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ABSTRACT

Disasters can have devastating effects on our communities and can cause great
suffering to the people who reside within them. Critical infrastructure underpins the
stable functioning of these communities and the severity of disasters is often linked to

failure of these systems.

Traditionally, the resilience of infrastructure systems is assessed by subjecting
physically based models to a range of hazard scenarios. The problem with this
approach is that it can only inform us of inadequacies in the system for the chosen
scenarios, potentially leaving us vulnerable to unforeseen events. This thesis
investigates whether network graph theory can be used to give us increased
confidence that the system will respond well in untested scenarios by developing a
framework that can identify generic system characteristics and hence describe the
underlying resilience of the network. The novelty in the work presented in this thesis
is that it overcomes a shortcoming in existing network graph theory by including the

effects of the spatial distribution of geographically dispersed systems.

To consider spatial influence, a new network generation algorithm was developed
which incorporated rules that connects system components based on both their
spatial distribution and topology. This algorithm was used to generate proxy networks
for the European, US and China air traffic networks and demonstrated that the
inclusion of this spatial component was crucial to form the highly connected hub
airports observed in these networks. The networks were then tested for hazard
tolerance and in the case of the European air traffic network validated using data from
the 2010 Eyjafjallajokull eruption. Hazard tolerance was assessed by subjecting the
networks to a series of random, but spatially coherent, hazards and showed that the
European air traffic network was the most vulnerable, having up to 25% more
connections disrupted compared to a benchmark random network. This contradicts
traditional network theory which states that these networks are resilient to random
hazards. To overcome this shortcoming, two strategies were employed to improve the
resilience of the network. One strategy ‘adaptively’ modified the topology (crises
management) while the other ‘permanently’ modified it (hazard mitigation). When

these modified networks were subjected to spatial hazards the ‘adaptive’ approach
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produced the most resilient network, having up to 23% fewer cancelled air routes
compared to the original network, for only a 5% change in airport capacity. Finally, as
many infrastructure networks are flow based systems, an investigation into whether
graph theory could identify vulnerabilities in these systems was conducted. The
results demonstrated that by using a combination of both physically based and graph
theory metrics produced the best predictive skill in identifying vulnerable nodes in the

system.

This research has many important implications for the owners and operators of
infrastructure systems. It has demonstrated the European air traffic network to be
vulnerable to spatial hazard and shown that, because many infrastructure networks
possess similar properties, may therefore be equally vulnerable. It also provides a
method to identify generic system vulnerabilities and strategies to reduce these. It is
argued that as this research has considered generic networks it can not only increase
infrastructure resilience to known threats but also to previously unidentified ones and
therefore is a useful method to help protect these systems to large scale disasters and

reduce the suffering for the people in the communities who rely upon them.
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. Nodes introduced in order of Distance
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. Nodes introduced Proportional to distance
. Nodes introduced Randomly

. Random network

. Scale-Free network

. Uniform with Area nodal configuration

. Uniform with Distance nodal configuration
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SUMMARY OF IMPORTANT FIGURES

Presented here is a series of tables listing the important figures in this thesis and also

describing the results presented and their relevance to this research. This is done so

the reader can quickly find specific results for comparison purposes.

For Chapter 3 (the generation of synthetic networks for the EATN)

Figure

Network Class

Nodal Configuration

Showing

Figure 3.3

Scale-Free

EATN

Plotting the degree distribution for a
scale-free network and showing that is
not a good fit for the EATN.

Figure 3.5

Exponential

Uniform with area

Showing that the new network
generation algorithm is capable of
generating networks that are
exponential in class.

Figure 3.8

Scale-Free and
Exponential

EATN

Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the topological structure of
the EATN.

Figure 3.9

Scale-free and
Exponential

EATN

Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the spatial structure of the
EATN.

Figure 3.12

Scale-free and
Exponential

Bi-Linear

Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the topological structure of
the EATN.

Figure 3.13

Scale-free and
Exponential

Bi-Linear

Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the spatial structure of the
EATN.

Figure 3.27

Scale-free and
Exponential

Clustered

Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the topological structure of
the EATN.

Figure 3.28

Scale-free and
Exponential

Clustered
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Showing that an exponential network,
with constant radius size and includes
the modification of GA is superior at
replicating the spatial structure of the
EATN.




For Chapter 3 (the hazard tolerance of the EATN)

Figure Network(s)* Hazard Showing
Actual EATN and Showing that the synthetic networks
synthetic networks Actual display a similar hazard tolerance to
ctua
Figure 3.29 generated using the R the actual EATN.
. Eyjafjallajokull
actual airport
locations.
Showing that the synthetic networks
Actual EATN and . o
. display a similar hazard tolerance to
synthetic networks Actual and . ]
] ) o ) the actual EATN, with the exception
Figure 3.31 with bi-linear and simulated ) . .
L of the two days of disruption which
clustered nodal Eyjafjallajokull . .
removed the highest proportion of
layout .
airspace.
Actual EATN and Showing that the synthetic networks
synthetic networks Random, but display a similar hazard tolerance to
Figure 3.33 with bi-linear, spatially the actual EATN, with the exception
clustered and actual | coherent of a few hazard locations.
nodal layout
Showing that the EATN is more
Actual
T vulnerable to hazards located over
. Eyjafjallajokull .
Figure 3.36 Actual EATN d ‘central the geographic centre of the
and ‘centra
, network than the Eyjafjallajokull
attack
event.
Actual EATN and Showing that the connectivity of the
synthetic networks Actual and EATN, and synthetic networks,
Figure 3.37 with bi-linear, simulated decreases with expansion of spatial

clustered and actual

nodal layout

Eyjafjallajokull

hazard; but that the efficiency of
these networks remains constant.

* All of these figures also include the results for the benchmark network.

For Chapter 3 (the generation of synthetic networks for the CATN and USATN)

. Nodal .
Figure Network Class . ) Showing
Configuration
Showing that an exponential network, with
] Scale-Free and constant radius size and includes the
Figure 3.43 . CATN L . . L
Exponential modification of GA is superior at replicating
the topological structure of the CATN.
Showing that an exponential network, with
. Scale-Free and constant radius size and includes the
Figure 3.44 CATN

Exponential

modification of GA is superior at replicating
the spatial structure of the CATN.
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. Nodal .
Figure Network Class . ) Showing
Configuration
Showing that an exponential network, with
constant radius size and includes the
] Scale-free and o ) ] o
Figure 3.47 £ tial Clustered modification of GA is superior at replicating
Xponentia
P the topological and spatial structure of the
CATN.
Showing that an exponential network, with
] Scale-free and constant radius size and includes the
Figure 3.48 . USATN e . . . —
Exponential modification of GA is superior at replicating
the topological structure of the USATN.
Showing that an exponential network, with
. Scale-free and constant radius size and includes the
Figure 3.49 . USATN . . . N
Exponential modification of GA is superior at replicating
the spatial structure of the USATN.
Showing that an exponential network, with
constant radius size and includes the
] Scale-free and o ) ] o
Figure 3.53 . Clustered modification of GA is superior at replicating
Exponential . ]
the topological and spatial structure of the
USATN.

For Chapter 3 (the hazard tolerance of the CATN and USATN)

Figure Network(s)* Hazard Showing
Actual CATN and USATN The hazard tolerances of the
. and the synthetic synthetic networks are
Figure 3.54 . ‘Central attack’ .
networks with actual and generally in good agreement
clustered nodal layouts with the actual networks.
. Showing that all of the
10 synthetic networks for )
. . synthetic networks, for the
Figure 3.55 the USATN with a ‘Central attack’ .
USATN, show approximately
clustered nodal layout
the same hazard tolerance.
Showing that the CATN and
USATN display an initial
. Actual EATN, CATN and . . .

Figure 3.56 USATN ‘Central attack’ | resilience to this spatial hazard,
whilst the EATN is always
vulnerable.

Showing that the connectivity

of the CATN degrades quicker

. Actual EATN, CATN and than the EATN and USATN and
Figure 3.57 ‘Central attack’

USATN

that the efficiency of the
USATN is most unchanged by
the spatial hazard.

* All of these figures also include the results for the benchmark network.
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For Chapter 4

Figure Network(s)* Nodal Hazard Showing
Configuration
Introducing nodes with
) Scale-freeand | Uniform with | | , | distance creates the
Figure 4.7 . Central attack
exponential area most vulnerable network
to this hazard location.
Networks where nodes
. . . are introduced with
] Scale-free and | Uniform with Perimeter ) o
Figure 4.8 . , distance initially show an
exponential area attack . N
increased resilience to
this spatial hazard.
That hazard location has
little, or no, effect to the
hazard tolerance of
] ) . . . networks where nodes
Figure 4.10/ | Exponential / Uniform with 7 locations of )
. . are introduced randomly,
Figure 4.11 Scale-free area spatial hazard L
but can significantly
affect those where nodes
are introduced with
distance.
Networks with this nodal
configuration show an
increased vulnerability to
Figure 4.12 / | Exponential / Uniform with 7 locations of hazards located around
Figure 4.13 Scale-Free distance spatial hazard the geographic centre of
the network than those
with a uniform with area
nodal configuration.
Networks with this nodal
configuration show an
increased vulnerability to
Figure 4.15/ | Exponential / Clustered 7 locations of hazards located around
ustere
Figure 4.16 Scale-Free spatial hazard the geographic centre of
the network than those
with a uniform with area
nodal configuration.
Uniform with |, , | Thechangein
) Central attack o
. area, uniform L connectivity for the
Figure 4.20 Random . . and ‘perimeter
with distance, , benchmark random
attack
clustered networks.
Uniform with , , . .
. Central attack The change in efficiency
. area, uniform L
Figure 4.21 Random . . and ‘perimeter | for the benchmark
with distance, ,
attack random networks.
clustered
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Figure Network(s)* Nodal Hazard Showing
Configuration
Networks where nodes
. . were introduced with
Uniform with |, , )
. . Central attack distance show a lower
Figure 4.22 / | Scale-Free / area, uniform L o .
. . . . and ‘perimeter connectivity, particularly
Figure 4.23 Exponential with distance, , ) )
attack when a high proportion
clustered
of nodes have been
removed.
That scale-free networks
Uniform with |, , | where nodes are
. Central attack . . .
] area, uniform .. introduced with distance
Figure 4.24 Scale-Free ] ) and ‘perimeter
with distance, ttack’ show a decreased
attac
clustered efficiency, than a random
network.
. . That all exponential
Uniform with |, , .
. Central attack networks maintain
] . area, uniform . .
Figure 4.25 Exponential o and ‘perimeter | efficiency as the hazard
with distance, , ) ]
attack removes an increasing
clustered .
proportion of nodes.
The connectivity of the
networks with a uniform
with distance or
clustered nodal
. . configuration decreases
Uniform with |, , , ,
] ] Central attack quicker than those with a
Figure 4.28 / | Scale-Free / area, uniform . ) ]
) ] ) ) and ‘perimeter uniform with area
Figure 4.29 Exponential with distance, , . .
attack configuration for the
clustered , ,
central attack’ hazard,
but show an increased
connectivity to small
sizes of the ‘perimeter
attack’ hazard.
The efficiency of the
networks with a uniform
Uniform with |, , | with distance or
. Central attack
. area, uniform . clustered nodal
Figure 4.30 Scale-Free ] ) and ‘perimeter ) )
with distance, ttack’ configuration decreases
attac
clustered quicker than those with a
uniform with area
configuration.
Uniform with |, , | Nodal configuration has
. Central attack .
] ) area, uniform . little, or no, effect to the
Figure 4.31 Exponential and ‘perimeter

with distance,
clustered
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THIS POINT TO THE STORE FURTHEST FROM THE CENTRE. GRAPHS SHOWING HOW THE RADIUS OF EACH CLUSTER
CHANGES WITH EACH OPENED STORE HAVE BEEN PLOTTED FOR EACH CLUSTER: (E) DENVER, (F), HOUSTON AND (G)
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BLACK DOT, THE ADDED NODES AS GREY DOTS AND THE SPATIAL BOUNDARY IS INDICATED BY THE BLACK LINE; AND (B)
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NODES, THE GREY DOTS THE ADDED NODES AND THE BLACK LINE THE SPATIAL BOUNDARY OF THE NETWORK. (B) A
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FIGURE 3.29: THE ACTUAL EATN (BLACK DOTS) AND THE AVERAGE OF 10 SYNTHETIC EATN NETWORKS (BLUE DOTS)
SUBJECTED TO THE ACTUAL EYJAFJALLAJOKULL EVENT, PLOTTING THE RESULTS IN TERMS OF PERCENTAGE LINKS
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CLOSED AIRPORTS) AND (B) PERCENTAGE AREA REMOVED (I.E. PROPORTION OF CLOSED AIR SPACE). ALSO SHOWN ARE
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SPATIAL BOUNDARY OF THE NETWORK (BLACK LINE) AND GROWS OUTWARDS UNTIL THE WHOLE NETWORK AREA IS
COVERED (I.E. FROM (A) TO (B) TO (C))
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CHAPTER 1: INTRODUCTION

1.1: IDENTIFICATION OF RESEARCH GAP

Infrastructure systems, such as water, transport, communication and energy networks
form the backbone of our modern communities (Institution of Civil Engineers 2009)
and are crucial to the functioning of our modern society (Murray and Grubesic 2007).
The reliability and integrity of these physical assets and the services they provide are
vital for ensuring national security, public health and productivity (HM Treasury and

Infrastructure UK 2010).

Recent natural disasters, including the earthquakes in New Zealand and Japan (2011),
floods in Cumbria (2009) and the eruption of the Eyjafjallajokull volcano (2010), have
highlighted not only the importance of these infrastructure systems to modern daily
life but also the disproportionate effect that damage to these systems has on our
communities; especially for the most vulnerable members of society, including:
women and children, the aged, the infirm and the poor. The severity and lasting
impact of these effects are often linked to the resilience of the infrastructure systems
themselves. For example, even prior to the 2010 earthquake, the infrastructure in
Haiti could be classed as among the world’s worst. The resulting damage from the
earthquake to the communication, transportation and electrical systems, hampered
rescue and aid efforts and lead to many long term problems, including lack of

sanitisation and spread of disease (Figure 1.1).

Figure 1.1: (a) (WLRN 2010) and (b) (The Telegraph 2010) showing the devastation in the aftermath of
the Mw?7.0 Haitian Earthquake in 2010.
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However, even in more developed countries the failure to understand these complex
interacting systems can lead to great suffering; for example, in the aftermath of
hurricane Katrina two dozen hospitals were left without electricity, meaning that they
could not operate laboratory and x-ray equipment, dialysis machines and ventilators,
resulting in many potentially preventable deaths (Gray and Herbert 2006). The effects
of a natural disaster are also felt economically and this economic disruption can linger
for a significant period of time after the event. The estimated damage of the 2011
Tohoku earthquake and tsunami (Japan) is around $185-$309 billion (Censky 2011) and
is likely to take five, or more, years to rebuild (Amandeo 2011). This estimated cost
does not include the effects of power outages, caused by the nuclear crisis at the

Fukushima power plant, or the subsequent loss of revenue to businesses.

It is not only large scale disasters which cause devastating impacts to our communities,
the failure of a single system component coupled with the inability to understand the
functioning of the system can also have devastating consequences. For example, in
August 2003 North America suffered a blackout affecting 2 million people in 8 US
States, with estimated economic losses between $7 and $10 billion (US dollars) (Figure
1.2) (U.S.-Canada Power System Outage Task Force 2004). This failure was caused by
the loss of one power station and the failure to manage tree growth around
transmission lines; ultimately it was the inability of operators to understand the
vulnerability of the system which was attributed to the blackout (U.S.-Canada Power

System Outage Task Force 2004).
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Figure 1.2: The North American Power Grid (a) before and (b) after a cascading failure, affecting 45
million people in 8 US States in August 2003 (Elvidge 2003).
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Within the UK the recent floods in the summer of 2007 showed the geographically
widespread nature of many natural hazards, with surface water flooding affecting
many towns, villages and individual properties from Bristol to Newcastle. This event
also caused damage to a number of infrastructure systems, including the closure of
electricity substations (including the closure of the Castle Meads substation which left
42,000 people without power for up to 24 hours, Cabinet Office 2008c) and water
treatment works (including the closure of the Mythe water treatment works causing
350,000 people to be without access to mains water supply for 17 days, OFWAT 2007)
due to flooding. It was estimated that the insurance industry expected to pay out over
£3 billion and economic losses to infrastructure systems was estimated at £674 million,

with the water sector the worst affected (Environment Agency 2010a).

These recent events have prompted many organisations, such as the Council for
Science and Technology and the Institution of Civil Engineers, to question the
resilience of our infrastructure systems. In many cases, this resilience could be
considered a ‘by product’ of Government economic investment in infrastructure, with
the main priority being on the stimulation of economic growth. ‘Over the centuries,
the UK has had a great record of investing in world class infrastructure to underpin
economic growth’ (HM Treasury and Infrastructure UK 2010); however, in recent
decades the approach to infrastructure investment has changed to become
uncoordinated and insufficiently targeted to support sustainable development and
economic growth. This uncoordinated approach has also had a detrimental impact to
the resilience of these systems, caused, in part, by a combination of aging
infrastructure components and a change in the connectivity of these systems. These
systems are now increasingly underpinned and operated by ICT, which has caused a
shift ‘from a series of unconnected structures to interconnected systems, where the
failure in one part has a direct and damaging knock-on effect in others’ (Council for

Science and Technology 2009).

In their 2009 report, the Institution of Civil Engineers called for a greater
understanding of the threats and challenges facing our infrastructure systems; which
was echoed in the 2009 report by the Council for Science and Technology who also
called for ‘a better understanding of the complexity and resilience of the national

infrastructure’ (Council for Science and Technology 2009). They suggested that this
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may be achieved through research into the modelling of infrastructure systems, from
physical, economic and social perspectives. These reports, combined with the
devastation caused by the 2007 UK floods, prompted the UK Government to produce
the ‘National Infrastructure Plan 2010° which set out the ’‘specific steps the
Government is taking to achieve ijts ambition to give the UK world-leading
infrastructure’ (HM Treasury and Infrastructure UK 2010) and also the founding of
‘Infrastructure UK’, a division of HM Treasury focused on ‘coordinating the planning,
prioritisation and enabling of UK infrastructure investment’ (National Audit Office
2013). Whilst, the main focus of Government investment is still within the economy,
the resilience of infrastructure is receiving more attention. Further studies and reports
have been commissioned, by the UK Government, including the ‘Strategic Framework
and Policy Statement’ which sets out a process and timescale for the delivery of a
Critical Infrastructure Resilience Programme (Cabinet Office 2010a). However, despite
this resurgence in funding for infrastructure projects, the capacity, condition,
performance and resilience of these systems is still a major concern and also forms the
focus of a new study by the Institution of Civil Engineers, in the 2014 State of the
Nation report, which aims to ‘set out a series of recommendations to improve
performance and help remove barriers’ (New Civil Engineer 2013) to deliver a higher

quality infrastructure.

This attention to infrastructure resilience has also prompted studies by academic
researchers, who aim to develop a deeper understanding of these systems. These
studies include the Infrastructure Research Transitions Consortium (which aims to
deliver research, models and decision support tools to enable analysis and planning of
a robust national infrastructure system) and iSMART (which is developing assessment
and adaptation strategies to ensure the future safety and resilience of geotechnical
transport infrastructure). This research project also considers the resilience of
infrastructure systems and aims to increase the resilience of our communities by
developing methods to adapt our critical infrastructure systems so they are less

vulnerable to the effects of natural hazards.

The design approach for these complex infrastructure systems is to ensure that the
individual components (e.g. buildings, pipes, pumps) have sufficient robustness (i.e. a

particular probability of failure) to withstand the impact of catastrophic events, such as
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earthquakes and hurricanes, which is specified in the relevant design standard (e.g.
Eurocodes). This robustness is usually a balance between the risk and consequences of
failure (including loss of life, social and economic impacts) and the economic cost of
construction. Whereas this design approach is satisfactory for a building that has a
static function (e.g. to provide shelter) it can be found lacking when used to design
complex interacting systems. In the event of a major disaster it is likely that some
system components will have failed, but what is important is that the system as a
whole is still capable of providing a baseline level of service to our communities.
Therefore, it is important to ensure that the system itself is designed to have sufficient

robustness to withstand the impact of a catastrophic event.

Traditionally, engineers have modelled infrastructure networks using physically-based
models in an attempt to understand these systems. Depending on the sophistication
of the model the outputs can be very useful in providing scenario based information;
however, this modelling approach can be deficient in two ways. Firstly, the size of the
problem can quickly become too large to be solved and secondly, this approach only
allows a select number of scenarios to be analysed. Therefore, this approach can leave
these systems and, more importantly, the communities they support vulnerable to

untested events.

To solve this problem recent studies have employed network graph theory to try and
understand the behaviour of these complex interacting systems and give an insight
into their inherent hazard tolerance. This theory was developed to model the
relationships between individuals in a social network and has also previously been
applied to model the complex interactions in biological and neural networks. In this
approach only the topology of the network is considered, which is modelled as a series
of nodes and connecting links. Recent studies have used this approach to model
infrastructure systems, representing individual components (including power stations,
reservoirs and water treatment plants) as nodes and the interactions between these
components (e.g. transmission lines, pipes) as links. This analysis approach reduces
the computational effort required to model large infrastructure systems and also
enables the fundamental properties of the system to be described. These studies have
shown that potentially many infrastructure systems naturally configure to one of two

specific network architectures (classes) and therefore potentially have similar
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properties. That many infrastructure systems form similar underlying network
architectures may seem surprising as a power grid seems vastly different to an air
traffic network, but in fact they share many similar characteristics. Both of these
networks can be categorised as 'exponential networks', whilst other infrastructure
networks have been shown to belong to the 'scale-free' network class. These classes
of network are subtly different, but both comprise a small number of highly connected
components and a large number of weakly connected components. Classifying a
network not only allows the underlying network architecture to be described, but also
enables an insight into the hazard tolerance of the system. For example, the World-
Wide-Web and the Internet have been shown to belong to the ‘scale-free’ network
class and therefore have been shown to be resilient to random failures and vulnerable
to targeted attack (e.g. a terrorist attack) (Albert et al. 2000). This is because a random
hazard has a small chance of removing one of the few the highly connected (and
important) nodes, whereas a targeted attack will often remove these connected nodes

seeking to cause maximum disruption to the functioning of the network.

However, this hazard tolerance assessment is based purely on topological models and
does not account for spatial hazards, which are those most likely to disrupt
infrastructure systems (e.g. flooding, hurricanes). For the majority of previously
analysed infrastructure systems space has little effect on the physical configuration of
the network; for example, the physical routers and servers, which comprise the
Internet, each require only a room, or even a small space within a room. Even the
largest hubs require little physical space and little or no planning permission. The
World-Wide-Web requires even less space. Web pages and the hyperlinks that
connect them are virtual entities whose physical size amounts to only a few
nanometres on a hard disc drive. However, other infrastructure systems, such as
electrical transmission systems or transportation networks, require large amounts of
space and are usually subject to strict planning regulations. A small number of studies
have considered the spatial configuration of these infrastructure systems, but these
studies have not assessed the hazard tolerance of these systems to determine their

resilience to spatial hazards.
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1.2: AiM OF RESEARCH

The aim this project is to improve the resilience of our communities by developing
techniques that can identify fragile system architectures, recognize vulnerable areas
within these systems and establish methods that can help to protect them from
hazard. The project will use a network graph theory approach to analyse

infrastructure systems and quantify the impact that damage to these systems can have.

1.3: OBIJECTIVES FOR THE RESEARCH

This PhD project will be delivered through the completion of five objectives and will

answer six research questions:

1. Review existing network analysis / reliability / damage models that have

been used to analyse infrastructure systems

Method: This objective focuses on a review of current literature to identify
models used to analyse infrastructure systems, including physically-based
models (modelling the flow of services in the systems) and hazard/damage
models (simulating disaster scenarios). This objective will also review the
literature regarding the more recent analysis of infrastructure systems using

the application of network graph theory.

Output: A literature review detailing the traditional and new methods /

models used to analyse infrastructure systems.
Research Questions:
i.  What are the potential threats to the infrastructure systems?

ii. What classifies a network as resilient or vulnerable to a hazard scenario?

2. Collection of real world infrastructure data set(s), which will be catalogued
into classes to enable their underlying properties to be described and

synthetic analogies for these real world system(s) to be formed
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Method: It has already been discussed that many real world networks
potentially form specific network architectures (i.e. classes of network).
Understanding the rules that result in these network classes facilitates the
ability to generate synthetic networks that can be used as proxies for real world
infrastructure systems. These artificial networks display all the characteristics
of their real world counterparts and so can be used to generate results for a
wider range of systems (e.g. different size systems, generic systems that there
is no obtainable data for, future systems that do not yet exist, and whole
infrastructure groups) compared to using data for a relatively small number of
real world systems. These synthetic networks can also be used to determine if
a hazard tolerance displayed by a real world network is unique to that system,
or is characteristic of its network class. One suitable real world example will be
identified and data regarding this system will be obtained and used as a basis
for forming the synthetic networks. Data regarding the spatial location of
components in the real world network will also be gathered and replicated in

the synthetic networks.

For many infrastructure networks it is their ability to transfer service around
the network that is considered to be important. Therefore, to enable the flow
of service around infrastructure networks to be analysed, this objective will
also employ a simple physically-based flow model to simulate the physical
processes in infrastructure systems, which govern the flow of service around

the systems.

Output: Generation of synthetic networks that can serve as proxies for real-
world infrastructure systems, accounting for both the network architecture
(class) of the system and its spatial locations and also the development of a

flow model.
Research Questions:

ili. How does the inclusion of a spatial component affect the algorithm

used to generate the synthetic networks, if at all?
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3. Simulation of ‘disasters’ to the real and synthetic infrastructure systems

(enabling the quantification of resilience)

Method: To quantify the inherent resilience of each class of network (and to
identify fragile network architectures) to different types of disasters, hazard
and damage models will be developed and applied to the real and synthetic
infrastructure systems. The deterioration of the systems will be monitored
using network theory measures and the resilience of the network quantified
using these measures. To enable the identification of specific nodes and/or
links that cause a disproportionate effect when removed from the system, the
network models will be combined with the reduced complexity flow model
(developed in Objective 2) and physically-based measures will be compared
with measures from graph theory. The comparison between these two sets of
measures should establish vulnerability markers (defined as nodes and/or links
that when removed from the network have the greatest impact, e.g. those

nodes whose removal causes the most disruption to the flow of service).

Output: Quantification of the resilience of the synthetic and real infrastructure
systems and the identification of fragile network architectures and specific

vulnerable nodes and/or links in these systems.
Research Questions:

iv. Does the inclusion of a spatial component into the analysis alter the
hazard tolerance of the network class, compared to using a purely

topological model?

4. Evaluate methods to reduce the vulnerability of networks to disasters

Method: Quantifying the resilience of the real and synthetic infrastructure
networks (Objective 3) will identify the inherent tolerance to hazard to each
type of disaster considered (e.g. random hazard, spatial hazard and targeted
attack). To identify the reasoning behind any vulnerability displayed by these

networks, a range of synthetic networks with inherently robust network
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architectures (to different hazards) and different spatial locations of
components will be formed. These networks will be subjected to the same
hazards and their resilience quantified using the same network measures as
previously used. Comparison between this range of synthetic networks and
those analysed in Objective 3 should explain the reason for any vulnerabilities
shown. From these results methods to increase the resilience of the real world
network will be formed and evaluated. Possible methods could include either
permanently or adaptively ‘rewiring’ the network in the event of a hazard and
solutions that change as little of the network structure as possible are

preferred, as they are more likely to be economically viable.

Output: Identification of inherently robust classes and spatial configurations of
systems and methods to modify inherently vulnerable real-world networks to

increase their resilience.
Research Questions:

v. What is the best measure for identifying specific vulnerable nodes

and/or links in a network?

vi. What is the best method at reducing any inherent vulnerability in a real

world infrastructure system?

Recommendations to crisis managers and infrastructure planners

Method/Output: The findings of this project will be summarised and will aim
to inform both crisis managers (how they can best cope with damaged
infrastructure in the aftermath of a disaster) and infrastructure planners
(showing the best methods to modify their systems so they are better prepared
for disasters). The summary will detail which network classes are inherently
resilient / vulnerable to different types of disasters. For those that are

inherently vulnerable methods to increase their resilience will be indicated.
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1.4: SCOPE OF RESEARCH

To keep this work to a manageable size, a small number of limitations have been

placed on the network models.

This research does not consider the interdependency between infrastructure
systems. Many studies recognise that there is some level of interdependency
between infrastructure systems, for instance, to operate normally the
transportation network requires electricity from the power grid (for traffic
lights, trains, etc.). However, this interdependency is not yet fully understood
and/or mapped. To include this element into the network model would not
only add another layer of complexity, but would also require many assumptions
to be made. Due to the lack of interdependent models of interacting
infrastructure systems it is not clear how many connections there are between
two interconnected infrastructure networks, if the highly connected nodes in
each system form the interconnected nodes, or how the flow of service in both
systems is affected by their shared connections, among other questions. To
answer these questions assumptions would need to be made, many of which
may be unrealistic and could affect the validity of the network model. For this

reason, interdependency has not been considered in this research.

The network graph theory models analysed and generated in this thesis do not
include parallel edges (parallel links) and/or self-loops (as illustrated in Figure
1.3). Parallel edges occur when a pair of nodes are connected by more than
one link and self-loops are edges that connect a node to itself. The inclusion of
these into a network constitutes a weighted network model, which could have
different analysis results to those that are un-weighted. These additional links
are not included in traditional network generation algorithms and so are not
included in this thesis. However, an exception to this exclusion of parallel
edges is made when strategies to increase the resilience of the European air
traffic network are developed; the reasons for this inclusion are discussed in

Chapter 4.8.
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Figure 1.3: An illustration of parallel edges/links (between nodes A-C and B-D) and self-loops

(nodes C and D).

This research does not analyse weighted network models. Network models can
be weighted by using parallel edges (outside the scope) or by assigning a
weight to each link (for example, representing the resistance of a pipe in a
water distribution network). This weighting can be easily incorporated into the
hazard tolerance analysis (having been successfully achieved in previous
studies), however, this component has not been included into a network
generation algorithm (to the authors’ knowledge) and any analysis of weighted
networks is therefore restricted to real world systems only. For this reason, all

of the networks used in this thesis are un-weighted.

This research will only consider four of the nine national infrastructure sectors,
as defined by the UK Government (Cabinet Office 2011a); namely the
communications, water, energy and transport sectors (and their associated
sub-sectors), excluding, the emergency services, government, health, financial

services and food national infrastructure sectors.
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1.5: STRUCTURE OF THESIS

Chapter 2: This chapter introduces and defines the terms ‘infrastructure’ and
‘resilience’, shows how real world infrastructure systems can be categorised and
identifies the main threats to these systems, according to Governments and academic
researchers. The chapter also discusses how infrastructure networks are currently
analysed and the problems associated with using these methods to improve the
resilience of an infrastructure system. The recent advances in network graph theory
aimed at solving this problem are presented, including the network theory concepts of

‘classes’, ‘network measures’ and ‘hazard tolerance’.

Chapter 3: This chapter uses the European air traffic network and the Eyjafjallajokull
volcanic event to show that this real world spatial network has the same topological
hazard tolerance as its network class, but is vulnerable to random spatial hazards
(contradicting this theory). To determine whether this vulnerability is unique to this
network or is inherent of its class, a network generation algorithm is developed and
used to generate proxy networks. These synthetic networks are then subjected to a
simulated Eyjafjallajokull event, as well as other spatially coherent hazards, showing
that they too are vulnerable to spatial hazards. The hazard tolerance of two other real
world air traffic networks (China and US), and their synthetic counterparts, are also

assessed.

Chapter 4: This chapter assesses the hazard tolerance of a range of spatial networks
with different topological and spatial characteristics, to determine which combinations
of these characteristics are resilient / vulnerable to spatial hazard. Due to the lack of
complete and detailed datasets for real world infrastructure systems, a range of
synthetic networks with different topologies and spatial properties are formed to
simulate the differing characteristics of real world systems. The most resilient /
vulnerable of these combinations to different locations and sizes of spatial hazard are
initially identified by quantifying the proportion of disrupted connections for a given
proportion of components or area removed and then by assessing their change in
connectivity and performance for an increasing hazard size. These results of this
analysis are then used to inform solutions to increase the resilience of the European air

traffic network when subjected to spatial hazard.
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Chapter 5: This chapter focuses on the impact that the removal of a single node can
have to the functioning of the remaining network and develops methods to identify
individual nodes that have a disproportionate effect to the remaining network when
removed. A reduced complexity flow model is initially developed and used to show
the applicability of using network metrics to analyse physically based systems. A
sample network is used to assess the predictive skill of using network theory metrics,
traditional physically based measures and combinations of these to identify nodes that

can have a disproportionate effect to the network when removed.

Chapter 6: This chapter summarises and draws conclusions from the main findings of

the research presented in this thesis and provides suggestions for further research.
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CHAPTER 2: INFRASTRUCTURE NETWORKS, RESILIENCE AND GRAPH THEORY ANALYSIS

The previous chapter discussed the vital role that infrastructure systems play in
underpinning the social and economic growth and productivity of our modern
communities. It was also discussed that these systems can either aid or hinder the
recovery of our communities in the aftermath of a disaster and for this reason
increasing the resilience of these systems is of paramount importance. The problems,
and complexities, associated with using current analysis techniques (physically-based
models) for this task was outlined and it was discussed that some studies are turning to
a network graph theory analysis approach to describe the fundamental properties of
these systems. In this chapter, the concept of what constitutes an ‘infrastructure
system’ and what is meant by the term ‘resilience’ are discussed. From this the main
threats to infrastructure systems are identified and their potential impacts /
consequences to our communities discussed. This chapter also outlines how
infrastructure networks are currently analysed and introduces the newly applied
analysis approach using network graph theory. A brief overview of the main elements
of network graph theory is given along with a summary of applications to previous real

world networks.

2.1: TYPES OF INFRASTRUCTURE NETWORKS

To better protect our communities from the effects of disasters though the use of our
infrastructure systems the concept of ‘infrastructure’ and what constitutes as an
‘infrastructure system’ must be initially defined. This should be a relatively simple

process, the Oxford English Dictionary defines ‘infrastructure’ as:

‘The basic physical and organisational structures and facilities (e.qg. buildings,
roads, power supplies) needed for the operation of a society or enterprise.’

(Oxford Dictionaries 2012)

However, many governments (and other policy makers) often shy away from providing

a clear definition of what is actually meant by the term ‘infrastructure’ (New Zealand
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Government 2010). In the case of many countries, there does not appear to be an
agreed or accepted definition. This could be due to fear of restricting the scope of the
definition, leaving out vital systems, or could raise questions about why other systems
have been included. This fear of inclusion / exclusion of certain systems may seem
trivial, but could have many important future repercussions in terms of future policies
and government funding. For many governments the definition of the term
‘infrastructure’ also depends upon the context in which it is being used; for example in
the US the definition of ‘infrastructure’ has been ‘evolutionary and often ambiguous’
(U.S. Congressional Reseach Service 2004). In a 1983 report by the US Congressional

Budget Office, the term ‘infrastructure’ was defined as:

‘facilities with the common characteristics of capital intensiveness and high
public investment at all levels of government. They are, moreover, directly
critical to activity in the nation’s economy.’” (U.S. Congressional Budget Office

1983)

In this report, it was also noted that the term ‘infrastructure’ could be ‘applied broadly
to include such facilities as schools, hospitals, and prisons, and it often includes
industrial capacity as well' (U.S. Congressional Budget Office 1983). However, in a

later report by the same office this definition was narrowed to exclude:

‘some facilities often thought of as infrastructure — such as public housing,
government buildings, private rail service, and schools — and some
environmental facilities (such as hazardous or toxic waste sites) where the
initial onus of responsibility is on private individuals.” (U.S. Congressional

Budget Office 1988)

In a later document, stating Public Law, the US Government characterised

‘infrastructure’ as:

‘facilities with high fixed costs, long economic lives, strong links to economic
development, and a tradition of public sector involvement.” (U.S. Government

1984)

According to the US Government, the services that ‘infrastructure’ provide ‘form the

underpinnings of the nation’s defence, a strong economy, and our health and safety’
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(U.S. Government 1984). This Public Law was one of the last significant documents to
consider the definition of ‘infrastructure’. Since this time US policy makers have
instead preferred to address the needs of individual infrastructure sectors, thereby
sidestepping the need to define the collaborative term (U.S. Congressional Reseach

Service 2004).

Although, different governments (and even different departments within the same
organisation) tend to have a different definition of the term ‘infrastructure’ a common
theme exists: ‘facilities that provide a service’. Many governments also acknowledge
that infrastructure and economic prosperity are strongly linked (New Zealand
Government 2010) and that infrastructure systems form the backbone of our modern
communities. It can be deduced that, essentially, the term ‘infrastructure’ refers to
the systems that provide our communities (both at the national and global levels) with
the resources they need to sustain life and enable growth, by delivering a flow of
services from areas of generation or storage (e.g. power stations) to areas of demand

(e.g. communities).

Owing to the lack of an accepted definition for the term ‘infrastructure’ there is also a
‘grey area’ surrounding what systems should be classed as or constitute
‘infrastructure’. In the early definitions of ‘infrastructure’ facilities such as ‘highways,
public transit systems, wastewater treatment works, water resources, air traffic
control and airports’ were included (U.S. Congressional Budget Office 1983). However,
later definitions focus instead on defining several broad areas, into which smaller
systems can be placed, rather than defining, and naming, each individual system. In
one such study, O'Rourke (2007) classes infrastructure systems into one of six principal
systems: electric power, gas and liquid fuels, telecommunications, transportation,
waste disposal and water supply. Whilst, the UK Government defines nine areas as

national infrastructure, Figure 2.1.
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Figure 2.1: The nine national infrastructure sectors and associated sub-sectors as defined by the UK
Government (Cabinet Office 2011a).

In recent years, the focus has moved from defining the term ‘infrastructure’ and what
constitutes as an ‘infrastructure system’ to defining and categorising what is ‘critical
infrastructure’. Whilst there is still no universally accepted and used definition of this
term, many individual governments have recently formed their own clear definition.
These definitions tend to focus on the idea that these ‘critical’ systems as those that
would lead to severe economic and/or social consequences, or even loss of life, if they
were damaged or destroyed. The term ‘critical infrastructure’ has been defined by the

UK, Australian and US Governments and the EU as:

UK — ‘Those infrastructure assets (physical or electronic) that are vital to the
continued delivery and integrity of the essential services upon which the UK
relies, the loss or compromise of which would lead to severe economic or social

consequences or to loss of life.” (Cabinet Office 2010a)
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Australia — ‘Those physical facilities, supply chains, information technologies
and communication networks which, if destroyed, degraded or rendered
unavailable for an extended period, would significantly impact on the social or
economic wellbeing of the nation or affect Australia’s ability to conduct

national defence and ensure national security.” (Australian Government 2010)

US — ‘Systems and assets, whether physical or virtual, so vital to the United
States that the incapacity or destruction of such systems and assets would have
debilitating impact on the security, national economic security, national health

or safety, or any combination of those matters.” (DCSINT 2006)

EU — ‘Critical Infrastructure consists of those physical and information
technology facilities, networks, services and assets which, if disrupted or
destroyed, have a serious impact on the health, safety, security or economic
well-being of citizens or the effective functioning of governments.” (Cabinet

Office 2010a)

The UK Government acknowledges that these definitions are ‘important to ensure
clarity and consistency when considering whether infrastructure is critical' (Cabinet
Office 2010a). To define whether an infrastructure system, or component of a system,
can be classed as ‘critical’ the UK Government has developed a Criticality Scale (Table
2.1). This scale is used to categorise infrastructure according to the impact of its loss,
on a national scale, accounting for: economic impact, impact on life and impact on
essential services. To be classed as ‘critical’ the system must fall into CAT 3 or above.
However, there does not appear to be a publically available document listing the
criticality of each component within the nine defined national infrastructure areas
(Figure 2.1). Therefore, it is still unclear as to the exact systems the UK Government

defines as ‘critical infrastructure’.
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Table 2.1: Criticality Scale for national UK infrastructure (Cabinet Office 2010a).

Criticality Scale

Description

CATS5

This is infrastructure the loss of which would have a catastrophic impact
on the UK. These assets will be of unique national importance whose
loss would have national long-term effects and may impact across a
number of sections. Relatively few are expected to meet the Cat 5

criteria.

CAT 4

Infrastructure of the highest importance to the sectors should fall within
this category. The impact of loss of these assets on essential services
would be severe and many impact provision of essential services across

the UK or to millions of citizens.

CAT 3

Infrastructure of substantial importance to the sectors and the delivery
of essential services, the loss of which could affect a large geographic

region or many hundreds of thousands of people.

CAT 2

Infrastructure whose loss would have a significant impact on the
delivery of essential services leading to loss, or disruption, of service to

tens of thousands of people or affecting whole counties or equivalents.

CAT1

Infrastructure whose loss could cause moderate disruption to service
delivery, most likely on a localised basis and affecting thousands of

citizens.

CATO

Infrastructure the impact of the loss of which would be minor (on

national scale).

This thesis acknowledges that there is no universally accepted definition of the term

‘infrastructure’ or classification of an ‘infrastructure system’. However, as this thesis is

produced in the UK the definition of the terms ‘infrastructure’ and ‘critical

infrastructure’ from the UK Government and the classification of the nine national

infrastructure sectors, and subsectors, are adopted.
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2.2: DEFINITIONS OF RESILIENCE

It has previously been discussed that the severity and lasting impact that the effects of
disasters have on our communities are often linked to the resilience of the
underpinning infrastructure systems. Therefore, to ensure that these systems are
resilient, and can protect our communities, the term ‘resilience’ and what makes a
system resilient must first be identified. In a similar manner to the term ‘infrastructure’
the term ‘resilience’ is also seemingly difficult to define and the definition often

depends upon the context in which it is being used. The Oxford English Dictionary

defines ‘resilience’ as:

‘The ability of a substance or object to spring back into shape’ or ‘the capacity

to recover quickly from difficulties.” (Oxford Dictionaries 2012)

Whilst, previous studies in ecology, systems and information engineering and risk

management have defined ‘resilience’ as:

Ecology — ‘Measures of the persistence of systems and of their abilities to
absorb change and disturbance and still maintain the same relationships

between populations or state variables.’ (Holling 1973)

Systems and information engineering — ‘The ability of the system to withstand a
major disruption within acceptable degradation parameters and to recover

within an acceptable time and composite costs and risks.” (Haimes 2009)

Risk management — ‘The uncertainty about and severity of consequences of the

activity given the occurrence of any types of events.” (Aven 2011)

These definitions all differ, however, in a similar manner to the term ‘infrastructure’
there is a common theme connecting all definitions. With regards to infrastructure
systems, the Australian Government does not have a universally used definition of

‘resilience’ (Rogers 2011) and the US Government has only short definition of the term:

‘The ability to resist, absorb, recover from or successfully adapt to adversity or a

change in conditions.” (Homeland Security Advisory Council 2011)

The UK Government has the most detailed definition of the term which was formed as

part of its plans to increase the resilience of national infrastructure systems (shown in
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Figure 2.1). These plans are a direct result of the disruption caused by the summer
2007 floods, which caused 13 deaths, flooded 44,660 homes and cost the UK economy
over £4 billion (BBC 2008; Environment Agency 2010a). After this flood event a
detailed report was commissioned, the Pitt Review (2008), which called for ‘a more
systematic approach to building resilience in critical infrastructure’ (Cabinet Office

2011a) and highlighted the need for:

e Improved understanding of the level of vulnerability to risk to which
infrastructure and hence wider society is exposed;

e More consistent emergency planning for failures;

e Improved sharing of information at a local level for emergency response

planning.
In the Pitt Review the term ‘resilience’ was defined as:

‘The ability of a system or organisation to withstand and recover from

adversity.” (Cabinet Office 2008c)

In response to the recommendations in the Pitt Review, the UK Government published
the consultation document ‘Strategic Framework and Policy Statement’ in 2010
(Cabinet Office 2010a) which set out the process and timescale for a Critical
Infrastructure Resilience Programme. This report adopted the definition of the term
‘resilience’ from the Pitt Review and emphasised that in the Government’s view
resilience encompasses activity to prevent, protect and prepare for natural hazards.
Responses to this consultation document were obtained from all nine areas of the
national infrastructure (Figure 2.1) and all areas highlighted the need for a clearer
definition of the term ‘resilience’ (Cabinet Office 2010b). From these responses the
Government produced a further document for consultation defining ‘resilience’ in
greater detail (Cabinet Office 2011a), to which responses were again gathered and a
final report produced: ‘Keeping the Country Running’ (Cabinet Office 2011b). In this
report the UK Government identifies four components needed to build resilience into

infrastructure (shown in Figure 2.2 and defined in Table 2.2).
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INFRASTRUCTURE

Figure 2.2: The four components of infrastructure resilience, according to Cabinet Office (2011b).

Table 2.2: A summary of the definitions of the four components of resilience, as given by Cabinet Office

(2011b).

The Resistance element of resilience is
focused on providing protection. The
objective is to prevent damage or
disruption by providing the strength or
protection to resist the hazard or its

primary impact.

The Reliability component is concerned
with ensuring that the infrastructure
components are inherently designed to
operate under a range of conditions and
hence mitigate damage or loss from an

event.

Redundancy

The Redundancy element is concerned
with the design and capacity of the
network or system. The availability of
backup installations or spare capacity will
enable operations to be switched or
diverted to alternative parts of the
network in the event of disruptions to

ensure continuity of services.

The Response and Recovery element aims
to enable a fast and effective response to
and recovery from disruptive events. The
effectiveness of this element s
determined by the thoroughness of
efforts to plan, prepare and exercise in

advance of events.
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From these definitions it can be deduced, that in the view of the UK Government, for
an infrastructure system to be resilient it must have increased strength to resist the
primary impact of the hazard (resistance), to have some ability to maintain function in
a reduced capacity (reliability), have increased or backup capacity (redundancy) and be
quickly repaired back to normal operation (response and recovery). It can also be
stated that the lack of one of these four elements could result in the decrease of the
resilience of the system as a whole. For example, if the components of a system
lacked the resistance (strength) to resist the primary impact of the hazard and even
though there was an effective management plan in place (response and recovery)
there would be an increased recovery time, due to the increased initial damage to
system components. Likewise, if a system lacked redundancy (capacity) the flow of
service to communities could be restricted, or even interrupted, if system components

were slightly damaged and flow along them could not be redistributed.

The definition of ‘resilience’ may not have received much attention from individual
Governments, but it has been debated by many academic researchers. The most
notable are the studies by Bruneau et al. (2003) and O'Rourke (2007) who base their

definition upon that of Comfort (1999):

‘The capacity to adapt existing resources and skills to new situations and

operating conditions.” (Comfort 1999)
Bruneau et al. (2003) state that resilience can be understood:

‘As the ability of the system to reduce the chance of shock, to absorb a shock if
it occurs (abrupt reduction of performance) and to recover quickly after a shock

(re-establish normal performance).” (Bruneau et al. 2003)

Unlike the UK Government, these studies also express their idea of resilience
graphically (Figure 2.3), capturing the initial damage to the system (the loss of quality
of the infrastructure of a community from 100% to 50% at to) and the time taken to
restore the infrastructure (from to to t1). It can also be seen from this graphical view
that the resilience of a system is directly affected by the initial damage to the system
and also the time taken to restore functionality to the system. However, less apparent,

in the figure, is the impact of redundancy to the resilience of the system; although, it
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could be deduced that this is implied and accounted for in the measure of the quality

of infrastructure (y-axis).

Quality

of 100
Infrastructure
(percent)
504

Figure 2.3: A conceptual definition of the resilience of an infrastructure system (Bruneau et al. 2003).

These studies also quantify the idea of resilience by using formulae to measure the size
of the expected degradation in quality over time (from initial impact, at to, to full
recovery, at ti1) as shown by Equation 2.1. Using this equation the resilience of

different infrastructure systems can be quantified and compared.

ty
R = J [100 — Q(t)] dt 2.1
t

0

In a similar manner to the UK Government, Bruneau et al. (2003) also defined four
elements of resilience, which were later refined by O'Rourke (2007) and are shown in
Table 2.3. Although these definitions seem similar to those of the UK Government
there are subtle differences. Both parties agree that the infrastructure system must
include redundancy and that the system must also have sufficient strength to
withstand the impacts of hazard, but each give this component a different name
(resistance / robustness). The UK Government’s element of response and recovery
splits the idea behind O’Rourke’s rapidity into two distinct areas, where recovery is
concerned with pre-event planning and response the time taken to restore service
after the event. The idea of pre-planning is not explicitly stated in the elements used
by O’'Rourke, although it is implied in the idea of rapidity (as the speed with which
disruption can be overcome can only be improved through better planning). Also, the
idea of early response by the emergency services is not explicitly stated by the UK
Government and forms part of the idea of resourcefulness by O’'Rourke. The two
parties also differ in the concept of reliability, which encompasses the idea that

infrastructure components should be designed to operate under a range of conditions
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and is specifically stated by the UK Government and is again only implied by O’Rourke

in the resourcefulness element.

Table 2.3: The four dimensions of resilience, according to O'Rourke (2007).

Robustness Redundancy
The inherent strength or resistance in a | System properties that allow for alternate
system to withstand external demands | options, choice and substitutions under
without  degradation or loss  of | stress.

functionality.

Resourcefulness Rapidity
The capacity to mobilise needed resources | The speed with which disruption can be
and services in emergencies. overcome and safety, series and financial

stability restored.

Many studies have used these four elements of resilience (Table 2.3) and the
guantifying equation (Equation 2.1) of Bruneau et al. (2003) and O'Rourke (2007) to
assess and quantify the resilience of systems. These studies include: comparing
seismic retrofit strategies in water distribution systems (Chang and Shinozuka 2004),
seismic resilience assessment for acute care facilities (Bruneau and Reinhorn 2007) and
the assessment of the resilience of networked infrastructure (Reed et al. 2009). One
study, by Ouyang et al. (2012), expanded upon the graphical representation of

resilience (Figure 2.3) to visually show three distinct stages of resilience (Figure 2.4).
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Figure 2.4: The typical performance response curve of an infrastructure system following the
occurrence of a hazard, according to Ouyang et al. (2012).

Unlike the figure developed by Bruneau et al. (2003) and O'Rourke (2007), this figure
incorporates an assessment of the damage to infrastructure before recovery can take
place. This inclusion is logical as it will take time to assess the damage to the system
before a plan for recovery can implemented. However, it is unclear whether the figure
used by Bruneau et al. (2003) and O'Rourke (2007) accounts for temporary
infrastructure measures, as their figure described the quality of infrastructure. For
example, if the power supply to a community is disrupted the emergency plans could
include the provision of generators to provide temporary power, subsequently causing
the quality of the infrastructure to increase (as there is now provision of some power,
although it may be restricted). In their study Ouyang et al. (2012) also state that many
infrastructure systems are constantly evolving and that the resilience of the system will
change depending on the time interval between 0 and to (in Figure 2.4). Due to the
recent publication of this study, there have currently been no other published studies
which have adopted the model of Ouyang et al. (2012) and used it to assess the
resilience of infrastructure systems, other than the authors themselves (Ouyang and
Duenas-Osorio 2012). Therefore, it is unclear whether this method is more accurate,
or has been adopted by other researchers, in place of the model of Bruneau et al.

(2003).

Whilst many studies have used the models of Bruneau et al. (2003) and O'Rourke
(2007) to quantify the resilience of infrastructure systems, to the authors’ knowledge

there does not currently exist a study which has used this method to inform decisions
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on how to increase the resilience of an infrastructure system. These methods are
useful at giving an indication of where the vulnerabilities may lie within the
management of an infrastructure system (e.g. is the speed of recovery hampering the
resilience of the system?) and are also useful to provide a quantification of resilience
that can be used to compare different infrastructure systems. However, it is unclear
whether this information could be used to provide information to minimise the impact
to the quality of infrastructure (Figure 2.3) or the drop in performance level (Figure

2.4).

To conclude, many definitions of the term ‘resilience’ have been presented and
debated; in a similar manner to the term ‘infrastructure’, the definition of the term
‘resilience’ used in this thesis will be the same as that stated by the UK Government. It
has also been established that to be ‘resilient’” an infrastructure system must have
sufficient strength to resist the initial impact of the hazard (resistance) and have
additional capacity to reroute flow if necessary (redundancy). There is some debate
regarding the other elements of resilience; however, it can be concluded that an
effective management plan is needed to ensure a speedy recovery (rapidity / response)
and that this plan must include details regarding the mobilisation of resources
(resourcefulness). Additionally, it can be argued that to be resilient an infrastructure
system must be capable of operating under a range of conditions (adaptable / reliable).
It has also been established that the failure of one of these elements could prove to be
detrimental to the long term functioning of the system (making for a longer recovery

time).

2.3: IDENTIFICATION OF MAIN THREATS TO INFRASTRUCTURE

In 2008 the UK Government published the first National Risk Register (NRR) (Cabinet
Office 2008a), fulfilling the commitment made in the National Security Strategy
(Cabinet Office 2008b). This document is the public version of a classified assessment
of national risks documented in the National Risk Assessment (NRA). The NRR proved
to be the first step in providing advice on how people and businesses can prepare for
civil emergencies. This document was updated in 2012, and again in 2013, to include

the Government’s current assessment of the likelihood and potential impacts of a
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range of different civil emergency risks that may directly affect the UK (Cabinet Office
2012a; Cabinet Office 2013). The NRR takes its definition of the term ‘civil emergency’

from the Civil Contingencies Act 2004, which describes a civil emergency as:

e ‘an event or situation which threatens serious damage to human welfare in a
place in the United Kingdom,

e an event or situation which threatens serious damage to the environment of a
place in the United Kingdom,

e war, or terrorism, which threatens serious damage to the security of the United

Kingdom’ (Great Britian 2004).

This definition was used to identify a list of possible risks threatening the UK, though
consultation with experts from government departments and wider fields. For each of
these identified risks a reasonable worst case is chosen, which represents a realistic
expectation of the risk when the highly implausible scenarios are excluded. A selection
of risks and their ‘reasonable worst case’ scenarios are given in Table 2.4. The severity
of the identified risk is dependent upon the likelihood of it happening over the next 5
years and the consequences / impacts that people will feel if it does happen.
Therefore, the highest classified risks are those with a high probability of occurring and
with a high impact if they do happen. In the NRA there is a list of 80 types of scenario
that meet the definition of the term ‘civil emergency’ and a further 40 scenarios that
have been placed on a reserve list, as they may occur in the long term future. It is
worth noting that the NRA and NRR only consider risks that are likely to affect the UK
directly (i.e. events occurring overseas are not included, unless they will directly affect

the UK).

The NRA and NRR use two scales to quantify the likelihood of a civil emergency,
depending on the risk in question. For the majority of naturally and accidentally
occurring hazards, historical analysis and numerical modelling are used to form
estimates of likelihood. These estimates are then combined with expert judgement to
place the hazard the scale shown in Figure 2.5(b). The likelihood of terrorist, or other
malicious attacks, is assessed based upon the willingness of individuals or groups to
carry out attacks; the scale of these risks is shown in Figure 2.5(a). The impact of a civil

emergency is assessed based on the number of fatalities, illness or injury caused levels
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of social disruption, economic harm and psychological impact resulting from the
emergency, which are all given a score from 0 to 5 (5 being high impact) and the
overall relative impact of the emergency is given as the mean of these five scores.
Figure 2.5 shows the relative likelihood and impact of 24 civil emergencies as given in
the NRR (Cabinet Office 2013). From these matrices (Figure 2.5) the UK Government
has identified the mains risks to be: pandemic influenza, coastal flooding, catastrophic
terrorist attacks and severe effusive (gas-rich) volcanic eruptions abroad. These
matrices are also summarised graphically in the report ‘Keeping the Country Running’

(Figure 2.6).
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Figure 2.5: Civil emergencies as identified in the National Risk Register (2013), showing (a) risks of
terrorist and other malicious attacks and (b) risks of natural hazards and major accidents. It is worth
noting that the two scales for relative likelihood shown in (a) and (b) are not directly comparable with
each other.
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Figure 2.6: An illustration of the high consequence risk facing the UK (Cabinet Office 2011b).

From this graphical interpretation (shown in Figure 2.6), it is interesting to note that
both inland flooding and attacks on transport systems have the same relative impacts,
but that attacks on transport has a higher relative likelihood of occurrence. The
assessment of inland flooding is based on the events of summer 2007 (in which 48,000
households and 7,300 businesses were flooded) and the November 2009 floods in
Cumbria (notably causing the collapse of six bridges and isolating communities). The
associated effects of these floods, to primary transport routes, electricity supplies and
telecommunications, amongst others, has also been taken into account in this
assessment. However, the assessment does not appear to consider the more recent,
and devastating, events of the flooding in 2012, lasting in some places from April to
June; although, the NRR does acknowledge that ‘the frequency of flooding is increasing’
(Cabinet Office 2013). Whereas, the NRR highlights that the assessment of attacks on
transport systems is influenced by the attacks to the London transport system on 7t
July 2005 and the 1988 Lockerbie bombing. These events occur less frequently than
the devastating inland flooding and should therefore mean that this risk has a lower
probability of occurring. However, the relative likelihood of these attacks seems to be
skewed by events in other countries, including: the attacks to Moscow’s underground
system in 2004 and the attacks on the World Trade Centres and the Pentagon in 2001.

