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Abstract 

Background: Delayed post-stroke dementia (PSD) affects up to 50% of all stroke 

survivors, developing months or years after the initial stroke. However, the underlying 

mechanisms which cause PSD are unclear. Hippocampal atrophy is associated with PSD 

and vascular dementia, and hippocampal neurons are known to be particularly 

vulnerable in stroke and cerebrovascular disease.  This work aimed to identify 

neuropathological characteristics and mechanisms contributing to cognitive decline in 

post-stroke survivors, focusing on the involvement of regional specific hippocampal 

neurons.  

Methods: Post-mortem brain tissue from the prospective CogFAST study was analyzed 

to compare pathological changes in stroke survivors who developed PSD with those 

who maintained normal cognitive function (PSND). Tissue from elderly controls and 

pathologically defined dementia groups; Alzheimer’s disease (AD), vascular dementia 

(VaD), mixed AD with VaD (MD); were also analysed for comparison with different 

disease aetiologies. Histological and immunohistochemical staining with quantitative 

image analysis and 3D morphometric analysis was carried out in paraffin-embedded 

sections, and protein immunoblotting was used in frozen hippocampal tissue. 

Key findings: Neuronal volumes in hippocampal subfields CA1-4 were reduced in PSD, 

VaD and AD subjects compared to elderly controls and PSND. Neuronal volume was 

also related to post-stroke cognitive function. There were no differences in dendritic 

length-density, hippocampal myelin loss, or autophagy markers between PSD and 

PSND. However, neuronal volumes were related to hippocampal tau pathology 

burden, reactive astrocyte density and myelin density in the alveus. Interestingly, the 

PSND subjects had greater burden of hippocampal amyloid-β than PSD. There were no 

quantitative differences in markers for astrocytes or microglia between the post-stroke 

groups.  

Conclusion: These findings suggest that neuronal volume loss is associated with post-

stroke and ageing-related dementia. There were no relationships between the 

observed neuronal changes and AD pathology in stroke survivors, suggesting an 

important role for cerebrovascular disease processes. 
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Chapter 1. Introduction 

 

1.1 Ageing, stroke and dementia 

The incidence of stroke and dementia increase exponentially with age, which has 

profound implications for the global ageing population (Burton et al., 2004; 

Pendelbury, 2009). It is predicted that one fifth of the world’s population will be over 

60 years old by 2050, and 115 million people will have dementia (Luengo-Fernandez et 

al., 2010; Prince et al., 2013). Ageing and stroke are the first and second greatest risk 

factors for dementia, and one third of people will suffer from stroke and/or dementia 

during their lifetime (Gorelick and Nyenhuis, 2013).  

In the UK, 30% of people over 80 years old have dementia, and as many again are 

affected by cognitive impairment not meeting the criteria for dementia diagnosis 

(O'Brien et al., 2003). As the number of elderly people in the UK continues to rise over 

the next 20 years, the number of people affected is predicted to increase by a further 

40%. Stroke prevalence in over 75-year-olds is also increasing; from 9% in 1994 to 13% 

in 2006 (Stroke Statistics 2009, 2009). Although improvements in healthcare and 

intervention strategies have succeeded in reducing mortality after stroke, this has 

been associated with a simultaneous increase in post-stroke dementia diagnoses, as 

more elderly people survive to become at higher risk of developing dementia 

(Ukraintseva et al., 2006).  

Dementia can have a devastating impact on patients and their families, and the 

growing prevalence of dementia also puts a significant strain on the economy and 

healthcare system(Luengo-Fernandez et al., 2010). It is therefore becoming 

increasingly critical that effective therapies and preventative strategies are developed 

to reduce the risk of dementia. With this in mind, this study aimed to further current 

understanding of the causes of dementia in elderly stroke survivors. 

1.1.1 Post-stroke dementia 

Dementia is a clinical syndrome characterised by progressive decline in memory and at 

least one other cognitive domain, severe enough to interfere with performing the 
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tasks of daily life (Americal Psychiatric Association: Diagnostic and Statistical Manual of  

Mental Disorders, Fourth Edition, 2000). Age-related dementia is commonly caused by 

neurodegenerative diseases which develop within brain cells, and cerebrovascular 

disease which causes brain injury by restricting blood supply to brain cells. The most 

common cause of dementia is Alzheimer’s disease, a neurodegenerative disease which 

accounts for around 60% of all dementia cases (Luengo-Fernandez et al., 2010). 

Vascular dementia (VaD) is caused by cerebrovascular disease (CVD) and is generally 

considered to be the second most common form of dementia accounting for at least 

30% of dementia cases (Román, 2002a). Strokes are caused by CVD, therefore post-

stroke dementia is considered a type of VaD. Recently, the term vascular cognitive 

impairment (VCI) has also been introduced to encompass all types of cognitive 

dysfunction attributed to CVD (O'Brien et al., 2003). VaD is commonly used for 

research purposes to describe a more extreme form of VCI (Grysiewicz and Gorelick, 

2012). Additionally the term VCI-no dementia can be used to describe less severe 

cognitive impairment caused by CVD (Moorhouse and Rockwood, 2008).  

 

 

Figure 1.1 Common causes of dementia in the elderly. The three most common dementias 
caused by neurodegenerative diseases are Alzheimer’s disease, Dementia with Lewy Bodies 
(DLB), and Frontotemporal dementia (FTD). Dementia caused by CVD is known as VaD, which 
encompasses numerous subtypes based on type of lesion and vessel affected (O'Brien et al., 
2003).  

 

In addition to these common causes of dementia, rarer diseases and syndromes can 

also result in dementia and dementia-like symptoms. Parkinson’s disease dementia 

(PDD) accounts for 2% of dementia cases in the UK, and is strongly associated with 
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older age, with a study finding the prevalence of dementia in Parkinson’s patients over 

80 years old to be 69% (compared to 0% in patients under 50 years)(Mayeux et al., 

1992). PDD develops secondary to the motor symptoms, and is related to Lewy body 

disease resulting in dementia that is very similar to DLB (Apaydin et al., 2002). Other 

conditions linked to dementia in the elderly include rare hereditary neurodegenerative 

diseases (e.g. Huntington’s disease) and cerebrovascular diseases (e.g. CADASIL 

[Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy], the most common hereditary stroke disorder), infection with 

HIV (human immunodeficiency virus, which can cause neurocognitive impairment and 

dementia) or prion protein (Creutzfeld-Jakob disease), multiple sclerosis and 

corticobasal degeneration. Additionally, dementia-like symptoms may have treatable 

reversible causes such as metabolic dysfunction (e.g. hypothyroidism), nutritional 

disorders (e.g. vitamin B-6 or B-12 deficiencies), dehydration, brain infections (e.g. 

meningitis or untreated syphilis), and normal pressure hydrocephalus. However, these 

rarer causes of dementia account for only 5% of the dementia cases in the UK 

('Factsheet: Rarer Causes of Dementia,' 2012), and were not investigated in this thesis.  

1.2 Causes of delayed post-stroke dementia 

Ischaemic strokes account for 90% of all strokes, and occur when an artery in the brain 

is occluded, restricting the supply of oxygen and nutrients to a region of the brain.1 The 

clinical presentation of stroke depends on the size and location of the blood vessel and 

area of the brain affected. Studies have shown that around 25% of stroke survivors 

develop dementia within the first 3 months post-stroke (Barba et al., 2000; Desmond 

et al., 2000), indicating that the stroke damaged a large area of the brain critical for 

cognitive function. It is unclear why the risk of dementia remains substantially higher 

in non-demented stroke survivors compared to stroke-free controls, as few studies 

have followed stroke survivors beyond two years post-stroke, and even fewer have 

investigated pathological mechanisms in elderly stroke survivors  (Kokmen et al., 1996; 

Allan et al., 2011).  

                                                      
1
 Haemorrhagic strokes are the second most common cause of stroke, and occur when a major artery in 

the brain is ruptured. This study focussed on the cause of dementia after ischaemic strokes. 
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Dementia which develops several months to years after a stroke is commonly 

described as delayed post-stroke dementia (PSD), and may involve both CVD and 

neurodegenerative disease (Figure 1.1). Reports of the cumulative incidence of 

delayed PSD developing more than one year post-stroke have ranged from 7.4% in 

population-based studies of first ever stroke, to 41% when pre-stroke dementia was 

included (Pendlebury and Rothwell, 2009; Allan et al., 2011). Age, multiple vascular 

lesions, the characteristics of the first stroke, and presence of several risk factors are 

strongly associated with long-term risk of dementia post-stroke (Altieri et al., 2004; 

Allan et al., 2011), however, the precise mechanisms accelerating cognitive decline are 

unclear. Greater understanding of these mechanisms is needed for the prevention and 

management of delayed PSD. 

 

 

Figure 1.1 Progression of delayed post-stroke dementia over time. TIA = transient ischaemic 
attack, NFT = neurofibrillary tangle, CAA = cerebral amyloid angiopathy. 

 

1.2.1 Cerebrovascular disease (CVD) 

Cerebrovascular disease (CVD) can cause vascular dementia through single strategic 

infarcts (post-stroke dementia), multiple infarcts (multi-infarct dementia), and the 

accumulation of multiple smaller lacunes and hypoperfusive lesions. Hypoperfusion 

and infarction damages neurons and glia as they do not receive the oxygen and trophic 

factors required for normal functioning (Zlokovic, 2011). As neurons are the 

fundamental unit of information processing, loss or damage to neurons and neuronal 
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connections results in impaired cognition. The subtype of CVD, total volume of 

cerebral infarction and functional tissue loss, and location of the lesions are considered 

to be the major determinants of dementia in CVD (Leys et al., 1999). 

