 shows that four latent variables 

correspond to 96.43 % of the total amount of variance explained in the X-block and 

95.24 % of the variance explained in the output.  
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Table 1- Percentage variance captured from DPLS model 

LV X-block Y-block 

%Variance % Cumulative  %Variance % Cumulative  

1 49.91 49.91 66.76 66.76 

2 22.27 72.18 25.28 92.04 

3 20.02 92.20 2.07 94.12 

4 4.23 96.43 1.13 95.24 

5 2.05 98.48 0.99 96.23 

6 1.22 99.70 0.57 96.80 

7 0.30 100.00 0.07 96.87 

8 0.00 100.00 0.03 96.90 

9 0.00 100.00 0.00 96.90 

10 0.00 100.00 0.00 96.90 

11 0.00 100.00 0.00 96.90 

 

 

 

 Figure 50 - Cross validation results for 

determining the number of     

Figure 51 - Time series plot of the original 

and fitted response 
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Figure 52 - Original vs. fitted response Figure 53 - Time series plot of the 

residuals for reference model 

 

The results from applying the DPLS model to the validation data sets are presented in 

Figure 5 to Figure 6. It can be seen that the model dose not well fit the data.  

  
Figure 54 - Measured vs. predicted 

response of validation data set 

Figure 55 - Time series of measured and 

predicted response of validation data set 

 

 

 

Figure 56 - Time series plot of the 

residuals for validation data set 
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The results from applying the DPLS model to the two testing data sets corresponding 

case1 and case 2 

Case1- Testing data sets 

  

Figure 57 - Measured vs. predicted 

response of test data set – Case1 

Figure 58 - Time series of measured and 

predicted response of test data set – Case 1 

 

Case2- Testing data set 

  

Figure 59 - Measured vs. predicted 

response of test data set – Case2 

Figure 60 - Time series of measured and 

predicted response of test data set-Case2 
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4. Modelling of ammonia Synthesis reactor based on 10 sampling period and 

ARX(3,3,1) 

Dynamic PLS (DPLS) was applied to the normalized data and the dynamic structure 

identified in Chapter 6(§ 6.7.1). The first step was to determine the number of latent 

variables     by the use of cross validation approach. Figure 1 shows the variance 

captured by the model. It can be seen that 4 latent variables are appropriate to model the 

process. Table 2 shows that four latent variables correspond to 95.84% of the total 

amount of variance explained in the X-block and 95.80% of the variance explained in 

the output.  

Table 2- Percentage variance captured from DPLS model 

LV X-block Y-block 

%Variance % Cumulative  %Variance % Cumulative  

1 51.05 51.05 68.17 68.17 

2 21.10 72.15 25.41 93.58 

3 19.54 91.69 1.62 95.20 

4 4.15 95.84 0.60 95.80 

5 1.96 97.81 0.55 96.35 

6 1.43 99.24 0.25 96.60 

7 0.22 99.46 0.23 96.83 

8 0.19 99.64 0.05 96.89 

9 0.17 99.81 0.04 96.93 

10 0.13 99.94 0.04 96.96 

11 0.03 99.97 0.05 97.01 

12 0.01 99.98 0.10 97.11 

13 0.01 99.99 0.06 97.17 

14 0.01 100.00 0.01 97.18 

15 0.00 100.00 0.01 97.19 

16 0.00 100.00 0.03 97.22 

17 0.00 100.00 0.01 97.23 

18 0.00 100.00 0.00 97.23 

18 0.00 100.00 0.00 97.23 

20 0.00 100.00 0.00 97.23 
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Figure 61 - Variance captured by individual 

latent variables  

Figure 62 -Time series plot of the 

original and fitted response 

  

Figure 63 - Original vs. fitted response Figure 64 - Time series plot of the 

residuals for reference model 
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Figure 65 -Measured vs. predicted 

response of validation data set 

Figure 66 - Time series of measured and 

predicted response of validation data set 

 

 

 

Figure 67 -Time series plot of the residuals 

for validation data set 

 

 

Case1- Testing data sets 

  

Figure 68 - The measured vs. predicted 

response (case 1-DPLS) 

Figure  69 - Time series plot of the 

measured and predicted response (case 1-

DPLS) 
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Case2- Testing data set 

  

Figure  70 - The measured vs. predicted 

response (case 2-DPLS) 

Figure 71 - Time series plot of the 

measured and predicted response (case 2-

DPLS) 

5. Residuals for the application of ADPLS to validation data set 

 
 

Figure 72 -Residuals for the application 

of ADPLS to validation data set –Fixed 

LVs 

Figure 73 - Residuals for the application 

of ADPLS to validation data set- 

variable LVs. 
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6. Residuals for the application of ADPLS to the test data set (case 1) 

  

Figure 74 - Residuals for the 

application of ADPLS to test data set –

Fixed LVs  

Figure 75 - Residuals for the application 

of ADPLS to test data set- variable LVs. 

7. Residuals for the application of ADPLS to the test data set (case 2) 

  

  

Figure 76 - Residuals for the 

application of ADPLS to test data set –

Fixed LVs  

Figure 77 - Residuals for the 

application of ADPLS to test data set- 

variable LVs. 