In contrast to the assessment of the relative likelihood of inland flooding, which can be
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quantified using return periods, the attacks on transportation systems are more
difficult to define and rely on an assessment of probable human behaviour by a group
of experts. Therefore, the question could be raised as to how accurate the assessment
of risks presented in Figure 2.6 is. Although attacks on transport can have devastating
and in many cases fatal consequences, studying the reports of flooding in the past few
years reveals that these events occur more frequently than attacks on transport and
should therefore have a higher relative likelihood. This potential discrepancy

highlights the difficulties in ranking, and prioritising, the risks faced by the UK.

Focusing on natural hazards, the report ‘Keeping the Country Running’ details the
potential hazards to the UK and outlines their probable effects to national
infrastructure, Table 2.4 gives a typical summary for a selection of these hazards. The
‘reasonable worst case’ scenario and other potential effects of the natural hazard are
also listed in this document. It is also worth noting that many of these hazards have
the potential to affect many systems and that the failure of one system may impact
upon others (interdependency). The interdependency of these systems is
acknowledged, however, the analysis of this relies on the formation of interdependent

networks, which is outside the scope of this thesis.
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Table 2.4: A selection of reasonable worst case scenarios for natural hazards in the UK, as outlined in
the report ‘Keeping the Country Running Natural Hazards and Infrastructure’ (Cabinet Office 2011b).

Reasonable Worst Case

Other Related

Potential Impacts on

Scenario
Scenario Effects Infrastructure
Inland A single massive inland event | e Storms and e Loss of primary transport
Flooding or multiple concurrent gales routes
regional events following a | e Snow e Lack of staff availability
sustained period of heavy | e Land Instability | e Impaired site access
rainfall extending over two (including e Loss of power supplies
weeks (perhaps combined offshore and e Loss or contamination of
with snow melt or intense submarine) water supplies
summer rainfall leading to | o Heavy rainfall o Closure of local businesses
widespread surface water increased demand for
flooding). The event would emergency power and
include major fluvial flooding water supplies
affecting a large, single urban e Increased demand for
area. This is broadly regarded health and emergency
as a 0.5% annual probability services
flood event.
Windstorm: Storm force winds affecting [ e Flooding e Loss of power

Storm / Gales

Volcanic Ash

most of a region for at least 6
hours. Mean speeds in
excess of 70mph with gusts in
excess of 85mph. Short term
disruption to infrastructure
including power, transport
networks, homes and
businesses.

Volcanic ash incursions for up
to 25 days. The UK mainland
and potentially other parts of
Europe could be affected for
up to 10 of these days. A
single period of closure within
the 3 month eruptive episode
may last up to 12 consecutive
days, depending on

meteorological conditions.

e Land instability
e Heavy rainfall

e Wildfire

None

e Loss telecoms
e Blocked road and train

routes and flight disruption

Sporadic and temporary
closures of significant parts of

UK airspace
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A similar version of the graphical analysis produced by the UK Government (Figure 2.6)
is used by other countries to prioritise risk; for example, the New Zealand Government
uses this approach to assess specific natural hazard risks to infrastructure systems
(Figure 2.7). However, their analysis is more detailed, and sophisticated, using the size
of the ‘bubbles’ to reflect the range of potential consequences a hazard may have (for
example, the consequence of a terrorist attack ranges from minor to major) and also
to differentiate between the relative likelihoods of hazards located in different
geographic areas. Using this approach they make the distinction that as each natural
hazard has its own distinctive risk, regulation to mitigate these risks should not group

all hazards together, but should consider each risk individually.
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Figure 2.7: National risks to infrastructure in New Zealand (The Institution of Professional Engineers
New Zealand 2012).

With regard to the specific threats to UK infrastructure the NRR is used, in combination
with the document ‘Keeping the Country Running’ to form resilience plans for each of
the nine national infrastructure sectors (Figure 2.1). Publically available versions of
these plans have been published annually since 2010 in the ‘Sector Resilience Plans’

(Cabinet Office 2010c; Cabinet Office 2011c; Cabinet Office 2012b). The Plans include
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the assessment of existing resilience within infrastructure systems and plans to build
resilience and are continually updated to account for the changing risks facing
infrastructure. The majority of these plans seem to focus on the assessment and
evaluation of current infrastructure to cope with the effects of the potential hazards
outlined in the NRR. The publically available version of these plans does not include
details regarding strategies to increase the resilience of current infrastructure systems.
However, these Plans do not include information regarding the specific impact that
these hazards pose to infrastructure systems (e.g. which individual infrastructure
components are most at risk). This is addressed in the following sub-section, which
focuses on the main threats that natural hazards pose to infrastructure systems within
UK and uses previous hazards to identify the potential impacts of future threats to

infrastructure.

2.3.1: SUMMARY OF THE MAIN THREATS TO INFRASTRUCTURE SYSTEMS AND THEIR POTENTIAL

IMPACTS

The majority of the natural hazards threatening UK infrastructure today can be broadly
placed into one of two categories, those caused by weather related impacts and those
resulting from geotechnical conditions. As such, this sub-section has been split into
three further sub-sections, one for each of these main areas of risk and one further
section other detailing all other risks. It is worth noting that some of these risks can be
placed into two categories, for example coastal erosion is caused by weather related
impacts but the severity of these impacts is linked to the rock/soil structure
(geotechnical). These risks have been placed into the category which is deemed to
have the most influence over the likelihood and impact of the risk. It is also worth
considering that many of the natural hazard risks outlined in this section can cause
other natural hazard risks. For example, flooding can occur due to a period of heavy
rainfall, but can also be caused by severe storms and gales and the melting of an
extensive snowfall which are both natural risks themselves, and pose their own threat

to UK national infrastructure (Cabinet Office 2011b).
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2.3.1.1: WEATHER RELATED RISKS

Flooding has been identified as the greatest risk to the UK, both currently and in future
climate change exacerbated scenarios (Institution of Civil Engineers 2009). The effects
that this hazard can have to our communities are illustrated in many past events,
including the flooding across England in summer 2007. This event was caused by a
period of extreme rainfall (the wettest since rainfall records began in 1766) and
resulted in the flooding of over 55,000 homes and businesses (Cabinet Office 2008c;
Environment Agency 2007). Flooding can also have devastating effects to our
infrastructure systems; for example, the summer 2007 event caused damage to energy
infrastructure systems through the closure of electricity substations which were
affected by floodwaters (including the closure of the Castle Meads substation which
left 42,000 people without power for up to 24 hours (Cabinet Office 2008c)). Water
infrastructure was also badly affected, with the closure of water treatment works due
to flooding (including the closure of the Mythe water treatment works which caused
350,000 people to be without access to mains water supply for 17 days (OFWAT 2007)).
This event also directly impacted transport infrastructure, forcing the closure of roads
and railways (due to flooding). Other recent notable flood events in the UK include the
flooding in Cumbria in November 2009 (which notably ‘cut in half (Met Office 2012)
communities through severe damage to bridges and also caused disruption to energy
and water infrastructure (The Guardian 2010)) and the summer 2012 floods (which
included a flash flood event in Newcastle, where a month's rainfall fell in 2 hours,
causing major disruption to transport infrastructure). In a recent report, the
Environment Agency highlighted that there were ‘significant risks to important
national infrastructure’ (Environment Agency 2009) as a result of flooding; with over 55%
of water and sewage pumping station/treatment works, 20% of railways, 10% of major
roads, 14% of electricity and 28% of gas infrastructure located in areas at risk from

flooding (Figure 2.8).
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Figure 2.8: The proportion of national infrastructure assets located in flood risk areas (Environment
Agency 2009).

Windstorms and gales are the 'most common cause of damage and disruption in the
UK' (Met Office 2013) and they have the potential to affect widespread areas. The
average cost of damage to the UK each year is estimated to be at least £300 million
(Met Office 2013). One of the most notable past windstorm events, to affect the UK,
occurred on 16 October 1987. This storm affected southern England and was poorly
forecast with unusually high wind speeds and estimated losses of around £1.4 billion
(Risk Management Solutions 2007). The storm brought down around 15 million trees,
which caused damage to power lines and disrupted power supply and telephone
communications to Gatwick airport as well as thousands of homes (Risk Management
Solutions 2007). Transport infrastructure was also badly affected, as debris closing
many roads and railways, with Kent, Surrey and Sussex the worst affected counties.
Windstorms have the potential to affect a wide range of infrastructure systems, with
perhaps the energy sector the most vulnerable to damage caused by falling trees
severing power cables. The majority of distribution faults to the UK power grid,
resulting from weather-related effects, occur due to windstorms and gales (McColl et

al 2013).

Severe winter weather (consisting of low temperatures, heavy snowfall and ice storms)
also has the potential to affect infrastructure systems, with heavy snowfall causing the
most disruption to UK infrastructure in recent years. For example, the winter of 2009-
10 was ‘the most severe in the UK for over 30 years’ (Met Office 2013) with a mean UK

temperature of 1.5°C for the whole winter. Significant snowfalls were recorded from
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mid-December until the end of February and were the most widespread of a winter for
30 years. This snowfall caused ‘extensive disruption’ to the UK’s transport
infrastructure (Transport Committee 2011), with Heathrow airport closed between
18™ and 20" December after 7cm of snow fell within one hour (Heathrow Winter
Resilience Enquiry 2011). Heavy snowfall is most likely to directly affect energy
infrastructure (through damage to power lines), communications infrastructure (due
to damage to telephone masts) and transport infrastructure (due to closed roads and
rail links and disruption to airport operations). Ice storms also have the potential to
disrupt energy infrastructure, with power lines and transmission towers particularly
susceptible to damage (Figure 2.9). During these storms ice can accumulate on power
lines, initially causing them to loose efficiency (due to sagging, Figure 2.9(a)) and can
eventually snap the power cables leading to a total loss of power. These storms can
also cause total failure of transmission towers (Figure 2.9(b)), which can result in a
lengthy repair time and a high cost of repair. A notable example of this type of failure
is the January 2008 Ice Storm which damaged 1196km of transmission lines and 4017
transmission towers in China, causing transmission systems in some areas to become

‘completely dysfunctional’ (Yang et al. 2013).

Figure 2.9: Damage to (a) power lines (Hollingshead 2007) and (b) transmission towers due to ice
storms (Canadian Energy Issues).

Heatwaves are another form of extreme weather event that has the potential to affect
infrastructure systems within the UK. This type of risk can put a strain on our
infrastructure systems and cause a disruption to service prevision, with energy
infrastructure particularly susceptible to disruption. In the event of a heatwave it is
likely that customers will operate an increased number of air conditioners, which can
dramatically increase the demand for power. This has the potential to lead to demand

outstripping supply resulting in power blackouts. This problem can also be
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exacerbated by the drop in efficiency from some power grid components; for example,
extreme heat can cause power lines to sag, resulting in a drop in their performance,
and can also cause transformers to become less efficient. Heatwaves also have the
potential to directly affect transport infrastructure, through the deterioration of road
and runway services (Cabinet Office 2013) which can lead to lengthy transport delays.
Water infrastructure can also be directly affected by this risk, as heatwaves can occur
during periods of drought where there is often a reduction in the water supply
available. Coupled with the increase in customer water usage, due to the high

temperatures, this can put a strain on the available resources.

Droughts can also put a strain on infrastructure systems, with the water sector the
most affected. The most recent drought in the UK occurred in 2010-12, where some
parts of the south-east and eastern England recorded the lowest 18 month rainfall for
at least 100 years. W.ithin this severe dry spell water companies ran water saving
campaigns and managed to restrict the imposed water saving measures to domestic
customers only (i.e. there was no impact to industry or agriculture) (Cabinet Office

2013).

2.3.1.2: GROUND CONDITION RISKS

Coastal erosion is defined as ‘the removal of material from the coast by wave action,
tidal currents and/or the activities of man, typically causing a landward retreat of the
coastline’ (British Geological Survey 2012a). In England and Wales, it has been
estimated that of the 6,251km coastline, 3,327km (53%) are cliffs subject to instability
and erosion (Environment Agency 2010b). Figure 2.10 shows the distribution of these
erodible cliffs in England; from this figure it can be seen that there are only a few areas
of the English coastline that are not vulnerable to this type of risk. Whilst, coastal
erosion is a major issue for those living in these communities and can leave local
councils facing multi-million pound repair bills (for example the village of Hallsands
(Devon) collapsed into the sea during a storm in January 1917, destroying all but two
homes), the overall threat to our infrastructure systems remains small. However,
some major infrastructure components must be located close to the coast and

therefore have the potential to be affected by this threat. This mainly affects energy
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infrastructure, as nuclear power stations must be located close to an area of
guaranteed continuous water supply and gas terminals which import fuel from other
countries. There are some reports of coastal erosion threatening these components,
such as the Bacton Gas Terminal (Dickson et al. 2006)); however, this risk is known, can

be predicted to some degree and can be mitigated through the use of coastal defences.
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Figure 2.10: The distribution of erodible cliffs in England (Environment Agency 2010b).
Landslides mainly affect transportation infrastructure, with a significant proportion of
slope failures occurring on man-made railway embankments, potentially leading to

train delays and cancellations for extended periods of time. Road infrastructure can
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also be affected, for example, a landslide in Rothbury (Northumberland) in December
2012 forced the closure of a road which has still not reopened, due to continuing
ground movement in the area (Northumberland Gazette 2013). However, landslides
also have the potential to affect other infrastructure sectors, by causing damage to
electricity pylons (energy infrastructure) and uncovering, or damaging, buried pipelines
(energy and water infrastructure). All of these effects could lead to significant
disruption to the levels of service provided by these systems to our communities,

which have the potential to propagate to areas unaffected by the initial landslide.

2.3.1.3: OTHER Risks

In 2011 the UK recognised, for the first time, extreme space weather events as rare but
potentially high impact hazards (Royal Academy of Engineering 2013). Space weather
has the potential to directly, or indirectly, affect the majority of our infrastructure in
the UK (Figure 2.11). The majority of these effects are related to the operations of
satellites and the power grid; though due to the interdependency of infrastructure
systems the loss of the power grid could affect the supply of clean water,
communications and transport, for example (Lloyd’s 2010). Space weather can cause
the failure of power grids, due to geomagnetically induced currents which overloading
parts of the system (Wik et al. 2009). To date, space weather has not greatly affect the
UK, but has had a significant impact to the power grids in other nations; notably,
causing the entire province of Quebec (Canada) to suffer an electrical blackout

affecting 6 million people until power was restored 9 hours later (NASA 2009).
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Figure 2.11: The potential impacts of space weather (Royal Academy of Engineering 2013).

Volcanic eruptions also pose a threat to UK infrastructure, even though there are no
active volcanoes within the UK. This threat was highlighted in the 2010 eruption of the
Eyjafjallajokull volcano in Iceland which caused disruption to air transportation
infrastructure within the UK through the closure of European airspace (Brooker 2010).
This volcanic eruption was classified as an ‘explosive eruption’ and is one of two types

of eruption that have the potential to affect the UK (Cabinet Office 2013):

e effusive — these eruptions are not violent and include the outpouring of lava
from vents in the volcano and can emit large volumes of gases and aerosols
into the atmosphere for months or even years;

e explosive — are characterised by a violent, explosive eruption which usually

emits a large ash cloud.

These eruptions could affect the UK through the emission of volcanic ash and aerosols.
At high altitude the effects are generally limited to aircraft, potentially causing engine
failure and high concentrations could also pose health risks to air passengers.
However, if present at ground level the impacts could directly affect human health,
contaminate water supplies and affect electricity infrastructure (British Geological

Survey 2012b).
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Earthquakes also pose a small risk to UK infrastructure, as the UK is located in an area
low seismicity, where moderate earthquakes are rare, but can occur. The BGS
monitors the earthquake activity in the UK and has recorded 20 significant
earthquakes (Magnitude 4.0 or greater) between June 1970 and February 2008 (British
Geological Survey 2013a). This included the Magnitude 5.2 event on 27 February 2008
which was felt across large parts of the country, but caused only minimal damage to
structures. The BGS has assessed the risk of an earthquake in the UK for a 2,500 year
return period (Figure 2.12). From this data, it can be established that in the UK
earthquakes have the potential to cause some damage to structures and cause
disruption to services, but are unlikely to have a major impact to our infrastructure

systems.

PGA (g)
0008 - 0102
02 - .04
I 004 - 0108
[ o0 - .04
I 00s. 01
B oi-ai2
| [XEECET
| LRISCRTY
' I oe-0oe

Figure 2.12: Hazard map for a 2,500 year return period seismic event in the UK (British Geological
Survey 2013b).
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The ‘Boxing Day’ earthquake in 2004, which initiated a devastating tsunami, has led to
many governments assessing the likelihood, and potential impacts, of similar events
occurring in other parts of the world. This earthquake occurred off the west coast of
northern Sumatra (Indonesia) and measured Mw9.3, making it the second biggest
earthquake ever recorded. The resulting tsunami caused loss of life in 11 countries,
with an estimated total death toll of more than 230,000 (Synolakis 2005). This event
also had a devastating impact to infrastructure systems, breaking water and sewage
pipes, contaminating water and food sources. This damage led to disruption to the
water and electricity systems, which hampered rescue efforts in immediate aftermath
of the disaster and caused longer term problems with disease (World Health
Organisation 2005). Whilst events on this scale are rare there is historical and
geological evidence that tsunamis have affected the UK in the past (DEFRA 2005), and
as such there is a potential for this risk to pose a threat to our infrastructure systems in
the future. These events are likely to be triggered by earthquakes in other countries
and underwater landslides, with the possible impacts of these tsunamis varies from
very low (with a consequence of probability of less than 0.1%) to very high (with a
consequence of probability greater than 90%) (DEFRA 2005). Therefore, it can be
concluded that tsunamis pose a threat to UK infrastructure, although the potential
damage could be minimal (e.g. a temporary loss of service due to slight damage to
individual infrastructure components) or devastating (e.g. complete loss of

infrastructure within the impact area).

From all of the above natural hazards, whether weather related or caused by ground
conditions, etc., it can be seen that they have the potential to affect large geographic
areas of the UK. However, it is also important to note that these hazards tend to be
spatially coherent; for example, it is unlikely that several isolated areas, or dispersed
counties, of the UK will be affected by a windstorm event (e.g. the counties of Devon
and Cumbria), it is more likely that adjoining counties will be affected (e.g. Devon and

Cornwall).
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2.4: REVIEW OF CURRENT ANALYSIS OF INFRASTRUCTURE SYSTEMS

It has already been established that the UK Government has identified nine categories
of national infrastructure, into which each individual system can be placed (Figure 2.1)
(with the scope of this thesis limiting this to four categories: communications, water,
energy and transportation) and it has also been established that infrastructure systems
serve our communities by facilitating a flow of service from areas where it is stored or

generated (e.g. power stations) to areas of demand (e.g. communities).

This flow of service is governed by ‘rules’ which can differ between infrastructure
systems. For example, the flow of service around many communications networks is
governed by ‘logistical’ rules (including the postal system). However, many other
systems are governed by more complex ‘physically based’ rules and are traditionally
analysed using physically based models (sometimes referred to as deterministic,
comprehensive or process-based models). These models attempt to represent the
physical processes displayed by these real world systems (for example modelling the
flow of water around a water distribution system or the flow of electricity around a
power grid). In the case of a water system these models can contain representations

of surface runoff, channel flow and evapotranspiration.

A detailed explanation of these models is outside the scope of this thesis; the reader is
directed to Sallam and Malik (2011), Alexander and Sadiku (2009) and Pansini (2005)
for a detailed explanation of power grids, Osiadacz (1987) for gas pipeline networks
and Novak et al. (2010) for water distribution systems. However, a conceptual
overview of the main components in four ‘physically based’ systems is given in Table

2.5.
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Table 2.5: Showing the conceptual components of four different network models.

Thermodynamic  Eqn. to

Network Flow Driver Resistance Earth
Constraint Solve
Simple Compatibility of
External Spring Support
Spring Force Nodal F=kd
Forces Stiffness Reactions
Model Displacements
Water
Pressure Pipe
Distribution Fluid Reservoir Head Loss HL = kQ?
Head Friction
System
Potential
Power Grid  Electricity Impedance Generator Voltage Drop V=IR
Difference
Vehicle
Transport Vehicles Destination Origin Travel Time -
Density

These physically based models are useful at providing scenario based information; for
example, many studies have used hydraulic models to analyse the flow of
contaminants around a water distribution system. In one such study, Grayman (2006)
introduced a contaminate into the water distribution system, shown in Figure 2.13,
from the river source and analysed how this contaminate propagated through the
system over time. This physically based model can give detailed information regarding
the concentration of this contaminate at different points in the system for a range of

time periods (Figure 2.14 shows an example of this).
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Figure 2.13: A hydraulic network showing the concentration of a chemical 15 hours after it was injected
into the system at the river source (Grayman 2006).
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Figure 2.14: The temporal variation of the chemical used to contaminate the hydraulic network shown
in at node 265 (located in the centre of the system) (Grayman 2006).

With regard to resilience, these models can also be used to analyse the potential
reduction in water supply to customers due to a burst water main, for example.
However due to their complexity, physically based models can become too large to be
solved and can only provide information regarding the resilience of the system for
chosen scenarios, potentially leaving our communities vulnerable to unforeseen events.
These models are also lacking when used to identify critical components in the system.
For example, if an electrical distribution system consists of 1,000 transmission towers
and an assessment is needed to determine the impact of the removal of 10 of these

towers at random then the analysis is fairly straightforward. However, if the analysis
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asked which of these 10 transmission towers, if removed from the system, would
cause the most customers to lose power, the analysis becomes much more
complicated (the number of possible combinations/simulations to be analysed is
2.63e23). Therefore, to solve this problem and to provide confidence that the system
will be able to provide at least a baseline level of service to untested scenarios another

analysis approach is needed.

2.5: NETWORK GRAPH THEORY

Network graph theory has previously been used to model the complex interactions
between components in social systems (Amaral et al. 2000; Newman et al. 2002;
Arenas et al. 2003), neural networks (Sporns 2002; Stam and Reijneveld 2007;
Bullmore and Sporns 2009), biological networks (Rual et al. 2005) and in computer
science (Valverde and Solé 2003). During these studies many advances in this field
have been made, the most notable of which include the discovery of different network
classes and the identification of the hazard tolerance of these classes. This sub-
chapter aims to give an overview of these notable discoveries as well as their recent

application to model the complex interactions in infrastructure systems.

Network graph theory can find its roots in Euler’s solution of the Konigsberg bridge
problem, in 1735 (Newman 2003; Glendinning 2012). The problem asked whether it
was possible to tour the town, crossing each bridge only once (Figure 2.15(a)).
Previous mathematicians, using only trial and error methods, showed that this was
clearly very difficult; however, it was not until 1735 when it was proved to be
impossible by Euler. His solution imagined each of the four ‘islands’ as a point (or
vertex), connected using links (or edges) to model the bridges, thereby removing the
geographical distraction (Figure 2.15(b)). To cross each bridge only once, there must
be nodes with both an odd and even number of connected links present in the
network. However, in this example there are only nodes with an odd number of links,

making (and proving) the problem impossible to solve.
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Figure 2.15: (a) A map representing the Konigsberg Bridge Problem (Paoletti 2013) and (b) a graphical
representation of the problem, where the letters have been used in each image to indicate
corresponding ‘islands’.

Another notable problem solved by applying network graph theory is the four colour
problem (Thomas 1998). This problem dates back to 1852 and arose when Francis
Guthrie noticed that four colours were sufficient to colour the map of the counties of
England, whilst ensuring that adjacent regions (those that share a boundary and not
just a point) were different colours. Guthrie then wondered if any map can be
coloured using only four colours. There were many unsuccessful ‘proofs’ to the
problem and was not until graph theory was used to solve the problem, using the
states of the US (Figure 2.16(a)), that a successful proof was formed. This approach
represented the capital of each state (or an arbitrary point inside that state) and joined
the capitals of every pair of neighbouring states (Figure 2.16(b)). This makes it fairly
straightforward to assign each capital a colour or number (from 1 to 4) ensuring that

connected capitals do not share the same colour / number.

(b)

Figure 2.16: Showing (a) the Four Colour Theorem (Robertson et al. 2007) and (b) the network used to
construct the proof of the solution.
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The theory and application of network graph theory has ‘experienced a tremendous
growth in the last decade’ (Zanin and Lillo 2013) and is seemingly driven by a
realisation that certain parts of networks are important. Therefore, the primary
research focus has been on understanding why the connections between components
establish themselves resulting in complex systems with specific architectures (or

network classes).

2.5.1: Types oF NETWORK CLASSES AND NETWORK IMODELLING

The first network model developed was the random graph model (Erdos and Renyi
1960) and has since been followed by the small-world network (Watts and Strogatz
1998), the scale-free network (Barabasi and Albert 1999) and most recently the
exponential network (Liu and Tang 2005). Each of these network models has different
evolutionary rules for attaching links between pairs of nodes, resulting in networks
with different architectures (i.e. different arrangements of the links between nodes in
the network). The development of these different network models has been
fundamentally driven by the desire to form a better understanding of real world
networks (e.g. the Internet, social networks). It could be considered that the major
contribution of network theory, to the analysis of real world networks, is its ability to
describe generic properties of a network and in so doing give an indication of the
behaviour of seemingly different systems. Today, many real world networks can be

classified into one of these four main network classes.

Each class of network can be differentiated by its degree distribution (for example
Figure 2.17(b)). It is this distribution that allows for the distinction between different
classes of network and also defines the inherent hazard tolerance of the network.
Figure 2.17(a) shows part of a scale-free network, and indicates the degree of each
node, which is equal to the number of links attached to it (for example, if a node has 3
links attached to it, then it has a degree of 3). The degree distribution of the network,
P(k), gives the cumulative probability that a selected node has k or greater links. P(k) is
calculated by summing the number of nodes with k = 1, 2, ... links divided by the total
number of nodes in the network. The degree distribution for the scale-free network

(partly shown in Figure 2.17(a)) is shown in Figure 2.17(b).
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Figure 2.17: Showing (a) part of a larger 100 node scale-free network (generated using Network
Workbench (NWB Team 2006)) and (b) the degree distribution for the same network (which forms a
straight line on a log-log graph). The black dots in (a) represent the nodes and the black lines the
connections between the nodes shown. The dashed lines represent links to nodes that have not been
shown for clarity and the number beside each node indicates its degree (i.e. 2 indicates that a node has
two links attached to it). The degree distribution for this network has been obtained using the method
outlined in the text.

The first developed network model was the Erdos and Renyi random graph model
(Erdos and Renyi 1960), which is arguably the simplest graph possible (Albert and
Barabasi 2002). This class of network has been shown to be a poor representation of
most real world network architectures (Newman 2003); however, random graphs are
useful and are normally used as a baseline for comparison with more structured
networks (Lewis 2009). An example of this can be found in tests for network
robustness presented in Batagelj and Brandes (2005). Figure 2.18 shows a sample
random network and its associated degree distribution. It can be seen from this
distribution that all nodes in random networks tend to be attached to the same
number of links (i.e. a homogeneous network), which can be confirmed visually by

inspecting the network (Figure 2.18 (a)).

(a) (b)

;
o——

N\

K]

Figure 2.18: (a) A sample random network and (b) its degree distribution, where P(k) in this figure is not
cumulative (Barabasi and Oltvai 2004).
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To more accurately model real world systems and to acknowledge that real world
networks ‘are neither completely ordered nor completely random, but rather exhibit
important properties of both’ (Watts 2004) Watts and Strogatz modified the random
graph model by using the concept of ‘six degrees of freedom’ (Milgram 1967) forming
‘small-world’ networks (Watts and Strogatz 1998). The main characteristic of small-
world networks is that the majority of nodal pairs are not directly connected, but can
be reached via very few links. The degree distribution is very similar to that of a
random network (Figure 2.18(b)) (Barthelemy 2011). In recent years, the small-world
network has been considered to be more of a network characteristic rather than a
network class in its own right, and is characterised by a high clustering coefficient and
a short average path length (Latora and Marchiori 2002). Many networks have been
shown to belong to one of the other three network classes but possess these small-

world characteristics (da Rocha 2009).

Both the random graph model and the small-world network are characterised by a
Poisson degree distribution (Network Workbench 2009). However, Barabasi and
Albert discovered that real world networks (including, the Internet (Albert et al. 2000)
and the World-Wide-Web (Barabasi and Albert 1999; Barabasi et al. 2000)) tend to
form a power law degree distribution. Networks that follow this power law are more
commonly known as scale-free networks. These scale-free networks include a small
number of highly connected nodes (nodes with a high degree) and a large number of
poorly connected nodes (nodes with a small degree). This can be seen visually in the
sample network shown in Figure 2.19(a) and by the associated degree distribution in

Figure 2.19(b).
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(b)

Figure 2.19: (a) A sample scale-free network and (b) its degree distribution, where P(k) in this figure is
cumulative. It can be seen from the degree distribution in (b) that a scale-free network forms a straight
line on a log-log graph (Barabasi and Oltvai 2004).

Other real world networks, such as power grids, have been found to have an
exponential degree distribution (i.e. their degree distribution forms a straight line
when plotted on a log-linear scale) and so can be classed as exponential networks (Liu
and Tang 2005). The origins of exponential networks are unclear and no one individual
(or group) appears to be cited with their discovery; however, they have been used in
many studies of real world networks including those by, Albert et al. (2004), Amaral et
al. (2000) and Bompard et al. (2011). The degree distribution for a real world

exponential network (the North American Power Grid) is shown in Figure 2.20.
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Figure 2.20: Degree distribution for the North American Power Grid, a real world exponential network
(Deng et al. 2011). Note that for an exponential network this distribution forms a straight line when
plotted on a log-linear scale.

2.5.2: NETWORK GENERATION ALGORITHMS

Each of these different network classes has a different set of ‘rules’ that govern the
formation of links between pairs of nodes in the network. It is these ‘rules’ that

determine the overall structure of the network, which can be seen in the degree
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distribution. This section outlines the network generation algorithms used to form the

network classes introduced in the previous sub-section.

2.5.2.1: RANDOM NETWORKS

The network generation algorithm for random networks is possibly the simplest of all
the network models. The network starts with the total number of nodes and each pair
of nodes is considered in turn and a connection (link) is made between them based
upon the value of linking probability, L (the higher this value the more likely it is that a
link will be generated) (Erdos and Renyi 1960). If the linking probability is equal to 1,
then the network will be fully ‘saturated’ (i.e. all nodal pairs will be connected and the
network will include the maximum possible number of links) and if this value is equal
to 0 then no links will be formed between nodal pairs. It is possible to have isolated
nodes in the network (nodes that are not connected to any others in the network)
using this network generation algorithm; this usually occurs when the value of linking
probability is close to 0. Figure 2.21 shows five random networks (generated using
Network Workbench (NWB Team 2006)) which were all generated with a different
value of linking probability. From this figure it can be seen visually that the higher the
linking probability the higher the number of nodes in the network. Two isolated nodes,
resulting from a low value of linking probability, can also be seen in the network

generated with a linking probability equal to 0.1.

Figure 2.21: Five random networks, generated using Network Workbench (NWB Team 2006), with
different values of linking probability (L).
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2.5.2.2: SMALL-WORLD NETWORKS

In a similar manner to the random network model, the generation algorithm for small-
world networks starts with the total number of nodes in the network; although, these
nodes are connected (via links) to a given number of initial neighbours. It is the
number of initial neighbours which determines the total number of links in the
network (as no new links are added as the network is formed). For example, for a
network with 20 nodes and a number of initial neighbours as 2, there will be 40 links in
the network (as each node starts with two links to its initial neighbours). These initial
links are then ‘rewired’ using a rewiring probability, the higher the value of this
probability the higher the number of links that are rewired. Figure 2.22 shows the
effects of the rewiring probability, p. For p = 0 no links are rewired and the resulting
network is regular in structure and for p = 1 all links are rewired, resulting in a random

network.

Regular Small-world Random

p= 0 P p= 1
Increasing randomness

Figure 2.22: Showing the effects of the rewiring probability (p) in the small-world generation algorithm
(Watts and Strogatz 1998).

2.5.2.3: ScALE-FREE NETWORKS

The generation algorithm for the Barabasi and Albert (1999) scale-free network is
significantly different to that of the random and small-world networks and is based
upon the ideas of growth and preferential attachment (Boccaletti et al. 2006). These
networks are formed by starting with an initial number of isolated nodes, mo (usually a
small percentage of the total number of nodes in the network). New nodes are then
added to the network at each ‘timestep’ (i.e. ‘growing’ the network) until the total

number of nodes in the network is reached. These added nodes have between 1 and
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mo links attached to them and attach to the existing nodes in the network based upon
the idea of preferential attachment. The probability of attaching to each existing node
is calculated based upon its degree, where the nodes with a high degree are more
likely to ‘attract’ a link from the new node (i.e. the rich get richer). It is this
‘preferential attachment’ rule which results in a few high degree nodes and many
small degree nodes in the network. Figure 2.23 shows this idea of preferentially
attachment using part of a scale-free network, previously shown in Figure 2.17(a). In
this figure, the introduced node at the current ‘timestep’ is shown in red and it is

assumed that this node will only introduce one link to the network.

Figure 2.23: Demonstrating the idea of preferential attachment using the section of the scale-free
network shown in Figure 2.17(a). The black dots show the nodes that already form part of the network
and the red dot shows the new node that has been added at this ‘timetep’. This new node is likely to
preferentially attach to the node with the highest degree in the network (the node with a degree of 6).
This is shown by the presence of a new link (red dashed line). It is worth noting that this node is
assumed to only introduce one new link to the network.

One implication from this network generation algorithm is that nodes that are
introduced early in the process have more chance to attract links from introduced
nodes and therefore tend to be those that have a higher degree when the network is
fully formed (i.e. it has finished 'growing'). However, for many real world networks
shown to have a scale-free topology this is not the case. For example, in the case of
the World-Wide-Web many newly introduced nodes, such as Google, Facebook and
Twitter, have a very high degree. To accommodate this phenomenon, Barabasi
introduced the idea of fitness to the network generation algorithm (Barabasi 2013).
The fitness is used to alter the probability of attachment of a selection of nodes that

are introduced to the network (Cohen and Havlin 2010). Therefore, the probability /7;
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that the node introduced at the current ‘timestep’ connects one of its links to a node
which is already present in the network not only depends upon its degree, but also on
the fitness of the node, such that (Bianconi and Barabasi 2001a; Bianconi and Barabasi

2001b):

M = nik; 2.2
' Ximk

Where, k is the degree of a node, n is its fitness and the subscripts i and / refer to a

node already present in the network and all nodes in the network, respectively.

Incorporating this idea into the network model explains the presence of some highly
connected nodes that are introduced to the network at a later ‘timestep’. The growth
of nodes over time is now controlled by the fitness component and this provides the
competition in networks (the nodes with a higher value of fitness will tend to ‘win out’

and become very highly connected (Barabasi 2013)).

2.5.2.4: EXPONENTIAL NETWORKS

This network class is not as well documented as the other three classes and few
network generation algorithms exist for forming exponential networks, none of which
have been validated by forming proxies for real world networks. However, Liu and
Tang (2005) propose a model based upon the Barabasi-Albert scale-free network
(including the ideas of growth and preferential attachment). In their model, the
network starts with a small number of fully connected nodes (mg). At each ‘timestep’
a new node is introduced to the network with a number of links between 1 and mg
(which continues until all nodes have been added to the network). The idea of
preferential attachment is still used to connect to existing nodes to the network;
however, this is modified so that the probability of attachment is not based upon the
degree of the existing node but is instead based on the degree of the connected nodes
(to this node). Meaning that a node with a low degree can still ‘attract’ links from new

nodes if it is connected to existing high degree nodes.
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2.5.3: HAZARD TOLERANCE OF NETWORK ARCHITECTURES AND FAILURE MODES

The hazard tolerance of these network classes has been well documented in previous
tests of network resilience. It is the different arrangement of links (nodal connectivity)
in each network class that determines the hazard tolerance. There are two main
topological ‘attack strategies’ which are used in these resilience tests to determine the
order in which nodes (and their connecting links) are removed from the network:
random node failure and targeted attack. The random node failure attack strategy
removes nodes at random from the network, whilst the targeted attack strategy
removes nodes based on their degree (highest to lowest). It is worth noting that both
of these hazard strategies use binary damage models (i.e. nodes cannot operate at a
reduced capacity). The majority of studies quantify the hazard tolerance of a network
by quantifying the proportion of links removed for a given proportion of nodes

removed (Albert et al. 2000).

Previous studies have shown that the random network shows the same hazard
tolerance to both of these attack strategies. This is due to the homogeneous nature of
the network (i.e. all of the nodes have approximately the same degree); therefore each
node has approximately the same impact to the network when removed (Albert et al.
2000; Magnien et al. 2011). For this reason, random networks are often used as a
benchmark for resilience in tests of network robustness to determine if a more
structured network is resilient or vulnerable to the applied hazard (Lewis 2009). This
benchmark random network is generated with an equal number of nodes and links as
the more structured test network and is subjected to the same hazard. The results for
both networks are then compared by plotting the proportion of nodes and the
proportion of links removed. If the test network has a smaller proportion of removed
links for the same proportion of removed nodes the network is classed as resilient (to
the applied hazard) and if a higher percentage of links is removed the network is

classed as vulnerable (to the applied hazard).

In contrast to random networks, scale-free networks show a different hazard tolerance
to these two topological attack strategies, due to the different connectivity of nodes
(or arrangement of links) in the network. They have been shown to be resilient to
random hazard and vulnerable to targeted attack (Albert et al. 2000; Barabasi and

Bonabeau 2003). This is due to the inhomogeneous nature of scale-free networks,
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meaning that they consist of a few high degree nodes and many smaller degree nodes
(Figure 2.19). The random failure attack strategy has a high chance of removing one of
the many small degree nodes from the network; whereas the targeted attack strategy
will remove the higher degree nodes first, seeking to cause the maximum disruption to
the network. Figure 2.24 shows a scale-free network subjected to the random hazard
and targeted attack strategies (Barabasi and Bonabeau 2003). From this figure it can
be seen visually that the random node failure attack strategy removes fewer links than

the targeted attack strategy.
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Figure 2.24: Showing a scale-free network (representing the US air traffic network) subjected to the
random node failure and targeted attack strategies (Barabasi and Bonabeau 2003).

Exponential networks show similar resilience as the scale-free networks to these two
attack strategies (Rosas-Casals et al. 2006). As such, this network class is resilient to
random hazard (due to the large number of low degree nodes) and vulnerable to
targeted attack (as this attack will focus on the removal of the few highly connected

nodes).
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2.5.4: NETWORK MEASURES

The hazard tolerance of networks is usually determined by quantifying the proportion
of nodes and links removed by an attack strategy; however, other network measures
can also be used to quantify change in connectivity and/or performance or to identify

‘important’ nodes in networks.

2.5.4.1: CONNECTIVITY MEASURES

There are numerous graph theory measures that can be used to describe, and quantify,
the connectivity of a network as it becomes degraded and breaks into smaller clusters
(where a cluster is a group of nodes connected via links) when subjected to hazards.
The most commonly used connectivity measures are the maximum cluster size (MCS),

number of clusters (NC) and the number of isolated nodes (NIN).

The MCS of a network is defined as the total number of nodes in the largest cluster of
the network (Nojima 2006) and for a network that is not fragmented this value is equal
to the total number of nodes in the network. For a fragmented system this measure
gives an indication of how many nodes can still be reached via links within the largest

remaining component.

The NC can be used to quantify the number of clusters, which contain two or more
connected nodes, in a fragmented network (Nojima 2006). For a fully connected
network (i.e. one that is not fragmented) this value is equal to 1. For an infrastructure
system, this measure states how many clusters the network has broken into and can
be used to give an indication of the repair time, and resources, needed to fully connect
the fragmented system (for example, the time taken to connect a small NC is likely to

be shorter than the time taken to connect a large NC).

The NIN is used to quantify the number of isolated nodes (i.e. nodes that do not have
any connections to other nodes in the network), but does not include the number of
nodes that have been removed from the network by the attack strategy (Nojima 2006).
For a fragmented infrastructure system, this measure gives an indication how many
components have become entirely unconnected from the rest of the system and, if

demand components, will receive no supply of resource.
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A sample network has been created to show how these three measures changes when
two nodes are removed (Table 2.6). It can be seen that the MCS decreases as nodes
are removed from the network, indicating that the size of the largest component in the
network becomes smaller and that it is no longer possible to reach every node in the
network from any other node. Whilst, the NIN and NC both indicate that the network
has fragmented and give an indication of exactly how fragmented the network has
become (the larger these values the more ‘fragments’ the network has broken in and

therefore the more difficult it may be to reconnect the network).

Table 2.6: An example network showing how the number of links, maximum cluster size (MCS), number
of clusters (NC) and number of isolated nodes (NIN) changes when nodes are removed from the
network. This work has been modified from a similar example by Nojima (2006) and edited for clarity.

. ./.<.

> >

S SN

Number of nodes removed 0 1 2
Number of links 19 13 8
Maximum Cluster Size (MCS) 18 11 3
Number of Clusters (NC) 1 3 6
Number of Isolated Nodes

0 1 2

(NIN)

These measures are used in many tests of network resilience to quantify the
fragmentation of a network when it is subjected to an applied hazard (for example see:
Nojima (2006) and Albert et al. (2000)) and could be applied to infrastructure networks
to indicate how they fragment, if at all, when subjected to hazard. However, they
cannot be used to quantify the proportion of communities without service (e.g. these
measures cannot identify which clusters contain supply components), nor can they be

used to give an indication of the efficiency of the fragmented system.
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2.5.4.2: PERFORMANCE MEASURES
There are many graph theory measures that can be used to quantify different aspects
of network performance, of these measures there are two that are commonly used:

shortest average path length (APL) and diameter (D).

The shortest APL of a network captures the concept of efficiency in a network
(Boccaletti et al. 2006) and is defined as the average number of steps along the
shortest path between all pairs of nodes a network (Barthelemy 2011). The higher the
value of APL the more inefficient the network (as on average there are more links
between each pair of nodes). If the network is fragmented then this value is calculated
using the largest connected component (i.e. the largest cluster). The equation used to

calculate the APL is (Boccaletti et al. 2006):

1 2.3
s, 3,
N(N-1) i

i,jJeN,i#1

Where, L is the shortest APL of the network, N is the total number of nodes and dj; is

the shortest path between node i and nodejj.

D is the maximum shortest path length in the network (Newman 2003) and
‘characterises the ability of two nodes to communicate with each other (Albert et al.
2000). Similarly to the APL, if the network is fragmented, then this value is calculated

using the largest connected component (Nojima 2006).

In a similar manner to the connectivity measures, the change in APL and D has been
calculated for the same sample network (with the same two nodes removed) (Table
2.7). From this table, it can be seen that both the APL and D decrease as the network
is degraded, this is because the network has broken into clusters and therefore both of
these measures are no longer valid measures of efficiency (Nojima 2006). This
indicates the problem with using these measures, particularly without using them in
conjunction with connectivity measures (to establish whether the network has
fragmented). In a larger network is it likely that these values will initially increase,
indicating that the network is becoming increasingly inefficient, before dramatically

decreasing, indicating a ‘tipping point’.
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Table 2.7: One example network showing how the number of links, average path length (APL) and
diameter (D) changes when nodes are removed from the network.

Y

Number of nodes removed 0 1 2
Number of links 19 13 8
Average Path Length (APL) 2.95 2.42 1.20
Diameter (D) 6 4 2

In a similar manner to the connectivity measures, these measures have previously
been used in tests of network resilience (see Nojima (2006)). In terms of an
infrastructure system these measures could be used to give an insight into the
efficiency of the system (its ability to transfer service from areas of supply to areas of

demand) and how this efficiency may change when the network is subjected to hazard.

2.5.4.3: IMPORTANCE MEASURES

Many studies consider the highest degree node to be the most ‘important’ to the
network (Bagler 2008), that is the node that plays a large role in the complex
interactions and communication between other nodes in the network (Cadini et al.
2009). However, other studies have tried to develop more sophisticated measures of
establishing the importance of nodes, rather than just using degree. The most widely
used of these measures are centrality measures: betweenness and closeness centrality.
Unlike the previous connectivity and performance measures, in which the outputs
concern the whole network, these importance measures give an output for each node

(or a component if applied to an infrastructure system).

The betweenness centrality of a node (Equation 2.4) is the proportion of all shortest
average path lengths between pairs of other nodes that include this node (Freeman
1979; de Nooy et al. 2005) and is based on the concept that central nodes are included

on the shortest average path length of pairs of other nodes (de Nooy et al. 2005).
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1 1 (D) 2.4
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Where, nj is the number of shortest paths between j and k, and nj(i) is the number of

shortest paths between j and k that contain node i (Crucitti et al. 2006).

The closeness centrality (Equation 2.5) is defined as the mean shortest path between
that node and all other nodes reachable from it (nodes that tend to have a small
shortest path length between other nodes in the network have a higher value of
closeness) (Freeman 1979; de Nooy et al. 2005) and comprises the idea of speed of
communication between pairs of nodes in a network (de Nooy et al. 2005; Cadini et al.
2009).

cc = N-1 2.5
Y jeG j=i dij

Where, dj is the shortest path length between i and j (Crucitti et al. 2006).

These measures were developed for the analysis of social networks, to identify the
important figure in a group of people or organisation, for example, studies using these
measures include: Everett and Borgatti (1999) and Rothenberg et al. (1995). However,
they have recently been applied to infrastructure systems, to show that nodes with a
high degree do not necessarily have a high value of centrality (and are not necessarily

‘important’ to the network) and vice versa.

In one such study, Guida and Maria (2007) compared the degree of a node with its
betweenness centrality, for the Italian air traffic network and a random network, with
the same number of nodes and links (Figure 2.25). They found that in the air traffic
network (black squares) nodes with a high degree tended to have a high value of
betweenness centrality, but that there were several nodes that did not conform to this
arrangement. These nodes (airports) tended to have a value of betweenness centrality
lower than other nodes with the same value of degree. This is in contrast to the
random network (grey circles) where there is a clear correlation between these two
measures. Another study by Guimera et al. (2005) confirmed this variable relationship
between the betweenness centrality and degree of a node in an air traffic network,
using the worldwide air traffic network as an example Figure 2.26(a). In their study,

Guimera et al. (2005) used nodes to represent cities that included one, or more,
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airports and formed a connection between them if they were connected by at least
one direct flight. This is in contrast to Guida and Maria (2007) who used nodes to

represent individual airports and links to represent their connecting air routes.
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Figure 2.25: Plotting the normalised betweeness and degree of a node for the Italian air traffic network
(black squares) and a random network (grey circles) (Guida and Maria 2007).
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Figure 2.26: (a) Plotting the betweenness centrality of a node with its degree (circles) for the worldwide
air traffic network. This figure also shows the relationship for a random network, where 95% of the data
falls inside the grey region. Also showing the location of 25 cities that have the highest (b) degree and (c)
betweenness centrality (Guimera et al. 2005).
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In Figure 2.26(a) the blue region of the graph contains the 25 most central cities (those
with the highest value of betweenness centrality) and the yellow region contains the
25 most connected cities (i.e. those with the largest degree). The green and white
regions are formed by finding the intersection of the blue and yellow regions. Guimera
et al. (2005) found that, surprisingly, there are only a few cities with large
betweenness and degree (green region). This is a contrast with the random network
(grey region) which shows a distinct relationship between these two parameters
(similar to the results achieve by Guida and Maria (2007), Figure 2.25). Guimera et al.
(2005) also plotted the geographic location of the 25 most central and connected cities
(Figure 2.26(b, c)). These plots show that the most highly connected cities are located
around Europe and the USA, whereas there appears to be an even spread of central
cities, with a slight cluster around central Europe. This location of highly connected
cities within two small geographic areas could be due to the regulation of flights in
countries, passenger demand or due to political constraints, however, the authors of

the paper do not give any clear reasons for this distribution.

To demonstrate how a node can have a high betweenness centrality and a low degree
a sample network has been created (Figure 2.27). In this network, it can be seen that
the red node is on a large number of shortest paths between pairs of other nodes (and
is also critical in transferring flow between the input and output nodes) and has a small
degree (it is only connected to two other nodes). This high betweenness and low
degree is shown by the airport in Hawaii and is an example of how space can impact
the characteristics of the network, as this airport was used to refuel aircraft en route

from US to Asia/Australia before the advent of long range aircraft.

INPUT OUTPUT
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Figure 2.27: An example of how a node can have a high value of betweenness centrality and a low
degree. In this example, the red node will have a high betweenness centrality, as it is one the shortest
path of many other nodes in the network, and a low degree, as it only has two connecting nodes.
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Therefore, it can be concluded that in air traffic networks there are some nodes which
may act as a ‘transfer’ node for flights from one region to another. This appears to be
more common on a larger scale (i.e. between countries) rather than on a smaller scale
(i.e. in one country) and could be crucial when considering the hazard tolerance of
these networks (as the removal of these ‘transfer’ nodes could result in the network

breaking into clusters quickly).

This relationship (between node degree and betweenness centrality) has also been
considered in other types of infrastructure network, including electrical distribution
systems (Figure 2.28). These studies have also found that there does not appear to be
a direct relationship between the degree of a node and its betweenness centrality
value. Therefore, it can be concluded that in many real world networks, there are
nodes which do not have a high value of degree, and could be dismissed as
‘unimportant’ but may have a high value of centrality and could therefore be critical to

the functioning of the network.
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Figure 2.28: Plotting the degree of a node (k) with its betweenness (L) for the Italian electrical
distribution network (Crucitti et al. 2004b).

Centrality measures have also been used to rank the importance of components in an
infrastructure system (Cadini et al. 2009); again finding that nodes with a high degree
do not necessarily have a high betweenness centrality and vice versa. However, the
majority of previous research has either focused on the relationship between degree
and centrality or has ranked the critical components (using the measures) but has not
used this information to determine whether removing nodes based on their value of

degree or centrality has the most devastating effect to the network (in terms of a
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targeted attack). It is therefore unclear as to whether centrality measures are more
sophisticated and accurate measures of determining critical nodes in a real world

network.

To summarise, there are various measures in network theory that can be used to
either give an indication of how the properties of a network change when subjected to
hazard or to indicate which components are likely to be important to the functioning
of a network. However, these measures can be deficient; for example, the MCS, which
is the number of nodes in the largest cluster, gives an indication of how fragmented
the network has become by a hazard, but does not indicate how inefficient this
network has become. To achieve this, performance measures, such as the APL, must
be applied. However, this measure is deficient in that it can show an increase in the
efficiency of a network which has been ‘damaged’ by hazard. Therefore, to consider
the degradation of the network when subjected to hazard, both of these measures
must be used in combination. Whilst, other measures indicate the importance of a
node to the functioning of a network, their validity has not been tested by removing

these nodes to gauge their impact to the remaining network.

2.6: PREVIOUS APPLICATIONS OF GRAPH THEORY TO SOCIAL AND OTHER NETWORKS

Social networks were among the first real world networks to be analysed using
network graph theory and indeed many measures and network classes were
developed for the analysis of these networks. In these models nodes are used to
model a person, or group of people, and the links used to connect the people who are
acquaintances, work colleagues, friends, for example. This research began in the mid-
1930s but was limited by the technical tools available to analyse these networks. As
the sophistication of these technical tools increased so did the size and complexity of
the networks analysed (Carrington et al. 2005). The studies in this area tend to be
data-orientated and involve the investigation of a real world network to determine its
structure and the centrality or influence of the various connected parties (Newman et
al. 2002). The studies in this area have included the analysis of collaborations between
scientists (Newman et al. 2002), musicians (Costa et al. 2011) and actors (Amaral et al.

2000), to name but a few. These studies have many important implications for the

Page 70



CHAPTER 2: INFRASTRUCTURE NETWORKS, RESILIENCE AND GRAPH THEORY ANALYSIS

understanding of real world systems; for example in the analysis of actor networks it
was found that the ‘distribution of actors’ degrees is highly skewed’ (Newman et al.
2002), where a small number of actors have a disproportionately large numbers of ties.
It has been shown, through simulations and analysis, that this skewness may impact on
the way in which communities operate in terms of the way information flows around
the network and the robustness of the network when these highly connected actors

are removed.

Since the early application of network graph theory to social networks, many other
real world networks have been analysed using this method. These studies have
included the analysis of biomolecular systems in medicine (Lee et al. 2008), food webs
in ecological systems (Dunne et al. 2002) and the study of interactions in the brain in
neuroscience (Sporns 2002). In these studies, the network models are constructed,
formed of nodes and links, and are analysed to determine the characteristics of the
network. This normally includes an initial assessment of the network by defining its
network class (gaining an insight into the connectivity and hazard tolerance of the
network), before applying network metrics to identify the most important nodes in the
network or the efficiency of the system (either under normal operational conditions or
in the event of a hazard scenario). For example, in their study Lee et al. (2008) applied
network theory to systematically map links between diseases, finding that this
approach can help to uncover some critical disease comorbidities and can explain their
metabolic origin. They concluded that this approach offers an “increasingly potent tool
to explore and understand the interplay between cellular networks and human diseases”
(Lee et al. 2008). Sporns (2002) also successfully applied network theory to the
analysis of brain interactions, concluding that “network analysis may be the key to
understanding and harnessing the remarkable computational and informational power
of the brain”. In recent years, the analysis of real world networks has turned to
consider the potential applying network graph theory to characterise and analyse

infrastructure systems.
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2.7: APPLICATION OF GRAPH THEORY TO INFRASTRUCTURE NETWORKS

Network graph theory has previously been used to analyse a wide range of
infrastructure systems, including: highway networks (Jenelius et al. 2006; Boas et al.
2009), subway networks (Latora and Marchiori 2002), railways (Sen et al. 2003), gas
networks (Carvalho et al. 2009) and water distribution systems (Yazdani and Jeffrey
2012). However, the research in this area has tended to focus on the breadth of
systems that can be studied rather than the depth in which these systems can be
analysed. For example, the vast majority of studies only classify the topological
characteristics of these systems (e.g. identify the degree distribution of the system)
and do not assess their hazard tolerance. As a result of the breadth of research in this
area there are few studies which expand upon previously published work, with the

majority of studies preferring to study a 'new' system.

This sub-section will present and discuss previous research relating to the four national
infrastructure sectors included in the scope of this thesis (due to the breadth of
research in this area it is not possible to give an overview of all types of analysed

infrastructure systems).

2.7.1: COMMUNICATION NETWORKS

The World-Wide Web and the Internet were two of the first studied real world
infrastructure systems using network graph theory. The World-Wide Web was first
studied by Albert et al. (1999) who reported the network to exhibit their recently
discovered scale-free degree distribution (Barabasi and Albert 1999). This network
classification was later confirmed by Pastor-Satorras et al. (2001), who furthered the

original study to consider how the Internet changed with time.

Since the classification of the Internet, a few studies have sought to confirm whether
its hazard tolerance is the same as that shown by its network class (to random and
targeted topological hazards). The hazard tolerance of the Internet is speculated in a
study by Tu (2000) and actually proved by Cohen et al. (2000). Cohen et al. (2000)
subjected a network model of the Internet to a series of random attacks (removing

nodes randomly) and found that the network showed a surprising level of resilience to
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this attack strategy, characteristic of scale-free networks. In a later study, Cohen et al.
(2001) subjected the same network to a targeted attack (removing nodes in order of
degree, highest to lowest) and found that the network showed an increased
vulnerability to this attack strategy (compared to the random attack strategy), again
characteristic of scale-free networks. One further study by Albert et al. (2000) also
considered the hazard tolerance of the Internet and the World-Wide Web, but
furthered the studies of Cohen et al. (2000) and Cohen et al. (2001) by comparing this
hazard tolerance to generated scale-free and random networks. All four networks
were subjected to a topological random and targeted attack and their resilience to

these hazards quantified by applying network measures.
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Figure 2.29: The changes in the diameter, d, of the network as a function of the fraction (f) of the
removed nodes, for networks subjected to a targeted and random failure attack strategies. (a) Shows a
comparison between a random network and a scale-free network, generated using the network
generation algorithms of Erdos and Renyi (1960) and Barabasi and Albert (1999). Also showing the
changes to the diameter of the (b) Internet and (c) World-Wide-Web (Albert et al. 2000).

Page 73



CHAPTER 2: INFRASTRUCTURE NETWORKS, RESILIENCE AND GRAPH THEORY ANALYSIS

In their study, Albert et al. (2000) initially compared the diameter of the scale-free
network to the random benchmark network, for a given fraction of nodes removed, to
determine if the scale-free network was resilient or vulnerable to the applied hazard
(Figure 2.29(a)). From these results, it can be seen that the scale-free network
becomes less efficient more quickly to the targeted attack strategy than the random
attack strategy (as indicated by the higher value of diameter); whereas, the random
network shows the same response to both attack strategies. The results for the
Internet and the World-Wide Web have been shown in Figure 2.29(b, c) and show that
these scale-free networks have a similar hazard tolerance as the synthetic scale-free
network shown in Figure 2.29(a). Albert et al. (2000) also plotted the fraction of
removed nodes against the relative size of the largest cluster in the network and the
average size of the isolated clusters for all four of these networks. This comparison
again showed that the random network showed the same hazard tolerance to both
attack strategies and that the scale-free network showed an increased vulnerability to
the targeted attack strategy. Both the Internet and the World-Wide Web showed the
same level of resilience to these attack strategies as the scale-free network, further
confirming that they show the hazard tolerance which is characteristic of their network

class.