Cerebrovascular lesions may be categorised as large or atherothrombolic and small-

vessel events. Large-vessel events involving the carotid arteries and circle of Willis 

restrict blood flow to larger areas of the brain resulting in a greater volume of 

functional tissue loss, and are generally associated with high mortality, morbidity and 

severe cognitive and/or physical impairment. Cognitive impairment may result from 

single strategic infarcts, where an infarct damages functionally critical areas of the 

brain. Strategic areas commonly affected include: the angular gyrus, thalamus, basal 

forebrain, bilateral involvement of the basal ganglia and thalamus, posterior cerebral 

artery territories including the ventral-medial temporal lobe, hippocampus, occipital 

structures and thalamus,  and anterior cerebral artery territories (Román, 2002b). 

Strokes which destroy greater than 50 – 100ml of tissue (Tomlinson et al., 1970), or 

result in large peri-lesional incomplete ischaemic areas involving white matter, and 

large periventricular white matter ischaemic lesions are also considered major risk 

factors for PSD (Román, 2002b).  

Changes in smaller arteries and temporary occlusions causing transient ischaemic 

attacks (TIAs) are associated with stepwise or insidious cognitive decline. Pathological 

changes to small vessels are assumed to cause stenosis and occlusions leading to 

chronic hypoperfusion and infarction of the surrounding brain tissue (Kalaria et al., 

2004). The build-up of small lesions progressively damages increasing volumes of brain 

tissue to cause insidious cognitive decline to VaD. Subcortical lacunar infarctions 

caused by small vessel disease (SVD) may also cause stroke-like clinical symptoms 

when they develop in strategic locations (Bailey et al., 2012). 

It is widely accepted that CVD causes a spectrum of changes in the brain that can be 

viewed on MRI as white matter hyperintensities (WMH) (Kalaria and Ihara, 2013).  

However, WM degeneration may also be caused by primary axonal degeneration 

occurring as a result of neuron loss or damage in the grey matter (Capizzano et al., 

2004). Imaging studies have demonstrated that WM changes tend to occur in fibres 

within the frontal lobes (Tullberg et al., 2004) and disrupt the frontal cortical-
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subcortical circuits that underlie executive functions. The frontal lobe is more 

vulnerable to WM changes than the temporal lobe (Tullberg et al., 2004), which fits 

with current understanding of the relationship between frontal lobe changes and 

impairments in attention and executive functions that are frequently observed in 

patients with VaD.  

CVD causes vessel changes through three main disease mechanisms; atherosclerosis, 

small vessel disease,  and cerebral amyloid angiopathy (Grinberg and Thal, 2010). 

Atherosclerosis is a degenerative vessel disorder caused by the accumulation of blood-

borne lipids such as cholesterol in vessel walls. Atherosclerotic plaques, which 

commonly develop in medium to large arteries, can cause cerebral thrombosis due to 

narrowing of the blood vessel lumen, or rupture and cause vessel occlusion or an 

embolism occluding a smaller artery (Grinberg and Thal, 2010). Thromboembolic 

events are generally considered to cause up to 50% of all ischaemic strokes (Ferrer et 

al., 2008), and the occlusion of internal carotid arteries and those of the circle of Willis 

are thought to explain ≤15% of VaD (Kalaria, 2012).  

Cerebral small vessel disease (SVD) describes disease processes which impair blood 

flow in small perforating cerebral arterioles, capillaries and venules. Pathological small 

vessel wall alterations in SVD include arteriosclerosis (thickening and hardening of 

vessel walls), lipohyalinosis (wall thickening and lumen narrowing), fibrinoid necrosis 

(fibrin plugs in vessel lumen and walls) and perivascular tissue changes caused by 

blood-brain barrier dysfunction (leakage of toxic substances and metabolites out of the 

vessels)(Wardlaw et al., 2003). SVD lesions such as  lacunar infarcts (<20mm diameter), 

lacunes (3 -15mm fluid-filled cavities in the basal ganglia or white matter),  

microbleeds, and white matter hyperintensities (indicative of demyelination or dilated 

perivascular spaces)  are visible using neuroimaging and post-mortem 

histopathological techniques (Wardlaw, 2008; Pantoni, 2010; Wardlaw et al., 2013).  

Cerebral amyloid angiopathy (CAA) is characterized by deposits of amyloid-β protein 

(Aβ) protein in vessel walls and is a common feature of ageing and AD (Grinberg and 

Thal, 2010). CAA is believed to be caused by disrupted clearance of Aβ through the 

perivascular space, resulting in the build-up of Aβ near the basement membrane 

(Weller et al., 2009). Capillary CAA can occlude or disrupt blood flow and result in 



7 
 

infarctions or hypoperfusion, and can damage blood vessel walls causing 

haemorrhages (Grinberg and Thal, 2010).  

The relationship between the size, type and location of cerebrovascular lesions and 

cognitive dysfunction are not well understood. Until recently, the prevalence of VaD 

was often underestimated as dementia diagnosis criteria was biased towards AD, 

emphasizing memory impairment as an essential symptom (Román, 2002a), although 

memory impairments tend to develop later in VaD (Desmond et al., 1999). The high 

specificity and low sensitivity for diagnosis of VaD therefore meant that many VaD 

subjects were misdiagnosed with other forms of dementia (Wetterling et al., 1996). 

This directed the focus of dementia research on AD, leaving the role of vascular lesions 

in dementia comparatively understudied. In addition, the frequent co-occurrence of 

AD with vascular pathology meant that AD was interpreted as being the primary cause 

of dementia  while the role of CVD was overlooked. Although these issues are now 

being addressed, there are currently no standardized neuropathological criteria to 

quantify vascular lesions. This has resulted in differing procedures for pathological 

examination of VaD being used in different laboratories, making comparison between 

studies difficult (Jellinger, 2007). Furthermore, there are no set criteria for a 

pathological diagnosis of VaD, which has hindered the understanding of the 

relationships between vascular lesion burden and cognitive impairment.  

1.2.2 Alzheimer’s disease (AD) 

Between 19-61% of stroke survivors who develop PSD also have a high burden of 

Alzheimer’s disease (AD) pathology (Leys et al., 2005), which implicates AD in the 

pathogenesis of delayed PSD. AD is clinically characterized by impairment in short-

term and spatial memory, which becomes more severe as the disease progresses and 

other cognitive domains become impaired. The pathological hallmarks of AD are 

amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuropil threads (NTs), and 

neuritic plaques. AD is also associated with neuronal and synaptic loss, CAA and gliosis 

(Attems and Jellinger, 2012).  

One of the characteristic features of AD are cortical Aβ plaques, which are large 

insoluble extracellular aggregates of Aβ peptides, formed by the cleavage of the 

transmembrane amyloid precursor protein (APP) by β and γ secretases into Aβ40 and 
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Aβ42 peptides. In AD there is a pathological increase in extracellular Aβ concentration, 

believed to be due to increased Aβ production and impaired Aβ clearance. Age related 

vascular changes are thought to contribute to decreased clearance by impairing the 

ability of the perivascular drainage system to remove Aβ (Kalaria, 2010). Aβ42 peptides 

aggregate to form cortical plaques, first developing in the neocortex and hippocampus, 

then spreading in a well-defined hierarchical pattern throughout the brain as the 

disease progresses (described in Table 1.1). Aβ40 peptides accumulate in vessel walls 

and cause CAA in 80 – 100% of all AD patients (Grinberg and Thal, 2010).  

 

The other characteristic features of AD are neurofibrillary tangles (NFTs) and neuropil 

threads (NTs), intracellular aggregates of abnormal tau protein in neuronal soma and 

neurites. Tau is a microtubule-associated protein which binds to and stabilises 

microtubules, however in AD tau becomes hyperphosphorylated and aggregates as 

paired helical filaments and larger NTs in axons and dendrites and NFTs in the soma 

(Goedert, 2006). These aggregates are therefore a sign of impaired microtubule 

function, impaired axonal transport and neuronal dysfunction. Hyperphosphorylated 

tau pathology first appears in the trans-entorhinal and entorhinal regions, and then 

spreads in a hierarchical pattern throughout the brain, which can be divided into six 

stages according to Braak and Braak, 1996 (Table 1.1). Tangle formation is associated 

with neuron death (Gómez-Isla et al., 1997) and cognitive impairment in AD (Braak and 

Braak, 1996; Ince, 2001; Rössler et al., 2002; Giannakopoulos et al., 2003).  

