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Abstract

Mitochondrial DNA mutations are a major cause of disease in the human population.
Understanding the disease associated with these mutations is complicated by
heteroplasmy, the mixture of wild-type and mutated mitochondrial DNA. Heteroplasmy
can vary between cells, tissues, and organs, and the disease associated individual
mutations is hugely varied on account of this. The mitochondrial genome encodes
critical proteins of the oxidative phosphorylation system and mutation leads to energy
deficits in cells and a wide range of secondary effects. The central and peripheral
nervous system are commonly affected in mitochondrial disease and quality of life for

patients is severely impaired.

Although pathogenic mitochondrial genetic mutations were first identified over twenty
five years ago, little progress has been made in understanding the expected progression
of disease in patients. The aim of this study was to use statistical modelling to further
understanding of disease progression in mitochondrial DNA mutations. The Medical
Research Council Mitochondrial Disease Cohort provided the majority of patient data.
Patients had been assessed using the Newcastle Mitochondrial Disease Adult Scale,

which facilitates quantitative research on mitochondrial disease burden.

This project comprises studies of two of the most common mitochondrial DNA
mutations. The first study concerns patients with the m.3243A>G mutation, the most
common pathogenic point mutation, and considers the effect of age and heteroplasmy
on disease progression. Prediction models of both overall disease burden and specific
phenotypic features were developed. Important features of the patient cohort were also
examined, including heteroplasmy in different tissues and differences in disease
expression between sexes. The second study looks at patients with single large-scale
mitochondrial DNA mutations. The effect of deletion size, location of the deletion on
the genome, and heteroplasmy were investigated, and all three predictors were found to

be significant in understanding disease progression.
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Chapter 1. Introduction

1.1.  Mitochondria

Mitochondria are cytoplasmic organelles present in almost all eukaryotic cells which
house machinery for ATP (adenosine triphosphate) production and perform critical roles
in apoptosis (Wang and Youle, 2009), calcium homeostasis (Patergnani et al., 2011),
and iron-sulphur (Fe-S) cluster formation (Rouault and Tong, 2005), as well as
numerous other functions. In humans, mitochondria are found in all cells other than
mature red blood cells. Though the vast majority of proteins that make up mitochondria
are encoded by nuclear DNA (nDNA), mitochondria also contain their own DNA, the
only extra-nuclear source of DNA in humans, which encodes a small set of proteins
vital for oxidative phosphorylation (OXPHOS). Mutations in mitochondrial DNA
(mtDNA) are responsible for a wide range of disease that impact on mitochondrial and

cellular function as a whole.

1.1.1. Origins of mitochondria
Mitochondria have long been believed to have evolved from free Eubacteria that

became integrated into a primitive eukaryote through endosymbiosis (Margulis, 1971),
a theory which proposed that the fusion occurred after the emergence of the cell
nucleus. A competing theory, known as the ‘hydrogen hypothesis’ proposes that the
mitochondrion and the nucleus formed contemporaneously, after fusion of a hydrogen-
dependent Archaebacterium and a hydrogen-producing Eubacterium (Martin and
Muller, 1998). In both theories, however, there is a single endosymbiotic event, and a
subsequent transfer of the majority of the genetic material from the proto-mitochondrion

to the nucleus.

1.1.2. Structure
Traditionally the mitochondria has been viewed as a rod shaped or ovoid organelle

thought to be approximately 2pum long and 0.5um in diameter, encapsulated by a double
membrane (Palade, 1953). The outer membrane contains an abundance of the voltage
dependent anion channel (VDAC) otherwise known as porin, which when open allows
for free movement of molecules and ions of low molecular weight (under 10kDa)

between the cytoplasm and the inter-membrane space (Alberts et al., 2002).

The inner mitochondrial membrane (IMM) is essentially impermeable, but contains a

large number of transport proteins that regulate the flow of material into the
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mitochondrial matrix contained within the membrane, and is rich in cardiolipin. The
IMM was traditionally though to be highly folded creating invaginations (known as
cristae) into the matrix, clearly visible using electron microscopy; however, it is now
known that the cristae are formed from a distinct membrane connected to the inter-
membrane space through cristae junctions, and thus the IMM can be subdivided into
two parts, the inner boundary membrane (IBM) and the cristae membrane (CM) (Frey
and Mannella, 2000). The CM is enriched in proteins involved in oxidative
phosphorylation, iron-sulphur cluster biogenesis, protein synthesis and mtDNA-encoded
protein transport, whilst the IBM is rich in proteins responsible for mitochondrial fusion
and nDNA-encoded protein transport (Vogel et al., 2006). The invaginations of the CM
create a huge surface area over which OXPHOS can be conducted.

The mitochondrial matrix contains multiple mtDNA molecules, transcriptional and
translational machinery, the various proteins responsible for the tricarboxylic acid

(TCA) cycle, and is the site of Fe-S cluster formation.

1.1.3. Oxidative phosphorylation
Mitochondria are often referred to as the powerhouses of the cell, on account of their

major role in the production of cellular ATP. OXPHOS is a highly efficient process for
the production of ATP that utilises several intermediate products of the TCA cycle (also
known as Kreb’s cycle or the citric acid cycle) (Hatefi, 1985).

Cellular respiration begins with glycolysis in the cytosol, where glucose is broken down

into pyruvate, producing two molecules of ATP (Equation 1.1).

Glucose + 2NAD* + 2ADP + 2P; - 2Pyruvate + 2NADH + 2H* + 2ATP + 2H,0

Equation 1.1. Glycolysis.

The pyruvate is transported across the double mitochondrial membrane into the matrix,

where the enzyme pyruvate dehydrogenase converts it into acetyl CoA (Equation 1.2).

Pyruvate + CoA + NAD* — Acetyl CoA + NADH + H* + CO,

Equation 1.2. Pyruvarte decarboxylation.

Acetyl CoA is one of the major substrates of the TCA cycle, along with NAD+ and
FADH, and provides the carbon atoms within the acetyl group to be oxidised whilst the

other two substrates are reduced, becoming electron carriers. The overall TCA cycle is
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shown in Equation 1.3,
Acetyl CoA + 3NAD* + FAD + ADP + P; + 2H,0
— CoA + 3NADH + 2H* + FADH, + ATP + CO,

Equation 1.3 Outcome of the TCA cycle.

NADH and FADH, are essential components of the final stages of respiration,
OXPHQS, in that they act as electron carriers, donating electrons to complex | and Il
respectively. These complexes in turn transfer electrons to complexes Il and 1V,
releasing energy which is used to pump H* into the intermembrane space from the
matrix. This creates an electro-chemical gradient which is then used by complex V
(ATP synthase) to generate ATP from ADP.

Inter-membrane space

2Cyt ¢ (OX)
‘IH+ 2H*
2Cyt ¢ (RED)

3H*

nDNA/mtDNA 39/7 4/0 10/1 10/3 14/2
subunit ratio . . .

o Mitochondrial matrix
Figure 1.1 Oxidative phosphorylation.

The protein complexes are embedded in the cristae membrane of the inner mitochondrial membrane.
Electrons (in red) enter the electron transport chain (ETC) via complexes | and Il and are transported to
complex Il via reduction of ubiquinone (Q), which is soluble in the membrane. Complex I11 re-oxidises
the ubiquinol (QH,) back to ubiquinone, and the electrons pass via cytochrome ¢ (C) in a further redox
reaction to complex IV. During this process complexes I, I11, and IV pump electrons from the matrix to
the inter-membrane space, creating an electro-chemical gradient, which drives the ATP synthase
(Complex V) to produce ATP. Below each subunit the ratio of nuclear encoded to mitochondrially
encoded subunits is shown. Complex Il is the only complex that is entirely encoded by nuclear DNA.

Image (adapted) courtesy of Eve Simcox.
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1.1.3.1. Complex 1

Complex I (NADH dehydrogenase (ubiquionone)) couples transfer of two electrons
from NADH to ubiquinone with translocation of four protons across the inner
membrane. It is the largest complex of the OXPHOS system, made up of 46 subunits of
which 7 are mtDNA encoded (Ugalde et al., 2004). The overall reaction is shown below
(Equation 1.4).

NADH + Q + 5H;} ;ix = NADY + QH, + 4H}, .

Equation 1.4 Complex I reaction.

Complex | dysfunction is the most frequently observed OXPHOS defect in humans,
caused by mutations of both nuclear and mitochondrial origin, and related both to
mutations in the structure itself and the assembly of the complex (Mimaki et al., 2012).
Leber’s hereditary optic neuropathy (LHON), for example, is a disease generally caused
by mutations in genes encoding complex | subunits (Wallace et al., 1988).

1.1.3.2. Complex Il

Complex Il, also known as succinate dehydrogenase (SDH) or succinate ubiquionone
oxioreductase, is the only complex of the OXPHOS system that is entirely nuclear
encoded, and is also the smallest, comprising four subunits. It does not translocate
protons as the other four complexes do, however it plays the crucial role of catalysing
the conversion of succinate to fumarate whilst generating FADH,, which is then
oxidised to FAD and the electrons used to reduce ubiquinone to ubiquinol (Hagerhall,

1997). The overall reaction is shown in Equation 1.5.

succinate + Q - fumarate + QH,

Equation 1.5 Complex Il reaction.

Complex Il mutations are associated with tumorigenic phenotypes, thought to be
through caused by excessive generation of reactive oxygen species (ROS) or
stabilization of hypoxia inducible factor 1 (HIF1) during normoxia (Hoekstra and
Bayley, 2013).

1.1.3.3. Complex 11l

Complex I11, or ubiquinol:cytochrome ¢ oxioreductase comprises 11 subunits, only one

of which is mitochondrially encoded, by the MT-CYB gene (cytochrome b). The
4
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complex transfers two electrons to cytochrome ¢ from ubiquinol, and also pumps two

protons into the inter membrane space. The reaction is shown in Equation 1.6.
ZQHZ + Q + 2Cytcoxidised + ZH;Latrix - ZQ + QHZ + ZCthreduced + 4'Hi-ir-ns

Equation 1.6 Complex I11 reaction, the Q cycle.

Complex 111 abnormalities are rare in humans (Benit et al., 2009). The phenotype of
Complex Il abnormalities are similar to other OXPHOS defects, in particular LHON is

also associated with Complex 111 mutation (Brown et al., 1992).

1.1.3.4. Cytochrome ¢

Cytochrome c is a highly conserved nuclear encoded haem-containing protein found in
the inter membrane space, and has a critical role in the ETC, apoptosis, and also acts as
a ROS scavenger (Huttemann et al., 2011). In OXPHOS it carries a single electron from

complex Il to IV.

1.1.35. Complex IV

Complex IV, or cytochrome c oxidase (COX) is the terminal complex of the ETC, and
comprises 13 subunits, three of which are mitochondrially encoded. It reduces O, to
H,O using electrons provided by cytochrome c, and transfers 4 protons per oxidised
molecule from the matrix to the inter membrane space, as shown in Equation 1.7. Four
electrons are required for the reduction of one molecule of O, to H,0, and this step is

thought to be rate-limiting in the mammalian ETC (Huttemann et al., 2011).

4Cytcreduced + 8H;Latrix + 02 - 4C.’ytcoxidised + 2H20 + 4‘I_Ii-'r-ns

Equation 1.7 Complex IV reaction.

1.1.3.6. Complex V

Complex V, the FoF; ATP synthase, is the final step of OXPHOS, which catalyses the
conversion of ADP to ATP. The complex is made up of two domains, Fo located in the
membrane, and F; which extends into the matrix. Each unit comprises multiple copies
of several subunits, the majority of which (14) are nDNA encoded, with two
mitochondrially encoded subunits, both in the Fo domain. Proton movement through the
Fo domain generates rotary torque, which powers the formation of ATP from ADP and

phosphate. Each molecule of ATP costs 2.7 protons in production (Ferguson, 2010).
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Mutations in Complex V often lead to very severe disease, characterised by lesions in
the brain and particularly the striatum, including NARP (neurogenic muscle weakness,
ataxia, and retinitis pigmentosa) and Leigh Syndrome, a severe infantile neurological
disorder resulting in infant death, commonly through respiratory failure (Schon et al.,
2001).

1.1.3.7. Supercomplexes

It has been shown that the ETC complexes tend to group together into conglomerates
called supercomplexes; for instance, almost all mammalian Complex 1 is found
aggregated with Complexes 11l and IV (Schagger and Pfeiffer, 2000). It is thought that
Complexes Ill and IV are assembled independently, but that Complex | assembly is
multi-stage and the final stage, the addition of the NADH dehydrogenase catalytic
module, occurs after supercomplex formation (Moreno-Lastres et al., 2012; Winge,
2012). From the perspective of disease and pathology this is of fundamental importance,
as inter-dependence of the complexes is potentially explanatory of genetic defects in
one complex affecting functional operation or assembly of other complexes, particularly

as regards Complex 111 or 1V defects affecting Complex | assembly.

1.1.4. Other functions of mitochondria
1.14.1. Iron homeostasis and iron-sulphur (Fe-S) cluster biogenesis

The production of Fe-S clusters is the sole conserved function of both mitochondria and
primitive mitochondria (mitosomes) across all eukaryotes, underlying the importance of
this process. Fe-S clusters are essential in OXPHOS as they facilitate the electron
transfer by repeated redox changes from Fe?* to Fe®*, and form part of complexes 1, 11,
and 111 (Schultz and Chan, 2001).

Iron within mitochondria is used for haem or Fe-S cluster synthesis or stored in
mitochondrial ferritin. Import of iron into mitochondria through the inner membrane is
regulated by mitoferrins (Paradkar et al., 2009), though the transport mechanism from
the cytosolic iron pool and across the outer mitochondrial membrane remains to be
elucidated (Richardson et al., 2010).
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1.1.4.2. Ca?* signalling and homeostasis

Mitochondria have long been recognised for their role in cytosolic Ca®" buffering
(Carafoli, 2003) and by extension extracellular Ca** regulation (Cohen and Fields,
2004), and are able to absorb up to 1000nmol Ca** per mg of mitochondrial protein,
imported via the outer membrane VDAC pore and the calcium uniporter located in the
inner mitochondrial membrane (Kirichok et al., 2004). The importance of this role
cannot be understated; Ca®" signalling is an essential regulator of cellular function
(Clapham, 2007) and has a fundamental role in intercellular communication (Hofer et
al., 2000), induction of apoptosis (Orrenius et al., 2003), regulation of ATP production
(Griffiths and Rutter, 2009), and regulation of pre-synaptic transmission in neurons
(Kostyuk, 2007).

1.14.3. Apoptosis

Programmed cell death, or apoptosis, is a vital function of an organism to eliminate
unwanted or damaged cells, and is vital for proper embryonic development (Danial and
Korsmeyer, 2004). It is inducible by both an extrinsic cell receptor mediated pathway,
and an intrinsic cell damage mediated pathway, contingent upon the release of
cytochrome ¢ from the mitochondria and subsequent activation of caspase-9 (Wang and
Youle, 2009).

1.1.4.4. Reactive oxygen species

Though mitochondrially produced reactive oxygen species (ROS) were historically
thought to lack a physiological role and were only associated with cell damage, there is
growing evidence that ROS have a critical physiological role. It is hypothesised that
ROS levels at a basal level maintains homeostatic function in the cell, but fluctuations
in ROS alter signalling pathways; ROS is known to have roles in cell differentiation,
autophagy, immune cell activity, and metabolic adaptation (Sena and Chandel, 2012).
ROS have been shown to induce reversible posttranslational modifications of several

proteins within important signalling cascades (Finkel, 1998; Rhee et al., 2000).

Complex I and 111 are both major sources of ROS (Turrens and Boveris, 1980; Sugioka
et al., 1988), though Complex I is thought to be more a more proliferative producer of
superoxide Oy, predominantly when ATP is not being produced and there is a high
proton motive force (the sum of the membrane potential and pH gradient), or there is a
high NADH/NAD® ratio in the matrix (Murphy, 2009). However, Complex 111 produces

O, on both sides of the inner membrane, but Complex | produces it only matrix-side.
7
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Overall, though mitochondria are a significant source of cellular ROS, it is not by any
means certain that they are the major source of ROS within cells, as the endoplasmic

reticulum and peroxisomes are also known sources (Brown and Borutaite, 2012).

1.1.5. Biogenesis regulation
Mitochondrial biogenesis is tightly regulated by cells in order to tailor ATP production

to suit cellular energy requirements. The peroxisome proliferator-activated receptor y
(PPARY) co-activator la (PGC-la) is the primary controller of mitochondrial
biogenesis, and has a critical role in signalling cascades involving AMP activated
protein kinase (AMPK) and the Sirtuin class of proteins that sense energy imbalances in
cells and regulate mitochondrial biogenesis accordingly (Hardie et al., 2012; Andreux et
al., 2013).

1.1.6. Dynamics
Though traditionally thought of as discrete organelles, mitochondria in fact form a

dynamic network that undergoes constant fission and fusion (Westermann, 2010). The
importance of this dynamism is illustrated by the fact that mutations in several nDNA
encoded proteins with critical roles in fission and fusion are associated with disease,
including mitofusins 1 and 2 (MFN1 and MFN2), optic atrophy 1 (OPA1l), and
dynamin-1-like protein (DNML1L) (Liesa et al., 2009). OXPHOS generates an electro-
chemical gradient across the inner membrane of the mitochondria, which is maintained
at around -140mV (Gerencser et al., 2012), and a healthy membrane potential is a

requirement for fusion to occur (Legros et al., 2002; Meeusen et al., 2004).

As well as fission and fusion, mitochondria undergo autophagic degredation known as
mitophagy, which has been shown to selectively target impaired mitochondria (Kim et
al., 2007; Twig et al., 2008). This process is intimately related to human disease, for
example in the mutations of the PINK1 and PARK2 genes that are linked to inherited
early-onset Parkinson’s disease and which are involved in the mitophagic pathway

(Chen and Chan, 2009).

The umbrella term ‘mitochondrial dynamics’ also includes consideration of the
migration and movement of mitochondria within the cytoplasm to areas of high energy
need, for instance neuronal growth cones, and pre- and post- synaptic sites (Morris and
Hollenbeck, 1993; Li et al., 2004; Miller and Sheetz, 2004; Chang et al., 2006).
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1.1.7. The mitochondrial genome
The human mitochondrial genome (MtDNA) is a 16,569bp double-stranded circular

intron-less genome located in the mitochondrial matrix. It codes 37 genes; 13
hydrophobic proteins essential for OXPHOS, 22 tRNAs, and 2 rRNAs. The structure is
shown in Figure 1.2. The majority of the genes (all but one of the protein encoding

ﬂo“

e
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D-Loop :

Figure 1.2 The human mitochondrial genome.

The genome encodes 37 genes, including 13 polypeptides, 22 tRNAs, and 2 rRNAs. All but one of the
protein encoding genes are found on the outer heavy strand of the genome; 6 subunits of Complex I (MT-
ND1-5 and ND4L) , one Complex Il subunit (Cytochrome B), three subunits of Complex IV (COX1-3),
and two subunits of Complex V (ATPase 6 & 8). The final protein encoding gene is the ND6 subunit of
Complex | on the inner light strand. The tRNA genes are dispersed around both strands. The D-loop is
the only major non-coding region of the genome. The origins of heavy (Oy) and light (O,) strand origin

are also shown. Image (adapted) courtesy of Dr Casey Wilson.
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genes, 14 of the tRNAs, and both rRNAS) are transcribed from the outer (heavy) strand.
The other 8 tRNAs and the protein encoding gene MT-ND6 are transcribed from the
inner (light) strand. The only substantial non-coding region, the displacement-loop or d-
loop, contains the major control elements for transcription and replication, and extends

approximately 1kb in human mtDNA.

Multiple copies of the mtDNA molecule are found within an individual cell; in general
mammalian cells house tens to hundreds of mitochondria, and each mitochondrion
contains several copies of the mitochondrial genome (Wiesner et al., 1992), with an
estimated 5,000 to 10,000 copies of the genome per cell (Lightowlers et al., 1997).
mtDNA is packaged into discrete nucleoids composed of mtDNA with some of the
machinery necessary for replication and transcription of the DNA (Brown et al., 2011).
The number of DNA molecules per nucleoid is debated, but has recently been measured
as generally a single copy per nucleoid (Kukat et al., 2011). In this study mitochondrial
transcription factor A (TFAM) was reported as the bulk constituent of the nucleoid,
though other proteins are also present, including single-stranded DNA binding protein
(mtSSB).

1.1.8. Transcription and translation
There are three sites of transcription initiation within the D-loop, the L-strand promoter

(LSP) and the two H-strand promoters (HSP1 and 2); transcription generates long
polycistronic molecules, as depicted in Figure 1.3. The LSP generates a single transcript
containing the all the genes on the L-strand, as HSP2 does for the H-strand; HSP1, on
the other hand, generates a transcript containing only the two rRNA genes and two
tRNA genes (Montoya et al., 1982; Chang and Clayton, 1984; Zollo et al., 2012).
Transcription is bi-directional and conducted by the mitochondrial RNA polymerase
(POLMRT) in conjunction with other proteins including TFAM and mitochondrial
transcription factor B2 (Rebelo et al., 2011). Termination of transcription is
implemented by mitochondrial termination factors (MTERF), four of which have so far
been identified. The roles of these factors are still very much under debate however; it
has been recently shown, contrary to long standing belief, that MTERF1 does not
couple rRNA gene transcription initiation and termination but instead appears to block
transcription to avoid transcriptional interference at the L-strand promoter (Terzioglu et
al., 2013).
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o~ Ty Do

D-Loop

Figure 1.3 Mitochondrial DNA transcription.
The D-loop contains one promoter site for the light strand (LSP) and two for the heavy strand (HSP1 and 2). LSP and HSP2 generate polycistronic transcripts of all the genes on each

strand respectively, whereas HSP1 generates a shorter polycistronic transcript containing only the two rRNA genes and two tRNAs. Image courtesy of Dr Casey Wilson.
11
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Post-transcriptional processing of the polycistronic transcripts is proposed to occur by
the ‘tRNA punctuation’ model, whereby the cloverleaf-like folding of the tRNAs act as
a substrate for the RNA processing enzymes, (Ojala et al., 1981; Rorbach and Minczuk,
2012) though some questions remain unanswered by this, for instance the processing of
MRNAS not separated by tRNAs (Temperley et al., 2010b).

Translation of mitochondrial mMRNA occurs in three phases; initiation, elongation, and
termination, and occur in the mitochondrial matrix in mitoribosomes, which are
constructed of an estimated 80-100 nuclear encoded proteins and the two mitochondrial
rRNA species, one in each ribosome subunit (O'Brien, 2003; Smits et al., 2010).
Mitochondrial ribosomes differ from both bacterial and eukaryotic cytoplasmic
ribosomes in their high protein and low rRNA content. Mitochondrial mRNA
translation utilises and requires only 22 tRNAs, as compared to the 31 required for the
nuclear genome (Barrell et al., 1980); 8 of the tRNAs can recognise codons with any
base in the third position, and 14 of them discriminate between pyrimidine and purines
at the third position, thus recognising 60 codons in total; two of the remaining four
codons (UAA and UAG) are stop codons recognised by the mitochondrial translational
release factor 1a (mtRF1a), and the remaining two (AGA and AGG) are proposed to
cause a -1 frameshift which moves the ribosome to a recognised UAG stop codon

(Temperley et al., 2010a).

1.1.9. Replication
mtDNA is replicated independently of nDNA and replicates throughout the cell cycle

(Bogenhagen and Clayton, 1977), including post-mitotic cells such as skeletal muscle
and neurons (Reeve et al., 2009), though the turnover rate in such cells is thought to be
very slow compared to mitotically active cells (Wang et al., 1997). Replication and
transcription have been shown to be highly co-ordinated with the cell cycle, at least in
cells synchronised by serum depletion; mtDNA replication peaks towards the end of the
G; phase preceding nDNA replication in the S phase, and has a second peak towards the
end of the S phase after nDNA replication preceding mitosis (Chatre and Ricchetti,
2013) The replication process is reported to take 60 (Clayton, 1982) to 75 (Korr et al.,
1998) minutes. Mitochondria are entirely dependent on nuclear encoded proteins for
DNA replication and maintenance machinery (Shadel, 2008).

There are several major competing theories regarding the process of mtDNA

replication. The first and more entrenched theory is known as the ‘asynchronous’ or

12
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‘strand displacement’ model (Clayton, 1982), which suggests that replication initiates at
the origin of heavy strand replication (Oy) and two-thirds of the H-strand is replicated
before Op (the L-strand origin of replication) is exposed and light strand replication
initiates. Once the strands are completed they are circularised, superhelical turns are
introduced, and finally the D-loop is replicated. More recently, a second method known
as the ‘synchronous’ model has been proposed (Holt et al., 2000), based on evidence of
replication intermediates that are resistant to single-strand nucleases. This model was
refined based on further experiments that demonstrated replication occurs bi-
directionally, initiates from a broad range of the genome incorporating MT-ND5, MT-
ND6 and MT-CYB and terminates at rather than initiates from Oy (Bowmaker et al.,
2003). A third mechanism, was proposed that is similar to the asynchronous model but
involves simultaneous binding of RNA to the lagging strand (the as yet unreplicated L-
strand) as the H-strand is replicated, which is then subsequently converted to DNA; this
method is known as RITOLS (ribonucleotide incorporation throughout the lagging
strand), and was evidenced by the activity of RNase H on replication intermediates,

since this enzyme acts only on RNA hybridised to DNA (Yasukawa et al., 2006).

The currently known essential machinery for mtDNA replication are the mitochondrial
DNA polymerase gamma (POLG) comprising a catalytic unit POLG and accessory
subunit POLG2, the mitochondrial helicase TWINKLE, the mitochondrial single-
stranded DNA binding protein (mtSSB) and the mitochondrial RNA polymerase
(POLRMT) (McKinney and Oliveira, 2013).

1.2.  Mitochondrial genetics

1.2.1. Heteroplasmy
As cells contain multiple copies of the mitochondrial genome, it is possible for cells to

harbour mtDNA with different polymorphic or pathogenic variations. This mixture of
different mitochondrial genomes is termed heteroplasmy. The co-existence of wild-type
and mutant mtDNA species within individual cells is a fundamental aspect of

mitochondrial genetics and the phenotypic expression of mutation.

Quantitatively, the word heteroplasmy is generally used to refer to the proportion of
pathogenic mutant mtDNA molecules within a cell or tissue, expressed as a percentage.
The proportion of wild-type is therefore 100% minus the heteroplasmy level in the case

of a single pathogenic variant.
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1.2.2. Clonal expansion
Clonal expansion refers to the process of a mutated mtDNA molecule expanding in

population within a cell, increasing the level of heteroplasmy. Thus a single mutated
mtDNA molecule may expand in influence until a cell or tissue (generated through

mitosis) contains a majority of the mutated molecule or even become homoplasmic.

The mathematics and biology underlying clonal expansion are not well understood. It
was initially thought that a mutation such as a deletion would lead to a smaller mtDNA
molecule that would replicate faster and therefore tend to accumulate (Wallace, 1992);
though one group does find evidence to support this (Diaz et al., 2002; Fukui and
Moraes, 2009), this is in non-physiological conditions, and other work in trans-
mitochondrial cell lines it has been shown not to be the case (Tang et al., 2000). It is
argued that the time between replications is far greater than the replication time (the
half-life of mtDNA is between 8 and 23 days whereas the time for replication is little
over an hour (Korr et al., 1998)) and thus faster replication would confer no advantage.
However, it has also been shown that most mtDNA replication occurs in peri-nuclear
mitochondria (Davis and Clayton, 1996) which could mean only a small population of
cellular mtDNA undergo replication at a more rapid rate to maintain the overall
population; yet this finding is also contradicted by a more recent study that

demonstrated replication throughout the cytoplasm (Magnusson et al., 2003).

Other theories that also explain expansion for non-deletion mutations proposed that
mitochondria with mutations would proliferate in order to overcome respiratory chain
deficiencies, causing clonal expansion (Yoneda et al., 1992), or that mutated mtDNA
leads to slower OXPHOS and less ROS than wild-type mitochondria which are
degraded at a higher rate as a result (de Grey, 1997). It has also been shown, however,
that even without a selective advantage random intracellular drift leads can lead to

mutations expanding to high levels (Elson et al., 2001).

Clonal expansion has been shown to occur with ageing in many tissues, though there are
tissue specific differences in the mutations that accumulate, for instance point mutations
but not deletions in the colon (Taylor et al., 2003), whereas deletions are frequently
found in muscle (Fayet et al., 2002; Yu-Wai-Man et al., 2010a) and the brain
(Kraytsberg et al., 2006). Though the reasons for this tissue specificity are unproven, it

is postulated that mitotic tissues may exert negative selective pressure on deletions.
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1.2.3. Threshold effect
Pathogenic mutations at a low level of heteroplasmy are thought not to exhibit an

observable phenotype; OXPHOS impairment and other primary or secondary
phenotypic effects are observed only when heteroplasmy reaches a critical threshold
(Rossignol et al., 2003). This has been documented in several tissues, for instance
muscle fibres from MERRF (myoclonic epilepsy with ragged red fibres ) and MELAS
(mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) patients,
where a cellular threshold level of around 80% (Taylor and Turnbull, 2005) or 90%
(Shoffner et al., 1990) have been reported, though it a threshold for a severe defect has
also been reported at around 60% (Miyabayashi et al., 1992). Large-scale single
deletions are generally thought to have a lower threshold at around 60% (Hayashi et al.,
1991; Rossignol et al., 2003). Measurements and estimates vary, but it is thought that
the threshold is likely to vary according to tissue type, dependent on the level of energy
requirement or tissue specific nuclear gene expression; it has been recently shown that
for mtDNA deletions the extra-ocular muscles have a significantly lower threshold for
expression of an OXPHOS defect than skeletal muscle (Greaves et al., 2010), though no

difference in threshold for point mutations.

This issue will be discussed in greater detail with regard to m.3243A>G in Chapter 4

and single-large scale mtDNA deletions in Chapter 5.

1.2.4. Segregation
As a result of continuous replication, segregation of mtDNA mutations is possible in

both mitotic and post-mitotic tissues. Random segregation was proposed to explain the
observed tissue specific segregation in many mutations (Macmillan et al., 1993), though
there is evidence that segregation is not random (Raap et al., 2012), and specific tissues
demonstrate consistent alteration from the average heteroplasmy level of an individual,
for instance in m.3243A>G mutation tends to be highest in muscle and urine and lower
in buccal mucosa, hair, and blood (Chinnery et al., 1999). Specific nuclear encoded
mitochondrial proteins that affect this segregation are beginning to be identified, for
example the GIMAP3, an outer mitochondrial membrane GTPase (Jokinen et al., 2010).
This issue will be considered in more depth in Chapter 4 in relation to the m.3243A>G
mutation, particularly with regard to the dynamic change of heteroplasmy through the

life of patients in different tissues.
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1.2.5. Inheritance
Inheritance of mMtDNA is thought to be strictly maternal, though there is one

documented case of an inherited paternal mtDNA deletion (Schwartz and Vissing,
2002). Destruction of sperm mitochondria is thought to occur post-fertilisation by
proteasomal degradation (Sutovsky et al., 2000) though autophagy has also been
demonstrated (Al Rawi et al., 2011), and more recently pre-fertilisation degradation has

been proposed (Luo et al., 2013).

The mtDNA in oocytes arise from primordial germ cells, which have been shown to
have a very low number of mtDNA molecules, around 200 (Jenuth et al., 1996; Cree et
al., 2008) . This is thought to cause what is termed a ‘genetic bottleneck’; the restriction
and then re-amplification of mtDNA leads to random shifts of heteroplasmy from one
generation to the next, observable in the variability of heteroplasmy in the children of
mothers with pathogenic mtDNA mutations (Taylor and Turnbull, 2005).

1.3.  Mitochondrial disease

1.3.1. mtDNA mutations
mtDNA mutations are prevalent, causing disease in at least 1 in 5000 people and

estimated to be present asymptomatically in at least 1 in 200 live births, whilst de novo
mutations are thought to occur in at least 1 in 1000 live births (Elliott et al., 2008).
Current treatment options are limited (Pfeffer et al., 2012) and clinical care is generally

focussed on management of complications (Horvath et al., 2008).

The mitochondrial genome is thought to be significantly more vulnerable to mutation
than the nuclear genome for a number of reasons, including the proximity to ROS
produced from the ETC, the lack of protective histones for the DNA, and fewer repair
mechanisms than for nuclear DNA. It is estimated that the mutation rate of mtDNA is
ten times that of nuclear DNA (Brown et al., 1979).

Recent research into mtDNA mutation have shown that levels of mutation are often
surprisingly low even in aged individuals, indicating that repair or degradation
mechanisms of damaged mtDNA are more robust than previously thought (Shokolenko
et al., 2009). These mechanisms are entirely nuclear in origin, and include base excision
repair, single-strand break repair, and mismatch repair (Kazak et al., 2012), and there is
also evidence of homologous recombination after double-strand breaks (Bacman et al.,
2009; Fukui and Moraes, 2009) (though the possibility of mtDNA recombination is

hotly disputed (Stewart et al.,, 2008a)). In spite of this, however, the human
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mitochondrial genome still has a high mutation rate, and deleterious mutations
associated with disease are the focus of this particular work. Other mutations, such as
somatic mutations accumulated through life and associated with ageing, or those
encountered as ancient regional variations in the human population, are also frequent

and important areas of research (Wallace, 2010).

1.3.1.1. mtDNA point mutations

Point mutations are single base pair substitutions in mtDNA, and were first identified as
a cause of clinical disease in 1988 when Wallace et al. associated a mtDNA point
mutation with Leber’s hereditary optic neuropathy (LHON) (Wallace et al., 1988). The
m.3243A>G related to MELAS was identified shortly afterwards (Goto et al., 1990b;
Kobayashi et al., 1990), along with the m.8344A>G mutation associated with MERRF.
Epidemiological studies have estimated the minimum prevalence of the most common
point mutation, m.3243A>G, to be 3.65/100,000 (Schaefer et al., 2008) or 16.3
(Majamaa et al., 1998), though the first of these studies was based on attendance at
mitochondrial clinic and likely to be a significant underestimate, and the second based
on identification of patients with moderate to severe neurological symptoms. The most
recent studies in large groups not a priori identified by symptoms reported prevalence
of 236/100,000 (Manwaring et al., 2007) and 140/100,000 (Elliott et al., 2008),
considerably higher than previous estimates.

Mutations in protein coding genes may be synonymous (resulting in an unchanged
amino acid coding) or non-synonymous. However, the majority of point mutations are
identified in tRNA genes, and most inherited mutations are tRNA mutations. Studies on
inheritance of MtDNA mutations in mice using POLG mutator mice (which cause
frequent sporadic mutations) followed by backcrossing to wild-type males to remove
the POLG mutation whilst leaving the existing mtDNA mutations demonstrated that
most non-synonymous changes in protein coding genes were lost within two
generations, suggesting strong selection against deleterious mutations (Stewart et al.,
2008Db). Other studies have also demonstrated similar findings (Fan et al., 2008). Elson
et al. speculated that the most pathogenic mutations (with the most pronounced
biochemical defect) would be sporadic rather than inherited, and found that though the
mutation threshold for respiratory chain deficiency in muscle was not associated with
inheritance, there was a clear difference in blood, where sporadic mutations were

generally undetectable (Elson et al., 2009).
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The most common point mutation is the m.3243A>G mutation; however this mutation
is the focus of Chapter 4 and will not be discussed further in this introduction. However,
several other mutations will be discussed briefly. Figure 1.4 depicts the position of
several known mutations on the mitochondrial genome. Though rare, multiple

pathogenic point mutations in patients have been reported (Nakamura et al., 2010).

The m.8344A>G mutation in tRNA™® is most commonly associated with MERRF
syndrome (myoclonic epilepsy with ragged red fibres) and was first identified in 1990
in association with this syndrome (Shoffner et al., 1990; Yoneda et al., 1990). The
mutation was demonstrated to cause a severe reduction in protein synthesis (Chomyn et
al., 1991; Yoneda et al., 1994).The mutation is in the T¥C loop of the tRNA, and has
been shown to cause a loss of the usual taurine modification of the uridine wobble-
position anticodon; this is thought to weaken the codon-anticodon binding and thereby
impede protein translation, as it has been shown to lead to the tRNA being unable to
translate it’s cognate codon and leads to ribosomal stalling (Yasukawa et al., 2000g;
Yasukawa et al., 2001). It does not appear to cause mistranslation of non-cognate
codons. MERREF is a multi-systemic disorder, characterised by myoclonus, but patients
demonstrate a wide range of neurological defects such as ataxia, generalised epilepsy,
weakness, and dementia. 80% of patients with MERR F syndrome carry the
m.8344A>G mutation. It has recently been suggested that the m.8344A>G mutation is
more aptly named myoclonic ataxia than myoclonic epilepsy as this seems to be the

more common phenotypic presentation (Mancuso et al., 2013a).

Though tRNA mutations are more commonly observed, there are some relatively
common mutations in protein encoding genes, for instance in the ATPase subunit 6
gene (MT-ATP6). Mutations in this gene include the m.8993T>G mutation usually
associated with NARP (neuropathy, ataxia, and retinitis pigmentosa) (Schon et al.,
2001), though it has also been associated with Leigh’s syndrome, a devastating infant
onset progressive neurological disorder resulting in childhood mortality, with necrotic
lesions of the brain stem, basal ganglia and thalamus observed post mortem (Leigh and
Thompson, 1951). Other mutations in this gene associated with Leigh’s syndrome are
m.9176T>G (Carrozzo et al., 2001) and m.9176T>C (Thyagarajan et al., 1995).

Most (> 95%) of mutations that lead to Leber’s hereditary optic neuropathy (LHON)
occur in Complex | subunit genes, for instance MT-ND1 (m.3460G>A), MT-ND4
(m.11778G>A) and MT-ND6 (m.14484T>C), which all cause loss of retinal ganglion
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Figure 1.4 Point mutations associated with disease.
Point mutations and the associated disease phenotypes are shown, connected by an arrow to their associated gene. Abbreviations: LHON — Leber’s hereditary optic neuropathy. LS -
Leigh syndrome. MELAS - mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. MERRF — myoclonic epilepsy and ragged red fibres. MIDD — maternally

inherited diabetes and deafness. MILS — maternally inherited Leigh syndrome. NARP — neurogenic muscle weakness, ataxia, retinitis pigmentosa. PS — Pearson’s syndrome.
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cells in the optic nerve, leading to sudden acute or sub-acute visual loss (Chinnery et al.,
2000b).

1.3.1.2. MtDNA rearrangements

There are two major forms of mtDNA rearrangement that have been considered in a
disease context, mtDNA deletions (molecules with missing sections of genetic

material), and duplications (molecules with extra repeated genetic information).

1.3.2. Single large-scale mtDNA deletions
Single-large scale mtDNA deletions are a common cause of mitochondrial disease, and

are generally found at heteroplasmic levels in multiple tissues of an affected individual.
Such deletions are found throughout the mitochondrial genome though predominantly
within the major arc (between the two origins of replication, as shown in Figure 1.2).
Deletions vary in size, but the most frequently reported is the so called ‘common
deletion’ of 4,977bp extending from base 8,470 in MT-ATP8 to base 13,477 in MT-
ND5, flanked by a 13bp direct repeat (Zeviani et al., 1988).

It was long thought that deletions were most likely to occur through errors in mtDNA
replication (Shoffner et al., 1989), though the proposed mechanism requires unprotected
single-stranded DNA and, as discussed in section 1.1.9, this is not thought to occur.
Additionally, mitotic tissues, where mtDNA replication proceeds at a faster rate than
post-mitotic, should be expected to demonstrate faster accumulation of deleted species,
however deletions are rarely found in mitotic tissue such as the colon (Taylor et al.,
2003) but are much more commonly found in post-mitotic tissue such as muscle and the
brain, and have been shown to accumulate with age (Cortopassi et al., 1992; Melov et
al., 1995; Kraytsberg et al., 2006). More recently a mechanism based on errors during
repair of double-stranded breaks has been proposed, caused by direct homologous
repeats on either side of the break, which is consistent with the pattern of deletions
found in tissues and ageing (Krishnan et al., 2008) and also with the flanking of most
deletions by direct repeats (Samuels et al., 2004).

Though common, deletions are generally thought not to be inherited through the
germline, though there is an isolated report (Shanske et al., 2002).

Disease associated with single large-scale mtDNA deletions are discussed in depth in
Chapter 5.
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1.3.3. Multiple deletions
Multiple mtDNA deletions are also found, as a secondary effect of nDNA mutation, and

are discussed in section 1.3.5.

1.3.4. Duplications and dimers
A second major class of rearrangement are mtDNA duplications, which have been

associated with disease in patients with myopathy and multisystemic features (Poulton
et al., 1989; Rotig et al., 1992; Poulton and Holt, 1994; Martin Negrier et al., 1998).
However, it has been shown that the disease state of an individual is generally governed
by the presence of mtDNA species with deletions and that duplications are most likely
to not exhibit pathological effects (Manfredi et al., 1997). Duplication dimers,
consisting of repeated deleted mtDNA species, are also reported (Brockington et al.,
1995; Jacobs et al., 2004), though the pathogenicity of these are thought to be the same

as duplication monomers.

1.3.5. Nuclear DNA mutations
Of the estimated 1500 proteins that functionally make up the mitochondrion, the

mitochondrion itself encodes merely thirteen; the nuclear genome encodes the
remainder (Zhu et al., 2009). Mutations in these genes are responsible for a great
number of disease phenotypes. There are over 80 genes in the OXPHOS complexes
alone, and many others with a critical role in assembly, catalytic regulation, stability,
and maintenance of the complexes and supercomplexes (Vartak et al., 2013) with novel

contributors being recognised at a progressive pace (Ikeda et al., 2013).

The nuclear encoded mitochondrial replication enzymes are a critical breakpoint in
mitochondrial function. Mutations in the POLG and PEO1 genes encoding the POLG
cayaltyic subunit and TWINKLE helicase respectively are associated with a spectrum of
disease caused by transcriptional defects including multiple deletions and point
mutations that are found in affected tissues, which commonly present as chronic
progressive external ophthalmoplegia (CPEQO) (Hudson and Chinnery, 2006; Fratter et
al., 2010; Wallace, 2010). Pathogenically low levels of mtDNA are observed in patients
with POLG mutations that lead to Alpers-Huttenlocher syndrome (Davidzon et al.,
2005) or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by
mutation in the TYMP gene for thymidine phosphorylase (Nishino et al., 2001). This is
known as mtDNA depletion. TWINKLE mutations are also associated with mtDNA
depletion (Sarzi et al., 2007), though they are more commonly associated with the
CPEO phenotype.
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Mutations in genes related to mitochondrial dynamics are also a known cause of
disease, for instance OPAL which encodes a protein with a critical role in mitochondrial
fusion is named from its association with autosomal dominant optic atrophy (Delettre et
al., 2000).

This is a very brief overview of just a small number of known nDNA encoded
mitochondrial proteins that have known associations with disease; though this thesis is
focussed on mtDNA mutation, it is important to acknowledge that the nuclear genome

is a deeper and broader source of mitochondrial disease.

1.3.6. Phenotype and progression of mtDNA disease
The phenotypic presentation of mtDNA disease is highly variable; part of this

variability has long been attributed heteroplasmy (Ciafaloni et al., 1991), though
specific mtDNA mutations are also associated with certain characteristic clinical
phenotypes, such as the m.3243A>G mutation with MELAS or MIDD (maternally
inherited diabetes and deafness), m.8344A>G with MERRF, and single large-scale
deletions with CPEO, Kearns-Sayre syndrome (KSS) and Pearson’s syndrome (PS).
However, the links between genotype and phenotype are not exclusive and frequently
overlap; MELAS is associated with a host of other mutations, as indeed are MERRF,
MIDD, and CPEO, which in particular is associated with a variety of mutations, both

deletions, point, mutations, and nuclear defects.

The variety of clinical symptoms reported in mitochondrial disease is vast; myopathy
and cardiomyopathy are common, as are neurological features such as cerebellar ataxia
and epilepsy, but there are few if any organs or systems that are not reported as affected
by mtDNA disease in some form. This heterogeneity is a problem for clinical diagnosis
(McFarland and Turnbull, 2009).

Though universally recognised as clinically progressive (Zwirner and Wilichowski,
2001; Arpa et al., 2003; Taylor and Turnbull, 2005; Majamaa-Voltti et al., 2006;
Whittaker et al., 2007; Horvath et al., 2008; Coku et al., 2010; Chen et al., 2012),
disease progression in patients with mtDNA mutation is little understood, both in terms
of the likelihood of development of specific system involvement, or the rate of
progression of the burden of disease on patients.