2.7.2: ELECTRICAL DISTRIBUTION NETWORKS (POWER GRIDS)

In a graph theory model of an electrical distribution system nodes are used to
represent a combination of generators and distribution substations and links are used
to represent the transmission lines connecting these nodes (Crucitti et al. 2004b). It
could be assumed that nodes would also be used to represent transmission towers;
however, many studies model these systems over a wide geographic region (most
commonly over a whole country) and therefore do not model these systems in such

high detail (Albert et al. 2004; Sole et al. 2008).

Almost all electrical distribution networks have been shown to follow an exponential
degree distribution; including the Italian network (Crucitti et al. 2004b), North
American (Albert et al. 2004; Kinney et al. 2005), Western USA (Holmgren 2006),

Nordic (Holmgren 2006) and European (Holmgren 2006) networks. Therefore, these
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networks comprise a small number of high degree nodes and a large number of
smaller degree nodes. Two examples of an electrical distribution network have been
shown in Figure 2.30 (for the UK and Italy) along with their associated degree

distributions.
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Figure 2.30: The electrical distribution network for (a) the United Kingdom and (b) Italy and (c) the
degree distribution for both of these networks and the European power grid (UCTE) (Rosas-Casals et al.
2006).

In the analysis of electrical distribution systems, many studies incorporate an element
of flow into the network model. This is achieved either by coupling the model with a
physically-based model or by forming an estimate of the flow by using the
betweenness centrality network measure (Equation 2.2). The reasoning behind the
use of this graph theory metric is that flow will tend to travel along the most direct
path (i.e. the path of least resistance) and the betweenness centrality measure is
concerned with the most direct path between two nodes and therefore many studies
reason that this measure can be used as a proxy for a more complex and
computationally demanding physically-based model (Albert et al. 2004; Baldick et al.
2009).

Similar to other network models, the hazard tolerance of electrical distribution
systems has been assessed in many studies using the random and targeted topological
attack strategies. However, many of these studies also consider the ‘flow’ element in
the system and additionally consider ‘cascading failures’. A cascading failure is caused
by a redistribution of load when a single, or group, of nodes, or links, are removed
from a network (Crucitti et al. 2004a). An example of a cascading failure can be seen in

Figure 2.31; in this example it can be seen that the removal of a single node can cause
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the failure of many others in the network and, in this case, can lead to the system

being unable to supply the required level of service.
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Figure 2.31: Showing a cascading failure in a sample network, which has one generator node, one
demand node and three distributor nodes. In this sample network it is assumed that each node and link
has the same resistance and that each link has infinite capacity. (a) Shows the original network, where
the direction of flow is indicated by the arrows (on the links), the capacity of each distributor node is
shown in white on the node and the flow through each node is shown in black above the node. To
initiate a cascading failure the middle distributor node is removed (shown in red in (a)). The removal of
this node causes the flow to be redistributed throughout the network (b). This redistribution of flow
causes one of the other distributor nodes to fail, as the amount of flow trying to pass through the node
is greater than its capacity. The failure of this node results in the network shown in (c) and the resulting
redistribution of flow causes the remaining distributor node to be overcapacity and fail. It is worth
noting that in this example only the capacity of the nodes was considered. It is likely that in many real
world networks the links will also have a fixed level of capacity which, if exceeded, would cause them to
fail.

A study by Albert et al. (2004) showed how damaging a cascading failure to an
electrical distribution network can be, using the North American power grid as an
example. In their study, the network model consisted of 14,099 nodes (representing
1633 power plants, providing a service, 2179 distributing substations, requiring a
service, and 10287 transmission substations, distributing the service) and 19,657 links
(representing transmission lines); the flow (or load) through each node was calculated
using the betweenness centrality of the node. To assess the hazard tolerance of their
network model, Albert et al. (2004) subjected the network to four different attack
strategies, removing transmission nodes: randomly (random), in decreasing order of
degree (degree-based) or load (load-based) and to simulate a cascading failure they
removed the 10 nodes with the highest load and then recalculated the load and
removed the 10 nodes with the next highest load, until all nodes were removed
(cascading failure). The results of this analysis are shown in Figure 2.32 and are
presented in terms of the percentage of connectivity loss (C.) and the fraction of

transmission nodes removed (f:).
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connectivity loss (%)
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Figure 2.32: Connectivity loss in the North American power grid due to the removal of nodes, using one
of four different algorithms: randomly (circles), in decreasing order of the node degree (triangles) or
load (diamonds), and by recalculating the load every ten steps and removing the ten nodes with the
highest load (squares).

Albert et al. (2004) define the ‘damage’ to the network caused by the removal of
nodes using their measure of C. (connectivity loss), given in Equation 2.6, rather than
using a more 'traditional' graph theory metric. In this equation, Ng refers to the
generators and N'; to the distribution substations and i is used to refer to a specific
substation. Essentially, C. measures the ‘decrease of the ability of the distribution
substations to receive power from the generators’ (Albert et al. 2004) and is expressed

as a percentage.

C,=1- (N—é)i 2.6
Ny

From the results of the analysis (Figure 2.32), it can be seen that the cascading failure
is the most damaging to the network, as it causes the highest connectivity loss for the
same fraction of transmission substations removed as the other three attack strategies.
It can also be seen that the network shows the most resilience to the random attack
strategy, which can be expected when considering its exponential network class. It can
be determined from these results that this network is more vulnerable to a cascading
failure than to a degree based attack (to which this network should be most vulnerable
to when considering the degree distribution of this network). This is because of the
inclusion of a flow component into the analysis and the redistribution of this flow
when nodes are removed from the network causing additional nodes to fail as they

become overcapacity.
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There are numerous other studies which assess the hazard tolerance of electrical
distribution networks by initiating cascading failures and in a similar manner to Albert
et al. (2004) they find that this attack strategy is the most damaging to this type of
infrastructure system (Baldick et al. 2009; Chang and Wu 2011).

2.7.3: TRANSPORT NETWORKS

The graph theory analysis approach has been applied to many different types of
transport network, including: road networks, railways, subway systems and other
forms of public transport network. For example, a study by Tu et al. (2013) identified
‘the most vital elements of a [road] network for supporting transportation planning
and management activities’. They proposed a new index system to identify vital
elements within a road network, based on the vulnerability index of Bulteau and
Rubino (1997), which ranks the vulnerability of links between nodal pairs based on the
topological structure of a network. They then applied this index system to rank the
vulnerability of links in the Shanghai freeway network (Figure 2.33), finding that the
link between nodes 8 and 9 was the most vulnerable (although this is not a direct link,
but is via node 7). However, they did not remove this link to verify if it caused the
most disruption to the remaining network. Tu et al. (2013) then considered new
routes that could be added to the network to reduce this vulnerability (shown as
dashed lines in Figure 2.33). After rerunning the index system, they found that the link
between nodes 19 and 26 to be the most superior at reducing the vulnerability of the
network. Tu et al. (2013) concluded that this method could be used by decision
makers to compare different planning scenarios to reduce the vulnerability of road

networks.

Page 78



CHAPTER 2: INFRASTRUCTURE NETWORKS, RESILIENCE AND GRAPH THEORY ANALYSIS

4 8

/

7

/-—18

»‘-_/
24
— "" — G 1501
o 520
® ctntrance

Figure 2.33: Showing the freeway network of Shanghai, consisting of 27 nodes and 49 links, where node
9 represents the centroid of Shanghai central city (Tu et al. 2013).

In a similar manner, Mathe et al. (2013) applied network theory to the analysis of
Romania’s railway network to determine the impact (in terms of journey time) that a
new planned connection would make to travel around the network. To construct their
model, Mathe et al. (2013) represented individual stations as nodes and the train links
that connected them as links (Figure 2.34). They initially calculated the length of the
journey from each station to all other stations in the network, finding that the total
length of the network was 525,560km and also ranked the ease of access from each
station to the rest of the network (finding that the Copsa Mica station had the greatest
accessibility to all other stations). Mathe et al. (2013) then reanalysed the network
including the new planned connection (between Targu Mures and Sighisoara) and
found that the total distance necessary to travel through the entire network was
shortened by 24,848km (a decrease of 4.7%). They also analysed how this planned line
would affect the ease of access for each station in the network; for example, they
calculated that the railway distance between Tirgu Mures and Brasov would decrease
by 101km (an improvement of 79%). Mathe et al. (2013) concluded that this analysis
could be used by planners to determine the impact that proposed connections would

have to the functioning of the existing network.
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Figure 2.34: An image of the Romanian railway network (Mathe et al 2013).

However, within the infrastructure sector it is the analysis of air traffic networks which
receives the most attention (in terms of the classification of network topology and
analysis of characteristics). In these network models, nodes tend to be used to
represent individual airports and links are used to show the presence of air routes. In
some studies, the links are given a weighting to show the number of flights or
passengers along a particular air route, for example, however, these studies will not be
presented in this section as weighted networks are outside the scope of this research.
Whereas, other studies consider a directed network, where the direction of a flight is
included (determined by the origin and destination airports). Air traffic networks have
also been studied on a variety of different scales, including country (Han et al. 2008;
Zhang et al. 2010) and worldwide scales (Guimera and Amaral 2004). However, less

considered is the hazard tolerance of these networks.

There has been much discussion as to the exact network class into which air traffic
networks can be placed, with one study being devoted to this problem (Li et al. 2006).
It has generally been concluded that air traffic networks possess a truncated scale-free
distribution or a scale-free network with an exponential ‘tail’, including the Indian and
Brazilian air traffic networks (shown in Figure 2.35). This type of infrastructure system

does not fall wholly into one network class, but takes attributes from both the
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exponential and scale-free network classes. They possess a small number of high

degree nodes (‘hub’ airports) and a large number of smaller degree nodes.
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Figure 2.35: Showing degree distributions for the (a) Indian air traffic network, containing 79 nodes and
442 links (Bagler 2008) and the Brazilian air traffic network in (b) 1995 and (c) 2006 (da Rocha 2009). It
is worth noting that these studies only consider the presence of an air route between two nodes in the
network (i.e. intercontinental flights are not considered) and the networks are not weighted or directed.

Both of these studies considered the presence of an air route, irrespective of the
season (as more flights can be expected in the summer to popular holiday destinations)
and the day of the week. Whereas, Han et al. (2008) plotted the degree distribution of
the Austrian air traffic network for different days during the week (Figure 2.36). This
study classified a link as an individual flight rather than the presence of an air route
between two airports and also considered the direction of flights in the network;
therefore, altering the degree of each node to consider whether the flight was
‘incoming’ or ‘outgoing’. The resulting degree distributions are very similar, and little
differences can be observed between them. The incoming and outgoing flights for one
particular day (Monday) are also plotted, enabling a direct comparison between these
two variables to be made (Figure 2.36(c)). From this figure, it can also be seen that
there is little change in the degree distribution obtained for the incoming and outgoing
flights. However, due to the presentation of the distributions it is not possible to tell,

visually, if the network forms a scale-free, exponential or truncated scale-free
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distribution, this information is also lacking in the study literature. The classification of
this network is also hampered due to the small network size, compared to other
studies, consisting of only 134 airports and 9560 flights (for the whole week).
Although, it can be determined from this study that the day of the week or the
direction of flights does not noticeably alter the degree distribution and therefore the

fundamental topological characteristics of the network.
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Figure 2.36: Degree distributions for each day of the week for the Austrian air traffic network, showing
(a) all incoming flights, (b) all outgoing flights and (c) all flights on Monday (Han et al. 2008).

This work by Han et al. (2008) was taken a stage further by Zanin and Lillo (2013), who
considered how the mean degree of each node (airport) changed depending on the
day of the week. It is worth noting that this study did not separate flights from each
airport into incoming and outgoing (i.e. it did not consider a directional network). In
their study Zanin and Lillo (2013) found that the mean degree of an airport does
change depending on the day of the week, being highest on a Monday and lowest on a
Saturday. Although, it is worth noting that the change was only around 0.43
(approximating from the graph, Figure 2.37). The study also considered the Chinese air
traffic network (Figure 2.37), finding that the spread in the mean degree of airports

was greater for this network (with a change of approximately 2.3). Therefore, this

analysis does confirm that the day of the week affects the topology of an air traffic
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network; however, these changes are not consistent between networks and only result

in small differences between the maximum and minimum mean degrees.
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Figure 2.37: The change in the mean degree of airports in the Austrian and Chinese air traffic networks
for different days of the week. The graph was obtained from (Zanin and Lillo 2013) and produced using
the data of (Han et al. 2008) and (Li and Cai 2004).

Whilst, some studies have focused on assessing how the characteristics of an air traffic
network changes with a relatively short space of time (e.g. different days of the week),
other studies have assessed how these networks change over longer time periods
(ranging from a few months to years). One such study, of the Brazilian air traffic
network, has already been presented (Figure 2.35(b, c)) and considering these two
degree distributions it can be seen that the overall classification of the network has not
changed. However, it can be seen from these two distributions that the maximum
degree node (i.e. the ‘hub’ airport) has reduced in size (in terms of the number of links)
from just over 100 links to fewer than 80 links. It is also apparent that in 2006 there is
only one ‘hub’ airport whilst there were two in 1995. There could be many reasons for
this change, such as: higher operating costs at ‘hub’ airports, reduced airport capacity
or introduction of ‘budget’ airlines, for example. This study does not make conclusions
for this change and the network size (in terms of the number of nodes and links) is
unclear and therefore conclusions regarding the decrease in network size cannot be

independently made.

Another study, considering the change of air traffic networks over a long time period,

focused on the ltalian air traffic network (consisting of 42 nodes and 310 links). Guida
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and Maria (2007) showed that this network formed a double power-law network,
similar to the single power-law scale-free network developed by Barabasi and Albert
(1999). This degree distribution is also similar to those shown by other air traffic
networks. It can be seen from the degree distributions in Figure 2.38 that the overall
classification of the network does not change for each of the three study time periods.
Therefore, it can be concluded that air traffic networks show a truncated scale-free
distribution, which is largely unchanging with time; so an air traffic network studied in
1995 should have the same characteristic network topology as that shown by the same

air traffic network in 2005, for example.
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Figure 2.38: The degree distribution for the Italian air traffic network for three different times during
the year (a) 1 June 2005 to 31 May 2006, (b) 16" July 2005 to 14™ August 2005 and (c) November
2005 (Guida and Maria 2007).

In one further study, Guimera et al. (2005) analysed the properties of the wordwide air
traffic network, initially showing that its degree distribution displayed a truncated
power-law (Figure 2.39). In their study, they used nodes to represent cities and links
to represent the air routes connecting these cities. They showed that the most
connected airports are not necessarily the ones with the highest value of betweenness

centrality, as previously discussed (see Figure 2.26).
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Figure 2.39: Showing the degree distribution of the worldwide air traffic network (Guimera et al. 2005).

2.7.4: WATER DISTRIBUTION SYSTEMS

Water distribution systems appear to receive the least attention, in terms of network
graph theory analysis. This could be due, in part, to the lack of complete obtainable
datasets for these systems as they are ‘buried’ infrastructure; however Yazdani and
Jeffrey (2011) state that this may be due to “the fact that purely topological graph-
based techniques have limited scope as tools for reliability analysis of [water
distribution systems]”. For example, a study by Walski (1993) showed that a network
theory approach does not account for the importance and location of the isolation
values in the analysis of these systems and could therefore lead to inaccurate results.
Although, Yazdani and Jeffrey (2011) do acknowledge that a network theory approach
to analysing water distribution systems may be valid and that “vulnerability and
robustness of [water distribution systems] have not been systematically exposed to

analysis by graph theory and complex network techniques”.

In their study, Yazdani and Jeffrey (2011) aimed to address this issue by considering
the relationship between the structure and vulnerability of these systems against
random failures and targeted attacks on network components. They achieved this by
studying the structural properties of four water distribution systems, with different
numbers of nodes and links, shown in Figure 2.40; initially finding that the degree
distributions for these networks follow an exponential trend (Figure 2.41). They

applied various graph theory metrics to analyse these networks to quantify different
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network characteristics (see Table 2.8). Through this analysis they found that the
“spatial organisation of [water distribution systems] imposes severe limitations on their
connectivity”, resulting in structural vulnerability patterns in these systems. They
concluded that this analysis approach, applying various network metrics, could be used
as a basis for a tentative ranking of vulnerability with regards to the network structure.
However, Yazdani and Jeffrey (2011) advise caution when using topological
measurements for the analysis of a real world system, as each graph theory metric
only captures partial information regarding the network structure and that there is no
unigue measure of network robustness. They also state that these graph theory
metrics may require alteration and adjustment to account for the location of isolation

values, for example.

(a)
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Figure 2.40: Showing a graph view of four water distribution networks, (a) Anytown, (b) Colorado
Springs, (c) EXNET and (d) Richmond (Yazdani and Jeffrey 2011).
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Figure 2.41: The degree distributions of the four water distribution systems shown in Figure 2.40

(Yazdani and Jeffrey 2011).

Table 2.8: The metrics used by Yazdaini and Jeffrey (2011) to quantify different characteristics of water

distribution systems.

Metric

Definition

Network Characteristic

Quantified

Average node degree

Average value of the node-degree

distribution

Connectivity

Clustering coefficient

The fraction between the total number of
triangles Na and the number of connected

triples N3 in the network

Loops (redundancy)

Meshedness coefficient

The fraction between the total and the
maximum number of independent loops in a

planar graph

Loops (redundancy)

Spectral Gap

The difference between first and second

eigenvalues of graph’s adjacency matrix

Robustness

Algebraic connectivity

The second smallest eigenvalue of normalised

Laplacian matrix of the network

Robustness
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2.8: DEVELOPMENT OF SPATIAL NETWORK MODELS

The network models presented and discussed in this chapter have, so far, been purely
topological models, where only the presence of a link between two nodes is
considered (and not the location of individual nodes or the physical distance between
pairs of nodes). However, as the analysis of real world infrastructure networks turns
from the Internet and the World-Wide-Web (both requiring only very little space to
operate) to airline and electrical distribution systems (requiring large amounts of space)
the spatial element of these networks is becoming increasing important in the analysis.
Indeed, the validity of using topological models to analyse geographically distributed
networks has been questioned by some researchers (Hines et al. 2010). Put simply,
the distinction between a topological model and a spatial model is the fixed locations
of nodes in the spatial model (e.g. the nodes may have longitude and latitude
coordinates) (Barthelemy 2011). The little work that has studied real world spatial
networks still focuses mainly on characterising the topology of the system (into one of
the network classes), while the spatial element of the same network receives less

attention - if not neglected entirely (Boccaletti et al. 2006).

There are a few studies that analyse the spatial characteristics of real world networks,
including that of Crucitti et al. (2006) who studied centrality in urban streets of
different world cities, using nodes to represent intersections and links to represent
streets (Figure 2.42). The aim of their study was to develop an extended visualisation
and characterisation of the city structure. It can be seen from Figure 2.42(a), that the
closenesss centrality measure shows the majority of highly scored nodes in the centre
of the network, radiating outwards to the lower scores at the boundary of the
considered area. This is in contrast to the betweenness centrality measure (Figure
2.42(b)) which highlights several routes in the city with a high score. Crucitti et al.
(2006) correlated these routes with the most popular walking paths in the city, finding
that there was a strong correlation. The authors also studied other cities and found
that in these studies the betweenness centrality measure was also able to identify the

primary structure of movement channels from the secondary routes.
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Figure 2.42: A colour-coded map showing the (a) closeness and (b) betweenness centrality of the urban
street network in Venice, Italy (Crucitti et al. 2006).

Whilst, the majority of studies analyse the characteristics of real world networks only,
there are a small number of other studies that have developed models to replicate the
nodal connectivity of these spatial networks. The most notable of these studies is that
of Gastner and Newman (2006b) who propose a model for connecting links between
pairs of nodes, with a fixed spatial location, based upon their separation distance.
They include a variable parameter, A, in their algorithm, which is used to simulate
users’ preference. For example, when A = 0 the resulting network resembles an airline
network, in which users want to minimise the number of flights in their journey; and
when A = 1 the resulting network resembles a road network where users want to
minimise the length of their journey (Figure 2.43). A similar model has also been
developed by Qian and Han (2009), who also include a variable which can be altered to
generate networks with different connectivity's. In these spatial network algorithms
the locations of the nodes are generally pre-allocated and are usually based upon a
real system (i.e. the main aim is to define the rules which govern link formation
between pairs of nodes, rather than to understand the rules that govern nodal

location).
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Figure 2.43: Networks generated with different nodal connectivity, for the same nodal layout,
depending on user preference (A), where: (a) A =0, (b) A = 1/3, (c) A = 2/3 and (d) A = 1 (Gastner and
Newman 2006b).

Whilst network theory studies have largely ignored the ‘rules’ governing the location
of nodes within spatial networks, in favour of the ‘rules’ governing the formation of
links, other studies have focused primarily on this problem, with some success.
Gastner and Newman (2006a) developed an optimal spatial layout of facilities
(representing, hospitals and airports, for example) where the distance between a

person's home and the nearest facility was minimised (Figure 2.44).

Figure 2.44: Facility locations in the US, as determined by the algorithm of Gastner and Newman
(2006a).

However, other methods have focused on developing proxy models for real world
cities. One of the most notable techniques is cellular automata, which has been used
to predict urban growth around cities, including: San Francisco (Clarke et al. 1995),
Washington / Baltimore (Clarke and Gaydos 1998) and Guangzhou (China) (Wu 2002).
A cellular automation model is a dynamic system in which the geographical study area
is divided into regular spatial cells, and time progresses in discrete steps. Each spatial

cell has one of a finite number of states and the state of each cell is updated at each
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time step according to a set of 'rules' (Liu 2009). The models require the initial input of
four main layers of data describing the initial conditions in the study area, which are
updated as the model runs: (1) digital elevation of the study area, (2) the location of
the initial settlements, (3) historical transportation layers (e.g. road network) and (4) a
layer showing excluded areas (e.g. national parks, water bodies, etc.). This data is
gathered from historical maps, air photos and digital maps and as the data is obtained
from a variety of sources there are often problems with assembling the dataset,
including: inconsistent dimensions of features, generalisation in historical maps,
different projections of the study area, different coordinate systems and different
census boundaries. As such the main disadvantage in this method is that the accuracy
of the results is highly dependent on the size of the input dataset and on the quality
and quantity of the historical data (Clarke and Gaydos 1998), indeed if insufficient
historical data for the study area is obtained then it is not possible to generate a

synthetic model.

Previous studies using spatial network models have not considered the hazard
tolerance of the networks to spatial hazard. It has previously been discussed that the
likely hazards to affect infrastructure systems are spatial (e.g. a flooding event,

hurricane) and as such the lack of research in this area seems surprising.

This chapter has presented an overview of the key literature surrounding the resilience
of infrastructure systems. This review has shown that many infrastructure systems are
normally analysed using physically based models, which whilst useful at providing
scenario based information can be found lacking when used to assess the resilience of
these systems, as only a limited number of scenarios can be tested (potentially leaving
them vulnerable to unforeseen events). It was found that this problem has recently
been addressed by applying network graph theory to try and understand the behaviour
of these complex interacting systems; for example, Barabasi and Albert (1999) used this
approach to show that targeted attack causes more disruption to the Internet than
random system failures. In this network theory approach the topology of the system is
modelled as a series of nodes and connecting links, which enables the fundamental

properties of the system to be described. Using this approach also allows for the
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development of network generation algorithms, which are capable of generating
synthetic networks with the same properties as real world systems and can be used to
assess systems where obtainable data is incomplete or for the analysis of future
systems, which do not yet exist. Previous studies, using this approach, have shown that
many infrastructure systems potentially configure to specific network architectures and
therefore may have similar properties; however, some researchers are questioning the
validity of using topological models to analyse infrastructure systems, due to the
geographical distribution of these systems. Spatial models do exist in network graph
theory and have been used to analyse a small number of infrastructure systems,
however, these studies still focus on classifying the topology of the network and do not
consider their spatial hazard tolerance. This research has also shown that the main
threats to these systems are also spatially coherent and geographically distributed,
further strengthening the argument of using spatial network models and spatial

hazards to assess the resilience of infrastructure systems.

Therefore, this thesis will aim to address this issue, by analysing infrastructure systems
using a network graph theory approach to provide a level of confidence that the system
will perform adequately after a natural hazard. Unlike traditional network theory,
spatial network models will be used to model the geographically dispersed nature of
these systems and also to model the spatial component of the hazards threatening
these systems. Due to the lack of complete and obtainable datasets for many
infrastructure systems, this research will attempt to develop network generation
algorithms that can reproduce synthetic spatial networks with the same characteristics
as real world network. The study will then extend this dataset by generating other
generic networks. The vulnerability of these networks will be assessed by applying the
maximum cluster size and average path length measures. These measures are used in
combination, as the maximum cluster size gives an indication of how fragmented the
network has become by spatial hazard, whilst the average path length quantifies the
change in performance within the network. This thesis will also assess the applicability
of using graph theory metrics to highlight specific ‘critical’ nodes within these systems
(i.e. nodes that when removed cause a disproportionate impact to the remaining
network); it is likely from the results of previous studies that these metrics may need to

be adapted or modified to increase their predictive capabilities.
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CHAPTER 3: HAzARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

The previous chapter presented and discussed an overview of the key literature
surrounding the resilience of infrastructure systems. In this review the limitations of
using traditional analysis techniques to increase the resilience of an infrastructure
system were discussed and a potential new method of using network graph theory for
this purpose was presented. It was discussed that the majority of studies use
topological models only to analyse infrastructure systems, which can be located over
wide geographic regions, prompting some researchers to question the validity of these
models. Spatial network models have since been developed and applied to the analysis
of infrastructure systems; however, these studies only focus on the classification of the
system and do not form synthetic proxy networks for real world systems, which allow
the ‘rules’ governing the formation of these spatial networks to be understood and
networks with incomplete data to be analysed. Finally, it was discussed that the spatial
hazard tolerance of these networks is seemingly lacking from the analysis altogether,
which is surprising when considering that the majority of threats to infrastructure

systems are distributed over geographic regions.

This chapter uses the network graph theory approach to analyse a real world spatial
network, namely the European air traffic network, and shows how the perceived
topological resilience of this network to random hazard changes when these hazards
are located over geographic regions. This real world network was chosen as tests for
hazard tolerance can be validated using the data from the 2010 Eyjafjallajékull
eruption. To determine whether the vulnerability shown by this network is (1) unique
to the European air traffic network, (2) inherent of its network class, or (3) due to its
specific nodal layout, networks with the same characteristics as the real world network

are generated and subjected to spatial hazard.
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3.1: CASE STUDY: THE DISRUPTION CAUSED TO THE EUROPEAN AIR TRAFFIC NETWORK BY

THE EYJAFJALLAJOKULL VOLCANO

The 2010 eruption of the Eyjafjallajokull volcano, in Iceland, occurred on the 14t
March and forced almost 800 local residents to evacuate their homes (Petersen 2010).
Continuing eruptions caused disruption to the European air traffic network (EATN),
with restrictions on airspace and no fly zones from 14™ April (Brooker 2010). The
resulting airport closures and disruption to air travel caused more than 10 million
passengers to be delayed. The economic impact to the airline industry, in terms of
revenue loss for airlines from scheduled services, during the period 15™-215t April, was
estimated at 1.7 billion US dollars (Mazzocchi et al. 2010). This amount of disruption is
surprising as previous studies of air traffic networks have shown that they form
truncated scale-free distributions (or a scale-free distribution with an exponential ‘tail’)
and as such should be resilient to random hazard (see Chapter 2.5.3). To gauge the
impact of this disruption to the EATN a graph theory network model, consisting of 525
airports and 3886 air routes, operated by 203 airlines, was constructed using data from
Openflights (2010). This network is undirected and considers the presence of an air
route only and not the number of flights / passengers along a particular air route, as

this would constitute a weighted network which is outside the scope of this thesis.

To investigate whether the volcanic eruption had a disproportionate effect to the
EATN, Flight Information Regions (FIR) that were closed for 12 hours or more on a
particular day of disruption were identified, using the data of Eurocontrol (2010). This
data was used to plot GIS images showing the open and closed FIRs for eight days of
disruption. Three of these GIS plots have been shown in Figure 3.1(a-c), including the
worst affected day (18" April). These GIS images show that the ash cloud mainly
affected Northern Europe, but also closed Central Europe on the worst day of the
event. To quantify the disruption to the network, the airports inside the closed FIRs
and their connected air routes were removed from the network model to establish the
percentage of closed airspace and cancelled air routes for each day of the disruption
(Figure 3.1(d)). It was assumed that air routes which fly through an area of closed
airspace (but where neither the source or destination airports were inside a closed

area) were able to fly around this closed airspace.
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Figure 3.1: Open (light green) and closed (grey) FIRs in Europe (i.e. airspace) for (a) 15th April, (b) 18th
April and (c) 21st April 2010 (Eurocontrol 2010). The airports are shown as dots and the Eyjafjallajokull
volcano as a red triangle. Also, (d) showing proportion of travel disruption, relative to the proportion of
closed airspace, during the Eyjafjallajokull eruption of 14th - 21st April 2010. The points on the graph
represent the different days of disruption (labelled) and the random network (with random nodal layout)
is shown by the grey line.

To determine whether the EATN is resilient or vulnerable to the Eyjafjallajokull volcanic
event a benchmark of resilience needs to be established. In traditional network graph
theory this is achieved by comparing the results, which are plotted in terms of the
proportion of nodes and links removed, to that of a random network. However, this
benchmark does not consider the size of the spatial disruption and the impact that this
has to the remaining network. To overcome this shortfall, a spatial resilience
benchmark is formed by allocating the nodes in a topological random network a

random spatial location such that two spatial hazards of the same size, but with
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different locations, remove an approximately equal number of nodes. The spatial

resilience benchmark formed by using this method is shown in Figure 3.2.
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Figure 3.2: Showing the resilience random network benchmark plotted in terms of the proportion of
removed links and (a) removed nodes and (b) removed area.

Plotting the proportion of air routes closed against the proportion of closed airspace
for the Eyjafjallajokull event (Figure 3.1(d)) and comparing to a spatial benchmark
random network (Figure 3.2(b)) the vulnerability / resilience of the network can be
established. If the effect is proportionate to the cause (i.e. the disruption is
proportionate to the area of closed airspace) then the points, representing different
days of disruption, should sit on the line of the random network. From Figure 3.1(d) it
can be seen that the EATN is more vulnerable, particularly to large spatial hazards,
than the random network; although the network is more resilient, compared to the
random network, for the initial day of disruption. These results demonstrate that the

EATN is in fact vulnerable to the Eyjafjallajokull spatial hazard.

An initial investigation into the vulnerability of the EATN to spatial hazard is achieved
by obtaining the degree distribution of the network (Figure 3.3). This distribution
confirms that the network forms a truncated ‘scale-free’ distribution characteristic of
other air traffic networks (Chapter 2.7.3) and that this network should therefore be
resilient to random hazards (including the Eyjafjallajokull event) and vulnerable to
targeted attack. It is worth noting the effect that ‘windowing’ has to this distribution.
For example, it can be seen that there appears to be several nodes with degrees
ranging from 118 to 133, however, there is only one node with a degree of 133 (as this
is a cumulative probability distribution a point is placed for each possible value of

degree).
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Figure 3.3: Plotting the degree distribution of the EATN (black dots) and a generated scale-free network
(red dots), using the algorithm of Barabasi and Albert (1999).

To further investigate this vulnerability and to determine whether it is (1) unique to
the EATN, (2) inherent of its network class or (3) due to the specific geographic
location of nodes, synthetic networks with the same characteristics as the EATN are
formed. This is achieved using the scale-free network generation algorithm of Barabasi
and Albert (1999), where the mo value is equal to 14 and nodes are randomly allocated
one of the actual airport locations as the network ‘grows’. The degree distribution for
this synthetic network is shown in Figure 3.3, where it can be seen that this synthetic
network is a poor representation of the EATN. The generated scale-free network does
not form a sufficiently well connected hub node (lacking 28 connections) and includes
too many poorly connected nodes. Therefore, it can be concluded that traditional
network generation algorithms can be deficient when used to form spatially
distributed networks, as the ‘rules’ governing the formation of connections in these
systems are not necessarily the same as those where space is not a governing factor

(e.g. the Internet and World-Wide-Web).
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3.2: DEVELOPMENT OF ALGORITHM TO GENERATE SYNTHETIC NETWORKS FOR THE

EUROPEAN AIR TRAFFIC NETWORK

To generate synthetic networks with the same characteristics as the EATN, a new
network generation algorithm is developed. This algorithm is based upon the scale-
free generation algorithm of Barabasi and Albert (1999), but modifies the traditional
algorithm to account for the spatial component of the network. As such, the new
algorithm proposes that low degree nodes can capitalise on their close spatial
proximity to a highly connected hub by attracting links that were bound for the high
degree hub (through the idea of preferential attachment). For example, an airline may
wish to establish a route to a major regional airport; however, the operating costs at
this airport are high. Flying to a nearby airport will still attract passengers as it is only a
short overland journey from this node to the highly connected hub, but for this
subordinate node, the fares can be reduced due to the lower operating costs. It is
therefore argued that the decision of where to establish a new route is made based on
both degree and proximity. This modification is used to extend the algorithm of
Barabasi and Albert (1999) by enclosing the network within a spatial domain and
preferentially attaching new nodes based on the degree of all nodes within a sub-

domain (neighbourhood) (Figure 3.4).

Figure 3.4: Demonstrating the idea of preferential attachment based on (a) degree and (b) degree and
proximity, in part of a sample network. In this network the black dots represent nodes (with the
adjacent number indicating its degree), the black lines represent links connecting these nodes and the
dashed lines represent connections to other nodes in the network, that have been omitted for clarity. In
(a) a new node (red) is introduced to the network, and using the algorithm of Barabasi and Albert (1999)
would be most likely to attach itself to the high degree node; however, considering proximity as well as
degree alters the probability because the spatial domain of the low degree node (in the centre of the
red circle) includes the high degree node and therefore inflates its probability of attachment.
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Following Barabasi and Albert (1999), an initial number of starting nodes, mo, is chosen,
but each node is now given a spatial location. At each timestep, a new node is added
to the network and is given one of the pre-allocated nodal positions. This new node
introduces between 1 and mo links to the network, which preferentially attaches this
node to the existing network in the same manner as for a scale-free network, but with
the spatial modification shown in Figure 3.4(b), where preference is now based on the
degree of all nodes within the neighbourhood. The size of the neighbourhood is set by
assigning a radius, r, which represents the distance people are prepared to travel
overland to reach an airport. Setting this radius to zero removes the spatial
dependence of the network and results in the generation of a scale-free network;
while setting the radius to twice the size of the spatial domain results in random
attachment (as the degree in each neighbourhood is equal to that of the degree in the
whole network). To show that certain values of this radius (neighbourhood size) can
produce an exponential network, the algorithm has been used to generate a network
with 1000 nodes and 7370 links, with a radius value of 0.2. The degree distribution for
this network is shown in Figure 3.5, where it can be seen that the distribution follows
the straight line, when plotted on a log-linear scale, characteristic of exponential

networks.
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Figure 3.5: The degree distribution of an exponential network generated using the developed algorithm.
In addition to this spatial modification, the algorithm will also test the modification of
Guimera and Amaral (2004), which allows a proportion of the new links, p, to connect

between pre-existing nodes (referred to as the GA modification), and determines
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whether this modification is necessary to produce reconfigurable networks, such as
the EATN. However, the flight distance criteria for preferential attachment of Guimera
and Amaral (2004) is not used, as intercontinental flights are not being considered and
the deregulation of the EATN has led to flight path length becoming uncorrelated from
degree. This can be demonstrated by plotting the flight length of different air routes
against various measures of degree (Figure 3.6), showing that there is little or no

correlation between the flight length and connectivity of an airport for the EATN.
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Figure 3.6: The air route distance between airports (in km) compared to (a) the maximum degree of
connected airports, (b) the arithmetic mean of the two connected airports and (c) the geometric mean
of the two connected airports for the EATN. Also showing (d) the correlation between the degree of an
airport and the maximum distance flight from this airport. All of the plots show that there is no
correlation between the air route distance and various measures of degree of the two connected
airports.

To assess the ability of the proposed network generation algorithm to generate
synthetic networks as proxies for the EATN using real world nodal locations, four
different types of synthetic network (using different combinations of neighbourhood
size and GA modification) have been generated. This allows the best combination of
these to form the EATN to be determined and allows the ‘rules’ which govern the

formation of air routes within the EATN to be identified.
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1. Exponential network, with a constant neighbourhood size and including the
modification of GA;

2. Exponential network, with a changing size of neighbourhood (depending on the
distance from the node to the geographic centre) and including the
modification of GA;

3. Scale-free network;

4. Scale-free network, with the modification of GA.

For the exponential networks, two different methods of assigning a neighbourhood
size to nodes are considered, constant size and changing with distance from the
geographic centre. The latter could be considered to be intuitive, because airports are
more densely packed in the centre of the network giving people a greater selection of
routes for smaller overland travel distances. The actual value of neighbourhood size is
varied to determine the ‘best fit’ with the EATN and only the best fit value is presented

in this thesis (due to space restrictions).

Both of these exponential networks also include the modification of GA (allowing a
proportion of the new links to connect between pairs of existing nodes) and this
modification will also be applied to one of the scale-free networks. The network
generation algorithm for the scale-free networks has not been modified to account for
the spatial distance between airports; this enables a direct comparison to the spatially
modified exponential networks to determine if a spatial component should be
included in the analysis of spatial networks or if it is enough to give the nodes a spatial
location. Similarly, to the neighbourhood size, the exponential networks will also only

be shown with the best fit value of GA modification (again due to space restrictions).

Traditional network generation algorithms focus solely on the replication of the degree
distribution of the network, however, as this is a spatial network the ability of the
algorithm to generate the spatial characteristics of the network must also be
considered. This is achieved by replicating the spatial distribution and spatial degree
distribution of the network (Figure 3.7). These distributions were obtained by first
calculating the geographical centre of the airports (weighted by their degree) and then
plotting the number of airports within a given radius (Figure 3.7(a)) and the cumulative

degree (Figure 3.7(b)). For the EATN the geographic centre of the network is located in
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Germany (approximately 190km east of Frankfurt). From Figure 3.7 it can be seen that
both of these distributions exhibit an approximately bilinear form, meaning that they
are uniform with distance from the geographical centre of the air traffic network up to
radius of ~1500km, after which the distribution of both airports and their degrees
becomes sparser but remains relatively uniform. The change in grade shown in Figure
3.7 occurs as the considered area extends into the Atlantic Ocean in the west, and the

border of the European Union in the east.
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Figure 3.7: Plotting (a) the distribution of airports and (b) the spatial degree distribution of airports for
the EATN.

These synthetic networks have all been generated using the actual EATN airport
locations, therefore the spatial distribution of the synthetic networks will be an exact
match to that shown in Figure 3.7(a). However, due to the ‘growth’ element of the
network generation algorithm the order in which nodes are introduced to the network
must be considered, as this will have an effect on the spatial degree distribution of the
synthetic networks. Nodes which are introduced first to the network have more
chances to attract links introduced from added nodes and consequently should have a
higher degree than those introduced later to the network; therefore affecting the
spatial characteristics of the synthetic networks, by determining the location of the

high degree nodes.

Using the actual airport locations should allow the airports to be introduced to the
network in the order of which they were first opened. However, this raises the issue of
defining when an airport is first opened; should this be defined as the first flight from
the airport? Or the first commercial flight from the airport? To overcome this issue,
four different orders of introducing nodes to the network will be considered. This will

allow the effect that the different introduction orders has to both the degree
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distribution and spatial degree distribution to be determined and will also enable the

introduction order which best fits the EATN to be identified.

1. Distance — nodes are introduced with distance from the geographical centre of
the network, outwards;

2. Proportional with Distance — nodes in the centre of the network (i.e. those with
a short distance from the geographical centre) are more likely to be introduced
first, but not necessarily;

3. Random — nodes are introduced randomly to the network.

4. Population — one nodes from each of the 43 countries is randomly chosen and
is introduced to the network in order of the country population (highest to
lowest, e.g. Germany, France, UK, etc.). The remaining 482 nodes are then

introduced randomly to the network.

There are three ‘generic’ node introduction orders and one introduction order which
relies on the input of an additional dataset, namely population census data which has
been obtained from ArcGIS (2013). This fourth node introduction order incorporates
the idea that each country desires to open an airport within a short time of the

network becoming established.

The results for generating synthetic networks for the EATN, using the actual airport
locations and the four node introduction orders, are shown in Figure 3.8 and Figure 3.9.
From these results it can be seen that the order in which nodes are introduced to the
network has a small, but noticeable effect to the degree distribution and a significant

effect on the spatial degree distribution of the synthetic networks.
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Figure 3.8: Showing the degree distribution for the exponential (blue, green) and scale-free (red, orange)
networks generated using the synthetic network generation algorithm, where nodes are introduced (a)
randomly, (b) proportional with distance, (c) with distance from the geographic centre and (d) based on
the population of each country.

Page 104



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

(a) 9000
8000 - JRprY-
yBiE

7000 -

o 6000 -

g

%5000 -

= 4000

§ + R =constant
3000 R = changing with distance
2000 + R =0 (without GA)
1000 FE{:T(,)\‘(wmh GA)

0 L

0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Mid-Point (Radius)

(b) 9000

8000 -~ Jpo—
7000 | s

g 6000 -

gﬂ 5000 -~

g 4000 r + R=constant

©3000 - R = changing with distance
2000 -~ + R =0 (without GA)
1000 - ; . E:T(')\l(wnh GA)

o i |

0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Mid-Point (Radius)

(C) 9000
8000 - T,
7000 - pot
o 6000 -
g
gﬂ 5000 -
§ 4000 r + R =constant
“ 3000 R = changing with distance
2000 + R=0 (without GA)
R =0 (with GA)
1000 EATN
0 |

0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Mid-Point (Radius)

(d) 9000
8000 PPT £
.a“”:zg:f,:;‘w”

7000 - S

o 6000 -

g

%5000 -

(=]

§ 4000 1 + R =constant

© 3000 - y R = changing with distance
2000 - // + R =0 (without GA)
1000 f R =0 (with GA)

'y / « EATN
0 tj}’ o | |

0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Mid-Point (Radius)

Figure 3.9: Showing the spatial degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm, where nodes are
introduced (a) randomly, (b) proportional with distance, (c) with distance from the geographic centre
and (d) based on the population of each country.
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Focusing on the degree distributions (shown in Figure 3.8) the synthetic network which
best correlates with the EATN changes depending on the order in which nodes are
introduced to the network. When the nodes are introduced randomly the exponential
network with constant neighbourhood size (blue dots) and the modified scale-free
network (orange dots) show the best correlation with the EATN. However, it should be
noted that the exponential network contains too few mid-degree nodes and the scale-
free network does not form a sufficiently well connected hub node. These two
synthetic networks also show the best correlation with the EATN when the nodes are
introduced proportional to distance and with distance from the geographic centre.
However, it is the exponential network with constant neighbourhood size (blue dots)
which best replicates the topological structure of the EATN when the nodes are
introduced with population; in this case the unmodified scale-free network contains
too many mid-degree nodes. Both the unmodified scale-free network (red dots) and
the exponential network with the changing neighbourhood size (green dots) do not
correlate well with the EATN network for all four node introduction orders (forming
too large a hub and too small a hub node respectively). From these results, it can be
concluded that, in air traffic networks, links must be allowed to form between pairs of
existing nodes as the network ‘grows’ in order for the hub airports to form (i.e. these
networks must include the modification of GA). It can also be concluded that a spatial
component must be included in the network generation algorithm, as the exponential
networks (blue) show a better correlation with the EATN distribution than the
unmodified scale-free network (orange). Although, it is acknowledged that this

difference is slight for all but the population node introduction order.

However, the ability of a synthetic network to replicate the characteristics of EATN
should not be based on topological structure alone; it should be a compromise
between this characteristic and its ability to replicate the spatial distribution of the
EATN (Figure 3.9). Therefore, the spatial degree distribution of the synthetic networks
also needs to be considered. From these spatial distributions it can be seen that the
exponential network with the modification of GA (blue dots) is the most superior at
forming the EATN when the nodes are introduced randomly, but does not replicate the
spatial characteristics of the EATN when the nodes are introduced proportional to

distance and with distance (in these cases it is the unmodified scale-free network
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which best captures the spatial characteristics of the EATN). This difference can be
explained by considering the spatial dispersion of high degree nodes throughout the
network. Figure 3.10 plots the degree of all nodes in the EATN and in the synthetic
exponential networks, with the GA modification, for all four node introduction orders.
In this figure, it can be seen that introducing nodes proportional to distance and with
distance causes too many high degree nodes to be located close to the geographic
centre of the network compared to the EATN. Whereas, introducing nodes randomly
spatially disperses these high degree nodes throughout the geographic region.
However, the best compromise between degree distribution and spatial degree
distribution occurs for this synthetic network (exponential network, with the
modification of GA) when nodes are introduced with population. The reason behind
this correlation is due in part to the ‘rules’ governing the formation of links in the
synthetic network, but also in the specific order in which nodes were introduced to the
network. From Figure 3.10(a, f) it can be seen that there is a correlation between the
location of high degree nodes in the EATN and areas of high population density within
Europe (with the high degree nodes being more likely to be located in a highly
populated country). Therefore, initially introducing one node to each country in order
of population gives the airport in highly populated countries more chances to attract
links from newly opened airports, thereby replicating the correlation between hub
airports and population density. In this synthetic network the size of the
neighbourhood, which forms the best fit to the EATN, is approximately equal to 250km
(2-3 hours driving time) meaning that this is the distance which people are prepared to
travel overland to reach a nearby airport. It can also be concluded that the ‘rules’
governing the formation of links in the exponential network, with a constant
neighbourhood size, are the same as those governing the formation of the EATN; as
such, links must be allowed to form between pairs of existing nodes as the network
‘grows’ to allow the hub airports to form and air routes bound for a hub airport may
divert to a subordinate node, providing that the node is within 250km of the hub

airport.
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§EBszezax

Figure 3.10: GIS generated images showing the location and the degree of nodes (red nodes are high
degree and green are low degree) for (a) the actual EATN and generated networks where the nodes are
introduced (b) randomly, (c) proportional with distance, (d) with distance and (e) with population. Also
showing (f) the population density map for Europe (GfK GeoMarketing 2013).
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These synthetic networks have assessed the ability of the proposed network
generation algorithm to generate synthetic networks as proxies for the EATN; finding
that an exponential network with the GA modification, where nodes are introduced
based on population, is the most suited to replicating the topological and spatial
characteristics of the EATN. However, this study has used the actual airport locations
of the EATN and therefore the synthetic networks generated cannot be considered to
be fully synthetic spatial networks. To overcome this shortfall, the spatial structure of
the network should also be generated, in a similar manner to the networks topological

structure, using a suitable generation algorithm.

It has previously been shown that the geographic distribution of airports within the
EATN can be approximated by a bi-linear distribution (Figure 3.7(a)). Therefore, to
investigate the effect that a generic nodal layout has on the ability of the network
generation algorithm to replicate the topological and spatial characteristics of the

EATN, the spatial distribution of nodes will be replicated using a bi-linear distribution.

To generate this bi-linear distribution of nodes, a distance from the geographic centre
is defined inside which a proportion of the total nodes are randomly placed (by
generating a random distance and bearing from the geographical centre). The
remainder of the nodes are randomly placed in the area between this distance and the
defined spatial boundary of the network. The resulting nodal layout has been shown

in Figure 3.11(a), along with the spatial distribution of nodes Figure 3.11(b).
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Figure 3.11: (a) Simulated random bi-linear nodal layout for the EATN, where the black dots represent
the nodes and the grey line the spatial boundary of the network. (b) A comparison for the spatial
distribution of nodes for the EATN (black) and the bi-linear nodal layout shown in (a) (grey).
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This synthetic nodal layout has been used to generate the same four different types of
synthetic network, for three node introduction orders (as this is a synthetic nodal
layout it is not possible to introduce nodes in order of population), to determine which
can best replicate the topological and spatial structure of the EATN. The degree and
spatial degree distributions for these synthetic networks can be seen in Figure 3.12

and Figure 3.13 respectively.
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Figure 3.12: Showing the degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm for a bi-linear nodal
layout; where nodes are introduced (a) randomly, (b) proportional with distance and (c) with distance
from the geographic centre. In the legend, R refers to the size of the neighbourhood radius and GA
refers to the modification of Guimera and Albert (2004).
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Figure 3.13: Showing the spatial degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm for a bi-linear nodal
layout; where nodes are introduced (a) randomly, (b) proportional with distance and (c) with distance
from the geographic centre. In the legend, R refers to the size of the neighbourhood radius and GA
refers to the modification of Guimera and Albert (2004).

Considering the degree distributions for the synthetic networks (Figure 3.12), it can be
seen that the exponential network with the constant neighbourhood (blue dots) shows
the best correlation with the distribution for the EATN (black), for all three node
introduction orders. This is closely followed by the scale-free network with the GA
modification (orange dots), however this network does not have a large hub airport
unlike the exponential network (although this is difficult to see in Figure 3.12, due to

overlapping results, but has a degree of 120 in Figure 3.12(a)). The exponential
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network with the neighbourhood which is proportional to the distance from the
geographic centre (green dots) tends to form a hub node with a degree which is larger
than that of the EATN and is subsequently lacking in mid-degree nodes. The
unmodified scale-free network (red dots) includes too many low degree airports and
does not form a hub airport. Therefore it can be concluded that, in a similar manner to
using the actual EATN airport locations, links must be allowed to form between pairs of
existing nodes as the network ‘grows’ in order for the hub airports to form (i.e. these
networks must include the modification of GA) and that a spatial component must be

incorporated in the decision to form an air route (rather than using only degree).

The degree distributions for the four different networks alter slightly for the three
different node introduction orders; although, the exponential network with a constant
neighbourhood remains the best fit for the EATN distribution. However, the spatial
degree distribution is again significantly affected by the order in which nodes are
introduced (Figure 3.13). Introducing nodes randomly to the network creates the best
fit spatial degree distribution with the EATN distribution for all four types of synthetic
network (apart from the area close to the geographic centre of the network), with the
exception of the exponential network with changing neighbourhood size. Whereas,
introducing nodes proportion to distance and with distance creates a poor fit for the
EATN for all four types of synthetic network, particularly in the area close to the
geographic centre of the network. Figure 3.14 shows the bi-linear nodal layout, and
indicates the degree of each node, for the exponential networks, with a constant
radius for all three node introduction orders. From this figure, it can be seen that
introducing nodes with increasing distance from the geographic centre causes hub
airports to form close to the geographic centre of the network; whereas introducing
nodes randomly to the network distributes the high degree nodes throughout the
spatial area. This is similar to the distributions obtained using the actual EATN airport
locations for the same node introduction orders (Figure 3.9) and again demonstrates
the impact that node introduction order has to the spatial characteristics of the

generated network.
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(a) (b) (c)

Figure 3.14: Showing three nodal layouts where the nodes have been introduced with (a) distance, (b)
proportional with distance and (c) randomly. The black dots inculcate nodes with a high degree and
light grey indicate those with a low degree and the black line indicates the circular spatial boundary of
the network.

It can therefore be concluded that for a synthetic bi-linear nodal distribution the
exponential network, with a constant neighbourhood size, and including the GA
modification, is the best fit synthetic network for the EATN data. This is the same
network which best replicated the topological and spatial structure of the EATN when
the actual airport locations were used and again demonstrates that links must be
allowed to attach between pairs of existing nodes in the network as the network
‘grows’ and the decision to form an attachment to an existing airport must be based
on spatial location as well as degree. The value of neighbourhood in these exponential

networks is again equal to approximately 250km (or 2-3 hours driving time).

Whilst these networks have been generated using a synthetic nodal configuration, and
can therefore be considered fully synthetic spatial networks, the accuracy of the bi-
linear distribution to model the distribution of airports in the EATN can be questioned.
In order to generate a good fit for both the degree and spatial degree distributions for
the synthetic networks, the accuracy of this bi-linear distribution needed to be
compromised (which can be seen in Figure 3.11(b)) and is therefore not the best fit for
the data. It can also be seen from Figure 3.15 that the EATN can easily be fitted inside
a circular boundary, but that the bi-linear configuration (shown in Figure 3.11 (a)) is
visually not a good fit for this data (primarily due to the distribution of land mass). In
order to improve the accuracy to which the spatial configuration of airports is
modelled in the EATN a more sophisticated method of assigning nodal locations is

needed.
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Figure 3.15: Plotting the airports of the European air traffic network within a circular spatial boundary.

A new algorithm is developed, which can generate proxy nodal configurations for real
world nodal layouts (including the EATN). To achieve this, the characteristics of two
real world networks are initially investigated; this ensures that variables to control
different characteristics are incorporated into the algorithm. The locations of locations
of Wal-Mart and Target stores over the same study area (USA) are investigated, as
these two datasets are used as they are among the most documented, with previous
studies analysing the spatial diffusion of stores (Graff and Ashton 1993; Holmes 2011)
and the contrasting corporate strategies (Graff 1998). These two datasets were used
rather than the EATN, or other air traffic network, as the date at which an airport
opened is difficult to determine (as previously discussed), whereas the opening dates
for stores in these two datasets is well defined. The growth of these two datasets has
also been well documented, with many freely available videos showing the locations of
stores opening over a given timeframe (FlowingData 2009; FlowingData 2010). Figure
3.16 shows the spatial layout of the Wal-Mart (3176 stores) and Target (1734 stores)
datasets, along with their associated spatial distributions (both of these datasets were

obtained from edigitalz.COM (2012)).

Page 114



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

3500
(a) (b)
3000 - e
G
B oy o @ 2500
e g
& o
PRI Z 2000
E pre
e . <]
3. -
B 5 2 1500
& ) 5
L5 o0 Z 1000
[ Po O e
‘ﬁ;. b 500 | + Wal-Mart Node Locations
0
0% 20% 40% 60% 80% 100%
%age Distance from Geographic Centre
2000
(c) (d)
F 1500 /
. 3
L d °
] o
-z = z
b
: S 1000 |-
- 1Y o
A E-
€, £
v 500 |
ﬁ'. - « Target Node Locations

0% 20% 40% 60% 80% 100%
%age Distance from Geographic Centre

Figure 3.16: Showing (a) the spatial layout of nodes in the Wal-Mart dataset and (b) the associated
spatial distribution; (c) showing the spatial layout of nodes for the Target dataset and (d) the associated
spatial distribution. The geographic centre for the Wal-Mart dataset is located approximately 130km
North-East of St Louis and for the Target dataset is located 250km West of St Louis. The results have
been shown in terms of the percentage distance from the geographic centre due to enable a direct
comparison between the two datasets (as they have a different maximum radius).

From Figure 3.16(a, c) it can be seen that the two datasets are visually very different.
The Target dataset appears to have much smaller and denser clusters of stores than
those of Wal-Mart, which, in addition to the clusters of stores, has an even spread of
stores over the East of the country. This visual difference in clustering of the two
datasets can be confirmed by using the Nearest Neighbour Analysis developed by
Ebdon (1977). The Nearest Neighbour Index either indicates: a completely clustered
nodal pattern, where the nodes lie in the same location on top of each other
(returning a value of 0.00); a completely dispersed pattern, where there is an equal
distance between all nodes (returning a value of 2.15); or a random arrangement of

nodes (returning a value of 1.00) (as shown in Figure 3.17).
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Completely Clustered Random Completely Dispersed

Figure 3.17: Showing the extreme values for the Nearest Neighbour Index developed by Ebdon (1977),
where 0 indicates a completely clustered layout, 1.00 a random layout and 2.15 a completely dispersed
layout.

The following example demonstrates how the Nearest Neighbour Index is calculated,

using an example nodal configuration, shown in Figure 3.18.
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Figure 3.18: A nodal distribution used to show an example of the Nearest Neighbour Index calculation.
The nodes are represented by the black dots (with their node numbers), the grey arrows indicate the
nearest neighbour of each node (determined by distance) and the grey dotted box defines the spatial
boundary of the nodes.

The Nearest Neighbour Index, R, is calculated using Equation 3.1; and is simply a ratio
between the observed mean nearest distance between the nodes and the expected
mean nearest neighbour distance for a fully dispersed nodal layout (with the same

number of nodes and area).

Page 116



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

d
p = Zoss

== 3.1
dRAN

The expected mean nearest neighbour distance for a fully dispersed nodal layout

(dran) is given by equation 3.2, where p is the density of the whole nodal layout.