 

Phase Amyloid-β pathology* NFT and neuropil threads** 

I Neocortex 
Trans-entorhinal and entorhinal 

regions 
II Hippocampus and entorhinal 

cortex 

III Basal ganglia, thalamus, 

hypothalamus Hippocampus 

IV Brainstem nuclei 

V Pons and cerebellum 
Neocortex 

VI  

Table 1.1 Comparison of the development and distribution of Amyloid-β and tau pathology in 
AD. *  = from (Thal et al., 2002), ** = from (Braak and Braak, 1991).  
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A definitive diagnosis of AD is only confirmed after post-mortem examination. Until 

recently, diagnosis was based upon the semi-quantitative rating of ‘frequent’ neuritic 

plaques – Aβ plaques containing degenerating neurites – according to the CERAD score 

(Consortium to Establish a Establish a Registry for Alzheimer's Disease)(Mirra et al., 

1991), and Braak stage V/VI of NFTs (Braak and Braak, 1991). Montine et al. have now 

updated these guidelines to include more detailed methods to assess and report 

coexisting disease pathology such as vascular lesions; to incorporate staging of  Aβ 

deposits, NFTs, and neuritic plaques; and to recognize that AD pathology can also 

develop in subjects without cognitive impairment (Montine et al., 2012).  

The causative relationship between the two pathological hallmarks of AD remains 

unclear. Over the last 20 years, the amyloid cascade hypothesis has dominated 

Alzheimer’s disease research, postulating that Aβ deposits trigger AD processes and 

are the cause of neuron and synapse loss, mediated by the formation of tau pathology 

(Hardy and Higgins, 1992). However, studies found that Aβ plaque burden was not 

closely related to dementia symptoms or neurodegeneration, and it is not uncommon 

for elderly individuals with severe Aβ pathology to maintain normal cognitive function 

(Braak and Braak, 1991). In addition, plaque development follows a different pattern 

to tau pathology during disease progression (Table 1.1)(Attems and Jellinger, 2012). 

Furthermore, although the vast majority of research into AD treatments has focussed 

on clearing Aβ aggregates from the brain, no drugs designed to prevent or reverse 

amyloid accumulation have  passed Phase III clinical trials (Karran et al., 2011). 

Therefore, the original amyloid hypothesis has been modified to propose that soluble 

oligomers of Aβ  may be the toxic component that directly injures synapses and 

neurites (Hardy and Selkoe, 2002). Further discussion on the role of AD pathology in 

neuronal and cognitive dysfunction is continued in Chapter 4. 
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Figure 1.2. Common pathological characteristics of AD and VaD. A, Hyperphosphorylated tau 
pathology in the hippocampus of an AD subject, visualized using antibodies to AT8; B, amyloid 
plaques in the hippocampus of an AD subject, visualized using antibodies to 4G8; C, Cerebral 
amyloid angiopathy (CAA), arrows show Aβ deposition in capillaries; D, atherosclerotic changes 
in the left carotid artery of an elderly subject (C and D adapted from Grinberg and Thal, 2010); 
E, normal blood vessel in elderly subject; F, Arteriolosclerotic blood vessel in a subject with 
SVD, demonstrating splitting of concentric smooth muscle cell layers . 
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1.2.3 Mixed dementia: CVD and AD 

Large epidemiological and neuroimaging studies have consistently found that 

dementia subjects often have a mixture of both neurodegenerative and vascular 

lesions. Around 30-50% of VaD patients have coexisting AD pathology, and over 30% of 

AD cases have co-existing cerebrovascular pathology (Snowdon et al., 1997; Kalaria 

and Ballard, 1999; Wharton et al., 2011; Kling et al., 2013). The extent to which these 

disease processes influence and interact with one another is unclear, although the 

importance of CVD in the pathogenesis of AD is now becoming more widely recognized 

(Ruitenberg et al., 2005; Bell and Zlokovic, 2009; Uh et al., 2010; Chen et al., 2011a). 

Studies have found that hypoperfusion is associated with amyloid plaque 

accumulation, suggesting that SVD processes can also trigger AD mechanisms (Sojkova 

et al., 2008; Huang et al., 2012). Conversely, AD pathology can also cause vascular 

damage, as  cerebral capillary degeneration has been found in practically all AD 

subjects examined post-mortem (de la Torre, 2002). The co-existence of AD and CVD 

lesions have been found to have additive effect on cognitive function, further 

supporting the hypothesis that these pathological processes are synergistic and 

cumulative (Nagy et al., 1997; Snowdon et al., 1997; Zekry et al., 2002; Toledo et al., 

2013). The involvement of CVD processes in AD is also evident in the number of shared 

risk factors for AD and VaD, many of which are traditionally associated with 

atherosclerosis or cardiovascular disease (Table 1.2)(Gorelick, 2004; Kling et al., 2013). 

The increased vulnerability of stroke survivors to dementia has therefore been 

suggested to be due to the ischaemic cascade triggering or exacerbating widespread 

neurodegenerative processes (Kalaria, 2000; Lee et al., 2005; Cumming and 

Brodtmann, 2011).  
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Risk Factors for AD and VaD 

Demographic: Older age 
Low education 

Cardiovascular: Hypertension/hypotension 
Smoking 
Diabetes mellitus 
Hyperlipidaemia 
High serum homocysteine 
Atherosclerosis 

Genetic ApoE ε4 

Table 1.2. Common risk factors for AD and VaD (de la Torre, 2002).  

 

1.2.4 Ageing 

The strongest risk factor for stroke and dementia is increasing age, which implicates 

changes that occur in the ageing brain as important mechanisms in the pathogenesis 

of PSD. Various changes associated with impaired structural and functional integrity of 

the cerebral vasculature have been reported in ageing, including reduced cerebral 

blood flow, decreased capillary density, microvascular fibrosis, basement membrane 

thickening (with or without Aβ deposits), loss/elongation of endothelial cells, and 

impaired blood-brain barrier function (Farkas and Luiten, 2001; Chen et al., 2011a). 

The effect of these vessels changes are evident in the increase in number of white 

matter lesions with ageing, from below 20% in people under 30, to 100% of 71-80 year 

olds (Christiansen et al., 1994). Elderly people are also more likely to have greater 

numbers of vascular risk factors which place additional strain on the 

cerebrovasculature, and have been shown to have robust effects on brain anatomy 

and function in non-demented elderly individuals (Aine et al., 2014).  

Accumulation of Alzheimer-type pathology also frequently occurs in normal ageing 

without cognitive impairment (Braak and Braak, 1991). Several studies have 

demonstrated this, including a large community-based study which found that similar 

proportion of demented and non-demented elderly subjects had mild/moderate Aβ 

pathology (49% and 53% respectively), with equivalent levels of vascular pathology 

(Ince, 2001). The Nun Study, a large longitudinal study of a homogeneous cohort of 

elderly nuns, found that 40% of subjects with the levels of Alzheimer’s pathology 

required for a diagnosis of AD were not demented (Snowdon et al., 1997).  
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Differences in cognitive ability in elderly subjects with similar levels of brain pathology 

have been attributed to differences in brain and cognitive reserve (Barulli and Stern, 

2013). Epidemiological and experimental studies have consistently found that greater 

cognitive reserve is protective against dementia, assessed through variables such as 

education, socioeconomic status and engagement in intellectually stimulating social 

activities (Barulli and Stern, 2013). However, cognitive reserve is a hypothetical 

concept and not directly measurable, relying on these proxy variables to estimate 

cognitive reserve (Jones et al., 2011).  Brain reserve is a similar concept which relates 

differential susceptibility to disease pathology to differences in brain capacity, such as 

greater brain size, number of neurons, or neuronal plasticity (Barulli and Stern, 2013), 

which has been implicated in brain ageing (Burke and Barnes, 2006). As age-related 

decline in brain structure and function make the brain more vulnerable to further 

insults, brain and cognitive reserve are likely to have important roles in maintaining 

cognition through protecting from or compensating for neuronal damage and 

dysfunction. 

Therefore, elderly stroke survivors are likely to already have some degree of vascular 

and neurodegenerative changes, varying in severity from ‘normal’ ageing to pre-clinical 

AD, which will influence the cognitive outcome after stroke. Injury caused by stroke 

may significantly lower the threshold of damage required to cause dementia by 

reducing brain reserve, making stroke survivors vulnerable to additional age-

associated change or disease mechanisms. The precise mechanisms contributing to 

delayed PSD, developing over the long-term after stroke, still require elucidation (Allan 

et al., 2011).  
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1.3 The Cognitive Function After Stroke (CogFAST) study 

1.3.1 Study design 

The Cognitive Function After Stroke (CogFAST) study was set up in 1999 to investigate 

the risk factors and substrates dementia after stroke. The study recruited 355 non-

demented stroke survivors over 75 years old to prospectively study the evolution of 

cognitive changes after stroke, particularly focussing on identifying and understanding 

the causes of delayed PSD. Due to the strict exclusion criteria precluding anyone who 

had severe cognitive impairment or disabilities at three months post-stroke, it was 

unlikely that CogFAST participants had suffered large vessel strokes. Therefore, 

CogFAST subjects were likely to have experienced smaller strokes, TIAs or strategic 

lacunar infarcts. Study participants received annual clinical and neuropsychological 

evaluations from baseline three months post-stroke to provide information about 

cognitive changes over time (Table 1.1). A subset of participants also received MRI 

(magnetic resonance imaging) scans to assess volumetric and cerebral blood flow 

changes. Over 60 participants have now donated their brain for post-mortem research 

into the pathological mechanisms causing VCI in stroke survivors. Full details of the 

recruitment criteria and study design are described in Figure 1.3 and in Chapter 2 

(page 37). 