Discussion of the phenotypic presentation of the mutations studied in this thesis will be

considered in detail in chapters devoted to each mutation.
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1.4. Data sources

1.4.1. The MRC Mitochondrial Diseases Patient Cohort Study UK
The Mitochondrial Diseases Patient Cohort Study UK is a large cohort of living patients

with genetically and/or biochemically confirmed mitochondrial disease. It is the largest
such cohort globally, and is funded by the Medical Research Council (MRC) Centre for
Translational Research in Neuromuscular Diseases. Symptomatic adults and children
comprise the majority of the cohort, but there are additional asymptomatic individuals
who have requested genotyping (usually due to a family history) and have proved
positive. All individuals are phenotypically characterised in out-patient clinics, on the

basis of examination, clinical history, and detailed investigation.
This patient cohort forms the basis of the studies conducted for this thesis.

1.4.2. The NHS Specialised Services for Rare Mitochondrial Diseases
The NHS Specialised Services for Rare Mitochondrial Diseases is situated in Newcastle

upon Tyne. A large part of the diagnostic tissue, samples, and genetic information used

in this work have been provided by the service.

15.  The NMDAS

The Newcastle Mitochondrial Disease Adult Scale (NMDAS) was published in 2006 as
a semi-quantitative rating scale to monitor mitochondrial disease (Schaefer et al., 2006).
It is a clinically validated tool, that has been extensively used both at our centre
(Apabhai et al., 2011; Bates et al., 2012b; Lax et al., 2012) and other specialist
mitochondrial centres (de Laat et al., 2012; Enns et al., 2012; Orsucci et al., 2012;
Yatsuga et al., 2012; Kornblum et al., 2013; Mancuso et al., 2013b). The NMDAS
permits quantitative analysis of both general and system-specific disease progression
and has already been used in assessment of clinical progression in patients with the
m.3243A>G mtDNA mutation, although this was not a longitudinal study (Whittaker et
al., 2009). The Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) is a
similar scale used to monitor paediatric mitochondrial disease patients (Phoenix et al.,
2006).

Development of the NMDAS was prompted by success of other similar assessments for
other mainly neurological conditions, such as those developed for Parkinson’s Disease
(Ebersbach et al., 2006). It was developed to meet several key objectives; (1) to reflect
the multi-dimensional nature of mitochondrial disease, (2) to monitor both the progress

of the underlying dysfunction and the functional impact of the dysfunction (3) to allow
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input from multiple sources, including the patient, carer, clinician, and clinical records
(4) to be concise and straightforward to complete. To achieve this aim, the test
comprises 4 sections, or domains; I, which assesses current function; Il, which measures
system specific involvement; Ill, which is a current clinical assessment; and 1V, a

quality of life survey.

Sections | to 111 are made up of several questions, each scoring from 0 (no involvement)
to 5 (severe involvement). Section | comprises 10 questions assessing current function,
and is in the main concerned with the impact of disease on the daily life and functions
of the patient. Section Il comprises 9 questions assessing system specific involvement,
including neurological, respiratory and the cardiovascular system. Section 111 comprises
10 questions to summarise a general and neurological clinical examination, including
three cognition tests to generate a combined cognition score. The final section of the
assessment comprises the SF-12v2 quality of life survey (Ware et al., 1996). The
NMDAS questionnaire can be found in Appendix I.

1.6. Aims

From a clinical care perspective, it is vital to improve understanding of the progression
of disease in patients with mtDNA disorders, in order that management of the disease
can be tailored to patient needs, and care and monitoring be pre-emptive rather than
reactive. Thus the overarching aim of this study is to improve understanding of the

clinical progression of disease associated with mtDNA mutations.

To achieve this aim, | chose to study the mutations that are most prevalent in the cohort
of adult patients regularly monitored in the Newcastle National Commissioning Group
(NCG) Mitochondrial Disease Service. These are the patients carrying the m.3243A>G

mutation and the patients with single large-scale mtDNA deletions.

There were two main focal points in the study of each patient group. The first was to
improve understanding of the progression of total disease burden of patients, as
measured by the score achieved on the NMDAS assessment. The second was to
improve understanding of the development and progression of individual phenotypic
features associated with each of these mutations, using the individual features examined
in the NMDAS assessment. For both of these foci | aimed to investigate not only the
predicted progression over time, using age as a predictor of disease burden, but also

genetic factors which influenced the progression of disease in patients.
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Chapter 2.  Statistical methodology

2.1.  Introduction

The use of statistics in medical and biomedical fields is widely accepted as a powerful
and necessary tool in the scientific research process. Statistical methods have been
derived specifically to address the needs of researchers (Altman, 1981; Altman, 1982;
Altman et al., 1983), along with guidelines developed for reviewers of statistical
publications to ensure high standards of peer review (Gore et al., 1992; Altman, 1998;
Goodman et al., 1998; Altman et al.,, 2002). However, there is a consensus that
statistical reporting in medical journals is of low standard, with frequent erroneous use
of statistical methodology and reporting (Gore et al., 1977; Gardner et al., 1983;
Andersen and Forrest, 1987; Dar et al., 1994; Porter, 1999; Gardenier and Resnik, 2002;
Nagele, 2003; Marshall, 2004). Misuse of statistics is unethical and has the potential to

lead to serious clinical consequences (Strasak et al., 2007).

As this thesis is focussed on using statistical methodology to understand mitochondrial
disease, this section will give a brief overview of all the statistical methods employed
throughout this study. The less familiar statistical techniques will be discussed in more
detail.

2.2.  Basic statistical techniques

Basic statistical approaches can be classified into two broad categories of approach,
parametric and non-parametric. The majority of parametric tests are suitable for use
with data that is normally distributed. The t-test is ubiquitous and is the basic parametric
test used throughout statistical analysis. Non-parametric approaches to analysis are
subject to less stringent criteria regarding the shape or form of the data, but are also
generally less powerful than the equivalent parametric test. The non-parametric
equivalent of the t-test is the Mann-Whitney U test. Note that there are still assumptions
associated with the Mann-Whitney U test; the data must be ordinal for instance.

Additionally, all observations must be independent.

2.2.1. Linear regression
Linear regression is at the heart of many parametric statistical analysis techniques. The

principles of linear regression are taught from an early age in school (the concept of the
line of best fit, or regression line). Computational methods for deriving the regression

line and quantifying the variability of data are more advanced. An understanding of
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linear regression is a vital foundation for understanding the more complex statistical

techniques used in this study.

Figure 2.1 illustrates an example of linear regression (or simple linear regression), and
defines the residual, which is the distance of each data point from the regression line.
Residuals allows us to calculate R?, the coefficient of determination, a measure of how
well the model (regression line) fits the data; it is defined by summing the squares of the
residuals in the fitted model, summing the squares of the residuals without fitting the
model (so the differences from the average y value), and taking the ratio of these
quantities. It is subtracted from 1 to give a value that is 1 for perfect correlation and 0
for no correlation. Mathematically, R? is also equal to the square of the Pearson’s

correlation coefficient.

. . .
Regression line

Residual

X

Figure 2.1 Example of linear regression.

The regression line (blue) is shown. The residual for each point, the vertical distance from the regression
line, can be calculated. Computational methods for regression calculate the regression line by Ordinary
Least Squares (OLS), which positions the regression line such that the sum of the squares of the residuals
is minimized.

2.3.  Multiple regression

Linear regression can be extended to encompass more than one predictor. This is
difficult to visualise, as it requires a dimension for each predictor (or X). However, the
principles of regression are the same as for simple linear regression; for two predictors
the line of regression becomes a plane of regression in a total of three dimensions, with

three predictors we would need to visualise a four dimensional space, and so on.

27



Chapter 2 Statistical methodology

2.4.  General linear model (GLM)

The t-test is the simplest test for comparison of the difference between the means of two
groups. ANOVA is the extension of the t-test to multiple groups. The general linear
model (GLM) subsumes the t-test, linear regression, ANOVA, and several other related
statistical techniques such as ANCOVA, MANOVA, and MANCOVA into a single
umbrella analysis; this is possible as they are all based on the same basic linear
modelling principles. The general linear model can be written as shown in Equation 2.1.
where y is the vector of observations of the dependent variables(s), X is the vector of
observations of the predictors, B is the design matrix (that we are estimating with our

model), and ¢ is the vector of random errors.
y=Xp+¢

Equation 2.1 General linear regression (GLM).
y is the vector of observations of the dependent variables(s), X is the vector of observations of the
predictors, S is the design matrix (that we are estimating with our model), and ¢ is the vector of random

errors.

GLM assumes that the errors in ¢ are independent and normally distributed, with a
mean of zero. Note that # and X are one larger than the number of dependent variables

in the model as they include the intercept term of the model.

For many analyses, there is only one dependent variable, in which case y, §, and € are
vectors. For multivariate analysis (so the extension of MANOVA and MANCOVA)

these become matrices.

2.5.  General linear mixed model (GLMM)

General linear mixed models, also known simply as mixed models, are statistical
models that incorporate both fixed effects and random effects. A major development
that separates mixed modelling from its predecessors is that it allows for modelling of
observations that are not independent, by incorporating into the model the correlation
structure of the errors. They are particularly useful in situations where repeated
measurements are taken from the same observation subject (Macchiavelli and Moser,
1997).

The mathematical description of the mixed model is shown in Equation 2.2.
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y=Xp+Zy+¢

Equation 2.2 General linear mixed model (GLMM).
B and y are vectors of fixed effect and random effect regression parameters respectively which are to be
determined, X and Z are matrices relating the observations y to 8 and y, and € is a vector of normally

distributed errors with zero mean and equal variance.

This model has two critical qualities; the (potentially) correlated random effects
described by Zy, and the fact that the rows of the vector ¢ are not required to be mutally
independent as for traditional regression, but can be structured to allow covariance

between errors. This allows repeated measures analysis to be performed.

In contrast to GLM, mixed models are fitted using a maximum likelihood approach,
which unlike least squares methodology is robust in the case of missing data where
multiple recordings are made from subjects (Moser, 2004). Principal assumptions of
GLMM are the normality of residuals &, which can be checked by residual diagnostics,
and the homogeneity of variance across between-subject factors (homoscedacity)
(Chiarotti, 2004).

Mixed models are extensively used in biostatistical studies and many other fields as
they permit a flexibility of model that cannot be achieved by GLM or ordinary linear
regression (Wolfinger, 1997). The approach has been widely used to understand disease
progression in many neurodegenerative conditions including dementia (den Heijer et
al., 2010; Galvin Je and et al., 2005; Hassing et al., 2004; Johnson et al., 2009;
Knopman et al., 2009; Tornatore and Grant, 2002), Parkinson’s disease (Dobkin et al.,
2011; Johnson and Galvin, 2011; Nandhagopal et al., 2009; Vu et al., 2012) and
Multiple Sclerosis (Meier et al., 2007).

2.5.1. Repeated measures
A key characteristic of the cohort data is that it is longitudinal. Repeated measures is

used to describe data composed of multiple observations of the same sampling unit.
Usually it is the case that repeated observations are correlated, and this correlation must
be incorporated into the linear model for appropriate inferences to be made (Littell et
al., 2000; Moser, 2004).

2.5.2. Fixed and random effects
Random effects allow modelling in which experimental data can be considered samples

from a larger population. As an example, in a drug trial of two drugs A and B, the effect

of the drug is a fixed effect, whereas variation attributable to individual patients is
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considered a random effect. This distinction is important in order to correctly estimate
variation in the model (Laird and Ware, 1982).

In a model incorporating random effects the observations are no longer independent,
even if the errors are, since all observations are dependent on a shared set of random

predictors.

For fixed effects we are generally concerned with estimating means, whereas for
random effects we are not generally interested in specific differences in means between
one factor and another, but how much variance in the dependent variable can be
explained by the random factor.

2.5.3. Covariance structure
Traditional repeated measures analysis is designed to deal with experimental design that

has an equal number of measurements taken for each subject at equivalent intervals. The
data used in this study are considerably more complex in form; data for each subject
have a generally unique temporal layout, depending on when patients are assessed in

clinic, and the number of data points available varies considerably.

The most appropriate covariance structure for such data is a spatial power structure
(Moser, 2004), the simplest of which, denoted in SAS as SP(POW), can be written as
Equation 2.3.

Cov(e;j,e4;) = a2pli

Equation 2.3 Spatial power covariance structure.
j indexes the subjects, i indexes the time points, o2 is the common variance of the error terms, §,;/ is the
temporal distance between two data points (measured in arbitrary units of years), and p is the correlation

parameter to be determined.

2.5.4. Model selection
The prime imperative of model selection is that the model structure is representative of

the data and appropriate for the objectives of the model (Diggle, 1988; Lindsey, 1993).

Secondly, modelling assumptions (normality of residuals, indicator variable
independence) should be verified. Many graphical approaches used in other modelling
approaches common to ordinary regression are applicable, including influence and

residual diagnostics (Christensen et al., 1992).
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2.5.5. Assessing model fit
There is no simple objective measure of model fitness for GLMM. However, the

likelihood based approach provides several useful measures for assessing model fitness,
such as Akaike’s Information Criterion (AIC) (Akaike, 1974) or Bayesian Information
Criterion (BIC) (Schwarz, 1978). All such measures utilise the log likelihood and
penalize in some way to promote model parsimony. AIC is generally used where model
accuracy of prediction is considered more important than how well the model represents
the true underlying data structure (Macchiavelli and Moser, 1997). In the model
evaluation in this thesis a pragmatic approach was taken to use both AIC and BIC where
they agreed on model preference, and AIC where they did not (Kuha, 2004). It should
be noted that the lower the AIC or BIC the better the model describes the data. The AIC
can be used for comparing non-nested models as long as the likelihood estimation
procedure considers both fixed effects and random effects, i.e. it uses ML (maximum
likelihood) not REML (restricted or residual maximum likelihood) (Kreft and de Leew,
1998).

Generation of a mixed effects model is a multi-step process involving iterative changes
to fixed effects, random effects and covariance structure, with repeated re-testing of
previously optimised model choices.

2.5.6. Restrictions
Multicollinearity occurs where two correlated fixed effects are included in a model

together. This must be avoided in model specification, as it leads to imprecise
estimations and inflated variance of parameter estimates (Silvey, 1969; WiBmann et al.,

2007). Independence of model effects must be verified.

2.6.  Key concepts in statistical analysis

Many critical considerations of statistical modelling apply to a number of modelling
approaches including linear regression, GLM, or mixed modelling. In all cases, the task
of the modeller is to ensure that the model fits the data appropriately and that any
modelling assumptions are not severely violated, so that reliable inferences can be made

from the outputs of the model.

2.6.1. Residuals diagnostics
Analysis of the residuals from a fitted model is vital to assess whether a model is

appropriate for the data, and they must meet certain requirements. At a basic level,
residuals should be compared against the predicted value and each of the predictors, to
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ensure that there are no trends in the data that show the residuals are not independent. If
residuals are ill formed then the model needs to be revised. A common approach to
address such issues would be transformation of the dependent or independent variables,

discussed in 2.7, in order to improve the linearity of the data.

2.6.2. Influence and leverage
Leverage is a measure of how much a change in a data point’s y value will change the

outcome of a regression. Each point has an associated leverage. High leverage points

are those that are far away from the average x value.

Influential data points are those that would result in a significantly changed outcome if
they were omitted from the calculation. Influential data points will tend to have high
leverage, but high leverage points are not necessarily influential; if the points happen to
lie on or near the line of regression that fits all the other points in the data set then the
influence will be small, despite high leverage. Influential points are those that have high

leverage but also do not fit the pattern of the other data points very well.

Looking at residuals does not necessarily reveal influential points, since an outlier at a
position of high leverage will tend to drag the regression line towards it strongly, which
masks the effect. Thus specific influence and leverage analysis needs to be carried out.
The Cook’s distance (Cook’s D) statistic (Cook and Weisberg, 1982) is useful in
influence diagnostics. Cook’s D for each point is calculated by measuring the effect of

removal of the point on the errors of the other points in a regression.

Points with high influence need to be carefully considered, as removal from the model

may be warranted.

2.7.  Data transformation — Box-Cox analysis

The most powerful modelling techniques currently available generally rely on a linear
relationship between independent and dependent variables. However, it is rare for actual
data, biological or otherwise, to exhibit a direct linear relationship. Non-linear
modelling techniques are possible and frequently employed, but often the simplest and
most powerful approach is to attempt to transform the data so that a non-linear

relationship can be analysed using linear techniques.

Box-Cox analysis is a specific approach of power transform that is commonly used in
statistical analysis (Box and Cox, 1964). In essence, Box-Cox analysis is used to find

the transformation of the dependent variable (either a power, e.g. y? or y*°, or the log
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transformation) that minimizes the variance of the dependent variable when regressed
against the independent variable(s). A result of this variance minimization is usually a
reduction in skew or other distributional features that complicate analysis, and thus

tends to produce data that is more normal in distribution.

Box-Cox is by no means a panacea, and will fail to find a suitable transformation where
no simple transformation is optimal. Additionally, it is of limited use in situations where

the variance in the model is truly heteroscedastic (Sakia, 1992).

2.8.  Logistic regression

Linear regression, GLM, and mixed modelling are all restricted to dependent variables
that are continuous; discrete data cannot be analysed with such techniques. Discrete data
is commonly encountered however, whether in the form of yes/no binary data, or data
on a discrete and limited scale, such as the responses to individual questions of the
NMDAS which have a 6 point (0 to 5) scale.

Logistic regression is useful for analysis of such data. In contrast to linear regression,
where coefficients are determined for the linear relationship between predictors and the
outcome variable, in logistic regression parameters are determined that define the
probability of an event occurring, e.g. for a given set of predictors the probability of the
response variable being ‘yes’. The link between the predictors and the outcome is no
longer linear but defined by the logistic function, which can be written as seen in

Equation 2.4 for a logistic regression with one predictor:

1
1 + e—(Bo+B1%)

yor P(x) =

Equation 2.4 Logistic regression.

Though superficially mathematically more complex than the equationy = S, + B1x,
which is solved for linear regression, the mathematical principles for identifying

parameters are the same, and involve estimating the optimal parameters ().

Similar to mixed modelling, maximum likelihood estimation is generally used to solve
the equations to find the optimal parameters, which is an iterative procedure that begins
with a tentative solution and iteratively tests solutions until convergence is achieved
(any change in the estimated parameters results either in a poorer solution or one that is

better by a negligible amount).
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Logistic regression has an intuitive interpretation, in that the parameter for each

predictor is the log of the odds ratio for a unit change in the predictor variable.

2.8.1. Assessing model fit
Similar to mixed modelling, the goodness of fit of a model can be analysed using the

likelihood function, and the Akaike Information Criteria (AIC) provides a method for
assessing the effectiveness of model fit whilst controlling for the number of parameters
in the model (Akaike, 1974).

Dichotomous models can also be evaluated by using the ROC (receiver operating
characteristic) curve (Hastie et al., 2009). The area under the ROC curve (AUC) has a
simple interpretation; the AUC is the probability that the regression result for a
randomly selected affected individual will be greater than that of a randomly selected
unaffected individual. Thus a poor regression has an AUC of 0.5, as this is no better

than chance, and a perfect regression an AUC of 1.

2.8.2. Coefficient of determination (R?)
There is general consensus about the use of the coefficient of determination (R?) in

ordinary least squares (OLS) multiple regression to describe the proportion of explained
variance in a model. However, this is not the case in logistic regression. The problem
occurs because in OLS there is only one reasonable measure of residual (unexplained)
variance, the sum of squares of the deviations from predicted values. For logistic
regression the situation is not so simple, as we have several ways to measure deviation
(squared difference, entropy, qualitative difference) which are not mathematically (i.e.
calculated the same way) or conceptually the same (Efron, 1978). There are also two
very different ways of looking at the outcome of the model; either consideration of the
(continuous) predicted probabilities that the model generates, or the accuracy of the
(discrete) classification of the model. (Menard, 2000). Several pseudo-R? statistics have
been derived for use in logistic regression, which are discussed by Menard extensively
(Menard, 2000) and will not be discussed in detail here. However, in agreement with
several published commentaries on the issue (Menard, 2000; Shtatland et al., 2002) |
use the pseudo-R? defined by McFadden to compare models (McFadden, 1974) where

no other comparison was possible.

2.8.3. Ordered logit and multinomial logistic regression
Where discrete data has more than two levels there are two approaches to modelling the

data with logistic regression. Multinomial logistic regression can be used, which
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requires a set of parameters for each change in level of the dependent variable; for the
NMDAS data this would require 5 sets of parameters to define the change from each
level O to 4 to the next level. A simpler approach, requiring a much reduced number of
parameters is to use ordered logit, which makes the assumption of proportional odds
(McCullagh, 1980); for the NMDAS data, this would mean the odds of scoring 0 vs 1-5
Is the same as scoring 1 vs 2-5, or 2 vs 3-5, etc. This assumption is restrictive and must
be tested for data conformity, but if the data structure is appropriate it is a statistically

efficient model for analysing discrete ordinal response data.

2.9.  Generalised linear modelling

Generalised linear modelling is an extension of mixed modelling that allows non-
identity link functions (linking the predictors to the outcomes) to be used; this opens up
the possibility of creating models with both fixed and random effects but non-linear
outcome variables (Nelder and Wedderburn, 1972). For instance, using the logit
function mixed logistic models can be created, and other link functions extend the

principles of linear mixed modelling to non-linear modelling.

2.10. Bootstrapping

Bootstrapping is a computational method for estimating the accuracy of a sampling
statistic, first developed by Bradley Efron (Efron and Tibshirani, 1986). It is a simple
and universally applicable technique for almost any estimation problem and facilitates
calculation of the accuracy of estimates in situations where the sampling distributions
are too complex for parametric statistical analysis (Johnson, 2001; Christie, 2004). It is

one of a set of techniques known more generally as resampling.

Bootstrapping is particularly useful when we are interested in estimating properties of
an estimator itself; for example, calculating the accuracy of a measure such as the
standard error. For illustration, in a particular population we may take a random sample
of people, measure their heights, and use this to calculate the mean height and the
standard error. The standard error gives an estimate of the variation of heights in the
population. However, there is no straightforward statistical way to estimate the accuracy
of the standard error itself. In this situation, we can use bootstrapping to evaluate how

accurate the estimate of the population variance is.

Bootstrapping estimates properties of an estimator by resampling, with replacement, a
random sample from the original sample. A resample in a bootstrap contains the same

number of samples as the original sample. For each resample, the relevant estimators
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(for example sample mean or standard error) are calculated. The set of resampled values
then gives us an empirical distribution from which we can determine confidence
intervals for the estimator (or indeed, calculate the standard error of the standard error,

if the distribution of the estimator is Gaussian).

Bootstrapping and resampling methodology is used in two contexts in this study. The
first is in Chapter 3, where bootstrapping is used to estimate the variability in the real-
time assays for measuring mtDNA heteroplasmy and total mtDNA copy number.
Secondly, it is used several times in Chapter 4, in particular to evaluate which
measurement of heteroplasmy (blood or urine) best predicts disease progression in the
m.3243A>G patient cohort.

The bootstrapping was executed in matlab. The code used can be found in Appendix II.

2.11. General Methodology

2.11.1. Disease progression modelling
As several chapters of this thesis use similar statistical methodology, the generic aspects

of the modelling will be detailed here and referred to in each chapter as appropriate.

Disease burden analysis utilises the NMDAS assessment scores, as described in section
1.5. The total NMDAS score is a summary of the disease burden for a patient at a given
time (assessment date). Though the NMDAS score is actually a discrete scale, in effect
we can consider it a quasi-continuous scale and thus it can be modelled using
techniques such as linear regression. The total score of all NMDAS questions was used,
excepting the score for respiratory function; this was excluded as the scoring system for
this aspect of the NMDAS is currently under review and the existing scores are not

considered to reflect the respiratory function of the patients.

For each analysis, Box-Cox analysis is used to stabilise the variance of the dependent
variables and to identify optimal transformations of the variables to satisfy assumptions
of normality,(Box and Cox, 1964) thus enabling the use of parametric testing. Where
data is already satisfactorily Gaussian in distribution Box-Cox should identify the

optimal transform as identity.

For all analyses conducted using the total NMDAS score, Box-Cox analysis has shown

that the optimal transformation to achieve normality is to take the fourth root of the
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NMDAS score (NMDAS®?®) as the dependent variable. This transformation is used in
all cases, unless otherwise stated.

2.11.1.1. Total Disease Burden Basic Statistical Analyses

For the majority of patients we have several NMDAS assessments recorded. Basic
analyses assume independence of all data, and thus multiple data for each patient cannot
be included in basic modelling. Hence, for basic analyses | use a single summary data
point for each patient, determined by taking the mean NMDAS score and mean age at
assessment. Basic analyses are conducted using SAS PROC GLM for simple linear

regression and multiple linear regression.

2.11.1.2. Total Disease Burden Longitudinal Modelling

Though basic analyses are useful for a summary understanding of data, longitudinal

modelling is required for a deeper understanding of disease progression over time.

PROC MIXED was used for longitudinal mixed modelling using a spatial power
structure to model covariance of repeated data from the same patient.(Singer, 1998;
Moser, 2004). Polynomial terms of time up to cubed (time®) were included. The Akaike
Information Criterion (AIC) was used to compare models (Akaike, 1974). Model
validation included the use of residual, influence, and leverage diagnostics to check
model assumptions and verify model stability. SAS version 9.2 (Cary, NC) was used

throughout.

2.11.2. Statistical reporting conventions
In all statistical analyses reported in this thesis, the same general conventions are

adhered to, unless otherwise stated.

For pre-determined hypothesis testing, significance was determined at P < 0.05, high
significance at P < 0 .001.

For multiple regression, | report the standardized coefficient (B) (standardized to have
unit variance) and significance value (P value) for each parameter estimate, together
with the number of subjects (N) and the adjusted coefficient of determination (R?) for

the overall regression.

For simple linear regression I report N, the Pearson’s correlation coefficient (r) and the

P value.
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For multiple logistic regression I report N, and the standardized coefficient and P value

for each parameter estimate.
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Chapter 3. Methods development

3.1.  Large scale single-mtDNA deletion level measurement assay

3.1.1. Introduction
The MT-ND4/MT-ND1 assay was developed for measuring the deletion level, or

heteroplasmy level, of single large-scale mtDNA deletions (He et al., 2002). For
diagnostic or prognostic purposes an approximate estimation of the deletion level in
skeletal muscle homogenate is often sufficient. However, for certain studies a more
accurate measure of heteroplasmy is required. Resistance training, for example, has
been shown to improve muscle oxidative capacity in patients with single large-scale
mtDNA deletions (Murphy et al., 2008). This is thought to be the result of activation,
proliferation, and incorporation of satellite cells; though satellite cells have similar
deletion levels to the mature muscle cells, the mutations have been shown to be lost
during the transition from satellite cell to myoblast (Spendiff et al., 2013). It is
hypothesised that analysis of deletion levels in patients undergoing resistance training
will reveal lowering of heteroplasmy levels in resistance trained muscles; however,
sensitive measurement of heteroplasmy in muscle homogenate is a requirement for this

analysis.

It has long been known that the MT-ND4/MT-ND1 assay is more accurate at high
heteroplasmy levels (over 70%) than at lower levels, with an empirically estimated cut-
off of around 30% as a baseline for accurate quantification (Prof Doug Turnbull,
personal communication). It has also recently been reported that the measurement error
in real-time PCR (gPCR) is dependent on DNA concentration (Sochivko et al., 2013),

with empirical error increasing as DNA concentration decreases.

To date the variation in the MT-ND4/MT-ND1 assay has not been quantified. Accurate
quantification of this variation is necessary to plan experiments that require subtly

changes in deletion level to be measured.

3.1.2. Aim
The aim of this study is to quantify the variation in the assay with respect to two

variables, the deletion level (heteroplasmy) of the sample, and the concentration of the
DNA.
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3.1.3. Methods
3.1.3.1.1. Methodological approach

The methodological approach to the analysis was to repeat each sample the maximum
number of times possible on a qPCR plate in order to be able to estimate with highest
accuracy the variability of the assay. Bootstrapping was further used to quantify the

precision of this variability estimate.

The accuracy of the assay was then verified with samples of similar deletion level to

confirm that small changes in deletion level are measurable.

3.1.3.2. Real-time PCR methodology

All molecular analyses were performed using total skeletal muscle DNA extracted using
standard protocols. mtDNA deletion level in muscle homogenate was quantified using a
validated, multiplex gPCR MT-ND4/MT-ND1 assay (He et al., 2002; Krishnan et al.,
2007).

Wild-type skeletal muscle DNA from a control subject was used to produce the standard

curve for each real-time analysis.
All mtDNA deletion level quantification was performed by Dr Julie Murphy.

3.1.33. Intra-plate variability measurement
3.1.3.3.1. Study design

Six patients with a range of previously quantified deletion levels were selected, with
deletion levels ranging from around 6% up to 80%. All DNA samples were diluted to
approximately the same concentration on a trial run of qPCR to achieve a target of
around 20 CTs. These samples were then serially diluted to a range of concentrations to
achieve final CT values of around 27, 31, and 35 CTs.

Each plate was made up of 84 replicates; the remaining wells on each 96 well plate were
used up by no-template controls and serially diluted wild-type total DNA for standard

curve estimation.

3.1.3.3.2. Statistical methodology

Severe outliers, defined as more than 3 times the interquartile range below the lower
quartile or above the upper quartile, were removed from the data prior to further
analysis.
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The standard deviation of the replicates on each plate was calculated. Bootstrapping was

then used to calculate 95% confidence intervals for the observed standard deviation.

The standard deviation at high DNA concentration (< 23 CTs) was used to calculate
minimum detectable differences observable using a two tailed t-test for a range of N
values at f=0.80 and 0=0.05.

3.1.3.4. Empirical verification of deletion level

To confirm the reliability of the assay to measure deletion level changes, 3 different
samples at a low deletion level (20%-25%) were run on three separate plates. Each
sample was run with 24 replicates on each plate. This was used to calculate independent
values for the differences between samples per. The difference between samples 1 and 2
and the difference between samples 2 and 3 are reported for each plate (samples 1 and 3
are not compared as this is not an independent comparison, it can be derived from the

other two differences).

The same experiment was performed with three samples at high deletion levels (70%-
80%).

For each pair of samples, the true difference was estimated by taking the mean of all
replicates on each plate. The deviation for each replicate from this true value was then

calculated.

3.1.4. Results

3.14.1. MT-ND4/MT-ND1 assay variability is dependent on DNA concentration
and heteroplasmy level

The quantified variation in the assay is depicted in Figure 3.1. As shown in Figure 3.1A,
for each DNA sample, dilution of the DNA to lower concentration increases the
variance of the measurement, and heteroplasmy also decreases with increasing
heteroplasmy. The relationship between heteroplasmy and the assay variation is linear at
high DNA concentration (below 23 CTs), as seen in Figure 3.1B (r = -0.996, P <
0.0001). The parameters for the regression equation are found in Table 3.1.

Whilst Figure 3.1 depicts the data for a selection of the data produced for this study,
Figure 3.2 depicts all of the data produced, including data at very low DNA
concentration (> 31 CTs). This illustrates the extreme increase in variation as DNA

concentration decreases.
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Figure 3.1 Variation in the MT-ND4/MT-ND1 assay is dependent on heteroplasmy and DNA

concentration.

The y axis depicts the standard deviation in absolute percentage points; for example, a 3% standard
deviation (95% confidence interval approx. +6%) for a measured 20% heteroplasmy would be 14%-26%.
(A) Standard deviation of the MT-ND4/MT-ND1 assay as measured for three concentrations of source
DNA,; the average CT of the assay is indicative of the DNA concentration, with the most concentrated
DNA at lowest average CT. Variance increases with decreasing DNA concentration (increasing CT). At
each DNA concentration, assay precision increases as heteroplasmy increases. (B) Relationship between
assay variation and heteroplasmy at low (< 23) CT. Assay precision is linearly related to the heteroplasmy
level. r =-0.996, P < 0.0001.

Parameter Estimate Std Dev 959% Lower 95% Upper
Slope -0.03711 0.002468 -0.04234 -0.03188
Intercept 3.491 0.1225 3.231 3.751

Table 3.1 Regression coefficients for relationship between assay standard deviation and
heteroplasmy.
The estimated value, standard deviation, and 95% confidence intervals are shown for each parameter.
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Figure 3.2 Relationship between DNA concentration and assay variation at various levels of
heteroplasmy.

The y axis is log scaled. At any heteroplasmy level, assay variation increases with increasing CT
(decreasing DNA concentration). Between 18 and around 28 CTs variation increases slowly at any
heteroplasmy level. At very low DNA concentrations (above approximately 31 CTs) assay variation is

extremely high and increases rapidly with average CT.

3.14.2. Verification of intra-plate and quantification of inter-plate variability

Results for the difference in samples are shown in Figure 3.3. The empirical standard
deviation for the difference is 3.14% at 20%-25% deletion level and 1.28% at 70%-80%
deletion level. This can be verified by scrutiny of the figure; the majority of values for
the deviation at low deletion level are within +6%, which is an approximate 95%

confidence interval based on a standard deviation of 2.5%.

The expected standard deviation for the difference between two deletion levels can also
be calculated. Using the linear regression coefficients in Table 3.1, at 25% deletion level
the standard deviation for a single heteroplasmy measure is calculated as 2.56%. Thus
the standard deviation of the difference of two deletion levels (using the fact that

variance of the difference of two normally distributed variables is the sum of the

variances) is calculated as V2 x 2.562 =3.62%.
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At 70% deletion level the standard deviation is calculated as 0.89%. The difference of

two means at this level is, therefore, calculated as V2 x 0.892 =1.26%.

The estimate for the inter-plate variation is 0.496% at low deletion level and 0.479% at

high deletion level, with a pooled estimate of 0.485% using all samples.
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Figure 3.3 Inter- and intra-plate variability in the measurement of the difference in deletion level
between samples.

To confirm the reliability of the assay to measure deletion level changes, 3 samples at a low deletion level
(20%-25%) were run on three separate plates, 24 replicates of each sample per plate. This was used to
calculate independent values for the difference between samples. The same experiment was performed
with three samples at high deletion levels (70%-80%). The graph illustrates the variability in this
difference; the data is centred by subtracting the best estimate of the actual deletion level difference. The
mean value for each plate was within 1% of the actual deletion level difference. Variability at high

deletion level was lower than at low deletion level.

45



Chapter 3 Methods development

Del  Standard 3 5 10 20
Level Deviation
10% 3.12% 9.6% 6.3% 4.1% 2.8%
20% 2.75% 8.4% 5.6% 3.6% 2.5%
30% 2.38% 7.3% 4.8% 3.2% 2.2%
60% 1.26% 3.9% 2.6% 1.7% 1.1%
80% 0.52% 1.6% 1.1% 0.7% 0.5%

Table 3.2 Relationship between standard deviation, heteroplasmy levels and sample replicates.
For the given number of replicates, this table indicates the minimum detectable heteroplasmy difference.

3.1.5. Discussion
Severe outliers were removed from the data prior to further analysis. Though this may

seem questionable considering the assay variability is under investigation, this was
considered an appropriate pre-filter, in order to eliminate wells which were clearly
erroneous. A basic interpretation of an outlier taught in many high school textbooks is
based on points more than 1.5 times the interquartile range below or above the data
quartiles; using a cut-off of 3 times the interquartile range makes the test much more
liberal but avoids severely erroneous points being included in the analysis.

The results in section 3.1.3.4 show that the calculated standard deviation for the
difference between two samples at high deletion levels (1.26%) is very close to the
empirical level (1.28%). However, at low deletion level the empirical value (3.14%) is
somewhat lower than the calculated value of 3.62%. The reason for this unexpected
precision is unknown, but the value is not sufficiently different from the expected value

to cause concern.

The estimate for the inter-plate standard deviation is low, under 0.5%. This implies that

the advantage to be gained from running repeat plates for a given result is minimal.

The results from this analysis are important in two respects. Firstly, it has quantified for
the first time the variability in this assay, and decisions can be made on the number of
replicates required to precisely estimate deletion level. Many researchers use three
replicates in any gPCR estimation as a matter of course; it is clear from this analysis

that this approach is not valid at either low deletion level or low DNA concentration.

There are limitations to be acknowledged. Though we studied the inter-plate variation,

this aspect of the study was not comprehensive as only three plates were run for each
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investigation (six plates in total). It would be desirable to measure this more precisely to
be confident that a single real-time PCR plate is sufficient to accurately quantify the
heteroplasmy to a given required precision. Additionally, the linear regression provided
guidelines for quantification of the variation only for concentrated DNA. The same was
not done for lower DNA concentrations; however, rough estimates can be obtained by

interpreting the data from the graphs.

3.1.5.1. Theoretical basis for the variation in the assay with heteroplasmy level.

The increasing variability of the assay with decreasing heteroplasmy can be explained

by the mathematical process used to calculate heteroplasmy.

The real-time assay measures the relative difference in the expression of the two genes
MT-ND1 and MT-ND6. At low heteroplasmy levels, the difference between these two
quantities is small. For instance, at 10% heteroplasmy and a perfectly efficient real-time
reaction (doubling each time) the CT difference would be 0.152 (log»(0.9), or the log of
the heteroplasmy subtracted from 100%). The CT difference for a 90% heteroplasmy
sample in the same circumstance would be 3.32, or log,(0.1). If the errors are constant
in the CT difference, for example 0.1 CT, then the CT difference for the 10% sample
will be measured within (0.052, 0.252), whilst the 90% heteroplasmy sample will be
measured within (3.22, 3.42). These two ranges then relate to heteroplasmy measures of
(4%, 19%) and (89.3%, 90.1%) respectively. Thus, the difference in accuracy arises
most likely because the errors are independent of the CT differences, and thus will be

proportionately larger for a small difference than a large difference.
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3.2.  Total mtDNA copy number measurement assay

3.2.1. Introduction
Low mtDNA copy number has been repeatedly shown to be associated with disease

(Moraes et al., 1991; Poulton et al., 1995; Barthélémy et al., 2001; DiMauro and
Hirano, 2005). It has also been shown that exercise improves physical capacity of
patients mtDNA disease, and that this is associated with an increased mtDNA copy
number (Taivassalo et al., 1998; Taivassalo et al., 2006). Understanding the
mitochondrial changes in muscle that lead to improved physical wellbeing is
imperative, and mtDNA copy number is a potentially significant aspect of this. Copy
number determination has not been a significant issue within exercise trial studies when
single muscle fibres are the focus, as mitochondrial DNA levels are normalised per unit
area. However, to understand overall changes in muscle it is important to look at

homogenate muscle samples.

Gel electrophoresis and Southern blotting of nuclear DNA and mtDNA simultaneously
has been used to measure the relative quantity of mtDNA to nuclear DNA, but this is
labour intensive and only semi-quantitative (Shanske and Wong, 2004). Most published
approaches to measuring mtDNA copy number have used real-time PCR (qPCR), using
regions of the nuclear and mtDNA genomes where polymorphisms are rare (Venegas
and Halberg, 2012). The B2M gene has been used in the literature as it is a convenient
single copy gene in this respect (Malik et al., 2011), and we already use the MT-ND1
gene to measure heteroplasmy for mtDNA deletions as deletions covering this region

are very rare, hence we chose to use this as the mtDNA target for quantification.

Multiplexing mtDNA and nDNA targets together is problematic, since several thousand
copies of mtDNA are present in muscle cells but nuclear DNA is single copy. This
presents problems with PCR Kkinetics and saturation effects in the multiplexed PCR
reactions. Multi-copy genes can be used that ameliorate this problem to a large extent,
such as 18S ribosomal DNA which is present around 600 times in the nuclear genome
(Schmickel, 1973; Stults et al., 2008); this is suitable for normalization for repeated
samples from the same individual, but unsuitable otherwise due to inter-subject
variation in the repeat numbers. Additionally, in a recent study it was found that the
accuracy of quantitative real time PCR was severely affected by the concentration of
DNA within the sample (Sochivko et al., 2013) further highlighting the issue of
comparing high copy number targets to lower copy number targets.
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To address these issues, it was decided to develop a non-multiplexed assay with an extra
dilution of the mtDNA target to ensure that both B2M and MT-ND1 are within a
reasonable range for quantification by real-time PCR (above approximately 17 CTs but

below 30 CTs, to ensure quantification is in the exponential phase of growth).

3.2.2. Aims
As it was expected that the extra dilution step and the lack of multiplexing would

introduce experimental error into the quantification process, it was decided to quantify
the experimental variability in order to make recommendations on the number of
replicates required to ascertain the relative copy number of two samples within a pre-
determined tolerance. As the experimental error is multi-level (intra-plate variability
nested within inter-plate variability) simulation will be used to determine the number of

replicates required to determine a given change in copy number.

3.2.3. Methods
3.2.3.1. Real-time PCR methodology

All molecular analyses were performed using total skeletal muscle DNA extracted using
standard protocols. mtDNA copy number in muscle homogenate was quantified by
measuring the relative expression of the mtDNA MT-ND1 gene and the nDNA B2M

gene.

MT-ND1 and B2M reactions were run separately, sequentially on the same real time
machine. Primers and probes used are detailed in Table 3.3, the mastermixes for each
reaction are found in Table 3.4 and Table 3.5, and standard cycling conditions are
described in Table 3.6. The same wild-type skeletal muscle DNA from a control subject
was used to produce the standard curve for each real-time analysis. Sample were run in
the same well on the paired MT-NDland B2M plates to minimize well-to-well error.
The target DNA concentration for B2M quantification was 100 fold higher than that for
MT-ND1 quantification, to ensure that the resulting CTs for both samples would be
within useful range (18-25). Thus the samples for MT-ND1 quantification were diluted
1 in 100 relative to the samples for B2M quantification, using two serial 1:10 dilutions

to reduce dilution error.

All real-time PCR quantification was performed by Dr Helen Tuppen.
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Primers: Sequence

MT-ND1 (NC_012920.1)

L3485-3504 5’- CCCTAAAACCCGCCACATCT -3’

H3553-3532 5’- GAGCGATGGTGAGAGCTAAGGT -3’

B2M (NG_012920.1)

B2F (8969-8990) 5’- CCAGCAGAGAATGGAAAGTCAA -3’

B2R (9064-9037) 5’-TCTCTCTCCATTCTTCAGTAAGTCAACT -3’

Probes:

MT-ND1 (L3506-3529) VIC-5’- CCATCACCCTCTACATCACCGCCC -3°-MGB

B2M (9006-9032) 6-FAM-5"- CCGACATCATTACCGGGTTTTCCTCTTG
-3’-MGB

Table 3.3 Primers and probes.

Tagman universal PCR mastermix 10ul

B2M F (10uM) 0.6pl (final concentration: 300nM)
B2M R (10uM) 0.6ul

B2M probe (5uM) 0.4ul (final concentration: 100nM)
MgCl; (50mM) 1.2ul (final concentration: 3mM)
DNA (optimal concentration ~ 10ng/ul) 5ul

dH,0 2.2ul

Table 3.4 Mastermix for the B2M reaction.

Tagman universal PCR mastermix 10ul

MT-ND1 L3485 (10puM) 0.6ul (final concentration: 300nM)
MT-ND1 H3553 (10uM) 0.6pl

MT-ND1 probe (5uM) 0.4ul (final concentration: 100nM)
DNA (optimal concentration ~ 0.1ng/pl) 5ul

dH,0 3.4ul

Table 3.5 Mastermix for the MT-ND1 reaction.

2 minutes at 50°C
10 minutes at 95°C

40 cycles of 15 seconds at 95°C and 1 minute at 60°C

Table 3.6 Standard cycling conditions.
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3.2.3.2. Intra-plate variability measurement
3.2.3.2.1. Study design

Test runs of several samples were executed to find two samples with high relative copy
number difference. These two samples were diluted to approximately equal DNA
concentration, and then mixed together in three different ratios. This resulted in 5
samples of different relative copy number, the original two samples plus three

interpolated DNA copy numbers.

On each real-time PCR plate 12 replicates of each sample were run, totalling 60 wells.
The remaining wells were used for standard curve generation and no template controls.
Six replicates of five standard curve points (30 in total) were run, to ensure highly

accurate standard curves for optimal quantification.

3.2.3.2.2. Statistical methodology

Severe outliers, defined as more than 3 times the interquartile range below the lower
quartile or above the upper quartile, were removed from the data prior to further

analysis.

The MT-ND1/B2M ratio was calculated for each sample well in each plate, yielding 12
replicate values per MT-ND1/B2M plate pair. These were used to calculate 12
independent values for the relative copy number of each of samples 2 to 5 compared to
sample 1, which resulted in 12 replicates of 4 independent sample comparisons per MT-
ND1/B2M plate pair. Four MT-ND1/B2M plate pairs were run, to examine inter-plate

variability.