- 1
dran = —F—
2\/5 3.2

For this example (Figure 3.18), dg4yis calculated as:

— 1 1
doan = = = 0.894
RAN 2\/5 2./(5/16) 33
The observed mean nearest neighbour distance (dygs) is calculated using Equation 3.4,
where d is the nearest neighbour distance for each node and n is the number of nodes

in the layout.

xd

&OBS = T 3.4

The nearest neighbour, for each node, has been shown diagrammatically in Figure 3.18
(depicted using the grey arrows, pointing from a node towards its nearest neighbour)

and also shown in Table 3.1, along with the calculated separation distance (d).

Table 3.1: Calculation of the Nearest Neighbour Distance

Nearest Nearest neighbour
Node
Neighbour distance (d)
1 2 1.414
2 1 1.414
3 2 2.828
4 5 1.414
5 4 1.414
n=5 3d=8.484

The observed mean nearest neighbour distance (dygs) can therefore be calculated

using Equation 3.4 as:
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_ Yd 8484
dOBS = T = T = 1 697 3.5

Nearest Neighbour Index, R, can now be calculated, using Equation 3.1, as:

d 1.697
=955 " _1.898 3.6

R=-
dgay  0.894

From the result of the Nearest Neighbour Analysis it can be seen that the example

nodal layout is between the random and dispersed indicators (Figure 3.17).

Applying this analysis to the Wal-Mart and Target datasets (Figure 3.16), returns a
value of 0.67 for Wal-Mart and 0.43 for Target, confirming that the Target dataset has

denser clusters of stores.

The spatial distributions for these nodal layouts (Figure 3.16(b, d)) also show that there
are differences between the two datasets. The Wal-Mart stores form a distinct bi-
linear distribution due to the area of high nodal density located in Eastern USA, which
is also the location of the geographic centre (approximately 130km North-East of St
Louis). Whereas the Target stores form a linear spatial distribution, that is affected by
the location of the individual clusters in the network (causing a sharp increase in the

number of stores for a small change in the distance from the geographic centre).

In order to generate proxies for real world networks, the algorithm must be able to not
only generate these large scale distributions, but also replicate the smaller scale
attributes of the individual clusters. And as these are dynamic networks (i.e. they
‘grow’ over a given timeframe), the growth of these individual clusters must also be
considered. Three clusters have been isolated from the Wal-Mart dataset (by visual
inspection) and are shown in Figure 3.19. It can be seen that each cluster is
approximately circular in shape and as such the area covered by each cluster has been
calculated by setting the oldest store as the circle midpoint and then calculating the
radius of the circle as the distance from this store to the furthest store. This has then
been used to calculate the radius of the cluster at each timestep (i.e. from the initial
store opening to the final store opening in each cluster) and is also shown in Figure
3.19. From this figure, it can be seen that for the first few stores added to each cluster
the radius increases rapidly, but then only increases slightly, if at all, with further

opened stores. This is due to the opening of one store close to the outer boundary of
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the cluster in an early timestep. The remaining stores then open within this boundary,
meaning that the radius of the cluster does not change, or changes only marginally,

after a few stores have been opened.
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Figure 3.19: Showing three individual clusters from the Wal-Mart dataset: (a) Denver, (b) Houston and (c)
Minneapolis, where the dots show the location of stores. The area of each cluster is defined as a circle,
where the first store opened is the midpoint (i.e. the first node introduced) and the radius extends from
this point to the store furthest from the centre. Graphs showing how the radius of each cluster changes
with each opened store have been plotted for each cluster: (e) Denver, (f), Houston and (g) Minneapolis.

From the analysis of these two real world datasets it can be concluded that, even over
the same study area, real world nodal layouts can show different characteristics. The
Target dataset shows much denser clusters of stores than the Wal-Mart dataset, which
also includes a large area of spatially dispersed stores over Eastern USA. Therefore, to
be able to model a range of real world networks the algorithm must be able to
generate synthetic networks with a different number, location and density of clusters
of nodes. The algorithm must also be able to generate individual clusters of nodes

where the density of the cluster increases linearly with the addition of new nodes.

The algorithm follows a similar framework to the cellular automata models, outlined in
Chapter 2.8; however, this algorithm does not require the input of inaccurate or
potentially unobtainable historical datasets, instead all inputs are observed from the
present-day layout of the network. Following cellular automata, the algorithm starts
with the input of a set of initial conditions from which the nodal layout forms over a
given timeframe. This input includes the definition of the spatial boundary of the

network and the location of a set of seed nodes (which form a small proportion of the
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total number of nodes in the network). However, unlike cellular automata models the
location of these seed nodes are not determined from historical data sets (using the
first settlements in the study area), but are based upon the identification of clusters of
nodes in the present-day dataset. These seed nodes are allocated an initial radius
value, which are allowed to change over time, negating the need for regular inputs of
historical data (e.g. transportation layers). This radius value is allocated to each node
based upon the observed density of the cluster in the present-day network. Using
these inputs the network is allowed to ‘grow’ and the remaining nodes are added
individually to the network at each ‘timestep’ until the total number of nodes is

reached.

At each timestep the algorithm determines if an added node will be located within the
radius of one of the individual clusters or will be located outside the influence of all of
the clusters, depending on a user specified probability value. This probability value is
chosen so that the Nearest Neighbour Index of the synthetic nodal layout is close to
that of the actual nodal layout. By allowing a small proportion of the total number of
nodes in the network to be located outside the cluster radii, a rural environment over
the whole of the spatial boundary is represented. If all nodes are allowed to form
outside the influence of the cluster radii (i.e. the probability is set at 1) the resulting
nodal layout is uniform with area. However, if the added node is to be located inside
the radius of a cluster, then this node is ‘attracted’ to the different individual clusters
based upon a calculated probability value. This probability value is dependent upon
the density of the cluster and is calculated using Equation 3.7. The probability is not
fixed for the whole analysis but rather is recalculated after each node is added. The
probability value encompasses the idea that a city, with a high population density, can
be expected to have more nodes (representing train stations, for example) than a rural

community which has a significantly lower population density.

number of nodeScLyster
P(cluster) = , 3.7
radiusciysrer

With the addition of a new node to the cluster, the radius of the cluster is allowed to
expand outwards, in order to simulate the ‘growth’ pattern of the individual clusters in
the network as shown by the real world networks (Figure 3.19). This expansion is

logarithmic, meaning that for only a few added nodes the radius of the cluster
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increases significantly, but soon reduces to only increasing marginally with further
added nodes and been plotted on Figure 3.20 and is calculated using Equation 3.8. The
data for the expansion of the Denver cluster in the Wal-Mart dataset is also included in
Figure 3.20, where it can be seen that the logarithmic expansion is a good proxy for the

real-world data.
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Figure 3.20: Showing the relationship between the number of nodes in an individual cluster and the
resulting change in radius of that cluster (grey line) used in the algorithm and the actual relationship
between these two variables for the Denver cluster in the Wal-Mart dataset (black dots).

Radius = Cp (In(number of nodes) + 1) 3.8

The algorithm also incorporates variables to alter the density of the network as a
whole and that of individual clusters (relative to each other). The Cp term in Equation
3.8 controls the density of the whole nodal layout (i.e. the global density) and has the
same effect to each individual cluster of nodes. Its effects can be seen visually in
Figure 3.21, where two clustered layouts have been generated using the same initial
inputs (i.e. seed location, initial radius size) but a different Cp value. The first nodal
layout (Figure 3.21(a-d)) has a Cp value of 200 and the second layout (Figure 3.21(e-h))
has a Cp value of 400. It is worth noting that these Cp values are relative and
dimensionless. It can be seen that the larger Cp value results in a nodal layout that has
visually less dense clusters than that of the smaller Cp value. Applying the Nearest

Neighbour analysis to these two networks, returns an Index value of 0.62 for the
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network with a Cp value of 200 and an Index of 0.94 for the network with a Cp value of
400; confirming that a larger Cp value results in a network with less dense clusters of

nodes.

(a)

(e)

Figure 3.21: Showing the progression of the clustering algorithm for two generated networks ((a)-(d)
and (e)-(h)) with different Co values (200 and 400 respectively). Where the black dots represent the
starting nodes and the grey dots show the added nodes, the outer circle defines the spatial boundary of
the network. (a) and (e) show the seed nodes (all of the starting nodes have the same radius); (b) and (f)
show the layout after 150 nodes have been added; (c) and (g) show the layout after 350 nodes have
been added; (d) and (h) show the final nodal layout.

Whilst the Cp term alters the density of the whole nodal layout and has the same effect
to each individual cluster of nodes, the density of these individual clusters, relative to
each other, can also be altered by changing the initial radius assigned to each seed
node. This reflects the different densities of real world clusters of nodes, which can be
seen from Figure 3.19. Assigning a seed node a large radius results in a low density
cluster (simulating the density of train stations in a rural environment, for example),
whilst a small radius results in a dense cluster (for example, simulating the density of
housing in an urban setting). Figure 3.22 shows an example nodal layout, with 200
nodes, generated using 3 starting nodes with different radii values. The starting node
in the top left of the spatial layout has the largest radius (with a value of 800) and
forms the least dense cluster. Whereas, the bottom right cluster has the smallest
radius (with a value of 10) and forms the densest cluster. The central starting node has

a radius value between these two extremes and therefore has a density value between
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the other two starting nodes. Again, it is worth noting that in a similar manner to the

Cp value, these values are relative and dimensionless.
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Figure 3.22: Showing three seed nodes (black) with different radii values and the subsequent added
nodes (grey). The top left starting node has a radius value of 800, the central starting node has a radius
of 500 and the bottom right node has a radius of 10.

The clustering algorithm has initially been verified by generating proxies for the Wal-
Mart and Target datasets (previously shown in Figure 3.16). These proxies were
generated by defining 30 seed nodes for the Wal-Mart dataset (less than 1% of the
total number of stores) and 48 seed nodes for the Target dataset (3% of the total
number of stores). The location of these seed nodes was determined by visually
identifying clusters of nodes in both networks (using Figure 3.16(a, c)) and these seed
nodes were given one of three radii values. A proportion of nodes were allowed to
form outside the influence of the clusters in both networks (10% of nodes for the Wal-
Mart dataset and 15% of nodes for the Target dataset). The resulting spatial
distributions for these proxy networks have been shown, and compared to the real

world networks, in Figure 3.23.
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Figure 3.23: Showing the generated spatial distribution of the nodes (grey) compared to the actual
distribution of stores (black) for (a) Wal-Mart and (b) Target.

It can be seen from Figure 3.23, that both proxy networks have similar distributions to
their real world counterpart, with the exception of the location of a few clusters in the
Target dataset (around 40% of the distance from the geographic centre). These proxy
networks also have approximately the same Nearest Neighbour Index as the real world

networks as shown in Table 3.2.

Table 3.2: Showing the nearest neighbour index values for the actual and proxy Wal-Mart and Target
datasets.

Nearest Neighbour Index
Dataset
Actual Dataset Proxy Nodal Layout
Wal-Mart 0.67 0.68
Target 0.43 0.47

The individual clusters in the synthetic networks also show similar characteristics as
those of the real world networks, but this is not replicated exactly. For example,
Figure 3.24 plots how the radius of the Wal-Mart Minneapolis cluster and its synthetic
counterpart changes with opened stores. From this figure it can be seen that the
radius of the actual cluster increases at a higher rate than that of the synthetic cluster
and that the synthetic cluster also contains more nodes (at the end of the algorithm).
This difference is due, in part, to the difficulties in defining individual clusters of nodes
in the actual dataset. Figure 3.25 shows the Wal-Mart dataset and highlights the
visually defined boundary of the Minneapolis cluster (red line). This line defines a

dense area of nodes, but it is difficult to determine if this is the extent of the whole
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cluster or if the less dense area (defined by the purple line) should also be included.
There is also an additional complication in identifying individual clusters of nodes, as
there can be ‘overlapping’ between nodes of different clusters, particularly for those in
close spatial proximity. For the synthetic networks it is possible to establish exactly
which nodes form part of each cluster (even if the radius value of two seed nodes
overlaps), but this cannot be easily determined for the actual datasets. This can lead
to differences between the actual and synthetic networks when viewed on a small
scale, but does not impact upon the ability of the algorithm to replicate the spatial
configuration of nodes within the network (as shown by the spatial distributions,

Figure 3.23).
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Figure 3.24: Showing (a) one cluster from the proxy Wal-Mart network, where the seed node is shown
as a black dot, the added nodes as grey dots and the spatial boundary is indicated by the black line; and
(b) showing how the radius of the cluster changes with added nodes.
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Figure 3.25: Showing the location of stores in the Wal-Mart dataset and highlighting two possible
boundaries for the Minneapolis cluster.
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After validating the ‘clustering’ algorithm, by generating synthetic configurations for
the stores in the Wal-Mart and Target datasets, a range of synthetic nodal
configurations for the EATN have been generated (Figure 3.26). To generate these
configurations, 13 seed nodes were defined and assigned one of three radii values (10,
50 or 80). In this algorithm the initial nodes (and their radius values) were chosen in
part to approximate the land mass of Europe, and as such, no nodes were allowed to
form outside the influence of these clusters. Four additional seed nodes were also
used to define the population mass in around Central Europe (all with a radius value of
50). The spatial distribution for the EATN and one of the synthetic nodal
configurations have been plotted in Figure 3.26, where it can be seen that the

synthetic network is a good proxy for the actual dataset.
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Figure 3.26: (a) Simulated clustered nodal layout for the EATN, where the black dots represent the
initial nodes, the grey dots the added nodes and the black line the spatial boundary of the network. (b)
A comparison for the spatial distribution of nodes for the EATN (black) and the clustered nodal layout
shown in (a) (grey).

To assess the ability of the network generation algorithm to replicate the topological
and spatial structure of the EATN, the four different types of synthetic network and
three node introduction orders, as previously used to generate the networks with a bi-
linear spatial configuration of nodes, have been used. The degree and spatial degree
distribution for these synthetic networks have been shown in Figure 3.27 and Figure

3.28, respectively.
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Figure 3.27: Showing the degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm with a clustered nodal
layout; where nodes are introduced (a) randomly, (b) proportional with distance and (c) with distance
from the geographic centre. In the legend, R refers to the size of the neighbourhood radius and GA
refers to the modification of Guimera and Albert (2004).
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Figure 3.28: Showing the spatial degree distribution for the exponential (blue, green) and scale-free
(red, orange) networks generated using the synthetic network generation algorithm with a clustered
nodal layout; where nodes are introduced (a) randomly, (b) proportional with distance and (c) with
distance from the geographic centre. In the legend, R refers to the size of the neighbourhood radius and
GA refers to the modification of Guimera and Albert (2004).

From the degree distributions and spatial degree distributions, shown in Figure 3.27
and Figure 3.28 respectively, it can be seen that the order in which nodes are
introduced to the networks again affects both of these distributions. Introducing the
nodes proportional with distance results in the formation of the best fit spatial degree
distributions (when considering all network types), but compromises the degree
distribution of the same networks. Whereas, introducing the nodes randomly can

generate a ‘lower’ spatial degree distribution (meaning that there are too few high
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degree nodes around the geographic centre of the network) and introducing the nodes
with distance generates a ‘higher’ spatial degree distribution (meaning that there are

too many high degree nodes around the geographic centre of the network).

It can be see that the best combination of degree distribution and spatial degree
distribution occurs for the exponential network with a constant neighbourhood size
(blue dots) when the nodes are introduced randomly to the network (Figure 3.27(a),
Figure 3.28(a)). This is closely followed by the scale-free network, which includes the
modification of GA (orange dots); this network produces a good fit for the spatial
degree distribution (when nodes are introduced both randomly and proportional with
distance), however these networks lack hub airports and include too many low degree
nodes. In contrast, the exponential network with a changing neighbourhood size
creates hub airports that have too high a degree. The unmodified scale-free network
is also not a good proxy for the EATN, as the hub airports do not have a sufficiently

high degree and the network includes too many low degree nodes.

These results show the same trend as those previously analysed for networks
generated with both the actual EATN airport locations and the bi-linear configuration
of nodes. Therefore, it can be concluded that an exponential network, with constant
neighbourhood size, and including the GA modification, is the best fit synthetic
network for the EATN data (replicating both the topological and spatial characteristics
of the network). As such, it can be concluded that links must be allowed to attach
between pairs of existing nodes in the network as the network ‘grows’ and that the
decision to form an attachment to an existing airport must be based on spatial location

as well as degree.

3.2.1: HAZARD TOLERANCE OF THE SYNTHETIC NETWORKS

The synthetic EATN networks will be subjected to a range of hazards to assess their
hazard tolerance and determine if the vulnerability shown by the EATN to the
Eyjafjallajokull event is characteristic of the network class and/or spatial degree

distribution or if it is unique to the EATN.
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The synthetic networks with the bi-linear and clustered nodal layouts will be subjected
to a simulated EATN event (as the exact airspace closures cannot be mapped onto
these networks); whilst the synthetic networks generated using the actual nodal
locations will be subjected to the actual Eyjafjallajokull event. All networks (the actual
EATN and the three synthetic networks) will also be subjected to random, but spatially
coherent, hazards to assess their hazard tolerance to other locations of the spatial
hazard. Random benchmark networks will also be generated with the same number of
nodes and links as the actual EATN, and the synthetic networks, and are generated for
both a random nodal layout (forming the benchmark in Figure 3.2(b)) and the same
configuration as the actual EATN. These random networks will be subjected to the
same hazards as the EATN (the actual Eyjafjallajokull event for those with the actual
nodal locations and the simulated Eyjafjallajokull event for the random nodal locations)

to form a benchmark for resilience for each hazard.

Ten synthetic networks for each nodal layout have been generated using the network
generation algorithm developed in the previous sub-chapter. These networks all have
a constant neighbourhood size (equivalent to 250km) and include the modification of
GA. The nodes were introduced with population for the actual EATN nodal
configuration and randomly for the two synthetic nodal configurations. The resulting
degree and spatial degree distributions are similar to those previously generated in
this Chapter (Table 3.3) It is worth noting, that for the synthetic networks with the bi-
linear and clustered nodal layouts a different nodal layout (but one that has the same

nodal distribution) is used to generate each of the 10 synthetic networks.

Table 3.3: Showing the relevant Figures for the degree and spatial degree distributions for the
generated networks.

Nodal Configuration Degree Distribution Spatial Degree Distribution
Actual EATN Figure 3.8(d) Figure 3.9(d)
Bi-Linear Figure 3.12(a) Figure 3.13(a)
Clustered Figure 3.27(a) Figure 3.28(a)

The initial test of hazard tolerance determines if the vulnerability shown by the EATN
to the Eyjafjallajokull event is characteristic of its network class, or is unique to the

EATN. This is achieved by subjecting the synthetic networks, generated using the
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actual nodal locations, to the Eyjafjallajokull event (Figure 3.1). The results of this
analysis are shown in Figure 3.29 and are also compared to two random networks, one
has the same nodal locations as the EATN and the other has random nodal locations.
The results of this analysis show that the synthetic networks are in good agreement
with the actual EATN, with the exception of the small hazard areas. This is due to the
synthetic networks having the same degree and spatial degree distributions as the
EATN, but not necessarily the exact replication of the degree of each node. For
example, Gatwick (UK) and Turany (Czech Republic) are both 648km from the
geographic centre of the network, Gatwick has a degree of 107 and Turany a degree of
2, exchanging these two degrees will result in the same degree and spatial degree
distribution (as they are the same distance from the geographic centre); however,
there will be a slight difference in the hazard tolerance to this spatial hazard, as they
have different bearings from the geographic centre. If a large number of synthetic
networks were generated (say 1000), then a small number would replicate the EATN
exactly. However, due to the random elements in the generation of these proxy
networks it is possible that some networks will have the same distributions but
different placement of the high degree nodes, therefore, causing differences in the
hazard tolerance (particularly for small spatial hazards). This effect is also observed in

results presented later in this thesis and for clarity will be referred to as ‘localisation’.

Plotting the results in terms of the percentage area (airspace) removed (Figure 3.29(b))
shows that both the EATN and synthetic networks have approximately the same
hazard tolerance as the random network with the same nodal locations. However,
they are more vulnerable than the random networks with random nodal locations. It
can therefore be concluded that, for this location of spatial hazard, it is the spatial
configuration of nodes within the EATN which causes the inherent vulnerability in the
network, rather than solely the placement of the high degree nodes. Although, this is
not always the case, as for some locations of the spatial hazard the EATN and the
synthetic networks are more vulnerable than the random network with the same

nodal locations.
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Figure 3.29: The actual EATN (black dots) and the average of 10 synthetic EATN networks (blue dots)
subjected to the actual Eyjafjallajokull event, plotting the results in terms of percentage links removed
(i.e. percentage of closed air routes) and (a) percentage of nodes removed (i.e. percentage of closed
airports) and (b) percentage area removed (i.e. proportion of closed air space). Also shown are two
random networks, one with the actual EATN nodal locations (grey dots) and the other with random
nodal locations (grey line).

To further confirm that the vulnerability of the EATN is attributed to the unique nodal
layout of the network, the synthetic networks with the bi-linear nodal layout and
clustered nodal layout are subjected to a simulated Eyjafjallajokull event. These
networks have the same nodal configuration as the EATN (Figure 3.7(a)), but a
different nodal layout and are also enclosed in a circular boundary to represent the
extent of the airspace. To simulate the Eyjafjallajokull event, a circular hazard will be
placed at the edge of the spatial boundary and allowed to grow outwards until the

whole of the network area is covered (Figure 3.30).

Page 132



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

Figure 3.30: Showing three sizes of the simulated Eyjafjallajokull event, in which the hazard starts at the
spatial boundary of the network (black line) and grows outwards until the whole network area is
covered (i.e. from (a) to (b) to (c)).

The results for these simulations have been compared to the actual Eyjafjallajokull
event for the EATN and to the random network, with a random nodal layout in Figure
3.31. Due to the progressive nature of the simulated Eyjafjallajokull hazard (i.e. it
‘grows’ outwards) the results can be plotted as a line (produced from 10 simulations of
the spatial hazard for each nodal configuration), rather than the individual points used
for the actual Eyjafjallajokull event. Plotting the results in terms of the percentages of
nodes and links removed shows that the results (for both the bi-linear and clustered
nodal layouts) are in good agreement with the actual Eyjafjallajokull event and show
approximately the same hazard tolerance as the random networks. This can be
attributed to the random order in which nodes were introduced to the synthetic
networks, causing the high degree nodes to be dispersed throughout the network
(Figure 3.14(c)). Therefore, when one high degree node is removed from the network
many lower degree nodes are also removed, negating the impact of the removal of the

high degree node.

However, when the results are plotted in terms of the percentages of removed area
and links both the synthetic networks and the actual EATN have a different hazard
tolerance than the random networks with a random nodal layout (Figure 3.31(b)). For
small sizes of the spatial hazard, up to 20% of the area, the synthetic networks are
more resilient than the random networks and for hazards larger than this 20% network
area they are more vulnerable. The results showing the percentage of nodes removed
(Figure 3.31(a)) shows that this sharp increase in vulnerability is not due to the
removal of the high degree nodes (hub airports), but is instead due to the removal of a

large percentage of nodes for a small increase in the hazard size. Therefore, it can be
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concluded that it is the nodal layout of the EATN which renders it vulnerable to larger
sizes of the Eyjafjallajokull event spatial hazard. However, as the majority of nodes are
located close to the geographic centre of the network, the networks are resilient to
hazards which remove the area close to the spatial boundary of the network (i.e. small

sizes of the Eyjafjallajokull event).
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Figure 3.31: The actual EATN (black dots) subjected to the Eyjafjallajokull event and the average of 10
synthetic networks for both the bi-linear (light blue line) and clustered nodal layouts (dark blue line),
subjected to a simulated Eyjafjallajokull event (Figure 3.30). Also showing one random network with
random nodal locations (black line). The results are plotted in terms of the percentage of links removed
and the percentage of (a) nodes and (b) area removed.

To determine the hazard tolerance of the EATN, and the synthetic networks, to other
random (but coherent) spatial hazards, the networks are subjected to 20 random
hazards (of different sizes and locations). Typical positions, and sizes, of the random
hazards have been shown in Figure 3.32 to show their generic shape. Unlike the

simulated Eyjafjallajokull event, these hazards do not ‘grow’ to cover the whole of the
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spatial area of the network. They are one size only and provide a ‘snapshot’ view of the
hazard tolerance; therefore, the results are plotted as a series of points and not as a
line. To generate these hazards a random x- and y-coordinate are generated, along
with a random radius. The hazards have been applied initially to the actual EATN and
to the synthetic networks with the same nodal locations as the EATN. These hazards
have then been translated onto the synthetic nodal layouts, with a different
coordinate system (as they are not located on the curved surface of the Earth). Due to
the different co-ordinate systems used it is not possible to replicate the hazard exactly;

however, the same distance and bearing from the geographic centre of the network is

maintained and therefore the effect to the analysis is deemed to be minimal.

Figure 3.32: Showing three locations and sizes of the simulated random spatial hazard, the centre of the
hazard is a randomly generated point within the spatial boundary of the network and has a randomly
generated radius value. Unlike the simulated Eyjafjallajokull event (Figure 3.30), these hazards do not
‘grow’ outwards.

The hazard tolerance of the EATN and its synthetic counterparts are shown in Figure
3.33. The results for the synthetic networks are in good agreement with the EATN
(although there is a reasonably large scatter) for the majority of the random hazards,
with a few exceptions, which tend to occur when the hazard size is small. For example,
there are a few positions of the random hazard to which the EATN is resilient
(removing between 10% and 30% of the nodes, Figure 3.33(a)), which are not
replicated by the synthetic networks. This is due to the synthetic networks replicating
the degree and spatial distributions of the EATN, but not necessarily the exact degree

of each node, as previously discussed.
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Figure 3.33: The actual EATN (black dots) subjected to a random spatially coherent hazard and the
average of 10 synthetic networks for the bi-linear (red dots), clustered (red dots) and actual (grey dots)
subjected to the same random spatially coherent hazards. Due to the differences in the co-ordinate
systems there are slight variations in the percentage area calculated between the actual and synthetic
networks (i.e. the actual network is on a curved surface and the synthetic networks are on a flat surface).

There is a significant difference in the perceived hazard tolerance of the EATN, and the
synthetic networks, when the results are plotted in terms of the percentage area
removed rather than the percentage nodes removed. For example, it can be seen
from Figure 3.33(b) that there are four sizes of the spatial hazard (around 10-15% of
the area removed) to which the EATN shows a different hazard tolerance from the
synthetic networks and indeed the synthetic networks show a different hazard
tolerance to each other (ranging from 10% to 53% links removed for these four
hazards). This change in hazard tolerance can be attributed to the location of the
spatial hazard over the network. Figure 3.34 plots these four positions of the spatial

hazard over the actual EATN and from this figure it can be seen that two positions of

the spatial hazard occur close to the edge of the airspace (Figure 3.34(a, d)). Due to
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the spatial distribution of nodes in the network, hazards located close to the edge of
the airspace remove fewer nodes than those located close to the geographic centre of
the network. Therefore, when the results are plotted in terms of the percentage area
and links removed there is a significant difference between the hazard tolerance of the
EATN for these four random hazards (Figure 3.33(b)), which is not evident when
plotting the percentage of nodes and links (Figure 3.33(a)). The hazard tolerance of
the actual EATN is closely replicated in the synthetic networks with the same nodal
locations, but not in the networks with the synthetically generated nodal layouts. This
is due to the synthetic nodal configurations having the same spatial distribution of
nodes as the EATN, but not the exact placement of nodes, causing the ‘localisation’
effect as previously discussed. It can therefore, be concluded that it is the
combination of hazard size and location which affects the hazard tolerance of a

network.
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Figure 3.34: GIS generated impacts showing four positions of the random spatial hazard over the EATN,
with approximately the same hazard area (around 10%) where the airports are shown as green dots, the
weighted geographic centre is shown as a red dot, the FIRs are indicated by the black lines, the centre of
the random spatial hazard is shown by a black dot and the shaded blue circle indicates the size of the
hazard. It is worth noting, that only the area of the hazard which lies within the FIR of the EATN is
considered as part of the hazard area.

To determine the effect of removing the area of high density nodes around the
geographic centre of the network a further spatial hazard is used - the ‘central attack’
spatial hazard, shown in Figure 3.36. In this assessment of hazard tolerance, the
centre of the hazard is fixed on the geographic centre of the network and the hazard is
allowed to grow outwards from this point to the spatial boundary of the network (i.e.
the extent of the airspace). Unlike the simulated Eyjafjallajokull event, the centre of

the hazard is fixed as the hazard increases in size.
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Figure 3.35: Showing three sizes of the simulated ‘central attack’ spatial hazard, in which the hazard
starts at the spatial centre of the network and grows outwards until the whole network area is covered
(i.e. from (a) to (b) to (c)).

This hazard has been applied to the actual EATN only and the results compared with
those for the actual Eyjafjallajokull event and the random network, with random nodal
layout (Figure 3.36). From these results it can be seen that removing the spatial area
around the geographic centre of the hazard has a devastating effect to the EATN; when
the hazard is only 5% of the network area over 40% of the links have been removed
(this compares to a removal of less than 10% of links in the random network, for the
same hazard size). Therefore, spatial hazards which remove the area of high nodal
density around the geographic centre will render the EATN vulnerable and
demonstrates that the actual EATN is vulnerable not only to the Eyjafjallajokull event,
but also to other locations of a spatial hazard. For example, winter storms have
caused disruption to air travel within Europe in recent years, with an event in 2010
causing the cancellation of 30% of flights from Orly and Charles de Gaulle airports in
Paris and ‘severe restrictions’ to the number of flights leaving London Heathrow (Jolly

and Werdigier 2010).
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Figure 3.36: Showing the actual EATN subjected to the actual volcanic event (black dots) and also
subjected to the ‘central attack’ spatial hazard (Figure 3.35) (black line). Also showing a benchmark
random network, with random nodal location (grey line). The results are plotted in terms of the
percentage of links removed and the percentage of (a) nodes and (b) area removed.

3.2.2: ApPLICATION OF NETWORK MEASURES TO QUANTIFY CHANGE IN PERFORMANCE AND

CONNECTIVITY

The assessment of the hazard tolerance of the EATN, and its synthetic counterparts,
has so far focused on quantifying changes in the percentages of nodes/area/links
removed for different locations and sizes of spatial hazards (i.e. the quantification of
the proportion of closed, or removed/failed, infrastructure components). These
results can be further analysed to provide information regarding the percentage of
cancelled flights, number of delayed passengers, etc. This information is useful when

considering the potential impacts of a hazard; however, these results do not give an
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indication into the efficiency of the remaining network, or to the connectivity of the
network. For example, there may be relatively few flights cancelled, but if these flights
are those which are considered to be ‘crucial’ to flight operations then passengers
could expect to experience severe delays. This information cannot be obtained by
studying these results alone. To determine how the efficiency and connectivity of a
network changes with an applied hazard, network performance measures must be
applied: namely, MCS and APL (refer to Chapter 2.5.4 for details of these measures).
In this Chapter, these measures are applied to the results of the actual and simulated
Eyjafjallajokull event to gauge how the networks degrade as the hazard increases in
size. The MCS and APL of the EATN and three synthetic networks have been calculated
and are presented in Figure 3.37, plotted against both the percentages of nodes and
area removed. The random network, with random node locations, is also included in
these graphs as a benchmark for resilience. It is worth noting that for the actual
Eyjafjallajokull event (for the EATN and applied to the synthetic network with the same
nodal locations) the results are plotted as points only, as this hazard size does not
‘grow’ across the network unlike the simulated Eyjafjallajokull event (where the results

are plotted as a line).
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Figure 3.37: Showing the change in (a, b) MCS and (c, d) APL for the EATN and the average of 10
synthetic networks when subjected to the actual / simulated Eyjafjallajokull events.
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From Figure 3.37 it can be seen that the results for the synthetic networks are
generally in good agreement with the EATN, particularly when the results are plotted
in terms of the percentage nodes removed. Comparing the MCS results to the random
network, shows that the actual EATN and the synthetic networks have approximately
the same resilience as the random network when plotting the results in terms of the
percentage nodes removed as per existing theory (Figure 3.37(a)). However, when the
results are plotted in terms of the percentage area removed the hazard tolerance of
the EATN and the synthetic networks dramatically changes. The synthetic networks
are initially resilient to small sizes of the spatial hazard and become increasingly
vulnerable as the hazard size increases, becoming vulnerable after around 20% of the
network area has been removed (compared to the random network). This resilience to
small sizes of the Eyjafjallajokull hazard is not replicated by the actual EATN. This can
be attributed to the differences between the actual Eyjafjallajokull event and the
simulated hazard. The simulated hazard starts at the outer boundary of the network
and ‘grows’ inwards (Figure 3.30), whereas the actual event was, on certain days, not
spatially coherent (i.e. the hazard affected FIRs that were not connected). Therefore,
the actual hazard could have removed a small proportion of the dense area at the
centre of the network, which is not replicated in the simulated Eyjafjallajokull event
(shown in Figure 3.30). The dramatic decrease in the resilience of the EATN and
synthetic networks, compared to the random network, can be attributed to spatial
distribution of nodes within the EATN. There is a high concentration of nodes around
the geographic centre of the network, therefore when these nodes are encompassed
by the spatial hazard the percentage of nodes removed dramatically increases
compared to the percentage of area removed. This in turn affects the MCS of the
network, as nodes are removed the MCS decreases significantly for a small increase in
the hazard size. Considering the correlation between the MCS and the percentage of
nodes removed shows that the vulnerability of the EATN (and synthetic networks) is
caused by the location of nodes, rather than the arrangement of links (as the networks
have the same resilience as the random network when plotted in terms of the

percentage nodes removed).

Figure 3.37(c, d) shows that the APL of the EATN and the synthetic networks does not

noticeably change until over 80% of nodes or 60% of the network area are removed.
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Therefore as APL is a measure of efficiency, this suggests that although these networks
have broken into clusters the largest cluster in the network is still efficient at
transferring service (in this case, air passengers or aircraft). However, it should be
noted that once the APL starts to drop it should no longer be considered a valid
measure (due to the reduction in the size of the largest cluster as discussed in Chapter
2.5.4). Comparing the results to the random networks shows that the EATN and the
synthetic networks are more resilient, as the random network has a higher value of
APL for the same percentage nodes / area removed (after 40% of nodes or 50% of area
is removed). These results for the APL suggest that air passengers were able to reach
their destination airport with relatively few changes during the Eyjafjallajokull event,
as long as their destination airport was not encompassed by the ash cloud; although,
this calculation of APL does not account for the availability of aircraft. Many airlines
operate a hub and spoke system, meaning that their air routes are orientated around
one central airport and if this central airport is encompassed by the ash cloud then all
of the aircraft in their control would be unable to fly (as they cannot fly from an
unaffected airport to the closed central airport and vice versa). However, if one of the
‘spoke’ airports was to be affected by the ash cloud, then the other air routes (from
the hub airport) would be operational and the airline as a whole would remain largely
unaffected by the hazard. Therefore, the APL gives an insight into the efficiency of the
system, but should not be considered in isolation in a full analysis. Studying the
impacts of specific cancelled flights due to aircraft unavailability is outside the scope of
this work (this would require a weighted network, which is outside the scope of this
research), but should be considered by individual airlines when assessing their own

individual hazard tolerance.

It is interesting to note that in Figure 3.37 the random and synthetic networks show a
higher efficiency than the actual EATN under normal operational conditions (with an
APL value of 2.64 for the random networks, compared to 2.93 for the EATN). This
could be due to the slight differences in the number of links in the generated networks
(as it can be difficult to generate a random or exponential network with an exact
number of links), however as this difference is less than 2% of the total number of links
for all generated networks this is unlikely. This difference in efficiency is more likely to

be due to the saturation of the network (i.e. the ratio of nodes and links). To
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demonstrate this effect 20 random and exponential networks (generated using the
same properties as the ‘best fit" EATN network), with different numbers of links and
525 nodes, have been generated and their APL calculated. The relationship between
these two parameters is shown in Figure 3.38, where it can be seen that these
parameters follow a power law relationship for both networks. From this figure, it can
also be seen that for a small number of links the exponential network is the most
efficient, due to the more ‘sophisticated’ network generation algorithm forming ‘hub’
nodes which connect the majority of lower degree nodes making the network easy to
navigate. However, as the number of links increases, and the networks move towards
saturation, the random networks show a higher efficiency than the exponential
networks. This is due to the increased in connectivity in the random networks,
meaning that two nodes chosen at random are now more likely to be connected;
whereas, two nodes chosen at random in the exponential network are still likely to be
connected via a high degree network, forming a longer path between the two nodes

and a more inefficient network.
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Figure 3.38: A comparison between the number of links in a network and its shortest average path
length (APL) for random networks (black) and exponential networks (grey). The trend lines for both the
random and exponential networks follow a power law.
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3.3: HAZARD TOLERANCE OF OTHER AIR TRAFFIC NETWORKS

This chapter has so far assessed the vulnerability of the EATN to a variety of spatial
hazards, including the actual Eyjafjallajokull event. This has included the generation of
synthetic networks (forming proxies for both the nodes and links) to determine if the
vulnerability shown by EATN to the Eyjafjallajokull event, and to other spatial hazards,
is unique to the EATN or is inherent of its network class and/or spatial distribution.
This sub-chapter will consider whether the vulnerability of the EATN (and the synthetic
networks) is characteristic and inherent to air traffic networks and whether other air
traffic networks show the same degree and spatial distributions as the EATN. To
achieve this, air traffic networks of the China and US have been obtained from
Openflights (2010) and in a similar manner to the EATN only the presence of an air
route is considered and only flights between airports in these networks are considered
(e.g. intercontinental flights are discarded). Proxies for the location of nodes and
arrangement of links within these two networks will be generated (using the
algorithms developed for the EATN) and the actual and synthetic networks will be
subjected to the central attack spatial hazard (Figure 3.35) to assess their inherent
hazard tolerance. The spatial distribution of airports in both of these datasets has

been shown in Figure 3.39.
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Figure 3.39: Showing the airport locations of the (a) China and (b) US air traffic networks.

The China air traffic network (CATN) consists of 124 airports and 828 air routes, while
the US air traffic network (USATN) consists of 363 airports and 2289 air routes; the
degree distributions for both networks are plotted in Figure 3.40. It can be seen that
these two networks have similar degree distributions to the EATN (Figure 3.3) and can
be classed as a truncated scale-free network (or a scale-free network with an

exponential ‘tail’). Therefore, both of these air traffic networks should be resilient to
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random hazard and vulnerable to targeted attack. It can be seen from Figure 3.40(a, b)
that the CATN includes one airport with a degree that is significantly larger than the

next highest degree airport in the network, namely, Beijing Capital International

Airport (as illustrated by the ‘windowing’ issue).
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Figure 3.40: Showing the degree distribution, plotted on a log-log and log-linear scales, respectively, for
the (a, b) China and (c, d) USA air traffic networks.

The spatial distribution of nodes and the spatial degree distributions for these two air
traffic networks have been obtained using the same methods as applied to the EATN
(Figure 3.7) and have been plotted in Figure 3.41. It can be seen that these two
distributions are again similar to those obtained for the EATN as they both form an
approximate bi-linear distribution. However, both air traffic networks are lacking the
high concentration of nodes very close on the geographic centre of the network
(within 250km), although there is a high concentration of nodes close to this area in
both networks. This lack of airports around the geographic centre of the networks
means that generating a synthetic nodal layout using the bi-linear representation is not

a good fit for the data, as shown in Figure 3.42; therefore, this method of generating a

nodal layout will not be used for both the CATN and the USATN.
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Figure 3.41: Showing the spatial distribution of airports and the spatial degree distribution, respectively,
for the (a, b) China and (c, d) USA air traffic networks.
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Figure 3.42: Showing the spatial distribution of nodes for (a) the China air traffic network and (b) the US
air traffic network and a generated bi-linear nodal configuration.

Once the degree and spatial distributions have been obtained for the datasets, the
synthetic networks for each air traffic network can be generated. In a similar manner
to the EATN, the synthetic networks will be generated using the actual nodal layout
and a synthetic clustered nodal layout. The links between nodes will be generated
using the network generation algorithm, developed for the EATN, to determine
whether it simulates the rules governing air route formation in other air traffic

networks.
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3.3.1: GENERATING SYNTHETIC NETWORKS FOR THE CHINA AIR TRAFFIC NETWORK

To assess the ability of the network generation algorithm, previously developed in this
Chapter, to form proxy networks with the same topological and spatial characteristics
as other air traffic networks, the algorithm is used to form a proxy for the CATN. This
is achieved using the actual airport locations, where nodes are introduced using the
same four node introduction orders as previously used to generate the EATN
(introducing nodes with distance, proportional with distance, randomly and with
population). The same four types of synthetic network are also generated to assess
the ‘rules’ which govern the formation of links within the CATN. The resulting degree
and spatial degree distributions for these synthetic networks are shown in Figure 3.43
and Figure 3.44. In these figures, only the results where the nodes have been
introduced with population and randomly are shown (due to space restrictions), as

these two introduction orders produced the ‘best fit’ data.
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Figure 3.43: Showing the degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm for the actual node
locations, where nodes are introduced (a) randomly and (b) with population to the network.
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Figure 3.44: Showing the spatial degree distributions for the exponential (blue, green) and scale-free
(red, orange) networks generated using the synthetic network generation algorithm for the actual node
locations, where nodes are introduced (a) randomly and (b) with population to the network.

From Figure 3.43 and Figure 3.44 it can be seen that the exponential network with a
constant neighbourhood size which includes the modification of GA (blue dots)
produces the best fit for the CATN for both the random and population node
introduction orders (when considering both the degree and spatial degree
distributions). Whereas, the synthetic networks without the modification of GA do not
form hub airports with sufficient connections (red dots) and a changing neighbourhood
size forms a spatial distribution with too few links from 1000km from the geographic
centre (green dots). From these distributions, it can be concluded that whilst the
CATN and EATN have different number of airports and air routes and different
topological and spatial configurations, the ‘rules’ which govern the formation of

connections in these networks are the same.

The degree of each airport in the CATN and the ‘best fit" synthetic network (where
nodes are introduced randomly) have been plotted using GIS and shown in Figure 3.45.

From this figure it can be seen that the synthetic network is a good proxy for the CATN,
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however it does not replicate the degree of each airport exactly (similarly to the
‘localisation’ effect observed in the EATN as previously discussed). It can also be seen

that for the CATN not all of the high degree airports occur in one small spatial area and

that there is a fairly dense area of nodes along the East coast (Figure 3.45(a)).

Figure 3.45: GIS generated images of the (a) actual China air traffic network and (b) a generated
network (the blue line in Figure 3.43(a) and Figure 3.44(a) where the colour of the node indicates its
degree (red to green, for high to low degree). The black dot in each part shows the location of the
geographic centre of the actual network (note that this is not recalculated for the synthetic network).

These synthetic networks have shown that the CATN can be generated using the same
‘rules’ as the EATN; however, this has been achieved using the actual node positions
only. For these networks to be considered fully synthetic spatial networks, their nodal
positions should also be generated. It has been shown that a bi-linear configuration is
a poor fit for the CATN (Figure 3.15(a)) therefore the more sophisticated ‘clustering’

algorithm is used.

The nodal configuration has been generated by defining the location of five seed nodes
(4% of the total number of nodes in the network), with one of two different radii
values; four nodes are used to represent the landmass of China and one additional
node is located over the area of high population density. Similar to the EATN no nodes
are allowed to form outside the boundary of the clusters (as these are used to form
the ‘land mass’ of the network) and the whole nodal layout is placed within a circular
spatial boundary. The resulting nodal configuration and spatial distribution can be
seen in Figure 3.46. The spatial distribution of nodes (Figure 3.46(b)) is a good proxy
for the CATN, however it is not an exact replication. This is due to the smaller number
of airports in the network than compared with the EATN and therefore the placement

of these nodes has a greater impact on the resulting spatial distribution.
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Figure 3.46: (a) Simulated clustered nodal layout for the China air traffic network (CATN), where the
black dots represent the seed nodes, the grey dots the added nodes and the black line the spatial
boundary of the network. (b) A comparison for the spatial distribution of nodes for the CATN (black)
and the synthetic nodal layout (grey).

This nodal configuration has been used to form synthetic networks for the CATN, again
assessing the ability of the four types of network to replicate the topological and
spatial characteristics of the EATN. Three node introduction orders were assessed
(introducing nodes with distance, proportional to distance and randomly), however,
due to space restrictions only the results where nodes have been introduced randomly
are shown, as these produced the ‘best fit’ for the CATN. The degree and spatial

degree distributions for these generated networks are shown in Figure 3.47.
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Figure 3.47: Showing degree distribution and spatial degree distributions, respectively, for the
exponential (blue, green) and scale-free (red, orange) networks generated using the synthetic network
generation algorithm, where nodes are introduced randomly to the network for the clustered nodal
layout (Figure 3.46).

From these distributions it can be seen that the exponential network with constant
neighbourhood size, including the modification of GA (blue dots), again forms the best
proxy for the CATN. The network without the modification of GA again forms a hub
node with too few connections (red dots). However, the fit of the synthetic networks
to the actual CATN is not as good as that obtained for the EATN and its synthetic
networks. This could be attributed to the smaller network size, making it more
sensitive to small changes in the algorithm input values or could be due to the
regulation of flights in the CATN (unlike the EATN). This is particularly evident in the
spatial degree distribution for these networks generated using the (Figure 3.47(b)), as
there are too few airports with a high degree in the region between 1000km and
1500km from the geographic centre. Although, this was not observed when the
networks are generated using the actual CATN nodal locations (Figure 3.43(b) and

Figure 3.44(b)) and could therefore be attributed to the synthetic nodal layout.

Page 153



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

3.3.2: GENERATING SYNTHETIC NETWORKS FOR THE US AIR TRAFFIC NETWORK

The ability of the network generation algorithm to generate one further air traffic
network is tested using the USATN. In a similar manner to the CATN, this is initially
assessed using the actual airport locations and then using a generated nodal
configuration. The same four types of synthetic network are generated, using the
same four node introduction orders (introducing with distance, proportional to
distance, randomly and with population); however, only the results where nodes are
introduced randomly and with population are presented, due to space restrictions, as
these form the ‘best fit’ for the USATN. The degree and spatial degree distributions for

these synthetic networks are shown in Figure 3.48 and Figure 3.49.
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Figure 3.48: Showing the degree distribution for the exponential (blue, green) and scale-free (red,
orange) networks generated using the synthetic network generation algorithm for the actual node
locations, where nodes are introduced (a) randomly and (b) with population to the network.
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Figure 3.49: Showing the spatial degree distributions for the exponential (blue, green) and scale-free
(red, orange) networks generated using the synthetic network generation algorithm for the actual node
locations, where nodes are introduced (a) randomly and (b) with population to the network.

From these results, it can be seen that the ‘rules” which govern the formation of air
routes in the EATN and the CATN also produce the best fit degree and spatial degree
distributions for the USATN. However, the fit is lacking in places. The synthetic
networks where nodes are introduced randomly are lacking hub airports (Figure
3.48(a)) and introducing nodes with population results in a lack of mid-degree airports
(Figure 3.49(a)). However, the exponential networks generated using the modification
of GA have the highest degree node and form the best fit for the USATN (blue dots).
This lack of hub airport is likely to be due to the geographic distribution of nodes
within the USATN, and more specifically to the apparent spatial dispersion of airports
within the US (with the exception of two denser areas of airports located on the East
and West coasts). This is in contrast to both the EATN and CATN which both have a
visible area of high density airports around the geographic centre of the network

(Figure 3.15 and Figure 3.39(a)). Within the synthetic exponential networks, air routes
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bound for a high degree node may ‘divert’ to a lower degree node, if the high degree
node is within the neighbourhood of the subordinate node. However, due to the
dispersion of airports over the US there is less likelihood that the neighbourhood of
each node will contain a high degree node. Therefore, each node has a more ‘equal’
chance of attracting a link from a new node. Whereas, for EATN and CATN nodes
located in the area of high density around the geographic centre of the network have a

higher probability of attachment, due to their close spatial proximity to other nodes.

The spatial degree distributions for both nodal layouts are a good fit for the USATN
(Figure 3.48(b) and Figure 3.49(b)), with the exception of the around between 1000km
and 1750km from the geographic centre (considering the synthetic network which
‘best fits’ the degree distribution only, blue dots). Figure 3.50 plots the degree of each
node in the actual USATN and the generated network where nodes are introduced
randomly (blue dots in Figure 3.48(a) and Figure 3.49(a)). It can be seen from this
figure that there are several hub airports present in the actual data set (red dots)
which are not replicated in the synthetic network (occurring around Detroit, Chicago,
Minneapolis, Denver and Dallas). The reason behind the lack of hub airports in this
area could be due to the random order in which nodes were introduced to the
network (i.e. if these nodes were introduced ‘late’ to the network they would not have
had many chances to attract links). However, this is unlikely as 10 networks were
generated using each of the four types of networks, all of these generated networks
used a different node introduction order and all networks lacked a hub airport. The
lack of hub airports is due to the rule governing the formation of a neighbourhood
around each node. The optimal value for the neighbourhood size in this network (i.e.
the size of neighbourhood that produced the best fit) is equal to 150km overland
distance to reach an airport, which is the smallest size distance of all three generated
air traffic networks (this was 250km for the EATN and 200km for the CATN). When
considering the differences between the population densities for Europe (Figure
3.10(f)), China (Figure 3.51(a)) and the US (Figure 3.51(b)) it is apparent that two
values of neighbourhood are required to generate the USATN with greater accuracy.
From these maps it is clear that Europe and China have one main area of high
population density (also where the majority of airports are located), but that there are

several areas of high density in the US. Therefore, it is likely that the people in these
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high dense areas are not prepared to travel as far overland to reach an airport as those

living in the less dense (more rural) areas.
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Figure 3.50: GIS generated images of the (a) actual US air traffic network and (b) a generated network
(the blue line in Figure 3.53(a, b), where the colour of the node indicates its degree (red to green, for
high to low degree).
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Figure 3.51: Showing population density maps for (a) China (China Travel Go 2013) and (b) the US
(MapsofUSA.net 2013).

Similarly to the CATN, these synthetic networks have assessed the ability of the
network generation algorithm to form proxy networks for the USATN using actual
nodal locations. However, to be fully synthetic spatial networks, the nodal
configuration of this network should also be generated. This is achieved using the
‘clustering’ algorithm developed earlier in the Chapter and previously used to generate

synthetic configurations for the EATN and CATN.

However, for this nodal layout the spatial boundary is rectangular, rather than circular,
as this best fits the actual nodal layout of the network. In this clustered nodal layout,
the algorithm starts with 11 seed nodes (3% of the total number of nodes in the
network) that have one of three radii values. In the same manner as the CATN, the
majority of these seed nodes are used to form the landmass and two additional nodes

are placed in the areas of high population density, as such nodes are only allowed to
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form within the radius of one of the starting nodes.

The generated spatial nodal

distribution is a good fit for the dataset and is shown in Figure 3.52, along with the
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Figure 3.52: (a) Simulated clustered nodal layout for the US air traffic network (USATN), where the black
dots represent the initial nodes, the grey dots the added nodes and the black line the spatial boundary
of the network. (b) A comparison for the spatial distribution of nodes for the USATN (black) and the
clustered nodal layout shown in (a) (grey).

This nodal layout has been used to generate synthetic networks for the USATN, again

assessing the ability of the four types of network to replicate the topological and

spatial characteristics of the EATN. Three node introduction orders were assessed

(introducing nodes with distance, proportional to distance and randomly), however,

due to space restrictions only the results where nodes have been introduced randomly

are shown, as these produced the ‘best fit’ for the USATN. The degree and spatial

degree distributions for these generated networks are shown in Figure 3.53.
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Figure 3.53: Showing the (a) degree distribution and (b) spatial degree distribution, for the exponential
(blue, green) and scale-free (red, orange) networks generated using the synthetic network generation
algorithm, where nodes are introduced randomly to the network the clustered nodal layout (Figure
3.52).

From the distributions, shown in Figure 3.53, it can be seen that it is the exponential
network, with constant neighbourhood size and including the modification of GA,
which again forms the best fit for the actual air traffic network. The exponential
network where the size of the neighbourhood changes with distance forms too large a
hub airport and the scale-free networks fail to generate a sufficiently large hub airport.
However, the spatial degree distribution for all four types of synthetic network is a
good fit for the USATN, with the exception of the exponential network with changing

neighbourhood size.

From these spatial and degree distributions, and those shown earlier in the Chapter, it
can therefore be concluded that for all three air traffic networks (for both the actual
and synthetic nodal configurations), it is the exponential network with a constant
neighbourhood size., which includes the modification of GA, that best replicates both

the topological and spatial characteristics of the actual air traffic network. Therefore,
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although these three air traffic networks all have a different number of airports and air
routes, as well as different topological and spatial characteristics they are all governed

by the same set of ‘rules’.

3.3.3: HAzZARD TOLERANCE OF THE CHINA AND US AIR TRAFFIC NETWORKS TO SPATIAL HAZARDS

The hazard tolerance of the CATN and the USATN, and their ‘best fit’ synthetic
counterparts, will be assessed using only one position of the spatial hazard. The
‘central attack’ spatial hazard will be used (Figure 3.35) to enable the hazard tolerance
for the ‘worst case’ location of the spatial hazard to be assessed. Due to the lack of
obtainable airspace data for the CATN and USATN the proportion of airspace removed
by this spatial hazard cannot be calculated, therefore the results will be presented in
terms of the percentage distance that the hazard is from the geographic centre. This
distance is measured from the geographic centre of the network to the airport that is
furthest from this point and the results are given in percentages to enable the hazard
tolerance of networks of different sizes to be compared and the results of this analysis
is shown in Figure 3.54. The CATN and USATN could have been placed within an
artificial spatial boundary (e.g. either a circle or the extent of landmass) and the area
removed calculated using this boundary, however, any results obtained and plotted
using the proportion of area removed could lead to assumptions and conclusions when

compared to the EATN (for which the actual airspace data is used).
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Figure 3.54: The hazard tolerance of the (a, b) China air traffic network and (c, d) US air traffic network
and two of their synthetic proxies to the central attack spatial hazard (Figure 3.35). Also showing the
hazard tolerance of random networks with the same node locations as the air traffic networks (grey line)
and random node locations (black line). It is worth noting that the random networks with the same
nodal locations as the air traffic networks show the same results as the random networks with random
nodal locations in (a) and (c) and therefore cannot be distinguished in the graphs.

Page 161



CHAPTER 3: HAZARD TOLERANCE OF REAL WORLD SPATIAL NETWORKS

In Figure 3.54, only one synthetic network has been plotted for each of the different
nodal layouts, this network is the same as those shown in the degree and spatial
distributions in Figure 3.46 and Figure 3.52 (blue dots). Only one network has been
presented in this figure, rather than an average of the 10 analysed networks, enabling
the results to be compared with the degree and spatial degree distributions obtained.
It was decided that this would be more appropriate, rather than presenting the
average, due to the lack of fit in the degree and spatial distributions for these two air
traffic networks (the fit for these distributions is not as good as those obtained for the
EATN). As such, the possible reasons behind the lack of fit for the hazard tolerance of
these synthetic networks, compared to their real world counterparts can be better

explored and explained.

From Figure 3.54 it can be seen that the synthetic networks show approximately the
same hazard tolerance as the real world networks, with a few small exceptions. The
synthetic CATN generated with the actual nodal locations overestimates the
vulnerability of the CATN when the results are plotted both in terms of the proportion
of nodes and distance removed by the spatial hazard. The reason behind this
overestimation is apparent when considering the lack of fit for the spatial degree
distribution of this network (plotted in Figure 3.47). This synthetic network has a
slightly higher proportion of mid to high degree nodes located close to the geographic
centre of the network, therefore as this spatial hazard removes nodes outwards from
this point a higher proportion of links in the synthetic network are removed for the

same number of nodes removed.

To show that the scatter of results in the hazard tolerance of the synthetic networks is
small, all 10 analysed networks for the USATN with synthetic nodal layouts has been
shown in Figure 3.55 (it is worth noting that each of these networks has a different
nodal layout). From this figure it can be seen that an average (or trend line) could be
easily fitted through the results and that the associated scatter would be small. It is
also worth noting the sharp changes in the percentage of links removed for a small
increase in the hazard area (which is also visible in Figure). This is due to the presence
of areas of high nodal density of ‘clusters’ of nodes in the network. The removal of
one of these ‘clusters’ will remove a large proportion of nodes, for a small increase in

hazard size, and therefore cause the sharp increase in the percentage of links removed.
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The scatter of results in the EATN and CATN are not shown, but are similar to those

shown for the USATN.
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Figure 3.55: Showing the hazard tolerance of ten synthetic networks for the USATN with generated
nodal locations (different for each network) subjected to central attack spatial hazard, plotting the
results in terms of (a) percentage nodes removed and (b) nodes removed within a specified distance
from the geographic centre of the network.

From this hazard tolerance analysis, shown in Figure 3.54, it can also be seen that both
real world air traffic networks show some resilience to the spatial hazard when the
results are plotted in terms of the proportion of nodes and links removed (as the
results are close to those for the random benchmark network). Although, the CATN
shows an increased vulnerability after 40% of the nodes have been removed by the
spatial hazard, due to the removal of the high degree airport (Beijing Capital
International Airport). However, plotting the results in terms of the proportion of area
removed by the spatial hazard alters the perceived hazard tolerance of both networks.