Standard clinical assessments Vascular risk factors identified 

Cardiovascular history and examination 
Neurological history and examination 
Blood pressure 
Blood chemistry 
 

Angina, myocardial infarct, stroke, transient 
ischaemic attack 
Hypertension, hypotension 
Atrial fibrillation, hyperlipidaemia, diabetes 
mellitus 

Neuropsychological assessment Cognitive domain assessed 

CAMCOG (Cambridge Assessment Mental 
Disorders in the Elderly, Section B) 
 
CDR computerized battery 
 
DSM IV 
CDR and Barthel ADL 

Global cognitive performance, with subscales 
of memory, orientation and executive 
function 
Composite of sub scales for power of 
attention 
Dementia diagnosis 
To assist dementia diagnosis 

Table 1.3 Summary of clinical assessments performed in the CogFAST study. CAMCOG = 
cognitive part of the Cambridge Examination for Mental Disorders of the elderly (CAMDEX) (de 
Koning et al., 1998); DSM = Diagnostic and Statistical Manual of mental disorders ; CDR = 
Clinical Dementia Rating; Barthel ADL = Index to measure performance in activities of daily 
living.   
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Figure 1.3  The CogFAST study design. Mean survival time from stroke to death was 6.72 years 
(Allan et al., 2011). CT = X-ray computed tomography scan, MMSE = Mini Mental State Exam, 
CAMCOG = Cambridge Cognitive Examination, DSM = Diagnostic and Statistical Manual of 
mental disorders. 
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1.3.2 Key CogFAST study findings 

The CogFAST study has generated several important findings that were particularly 

relevant to my studies. The study found that during the first 15 months post-stroke, 

50% of participants showed initial improvement in cognitive function, ~40% remained 

stable, and ~10% developed delayed PSD (Ballard, 2003). However, despite the vast 

majority of subjects demonstrating initial improvements or cognitive stability, the 

long-term risk of dementia remained increased compared to stroke-free elderly 

subjects; by three years post-stroke 21% of stroke survivors had developed dementia 

and by seven years 39.5% had developed PSD (Allan et al., 2011). Incidence of delayed 

PSD was calculated to be 6.32 cases per 100 person years (Allan et al., 2011). 

Volumetric MRI investigations found that development of post-stroke cognitive 

impairment was associated with medial temporal lobe (MTL) atrophy (Allan et al., 

2011), and that PSD subjects had smaller hippocampal volumes compared to non-

demented stroke survivors and controls, demonstrating similar hippocampal atrophy 

to AD subjects (Firbank et al., 2011). All stroke survivors had a greater volume of white 

matter hyperintensities (WMH) compared to controls, however, the volume of WMH 

was not a predictor of subsequent cognitive decline (Firbank et al., 2007). Volume of 

WMH in the temporal lobe was associated with memory impairment, and frontal 

WMH were associated with deficits in attention and processing speed but not 

executive dysfunction (Burton et al., 2004). 

These findings confirmed that long-term risk of dementia was increased in stroke 

survivors from the CogFAST cohort and was associated with structural changes in the 

MTL and hippocampus. This was initially assumed to be due to the stroke triggering or 

exacerbating AD processes, as atrophy of the MTL and hippocampus is traditionally 

associated with AD (Gosche et al., 2002). However, when PSD subjects came to 

autopsy, the majority met neuropathological criteria for VaD, suggesting that AD 

processes were not the most important determinant of post-stroke cognition (Kalaria 

et al., 2004). No previous studies had investigated neuropathological outcomes in 

older stroke survivors, although the finding of substantial vascular pathology in 

delayed PSD subjects supported the theory that dementia after stroke may be caused 

by on-going vascular pathological mechanisms including large and small vessel disease 

(Allan et al., 2011). Allen et al. suggested that these pathological findings may also 
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reflect the inclusion criteria requiring cognitively intact elderly people over 75 years 

old, with at least one clinically detectable stroke, which may have excluded people 

with significant co-existing neurodegenerative pathology.  As a previous study had 

found that PSD predicted poor long-term survival (Melkas et al., 2009), it was 

surprising to find that there were no differences in mean survival time between 

demented and non-demented stroke survivors who came to autopsy (mean survival 

time = 6.72 years, 95% confidence intervals = 6.38–7.05) (Allan et al., 2011). 

In the CogFAST cohort, the presence of three or more cardiovascular risk factors 

(particularly ischaemic heart disease and hypertension), poor CAMCOG memory and 

executive function scores at baseline, previous disabling stroke, depression and older 

age were found to be significant predictors for death or dementia (Allan et al., 2011). 

The PSD group had non-significantly greater mean number of infarcts compared to the 

PSND group (4.5 ±2.8(SD) vs. 3.9 ±2(SD)), and a greater percentage of PSD subjects had 

>3 microinfarcts in four regions (50% vs. 41%, p = 0.05) (Allan et al., 2011). However, 

due to study limitations, Allen et al. were not able to accurately establish whether 

further strokes had occurred at follow-up, or whether different types of stroke or 

arterial territories involved were associated with increased likelihood of developing 

delayed PSD (Allan et al., 2011). 

Overall, the CogFAST study has confirmed that the long-term prognosis for survival and 

cognitive function in older stroke survivors is poor, although it is encouraging to find 

that risk of dementia is highly related to modifiable vascular risk factors. Neuroimaging 

findings indicated that the MTL and hippocampus were key structures involved in the 

pathogenesis of post-stroke dementia, as atrophy of these regions was associated with 

poor cognitive outcome. However, the underlying mechanisms causing these structural 

and functional changes in delayed PSD remain unclear. Therefore, my studies focussed 

on exploring pathological mechanisms in the hippocampus to further current 

understanding of the cellular substrates of hippocampal atrophy and cognitive 

impairment in delayed PSD. 

1.3.3 Hippocampal microvascular changes in delayed PSD 

A parallel study of delayed PSD in CogFAST subjects recently investigated changes to 

hippocampal microvasculature stroke survivors, AD and VaD subjects (Burke et al., 
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2013). They found there was an increase in vascular density in PSD and AD subjects, 

and that the PSND group had a larger mean vessel diameter than all the other groups. 

These findings suggested that there was an increase in the proportion of smaller 

vessels in AD and PSD compared to PSND, which may indicate the development of new 

microvessels. However, interpretation of these findings is difficult and the role of 

tissue atrophy cannot be ruled out as a possible cause of increased vessel density in AD 

and PSD (Burke et al., 2013). The differences in hippocampal microvasculature 

between demented and non-demented stroke survivors may reflect a cerebrovascular 

response which protected non-demented stroke survivors from cognitive decline; 

however, the mechanisms involved are unclear. As this study of hippocampal 

microvascular changes in CogFAST stroke survivors was run in parallel to my studies, 

my work focussed on the relationship between neuronal pathology and post-stroke 

cognitive impairment. 

 

1.4 The hippocampus in post-stroke dementia 

1.4.1 Hippocampal atrophy and dementia 

There is considerable evidence that the pathological changes in the hippocampus are 

central to the development of cognitive impairment in ageing and dementia caused by 

CVD and neurodegenerative disease (Grysiewicz and Gorelick, 2012). Until recently, 

hippocampal atrophy was considered a specific marker of AD, reflecting neuronal 

death driven by NFT pathology (Gosche et al., 2002; Zarow et al., 2005). However, 

there is growing evidence that MTL and hippocampal atrophy are also associated with 

cognitive impairment caused by CVD, including ischaemic vascular dementia (Barber et 

al., 1999; Bastos-Leite et al., 2007; Scher et al., 2011), dementia caused by SVD (Barber 

et al., 2000; Kril et al., 2002b), hereditary SVD (O'Sullivan et al., 2009) and PSD (Jokinen 

et al., 2004; Firbank et al., 2007; Pendlebury and Rothwell, 2009).  

Hippocampal atrophy has also been related to more subtle memory impairments in 

subjects with mild cognitive impairment (MCI) (Grundman et al., 2003), and increases 

the risk of dementia in cognitively normal elderly subjects (Den Heijer et al., 2006). 

Recent MR diffusion tensor imaging (DTI) studies have suggested that hippocampal 
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volumetric changes are preceded by disruption of tissue integrity and/or loss of 

neuronal fibres in MCI, AD and SVD (Fellgiebel and Yakushev, 2011; den Heijer et al., 

2012; van Norden et al., 2012). These findings indicate that early disease mechanisms 

begin in the hippocampus, therefore understanding the basis of these changes will be 

critical for the development of strategies to prevent further deterioration. 

 

 

 
Figure 1.4 Hippocampal atrophy 
in an Alzheimer’s disease and 
control subject. Thinning of the 
cortex and enlarging of 
ventricles is also evident in the 
AD brain, contributing to overall 
brain atrophy. 

 

1.4.2 The hippocampus and memory 

The hippocampus is a unique part of the cerebral cortex located within the MTL (Figure 

1.5). This region of the brain was first recognized as having an essential role in memory 

nearly 60 years ago, when Scoville and Milner documented the case of patient HM 

who suffered severe anterograde amnesia following bilateral MTL resection (Scoville 

and Milner, 2000). Extensive lesion and neuroimaging studies have now firmly 

established that MTL structures are critical for memory function and in particular 

declarative memory, the conscious recall of knowledge based around personal 

experiences (Eichenbaum, 2003). Declarative memory can be further sub-divided into 

semantic memory (knowledge), and episodic memory (relating to specific personal 

experiences) (Figure 1.5). This distinction is mirrored within the structure  of the MTL, 

as the hippocampus is central to episodic memory function, whereas semantic 

memory processing occurs outside the hippocampus (Tulving and Markowitsch, 1998; 

Binder et al., 2009). The hippocampal formation has extensive reciprocal connections 

with other areas of the brain involved in memory such as the thalamus, basal forebrain 

and amygdala, and also receives information from sensory and association cortices 

(Swanson, 1982). Outputs project to the neocortex, frontal cortex, anterior cingulate 
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cortex and basal ganglia, where the information is used in higher-order cognitive 

functions and in storing long-term memories (Redgrave et al., 1999; Tamminga, 2005). 