The standard deviation of the replicates on each plate was calculated. Bootstrapping was

then used to calculate 95% confidence intervals for the observed standard deviation.

A linear model was used to verify whether the variance of the assay was independent of

relative copy number.

Using the calculated inter-plate and intra-plate variability, sample size calculations were
performed in SAS using PROC POWER, using the formula for the sample standard
deviation as shown in Equation 3.1, as the intra-plate (replicate) variability is nested

within the inter-plate (plate-to-plate) variability.
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2
S drep

— 2
Sexp = [Sdpop + Trep

Equation 3.1 Calculation of experimental standard deviation.
The experimental standard deviation sd.,, is calculated from the inter-plate (p2p) standard deviation and
the intra-plate (rep) standard deviation using the formula for the summation of variances. The sample

variance for the replicates is divided by the number of replicates n,.,,, which is then used to calculate the

number of plates required.

3.2.4. Results
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Figure 3.4 Intra- and inter-plate variability of the copy number assay.
5 samples of progressively decreasing copy number are analysed on each plate; each sample is replicated
12 times on each plate, and 4 plates are run in total. This was used to calculate 12 independent samples of
the relative copy number of sample 1 compared to each of the other 4 samples. The mean relative copy

numbers for each sample comparison are comparable from plate to plate.

The relative copy number of sample 1 compared to samples 2 to 5 are shown in Figure
3.4. With 12 replicates of each measure, these are 12 x 4 x 4 = 192 independent samples
of copy number.
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The intra-plate (replicate) and inter-plate (plate to plate) variability for the relative copy
number of each pair of samples is shown in Figure 3.5. These are not all independent
samples (the first 4 are independent), but are shown to allow comparison of variability
across the samples. 95% confidence intervals are calculated using bootstrapping

methodology.

To calculate a global estimate for the standard deviations a modified bootstrapping was
employed, using the pool of all sample comparisons (10 comparisons, 12 replicates of
each comparison on 4 plates, totalling 480 relative copy number measures in total).
Each copy number estimate was scaled first by dividing by the best estimate of the
relative copy number of the two samples. This yielded an intra-plate standard deviation
of 1.066 (95% CI 1.038-1.101) and an inter-plate standard deviation of 1.027 (95% CI
1.0047-1.069).

The inter-plate and intra-plate standard deviations were also compared to the relative
copy number. The results are shown in Figure 3.6. There is no evidence of a

relationship between the relative copy number and the variability.

The number of plates/replicates per plate required to detect a given change in copy
relative number based on the estimated inter- and intra- plate variation is shown in
Table 3.7.
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Figure 3.5 Inter-plate and intra-plate variability across samples.

The relative copy number (ratio) of each pair of samples was calculated, 12 replicates on 4 plates, a total
of 48 values per ratio. All 48 values were used to calculate the true value, and each sample divided by this
to normalize the ratios. The intra-plate (replicate) and inter-plate (plate to plate) standard deviation and
95% confidence intervals were then calculated for each sample comparison using bootstrapping. All
variability was examined on the log values; the graph shows inverse log standard deviations, which are
scale factors. The intra-plate variability is consistently higher than the inter-plate variability. The mean

inter-plate variability is 1.027 and the mean intra-plate variability 1.066.
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Figure 3.6 Linear regression of relative copy humber against intra-plate assay variation.

The graph shows no evidence of a linear correlation between relative copy number and the assay intra-
plate variability (P = 0.4614, r = 0.20). Each point is an independent estimate of the standard deviation

from a single plate.
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Relative Copy Number 5% 10% 15% 20% 50%
Change

Log;o factor 0.021189 0.041393 0.060698 0.079181  0.176091

1 replicate 26/081 8/0.83 4/081 3/0.84 2/0.97

72/0.80 20/0.81 10/0.83 6/0.81 3/0.96

2 replicates 16/082 5/0.83 3/0.85 3/0.96 2/0.99

48/0.80 14/082 7/083 5/0.87 2/0.84

3 replicates 12/082 4/083 3/092 2/0.80 2/>0.999

40/0.80 12/0.83 6/0.83 4/0.83 2/0.89

6 replicates 8/080 3/0.82 3/0.98 2/091 2/>0.999

32/0.8 9/0/00 5/0.83 4/0.90 2/0.93

12 replicates 7/084 3/0.900 2/0.85 2/096 2/>0.999

28/081 8/081 5/087 3/081 2/0.96

Table 3.7 Number of real-time PCR plates/replicates required to detect a given change in relative
copy number.

Each cell shows the number of plates / actual power for a two sample t-test with the given number of
replicates (per sample) per plate, to detect the given change in relative copy number at minimum power of
0.80. In each cell, the top line shows the calculation using the standard deviation estimates; the bottom

line shows the calculation using the 95% upper bound of the standard deviation estimates.

3.2.5. Discussion
This investigation has quantified the variability in this novel approach to measurement

of mtDNA copy number, and provides guidelines on the number of replicates and plates

of each sample that should be run to achieve a required accuracy.

The variation in the assay is confirmed as independent of the relative copy number,
within the range of relative copy number that was investigated (approximately 2 fold
difference). This is a practically useful finding, as it implies that the number of
replicates to determine copy number can be made independently of the copy number of
the samples under investigation.

It was anticipated that the extra dilutions of the MT-ND1 samples, necessary to ensure
both targets were within conveniently measurable CT range, may have introduced
unacceptable experimental error into the procedure. As each plate was run from re-
diluted samples, the inter-plate variability incorporates any variation introduced by this
extra dilution. The inter-plate variability (1.027 scale factor) is lower than the intra-plate
variability (1.066), however it is still variability that needs to be accounted for when

using the assay to accurately determine copy number.
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Regarding recommendations for the number of replicates/plates to use to detect specific
minimum changes in copy number, use of the t-test for requires a minimum of two
plates in order that the sample variance is estimable. This restriction comes from the
fact that the intra-plate variation is nested within the inter-plate variation. For large
enough changes of copy number it seems intuitive that a single plate would be sufficient

to estimate this change, but formal statistical analysis requires a minimum of two plates.
There are important limitations to be acknowledged.

Firstly, the number of plates run was small (four), and more plates would allow more
accurate quantification of the inter-plate variation, a narrower 95% confidence interval
for the estimates, and one would hope a lower estimate for the number of replicates
required. The estimates using the 95% upper bound for the standard deviation estimates
are impractically high for the smaller changes in copy number, and some reduction in
the confidence interval would be very beneficial in order to have confidence in the
results of the assay with the minimum experimental effort. The assay is limited by the
number of samples that can be run on the same PCR plate, which is limited to 96 wells,

several of which are used to calculate standard curves and for no-template controls.

Secondly, the inter-plate variability was confounded with the dilution error in this
experiment; it may have been valuable to run separate repeated dilutions of samples on
the same plate in order to separate the inter-plate and dilution variation in this assay,
which may have identified the true inter-plate error to be small enough to ignore for
practical purposes. However, since the two targets are intended to be run on separate
plates (to avoid multiple standard curves on the same plate) some level of inter-plate
variability is inevitable, thus is seems a prudent approach to combine the dilution and
intra-plate variation and deal with them both concurrently. This is not necessarily a
trade-off, as reducing the number of replicates per plate allows more samples to be run

on each plate.

Though this assay optimisation and variation quantification has been focussed on
relative copy number (intended for measuring change in copy number in repeated
samples from the same patient), it can be extended to calculate absolute copy number.
This would require an absolutely quantified reference sample to be run on each plate

requiring absolute quantification.
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3.25.1. Muscle specific issues

Normalisation of the mtDNA copy number by a single copy nuclear gene presents
difficulties that are specific to muscle homogenate analysis, with two main issues to

contend with.

Firstly, muscle fibres are multinucleated, each fibre formed from the fusion of multiple
mononucleated myogenic cells (Okazaki and Holtzer, 1966). It is thought that each
nucleus serves a certain volume of cytoplasm, called the myonuclear domain (Hall and
Ralston, 1989). Historically, it was thought that the size of the domain was relatively
constant, supported by general biological considerations that nuclear DNA content
universally appears to be related to cell size (Gregory, 2001) and by specific
examination of muscle fibres (Landing et al., 1974). However, there are many findings
from later studies that contradict this; domain size is related to body mass (Liu et al.,
2009), domain size isn’t conserved during hypertrophic growth (Wada et al., 2003),
domain size varies along the length of muscle fibres and increases with age (Rosser et
al., 2002), and domain size decreases with muscle wasting and atrophy (Allen et al.,
1995; Ohira et al., 1999; Bruusgaard and Gundersen, 2008). Furthermore, domain size
has been shown to vary according to fibre type; Type | fibres (slow twitch, and heavily
dependent on mitochondria for oxidative phosphorylation) have the smallest domain,
Type lla fibres (fast twitch, but also oxidative) are intermediate in size, and Type I1x
(fast twitch glycolytic fibres with few mitochondria) have the largest myonuclear
domain (Roy et al., 1999; Van Der Meer et al., 2011).

The second major issue is related to the cell types found in muscle homogenate. Non-
muscle cells, such as adipocytes or cells of the vascular system are present and will
contribute to both the nuclear and mtDNA assessment. The relative proportion of
mitochondrial fibre types is also critical, particularly with reference to the proportion of
Type lIx fibres which have very low mitochondrial content, though Type | fibres also
have higher mitochondrial density than Type lla fibres (Sjostrom et al., 1982; Yu-Wai-
Man et al., 2010b) . Thus care must be taken to ensure that muscle samples for
comparison are comparable. However, it is important to note that for analysis of
samples to evaluate exercise trail intervention, the relative proportion of fibre types can
be significantly altered by training; for example, endurance training has been shown to
significantly increase the proportion of Type lla fibres at the expense of Type lIx fibres
(Ingjer, 1979). With this in mind, fibre type changes between biopsies may be genuine
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changes induced by the intervention rather than sampling errors attributable to

heterogeneity of muscle tissue.

Both of these issues must be considered when using normalisation of myDNA copy
number by nuclear content with this assay. Prior to analysis, biopsies may need to be
examined histochemically or otherwise to assess the relative proportions of fibre types
and non-myogenic cells in order to be satisfied that the analysis is correctly determining

any alterations in mitochondrial content of muscle cells.
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Chapter 4. Disease associated with the mt.3243A->G mutation

4.1.  Introduction

The m.3243A>G mutation was one of the first identified causes of inherited
mitochondrial disease (Goto et al., 1990b). Of the over 250 known pathogenic mtDNA
mutations (Tuppen et al., 2010), m.3243A>G is the most commonly inherited, at an
estimated prevalence in the adult population of 236/100,000 (Manwaring et al., 2007),
though the estimated minimum prevalence of clinically affected people is lower, at
3.65/100,000 (Schaefer et al., 2008) or 16.5/100,000 (Majamaa et al., 1998). In the
cohort of 671 patients seen at the Newcastle mitochondrial disease clinic, 199 (29.7%)

carry the m.3243A>G mutation.

The mutation is an A to G transition at position 3243 of the mitochondrial genome, in
the dihydrouridine loop (D-loop) of the mitochondrial tRNA"“YR (Goto et al.,
1990b).

4.1.1. Phenotypic presentation
The earliest patients to be associated with the m.3243A>G mutation were almost

exclusively MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like
episodes) (Goto et al., 1990b), though a single patient with the mutation presented with
CPEO, an early indication of the heterogeneous phenotypic variability shortly to be
associated with the mutation (Hirano et al., 1992). MELAS is a severe and progressive
neurological disorder, and though it is not exclusively associated with the m.3243A>G
mutation, around 80% of patients with MELAS syndrome are carriers of the
m.3243A>G (Goto et al., 1991). Clinical diagnostic criteria were published in 1992 and
defined as (a) stroke-like episodes before the age of forty (b) encephalopathy (denoted
by seizures and/or dementia), and (c) lactic acidosis and/or ragged-red fibres (RRF)
(Hirano et al., 1992).

Other common phenotypic presentations that were soon to be associated with the
mutation were maternally inherited diabetes and deafness (MIDD) (van den Ouweland
et al., 1994), further CPEO cases (Goto et al., 1990a; Moraes et al., 1993; Koga et al.,
2000) and Leigh syndrome (Rahman et al., 1996; Koga et al., 2000). In common with
other mtDNA mutations the clinical spectrum associated with the mutation is very
broad. All of the constituent phenotypic features of both MELAS and MIDD are

frequently seen in patients carrying the mutation, but there are a host of other common
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features, both neurological and otherwise, including myopathy and exercise intolerance,
cerebellar ataxia, visual impairment, migraine, cardiomyopathy, and gastro-intestinal
disturbance (Ciafaloni et al., 1992; Majamaa-Voltti et al., 2006; Kaufmann et al., 2011;
de Laat et al., 2012; Nesbitt et al., 2013). Distinct phenotypic characterisation is
problematic; a recent study has reported that although MIDD is the most common
classical phenotype observed in patients, less than half of patients present with a
classical recognised phenotype (Nesbitt et al., 2013).

Stroke-like episodes are a hallmark feature of the MELAS syndrome. Also known as
sudden neurological deficits, these often present with hemiparesis, hemianopsia and/or
cortical blindness (lizuka and Sakai, 2005). Magnetic resonance imaging (MRI) of the
brain after a stroke-like episode usually shows changes in both grey and white matter,
mainly in the occipital and parietal lobes, which strongly resemble infarctions; however,
the distribution is unrelated to vasculature and often shows a progressive spread (Ito et
al., 2011). The pathophysiology is still controversial, with several competing theories as
to the cause of the neurological dysfunction; proposals include mitochondrial
dysfunction in the vasculature, known as the mitochondrial angiopathy theory; a
generalised cytopathic mechanism caused by oxidative phosphorylation deficits in
neurons and glial cells; and a non-ischemic neurovascular cellular mechanism, in which
the stroke-like episodes are caused by neuronal hyper-excitability and an ATP deficit
due to oxidative phosphorylation deficits(lizuka and Sakai, 2005). Diffusion weighted
imaging (DWI) has been used to examine brains of patients after stroke-like episodes
and many early reports showed an elevated apparent diffusion coefficient (ADC), which
contrasts with the reduction seen in ischaemic stroke, and which was consistent with
vasogenic oedema and the mitochondrial angiopathy theory (Yoneda et al., 1999;
Oppenheim et al., 2000; Yonemura et al., 2001; Kolb et al., 2003). However, more
recently patients have been reported to demonstrate a reduced ADC more consistent
with cytotoxic oedema and thus one of the other two other competing theories (Wang et
al., 2003; Karkare et al., 2009; Tzoulis and Bindoff, 2009). Whatever the precise
pathophysiology, the consequences for patients suffering stroke-like episodes are

Severe.

Diabetes mellitus is a second prominent characteristic feature of m.3243A>G; while it
has been found to be associated with a small number of other mtDNA mutations at
higher penetrance than in m.3243A>G, on the whole mitochondrial diabetes is

dominated by the m.3243A>G mutation (Whittaker et al., 2007). Diabetes can be
61



Chapter 4 Disease associated with the mt.3243A->G mutation

divided into two broad classes, type | insulin dependent and type Il non-insulin
dependent. Early studies observed a connection between type 1l diabetes and maternal
transmission, which put mitochondrial DNA under the spotlight (Alcolado and
Alcolado, 1991), and it had also been noted in maternal relatives of MELAS sufferers
(Obermaier-Kusser et al., 1991). Indeed, in the diabetic population as a whole
m.3243A>G is thought to account for 1%-3% of all cases (Gerbitz et al., 1995), and an
even higher proportion of familial diabetes.

Myopathy is a commonly reported phenotypic presentation (Karppa et al., 2005), in
common with many mitochondrial disorders. Cardiomyopathy, long recognised in
advanced cases of MELAS (Hirano and Pavlakis, 1994) is also recognised as prevalent
(Bates et al., 2012a; Bates et al., 2012b), and the pathology has been shown to correlate
with skeletal muscle heteroplasmy (Hollingsworth et al., 2012).

Renal disease is also increasingly recognised as a phenotypic presentation of
m.3243A>G (Damian et al., 1995; Cheong et al., 1999; Guillausseau et al., 2001; Hotta
et al., 2001; Iwasaki et al., 2001; Suzuki et al., 2003; Piccoli et al., 2012; Seidowsky et
al., 2013). Proximal tubular cells have a high mitochondrial content and are frequently
reported as affected in mitochondrial disease patients with Fanconi syndrome like
features (ROtig et al., 1997; Emma et al., 2011), though focal segmental glomerular
sclerosis (FSGS) is reported as specifically related to m.3243A>G (Hotta et al., 2001;
Emmaetal., 2011).

Regarding mortality, cardiac and neurological problems are reported as the most
common cause of early death in m.3243A>G, and reports of sudden death are common
(Majamaa-Voltti et al., 2002; Uusimaa et al., 2007; Vydt et al., 2007; Bates et al.,
2012a).

4.1.2. Genotype-phenotype linkage
Understanding the connection between phenotype and genotype is complicated by

heteroplasmy, as for all mtDNA disease (Wallace, 1992). Section 4.4 will consider in

detail the issue of heteroplasmy in the m.3243A>G mutation.

Early studies on the m.3243A>G mutation suggested that patients with a high mutation
load in muscle present at a young age with a MELAS-like phenotype, whilst those with
lower mutation load present later in life with CPEO, myopathy, and deafness (Chinnery
et al., 1997). Though this is superficially paradoxical, it was suggested that this may be

due to focal accumulation of mutant DNA in myopathic patients as compared to more
62



Chapter 4 Disease associated with the mt.3243A->G mutation

uniform levels of the mutation in MELAS patients (Petruzzella et al., 1994), though this
study was on a small number of patients from only two families. Other studies support
this to an extent, showing that patients with myopathic phenotypes have a high
prevalence of COX negative fibres in muscle but relatively low levels of the mutation
compared to MELAS patients (Moraes et al., 1993; Hammans et al., 1995). However, it
must be considered that in general genotype-phenotype correlation has long been
considered very weak in patients with the m.3243A>G mutation (Kobayashi et al.,
1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou et al., 1994; Morgan-Hughes
et al., 1995; Chinnery et al., 1997).

4.1.3. Pathogenesis
Early in-vitro studies demonstrated that cells harbouring the m.3243A>G mutation (as

well as those with the m.8344A>G mutation) impair oxidative phosphorylation at a
cellular threshold of around 85% heteroplasmy (Chomyn et al., 1991; Kobayashi et al.,
1991; King et al., 1992a). Cells harbouring even higher levels of mutation, around 95%,

have been shown to be more acutely impaired (Dunbar et al., 1996).

Processing of the polycistronic transcript is not affected by the mutation (King et al.,
1992b; Koga et al.,, 1993; Kaufmann et al.,, 1996). However the proportion of
tRNAUYR) that is aminoacylated is reduced (Janssen et al., 1999; Chomyn et al.,
2000; Park et al., 2003), most likely on account of a dramatic 25 fold reduction in the
efficiency of the aminoacylation of the mutant tRNA as compared to wild-type (Park et
al., 2003). Compounding this is the reduced steady state levels of the tRNA species that
has been repeatedly reported (Chomyn et al., 1992; Janssen et al., 1999; Chomyn et al.,
2000; Park et al., 2003). Though the precise nature of the pathogenesis is still under
debate, certain post translational modifications of the tRNA are impaired (Helm et al.,
1999; Yasukawa et al., 2000b), which results in impaired protein translation (Yasukawa
et al., 2000a; Yasukawa et al., 2001).

However, somewhat contradictory is the report that mitochondrial protein translation is
not seriously affected by the mutation even at levels which severely impair cellular
respiration, despite highly reduced aminoacylation of tRNA"'UUR) in these cells;
accelerated protein degradation instead was suggested as the pathogenic mechanism
(Janssen et al., 1999).

Complex I deficiency has been frequently reported in tissue analysis from patients with
m.3243A>G (Goto et al., 1992; Morgan-Hughes et al., 1995) and also in cybrid cell
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analysis (Dunbar et al., 1996). Of all the respiratory chain complexes, complex I
contains the highest proportion of mitochondrial encoded leucine (UUR) residues,
which may explain the selective vulnerability of this complex. It has recently been
demonstrated in induced pluripotent cells (iPSCs) generated from m.3423A>G
fibroblasts that the respiratory chain dysfunction caused by the m.3243A>G mutation is
very much tissue dependent (Hamaéldinen et al., 2013). For instance, a combined
respiratory chain deficiency in the parent fibroblast cells became a specific complex |
deficiency in differentiated neurons, which is consistent with the pathology commonly
reported in m.3243A>G (Moraes et al., 1992). Indeed, this study clearly demonstrated
that Complex | is specifically degraded by sequestration into PTEN-induced putative
kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting that the observed
Complex | defect is potentially a cellular auto-protective response to mitochondrial

dysfunction, perhaps to reduce potentially harmful ROS production.

4.1.4. Sex differences
The prospect of a difference between males and female in the burden of mtDNA disease

(Frank and Hurst, 1996; Frank, 2012) has prompted the study of sex differences in the
m.3243A>G mutation, which is covered in section 4.6.

4.1.5. Therapeutic strategies
There are few therapeutic treatments for patients with m.3243A>G. Studies on the

efficacy of antioxidants and vitamins have failed to demonstrate clear benefit to patients
(Marriage et al., 2003). Treatment with Coenzyme Qio (ubiquinone) and idebenone
(Ihara et al., 1989), an ATP production modulator and antioxidant, is routine and
supported by research (Haefeli et al., 2011). However, these approaches are focused on
amelioration of ROS induced cell damage and do not address the underlying problems

with oxidative phosphorylation.

There are several promising avenues of research into future therapeutics. tRNA import
into mitochondria has been demonstrated to ameliorate respiratory defects in vitro
(Karicheva et al., 2011). Similarly, overexpression of mitochondrial leucyl-tRNA
synthetase (LARS2) has been shown to restore wild-type levels of respiration in cells
harbouring the m.3243A>G mutation (Park et al., 2008). This study showed
dramatically increased steady-state levels of tRNA leucine and mitochondrial
translation products. Interestingly, protein synthesis levels did not exceed those of the
mutant cells without the overexpression, supporting the hypothesis that protein

stabilization is the critical effect. More recently it has been shown that the C-terminus of
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the tRNA synthetase molecule is necessary and sufficient for this effect (Perli et al.),
and that the effect extends to defects from mutations in non-cognate tRNA species
(Hornig-Do et al.). However, translating successful in-vitro therapies to patients is a

currently insurmountable obstacle.
4.2.  Methods

4.2.1. Heteroplasmy quantitation
Heteroplasmy levels are used in many of the analyses in this chapter. Heteroplasmy was

quantitated using pyrosequencing (White et al., 2005), though older samples were
quantitated using last-cycle hot PCR (Moraes et al., 1992). All quantitation was
performed by the NHS Highly Specialised Service for Rare Mitochondrial Disorders in
Newcastle upon Tyne.

4.2.2. Statistical methodology
The statistical methodology employed in each section will be detailed prior to the

presentation of the results in each section.

65



Chapter 4 Disease associated with the mt.3243A->G mutation

4.3. Disease Progression

4.3.1. Introduction
Though many aspects of disease associated with the m.3243A>G mutation are

considered progressive by clinicians, the nature and speed of this progression, and its
relation to predictive factors such as age and heteroplasmy, are poorly understood.
Understanding of likely progression of the disease burden in patients is critical for

clinicians to be able to support and care for patients.

Longitudinal studies are a necessity in understanding disease progression. However,
systematic recording of disease progression in m.3243A>G mutation carriers is poor.
Though there are two recent longitudinal studies of patients with the m.3243A>G
mutation (Majamaa-Voltti et al., 2006; Kaufmann et al., 2011), the follow-up period for
each study (three and four years respectively) was limited. Additionally, neither study
considered predictive factors such as heteroplasmy and age. Several other recent studies
have either examined in detail the clinical phenotype of patients (Nesbitt et al., 2013) or
examined the correlation between disease burden and heteroplasmy (Whittaker et al.,
2009; de Laat et al., 2012; Liu et al., 2013) but without looking at progression or

accounting for age.

It has long been thought that clinical variability is at least in part due to heteroplasmy
(Ciafaloni et al., 1991; Damian et al., 1995), though association between heteroplasmy
and clinical presentation in patients harbouring the m.3243A>G mutation have proved
to be weak (Kobayashi et al., 1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou
et al., 1994; Chinnery et al., 1997). However, recent studies have found that urine
heteroplasmy correlates better with the severity of clinical features than other sources
such as hair follicles, buccal mucosa, blood, and even muscle (Ma et al., 2009;
Whittaker et al., 2009; de Laat et al., 2012). Additionally, urine heteroplasmy is
reported as stable over time (Blackwood et al., 2010), and is currently widely accepted
as the most suitable non-invasive measure of heteroplasmy (Whittaker et al., 2009; de
Laat et al., 2012).

4.3.2. Aims
Improved understanding of the disease progression is critical both for clinicians caring

for patients and for patients themselves, particularly regarding clinical management and
planning of health and social care. To this end, I aim to utilise the MRC Mitochondrial

Disease Patient Cohort, which contains a large sub-cohort of patients with the
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m.3243A>G mutation, to ascertain the progressiveness of disease associated with this
mtDNA mutation, and to quantify the correlation between disease burden and predictive
factors of age, urine heteroplasmy, and familial lineage.

I will use longitudinal mixed modelling to understand the progression of overall disease
burden (as measured by total NMDAS score), and multiple logistic regression to
examine the relationship between specific phenotypic features (measured by individual

NMDAS questions) and the predictive factors of age and heteroplasmy.

As intra-familial clustering of symptoms has been reported (Hammans et al., 1995) |
will also look at the significance of familial lineage on disease progression.

All modelling in this section uses heteroplasmy measured in the urinary sediment.

4.3.3. Cohort summary
4.3.3.1. Age and heteroplasmy

For modelling disease progression, all patients with both NMDAS data and urine
heteroplasmy have been included. Of the 152 total patients with NMDAS data and urine
heteroplasmy, 95 are female. One male patient was excluded due to renal transplant, and
one further male and four female patients were excluded due to insufficiently complete
NMDAS assessments (only those with at least 26 of 29 questions completed were used).
Thus the final cohort consisted of 91 females and 55 males, 146 patients in total.

The age and heteroplasmy profile of the cohort are shown in Figure 4.1, along with the
number of assessments per patient. The median age of the cohort is 42 years, the
youngest patient is 16 years old and the oldest 73 years old. The median heteroplasmy
level is 57%, and the range extends from only just detectable (0.1%) to 99%. The
median number of assessments is 3 per patient, with a maximum of 15. The clinical and

molecular characteristics for the cohort can be found in Appendix IlI.
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Figure 4.1 The distribution of urine heteroplasmy, age, and number of assessments in the cohort.

The cohort comprises 148 patients. (A) The distribution of urine heteroplasmy in our cohort. The median
is 57%, with lower and upper quartiles of 38% and 76%. The distribution is skewed, with a long tail in
the low heteroplasmy range. (B) The distribution of age in our cohort. The median age is 42, range 17-73.
(C) Number of NMDAS assessments per patient. The median is 3 assessments, 90" percentile is 10

assessments.

4.3.3.2. Phenotypic spectrum

The phenotypic overview of the cohort is depicted in Figure 4.2. The most common
features at any severity are deafness and exercise intolerance, followed by Gl
dysfunction, psychiatric disturbance and ataxia. For scores of 2 or above (panel B),
deafness and GI dysfunction and are both prevalent at over 60%. Additionally, from the
current function section of the NMDAS, exercise tolerance and gait stability stand out
as prevalent at over 40%. From the symptoms (section Il) psychiatric disturbance,
migraine, and diabetes have a prevalence of at least 40%. Seizures affect around 22% of
patients, stroke-like episodes 17% and encephalopathic episodes 18%. In section Il of
the NMDAS (clinical signs) myopathy and cerebellar ataxia most prevalent, with
cognitive impairment also relatively common. Ptosis affects 20% of patients and CPEO
16%.

4.3.3.3. Common phenotypic features distribution with age

Figure 4.3 illustrates the proportion of patients in each age group that have the given
phenotypic features (defined as scoring 2 or above in the NMDAS). Deafness has
increasing incidence with age, as does CPEO, which only substantially affects the oldest
patients in the cohort. Ataxia affects a proportion of the youngest patients, and a steady
proportion of those aged over 45. Stroke and seizure are rare but do not appear linked

with age, though both are absent in the patients over 60.

68



Chapter 4 Disease associated with the mt.3243A->G mutation

80

Frequency %
3

Y /774

YA

RS A
RS rrrzzA: ]

VA

A

N
B

A7 Bl L
S

SN

Y7771}

WSNNNAN p
BOSOOOY']
SSANNANAAS
DSOS
ASMANNNY
NSSSSSSS

A3 /7 BRAR

J
=
e
3
=
)
=
=a
3
-
=

b@%bq'% QC! Q‘:‘J'OQ ‘,\\ﬁ %\%Q)O &,@ .

SN SRS R 2 >
QY090 ﬁ.. N0 R ¢ ~Q X o8 > S
Q\ O O Q > D X D7 xO Oy
~2»° %Q°\° R \é G @Q%ZQ%O GOCHCE O‘;ﬂ%‘ﬁ"%&&g@\@q&&
S Q{b %@ Qq, . O&%&X\ .\&i éz\é\btoé‘&% S{? 4 & o{\@ %‘0@\ < \b‘:& -
S ; . N
&0 &Y GRS & & S
Q’ sQ '6 QQJQ ’b'% ﬁ Q rb,Q 00
Qé ‘OQ &8 © &
&
C 90+ i
80 [
70
60
504 M
X 30- - 1o
s ~ =
: =
£20 = 3
= 4
5
104 .
0- T 1 o =.=,.-.-l

O ~d S

¥ v Q
Figure 4.2 Phenotypic characterisation of the cohort.

%

(A-B). Profile of phenotypic symptoms from the cohort. For each patient, the maximum score in any
NMDAS assessment for each NMDAS question is calculated. A is a stacked bar chart of the frequencies
of each score (the proportion of the 146 patients that reach or exceed the given score); B summarises the
frequencies for patients with moderate or severe symptoms (scoring 2 and above). The most common
symptoms at moderate to severe level in our cohort are hearing loss and Gl disturbance, followed by gait
instability, exercise intolerance and psychiatric disturbance. Seizures and stroke affect 15%-20% of
patients. (C) NMDAS score profile for four significant phenotypic characteristics of patients with the

m.3243A>G mutation. Scores range in each case from no symptoms (0) to severe impairment (5).
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Figure 4.3 Proportion of patients in each age group with particular phenotypic characteristics.

For each feature, N indicates the total number of patients scoring 2 or above. Each bar shows the

proportion of patients in that age group scoring 2 or above (the number of patients in each age group can

be found in Figure 4.1B). The presentation of most phenotypic features is fairly constant across age

groups, including stroke and seizures, which may have been expected to peak in frequency in younger

patients; though stroke and seizure are notable absent in the 60+ age groups. Deafness is generally

increasing in incidence with age; incidence of diabetes peaks around 55-60 and decline thereafter. CPEO

is more common in older patients.
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4.3.4. Total disease burden
4.3.4.1. Introduction

My examination of total disease burden is done in two parts. The first uses a single
summary NMDAS score for each patient to get an understanding of how disease burden
and predictors are related. | look at the relationship of urine heteroplasmy, age and

disease burden.

In the second part | use repeated measures mixed modelling to model disease
progression over time. | used urine heteroplasmy and age as predictors in this model. As
inter-family clustering of disease phenotype and severity has been noted (Hammans et
al., 1995), | also introduce familial lineage as a predictor to evaluate the predictive
effect.

4.3.4.2. Methods

The general methods for basic statistical analyses are described in section 2.11.1.1.

Longitudinal modelling is conducted as described in section 2.11.1.2. Appendix IV
contains the SAS code to generate the model.

Each analysis uses the largest cohort of patients available with the appropriate

predictors.

4.3.4.2.1. Familial lineage

To incorporate the family lineage into the longitudinal modelling, | divided the cohort
into two groups; those with other family members in the cohort (familial) and those
without other family members (non-familial). The repeated measures statement used
this grouping to define the covariance structure of the data. To avoid over-

parameterisation, familial lineage was introduced as a random effect.

4.3.4.2.2. Early-onset

To investigate whether patients with early-onset had significantly different disease
progression from other patients, a flag was introduced to identify these patients. Early-
onset was defined as any NMDAS assessment on record under the age of twenty-five
that scored above a nominally low value of 3.

Longitudinal mixed modelling used this as a grouping for defining the covariance
structure of the data. Models incorporating both family and early-onset used both of
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these groups to define the covariance structure, i.e. in four groups (early-familial, early-

non-familial, late-familial, late-non-familial).

4.3.4.3. Results
4.3.4.3.1. NMDAS score is predicted by age and heteroplasmy

Multiple linear regression was used to investigate the relationship between total disease
burden and the predictors of age and urine heteroplasmy. Box-Cox analysis identified
the fourth root of the NMDAS (NMDAS®?) as the optimal transformation, and this
transformed variable was used as the dependent variable in all analyses.

Table 4.1 lists the P-values for each effect and overall R? for the model; standardized
coefficients are also shown for analyses with multiple continuous predictors. Though
heteroplasmy (P = 0.0063) and age (P = 0.0030) are both significant predictors of total
disease burden, R? is extremely low for each predictor (5.1% and 6.0% respectively).
Using multiple linear regression with both predictors, adjusted R? increases to 17.6%,
and both predictors are highly significant (P < 0.0001). Diagnostic plots for the

regression are shown in Figure 4.4.

Model N Heteroplasmy Age R>  Adjusted
Predictors R?
Age 146 n/a 0.0030 6.0% 6.0%
Heteroplasmy 146 P =0.0063 n/a 5.1% 5.1%
Age and 146 P <0.0001 P <0.0001 18.6% 17.6%
Heteroplasmy b=037 b=0.40

Table 4.1 Proportion of variability in total disease burden (as measured by NMDAS score)
explained by predictive factors.
P values are shown for each predictive factor, and standardised parameters where all predictors are

continuous. Age and heteroplasmy together explain 17.6% of the variance in NMDAS score.
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Figure 4.4 Model fit diagnostics for the multiple regression of age and hetereoplasmy on scaled

NMDAS score.

The residuals are normally distributed and there are no highly influential points. There are no observable
trends between the residuals and either the predicted value of the model or the two predictors of age and
heteroplasmy. There is evidence of heteroscedacity in the model; the extreme residuals are only found in

the youngest part of the cohort. The White test (White, 1980) identifies this as non-significant (P =

0.0554).

4.3.4.3.2.

A preliminary longitudinal model using age and urine heteroplasmy as predictors was
created and the fit of the model examined in detail. The residuals of the model were
analysed in two ways; the distribution of the total set of studentised residuals (N=606),

for a general understanding of model fit, and also the average studentised residuals for
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each patient (N=146), to ensure independence of the data since there is intra-patient

correlation of the residuals.

Figure 4.5 (left panel) illustrates that the model is somewhat ill fitting; there is a cluster
of data points with high residuals that do not adequately fit the model. Though the
average studentised residuals are independent of heteroplasmy (P = 0.7176, r = 0.02)
and age (P = 0.3427, r = -.0.08), they residuals did show a significant relationship with
the predicted value of the model (P = 0.0012, r = -0.26) as seen in Figure 4.11.

Scrutiny of the data indicated that the patients that were not well described by the model
were young and with heavy disease burden. To better model these patients, a further
predictor was added into the model to identify early-onset patients, defined as those
under twenty five with non-trivial NMDAS scores. This flag dichotomises the cohort
into two groups, early-onset (N = 28) and late-onset (N = 118). Figure 4.5 (right panel)
illustrates the residuals of the model with this new parameter included; they are now
well formed and normally distributed. Analysis of the average studentised residuals
found they were now uncorrelated with the predicted value (P = 0.3636, r = -0.08),
heteroplasmy (P = 0.5565, r = 0.05) and age (P = 0.4469, r = 0.07). Additionally, the
AIC for the model dropped from 18.5 to -57.2 indicating a significant improvement in
the model fit.

All three parameters (time, heteroplasmy, and early-onset) are highly significant (P <
0.0001).

Covariance parameters for the model are found in Table 4.2. The model includes
separate residual variances for the early- and late-onset patients, i.e. residual variance is
grouped according to this parameter. If the variance is not modelled separately, AIC of
the model is -34.2, as compared to -57.2, indicating that allowing separate residual

variances improves the model.
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Figure 4.5 Residual diagnostics for models with and without early-onset indicator variable.

(Left) Residuals for the model without early-onset predictor. The residuals are non-Gaussian, indicating
an underlying non-random error in the model specification. The cluster of points in the top left of the
diagram have high residual error and low predicted mean; these correspond to early-onset patients with
severe disease burden. (Right) The same model with early-onset predictor. The residuals are now

balanced and normally distributed.

4=

Average Studentised Residual

Predicted Value
Figure 4.6 Average studentised residuals vs. predicted model value for a linear mixed model with

age and urine heteroplasmy as predictors.
The graph shows that the residuals are correlated with the predicted value (P = 0.0012, r = -0.26). This
indicates the model is not a good representation of the underlying data structure. The cluster of points in

the top left of the graph is particularly problematic, as they are very poorly fitted by the model.
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Group Spatial Power Residual Variance
Time 0.000083
Late-onset 0.9783 0.02352
Early-onset 0.9998 0.1915

Table 4.2 Covariance parameters for the longitudinal mixed model.
The residual variance of the early-onset group is far greater than that of the late-onset group; this is a

reflection of the more erratic scores from patients in the early-onset group.

4.3.4.3.3. Longitudinal modelling of disease progression

Figure 4.7 illustrates the actual NMDAS scores for each patient in the cohort, grouped
by the heteroplasmy quartiles, which demonstrates the variability in disease burden for
patients with similar levels of heteroplasmy.

Figure 4.8 illustrates the longitudinal modelling of total disease burden in patients with
the m.3243A>G mutation. Both heteroplasmy and age are highly significant predictors
(P <0.0001). The graph shows predicted progression for a nominal patient with selected

heteroplasmy levels, with 95% confidence intervals.

Figure 4.9 depicts the actual and predicted progression of total disease burden for
several patients with comparable heteroplasmy levels. The median (60%) and a high

(90%) level of heteroplasmy have been utilised for illustration purposes.
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Figure 4.7 Actual NMDAS scores for each patient in the cohort.
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Figure 4.8 Longitudinal modelling of total disease burden.
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Figure 4.9 Examples of individual patient predicted progression.

Predicted and actual progression for a selection of patients with approximately 90% (A) and 60% (B)
heteroplasmy. Actual assessment scores are depicted as crosses joined by solid lines. Dotted lines with
shaded 95% confidence intervals denote predicted progression for each patient. These patients illustrate
the huge variability of disease burden progression for patients with similar heteroplasmy levels of the
m.3243A>G mutation. The only early-onset patients are patient A and B in panel A; the confidence
intervals for their progression are much wider than the other patients, indicative of the higher variability

for early-onset patients.
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4.3.4.3.4. Familial lineage is predictive of disease progression

With mixed modelling familial lineage can be introduced into the model as a random
effect, allowing the effect of family to be represented with a single parameter that

represents the variability of the family lineage.

A number of models with family as a random effect were investigated. The models
investigated all included early-onset as a fixed effect, and various forms of the residual

covariance were investigated to find the optimal representation.

Table 4.3 illustrates the evaluation of model fit. The fall in the AIC with the inclusion of
family as a random effect indicates the model is improved; this is shown to be
significant by the likelihood ratio test (P = 0.0343).

Figure 4.10 shows an example the intra-familial clustering. The graph shows two
familial lineages with sharply different total disease burden progression rates. The
average progression rates for all families with multiple members in the cohort (N = 36)

are show in Figure 4.11.

Repeated measures groups

Early-onset * familial Early-onset Familial

Random Patient -80.5 -57.2 -52.8
effects  Family NC 78.9 725
Patient & family -89.2 -65.6 -64

Table 4.3 Investigation of optimal model with family as a random effect.

AIC is shown for each model. NC indicates non-convergence of the model. The familial grouping for the
repeated measures allows the variance of familial patients (those with other maternal relatives in the
cohort) and non-familial (those with no maternal relatives in the cohort) to be modelled separately. The
early-onset repeated measures group allows the variance of early-onset and late-onset patients to be
separately estimated. An improvement in the AIC indicates that these extra parameters improve the
model. The optimal model includes both patient and family as random effects, as this has the lowest AIC.

The repeated measures grouping is the interaction of early-onset and family.
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Figure 4.10 Intra-familial clustering of total disease burden progression.

The predicted progression for members of two different families are shown. Actual assessment scores for
individual patients are shown as crosses joined by solid lines, patients are labelled with their
heteroplasmy level. Predicted progression for individual patients are shown as dotted lines. The predicted
progression for a nominal patient from each family with 60% heteroplasmy is shown as a heavy dashed
line. The family depicted in red has slower disease progression than the family in blue.
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Figure 4.11 Predicted progression for a nominal patient with 60% heteroplasmy for each family in

the cohort.
Heteroplasmy (P < 0.0001), age (P < 0.0001), and family (P = 0.0003) are all highly significant

predictors.
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4.3.4.4. Total disease burden discussion

The phenotypic variability associated with the m.3243A>G mutation has been
frequently remarked upon (Hammans et al., 1995; Chinnery et al., 1997; Kaufmann et
al., 2011; de Laat et al., 2012; Nesbitt et al., 2013) and is well recognised by clinicians,
however little attempt has been made to quantify this variability. The NMDAS scale
allows such quantification to be made. | have shown that age and the urine
heteroplasmy level together account for only around 18% of the variance in total disease
burden, which is noticeably low, but resonates with anecdotal evidence from clinicians
on the variability of disease in patients with the m.3243A>G mutation, as well as
previous studies that have noted the weak association between heteroplasmy and
phenotype (Kobayashi et al., 1992; Martinuzzi et al., 1992; Shiraiwa et al., 1993; Liou
et al., 1994; Chinnery et al., 1997). It is a clear that there is a vast amount of variation
in disease burden that is unexplained by the predictors currently available in this

analysis.

The detailed diagnostic examination of the model is cumbersome but gives reassurance
about several key points. Firstly, there are no observable trends between the residuals
and the predicted value, or the predictors. This is an important validation of the
transformation used (NMDAS®?®) and reassurance that no further transformation of the
predictors are required. Secondly, the spread of the data is even; there are no highly
influential points at either high or low heteroplasmy or age. This gives confidence in the
interpretation of the R?, as this can be strongly affected by influential data points. This
reassurance about the shape and composition of the data set is important, not just for the
basic modelling using single summary data points, but also for the longitudinal

modelling.

The heteroscedacity of the residuals in the basic modelling with respect to age needs to
be noted, however it is not unexpected. Patients in their early twenties or younger have
a hugely varied disease burden, including severe burden associated with MELAS
associated stroke-like episodes, but also much milder presentation, and there are a
number of more or less asymptomatic children who are known to have inherited
m.3243A>G from affected mothers who contribute to this variation. It is important to
note that these basic statistical analyses are conducted to gain an overview of the
relationship between the predictors and total disease burden; longitudinal mixed
modelling allows modelling any heteroscedacity inherent in the system, and indeed, the
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covariance parameters from the longitudinal models indicate that this heteroscedacity is

incorporated.

The longitudinal modelling graphically illustrates two key points in this regard. Firstly,
the unexplained variance is noticeably large; though both m.3243A>G heteroplasmy
and age are highly significant predictors of total disease burden, the confidence intervals
for progression of a nominal patient at a given heteroplasmy level are wide. Secondly,
the predictive power of the family lineage is clearly illustrated, which concurs with
previously reported observation (Hammans et al., 1995), and suggests that a reasonable
proportion of this unexplained variance can be explained by a combination of genetic
factors of either nuclear or mtDNA origin, though environmental or other epi-genetic
modulatory factors cannot be disregarded. Indeed, the nuclear genetic background has
previously been shown in vitro to impact on m.3243A>G phenotypic expression
(Dunbar et al., 1995).

At an individual patient level, the power of longitudinal mixed modelling is well
demonstrated by the graphical outputs shown in Figure 4.9; the introduction of random
effects into the model demonstrates that individual patient progression can be modelled
in spite of the wide confidence intervals observed using heteroplasmy and age as fixed
effects. This modelling is critical in understanding the expected disease progression of

individual patients.