Both networks initially show an increased resilience to the hazard, until nodes within
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18% (CATN) or 35% (USATN) of the distance from the geographic centre have been
removed, after these points it can be seen that with further expansion of the spatial
hazard the networks become increasingly vulnerable. This initial increased resilience
in both networks can be explained by considering the lack of high degree airports close
to the geographic centre of the CATN (shown by the spatial degree distribution, Figure
3.41(b)) and by the dispersion of high degree nodes throughout the USATN (which can

be seen visually in Figure 3.50(a)).

To further investigate the differences between the hazard tolerances of all three air
traffic networks the results have been plotted on a single graph, along with a series of
random benchmark networks, which each have the same nodal locations as one of the
three air traffic networks. Comparing the hazard tolerance of the air traffic networks
to these random benchmarks will establish whether the vulnerability in the air traffic
networks is due to the spatial configuration of nodes or the specific location of the
high degree nodes. The hazard tolerances for these six networks have been plotted in

Figure 3.56, along with the random benchmark network (with random nodal locations).
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Figure 3.56: Showing the percentage of links removed and the percentage distance from the geographic
centre (to the furthest node) for the central attack spatial hazard (Figure 3.35), for the European, China
and US air traffic networks. The corresponding random network for each real world air traffic network
has also been shown (this random network has the same nodal locations, but a different arrangement of
links as the real world network), along with the random network with random nodal locations. Note
that the results for the European air traffic network are the same as those shown in Figure 3.36, but
with a different x-axis.

From Figure 3.56 it can be seen that the EATN is the most vulnerable of the three air
traffic networks to the central attack spatial hazard, followed by the CATN, with the

USATN showing the most resilience to this hazard. Comparing the results of the EATN
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to the random network with the same nodal locations (blue lines) shows that the
random network shows an increased resilience to small sizes of the spatial hazard
(until over 20% of the distance from the geographic centre is covered by the hazard).
Therefore, it can be concluded that the vulnerability shown by the EATN to small sizes
of this spatial hazard is due to the location of high degree nodes within the network
(around the geographic centre). This high density of nodes around the geographic
centre is not apparent in the CATN and USATN, which have both been shown to display
an increased resilience to small sizes of the spatial hazard. In the CATN the majority of
nodes are located close to the East coast, which is a short distance from the
geographic centre and causes the network to become vulnerable when these nodes
are removed (when nodes within 10% of the distance from the geographic centre have
been removed). In contrast, the high degree nodes in the USATN are more dispersed
(Figure 3.50(a)) and it is not until the hazard reaches these high degree nodes that the
network becomes vulnerable to the spatial hazard (after nodes within 30% of the

distance from the geographic centre have been removed).

Both the CATN and the USATN show the same hazard tolerance as their random
counterparts until nodes within 20% (CATN) or 35% (USATN) of distance is removed,
after this point the CATN becomes increasingly vulnerable and the USATN increasingly
resilient. The vulnerability in the CATN is due to the lack of many high degree airports
close to the geographic centre; whereas the USATN shows resilience to large sizes of
the central attack spatial hazard, due to the dispersion of high degree nodes

throughout the network area.

Comparing the results of the random networks, using the actual nodal layouts, to the
random network with random nodal locations shows that all three nodal layouts show
resilience to small sizes of the spatial hazard. This is due to the lack of airports located
on, and in the area immediately around, the geographic centre of the air traffic
networks. However, once the areas of high density nodes in the European and China
air traffic networks are removed these random networks are vulnerable, compared to
the benchmark random network. The US nodal layout shows the most resilience to
the spatial hazard and the random network does not become vulnerable until the area
of high nodal density located on the East coast area removed. Therefore, it can be

concluded that the networks show resilience to spatial hazards which affect areas of
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low nodal density; however, this causes the networks to be vulnerable to hazards

located over the areas of high nodal density.

This hazard location was chosen to be the ‘worst case’ scenario and is the case for the
EATN, as previously shown in Figure 3.36; however, for the USATN the higher coastal
density of airports moves the vulnerability towards the edge of the network and in the
CATN the geographical centre has been ‘moved’ away from the area of high density
due to a number of ‘outlying’ airports in the far West. This demonstrates that whilst
the growth of links is common to all network studied, the nodal locations, which are
influenced by a number of factors (including: history, geographical features and

resource location) can have a significant effect on the spatial hazard tolerance.

3.3.4: AprPLICATION OF NETWORK THEORY MEASURES

The hazard tolerance assessment of the CATN and the USATN has so far quantified the
changes in the networks using the percentages of nodes, distance (from the
geographic centre) and links removed only (assessing the proportion of affected
infrastructure components for a given size of spatial hazard). In a similar manner to
the EATN, the changes to the efficiency and connectivity of the network will be
guantified by applying two network measures (APL and MCS). These measures will be
applied to the central attack spatial hazards, for the actual air traffic networks only as
it has already been established that the synthetic networks for all three air traffic
networks are a good proxy for the actual networks and what is of interest is the
comparison of the hazard tolerance for the three air traffic networks. The results for
these measures have been plotted against the percentage of nodes removed and the
percentage distance of the hazard from the geographic centre of the network (to the

furthest node in the network) and can be seen in Figure 3.57.
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Figure 3.57: Showing (a, b) the change in MCS and (c, d) the change in APL for the European, China and
US air traffic networks when subjected to the central attack spatial hazard (Figure 3.35). The percentage
change in the MCS and APL has been plotted as all three networks contain a different number of nodes
and links. A random network, with random nodal locations, has also been shown and is used as a
benchmark for resilience.
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From the results, it can be seen that the CATN becomes more weakly connected
quicker than the other two air traffic networks, as it breaks into clusters and/or
isolated nodes quicker than the other two networks (Figure 3.57(a, b)). This is due to
the arrangement of links between the nodes in the network and as this is the most
regulated network could be due to the specific arrangement of air routes in this type
of air traffic network. The CATN also has an unusually large hub airport (compared to
the airport with the second highest degree) unlike the EATN and USATN; therefore, the
removal of this airport will have a large impact to the functioning of the remaining
network, causing a decrease in both the connectivity and performance. This airport
(Beijing Capital International Airport) is located at 25% of the distance from the
geographic centre of the network and it can be seen from Figure 3.57(b) that this is
when the MCS of the network decreases dramatically. The APL also dramatically
increases when nodes within 25% of the distance from the geographic centre have
been removed, therefore, it can be concluded that the removal of this high degree
node not only causes the network to degrade but also causes the network to become
less efficient. This result also indicates that this network is susceptible to targeted
attack (e.g. terrorist attack), which will often target these high degree nodes seeking to

cause maximum impact to the network.

The USATN can again be considered to be the most resilient network to the central
attack spatial hazard, as it is the most robust (as it maintains the highest value of MCS
as the network degrades) and maintains efficiency (with relatively constant APL values).
It is interesting to note that the network initially shows resilience to the spatial hazard,
having a larger MCS than the random benchmark network, until the higher density of
airports around the East coast of the network are removed (when the network
becomes vulnerable). However, after the removal of these airports it can be seen that
the APL of the network stays approximately constant, meaning that the remaining

network still functions efficiently.

Focusing on the EATN and comparing the results to those of the Eyjafjallajokull event
(Figure 3.37) it can be seen that the central attack spatial hazard is more disruptive to
the network, not only in terms of the increased percentage links removed (for the
same percentage nodes removed, as previously discussed), but also decreases the

performance and connectivity of the network. This is particularly evident when
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viewing the MCS plotted against the percentage of nodes removed, where it can be
seen that the central attack spatial hazard causes the MCS to dramatically decrease
when around 65% of the nodes have been removed. The increased disruption can also
be seen in the higher ‘peak’ values of APL. This therefore suggests that the nodes in
the area of high nodal density around the geographic centre of the network are also
vital to transferring information (or in this case passengers) around the network (i.e.

this is where the ‘stop over’ airports are located).

From these results, for MCS and APL, it can be concluded that it is the positioning of
the nodes and also the high degree nodes which can dramatically alter the hazard
tolerance of a spatial network. From the CATN the effects of the removal of a high
degree node to the connectivity and performance of the remaining network can be
seen. Whereas, the USATN has shown that networks where the nodes are located
away from the spatial hazard show an increased resilience and can be classed as

tolerant to small sizes of this hazard, compared to the random benchmark network.

This chapter has assessed the hazard tolerance of three air traffic networks, namely:
Europe (EATN), China (CATN) and the US (USATN). It was initially shown that the EATN
was vulnerable to the Eyjafjallajékull volcanic event, contradicting previous network
theory which states that this class of network should be resilient to random hazard. To
determine whether this vulnerability was unique to the EATN, or was characteristic of
its network class, networks with the same topological and spatial characteristics as the
EATN were formed. This was achieved by developing a new network generation
algorithm, based on the scale-free algorithm of Barabasi and Albert (1999). This
algorithm showed that the probability of attachment must be based on degree and
proximity, rather than degree alone (as for scale-free networks), to produce networks
with the same topology as the EATN. It was also shown that links must also be allowed
to form between pairs of existing nodes in the network as the network ‘grows’ in order
to replicate the high degree hub nodes, present in the EATN. This network generation
algorithm was combined with synthetic spatial nodal configurations, generated using
an algorithm based on a cellular automata framework, to form fully synthetic proxies

for the EATN, which to the best of the authors’ knowledge is the first time this has been
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achieved. The ability of these algorithms to generate proxies for other air traffic
networks (CATN, USATN) was also assessed, finding that they form using the same
‘rules’ as the EATN.

The EATN synthetic networks were subjected to a simulated Eyjafjallajékull event and
other spatially coherent random hazards, to which they showed the same vulnerability
as the EATN. The hazard tolerances of the CATN and the USATN (and their generated
synthetic networks) were also subjected to spatial hazard, finding that the CATN
showed an increased vulnerability (with up to 38% more connections removed
compared to a benchmark network), but the USATN showed resilience to small sizes of
this hazard (with up to 12% fewer connections removed compared to a benchmark

network), due to the different geographical arrangements of nodes in these networks.

To categorize all infrastructure networks into specific classes is too large a task to be
practical (even if the datasets to do this existed — which is not the case) and so to cover
the widest range of possible network types, the next chapter will analyse the hazard
tolerance of generic networks and assess the influence of different generic
combinations of spatial layout, network class and location of high degree nodes to
determine which combinations are resilient and which are vulnerable. This will be used

to inform strategies to increase the resilience of the EATN to spatial hazards.
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CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

In the previous chapter it was established that traditional topological network theory
models can give a false indication of the hazard tolerance of a spatially distributed
network, when subjected to spatial hazards. This was demonstrated by subjecting the
air traffic networks for Europe, China and the US to a range of spatial hazards (of
different sizes and locations) and assessing their hazard tolerance in terms of the
proportion of disrupted air routes, as well as changes to their efficiency and

connectivity.

This chapter assesses the hazard tolerance of a range of spatial networks with different
topological and spatial characteristics, to determine which combinations of these
characteristics are resilient / vulnerable to spatial hazard. To categorise all
infrastructure networks into specific classes is deemed too large a task to be practical
(even if the datasets to do this existed — which is not the case) and so to cover the
widest range of possible network types, synthetic networks with different generic
characteristics are analysed to simulate the differing characteristics of real world
systems. For example, in an air traffic network it is desirable to locate an airport close
to the boundary of an area of high population density; conversely, in a power grid it is
desirable to locate power stations close to the coast and away from highly populated
areas. Both of these systems have been shown to have similar topological
characteristics (belonging to the same network class), but will have different spatial
characteristics, due to their different reasons for placing individual components (nodes).
Assessing the hazard tolerance of these synthetic networks will also enable which
combinations of topological and spatial characteristics produce resilient and vulnerable
networks to different sizes and locations of spatial hazard. This information will be
used to inform strategies to increase the resilience to the European air traffic network

to spatial hazard.
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4.1: SPATIAL NODAL LAYOUTS

In this thesis, it has been discussed that the majority of previous research has analysed
networks where space is not an important, and governing, factor, and therefore the
use of topology models has been satisfactory. However, it was shown in the previous
chapter that for infrastructure networks, where space is an important factor, this
analysis approach can be deficient and can lead to inaccurate assumptions regarding
the hazard tolerance of a network. Real world infrastructure networks tend to form
either a uniform with distance (Figure 4.1(a)) or clustered (Figure 4.1(c)) nodal
distribution (as shown by analysing the three air traffic networks). Therefore, the rule
set used to generate clustered nodal layouts developed in the previous chapter will
again be used and a rule set to generate networks with a uniform with distance nodal
layout will be created. A uniform with area nodal distribution will also be considered
(Figure 4.1(b)) and will form a benchmark for comparison (see Chapter 3.1). The
spatial distribution of the nodes, for each of the three layouts, has been plotted in
Figure 4.1. For nodal layouts with a uniform with distance pattern, this spatial
distribution is a linear relationship and for a uniform with area nodal layout the
distribution follows a curved pattern. It is interesting to note the distribution for the
clustered layouts, does not form the same ‘smooth’ line as the other two nodal layouts.
This is due to the nodes being placed in clusters around the network and the spatial

distribution appearing to ‘jump’ when each cluster is reached.
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Figure 4.1: Showing three different spatial nodal layouts: (a) uniform with distance, (b) uniform with
area, (c) clustered. In the three layouts, the black dots depict the nodes and the outer grey circle
defines the spatial boundary of the network. Also showing the associated spatial distributions for the
three nodal layouts; (d) uniform with distance, (e) uniform with area and (f) clustered.

To generate each nodal layout a different ‘rule set’ has been developed, governing the
location of nodes within the defined spatial boundary of the network. The uniform
with area and uniform with distance nodal layouts only requires the input of the extent
of the spatial boundary and the number of nodes in the network; however, the
clustered nodal layout requires more detailed inputs (as previously discussed in
Chapter 3.2). In this chapter, all of the clustered nodal layouts have been generated
using 10 seed nodes (with a random location) which have one of four starting radii
values (either 10, 50, 80 or 100) to generate clusters with different densities (which
can occur in infrastructure networks as shown by the three air traffic networks in the
previous Chapter) and a proportion of nodes (20%) are allowed to form outside the
influence of the individual clusters. Figure 4.2 shows three of the ten generated

clustered nodal layouts.
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Figure 4.2: Three, of ten, clustered nodal layouts generated using the clustering algorithm (Chapter 3.2),
for use in tests of hazard tolerance.

4.2: NETWORK GENERATION ALGORITHMS FOR SPATIAL NETWORKS

In order to generate generic networks belonging to the three main network classes
(exponential, scale-free and random), the traditional network generation algorithms
need to be modified from topological algorithms to spatial algorithms (i.e. taking into

account the spatial component of the network).

The previous chapter developed a generation algorithm to generate spatial
exponential networks (developed in Chapter 3.2.3). This algorithm is again used in this
chapter, using a radius value of 0.25, mg as a constant value equal to the number of
starting nodes (12 for this chapter) and allowing the GA modification. The scale-free
networks used in this thesis are also generated using the algorithm developed in the
previous chapter, by setting the radius value to 0 and not including the GA

modification.

In the previous chapter, it was explained (and demonstrated) that the order in which
nodes are introduced in the exponential and scale-free algorithms affects the location
of the high degree nodes in the network and therefore the resulting spatial degree
distribution (see Figure 3.14). To assess the impact that the spatial degree distribution
has to the spatial hazard tolerance of these networks the three node introduction
orders used in the previous chapter are again used (i.e. introducing nodes with
distance from the geographic centre, proportional with distance and randomly).
Although, it was shown that introducing nodes randomly to the algorithm produces

the ‘best fit’ degree and spatial degree distribution for all three air traffic networks, all
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three node introduction orders are used to demonstrate the effect that the spatial
configuration of the network has to its spatial hazard tolerance (and to produce a

‘complete picture’ of results).

The random networks are all generated using the random graph model (detailed in
Chapter 2.5.2.1) and as such do not need to be altered to create spatial networks; as
the network does not ‘grow’ unlike the scale-free and exponential networks node
introduction order does not need to be considered. This algorithm only needs to be
modified, to account for the spatial component, if an optimisation problem is being

considered (e.g. when the link lengths may want to be minimised).

Figure 4.3: Showing all combinations of network class (inner circle), nodal layout (centre circle) and
node introduction order (outer circle) used in this chapter. In the previous chapter it was established
that the exponential networks, where the nodes were introduced randomly, with a clustered nodal
layout was superior at replicating the topological and spatial characteristics of the European, China and
US air traffic networks.

Figure 4.3 shows all of the networks considered in this chapter, where the inner circle
shows the network class, the middle circle the node introduction order and the outer
circle the nodal layout. For each of the nodal layouts 10 networks have been analysed,
adding to 30 networks for each node introduction order, resulting in the analysis of 90
networks for the scale-free and exponential network classes and 30 networks for the

random network class (total number of networks analysed is 210). The size of the
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networks are reflective of the EATN, enabling a direct comparison of the results to be
made; as such, the networks consist of 500 nodes, approximately 3000 links and have

a distance from the geographic centre to the spatial boundary of 3000 km.

The initial results for the hazard tolerance analysis will be presented in terms of the
proportion of links removed and the proportion of nodes and area removed. It has
been previously discussed that this method of displaying results is often used in
studies considering the hazard tolerance of complex networks. This method can also
be used to inform infrastructure owners of how many connections in their system (e.g.
underground pipes, air routes) will be disrupted/damaged as a result of a particular
hazard, allowing them to assess the estimated cost, repair time, etc. of the system.
However, the additional time taken to transfer service around the system due to
disrupted/damaged connections can be also important. This is considered later in the
chapter by applying more sophisticated network graph theory measures to quantify

changes in APL and MCS.

4.3: EFFeCT OF NODE INTRODUCTION ORDER TO HAZARD TOLERANCE

To assess the effect that node introduction order has to the hazard tolerance of spatial
scale-free and exponential networks, the uniform with area spatial nodal layout is used
and networks (belonging to these two network classes) have been generated using the
three node introduction orders considered. The uniform with area nodal layout has
been used as it can be considered to be a benchmark case (as it is a random nodal
layout) and the placement of individual nodes in the network will not affect the hazard
tolerance (e.g. for each hazard the number of nodes removed will be approximately

equal, however different numbers of links may be removed).
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Figure 4.4: Showing the average degree distribution for (a) exponential networks and (b) scale-free
networks, with a uniform with area nodal layout and three different node introduction orders; (c) the
spatial degree distribution for the same exponential networks and (d) for scale-free networks.
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The degree distribution for the exponential and scale-free networks, using a uniform
with area nodal layout and three node introduction orders, can be seen in Figure 4.4.
In this figure, it can be seen that the order in which nodes are introduced has no effect
on the degree distribution of the network, but does affect the spatial degree
distribution. This can be attributed to the length of ‘time’ that nodes have been
present in the network, the nodes that were introduced first have a higher chance of
‘attracting’ links from new nodes (previously discussed in Figure 3.14). The spatial

distribution of the high degree nodes in the network can be seen in Figure 4.5.

Figure 4.5: Three exponential networks with a uniform with area nodal layout, where the nodes are
introduced (a) with distance, (b) proportional to distance and (c) randomly. The spatial boundary is
shown as a black circle and the nodes are shown as grey-scale dots. The colour of the node indicates its
degree, with black nodes having a high degree and light grey nodes a low degree.

These networks have been subjected to two different spatial hazards, which both have
a fixed centre from which the hazard ‘grows’ outwards. The centre of the first hazard
is located on the geographic centre of the network and was applied to the air traffic
networks in the previous chapter (Figure 3.35) (‘central attack’) and the second is
located on the spatial boundary of the network (Figure 4.6) (‘perimeter attack’). As in
previous applications of these hazards, nodes are considered to have ‘failed’ if they are
located within the spatial hazard and the links attached to these nodes are removed
from the network. Only nodes that are located within the hazard are considered to

have failed and not nodes that have become isolated (due to the removal of links).

1 To keep the key used in the figures in this Chapter to a manageable length abbreviations have been used. The key
for each set of results shown refers to a different type of network and is formed of three parts for exponential and
scale-free networks and two parts for random networks, separated by a hyphen. The first part of the key refers to
the network class: EX refers to an exponential network, SF to a scale-free network and RND to a random network.
The second part to the nodal layout of the network: UA refers to a uniform with area nodal layout, UD to a uniform
with distance layout and CL to a clustered layout. The last part refers to the order in which nodes were introduced
to the network: D refers to a nodal layout where nodes were introduced with distance from the geographic centre,
P where nodes were introduced proportionally to distance and R introduced randomly. For example, the key EX-
UA-D refers to an exponential network with a uniform with area nodal distribution where the nodes have been
introduced in order of distance from the geographical centre.
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Figure 4.6: Showing three sizes of the simulated perimeter attack spatial hazard, in which the centre of
the hazard is fixed on the spatial perimeter of the network and grows outwards until the whole network
area is covered (i.e. from (a) to (b) to (c)).

The results for the ‘central attack’ spatial hazard have been plotted in Figure 4.7; for
both the percentages of nodes and links removed and the percentages of area and
links removed. From this figure, it can be seen that node introduction order has a
significant effect on the hazard tolerance of a network. For both the exponential and
scale-free networks, introducing the nodes randomly show a surprising level of
resilience to this spatial hazard, having the same hazard tolerance as the random
network. This can be attributed to the dispersion of the high degree nodes throughout
the spatial layout of the network (Figure 4.5(c)). Therefore, as the hazard ‘grows’
outwards from the centre, high degree nodes are removed but a large number of small
degree nodes are also removed. In contrast, networks where the nodes were
introduced with distance (from the geographic centre) show an increased vulnerability
to this hazard (as they have a higher percentage of removed links for a given
percentage of removed nodes and area than the other two node introduction orders,
Figure 4.7). This increased vulnerability is due to the high concentration of high degree
nodes in the centre of the network, which is also the area of the network which is first
removed by the ‘central attack’ spatial hazard. To quantify this difference, for the
scale-free networks removing 20% of nodes results in the removal of 70% of links
when introducing nodes with distance and 35% of links when removing nodes
introduced randomly (35% points difference). Networks where the nodes were
introduced proportional with distance, have a hazard tolerance level between the
other two introduction orders (removing 45% of links in this example). This can again

be attributed to the spatial dispersion of high degree nodes throughout the network,
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but an increased concentration of high degree nodes close to the geographic centre

unlike the randomly introduced nodes (Figure 4.5(b)).

Due to the uniform with area nodal layout, the percentage of nodes removed will be
roughly equal to the percentage of area removed; therefore, there is not a significant
difference in the level of hazard tolerance when plotting the percentage of links
removed with the percentage of nodes compared to the percentage of area (Figure

4.7).

Comparing these results to those for the EATN, subjected to the same hazard (Figure
3.36), shows that the networks where nodes were introduced with distance show a
similar hazard tolerance. This is due to the high concentration of nodes in around the
geographic centre having the same effect to the remaining network, when removed by
the hazard, as locating the majority of nodes in this area. Therefore, it can be seen
that the hazard tolerance of a network is governed by both the spatial configuration of
nodes and the spatial location of the high degree nodes (or highly connected

components).
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Figure 4.7: Showing the results of subjecting (a, c) the exponential networks and (b, d) the scale-free
networks to the ‘central attack’ spatial hazard. (a, b) plot the percentage of nodes and links removed,
and (c, d) plot the percentage of area and links removed. Each line of results represents an average of
10 networks. It is worth noting that there is only a small scatter in the results for each of the 10

networks.

Page 181



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

Figure 4.8 shows the results of the same networks subjected to the ‘perimeter attack’
spatial hazard. From these results it can be seen that networks where the nodes were
introduced proportional to distance and randomly show approximately the same

resilience as the benchmark random network.

Whereas, the networks where the nodes were introduced with distance are resilient
until around 35% of the network area has been removed and then become vulnerable
with further expansion of the spatial hazard. This can be attributed to the location of
the high degree nodes in the centre of the network. The hazard starts on the
perimeter of the network, where the low degree nodes are located and therefore
removes a small percentage of links compared to the percentage of nodes removed.
The network becomes vulnerable after 35% of the area has been removed, as this is
when the spatial centre of the network is reached, causing a dramatic increase in the
percentage of removed links for only a small increase in the percentage of nodes
removed. Quantifying this difference, for the scale-free networks when 20% of the
nodes have been removed, results in the removal of 28% of links when introducing
node with distance and 36% of links when removing nodes introduced randomly (8%
points difference). However, the hazard tolerance of these two node introduction
orders reverses when over 35% of the network area is removed. When 50% of the
nodes have been removed, 85% of links have been removed for the nodes introduced
with distance and 73% of links have been removed for nodes introduced randomly (12%

points difference).

From these results it can again be seen that the EATN displays a similar hazard
tolerance to the synthetic networks where the nodes are introduced with distance.
Comparing the results for the Eyjafjallajokull volcanic event (Figure 3.1(d)) to those for
the perimeter attack (Figure 4.8) shows that both networks display an initial resilience
to small sizes of spatial hazard and then become increasingly vulnerable as the hazard
grows. This again shows that locating the majority of nodes, or high degree nodes,
around the geographic centre of the network has the same effect to the hazard

tolerance to some sizes and location of spatial hazard.
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Figure 4.8: Showing the results of subjecting (a, c) the exponential networks and (b, d) the scale-free
networks to the ‘perimeter attack’ spatial hazard. (a, b) plot the percentage of nodes and links removed,
and (c, d) plot the percentage of area and links removed. Each line of results represents an average of
10 networks. It is worth noting that there is a small scatter in the results for each of the 10 networks.
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It can, therefore, be concluded that the order in which nodes are introduced to
‘growing’ scale-free and exponential networks can have a significant effect on their
spatial hazard tolerance, as it dictates the location of the high degree nodes in the
network. Introducing nodes with distance causes the high degree nodes to be located
close to the geographic centre of the network, rendering the network vulnerable to
‘central attack’ strategies; however, this also means that the network shows increased
resilience to ‘perimeter attack’ strategies, providing that the size of the hazard is small.
Introducing the nodes randomly to the network creates the most resilient network to
all attack strategies (i.e. it is the best compromise), with these networks showing the

same hazard tolerance as random networks.

The analysis of the three air traffic networks in the previous Chapter showed that
there was a correlation between population density and the spatial configuration of
airports (with a highly populated area likely to have more airports than a rural area).
For example, the area around central Europe is densely populated (Figure 3.10(f)) and
this is where the majority of airports are located, similarly the majority of components
are located close to the East coast of China, where the main area of high population is
centred (Figure 3.51(a)). These areas of high population density are also where the
majority of hub airports are located, as these airports will have been opened early in
the formation of the network. From the study of these synthetic networks the impact
that the location of these highly connected nodes to the spatial hazard tolerance of the
network can be seen. For example, the EATN shows an initial tolerance to small sizes
of a ‘perimeter attack’ as shown by the Eyjafjallajokull event (Figure 3.1(d)) and
vulnerability to all sizes of a ‘central attack’ (Figure 3.36), due to the location of these
highly connected components around the geographic centre, which is replicated in the
synthetic networks where the nodes are introduced with distance. Whereas, the CATN
showed an initial resilience to the ‘central attack’ spatial hazard (Figure 3.56) as the
geographic centre in this network is ‘pulled’ away from the highly populated area due
to the presence of a few airports in the extreme West of the country, as previously
discussed. From the results of the synthetic networks, it can be reasoned that this
network will be initially resilient to small hazards located over the West coast, but will
then become increasingly vulnerable as the hazard grows over the network. In

contrast, the USATN should show less variability to locations of the spatial hazard, due
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to the more uniform population density (particularly over the Eastern area, Figure
3.51(b)). This uniform population density causes both airports and highly connected
airports to be more spatially dispersed over the network area, in contrast to Europe
and China which both contain an area of high population density. Therefore, this
network should display a hazard tolerance similar to the synthetic networks where the
nodes are introduced with proportion to distance, with an increased vulnerability to
hazards located over areas of particularly high population density (similar to the
central attack spatial hazard, Figure 4.7(a, c)) and an neutral resilience to hazards
located away from these areas (similar to the perimeter attack spatial hazard, Figure

4.8(a, c)).

This sub-chapter has determined that node introduction order affects the hazard
tolerance of a network; however, it is also clear that the location of the spatial hazard
(particularly in relation to the distance from the geographic centre) also affects the
hazard tolerance. The impact of this variable to the hazard tolerance of a network will

be investigated in the next sub-chapter.

4.4: EFFECT OF SPATIAL HAZARD DISTANCE TO HAZARD TOLERANCE

From the previous sub-chapter it was concluded that node introduction order has an
effect to the hazard tolerance of spatial networks, as it determines the location (and
concentration) of the high degree nodes. However, it was also shown that the location
of the spatial hazard has an effect to the hazard tolerance. This sub-chapter will
quantify the effect that the position of the centre of the hazard, in relation to the
geographic centre of the network, has on the hazard tolerance of a network. In this
sub-chapter both exponential and scale-free networks, all node introduction orders

and the uniform with area nodal layout will be considered.

To assess the hazard tolerance of the networks, five additional positions of the hazard
centre are used (from which the hazard ‘grows’ until the whole network area is
enveloped). The additional locations of the spatial hazard have been shown in Figure
4.9 along with a graph plotting the percentage distance of the hazard from the

geographic centre of the network (the locations of the ‘central attack’ and ‘perimeter
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attack’ are also included in this graph with percentage distances of 0% and 100%

respectively).

100%

G

Percentage Distance from Geograpic

80% -

60% -

Mid-Point

40% -

20% - ¢

0%

Hazard

Figure 4.9: Showing (a) the locations of the five additional spatial hazards (where the black dots are the
nodes, the black line the spatial boundary and the grey dot the geographic centre) and (b) plotting the
percentage distance of each hazard from the geographic centre of the network (the colour of the dot on
the graph is the same as that shown on the network in (a) for the five additional spatial hazards).

The results for this analysis have been shown in Figure 4.10 and Figure 4.11, where it
can be seen that the hazard tolerance of both the exponential and scale-free networks
are affected by the location of the spatial hazard; with the networks where the nodes
are introduced with distance showing the greatest sensitivity to the spatial hazard

locations.
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Figure 4.10: Showing the results for all locations of the spatial hazards, for an average of 10 exponential
networks with a uniform with area nodal layout, where nodes are introduced (a, d) with distance, (b, €)
proportional with distance and (c, f) randomly. It is worth noting that there is a small scatter in the
results for each of the 10 networks.
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Figure 4.11: Showing the results for all locations of the spatial hazards, for an average of 10 scale-free
networks with a uniform with area nodal layout, where nodes are introduced (a, d) with distance, (b, €)
proportional with distance and (c, f) randomly. It is worth noting that there is a small scatter in the
results for each of the 10 networks.
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For the networks where the nodes are introduced with distance, it can be seen that as
the centre of the hazard ‘moves’ from being located on the geographical centre of the
network towards the spatial boundary (perimeter) the network becomes increasingly
resilient to the spatial hazard. It can also be seen that there is a significant difference
in the hazard tolerance results between the 0% and 100% hazards (i.e. the ‘central
attack’ and ‘perimeter attack’ strategies). For the exponential networks this difference
can be quantified as a 43% point different between the percentage of links removed
when 20% of nodes have been removed (also a 43% point difference for scale-free
networks). This difference, in the percentage of links removed, reduces to 16% points
for exponential networks (and 13% points for scale-free networks) when the nodes are
introduced proportional with distance and to an 8% point difference for exponential
networks (5% points for scale-free networks) where nodes introduced randomly. This
demonstrates that the location of the spatial hazard has the greatest effect to the
hazard tolerance of the networks where the nodes are introduced with distance and,
conversely, has very little effect to the hazard tolerance of the networks when the
nodes are introduced randomly. This sensitivity to the spatial hazard location is due to
the location, and concentration, of the high degree nodes in the networks. For the
networks where the nodes are introduced with distance, the high degree nodes tend
towards the centre of the network (Figure 4.5); therefore a hazard located in the
centre of the network will remove more links per node removed compared to hazards
located on the perimeter of the network. Plotting the results in terms of the
percentages of area and links removed shows the same trend in results (as the nodes
are dispersed uniformly throughout the network area, therefore approximately the
same percentage of nodes as percentage of area will be removed by a spatial hazard of

a given size).

Comparing the hazard tolerance of the exponential and scale-free networks to the
benchmark random networks (Figure 4.10, Figure 4.11), shows that both of these more
sophisticated network models are more vulnerable to the spatial hazard located on, or
close to, the geographic centre of the network. There is a 29% point difference
between the percentages of links removed for the exponential networks (35% points
for the scale-free networks) between the 0% hazard and the random network, when

20% of nodes have been removed. This difference reduces to 12% points for
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exponential networks (10% for scale-free networks) when the nodes are introduced
proportional with distance and to 4% for exponential networks (and 3% for scale-free
networks) when nodes are introduced randomly (for the same percentage of nodes
removed). This reduction in percentage of links removed, compared to the random

network, is again due to the location of the high degree nodes in the network.

There are three positions of the spatial hazard which result in both the exponential
and scale-free networks showing an increased resilience compared to the random
network. This is only for networks where the nodes are introduced with distance and
for small sizes of the spatial hazard. These three spatial hazards are located on, or
close to, the spatial boundary of the network (the 71%, 86% and 100% hazards in
Figure 4.10 and Figure 4.11). The exponential networks are resilient until between 25-
34% of nodes (29-35% for scale-free networks) or 23-38% of area has been removed
(28-37% for scale-free networks). Introducing the nodes proportional with distance
also results in the exponential and scale-free networks showing an increased resilience
compared to the random network for two locations of the spatial hazard (86% and
100%). In this case, the exponential networks are resilient until 35% of nodes (the
same for scale-free networks) or 40% of area (the same for scale-free networks) has
been removed. This increased resilience, for these two node introduction orders, is
due to the location of the majority of the high degree nodes close to the geographic
centre of the network and therefore the location of mainly low degree nodes close to
the spatial boundary of the network. The networks are resilient to only small sizes of
the spatial hazard and then become increasingly vulnerable when these high degree

nodes are removed (i.e. when the spatial hazard reaches the centre of the network).

It can be concluded that networks where the nodes are introduced with distance show
the greatest sensitivity to locations of the spatial hazard, when the results are plotted
in terms of percentage of links and percentage of nodes or area. These networks show
an increased resilience to hazards located close to the spatial boundary of the network,
but an increased vulnerability to hazards located close to the geographic centre of the
network, compared to the benchmark random networks. Therefore, networks with a
similar spatial configuration as the EATN will not only display an increased vulnerability
to a spatial hazard which extends from the perimeter of the network towards the

geographic centre (as previously discussed), but also to smaller spatial hazards which
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move from the perimeter towards the geographic centre. Whereas this analysis has
shown that the hazard tolerance of networks with a similar spatial configuration as the

USATN are less affected by the location of spatial hazard.

The next sub-chapter will investigate the effects of different nodal locations (uniform
with distance and clustered) to the hazard tolerance of these networks (again
considering scale-free, exponential and random networks with one of the three node

introduction orders).

4.5: COMPARISON OF HAZARD TOLERANCE FOR DIFFERENT NODAL LAYOUTS

To assess the effect of nodal location to the hazard tolerance of the networks, the two
additional nodal layouts (uniform with distance, Figure 4.1(a), and clustered, Figure
4.1(c)) are used. These nodal layouts are combined with the three network classes
(exponential, scale-free and random) and the three node introduction orders (random,
proportional with distance and with distance from the geographic centre). The
resulting networks have been subjected to the seven positions of the spatial hazard

(shown in Figure 4.9).

4.5.1: UNIFORM WITH DISTANCE NODAL LAYOUT

The hazard tolerance for the networks with a uniform with distance nodal distribution,
show the same trends as those with a uniform with area distribution when plotting the
percentages of nodes and links removed (Figure 4.12). However, the hazard tolerance
changes when plotted in terms of the percentage of area and links removed, due to

the different nodal distributions.

The uniform with distance nodal layout has a higher density of nodes located close to
the geographic centre of the network, and therefore a smaller density of nodes located
close to the spatial boundary of the network, than the uniform with area nodal layout
(this can be seen visually in Figure 4.1(a, b)). Consequently, hazards located close to
the geographic centre of the network will remove a higher proportion of nodes than

hazards located close to the spatial boundary of the network. This ultimately changes
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the hazard tolerance of the networks when the results are plotted in terms of the
percentage of links and area removed (rather than plotting the percentage of links and

nodes removed).

The networks where the nodes are introduced with distance still show the most
sensitivity to the locations of the spatial hazard (for both the scale-free and
exponential networks) and are highly vulnerable to hazards located over the
geographic centre of the network. For the exponential networks there is a 76% point
difference (the same for the scale-free networks) between the percentages of links
removed for the 0% (‘central attack’) and 100% (‘perimeter attack’) spatial hazards
when 20% of area has been removed. This compares to a 40% point difference for
exponential networks (and 43% point difference for scale-free networks) with a
uniform with area nodal layout and the same node introduction order (again when 20%
of the area has been removed). Therefore, it can be seen that the nodal layout of the

network also affects the sensitivity of the network to spatial hazard location.

For the networks where the nodes are introduced proportional with distance, there is
also a greater variability in the hazard tolerance results, compared to the uniform with
area layout. There is a 66% point for exponential networks (65% point for scale-free
networks) between the 0% and 100% spatial hazards when 20% of the area has been
removed. Networks where nodes are introduced randomly to the network also show a
sensitivity to the location of the spatial hazard, unlike networks with a uniform with
area distribution. There is a 43% point difference for exponential networks (and a 44%
point difference for scale-free networks) between the two ‘extreme’ spatial hazard
locations (when 20% of the area has been removed). This can again be attributed to

the spatial distribution of nodes throughout the spatial area of the network.

The random networks, with a uniform with distance nodal layout, also show sensitivity
to the location of the spatial hazards, when plotting the results in terms of percentage
area removed. Due to increase in density of nodes in the centre of the network,
hazards close to the centre will remove a higher proportion of nodes (and
consequently more links) than those on the perimeter of the network, where there is a
lower density of nodes. For this reason, the hazard tolerance of the random networks

has been assessed for these two ‘extreme’ locations of the spatial hazard (Figure 4.12,
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Figure 4.13). This enables a comparison with the exponential and scale-free networks

to be made, although for these two locations of the spatial hazard only.

Similarly to the previous nodal layout, the networks where the nodes are introduced
with distance show the greatest resilience / vulnerability compared to the random
network, due to the concentration location of the high degree nodes around the
geographic centre of the network. The exponential networks are 20% points more
resilient (the same for scale-free networks) than the random networks to the central
hazard (0%), when 20% of the area has been removed and are 13% points (14% points
for scale-free) more resilient to the perimeter hazard (100%) for the same percentage

area removed.

Therefore, it can be concluded that a network with a uniform with distance nodal
layout can show more sensitivity to locations of the spatial hazard, than networks with
a uniform with area nodal layout. This has important implications for infrastructure
owners, who must carefully consider the location / distribution of highly connected
and important components within their system. If all of these components are located
close to the geographic centre then the resulting system will be extremely vulnerable
to hazards located on, or close to, this area. Not only will the highly connected
components be removed but many other nodes will be removed, having potentially
devastating effects for the system (due to a significant proportion of components and
connections removed, leading to a potentially extended period of repair and loss of

service provision).

Page 195



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

(a) 100%
80%
60%

40%

% Links Removed

20%

0%

100%

—
o
N

80%

60%

40%

% Links Removed

20%

0%

100%

—
(2]
~

80%

60%

40%

% Links Removed

20%

0%

------ 0% - RND-UD
------ 100% - RND-UD
|

0%

40% 60% 80% 100%

% Nodes Removed

—0%
—22%
—34%
42%
—71%
86%
—100%
------ 0% - RND-UD
------ 100% - RND-UD

0%

40% 60% 80% 100%
% Nodes Removed

—0%
—22%
—34%
42%
—71%
86%
—100%
------ 0% - RND-UD
------ 100% - RND-UD
1 1

0%

40% 60% 80% 100%
% Nodes Removed

Page 196



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

(d) 100% —
80%
g —0%
2 . —22%
.,E, 60% —34%
o 42%
< 40% —71%
§ 86%
—100%
20% 00%
------ 0% - RND-UD
------ 100% - RND-UD
0% 1 I
0% 20% 40% 60% 80% 100%
% Area Removed
(e) 2006 —
80%
?
g . —22%
g 60% 349
o 42%
= 40% —71%
4 o
— (]
0,
0% ¢l 22 0% - RND-UD
------ 100% - RND-UD
0% ‘
0% 20% 40% 60% 80% 100%
% Area Removed
(f) 100%
80% |
§ i —0%
g 60% - / —22%
S —34%
« i 42%
€ 40% - —71%
X - g 86%
20% —100%
------ 0% - RND-UD
------ 100% - RND-UD
0% | | | | 1

0% 20% 40% 60% 80% 100%
% Area Removed

Figure 4.12: Showing the results for all locations of the spatial hazards, for an average of 10 exponential
networks with a uniform with distance nodal layout, where nodes are introduced (a, d) with distance, (b,
e) proportional with distance and (c, f) randomly. It is worth noting that there is a small scatter in the

results for each of the 10 networks.
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Figure 4.13: Showing the results for all locations of the spatial hazards, for an average of 10 scale-free
networks with a uniform with distance nodal layout, where nodes are introduced (a, d) with distance, (b,
e) proportional with distance and (c, f) randomly. It is worth noting that there is a small scatter in the

results for each of the 10 networks.
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4.5.2: CLUSTERED NODAL LAYOUT

The networks with a clustered nodal layout show the same trends in results as both
the uniform with area and uniform with distance nodal layouts, when plotting the
percentages of nodes and links removed by each location of the spatial hazard (Figure
4.15, Figure 4.16). Although, in a similar manner to the uniform with distance nodal
layout, plotting the results in terms of the percentages of area and links removed

changes the hazard tolerance compared to the uniform with area nodal layout.

However, the plotted results do not form ‘smooth’ curves for the increasing spatial
hazard size unlike the previous two nodal layouts; as they can show sharp increases in
results for a small change in the size of the spatial hazard. This is caused by the
removal of a whole cluster of nodes in the network (causing a sharp increase in the
proportion of nodes/links removed for a small increase in the size of the hazard).
Figure 4.14 shows the results for 10 clustered networks, with different nodal layouts,
the same node introduction order and subjected to the same spatial hazard. From this
figure, the ‘jump’ in results for some networks can be easily seen. However, as the
results shown in Figure 4.15 and Figure 4.16 are an average of the results achieved for
10 networks (with different ‘cluster’ locations) and therefore the impact of removing
one cluster of nodes in one of the networks has been reduced (i.e. the ‘jump’ in results

is not as obvious compared to considering one network in isolation).
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Figure 4.14: Showing the results for 10 exponential networks with a clustered layout, where the nodes
were introduced randomly subjected to the ‘central’ attack. These results are averaged to produce the
0% result line in Figure 4.15. The amount of scatter in the results is due to the positions of the different
clusters of nodes.
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Similarly to the two previous nodal layouts, networks where the nodes are introduced
with distance show the greatest sensitivity to locations of the spatial hazard. Thereis a
67% point difference for the exponential networks (68% points for the scale-free
networks) between the two ‘extreme’ locations of the spatial hazard (i.e. 0% and
100%), when 20% of the area has been removed. This reduces to 53% points for
exponential networks (51% points for the scale-free networks) when the nodes are
introduced proportional to distance and to 36% points (and 36% for scale-free
networks) when the nodes are introduced randomly, for the same percentage area
removed. Compared to the uniform with area nodal layout this is an increase in the
variability of results, but a decrease in the variability compared to the uniform with
distance nodal layout. This is due to the spatial distribution of the nodes in the
network (Figure 4.1). The uniform with area nodal layout gives a linear relationship
between the distance from the centre of the network and the number of nodes, this
relationship changes to that distinctive of a squared function for the uniform with area
nodal layout. The spatial distribution of nodes for the clustered nodal layout is
between these two relationships; therefore, it is logical that the variability in the
hazard location (when plotted in terms of the percentage area removed) is between

these two nodal layouts (for the same node introduction order).

Comparing the results to the random network, again show that networks where the
nodes are introduced with distance show the greatest resilience / vulnerability
compared to the random network, due to the location of the high degree nodes. The
exponential networks are 23% points more resilient (24% points for scale-free
networks) than the random networks to the central hazard (0%), when 20% of the area
has been removed and are 10% points (10% points for scale-free) more resilient to the

perimeter hazard (100%) for the same percentage area removed.

These results may have important implications for infrastructure owners, as many
infrastructure systems display a clustered nodal layout (as they are ‘drawn’ to areas of
high population). If a spatial hazard is located over one of these clusters then a high
proportion of nodes (and potentially links) will be removed, for a small and otherwise
inconsequential spatial hazard. However, the connectivity of the network is also
important, particularly when the network becomes ‘degraded’, as this governs the

supply of service around the system. This will be considered in the next sub-chapter,
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which applies various network measures to the degraded networks to quantify their

change in performance.
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Figure 4.15: Showing the results for all locations of the spatial hazards, for an average of 10 exponential
networks with a clustered nodal layout, where nodes are introduced (a, d) with distance, (b, e)

proportional with distance and (c, f) randomly.
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Figure 4.16: Showing the results for all locations of the spatial hazards, for an average of 10 scale-free
networks with a clustered nodal layout, where nodes are introduced (a, d) with distance, (b, e)
proportional with distance and (c, f) randomly.
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4.5.2.1: EFrFecT INDIVIDUAL CLUSTER DENSITY ON THE HAZARD TOLERANCE OF THE NETWORK

All of the networks with a clustered nodal layout analysed, so far, in this Chapter have
used one value of Cp (equal to 200). This value is now varied to determine its effects
to the hazard tolerance of the resulting network, when subjected to the central attack
(Figure 3.35) and perimeter attack spatial hazards (Figure 4.6). To keep to number of
results to a manageable, and presentable, only the random network class has been
used (as using the more sophisticated exponential and/or scale-free network class
would mean that sets of results for the three node introduction orders would need to
be analysed, tripling the number of results). In this analysis, seven different Cp values
(which are equally dispersed from Cp = 50 to Cp = 350) have been used and a random
network generated for each, the resulting distribution of nodes in three of these
networks is shown in Figure 4.17. These networks all have the same initial conditions,
with the exception of the Cp value, and the probability that a node will not be located

inside the influence of a cluster is 0.2 (the same as the previous clustered nodal layouts

in this chapter).

Figure 4.17: Three of the seven clustered layouts used to demonstrate the hazard tolerance of
generated clustered nodal layouts generated with the same seed locations and radii, but using different
Cp values: (a) Co = 50, (b) Co = 200, (c) Co = 350.

The degree distribution, spatial distribution and spatial degree distribution for the
seven generated networks has been shown in Figure 4.18. From this figure it can be
seen that the degree distribution for all networks is approximately equal and that, for
networks with a higher Cp value the spatial distributions are ‘smoother’ than those
with small Cp values. This is due to the higher Cp value causing the individual clusters
of nodes to be less dense and also overlap (which can be seen visually in Figure 4.17),
resulting in a more spatially dispersed nodal configuration. This is reflected in the

spatial distributions, as they show a sharp increase in the number of nodes, for a small
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increase in the distance, for networks with a small Cp value (and therefore dense

clusters) but not for networks with a high Cp value.

(@ * e \ . CD=50
i : - CD =100
08 | s - CD =150
| CD =200
: - CD =250
06 - i - CD =300
= L : CD =350
o H
04 - :
I :
02 - i
s
[ H
LY
O 1 1 1 R 4
0 5 10 15 20 25 30
Degree, k
b) soo - .
(b) e
400
(7.}
[}
-]
o
Z 300
S . CD=50
g . CD =100
E 200 - CD =150
2 CD =200
- CD =300
CD =350
0 1 I
0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Centre
(c) 7000
6000 it
|- /,
5000 |
° I
[J]
54000 |
w |-
2 - CD=50
£ 3000 - - CD =100
v I - CD =150
2000 - CD =200
i - CD =250
1000 | . - CD =300
[P CD =350
0 o Il Il Il Il Il Il L Il L

0 500 1000 1500 2000 2500 3000 3500
Distance from Geographic Centre

Figure 4.18: The (a) degree distribution, (b) spatial distribution and (c) spatial degree distribution for
seven random networks, with different clustered nodal layouts. As all nodes in a random network have
approximately the same degree, the degree distribution (shown in (a)) has not been presented on a log
scale.
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Figure 4.19: Hazard tolerance of seven random networks with different clustering layouts, showing (a, c)
tolerance to central attack spatial hazard and (b, d) tolerance to perimeter spatial hazard.
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The results of the hazard tolerance analysis, shown in Figure 4.19, show that all of the
networks have the same hazard tolerance when the results are plotted in terms of the
proportion of nodes and links removed, for both spatial hazards. This result is
expected as the spatial layout of nodes is not considered in this method of presenting
the results and random networks are homogeneous (so for the same proportion of
nodes removed there should be the same proportion of links removed). However,
including a spatial element in the presentation of the results shows that there is a
small amount of scatter between the seven networks; but more apparent, is the effect
that cluster density has to the hazard tolerance. For the networks with a small Cp
value the removal of one of the dense clusters causes a sharp increase in the
proportion of links removed for a small increase in hazard size (this is particularly
evident for the perimeter spatial hazard when between 30-35% of the network area is
removed (Figure 4.19(d))). From these results it can also be seen that the networks do
not become progressively resilient, or vulnerable, with an increasing Cp value.
Although, these seven networks show a similar hazard tolerance to the two applied
spatial hazards, their hazard tolerance to randomly placed hazards will be different,

due to the specific placement of clusters in the layout.

It can therefore, be concluded that the hazard tolerance is dependent on the location,
and density, of the individual clusters in the network in relation to the spatial hazard
size and location. For networks with tight clusters (e.g. Cp = 50) the placement of
these dense clusters must be considered when planning the spatial layout of the
network, relative to that of any potential spatial hazards, and also in the placement of
the high degree nodes in more structured network classes (e.g. placing all of the high
degree nodes in one cluster will render the network highly vulnerable to the removal
of this small spatial area). Whereas, the placement of clusters in networks with more
dispersed nodes (e.g. Cp = 350) is less important, as a larger spatial area must be

covered by the hazard to remove the whole of the cluster.
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4.6: QUANTIFYING CHANGE IN PERFORMANCE / CONNECTIVITY USING NETWORK MEASURES

The results in this chapter have, so far, focused on quantifying the proportion of links
(connections) removed for a given proportion of nodes or area removed. This provides
infrastructure owners with information regarding the number links (representing
pipelines, transmission lines, for example) which may need to be replaced or repaired
following a disaster (from which impacts such as costs or down time can be estimated).
However, for some infrastructure systems it is the efficiency (e.g. the time taken to
transfer a flow of service around the system) that can also be considered to be
important. For these systems, plotting the results in terms of proportion links
removed does not give an insight into the efficiency of the system. For example, a high
percentage of pipelines may have been removed from a water distribution system, but
if these pipelines were not trunk mains then the resulting impact to the efficiency of
the network may be negligible. However, if these links were trunk mains then high

disruption may be caused.

This sub-chapter applies the MCS and APL network measures (defined in Chapter 2.5.4)
to the networks used in the previous sub-chapter, allowing the efficiency of the
networks to be quantified. To enable a ‘manageable’ number of results to be
presented, only the central attack and perimeter attack strategies (Figure 3.35, Figure
4.6) will be considered, as these have been shown to be the best and worst case
scenarios. The efficiency and resilience of both the exponential and scale-free
networks will be considered, as will all three nodal layouts and node introduction
orders. The results of the analysis are plotted in terms of the proportion of nodes
removed (to establish if node introduction order and/or network class affects the
efficiency and resilience of the network) and also in terms of the proportion of area
removed (to determine the effect that nodal layout has on the hazard tolerance /

efficiency).

4.6.1: CONNECTIVITY AND EFFICIENCY OF BENCHMARK RANDOM NETWORKS

The change in connectivity and efficiency of the benchmark random networks is
initially established (before comparisons with the exponential and scale-free networks

are made), for all three nodal configurations and for both locations of spatial hazard.
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Figure 4.20 plots the change in connectivity (MCS) for the random networks when
subjected to the central and perimeter attack strategies. From this figure, it can be
seen that all of the random networks maintain a highly connected structure for both
locations of the spatial hazard when the results are plotted in terms of the proportion
of nodes removed, due to the homogeneous nature of a random network. However,
plotting the results in terms of the proportion of area removed shows that the nodal
configuration of a network affects its connectivity as the hazard grows. The random
networks with a uniform with area nodal configuration show the greatest resilience to
the central attack spatial hazard, as these networks maintain connectivity as the
hazard expands (e.g. for each node removed by the hazard, the MCS drops by
approximately one). Whereas, the networks with a uniform with distance or clustered
nodal layout show vulnerability to this spatial hazard, as the MCS drops quickly for
small sizes of spatial hazard (with a reduction in MCS of 83 for a spatial hazard covering
5% of the network area for a uniform with distance layout and 48 for a clustered
layout, compared to the uniform with area nodal configuration). This is due to the
high density of nodes around the geographic centre of the network for both of these
nodal configurations and not because to the topology of the network. In contrast,
these two nodal configurations show resilience to small sizes of the perimeter attack
spatial hazard, compared to the uniform with area configuration, due to the presence
of a smaller number of nodes close to the perimeter of these networks, but become
less connected after 35-45% of the network area has been removed (when the high

density of nodes around the geographic centre is reached by the hazard).
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Figure 4.20: Showing how the maximum cluster size (MCS) changes for the random networks when
subjected to (a, c) central attack and (b, d) perimeter attack spatial hazards. Each line shown in the
graphs is the average of ten networks.
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The change in APL (which is indicative of the efficiency of a network) for the same
networks due to the expansion of both the central attack and perimeter attack spatial
hazards are shown in Figure 4.21. It should again be noted that APL is only a valid
measure until the results show a dramatic increase in efficiency (a drop in APL), for
reasons previously discussed. From this figure it can be seen that all of the random
networks have approximately the same efficiency and become increasingly inefficient
(displaying higher values of APL) to both locations of the spatial hazard as the hazards
grow, until 70% of the nodes have been removed. Further expansion of the spatial
hazard causes the efficiencies of the networks to diverge by a small but noticeable
amount. However, plotting the results in terms of the proportion of area removed
shows that there are differences in the efficiencies of the three nodal layouts for all
sizes of the spatial hazards. The random network with a uniform with area nodal
configuration is the most efficient for all sizes of the central attack spatial hazard, due
to the spatial dispersion of nodes throughout the network area. Both the uniform with
distance and clustered nodal layouts have a higher proportion of nodes closer to the
geographic centre of the network, meaning that for hazards located over this area a
higher proportion of nodes will be removed, ultimately causing the networks to

become more inefficient than the uniform with area configuration.

However, it is interesting to note that whilst a smaller proportion of nodes are
removed from the random networks with the uniform with distance and clustered
nodal configurations by small sizes of the perimeter attack spatial hazard (until 35% of
the network are has been removed), their efficiency is approximately the same as the
networks with a uniform with area nodal layout. This can be attributed to the
approximately equal efficiency of all random networks under normal operational
conditions and the number of nodes needed to noticeably change the APL of a
network. Unlike the MCS, the APL is not affected by the removal of a small proportion
of nodes in a random network (as they all have approximately the same degree). The
APL considers the shortest path length between all pairs of nodes in the network and
the removal of a small proportion of nodes (and therefore a small proportion of links)
will not significantly affect this value, consequently, causing all networks to show an

approximately equal efficiency for small sizes of the perimeter attack spatial hazard.
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Figure 4.21: Showing how the shortest average path length (APL) changes for the random networks
when subjected to (a, c) central attack and (b, d) perimeter attack spatial hazards. Each line shown in
the graphs is the average of ten networks.
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4.6.2: EFFecTs OF NODE INTRODUCTION ORDER AND NETWORK CLASS

The results for the scale-free networks, plotted in Figure 4.22, shows that networks
with different nodal configurations show approximately the same MCS values when
the networks are subjected to spatial hazard, but the order in which nodes are
introduced to a network does effects the network connectivity. Networks where the
nodes are introduced randomly (red lines) show the greatest resilience to both
locations of spatial hazard (maintaining a higher APL value) than the networks where
the nodes are introduced proportional to distance (green lines) and with distance from
the geographic centre (blue lines). This trend is more noticeable when the networks
are subjected to the central attack spatial hazard (Figure 4.22(a)), but can also be seen
in the results for the perimeter attack, after 40% of the nodes have been removed
(Figure 4.22(b)) and is due to the location of the high degree nodes within these
networks. For the networks where the nodes are introduced proportional to distance
and with distance, the majority of highly connected components are located around
the geographic centre of the network. It has already been shown that when this area
is removed by spatial hazard the network shows an increased number of removed links
compared to a random benchmark network, rendering the network vulnerable to this

hazard.

From Figure 4.22 it can be seen that the removal of these high degree nodes causes a
disproportionate decrease in the MCS, which is due to the topological characteristics
of a scale-free network. Many of the low degree nodes (which may only have one
connection) are attached to a high degree node (as a result of the network generation
algorithm); therefore when these high degree nodes are removed by the hazard a
number of low degree nodes can be left without a connection to the remaining
network (causing a disproportionate reduction in the MCS). This trend can also be
observed in the exponential networks, shown in Figure 4.23, and is again caused by the

location of the high degree nodes and the topological structure of the network.