 

 

 

 

 

 

 

Figure 1.5. Diagram showing the location of 
the hippocampus in the medial temporal 
lobe and the differences between episodic 
and semantic memory. 

 

1.4.3 Hippocampal anatomy and circuitry 

The hippocampus has a unique and relatively simple structure composed of single 

layers of pyramidal neurons arranged along the transverse axis, curving around the 

dentate gyrus (DG), a dense v-shaped band of granule neurons (Figure 1.6 A). The 

pyramidal neuronal layers are divided into four subfields called the Cornu Ammonis 1-

4 (CA1-4), described in Figure 1.6. Neuroimaging studies have found associations 

between volume reductions in specific CA subfields and different memory 

impairments, suggesting they each have a different role in memory processing. 

CA4/DG volumes were related to memory consolidation and retrieval in elderly 

subjects (Mueller et al., 2010) whereas loss of CA1 volume was related to impairments 

in  delayed recall in AD and temporal lobe epilepsy (Kerchner et al., 2012). The DG is 

thought to have a key role in differentiating inputs to the hippocampus, which then 

converge and are reinforced in the highly reciprocal CA3 subfield (Schmidt et al., 2012). 

The entorhinal cortex (EC) forms the main interface between the hippocampus and the 

neocortex, and like other cortical regions can be divided into six layers. Layers II and III 

contain projection neurons which receive inputs from across the brain and carry out 

the first stage of memory processing before information is sent to the hippocampus 
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(Figure 1.6 B)(Canto et al., 2008). Therefore, the superficial and deep layers of the EC 

can generally be considered as discrete input/output regions, although studies show 

the layers of the EC are highly interconnected therefore this is likely to be an over-

simplification (Canto et al., 2008).   

The intrahippocmapal circuit is a complex network of hippocampal neuronal 

connections arranged along the transverse axis of the hippocampus (Cenquizca and 

Swanson, 2007). Information is received from cortical inputs via EC layer II neurons 

projecting to the DG and CA3, and layer III projecting to the CA1 and subiculum. 

Historically, models of hippocampal circuitry have focussed on sequential steps of 

information processing, creating a well-defined trisynaptic hippocampal loop from the 

DG – CA3 – CA1. However, anatomical, neurophysiological and behavioural studies 

have established that this is a considerable over-simplification, as the hippocampus 

contains multiple circuits, allowing  conversion and comparison of combinations of raw 

and processed information in a highly interconnected 3D network (van Strien et al., 

2009; Jones and McHugh, 2011). Based upon recent findings, four major overlapping 

circuits of information processing have been proposed: (1) the trisynaptic loop 

involving the DG - CA3 - CA1, (2) a disynaptic loop involving the CA3 - CA1, (3) a 

disynaptic loop involving the CA2 – CA1, and (4) the monosynaptic temporoammonic 

pathway from the EC to CA1 (Figure 1.6) (Jones and McHugh, 2011). Therefore, 

information converges on the CA1 subfield, and is then output via the subiculum back 

to the EC (layers V and VI), parahippocampal and neocortical areas (Jones and 

McHugh, 2011).  
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Figure 1.6 A, Transverse section of the hippocampus stained using cresyl fast violet to visualize 
neuronal soma and neuronal subfields: The CA4 subfield is completely enclosed by the dentate 
gyrus, the CA3 begins at the ‘mouth’ of the DG and contains larger and more uniformly 
oriented neurons, the CA2 neurons are larger, rounder and densely packed in a narrow band, 
and the CA1 widens out to a broad band of more dispersed, smaller pyramidal neurons. The 
CA1/subiculum border is harder to visually identify, and is generally considered to begin where 
the distribution of neurons becomes more patchy in the straighter band of cells towards the 
entorhinal cortex. 
B, Major circuits of information processing in the hippocampus. Orange arrows represent the 
traditional trisynaptic loop involving the DG - CA3 - CA1; Blue arrows represent the disynaptic 
loop involving the CA3 - CA1; Yellow arrows represent the disynaptic loop involving the  CA2 – 
CA1; the green arrow represents the monosynaptic temporoammonic pathway from the EC to 
CA1. The black arrow in the CA3 represents its highly reciprocal connections (Jones and 
McHugh, 2011). 

A 

 

 

 

 

 

 

 

 

B 
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1.4.4 Pyramidal neurons in the Cornu Ammonis 

Pyramidal neurons are highly specialized cells comprised of a characteristic triangular 

soma, a highly branched axon arising from the base of the soma, and two distinct 

dendritic domains arising from the base and apex of the soma. Excitatory inputs largely 

synapse with the dendrites  at specialized post-synaptic structures called dendritic 

spines, whereas the majority of inhibitory GABAergic inputs synapse on the axon and 

soma (Spruston, 2008). Pyramidal neurons have several relatively short basal 

dendrites, in contrast to the apical dendrite which connects the soma to a more distant 

tuft, with branching dendrites along its length (Spruston, 2008). The precise 

characteristics of dendritic trees vary between regions, allowing neurons to integrate 

and process signals differently according to their functional role. Dendrites are highly 

plastic and undergo constant remodelling, which is now widely believed to underlie 

the biological basis of learning and memory in the brain (Spronsen and Hoogenraad, 

2010). Changes to the structural and functional connectivity of the hippocampus are 

therefore thought to be critically involved in the development of the clinical symptoms 

of dementia. Dendritic and axonal changes in PSD and ageing-related dementias are 

discussed in detail in Chapters 5 and 6. 

The CA subfields can be divided into six layers which are defined according to 

which part of the CA pyramidal neurons they contain (Figure 1.7).  The alveus 

contains axons of pyramidal neurons; the stratum oriens contains the basal 

dendritic trees and inhibitory neurons; the stratum pyramidale contains the 

soma of pyramidal neurons; the stratum radiatum contains the main branch of 

the apical dendrites; and the stratum lacunosum and stratum moleculare 

contain the apical dendritic tufts and synaptic inputs (Duevernoy, 2005). The 

dentate gyrus (DG) can be divided into three layers: the stratum moleculare, 

which blends with the molecular layer of the CA regions; the stratum 

granulosum, containing small, round, densely packed soma of granular 

neurons; and the polymorphic layer which borders the CA4 containing  mossy 

cells and fibres (Amaral et al., 2007).  
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Figure 1.7. Layers of the Cornu Ammonis. Str = stratum, SO = stratum oriens, SP = stratum 
pyramidal, SR = stratum radiatum. Adapted from (Duevernoy, 2005). 
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Figure 1.8. Hippocampal subfields visualized using immunohistochemistry to detect dendritic 
protein MAP2.  
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1.4.5 Differential subfield vulnerability in PSD 

Hippocampal atrophy is thought to be caused by loss of neurons, as studies have 

shown that neurons in the largest hippocampal subfield, the CA1, are particularly 

vulnerable to injury and neurodegeneration in AD and hypoxia-ischemia (Kril et al., 

2002a; Kril et al., 2004; Zarow et al., 2005). However, the precise mechanisms causing 

hippocampal atrophy and dysfunction in PSD are unclear. During ischemia, neurons 

can be damaged through a combination of hypoxia, hypoglycaemia, and glutamate 

excitotoxicity (Larsen et al., 2006). Reduced blood flow to neurons also causes an 

imbalance in neurotrophic and apoptotic signals which may lead to neurodegeneration 

(Banasiak et al., 2000). Studies of animal models of transient cerebral ischemia have 

reported delayed post-ischaemic cell death with CA1 neurons starting to degenerate 2-

3 days after ~15 minute ischemia, peaking at one week after the event (Kirino, 1982). 

These changes are associated with increased extracellular glutamate concentration 

suggesting that neurons are lost due to excitotoxic mechanisms (Ruan et al., 2006). 

Excitotoxicity has also been implicated in neurodegeneration in AD (Hynd et al., 2004; 

Mishizen-Eberz et al., 2004).  

Excitotoxicity is a process by which neurons become overexcited by high levels of 

extracellular glutamate at synapses, which activates NMDA receptors and causes 

calcium ion influx, triggering a cascade of catabolic processes causing cell damage and 

apoptotic cell death (Olney and Sharpe, 1969; Ankarcrona et al., 1995). NMDA 

receptors are highly expressed in hippocampal neurons, which is assumed to 

contribute to the increased vulnerability to excitotoxic injury (Mishizen-Eberz et al., 

2004). Within the hippocampus, CA1 pyramidal neurons are particularly susceptible to 

NMDA-induced-excitotoxicity, whereas neurons in other CA subfields and the DG are 

more resistant. This selective sensitivity of CA1 neurons is not well understood, though 

the high density of NMDA NR2B subunits in CA1 neurons suggests they may be 

involved (Chen et al., 2007). Additionally, because hippocampal network activity 

culminates in the CA1 region, neuronal excitability during hypoxia-ischemia may be 

particularly high in CA1 neurons (Butler et al., 2010).  