The development of the longitudinal model demonstrates important points. Firstly, the
model is ill-specified without accounting for a distinct group of early-onset patients.
This division must be included in the model as a predictor (the early-onset flag); the
residuals of the model clearly show that the model misrepresents the underlying data
structure. There are some limitations in this approach. Firstly, the definition of early-
onset relies on an arbitrary cut-off, which | set at the age of twenty-five. This cut-off
point was derived on preliminary observation of the dataset that indicated poor model fit
for a large number of patients under this boundary. However, | investigated models with
lower and higher cut-offs and twenty five was more or less optimal for this data set.
Secondly, it is a potential limitation of the methodology that inclusion within the early-
onset group is contingent on having an NMDAS assessment under this age; it is feasible
that there are patients within the cohort that were symptomatic before the age of twenty-
five but not seen in the Newcastle clinic until over this age. However, despite both of

these caveats, the inclusion of this predictor in the model comprehensively resolved
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issues regarding the fit of the model, which is indicative of the success of the
methodology. It might be argued that dividing the cohort by age is superfluous, since
age is already included in the model as a predictor. However, it is critical to note that
both age and the early-onset predictor are simultaneously predictive in the model, and

thus the predictor has been shown to be empirically valuable.

An imperative to understanding m.3243A>G disease is to deepen understanding of the
pathological mechanisms that cause variability in phenotypic expression, and early-
onset of symptoms is a fundamental facet of this variability. It is clear from this
modelling that heteroplasmy alone is not an adequate descriptor of the underlying
pathology. There are several potential areas for further exploration of this, which will be
discussed in the discussion on general disease progression in m.3243A>G in section
4.3.6.

4.3.5. Individual phenotypic features
4.35.1. Introduction

An understanding of the expected development of specific phenotypic features is of

vital import to clinicians in care and management of patients.

As a semi-quantitative assessment scale, the NMDAS enables modelling of phenotypic
features. As discussed in section 2.8, logistic regression is necessary to model discrete
data such as individual NMDAS question scores. However, longitudinal modelling of
discrete data is considerably less flexible as compared to continuous or pseudo-
continuous data such as the overall NMDAS score, and thus the approach | take is

constrained by the tools available to analyse the data.

There are prior studies that have considered the appearance of specific phenotypic
features and the correlation with heteroplasmy (Chinnery et al., 1997; Liu et al., 2013).
However, though both acknowledged age as a potential confounding factor, neither
study incorporated age into their analysis. Since many features of mitochondrial disease

are considered progressive this is a significant limitation.

4.35.2. Aims

My aim in this section is to use multiple logistic regression to study the relationship
between individual phenotypic features and the predictive factors of age and urine
heteroplasmy. | aim to distinguish which features are correlated with either one of these

predictors or both.
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I also will compare the multiple regression models with the simple logistic regression
models with a single predictor of either age or heteroplasmy, to better understand the
relationship between these predictors and each phenotypic feature.

4.3.5.3. Methods

The general methodology for logistic regression is explained in section 2.8.

| used two approaches to logistic regression. Both used the predictors of age and urine
heteroplasmy. For each NMDAS question, a single summary score was determined for
each patient by taking the maximum score achieved on each question and the age at

which that score was first recorded.

The first approach used binary (dichotomous) logistic regression by identifying the
optimal cut-off point for each NMDAS question to divide the cohort into two groups.
To identify the optimal cut-off point the area under the ROC curve (AUC) was
maximized. This was done separately for each individual predictor and for the model
with both predictors, to allow a full understanding of the use of each predictor. Only
cut-off points that partitioned the data into sets containing at least 10 patients in each
group were considered to avoid small numbers of patients skewing the results. The code

for this model can be found in Appendix V.

The second approach used a proportional odds multiple logistic regression. NMDAS
scores were re-categorised as asymptomatic (NMDAS = 0), moderate (1-3), and severe
(4-5). This re-categorisation was necessary for a majority of phenotypic features for the
model to conform to the proportional odds assumption. Pseudo-R? values, as described
in 2.8.2, were used to compare models. The code for this model can be found in
Appendix VI.

In both approaches, standardised parameters for the predictors were calculated.
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4.3.5.4. Results
4.3.54.1. Binary logistic regression

Using a model with age and urine heteroplasmy as predictors, the area under the ROC
(AUC) curve was calculated for each phenotypic feature at each dichotomous cut-off
point that had at least 10 patients in each group (below the cut-off point, and above or
including the cut-off point). The AUCs for each cut-off point are shown in Figure 4.12.
The higher the AUC the better the predictive power of the model. Steep gradients or
inflections in the graphs indicate instability in the predictability of the features, i.e.
prediction success is heavily dependent on where the cut-off is drawn. Hearing and
cerebellar ataxia are the only two features to achieve an AUC over 0.8, however
diabetes scores very close to 0.8. Hearing and diabetes are consistently good predictors
at almost any cut-off level, and several other features are consistent across the board,
albeit with less predictive power, including cognitive impairment, migraine, and

encephalopathic episodes. Gl disturbance is poorly predicted at any cut-off point.

Using the optimal cut-off for each NMDAS feature, models were generated using each
predictor in isolation and both predictors together. The results are shown in Figure 4.14.
As seen in panel C, the model with both predictors is the optimal model in almost all
cases, other than Gl disturbance, where the model with age alone was marginally better.
Age is a better predictor than heteroplasmy for 17 of the 28 features. Migraine is the

only features negatively associated with age, though not significantly so.
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Figure 4.12 Area under the ROC curve (AUC) for each phenotypic feature and various score cut-off points with all three predictors in the model (age, heteroplasmy, and

deletion size).

The cut-off score is used to divide the cohort into two groups; those scoring the cut-off or above versus those scoring below. For each feature, the cut-offs tested were those with a

minimum of 10 patients in each group. Only hearing and cerebellar ataxia achieve an AUC of 0.8 at any cut-off, though diabetes scores close to 0.8 at almost all cut-off points. Gl

disturbance is notably poor at all cut-offs.
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Figure 4.13 Standardised parameters and area under ROC curves (AUC) for each phenotypic
feature from the NMDAS using age and urine heteroplasmy as predictors.

(A) Optimal cut-off point for each NMDAS feature, by maximizing AUC for the model with all three
predictors. Cohort is dichotomised into those scoring the cut-off or above against those scoring below the
cut-off. (B) Standardised parameters with 95% confidence intervals for the binary logistic model using
the optimal cut-off with all three predictors. Parameters are statistically significant if the confidence
interval does not cross the line at Y = 1. (C) The AUC using the optimal cut-off for each lone predictor
and both predictors together. Hearing and ataxia score above 0.8, indicating strong predictive power.
Diabetes achieves close to 0.8. In all cases, the regression with both predictors is optimal. Only migraine
is (non-significantly) negatively associated with age. Twenty-five of 28 features are significantly
associated with heteroplasmy, 20 of 28 with age. Gl disturbance is very poorly predicted, but several

other features have AUC values under 0.7, including cutting food, psychiatric disturbance, migraine, and

seizures.
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4.3.5.4.2. Phenotypic features predicted by age and heteroplasmy using
multilevel ordered logistic regression

For multilevel-ordered logistic regression the odds ratios are presented; odds ratios
relate to decades, i.e. a 10% change in heteroplasmy or 10 years for age. For example,
the odds of having unaffected hearing decreases by a factor of 0.63 for each 10%
change in heteroplasmy or by a factor of 0.42 for each decade of ageing. Calculation of
the actual risk requires intercepts . The odds ratios for both age and heteroplasmy for the
features in the NMDAS assessment are shown in Figure 4.14 as well as standardised
parameters which allow comparison of the relative utility of age and heteroplasmy as
predictors. Additionally, Appendix VII details all parameters required for risk
calculation, including intercepts, and Appendix VIII is an explanation of how to

calculate the risk for a given age and heteroplasmy with these parameters.

All features excepting gastro-intestinal disturbance, visual acuity, and ptosis were
predictable by heteroplasmy. Several key features of classical m.3243A>G phenotypic
presentation, including stroke-like episodes, seizures, and migraine, were not

predictable by age.

Logistic models using a single predictor (age or urine heteroplasmy) were also
generated, and compared with the multiple regression model containing both predictors,
using the pseudo-R?. To interpret the results of this comparison, an R? inflation factor
was calculated, defined as the multiple regression R? divided by the sum of the
individual R? values for the two simple regression models. An R? value over 1 indicates
that the regression with the two predictors in the same model is more explanatory than
the individual models. This is graphically illustrated in Figure 4.15, which shows both
the R? inflation factor and the individual pseudo-R? values for each feature from the
NMDAS. Almost all features are explained better by multiple regression. Most features
from the current clinical assessment (section I) are substantially better predicted by both
predictors together. There are no features that are significantly predicted by both age
and heteroplasmy that have an inflation factor of 1 or below. The models for several
features that are explained by only one of the predictors, for example migraine or
seizures, are not improved by the inclusion of the second predictor. Figure 4.16
illustrates the change in P-value of each predictor when moving from simple logistic
regression to multiple regression with both age and heteroplasmy as predictors. Several
features are only significantly predicted by both age and heteroplasmy when both are

included in the model together; cardiovascular dysfunction, ataxia, diabetes, exercise
89



Chapter 4 Disease associated with the mt.3243A->G mutation

intolerance, and neuropathy are not predicted by heteroplasmy unless age is included in
the model; and cognition, dysphonia, pyramidal features, and speech are not predicted

by age unless heteroplasmy is also in the model.
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Figure 4.14 Risk of developing specific symptoms as predicted by age and heteroplasmy.

Standardised parameters (top) and odds ratios with 95% confidence intervals (bottom). Intervals crossing
the line with odds ratio of 1 or standardised coefficient of O are not statistically significant. See the text
for model development methodology. Phenotypic features are divided into the three sections of the
NMDAS assessment. Ataxia, hearing, diabetes, and myopathy are the most predictive by heteroplasmy.
Most features are predicted by heteroplasmy, other than Gl disturbance, visual acuity, and ptosis, though
both of the latter two are only just beyond statistical significance. Several features are not well predicted
by age, all in the symptoms section of the NMDAS other than extrapyramidal features, though these are
very rare in the cohort. Gl disturbance is the only feature neither predicted by age nor heteroplasmy.
Comparison of the standardised coefficients shows that age is a stronger predictor than heteroplasmy for

17 of the 28 features of the NMDAS.
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Figure 4.15 Pseudo-R? values for logistic regression with age, heteroplasmy, and both predictive
factors, and R? inflation factors.

An R? inflation factor greater than 1 indicates that both predictive factors together are more predictive
than the predictive factors in isolation. Only migraine, seizures, and GI disturbance are not predicted
better by multiple regression. Hearing, CPEO, and pyramidal features are most improved by multiple

regression.
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Figure 4.16 Improvement in statistical significance of predictors using multiple logistic regression
rather than simple logistic regression.

Graph illustrates how the P-value for each predictor is affected when moving from simple logistic
regression (horizontal bar) to multiple regression (symbol). The solid horizontal line is drawn at P = 0.05,
indicating statistical significance. Almost all features show improvement in significance with multiple
regression, most notably hearing, ataxia, diabetes, and myopathy. Heteroplasmy is not a significant
predictor of several features including ataxia, neuropathy, and diabetes, unless multiple regression is used.

4.3.5.4.3. Risk profiles of deafness with age and heteroplasmy

I have chosen hearing to illustrate the outputs of the logistic regression model. The
changing risk of deafness associated with age and heteroplasmy is depicted in Figure
4.17. Both age and heteroplasmy are highly significant predictors of deafness (P <
0.0001). At a given age, the risk of moderate or severe deafness increases as
heteroplasmy increases; and conversely, at a given heteroplasmy the risk of more severe
deafness increases with age.
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Figure 4.17 Risk of deafness and its relationship to age and heteroplasmy.

Each panel indicates the changing risk profile for one of the predictors (age or heteroplasmy) whilst the
other is fixed at a determined value. (A-C) Changing risk of deafness with age for patients with 20%,
60%, or 80% heteroplasmy. (D-F) Impact of heteroplasmy on the risk of deafness for patients aged 20. At
age 60, with 50% heteroplasmy, there is an approximately equal probability of moderate or severe

deafness and a small probability of being asymptomatic.

4.3.5.4.4. Risk profile of principal phenotypic features

Risk profiles for a selection of other phenotypic features are shown in Figure 4.18. Each
graph is shown with one predictive factor (heteroplasmy or age) fixed at an arbitrary
value, for illustrative purposes. Both age and heteroplasmy are highly significant
predictors for deafness (P < 0.0001). For stroke, heteroplasmy is predictive (P=0.0044)
but age is not (P = 0.1078). Heteroplasmy is a significant predictor of cerebellar ataxia
(P = 0.0003) and diabetes (P = 0.0026), and age is a highly significant predictor of both
(P < 0.0001).
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Figure 4.18 Risk profiles for four key phenotypic features of the m.3243A>G mutation.
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4.3.5.4.5. Interaction of Heteroplasmy and Age

To examine whether there is an interaction between heteroplasmy and age in the model
(i.e. the effect of heteroplasmy being different at different ages, or the effect of age
being different depending on heteroplasmy) the interaction term was introduced into the
model. The parameters estimates for the interaction term in the model are depicted in
Figure 4.19. Out of twenty-eight features the interaction was only significant for
diabetes (P = 0.0025) and cognitive impairment (P = 0.0357). The interaction for
diabetes showed that the effect of either predictor is stronger at higher levels of the
other predictor, i.e. a multiplicative effect. For cognition, the effect was reversed, i.e.

heteroplasmy is a stronger predictor at a young age than at an older age.
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Figure 4.19 Age/heteroplasmy interaction in the logistic regression model.

Parameter estimate and 95% confidence interval are shown for each NMDAS feature. A confidence
interval crossing zero is not statistically significant. Only diabetes (P = 0.0025) and cognitive impairment
(P = 0.0357) have the interaction as a significant term. The negative estimate for diabetes indicates that
the effect of heteroplasmy is increased as age increases, and similarly the effect of age is more profound
at higher heteroplasmy. The positive estimate for cognitive impairment indicates that the effect of

heteroplasmy is lessened as age increases.

4.3.5.5. Individual phenotypic features discussion

It has previously been suggested that heteroplasmy is a critical determinant of disease
phenotype and not age (Chinnery et al., 1997). However, comparing standardised
coefficients of regression age is a better predictor for 17 out of the 28 measures reported
by the NMDAS. This is an important characterisation of the disease progression in
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m.3243A>G that has not been comprehensively considered in the literature of
m.3243A>G disease to date.

There are several interesting observations to be made from the modelling of specific
phenotypic features. Firstly, certain critical features associated with m.3243A>G,
including stroke-like episodes, seizures, and migraine, are not significantly associated
with age, but are predicted by the urine heteroplasmy level. For the former two
symptoms the lack of association with age is apparent from the graphs of symptoms by
age group in Figure 4.3; both phenotypic features are present throughout the age range
of patients. Migraine, on the other hand, is negatively associated with age, though non-
significantly; however, this concurs with reports in the literature of declining
susceptibility to migraine with age (Dahlof et al., 2009). Secondly, deafness and ataxia
are the most highly correlated with age and heteroplasmy, suggesting that these features
are particularly degenerative in nature. Thirdly, though gastro-intestinal dysfunction is
prevalent, the severity is predicted neither by age nor heteroplasmy. The reasons for this

are unclear.

Two previous studies have reported that some features of m.3243A>G disease are
negatively correlated with heteroplasmy, namely myopathy, CPEO, and deafness in a
study by our own group (Chinnery et al., 1997), and deafness and diabetes in another
(Liu et al., 2013). In this study, I find to the contrary that these features are all directly
correlated with heteroplasmy. However the prior studies did not incorporate age as a
predictive factor, which was indeed acknowledged as a concern by both studies and |
believe to be a critical omission, as demonstrated by the results from multilevel logistic
regression models with only one predictor (age or urine heteroplasmy). For example, if |
exclude age as a predictor in the modelling, heteroplasmy is not predictive of many
common phenotypic features including diabetes, deafness, and cerebellar ataxia. The
apparently paradoxical findings of these two previous studies clearly indicate the

necessity of taking into account confounding factors such as age.

The motivation for examining the interaction between heteroplasmy and age is that it
might be expected that some features would show a different relationship with
heteroplasmy for different age groups, or that the progressiveness of the features in time
would be modulated by heteroplasmy. The results from this section showed that the
interaction is only significant in two features, diabetes mellitus and cognitive

impairment. However, the most useful finding of this analysis is that no highly
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significant interactions were found, which may have undermined the findings of the

model without interaction terms.

Deafness is the most prominent symptom in this cohort; although only around 12% of
patients suffer from complete deafness, 75% of patients have some form of hearing loss.
It is also the symptom most predictable using heteroplasmy and age. It should be
observed that prevalence does not go hand in hand with predictability; gastro-intestinal
disturbance is almost as prevalent yet not predictable by either age or heteroplasmy.
Deafness is so common in m.3243A>G patients that it has been suggested as a critical
diagnostic criteria for identifying carriers of the mutation indeed, in a study of 1482
patients with post-lingual hearing loss, over 1% of patients were found to carry the
m.3243A>G mutation (lwanicka-Pronicka et al., 2012). Another study found that the
proportion was even higher (7.8%) in those with known sensorineural hearing loss
(Majamaa et al., 1998). The progression of deafness in m.3243A>G patients has been
characterised as abrupt and stepwise usually occurring with encephalopathic or stroke-
like episodes (Sue et al., 1998a; Chinnery et al., 2000a). However, the prevalence of
deafness in this cohort far exceeds that of encephalopathic or stroke-like episodes, and
thus most of the hearing loss, though it may be stepwise, cannot be so associated. The
correlation between hearing loss and muscle heteroplasmy has previously been reported
(Chinnery et al., 2000a), and this study has augmented that finding by incorporating age
as a co-predictor. Deafness was amongst the symptoms with high R? inflation factors
and demonstrated a dramatic reduction in P-value with multiple regression, indicating
that the population level inter-correlation of age and heteroplasmy masks the strong

association of both of these predictors with symptom severity.

Sixty-three percent of patients are ataxic to some degree, and 39% are at least
moderately affected. The prevalence of ataxia in mitochondrial disease has been noted
in the literature (Lax et al., 2012), and though it is generally acknowledged as a
progressive symptom, this has not been fully characterised. The modelling documented
here demonstrates that ataxia is both predictable by heteroplasmy and age. Indeed, the
pseudo-R? value indicates that it is the most clearly progressive symptom of all in this
cohort.

Though gastro-intestinal disturbance stands with deafness as one of the two most
common phenotypic features seen in patients with m.3243A>G, it is the only feature not

predicted by either age or heteroplasmy. The reasons for this are unclear. Whilst gastro-
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intestinal disturbance is common within the general population, the incidence in our
patients is striking. Previous studies have demonstrated respiratory chain deficiency of
the bowel smooth muscle which could explain the symptoms (Betts et al., 2008), and a
recent study also found a previously unreported high incidence of coeliac disease in
children with mtDNA mutations (Mazzaccara et al., 2012). However, it remains unclear
why the dysfunction would not correlate better with age and heteroplasmy. It is clear
from the phenotypic characterisation of the cohort seen in Figure 4.2 that NMDAS
scores of 5 for GI disturbance are very rare indeed, and scores of 4 are also rare. Thus
either high levels of GI disturbance are rare in the cohort, or this analysis has
highlighted an issue with the NMDAS data collection which needs to be addressed,;
patients with severe disease who have been hospitalised may not be being accurately
assessed for criteria such as Gl disturbance due to difficulty in performing the NMDAS

assessment fully (Dr Andy Schaefer, personal communication).

The methodology employed in this section requires some discussion. To avoid the need
to deal with repeated measures and the implicit correlation between repeated scores for
individual patients, | have taken a single summary score for each patient as described in
section 4.3.5.3. However, a necessary shortcoming of this approach is that the full
potential of the dataset is not being exploited; nor is it longitudinal analysis.
Longitudinal analysis using techniques analogous to repeated measures mixed
modelling would support inferences about individual patients and their expected
progression by the incorporation of random effects into the model; repeated measures
multiple logistic regression with random effects would be a desirable approach to
modelling this data in order to provide prognostic information for individual patients
based on their phenotypic progression to date. However, current analytical tools for
conducting such analysis are limited. Though SAS does support incorporation of
random effects into logistic regression using PROC GLIMMIX, and modelling of the
covariance structure in repeated measures from the same patient, this analysis is limited
to dichotomous data. Thus progression from asymptomatic to moderate to severe
disease cannot be conducted. An additional and more serious issue currently is that for
most patients there is no noticeable progression in many of the clinical symptoms over
the period of assessment. As more NMDAS data is collected this form of modelling will

become more feasible.
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4.3.6. Disease progression discussion
This section has used a variety of approaches to examine disease progression in a large

cohort of patients with m.3243A>G, both examining the progression in total disease
burden, and the risk of developing specific phenotypic features according to age and

heteroplasmy.

Taken together, these analyses have shown that heteroplasmy has some utility as
predictor of both overall disease burden and most individual phenotypic features, and
that multiple regression with age is vitally important in order to fully recognise the
prognostic potential. However, there is a strong imperative to research a more clinically

relevant and easily measurable predictor of disease progression.

The basic challenge facing understanding of disease associated with the m.3243A>G
mutation is identifying further predictors that will transform unexplained variance in
phenotype and disease progression into explained variance. Understanding the links
between genetics (both nuclear and mitochondrial), epigenetic modifiers and the
resulting clinical phenotype is critical future work.

There are several interesting lines of enquiry in this regard. Firstly, a recent study has
indicated that wild-type mtDNA copy number, rather than heteroplasmy, may be a more
useful prognostic indicator than heteroplasmy (Liu et al., 2013). Investigation of

mtDNA copy number is therefore a priority in furthering this modelling work.

Secondly, it has been demonstrated in a homoplasmic point mutation in the
mitochondrial tRNA isoleucine gene (MT-TI) that levels of the cognate tRNA
synthetase modulate the penetrance of the mutation and the resulting clinical phenotype,
in this case hypertrophic cardiomyopathy (Perli et al., 2012). To my knowledge, there
has been no study of patients carrying the m.3243A>G mutation to identify if tRNA
synthetase levels correlate with clinical phenotype. Indeed, the leucyl tRNA synthetase
is particularly interesting as it has been shown to act as an amino acid sensor
modulating the mTORC1 pathway that regulates protein translation, cell size, and
autophagy (Han et al.,, 2012), and overexpression of the synthetase corrects the
m.3243A>G phenotype in cybrid cells (Li and Guan, 2010). Thus there are several
motivations for understanding how tRNA synthetases modulate disease burden and
phenotypic expression in m.3243A>G patients.

Thirdly, it has been reported that a critical difference between MELAS and other

phenotypic presentations, such as CPEO, is that MELAS patients have a relatively
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homogeneous distribution of mutant mtDNA in muscle fibres, whereas patients with a
CPEO-like phenotype appear to have focal accumulation of mutant mtDNA in selected
fibres (Moraes et al., 1993; Petruzzella et al., 1994). It is speculated that this distinction
may also be apparent in clinically affected tissues of the CNS though this is yet to be
reported on. However, it should be noted that in these studies patient age is a
fundamental confound, since the accumulation of defective mtDNA in fibres is likely to
be a time-dependent process, and both studies had a significantly younger MELAS

cohort than the comparator cohort.

The statistical modelling | have employed is novel in two regards; firstly, in
comprehensive longitudinal modelling of total disease burden; and secondly, the
predictive modelling of individual phenotypic features, using both age and
heteroplasmy as predictors. Though previous studies have used heteroplasmy as a
predictor of phenotype (Chinnery et al., 1997; de Laat et al., 2012; Liu et al., 2013) this
approach is limited and risks confounding any findings by not accounting for age.
Indeed, multiple regression using both factors simultaneously is critical, since at the
population level urine heteroplasmy and age are negatively correlated, as previously
reported (de Laat et al., 2012) and confirmed in this cohort. This significant Pearson’s
correlation is the cause of the increased explanatory power of heteroplasmy and age

together as compared to either factor as singular predictors.

There are some limitations in this study which need to be acknowledged. Firstly, | have
used urine heteroplasmy throughout; though it has been shown to correlate well with
clinically affected tissues (Blackwood et al., 2010), a more invasive measure of
heteroplasmy, for example skeletal muscle, may reduce the unexplained variance and
improve the modelling. This will be discussed further in the next section on

m.3243A>G heteroplasmy.

Secondly, | have not considered in the model the baseline level of disease found in the
normal ageing population, which would be necessary in order to ascertain the degree of
disease progression attributable to the mtDNA mutation alone. However, from a clinical

care perspective the overall disease burden for patients is the more relevant quantity.

Thirdly, as previously discussed in the section on individual phenotypic features,
longitudinal modelling of specific features has not been conducted, and it is anticipated

this would be valuable information for clinicians and patients alike.
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In conclusion, | have produced two model systems for understanding disease burden
and progression in patients with the m.3243A>G mutation, both utilising age and
heteroplasmy as predictive factors; a longitudinal model of overall disease burden
progression, and models to predict the severity of specific phenotypic features. Both
these models provide critical information to clinicians for the care and management of
patients with the m.3243A>G mutation.
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4.4.  Heteroplasmy in m.3243A>G

4.4.1. Introduction
Heteroplasmy levels in m.3243A>G remain a rich area for research, and though much

has been studied and reported there are still large gaps in knowledge.

Since the earliest reports of blood heteroplasmy decline in the m.3243A>G mutation
(Poulton and Morten, 1993; Hammans et al., 1995), the decline has been repeatedly
studied. An earlier study of 18 patients reported an average linear decline of 0.69
percentage points per year (t Hart et al., 1996); Rahman et al., in a study of six patients,
compared blood from Guthrie cards taken at birth to blood taken at MELAS disease
diagnosis and found a linear decline of an average 1.4 percentage points per year
(Rahman et al., 2001); Pyle et al. reported a linear decrease of 0.6 percentage points per
year in a longitudinal study of 11 patients (Pyle et al., 2007); Mehrazin et al. quantified
the loss as 0.53 percentage points per year in MELAS patients and 0.22 percentage
points per year in carrier relatives in a study of 34 patients (Mehrazin et al., 2009).
Rajasimha et al., in a departure from the other studies, proposed that the decline in
blood was exponential rather than linear, provided a coherent model based on
progressive loss of haematopoietic stem cells which had accumulated high levels of
mutant mtDNA by random genetic drift, and validated their model by comparison with
experimental data (Rajasimha et al., 2008). They quantified the decline as an
approximate compound 2% loss per year. However, it should be noted that some studies
that have examined longitudinal changes in blood heteroplasmy did not find the change
significant (Kaufmann et al., 2011), though this is generally attributed to small sample

size or insufficient time between measures.

Heteroplasmy changes in other tissues are less well understood. It was shown early on
that intra-patient heteroplasmy levels in many post-mitotic tissues are similar, for
instance skeletal muscle heteroplasmy is thought to be broadly representative of the
level in the neurons within the CNS (Ciafaloni et al., 1991; Macmillan et al., 1993).
Several studies have reported a negative correlation between heteroplasmy and age in
diverse samples including urine, skeletal muscle, and buccal mucosa (Frederiksen et
al., 2006; Kaufmann et al., 2011; de Laat et al., 2012), though as none of the studies

were longitudinal it was not possible to draw firm conclusions about decline with age.

However, there are wide variations in heteroplasmy levels in different tissues. Shiraiwa

et al., for instance, found the lowest mutation level in the spleen (Shiraiwa et al., 1993).
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Interestingly, there are reported consistent differences in the average heteroplasmy
levels between certain tissues. Chinnery et al. reported that the distribution of mutant
mtDNA was non-random, and that the mutation load in tissues correlated with the cell
turnover rate in each tissue; levels in muscle were highest, followed by hair follicles,
buccal mucosa, and lowest in blood (Chinnery et al., 1999). This hierarchy is supported
by data from several other research groups, many of whom also added heteroplasmy
measured in urine, which is generally found at a level similar to that found in muscle
(Shanske et al., 2004; Frederiksen et al., 2006; de Laat et al., 2012). De Laat, for
instance, quantified that heteroplasmy levels in urine were 11 percentage points higher

than in buccal mucosa and 23 percentage points higher than blood.

Non-random segregation of mutant mtDNA was consistent with the finding that foetal
heteroplasmy levels are strikingly homogeneous (Matthews et al., 1994), and strong
evidence against the hypothesis that heterogeneous heteroplasmy levels in tissues were
caused by random mitotic segregation in early embryogenesis (Huang et al., 1996). It
was also reported that though heteroplasmy levels vary from tissue to tissue there are no
differences observable between the average levels of tissues originating from the three
germ layers (Frederiksen et al., 2006), further evidence against early embryonic random
mitotic segregation, and evidence that variations in heteroplasmy are mainly due to

selection pressures on either wild-type or mutant DNA during life.

The significant loss of the mutation in blood contrasts with other rapidly dividing
tissues which do not exhibit such decline, such as hair follicles (Sue et al., 1998b) and
the urinary epithelium (Blackwood et al., 2010), though has been speculated as due to
the low energy requirement of such cells, and it is suggested that in rapidly dividing
tissues random genetic drift accounts for alterations in heteroplasmy unless a severe
respiratory deficiency exerts pressure and results in active selection of wild-type
mtDNA (Rahman et al., 2001).

Interestingly, variation between hair follicles from the same individual has been shown
to be very large (Shanske et al., 2004); this was attributed to the fact that individual hair
follicles develop from one or a small number of stem cells in each follicle bulb
(Ghazizadeh and Taichman, 2001) and thus random segregation will result in such

mosaicism whilst maintaining a uniform average heteroplasmy level.

103



Chapter 4 Disease associated with the mt.3243A->G mutation

4.4.2. Aims
In this section, I examine the Newcastle cohort data to probe the inter-relationships

between the various measures of heteroplasmy available for this cohort (urine, blood,
and skeletal muscle), and also age.

| have two major aims. The first is to examine urine and muscle heteroplasmy for
evidence of longitudinal change and to characterise any dynamic shift. The second is to
examine the decline of blood heteroplasmy in the Newcastle cohort and to validate and

characterise the proposed exponential decline model (Rajasimha et al., 2008).

4.4.3. Methods

4.4.3.1. Exponential decline of blood heteroplasmy (longitudinal)

This analysis was restricted to those patients with multiple measurements of

heteroplasmy more than two years apart.

Exponential decline, defined by a rate parameter here called Rate, can be expressed as

shown in Equation 4.1.

Final Het (%) = Initial Het (%) X RateYears between measurements

Equation 4.1 Exponential decline.

For convenience | define the decline factor to be 100% - rate. Thus a decline factor of
5% indicates a compound decline of 5% (the result of multiplication by 0.95) each year.

A negative decline factor indicates an increase in heteroplasmy.

The decline factor is hence calculated as shown in Equation 4.2; e.g. for a patient with a
decline factor of 5%, if the starting heteroplasmy was 50%, after one year the
heteroplasmy would decline to 50% X 0.95 = 47.5%, after two years 47.5% X

0.95 = 45.125%, and so on for each year of decline.

In(Initial Ht)—In(Final Het)
Decline factor (%) = 100% — eYears between measurements

Equation 4.2 Decline factor calculation.

4.4.3.2. Exponential decline of blood heteroplasmy (using urine heteroplasmy)

A second method | chose to investigate the decline of blood heteroplasmy was to use

muscle, urine heteroplasmy, or another putatively static heteroplasmy measure as a
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nominative starting heteroplasmy level at birth. As | have only a limited number of
muscle heteroplasmy levels recorded, | used urine heteroplasmy as the nominative level.
Where multiple urine heteroplasmy records are available, | take the mean value.

Similarly to section 4.4.3.1, | define an exponential decline factor, but this time, I use
age plus 9 months as the time period, as | am assuming that the urine heteroplasmy level
is indicative of blood heteroplasmy at conception and that any selective pressure is

exerted from that point.
4.4.4. Results

4441, Cohort

There are 192 patients with m.3243A>G in the Newcastle cohort in total, excluding two
patients who have had renal transplants and are excluded from heteroplasmy
investigations for this reason. Figure 4.20 illustrates the number of patients available

with the respective heteroplasmy levels. The full data can be found in Appendix IlI.

Figure 4.20 Number of patients with
14 heteroplasmy data available.

Venn diagram illustrating the number of
patients with urine, blood, and skeletal muscle
v heteroplasmy. Fourteen patients have no
5 measure of heteroplasmy; 35 have all three
measures. For each analysis. | use the maximum
Blood number of patients available with the required

data.

4442, Relationship between heteroplasmy and age

44.4.2.1. Urine

The regression of urine heteroplasmy and age is shown in Figure 4.21A. Although there
is a clear correlation, and the relationship is reasonably linear, the distribution is
asymmetric. However, Box-Cox identifies the identity function (no transformation) as

optimal.
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Figure 4.21 Heteroplasmy and age. Linear regression with 95% confidence and prediction
intervals.

(A) Though there is a clear correlation between urine heteroplasmy and age, the relationship is not quite
linear; the line is reasonably well fitting, but the residuals are asymmetric and do not follow a Gaussian
distribution (P = 0.0004 Shapiro-Wilk). N = 175, R = -0.41, P < 0.0001. (B) Non-linear relationship
between blood heteroplasmy and age. Box-Cox identifies the square root as the optimal transform. (C)
Once transformed the relationship between blood and age is more clearly linear (R = -0.49, P < 0.0001).
However the residuals are non-Gaussian and do not pass normality tests (P < 0.0001, Shapiro-Wilk). N =
159 (D) The relationship between SKM heteroplasmy and age is not significant though there is a negative
trend (P = 0.0664, R = -0.30, N=39).

44422 Blood

The relationship of blood heteroplasmy and age is shown in Figure 4.21B. Age and
blood are clearly correlated (P < 0.0001); Box-Cox identifies the square root transform
as optimal, and the linear regression of this is shown in Figure 4.21C. Though this

improves the fit, the residuals still remain non-normal.

4.4.4.2.3. Muscle

Figure 4.21D shows the regression of SKM heteroplasmy against age. Though there is a
declining trend with age, it is not statistically significant in this cohort (N = 39, P =
0.0664).
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4.4.4.3. Urine and blood heteroplasmy levels are linearly related

On inspection, the relationship between urine and blood heteroplasmy levels is clearly
non-linear (data not shown). Box-Cox identifies the appropriate transformation of the
blood heteroplasmy as the square root. Figure 4.22 illustrates the relationship between
urine heteroplasmy and the square root of the blood heteroplasmy level. The two
quantities are highly significantly correlated (P < 0.0001, R* = 66.4%, N = 158).
Residual diagnostics confirm that the errors in this relationship are clearly Gaussian in

distribution, indicating that the relationship is well formed.

91 .-

V Leucocyte Heteroplasmy %
y p y

G 1 1 /1.' I T | 1
0 20 40 60 80 100

Urinary Epithelial Heteroplasmy %
Figure 4.22 Urine heteroplasmy is linearly correlated with the square root of blood heteroplasmy.

The regression line and both 95% confidence and prediction intervals for the linear correlation are shown.
The square root relationship is identified by Box-Cox as the appropriate transformation. Residuals are
Gaussian in distribution, indicating that the relationship is well formed. N = 158, R? = 66.1%, P < 0.0001.

4.4.4.4. Age at biopsy improves the linear relationship between urine and blood
heteroplasmy

As blood heteroplasmy is thought to decline with age, | also examined the relationship
between urine heteroplasmy, blood heteroplasmy, and age. This analysis also uses the

square root transformation of blood heteroplasmy.

Figure 4.23 illustrates the outcome of the multiple linear regression. Both urine
heteroplasmy (B = 0.69, P < 0.0001) and age (B = -0.30, P < 0.0001) are highly
significant predictors of blood heteroplasmy (R? = 74.0%). The interaction of age and

urine heteroplasmy is also highly significant (P < 0.0001) yielding standardised
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parameters for urine heteroplasmy (B = 0.69, P < 0.0001), age (B = -0.33, P < 0.0001)
and the interaction (B = -0.15, P < 0.0001) (R? = 76.2%).

V Leucocyte Heteroplasmy %

Age Group
-0- <30
- 30-50
—— >50

G L] I b I | I 1
0 20 40 60 80 100

Urinary Epithelial Heteroplasmy %
Figure 4.23 Multiple regression with age at biopsy improves the correlation between urine and

blood heteroplasmy.

The linear regression lines for three age groups are depicted. Adjusted R? increases to 76.2%, from 66.4%
for the model without age (Figure 4.22). Both age and urine heteroplasmy are highly significant
predictors (P < 0.0001). The gradient of the line relating urine and blood heteroplasmy is age dependent
(P < 0.0001). N = 158. P-values are for age as a continuous predictor; graphs show age as a categorical
variable for illustrative purposes only.

4445, Urine and SKM heteroplasmy levels are linearly related

Figure 4.24 illustrates the relationship between urine and muscle heteroplasmy. Where
repeated measures of urine heteroplasmy are available the mean of the two values is
used. The two measures are highly significantly linearly correlated (P = 0.0006, r =
0.53). The regression line defines the relationship between the two measures of
heteroplasmy shown in Equation 4.3.

Muscle heteroplasmy (%) = 28.07 + 0.53 X Urine heteroplasmy (%)

Equation 4.3 Relationship between muscle and urine heteroplasmy.

Age is not a significant factor in this relationship (P = 0.8535). The 95% confidence
interval for the gradient in this equation is (0.24, 0.81).
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Figure 4.24 Urine and muscle heteroplasmy levels are linearly correlated.

Regression line with 95% confidence and prediction intervals are shown. r = 0.53, P = 0.0006, N = 39.
The gradient (0.53) is significantly non-zero (95% CI 0.24, 0.81). The line y = x is also drawn on for
comparison, as this would be the regression line describing equality of urine and muscle heteroplasmy

values.

4.4.4.6. Longitudinal urine heteroplasmy analysis

For the patients with at least two sequential urine heteroplasmy measurements (N = 79)
the percentage point change in heteroplasmy was calculated for the points furthest apart
in time. As shown in Figure 4.25A, the changes in heteroplasmy were not significantly
different from zero (P = 0.8487). The mean change is 0.26% (95% CI -2.4% - 2.9%).

The sample standard deviation is quantified as 11.8%.

The changes in heteroplasmy were also regressed against several other quantities to
investigate any trends, as depicted in Figure 4.25B-D. Heteroplasmy change was not
significantly correlated with age at sampling (P = 0.1791, r = 0.15), though there was a
non-significant trend towards increasing heteroplasmy with age. Nor was it correlated
with the years between measurements (P = 0.6126, r = -0.06). Only the initial
heteroplasmy level showed a significant correlation with the change over time with a

trend towards falling heteroplasmy at high initial levels (P = 0.0035, r = -0.33).

The White test for heteroscedacity indicated that the variance in the heteroplasmy
change was not correlated with years between measurement (P = 0.3652) or age (P =
0.6569).
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Multiple regression with age and initial heteroplasmy finds that the significance of age
as a predictor of heteroplasmy changes from P = 0.01791 to 0.9830, whilst initial
heteroplasmy remains significant (P = 0.01) (R = 0.11).

The standard deviation (11.8%) of the urine heteroplasmy was analysed using
bootstrapping to establish a confidence interval for the estimate. This generated a 95%

confidence interval for the standard deviation of (9.62%, 14.01%).

4.4.4.7. Longitudinal blood heteroplasmy decline is exponential

The decline factor is calculated as explained in section 4.4.3.1. Twenty-seven patients in
the cohort had serial blood heteroplasmy records at least two years apart. The results are
shown in Figure 4.26. Panel A shows that the decline factor is independent of age; panel

B shows that the factor is not independent of the initial heteroplasmy level.

As the distribution of the decline factor is non-Gaussian | use non-parametric testing to
assess whether the decline factor is significantly non-zero. The median decline factor is
1.30% (95% CI 0.00% to 2.53%). The result is not significantly non-zero (P = 0.0773).

4.4.4.8. Urine as a nominative initial blood heteroplasmy level provides a
consistent blood heteroplasmy decline level

The concept of using urine as a nominative initial starting heteroplasmy to investigate
blood heteroplasmy decline is considered in Figure 4.27. There are weak and
insignificant trends with both the decline period and initial heteroplasmy level. Mean

decline is 2.99% per year.
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Figure 4.25 Longitudinal changes in urine heteroplasmy over time.

For each patient with sequential urine measurements (N = 79), the change in heteroplasmy was calculated
and compared to various potential correlates. Regression graphs depict regression lines with 95%
confidence and prediction intervals. (A) Change in heteroplasmy is not significantly different from zero
(P =0.8487). (B) Change in heteroplasmy over time is not correlated with time between measurements (P
= 0.6126, r = - 0.06). (C) Change in heteroplasmy is correlated with the initial level of heteroplasmy (P =
0.0035, r = -0.33) (D) Change in heteroplasmy over time in not significantly correlated with age (P =

0.1791, r = 0.15).
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Figure 4.26 Examining the exponential decline of blood heteroplasmy.

The annual rate of exponential decline of blood heteroplasmy is computed for those patients with serial

blood measurements more than two years apart (N=27). Linear regression with 95% confidence and

prediction intervals. A positive factor indicates decline in heteroplasmy over time, a negative factor

indicates increasing heteroplasmy (A) The decline factor is independent of age (P = 0.8661, r = - 0.034).

(B) The decline factor is directly correlated with the initial heteroplasmy level (P = 0.0460, r = 0.387).
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Figure 4.27 Exponential decline of blood heteroplasmy using urine heteroplasmy as nominative initial level.

The urine heteroplasmy level is taken as a nominative initial heteroplasmy level at birth, and is used to calculate an exponential decline factor for blood heteroplasmy (N = 155).
Regression line with 95% confidence and prediction intervals is shown. (A) The relationship between the period of decline and the decline factor. There is a downward trend but it is
not statistically significant (P = 0.0923, r = -0.14). (B) The relationship between the initial heteroplasmy level and decline factor. There is a non-significant downward trend (P =
0.3848, r = -0.07), the mean decline is 2.99% per year.

113



Chapter 4 Disease associated with the mt.3243A->G mutation

4.4.5. Discussion
4.45.1. Heteroplasmy and age

Several studies have reported a negative correlation of heteroplasmy with age, using
samples from a variety of sources including buccal mucosa, urine, and skeletal muscle
(Frederiksen et al., 2006; Kaufmann et al., 2011; de Laat et al., 2012), and these
observations are confirmed in my analysis of urine and skeletal muscle, though the
correlation with skeletal muscle in the cohort is not significant. It needs to be considered
that the sample size of the muscle heteroplasmy data is much lower than that of urine
and blood. Though some researchers extended these observations to speculation about
longitudinal changes in patients (de Laat et al., 2012), this has not been studied in a
large cohort to date in any sample source other than blood. However, it should be noted
from the outset that a negative correlation in heteroplasmy in all tissues with age is
potentially explained by the fact that older patients in the cohort are likely to have
presented with disease later in life and thus be expected to have lower heteroplasmy.

Thus a negative correlation may be simply a result of sampling bias.

4.45.2. Is urine heteroplasmy static or dynamic?

The data in section 4.4.4.6 shows that there is no trend in urine heteroplasmy levels
either upwards or downwards in general. Nor were there any significant trends with the
age of the patients or the period of measurement. These findings in a large sample are
strongly supportive of a conclusion that urine heteroplasmy levels do not systematically
increase or decrease over time. Although this has previously been speculated to be the
case based on a small cohort of 11 patients (Blackwood et al., 2010), this is the first
comprehensive report of longitudinal change in heteroplasmy recorded from any source
other than blood.

There is, however, a significant correlation with the initial heteroplasmy level; those
with high heteroplasmy levels are more likely to show a decrease over time, and those
with low heteroplasmy levels are more likely to show an increase. The association,
though significant (P = 0.0035), is weak (r = 0.33), and drawing conclusions from this
association is difficult, as such trend could easily be accounted for by floor and ceiling
effects when interpreting changes in extreme (low or high) heteroplasmy levels.
Multiple serial measurements in a large cohort would be needed to better understand if

there are true longitudinal changes.
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This observation should be considered in tandem with the relationship observed
between urine and muscle heteroplasmy levels. It is interesting to note that the linear
regression implies that for low heteroplasmy levels muscle heteroplasmy exceeds urine,
but at high levels, muscle is lower than urine. This is a curious observation; though
urine heteroplasmy levels are not systematically moving either up or down observing
the cohort as a whole, there is systematic divergence of urine and muscle heteroplasmy
levels at low and high heteroplasmy levels. These two observations are superficially in
direct conflict; for example, a urine heteroplasmy level of 80% would tend to show
decrease over time, but relative to muscle heteroplasmy it appears to be inflated. How

can these observations be reconciled?