 

 

 

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time(sec)

R
e
s
id

u
a
ls

 

 

Residuals

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time(sec)

R
e
s
id

u
a
ls

 

 

Residuals

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time(sec)

R
e
s
id

u
a
ls

 

 

Residuals

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.04

-0.02

0

0.02

Time(sec)

R
e
s
id

u
a
ls

 

 

Residuals



304 
 

8. Residuals for the application of RADPLS to the validation data set 

 
 

Figure 78 - Residuals for the 

application of ADPLS to test data set –

Fixed LVs  

Figure 79 - Residuals for the application 

of ADPLS to test data set- variable LVs. 

 

9. Residuals for the application of RADPLS to the test data set (case 1) 

  

Figure 80 - Residuals for the 

application of RADPLS to test data set 

– Fixed LVs  

Figure 81 - Residuals for the application 

of RADPLS to test data set- variable 

LVs. 
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10. Residuals for the application of RADPLS to the test data set (case 2) 

  

Figure 82 - Residuals for the 

application of RADPLS to test data set 

–Fixed LVs  

Figure 83 - Residuals for the application 

of RADPLS to test data set- variable 

LVs. 
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Appendix D 

1- Monitoring statistics of static PLS model (6   ) based on auto-scaled data. 

 

  
Figure 84 – Hotelling’s T² for static 

PLS model (6   )- Auto-scaled 

calibration data set 

Figure 85 – Hotelling’s T² for static 

PLS model (6   )- Auto-scaled 

validation data set 

  
Figure 86 –      for static PLS model 

(6   )- Auto-scaled calibration data 

set 

Figure  87 –      for static PLS 

model (6   )- Auto-scaled validation 

data set 

  
Figure 88 –      for static PLS model 

(6   )- Auto-scaled calibration data 

set 

Figure 89 –      for static PLS model 

(6   )- Auto-scaled validation data set 
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Calibration 

Part  Chart     95% 

whole process Hotelling’s T² 7.2 

     9.2 

     8.6 

Validation 

Part  Chart     95% 

whole process Hotelling’s T² 30% 

     42% 

     37% 

 

2- Monitoring statistics of the static PLS model (6   ) based on block-scaled data 

 

  
Figure 90  – Hotelling’s T² for static PLS 

model (3   )- Block-scaled calibration 

data set 

Figure  91 – Hotelling’s T² for static 

PLS model (3   )- Block -scaled 

validation data set 

  
Figure 92  –      for static PLS model (3 

  )- block-scaled calibration data set 

Figure 93  –      for static PLS model 

(3   )- Block -scaled validation data set 
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Figure 94 –      for static PLS model (3 

  )- Block -scaled calibration data set 

Figure 95 –      for static PLS model 

(3   )- Block -scaled validation data set 

 

Calibration 

Part  Chart     95% 

whole process Hotelling’s T² 6.6 

     8.7 

     8.3 

 

Validation 

Part  Chart     95% 

whole process Hotelling’s T² 29% 

     38% 

     35% 

 

 

 

 

 

 

 

 

 

1 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time(hr)

S
P

E
y

 

 

SPEy

%95 Confidence limit

%99 Confidence limit

0 5 10 15 20 25 30 35 40 45 48
0

2

4

6

8

10

12

Time(hr)

S
P

E
y

 

 

SPEy

%95 Confidence limit

%99 Confidence limit



309 
 

Appendix E 

1.  Monitoring charts using DPLS and          for Fault (1) 

 
Figure 96 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

     and         approaches – Fault (1) 

 

 
Figure 97 -      for (1) overall process and (2-6) individual blocks based on      and 
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        approaches – Fault (1) 

 
Figure 98-       for the TEP based on      and         approaches – Fault (1) 

2.  Monitoring charts using ADPLS and           for Fault (1) 

 
Figure 99 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

      and          approaches – Fault (1) 
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Figure 100 -      for (1) overall process and (2-6) individual blocks based on 

       and          approaches – Fault (1) 

 
Figure 101 -      for the TEP based on       and          approaches – Fault (1) 
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3.  Monitoring charts using DPLS and          for Fault (13) 

 
Figure 102 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

     and         approaches – Fault (13) 

 
Figure 103 -       for (1) overall process and (2-6) individual blocks based on 

     and         approach –Fault13 
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Figure 104 -       for the TEP based on      and         approaches – Fault (13) 

4.  Monitoring charts using ADPLS and           for Fault (13) 

 
Figure 105 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

      and          approaches – Fault (13) 
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Figure 106 -       for (1) overall process and (2-6) individual blocks based on 

A     and          approaches – Fault (13) 

 

 
Figure 107 -       for the TEP based on       and          approaches –

Fault (13) 
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5.  Monitoring charts using DPLS and          for Fault (10) 

 
Figure 108 -       for the TEP based on DPLS and         – Fault (10) 

 
Figure 109 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

     and         approach – Fault (10) 
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Figure 110 -       for (1) overall process and (2-6) individual blocks based on 

     and         approaches – Fault (10) 

 

6.  Monitoring charts using ADPLS and           for Fault (10) 

 
Figure 111 -       for the TEP based on       – Fault (10) 
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Figure 112 - Hotelling’s    for (1) overall process and (2-6) individual blocks based on 

      and          approaches – Fault (10) 

 
Figure 113 -       for (1) overall process and (2-6) individual blocks based on 

      and          approach – Fault (10) 
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