The results achieved for the exponential networks (Figure 4.23(a)) are similar to those
previously shown for the three real world air traffic networks (Figure 3.57(a)). In these
networks introducing nodes randomly to the network created the best fit proxy
network (considering both the topological and spatial characteristics) and it can be

seen from Figure 3.57(a) that the USATN maintains a similar connectivity as the
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random network and the CATN and EATN maintain this connectivity until 45% and 65%
of nodes have been removed, respectively. This decrease in connectivity of the CATN
and EATN has been previously explained and they do not display a similar behaviour in
connectivity to the synthetic exponential networks due to their different topological

and spatial characteristics.
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Figure 4.22: Showing how maximum cluster size (MCS) changes with node removal for scale-free
networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of results
shown is the average of ten networks. The networks where the nodes are introduced with distance are
shown in shades of blue, nodes introduced proportional with distance are shown in shades of green and
nodes introduced randomly are shown in shades of red. The average results for the random networks
are shown in shades of grey.
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Figure 4.23: Showing how maximum cluster size (MCS) changes with node removal for exponential
networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of results
shown is the average of ten networks. The networks where the nodes are introduced with distance are
shown in shades of blue, nodes introduced proportional with distance are shown in shades of green and
nodes introduced randomly are shown in shades of red. The average results for the random networks
are shown in shades of grey.

In the case of the air traffic networks, the MCS can determine if it is possible to travel
around the network, but does not give an indication to the ease of this travel

(efficiency), for this the change in APL of the networks must be considered.

The changes in APL of the scale-free and exponential networks are shown in Figure
4.24 and Figure 4.25 respectively, for both the central attack and perimeter attack
spatial hazards. The results for the scale-free networks, plotted in Figure 4.25, show

that all node introduction orders and nodal layouts have very similar values of APL,
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when subjected to both the central attack and perimeter attack spatial hazards.
However, there are large differences in the results for the different node introduction
orders, particularly when subjected to the central attack spatial hazard (Figure 4.24(a)).
Networks where nodes are introduced randomly to the network (red lines) show the
most robust APL values and therefore the network maintains high efficiency. In
contrast, networks where the nodes are introduced in order of distance (blue lines)
show the greatest increase in APL and are therefore become the most inefficient and
are more susceptible to disruption. This difference can be attributed to the location of
the high degree nodes within the network. Locating the majority of highly connected
components close to the geographic centre causes these nodes to be removed first by
the central attack spatial hazard, resulting in a disproportionate effect to the
proportion of links removed (as previously discussed). However, this also causes a
decrease in the efficiency of the network due to the topological connectivity of a scale-
free network. These networks are efficient under normal operational conditions as the
numerous weakly connected nodes tend to be directly connected to one, or more, of
the few highly connected nodes and can exploit this connection to quickly transfer
information to other weakly connected nodes in the network. However when these
highly connected nodes are removed, the network becomes increasingly inefficient as
the remaining low degree nodes cannot move information quickly around the network
by transferring it through a high degree node and must rely on their connections to
other low degree nodes in order to transfer information (increasing their shortest path

length and therefore the APL of the whole network).

Figure 4.24 also shows that the scale-free networks, where the nodes are introduced
randomly, maintain a higher efficiency than the random benchmark networks to both
locations of the spatial hazard. This increase in efficiency is not apparent in the
networks where the nodes are introduced with distance or proportional to distance
and can therefore be attributed to the spatial dispersion of high degree nodes in the
network. In these scale-free networks the removal of a high degree node by the
spatial hazard also causes a large number of weakly connected nodes to be removed;
and it is the removal of many of these low degree nodes which causes the network to

maintain efficiency (for reasons previously discussed).
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Figure 4.24: Showing how the shortest average path length (APL) changes with node removal for scale-
free networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of
results shown is the average of ten networks. The networks where the nodes are introduced with
distance are shown in shades of blue, nodes introduced proportional with distance are shown in shades
of green and nodes introduced randomly are shown in shades of red. The average results for the
random networks are shown in shades of grey.
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Figure 4.25: Showing how the shortest average path length (APL) changes with node removal for
exponential networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line
shown in the graphs is the average of ten networks. The networks where the nodes are introduced with
distance are shown in shades of blue, nodes introduced proportional with distance are shown in shades
of green and nodes introduced randomly are shown in shades of red. The average results for the
random networks are shown in shades of grey.

The APL of the exponential networks (Figure 4.25) follow the same trend as those for
the scale-free networks when considering the order in which nodes were introduced to
the network (with networks where the nodes were introduced with distance showing
the greatest reduction in efficiency). However, from Figure 4.25 it can be seen that all
of the exponential networks maintain efficiency compared to the random benchmark
networks, unlike the scale-free networks. For example, the APL for the random

networks peaks at 5.75 for the perimeter attack spatial hazard, and for the same
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proportion of nodes removed the most inefficient exponential network has an APL
value of 2.46. This increase in efficiency can be explained by considering the
neighbourhood value which was used to generate the exponential networks. The
neighbourhood size affects the probability of attachment which is used by a new node
when deciding to connect links from a new node to existing nodes in the network (see
Figure 3.4) and for the air traffic networks generated in Chapter 3 this neighbourhood
value represents the distance that people were prepared to travel overland to reach
an airport. If this value is set low enough the probability of attachment will be based
on degree alone, as no other nodes will be found in the neighbourhood of each
existing node (resulting in a scale-free network); whilst a high value of neighbourhood
causes each existing node to have an equal probability of attachment (as the
neighbourhood of each node covers the whole network area). This value therefore
alters the connectivity and topological characteristics of the generated network, which
can be seen when viewing the degree distribution of six networks generated with
different neighbourhood values shown in Figure 4.26. These networks all have a
uniform with area nodal configuration and nodes were introduced in order of distance

from the geographic centre.
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Figure 4.26: The degree distribution of six networks generated with different neighbourhood values.

From Figure 4.26 it can be seen that the network generated with the smallest value of
neighbourhood (R = 0.05) has the highest degree node (with a degree of 167) and the

number of connections attached to the highest degree node reduces with each
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increase of neighbourhood value. This is because for a small value of neighbourhood
the probability of attachment is based on degree alone meaning that the highest
degree node is most likely to attract new links (causing a large degree node); whilst for
a large neighbourhood all nodes have equal probability of attachment (meaning that
this high degree node is now less likely to form). The effect that this neighbourhood
value has to the efficiency of a network has been assessed by subjecting these six

networks to the central attack spatial hazard, shown in Figure 4.27.

From Figure 4.27 it can be seen that the neighbourhood value does affect the
efficiency of the generated network, particularly for large sizes of spatial hazard (after
40% of the nodes have been removed). The networks generated with a small
neighbourhood value (R = 0.05) quickly become the most inefficient (with the highest
values of APL) when 65% of the nodes have been removed. This neighbourhood value
should cause these networks to behave in a similar manner to the scale-free networks
and comparing the results to those for the scale-free networks, in Figure 4.24(a), it can
be seen that this is the case. Although, these networks do not become as inefficient as
the scale-free networks, with a maximum APL value of 4.51, compared to the APL
value of 5.86 for a scale-free network (with the same nodal configuration and node
introduction order), due to the presence of a small neighbourhood value meaning that
the probability of attachment is not solely based upon degree. As the neighbourhood
value increases (to R = 0.1 and R = 0.2) the generated networks are able to maintain a
higher efficiency when nodes are removed by spatial hazard, with a neighbourhood
value of 0.25 forming the most efficient network (this value was used to generate all of
the exponential networks previously used in this Chapter). These relatively constant
APL values are due to the probability of attachment of new connections being based
on both degree and proximity, which causes a number of links that were bound for a
high degree hub to be ‘shifted’ to nearby lower degree nodes. Therefore, as the
hazard removes these high degree nodes there still exists a connection between many
of the lower degree nodes due to this ‘shift’, causing the efficiency of the network to
be maintained. However, with further increase of this neighbourhood value, to R = 0.8
and R = 0.9, the network no longer maintains efficiency as the hazard expands. This is
due to the topological structure of these networks becoming similar to that of an

unstructured random network, due to the random probability of attachment (as
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previously discussed). It is worth noting that an equal probability of attachment (due
to a high neighbourhood value) does not result in a generated network with the same
topological structure as a random network, due to the growth element in this network

generation algorithm.
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Figure 4.27: Showing how the shortest average path length (APL) changes for six exponential networks,
with a uniform with area nodal configuration, when subjected to the perimeter attack spatial hazard.
These networks were all generated with a different neighbourhood size (R) which is shown in the key
and the nodes in all six networks were introduced in order of distance from the geographic centre.

Therefore, for the air traffic networks (and other real world infrastructure networks
with a similar topology) this suggests that there is an optimal value of neighbourhood
which will cause the network to maintain efficiency when subject to, in this example,
the worst case location of spatial hazard (as nodes were introduced with distance and
the central attack spatial hazard was used). However, this may compromise the
efficiency of these networks under normal operational conditions. Table 4.1 shows the
APL values for all six generated networks under normal operational conditions. From
this table it can be seen that networks with a small neighbourhood size have a smaller
APL than networks with a larger neighbourhood, meaning that they are more efficient

under normal operational conditions. The APL value which causes the network to

maintain efficiency when subjected to the worst case hazard scenario (R =0.25) is 5.2%

less efficient than the network with the smallest neighbourhood (R = 0.05) under
normal operational conditions. Therefore for a real world infrastructure network it

should be carefully considered whether this reduction in efficiency under normal
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operational conditions is worth the maintenance of this efficiency under hazard

scenario.

Table 4.1: Showing the APL of the six networks generated with different neighbourhood values under
normal operational conditions.

Neighbourhood Value APL
0.05 2.50
0.10 2.55
0.20 2.59
0.25 2.63
0.80 2.68
0.90 2.73

The results shown in this sub-chapter have been plotted in terms of the percentage of
nodes removed, giving an indication of how the connectivity and efficiency of the

system is affected by network class and node introduction order.

It can be concluded that exponential networks maintain a higher efficiency when
degraded by hazard than both scale-free and random networks, and that this higher
efficiency is caused by the topology of the network which is a result of the
neighbourhood value used to generate the network. For these synthetic exponential
networks a neighbourhood value of 0.25 results in the optimal efficiency of the system
when subjected to the worst case central attack spatial hazard, but does slightly
compromise the efficiency of the network under normal operational conditions. This
research has also shown that the placement of high degree nodes affects both the
connectivity and efficiency of a network. Placing the majority of high degree nodes
around the geographic centre of the network (i.e. introducing nodes with distance)
renders the network vulnerable to the central attack spatial hazard. This was shown to
be the case in the previous sub-chapter when the results were plotted in terms of the
proportions of removed nodes and links, but has also been shown to cause a
disproportionate impact to the connectivity and efficiency of the networks. Whereas,
spatially dispersing these high degree nodes (i.e. introducing nodes in randomly)
creates a network that is the best compromise for all locations of the spatial hazard (i.e.

it is not susceptible to specific location of the spatial hazard).
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4.6.3: EFFecTS OF SPATIAL NODAL CONFIGURATION

The MCS has been plotted against the proportion of area removed by the central
attack and perimeter attack spatial hazards for the scale-free (Figure 4.28) and
exponential networks (Figure 4.29). From these results it can be seen that the nodal
layout does have an effect on the connectivity of the scale-free and exponential
networks, when plotting the results in terms of the percentage area removed, rather
than percentage nodes removed. This again can be attributed to the high density of
nodes in the centre of the uniform with distance and clustered nodal layouts and
therefore the low density of nodes around the spatial boundary of the network. For
the central spatial hazard, the results show that both of these nodal layouts degrade
quicker (i.e. have a lower value of MCS) than the uniform with area nodal layout,
meaning that the network has either broken into many smaller clusters or a large
proportion of nodes have been removed. Considering the previous results plotting the
MCS against the proportion of nodes removed and the MCS (shown in Figure 4.22 for
scale-free networks and in Figure 4.23 for exponential networks) it can be seen that
the latter of these is correct; this can also be determined by visualising the three nodal
layouts (Figure 4.1). Comparing these results to the benchmark random networks, for
each nodal layout, shows that both the scale-free and exponential networks are
vulnerable to all sizes of the central attack spatial hazard (with a consistently lower

value of MCS).

For small sizes of the perimeter hazard (until 35% of the area has been removed) both
the scale-free and exponential networks with a uniform with distance and clustered
nodal configuration have a higher MCS value than those with a uniform with area
configuration. This can be expected as there are fewer nodes around the perimeter of
the network for these two nodal configurations, therefore fewer nodes will be
removed, resulting in a larger value of MCS for the same hazard size. However, when
the hazard reaches the geographic centre of the network (when between 30-40% of
the network area has been removed), these two nodal layouts become increasingly
vulnerable. This is due to the removal of the high density of nodes around the
geographic centre of the network in these two nodal configurations. Comparing these

results to the random networks again shows that the random networks are more
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resilient (i.e. have a consistently larger MCS value) than the scale-free networks, for

the same nodal configuration.

It is also worth noting that the order in which nodes are introduced to the network
also has an effect on the connectivity (MCS) of the network. Networks where the
nodes are introduced with distance show lower values of MCS and are therefore less
connected than networks where the nodes are introduced randomly to the network;
this can be attributed to the spatial dispersion of high degree nodes in the randomly

introduced nodal networks.
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Figure 4.28: Showing how maximum cluster size (MCS) changes with area removal for scale-free
networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of results
shown is the average of ten networks. The networks where the nodes are introduced with distance are
shown in shades of blue, nodes introduced proportional with distance are shown in shades of green and
nodes introduced randomly are shown in shades of red. The average results for the random networks
are shown in shades of grey.
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Figure 4.29: Showing how maximum cluster size (MCS) changes with area removal for exponential
networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of results
shown is the average of ten networks. The networks where the nodes are introduced with distance are
shown in shades of blue, nodes introduced proportional with distance are shown in shades of green and
nodes introduced randomly are shown in shades of red. The average results for the random networks
are shown in shades of grey.

The change in APL with area removed by the central and perimeter attack spatial
hazards have been plotted in Figure 4.30 for scale-free networks and in Figure 4.31 for
exponential networks. From these figures it can be seen that the nodal configuration
of a network all affects its efficiency when subjected to a hazard scenario. This is
particularly evident in the scale-free networks subjected to the central attack spatial
hazard (Figure 4.30(a)), where it can be seen that, for the same node introduction

order, the efficiency of the networks with a uniform with distance or clustered nodal
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configuration reduces at a quicker rate than the networks with a uniform with area
nodal layout. This is due to the concentration of nodes around the geographic centres
of these configurations, which causes the peak APL values to occur with a smaller
proportion of area removed than proportion of nodes removed. From Figure 4.30(a) it
can also be seen that networks with the uniform with distance nodal configuration
quickly become the most inefficient (and therefore the most vulnerable) to the central
attack spatial hazard as they have the highest proportion of nodes close to the

geographic centre.

From Figure 4.31, it can be seen that the nodal configuration has a negligible impact to
the efficiency of an exponential network, when subjected to both the central attack
and perimeter attack spatial hazards and that these networks are still more efficient
than the random benchmark networks. This is due to the topological characteristics of

these networks, as previously discussed.
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Figure 4.30: Showing how the average path length (APL) changes with area removal for scale-free
networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line of results
shown is the average of ten networks. The networks where the nodes are introduced with distance are
shown in shades of blue, nodes introduced proportional with distance are shown in shades of green and
nodes introduced randomly are shown in shades of red. The average results for the random networks
are shown in shades of grey.
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Figure 4.31: Showing how the shortest average path length (APL) changes with area removal for
exponential networks subjected to (a) central attack and (b) perimeter attack spatial hazards. Each line
of results shown is the average of ten networks. The networks where the nodes are introduced with
distance are shown in shades of blue, nodes introduced proportional with distance are shown in shades
of green and nodes introduced randomly are shown in shades of red. The average results for the
random networks are shown in shades of grey.

The results shown in this sub-chapter are the same as those in the previous sub-
chapter, but have been plotted terms of the percentage of area removed rather than
the percentage of nodes removed. This gives an indication of how the connectivity

and efficiency of the system are affected by the nodal layout.

From these results it can be seen that the nodal configuration and location of high
degree nodes can dramatically affect the connectivity and efficiency of a network

when subjected to spatial hazard. Locating the majority of components in one area
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(uniform with distance nodal configuration) renders the network vulnerable to
locations of the spatial hazard over this area and causes a fragmented network
(reducing MCS) and also a significant drop in efficiency (increasing APL). Therefore, for
networks such as the EATN and CATN (which have formed around an area of high
population density) hazards located over the area of high nodal density will not only
remove a disproportionate number of links, but will also cause the network to become
fragmented and increasingly inefficient. However, this configuration causes these
networks show an increased resilience (maintaining both MCS and APL) to spatial
hazards located away from this area of high nodal density, which has been shown by
the EATN when subjected to the Eyjafjallajokull volcanic event. The EATN maintained
connectivity for small sizes of the hazard (until 20% of the network area was removed)
and maintained efficiency for all sizes of this hazard (as shown in Figure 3.37).
Whereas, spatially dispersing all infrastructure components throughout the network
area (uniform with area) creates a network which is the best compromise to all

locations of the spatial hazard.

4.7: BEST / WORST CASE COMBINATIONS FOR HAZARD TOLERANCE

This chapter has investigated the hazard tolerance of a range of synthetic networks to
different sizes and locations of spatial hazard. All possible combinations of network
class (random, scale-free and exponential), nodal layout (uniform with area, uniform
with distance and clustered) and node introduction order (random, proportional with
distance and with distance) have been considered. This sub-chapter concludes the
results in this chapter, initially summarising the main findings for each different
network class and then discussing the relevance of these findings for infrastructure
systems. The next section of this chapter will then use this data to inform strategies to

increase the resilience of the EATN to spatial hazard.

Chapter 4.6 initially analysed the changes in MCS and APL for the random networks, to
establish a benchmark for resilience from which to compare the two more
sophisticated network classes (scale-free and exponential). Analysis of these random
networks showed that they maintained connectivity when subjected to both the

central attack and perimeter attack spatial hazards (Figure 4.20(a, b)). However, these
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networks also showed a decreasing efficiency with an increase in hazards size (Figure
4.21(a, b)). Through this analysis, it was also shown that the nodal configuration of a
random network affects its hazard tolerance. Networks with a uniform with area
nodal configuration showed the same response, in terms of both connectivity and
efficiency, to both locations of spatial hazard (Figure 4.20(c, d), Figure 4.21(c, d));
whereas, the uniform with distance and clustered nodal configurations showed an
increased vulnerability to the central attack spatial hazard (with a decreased efficiency
and connectivity) and an increased resilience to small sizes of the perimeter attack
spatial hazard. This was attributed to the high concentration of nodes around the

geographic centre in these two nodal configurations.

The analysis of the scale-free networks showed that they displayed an increased
vulnerability to many sizes and locations of spatial hazard compared to the random
networks, with the order in which nodes were introduced to the network significantly
affecting their hazard tolerance. For example, networks where the nodes were
introduction proportional to distance and randomly showed a lower value of MCS than
the random networks for all sizes of the central attack spatial hazard, but it was the
networks where nodes were introduced with distance which showed the lowest MCS
values and therefore the greatest vulnerability (Figure 4.22(a)). Networks where the
nodes were introduced with distance also showed the greatest reduction in MCS for
larger sizes of the perimeter attack spatial hazard (after 40% of nodes were removed,
Figure 4.22(b)). This decreased connectivity was attributed to the location of high
degree nodes within these networks, as previously explained. Networks where the
nodes were introduced with distance also showed the greatest decrease in efficiency
for all sizes of the central attack spatial hazard, and for larger sizes of the perimeter
attack spatial hazard (when more than 40% of nodes were removed, Figure 4.24).
Whereas, networks where the nodes were introduced proportional to distance
showed a similar efficiency as the random networks and introducing nodes randomly
formed a more efficient network. This was attributed to both the location of high
degree nodes and the topology of a scale-free network, compared to a random
network. Finally, it was shown that, in a similar manner to the random networks, the
nodal configuration of scale-free networks affects both their connectivity and

efficiency when the results are plotted in terms of the proportion of area removed by
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the spatial hazard (Figure 4.28, Figure 4.30). It was again shown that the uniform with
distance nodal layout formed the weakest connected and most inefficient network for
all sizes of the central attack spatial hazard, due to the large proportion of nodes
around the geographic centre of the network (Figure 4.28(a), Figure 4.30(a)). However,
this high concentration of nodes also caused this nodal layout to show resilience (a
higher MCS and lower APL value) to small sizes of the perimeter attack spatial hazard

(until 35% of the area is removed) (Figure 4.28(b), Figure 4.30(b)).

The exponential networks showed a similar change in MCS, as the scale-free networks,
for both spatial hazards (Figure 4.23). These networks again showed that the order in
which nodes are introduced to a network affects the change in connectivity for an
increase in spatial hazard size, due to the location of the high degree nodes. For the
central attack spatial hazard, introducing nodes in order of distance (and therefore
placing the high degree nodes around the geographic centre) caused a
disproportionate impact to the connectivity of the network (Figure 4.23(a)), with this
introduction order forming the most weakly connected network. Whereas,
introducing nodes randomly formed the most resilient exponential network, as it
maintained a higher connectivity; although, these networks were still vulnerable when
compared to the random benchmark networks. However, it was shown that the
exponential networks were able to maintain efficiency when subjected to both
locations of spatial hazard, unlike the scale-free and random networks. This was
attributed to the topology of these networks, as a result of the neighbourhood
parameter used in the network generation (which enables the decision to attach a link
from an introduced node to be based on degree and proximity, rather than degree
alone as for scale-free networks). Further analysis of networks generated using
different values of this neighbourhood parameter, showed that for small values the
efficiency of the networks was similar to that of scale-free networks (as the probability
of attachment is more likely to be based on degree alone, forming a topology similar to
a scale-free network) and for large values the efficiency was similar to that shown by
random networks (as each node has an equal value of probability, therefore inhibiting
the formation of high degree nodes) (Figure 4.27). This analysis revealed that there
was an ‘optimum’ value of neighbourhood which resulted in the efficiency of a

network being unaffected by spatial hazard. However, it was also shown that this

Page 234



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

optimisation compromised the efficiency of the network under normal operational
conditions. In a similar manner to both the random and scale-free networks it was also
shown that the nodal configuration affects the hazard tolerance of an exponential
network. Exponential networks with a uniform with distance nodal configuration
showed the greatest vulnerability to the central attack spatial hazard (Figure 4.29(a)),
but were the most resilient to small sizes of the perimeter attack spatial hazard (Figure
4.29(b)), due to the high concentration of nodes around the geographic centre as

previously discussed.

Whilst, this Chapter has focused on the analysis of synthetic networks, the results have
important implications for real world systems. Infrastructure systems which have
formed around a more uniform population density (for example, the USATN) are likely
to be spatially dispersed and will therefore have a similar resilience to all locations of
spatial hazard, as shown by the uniform with area nodal configuration. Infrastructure
owners of these systems can therefore estimate the expected damage caused by a
spatial hazard based on the hazard size alone (rather than considering both hazard and
location). However, infrastructure systems which have formed around a single area of
high population density (for example, the EATN and the CATN) are likely to form either
a uniform with distance or clustered nodal layout (centred around this area of high
density), with the majority of highly connected components also located in this area.
This research has shown that these networks are particularly vulnerable to hazards
located over this high density area, causing not only a disproportionally large number
of connections to be removed (up to 22% points more links removed, when 20% of the
area is removed, than a uniform with area nodal layout), but also a disproportionate
drop in the connectivity of the network and potentially a decrease in the efficiency of
the network, depending on its topological characteristics. However, this nodal
configuration can also cause these networks to show an increased resilience to hazards
located away from this high density area (similar to the effect that a small size of the
Eyjafjallajokull volcanic event caused to the EATN, Figure 3.1(d)), with up to 7% fewer
connections removed than the uniform with area configuration for a hazard removing
20% of the network area. Therefore, infrastructure owners with systems that have
formed around one area of high population density should be aware of both the

potential location and size of any spatial hazards in relation to this area. For example,
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the EATN has formed around the area of high population density around central
Europe rendering it vulnerable to spatial hazard covering this region (e.g. winter
storms, volcanic ash clouds). For these systems, if the majority of known spatial
hazards are likely to affect this area of high density, infrastructure owners are advised
to relocate a number of their system components (particularly highly connected
components) away from this area of high density, to reduce the vulnerability (and
increase connectivity and efficiency) of the network under hazard scenario. However,
this may not be possible for all infrastructure systems, due to the economic cost
involved and the demand for this infrastructure within the area of high population
density. For these systems, the infrastructure owners are advised to have a robust
adaptation strategy which can be used in the event of spatial hazard to minimise

disruption.

It can be concluded that infrastructure owners should take note of the spatial location
of both their components and highly connected components when determining the
hazard tolerance of their system(s). However, this should not be considered in
isolation. This chapter has shown that both scale-free and exponential networks can
have the same hazard tolerance as benchmark random networks, but that this is
dependent on the spatial configuration of the network. However, the topological
resilience of these networks must not be forgotten; in this case the scale-free and
exponential networks are vulnerable to targeted attacks. Therefore, to fully assess the
hazard tolerance of their system infrastructure owners need to be aware of the

consequences of both the spatial distribution and network class of their system.

4.8: HoOw CAN THE RESILIENCE OF EXISTING REAL WORLD INFRASTRUCTURE SYSTEMS BE

IMPROVED?

In this sub-chapter two strategies to increase the resilience of the EATN are developed,
applied and finally tested to determine their ability to reduce the vulnerability shown
by the EATN to the central attack spatial hazard (Figure 3.36) (this hazard is used,
rather than the perimeter attack, as this hazard was deemed to be the ‘worst case’ for
the EATN). These strategies are both informed by the resilience shown by the random

network class, spatial dispersion of high degree nodes (i.e. the random node
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introduction order) and the spatial dispersion of nodes (i.e. the uniform with area

nodal layout) in the previous sub-chapters.

Two strategies to increase the resilience of the EATN have been formed by considering
the conclusions from the previous data gathered from the synthetic networks. The
first strategy can be considered to be 'adaptive' as it dictates how the EATN responds
to a spatial hazard, by allowing air routes to reroute to other airports if one of their
connected airports is enveloped by the hazard. Whilst the second strategy is
'permanent' and re-generates the EATN using the network generation algorithm
(developed in Chapter 3) but sets a limit for the maximum number of connections that
a node can have (to limit the size of the hub airports). It is worth noting that in both of
these strategies it is the connectivity of the network that is of interest and not the
capacity of the network (i.e. the ability to move around the network, not the capacity

of each air route).

To ensure that these strategies are realistic and could be used as a basis for informing
more sophisticated methods (which account for social and economic elements) to
increase the resilience of the EATN several assumptions have been made. It is
assumed that the location of airports cannot be altered and that existing airports
cannot be removed, nor additional airports introduced. Similarly, it is assumed that
links cannot be added to the network (creating a homogenous network where every
airport is connected to every other airport would no doubt create the most resilient
network, but conversely would also be the most economically unviable). In the
‘adaptive’ strategy it is assumed that under normal operational conditions the EATN is
optimally configured to maximise social and economic benefits. It is also assumed that
the capacity of airports can change, particularly at short notice in the event of a hazard
scenario (e.g. as air routes become diverted, potentially whilst the aircraft is in flight)
and that each airport has infinite capacity and can cope with added air traffic of a

rerouted air route.
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4.8.1: ‘ADAPTIVE’ STRATEGY FOR IMPROVING RESILIENCE

The first strategy aims to increase the resilience of the EATN by ‘adapting’ the network
to a spatial hazard. In this strategy, air routes are ‘rewired’ from airports that are
located in the hazard to the closet operational airport (i.e. the closest airport outside

the hazard).

To determine the improvement that this ‘adaptive’ strategy has to the EATN, the
central attack spatial hazard is used and 10 airports at a time are removed as the
hazard grows. The network is analysed after the removal of 10 airports, rather than
removing airports individually, to reduce the computational effort of the analysis. If an
air route is connected to two airports that are both enclosed in the spatial hazard, then
the air route has failed and it is assumed that it is a short overland distance between
these two airports and that is now the quickest mode of travel between the two.
However, if an air route is connected to one airport inside the boundary of the spatial
hazard and one outside the hazard, then the air route is ‘redirected’ to the closest
airport located outside the spatial hazard; provided that these two airports are not

already connected.

Using this method, two simulations are undertaken; one includes parallel edges (where
two, or more, links connect the same two nodes) and the other removes parallel air
routes. In this thesis, weighted networks and parallel edges are outside the scope;
however, they are used in this instance purely to show the increase in expected air
traffic at airports outside the influence of the spatial hazard. Figure 4.32(a, b) shows
the adaptive rewiring strategy when parallel edges have been removed from the
network and Figure 4.32(c, d) shows the strategy when these parallel edges have been

retained.
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Figure 4.32: Showing the strategy used to rewire links (air routes) in the event of a spatial hazard. In all
parts of the figure a section of the EATN is shown and the nodes are indicated by dots and the links by
the connecting lines (solid lines indicate a link between two shown nodes and a dotted line between
two nodes where one has been omitted for clarity). In (a) it can be seen that two airports (red dots)
have been enveloped by a spatial hazard (red circle). The orange air route is failed (as both origin and
destination airports are enveloped by the spatial hazard) and the blue air routes are ‘rewired’ to the
closest airport and any parallel edges are removed, the result of this can be seen in (b). The same
starting network is shown in (c) and is rewired in (d) using the same ‘rules’, but in this case parallel
edges are allowed to form.

The results for this strategy have been shown in Figure 4.33, for both the networks
where the parallel edges have been included / removed. In this figure, the results have
also been compared to that of the original EATN and two random networks, one with
the same nodal locations as the EATN and the other with random nodal locations. It
can be seen that by ‘rewiring’ the air routes around the spatial hazard that the
resilience of the network increases by 30% points when the parallel air routes are
removed and by 45% points when the parallel air routes are included, for the removal
of 20% of the airports, compared to the EATN with no rewiring strategy. Adaptively
‘rewiring’ the air routes also increases the resilience of the EATN when compared to
the random network (with random nodal locations) and indeed makes the network
resilient when compared to the random network. The adaptively rewired network that

removes parallel edges is 8% points more resilient than the random network and
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increases to 26% points more resilient when parallel edges are included, for a hazard

that closes 20% of the airports.

Plotting the results in terms of the proportion of closed area shows that only the
rewired EATN where the parallel edges have been included is resilient when compared
to the random network with random nodal locations. Although, the resilience of the
rewired EATN with removed parallel edges does increase by 12% points compared to
the EATN with no rewiring, it is still 41% points more vulnerable than the random
network for a hazard size covering 20% of the network area. This is due to the location
of a large proportion of airports around the geographic centre of the network (Figure
3.7). These airports are removed by the spatial hazard and their air routes can only be
rewired if they do not form a parallel edge. From this graph, it can also be seen that
the rewired EATN where the parallel edges are not removed shows a significantly
increased resilience until around 80% of the network area is removed. This is due to
the failure of fewer air routes as a result of the inclusion of these parallel edges. Using
this method, air routes are only failed when they connect to airports within the

expanding spatial hazard.
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Figure 4.33: The results of the ‘adaptive’ rewiring strategy for the EATN subjected to the central attack
spatial hazard. The hazard tolerance of the EATN with no rewiring (where links are removed if one (or
both) of their connecting airports are enveloped by the hazard) (blue line) is compared to the EATN
when the links have been rewired and parallel edges removed (red line) and not removed (green line).
The random benchmark network, with random nodal locations, and three random networks with the
same nodal configuration as the EATN have also been shown (dotted lines).

The random network, with the same nodal locations as the EATN, has also been
rewired to form a benchmark for comparison with the EATN. It can be seen from
Figure 4.33(a) that the rewiring improves the resilience of the random networks
(compared to those that have not been rewired) when the results are plotted in terms
of the proportion of nodes removed; however, plotting the results for the proportion
of closed area shows that the rewired random networks, with the same nodal layout as
the EATN, are still not as resilient as the random network, with random nodal locations,
that has not been rewired (Figure 4.33(b)). From these results, it can therefore be
concluded, that the airport locations play a significant role in the vulnerability shown

by the EATN to spatial hazards located close to the geographic centre of the network.
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Figure 4.34: Observing the changes in (a, b) average degree of the remaining nodes for the EATN and
two adaptively rewired networks (one with parallel edges, one without) and (c, d) maximum degree for
the same three networks. The results in (a, c) have been plotted with respect to the proportion of
nodes removed and in (b, d) with respect to the proportion of area removed.
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To observe the changes that the rewiring strategy has to the degree of the airports,
the maximum and average degree (recalculated after the removal of 10 airports) are
plotted against the proportion of nodes and area removed by the spatial hazard
(Figure 4.34). For the ‘adaptive’ strategy where parallel edges are removed the
average degree of airports slowly decreases, but not as quickly as the EATN where this
strategy is not implemented (Figure 4.34(a, b)); however, when the parallel edges
remain in the network the average degree of airports increases and reaches a peak of
29.60 (compared to the original average of 14.80) when around 95% of airports or 70%
of airspace is closed. This is due to the presence of only a few airports which are all

interconnected by multiple air routes.

Considering the maximum degree of the same three networks, it can be seen that for
both of the rewired networks the maximum degree increases dramatically with only a
small proportion of the airspace closed (Figure 4.34(c, d)). The maximum degree
airport has a degree of 133 in the EATN (with no airports removed) and increases to
350 when the ‘adaptation’ strategy which removes parallel edges is implemented and
to 522 when parallel edges remain in the network. Therefore, for small spatial hazards,
these high degree airports will experience a significant increase in the number of
expected aircraft and passengers. It was assumed that all airports have infinite
capacity and can therefore cope with any increase in aircraft and passengers; however,
it is likely that for an actual air traffic network (where the capacity of the airports is

restricted) that some of these air routes may need to divert to another nearby airport.
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Figure 4.35: Observing the changes in the number of links rewired in the EATN for the rewired networks
with parallel edges (green line) and without parallel edges removed (red line). The results in (a) are
plotted with respect to the proportion of nodes removed and in (b) with respect to the proportion of
area removed.

The number of air routes rewired in the ‘adaptation’ strategy for both the inclusion
and exclusion of parallel edges is shown in Figure 4.35. In this figure, it can be seen
that the number of rewired air routes gradually increases when plotted in terms of the
proportion of airports closed and fairly sharply when plotted in terms of the
proportion of airspace closed. The network where the parallel edges have not been
removed (green) shows that a higher number of air routes have been rewired (a total
of 20,057) compared to the network where these multiple edges have been removed
(red) (a total of 34,178), this is due to the increase in the number of air routes in this
network. Therefore, it can be seen that small sizes of spatial hazard, the size of the
hazard has a disproportionate effect to the number ‘displaced’ passengers (until 20%

of the network area is removed).
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Figure 4.36: Showing the changes in (a, b) maximum cluster size and (c, d) average path length for the
EATN, two rewired networks and a random network subjected to the central attack spatial hazard. The
results in (a, c) are plotted with respect to the proportion of nodes removed and in (b, d) with respect to
the network area removed by the spatial hazard. It appears that the results for the rewired EATN with
no parallel edges (red line) is missing from this figure, however, it has the same results as the rewired
EATN with parallel edges (green) and appears under this line.
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The MCS and APL of these networks have also been calculated, and compared to the
MCS and APL of the EATN without rewiring and to the random benchmark network
(shown in Figure 4.36). Considering the results of the MCS, the rewired networks show
a slight increased resilience compared to the EATN with no rewiring, but still do not
show the same resilience as the random network, with random nodal locations (Figure
4.36(a, b)). Therefore, it can be concluded that although there are more air routes in
the network, these do not connect the remaining airports in one coherent cluster and
travel between some parts of the network still needs to be achieved using other forms
of transportation. The APL for the same networks shows that travel around the
‘rewired’ networks is easier than for the EATN when there is no rewiring (as there is a
lower value of APL) (Figure 4.36(c, d)); peaking at a value of 3.10 compared to the
EATN at 3.94. These networks also show a smaller APL value than the random

networks (which peak at an APL value of 6.10).

4.8.2: ‘PERMANENT’ STRATEGY FOR IMPROVING RESILIENCE

The second strategy implemented to increase the resilience of the EATN focuses on
the permanent rewiring of the network and in so doing proposes a ‘trade off’ or
compromise between the optimised social and economic factors (assumed in the
actual EATN) and the resilience of the network. In this strategy the EATN is generated
using the algorithm previously developed (in Chapter 3) and also uses the same node
introduction order as in Figure 3.8(g, h) (i.e. the ‘best fit’ for the EATN using actual
nodal locations). However, in this generation the maximum degree of an airport is
limited and a range of networks are generated with different values of maximum
degree, to gauge the impact on resilience. The degree of a node is limited in the
algorithm by setting the probability of attachment to zero for a node when it reaches
the maximum permitted degree, thereby eliminating the possibility that links
introduced from new nodes will connect to this existing node. This strategy has been
informed by the resilience shown in random networks, which do not include high
degree nodes, and so in preventing the formation of these hub airports it is argued
that the network should show more resilience (as these nodes will have a lesser impact

when removed).
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The degree distribution and spatial degree distribution for four generated networks
where the maximum degree has been limited are shown in Figure 4.37. From these
distributions it can be seen that limiting the size of the highest degree node does not
cause a noticeable effect to the shape of the degree distribution (Figure 4.37(a)) or to
the spatial degree distribution (Figure 4.37(b)), until the maximum degree is limited to
20. Limiting the maximum degree by this amount results in all nodes having an
approximately equal degree (similar to a random network) and therefore causes the
proportion of links around the geographic centre of the network to reduce (as this is

where the majority of high degree nodes in the EATN are located).
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Figure 4.37: The (a) degree distribution and (b) spatial degree distribution for the EATN and four
networks generated using the same algorithm as the EATN but with a limited maximum degree (of
either: 100, 75, 50 or 20 connections).

The networks generated, with different values of maximum degree, are again

subjected to the central attack spatial hazard where 10 nodes are removed at a time.
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Unlike the previous strategy, no rewiring takes place as airports are enveloped by the
spatial hazard. The results for this analysis are compared to those for the EATN and
random networks (with random node locations and those that are the same as the
EATN) and are plotted in terms of the proportion of air routes, airspace and airports

closed (Figure 4.38).

(a) 100%
80% |
©
()]
>
g 60% |
S —EATN
& —EATN (Limit 100)
T 40% —EATN (Limit 75)
§ —EATN (Limit 50)
20% EATN (Limit 20)
------ Random (Random)
------ Random (EATN)
O% L Il L
0% 20% 40% 60% 80% 100%
% Nodes Removed
(b) 100% =
T
80%
T
(]
>
g 60%
5 —EATN
« —EATN (Limit 100)
T 40% —EATN (Limit 75)
§ —EATN (Limit 50)
20% EATN (Limit 20)
------ Random (Random)
------ Random (EATN)
0% : : :

0% 20% 40% 60% 80% 100%
% Area Removed

Figure 4.38: Showing (a) the relationship between the proportion of nodes and links removed for the
EATN and four networks, subjected to the central attack spatial hazard, where the maximum permitted
degree does not exceed 100, 75, 50 or 20. (b) Plotting the same results, but with respect to the
proportion of area covered by the spatial hazard. Also showing the results of the benchmark random
network, with random nodal locations, and the random network with the same nodal configuration as
the EATN (dotted lines).

These results show that the size of the maximum degree airport must be severely
limited to show a significant increase in the resilience of the EATN (with a maximum
degree of 20 rather than 133), when considering resilience in terms of the proportion
of closed air routes and airports. For example, when 20% of airports are removed

there are 58% of links removed for the EATN, this only reduces by 6% points when the
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hub size is limited to 75, but reduces by 17% points when the hub size is limited to 20.
However, even limiting the maximum degree airport to 20 does not cause the EATN to
be as, or more, resilient than the random network (it is still 6% points more vulnerable
when 20% of nodes are removed). This is due to the more structured connectivity of
the EATN compared to the random network. The method used to assign links from
new nodes to existing nodes in these limited degree networks is the same as that used
to generate the EATN (outlined in Chapter 3) and as such incorporates the element of
preferential attachment. Therefore new airports still want to connect to existing
airports with a high probability of attachment (either the high degree airports or those
located within a close proximity) and will only attach to a lower probability airport if
the desired airport has reached the maximum permitted degree. This still creates
clusters of higher degree nodes close to the geographic centre of the network (where
the majority of nodes are located). Figure 4.39(a, b) plots the degree of each node in
the 50 and 100 limited degree networks respectively and Figure 4.39(c, d) highlights
the location of the nodes that have the maximum allowed degree (red dots). In this
figure, it can be seen visually that the maximum degree nodes tend to form a cluster
around the geographic centre of the network. Therefore, for a small spatial hazard
located over the geographic centre of the network, a large proportion of links are still
removed, even though the maximum degree node is lower than that of the EATN
(unless the maximum degree is severely limited). However, plotting the results in
terms of the proportion of closed air routes and air space does not show a significant
change in resilience for all limited hub networks compared to the actual EATN, even
for the network where the hub size is limited to 20. This can be contributed to both
the positioning of the airports and also to the network generation algorithm, as

previously discussed.
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Figure 4.39: Generated GIS images showing the degree of all nodes in the generated networks with a
limit of (a) 50 and (b) 100, on a red (high degree) to green (low degree) scale. The location of the nodes
with the maximum value of degree (red dots) is also shown for a limit of (c) 50 and (d) 100.
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Figure 4.40: Showing the changes in (a, d) the number of isolated nodes, (b, e) the maximum cluster
size (MCS) and (c, f) the maximum degree for the EATN and four networks where the maximum degree
has been limited, when the networks are subject to the central attack spatial hazard. Also showing the
results of the benchmark random network, with random nodal locations (dotted lines).
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The number of isolated airports, MCS and the maximum degree node have been
plotted, both in terms of the proportion of nodes and area removed by the spatial
hazard in Figure 4.40. The number of isolated airports is used in this analysis to show
the differences between the degradation of the networks, generated with different
maximum degree nodes, when subjected to spatial hazard. From Figure 4.40(a, d) it
can be seen that the number of isolated nodes sharply increases when the hub size is
limited to 100, 75 or 50 (with the MCS reducing at a quicker rate than the EATN for the
same networks, Figure 4.40(b, e)). The number of isolated nodes reaches a maximum
of 31 for the EATN, 94 for a hub size of 100, 72 for a hub size of 75 and 74 for a hub
size of 50. This is due to the connectivity of the networks and the location of the
maximum degree nodes (as shown in Figure 4.39). Figure 4.41 plots the location of the
isolated nodes (and the remaining connected nodes) for the hazard size which causes
the maximum number of isolated nodes. In this figure, it can be seen that the isolated
nodes tend to occur around the perimeter of the network. These nodes are those with
a low degree (Figure 4.39(a, b)) and tend to be connected to the nodes in the centre of
the network; therefore, removing the nodes in the centre of the network causes these
nodes to become disconnected from the network and causes the high number of
isolated nodes and consequently a reduced MCS. This high number of isolated nodes,
and reduction in MCS, is not apparent in the EATN, or the network with a limited
degree of 20, due to the increased connectivity of these outer nodes to other nearby
nodes (as a result of the network generation algorithm and the severely limited

maximum permitted degree).

The maximum degree of these networks has been shown in terms of the actual values,
rather than the percentage changes, to enable any sharp decreases in degree to be
easily identified (Figure 4.38(c, d)). These results show that the networks where the
maximum degree has been limited all decrease at a relatively uniform rate; until
around 50% of the airports or 15% of the network area is removed by the spatial
hazard and then the maximum degree sharply decrease with any additional airports
removed. This is due to the large number of airports with the maximum value of
degree. In the actual EATN there is only one airport with the highest value of degree
(133), however limiting the size of the highest degree airport causes more than one

airport to have this value. For example, limiting the degree to 50 causes 57 airports to
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have this value of degree and limiting the maximum degree to 20 causes this number

to rise to 282.

Figure 4.41: Generated GIS images showing the location of the isolated nodes (red) and the connected
airports (green) for the size of spatial hazard which results in the maximum value of isolated nodes, for

the network with a maximum degree of (a) 50 and (b) 100.
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Figure 4.42: Showing the change average path length (APL) for the EATN and four networks where the
maximum degree has been limited (as indicated), subjected to the central attack spatial hazard. The
results in (a) have been plotted with respect to the proportion of nodes removed from the network and
with respect to the size of the spatial hazard in (b). Also showing the results of the benchmark random
network, with random nodal locations (dotted lines).

The APL for these networks have also been calculated at increments of 10 airports
removed and are presented in Figure 4.42, in terms of both the proportion of airports
and air routes closed. From this figure it can be seen that, limiting the size of the hub
creates a more inefficient network, when subjected to the central attack spatial hazard.
To give an example, the maximum value of APL is 5.71 when the maximum degree is
limited to 50, compared to 3.94 for the actual EATN. This is due to the reduction in the
size of the hub airport, meaning that it is now likely that information from one weakly
connected node will need to be passed between two, or more, hub nodes to travel to
another weakly connected node (rather than a single higher degree hub node),
thereby increasing the path length between nodal pairs. Severely limiting the size of

maximum degree airport to 20 causes the network to behave in a similar manner as
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the random benchmark network, due to their similar network topologies, with this
network having a maximum APL value of 5.51 compared to 6.10 for the random
network. This similarity is not replicated when the results are plotted in terms of the
proportion of area removed, due to the differences in nodal layout between the EATN
(which contains a high proportion of nodes around the geographic centre of the
network) and the uniform with area nodal configuration of the random benchmark
network. Therefore, it can be concluded that limiting the size of the hub airports
within the EATN causes the resilience to increase slightly compared to that of the
actual network in terms of the proportion of air routes and airports closed, but causes

a decrease in the efficiency of the network.

4.8.3: MODIFICATION OF ‘ADAPTIVE' STRATEGY FOR IMPROVING RESILIENCE

The results in the previous two sub-chapters, for the ‘adaptive’ and ‘permanent’
rewiring strategy have shown that by adaptively rewiring the EATN the resilience of
the network is significantly increased without compromising the efficiency of the
network. Whilst, permanently rewiring the network does not result in a significant
increase in the resilience of the EATN, but does result in the reduction of the efficiency
of the network. It is therefore, recommended that the EATN is not permanently
rewired, but that strategies to increase the resilience of the network through
adaptively rewiring in the event of a spatial hazard are developed. Therefore, the
initial adaptive strategy is modified to account for the capacity of the airports
(removing the assumption that airports have an infinite capacity). This modified
strategy will investigate the relationship between the additional airport capacity and
the resilience of the network to the central attack spatial hazard and also the
perimeter attack spatial hazard. This additional airport capacity is calculated as a
percentage of the degree of the airport in the EATN; for example, an additional
capacity of 10% would allow an airport with a degree of 10 in the EATN to increase to
11 and a degree of 20 to increase to 22. In this strategy, parallel edges are included in

order to give an indication of the additional air traffic at each airport.

The EATN is initially subjected to the central attack spatial hazard, and airports are

removed individually from the network as spatial hazard increases in size (rather than
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removing 10 airports in the previous two strategies). The EATN is also subjected to the
perimeter attack spatial hazard, to determine if the adaptive rewiring strategy can
increase the resilience of the EATN to this spatial hazard (this will also form an

assessment of the ‘best’ and ‘worst’ case spatial hazards).
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Figure 4.43: The results of the modified ‘adaptive’ rewiring strategy for the EATN subjected to the
central attack spatial hazard. In this modified strategy the capacity of the nodes (when receiving
additional links) has been limited, by an percentage of their original degree. Showing (a) the results in
terms of the proportion of nodes and links removed and in (b) in terms of the proportion of area and
links removed. Also showing the benchmark random network (with a random nodal layout) subjected
to the same hazard, with no additional capacity (black dotted line).
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Figure 4.43 plots the results for the central attack spatial hazard in terms of the
proportion of closed air routes, airports and area. In this figure, air routes are only
classed as ‘closed’ when the air route cannot be redirected, or rewired, to another
airport. In Figure 4.43(a) it can be seen that the resilience of the EATN increases even
for a small increase in the capacity of airports (there is an increase in resilience of 21%
points for an additional airport capacity of 5%, compared to the EATN, when 20% of
nodes have been removed). However, these networks are still more vulnerable than
the random network, with random nodal locations, when the hazard size is over 15%
of the network area (assuming that airports can have double their normal operational
capacity) (Figure 4.43(b)). It is interesting to note that air routes are only failed (and
not redirected) when all of the airports in the network reach their maximum capacity,
therefore for small spatial hazards there is little effect to the network. Even when air
routes begin to fail the disruption to air passengers will be minimised, as they can still

fly to airports close to their original destination.
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Figure 4.44: Observing the changes in the average degree of the remaining nodes for the EATN and
seven adaptively rewired networks (with different nodal capacities). The results in (a) have been plotted
with respect to the proportion of nodes removed and in (b) with respect to the proportion of area
removed.

Page 259



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

(a) 600

——EATN (no rewire)

——EATN (rewire, 5% extra capacity)
500 - ——EATN (rewire, 10% extra capacity)
L ——EATN (rewire, 20% extra capacity)
400 - EATN (rewire, 30% extra capacity)
—EATN (rewire, 40% extra capacity)

EATN (rewire, 50% extra capacity)

——EATN (rewire, 100% extra capacity)

MaxDegree
w
o
o
T

0% 20% 40% 60% 80% 100%
% Nodes Removed

(b) 600

——EATN (no rewire)
——EATN (rewire, 5% extra capacity)
500 - ——EATN (rewire, 10% extra capacity)
F ——EATN (rewire, 20% extra capacity)
400 - EATN (rewire, 30% extra capacity)
—EATN (rewire, 40% extra capacity)
EATN (rewire, 50% extra capacity)
—EATN (rewire, 100% extra capacity)

MaxDegree
w
=
o
T

100

0% 20% 40% 60% 80% 100%
% Area Removed

Figure 4.45: Observing the changes in the maximum degree of the remaining nodes for the EATN and
seven adaptively rewired networks (with different nodal capacities). The results in (a) have been plotted
with respect to the proportion of nodes removed and in (b) with respect to the proportion of area
removed.

The maximum and average degree of airports in these rewired networks (and the
EATN) has been plotted in Figure 4.44 and Figure 4.45. In this figure, it can be seen
that the average degree of all operational airports increases until the capacity of all
airports is reached and air routes begin to fail (as there is no additional capacity for
them to be redirected). However, after a small number of maximum capacity airports
are enclosed by the spatial hazard, the average degree of airports begins to increase
again as there is now spare capacity at some airports. It can be seen that all of the
adaptively rewired networks show the same pattern of average degree, even though

their capacities are different.
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The maximum degree of airports in the same networks, plotted in Figure 4.45(c, d),
increases until the airport with the highest capacity is removed from the network and
then shows a sharp decrease (for example at 20% of the airports closed or 5% of the
network area removed). In a similar manner to the average degree, it can be seen that
the maximum degree for all adaptively rewired air routes shows the same pattern,

despite the differences in capacity.
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Figure 4.46: Showing the changes in the maximum cluster size (MCS) for the EATN and seven adaptively
rewired networks (with different nodal capacities), subjected to the central attack spatial hazard. The
results in (a) have been plotted with respect to the proportion of nodes removed from the network and
with respect to the size of the spatial hazard in (b).
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Figure 4.47: Showing the changes in the shortest average path length (APL) for the EATN and seven
adaptively rewired networks (with different nodal capacities), subjected to the central attack spatial
hazard. The results in (a) have been plotted with respect to the proportion of nodes removed from the
network and with respect to the size of the spatial hazard in (b).

The MCS and APL for these adaptively rewired networks have been calculated and are
plotted in Figure 4.46 and Figure 4.47, in terms of both the proportion of closed
airports and area. It can be seen that the MCS of the rewired networks shows the
same results as the random network (with random nodal locations) when plotted in
terms of the proportion of airports closed, but shows an increased vulnerability when
plotted in terms of the proportion of closed area (Figure 4.46). It is interesting to
notice, that all of the adaptively rewired networks show the same values of MCS,
indicating that even though there are fewer air routes closed for the larger values of
capacity the connectivity of the network remains the same. The APL of the rewired
networks also shows an increased resilience compared to the actual EATN and the

random network (Figure 4.47). This indicates that by adaptively rewiring air routes
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(even if the additional capacity is small) the efficiency of the network is significantly

increased compared to that of the non-rewired EATN.

The ability of this modified method to increase the resilience of the EATN to the
perimeter attack spatial hazard is also tested. The airports are again given a certain
value of additional capacity and are removed individually from the network, the air
routes from these removed airports are rewired to other nearby airports as long as
there is sufficient capacity to do so. Again, parallel edges are maintained in the
network to give an indication of the expected additional air traffic at airports, but are
not considered when the MCS and APL are calculated. The results for this analysis are
compared to the actual Eyjafjallajokull event to the actual EATN and have been plotted

in terms of the proportion of removed links/nodes/area in Figure 4.48.
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Figure 4.48: The results of the modified ‘adaptive’ rewiring strategy for the EATN subjected to the
perimeter attack spatial hazard. In this modified strategy the capacity of the nodes (when receiving
additional links) has been limited. Showing (a) the results in terms of the proportion of nodes and links
removed and in (b) in terms of the proportion of area and links removed. Also showing the benchmark
random network (with a random nodal layout) subjected to the same hazard, with no additional
capacity (black dotted line).

Considering the results for this analysis, plotted in terms of the proportion of closed air
routes and airports (Figure 4.48(a)) shows that the EATN is resilient to all sizes of the
perimeter attack spatial hazard, provided that airports are given some additional
capacity. For example, on the 15" April the ash cloud closed 37% of airports and
resulted in the closure of 57% of air routes; however, allowing each additional airport
only 5% capacity reduces the proportion of closed air routes to 37% and allowing each
airport an additional 50% capacity further reduces these air route closures to only 9%.
This resilience is also replicated when the results are presented in terms of the
proportion of closed area and air routes (Figure 4.48(b)). The worst day of disruption,

compared to the benchmark random network, occurred on the 19t"April and closed 77%
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air routes and 31% of air space (24% points more vulnerable than the random
network). However, if the modified adaptation strategy is applied to the EATN this
vulnerability dramatically reduces and the network now shows resilience to the same
size hazard compared to the random network. Giving airports an additional 5%
capacity, results in the closure of 38% of air routes (15% points more resilient than the
random network) and increasing this capacity to 50% results in the closure of only 11%

of air routes (42% points more resilient than the random network).

It is also interesting to note, that in Figure 4.43 and Figure 4.48 there appears to be a
correlation between the increase in capacity of airports and the proportion of closed
air routes. For example, the proportion of air routes cancelled due to the removal of
60% of airports (when the perimeter attack spatial hazard is applied) is shown in Table
4.2. It can be seen in this table that an increase in airport capacity of 10% results in a
decrease in the proportion of cancelled air routes of roughly 3-4%. This information
could be used to estimate the required increase in airport capacity so that the
proportion of cancelled air routes can be ‘capped’ for a given position of the spatial

hazard.

Table 4.2: The proportion of cancelled air routes for the closure of 60% of airports for seven adaptively
rewired networks with different additional airport capacities.

Additional Airport Capacity Proportion of Cancelled Air Routes

5% 60.27%

10% 58.47%

20% 54.76%

30% 51.24%

40% 47.17%

50% 42.85%
100% 22.72%
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Figure 4.49: Showing the changes in the maximum cluster size (MCS) for the EATN and seven adaptively
rewired networks (with different nodal capacities), subjected to the perimeter attack spatial hazard.
The results in (a) have been plotted with respect to the proportion of nodes removed from the network
and with respect to the size of the spatial hazard in (b).
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Figure 4.50: Showing the changes in the average path length (APL) of the EATN and seven adaptively
rewired networks (with different nodal capacities), subjected to the perimeter attack spatial hazard.
The results in (a) have been plotted with respect to the proportion of nodes removed from the network
and with respect to the size of the spatial hazard in (b).

The MCS and APL for these networks were also calculated, after the removal of 10
airports, and have been shown in Figure 4.49 and Figure 4.50. In this figure, it can be
seen that all networks show the same MCS value as the random network when plotted
in terms of the proportion of airports closed (Figure 4.49(a)). However, plotting the
results in terms of the proportion of area closed shows that these networks are
resilient until around 30% of the area is covered by the spatial hazard (Figure 4.49(b)).
Therefore, for small sizes of the spatial hazard it can be concluded that the network
remains largely as one cluster, as air routes are allowed to rewire to other airports not
affected by the hazard. The APL both plotted in terms of the proportion of airports
and area removed shows that the modified adaptive rewiring strategy is the best in

terms of maintaining high network efficiency (Figure 4.50). The maximum value of APL

Page 267



CHAPTER 4: ASSESSMENT OF THE VULNERABILITY OF GENERIC SPATIAL NETWORKS

for the modified strategy, with only an additional airport capacity of 5%, is 2.93
compared to a value of 3.94 for the EATN, which reduces to 2.93 if the additional

airport capacity is increased to 50%.