One explanation is that one or both of these observations is a statistical anomaly,
perhaps derived from ascribing a linear relationship where there is non-linear
relationship, which in this case is likely on account of the finite limits (0% to 100%) of
heteroplasmy measurements. This can only be correctly ascertained by collecting
further data, as the sample size is not large enough to draw firm conclusions. However,
it should be considered that divergence of heteroplasmy levels between tissues suggests
that at some point during development or later life heteroplasmy levels have
dynamically shifted, though it is unclear here whether the shift has occurred in muscle,
the cells found in the urinary sediment, or both. Heteroplasmy levels in muscle, as post-
mitotic tissue, are expected to be relatively static, and thus the cells that are found in
urinary sediment are put into the spotlight. Indeed, in section 4.6, | show that urine
heteroplasmy in males is significantly higher than females despite similar blood
heteroplasmy levels, which is further evidence of a potential dynamic shift in
heteroplasmy in the tissues from which cells in urinary sediment originate.

A major question is the origin of mtDNA in urinary sediment. Though the cells are
generally expected to be urothelial cells from the bladder lining and urinary tract
(Blackwood et al., 2010), this has not been specifically investigated in mitochondrial
disease and m.3243A>G in particular. Renal dysfunction is common in patients with
m.3243A>G (Cheong et al., 1999; Guillausseau et al., 2001; Hotta et al., 2001; Iwasaki
et al., 2001; Suzuki et al., 2003; Piccoli et al., 2012; Seidowsky et al., 2013) and renal
dysfunction may lead to the presence of renal cells in urine (Simerville et al., 2005).
Thus it may be that the elevated levels of heteroplasmy in urinary sediment in
comparison to other measures of heteroplasmy may be indicative of renal dysfunction

and denote a genuine accumulation of the mutation in such tissue. It may therefore be
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useful to investigate the relationship between measures of kidney function, such as the

urine/creatinine ratio, with heteroplasmy or disease burden in this cohort.

In conclusion, this section does satisfy the question of whether urine heteroplasmy
levels in general move upwards or downwards; they appear to remain static. The
question of whether individual patients can or do show systematically changing
heteroplasmy over time cannot be answered by this dataset however; for this we require

patients with three or more longitudinal measurements of heteroplasmy.

4.4.5.3. Variability in urine heteroplasmy measurement

| have quantified the variation in urine heteroplasmy measurement in this cohort as
11.8% (the standard deviation of the sequential measurements) and used bootstrapping
to estimate the confidence interval for this estimate (9.62%, 14.01%). The White test for
heteroscedacity illustrates that this variance is not dependent on the time between
measurements. This supports the conclusion that this variation originates either in
random fluctuations within the biological systems that contribute to the cells found in
urinary sediment or the heteroplasmy measurement assay itself; however, the same
assay is used for measuring heteroplasmy from other sources without such extreme
variation and thus the heteroplasmy of the cells in urine themselves are the most likely

source.

Though previous studies have commented on the variation in urine heteroplasmy
(Blackwood et al., 2010), to my knowledge, this is the first formal quantification of the
variation. The standard deviation of urine heteroplasmy is troublingly large. Urine
heteroplasmy has been recommended as the best correlate for disease burden (Whittaker
et al., 2009), but a confidence interval of £23% (calculated from the mean standard
deviation of 11.8%) seriously impacts on the ability of clinicians to understand the
expected level of heteroplasmy in other tissues when using urine heteroplasmy as a
guide. The source of this variation is currently unknown. A prior study investigated
urine heteroplasmy levels, and found that the time of day that urine was collected was
not a significant factor in the variation (Blackwood et al., 2010). Interestingly, they
found that even measuring heteroplasmy on the same day sometimes recorded
differences of up to 20% from the median measurement, which is consistent with the

standard deviation reported here.

If urine levels are to be used, it would appear that a single value alone is not sufficient.

Multiple repeated testing will reduce the variation, for instance 4 samples will halve the
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standard error. Such an approach is laborious however; though it may be preferable to

an invasive technique such as a muscle biopsy.

4454, Blood heteroplasmy decline

The results in section 4.4.4.6 expand current understanding of blood heteroplasmy

decline whilst raising new questions.

The exponential decline rate is shown to be independent of age in this cohort. This is
supportive of the hypothesis that the blood decline is indeed exponential. Additionally,
though the exponential rate is not statistically significantly non-zero in this cohort, this
may be due to insufficient power, as | had a limited number of serial measurements in
blood, and the data is suggestive of blood heteroplasmy decline over time, with a

median decline factor of 1.3%.

The significant relationship between the decline factor and the initial heteroplasmy level
is of concern, as it would indicate that the rate of decline is dependent on the
heteroplasmy level (note that since we have calculated an exponential decline factor, the
relationship we are looking at is multiplicative, and should be independent of the actual
heteroplasmy levels). Scrutiny of Figure 4.26B reveals that this trend is perhaps due to
the existence of patients with apparently increasing heteroplasmy in the low (0-20%)
heteroplasmy range. A potential contributor to this is that small errors in measurement
at low heteroplasmy levels translate into large errors in the multiplicative factor; a
change from 4% to 5% heteroplasmy in a year translates as a decline factor of -25%, but
a change from 30 to 31% is a mere -3.3%. To minimise such errors, N must be
increased or heteroplasmy measured over as long a time period as possible, so that the
effect of measurement error and random fluctuations are diluted. However, even if we
restrict the data to measurements taken 5 or more years apart, this relationship still
exists, albeit not statistically significant (P = 0.1233), though the sample is much
reduced (N = 14). The cluster of points that show negative decline (and thus increasing
heteroplasmy) suggest that at heteroplasmy levels below around 20%, decline is no
longer occurring in general. Furthermore, several patients above this level also show no
decline over prolonged periods; for instance, a patient with 48% blood heteroplasmy
demonstrated no decline over a period of 7 years, and several others have similar
periods of static and relatively high blood heteroplasmy (the full dataset can be found in
Appendix Il1). This suggests that some patients may have an asymptotic level of blood

heteroplasmy far above zero. To my knowledge, there is no discussion in the literature
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of the asymptotic level to which heteroplasmy is declining, nor a consideration of the
intra-patient variability in this decline. Indeed, all the discussion appears to implicitly or
explicitly assume that heteroplasmy levels decline to zero or negligible levels, most
apparent in the published exponential decline model (Rajasimha et al., 2008). This
belief is strongly reinforced by the fact that older patients tend to have very low levels
of heteroplasmy. However, interpreting these very low levels at older age in this way
misses the point that patients presenting at older age generally have milder disease
phenotype and are thus likely to have had lower heteroplasmy levels initially. The only
way to correctly analyse intra-patient variation in heteroplasmy decline is a thorough
longitudinal analysis, but further investigation of this will require a larger cohort of
patients studied for a longer period. However, we can conclude that non-zero
asymptotic levels of blood heteroplasmy is a possible explanation of the shape of the
data seen here, and this is a potentially significant observation. It will be considered
further later in this discussion, and in the discussion of disease progression in
m.3243A>G in section 4.5.5.

A second approach to studying blood heteroplasmy decline is seen in section 4.4.4.8,
which uses urine heteroplasmy as a nominative initial level at conception. This
approach is justifiable on account of the stability over time of urine heteroplasmy, and
the close correlation of urine heteroplasmy and levels in other tissues, both of which
have been previously discussed. In section 4.4.4.8, | have demonstrated that there is a
noticeable, albeit non-significant, relationship between the decline rate and the period of
decline. It is also important to note that the mean decline factor of around 3% is
considerably higher than that calculated using the repeated blood heteroplasmy data.

There are several potential explanations of this.

The first is that urine heteroplasmy could systematically overestimating the embryonic
haematopoietic heteroplasmy level and thereby inflate the decline factor estimate.
However, the relationship with skeletal muscle heteroplasmy suggests this is not the

case, though it may be overstated at high heteroplasmy levels.

Secondly, though the mechanism of haematopoietic heteroplasmy decline is not fully
understood, it has been proposed to occur due to loss of stem cells through a mitosis-
dependent mechanism (Rajasimha et al., 2008). With this in mind, comparative stem
cell cycling rates in embryogenesis and later life may be critically important. It has been

shown in mice that during embryogenesis almost the entire population of
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haematopoietic stem cells (HSCs) cycle every twenty four hours, from around
embryonic day 7 (E7) until around 3 weeks post natal; after this point 95% become
dormant and cycle every 145 days, whilst the remaining 5% cycle every 36 days
(Pietras et al., 2011). If the cell cycling rates are similarly rapid during human
embryonic development it would be expected that blood heteroplasmy decline would be
greatly accelerated during this period. This would be expected to significantly inflate
the decline factor.

However, it must also be considered that embryonic stem cells are not heavily reliant on
oxidative phosphorylation for their energy requirements and are more reliant on
glycolysis in the hypoxic embryonic environment (Shyh-Chang et al., 2013); thus
oxidative phosphorylation defects are not expected to express a strong phenotype in
stem cells. However, it is also true that adult stem cells are also glycolytic in general,
and in particular HSCs (Suda et al., 2011) (Simsek et al., 2010), speculated as a
necessity in the hypoxic environment of the bone marrow niche. Thus any argument
against a stem cell driven mechanism applies equally to adult and embryonic HSCs.
Importantly, however, any long term changes in heteroplasmy in the haematopoietic
system are almost certain to originate in the HSCs. Though the problem of lack of an
oxidative phosphorylation driver for selection has been long problematic, recently it has
been shown that mitochondrial transcription is heavily regulated in HSCs, despite
exhibiting relative low mitochondrial membrane potential and thus low oxidative
phosphorylation activity (Norddahl et al., 2011). It has also been shown that even early
embryonic changes in HSCs are observable in mutagenic mtDNA mice, which are
hypothesised to be caused by subtle ROS or redox environment changes (Ahlqvist et al.,
2012). Thus even in the absence of active oxidative phosphorylation, mtDNA
dysfunction has been shown to affect HSC activity and differentiation. Rajasimha et al.
proposed a mechanism whereby stem cells with high levels of mutation are
progressively lost (Rajasimha et al., 2008); a feasible hypothesis is that oxidative
phosphorylation defects may alter the differentiation products of stem cells, as
suggested by the aforementioned studies (Norddahl et al., 2011; Ahlqvist et al., 2012).
Stem cells can divide in three fundamental ways; symmetrically into two further stem
cells, symmetrically into two progenitors, or asymmetrically into one of each kind. A
subtle shift towards either of the latter two mechanisms would result in a declining
heteroplasmy level in the stem cell population. Alternatively, the shift in heteroplasmy

may result from the ROS-induced senescence of HSCs with high levels of mutant
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mtDNA (Shao et al., 2011). Whatever the mechanism, a study on the relationship
between blood heteroplasmy at birth (measured from Guthrie cards) and sources of
relatively stable heteroplasmy measured in adults (such as urine or muscle) may give

useful insight into embryonic blood heteroplasmy decline.

4455, Relationship between urine and blood heteroplasmy

The linear relationship between urine heteroplasmy and the square root of blood
heteroplasmy has not been previously reported and is intriguing. Firstly, it is further
evidence against blood heteroplasmy decline to a nominally low level and in support of
an asymptotic level of blood heteroplasmy related to the initial level of heteroplasmy in
the embryo. This does need to be verified, by long-term longitudinal observation of
blood heteroplasmy in m.3243A>G patients. However, this study does suggest that in
the majority of older patients blood heteroplasmy levels have neared a plateau level.
This offers an insight into the mechanism of blood heteroplasmy decline, and
contradicts the mechanism suggested by Rajasimha et al. that assumed an asymptotic
level of zero irrespective of the starting point (Rajasimha et al., 2008). The significance
of age in this relationship suggests that heteroplasmy does continue to decline
throughout life, though as said the asymptotic level is related to the initial heteroplasmy

level.

4.45.6. Conclusion

The variability in urine heteroplasmy has been quantified (s.d. 11.9%), which
demonstrates that a single measurement of urine heteroplasmy is imprecise and
undermines confidence in this measurement for prognostic purposes. It has also been
confirmed that urine heteroplasmy does not appear to change systematically over time

in patients at a population level.

Blood heteroplasmy has been shown to decline as previously reported, however
evidence against the previously proposed model of exponential decline to a negligible
level has been presented; the asymptotic level of blood heteroplasmy appears to be
linearly related to levels in other tissues, as demonstrated by the relationship to urine

heteroplasmy.
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4.5. Comparative value of blood, urine, and SKM heteroplasmy in prediction of

disease progression

4.5.1. Introduction
Though skeletal muscle was long been considered the gold standard for measuring

heteroplasmy levels, urine, as discussed, is generally accepted as the most suitable non-
invasive measure of heteroplasmy, and indeed has been shown to be more correlated to
disease phenotype (Whittaker et al., 2009; de Laat et al., 2012).

Blood heteroplasmy has repeatedly been shown to be unrelated to disease phenotype
(Mehrazin et al., 2009), in contrast to studies that report the utility of skeletal muscle
(Macmillan et al., 1993; Chinnery et al., 1997; Jeppesen et al., 2006). When blood
heteroplasmy has been found useful, it is not in comparison with other measures of
heteroplasmy (Laloi-Michelin et al., 2009). However, though blood heteroplasmy has
historically been disregarded as suitable for analysis of disease phenotype, the results
from section 4.4 suggest that it may in fact be of utility, since, when suitably
transformed, blood heteroplasmy is highly linearly correlated with urine heteroplasmy
and thus should be expected to exhibit reasonably similar predictive properties, and

indeed improved, if the variability in blood heteroplasmy measurement is lower.

45.2. Aims
| aim in this section to compare the comparative value of the three measures of

heteroplasmy that are available in the cohort (blood, urine, and skeletal muscle) to
assess which is the best predictor for disease burden and progression, particularly in the
light of observations made in the previous section regarding the variability of urine
heteroplasmy. Though | also consider muscle heteroplasmy, this is more limited in
scope for drawing conclusions as the number of patients with samples available is

considerably smaller.

4.5.3. Methods
I look at a variety of the analyses from the previous section on disease progression and

compare the merit of blood and urine heteroplasmy as predictive factors.

For the section comparing blood and urine, 1 use only the cohort of patients that have
both urine and blood heteroplasmy measured, hence N values are smaller than for
previous sections. For other comparisons, e.g. with muscle heteroplasmy, | use the

largest cohort available with all appropriate measures of heteroplasmy.
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To facilitate the ability to draw firm conclusions regarding superiority of one predictor
over another | implemented a bootstrapping (resampling) methodology, as described in
section 2.10. This extends the modelling technique and allows me to calculate a
confidence interval for the comparative success of predictors, rather than a simple point

estimate using the entire cohort.

45.3.1. Bootstrapping

For each comparison, bootstrapping was used to resample the dataset. Bootstrapping for
the basic statistical comparisons using a single estimate is a straightforward resampling
of the data. For longitudinal modelling, bootstrapping was done at the patient level, not
the individual observations, i.e. patients were chosen with replacement from the pool of
patients, and all observations for each patient were included in the analysis each time.
This was to ensure that the resampling was concerned with statistically independent
units. The longitudinal modelling utilised for comparison did not contain random

effects, as the intention was to evaluate the effectiveness of the fixed effects.

Each bootstrapping used 1000 resamples to evaluate the distribution of the statistic

under investigation and 95% confidence intervals were calculated.

A variety of statistical measures were suitable for bootstrapping. For multiple regression
| used the difference in R? as the statistic for comparison. For longitudinal modelling the
difference in log likelihood is utilised. The methodology is in accordance with

published guidelines (Lewis et al., 2011).

For each bootstrapping the distribution of the chosen statistic was examined to ensure
the distribution was reasonable and the statistical approach appropriate.

45.4. Results

454.1. Cohort

134 patients with NMDAS data have both urine and blood heteroplasmy recorded. 34
patients have both urine and SKM heteroplasmy data, 31 have both blood and SKM

heteroplasmy.

454.2. Blood heteroplasmy is a better predictor of NMDAS score than urine
using multiple regression

I use multiple logistic regression with age and heteroplasmy as independent variables,

and the summary NMDAS score as the dependent variable. Parameters and data from
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the model are found in Table 4.4. Blood heteroplasmy increases R? to 27.8% from

19.7% with urine heteroplasmy.

Bootstrapping was used to compare blood and urine heteroplasmy as predictors. Figure
4.28A depicts the distribution of the percentage point ratio increase observed when
using blood rather than urine heteroplasmy. The mean increase in R? is 7.7%, and the
change is significantly above zero (P = 0.042).

Model N Age Heteroplasmy R?

urine 134 P <0.0001 P <0.0001 19.7%
B =0.416 B =0.401

blood 134 P < 0.0001 P < 0.0001 27.8%
B =0.608 B =0.585

urine 134 n/a P =0.0070 5.3%

blood 134 n/a P =0.0125 4.6%

Table 4.4 Comparison of the correlation between NMDAS score and blood or urine heteroplasmy.

Using the same cohort of patients, multiple regression with age and either urine and blood heteroplasmy
is used to compare model fit. P values and standardised coefficients for each predictor are shown, with the
R2 for the overall model. Blood heteroplasmy increases R2 to 27.8% from 19.7%, and standardised
coefficients for age and heteroplasmy both improve. Simple linear regression without age was also

conducted with each predictor; wurine is shown to be marginally more predictive.

204
A
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Percentage point change in R? blood vs urine
Figure 4.28 Resampling comparison of blood and urine heteroplasmy for the total disease burden
multiple regression model.
N = 134 1000 resamples with replacement of the patient pool are used to generate the above distributions.
The percentage point increase of R? when using blood instead of urine heteroplasmy is shown, using
multiple regression with age and heteroplasmy as predictors. Mean increase is 7.7%, and the change is
significantly greater than zero (P=0.042).
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45.4.3. Blood heteroplasmy is better than urine heteroplasmy in longitudinal
modelling of total disease burden; SKM heteroplasmy is not significantly better than
either urine or blood heteroplasmy.

The longitudinal model is the same as that described in section 4.3.4, however, the
cohort is slightly smaller as it is restricted to those patients with both urine and blood
heteroplasmy (N = 134). The model includes the early-onset flag as a predictor, as this

is necessary for correctly formed residuals (N = 27 early-onset, 107 late-onset).

Both urine and blood heteroplasmy are highly significant predictors of total disease
burden in this slightly smaller cohort (P < 0.0001), as are age and early-onset (both P <
0.0001 in each model).

The models were initially compared using the AIC, as shown in Table 4.5. The blood
model is superior to urine by comparing the AIC values in each case. Note that the AIC
value for urine differs from that previously described as the cohort is smaller. In
addition, bootstrapping was performed to investigate the stability of the improvement in
model fit by using blood heteroplasmy; the results are shown in Figure 4.29.

To further validate the model using blood heteroplasmy, the average (per patient)
studentised residuals were examined against the predictors of heteroplasmy and age.
The results are shown in Figure 4.30. The residuals in the model are not significantly

correlated with either predictor, demonstrating that the model is well formed.

Muscle heteroplasmy was also compared to both urine and blood. The results are also
found in Table 4.6. The cohort in both cases is small, and no statistical significance is
reported in either comparison, however, both blood and urine explain more variance in

these smaller cohorts than muscle heteroplasmy.

Model AIC P value R?
Urine -45.0 0.1285 1.74%
Blood 57.3 0.3636 0.62%

Table 4.5 Comparison of blood and urine heteroplasmy models using AlIC.

The table shows the AIC value for the overall model. The P value and R? relate to the regression of the
predicted value of the model versus the average studentised residuals; significance in this relationship
would indicate poor model fit. Both urine and blood have residuals that are uncorrelated with the
predicted values of the model.
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Figure 4.29 Resampling comparison of urine and blood heteroplasmy using the longitudinal mixed

effects model.

The AIC difference for 1000 bootstrapped resamples is shown; a positive AIC difference indicates blood
is a better predictor than urine. The AIC difference is significantly above 0 (P = 0.046) indicating that
blood is a consistently better predictor than urine.
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Figure 4.30 Average studentised residuals of the longitudinal mixed model compared to the model
predictors of age and blood heteroplasmy.

(Left) Residuals are not significantly correlated with age (P = 0.4302, r = -0.05). (Right) Residuals are
not significantly correlated with blood heteroplasmy (P = 0.5565, r = 0.03).
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AIC difference

Comparison N Mean 95%L 95% U P(diff>0) Conclusion

Urine minus 134 17.5 2.8 41.9 0.0460 blood significantly
Blood better than urine
Muscle minus 31 5.7 -12.9 23.2 0.1840 blood better than
Blood muscle, not significant
Muscle minus 34 12.9 3.7 32.6 0.0600 urine better than
Urine muscle, not significant

Table 4.6 Comparison of urine, blood, and muscle heteroplasmy for longitudinal modelling of total
disease burden.

The mean AIC difference and 95% confidence limits calculated using bootstrapping are shown. The
significance value (P) is the proportion of resampled values with a difference greater than 0. Blood is
significantly better than urine heteroplasmy. The cohort of patients with muscle is small and no
significant difference can be found between muscle and either blood or urine, though both blood and

urine are in general more predictive than muscle heteroplasmy.

4544, Comparison of blood and urine heteroplasmy in predicting individual
features from the NMDAS.

Bootstrapping was used to probe the logistic regression model incorporating age and
heteroplasmy as predictors. For each simulation the blood and urinary heteroplasmy
models were compared to identify the best fitting model. Figure 4.31 illustrates the
proportion of resamples in which urine heteroplasmy is the better predictor; the line at
50% separates those features better predicted by urinary heteroplasmy (upper half) and
those better predicted by blood heteroplasmy (lower half). Cut-off lines at 20% and
80% are also drawn to identify those with a strong bias in favour of either heteroplasmy
measure. The features that are better predicted by urinary heteroplasmy are ptosis,
pyramidal and extra-pyramidal features, and migraine. The first three of these are rare in
the cohort; migraine is common but not strongly correlated with either age or urinary
heteroplasmy. Several common features are predicted better by blood heteroplasmy,
including cerebellar ataxia, diabetes mellitus, cognition, exercise intolerance, and visual

impairment.
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Figure 4.31 Blood and urine heteroplasmy model comparison for individual phenotypic features.

For each feature, the patient pool was resampled 1000 times and the models compared to see which of the
two models (blood or urine heteroplasmy) was the better predictor. Cerebellar ataxia, cognitive
impairment, diabetes mellitus, exercise tolerance, gait stability, myopathy, and visual acuity are better
predicted by blood heteroplasmy; extra-pyramidal, migraine, ptosis and pyramidal by urinary

heteroplasmy.

4.5.5. Discussion
I have used urine heteroplasmy throughout the modelling of disease burden and

progression. This is on account of various studies that have identified urine
heteroplasmy as the preferred non-invasive heteroplasmy measure in m.3243A>G
(Whittaker et al., 2009; de Laat et al., 2012). However, the results in this section show
that blood heteroplasmy is more predictive of both total disease burden and also several

individual phenotypic features of m.3243A>G disease.

Blood heteroplasmy has been repeatedly discredited as being of prognostic value
(Mehrazin et al., 2009; Whittaker et al., 2009); this was intuitively consistent with the
finding that blood heteroplasmy levels are not static and decline over time. However,
the results presented in section 4.4 provide substantial evidence in support of the merit
of blood heteroplasmy as a more useful predictor than urine heteroplasmy. It is
significantly better in predicting total disease burden, both using basic statistical
analysis of the average NMDAS score for each patient, and also using longitudinal
modelling of disease progression. With regard to individual phenotypic features the
picture is not so clear; there are several features that are better predicted in our cohort by
urine rather than blood. However, the features with a strong bias towards urine

heteroplasmy are generally rare in the m.3243A>G cohort, such as extra-pyramidal and
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pyramidal features. Migraine is the only feature in this group that is common, however
it has already been shown in section 4.3.5 that migraine is poorly predicted by either age
or urine heteroplasmy. Conversely, the features that are strongly biased towards blood
heteroplasmy are both common and also strongly predictable by urine heteroplasmy,
including cerebellar ataxia, diabetes mellitus, exercise tolerance, myopathy, and
cognitive impairment. The notable exception to this is deafness; 67% of resamples
found urine a better predictor than blood.

Muscle is not significantly better than urine or blood heteroplasmy in this cohort, and
indeed the trend is in the opposite direction. However, the sample size (31/34 patients)
is relatively small, and statistical significance would be difficult to achieve with this
size of cohort, particularly considering that I have shown heteroplasmy predicts little of
the overall variation in total disease burden. However, if urine is indeed more predictive
than muscle, despite being highly variable as reported in section 4.4, the reason for this
is unknown. | will return to this discussion in section 4.6.4.4 with regard to sex

differences in the m.3243A>G mutation.

| speculate that blood heteroplasmy may be a useful prognostic indicator for two
reasons. The first is that the level of heteroplasmy in blood, though in decline, are more
consistent than measures of urine or muscle heteroplasmy. | have already been shown
that urine heteroplasmy measurements vary considerably for single patients; if blood is
also superior to muscle heteroplasmy it may indicate that a single muscle biopsy

heteroplasmy level is also a poor estimate of average heteroplasmy.

The discussion on the utility of heteroplasmy must be put into the context of how useful
heteroplasmy as a measure of the underlying pathology. It is clear from the basic
modelling using GLM that heteroplasmy is a poor predictor of disease burden. This
begs the question of whether another easily measurable quantity may be more useful,
for example wild-type mtDNA copy number. It has been shown in a recent study that
wild-type mtDNA copy number is a more useful predictor of disease phenotype than
heteroplasmy (Liu et al., 2013). As for previous studies (Whittaker et al., 2009) urine
was noted as superior to blood, however both of these studies fail to incorporate age

into their modelling.

Liu et al. convincingly shows that wild-type mtDNA copy number is a better indicator
than heteroplasmy; however, their results are potentially confounded by the lack of age

as a predictor. They found that younger subjects had lower mtDNA copy number. Total
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mtDNA copy number was significantly higher in the m.3243A>G patients than in
controls. The data shown for total copy number by age group was interesting. For both
blood and urine total mtDNA copy number, the highest copy number was found in the
10-20 age group; the lowest was found in the < 10 age group, and above 20 years of age
the copy number was in between the two. The control data is perhaps the more
informative of the two data sets here, since it is not biased by more severe disease
phenotype found in younger patients in the m.3243A>G patients. It would appear that
copy number is significantly higher in the 10-20 group than the other groups, in both
blood and urine. This would suggest a non-linear trend of total mtDNA copy number
with age, which would potentially confound any use of this measure for prediction,

unless age adjusted correctly.

There are some caveats to add to this analysis, and all analyses using heteroplasmy
measures. The methodology for assessment of heteroplasmy has changed and improved
over the years, and heteroplasmy levels used in this analysis span over 13 years. Though
this is not expected to materially affect the analysis in general, it may affect the

variability in the heteroplasmy measurements.
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4.6. Sex differences in m.3243A>G mutation

4.6.1. Introduction
There are diseases associated with mtDNA mutations that have a clear difference in

expression between sexes, for instance Leber’s hereditary optic neuropathy (LHON), to
which males are four to five times more susceptible (Yu-Wai-Man et al., 2009).
However, it is less clear whether there are sex differences in other mitochondrial
mutations. The prospect of more severe male disease was raised in 1996 by Frank and
Hurst, who hypothesised that maternal inheritance would open up the prospect of more
severe phenotypic disease for males, particularly relating to infertility, but also other
systems exhibiting male-female dimorphism as mutations deleterious only to males

would not be selectively filtered from the germline (Frank and Hurst, 1996).

From the phenotypic perspective, there is recent work that highlights the potentially
critical importance of male-female dimorphism, particularly as regards ageing. Camus
and colleagues showed that ageing is accelerated in Drosophila melanogaster by
deleterious mitochondrial mutations, but only in males, not females (Camus et al.,
2012).

4.6.2. Aims
The aim of this chapter is to explore sex differences in the m.3243A>G cohort. | chose

to focus on m.3243A>G, as it is the largest set of patients in the MRC cohort.

The principal question for exploration in this chapter is whether there any differences in
the phenotypic expression of the m.3243A>G mutation between sexes. This will
encompass examining differences in heteroplasmy levels, disease burden, and specific
phenotypic features.

Several large studies in m.3243A>G have been conducted, and in each case females
outnumber males in a ratio of approximately 2:1. To explore the cause of this
imbalance, | chose to investigate maternal family inheritance to establish whether there
is any difference in the ratio of males and female children born to mothers carrying the
m.3243A>G mutation.

4.6.3. Methods

4.6.3.1. Cohort

| utilise the same cohort of patients as described in section 4.3. All families with
recorded pedigrees were used in the pedigree analysis. For other analyses all patients in
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the cohort with the appropriate factors (blood, urine, and muscle heteroplasmy) were

included.
4.6.3.2. Meta-analysis
For analysis of the sex ratio at birth, I also collated data on family trees from published

literature to compare with the data from our own cohort.

A search was done in PubMed for any of 3243, MELAS or MIDD, together with
PEDIGREE, and any publications with defined pedigrees were included. In addition,
any pedigrees from publications that were reviewed in the wider investigation into
m.3243A>G were included.

4.6.3.3. Sex ratio methodology
Each maternal family lineage was considered separately, and a female/male birth ratio

was calculated for each family.

All generations of descendants through the maternal line below the earliest known
m.3243A>G mutation carrier were included; the total number of females and total
number of males were summed and the ratio calculated. The top level mother was not
included in the ratio. It was not always necessary for the top-level mother to be a
confirmed carrier by genetic testing. For instance, if two or more siblings (hon-identical
twins excepted) at any level were confirmed by genetic diagnosis to be carriers of the
mutation then their mother is assumed to be a carrier, since the chance of separate

sporadic mutation events in two siblings is negligible.

4.6.3.4. Statistical analyses

For sex differences in disease burden | used multiple regression to look at heteroplasmy,
age, and NMDAS score.

All tests on sex ratio differences were non-parametric.

4.6.4. Results
46.4.1. Cohort

The cohort is the same as used in section 4.3, consisting of 146 patients in total.
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4.6.4.2. Gender balance in large cohort studies of m.3243A>G

Table 4.7 shows the balance of male and female participants in several recent large
cohort studies on m.3243A>G, including our own. Each study comprises an

independent and non-overlapping cohort.

Source Male Female Female

Proportion
Newcastle cohort 72 124 63.3%
(Majamaa-Voltti et al., 2006) 33 67 67.0%
(Kaufmann et al., 2011) 30 56 65.1%
(de Laat et al., 2012) 42 85 66.9%
(Suzuki et al., 2003) 36 77 68.1%

Table 4.7 Male female balance in large cohort studies on m.3243A>G.

All studies show a consistent proportion of around two thirds female to one third male participants.

4.6.4.3. Sex ratio at birth
4.6.4.3.1. General population

Table 4.8 shows the females proportion in live-births in the in the general population.

Population Proportion at birth Proportion in population

(Estimated) over 65
World 48.3% 56.2%
UK 48.8% 55.6%

Table 4.8 Proportion of females in the population.
At birth the proportion of females in the population is slightly less than half, at similar proportions both
worldwide and in the UK. Above the age of 65 the balance shifts to a female dominated population.

(Central Intelligence Agency, 2013).

4.6.4.3.2. Analysis of m.3243A>G carriers

Nineteen separate publications were found for the meta-analysis, detailing 39 separate
pedigrees. Twenty-two separate pedigrees were identified from the patients in the
Newcastle cohort. Source data for the analyses can be found in Appendix IX and

Appendix X.
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The proportion of female live-births was calculated for each pedigree. The distribution
for each data set is depicted in Figure 4.32. In the Newcastle cohort the median female
proportion (58.8%) is significantly higher than that of the general population (P = 0.045,
N = 44). The median proportion in the meta-analysis (61.5%) is also significantly higher
than the general population (P = 0.0005, N = 39).

307

EE Meta-analysis EZ=d Cohort

204

Frequency %

NN ,-\VQ D WD RO P O,Q\QQ NN q/Q DR DRDP O,Q\QQ

Female proportion %
Figure 4.32 Proportion of live-births that are female in the meta-analysis and this cohort.

The proportion of female live births is significantly different from the proportion of the general
population. In the meta-analysis the estimated median is 61.5% (P = 0.0005, N = 39), in the Newcastle
cohort the estimated median is 58.5% (P = 0.045, N = 44). The proportion for the general population is

taken as 48.8%, as seen in Table 4.8.

4.6.4.4. Sex differences in heteroplasmy

For each of the three heteroplasmy measures (urine, blood, and muscle) I used multiple

regression to examine the effect of age (at biopsy) and sex as predictors.

As shown in Figure 4.33, urine heteroplasmy is significantly higher in men than in
women (P < 0.0001, R? = 26.5%, N=145). It is not for significantly different in blood (P
= 0.8770, R? = 37.0%, N=134) nor in muscle (P = 0.1784, R* = 10.6%, N = 36).

The relationship between blood and urine heteroplasmy is also modulated by sex. In
multiple regression with urine heteroplasmy, age at biopsy, and sex as predictors, and
the square root of blood heteroplasmy as the dependent variable, sex is a highly
significant predictor (P < 0.0001) as well the other two predictors. (N = 159, R®
=78.0%).
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Figure 4.33 Sex differences in heteroplasmy levels.

(A) Urine heteroplasmy levels are significantly lower in females than in males (P < 0.0001, R® = 26.5).
(B) Blood heteroplasmy levels are not significantly different between males and females (P = 0.8770, R?
= 37.0%). (C) Muscle heteroplasmy is not significantly different between males and females (P = 0.1784,
R?=10.6%).
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4.6.4.5. Sex differences and NMDAS progression

To investigate whether sex has a significant impact on NMDAS score and progression, |
first conducted multiple regression with age and sex as predictors, using the scaled
NMDAS score (NMDAS®?) as the dependent variable. | first examined two models;
one without an interaction term (allowing different intercepts but not gradients for sex),

and the second with the interaction term (allowing both intercept and gradient to differ).

The first model finds that the gradients are not significantly different (P = 0.6552, N =
146, R? = 6.1%). The second model is illustrated in Figure 4.34. The gradients are not
significantly different (P = 0.2403, R? = 7.0%).

| also investigated whether sex differences in NMDAS progression are observable when
urine heteroplasmy is included in the model. In this model, sex is also not found to have
a significant effect on NMDAS score (P = 0.3392, R” = 18.3%, N = 146).

With blood heteroplasmy, sex is also not a significant effect (P = 0.6005, R? = 27.3%, N
=135).
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Figure 4.34 Scaled NMDAS score, age and sex.

Linear regression with 95% confidence intervals are shown for males and females. Sex is not a significant
effect in NMDAS score (P = 0.6552) and the gradients are not significantly different (P = 0.2403). N =

146. There are no significant sex differences observable in NMDAS score.
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4.6.4.6. Specific phenotypic features

As in section 4.3.5, | used logistic regression to model the effect of age and
heteroplasmy (both urine and blood) on the severity of phenotypic features as identified
by the NMDAS. | use the same modelling approach here, but introduce sex as a third
predictor. The results are shown in Figure 4.35. Using urine heteroplasmy, only the
severity of ptosis is significantly more severe in males than females; however, exercise
intolerance and myopathy are more severe in females. Using blood heteroplasmy, males
are significantly more severely affected in several features, namely ptosis, vision,
cutting food, hearing, cardiovascular dysfunction, and encephalopathic episodes. There
are no features where females are significantly more severely affected than males. The
odds ratios for almost all other features show that the (non-statistically significant) trend
is for females to be less affected than males; the exceptions to this are diabetes, Gl
disturbance, exercise tolerance, and myopathy.
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Figure 4.35 P-values and odds ratios for the predictive effect of sex on the risk of developing
specific phenotypic features.

For each feature, | look at the effect of sex on the logistic model incorporating also age and heteroplasmy
(either urine or blood). Both graphs use log scales. Solid line on the P-value graph indicates P = 0.05;
blow this line indicates statistical significance. An odds ratio significantly above 1 implies that males are
more affected than females at the same age and heteroplasmy; an odds ratio below 1 that males are less
affected than males. Using urine heteroplasmy, only ptosis is significantly more severe in males, whereas
exercise intolerance and myopathy are more severe in females. Using blood heteroplasmy, males are
more severely affected in several features, namely ptosis, vision, cutting food, hearing, and
encephalopathic episodes. There are no features where females are significantly more severely affected

than males.

4.6.5. Sex differences discussion
As shown in Table 4.7, cohort studies on m.3243A>G are almost invariably female

heavy in their makeup, with females outnumbering males in a ratio of approximately
2:1. This is not necessarily an indication that there are more female carriers of the
m.3243A>G mutation than male, for several reasons. The first is that females are more
frequent users of health services than men in general (ONS, 2010), for which reason one
might expect more women to be identified as potential carriers of the mutation than
men. The second is related to a peculiarity of maternal inheritance of mitochondrial
mutations; when a patient is identified as a carrier of a potentially inherited mtDNA

137



Chapter 4 Disease associated with the mt.3243A->G mutation

mutation such as m.3243A>G, it would be normal clinical practice to assess the mother
of the patient to identify whether the mutation is sporadic or inherited, which would
swell the number of females assessed (Dr Andrew Schaefer, personal communication).
The third is a confound that derives from the asymmetrical ageing profile of the sexes;
due to various factors, and in spite of a slightly higher male birth rate, the population

above the age of 65 is female dominated (Central Intelligence Agency, 2013).

To avoid population dynamics confounding my investigation, | chose to look at the
female/male ratio in live births to females known to carry the m.3243A>G mutation.
Conventionally the ratio is expressed as the ratio of male births to female births (1.07
for the worldwide ratio in 2013 (Central Intelligence Agency, 2013)), but when looking
at small populations such as individual maternal lineages proportions are preferred to
ratios, to avoid division by zero when a family has only female children. Hence I
consider the proportion of female births, with extreme values of 0 (all male offspring)

and 1 (all female offspring).

The data shows that both in the Newcastle cohort and the meta-analysis there is a
significant deviation from the normal birth ratio in favour of female offspring. This is a
novel observation, and has not been reported previously in literature to my knowledge.
There are two potential causes of this imbalance; an influence on the sex determination

of the embryo pre-fertilization, or a pathogenic effect specific to males.

The concept of an adaptive sex ratio has long been of interest to researchers, since the
seminal theory of Trivers and Willard that first proposed a link between maternal
characteristics and the sex ratio of offspring (Trivers and Willard, 1973). A second
theory by Myers agreed with the outcome, but not the reasoning; he theorised that
mothers under nutritional stress are more likely to give birth to daughters as daughters
are nutritionally less expensive than sons (Myers, 1978). Factors which modulate the
sex ratio in mammals have been studied in a variety of species. Diet, for example, has
been shown to affect the sex ratio (Rosenfeld and Roberts, 2004). Indeed, it has been
shown in a large number of studies that mothers in good physical condition produce
more male offspring (Rosenfeld and Roberts, 2004). In humans, a study of the changing
sex ratio during and after the 1959-1961 famine in China concluded that mothers in
poor condition are more likely to give birth to daughters (Song, 2012). Pregravid
diabetes has been shown to bias the sex ratio in favour of female offspring (Ehrlich et

al., 2012); this is particularly relevant to the discussion regarding m.3243A>G
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considering the prevalence of diabetes in the cohort. The physiological mechanism
underlying this adaptive response remains unknown (Helle et al., 2008), but in line with
the prior research it seems reasonable to infer that mitochondrial dysfunction could lead

to energy stress in mothers and thus a trend towards female progeny.

The second possible explanation of the altered sex ratio is that the mutations are more
pathogenic for male offspring. Sex differences in mitochondrial disease have been
discussed recently in the scientific literature, prompted by the prospect of mitochondrial
replacement (MR) therapy (Reinhardt et al., 2013). The argument made by Reinhardt et
al. applies to any of the proposed mechanisms of MR, both pro-nuclear transfer (Craven
et al., 2010) and mitotic spindle transfer (Tachibana et al., 2009). The argument rests on
the co-ordination between nuclear and mitochondrial gene expression, which is highly
integrated and tightly co-regulated (Woodson and Chory, 2008). From the perspective
of mitochondrial evolution males are an evolutionary dead end, since the effects of
mitochondrial genetic mutations on males are irrelevant as they are not passed on down
the male line (Parsch, 2011). This leads to the curious situation that mutations that are
deleterious to males but not females can potentially be successfully passed on without
fear of genetic selection (Frank and Hurst, 1996). Indeed, mitochondrial replacement in
fruit flies has been shown to lead to a major change in nuclear gene expression in males
but not females (Innocenti et al., 2011), which is suggestive of potential major

differences between mitochondrial gene expression between males and females.

If the m.3243A>G mutation were indeed more pathogenic for males than females, it
could be expected that males would exhibit faster disease progression and more severe
disease phenotype. However, the most appropriate way to assess this is not
straightforward. | have already shown in 4.6.4.4 that urine heteroplasmy is higher in
males, but that blood heteroplasmy is not significantly different between sexes. | chose
to retain heteroplasmy (either blood or urine) and age in the model when looking at both
overall disease burden progression and also the severity of specific phenotypic features,
so as to control for the correlations observed between sex and heteroplasmy. However, |
also investigated the relationship between sex and disease burden and severity with
heteroplasmy absent from the model altogether.

Regarding overall disease burden progression (section 4.6.4.5), sex is not a significant
predictor. This is true whether heteroplasmy of any source is included as a predictor or

not. This lack of an effect with or without heteroplasmy is slightly puzzling, since |
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have also shown that urine heteroplasmy is significantly higher in the male patients of
the cohort (section 4.6.4.4). 1t was therefore expected that one of the two models, either
blood heteroplasmy or urine heteroplasmy, would exhibit sex differences.

The modelling of individual phenotypic features is more illustrative, particularly
comparing the effect of sex as a predictor when using the different heteroplasmy
measures as predictors. Here there are several phenotypic features in which males are
more severely affected when using blood heteroplasmy. Several of these features are not
observably different between the sexes using urine heteroplasmy as a predictor. This
suggests that the sex difference in the heteroplasmy level observed in urine is
potentially explanatory of some of the variation in phenotypic severity; however, it
should be noted that blood heteroplasmy is in general a better predictor for almost all
phenotypic features. Of the features that have more severe disease burden for females
(albeit non-significantly for blood heteroplasmy), it is notable that both myopathy and
exercise intolerance are features that are more severe in females than in males; both of
these are related to muscle, in which there are known sex differences (Staron et al.,
2000).

The discussion of sex differences in m.3243A>G must be examined in the context of
fundamental physiological differences between males and females. It is not disputed
that females live longer than males (Austad, 2006; Frank, 2012). There are numerous
reported differences in males and females reported that are related to ageing however,
and no consensus on the root causes of the difference in longevity and whether a slower
ageing process is the root cause of this. However, it has been shown that females
demonstrate slower immune system ageing (Hirokawa et al., 2013), suffer less
oxidative DNA damage (Proteggente et al., 2002), and, most relevant to a discussion
about mitochondrial disease, it has been shown that females have higher mitochondrial
antioxidant levels and lower mitochondrial oxidative damage than males, directly
attributable to oestrogen levels (Borras et al., 2003),which is highly supportive of the
oxidative stress hypothesis of ageing. Thus there may be a natural asymmetry in disease
progression that is not attributable to mitochondrial disease per se and more related to

general differences also observed in the general non-diseased population.

To truly understand whether the mechanism underlying the altered sex ratio is a
pathogenic mechanism post-conception or selection pre-conception would require a

study of pregnancies that fail to carry to term and an examination of the sex ratio in
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unviable foetuses. However, on balance it seems more reasonable to assume that the
changes in the live birth sex ratio in m.3243A>G are caused by the same mechanism as

other changes discussed previously, such as seen in nutritional deprivation or diabetes.

It is important to acknowledge potential limitations of this study. Firstly, any potential
source of bias in the reporting of family pedigrees must be considered. Secondly,
caution must be expressed with regard to conclusions of statistical significance; the
analysis we are carrying out does involve multiple testing, and caution should be
observed in interpreting the p-values of the effects. However, whilst acknowledging the
limitation of determining statistical significance in analyses such as this, | believe that
the analysis has merit regardless and is informative as to the effect of sex on disease

progression and severity.

4.7.  m.3423A>G discussion
There are several novel aspects to the work presented here on disease progression
associated with the m.3243A>G mutation.

Regarding disease progression, to my knowledge this is the first study to investigate
disease burden and progression using multiple regression techniques, which has been
shown as invaluable in understanding the relationship between disease burden,
heteroplasmy, and age. Without multiple regression techniques the correlation between
heteroplasmy and age at a population level severely hampers any attempt using a single

predictor at a time.

Secondly, longitudinal mixed modelling has been used to provide predictive models of
total disease burden progression. Again, this is novel, and is important for clinicians in

understanding the likely course of progression of disease burden.

Thirdly, the risk profiles for individual phenotypic features using age and heteroplasmy
as predictive factors are novel and are fundamentally important for understanding the
link between age, heteroplasmy, and specific features of disease in patients with
m.3243A>G.

The investigation into heteroplasmy also demonstrates several novel findings. Firstly, |
have quantified the variability of urine heteroplasmy. This is vitally important, as this is
routinely used by clinicians to understand the likely disease burden of patients and this
high variability is a serious limitation of urine heteroplasmy as a prognostic measure.