In contrast, the CA2 subfield is considered the resistant subfield, as neurons do not 

appear to be lost from this region in AD or CVD. This may be related to their structure 
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and connectivity; CA2 neurons have distinct dendritic morphology, connectivity and 

basal membrane properties compared to CA1 neurons (Jones and McHugh, 2011) and 

do not appear to be sequentially activated as part of the classic ‘trisynaptic loop’ of 

hippocampal circuitry. Furthermore, CA2 neurons do not exhibit experimentally 

induced plasticity as readily as CA1 or CA3 neurons, which has been attributed to 

increased calcium buffering (Jones and McHugh, 2011), which may also protect against 

hyper-excitability. The differential vulnerability of the CA1 and CA2 neurons in ageing, 

hypoxia and AD means that studies comparing neuronal changes in the CA1 and CA2 

subfields within the same section and subject can regard the CA2 neurons as an 

internal control for any changes observed in CA1 (i.e. if changes are only observed in 

the CA1 subfield, they must represent pathological changes rather than an artefact of 

tissue processing).  

1.4.6 Neurodegeneration and autophagy 

The major mechanisms of neuronal cell death after ischemia are apoptosis and 

necrosis, and both have been implicated in delayed neuronal death in the 

hippocampus after hypoxic-ischaemic injury (Hara and Mori, 2000). Additionally, 

macroautophagy (autophagy)2, a degradation pathway for organelles and long-lived 

proteins too large to be degraded by the ubiquitin-proteasome-system, is also 

triggered in neurons after hypoxic and excitotoxic injury, and excessive or imbalanced 

induction can contribute to neuronal cell death (Cherra III and Chu, 2008). However, 

autophagy may also provide a neuroprotective mechanism in the early stages of injury 

(Carloni et al., 2008).  

 

Dysfunctional autophagy has been implicated in AD, ischemia and ageing, and 

autophagy has a role in maintaining neuronal function and morphology. During 

autophagy, proteins become enclosed in double-membraned autophagic vacuoles 

(AVs), which fuse with lysosomes in the soma to degrade the proteins Error! Reference 

source not found.(Kragh et al., 2012). Under normal conditions autophagy is highly 

efficient in neurons; therefore neurons contain very few AVs. During cell starvation, 

                                                      
2
 Two other forms of autophagy also exist; chaperone-mediated autophagy and microautophagy. 

Macroautophagy is the most extensively studied and has been implicated in ageing and dementia, and is 
commonly simply referred to as ‘autophagy’. Levine, B. and Kroemer, G. (2008) 'Autophagy in the 
Pathogenesis of Disease', Cell, 132(1), pp. 27-42. 
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stress or injury, autophagy is upregulated to degrade non-essential proteins and 

release amino acids that can then be recycled for stress adaptation or to maintain ATP 

production (Levine and Kroemer, 2008; Johansen and Lamark, 2011). Autophagy is 

therefore considered to provide a neuroprotective response in neurodegenerative 

disease and hypoxic-ischaemic injury (Nixon, 2006; Mariño et al., 2011). 

The two most commonly studied proteins involved in autophagy are LC3 (microtubule 

associated protein 1, light chain 3) and Beclin-1. During the initiation of autophagy, 

LC3-I  becomes anchored to the AV membrane to form LC3-II, a specific marker for 

autophagosomes (Mizushima, 2004). Beclin-1 is involved in the recruitment of the 

membranes which form the autophagosomes, and also interacts with anti-apoptotic 

protein Bcl-2 as an upstream gatekeeper of apoptosis (Liang 1998). Under stress 

conditions, Beclin-1 dissociates from Bcl-2 and induces autophagy, providing a 

cytoprotective mechanism to avoid cell death (Maiuri et al., 2010). In ageing neurons 

there is an accumulation of non-functional cellular components which is associated 

with a decline in autophagic degradation (Salminen and Kaarniranta, 2009). Ageing and 

early AD have been associated with a decline in Beclin-1 levels (Cherra III and Chu, 

2008; Pickford et al., 2008; Rohn et al., 2011), however it is unclear whether ageing-

associated impairments in autophagy are the cause of, or result from, impaired fusion 

with lysosomes and clearance of AVs (Levine and Kroemer, 2008). Further discussion 

on the role of autophagy in neuronal injury continued in Chapter 4. 

 

1.5 The role of neuroglia in neurodegeneration 

Over the last 20 years there have been considerable advances in our understanding of 

the role of neuroglial cells – astrocytes, oligodendrocytes and microglia – in brain 

organization and function (Giaume et al., 2007). These cells, particularly astrocytes, 

express many of the same receptors as neurons, receive synaptic inputs, release 

gliotransmitters and form networks, maintain the blood-brain barrier, provide the 

brain’s main defence against injury and infection, and can act as pluripotent neural 

precursors for adult neurogenesis (Giaume et al., 2007). With such pivotal roles in 
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brain homeostasis and function, pathological changes to neuroglia in CVD and AD are 

likely to contribute to cognitive decline post-stroke and in ageing-related dementias. 

1.5.1 Astrocytes 

Astrocytes are the most numerous type of glial cell in the brain and are distributed in a 

homogeneous non-overlapping manner with each astrocyte occupying a distinct 

territory. It is believed that astrocytes may be as heterogeneous as neurons (Barres, 

2008), although they have historically been defined using two main sub-types based on 

their location and morphology.  Protoplasmic astrocytes are found in the grey matter 

and have a characteristic spherical cell body with several tortuous branched stem 

processes which are evenly extended around the cell body in all directions and contact 

synapses and blood vessels. Fibrous astrocytes are found in the white matter, and have 

a more oblong cell body, with longer, less ramified fibre-like processes mainly 

extending in two opposite directions which contact nodes of Ranvier and blood vessels 

(Sofroniew and Vinters, 2010).  

Recently, additional classes of primate-specific glial fibrillary acidic protein (GFAP) 

positive astrocytes have been identified.  Interlaminar astrocytes are found in layer 1, 

and extend tortuous processes from the pial surface across several millimetres to 

terminate in layers 2 – 4 (Colombo and Reisin, 2004). Protoplasmic astrocytes (the 

most common) are found in layers 2 – 6, and extend processes in all directions. A 

recent study also identified varicose projection astrocytes, which appear to be higher-

order-primate-specific, and are sparsely found in layers 5 -6. These projection 

astrocytes extend approximately 1mm long straight processes within the deep layers 

of the cortex, characterised by varicosities every 10µm. Interestingly, these processes 

were found to extend in all directions and did not maintain the non-overlapping 

domain organisation. As many of the processes from these varicose projection 

astrocytes were found to contact vessels, it was suggested that these astrocytes may 

play a role in coordinating functional hyperemia across large areas (Oberheim et al., 

2009). The precise role of these different sub-types remains unclear, although it has 

been suggested that the complexity and diversity of cortical astrocytes is an 

evolutionary adaptation underlying the increased processing power of the human 

brain (Oberheim et al., 2006). 
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In addition, GFAP positive radial neuronal stem cells (NSCs), found in the 

subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus 

in the adult brain, have been referred to as a sub-type of astrocyte (Doetsch et al., 

1999). However, these cells significantly differ from astrocytes as in morphology, 

chemical phenotype and physiological characteristics, and are the predominant source 

of adult neurogenesis, whereas protoplasmic and fibrous astrocytes are highly 

differentiated and specialized cells that do not exhibit neurogenic potential (Imura et 

al., 2006; Sofroniew and Vinters, 2010). Therefore, it has been suggested that these 

cells simply be considered radial NSCs rather than a subtype of mature astrocyte to 

maintain clear functional distinctions between different cell types (Sofroniew and 

Vinters, 2010).  

Role of astrocytes in synapse function 

During development, astrocytes play an important role in synapse formation, 

maintenance and pruning, and are involved in guiding developing axons (Powell and 

Geller, 1999; Barres, 2008). Protoplasmic astrocyte processes envelop all synapses, and 

in the hippocampus and cortex each astrocyte is estimated to contact hundreds of 

dendrites from several neurons (Halassa et al., 2007). Astrocytes have an important 

role in maintaining synapses through regulating ion concentrations and scavenging 

excess neurotransmitters and waste products from the extracellular space. In addition, 

astrocytes respond to neurotransmitters including glutamate through increased 

intracellular calcium levels (Porter and McCarthy, 1996). Studies have shown that 

these astrocytic calcium waves develop in well-defined receptive fields and are sharply 

tuned for orientation and spatial-frequency, indicating that astrocytes act quasi-

independently with a small number of neurons surrounding them (Schummers et al., 

2008). Astrocytes are also believed to regulate synaptic transmission through the 

release of gliotransmitters, which gave rise to the ‘tripartate synapse’ hypothesis 

which suggests that astrocytes have a central role in synaptic activity and information 

processing in neuronal networks (Perea et al., 2009). Through this function, astrocytes 

have also been suggested to increase network complexity required for higher brain 

functions (Giaume et al., 2007).  
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Role of astrocytes in the neurovascular unit 

Astrocytic endfeet surround the basal lamina of blood vessels allowing them to 

selectively take up blood components into the brain and regulate local blood flow in 

response to changes in neuronal activity (Koehler et al., 2009). A recent functional MRI 

study demonstrated that changes to blood flow in response to stimuli were dependent 

on astrocyte function (Schummers et al., 2008). Astrocytes produce molecular 

mediators (prostaglandins, nitric oxide, arachidonic acid) to coordinate the increase or 

decrease in blood vessel diameter. Astrocytes are therefore an essential component of 

the neurovascular unit (Hawkins and Davis, 2005), and are involved in maintaining the 

blood-brain barrier, although their precise mechanism is not well understood 

(Sofroniew and Vinters, 2010).  