This chapter has investigated the hazard tolerance of a range of synthetic spatial
networks to different locations of spatial hazard. All possible combinations of hazard
location, network class (exponential, scale-free and random), nodal layout (uniform
with area, uniform with distance and clustered) and node introduction order (random,
proportional with distance and with distance) have been considered. This analysis has
revealed that the location, and size, of a spatial hazard can dramatically alter the
hazard tolerance of a spatial network. For example, locating the majority of nodes,
and highly connected nodes, around the geographic centre produces the most
vulnerable network when subjected to the ‘central attack’ hazard (having up to 22%
more links removed than a benchmark network); however, this network shows an
increased resilience to hazards located away from this area (being up to 7% more
resilient). It was also shown that scale-free and exponential networks showed a
decreased connectivity, compared to a benchmark network, for all sizes of the ‘central
attack’ spatial hazard. However, the scale-free networks became increasingly
inefficient, as the hazard expanded, whereas the exponential network was able to
maintain efficiency. This was attributed to the topological differences between these
two network classes caused by the inclusion of a proximity component in the
exponential network generation algorithm, which ‘shifts’ connections that were bound
for a high degree node to a lower degree node, causing the network to maintain

efficiency when these high degree nodes are removed.

These results were then used to inform strategies to increase the resilience of the EATN,
when subjected to the ‘central attack’ hazard. The first strategy was aimed at
‘adaptively’ rewiring the network and the second ‘permanently’ rewiring the network.
It was concluded that the adaptive strategy was superior at increasing the resilience of
the EATN and, unlike the permanent strategy, did not compromise the efficiency of the

network under normal operational conditions.
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The results of this chapter have focused on quantifying the resilience of a network as a
whole, but have shown that the removal of some individual nodes can have more of an
impact to the remaining network than the removal of other nodes. For example, the
removal of some nodes causes a sharp increase in the proportion of links removed and
a sharp decrease in the connectivity and efficiency of the remaining network.
Therefore, the next chapter will investigate the effects that the removal of these
‘critical’ nodes can have to the network and will develop strategies to identify these

nodes.
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CHAPTER 5: IDENTIFYING CRITICAL COMPONENTS IN INFRASTRUCTURE SYSTEMS

The previous chapter generated a range of spatial networks, with different spatial and
topological characteristics, and subjected them to spatial hazard to quantify their
resilience. Through this analysis it was also discovered that the removal of some nodes
can have an increased effect to the resilience of the network than other nodes,
particularly in the more structured scale-free and exponential networks which are not
homogeneous (unlike random networks). This chapter focuses on the impact that the
removal of a single node can have to the network and develops methods to identify
individual nodes that have a disproportionate effect to the remaining network, when
removed. These nodes are more likely to have a large effect to infrastructure systems
that are governed by physically based rules (e.g. water distribution systems and power
grids) rather than systems governed by logistical rules, as it is harder to redirect flow in
these networks (e.g. aircraft can be rerouted to airports with short notice, however,
due to the system constrains it is harder to redirect flow governed by physically based

laws).

5.1: DEVELOPMENT OF A REDUCED COMPLEXITY FLOW MODEL

In engineering, there are numerous flow models that can be used to simulate the
physical processes and the transfer of services from areas of supply to areas of
demand within infrastructure systems (as previously discussed in Chapter 2.4). In this
chapter, it is initially desirable to determine the applicability of using graph theory
metrics to analyse infrastructure systems governed by physically based rules, in
general (and not for a specific infrastructure system), and therefore, what is arguably
the simplest possible flow model is developed; however, the model still has all the

attributes necessary to simulate flows in a network.

To achieve this, a simple hydraulic model, which can be found in any standard
hydraulic text (Novak et al. (2010) for example), is modified. Although, this is a
hydraulic model it has analogies with other categories of infrastructure network, such

as electrical distribution networks and traffic flow problems — for example, from Table
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2.5 it can be seen that the pressure head in a hydraulic system is analogous to a

potential difference in an electrical network or demand in traffic network. Equally,

pipe friction in a hydraulic network could be compared to electrical impedance in an

electricity network, or vehicle density in a traffic network. The similarities in the

physical behaviour of different sorts of infrastructure networks means that the results

obtained for one type of network although not exactly equivalent are indicative of the

behaviour of other types of infrastructure networks. In the case of a hydraulic network,

the governing equations for a steady-state flow problem are the conservation of mass

(Equation 5.1) and conservation of energy (Equation 5.2):

Conservation of mass. The mass at any point along a pipe must be constant (i.e.

flow into a pipe = flow out of a pipe):

Qin = Qout 5.1

Conservation of energy. Energy must be conserved for hydraulic networks this
energy usually consists of potential energy and kinetic energy and is defined by

the Bernoulli equation (for pipe flows):

z 2 5.2
zl+&+£= 2+p—2+5+fl

Where, z = potential energy; p = pressure; v = velocity at points 1 and 2
respectively; fl = frictional losses; and g = gravitational constant. Equation 5.2
basically illustrates that between points 1 and 2 conservation of energy is

maintained.
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PE,, 0,

Figure 5.1: An example network consisting of three nodes and three links, where Node 1 is the supply
node and Nodes 2 and 3 are the demand nodes (node numbers are indicated by the bold numbers to
the left of each node); Q = flow of service that the node either demands or supplies; PE = potential
energy of node; R = resistance of link (subscript values indicate node/link to which they refer).

The flows in a network are calculated (through both the nodes and the links) using the
process described below. A small example network, consisting of three nodes and
three links, is used to illustrate the process (Figure 5.1). In this example, Node 1 is a

supply node and the other two nodes are demand nodes.

1. Calculate the potential energy for each node in the network

The standard hydraulic formula for calculating flow in a pipe is:
F, = k(Q)" 5.3

Where, F; are the frictional losses, k is a constant that describes the resistance
of the system (for example, pipe friction for a hydraulic network or electrical
impedance for an electrical system) and Q is the flow through the pipe. For
steady state hydraulic flow in pipes, the value of n normally equals 2; however,
as this is a generic model that represents a range of infrastructure networks the
problem is reduced to its most base level by assuming the losses have a linear
relationship with flow (i.e. n = 1). Linearizing the losses has the added

advantage of enabling the problem to be solved directly.
F; = R(Q1-2) 54

Where, R is the resistance of the link and Qa-; is the flow in the pipe connecting

Nodes 1 and 2.
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Assuming incompressible flow, the velocity at Nodes 1 and 2 are equal, and
therefore the friction loss in the pipe is equal to the difference in potential
energies of the two connected nodes. Using this and rearranging Equation 5.4

gives:
1
Q1_2 = E (PEZ - PEl) 5.5

Using conservation of mass, the external flow at each node (i.e. either the
guantity demanded by the node, or the quantity supplied by the node),
denoted by g, can be calculated by summing the flows in the connected links.

For Node 1 in Figure 5.1 this becomes:
1 1
q1 = o~ (PE, — PEy) + — (PE; — PEy) 5.6
Ry R3

Equation 5.6 can be rearranged as:

1 1

1 1
= PE ————) PE (—) PE (—) 5.7
q1 1 ( R, R, + PE; R, + PEj3 R,

Using this method to obtain expressions for the external flow at the other

nodes (in the same format as Equation 5.7) and combing them in a matrix form

results in:
o1 1 1
N R11 & 1R1 1 R13 PE;
R I
R R, R, Rl

The external values of flow (g) for the demand nodes and the resistances (R) of
the links are known, but the values of flow from the supply nodes are unknown.
In the example network (Figure 5.1) this is easy to calculate (as it is the only
supply node), however, for a network with two or more supply nodes the
supply will not be evenly distributed. Setting the supply nodes as potential
energy reference points (i.e. PE = 0) enables the condensation of Equation 5.8,
resulting in Equation 5.9. The potential energy of each demand node can be

obtained by solving Equation 5.9.
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1 1 1
q2 _ Rl RZ Rz PE2
0l = [ 1 11 hPEJ >
R, R; Rs
2. Calculate the flow through each link

To satisfy the ‘Conservation of Energy’ (Equation 5.2) the flow through each link

in the network is calculated using Equation 5.5.

3. Calculate the flow provided by each supply node

The external flow at each supply node can be found using Equation 5.8.

It is worth noting that the equations describing the reduced complexity flow model
have consistent units. For example, in the case of a hydraulic network, if the input
values were in terms of meters and seconds, then the output value of flow would have

a unit of meters per second.

5.2: ASSESSMENT OF USING NETWORK GRAPH THEORY IN FLOW BASED PROBLEMS

To assess the applicability of using network graph theory in flow based problems, the
reduced complexity flow model has been used to analyse the flows around 60 network
models (20 for each of three classes of network: scale-free, exponential and random).
Each network includes 1000 nodes and the number of links is varied to enable a
comparison between networks with different levels of connectivity (for example, for
the same number of nodes, a network with more links is better connected than a
network with fewer links and will transfer the flow differently between the areas of
supply and demand). The random and scale-free networks are purely topological
models, generated using the traditional network generation algorithms of Erdos and
Renyi (1960) and Barabasi and Albert (1999). However, in order to use the network
generation algorithm for exponential networks, developed in this thesis, a spatial
component must be used in the generation, due to the probability of attachment being
based on both degree and proximity for these networks. This has been achieved using
the random uniform with area nodal layout (Figure 4.1(b)), but will not be considered
in the analysis of the flow around the system (i.e. only the topology will be considered

and not the length of connections between components).
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This is an initial assessment of the applicability of using graph theory in flow based
problems and therefore the resistances of all links are equal. For a hydraulic system
the resistance is a combination of pipe length, diameter and roughness and it is
assumed that the combination of these parameters satisfies this assumption. It has
been shown by Newman (2004) that the more general case of links with different
properties can be addressed using the weighted network approach (modifying the
graph theory metrics to take into account the differences in the link properties) such as

that of Opsahl et al. (2010) but this is outside the scope of this research.

Before the flows in the 60 test networks can be calculated, values of supply and
demand need to be assigned to each node. However, the nodes which are to be
supply nodes (infrastructure supplying a service) and those that are to be demand
nodes (regions requiring the service) need to be initially decided. This is done by
ranking the nodes in descending order of degree and choosing the top 1% as supply
nodes, with the others being assigned as demand nodes (for example, for a network
with 1000 nodes there will be 10 supply nodes). The small proportion of supply nodes
relative to demand nodes is consistent with real world infrastructure systems which
will have a small proportion of nodes supplying services (e.g. power stations or
reservoirs) compared to the proportion of demand nodes (e.g. households); however,
the absolute value of 1% is somewhat arbitrary. In these models, it is assumed that
the supply nodes in the network have sufficient capacity to supply any service required
by the demand nodes and as this analysis considers a single point in time, it is assumed
that the network has reached equilibrium. In real infrastructure networks (e.g. for the
case of a pipe network) if a reservoir does not have sufficient capacity to meet the
required demand, the reservoir will run dry and the flow will cease; if there are other
reservoirs in the system the flow will be redistributed. This can be accommodated in
the model by using an iterative procedure but is beyond the scope of this thesis. A
numeric value of demand is assigned to the demand nodes based upon their degree
(i.e. the number of links attached to them). It is argued that this is a reasonable
approximation as areas with large populations and therefore large demands for
services will require a correspondingly greater number of nodes and links to provide
these (for example, a large city will have a greater need for service than a rural

community and will also have a correspondingly larger amount of infrastructure).
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In this initial assessment, the results of the reduced complexity flow model are
compared to the shortest APL of the network (Equation 2.3). This metric describes the
fundamental properties of a network and is a measure of the efficiency of the network
(as it considers the shortest path between pairs of nodes and flow will distribute itself
around the network such that it finds the minimum energy solution). The higher the
value of shortest APL the further the services in the network must flow in order to
travel from the supply nodes to the demand nodes and therefore the more inefficient

the network.

Figure 5.2 shows the results of correlating the APL with the flow through the demand
nodes (the flow is referred to as being ‘through a node’, for simplicity, rather than
stating ‘the in-flow and the out-flow at the node’ (as these two values are equal)).
Fitting a power law trend line through the results, shows an R? value of greater than
0.9, for all three classes of network model. This high R? value suggests that at least
parts of graph theory could be used in the analysis of infrastructure networks, where

flow is an important factor.
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Figure 5.2: Showing the correlation between average flow and shortest average path length for 20 (a)
scale-free, (b) exponential and (c) random networks, each with 1000 nodes and different number of
links.

When generating the networks, used in the analysis for Figure 5.2, it was not possible
to generate networks with a consistently increasing value of APL due to the way the

algorithms operate, particularly for the scale-free networks (Figure 5.2(a)). In this case,
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the number of links in the network is altered by changing the starting number of nodes,
mo (see Chapter 2.5.2.3 for more detailed explanation of the network generation
algorithm). The random element, when generating the number of links to connect the
new node to the existing network, alters the total number of links in each network by a
small amount. To generate networks with noticeably different levels of connectivity
mo needs to be altered. Each network generated with the same number of initial
nodes has approximately the same number of links, and therefore approximately the
same value of APL, causing the clustering of results in Figure 5.2 (i.e. each cluster is a
group of networks with the same number of initial nodes). The clusters are less
apparent in the exponential networks (Figure 5.2(b)), which is surprising as the
network has a similar network generation algorithm to the scale-free networks.
However, this generation algorithm also allows connections to form between pairs of
existing nodes, introducing another random element and causing different levels of
connectivity in the different networks with a roughly equal number of links. In the
case of the random networks, the weak clusters in Figure 5.2(c) represent networks
with a different linking probability. Due to this probability element, networks that
have the same value of linking probability can have a different total number of links,
resulting in different values for APL. After showing that, at least part of, graph theory
is applicable to the analysis of physically based flow networks (using APL), the

application of centrality measures to these networks is now considered.

The three most commonly used centrality measures, betweenness centrality,
closeness centrality and degree centrality were developed by Freeman (1979) and
have previously been described in Chapter 2.5.4.3. The same networks are used (i.e.
the 60 x 100 node networks in Figure 5.2) and calculate the flow through each demand
node using the reduced complexity flow model, correlating this with the centrality of
that node (calculated using Pajek software for all three centrality measures (Batagelj
and Mrvar 2003)). Only the demand nodes are considered in this analysis, as the flow
in these is of primary concern, only 1% of the nodes in the network are supply nodes
(i.e. 10 nodes). Each network has 990 demand nodes and therefore contributes 990
points to the graph. Because of this and to keep the figure clear, only the results for

three of the networks have been presented (chosen at random) for each centrality
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measure (Figure 5.3, Figure 5.5 and Figure 5.6); however, these are typical of the

correlations achieved for the other networks.
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Figure 5.3: Correlation between betweenness centrality and flow at the corresponding node for (a)

scale-free, (b) exponential and (c) random

networks with 1000 nodes and around 5000 links. The R?

value is generated using a best fit linear line for all networks (as this is the line of best fit).
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Figure 5.3 shows the correlation between the betweenness centrality of a node and
the flow through the same node for the three classes of network model. The results of
these simulations show an R? value of around 0.7 for scale-free networks (Figure
5.3(a)), indicating that the nodes with a high value of flow through them tend to be the
nodes with a high value of betweenness. This is also the case for the exponential
networks; however, this class of network shows more scatter in the results (Figure
5.3(b)). It is apparent that there is little or no correlation for the random networks

(Figure 5.3(c)) (the R? values are between 0.1-0.2).

The four clusters of results for the random networks (Figure 5.3(c)) can be explained by
considering the proximity of demand nodes to the supply nodes. The nodes which are
directly connected to one, or more, supply nodes will have proportionately higher
flows through them than those that are not connected; as they must transfer flow
through themselves to other nodes in the network that are not directly connected to a
supply node. Each cluster (in Figure 5.3(c)) contains nodes that are a specific number
of links away from a supply node. For example, the nodes in the far right cluster are
directly connected to a supply node, while the far left cluster shows those nodes
where the flow from the supply node has passed through three or more links. Figure
5.4 shows this diagrammatically, where the supply node is indicated in red and three
demand nodes in black. It can be seen that the demand node which is directly
connected to the supply node is transferring flow through to the other two connected
demand nodes, and has a value of flow which is twice the value of its demand (this
node would form part of the far right cluster in Figure 5.3(c)). The central demand
node requires its own value of demand and is also transferring flow to the remaining
demand node (on the far right) but has a significantly lower flow than that of the
demand node directly connected to the supply node (and would form part of the
central cluster in Figure 5.3(c)). The final demand node (far right) only requires its own
value of demand and does not transfer this to other demand nodes, so its value of flow

is equal to its degree (and would form part of the far left cluster in Figure 5.3(c)).
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Figure 5.4: Showing a sample section of a network, indicating a supply node (in red) and three demand
nodes (in black). The top number (black) indicates the flow through the node and the bottom number
(red) is the amount of service provision required by that node (also equal to its degree). The dotted
lines indicate connections to other nodes in the network, which have not been included for simplicity.
The flows shown assume that the other nodes in the network do not require a proportion of the flow;
this is assumed in this example for simplicity only and is not an assumption of the flow model itself.

Comparing the flow at a node and the closeness of that node (for the same generated
networks used in Figure 5.3) shows similar results to those in Figure 5.3. The R? values
for the scale-free networks (Figure 5.5(a)) are around 0.8, indicating that the nodes
that are central to the network also have a high flow through them. The R? values for
two of the exponential networks are similar to that of the scale-free networks (with a
value of around 0.7), whereas one network shows an R? value of 0.4 (Figure 5.5(b)).
This variability is again due to the added random element of the connections between
pairs of existing nodes in the network generation algorithm. The random networks
(Figure 5.5(c)) show little or no correlation between the two measures (with R? values
between 0.1 and 0.2), but similarly to show the same clustering of results, explained by

the proximity of supply nodes to demand nodes (see Figure 5.4).
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Figure 5.5: Correlation between closeness centrality and flow at the corresponding node for (a) scale-
free, (b) exponential and (c) random networks with 1000 nodes and around 5000 links. The R? value is
generated using a best fit linear line for the scale-free and random networks, and a logarithmic line for
the exponential networks.

Page 282



CHAPTER 5: IDENTIFYING CRITICAL COMPONENTS IN INFRASTRUCTURE SYSTEMS

Considering the final centrality measure, degree centrality, the R? value for scale-free
networks is around 0.7-0.8 indicating that nodes with a high degree also have a high
value of flow through them (Figure 5.6(a)). This is also the case for the exponential
networks (Figure 5.6(b)) and can be explained by considering one of the assumptions
that was made in the creation of the networks, namely that the demand (of service)
required by a node is proportional to the degree of that node. Considering this
assumption it could be argued that there is expected to be higher flow at the nodes
with a high degree than the nodes with a low degree, from Figure 5.6(a, b) this is
shown to be the case. However, it is interesting to note in the case of the random
networks (Figure 5.6(c)) the demand nodes with a high degree are not necessarily the
nodes with the high flow through them. This can be explained by considering the
proximity of the demand nodes to the supply nodes and also in the algorithms used to
generate the networks. The main difference between the generation algorithms for
scale-free networks and random networks is the method used to assign links to
connect pairs of nodes. The algorithm for generating scale-free networks includes a
‘rich get richer’ component, meaning that nodes with a high degree ‘attract’ the links
from new nodes (Barabasi and Albert 1999); this component is not included in the
algorithm for generating random networks (where the new links are attached to nodes
based on a user defined probability and not a measure of degree) (Erdos and Renyi
1960). It is also worth noting that the high degree nodes in scale-free networks tend
to be attached to other high degree nodes (as a result of the algorithm). As the supply
nodes are assigned to the network based upon degree (the supply nodes being the top
1% of highest degree nodes) these nodes tend to be linked to other high degree nodes
resulting in the nodes which transfer the service to other nodes in the network being
the ones with a high degree, suggesting the reason behind the correlation in Figure

5.6(a) and the lack of correlation in Figure 5.6(c).
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Figure 5.6: Correlation between degree centrality and flow at the corresponding node for (a)scale-free,
(b) exponential and (c) random networks with 1000 nodes and around 5000 links. The R? value is
generated using a best fit linear line for the scale-free and random networks and a power-law for the
exponential networks.
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5.3: APPLICATION OF GRAPH THEORY TO IDENTIFY SPECIFIC VULNERABLE AREAS

After determining that network metrics can be applied to the analysis of infrastructure
systems that are governed by physically based laws, the ability of these metrics to
better establish the ‘critical’ nodes in a network is now assessed (i.e. the nodes that,
when removed from the network, have a disproportionate effect on the remaining
network). As the reduced complexity flow model was used to model flow based
problems in general rather than specific infrastructure networks, it may be argued that
the simplification renders the analysis invalid; therefore, the focus is now shifted to a
specific type of infrastructure system, namely a water distribution system and the
flows are analysed using a hydraulic model (EPANET (U.S. Environmental Protection
Agency 2008)) in a sample network, consisting of 15 nodes and 23 links (Figure 5.7(a)).
A water distribution system has been chosen for this analysis, but another type of
infrastructure system could equally have been chosen (an electrical distribution

network, for example).

Weighted networks are not considered in this research (as they are deemed to be
outside the scope) and therefore all links (pipes) are set to have the same value for
each parameter (e.g. length, diameter, roughness coefficient). Again, it is assumed
that the supply nodes have sufficient capacity to supply any service required and the
demand nodes are assigned a value of demand based upon their initial degree (this
demand does not change throughout the analysis, for example, if a connected node is

removed, its degree will decrease but we keep the demand constant).

The proximity of a demand node to the supply node will have a large effect on the
flows in the node (as previously explained, see Figure 5.4) and depending on the
network architecture (class) this could lead to a disproportionately large influence on
the overall behaviour of the network. To negate this effect, the concept of a “roving”
supply node is introduced. This is implemented by conducting 15 series of tests on the
sample network. In each test series there is only one supply node and the location of
this is fixed (e.g. at node 1). The flows in the network are calculated and then one
demand node is removed and the change in flows in the network is calculated (this is
one simulation). This node is then replaced and another demand node is removed,

again the changes in flow are calculated. This process is repeated until all demand
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nodes have been removed (resulting in 14 simulations for this test series). At the end
of a test series, the position of this supply node is ‘moved’ and the process is repeated.
Again this process is repeated until all possible combinations have been tested and
therefore all influences that the supply node can have on this particular network have
been considered. It is worth noting that in this analysis the damage model is again

binary, meaning that nodes cannot operate at a reduced level of capacity.

To quantify the change in flows in the network, when removing demand nodes, the
square root of the sum of the squares (SRSS) is calculated for the change in flow
through each node. For each of the test series the value is correlated with different
measures to assess the predictive skill of these in identifying the important nodes in
the network. Three measures (original flow, betweenness centrality and degree) and
two combinations of these measures are used in this analysis, to determine if a
combination of physically based and graph theory metrics has a superior predictive
skill in identifying the important nodes in a network or whether these measures should
be used in isolation. The first measure used is the original flow through the node (i.e.
the calculated flow through the node before removing any nodes), this is a physically
based metric that can be considered an indicator of the importance of a node in the
network (i.e. the nodes with a high flow through them are more likely to have a large
impact on the network when removed). This measure is therefore used as a
benchmark for testing the predictive skills of graph theory metrics in choosing
important nodes. Secondly, the degree of the node is used, as it could be argued that
the most connected node is the most important in the network. The third measure is
betweenness centrality (Equation 2.4), as flow will choose the shortest path between
areas of supply / demand it could be argued that the measure which takes into
account the number of shortest APL between pairs of other nodes to indicate the
important nodes in the network. These measures are also combined to show that the
predictive skill in identifying important nodes can be improved. The first of these
combined measures uses original flow and betweenness centrality (Equation 5.10); the
original flow takes into account the position of the supply node (i.e. the connected
nodes will have a higher value of flow through them, Figure 5.4) and betweenness

centrality considers the path of the flow through the network. To negate the effect of
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node degree upon this relationship, the second combined measure divides this value

by degree (Equation 5.11).

CM;(j) = Qjc(v)) 5.10
CM,(j) = Q’Ck—(v’) 5.11

]

Where, in both Equations 5.10 and 5.11, CM refers to the combined measure, Q the
flow through the node, c(v) the betweenness centrality, k the degree of the node and

subscript j refers to the node in question.

For each simulation series the R? value for the correlation between the change in flow
when a node is removed and each metric is calculated (i.e. it is the goodness of fit for

the 14 simulations in each simulation series), shown in Figure 5.7(b).
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Figure 5.7: Showing (a) 15 node sample network (indicating node numbers), (b) a comparison of R?
value for measures for each position of the supply node (where D = degree, OF = original flow, BC =
betweenness centrality and CM the combined measure).
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Figure 5.8: Showing (a) original flow and change in flow (calculated using SRSS method) with node 15 as
the supply node, for the sample network shown in Figure 5.7, and (b) one combined measure and the
change in flow (calculated using the SRSS method) with node 15 as the supply node, the red line is the
linear line of best fit for all data points, and the black line is the line of best fit for all data points with the
outlier removed (circled in red).

From the three individually applied measures it can be seen that the original flow (the
baseline metric) is best at identifying ‘critical’ or vulnerable nodes (i.e. it is the most
strongly correlated with change in flow) followed by betweenness centrality and finally
degree. There is a reasonable amount of scatter in the R? values and so original flow is
not universally the best indicator of vulnerable nodes; however, it has the least scatter
associated with it and so the predictive skill of this metric can be said to be less

affected by the position of the supply node.

Considering the two combined measures, it can be seen that the measure which
includes all three individual measures is superior in predicting the important nodes in

the network, for the majority of simulations (Figure 5.7(b)). The reason for this is that
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flow based metrics indicate the important components in a network for a given supply
/ demand scenario, while graph theory metrics indicate the importance of components
for a given network architecture. When a node is removed, the flows are redistributed
and so the information provided by the flow metrics becomes less reliable. Graph
theory metrics, on the other hand, provide information about the network in general

and so are a better measure of the potential for node removal to have an effect.

Considering Figure 5.7(b), there are two locations of supply node which result in the
original flow (baseline metric) being superior (node 12 and node 15). In the case of the
supply node located at node 15, the removal of node 2 has a disproportionate effect to
the remaining network (creating an SRSS value of around 450%). This effect is not
reflected in the modified measures used, but is captured by the original flow measure
because in this scenario the particular choice of supply and demand nodes overwhelms
any effect that the network architecture has. Figure 5.8(a) shows the correlation
between the change in flow and the original flow when the supply node is node 15.
This figure shows a strong correlation between the two measures; however, plotting
the change in flow against the second modified measure gives a significantly reduced
correlation, due to the influence that the removal of node 2 has on the network
(Figure 5.8(b)). Because node 2 was one of the two nodes connected to node 15, it
had a large through flow (to enable supply of the other nodes in the network) resulting
in a high value of original flow, but not the combined measure (as node 2 has a small
degree and a low value of betweenness centrality). This results in the combined
metrics making a significant underestimation of the importance of this node to the
network. This illustrates that although the proposed metrics do result in a superior

ability to identify important nodes in a network, they are not infallible.

This chapter has focused on the impact that the removal of a single node can have to
the functioning of the remaining network and has developed methods to identify
individual nodes that have a disproportionate effect to the remaining network when
removed (i.e. ‘critical’ nodes). A reduced complexity flow model was developed, as it
was initially desirable to analyse infrastructure systems governed by physically based

rules in general. This model was used to model the flow around a series of networks
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and it was found that there was a strong correlation between physically based
measures and graph theory metrics for scale-free and exponential networks, with R?
measures around 0.7-0.9, meaning that network theory is suitable for the analysis of

these systems.

Once the applicability of using network metrics was established, the predictive skill of
using these metrics to identify ‘critical’ nodes in an infrastructure system was assessed.
The predictive skill of three measures (original flow, betweenness centrality and degree)
and two combinations of these measures were assessed, to determine if a combination
of physically based measures and network theory metrics improved the predictive skill
of identifying ‘critical’ nodes, rather than using these measures in isolation. These
measures were applied to a sample water distribution system, where the flow was
modelled using a hydraulic model. The flow around the network was calculated and
then recalculated as each node was removed from the network, in turn. The change in
flow between these two simulations was assessed using the SRSS method and
correlated with the measures to show which had the best predictive skill at identifying
‘critical’ nodes. From this analysis, it was concluded that a combination of these
measures showed the highest predictive skill. This is due to the physically based
measures accounting for the transfer of service around the system and the graph
theory metrics considering the connectivity of the system. However, it was shown that
this method is not infallible, as for some instances the removal of a node can cause a
dramatic change in the flow to the remaining nodes in the system (captured by the
original flow metric) but a negligible impact to the network architecture (causing the

betweenness centrality measure to underestimate the impact of this node removal).
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CHAPTER 6: CONCLUSIONS

This chapter presents the key findings of this research, discusses their utility and
potential implications, and also suggests recommendations for future research. For a
detailed summary of the methodology and discussion of results the reader is directed to

the conclusions that were provided at the end of each chapter.

6.1: MAIN FINDINGS

The aim of this research was ‘to improve the resilience of our communities by
developing techniques that can identify fragile system architectures, recognize
vulnerable areas within these systems and establish methods that can help to protect
them from hazard’. To achieve this, a network graph theory approach was used to
analyse infrastructure systems and quantify the impact that damage to these systems
has on the communities, and members of society, that rely on them. The main
findings of this research are now presented along with a discussion of their potential
utility and implications for both informing infrastructure owners and operators of

potential deficiencies within their systems and also informing future research.

The main finding of this research has shown that topological graph theory models can
give a false indication of the resilience of an infrastructure system. A topological
network theory approach has previously been used, in other studies, to analyse
infrastructure networks and these studies have tended to focus on classifying the
system into a network class, from which an assessment of the systems hazard
tolerance can be made. However, this research has found that this analysis approach
can be deficient when used to form an assessment of the hazard tolerance of an
infrastructure system, due to the spatial component associated with these networks.
This deficiency was initially shown by quantifying the disruption caused to the EATN by
the Eyjafjallajokull volcanic event (as discussed in Chapter 3.1). To determine whether
this vulnerability was unique to the EATN, or was characteristic of its network class,
synthetic networks with the same topological and spatial characteristics as the EATN

were formed. This was achieved by developing a new network generation algorithm
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which was capable of replicating both the topological and spatial characteristics of a
network (Chapter 3.2). To the best of the authors' knowledge this is the first time that
a fully synthetic proxy network has been generated and validated. These synthetic
networks were subjected to the same Eyjafjallajokull volcanic event, to which they also
showed an increased vulnerability compared to a benchmark network. The hazard
tolerance of two further air traffic networks was also assessed (Chapter 3.3) and from
this analysis it was concluded that the vulnerability shown by a spatial network is due
to a combination of network class, nodal configuration and also the location of the
highly connected ‘hub’ airports in relation to the spatial hazard. The spatial
component of both the network and hazard is not accounted for in topological
network models, which in this case were shown to give a false indication of the hazard
tolerance of air traffic networks. This finding has important implications for the
owners and operators of these systems, as their network architecture suggests that
they should be resilient to a random hazard; however this research has shown that
they can be particularly vulnerable to some locations of spatial hazard. This finding
also has implications for previous studies which have used purely topological network
models to analyse spatial systems; as any findings relating to the hazard tolerance of
these networks may be false and networks that were assumed to be resilient to a
random hazard (as a result of their network architecture) may in fact by highly
vulnerable to some locations, and sizes, of spatial hazard. Therefore, it is not advised
to use only topological models when forming an assessment of the hazard tolerance of

a network which is distributed over a geographical area.

To assess the potential implications of this finding to owners and operators of other
infrastructure systems, a range of synthetic networks (with similar characteristics to
infrastructure systems) were formed and subjected to a range of spatially coherent
random hazards (Chapter 4). Although this analysis used synthetic networks, they
could be utilised by the owners and operators of infrastructure systems to form an
initial assessment of the resilience of their network. The analysis of these synthetic
networks identified three main factors which affect the hazard tolerance of a spatial
network: (1) the location of the highly connected components (Chapter 4.3), (2) the
location of the spatial hazard (Chapter 4.4), and (3) the location of network

components (Chapter 4.5). These findings have many important implications for the
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owners and operators of infrastructure systems, who should take note of the spatial
location of both their components and highly connected components (particularly in
relation to potential spatial hazards), as these can have a dramatic effect to the hazard
tolerance of the system. Infrastructure systems which have formed around a relatively
uniform population density are likely to be spatially dispersed and will therefore have a
similar resilience to all locations of spatial hazard. However, infrastructure systems
which have formed around a single area of high population density are likely to form a
non-uniform configuration centred around this area of high density. This research has
shown that these networks are particularly vulnerable to hazards located over this high
density area, causing not only a disproportionally large number of connections to be
removed but also a disproportionate drop in the connectivity of the network and
potentially a decrease in the efficiency of the network. However, this nodal
configuration can also cause these networks to show an increased resilience to hazards
located away from this high density area. Therefore, infrastructure owners with
systems that have formed around one area of high population density should be aware

of both the potential location and size of any spatial hazards in relation to this area.

This research has also found that there are some components, within infrastructure
systems, that can cause a disproportionate impact to the functioning of the remaining
network when removed (Chapter 5). To identify these components, this research
coupled a network model with a hydraulic model and analysed the predictive skill of
various measures at identifying these critical components (Chapter 5.3). It was found
that a combination of network theory and physically based measures showed the best
predictive skill at identifying these components. This finding could be utilised by the
owners and operators of infrastructure systems to identify their critical components
(i.e. those that when removed will have a large impact to the functioning of the
remaining system) and could potentially be used to inform strategies to decrease the
impact that the removal of these components has to the functioning of the network

(aiming to increase the resilience of the network overall).

To conclude, this research has developed a new network generation algorithm capable
of forming both the topological and spatial characteristics of a real world network and
has used this to prove that a spatial element is crucial for determining the hazard

tolerance of real world infrastructure networks. This research has also shown that
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there are some components within infrastructure systems that when removed have a

disproportionate impact to the functioning of the remaining network and that a

combination of network theory and physically based measures shows the most

predictive skill at identifying these nodes. However, to keep this research to a

manageable size the scope of the research was restricted; whilst this is deemed to

have had little effect to the main findings of this research, further studies should seek

to incorporate these limitations into their research.

6.2: POSSIBLE FUTURE WORK

From this research, several areas for future work have been identified:

Generic networks, with different topological and spatial characteristics, were
developed and analysed in this research due to the lack of complete and
obtainable datasets for real world infrastructure systems. However, further
work should consider how these datasets may be obtained for specific
infrastructure systems.

Weighted network models were deemed to be outside the scope of this
research; however, their inclusion would allow the proportion of cancelled
flights and passengers to be quantified (rather than only considering the
disruption to air routes). Therefore, future research in this area should
consider developing weighted spatial network models of the air traffic
networks and should also consider methods for including this weight into the
generation algorithms used to form synthetic networks.

These weighted networks could also be combined with the reduced complexity
flow model to allow components with different properties to be modelled (e.g.
pipes with different diameters). This would also allow the predictive skill of the
combined measures to be assessed for networks with different properties (as
the betweenness centrality value would need to be altered to account for this
weighted component).

This research has identified ‘critical’ nodes in a 15-node sample system; further
work should consider using the same method to analyse larger networks (with

a higher number of nodes and links) and also a larger number of networks.
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The damage models in this research were all binary models where a node
either passed or failed (i.e. components could not operate at a reduced
capacity). Future research in this area should consider using non-binary models
particularly when considering the hazard tolerance of a flow based network. In
this case, more sophisticated damage models could be used to describe the
relationship between the damage to a component and its ability to provide a
level of service. For example, a water treatment plant could become damaged
in a hazard; however it could be capable of providing some level of service,
which has not been considered in this research.

This research has focused on the impact that the removal of nodes, and their
connecting links, has to the functioning of a network (as the removal of a node
is likely to cause a more significant impact to the network, than the removal of
a single link). However, in real world infrastructure networks both nodes
(components) and links (connections) are vulnerable to the effects of a hazard.
Therefore, future research could consider the impact that the removal of nodes
and links (other than those connected to the removed nodes) has to the
remaining network. This future research could also seek to identify which links,
when removed, have a disproportionate impact to the functioning of the
remaining network (i.e. ‘critical’ links).

This research has considered the application of spatial hazards to network
models in general. However further work, should consider the categorisation
of other real world infrastructure networks (into network classes) and either
confirm or establish their evolutionary rules, as well as analysing specific
threats to these networks (e.g. a likely flooding scenario).

This research has developed adaptation strategies that are capable of
increasing the resilience of infrastructure systems where the links can be
‘rewired’. However, this is not the case in some infrastructure systems; for
example, the pipes in a water distribution system cannot be easily moved.
Further research should consider adaptation strategies that can increase the
resilience of these systems to spatial hazards, without compromising their
efficiency under normal operational conditions. This could consider additional
capacity that should be given to components to allow the provision of service

to be redistributed around the system in the event of hazard, or additional
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storage tanks to provide some service to communities that have been ‘cut off’

until they can be reconnected.
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Abstract The 2010 eruption of the Eyjafjallajokull volcano had a devastating effect on the
European air traffic network, preventing air travel throughout most of Europe for 6 days
(Oroian in ProEnvironment 3:5-8, 2010). The severity of the disruption was surprising as
previous research suggests that this type of network should be tolerant to random hazard
(Albert et al. in Nature 406(6794):378-382, 2000; Strogatz in Nature 410(6825):268-276,
2001). The source of this hazard tolerance lies in the degree distribution of the network
which, for many real-world networks, has been shown to follow a power law (Albert et al. in
Nature 401(6749):130-131, 1999; Albert et al. in Nature 406(6794):378-382, 2000). In this
paper, we demonstrate that the ash cloud was unexpectedly disruptive because it was
spatially coherent rather than uniformly random. We analyse the spatial dependence in air
traffic networks and demonstrate how the combination of their geographical distribution and
their network architectures jeopardises their inherent hazard tolerance.

Keywords Network reliability - Scale-free networks - Spatial hazard -
Airline networks - Hazard tolerance - Exponential networks

1 Introduction

Complex networks can be found in all aspects of modern society. Many of these complex
networks, including the Internet and World Wide Web, have been shown to be scale-free
(Barabasi and Albert 1999; Albert et al. 2000). Scale-free networks are networks whose
degree distribution (defined as the cumulative probability distribution of the number of
connections that each node has to other nodes, see Fig. la, b for further explanation)
follows a power law and therefore comprises a small number of high-degree nodes and a
large number of smaller-degree nodes. They have been shown to be resilient to random
hazard and vulnerable to targeted attack as a random hazard has a small chance of
removing a high-degree node, whereas an informed and pernicious agent will target the
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Fig. 1 The calculation of degree distribution is made by obtaining the degree of each node. The degree of a
node, k, is the number of links attached to this node from other nodes, for example, if a node has 3 links
attached to it, then it has a degree of 3. a shows a small sample from a scale-free network, created using
Network Workbench, and shows the degree of each node (the dashed lines indicate links to other nodes in
the network that have been removed from this figure for clarity). The degree distribution of the network,
P(k), gives the cumulative probability that a selected node has k or greater links. P(k) is calculated by
summing the number of nodes with k = 1, 2, ... links divided by the total number of nodes. It is this
distribution that allows for the distinction between different classes of network and also defines the inherent
hazard tolerance of the network (Barabasi and Oltvai 2004). The degree distribution for the scale-free
network (partly shown in a) is shown in b. Preferential attachment based on degree and based on both
proximity and degree is indicated in ¢ and d, respectively. In ¢, a new node (in red) is introduced into the
network, and using the algorithm of Barabasi and Albert (1999) would be most likely to attach itself to the
high-degree node; however, considering proximity as well as degree alters the probability because the
spatial domain of the low-degree node (in the centre of the red circle) includes the high-degree node and
therefore inflates its probability of attachment (desirability)

highest-degree node resulting in a disproportionately severe impact to the network (Albert
et al. 2000). Those physical networks that have been shown to be scale-free (for example,
the Internet and the World Wide Web) require little physical space; the routers and servers,
which comprise the Internet, each require only a room, or even a small space within a
room. Even the largest hubs require little physical space and little or no planning per-
mission. The World Wide Web requires even less space. Web pages and the hyperlinks that
connect them are virtual entities whose physical size amounts to only a few nanometres on
a hard disc drive. Previous studies have not considered the effects of space and physical
size on these networks, as space has little effect on the network physical configuration.
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Other infrastructure networks, on the other hand, such as electrical transmission networks
or transportation networks, require large amounts of space and are usually subject to strict
planning regulations. A few studies have considered the spatial configuration of real-world
networks, such as airline networks (for example, Guimera and Amaral 2004; Burghouwt
et al. 2003; Qian and Han 2009; Gastner and Newman 2006); however, these studies have
not considered hazard tolerance.

The 2010 eruption of the Eyjafjallajokull volcano, in Iceland, occurred on the 14th
March forcing almost 800 local residents to evacuate their homes (Petersen 2010). With
further eruptions, airspace in Europe became restricted, and no fly zones came into
operation on 14th April (Brooker 2010) (see Fig. 2a—c). The resulting airport closures and
disruption to air travel caused more than 10 million passengers to be delayed. The eco-
nomic impact to the airline industry, in terms of revenue loss for airlines from scheduled
services, during the period 15th-21st April, was estimated at 1.7 billion US dollars
(Mazzocchi et al. 2010). We show that this disruption was disproportionate by quantifying
the magnitude of the disturbance relative to the cause. We have achieved this using the data
contained in Openflights (2010) to produce a comprehensive set of 525 European airports,
3,886 air routes operated by 203 airlines as well as travel statistics for Europe for the 14th—
21st April 2010 (Eurocontrol 2010). We have used these data to form a European air traffic
network (EATN) and have then obtained its degree distribution, which gives us infor-
mation about its inherent tolerance to random hazard. We have also investigated the
tolerance of the EATN to two types of spatially coherent hazard, in both cases, taking note
of the number of airports closed, air routes cancelled, the proportion of closed airspace and
the maximum cluster size of the network. We have used these data to determine whether
the EATN is vulnerable to spatial hazards.

2 Initial assessment of the hazard tolerance of the European air traffic network

Our first investigation into the EATN is achieved by plotting the network’s degree dis-
tribution. As this is defined as the probability distribution of the number of connections that
each node has to other nodes, it is therefore a key indicator of its hazard tolerance.
Comparing the degree distribution of EATN (Fig. 3a) to other published research, we find
that the European data set is similar to the North American (Guimera and Amaral 2004;
Chi et al. 2003; Li et al. 2006) and Chinese (Li and Cai 2004) air traffic networks in that
they conform to a truncated power law (Guimera and Amaral 2004). This type of network
should therefore have relatively high hazard tolerance to random events.

To investigate whether the volcanic eruption had a disproportionate effect on the net-
work, we have identified airports that had no flights for 12 or more hours on a particular
day using the data of Eurocontrol (2010). We have taken these data and plotted Fig. 2a—c,
showing the open and closed flight information regions (FIR), for the worst affected day of
the hazard (18th April) and two other affected days. The figure shows that the ash cloud
mainly affected northern Europe, but also closed central Europe on the worst day of the
event. In Fig. 2d, we plot the proportion of air routes closed against the proportion of
closed airspace. If the effect is proportionate to the cause (i.e. the disruption is propor-
tionate to the area of closed airspace), then the points (representing different days of
disruption and therefore different airport closures) should sit on the 45° line in the graph.
From Fig. 2d, we can see that the relationship shows that the disruption was proportionally
greater than the closed airspace, demonstrating the EATN is vulnerable to spatial hazards.
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To understand the influence of geography on the spatial vulnerability of the EATN, we
examine the spatial distribution of European airports as well their spatial degree distri-
bution (Fig. 3b, c). These distributions were obtained by first calculating the geographical
centre of the airports (weighted by their degree) and then plotting the number of airports
within a given radius (Fig. 3b) and the cumulative degree (Fig. 3c). For the EATN, the
geographical centre of the network is located in Germany (approximately 190 km east of
Frankfurt). Both exhibit a bilinear form, meaning that they are uniform with distance from
the geographical centre of the air traffic network up to radius of ~ 1,500 km, after which
the distribution of both airports and their degrees becomes sparser but remains relatively
uniform. The change in grade shown in Fig. 3b, c occurs as the considered area extends
into the Atlantic Ocean in the west, and the border of the European Union in the east.

3 Synthetic network generation algorithm

To assess the vulnerability of this class of network (not just the EATN), we have developed
a synthetic network generation algorithm that not only reproduces the relational archi-
tecture of these networks but also incorporates a spatial element. In this algorithm, we
propose that poorly connected nodes can capitalise on their close proximity to a highly
connected hub by attracting links that were bound for the high degree hub. For example, an
airline may wish to establish a route to a major regional airport; however, the operating
costs at this airport are high. Flying to a nearby airport will still attract passengers as it is
only a short overland journey from this node to the highly connected hub, but for this
subordinate node, the fares can be reduced due to the lower operating costs. We therefore
argue that the decision of where to establish a new route is made based on both degree and
proximity. We use this proposition to extend the algorithm of Barabasi and Albert (1999)
(used to generate scale-free networks) by enclosing the network within a spatial domain
and preferentially attaching new nodes based on the degree of all nodes within a sub-
domain (neighbourhood) (Fig. 1c, d). Following Barabasi and Albert (1999), we initially
choose a given number of starting nodes, m, but each starting node is now given a random
location. At each step, we add a new node to the network and assign it a random distance
bearing from the geographical centre so that the spatial distribution has the same form as
shown in Fig. 3b. We then generate, between 1 and my, links and preferentially attach this
node to the existing network in the same manner as for a scale-free network; however,
preference is now based on the degree of all nodes within the neighbourhood of the node
we are attempting to attach to. The size of the neighbourhood is set by assigning a radius, r,
which represents the distance people are prepared to travel overland to reach an airport.
Setting the radius to zero removes the spatial dependence of the network resulting in a
scale-free network, while setting the radius to twice the size of the spatial domain results in
random attachment. To obtain the same spatial degree distribution as EATN, the radius of
an airport’s neighbourhood is made proportional to the distance the airport is from the
centre of the network. This last rule is intuitive because airports are more densely packed in
the centre of the network giving people a greater selection of routes for smaller overland
travel distances.

Our new algorithm also includes the modification of Guimera and Amaral (2004), which
allows a proportion of the new links, p, to connect to pre-existing nodes. This simulates the
establishment of new routes between existing airports and is necessary to reproduce re-
configurable networks, such as the EATN. We do not include the flight distance criteria for
preferential attachment of Guimera and Amaral (2004), as we are not considering
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the two connected airports

intercontinental flights and deregulation of the EATN has led to flight path length
becoming uncorrelated from degree. We demonstrate this by plotting, in Fig. 4, flight
length of different air routes against various measures of degree, showing that there is no
correlation between the flight length and connectivity of an airport. In Fig. 4a, we compare
the maximum degree airport that an air route is connected to; in Fig. 4b, we compare the
arithmetic mean of the degree of the two airports that an air route connects; and in Fig. 4c,
we compare the geometric mean of the two airports that an air route connects. These
figures show that there is no correlation between degree and flight path length for the
EATN.

To generate the bilinear distribution in Fig. 3b, we define a distance from the geo-
graphical centre inside which a percentage of the total nodes in the network are randomly
placed, with the remainder of the nodes being randomly placed in the area between this
point and the outer edge of the network. This results in the number of airports within a
given radius being an approximation of the EATN.

We demonstrate this algorithm by generating a 525-node synthetic network with
mo = 14, r = 0.15 (an average distance of approximately 250 km around 2-3 h driving
time on modern roads) and p = 0.8. The resultant degree and spatial degree distributions
are shown in Fig. 3 and fit our European data set extremely well.

To demonstrate that our algorithm best fits the data over the entire distribution, we vary
these parameters to gauge their influence on the degree distribution (Fig. 5). The best fit for
the EATN is the exponential network with p = 0.8 and r = 0.15. Generating networks
with p = 0 and » = 0.15 shows that the distribution is exponential (i.e. it is linear when
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plotted on log-linear axes). The difference between the exponential networks with values
of p =0 and p = 0.8, for the same value of r, demonstrates that in generating airline
networks, new links will form between two existing nodes for a given time step (i.e. new
flight routes will be added by an airline between existing airports) and are not only
confined to attaching between the new node and existing nodes (see Guimera and Amaral
2004). If new routes are not permitted to form between existing airports (i.e. p = 0), the
resultant is fewer ‘hub’ airports forming (i.e. airports with large degrees). Both scale-free
networks follow the initial curve of the EATN data, but then do not follow the truncated
part of the network, meaning that our synthetic exponential network generation algorithm
produces the best fit for the EATN.

In reproducing the EATN, the r value used suggests that, on average, air passengers are
prepared to travel approximately 250 km overland to an airport. In a disaster scenario, this
value is unlikely to remain constant. Air passengers are likely to be prepared to take much
greater overland journeys to ensure that they reach their destinations, especially in the case
of returning journeys. In fact, during the Eyjafjallajokull event, accounts of people driving
across Europe were not uncommon. While air transport regulations do allow for a spon-
taneous change of destination in hazardous situations, air space regulations, as well as
airline-specific infrastructure problems, make it extremely difficult to quickly open alter-
native routes. In this sense, the network is more complex and rather inflexible in com-
parison with other networks, such as the Internet. For example, a flight en route from
Zurich to Manchester may get permission for an emergency landing, at say Heathrow. If
Manchester airport was closed for several days and Heathrow airport remained open,
passengers may take the option of travelling to and from Heathrow to Manchester. The
redirection of air traffic and the increased overland journeys that people may be prepared to
make have not been taken into account in this analysis due to their unpredictability.

4 Assessment of hazard tolerance of this generic class of network
To better assess the vulnerability of this class of network and the associated scatter

between different networks, we use our algorithm to generate three synthetic networks,
with the same spatial properties and the same network architecture as the EATN (but each
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with different node positions and linkages), and expose them to different spatial hazards.
To simulate the Eyjafjallajokull event, we place a circular hazard at the edge of our domain
and gradually increase its size, removing links and nodes as they become enveloped by this
hazard. We also expose these networks to random but spatially coherent hazards, defined
by a circle of varying diameters and random locations. To enable equivalent comparisons,
the spatial hazards, for both the EATN and our synthetic networks, cover the same per-
centage airspace and are located at the same distance from their geographical centres. The
results of these simulations are displayed in Fig. 6a, b, together with the Eyjafjallajokull
event and the EATN exposed to our random, spatially coherent hazard. The scatter in the
hazard tolerance for these synthetic networks is surprisingly small and is in good agree-
ment with the EATN, demonstrating this class of network’s vulnerability to both hazards.
Although the individual hazard tolerance results of our synthetic networks compare very
favourably with the EATN, there are a few outliers, for example, there are two points in
Fig. 6a, relating to the EATN subjected to random hazard that occurs below the 45° line.
These two random hazards occur in northern Scandinavia, where both the density of
airports and the average degree of airports are lower than that for central Europe, due to
this region being in close proximity to the edge of the spatial boundary of the network. This
results in flights from northern Scandinavia only being permitted to travel to airports with a
more southerly location (i.e. stay within the boundaries of European airspace), resulting in
airports with disproportionately low degrees. This results in fewer cancelled air routes for
the same number of closed airports.

For our final investigation into hazard tolerance, we plot the maximum cluster size
(MCS) in Fig. 6¢, d. This last measure is defined as the ratio of the largest connected
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Fig. 6 Comparison of network vulnerability for the EATN and our three synthetic networks, showing a the
impact of airport closure on air route operations; b the influence of airspace closure on air route operations;
¢ the reduction in MCS due to airport closures; and d the influence of airspace closure on MCS
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cluster in a fragmented network to the original size of network and therefore is a key
indicator of how degraded a network has become (see Albert et al. 2000 for further details).
In Fig. 6, we see that, as expected, the MCS versus proportion of closed airports for the
EATN and our three synthetic networks falls on the neutral line (Albert et al. 2000);
however, as our simulations and the real EATN show, it is vulnerable when measured as a
proportion of closed airspace. Both our algorithm and the data show that these networks
usually have neutral tolerance to spatial hazard up to about 10-15%, of the total network
area, but become increasingly vulnerable after this. In the case of random hazard, both our
algorithm and the EATN data set demonstrate that it is possible for a relatively small
spatially coherent hazard to have a devastating effect on this class of network. This is best
demonstrated in Fig. 6d, where two points on our synthetic network are centred over the
geographical centre of the network resulting in a devastating effect.

5 Conclusion

In summary, the eruption of Eyjafjallajokull in 2010 caused a massive disruption to the
European air traffic network. We have demonstrated that the effect on air traffic was
disproportionately severe due to the network possessing a truncated, scale-free distribution
and a spatial degree distribution that is uniform with distance from the centre of the
network, resulting in a network that is vulnerable to spatial hazards. We believe that these
distributions result from a combination of the desirability of a location, space limitations
and the distance users are prepared to travel overland to an airport. As many real-world
networks have been shown to be either scale free or exponential (Albert et al. 2004;
Crucitti et al. 2004), it is possible that the underlying growth rules for these types of
networks may result in them also being susceptible to spatial hazard. In the future, it may
be desirable to reduce this susceptibility to spatial hazard. One possible method is to move
some of the airports away from the geographical centre, located in Germany (specifically
the high-degree airports); however, this approach may render the network less effective for
normal operations. This approach also encounters the problem that each country in Europe
may desire a ‘hub’ airport, meaning that moving airports away from the geographical
centre may not be a possibility. Another method could be to enable reconfiguration of air
routes for cases such as the Eyjafjallajokull eruption.
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Identifying Critical Components in Infrastructure
Networks Using Network Topology

Sarah Dunn' and Sean M. Wilkinson?

Abstract: This paper applies graph theory metrics to network flow models, with the aim of assessing the possibility of using these metrics to
identify vulnerable areas within infrastructure systems. To achieve this, a reduced complexity flow model that can be used to simulate flows in
infrastructure networks is developed. The reason for developing this model is not to make the analysis easier, but to reduce the physical
problem to its most basic level and therefore produce the most general flow model (i.e., applicable to the widest range of infrastructure
networks). An initial assessment of the applicability of graph theory metrics to infrastructure networks is made by comparing the distribution
of flows, calculated using this model, to the shortest average path length in three of the most recognized classes of network—scale-free
networks, small-world networks, and random graph models—and it is demonstrated that for all three classes of network there is a strong
correlation. This suggests that at least parts of graph theory may be used to inform one about the behavior of physical networks. The authors
further demonstrate the utility of graph theory metrics by using them to improve their predictive skill in identifying vulnerable areas in a
specific type of infrastructure system. This is done using a hydraulic model to calculate the flows in a sample water distribution network and
then to show that using a combination of graph theory metrics and flow gives superior predictive skill over just one of these measures in

isolation. DOI: 10.1061/(ASCE)IS.1943-555X.0000120. © 2013 American Society of Civil Engineers.
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Introduction

Critical infrastructure systems such as electrical distribution and
water and transport networks form the backbone of modern com-
munities, promote social well-being, and support economic growth
and productivity. They do this by delivering a flow of services
from areas where they are stored or generated (e.g., power stations)
to areas of demand (e.g., communities). The importance of these
networks and their potential fragility can be demonstrated by
the catastrophic consequences that can result from the failure of
a few elements, or potentially even a single element, within these
systems. For example, in August 2003 North America suffered a
blackout affecting two million people in eight U.S. states, with
estimated economic losses between US$7 and $10 billion; the
blackout started with the failure of a single power station (U.S.—
Canada Power System Outage Task Force 2004). Traditionally
these systems have been analyzed using physically based models
and their performance judged by their ability to deliver the required
services (e.g., flow of water, electricity) to communities. A great
deal of recent research has attempted to use network graph theory
to identify the vulnerable components within infrastructure sys-
tems, including Crucitti et al. (2005), Genesi et al. (2007), and
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Cadini et al. (2009); however, these studies have not used physi-
cally based flow models and subsequently have not ranked the
importance of nodes based on their impact on the flow of services.
The aim of this paper is to determine whether there is a relation-
ship between flows calculated by physically based flow models
and network topology and, if so, whether this could be used to
improve the ability to identify vulnerable nodes within infrastruc-
ture systems.

Rationale for Considering Network Graph Theory for
This Application

From the many network models in existence today, three stand
out as being probably the most important and widely recognized.
These are (1) scale-free (Barabasi and Albert 1999), (2) small-
world (Watts and Strogatz 1998), and (3) random graph (Erdos
and Renyi 1960) models. The Erdds and Renyi random graph
model was the first developed network model (Erdos and Renyi
1960) and is arguably the simplest graph possible (Albert and
Barabasi 2002). This type of network does not model real-world
networks (including infrastructure networks) particularly well
(Newman 2003) but is normally used as a baseline for comparison
with more structured networks (Lewis 2009). To more accurately
model real-world systems, Watts and Strogatz modified the random
graph model using the concept of six degrees of freedom (Milgram
1967) forming small-world networks (Watts and Strogatz 1998).
Both small-world and random networks are characterized by a
Poisson degree distribution [defined as the cumulative probability
distribution of the number of connections that each node has
with other nodes (Barabasi and Oltvai 2004)]. However, Barabasi
and Albert (1999) discovered that real-world networks [including
the Internet (Albert et al. 2000) and the World Wide Web (Barabasi
and Albert 1999; Barabasi et al. 2000)] tend to form a power-law
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degree distribution. Networks that follow this power law are more
commonly known as scale-free networks.