The characterisation of the relationship between urine and blood heteroplasmy is also
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novel, as is the observation that blood heteroplasmy levels are likely to be

asymptotically non-zero in many patients.

The report of the altered sex ratio in favour of female progeny is novel, and opens up
further questions about the mechanism behind this alteration. The investigation into sex
differences in disease associated with m.3243A>G has demonstrated clear differences
between males and females as regards urine heteroplasmy, which is of concern.
However, the examination of disease burden and specific phenotypic features indicate
that the higher urine heteroplasmy level in males may potentially reflect a genuinely

higher disease burden.

In conclusion, though much has progress has been made in understanding disease
progression in patients with the m.3243A>G mutation, the limitations of heteroplasmy
as a prognostic measure have been clearly demonstrated, and the case for improved
metrics more useful than heteroplasmy in predicting disease progression has been
clearly made.
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Chapter 5. Disease progression in single large-scale mtDNA deletions

5.1. Introduction

Single large-scale mtDNA deletions are amongst the more commonly reported
mutations in mitochondrial disease. Population prevalence in adults is estimated at
between 1.2/100,000 (Chinnery et al., 2000b) and 2.9/100,000 (Remes et al., 2005). In
the cohort of 671 patients seen at the Newecastle mitochondrial disease clinic, 86
(12.8%) have single large-scale mtDNA deletions.

Single large-scale mtDNA deletions were the first identified genetic cause of mtDNA
disease (Holt et al., 1988). The clinical phenotypic associated with single large-scale
mtDNA deletions is traditionally divided into three main presentations (Schon et al.,
2012). The mildest phenotypic presentation is chronic progressive external
ophthalmoplegia (CPEO) (Moraes et al., 1989), which principally involves weakness of
the extra ocular muscles and ptosis, but is often associated with more widespread
muscular weakness. A second major presentation is Kearns-Sayre syndrome (KSS)
(Kearns and Sayre, 1958), a multi-system childhood or teenage onset syndrome. KSS
was first characterised with ophthalmoplegia, retinal pigmentary degradation, and
cardiomyopathy as principal features; the criteria for diagnosis have since been adjusted
to onset under twenty years of age, PEO, and pigmentary retinopathy. However, other
features such as cerebellar ataxia, broader myopathy, and other organ involvement are
also common. Pearson Syndrome (Pearson et al., 1979) is an infantile onset syndrome
that is often fatal, characterised by sideroblastic anaemia and exocrine pancreatic
dysfunction. In those who survive infancy it often develops into KSS (Simonsz et al.,
1992).

As many studies attempting to analyse phenotypic presentation have noted, these
divisions are somewhat imprecise and misrepresent the true spectrum of single mtDNA
deletion-related disease; patients denoted CPEO are often sub-divided into groups such
as ‘classic CPEO’ at the mild end of the spectrum, ‘severe CPEO’ or ‘CPEO+’, and
‘partial KSS* or ‘CPEO + Multisystem’ (Auré et al., 2007). Discrete phenotypic

classification is severely problematic.

The earliest investigations of disease associated with single large-scale mtDNA found
little connection between mitochondrial genetics, biochemical defects and clinical
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phenotype (Zeviani et al., 1988; Holt et al., 1989a; Moraes et al., 1989; Rotig et al.,
1995). More recent studies are rather contradictory. For example, SKM heteroplasmy is
has been reported as non-predictive of either phenotype or age at onset (Yamashita et
al., 2008), predictive of onset but not phenotype (Lopez-Gallardo et al., 2009), or
predictive of both to an extent (Sadikovic et al., 2010). Similarly, mtDNA deletion size
is variously reported as either predictive of phenotype and disease severity (Yamashita
et al., 2008) or not predictive (Lopez-Gallardo et al., 2009). Two recent studies found
that the location on the genome of the mtDNA deletion was predictive of phenotype or
age at onset, though with contrary findings. One study found that mtDNA deletions
including one of the three mtDNA-encoded structural components of cytochrome c
oxidase (COX) (MT-CO1, MT-CO2 or MT-CO3 genes) or complex V (MTATP6 or
MTATP8 genes) had significantly earlier-onset (Yamashita et al., 2008). However,
another study found that deletion of the mitochondrial cytochrome b (MT-CYB) gene
was significantly associated with the more severe KSS phenotype as compared to CPEO
(L6pez-Gallardo et al., 2009).

To improve analysis of disease burden and phenotype, researchers have attempted to
better segregate patients into groups that are more appropriate for analysis. Auré et al
segregated patients by the presence of a neurological phenotype, distinguished by the
presence of cerebellar involvement (Auré et al., 2007); a second group looked at
whether the phenotype was purely myopathic in nature (Lépez-Gallardo et al., 2009).
However, as is true for many mitochondrial genetic disorders, the disease spectrum is
multidimensional, with a wide range of potential systems involved, each to varying
degrees of severity. This severely hampers any attempt to discretely classify the disease.
In this context, the NMDAS is a significant aid in understanding disease severity,
progression, and the correlation with predictive factors, and offers a route to
understanding disease progression that sidesteps the issue of discrete phenotypic

classification.

52.  Aims

In this study, | chose to use repeated measures mixed modelling with the collated
NMDAS data to test the hypothesis that mtDNA heteroplasmy levels and mtDNA
deletion size and location are predictive of single, large-scale mtDNA deletion disease

progression.
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| also aimed to apply multiple linear regression analyses to examine the relationship
between these predictors and outcome measures such as age at onset, clinical
phenotype, the level of biochemical defect (as determined by COX-deficient fibre

density) in both our cohort and a meta-analysis of previously published data.

Finally, | aimed to use logistic regression to examine the relationship between

individual phenotypic features and predictive factors.
5.3.  Methods

5.3.1. Newcastle patient cohort
All the patients in this cohort were investigated by the NHS Highly Specialised Service

for Rare Mitochondrial Disorders in Newcastle upon Tyne. The majority (55 out of 87)
were recruited to the MRC Mitochondrial Disease Patient Cohort UK and followed in
our clinic at regular 6 or 12 monthly intervals, and assessed using the NMDAS at each
visit (Schaefer et al., 2006). The remaining 32 patients comprise individuals not seen in
our clinic and for whom we have limited clinical information, and those for whom we
do not have NMDAS data available. For some of these patients we have been able to
ascertain disease onset from medical records. A full listing of the clinical and molecular

characteristics of the patient cohort can be found in Appendix XI.

For phenotypic analysis the patients were divided into two groups, those classified
either as CPEO or as CPEO with myopathy (combined together, N = 54) and those
classified as KSS (N = 9).

5.3.2. Meta-analysis
The meta-analysis is based on a previous meta-analysis by Lopez-Gallardo et al.

(L6épez-Gallardo et al., 2009) which includes data on patient age at disease onset, age at
biopsy, clinical phenotype, SKM heteroplasmy, mtDNA deletion size, and in many
cases specific mtDNA deletion breakpoints. | used the data as published by Lopez-
Gallardo et al. except where review of the literature identified differences between the
published data and that used by this group (three cases) or where there was
inconsistency between the reported mtDNA deletion size and location of the
breakpoints (one case). | also eliminated those cases where the reported mtDNA
deletion was characterised by restriction endonuclease digests and there was uncertainty
as to whether specific genes under scrutiny (MT-CO or MT-CYB genes) were deleted
(seven cases) or other mutations were reported concurrently for the same patient (nine

cases). One patient with a highly unusual mtDNA deletion in the minor arc of the
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mitochondrial genome was also excluded. Also excluded are any patients that have been

reported in studies from this centre.

The data was augmented with other cases from subsequent studies or those not included
by Lépez-Gallardo et al. that were identified through PubMed (Johns et al., 1989; Mita
et al., 1989; Larsson and Holme, 1992; Oldfors et al., 1992; Ishikawa et al., 2000;
Gellerich et al., 2002; Jacobs et al., 2004; Sadikovic et al., 2010).

All data from the meta-analysis can be found in Appendix XII. All amendments and

exclusions are listed in Appendix XIII.

For phenotypic analysis, patients classified by Lopez-Gallardo et al. as “CPEO without
non-muscular signs” were combined with patients classified “CPEO” or “CPEO +
myopathy” from the other sources (101 cases in total). This patient group was compared
to the patients classified as “KSS” from all sources (104 cases in total). For other
analyses, we used the patients in the meta-analysis that had all the appropriate

information available.

5.3.3. Muscle biopsy histochemistry data
Sequential cytochrome ¢ oxidase (COX)/succinate dehydrogenase (SDH) histochemical

reactions were performed on SKM sections following standardised protocols (Old and
Johnson, 1989). The percentage of COX-deficient fibres (measuring the extent of COX
deficiency) was determined by counting all the fibres in a section (minimum 200).

Counting was performed by a single researcher to ensure consistency.
All muscle biopsy histochemistry was conducted by Gavin Falkous.

5.3.4. Determination of level of mtDNA deletion
All molecular analyses were performed using total SKM DNA extracted using standard

protocols. mtDNA deletion levels in muscle homogenates was quantified using a
validated, multiplex real-time PCR (qPCR) MT-ND1/MT-ND4 assay (He et al., 2002;
Krishnan et al., 2007).

All mtDNA deletion level quantification was performed by Georgia Campbell and
Thiloka Ratnaike.

5.3.5. Determination of mtDNA deletion size and location
Long-range PCR was used to amplify ~ 9.5 kb region of the mitochondrial genome

across the major arc using a single primer set corresponding to nucleotides 6378-15896

(GenBank Accession number: NC_012920.1). PCR reactions used ~100ng of DNA
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which was added to PCR mastermix (dH2O, LA Taq buffer (TaKaRa), 10mM dNTPs,
20mM forward and reverse primers and XX units of LA Taq enzyme (TaKaRa)) to a
total volume of 50ul and subjected to the following cycling conditions: 94°C for 1
minute; 35 cycles of 94°C for 30 seconds, 58°C for 30 seconds and 68°C for 11
minutes; final extension of 72°C for 10 minutes. Amplified products were separated
through a 0.7% agarose gel, using a 1kb DNA ladder to estimate product size and
determine mtDNA deletion sizes.

Long-range PCR products were further assessed by restriction digests to map the
precise location of the mtDNA deletion breakpoints (Khrapko et al., 1999). PCR
amplimers (5ul) were digested to a series of DNA fragments of known length and
position within the mitochondrial genome using restriction enzymes Xho I, BamH 1,
Xcm I and Dra | (New England Biolabs) prior to separation through a 0.7% agarose gel.
The size of restriction products allows the location of the mtDNA deletion within the
genome to be estimated, guiding the choice of appropriate sequencing primers
(Supplementary Table 4) to characterise mtDNA deletion breakpoints by Sanger
sequencing. (BigDye v3.1 terminator cycle sequencing chemistries using an ABI 3130xI

Genetic Analyser; Applied Biosystems).
All mtDNA deletion breakpoint determination was carried out by Georgia Campbell.

5.3.6. Statistical analyses
5.3.6.1. Basic statistical modelling

The general methods for basic statistical analyses are described in section 2.11.1.1.

5.3.6.2. Longitudinal modelling of disease progression

Longitudinal modelling is conducted as described in section 2.11.1.2. Appendix XIV
lists the SAS code to generate the models used in this section.

5.3.6.3. Data transformation

As described in section 2.11.1.2, Box-Cox analysis was used to investigate the
relationship between the NMDAS score and age at assessment. In addition to this, I
wished to investigate the relationship between the other independent variables

(heteroplasmy and deletion size) with the scaled NMDAS score.

This was done in two ways; the first used PROC TRANSREG and Box-Cox analysis,
but with the QPOINT option to allow examination of quadratic surfaces, i.e. the
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introduction of simple powers of the dependent variables and cross interactions to see

the effect on variance stability.

QPOINT identifies simple powers of independent variables that stabilize the variance of
the data, but does not explore other transformations such as the log function. It was
hypothesised that the effect of heteroplasmy may have increased exponentially as
heteroplasmy approaches 100%. Hence the transformation het,g=log(1-het) was
examined to see the effect of this transformation on the fit of the model and variance
stability.

5.3.6.4. Individual phenotypic features

The general methodology for logistic regression is explained in section 2.8.

| used two approaches to logistic regression. Both used the three predictors of age,
muscle heteroplasmy, and deletion size. For each NMDAS question, a single summary
score was determined for each patient by taking the maximum score achieved on each

question and the age at which that score was first recorded.

The first approach used binary (dichotomous) logistic regression by identifying the
optimal cut-off point for each NMDAS question to divide the cohort into two groups.
To identify the optimal cut-off point the area under the ROC curve (AUC) was
maximized. This was done separately for each individual predictor, each pair of
predictors, and the three predictors together in the model, to allow a full understanding
of the use of each predictor. Only cut-off points that partitioned the data into sets
containing at least 6 patients (10% of the cohort) in each group were considered to

avoid small numbers of patients skewing the results.

The second approach used a proportional odds multiple logistic regression. NMDAS
scores were re-categorised as asymptomatic (NMDAS = 0), moderate (1-3), and severe
(4-5); this re-categorisation was necessary for a majority of phenotypic features for
model to conform to the proportional odds assumption. Pseudo-R? values, as described

in 2.8.2, were used to compare models.
In both approaches, standardised parameters for the predictors were calculated.
5.4. Results

5.4.1. Patient cohort
The number of patients used in the various analyses are detailed in Table 5.1.
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The distributions of age, heteroplasmy, deletion size, and number of NMDAS

assessments in the Newcastle cohort are shown in Figure 5.1.

5.4.1.1. Phenotypic spectrum

The phenotypic profile of patients in the cohort is shown in Figure 5.2. There are
several features that are absent or rare in the cohort, including seizures, stroke-like
episodes, diabetes, and both pyramidal and extra-pyramidal features. The majority of
the other features are present in the cohort at level of at least 50%. CPEO and ptosis are
100% penetrant, vision is also affected in 80% of people according to the current
function (section 1), whilst visual acuity is impaired in 70% of patients. Exercise
tolerance is affected in 77% of patients, though 93% of patients are myopathic.
Cerebellar ataxia is prevalent at 80%, with gait stability affected in 70% of patients.

With Without Cohort Meta-

NMDAS NMDAS (total) analysis
Number of patients with mtDNA deletion 55 32 87 256
size and muscle mtDNA heteroplasmy data
Number of patients with mtDNA 52 31 83 184
breakpoints identified
Number of patient with age at onset data 52 8 60 117
Number of patients with age at onset data 49 7 56 83
and mtDNA breakpoints identified
Number of patients with COX-deficient 49 23 72 40
fibre density data and mtDNA breakpoints
identified
Number of patients presenting with a 36 27 63 205
CPEO, CPEO + Myopathy or KSS
phenotype
Number of patients presenting with a 35 26 61 149

CPEO, CPEO + Myopathy or KSS
phenotype and mtDNA breakpoints
identified

Table 5.1 Summary of Newcastle patient cohort and available data in literature.

SKM heteroplasmy and deletion size data was available for all patients. The sub-cohort of patients with
identified mtDNA breakpoints is used where gene location is under investigation; the larger cohort with
MtDNA deletion size is used where location is not considered. The small number of patients with
phenotype data reflects the fact that patients with a multisystem phenotype are excluded from the

analysis; this number is restricted to patients with CPEO, CPEO + Myopathy, or KSS.
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Figure 5.1 Age, heteroplasmy, deletion size, and number of assessments in the cohort.

The patients with heteroplasmy, deletion size, and NMDAS data are considered in this graph (N = 55).

(A) Age is positively skewed with a median age of 42 year, minimum 18 years and maximum 82 years.

(B) Muscle heteroplasmy is negatively skewed, with a median of 46.5%. Heteroplasmy ranges from
undetectable (0%) to 85%, with an interquartile range of 35%. (C) Deletion sizes range from 2.3kB to

9.1kB, and the distribution is fairly uniform other than the great peak at around 5kB, which are in the

main common deletion (4,977kB) patients. (D) The median number of assessments is 4.5, with a

maximum of 12, and an interquartile range of 5.
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Figure 5.2 Phenotypic profile of the single large-scale deletion cohort.
All patients with NMDAS data are included (N = 55). Bars show the stacked NMDAS score. All patients suffer from ptosis and CPEO to some extent, and 94% from more

widespread myopathy. Visual impairment and cerebellar ataxia are the next most common symptoms. General encephalopathy, including stroke and seizure, are almost entirely

absent from the cohort, as is diabetes mellitus. Pyramidal and extra-pyramidal features are rare. Mild neuropathy is common but more severe neuropathy is very rare.
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5.4.2. Association of NMDAS score and traditional phenotypic classification
NMDAS score was shown to correlate with the traditional phenotype classification, as

shown in Figure 5.3 NMDAS score and classical phenotype are highly significantly

correlated.
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Figure 5.3 NMDAS score and classical phenotype are highly significantly correlated.

P-values for significant individual comparisons are shown; other comparisons are not significant (P >
0.05). The three comparisons significant at P < 0.0001 are highlighted in red. Pure CPEO phenotype
patients have a narrower range of NMDAS scores than the other phenotypes; KSS patients have the
largest range. KSS patients have the highest NMDAS scores, followed by multisystem, CPEO +
myopathy, then CPEO patients. NMDAS scores for patients with a purely CPEO phenotype patients are
highly significantly lower than the other three phenotype groups.

5.4.3. Data transformation
Box-Cox identified the fourth root of the NMDAS score (NMDAS®?) as the optimal

transformation for linear regression with the single independent variable of age,

hereafter called scaled NMDAS score.

The QPOINT option of PROC TRANSREG in SAS with heteroplasmy, deletion size
and age as independent variables found the square of the deletion size (size®) to be
optimal. The transformation het,,g=log(1-het) was also found to stabilise the variance
and improve the model fit. These transformations were used throughout the disease
progression modelling. Only the basic investigations into inter-correlations between the

predictors used untransformed heteroplasmy and deletion size.
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5.4.4. Putative predictors of disease burden and progression are inter-correlated
Before considering the relationship between the putative predictors of disease

progression and disease progression itself, | chose to look for inter-correlations between
the various predictors. In the Newcastle patient cohort | observed a strong negative
linear correlation between the mtDNA heteroplasmy and mtDNA deletion size (N=87,
r=-0.49, p <0.0001) (Figure 5.4A). This observation was confirmed in the meta-analysis
(N=256, r =-0.18, p=0.0032).

mtDNA deletion size and location were also highly significantly correlated in the
Newcastle cohort (N=83, r=-0.48, p<0.0001) (Figure 5.4B), and again this was
confirmed by the meta-analysis (N=184, r=-0.29, p<0.0001).

Highly significant correlations were also found between mtDNA heteroplasmy, mtDNA
deletion size, and the two proposed genetic loci (MT-CO and MT-CYB genes) that were
identified as significant in previous literature (Yamashita et al., 2008; Lopez-Gallardo et
al., 2009) (Table 5.2)

5.4.5. Clinical phenotype, age at disease onset, and NMDAS progression, are
correlated with muscle heteroplasmy and mtDNA deletion size
The square root of age at onset was used in these analyses, which was identified by

Box-Cox as the optimal transform. For the subjects in the Newcastle cohort with known
age at onset (N=60), age at onset was significantly correlated with both mtDNA
deletion size (b=-0.41, p=0.0039) and muscle MtDNA heteroplasmy (b=-0.42,
p=0.0027) using multiple linear regression (R°=0.18) (Figure 5.5A). Similarly, in the
meta-analysis (N=117), both mtDNA deletion size (b=-0.30, p=0.0008) and muscle
mtDNA heteroplasmy (b=-0.30, p=0.0010) were significantly correlated with age at
onset (R°=0.15).

In the phenotypic analysis comparing KSS patients to CPEO patients (excluding
intermediate phenotypes, as described in the methods), in the Newcastle cohort (N=64)
| found that both mtDNA heteroplasmy (b=-1.4, p=0.0020) and mtDNA deletion size
(b=-0.74, p=0.0318) were significantly correlated with phenotype using multiple
regression. Similarly, in the meta-analysis (N=192), both mtDNA heteroplasmy (b=-
0.56, p<0.0001) and MmtDNA deletion size (b=-0.18, p=0.0453) were significantly

correlated with phenotype.
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Figure 5.4 Putative predictors of disease progression are inter-correlated.

Regression lines with 95% confidence intervals are shown in each case. (A) SKM heteroplasmy is negatively correlated with mtDNA deletion size in the Newcastle cohort. N=87,
r=-0.49, p<0.0001. The dense cluster of points just below 5.0kB represents the cohort of patients with the 4,977bp common mtDNA deletion. (B) mtDNA deletion size is negatively

correlated with the location of the mtDNA deletion midpoint in the Newcastle cohort. N=83, r=-0.48, p<0.0001.
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The scaled NMDAS score was divided by the age at assessment to measure NMDAS
progression. In the Newcastle cohort (N=55), | found that both mtDNA deletion size
(b=0.49, p<0.0001) and mtDNA heteroplasmy (b=0.70, p<0.0001) were significant

predictors of NMDAS progression using multiple regression (R?=0.49) (Figure 5.5B).

MtDNA mtDNA MtDNA MT-CO MT-CYB
heteroplasmy  deletion Size  deletion gene gene
(%) (kB) midpoint kB)  deletion deletion
mtDNA <0.0001 0.3918 0.0423 0.0199
heteroplasmy -0.49 +0.10 -0.22 -0.26
(%) (-9.8, -4.3) (-2.6, 6.5) (-27,-0.50) (-27,-2.4) %
%/kB %/kB %
mtDNA 0.0032 <0.0001 <0.0001 0.0069
deletion Size -0.18 -0.48 +0.54 +0.29
(kB) (-4.1, -0.8) (-0.99,-0.42) (1.6,32)kB (0.34, 20)
%/kB kB
mtDNA 0.1260 <0.0001 <0.0001 <0.0001
deletion +0.11 -0.29 -0.73 +0.46
midpoint (-0.67, 5.4) (-0.62,-0.21) (-2.7,-1.8) (0.72, 1.8)
(kB) %/kB kB kB
MT-CO gene 0.1262 <0.0001 <0.0001 0.0180
deletion -0.11 +0.47 -0.72 -0.28
(-15, 1.9)% (.42, 2.48) (-2.3,-1.7)kB N/A
kB
MT-CYB gene  0.1625 <0.0001 <0.0001 <0.0001
deletion +0.10 +0.39 +0.55 -0.28
(-2.1, 13)% (093, 1.89) (1.1,1.6)kB N/A
kB

Table 5.2 Inter-correlations between putative predictors of disease burden and progression.

Shaded cells (upper right triangle) show for our cohort p values, correlation coefficients, and 95%
confidence intervals for linear regression gradient or estimated difference due to specific mtDNA gene
deletion; unshaded cells (bottom left triangle) show the same for the meta-analysis. Units for 95%
confidence intervals identify y and x for linear regression, except in the case of mtDNA deletion size (kB)
vs. mtDNA deletion midpoint (kB). The strongest correlations in each dataset are between mtDNA
deletion midpoint or size and MT-CO gene deletion; larger mtDNA deletions tend to include MT-CO
genes. MT-CYB deletion is also associated with larger mtDNA deletion size and mtDNA deletions. The
same trends are seen in all cases in our cohort and the meta-analysis, excepting that in our cohort MT-
CYB gene deletion is significantly associated with lower mtDNA heteroplasmy, whereas in the meta-
analysis there is a non-significant trend relating MT-CYB gene deletion with higher mtDNA heteroplasmy

levels.
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Figure 5.5 Heteroplasmy and deletion size are linearly correlated with age at onset and NMDAS

score progression.

For both graphs, mtDNA deletion size is dichotomous for visualization only; regression is performed with
deletion size as a continuous predictor. (A) Age at onset is predicted by both mtDNA heteroplasmy and
deletion size. Y axis shows the square root of age at onset. Data is from the Newcastle cohort. N=60,
R?=0.18. Both mtDNA heteroplasmy (p=0.0027) and deletion size (p=0.0039) are significantly correlated
with age at onset using multiple regression. (B) NMDAS progression (scaled NMDAS points per year) is
highly significantly correlated with both mtDNA deletion size (p < 0.0001) and heteroplasmy (p <
0.0001). N=55, R?=0.49. Y axis shows scaled NMDAS score per year.
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5.4.6. Disease burden and progression of patients with the 4,977bp common mtDNA
deletion are correlated with heteroplasmy
| also examined the cohort of patients whose mtDNA disease is associated with a

common 4,977 bp single, large-scale mtDNA deletion (Schon et al., 1989). For this
analysis |1 combined both the Newcastle cohort and the meta-analysis, as neither cohort
was large enough in isolation for analysis of the common deletion patients. | observed
that SKM mtDNA heteroplasmy was a significant predictor of both clinical phenotype
(N=85, OR for 10% change in heteroplasmy 1.43 95%CI (1.13, 1.81), p=0.0030) and
also age of disease onset (N=37, r=-0.44, p=0.0063).

5.4.7. COX deficient fibre density is dependent on muscle heteroplasmy and deletion
location but not deletion size
I next studied the relationship between the proportion of COX-deficient muscle fibres in

patient biopsies, mtDNA heteroplasmy, and MT-CO gene deletion (namely, deletion of
part or all of at least one of the MT-CO1, MT-CO2 or MT-CO3 genes). The square root
of COX-deficient fibre density was used in all analyses, which was identified by Box-

Cox as the optimal transform.

In the Newcastle cohort (N=72) | observed that both SKM mtDNA heteroplasmy
(b=0.68, p<0.0001) and MT-CO gene deletion (b=0.31, p=0.0018) were significantly
correlated with COX-deficient fibre density using multiple linear regression (R?*=0.43)
(Figure 5.6). Similarly, in the meta-analysis (N=39), both mtDNA heteroplasmy
(b=0.49, p=0.0012) and MT-CO gene deletion (b=0.34, p=0.0192) were significantly
correlated with COX-deficient fibre density (R?=0.31).

In both the Newcastle cohort and the meta-analysis the inclusion of MT-CO genes
within the deleted mtDNA region was significantly correlated with a larger mtDNA
deletion size, as seen in section 5.4.4. Hence | chose to examine whether there was a
correlation between mtDNA deletion size and COX-deficient fibre density. For this |
used multiple regression with all three predictors. In the Newcastle patient cohort
(N=72), mtDNA deletion size (b=-0.081, p=0.5104) was not a significant predictor,
although both mtDNA heteroplasmy (b=0.65, p<0.0001) and MT-CO gene deletion
(b=0.35, p=0.0028) remained significant even with deletion size in the model (R°=0.44).
Similarly, in the meta-analysis (N=39), mtDNA deletion size (b=-0.00010, p=0.5586)
was not a significant predictor, however both mtDNA heteroplasmy (b=0.48, p=0.0016)
and MT-CO gene deletion (b=0.43, p=0.0445) remained significant (R?=0.32).
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Figure 5.6 COX-deficient fibre density is dependent on SKM mtDNA heteroplasmy and
deletion of MT-CO genes.

Y axis shows the square root of the COX-deficient fibre density %. Data are from the Newcastle cohort,
N=72, R?=0.43. Heteroplasmy (p<0.0001) and deletion of MT-CO genes (p=0.0018) are both significant

predictors. Separate regression lines are shown for those that delete or partially delete one or more MT-
CO genes (N=63, 95% confidence interval for regression line shown) and those that do not (N=9, gradient

of regression line is not significantly non-zero, confidence interval not shown).

5.4.8. Longitudinal mixed modelling shows that mtDNA heteroplasmy, mtDNA
deletion size and location are predictors of disease progression
Using longitudinal mixed modelling | found that muscle mtDNA heteroplasmy

(p<0.0001) and mtDNA deletion size (p<0.0001) were both highly significantly
correlated with NMDAS progression in our patient cohort (N=55) (Figure 5.7). The
interaction between mMtDNA deletion size and mtDNA heteroplasmy was also
significant (p=0.0046), which is exemplified by comparing panels A to B, where
mtDNA deletion size has a stronger effect at high mtDNA heteroplasmy levels than low
mtDNA heteroplasmy levels, and C to E, where mtDNA heteroplasmy has a strong
effect with large mtDNA deletions but negligible effect with small mtDNA deletions.

The location of the mtDNA deletion within the mitochondrial genome was also shown
to affect disease progression. With mtDNA heteroplasmy and mtDNA deletion size in
the model, deletion of the MT-CYB gene is significantly predictive of faster progression
(p=0.0085, N=52) (Figure 5.74F).
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Figure 5.7 The effect of mtDNA deletion size and heteroplasmy on NMDAS progression.

All panels show 95% confidence intervals. (A-B) The effect of mtDNA deletion size at 80% and 40%

heteroplasmy respectively. Deletion size is shown to have a greater impact at high heteroplasmy than at
low heteroplasmy. (C-E) The effect of mtDNA heteroplasmy for a 2.0kB, 5.0kB and 8.0kB mtDNA
deletion respectively. For small deletions the effect of heteroplasmy on NMDAS progression is
negligible, but for larger deletions the effect is substantial. (F) The effect of deletion location for a 5.0kB
deletion present at 80% heteroplasmy; progression is faster when MT-CYB is included in the deleted
region. Panels A-E are generated from a model using time, deletion size and heteroplasmy as predictors.

The model used for Panel F has an additional deletion location predictor (MT-CYB gene inclusion).
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5.4.9. Individual patient progression can be modelled longitudinally
Mixed modelling allows incorporation of random effects to model unknown variance in

a given system. Hence | was also able to use the clinical and molecular genetic data to
model the progress of individual patients and predict the expected course of progression
for their overall disease burden. Progression graphs were produced for all patients; in
Figure 5.8 | present the predicted progression for five individual patients. The model
used to produce these graphs incorporated muscle mtDNA heteroplasmy, mtDNA
deletion size, and deletion of the MT-CYB gene as predictive factors. Expected
progression is shown with 95% prediction intervals. Patients 4 and 5 have similar
heteroplasmy but different deletion sizes, and thus exemplify the effect of deletion size
on disease progression. Patients 1 and 3, conversely, have similar sizes of deletion
(6.9kb and 6.5kB respectively) but different heteroplasmy levels. Patient 2 demonstrates
rapid progression, despite low heteroplasmy, on account of the exceptionally large
deletion size (9.1kB mtDNA deletion). Patient 1 demonstrates that even a single

NMDAS score can represent a useful prognostic input.
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Figure 5.8 Longitudinal
modelling of five
individual patients with
single, large-scale
mtDNA deletion disease.
The chosen patients are
representative of the range
of rates of disease
progression found in our
cohort. Actual NMDAS
assessment  scores  are
depicted as crosses joined
by solid lines. Each
patient is shown with their
predicted progression
trendline  with 95%
prediction intervals, and is
labelled with deletion size
and heteroplasmy. Only
patient 2 includes part of
the MT-CYB gene in their
deletion.
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5.4.10. Individual phenotypic features
Using a model with age, muscle heteroplasmy, and deletion size as predictors, the area

under the ROC (AUC) curve was calculated for each phenotypic feature at each
dichotomous cut-off point that had at least 6 patients (10% of the cohort) in each group
(below the cut-off point, and above or including the cut-off point). The AUCs for each
cut-off point are shown in Figure 5.9. The higher the AUC the better the predictive
power of the model. Steep gradients or inflections in the graphs indicate instability in
the predictability of the features, i.e. prediction success is heavily dependent on where
the cut-off is drawn. Cognitive impairment is notably poor at a cut-off of 2. Hearing is

highly predictive at high cut-off points but poor at low cut-offs.

Using the optimal cut-off for each NMDAS feature, models were generated with each
combination of the three predictors of age, heteroplasmy, and deletion size. The results
are shown in Figure 5.10. As seen in panel C, the combination of all three predictors
was the optimal model in almost all cases, other than psychiatric and CPEO, where the
addition of deletion size (psychiatric) or age (CPEO) into the model reduces the AUC
slightly. Of the lone predictors, heteroplasmy is generally the most predictive, deletion
size the least predictive. Age is highly predictive of several features, most noticeably
neuropathy and migraine, as neither of the other two predictors contribute much to the
AUC. The most highly predicted features were hearing, exercise tolerance, and ptosis,
though speech, dressing, and visual acuity also achieved AUCs over 0.8. The lowest
AUCs were observed in myopathy and psychiatric disturbance, though gait stability,
cutting food, and handwriting are also noticeably poorly predicted. Migraine and

psychiatric disturbance are the only features negatively associated with age.

A second approach used the proportional-odds logistic regression with three levels
(asymptomatic, mild/moderate, and severe), results are shown in Figure 5.11. Again,
heteroplasmy appears to be generally the most valuable predictor, out of age,
heteroplasmy, and deletion size, and is significantly associated with half of the 22
features. Exercise tolerance is the most predictable feature, and all three predictors are
statistically significant; the only other features significantly associated with all three
predictors are ptosis and handwriting, though handwriting has a low pseudo-R>.
Deletion size is a statistically significant predictor for 7 of 22 examined features, most
notable exercise tolerance and cerebellar ataxia. Hearing is noticeably poorly predicted

in this model as compared to the dichotomous model.
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Figure 5.9 Area under the ROC curve (AUC) for each phenotypic feature and various score cut-off points with all three predictors in the model (age, heteroplasmy, and
deletion size).
The cut-off score is used to divide the cohort into two groups; those scoring the cut-off or above versus those scoring below. For each feature, the cut-offs tested were those with a
minimum of 6 patients (approximately 10% of the cohort) in each group. Exercise tolerance, dressing, hearing, visual acuity, dysphonia/dysarthria, cognition, and ptosis achieve an
accuracy above 80% using the ROC curve, however most features achieve 70% accuracy for at least one cut-off point. Some features are poorly predicted at any cut-off, for instance

psychiatric involvement, migraine, and myopathy, and several features from the current function assessment. Hearing is much more accurately predicted at higher levels of
dysfunction, whilst exercise tolerance is fairly well predicted across the spectrum.
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Figure 5.10 Standardised parameters and area under ROC curves (AUC) for each phenotypic
feature from the NMDAS using age, urine heteroplasmy, and deletion size as predictors.

(A) Optimal cut-off point for each NMDAS feature, by maximizing AUC for the model with all three
predictors. Cohort is dichotomised into those scoring the cut-off or above against those scoring below the
cut-off. (B) Standardised parameters with 95% confidence intervals for the binary logistic model using
the optimal cut-off with all three predictors. Parameters are statistically significant if the confidence
interval does not cross the line at Y = 1. (C) The AUC using the optimal cut-off for each lone predictor
and combination of predictors. Nine features achieve an AUC over 0.8, indicating strong predictive
power. In almost all cases the regression with all three predictors is optimal, though in CPEO and
cognition age is not predictive. Deletion size is generally the weakest predictor, though age is noticeably
poorer in predicting gait stability and myopathy. Age is the principal predictor of migraine and
neuropathy, and noticeable predictive of vision, dressing, hygiene, Gl disturbance, ptosis, and ataxia.
Heteroplasmy is better than the other lone predictors for many features, and significantly predictive for 15

out of 22 features. Migraine is the only feature that decreases in severity with age.
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Appendix XV details the parameters required for risk calculation in the proportional-
odds, including intercepts, and Appendix VIII is an explanation of how to calculate the

risk for a given age and heteroplasmy with these parameters.

Models were also generated with a further predictor included in addition to age,
heteroplasmy, and deletion size, indicating the presence or absence of specific genes in
the deletion. Both MT-CYB and MT-CO genes were tested. Cerebellar ataxia was the
only feature significantly predicted by MT-CYB gene inclusion (P = 0.0151). No
features were significantly predicted by MT-CO gene inclusion.
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Figure 5.11 Pseudo-R? and standardised parameters for the logistic modelling of individual
phenotypic features.

Logistic models include age, heteroplasmy, and deletion size as predictors. Pseudo-R? indicates that
exercise tolerance and ptosis are the most predictable features using this model. Standardised parameters
are statistically significant if the 95% confidence interval does not cross zero. Deletion size is only
statistically significant for exercise tolerance, ataxia, neuropathy, Gl disturbance, and cognitive
impairment. Heteroplasmy is in general the strongest predictor of the three and is significant for 11 of the
22 features, including almost all of the current function assessment (section I). Cerebellar ataxia is the

most predictable by age, indicating this is particularly progressive.
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5.5.  Discussion
Single large-scale mtDNA deletions are a common cause of mitochondrial disease, and
the challenges in understanding the progression of disease for these patients highlights

many of the challenges observed with other mtDNA deletions.

The significant finding of the work presented in this chapter is that SKM mtDNA
heteroplasmy levels, mtDNA deletion size and mtDNA deletion location are all
important in understanding the expression and progression of clinical disease in patients

with single large-scale mtDNA deletions.

Two major factors have helped to reach this understanding. The first is a validated
rating scale that covers the major clinical features of mitochondrial disease, the
NMDAS. This, as a quantitative measure of mitochondrial disease burden, permits the
study of disease progression in a manner which was previously unfeasible. Though |
have presented the correlation between traditional phenotypic classification and
NMDAS scores in the Newcastle cohort, the difficultly in using a discrete phenotype
classification is clearly apparent. Longitudinal modelling of successive NMDAS
assessments for patients demonstrates the benefits of a quantitative approach. It also

highlights the dynamic nature of the patient phenotype.

The second major factor is the use of statistical techniques, including multiple
regression analyses that | have applied to both the Newcastle cohort data and those
previously published in the literature. This includes use of the Box-Cox transformation
to identify optimal transformations to normality, which allows the use of more powerful
parametric statistical tests where appropriate. Multiple regression, however, is of high
valuable in this particular study; where there is inter-correlation between the predictive

factors, such techniques are required to correctly identify significant findings.

5.5.1. Predictability of disease progression
The longitudinal modelling shows that disease burden and progression is predicted by

muscle mtDNA heteroplasmy level, mtDNA deletion size and the location of the
mtDNA deletion within the mitochondrial genome. These findings are supported by
other findings from both the Newcastle cohort and the meta-analysis; both phenotype
and age at onset are predicted by mtDNA deletion size and mtDNA heteroplasmy, and
also heteroplasmy is a significant predictor of phenotype in the cohort of patients with
the common 4,977bp mtDNA deletion. Previous studies have been contradictory

regarding the utility of these factors as predictors. It has been reported that both
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phenotype and age at onset were dependent on mtDNA deletion size, but not
significantly related to mtDNA heteroplasmy (Yamashita et al., 2008), however it has
also been shown that the clinical phenotype was related to mtDNA heteroplasmy, but
unrelated to mtDNA deletion size (although age at onset was related to both factors)
(Lépez-Gallardo et al., 2009). In a study specifically addressing disease progression it
was reported that SKM mtDNA heteroplasmy and mtDNA deletion size were not of
utility in disease progression prediction (Auré et al., 2007). More seminal studies also
reported inconsistently on the utility of these predictors in predicting phenotype or age
at onset (Holt et al., 1989b; Moraes et al., 1989; Goto et al., 1990a). However, we
found that multiple regression identifies consistent correlation between disease
phenotype or progression and both mtDNA heteroplasmy and deletion size.
Furthermore, multiple regression of previously published data is revealing; for example,
whilst Lépez-Gallardo and colleagues found that mtDNA deletion size is not predictive
of phenotype (P = 0.3953), multiple regression with both deletion size and heteroplasmy
shows that deletion size is indeed a significant predictor of phenotype (P = 0.0330); in
this case, the negative correlation between heteroplasmy and deletion size leads to the

masking of the effect of deletion size when simple linear regression is used.

5.5.2. Inter-correlation of heteroplasmy, deletion size, and location
The correlations observed between the predictive factors are themselves of interest.

Lopez-Gallardo and colleagues noted the negative correlation between muscle
heteroplasmy levels and mtDNA deletion size (L6opez-Gallardo et al., 2009). From this
they surmised that shorter mtDNA deletions do not have a replicative advantage, since
one would expect in this case large deletions to be found at higher heteroplasmy levels,
not lower. However, | would speculate that the observed correlation between muscle
mtDNA heteroplasmy and mtDNA deletion size is more likely a reflection of the
spectrum of disease that presents with a clinically-recognisable phenotype within the
population, and is not an outcome of an intrinsic biochemically driven relationship. This
speculation is supported by the results presented here on disease progression; small
mtDNA deletions at low heteroplasmy levels would not be expected to be pathogenic
and therefore patients with such deletions would not present clinically with symptoms.
This is also consistent with the observation that potentially pathogenic mtDNA
mutations are widespread at sub-threshold levels in the non-diseased population (Elliott
et al., 2008).

5.5.3. Deletion location and pathogenicity
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I have shown that deletions including all or part of the MT-CYB gene are associated
with faster disease progression. This is consistent with the report by Lopez-Gallardo et
al. that deletion of the MT-CYB gene was linked to a more severe phenotype (LOpez-
Gallardo et al., 2009). The reason for this remains uncertain, but could potentially
indicate that complex Il deficiency has a particularly important role in the disease

mechanism.

I also showed that MT-CO gene deletion (that is, deletion of part or all of any of MT-
CO1, MT-CO2 or MT-CO3) is predictive of COX-deficient fibre density. Though
previous studies reported no such link (Goto et al., 1990a; Oldfors et al., 1992), using
multiple regression to reanalyse these studies reveals the same trend in all cases, indeed

at statistical significance when the study is large enough (Goto et al., 1990a).

It has been widely accepted for some time that the root of the pathogenicity of mtDNA
deletions is the deletion of mitochondrial tRNA (mt-tRNA) genes (Schon et al., 2012).
This hypothesis is somewhat challenged by the results presented in this study,
consequently I will discuss the studies which have contributed to this hypothesis and re-

evaluate them in the light of the current study.

Mita et al. showed that COX deficiency in SKM fibres was associated with low level
wild-type mtDNA and high levels deleted mtDNA, which is a non-contentious finding
(Mita et al., 1989). They also found that the distribution of mMRNA demonstrated that
the deleted mtDNA species was undergoing transcription. However, although COX
subunit IV (nuclear encoded) was present using immunocytochemistry, COX subunit Il
(mitochondrially encoded) was absent; this was despite the fact that COX subunit 11 was
not part of the deleted region. This showed that a deletion could affect mitochondrially
encoded translation products that were outside the deleted region. However, it should be

noted that this study was on a single KSS patient.

A study published the following year showed that deletion of a single tRNA gene could
compromise mitochondrial protein translation (Nakase et al., 1990). Using cloned
fibroblasts from two KSS patients with different deletions they showed that the mutant
DNA was transcriptionally active and produced RNA species, though the fusion mMRNA
spanning the deleted region in each case was not translated. Their conclusion was that
the biochemical defects were due to lack of translation of the mtDNA encoded proteins
in mitochondria harbouring mutant mtDNA, most likely due to tRNA insufficiency.

They concluded that the mutant DNA species must be segregated from the wild-type for
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lack of complementation to occur (i.e. tRNA from the wild-type mtDNA supplementing
the lack of tRNA from the deleted mtDNA species).

Hayashi et al. (Hayashi et al., 1991) introduced deletions into HeLa cells, and found
that below 60% heteroplasmy there was normal translation of proteins in mitochondria,
but above this level mRNA levels mismatched protein levels and thus showed that
translation was impaired. An interesting conclusion that can be drawn from this study is
that there is functional complementation of mutant mtDNA by wild-type in the same
mitochondrion, which contrasted with the conclusion of Nakase et al.; however, this
complementation breaks down above approximately 60% heteroplasmy and overall
translation is impaired. They suggested that the lack of complementation cited by
Nakase et al. was most likely due to exceeding the threshold for normal translation, and
competition for tRNA interfering with translation throughout the mitochondrion. This
work was consistent with an earlier study by Shoubridge et al. that showed that deleted
mtDNA species are functionally dominant over wild-type, since they accumulate in
ragged red fibres and impair biochemical activity despite normal wild-type levels of
mtDNA in these cells (Shoubridge et al., 1990).

More recently this functional complementation has been confirmed by a study in which
two cell lines, each with distinct and non-overlapping mtDNA deletions, were fused,
and restoration of mitochondrial protein translation was demonstrated, despite the two
mtDNA species existing in discrete nucleoids within the same mitochondrion
(Gilkerson et al., 2008).

In summary, the conclusion that pathogenicity is based on tRNA insufficiency is
predicated on a lack of correlation between the quality (size and location) of the deletion
and the resulting biochemical defect and clinical phenotype. However, in this study |
have demonstrated that both the biochemical defect (COX deficiency) and the clinical
phenotype (disease burden) are correlated with both deletion size and location, which is
evidence that tRNA insufficiency is not entirely responsible for the pathogenicity of
deletions. However, a more comprehensive data set would be required to elucidate the
relative importance of mt-tRNA genes, specific oxidative phosphorylation protein
genes, and other potential pathogenic mechanisms as regards biochemical defects and
the resulting clinical phenotype.
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5.5.4. Pathogenic threshold level
An important implication of this study regards is that threshold level for pathogenicity

of a mtDNA deletion (Rossignol et al., 2003). Since the biochemical defect and the
resulting clinical phenotype are dependent on the deletion size and location, the
threshold for phenotypic expression at the cellular level would be expected to be

dependent on the location and size of the deletion.