In addition to these functions, astrocytes contain the major brain store of glycogen, 

which they use to transfer glucose metabolites to adjacent neurons through gap-

junctions during periods of high neuronal activity or hypoglycaemia, to be used 

aerobically as fuel to maintain neuronal activity (Brown and Ransom, 2007; Schousboe 

et al., 2010). Astrocyte glycogen content is modulated by transmitters including 

glutamate (mediated by AMPA receptors), allowing the transfer of metabolic 

substrates to be directly linked to neuronal activity (Rouach et al., 2008). 

Astrocytes in stroke and AD  

The central role of astrocytes in brain homeostasis means that it is now widely 

accepted that astrocytes must be deeply involved in the pathogenesis of neurological 

diseases, although there is currently little understanding of their precise role  

(Rodríguez et al., 2009). Astrocytes near to a brain lesion such as an infarct can 

respond by become reactive and proliferating to isolate the damaged tissue, restore 

the blood brain barrier and help re-model brain circuitry around the lesion, which may 

result in the formation of a permanent glial scar. In sites distant from the focal 

damage, astrocytic reactive changes are less drastic and are involved in remodelling of 

neuronal networks (Rodríguez et al., 2009).  

Astrocytes have been implicated in the modulation of neuronal excitotoxicity 

stimulated by ischemia (Beauquis et al., 2013), through their role in buffering ions to 

maintain neuronal excitability, maintaining extracellular glutamate concentration, and 
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their resistance to hypoxic injury (Nedergaard and Dirnagl, 2005; Giaume et al., 2007).  

Astrocytic malfunction has been suggested to contribute to delayed neuronal death 

after ischemia as astrocytes are normally highly resistant to hypoxia, and if astrocytes 

are lost, neurons are not likely to be able to survive (Nedergaard and Dirnagl, 2005). 

Astrocytes protect neurons from excitotoxic cell death after ischemia through acting as 

a glutamate sink, maintaining extracellular ion concentrations to prevent neuronal 

depolarization, and providing the main antioxidant protection in brain tissue 

(Rodríguez et al., 2009). If these functions become impaired they can exacerbate 

neurodegeneration due to the reversal of the glutamate uptake system, blood-brain 

barrier dysfunction and impaired blood flow, and secondary neuronal death after 

astrocyte death (Giaume et al., 2007). One study has shown there was rapid depletion 

of glutamine synthetase, a key enzyme in the detoxification of glutamate, from 

astrocytes in vulnerable regions including the CA1 after hypoxic insult (Lee et al., 

2010). The loss of glutathione synthetase was therefore suggested to be an early 

pathological mechanism impairing the ability of astrocytes to protect neurons from 

excitotoxic injury, and potentially contributing to excitotoxic neurodegeneration in 

regions vulnerable to hypoxia (Lee et al., 2010).  

In AD, astrocytes have also been implicated in excitotoxic cell death, and become 

reactive and take up large amounts of Aβ and neuronal debris surrounding plaques 

(Ong et al., 2013). Different types of astrocytes are likely to be differentially vulnerable 

to AD pathology. One study found that interlaminar astrocytes were more vulnerable 

to AD pathology in the neocortex, demonstrating a loss of interlaminar processes, 

whereas intralaminar processes became more reactive in severe AD. However, the 

relationship between loss of the interlaminar processes and the density of neuritic 

plaques was inconsistent (Colombo et al., 2002). Further discussion of the role of 

astrocytes in stroke and dementia is continued in Chapter 6. 
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Figure 1.9. GFAP-positive astrocytes in the CA1 visualized using nickel-DAB. A, Protoplasmic 
astrocyte; B, Fibrous astrocyte in the alveus, surrounded by other GFAP-immunopositive 
processes; C, Astrocytes and astrocytic endfeet around a blood vessel. A, B Scale bar = 50µm; 
C, Scale bar = 100µm. 

 

1.5.2 Microglia 

Microglia are the most abundant immune cells in the brain and therefore make up the 

brain’s major defence mechanism against injury and disease. Bone-marrow derived 

microglia invade the brain during embryonic and early postnatal development 

(Cuadros and Navascués, 1998). Under normal conditions, microglia are distributed 

throughout the neuropil and appear ‘ramified’ with a small soma and numerous thin 

branched processes which contact neurons, astrocytes, axon terminals, dendritic 

spines and blood vessels. These processes regularly extend and retract within their 

territory (Nimmerjahn et al., 2005; Giaume et al., 2007) to monitor the status of the 

environment and cleanse the extracellular fluid of metabolites and toxic factors (Fetler 

and Amigorena, 2005). Ramified microglia have been implicated in promoting synapse 

formation through the production of microglial brain-derived neurotrophic factor 

(BDNF) (Parkhurst et al., 2013), and their processes have been shown to contact 

multiple synapse-associated elements during normal conditions, particularly transient 

dendritic spines, and these microglial-synapse interactions were found to be regulated 

by experience. Therefore, microglia may also play an active role in modifying or 

eliminating synapses in the healthy brain (Tremblay et al., 2010).  
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Microglia are very sensitive to pathological changes in the brain. When activated, 

microglia undergo biochemical and morphological changes to extend thickened 

processes to the damaged site. Process tips in contact with the lesion broaden and 

together form a tight mesh to seal the damage. These processes are then retracted, 

and microglia become highly motile phagocytic cells that migrate to the site of injury 

(Davalos et al., 2005).  Microglia are stimulated by cytokines, neurotransmitters, 

neurotoxins, extracellular matrix molecules and proteases in areas undergoing 

inflammation, and synthesises cytokines, chemokines, complement, reactive oxygen 

species and neurotrophins that may have a neurotoxic or protective effect on nearby 

cells (Raivich and Banati, 2004). 

Microglia may also recruit blood-borne macrophages which are indistinguishable from 

the rod-shaped reactive microglia which accumulate at the site of injury (Perego et al., 

2011), where they phagocytose debris such as that from apoptotic cells (Dihné et al., 

2001). Reactive microglia have been shown to accumulate around amyloid plaques 

(Bolmont et al., 2008) and in delayed neuronal death following ischemia, resulting in 

sustained secretion of inflammatory mediators which may exacerbate disease 

processes and neuronal dysfunction/death (Lees, 1993). The role of microglia in stroke 

and dementia is discussed further in Chapter 6. 

 

 

 

 

 

Figure 1.10 Activated microglia in the CA1 of an 
AD subject, visualized using IHC to CD68. Scale 
bar = 50µm. 

 

1.5.3 Oligodendrocytes 

Oligodendrocytes are the most numerous cell type in the white matter and have a 

critical role in axonal function, with each oligodendrocyte myelinating 30 – 40 axons. 

Oligodendrocytes form myelin sheathes by wrapping multiple layers of highly 



35 
 

specialized extensions of their plasma membrane around axons, forming tightly 

stacked layers of lipid bilayers which provides electrical insulation around the axon. 

This myelination is essential for axon function, as it increases axon conduction speed 

up to 100-fold, and reduces energy consumption by restricting the surface area for 

action potentials to less than 0.5% of the axonal surface (Nave, 2010). 

Oligodendrocytes also communicate with axons and have a critical role in maintaining 

axon integrity, as oligodendrocyte dysfunction leads to axonal degeneration (Simons 

and Trajkovic, 2006).  

Oligodendrocytes express glutamate receptors and transporters and are therefore 

particularly sensitive to excitotoxic insults which are mediated by glutamate receptors 

(Giaume et al., 2007). This is particularly relevant in stroke, as transient oxygen and 

glucose deprivation has been shown to be directly linked to oligodendrocyte 

excitotoxicity (Alberdi et al., 2005), which induces oxidative stress, mitochondrial 

damage and cell death (Sánchez-Gómez et al., 2003). Therefore, the loss of 

oligodendrocytes after ischaemic injury results in loss of myelin, axon dysfunction and 

ultimately axon loss. Interestingly, models of stroke which induced brief transient 

ischaemia demonstrated rapid oligodendrocyte death, followed by a subsequent 

increase in the number of immature oligodendrocytes bordering the affected regions. 

This suggests that the loss of oligodendrocytes may be compensated for by the 

proliferation of new oligodendrocytes (Mandai et al., 1997; Petito et al., 1998).  

 

Figure 1.11. A, Diagram of an 
oligodendrocyte forming 
myelin sheath around an 
axon; B, Characteristic 
regular, small, darkly stained 
nuclei of oligodendrocytes in 
the alveus, section stained 
using LFB for myelin and 
haematoxylin to visualize 
nuclei. Scale bar = 50µm.  
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1.6 Aims and hypotheses 

This study investigated neuronal changes in differentially vulnerable hippocampal 

subfields in stroke survivors from the CogFAST cohort in relation to clinicopathological 

findings. The main research aims were to: 

 Identify novel pathological features discriminating subjects who had developed 

delayed post-stroke dementia from those who maintained cognitive function 

after stroke.  