The power-law degree distribution, for these scale-free net-
works, means that they comprise a small number of high-degree
nodes and a large number of smaller-degree nodes. As such, they
are resilient to random hazards and are vulnerable to targeted attack
as a random hazard has a small chance of removing the important
nodes (i.e., those with a high degree), whereas targeted attacks
will often remove the highest-degree node, resulting in a dispropor-
tionately severe impact on the network as a whole (Albert et al.
2000). Other researchers have tried to develop more sophisticated
measures of establishing the importance of nodes rather than just
using node degree. The most widely used measures are known as
centrality measures and have been used to show that these high-
degree nodes are not necessarily the most important in a network
(e.g., Guimera et al. 2005). Centrality measures have been applied
to social networks (Everett and Borgatti 1999) with the aim of iden-
tifying the central person/figure or group/class in a social network.
Recently, these measures have also been applied to infrastructure
networks (Choi et al. 2006; Crucitti et al. 2006). These studies
found that the most connected node (i.e., the node with the highest
degree) is not necessarily the node with the highest value of central-
ity (Guimera et al. 2005; Cadini et al. 2009). However, these studies
do not consider how the services that the network provides flows
around the network, nor do they stress the network (by removing
nodes or links) to gauge the effect on performance. It is therefore
unproven as to whether the node with the highest value of centrality
would have more of an effect on a network, when removed, com-
pared to a node with the highest degree.

Development of a Reduced Complexity Flow Model

Infrastructure networks are critically important to modern society
as they provide the essential services upon which communities rely.
They can be placed into one of several groups: electrical power,
gas and liquid fuels, telecommunications, transportation, waste
disposal, and water supply (O’Rourke 2007). All of these services
are provided thanks to a flow of commodities from locations where
the service is either generated or stored to areas where it is con-
sumed. Traditionally, a flow model is used to analyze these infra-
structure systems, simulating the transfer in services from areas of
supply to areas of demand. In engineering, numerous flow models
can be used to simulate the physical processes. It is desirable
initially to determine the applicability of graph theory metrics to
the analysis of infrastructure systems in general, and so what is
arguably the simplest flow model is developed; however, the
model still has all the attributes necessary to simulate flows in a
network.

To achieve this, a simple hydraulic model that can be found in
any standard hydraulic text is modified (e.g., Novak et al. 2010).
Although this is a hydraulic model, it has analogies with other
categories of infrastructure network, such as electrical distribution
networks and traffic flow problems—for example, the pressure
head in a hydraulic system is analogous to a potential difference
in an electrical network or demand in traffic or data networks.
Equally, pipe friction in a hydraulic network could be compared
to electrical impedance in an electricity network, or road capacity
in a traffic network. The similarities in the physical behavior of
different sorts of infrastructure networks means that the results
obtained for one type of network, although not exactly equivalent,
are indicative of the behavior of other types of infrastructure net-
works. In the case of a hydraulic network, the governing equations
for a steady-state flow problem are as follows:

158 / JOURNAL OF INFRASTRUCTURE SYSTEMS © ASCE / JUNE 2013

* Conservation of mass. The mass at any point along a pipe must
be constant (i.e., flow into a pipe = flow out of a pipe):

Oin = Oout (1)

* Conservation of energy. Energy must be conserved; for hydrau-

lic networks this energy usually consists of potential energy

(or the potential difference in the case of an electrical network)

and kinetic energy and is defined by the Bernoulli equation
(for pipe flows)

2 2
PO I A < S S 2)

vy 29 vy 29
where z = potential energy; p = pressure; v = velocity at
Points 1 and 2, respectively; f/ = frictional losses; and g =
gravitational constant. Eq. (2) basically illustrates that between
Points 1 and 2 conservation of energy is maintained.

Implementation of Reduced Complexity Flow Model

The flows in a network are calculated (through both the nodes and
the links) using the process described below. A small example
network is used to illustrate the process (Fig. 1). In this example,
Node 1 is a supply node, whereas the other nodes are demand
nodes.

Calculate the Potential Energy for Each Node in the
Network

The standard hydraulic formula for calculating flow in a pipe is
Fy=Kk(Q)" (3)

where F; = frictional losses; k = a constant that describes
the resistance of the system (e.g., pipe friction for a hydraulic net-
work or electrical impedance for an electrical system); and Q =
flow through pipe. For steady-state hydraulic flow in pipes, the
value of n normally equals 2; however, because a generic model
that represents a range of infrastructure networks is desired, the
problem is reduced to its most base level by assuming the losses
have a linear relationship with flow (i.e., n = 1). Linearizing the
losses has the added advantage of making it possible to solve
the problem directly:

F;=R(Q12) (4)

PE,, Q,

PE,, Q, PE;, Q;

Fig. 1. Example network consisting of three nodes and three links,
where Node 1 is the supply node and Nodes 2 and 3 are the demand
nodes (node numbers are indicated by the bold numbers to the left of
each node); Q = flow of service that the node either demands or sup-
plies; PE = potential energy of node; R = resistance of link (subscript
values indicate node/link to which they refer)

J. Infrastruct. Syst. 2013.19:157-165.



Downloaded from ascelibrary.org by University of Newcastle on 05/23/13. Copyright ASCE. For persona use only; all rights reserved.

where R = resistance of the link; and Q,, = flow in pipe
connecting Nodes 1 and 2.

Assuming incompressible flow, the velocities at Nodes 1 and
2 are equal, and therefore the friction loss in the pipe is equal
to the difference in the potential energies of the two connected
nodes. Using this and rearranging Eq. (4) gives

1
Q1_2:§(PE2—PE1) (5)

Using conservation of mass, the external flow at each node
(i.e., either the quantity demanded by the node or the quantity
supplied by the node), denoted by ¢, can be calculated by summing
the flows in the connected links. For Node 1 in Fig. 1 this becomes

41 = o (PEy— PE)) + 2 (PE, — PE)) (6)
1 3

Eq. (6) can be rearranged as

—pe(~ Lo D) rpe (L) v ee (L) o)
q1 = 1 R1 R3 2 R 3 R3

Using this method to obtain expressions for the external flow
at the other nodes [in the same format as in Eq. (7)] and
combining them in matrix form results in

_1_ 1 €1 1
q1 Ry Ry R, R; PE,
_ 1 _1_ 1 1
9| = R R R R PE, (8)
1 1 _1_ 1 PE
a3 Ry R, Ry, Ry 3

The external values of flow (g) for the demand nodes and the
resistances (R) of the links are known, but the values of flow from
the supply nodes are unknown. In the example network (Fig. 1) this
is easy to calculate (because it is the only supply node); however,
for a network with two or more supply nodes the supply will not be
evenly distributed. Setting the supply nodes as potential energy
reference points (i.e., PE = 0) enables the condensation of Eq. (8),
resulting in Eq. (9). The potential energy of each demand node
can be obtained by solving Eq. (9):

s[4k

q3 PE;

€L
Ry Ry Rs

Calculate the Flow through Each Link

To satisfy the conservation of energy [Eq. (2)], the flow through
each link in the network is calculated using Eq. (5).

Calculate the Flow Provided by Each Supply Node

The external flow at each supply node can be found using Eq. (8).

The equations describing the reduced complexity flow model
have consistent units. For example, in the case of a hydraulic net-
work, if the input values were in terms of meters and seconds, then
the output value of flow would have a unit of meters per second.

Physically Based Metrics and Centrality Measures

In the authors’ first experiment, the reduced complexity flow model
is applied to 60 network models (20 for each of the 3 classes of
network: scale-free, small-world, and random). Each network in-
cludes 1,000 nodes, and the number of links is varied to enable a
comparison between networks with different levels of connectivity

(e.g., for the same number of nodes, a network with more links is
better connected than a network with fewer links and will transfer
the flow differently between the areas of supply and demand).
All of the networks were created using Network Workbench.

Because this is an initial assessment of the applicability using
graph theory in flow-based problems, the resistance of the links are
made equal. For a hydraulic system the resistance is a combination
of pipe length, diameter, and roughness, and it is assumed that the
combination of these parameters satisfies this assumption. It was
shown by Newman (2004) that the more general case of links with
different properties could be addressed using the weighted network
approach (modifying the graph theory metrics to take into account
the differences in the link properties) such as that of Opsahl et al.
(2010), but this is beyond the scope of this initial paper.

Before the flow in the test networks can be calculated, values of
supply and demand need to be assigned to each node in the net-
work. First, the decision is made as to which nodes are to be supply
nodes (infrastructure supplying a service) and which are to be
demand nodes (regions requiring the service) by ranking the nodes
in descending order of degree. The top 1% are chosen as supply
nodes, the others are assigned as demand nodes (for example,
for a network with 1,000 nodes there will be 10 supply nodes).
The small proportion of supply nodes relative to demand nodes
is consistent with real-world infrastructure systems, which have
a small proportion of nodes supplying services (e.g., power sta-
tions or reservoirs) compared to the proportion of demand nodes
(e.g., households); however, the absolute value of 1% is somewhat
arbitrary. It is assumed that the supply nodes in the network have
sufficient capacity to supply any service required by the demand
nodes, and because a single point in time is being considered,
it is also assumed that the network has reached equilibrium. In real
infrastructure networks (e.g., for the case of a pipe network), if a
reservoir does not have sufficient capacity to meet the required
demand, then the reservoir will run dry and the flow will cease;
if there are other reservoirs in the system, then the flow will be
redistributed. This can be accommodated in the model using an
iterative procedure, but this is beyond the scope of this paper.
A numeric value of demand is assigned to the demand nodes based
on their degree (i.e., the number of links attached to them). It is
argued here that this is a reasonable approximation because areas
with large populations, and therefore high demand for services, will
require a correspondingly greater number of nodes and links to pro-
vide these (e.g., a large city will have a greater need for services
than a rural community and will also have a correspondingly larger
amount of infrastructure).

For this initial assessment, the results of the reduced complexity
flow model are compared with the shortest average path length
(APL) of the network. This metric describes the fundamental prop-
erties of a network and is defined in terms of the number of links
between two nodes, rather than the physical length of the links. The
shortest APL was chosen, rather than other metrics, because the
shortest APL is a “measure of the typical separation between
two nodes in the graph” (Boccaletti et al. 2006) and is therefore
a measure of the efficiency of the network (as flow will distribute
itself around the network such that it finds the minimum energy
solution) (Albert and Barabasi 2002). The higher the value of the
shortest APL, the further the services in the network must flow to
travel from the supply nodes to the demand nodes, and therefore the
more inefficient the network. The APL is determined by Eq. (10)
(Boccaletti et al. 2006), and in this paper the APL is calculated
using Network Workbench:

L= N(N_l > dy (10)

i,JEN,i#1
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where L = shortest APL of the network; N = total number of nodes;
and d;; = shortest path length between nodes i and ;.

Fig. 2 shows the results of correlating this measure with the
flow through the demand nodes [the flow is referred to as being
through a node, for simplicity; the inflow and the outflow at the
node are not stated (because these two values are equal)] for scale-
free [Fig. 2(a)], small-world [Fig. 2(b)], and random [Fig. 2(c)]
networks. Fitting a power-law trend line through the results shows
an R? value of greater than 0.9 for all three classes of network
model. This high R? value suggests that at least parts of graph
theory could be used in the analysis of infrastructure networks
[which tend to be scale-free (Da Costa et al. 2011)].

When generating the networks used in the analysis for Fig. 2, it
was not possible to generate networks with a consistently increas-
ing value of APL due to the way the algorithms operate, particularly
for the scale-free [Fig. 2(a)] and small-world networks [Fig. 2(b)].
In the case of scale-free networks, the network is formed by starting
with an initial number of nodes, connected by links (Barabasi and
Albert 1999). A new node is then introduced to the network, with a
number of links between 1 and the initial number of links (which
are used to connect this new node to the existing network). This
random element, when generating links to connect the new node
to the network, alters the total number of links in each network
by a small amount. To generate networks with noticeably different
levels of connectivity, the number of initial nodes needs to be
altered. Because each network generated with the same number
of initial nodes has approximately the same number of links, they
have approximately the same value of APL, causing the clustering
in Fig. 2(a) (i.e., each cluster is a group of networks with the same
number of initial nodes). For small-world networks, the number of
links in the network depends on the total number of nodes in the
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network and the number of initial neighbors that each node has
(i.e., how many other nodes it is connected to) (Watts and Strogatz
1998). No new links are introduced into or removed from the net-
work; the existing links are rewired using a rewiring probability,
possibly altering one of the nodes that a link connects. Therefore,
for networks with the same number of nodes, the number of initial
neighbors will have a corresponding (and unchanging) number of
links. The rewiring probability is kept constant in this paper, and
the number of initial neighbors is changed to alter the connectivity
of the network; therefore each cluster in Fig. 2(b) represents a
network with a certain number of initial neighbors. This clustering
of results is not as marked for random networks [Fig. 2(c)]. For
random networks, each pair of nodes is considered in turn and a
connection is made between them based upon the value of linking
probability (the higher this value, the more likely it is that a link
will be generated) (Erdos and Renyi 1960). Due to this probability
element, networks that have the same value of linking probability
can have a different total number of links, resulting in different
values for APL. The weak clusters in Fig. 2(c) represent networks
with different linking probabilities.

Having shown that at least part of graph theory is applicable
to the analysis of physically based flow networks (using APL),
the application of centrality measures to these networks is now
considered.

The three most commonly used centrality measures—
betweenness centrality, closeness centrality, and degree
centrality—were developed by Freeman (1979). The betweenness
centrality of a node is the proportion of all shortest APLs be-
tween pairs of other nodes that include this node (Freeman
1979; de Nooy et al. 2005) and is based on the concept that central
nodes are included on the shortest APL of pairs of other nodes
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Fig. 2. Correlation between average flow and shortest average path length for 20 (a) scale-free; (b) small-world; (c) random networks, each with 1,000
nodes and different numbers of links; the average flow was calculated for each network by first summing the flow through (i.e., the inflow or the
outflow as these are equal) the 990 demand nodes in the network and then dividing this number by the total number of demand nodes in the network

(i.e., 990)
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Fig. 3. (Color) Correlation between betweenness centrality and flow at corresponding node for (a) scale-free; (b) small-world; (c) random networks

with 1,000 nodes and approximately 5,000 links

(de Nooy et al. 2005). The closeness centrality of a node is defined
as the mean shortest path between that node and all other nodes
reachable from it (nodes that tend to have a small shortest path
length between other nodes in the network have a higher value
of closeness) (Freeman 1979; de Nooy et al. 2005) and comprises
the idea of speed of communication between pairs of nodes in a
network (de Nooy et al. 2005; Cadini et al. 2009). The degree cen-
trality of a node is equal to its degree (i.e., the number of links
attached to that node) (Freeman 1979).

The same networks as were used previously are used here
[i.e., the 60 x 1,000 node networks (Fig. 2)], and the flow through
each demand node is calculated using the reduced complexity
flow model, and this is correlated with the centrality of that node
[calculated using Pajek (Batagelj and Mrvar 2003) for all three
centrality measures]. Only the demand nodes are considered in
this analysis because the flow in these is of primary concern; only
1% of the nodes in the network are supply nodes (i.e., 10 nodes).
Each network has 990 demand nodes and therefore contributes 990
points to the graph. Because of this and to keep the figure clear,
only results for three of the networks (chosen at random) for each
centrality measure are presented; however, these are typical of the
correlations achieved for the other networks.

Fig. 3 shows the correlation between betweenness centrality
of a node and the flow through the same node for the three classes
of network model. The results of these simulations show an R>
value of around 0.7 for scale-free networks [Fig. 3(a)], indicating
that the nodes with a high value of flow through them tend to be the
nodes with a high value of betweenness. It is apparent that there is
little or no correlation for the small-world [Fig. 3(b)] and random
[Fig. 3(c)] networks (the R? values are between 0.0 and 0.2).

The three clusters of results for the small-world networks
[Fig. 3(b)] and the four clusters of results for the random networks

[Fig. 3(c)] can be explained by considering the proximity of
demand nodes to the supply nodes. Those nodes that are directly
connected to (one or more) supply nodes will have proportionately
higher flows through them than those that are not connected be-
cause they must transfer flow through themselves to other nodes
in the network that are not directly connected to a supply node.
Each cluster [in Figs. 3(b and c)] contains nodes that are a specific
number of links away from a supply node. For example [using
Fig. 3(b)], the nodes in the far right cluster are directly connected
to a supply node, whereas the far left cluster shows those nodes
where the flow from the supply node has passed through three or
more links. Fig. 4 shows this diagrammatically, where the supply
node is indicated in red and three demand nodes in black. It can be
seen that the demand node that is directly connected to the supply
node is transferring flow through to the other two connected
demand nodes and has a value of flow that is twice the value of

1 1 !
, 10 o 5 1
’ 5‘ 4¢ 1.
/7 \
, !

Fig. 4. (Color) Sample section of a network indicating a supply node
(red) and three demand nodes (black); top number (black): flow
through node; bottom number (red): amount of service provision re-
quired by that node (also equal to its degree); dotted lines: connections
to other nodes in network (not included for simplicity); flows shown
assume that other nodes in network do not require a proportion of the
flow (this is assumed in this example for simplicity only and is not an
assumption of the flow model itself)
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its demand [this node would form part of the far right cluster
in Fig. 3(b)]. The central demand node requires its own value of
demand and is also transferring flow to the remaining demand node
(on the far right) but has a significantly lower flow than the demand
node directly connected to the supply node [and would form part of
the central cluster in Fig. 3(b)]. The final demand node (far right)
only requires its own value of demand and does not transfer this to
other demand nodes, so its value of flow is equal to its degree [and
would form part of the far left cluster in Fig. 3(b)].

Comparing the flow at a node and the closeness of that node (for
the same generated networks used in Fig. 3) shows results similar to
those in Fig. 3. The R? values for the scale-free networks [Fig. 5(a)]
are around 0.8, indicating that the nodes that are central to the
network also have a high flow through them. The small-world
networks [Fig. 5(b)] and random networks [Fig. 5(c)] show little or
no correlation between the two measures (with R? values between
0.0 and 0.2) but, similarly to Fig. 3, show the same clustering of
results, explained by the proximity of supply nodes to demand
nodes (Fig. 4).

Considering the final centrality measure, degree centrality, the
R? value for scale-free networks is approximately 0.7-0.8, indicat-
ing that nodes with a high degree also have a high value of flow
through them [Fig. 6(a)]. This can be explained by considering one
of the assumptions that was made in the creation of the networks,
namely, that the demand (of service) required by a node is propor-
tional to the degree of that node. Considering this assumption it
could be argued that higher flow is expected at nodes with a high
degree than at nodes with a low degree, and Fig. 6(a) shows this
to be the case. However, it is interesting to note in the case of the
small-world [Fig. 6(b)] and random [Fig. 6(c)] networks that the
demand nodes with a high degree are not necessarily the nodes with
high flow through them. This can be explained by considering the
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proximity of the demand nodes to the supply nodes and also in the
algorithms used to generate the networks. The main difference be-
tween the generation algorithms for scale-free networks, and small-
world and random networks is the method used to assign links to
connect pairs of nodes. The algorithm for generating scale-free net-
works includes a “rich-get-richer” component, meaning that nodes
with a high degree “attract” the links from new nodes (Barabasi
and Albert 1999); this component is not included in the algorithms
for small-world and random networks (where the new links are
attached to nodes based on a user-defined probability and not a
measure of degree) (Erdos and Renyi 1960; Watts and Strogatz
1998). It is also worth noting that the high-degree nodes in scale-
free networks tend to be attached to other high-degree nodes (as a
result of the algorithm). Because the supply nodes are assigned to
the network based on degree (the supply nodes being the top 1%
of the highest degree nodes), these nodes tend to be linked to other
high-degree nodes, resulting in a situation where those nodes
that transfer the service to other nodes in the network are nodes
with a high degree, suggesting the reason behind the correlation
in Fig. 6(a) and the lack of correlation in Figs. 6(b and c).

Development of a New Technique to Identify
Important Nodes in Networks

It is now demonstrated that centrality measures can be used to
better establish which nodes are important to the functioning of
a network (i.e., nodes that, when removed from the network,
have a disproportionate effect on the remaining network). Because
the simplified model was used to model flow-based problems in
general rather than specific infrastructure networks, it may be ar-
gued that the simplification renders the analysis invalid; therefore,
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Fig. 5. (Color) Correlation between closeness centrality and flow at corresponding node for (a) scale-free; (b) small-world; (c) random networks with

1,000 nodes and approximately 5,000 links
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Fig. 6. (Color) Correlation between degree centrality and flow at corresponding node for (a) scale-free; (b) small-world; (c) random networks with

1,000 nodes and approximately 5,000 links

the focus will now be on a single type of infrastructure system,
namely, a water distribution system, and the flows will be analyzed
using a hydraulic model [EPANET (U.S. Environmental Protection
Agency 2008)] in a sample network consisting of 15 nodes and 23
links [Fig. 7(a)]. It was decided to analyze a water distribution sys-
tem, but another type of infrastructure system (an electrical distri-
bution network, for example) could just as well have been chosen.

Because weighted networks are not considered in this paper,
all links (pipes) are set to have the same value for each parameter
(e.g., length, diameter, roughness coefficient). Again, it is assumed
that the supply nodes have sufficient capacity to supply any service
required and the demand nodes are assigned a value of demand
based upon their initial degree (this demand does not change
throughout the analysis; for example, if a connected node is re-
moved, its degree will decrease, but the demand is kept constant).

The proximity of a demand node to the supply node will have
a large effect on the flows in this node (previously explained).
Depending on the network architecture, this could lead to a dispro-
portionately large influence on the overall behavior of the network.
To negate this effect, the concept of a “roving” supply node is
introduced. It is implemented by conducting 15 series of tests on
the sample network. In each test series, there is only one supply
node and its location is fixed (e.g., at Node 1). The flows in the
network are calculated, and then a demand node is removed and the
change in flows in the network (this is one simulation) is calculated.
This node is then replaced and another demand node is removed,
and again the change in flow is calculated. This process is repeated
until all demand nodes have been removed (resulting in 14 simu-
lations for this test series). At the end of a test series, the position
of this supply node is moved and the process is repeated. Again the
process is repeated until all possible combinations have been tested
and, therefore, all influences that the supply node can have on this
particular network have been considered.

To quantify the changes in flows in the network, when removing
demand nodes, the square root of the sum of the squares (SRSS)
for the change in flow through each node is calculated. For each of
the test series this value is correlated with different measures to
assess the predictive skill of these in identifying the important
nodes in the network.

Three measures and two combinations of these measures are
used in this analysis to show that a combination of physically based
and graph theory metrics increases one’s predictive skill in identi-
fying the important nodes in a network. First, the original flow
through the node (the calculated flow through the node before re-
moving any nodes) is used; this is a physically based metric that
can be considered an indicator of the importance of a node in the
network (i.e., nodes with a high flow through them are more likely
to have a large impact on the network when removed). Therefore,
this case is used as a benchmark for testing the predictive skill
of graph theory metrics in choosing important nodes. Second, the
degree of the node is used because it could be argued that the most
connected node is the most important in the network. The third
measure is betweenness centrality; because flow will choose the
shortest path between areas of supply and demand, it could be
argued that the measure, which takes into account the number of
shortest APLs between pairs of other nodes, indicates the important
nodes in the network. These measures are also combined to show
that an improvement takes place in predictive capabilities in iden-
tifying important nodes. The first of these combined measures uses
original flow and betweenness centrality; the original flow takes
into account the position of the supply node (i.e., the connected
nodes will have a higher value of flow through them, Fig. 4), and
betweenness centrality considers the path of the flow through the
network. To negate the effect of node degree on this relationship,
the second combined measure divides this value by degree (i.e., it is
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Fig. 7. (Color) (a) Sample network with 15 nodes (indicating node numbers); (b) comparison of R? value of measures for each position of supply
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15 as supply node; (d) one combined measure and change in flow (calculated using SRSS method) with Node 15 as supply node; red line: linear line
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the product of the original flow and betweenness centrality, divided
by the node degree).

For each simulation series the R? value is calculated for the
correlation between the change in flow when a node is removed
and each metric (i.e., it is the goodness of fit for the 14 simulations
in each simulation series), shown in Fig. 7(b).

From the three individually applied measures it can be seen that
the original flow (the baseline metric) is best at identifying vulner-
able nodes (i.e., it is most strongly correlated with change in flow),
followed by betweenness centrality and, finally, degree. There is a
reasonable amount of scatter in the R? values, and so original flow
is not universally the best indicator of vulnerable nodes; however,
it has the least scatter associated with it, and so the predictive skill
of this metric can be said to be less affected by the position of the
supply node.

Considering the two combined measures, it can be seen that a
measure that includes all three individual measures is superior in
predicting the important nodes in the network, for the majority of
simulations [Fig. 7(b)]. The reason for this is that flow-based
metrics indicate the important components in a network for a given
supply—demand scenario, while graph theory metrics indicate the
importance of components for a given network architecture. When
a node is removed, the flows are redistributed, and so the informa-
tion provided by the flow metrics becomes less reliable. Graph
theory metrics, on the other hand, provide information about the
network in general and so are a better measure of the potential for
node removal to have an effect.

Considering Fig. 7, there are two locations of supply node that
result in the superiority of the original flow (baseline metric)

(i.e., Nodes 12 and 15). In the case of the supply node located
at Node 15, the removal of Node 2 has a disproportionate effect
on the remaining network (creating an SRSS value of approxi-
mately 450%). This effect is not reflected in the modified measures
used but is captured by the original flow measure because in this
scenario the particular choice of supply and demand nodes over-
whelms any effect that the network architecture has. Fig. 7(c)
shows the correlation between the change in flow and the origi-
nal flow when the supply node is Node 15. This figure shows a
strong correlation between the two measures; however, plotting the
change in flow against the second modified measure gives a sig-
nificantly reduced correlation, due to the influence that the removal
of Node 2 has on the network [Fig. 7(d)]. Because Node 2 was one
of the two nodes connected to Node 15, it had a large through flow
(to enable supply of the other nodes in the network), resulting in a
high value of original flow, but not the combined measure (because
Node 2 has a small degree and a low value of betweenness cen-
trality). As a result, the new metrics significantly underestimate
the importance of this node for the network. This illustrates that,
although the proposed metrics do result in a superior ability to iden-
tify important nodes in a network, they are not infallible.

Conclusions

A reduced complexity flow model was presented and used to
simulate the flow of services in three different classes of network
(i.e., random, small-world, and scale-free). Because many infrastruc-
ture networks belong to the scale-free class (Da Costa et al. 2011),
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it is argued that the results are applicable to infrastructure net-
works. The resulting flows were then used to test whether graph
theory metrics could be used to inform one of the behaviors of
infrastructure systems. The results of the simulations show that
in all three classes of network there is a correlation between the
average flow through the nodes of the network and the average path
length of the network, indicating that at least parts of graph theory
are applicable to the analysis of infrastructure networks. It was also
shown that scale-free networks show a strong correlation between
the three centrality measures considered in this paper and the
flow through the corresponding node. In contrast, both small-world
and random networks showed little or no correlation between the
centrality measures and flows through the nodes. To demonstrate
the utility of using graph theory metrics in real flow networks, a
hydraulic model (EPANET) was used to analyze how flows are
redistributed when nodes are removed from a sample 15-node net-
work (i.e., nodes are ranked in order of the effect they have when
removed from the network and compared to various measures).
In these simulations, it was shown that a combination of both physi-
cally based and graph theory metrics provide greater predictive
skill in this task than physically based measures alone. The reason
for this is that flow-based metrics indicate the important compo-
nents in a network for a given supply—demand scenario, whereas
graph theory metrics indicate the importance of components for a
given network architecture. A reduced complexity model was used
in an attempt to consider all types of flow problems rather than a
specific one (such as a hydraulic network); however, the applicabil-
ity of the new metrics to these other real infrastructure networks
still needs to be proven.
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Currently, there is a great deal of interest in assessing the resilience of infrastructure systems. Much of this interest stems

from the realisation that these systems are not only critical to civil defence but also, given the correct set of circumstances,

can fail catastrophically. Three case studies are presented that show how network theory, which has been successfully

applied to other fields, can also be used to help understand potential vulnerabilities in infrastructure systems. Through

these case studies it is shown that traditional network theory can be extended to analyse infrastructures that are large,

spatially distributed systems, or that carry flows of resources or are interconnected with other infrastructure systems.

These methods demonstrate how this approach can help infrastructure designers, owners and operators to make rapid

assessments of vulnerabilities in their systems and to identify components that are more important to the functioning of

the these networks. Furthermore, this approach provides a basis for identifying and prioritising appropriate measures to

improve the reliability of infrastructure at the systems scale.

1. Introduction

Infrastructure systems, such as water, transport, communica-
tion and energy networks, are crucial to the functioning of a
modern society (Murray and Grubesic, 2007). The reliability
and integrity of these physical assets and the services they
provide is vital for ensuring national security, public health and
productivity (HM Treasury and Infrastructure UK, 2011). As
society becomes more developed, they not only place greater
reliance on these systems but also become increasingly
complex, so they have the potential to create larger impacts
on both the environment that they are coupled to and the
socioeconomic changes that they (in part) enable. This
increased complexity and reliance is making these networked
infrastructure systems harder to manage (Royal Academy of
Engineering, 2011) as disruptive events can be propagated
between networks and thus spread their impact far beyond the
immediate footprint of a disturbance. For instance, the 2007
UK floods led to the inundation of energy and water facilities
in the flood plain. This subsequently led to a regional loss of
these services as well as the loss of electricity-dependent
information communication technology (ICT) networks and
reduced emergency response capacity as a result of transport
network disruption (Pitt, 2008). On 28 September 2003 in Italy,
a blackout that affected much of the country (Rosato et al.,
2008) was magnified by bi-directional interactions between
ICT and energy systems because the ICT systems required an

electricity supply, while power stations were dependent on the
communication systems for their operation (Buldyrev er al.,
2010).

Such events, that have manifested themselves over large spatial
areas and across infrastructure sectors, have highlighted the
importance of developing earth system engineering approaches
to improve the management and analysis of physical infra-
structure systems. Traditional approaches to engineering
design do not capture the necessary system scale behaviour,
requiring the development of new broad scale analyses that can
capture interactions between physical infrastructures and the
natural and social systems to which they are intrinsically
coupled. Network theory provides a rigorous mathematical
basis for the analysis of connected elements and enables aspects
of the aggregate performance of networked systems to be
rapidly calculated. It therefore has great potential as an earth
systems engineering tool.

Network models are increasingly being employed to help us
understand social (Amaral et al, 2000; Arenas et al 2003;
Newman et al, 2002), neural (Sporns, 2002; Stam and
Reijneveld, 2007), biological (Rual et al., 2005) and computer
science networks (Valverde and Solé, 2003). More recent work
has applied network theory to analyse infrastructure systems
(Holmgren, 2006; Lhomme et al., 2013; Wilkinson et al., 2012)
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and demonstrated their potential to support broad scale
infrastructure network design and management.

After a brief introduction to network theory, this paper presents
the results of three applications of network analysis to
demonstrate using the flexibility and scalability of the method
to understand a wide range of infrastructure problems. The first
case study subjects a spatial network to different hazards, aiming
to assess the resilience of the network to each hazard. The second
case study shows the role of supply and pipe (network edge)
resistances in mediating infrastructure performance. Finally, the
authors demonstrate how these approaches can be extended to
consider the implications of interdependencies between networks
before discussing the potential of network modelling for earth
systems engineering and for supporting the design and manage-
ment of infrastructure systems.

2. Network analysis and graph theory
systems for infrastructure
Network theory is an area of applied mathematics and part of
graph theory that concerns itself with the representation of
relations between discrete objects. Before describing how to
build a network model, it is useful to define some basic
terminology relevant to all the case studies. A network is a set
of items, referred to as nodes, which are connected by links.
There may be several types of node or link in a network with
differing properties. The degree of a node is the number of
connections it has with other nodes and the degree distribution
of a network is the probability distribution of these degrees
over the whole network (see Figures 1-3).

2.1 Infrastructure as a network

There has been a great deal of recent work using network theory
to analyse naturally occurring networks, including infrastruc-
ture systems. Most of this research has focused on defining the
degree distribution of the network by studying its nodal
connectivity and using this information to identify its network
class. In network theory there are four main classes of network,
each of which describes a different pattern of nodal connectivity

P(k)

(a) (b)

Figure 1. (a) A sample random network and (b) the shape of its
degree distribution

P(k)

k
(a) (b)

Figure 2. (a) A sample scale-free network and (b) its degree
distribution (plotted on a log—log axes)

and has distinctive degree distributions, which are introduced
below. That many infrastructure networks fit into only a small
number of network classes may be surprising, as an airline
network appears to be significantly different from an electrical
power grid, but in fact they share similar characteristics.

The first documented network class was the random graph
model (Erdos and Renyi, 1960) (Figure 1). Although this type
of network has been shown to be a poor representation of real-
world network architectures (Newman, 2003), random net-
works are widely studied and, in part because nodes have a
similar degree that follows a Poisson distribution (Figure 1(b)),
are often used for comparison with more structured networks
(Batagelj and Brandes, 2005; Lewis, 2009) (Figure 1).

To model real-world systems more accurately, Watts and
Strogatz (1998) modified the random graph model using the
concept of six degrees of freedom (Milgram, 1967) to form

0-1
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o
2
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0-0001 +—+————+—+—"+—7+—r+r 7T
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Figure 3. Degree distribution for the North American power grid: a
real-world example of an exponential network plotted on a log-y
axis (using data from Deng et al. 2007)
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small-world networks. The main characteristic of small-world
networks is that most nodal pairs are not directly connected,
but can be reached by way of traversing very few links. The
degree distribution is very similar to that of a random network
(Figure 1(b)) (Barthelemy, 2011). Small-world networks have
been shown to replicate a range of real-world networks,
including subway systems (Latora and Marchiori, 2002).

Many real-world networks (including the world wide web
(Barabasi and Albert, 1999; Barabasi et al., 2000)) tend to form
a power law degree distribution, more commonly known as a
scale-free network. These are characterised by a small number
of highly connected nodes (nodes with a high degree) and a
large number of poorly connected nodes (nodes with a small
degree), as shown in Figure 2.

Other real-world networks such as power grids have been
found to have an exponential degree distribution and are
termed exponential networks (Albert ez al., 2004; Amaral et al.
2000; Bompard et al., 2011; Liu and Tang, 2005). The degree
distribution for an exponential network is shown in Figure 3.

Some real-world networks do not neatly fit one network class in
particular, as they include elements from several classes. The most
well documented of these are air traffic networks (Figure 4(a)),
which include elements of both scale-free and exponential
network architectures.
classed as a truncated scale-free distribution (or a scale-free
distribution with an exponential tail) (Wilkinson et al., 2012).

Their network architecture has been

The degree distribution of a network can also provide insight into
network resilience. For example, the architecture of scale-free
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Figure 4. Graphs showing (a) the degree distribution and (b) the
spatial degree distribution for the North American air traffic network

networks is such that they are quite resilient to random hazards
but vulnerable to targeted attack. This is because a random
hazard has a small chance of removing one of these few highly
connected nodes in the network, while a targeted attack will often
remove these nodes in seeking to cause maximum disruption to
the network (Albert et al., 2000).

2.2 Network model development

Transforming a real-world infrastructure network into a
network model and assessing its hazard tolerance can be
broken down into four steps.

Step 1 is to define basic network structure. This involves
abstracting the key features of the real-world infrastructure
system as a network model. According to the issue under
investigation or the availability of data, two approaches are
available. In case study 1 it is possible to apply (a), but for case
studies 2 and 3, where more general insights are sought, only
option (b) is applicable.

(a) When the analysis of the existing network is the only
objective, this is conceptually relatively straightforward:
components of an infrastructure system responsible for
consuming, generating or regulating a resource or service
are represented as nodes. Network links connect these
nodes if there is a mechanism for them to exchange their
resource or service. This might be a logical supply (e.g. a
communication signal) or a flow of resource (e.g. power,
water or vehicles).

(b) Frequently, it is of interest to analyse systems that are
representative of real-world networks in order to test the
resilience of alternative network structures and adapta-
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tions. If required, network generation algorithms
(described in detail by Barabasi and Albert, 1999; Erdos
and Renyi, 1960; Liu and Tang 2005; and Watts and
Strogatz, 1998) can be used to produce synthetic but
realistic networks according to rules that define properties
such as spatial distribution and connectivity.

Step 2 is to define component behaviour. Different infra-
structure systems, and indeed their individual components,
exhibit a range of engineering behaviour and subsequently
mediate the performance of the network. For example, pipes
and wires typically have varying capacities. Likewise, indivi-
dual structures have different supply capabilities, demands and
likelihoods of failure under extreme conditions. Network
models are flexible and can be parameterised to represent only
limited physical processes (e.g. a component is on or off), and
are therefore computationally very efficient, but they can also
incorporate detailed engineering behaviour. For example, in
case study 2 flow is introduced into a network model. This step
is crucial for the design of the network analysis as it is
important to provide enough detail to capture important
system behaviour for the issue under investigation, while
avoiding unnecessary complexity.

Step 3 is to subject the model to a series of disruptions. To
understand system performance it is crucial to analyse a series
of attack strategies that represent different possible hazards or
events. These could include random failures (e.g. correspond-
ing to a lack of maintenance), a contagion (e.g. representing a
computer virus in ICT systems), a targeted attack at an
important location (e.g. representing a terrorist attack) or a
spatial hazard (e.g. a flood or wind storm).

Step 4 is to analyse subsequent performance. This final stage
is to quantify the impact of each disruption on the infra-
structure network. A prerequisite to this is the selection of
appropriate metrics to quantify the change in performance of
the network. These might measure subsequent system size
(e.g. the number of remaining components), output (e.g. a
drop in total power supplied) or impact (e.g. the number of
people without service).

In this paper the three case studies are used to demonstrate
how this four-step process can be applied to analyse a range of
infrastructure performance issues. For clarity, one issue is
isolated in each case study. The first case study considers the
effects of the spatial properties of the infrastructure network,
the second incorporates resource flows through a network and
the third considers interdependency between two infrastructure
networks. In reality many infrastructures might include all
of these, and other, factors. However, by presenting three
different studies it is possible to explore the significance of
infrastructure performance to each factor separately and also
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demonstrate the flexibility of network modelling for the large-
scale analysis of infrastructure systems.

3. Case study 1: using network topology to
identify vulnerability in binary networks

In case study 1 the authors demonstrate how a network model
of the North American air traffic network is created and
consider how the spatial structure of the network affects its
hazard tolerance. This network is subjected to three different
types of hazard and the change in performance/connectivity of
the network is quantified using graph theory metrics.

The North American air traffic network consists of 781 airports
and 3751 air routes (the data were obtained from Openflights
(2010)). To transform this air traffic network into a network
model the airports are modelled using nodes and the connecting
air routes are modelled using links.Using the network model, the
degree of each node can be easily calculated, as it is equal to the
number of links (air routes) attached to it and from this the
degree distribution can be obtained (Figure 4(a)). From
Figure 4 it can be seen that the network forms a truncated
scale-free distribution, similar to other air traffic networks and,
as discussed previously, should be resilient to random hazard
but vulnerable to targeted attack.

The spatial degree distribution of these nodes (airports) has
also been plotted (Figure 4(b)). This distribution was obtained
by first calculating the geographical centre of the airports
(weighted by their degree) and then plotting the cumulative
degree of airports within a given radius. For the North
American air traffic network the geographical centre of the
network is located in Missouri, USA (approximately 190 km
west of St Louis). The spatial distribution of airports in the
North American air traffic network can be seen visually in
Figure 5. This figure also indicates the degree of the node (the
larger the circle the higher the degree) and the geographical
centre of the network. From Figure 5 it can be seen that the
high degree airports (or hub airports) are fairly well dispersed
throughout the North American states but are less evident in
northern Canada.

The resilience of this network is assessed by exposing it to three
different types of hazard to assess its hazard tolerance under a
range of conditions, as listed below.

Random node failure — nodes are removed randomly from
the network.

Degree attack — nodes are removed from the network in the
order of the highest to lowest degree. Previous studies have
used this attack strategy to simulate a targeted attack, that
is, the worst-case scenario.

Spatial hazard — this hazard is based entirely upon the spatial
layout of the network (unlike the other two attack strategies,
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Figure 5. The location of real-world North American airports,
where the size of the node indicates its degree (i.e. the number of
air routes attached to it) (the larger the node the higher the
degree)

which are based upon topological measures). For both
networks the hazard starts in the geographical centre of the
North American air traffic network (Figure 4(b) and

Figure 5) and then grows outwards, removing nodes in order
of distance from the geographical centre.

Following failure, nodes are removed from the network, which
in turn will remove their connecting links (as it is not possible to
operate an air route to a closed airport). To assess the hazard
tolerance of the North American air traffic network to these
three hazard types the percentage of links removed have been
plotted against the percentage of nodes removed (Figure 6(a)).
For the spatial hazard the percentage of links removed have also
been plotted against the radius of the hazard, expressed as the
percentage of distance from the geographical centre of the North
American air traffic network to the edge of the network
(Figure 6(b)). Two network theory measures have also been
applied to the degraded networks to observe how the con-
nectivity changes when different hazards are applied. The
number of clusters is used to quantify how many unconnected
parts (or clusters) that the network has broken into and the
maximum cluster size (MCS) is used to indicate the size of the
largest cluster in the network (Figures 6(c) and 6(d)).

From these results, it is clear that the degree attack strategy
has the most devastating effect to the North American air
traffic network, both in terms of the higher percentage of

links removed for the same percentage of nodes removed
(Figure 6(a)) and a significantly lower MCS (Figure 6(c)). This
seems intuitive, given the degree distribution of the network
and considering the presence of a few highly connected nodes
in the network.

The results for the random node failure and the spatial hazard
to the network are broadly similar. This is due to the spatial
dispersion of high degree nodes in the North American air
traffic network, which can be seen in Figure 5. Therefore, to
remove one high degree node a large proportion of low degree
nodes must also be removed, which produces similar cluster
sizes to a random attack. This spatial dispersion arises from the
existence of a number of separate, densely populated areas
across the USA (for example, the two large population areas
on the east and west coasts). Given the spread of high degree
airports, a hazard that is seeded from the sparsely populated
centre of the USA is unlikely to be a worst-case location.
Shifting the spatial hazard over a location with more high
degree airports (e.g. along the east coast) the network’s
performance would be quite different, as has been shown for
the analysis of the European air traffic network by Wilkinson
et al. (2012).

4. Case study 2: using network topology to
identify vulnerability in a flow-based
network

The first case study does not consider passenger, freight or

aircraft movements. Instead, the effective proportion of the

network following a disruption was considered. Given the
availability of people, freight and aircraft movements, this
analysis could be extended to incorporate these issues using the
approach described in case study 2. Here, using a synthetic
network of n = 15 nodes and 23 links for illustrative purposes,
flow is incorporated into the network analysis. In the previous
study degree was a suitable proxy for identifying important
nodes but when flow is also considered this ranking changes.

Flow around this network model is simulated using the
reduced complexity flow model of Dunn and Wilkinson
(2012). This model has been shown to represent the flows in
infrastructure networks in general, rather than focusing on the
flows in a specific type of infrastructure system. Therefore, the
present sample network could represent such networks as a
power grid or a water distribution system. To generate flow
around the network, one node is designated as the supply node
(in the case of a water distribution system this would be the
reservoir) and the remaining nodes as demand nodes (areas of
housing requiring a supply of water, for example). The value of
demand is assigned to the demand nodes in proportion to their
degree. Given suitable water infrastructure data this demand
would be the actual amount of service required by the node. It
is assumed that the supply node has enough capacity to meet
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the demand of the other nodes in the network (e.g. for a water
distribution network, it is assumed that the reservoir contains
enough water to supply the required demands).

In their study Dunn and Wilkinson (2012) were not consider-
ing weighted networks, and therefore set the weight of each
link to be equal (also equalling the resistances of each link in
the reduced complexity flow model). The weight of a link can
be used to represent different pipe lengths and/or resistances in
a water distribution network, for example. Here the present
authors consider the impact of flow on the ranking of
vulnerable components in the network and therefore alter the
weight of each link using two methods. The first method
assigns weight to the links based on their proximity to the
supply node (Figure 7(a)). A link that is connected to the
supply node will have a resistance of 1, links that are connected
to these links have a resistance of 2 and so on. In the second

286

method, values of weight/resistance are assigned to the links
randomly (Figure 7(b)).

The authors also use the concept of a roving supply node used
by Dunn and Wilkinson (2012). In the absence of a real-world
network this method is used to negate the effect that the
proximity of the supply node has to the demand nodes (i.e.
demand nodes directly connected to the supply node will not
only have their demand flowing through them but will also
transfer flow to those not directly connected to the supply
node). The vulnerability of each node is determined by
analysing the n — 1 possible demand node failures for each of
the n (n = 15 here) possible supply node locations (210
simulations in total). The location of the supply node, v, is
fixed (e.g. at node i = 1, as shown in Figure 7) and the flows
across the network as a function of this supply node location,
Q(vy,), are evaluated. A single demand node, vy, is removed and
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Figure 7. The synthetic network, with the links weighted (a) with
distance and (b) randomly

the flows as a function of this diminished network, Q(vs,vq),
recalculated. Flows are subsequently calculated for each of the
n possible supply node locations and 7 — 1 single demand node
failures to understand the influence that the supply node can
have. The change in flow over the entire network, AQ, for the
ith supply node is calculated as the square root of the sum of
the squares of the change in flow across the remaining demand
nodes in the network.

1 AQ(w)= \/Z]ll,,»#l (0)(n) — 0, (va))”

To test the predictive skill of the model, AQ(vy;) is correlated
against the original flow, Q; (the flow through the demand
node prior to its removal), node degree (k;, weighted
betweenness centrality, C(v;), and a combined measure as
alternative metrics of network performance. The R from
these correlations is plotted in Figure 8. The betweenness
centrality of a node is equal to the number of shortest paths
between all other nodes that pass through the node
(Freeman, 1979; Lewis, 2009). As flow preferentially chooses
the shortest path between areas of supply and demand it
could be argued that the measure that accounts for the
shortest distance between pairs of other nodes indicates the
important nodes in the network. The C(v;) is calculated as
follows (Brandes, 2001)

¢(va, vo, vj)
2. C(vf) = Zl’;#va#"b#

¢(Va, vp)

where ¢(v,, vp) is the number of shortest paths between a pair
of nodes v, and v, and ¢(v,, v, v)) is the number of shortest
paths from v, to vy, that pass v, The final measure used is a
combined measure, CM;, developed by Dunn and Wilkinson

(2012), and again this measure is modified to account for the
weight/resistance of each link.

_9xC(v)

3. M, :
J

When the network is unweighted, Dunn and Wilkinson (2012)
showed that this combination of Q; (a physically based
measure) and betweenness centrality (a measure derived from
graph theory) improved the predictive skill at identifying
vulnerable nodes (Figure 8).

First, the skill of each method compared to the others is shown
for each position of the supply node (but the results are ranked
in descending order for the CM,; to enable an easier comparison)
(Figures 8(a) and 8(c)). Each measure is also ranked individually
to identify the performance of each measure for ranking the
most vulnerable nodes (Figures 8(b) and 8(d)).

For the networks where the link weights/resistances were added
with distance from the supply node, the CM; appears to most
consistently identify the vulnerable nodes (Figure 8(a)). The
measures of Q; and C(v,) achieve better correlations for a few
positions of the supply node, but also noticeably weaker in most
other correlations. Ranking all the measures (Figure 8(b)) shows
that the degree of a node is not a good indication of the
vulnerability of that node, defined as the change in flow across
the network after its removal.

The combined measure appears to most effective, although not
consistent, at identifying the most important nodes for overall
network performance in both situations. Ranking these results,
for all measures, shows that C(v)) is not a good indicator of
node vulnerability, which therefore reduces the performance of
the combined measure.
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according to CM;, while for (b, d) each measure is ranked
independently

5. Case study 3: using network topology to
understand the impact of
interdependency on the performance of
binary networks

The previous two case studies assumed the networked

infrastructure was isolated from other infrastructure systems.

In many instances this is an appropriate simplifying assump-

tion to make. However, more recently approaches to networks

of networks analysis (i.e. modelling the dependence of one

system on another) have started to emerge (Gao et al., 2011;

Pederson et al., 2006). For example, the successful operation

on an electrical distribution system relies on a supply of water

for cooling and ICT systems for control and management.

The final case study seeks to understand the impact that

interdependency can have on the performance of intercon-

nected networks. As with the other two studies, the focus is on
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a single issue of interest, interdependency, and so space or
flows are not considered.

Data on infrastructure interdependencies are not typically
available but, as described by Hall ez al. (2013), this situation is
improving. With this in mind the present authors have developed
a simplified network model to explore cascading failure in
interdependent networks (Figure 9). First a number of isolated
networks are established, each representing an infrastructure
system. In this example two networks with random topology
have been produced using the approach outlined in step 1(b).
Interdependencies between networks are represented by a number
of links, each connecting a node in one network with a node in
another. Figure 9(a) shows an interdependent system that couples
two networks, A and B. The set of nodes in network A are
labelled (), u,, ...), while the set of nodes in network B are
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Figure 9. An interdependent system: (a) in its initial state, subject
to failure of node uy; (b) after the first iteration of cascading failure;
(c) the stabilised system

(b) (c)

labelled (vy, v, ...). An intra-network link is represented as a solid
line. An inter-network dependency is represented as a dashed line.

This model allows inter-network dependencies to be configured
along a few dimensions so as to provide the capacity to model
various network coupling modes. First, inter-network depen-
dencies can be generated according to different criteria,
including random connections, or co-related connections
according to spatial proximity or node degree. Second, the
dependencies between two networks can be customised with
three parameters, < F, K, D >. F specifies the extent of inter-
network dependencies, that is, the portion of nodes that a
network has and depends on another network. K specifies the
redundancy of dependencies, that is, the number of supporting
nodes that a node has from another network. D specifies the
directionality of dependencies. An interdependent link is bi-
directional if its inter-network dependencies are symmetric, for
example, when a node u in network A supports a node v in
network B, v also supports . A link is uni-directional when these
dependencies are not mutual. That is, when a network A node,
uy, supports a network B node, v, and v; in turn may support a
different network A, node, u,. For example, the system in
Figure 9(a) is a bi-directional system, and a link between node u,
and v, means that they mutually depend on each other.

To function properly, it is assumed that a dependent node
requires the availability of at least one of its supporting nodes
from each of its supporting networks. Failures happen in a
system in the following three cases. First, a node fails if it is
attacked directly. Second, a node fails if it is a dependent node
and it loses all of its supporting nodes from at least one of the
networks that it is supported by. Finally, in line with
percolation theory approaches (Albert and Barabasi, 2002), a
node fails if it is disconnected from the largest component of
the network to which it belongs (Figure 9).

An attack on network A is modelled that disables some
proportion of the network nodes directly and indirectly brings
about a cascade of additional node failures in network B as a
consequence of compromised interdependencies. Such addi-
tional node failures happen recursively and may result in
system failure extending far beyond the original attack
footprint. For the system in Figure 9(a), suppose that the
node uy is attacked. When uy fails, all links connected to wuy
also fail. The failure of u4 also disconnects u; from the giant
component of A, and therefore u; fails. The failure of u4 and u,;
triggers the failure of vs (supported by u4) and v, (supported by
uy). The failure of vs disconnects v from the largest component
of network B, hence v fails. The resulting system at this stage
is shown in Figure 9(b). The failure of v¢ causes the failure of
ug. As no further failure occurs, the system reaches a stabilised
state and the remaining functioning component of the system is
shown in Figure 9(c).

To measure the performance of such an interdependent system,
the connectedness of a system is calculated in terms of the
relative size of the largest component, P, of the final stabilised
system after the cascading failure.

s p=2li
=N

where N} is the numbers of nodes from network i before
cascading failure, and N} are the number of nodes in the
largest components of network i after cascading failure. The
largest component can be an important quantity in, for
example, a communication network where it represents the
largest fraction of the network within which communication is
possible and hence is a measure of the effectiveness of the net-
work to provide its communication service. The aggregate per-
formance, IP, characterises the behaviour of an interdependent
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system when network disruptions of different magnitude are
considered, and is calculated as the integral of P with respect to
attack size, ¢.

1

5. IP= L P(q)

The larger P and IP, the more nodes remain in the largest
connected component of a system, the better the system
performs and the easier the system is to recover or repair.

The study was carried out over systems that couple two random
networks, A and B, each comprising 10 000 nodes, and with an
average degree of 4. Network disruption was initiated by
removing a randomly selected fraction ¢ of network A nodes.
Figure 10 plots relative size, P, of giant components as function
of, ¢, the size of initial disruption to network A, when
F = 1-0 and K = 2 for a bi-directional system. The results are
compared against that of a system in which networks A and B
are isolated from each other. It shows that an interdependent
system has smaller P and therefore is more vulnerable than an
isolated system. While an isolated network undergoes contin-
uous transition at the failure threshold ¢. (the point when a
system collapses or P becomes zero), an abrupt transition is
observed at ¢, for an interdependent system. That is, P at ¢, is
non-zero, and abruptly drops to zero when ¢ > ¢. (Figure 10).

These results demonstrate that the interdependent system is most
vulnerable when K = 1 and F = 1-0, that is, when both networks
are fully connected to each other and each node has only one
supporting node from the other network. The performance of the
interdependent system improves when the number of supporting

10 -

— Interdependent system: network A
- Isolated system: network A

09
08
07
06

04
03
02
01

nodes that a node has is increased (i.e. increasing K) or the
extent a network depends on another network is decreased (i.e.
decreasing F). When either K is sufficiently large or F is
sufficiently small, the performance of an interdependent system
approaches that of a system in which each of its sub-networks is
isolated from or independent of the others (Figure 11).

Figure 11 shows the performance difference, /Py; — IP,y;, of
uni-directional and bi-directional systems, where IPy; and IP,;
are aggregate performance of a bi-directional and a uni-
directional system, respectively. It can be seen that a uni-
directional system is more vulnerable than a bi-directional
system, and the bigger F or/and smaller K are, the more
remarkable is the difference of performance between a bi-
directional and a uni-directional system. The main reason for the
worse performance of a uni-directional system is that it presents
more possibilities for the existence of longer dependency chains
than a bi-directional system. These dependency chains run back
and forth between the interconnected networks. A failure of one
node compromises the robustness of all downstream nodes in the
dependency chain, potentially triggering their failure and a
possible cascade (described by Fu et al., 2012).

6. Conclusions

Modern infrastructure systems are complex, interconnected
networks. In this paper the authors have demonstrated the
applicability of network theory on three different case studies.
These examples have shown that the resilience of an infra-
structure system is sensitive to a number of factors, including the

spatial distribution of infrastructure nodes (such as airports

and power stations)

— Interdependent system: network B
---- Isolated system: network B

Figure 10. Comparison of the performance of interdependent
systems against isolated systems
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Figure 11. Comparison of the performance of bi-directional and
uni-directional systems for a range of interdependent
configurations

B type and magnitude of disruptive event to which the
infrastructure is exposed (whether it is random, targeted
or a spatially coherent hazard)

= degree of connectivity in an infrastructure network

B number of connections between infrastructure networks
and their directionality

I capacity, and other properties, of the links that connect nodes.

In the first case study network graph theory was used to assess
the vulnerability of the North American air traffic network to
spatial and topological hazards and it was demonstrated that
the degree attack strategy had the most devastating effect. For
spatial hazards this network was found to have a similar spatial
vulnerability to a random hazard. This is because the high
degree hubs in the network are geographically distributed
relatively evenly and therefore a spatial hazard must become
relatively large before it has a significant impact on the
network. In the second case study various network graph
theory measures, flow based metrics and combinations of these
were tested to better identify vulnerable nodes in a weighted
network. In this example it was demonstrated that at times
flow-based measures were superior and at other times graph
theory measures were superior, but in general a combination of
the two had the best predictive capabilities. Finally, a system of
interdependent networks was analysed and it was demon-
strated that an interdependent system is most vulnerable when
both networks are fully connected to each other in a uni-
directional manner and each node has only one supporting
node from the other network. This case study highlighted the
need to identify and characterise interdependencies and, where
appropriate, add in redundancy or other mitigation measures.

While the authors recognise that the characterisation of the
reliability of individual components in a system is important to
understanding its behaviour, an earth systems engineering

approach that considers system-level interactions is essential for
understanding impacts on the wider environment. A priority for
future work should be to identify, for different infrastructure
design problems, the right balance between the computational
efficiency of network (or other broad scale) analyses and the full
representation of the physical processes. The case studies presented
here show the potential for network theory to address a wide range
of challenges such as broad scale risk assessment, national
infrastructure planning and the development of adaptation plans,
as well as understanding the potential impact of cascading impacts
from random failure, spatial hazards such as floods, malicious
attack or fragilities due to interdependencies. The authors therefore
conclude that systems-scale analysis of infrastructure networks
must be an important stage in infrastructure design, planning and
management in the context of resilience and sustainability.
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