5.5.5. Specific phenotypic features
It has been shown that many individual phenotypic features are predictable by either

age, heteroplasmy, or deletion size, or some combination of these factors. Exercise
tolerance and ptosis are notably predictable, and this is not unexpected since
neuromuscular features are prominent in disease associated with single large-scale
mtDNA deletions. There are several other features that are strongly predictable, for
instance dysphonia/dysarthria, which is a noted feature of single deletion disease (Auré

et al., 2007), cerebellar ataxia, and cognitive impairment.

Though most features demonstrated similar outcomes in the two approaches to logistic
modelling (binary and multi-level proportional odds), hearing is noticeably different in
the two, predicted by the dichotomous model but not by the multi-level model.
However, as was noted in Figure 5.9, hearing is not predicted well when looking at low
cut-off points in the NMDAS score, and significant effects of the predictors may only

be apparent at higher levels of impairment.

Hearing is also interesting from another perspective, in that the improvement seen in
moving from a single- or two-predictor model to a model with all three predictors is
very large; in particular, adding age into the model with heteroplasmy and deletion size
improves the AUC from 0.7 to over 0.85. This is a strong reinforcement of the necessity

for multiple regression techniques.

CPEO is a second feature that was not well predicted by the multi-level model but that
is reasonably predicted by the dichotomous model; the reason for this is found in the
optimal cut-off score for CPEO of 5, which is more or less the only level between which
prediction can be made for CPEO. However, both 4 and 5 scores are grouped together
in the multi-level model. This emphasises the importance of thorough analysis of data
from a number of perspectives, and also highlights the importance of optimising the
analysis on question by question basis. CPEO is also curious in that heteroplasmy alone

is almost entirely responsible for the prediction of this feature; age and deletion size are
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not contributory. In this CPEO stands out from the other features. This is surprising,
since the very nature of CPEO is progressive, and thus association with age should be
expected. However, this finding may be related to the rating scale itself; CPEO is a
ubiquitous feature of single large-scale mtDNA deletions, and over 50% of the cohort
score maximally on this feature, suggesting that if CPEO continues to be progressive for

these patients the severity range is inadequate for this group.

Age appears to be almost the sole contributor to vision decline (from the current
function part of the NMDAS), psychiatric disturbance, and migraine, suggesting that
these features may be more related to general ageing than factors due to mtDNA
deletion. Indeed all of these features are indeed common in the general population and
associated with ageing. Interestingly migraine is the only NDMAS feature to
significantly decrease with age, and this reflects the reported pattern in the general
population (Dahlof et al., 2009). Psychiatric disturbance is the only other feature to be
negatively associated with age; again, this is the reported trend in the population (Jorm,
2000).

Heteroplasmy and age are shown to be reasonably consistent predictors of most
phenotypic features, however deletion size is generally less effective and less consistent.
This has already been seen in the longitudinal modelling, but it is assuring to see the
same pattern at the level of the individual phenotypic features. That deletion size is
predictive but secondary to heteroplasmy and age for many phenotypic features does
suggest that the pathogenic nature of the deletions may be to a large extent deletion-size
independent, and may be due the effect of tRNA gene deletion. However, the growing
understanding of the role of supercomplexes (Vartak et al., 2013) suggests a second
pathway by which a deletion of any of the OXPHQOS genes may affect the structural
integrity and function of other complexes further up or down the respiratory chain.

The location of the deletion did not prove to be a significant predictor of any phenotypic
features excepting cerebellar ataxia. Interpretation of this finding as statistically
significant would be naive, and no firm conclusions can be drawn from this. However,
the lack of significant association is not of great concern; the dataset used for these
analyses is summary, containing only a single predictive point per patient; with
heteroplasmy, age, and deletion size in the model already it is no great surprise that the
model lacks statistical power to expose any significant relationships between deleted

genes and phenotypic features. This is an important area for future research with a
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larger dataset however; though the study on total disease burden is informative
regarding the pathology of the mtDNA deletions, characterising and understanding
association between specific phenotypic features and the properties of the deletion

would be fascinating indeed.

Though | have not displayed any graphical risk profiles of the individual feature
modelling, the purpose of this section has not been to present the model outputs but to
discuss the utility of the various predictors for understanding phenotypic feature
development. However, the modelling of m.3243A>G did present models for several
features, and the model outputs for this section would be similar in form. All models

from this section of work will be available at https://research.ncl.ac.uk/mitoresearch as

an aid to understanding the outcomes of this work.

5.5.6. Limitations and future work
Although this study provide new insights into disease progression in patients with

single, large-scale mtDNA deletions, much further work is still required.

Firstly, both mtDNA deletion size and the location parameter used in the longitudinal
modelling (MT-CYB gene deletion) are perhaps merely proxies for the underlying
pathogenic nature of the mtDNA deletion. A more nuanced characterization of these
mtDNA deletions may better predict pathogenesis and mitochondrial disease
progression. It is unclear, for instance, why MT-CO gene deletion is associated with
more severe COX deficiency in cells but it does not have a clear modulatory effect on
overall disease progression. However, expanding the model to characterise the deletions
more fully would potentially involve a large number of parameters, in which case a

larger dataset would be required to achieve reasonable statistical power.

Secondly, it is notable that we do not have any predictor that encapsulates the
sometimes multi-system nature of disease. In this regard, Auré et al. found that the
presence of the mutation in blood was predictive of a neurological phenotype (Auré et
al., 2007), and a similar trend in urine, a result confirmed by Blackwood et al. with
regard to severe early-onset disease as compared to milder phenotypic presentation
(Blackwood et al.,, 2010). These reports suggest that blood or urine mtDNA
heteroplasmy levels, in tandem with SKM mtDNA heteroplasmy, may lead to an
improved prediction of disease prognosis. For this to be included in the model blood or
urine samples will need to be collected for the patients included in the model, but these

are not available for the Newcastle patient cohort at the current time.

173


https://research.ncl.ac.uk/mitoresearch

Chapter 5 Disease progression in single large-scale mtDNA deletions

Thirdly, the impact of other mitochondrial DNA rearrangements has not been
considered in this study, for instance duplications (Poulton et al., 1989). However, it is
not generally thought that duplications have a pathogenic effect.

Fourthly, though most of the findings from our cohort are corroborated by the meta-
analysis, there are differences in the datasets, and in particular the correlations between
predictors are on the whole stronger in the Newcastle cohort than in the meta-analysis.
These differences may arise in part from the fact that the data from the Newcastle
cohort are more homogeneous, but also because the makeup of this cohort is somewhat
different; there are relatively few patients with the KSS phenotype as compared to the

meta-analysis.

Finally, though | do not use Bonferroni adjustment in the analyses for reasons well
documented in the literature (particularly where a priori hypotheses are under test)
(Thomas, 1998), the large number of statistical tests employed do open up the potential
for more frequent type | statistical errors. However, consistent findings in both the
Newcastle cohort and the meta-analysis provide support for firm conclusions to be
drawn. Multiple testing is particularly relevant in the section on the prediction of
specific phenotypic features. However, though caution must be taken in interpretation of
statistical significance, the analytical techniques employed remain valid.

5.5.7. Web tool
The finding that deletion size, heteroplasmy, and deletion location are predictors of

disease progression is important for all clinicians looking after patients with single,
large-scale mtDNA deletions. A web based tool is therefore under development

(https://research.ncl.ac.uk/mitoresearch) to support clinicians in their management of

these patients. This tool currently uses the predictive longitudinal model detailed in this
chapter to provide progression graphs, but is intended to also provide individual

phenotypic feature risk profiles.

5.5.8. Conclusion
| have demonstrated that muscle heteroplasmy, deletion size and deletion location are

predictive of disease severity and progression in single large-scale mtDNA deletions.
Using these predictors together with the NMDAS, a quantitative measure of total
disease burden, longitudinal modelling of disease progression can be performed both at
a population level and for individual patients, as well as calculation of risk of

developing specific phenotypic features. The end result is that advice and care plans for
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patients can be given on an individual basis, and discussions about the expected course

of their disease burden can be provided.
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Chapter 6. Discussion
The principal aim of these studies has been to further understanding of the nature and
progression of mtDNA disease. Despite the fact that the first mtDNA mutations were
described over twenty five years ago (Holt et al., 1988), this remains challenging.

There are several areas in which these studies have presented novel data and
significantly progressed knowledge of disease progression in mtDNA disease. The
study on m.3243A>G has expanded the current understanding regarding the predictive
nature of disease associated with the mutation, both in terms of overall disease burden
and also specific phenotypic features; it has provided new understanding of the dynamic
(or not so dynamic) nature of heteroplasmy in various tissues of patients with the
m.3243A>G mutation; it has generated several observations on sex differences in
disease phenotype and heteroplasmy; it has presented novel data on the altered live-birth
sex ratio; and it has shown that blood may be a more appropriate source of
heteroplasmy than urine for use as a prognostic measure, in contradiction to long
standing belief. Regarding single large-scale mtDNA deletions, there are several novel
observations on stronger than previously understood connections between the genetic,
biochemical, and clinical phenotype that shed new light on the pathology of large scale
mtDNA deletions; and, as for m.3243A>G, the disease modelling provide useful

prognostic data for clinicians in the care and management of patients.

These studies have convincingly demonstrated the importance of simultaneous
consideration of multiple factors when trying to understand the link between genotype
and phenotype in mitochondrial disease, due to population level inter-correlation of all
the predictive factors including age, heteroplasmy, and in the single large-scale
deletions, deletion size and location. Without proper consideration of these relationships
either true relationships between putative predictive factors and disease burden and

progression are obscured, or false causal relationships are suggested.

They have also clearly demonstrated the utility of the NMDAS as a tool for recording
and understanding disease burden and progression in mitochondrial disease. This
clinical tool has enabled the development of the prognostic models for overall disease
burden and individual phenotypic feature progression, which are valuable tools for

clinicians in the care and management of patients.
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Chapter 6 Discussion

There are numerous avenues to explore in progressing the work begun in this thesis.
Both in m.3243A>G and single large-scale mtDNA deletions factors to improve the
prediction models have been identified, whether mtDNA copy number, alternative
sources of heteroplasmy data, or investigations into the wider genetics and biochemical
activity of the cells in mtDNA disease patients, for instance the role of tRNA
synthetases. In particular, the limitations of heteroplasmy as a predictor of disease
burden and progression in m.3243A>G have been clearly demonstrated, and improving
on this prognostic ability is a critically important area for future research. The
limitations of urine heteroplasmy in particular as a prognostic device have been clearly
demonstrated, and the analysis strongly suggests that though urine has good properties
for diagnostic identification of the presence of the m.3243A>G mutation, it performs
poorly as an indicator of average heteroplasmy for a patient, and the existing
recommendations for its use in this manner should be reviewed. The dynamism of
heteroplasmy, particularly in patients with the m.3243A>G mutation, is also a rich area
for exploration.

The scope for further research is much wider however. This study has considered only
two of the most common of the large number of mtDNA mutations, and the scope of
mitochondrial disease is far wider indeed than even these, encompassing a huge number
of nDNA mutations. Extending the techniques and understanding gained in these
mutations to a wider array of genetic defects will be important future work.

The models developed here are open for a great deal of further development. For
instance, the logistic regression models presented are only analyses of the prevalence of
each feature within the population of patients with the respective mutations; though this
is an important characterisation of the phenotypic presentation of m.3243A>G and
single large-scale mtDNA deletion disease, from the perspective of clinical care it is
imperative to develop models to predict their expected progression of specific
phenotypic features for individual patients, in a similar manner to the models provided
for overall disease burden, by incorporating random effects and repeated measures

analysis. This is important future work to be conducted on these cohorts of patients.

A final important consequence of this modelling is that it has a very practical use as a
baseline from which to measure the effectiveness of any future treatments for
mitochondrial disease. Without a thorough understanding of the expected progression of

disease then interventions cannot be confidently assesses for efficacy.
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Chapter 6 Discussion

In conclusion, much progress has been made in understanding disease progression in
patients with the m.3243A>G mutation and single large-scale mtDNA deletions, but
much progress remains to be made, not only in these particular mutations, but in

mitochondrial disease in general.
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Appendix | The NMDAS Assessment.

THE NEWCASTLE
MITOCHONDRIAL DISEASE ADULT SCALE
(NMDAS)

Name:

Date of birth:
Date of assessment:
Height:
FVC - Lstattempt
FVC - 2nd attempt
FVC - 3rd attempt

Section I- Current Function

Rate function over the preceding 4 week period, according to patient and/or
caregiver interview only. The clinician’s subjective judgement of functional ability
should not be taken into account.

. Vision with usual glasses or contact lenses

. Normal.

. No functional impairment but aware of worsened acuities.

. Mild - difficulty with small print or text on television.

. Moderate - difficulty outside the home (eg bus numbers, road signs or shopping).
. Severe - difficulty recognising faces.

. Unable to navigate without help (eg carer, dog, cane).

O wOWNEFE OB

2. Hearing with or without hearing aid

0. Normal.

1. No communication problems but aware of tinnitus or deterioration from prior
‘normal’ hearing.

2. Mild deafness (eg missing words in presence of background noise). Fully corrected
with hearing aid.

3. Moderate deafness (eg regularly requiring repetition). Not fully corrected with
hearing aid.

4. Severe deafness - poor hearing even with aid (see 3 above).

5. End stage - virtually no hearing despite aid. Relies heavily on non-verbal
communication (eg lip reading) or has cochlear implant.

3. Speech

0. Normal.

1. Communication unaffected but patient or others aware of changes in speech patterns
or quality.

2. Mild difficulties - usually understood and rarely asked to repeat things.

3. Moderate difficulties - poorly understood by strangers and frequently asked to repeat
things.

4. Severe difficulties - poorly understood by family or friends.

5. Not understood by family or friends. Requires communication aid.
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4. Swallowing

0. Normal.

1. Mild - sensation of solids ‘sticking’ (occasional).

2. Sensation of solids ‘sticking’ (most meals) or need to modify diet (eg avoidance of
steak/salad).

3. Difficulty swallowing solids - affecting meal size or duration. Coughing, choking or
nasal regurgitation infrequent (1 to 4 times per month) but more than peers.

4. Requires adapted diet - regular coughing, choking, or nasal regurgitation (more than
once per week).

5. Requiring enteral feeding (eg PEG).

5. Handwriting

0. Normal.

1. Writing speed unaffected but aware of increasing untidiness.

2. Mild — Has to write slower to maintain tidiness/legibility.

3. Moderate — Handwriting takes at least twice as long or resorts to printing (must
previously have used joined writing).

4. Severe — Handwriting mostly illegible. Printing very slow and untidy (eg ‘THE
BLACK CAT"’ takes in excess of 30 seconds).

5. Unable to write. No legible words.

6. Cutting food and handling utensils (irrespective of contributory factors — eg
weakness, coordination, cognitive function etc. This is also true for questions 7-10)

0. Normal.

1. Slightly slow and/or clumsy but minimal effect on meal duration.

2. Slow and/or clumsy with extended meal duration, but no help required.

3. Difficulty cutting up food and inaccuracy of transfer pronounced. Can manage alone
but avoids problem foods (eg peas) or carer typically offers minor assistance (eg cutting
up steak).

4. Unable to cut up food. Can pass food to mouth with great effort or inaccuracy.
Resultant intake minimal. Requires major assistance.

5. Needs to be fed.

7. Dressing

0. Normal.

1. Occasional difficulties (eg shoe laces, buttons etc) but no real impact on time or effort
taken to dress.

2. Mild — Dressing takes longer and requires more effort than expected at the patient’s
age. No help required.

3. Moderate - Can dress unaided but takes at least twice as long and is a major effort.
Carer typically helps with difficult tasks such as shoe laces or buttons.

4. Severe — Unable to dress without help but some tasks completed unaided.

5. Needs to be dressed.
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8. Hygiene

0. Normal.

1. Occasional difficulties only but no real impact on time or effort required.

2. Mild — hygienic care takes longer but quality unaffected.

3. Moderate - bathes and showers alone with difficulty or needs bath chair /
modifications. Dextrous tasks (eg brushing teeth, combing hair) performed poorly.

4. Severe - unable to bathe or shower without help. Major difficulty using toilet alone.
Dextrous tasks require help.

5. Dependent upon carers to wash, bathe, and toilet.

9. Exercise Tolerance

0. Normal.

1. Unlimited on flat - symptomatic on inclines or stairs.

2. Able to walk < 1000m on the flat. Restricted on inclines or stairs - rest needed after 1
flight (12 steps).

3. Able to walk < 500m on the flat. Rest needed after 8 steps on stairs.

4. Able to walk < 100m on the flat. Rest needed after 4 steps on stairs.

5. Able to walk < 25m on the flat. Unable to do stairs alone.

10. Gait stability

0. Normal.

1. Normal gait - occasional difficulties on turns, uneven ground, or if required to
balance on narrow base.

2. Gait reasonably steady. Aware of impaired balance. Occasionally off balance when
walking.

3. Unsteady gait. Always off balance when walking. Occasional falls. Gait steady with
support of stick or person.

4. Gait grossly unsteady without support. High likelihood of falls. Can only walk short
distances (< 10m) without support.

5. Unable to walk without support. Falls on standing.

Section Il — System Specific Involvement

Rate function according to patient and/or caregiver interview and consultation with the
medical notes. Each inquiry should take into account the situation for the preceding 12
month period only, unless otherwise stated in the question.

1. Psychiatric

0. None.

1. Mild & transient (eg reactive depression) - lasting less than 3 months.

2. Mild & persistent (lasting more than 3 months) or recurrent. Patient has consulted
GP.

3. Moderate & warranting specialist treatment (e.g. from a psychiatrist) - eg. bipolar
disorder or depression with vegetative symptoms (insomnia, anorexia, abulia etc).

4. Severe (eg self harm - psychosis etc).

5. Institutionalised or suicide attempt.
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2. Migraine Headaches During the last 3 months, how many days have headaches
prevented the patient from functioning normally at school, work, or in the home?

. No past history.

. Asymptomatic but past history of migraines.

. One day per month.

. Two days per month.

. Three days per month.

. Four days per month or more.

O~ wdMNDEFE O

. Seizures

. No past history.

. Asymptomatic but past history of epilepsy.

. Myoclonic or simple partial seizures only.

. Multiple absence, complex partial, or myoclonic seizures affecting function or single
eneralised seizure.

. Multiple generalised seizures.

. Status epilepticus.
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. Stroke-like episodes (exclude focal deficits felt to be of vascular aetiology)
None.

. Transient focal sensory symptoms only (less than 24 hours).

. Transient focal motor symptoms only (less than 24 hours).

. Single stroke-like episode affecting one hemisphere (more than 24 hours).

. Single stroke-like episode affecting both hemispheres (more than 24 hours).
. Multiple stroke-like episodes (more than 24 hours each).

OhWNEREOM

. Encephalopathic Episodes

. No past history.

. Asymptomatic but past history of encephalopathy.

. Mild - single episode of personality or behavioural change but retaining orientation in
time/place/person.

3. Moderate - single episode of confusion or disorientation in time, place or person.

4. Severe — multiple moderate episodes (as above) or emergency hospital admission due
to encephalopathy without associated seizures or stroke-like episodes.

5. Very severe - in association with seizures, strokes or gross lactic acidaemia.
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6. Gastro-intestinal symptoms

0. None.

1. Mild constipation only or past history of bowel resection for dysmotility.

2. Occasional symptoms of ‘irritable bowel’ (pain, bloating or diarrhoea) with long
spells of normality.

3. Frequent symptoms (as above) most weeks or severe constipation with bowels open
less than once/week or need for daily medications.

4.  Dysmotility  requiring  admission  or  persistent  and/or  recurrent
anorexia/vomiting/weight loss.

5. Surgical procedures or resections for gastrointestinal dysmotility.
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7. Diabetes mellitus

0. None.

1. Past history of gestational diabetes or transient glucose intolerance related to
intercurrent illness.

2. Impaired glucose tolerance (in absence of intercurrent illness).

. NIDDM (diet).

. NIDDM (tablets).

. DM requiring insulin (irrespective of treatment at onset).
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8. Respiratory muscle weakness

0. FVC normal (> 85% predicted).

1. FVC < 85% predicted.

2. FVC < 75% predicted.

3. FVC < 65% predicted.

4. FVC < 55% predicted.

5. FVC < 45% predicted or ventilatory support for over 6 hours per 24 hr period (not
for OSA alone).

9. Cardiovascular system

0. None.

1. Asymptomatic ECG change.

2. Asymptomatic LVH on echo or non-sustained brady/tachyarrhythmia on ECG.

3. Sustained or symptomatic arrhythmia, LVH or cardiomyopathy. Dilated chambers
or reduced function on echo. Mobitz Il AV block or greater.

4. Requires pacemaker, defibrillator, arrhythmia ablation, or LVEF < 35% on
echocardiogram.

5. Symptoms of left ventricular failure with clinical and/or x-ray evidence of pulmonary
oedema or LVEF < 30% on echocardiogram.

Section Il — Current Clinical Assessment

Rate current status according to examination performed at the time of assessment

1. Visual acuity with usual glasses, contact lenses or pinhole.
0. CSD < 12 (ie normal vision - 6/6, 6/6 or better).

1. CSD <18 (eg 6/9, 6/9).

2. CSD <36 (eg 6/12, 6/24).

3. CSD <60 (eg 6/24, 6/36).

4. CSD <96 (eg 6/60, 6/36).

5. CSD >120 (eg 6/60, 6/60 or worse).

2. Ptosis

0. None.

1. Mild ptosis - not obscuring either pupil.

2. Unilateral ptosis obscuring < 1/3 of pupil.

3. Bilateral ptosis obscuring < 1/3 or unilateral ptosis obscuring > 1/3 of pupil or prior

unilateral surgery.

4. Bilateral ptosis obscuring > 1/3 of pupils or prior bilateral surgery.

5. Bilateral ptosis obscuring >2/3 of pupils or >1/3 of pupils despite prior bilateral
surgery.
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. Chronic Progressive External Ophthalmoplegia

None.

. Some restriction of eye movement (any direction). Abduction complete.
. Abduction of worst eye incomplete.

. Abduction of worst eye below 60% of normal.

. Abduction of worst eye below 30% of normal.

. Abduction of worst eye minimal (flicker).
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. Dysphonia/Dysarthria

None.

. Minimal - noted on examination only.

Mild — clear impairment but easily understood.

. Moderate — some words poorly understood and infrequent repetition needed.
. Severe — many words poorly understood and frequent repetition needed.

. Not understood. Requires communication aid.
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. Myopathy

. Normal.

. Minimal reduction in hip flexion and/or shoulder abduction only (eg MRC 4+/5).

. Mild but clear proximal weakness in hip flexion and shoulder abduction (MRC 4/5).
Minimal weakness in elbow flexion and knee extension (MRC 4+/5 - both examined
with joint at 90 degrees).

3. Moderate proximal weakness including elbow flexion & knee extension (MRC 4/5 or
4 -/5) or difficulty rising from a 90 degree squat.

4. Waddling gait. Unable to rise from a 90 degree squat (=a chair) unaided.

5. Wheelchair dependent primarily due to proximal weakness.
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6. Cerebellar ataxia

0. None.

1. Normal gait but hesitant heel-toe.

2. Gait reasonably steady. Unable to maintain heel-toe walking or mild UL dysmetria.
3. Ataxic gait (but walks unaided) or UL intention tremor & past-pointing. Unable to
walk heel-toe — falls immediately.

4. Severe - gait grossly unsteady without support or UL ataxia sufficient to affect
feeding.

5. Wheelchair dependent primarily due to ataxia or UL ataxia prevents feeding.

. Neuropathy

None.

. Subtle sensory symptoms or areflexia.

. Sensory impairment only (eg glove & stocking sensory loss).

. Motor impairment (distal weakness) or sensory ataxia.

. Sensory ataxia or motor effects severely limit ambulation.

. Wheelchair bound primarily due to sensory ataxia or neurogenic weakness.
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. Pyramidal Involvement

None.

. Focal or generalised increase in tone or reflexes only.

. Mild focal weakness, sensory loss or fine motor impairment (eg cortical hand).

. Moderate hemiplegia allowing unaided ambulation or dense UL monoplegia.

. Severe hemiplegia allowing ambulation with aids or moderate tetraplegia (ambulant).
. Wheelchair dependant primarily due to hemiplegia or tetraplegia.
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9. Extrapyramidal

0. Normal.

1. Mild and unilateral. Not disabling (H&Y stage 1).

2. Mild and bilateral. Minimal disability. Gait affected (H&Y stage 2).

3. Moderate. Significant slowing of body movements (H&Y stage 3)

4. Severe. Rigidity and bradykinesia. Unable to live alone. Can walk to limited extent
(H&Y stage 4).

5. Cannot walk or stand unaided. Requires constant nursing care (H&Y stage 5).

10. Cognition

Patients undergo testing using WTAR, Symbol Search and Speed of Comprehension
Test.

0. Combined centiles 100 or more.

1. Combined centiles 60 - 99

2. Combined centiles 30 - 59

3. Combined centiles 15 - 29

4. Combined centiles 5 - 14

5. Combined centiles 4 or below.
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Appendix 11 Matlab resampling code.

function [ stats answers] = Do Resample( no_resamples, data,
nColsToUse, nRepsToUse, dopower, drawfigs, remove outliers,
ratio check)

swork out dimensions. each column is a single GROUP containing

replicates

nCols = size(data,?2);
nReps = size(data,l);
nSets = size (data, 3);

$Don't use remove outliers anymore! Remove them before calling.
removed = 0;

ratio = 0;
n = 0;
if remove outliers == 1,

$Work out the acceptable limits for the data. The output of this
is the limits variable

std dev _before = 0;

std dev_after = 0;

[data removed ratio] = remove outliers using iqgr 1 (data);
end

number of vals = sum(isnan(data(:)));

fprintf ('%d of %d reps, %d of %d groups, %d points total, %d outliers
removed\n', nRepsToUse, nReps, nColsToUse, nCols,
nColsToUse*nRepsToUse, removed) ;

stats = []; %3 rows, for each of the above estimate

samples = zeros(2,no_resamples);%we just record the differences

if drawfigs==1,
figure;
hist(data(:,:,1)):
end

$Note - this actual answer is calculated from the values we supply,
but really we should be using the answer calculated from ALL the
values. So be careful about requesting ratio_ check.

actual answer = nanmean (nanmean(data(:,:,1)));
answers = zeros(l,no _resamples);
for rs = l:no resamples;

actualSet = randi(nSets, 1, 1);

Do it col by col, so that we can remove

actualCols = randi (nCols,1,nColsToUse); S$Multiple columns for
the group dist

actualReps
use the actual reps

vals = data(actualReps,actualCols,actualSet); %Both cols

if ratio check==1,

vals = vals - actual answer; Ssubtract the true ratio, so

that we are comparing relatively

end

randi (nReps, 1,nRepsToUse); %Some of the summaries

switch dopower,

case 1,

vals = 10."vals;

case 2,

vals = 1-10."vals;

case 3,

vals = 10.” (vals+2); %$This is for the B2M MT-ND1 assay

that is 100 fold different.
case 4,
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vals = vals+2; %$This is for the B2M MT-ND1 assay that is
100 fold different, looking at logs.
end

$The groups are arranged in cols, so we need to take the mean of each
col and then look at std.
samples (l,rs) = nanstd(nanmean(vals,1l)); Srawgroup
samples (2, rs) nanmean (nanstd(vals)); S%rep
samples (4,rs) = nanmean (nanmean (vals,?2)); %actual value.
answers (rs) = samples(4,rs);
end

$For the overall variance, this is tricky... Samples4 contains the
actual values we come out with each time.
$We need to look at the variance within this. So we actually need to
resample the resamples.... to get a variance for these

x = samples(4,:);

no x = size(x,2);

$just do 1000 for this

overall std = zeros(1,1000);

for i = 1:1000,

overall std(1l,i) = nanstd(x(randi(no_x,1,no x)));
end

if no resamples == 1,
$If we are just doing one resample, we pass back all the values as the
answer

answers = vals';

else
samples (3,:) = abs(sqgrt(samples(l,:).”2 -
samples (2, :).%2/nRepsToUse)); %this is the adjusted VARIANCE, which
measures the GROUP. We need to take the square root to get the final
answer.

stats(1,1:4) = calculate rep group stats(samples(2,:),
nRepsToUse); S%Srep variance

stats(1,5:8) = calculate rep group stats(samples(3,:),
nColsToUse); %group variance

stats(1,9:12) = calculate rep group stats(samples(4,:), 0);
%actual values

stats(1,13:16) = calculate rep group stats(overall std, 0);
$overall variance

stats(1,17) = removed;

stats(1,18) = ratio(l,:); S%$Note - this takes the ratio of the
front page of data. The second should be zeros anyway...

stats(1,19) = nReps - number of vals; %This will give is

number of rows minus any NaNs that we have removed, so how many good
vals we have.

end
function output = remove outliers using iqgr (data)
$Removes outliers using a threshold level that detects changes to the
$standard deviation above and beyond acceptable limits
sz = size(data,l);

mul = 2;

prcs = prctile(data, [25 75]);

igr = prcs(2) - prcs(l);

lims = [(prcs(l) - igr*mul) (prcs(2) + igr*mul)];
sum(data < lims(1l) | data > lims(2))

data(data < lims (1) | data > lims(2)) = NaN;

output = data;
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Appendix 111 m.3243A>G Heteroplasmy data, with sequential measurements.

For each patient, the table lists the heteroplasmy data available and the age at sample. The age column
records the age of the first sample, and age diff records the time in years between two samples(where two
samples are available). A blank age diff implies only one sample is available; 0 implies repeated samples

taken very close together in time. The number of NMDAS assessments for each patient is also shown.

Urine Heteroplasmy Blood Heteroplasmy Muscle Heteroplasmy
ID Age Age Het Het Age Age Het Het Age Age Het Het No.
Diff First Last Diff  First Last Diff First Last NMDAS

1 348 10.8 35 32 348 98 6 7 456 52 11

2 46.2 105 93 66 529 3.8 20 19

3 378 101 29 15 371 108 185 13

4 629 94 49 49 723 10 12

5 295 9 80 88 36.9 26 341 4.1 67 91 7

6 507 88 74 67 549 0.2 62 64 14

7 471 88 54 48 559 5 47.1 53 9

8 444 84 8 11 444 103 2 2 444 11 10

9 178 84 65 32 178 84 8 13 2
10 513 8.1 42 59 504 6.3 8 6 12
11 307 7.9 62 89 307 7.7 15 19 305 67
12 371 79 72 60 37.1 14 41.9 69
13 525 7.9 52 44 60 13 11
14 508 7.8 20 33 508 9 54.7 4 60 62
15 41 76 82 56 9
16 212 75 77 68 212 75 64 53 13
17 424 75 82 87 424 28 46.2 26 7
18 16 7 73 73 16 7 48 48 5
19 401 6.9 75 79 461 33 12 11 403 57 6
20 392 69 50 61 46.2 13 9
21 468 6.7 23 22 443 838 9 11 4
22 653 6.6 6 11 653 6.6 3 4 1
23 287 65 4 3| dall 4
24 256 53 57 53 256 5.3 38 38 2
25 412 52 87 86 412 52 37 25 8
26 437 5 83 74 437 16 43.7 53 3
27 237 49 98 93 238 49 48 41 8
28 303 49 44 44 303 49 7 7 307 24 7
29 44 44 38 52 44 44 27 12 484 73 6
30 204 44 82 72 204 46 7
31 156 4.2 64 55 156 4.2 41 40 1
32 433 4.2 48 51 433 5 43.3 46 6
33 40.3 4 43 72 403 4 21 19 41 25 73 78 8
34 15.7 4 85 72 157 4 45 42 19.8 72 6
35 439 39 72 63 439 16 10
36 433 37 52 57 433 8 43.3 50 2
37 529 36 39 59 529 36 16 16 529 78 2
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Urine Heteroplasmy

Blood Heteroplasmy

Muscle Heteroplasmy

ID Age Age Het Het Age Age Het Het Age Age Het Het No.

Diff First Last Diff  First Last Diff First Last NMDAS
38 195 35 73 81 195 35 50 45 5
39 457 31 80 89 455 23 10
40 435 3 6 6 435 0.1 605 0 2 2 4
41 60.4 3 29 29 594 2 60.4 27 9
42 411 2.7 88 86 41.1 24 4
43 572 2.7 27 33 572 18 4
44 493 26 46 40 493 21 2
45 302 24 77 94 302 24 47 43 2
46 354 23 80 92 354 23 34 31 7
47 363 1.9 42 44 358 04 32 26 3
48 445 1.7 14 12 445 4 2
49 203 15 91 87 203 15 48 51 3
50 403 15 40 45 403 15 19 24 2
51 59.1 15 71 62 59.1 14 2
52 56.7 14 50 34 518 6.3 15 18 3
53 545 14 46 53 543 15 22 20 544 66 7
54 54 14 92 91 55 68
55 499 14 19 24 499 13 1
56 31.7 1.2 71 64 327 0.1 12 11 1
57 46 1 76 85 46 1 25 27 4
58 269 09 93 92 269 09 39 39 1
59 411 0.9 74 71 411 23 3
60 579 0.7 22 35 56.3 7 3
61 437 06 56 78 437 0.6 27 27 44.2 89 2
62 22 06 89 91 215 05 33 34 2
63 246 06 92 96 24.6 44 5
64 234 06 54 60 234 34 7
65 38 06 64 53 38 12 2
66 394 06 64 47 4
67 493 05 60 66 49.3 13 1
68 328 05 57 65 32.8 30 4
69 531 05 72 60 53.1 9 2
70 349 04 78 71 349 04 28 28 4
71 472 04 73 77  47.6 29 8
72 249 02 87 57 249 02 40 29 1
73 377 02 87 85 377 30 3
74 374 0.2 47 56 37.6 10
75 316 01 999 99 316 38 40 3
76 568 0.1 41 49 56.8 8 7
77 205 01 27 50 20.5 10 1
78 519 0.1 20 29 519 2
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Urine Heteroplasmy

Blood Heteroplasmy

Muscle Heteroplasmy

ID Age Age Het Het Age Age Het Het Age Age Het Het No.
Diff First Last Diff  First Last Diff First Last NMDAS
79 36.2 37 36.2 6 01 01 412 41 2
80 13 93 19.7 238 62 54 3
81 225 71 21.8 0.7 g5 31 1
82 39.3 63 388 06 23 21 2
83 457 88 455 05 24 24 2
84 19 82 185 05 57 60 1
85 24.7 92 247 0.2 54 48 15
86 64.7 54 735 0.2 12 66 11
87 7.1 99 6.9 94 7
88 14.1 96 13.8 47 12
89 84 96
90 10.3 96 5
91 97 93 9.7 66
92 12 91 12 62 1
93 22 91 22 38
94 46.3 91 1
95 433 88 41.3 46 2
96 17.1 86 16.7 53 1
97 26.2 86 26.2 44 26.7 86 1
98 23.2 85 23.2 41 1
99 26.3 82 26.3 49 5
100 87 82 8.7 46 1
101 543 79 54.3 27 6
102 25 78 25 31 10
103 4.4 78 5
104 25.9 77 25.9 23 10
105 38.2 76 38.2 25 3
106 45.2 76 44.9 23 44.9 78 1
107 55.1 76 3
108 37 75 37 22 3
109 59.8 74 57.1 16 8
110 9.7 72 9.7 44 8
111 316 72 31.6 16 4
112 312 71 31.2 48 4
113 14.6 71 14.6 40
114 354 70 35.4 25 2
115 0 69 0 68 1
116 55.2 68
117 19 67 19 44
118 275 62 27.5 27 3
119 37.8 61 4
120 60 60 61 17 64.2 62 3
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Urine Heteroplasmy

Blood Heteroplasmy Muscle Heteroplasmy

ID Age Age Het Het Age Age Het Het Age Age Het Het No.
Diff First Last Diff  First Last Diff First Last NMDAS

121 232 59 23.2 18 2
122 322 57 39.2 23 31 66 2
123 449 57 44.9 9 2
124 29.3 56 29.3 33 1
125 55.1 56 585,11 18 54.8 70 1
126 45.8 56 45.8 14 41.9 52 2
127 70.6 56 70.5 3 2
128 38.2 55 45.2 13 1
129 25.1 55 22.3 12 1
130 55.1 55 55.6 6 55.1 39
131 18.2 54 18.2 19
132 528 54
133 39.8 58 39.8 25
134 26.5 52 26.5 29 26.7 63
135 37.2 51 37.2 17
136 14.1 50 14.1 43
137 25 47 24.6 77 1
138 235 44 23.5 23 23.5 64
139 258 42 25.8 18
140 46.2 40 46.2 22 1
141 49.7 40 49.7 20 1
142 23.2 40 23.2 8 1
143 26.2 39 26.2 15 2
144 325 38 325 13 1
145 27.7 35 27.7 7 27.7 17 1
146 205 34 20.5 48 1
147 55 34 55 16 1
148 51.7 34 1
149 19.3 32 19.3 16 1
150 59.1 32 59.1 7 2
151 495 31 495 i3 2
152 43.4 31 43.4 8
153 60 26 51.3 1.6 1
154 69.4 26 68.8 0.001 68.8 58 1
155 29.1 23 29.1 14 1
156 354 23 35.9 8 35.3 47 1
157 429 22 42.9 10 1
158 49.8 22 49.4 6 1
159 625 22 1
160 27.3 18 27.3 1 27.5 41 5
161 20.8 15.5 20.8 0.1
162 36.9 14 36.9 0.1 12
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Urine Heteroplasmy

Blood Heteroplasmy

Muscle Heteroplasmy

ID Age Age Het Het Age Age Het Het Age Age Het Het No.
Diff First Last Diff  First Last Diff First Last NMDAS
163 59.9 12 59.9 0.1 3
164 37.1 11 7
165 67.4 10 67.4 0.1 3
166 26.7 7 26.7 1 2
167 453 6 453 0.1
168 78 5 78 3 5
169 61.7 3 61.7 1 2
170 19.7 2 19.7 2
171 29.6 1 29.6 1
172 437 0.1 43.7 0.1
173 41 30
174 41.7 28 1
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Appendix 1V m.3243A>G Longitudinal Model SAS code.

Create table sasuser.n3243 as

Select patient id, family id, sex, aao, avg age, no_ass,

het wt muscle*100 as hm, het wt urine*100 as hu, het wt blood*100 as
hb, (dt nm - dt birth)/365.0 as time, scaled score, log score,
max_ response from connection to odbc

(Select dd.*, ddd.avg age, stroke seizure from data sum with pd ct dd
inner join patient sum ct ddd on dd.patient id = ddd.patient id

left join patient melas phenotype mel on dd.patient id =
mel.patient id) where genetics = 14 and exclude flags is null and
institution = 1 and max_ response >= 130

order by patient id asc, time asc ;

data nl;

set sasuser.n3243;

dv = scaled score**0.25;

time scaled = time*1000;

if family id = 99999 then family group = 'other'; else family group =
'individual';

het = hu;

if not missing(hu); if not missing (hb) ;

run;quit;

proc sql;

create table p fam temp as select family id, patient id, count(*) from
nl group by family id, patient id;

create table p fam as select family id, count (*) from p fam temp group
by family id hgving count (*) < 2; - - -

update nl set family id = 99999 where family id in (select family id
from p fam);

create table p fam unig as select family id, count(*) from nl where
family id < 99999 group by family id ;

run;

proc sql;

create table young as select patient id, count(*) from nl where time

< 25 and scaled score > 3 group by patient id;

create table nl as select nl.*, case when young.patient id is not null
then 1 else 0 end as young from nl left join young on nl.patient id =
young.patient id ;

create table nl as select nl.*, case when melas.patient id is not null
then 1 else 0 end as melas from nl left join melas on nl.patient id =

melas.patient id ;

select young, count(distinct patient id) from nl group by young;

run;

proc mixed data=nl method=ml plots=all;
class patient id young;

model dv = time time*time time*time*time time*hu time*young /s
noint outp=PredR outpm = PredF residual;

repeated /type=sp (pow) (time scaled ) subject=patient id

group=young ;
random time /subject=patient id;
run;
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Appendix V Binomial logistic regression SAS code.

data g;

set sasuser.allqg;
t = age_at ass/10;
h = hu;

run;

data stuff; do max=1] to 5 by 1; output; end;
data g id; do g _id=1 to 29 by 1; output; end;
data g id filtered; set g_id;

if g _id ne 18 ;

run;

proc sql;

create table gl as select max, case when g max >= max then 1 else 0
end as gval,g.* from stuff cross join g order by g.q id, g.q text,
max;

create table gs as select gif.q id, gl.max, sum(case when gval = 1
then 1 else 0 end) as yes, sum (case when gval = 1 then 0 else 1 end)
as no from g id filtered gif inner join gl on gif.g id = gl.g id group
by gif.g id, gl.max;

create table gsl as select *, yes+no as total from gs where yes >= 10
and no >= 10;

create table gdata as select gl.* from gl inner join gsl on gl.q id =
gsl.g id and gl.max = gsl.max;

drop table gs; drop table gl; drop table gsl;

run;

proc sort data=q; by g _id; run;
*Find the optimal cutoff point;

ods html close;
proc logistic data = gdata plots = none; by g id g text max;

model gval = h /stb rsqg CLPARM=PL;
ods output Association=Assocl;

run;

ods html;

*Create the data sets using the optimal cutoff point;

proc sql;
create table out as select g _id, g _text, max,
round (sum(nValue2), .0001) as c from Assocl where label2 = 'c' group by

g_id, g _text, max;

create table best cutoff as select t.g id, t.max as max, t.c from out
t inner join (select g id, max(c) as c from out group by g id) a2 on
t.qg id = a2.g id and t.c = a2.c;

create table gbestcutoff as select g.*, max as cutoff, case when

g.g _max >= gbest.max then 1 else 0 end as score from g inner join
best cutoff gbest on g.q id = gbest.q id order by g id, g text;

drop table out; drop table Assocl;

run;

proc logistic data = gbestcutoff plots = none;

by g _id g text ;

model score = h /stb rsg CLPARM=PL;

ods output ParameterEstimates=ParsBest ClparmPL=ParsCLBest
Association=AssocBEST FitStatistics = Fit2;;

output out = PredR p=Pred stdxbeta=StdErrPred lower=Lower upper=Upper
PREDPROBS=(I) ;

run;
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Appendix VI Multilevel ordered logistic regression SAS code.

data qg;

set sasuser.allg;
decade = age_at ass/10;
het 10 = hu/10;

if g max > 3 then g hml = 2; else if g max > 1 then g hml =1 ; else
g_hml = 0;

het 10 = hu/10;

het 10 = hb/10;

if not missing (hu);
*1f not missing (hb);
run;

proc sql;
create table young as select patient id, count(*) from nl where time <
25 and scaled score > 3 group by patient id;

create table gl as select g.*, case when young.patient id is not null
then 1 else 0 end as young from g left join young on g.patient id =
young.patient id ;

run;

*this is to do analysis of frequencies;
proc sql;
create table g summary as select g text,

sum(case when g max = 0 then 1 else 0 end)/count(*) as g 0,

sum(case when g max = 1 then 1 else 0 end)/count(*) as g 1,

sum(case when g max = 2 then 1 else 0 end)/count(*) as g 2,

sum(case when g max = 3 then 1 else 0 end)/count(*) as g 3,

sum(case when g max = 4 then 1 else 0 end)/count(*) as q_4,

sum(case when g max = 5 then 1 else 0 end)/count(*) as gq_5,

count (*) as n from g group by g text;

run;

proc sort data = g; by g text; run;

proc logistic data = g plots=EFFECT (X=decade at(het 10 = 0.5 4 6.5))

plots=EFFECT (X=het 10 at(decade = 2 4 6));

by g text;

model g hml = decade het 10 /stb rsq CLPARM=PL;

ods output OddsRatios=0ddsDia ParameterEstimates=ParsDia
CumulativeModelTest=TestDia FitStatistics=FitDia RSquare=R2Dia
ClparmPL=ParsCL;

output out = PredR p=Pred stdxbeta=StdErrPred lower=Lower upper=Upper
PREDPROBS=(1I) ;

run;
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Appendix VII. Parameters for calculation of risk profiles for m.3243A>G multilevel ordinal logistic model.
Each parameter is shown with its standard error. The het parameter is for urine heteroplasmy decades, age is for age decades. Standardised parameters are also shown in the final two

columns.

Item Int 0 S.E P Int1 S.E P Het S.E P Age S.E P Het STD Age STD
Cardiovascular 3.612 0.976 0.0002 7.251 1.195 1E-09 -0.253 0.089 0.0044 -0.478 0.152 0.0017 -0.347 -0.371
Cerebellar ataxia 4.660 0.939 7E-07 8.767 1.184 1E-13 -0.313 0.083 0.0002 -0.928 0.161 8E-09 -0.436 -0.742
CPEO 5.011 1.094 5E-06 7.134 1185 2E-09 -0.324 0.095 0.0007 -0.547 0.156 0.0004 -0.452 -0.428
Cognition 2.002 0.748 0.0074 3.785 0.795 2E-06 -0.259 0.072 0.0003 -0.236 0.121 0.0511 -0.361 -0.185
Cutting food 4.106 0.991 3E-05 7.023 1143 8E-10 -0.247 0.088 0.0051 -0.460 0.145 0.0015 -0.345 -0.369
Diabetes mellitus 5.384 1.025 2E-07 5.857 1.044 2E-08 -0.276 0.086 0.0014 -0.873 0.161 5E-08 -0.386 -0.685
Dressing 3.829 0.912 3E-05 6.353 1.015 4E-10 -0.258 0.081 0.0015 -0.482 0.137 0.0004 -0.361 -0.383
Dysphonia/dysarthria 3.820 0.975 9E-05 6.984 1131 7E-10 -0.336 0.090 0.0002 -0.324 0.142 0.0228 -0.469 -0.254
Encephalopathy 4.252 1.137 0.0002 5451 1.176 4E-06 -0.335 0.104 0.0012 -0.260 0.162 0.1078 -0.469 -0.203
Exercise Tolerance 1.699 0.730 0.0199 3984 0.797 6E-07 -0.173 0.068 0.0111 -0.428 0.122 0.0004 -0.242 -0.341
Extrapyramidal 7.713 2411 0.0014 10.151 2.616 0.0001 -0.564 0.224 0.0118 -0.352 0.285 0.2171 -0.787 -0.276
Gait stability 2.529 0.785 0.0013 5719 0913 4E-10 -0.188 0.073 0.0097 -0.539 0.131 4E-05 -0.263 -0.436
Gastro-intestinal -0.174 0.757 0.8178 3.083 0.815 0.0002 -0.039 0.071 0.5865 -0.145 0.126 0.2472 -0.054 -0.116
Handwriting 3.429 0.876 9E-05 5.841 0970 2E-09 -0.222 0.079 0.0047 -0.442 0.134 0.0009 -0.311 -0.352
Hearing 4.438 0.874 4E-07 7.664 1050 3E-13 -0.460 0.083 3E-08 -0.873 0.148 4E-09 -0.644 -0.695
Hygiene 4.442 0.970 5E-06 6.340 1.043 1E-09 -0.308 0.086 0.0003 -0.538 0.142 0.0002 -0.431 -0.425
Migraine Headaches 0.308 0.717 0.6673 2.134 0.739 0.0039 -0.167 0.067 0.013 0.011 0.117 0.9229 -0.234 0.009
Myopathy 3.5683 0.881 5E-05 7376 1.065 4E-12 -0.275 0.080 0.0005 -0.652 0.145 7E-06 -0.383 -0.514
Neuropathy 4.706 0.971 1E-06 8.345 1170 1E-12 -0.216 0.083 0.0093 -0.821 0.155 1E-07 -0.301 -0.657
Psychiatric 0.991 0.755 0.1895 4,149 0.841 8E-07 -0.161 0.071 0.0229 -0.209 0.125 0.0961 -0.226 -0.164
Ptosis 2.191 0.796 0.0059 4.792 0.886 6E-08 -0.132 0.073 0.0711 -0.313 0.126 0.0131 -0.184 -0.250
Pyramidal 5.855 1594 0.0002 8.221 1.751 3E-06 -0.350 0.140 0.0125 -0.431 0.214 0.0438 -0.488 -0.337
Seizures 3.108 1.005 0.002 4489 1.045 2E-05 -0.289 0.094 0.0021 -0.093 0.150 0.5361 -0.404 -0.073
Speech 3.853 0.942 4E-05 7171 1111 1E-10 -0.306 0.085 0.0003 -0.409 0.140 0.0034 -0.429 -0.324
Stroke-like episodes 5.085 1.361 0.0002 5.658 1.380 4E-05 -0.368 0.124 0.003 -0.299 0.186 0.107 -0.514 -0.234
Swallowing 3.972 0.938 2E-05 6.307 1.033 1E-09 -0.258 0.084 0.0021 -0.473 0.138 0.0006 -0.360 -0.381
Vision with glasses 2.536 0.827 0.0022 7.816 1.336 5E-09 -0.186 0.075 0.0139 -0.406 0.134 0.0024 -0.260 -0.321
Visual acuity 2.704 0.840 0.0013 7.053 1.148 8E-10 -0.128 0.076 0.0929 -0.472 0.136 0.0005 -0.179 -0.378
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Appendix V111 Calculation of odds ratio and probability.
The tables in the following appendices contains the parameters for calculating individual features of m.3243A>G and single-large scale mtDNA

deletions in model with age, heteroplasmy, and deletion size (for single deletionos) as predictors.
Int O is the intercept for calculating the probability of being asymptomatic.
Int 1 is used to calculate the probability of being asymptomatic or moderate (it is cumulative).

To calculate the probability of being moderately affected, subtract the probability of being asymptomatic (calculated using Int 0) from the probability
of being asymptomatic or moderate (calculated using Int 1). To calculate the probability of being severely affected subtract the probability of being

asymptomatic or moderate from 100%.
The formula is
log(odds) = Intercept + Age decade X Age par + Het decade X het par

e.g. For m.3243A>G and cerebellar ataxia, the log odds of being asymptomatic at age 20 and heteroplasmy level 80% is 4.660 — 0.313 x 8 — 0.928 X
2=0.3.

To convert a log odds to a probability,

eLog odds

Probability = 1+ elogodds

Thus in this case Probability = 3/(1 + 0.3) = 23.1%.
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Appendix IX Proportion of female offspring in pedigrees from the Newcastle cohort.
The proportions are calculated from the total of live-born offspring for each generation below that of the

first mother known or suspected to carry the m.3243A>G mutation.

No Female Male Female
Proportion
1 1 4 20% 24 1 1 50%
2 1 4 20% 25 8 10 44%
3 1 2 33% 26 10 7 59%
4 2 0 100% 27 13 5 72%
5 2 0 100% 28 1 2 33%
6 1 2 33% 29 1 2 33%
7 1 3 25% 30 2 1 67%
8 0 2 0% 31 2 1 67%
9 13 6 68% 32 1 1 50%
10 1 1 50% 33 3 5 38%
11 1 2 33% 34 2 0 100%
12 1 2 33% 35 2 0 100%
13 1 3 25% 36 3 3 50%
14 3 0 100% 37 5 2 71%
15 4 3 57% 38 6 4 60%
16 4 3 57% 39 3 0 100%
17 12 14 46% 40 0 1 0%
18 1 1 50% 41 2 0 100%
19 2 0 100% 42 4 2 67%
20 7 0 100% 43 1 0 100%
21 8 5 62% 44 2 0 100%
22 2 2 50%
23 12 8 60%
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Appendix X Proportion of female offspring in pedigrees from the meta-analysis.
The proportions are calculated from the total of live-born offspring for each generation below that of the
first mother known or suspected to carry the m.3243A>G mutation. Some studies contain multiple

pedigrees; multiple values are included for each study in this case.

Source Female Male Female

Proportion
(Chen et al., 2012) 2 2 50%
(Conway et al., 2011) 5 5 50%
(de Wit et al., 2012) 3 2 60%
(Doleris et al., 2000) 5 3 63%
(Doleris et al., 2000) 3 0 100%
(Dougherty et al., 1994) 8 7 53%
(Gilchrist et al., 1996) 1 4 20%
(Hammans et al., 1995) 4 2 67%
(Hammans et al., 1995) 7 2 78%
(Hammans et al., 1995) 4 2 67%
(Hammans et al., 1995)) 4 2 67%
(Hammans et al., 1995) 8 3 73%
(Hammans et al., 1995) 13 9 59%
(Hammans et al., 1995) 2 3 40%
(Hotta et al., 2001) 1 3 25%
(Hotta et al., 2001) 5 0 100%
(Hotta et al., 2001) 2 1 67%
(lwasaki et al., 2001) 2 3 40%
(Iwasaki et al., 2001) 5 2 71%
(lwasaki et al., 2001) 1 1 50%
(Iwasaki et al., 2001) 1 0 100%
(lwasaki et al., 2001) 0 3 0%
(Iwasaki et al., 2001) 1 1 50%
(Kobayashi et al., 1992) 1 1 50%
(Kobayashi et al., 1992) 1 1 50%
(Koga et al., 2000) 5 1 83%
(Koga et al., 2000) 2 0 100%
(Koga et al., 2000) 1 1 50%
(Koga et al., 2000) 4 2 67%
(Li et al., 2008) 3 2 60%
(Massin et al., 1999) 4 1 80%
(Salsano et al., 2011) 5 0 100%
(Shanske et al., 2004) 1 2 33%
(Sue et al., 1998a) 8 7 53%
(Sue et al., 1998a) 15 22 41%
(Sue et al., 1998a) 1 1 50%
(Tay et al., 2008) 7 1 88%
(Walter, 2009) 16 6 73%
(Zhang et al., 2009) 4 0 100%
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Appendix X1 Single large-scale mtDNA deletion Newcastle cohort data.

No Phenotype Ageat Ageat COX Deletion Break Break NMDAS Het
Onset Biopsy % Size point 5>  Point 3' Assessments %

1 KSS 11 27 10 9120 6468 15588 7 37%
2 Multisystem 6 46 15 8704 7175 15879 4 13%
3 CPEO o1 4 8560 5942 14502 6%

4 CPEO 30 34 40 8039 7637 15676 3 36%
5 CPEO 65 25 7977 6537 14514 45%
6 CPEO 38 7958 6033 13991 1 32%
7 CPEO+MM 15 25 25 7768 6352 14120 7 44%
8 Multisystem 14 59 10 7676 6323 13999 5 39%
9 Multisystem 55 85 12 7671 6741 14412 23%
10  Multisystem 5 28 22 7648 6341 13989 4 33%
11  CPEO 20 38 0.5 7595 7845 15440 4 6%

12 CPEO 39 72 5 7500 10%
13 CPEO 30 15 7498 7130 14628 2 28%
14 113 7451 8287 15738 5%

15 CPEO+MM 60 3 7355 7168 14523 24%
16 CPEO+MM 59 20 7284 6774 14058 51%
17  CPEO 18 30 15 7144 5772 12916 4 37%
18 CPEO 16 16 20 7129 8543 15672 7%

19 CPEO+MM 68 6978 7821 14799 56%
20 CPEO 27 63 13 6864 7128 13992 3 35%
21  KSS 11 23 50 6864 7128 13992 1 90%
22 CPEO+MM 22 36 20 6549 6006 12555 6 40%
23  KSS 10 24 30 6472 7540 14012 8 73%
24 Multisystem 15 41 45 6058 8838 14896 2 50%
25 CPEO+MM 15 5958 6002 11960 45%
26  CPEO 41 5906 8324 14230 20%
27  CPEO 15 40 12 5899 9523 15422 7 35%
28 CPEO 16 33 20 5813 9754 15567 1 25%
29 CPEO+MM 15 34 35 5470 6603 12073 7 71%
30  Multisystem 9 31 25 5340 6714 12054 5 45%
31  Multisystem 18 49 20 5160 9258 14418 11 53%
32 Multisystem 12 32 49 5000 4 79%
33  Multisystem 11 56 16 5000 1 42%
34 Multisystem 12 20 20 4999 6625 11624 75%
35 CPEO 23 51 32 4977 8470 13447 8 58%
36  Multisystem 28 40 20 4977 8470 13447 7 75%
B CPEO+MM 14 31 10 4977 8470 13447 6 62%
38  Multisystem 16 37 43 4977 8470 13447 6 67%
39  Multisystem 10 34 30 4977 8470 13447 5 61%
40 CPEO+MM 27 55 14 4977 8470 13447 5 34%
41 Multisystem 28 41 80 4977 8470 13447 5 78%
42 CPEO 20 28 4977 8470 13447 3 54%
43  KSS 12 15 30 4977 8470 13447 2 76%
44  KSS 15 33 35 4977 8470 13447 1 78%
45 CPEO+MM 19 43 60 4977 8470 13447 1 81%
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No Phenotype Ageat Ageat COX Deletion Break Break NMDAS Het
Onset  Biopsy % Size point 5°  Point 3' Assessments %

46  CPEO+MM 33 41 70 4977 8470 13447 1 78%
47  CPEO 35 8 4977 8470 13447 1 26%
48 CPEO+MM 43 30 4977 8470 13447 1 56%
49 CPEO+MM 18 57 40 4977 8470 13447 57%
50 CPEO 45 16 4977 8470 13447 30%
51 CPEO 18 6 4977 8470 13447 48%
52  CPEO+MM 25 4977 8470 13447 71%
58 37 14 4977 8470 13447 42%
54  CPEO 39 60 4977 8470 13447 65%
55 CPEO+MM 40 20 4977 8470 13447 63%
56 CPEO 46 4977 8470 13447 13%
57 CPEO+MM 15 4963 10105 15068 1 23%
58  KSS 16 4959 8474 13433 88%
59 CPEO 39 61 7 4909 8814 13723 4 1%

60 CPEO 37 28 4885 7205 12090 1 34%
61 CPEO 27 4851 10747 15598 65%
62 CPEO 23 63 15 4770 9349 14119 1 35%
63 CPEO+MM 60 4770 9349 14119 56%
64 CPEO 15 40 12 4752 8289 13041 9 50%
65  Multisystem 15 26 26 4641 10946 15587 3 83%
66 CPEO+MM 34 38 34 4604 9057 13661 5 65%
67 KSS 17 17 4599 9752 14351 60%
68 CPEO 41 15 4596 9528 14124 35%
69 KSS iz 29 50 4500 9 85%
70  Multisystem 27 58 30 4392 8576 12968 4 22%
71 CPEO+MM 21 32 45 4382 8586 12968 6 69%
72 CPEO 21 25 40 4372 8929 13301 53%
73 Multisystem 30 45 25 4241 9498 13739 8 39%
74 Multisystem 25 40 48 4237 9486 13723 6 81%
75 CPEO 47 60 13 4237 9486 13723 6 46%
76  CPEO 70 22 4223 9500 13723 76%
77 CPEO+MM 16 32 20 4113 11262 158175 9 2%
78  KSS 15 3979 11657 15636 50%
79  Multisystem 24 44 10 3693 9756 13449 7 47%
80 CPEO 63 50 3527 7729 11256 55%
81 105 11 3039 10950 13989 55%
82  Multisystem 36 50 5 2803 11637 14440 11 2%
83 CPEO+MM 40 30 2308 12113 14421 87%
84 CPEO 35 50 20 2300 12112 14412 9 55%
85  Multisystem 48 72 17 2300 12112 14412 9 41%
86 CPEO 18 2300 12112 14412 76%
87 CPEO 56 25 2297 12115 14412 55%
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Appendix XI1 Single large-scale mtDNA deletion meta-analysis data.

No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
1 Lopez-Gallardo et al., 2009 KSS 11041 4166 15207 84% Yes
2 Marin-Garcia et al., 2002 KSS 3 15 11000 4500 15500 20% Yes
3 Kornblum et al., 2005b CPEO 55 59 10900 23% Yes
4 Kornblum et al., 2005b CPEO 56 60 10900 49% Yes
5 De Coo et al., 1997 10000 1% No
6 Solano et al., 2003 KSS 8 17 9438 6003 15441 87% Yes
7 Gellerich 2002 0 27 9000 6000 15000 69% No
8 Fromenty et al., 1996 CPEO 3 18 8800 32% Yes
9 Ishikawa 2000 8731 6903 15634 55% No
10 Emmaetal., 2006 KSS 1 14 8661 7836 16497 60% Yes
11  Loépez-Gallardo et al., 2009 KSS 6 8477 6123 14600 82% Yes
12 Solano et al., 2003 KSS 9 20 8431 7515 15946 86% Yes
13  Degoul et al., 1991 CPEO 28 45 8137 5786 13923 25% Yes
14 Simaan et al., 1999 KSS 3 13 8000 18% Yes
15 De Coo et al., 1997 KSS 8000 60% Yes
16  Bloketal., 1995 KSS 10 14 7865 6238 14103 25% Yes
17  Heddietal., 1994 KSS 7768 7669 15437 74% Yes
18  Gotoetal., 1990 CPEO 7 15 14.5 7700 6000 13700 20% Yes
19  Matsuoka et al., 1992 CPEO Multi 15 7700 20% Yes
20  Matsuoka et al., 1992 KSS 21 7700 20% Yes
21  Gotoetal., 1990 CPEO Multi 7 7 15.3 7700 6000 13700 30% Yes
22  Gotoetal., 1990 CPEO 9 16 27.2 7700 6000 13700 40% Yes
23  Matsuoka et al., 1992 CPEO 16 7700 40% Yes
24 Sadikovic 2010 Multisystem 40 7673 6331 14004 24% No
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
25  Solano et al., 2003 KSS 7663 6331 13994 64% Yes
26  Johnsetal., 1989 CPEO 7650 6250 13900 25% Yes
27  Montiel-Sosa, 2013 10 7628 7437 15065 85% No
28  Sadikovic 2010 CPEO 59 7603 8469 16072 22% No
29  Kiyomoto et al., 1997 CPEO Multi 6 12 15 7565 7827 15392 66% Yes
30  Sadikovic 2010 CPEO + MM 48 7544 7865 15409 14% No
31  Oldfors 1992 56 9 7534 8366 15900 52% No
32  Oldfors 1992 5 30 7534 8366 15900 73% No
33 Odoardi et al., 2003 KSS 7 21 7521 7983 15504 38% No
34 Schroder et al., 2000 CPEO 30 7500 15% Yes
35  Kornblum et al., 2005a CPEO Multi 10 34 7500 16% Yes
36  Barrientos et al., 1995 CPEO Multi 10 47 7500 23% Yes
37  Kornblum et al., 2005a CPEO Multi 14 42 7500 26% Yes
38  Schroder et al., 2000 CPEO 34 7500 26% Yes
39  Schroder et al., 2000 CPEO 26 7500 27% Yes
40  Barrientos et al., 1995 KSS 12 20 7500 40% Yes
41  Odoardi et al., 2003 CPEO + MM 8 18 7500 42% No
42  Barrientos et al., 1995 CPEO Multi 3 12 7500 50% Yes
43  Kornblum et al., 2005a CPEO Multi 10 38 7500 58% Yes
44 Sadikovic 2010 Multisystem 18 7436 8637 16073 45% No
45  Goto et al., 1990 CPEO 13 31 17.2 7300 6000 13300 40% Yes
46  Oldfors 1992 13 5 7300 8600 15900 43% No
47  Sadikovic 2010 Multisystem 46 7213 8427 15640 47% No
48  Sadikovic 2010 KSS 31 7213 8427 15640 82% No
49  Matsuoka et al., 1992 CPEO 16 7200 5% Yes
50  Moraes et al., 1992 KSS 7100 70% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.

51  Sadikovic 2010 Multisystem 6 7039 8623 15662 70% No
52  Zeviani et al., 1988 KSS 8 15 7025 5275 12300 45% Yes
53  Schroder et al., 2000 KSS 19 7000 20% Yes
54 Kornblum et al., 2005a KSS 12 31 7000 66% Yes
55  Gotoetal., 1990 CPEO 22 49 11.6 6800 8600 15400 30% Yes
56  Ldpez-Gallardo et al., 2009 CPEO 31 6798 6024 12822 30% Yes
57  Barrientos et al., 1995 KSS 14 24 6500 56% Yes
58  Kornblum et al., 2005b CPEO 25 51 6500 58% Yes
59  Schroder et al., 2000 CPEO 50 6500 60% Yes
60  Schroder et al., 2000 KSS 21 6500 66% Yes
61  Fromenty et al., 1996 KSS 8 22 6495 7836 14331 31% Yes
62  Solano et al., 2003 KSS 12 13 6366 7949 14315 69% Yes
63  Ldpez-Gallardo et al., 2009 CPEO 6279 7409 13688 21% Yes
64  Solano et al., 2003 CPEO 6213 7407 13620 7% Yes
65  Sadikovic 2010 CPEO + MM 26 6119 9516 15635 32% No
66  Larsson and Holme, 1992 KSS 16 5 6100 8800 14900 59% No
67  Kornblum et al., 2005a CPEO Multi 61 6000 46% Yes
68  Schroder et al., 2000 CPEO 49 6000 46% Yes
69 De Coo etal., 1997 CPEO 6000 9500 15500 70% Yes
70 DeCooetal., 1997 6000 82% No
71  Zeviani et al., 1988 KSS 4 7 5980 9020 15000 66% Yes
72 Solano et al., 2003 CPEO 5928 9816 15744 29% Yes
73 Sadikovic 2010 KSS 42 5905 8467 14372 70% No
74  Marie et al., 1999 KSS 1 5 5900 30% Yes
75  Sadikovic 2010 KSS 11 5867 8558 14425 65% No
76  Okullaet al., 2005 CPEO 12 13 5800 32% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
77  Sadikovic 2010 CPEO + MM 38 5630 8429 14059 33% No
78  Kornblum et al., 2005a CPEO Multi 28 52 5600 85% Yes
79  Sudoyo et al., 1993 CPEO 12 34 5500 8000 13500 39% Yes
80  Kornblum et al., 2005b KSS 16 47 5500 58% Yes
81  Schroder et al., 2000 KSS 40 5500 58% Yes
82 Gotoetal., 1990 KSS 11 12 5500 7500 13000 80% Yes
83  Zevianietal., 1988 KSS 3 12 5448 10600 16048 57% Yes
84  Sadikovic 2010 MM 26 5438 8140 13578 11% No
85  Gotoetal., 1990 KSS 2 13 23.9 5400 7000 12400 60% Yes
86  Shanske et al., 2002 CPEO 5355 10004 15359 40% No
87  Lopez-Gallardo et al., 2009 KSS 5311 7450 12761 73% Yes
88  Sadikovic 2010 CPEO + MM 57 5225 6076 11301 13% No
89  Gotoetal., 1990 KSS 4 14 40.6 5200 8500 13700 90% Yes
90 Lodpez-Gallardo et al., 2009 CPEO 5113 8477 13590 80% Yes
91  Sadikovic 2010 Multisystem 34 5112 8468 13580 50% No
92 Gotoetal., 1990 KSS 12 30 14 5100 10059 15159 70% Yes
93 Cartaetal., 2000 CPEO 28 5049 9570 14619 55% Yes
94  Vazquez-Acevedo et al., 1995 KSS 4 17 5026 10050 15076 86% Yes
95  Johns and Hurko, 1989 KSS 13 43 5014 8708 13722 65% Yes
96  Kornblum et al., 2005a CPEO Multi 55 61 5000 5% Yes
97  Schroder et al., 2000 CPEO 39 5000 26% Yes
98  Moraes et al., 1992 KSS 5000 36% Yes
99  Barrientos et al., 1995 CPEO Multi 8 16 5000 42% Yes
100 Kornblum et al., 2005a CPEO Multi 12 50 5000 53% Yes
101 Tanaka et al., 1989 CPEO 14 32 5000 8600 13600 53% Yes
102 Schroder et al., 2000 CPEO 38 5000 53% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
103 Schroder et al., 2000 KSS 18 5000 54% Yes
104 Moraes et al., 1992 CPEO 5000 55% Yes
105 Schroder et al., 2000 CPEO 30 5000 55% Yes
106 Schroder et al., 2000 KSS 19 5000 58% Yes
107 Vielhaber et al., 2002 CPEO 44 5000 58% Yes
108 Vielhaber et al., 2002 CPEO 29 5000 68% Yes
109 Matsuoka et al., 1992 CPEO 14 5000 70% Yes
110 Kornblum et al., 2005b CPEO 30 48 5000 72% Yes
111  Schroder et al., 2000 CPEO 42 5000 72% Yes
112 Vielhaber et al., 2002 CPEO 47 5000 72% Yes
113 Kornblum et al., 2005a CPEO Multi 16 57 5000 74% Yes
114  Vielhaber et al., 2002 KSS 13 5000 74% Yes
115 Moraes et al., 1992 KSS 5000 76% Yes
116 Kornblum et al., 2005a KSS 9 39 5000 78% Yes
117 Schroder et al., 2000 KSS 29 5000 78% Yes
118 Sadikovic 2010 PEO 24 4995 5835 10830 58% No
119 Loépez-Gallardo et al., 2009 CPEO 4978 8482 13460 6% Yes
120 Wong, 2001 KSS 26 4978 8482 13460 10% Yes
121 Odoardi et al., 2003 CPEO 39 43 4978 8482 13460 12% Yes
122 Bernes et al., 1993 CPEO 16 24 4978 8482 13460 15% Yes
123 Pineda et al., 2004 CPEO 4978 8482 13460 15% Yes
124  Loépez-Gallardo et al., 2009 CPEO 4978 8482 13460 16% Yes
125 Goto et al., 1990 CPEO 20 53 5 4978 8482 13460 20% Yes
126 Odoardi et al., 2003 CPEO 12 14 4978 8482 13460 26% Yes
127 Odoardi et al., 2003 CPEO 35 45 4978 8482 13460 31% Yes
128 Odoardi et al., 2003 CPEO 15 36 4978 8482 13460 33% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
129 Wong, 2001 KSS 28 4978 8482 13460 33% Yes
130 Degoul et al., 1991 CPEO Multi 4 31 4978 8482 13460 34% Yes
131 Gellerich 2002 4978 8482 13460 39% No
132 Poulton et al., 1991 KSS 14 14 3 4978 8482 13460 40% Yes
133 Goto et al., 1990 CPEO 14 32 12.8 4978 8482 13460 40% Yes
134  Lopez-Gallardo et al., 2009 CPEO 20 4978 8482 13460 40% Yes
135 Chenetal., 1998 CPEO 4978 8482 13460 44% Yes
136 Lopez-Gallardo et al., 2009 CPEO 4978 8482 13460 45% Yes
137 Wong, 2001 KSS 20 4978 8482 13460 45% Yes
138 Wong, 2001 CPEO 60 4978 8482 13460 45% Yes
139 Goto et al., 1990 CPEO 12 iy 18.5 4978 8482 13460 50% Yes
140 Shoffner et al., 1989 CPEO Multi 20 61 4978 8482 13460 50% Yes
141 Loépez-Gallardo et al., 2009 CPEO 48 4978 8482 13460 50% Yes
142 Wong, 2001 KSS 34 4978 8482 13460 51% Yes
143  Loépez-Gallardo et al., 2009 CPEO 4978 8482 13460 54% Yes
144  Gellerich 2002 4978 8482 13460 61% No
145 Loépez-Gallardo et al., 2009 KSS 4 4978 8482 13460 62% Yes
146 Lopez-Gallardo et al., 2009 KSS 4978 8482 13460 62% Yes
147  Obermaier-Kusser et al., 1990 KSS 11 26 4978 8482 13460 63% Yes
148 Wong, 2001 KSS 16 4978 8482 13460 63% Yes
149 Wong, 2001 KSS 36 4978 8482 13460 64% Yes
150 Bolesetal., 1998 KSS 1 4978 8482 13460 65% Yes
151 Wong, 2001 KSS 4978 8482 13460 65% Yes
152  Gellerich 2002 48 4978 8482 13460 66% No
153 Degoul et al., 1991 KSS 7 27 4978 8482 13460 68% Yes
154 Lopez-Gallardo et al., 2009 CPEO 4978 8482 13460 68% Yes

209



Appendices

No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
155 Odoardi et al., 2003 KSS 6 17 4978 8482 13460 69% Yes
156 Goto et al., 1990 KSS 10 14 41.4 4978 8482 13460 70% Yes
157 Wong, 2001 KSS 44 4978 8482 13460 70% Yes
158 Lopez-Gallardo et al., 2009 KSS 12 4978 8482 13460 72% Yes
159 Ponzetto et al., 1990 KSS 4978 8482 13460 72% Yes
160 Lopez-Gallardo et al., 2009 KSS 4978 8482 13460 72% Yes
161 Consalvo et al., 1997 KSS 9 19 4978 8482 13460 80% Yes
162 Degoul et al., 1991 KSS 10 31 4978 8482 13460 80% Yes
163 Goto et al., 1990 CPEO 22 26 40.2 4978 8482 13460 80% Yes
164 Lopez-Gallardo et al., 2009 KSS 4978 8482 13460 80% Yes
165 Johns et al., 1989 KSS 4978 8482 13460 83% Yes
166 Odoardi et al., 2003 KSS 6 10 4978 8482 13460 85% Yes
167 Johns et al., 1989 4978 8482 13460 86% No
168 Sadikovic 2010 CPEO + MM 60 4977 8470 13447 6% No
169 Sadikovic 2010 KSS 26 4977 8470 13447 10% No
170 Kiyomoto et al., 1997 CPEO 30 44 1 4977 8483 13460 14% Yes
171 Sadikovic 2010 Multisystem 24 4977 8470 13447 24% No
172  Sadikovic 2010 Multisystem 14 4977 8470 13447 27% No
173 Sadikovic 2010 CPEO + MM 78 4977 8470 13447 27% No
174  Sadikovic 2010 KSS 28 4977 8470 13447 33% No
175 Sciacco et al., 1994 KSS 35 4977 8470 13447 36% Yes
176 Sadikovic 2010 CPEO + MM 39 4977 8470 13447 42% No
177  Sadikovic 2010 KSS 20 4977 8470 13447 45% No
178 Sadikovic 2010 CPEO + MM 60 4977 8470 13447 45% No
179 Sadikovic 2010 Multisystem 45 4977 8470 13447 49% No
180 Sciacco et al., 1994 CPEO 61 66 4977 8470 13447 50% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
181 Shanske et al., 1990 KSS 4977 8470 13447 50% Yes
182 Kiyomoto et al., 1997 CPEO 15 33 8.5 4977 8483 13460 54% Yes
183 Sciacco et al., 1994 KSS 11 13 4977 8470 13447 55% Yes
184  Sadikovic 2010 CPEO + MM 56 4977 8470 13447 55% No
185 Sadikovic 2010 CPEO 39 4977 8470 13447 60% No
186 Sadikovic 2010 KSS 13 4977 8470 13447 61% No
187 Sadikovic 2010 KSS 16 4977 8470 13447 62% No
188 Sudoyo et al., 1993 CPEO 4 41 4977 8470 13447 64% Yes
189 Sadikovic 2010 MM 36 4977 8470 13447 64% No
190 Sadikovic 2010 Multisystem 4977 8470 13447 65% No
191 Sadikovic 2010 Renal tubular 4977 8470 13447 67% No
acidosis
192 Sadikovic 2010 CPEO + MM 9 4977 8470 13447 67% No
193 Sadikovic 2010 CPEO + MM 36 4977 8470 13447 70% No
194 Sadikovic 2010 KSS 44 4977 8470 13447 70% No
195 Sciacco et al., 1994 KSS 28 4977 8470 13447 75% Yes
196 Kiyomoto et al., 1997 CPEO Multi 12 14 18 4977 8483 13460 7% Yes
197 Mita 1989 KSS 30 51 4977 8483 13460 80% No
198 Sadikovic 2010 CPEO + MM 27 4977 8470 13447 85% No
199 Sadikovic 2010 PEO 20 4977 8470 13447 88% No
200 Solano et al., 2003 CPEO 4958 8380 13338 30% Yes
201 Pistilli et al., 2003 KSS 10 36 4949 8631 13580 60% Yes
202 Oldfors 1992 27 20 4914 7586 12500 79% No
203 Barrientos et al., 1995 KSS 28 4800 38% Yes
204  Larsson and Holme, 1992 KSS 12 4800 10800 15600 87% No
205 Lopez-Gallardo et al., 2009 KSS 4754 11292 16046 45% Yes
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No  Original Phenotype Age at Ageat COX Del Break Break Het% In Lopez-
Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
206 Oldfors 1992 11 1 4700 10500 15200 87% No
207 Degoul etal., 1991 KSS 18 25 4500 11300 15800 30% Yes
208 Johns et al., 1989 CPEO 4500 9300 13800 55% Yes
209 Zeviani etal., 1988 KSS 14 26 4500 9000 13500 62% Yes
210 Zevianietal., 1988 KSS 14 28 4500 9000 13500 75% Yes
211 Solano et al., 2003 KSS 7 18 4421 10951 15372 80% Yes
212 Kiyomoto et al., 1997 KSS 4 15 3.5 4420 10952 15372 20% Yes
213 Sadikovic 2010 Multisystem 8 4420 10560 14980 55% No
214 Wong, 2001 KSS 8 4420 10560 14980 55% Yes
215 Sadikovic 2010 Multisystem 48 4369 9256 13625 38% No
216 Carod-Artal et al., 2003 CPEO 19 26 4238 9500 13738 55% Yes
217 Solano et al., 2003 CPEO 4238 9485 13723 55% No
218 Gotoetal., 1990 CPEO 40 52 19 4200 5850 10050 30% Yes
219 Zevianietal., 1988 KSS 17 27 4200 9000 13200 66% Yes
220 Pineda et al., 2006 KSS 7 8 4124 11033 15157 2% Yes
221 Blakely et al., 2004 CPEO 20 4115 11262 158Y5 66% Yes
222 Gellerich 2002 4093 10057 14150 62% No
223 De Coo et al., 1997 KSS 4000 60% Yes
224 Kiyomoto et al., 2006 CPEO 60 62 14 3800 4% Yes
225 Vielhaber et al., 2002 CPEO 48 3800 10% Yes
226  Kornblum et al., 2004 CPEO 28 35 3800 45% Yes
227 Solano et al., 2003 KSS 14 31 3720 11727 15447 50% Yes
228 Kiyomoto et al., 1997 CPEO 27 43 8 3716 10845 14561 44% Yes
229 Kiyomoto et al., 2006 CPEO 18 28 12 3700 65% Yes
230 Degoul et al., 1991 CPEO 31 51 3513 7483 10996 40% Yes
231 Wong, 2001 3500 16% No
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Study Onset Biopsy % Size point 5’ point 3’ Gallardo et al.
232  Gellerich 2002 3500 11300 14800 58% No
233 Kornblum et al., 2005a KSS 20 37 3500 62% Yes
234  Schroder et al., 2000 KSS 30 3500 62% Yes
235 Schroder et al., 2000 CPEO 29 3500 65% Yes
236 Lertritetal., 1999 KSS 35 37 3485 10280 13765 37% Yes
237 Barbiroli et al., 1995 CPEO 22 30 3300 20% Yes
238 Wong et al., 2003 KSS 29 36 3079 8419 11498 92% Yes
239 Sadikovic 2010 Multisystem 25 3030 10958 13988 47% No
240 Sadikovic 2010 KSS 41 2976 8388 11364 92% No
241 Goto etal., 1990 CPEO 35 45 16.6 2800 11500 14300 50% Yes
242 Kornblum et al., 2005a CPEO Multi 44 49 2700 32% Yes
243  Gellerich 2002 22 2600 11000 13600 62% No
244  Kornblum et al., 2005b CPEO 48 48 2500 39% Yes
245 Ohno et al., 1996 KSS 26 27 2500 88% Yes
246 Solano et al., 2003 KSS 2434 10620 13054 7% Yes
247 Solano et al., 2003 KSS 2310 12112 14422 70% Yes
248 Kiyomoto et al., 1997 CPEO 20 47 20 2309 12113 14422 59% Yes
249 Kiyomoto et al., 1997 CPEO 21 31 4 2309 12113 14422 89% Yes
250 Gotoetal., 1990 CPEO 39 70 10.7 2300 11000 13300 50% Yes
251 Moraes et al., 1992 CPEO 2300 80% Yes
252 Gotoetal., 1990 CPEO 34 37 7.2 2200 12000 14200 50% Yes
253 Goto et al., 1990 CPEO 52 55 19.3 2200 12000 14200 60% Yes
254 Zeviani et al., 1988 KSS 24 33 2060 7440 9500 60% Yes
255 Schroder et al., 2000 CPEO 45 2000 32% Yes
256 Goto etal., 1990 KSS 35 36 12.6 1800 13000 14800 50% Yes
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Appendix X111 Single large-scale mtDNA deletion meta-analysis exclusions.

Details of the excluded case and reasons for exclusion are noted.

Study Pheno- AAO Age at COX Deletion Break Break Het%  Notes In
type Biopsy % Size point 3> point 5’ Lopez-
Gallardo
Mori et al., 1991 KSS 2 6 6596 6383 12979 60% Deletion size does not match original publication yes
Larsson et al., 1992 KSS 16 26 4667 7697 12364 70% Deletion size does not original publication yes
Goto et al., 1990 CPEO 13 31 50% 5300 9206 14506 90% Deletion size is inconsistent with reported breakpoints yes
Schaefer et al., 2005 CPEO 15 24 7400 8% In our cohort yes
Zoccolella et al., 2006 6 32 1813 3505 5318 70% Location is unlike any other deletion in the study yes
Reynier et al., 1994 CPEO 41 50% Other mutations; also contains a point mutation yes
Odoardi et al., 2003 KSS 20 27 4978 8482 13460 51% Other mutations; Dimers yes
Odoardi et al., 2003 CPEO 30 40 7000 51% Other mutations; Dimers yes
Brockington et al., KSS 12 19 8562 7354 15916 27% Other mutations; Dimers and duplications yes
1995
Brockington et al., KSS 4 22 4978 8482 13460 89% Other mutations; Dimers and duplications yes
1995
Jacobs et al., 2004 PS/IKSS 0 8 8034 7934 15968 Other mutations; Dimers and duplications no
Jacobs et al., 2004 PS 0 15 3444 6097 9541 64% Other mutations; Dimers and duplications no
Tengan et al., 1998 KSS 5 12 9660 5784 15444 65% Other mutations; Duplications yes
Vazquez-Acevedo et KSS 8 23 4978 8482 13460 75% Other mutations; multiple deletions yes
al., 2002
Tanaka et al., 1989 CPEO 39 70 2100 36% Uncertain breakpoints yes
Oldfors 1992 52 10% 3940 10060 14000 76% Uncertain breakpoints no
Kunz et al., 1997 CPEO 34 3200 53% Uncertain breakpoints yes
Kunz et al., 1997 CPEO 55 4700 67% Uncertain breakpoints yes
Kunz et al., 1997 CPEO 32 2600 84% Uncertain breakpoints yes
Marzuki et al., 1997 CPEO 20 59 5020 9780 14800 16% Uncertain breakpoints and multiple deletions yes
Sudoyo et al., 1993 CPEO 25 60 2664 12336 15000 55% Uncertain breakpoints and multiple deletions yes
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Appendix X1V Single large-scale mtDNA deletion longitudinal model SAS code.

data nl;

set sasuser.n3243;

if scaled score = 0 then scaled score = 0.1;
dv = scaled score**0.25;

time scaled = time*1000;
if missing(family id) then family id = 99999;

if family id = 99999 then family group = 'other';
else family group = 'individual';
het = hu;

if not missing (hu) ;
if not missing(hb);
run;quit;

proc sql;

create table p fam temp as select family id, patient id, count(*) from
nl group by family id, patient id;

create table p fam as select family id, count(*) from p fam temp group
by family id having count(*) < 2;

update nl set family id = 99999 where family id in (select family id
from p fam);

create table p fam unig as select family id, count(*) from nl where
family id < 99999 group by family id ;

run;

proc sql;

create table young as select patient id, count(*) from nl where time

< 25 and scaled score > 3 group by patient id;

create table nl as select nl.*, case when young.patient id is not null
then 1 else 0 end as young, from nl left join young on nl.patient id =
young.patient id ;

run; B

proc mixed data=nl method=ml plots=none RATIO COVTEST ;
class patient id young family group family id;
model dv = time time*time time*time*time time*hu time*young
/s noint outp=PredR outpm = PredF residual;
repeated /type=sp (pow) (time scaled )
subject=patient id(family id) group=young*family group ;
random time /subject=patient id(family id) ;
random time /subject=family id ;
ods output FitStatistics=fm SolutionF=SFfm;
run;
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Appendix XV. Parameters for calculation of risk profiles for single large-scale mtDNA deletion multilevel ordinal logistic model.
Each parameter is shown with its standard error. The parameters are age in decades (Decade), the square of the deletion size in kB (Size?), and the natural log of (100%-
heteroplasmy) (In(1-h)).

Item Int 0 Std P Intl Std P Decade  Std P In(1-h) Std P Size’ Std P

Vision 3.451 1.989 0.083 6.614 2.166  0.002  -0.559 0.263 0.033  1.523 0.689 0.027 -0.008 0.019 0.657
Hearing 5.241 2.297 0.023 6.616 2371 0.005 -0.324 0.290 0.265 1.819 0.755 0.016 -0.041 0.021 0.054
Speech 7.904 2.583 0.002 10941 2846 0.000 -0.811 0.325 0.013  2.689 0.842 0.001 -0.037 0.022 0.096
Swallowing 5.748 2.096 0.006  7.705 2219 0.001 -0.641 0.273 0.019 1.980 0.695 0.004 -0.044 0.019 0.021
Handwriting 6.313 2.388 0.008 9.606 2.674 0.000 -0.641 0.300 0.032 1.661 0.767 0.030 -0.031 0.021 0.148
Cutting food 5.819 2.454 0.018 -0.428 0.300 0.154 1.575 0.806 0.051 -0.043 0.023 0.058
Dressing 5.134 2.253 0.023 8.345 2520 0.001 -0.488 0.285 0.088 1.006 0.728 0.167 -0.035 0.021 0.089
Hygiene 7.247 2.301 0.002 10.130 2.528 <.0001 -0.900 0.298 0.003  1.953 0.733 0.008 -0.034 0.020 0.086
Exercise tolerance 6.710 2.163 0.002 8.718 2410 0.000 -0.733 0.271 0.007 2.858 0.789 0.000 -0.048 0.020 0.015
Gait stability 5.047 2.133 0.018 -0.584 0.282 0.039 1.821 0.726 0.012 -0.045 0.021 0.030
Psychiatric disturbance  0.123 1.959 0.950 0.176 0.270  0.514 0.225 0.654 0.730 -0.010 0.019 0.590
Migraine headaches -1.430  1.986 0.472 -0.457 1981 0.818 0.469 0.283 0.097 0.232 0.642 0.717  0.002 0.019 0.933
Seizures 13.613  8.089 0.092 -0.778 0.955 0.415 2.729 1.999 0.172 -0.106 0.057 0.064
Encephalopic episodes 18.914  17.916 0.291 8421 2.283 0.000 0.507 1.811 0.780 8.162 7.682 0.288 -0.192 0.170 0.259
Gl disturbance 4.653 2.097 0.027 8.028 2379 0.001 -0.642 0.278 0.021  0.029 0.672 0.966 -0.055 0.021 0.010
Diabetes mellitus 9.718 4.806 0.043 -1.093 0.589 0.064 0.031 1.860 0.987 -0.046 0.035 0.180
Cardiovascular 7.145 2.620 0.006  8.958 2742 0.001 -0.631 0.325 0.053  1.930 0.817 0.018 -0.051 0.022 0.021
Visual acuity 1.708 1.916 0.373  4.930 2071 0.017 -0.297 0.255 0.243  0.649 0.645 0.314 0.011 0.019 0.562
Ptosis 3.190 2.284 0.162 5.473 2345 0.020 -0.690 0.312 0.027 2.736 0.960 0.004 -0.036 0.022 0.108
CPEO 1.373 2702 0.611 -0.254 0.369 0.491  1.758 1.119 0.116 -0.022  0.027 0.419
Dysphonia/dysarthia 9.760 2.984 0.001 12,907 3.293 <.0001 -0.942 0.356 0.008  3.492 0.986 0.000 -0.046 0.024 0.055
Myopathy 1.165 1.997 0.560 4.737 2131 0.026  -0.266 0.274  0.332  0.965 0.693 0.164 -0.002 0.019 0.912
Cerebellar ataxia 8.338 2.484 0.001 11.819 2.814 <.0001 -1.048 0.321 0.001 2.327 0.799 0.004 -0.052 0.022 0.017
Extrapyramidal 18.161  7.621 0.017 -1.584 0.797 0.047 5.118 2.278 0.025 -0.088 0.052 0.092
Neuropathy 47364 102.800 0.645 -0.838 10.196 0.935 -7.010 59.590 0.906 -0.647 0.996 0.516

Cognitive impairment 2.698 2.119 0.203  3.816 2.154 0.076  -0.038 0.278 0.890  0.959 0.765 0.210 -0.034 0.020 0.093
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