 Investigate possible mechanisms related to clinical and pathological changes in 

PSD, or associated with a protective role in PSND subjects. 

 Elucidate the importance of different disease processes by comparing findings 

in post-stroke subjects with pathologically confirmed pure ‘AD’ and ‘VaD’ 

subjects, as well as cognitively normal elderly controls. 

 

My main hypotheses for each chapter are described below: 

 For the study described in Chapter 3, I hypothesised that hippocampal neuron 

loss and reductions in neuronal soma volume may contribute to cognitive 

impairment after stroke and hippocampal atrophy. 

 In Chapter 4, I hypothesised that a greater burden of hippocampal AD 

pathology and dysfunctional autophagy may be associated with neuronal 

atrophy and cognitive impairment after stroke.  

 In Chapter 5, I hypothesised that loss of apical dendritic arbour and synapses 

would be associated with neuronal volume reductions and cognitive 

impairment caused by greater CVD or degenerative disease mechanisms. 

 In Chapter 6, I hypothesised that damage to hippocampal axons may be related 

to neuronal volume changes and cognitive impairment after stroke. I also 

hypothesised that pathological changes to astrocytes and microglia may be 

related to neuronal changes, disease pathology, and cognitive impairment.  
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Chapter 2. Materials and Methods 

 

2.1 Introduction 

The main focus of this study was to compare pathological changes and disease 

mechanisms in stroke survivors who developed PSD with those who maintained 

normal cognitive function. To achieve this, tissue was analysed from subjects from the 

CogFAST study and compared with elderly controls and pathologically defined 

dementia groups (AD, VaD and mixed AD with VaD). 

Tissue from a non-human primate (baboon) model of acute cerebral hypoperfusion 

was also analysed to provide insight into acute neuronal changes in an experimental 

animal model of CVD. The model also allowed comparison between immersion fixed 

(human) and perfusion fixed (baboon) tissue to determine the influence of post 

mortem delay on the results observed in human tissue.  

2.2 Subject selection and clinical diagnosis 

2.2.1 CogFAST study design 

Stroke patients over 75 years old were recruited from hospital-based stroke registers 

in North East England providing they were not demented according to DSM-IIIR 

(Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised) criteria, 

did not show signs cognitive impairment at baseline three months after stroke, and 

had no disabilities that would impair cognitive testing (Allan et al., 2011). A total of 355 

eligible stroke patients gave written informed consent to participate in the Cognitive 

Function After Stroke (CogFAST) study. Ethical approval was given by the Joint Ethics 

Committee of Newcastle and North Tyneside Health Authority, Newcastle University 

and Northumbria University. 

 

Medical histories were documented for all CogFAST participants. The mean age at 

baseline was 80 (SD ±4.1 (SD)) and the median number of baseline cardiovascular risk 

factors was 2 (range 1-3)(Ballard et al., 2003b). Additional details on the clinical 
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characteristics of the CogFAST cohort are described in detail in (Ballard et al., 2003a; 

Ballard et al., 2003b). 

All participants received annual clinical and cognitive follow-up assessments including 

the Mini Mental State Exam (MMSE)(Folstein et al., 1975) to screen for dementia and 

the Cambridge Cognitive Examination (CAMCOG) section B, the cognitive and self-

contained part of the Cambridge Examination for Mental Disorders of the Elderly (Roth 

et al., 1986), described in section 1.3 (page 14). The CAMCOG test generated a global 

cognitive score (/107) and subscores for memory (/27) and executive function (/28). 

Mean global CAMCOG score at baseline was 85.1 (SD ±8.96). Additional details of all 

components of the follow-up battery are described in (Allan et al., 2011). Over 60 

patients who came to autopsy donated their brains for further research. 

2.2.2 Neuropathological assessment and dementia diagnoses 

Final diagnoses of VaD, AD or MD were based on both clinical (Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition criteria for dementia) and 

neuropathological data at clinicopathological consensus meetings. Clinical diagnosis of 

dementia was made if there was evidence of memory impairment and one or more of 

aphasia, agnosia or disturbance of executive function severe enough to cause 

significant impairment in social or occupational functioning and represent a significant 

decline from a previous level of functioning. A clinical diagnosis of AD was made when 

in addition to these deficits, the course was characterized by gradual onset and 

continuing cognitive decline, and the cognitive deficits could not be attributed to other 

central nervous system, systemic or substance-induced conditions or delirium. A 

clinical diagnosis of VaD was made when in addition to the cognitive deficits, subjects 

demonstrated evidence of focal neurological signs or laboratory evidence of 

cerebrovascular disease related to the disturbance (Americal Psychiatric Association: 

Diagnostic and Statistical Manual of  Mental Disorders, Fourth Edition, 2000).   

Neuropathological assessment of all CogFAST subjects and VaD, AD and MD subjects 

was carried by out by experienced neuropathologists (T. M. Polvikoski, R. Perry and J. 

Attems) using standard protocols including visual inspection of macroscopic and 

microscopic infarcts, CERAD rating of neuritic plaques and Braak staging of tau 

pathology (Mirra et al., 1991; Braak and Braak, 1996), as described in Section 1.2.2. 
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CERAD diagnostic criteria are based on semi-quantitative assessment of neocortical 

neuritic plaques (with thickened silver-positive neurites) which generates an age-

related plaque score, which is integrated with clinical information to determine the 

level of certainty of the diagnosis of AD. Overall distribution of vascular amyloid 

deposition and proportion of plaques containing amyloid cores was also noted (Mirra 

et al., 1991). Pathological diagnosis of AD was made with Braak stage V-VI and 

moderate-severe CERAD scores in the absence in significant vascular pathology (Kalaria 

et al., 2004). Pathological diagnosis of VaD was assigned if there was evidence of 

multiple or cystic infarcts, lacunae, microinfarcts and small vessel disease, with Braak 

stage <IV and absence of other primary neurodegenerative disease. Pathological 

diagnosis of MD was assigned if there was evidence of CVD severe enough to cause 

VaD, together with sufficient AD pathology for a diagnosis of AD. Although control 

subjects were not psychologically assessed before death, they did not show any 

evidence of neurological disease or cognitive impairment. A vascular disease severity 

rating was also carried out in CogFAST subjects, generating scores for global vascular 

pathology (/20) and hippocampal subscores (/4). This method rated cerebrovascular 

lesions including arteriolosclerosis, amyloid angiopathy, perivascular hemosiderin 

leakage, perivascular spaces dilation, myelin loss and cortical micro- (<0.05cm) and 

large-infarcts (>0.5cm) on a 0-3 scale as described in (Deramecourt et al., 2012). 
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2.2.3 Subject demographics and pathological findings  

 

 
PSND PSD 

Total number analysed 26 19 

Age, years 
Mean (range) 

84.8 
(78-94) 

87.4 
(76-98) 

Gender 
% Male 

57.7 47.4 

Post mortem delay, hours 
Mean (range) 
 

40.4  
(10-96) 

41.2 
(10-96) 

Fixation length, weeks 
Mean (range) 

10.2 
(2-32) 

8.16 
(4-14) 

CAMCOG score /120 
Mean (range) 

88.5 
(76-99) 

62.5 
(24-80) 

Pathological diagnosis N/A 12 = VaD, 7 = MD 

Time from stroke-death, months 
Mean (±2SE) 

55.6  
±10.1 

63.0 
±12.1 

Braak stage 
Median (range) 

2 
(1-5) 

3 
(0-6) 

CERAD score 
Median (range) 

1 
(0-2) 

1 
(0-3) 

Vascular pathology score 
Global mean (range) 

 
12.6 (7-16) 

 

 
11.6 (6-17) 

 

APOE E4 allele 
0 = 14, 1 = 11,  
unknown = 1 

0 = 13, 1 = 4,  
unknown = 1 

Table 2.1. Subject demographics of all stroke subjects analysed. PSND = post-stroke non-
demented, PSD = delayed post stroke dementia; PMD = post-mortem delay. 
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 Controls VaD MD AD 

Total number analysed 31 13 17 19 

Age, years 
Mean (range) 

81.8 
(71-98) 

84.8 
(71-97) 

84.1 
(72-94) 

82 
(70-91) 

PMD, hours 
Mean (range) 

27.9 
(8-67) 

51.6  
(24-84) 

37.8 
(11-72) 

35.6 
(5-72) 

Fixation length, weeks 
Mean (range) 

15.8 
(4-105) 

15 
(4-52) 

16.7 
(3-40) 

8.4 
(2-24) 

Braak stage 
Median (range) 

3 
(0-5) 

2 
(1-4) 

5 
(1-6) 

5.5 
(4-6) 

CERAD score 
Median (range) 

0 
(0-3) 

1 
(0-2) 

3 
(1-3) 

3 
(2-3) 

Table 2.2. Subject demographics of all subjects analysed. VaD = Vascular dementia, MD = 
mixed vascular dementia and Alzheimer’s disease, AD = Alzheimer’s disease; PMD = post-
mortem delay.  

 

2.3 Tissue acquisition 

All brain tissues were obtained from the Newcastle Brain Tissue Resource, except four 

controls which were obtained from the Medical Research Council London Brain Bank 

for Neurodegenerative diseases (Institute of Psychiatry, London, UK) which were 

analysed chapter 3. Ethical approval was granted by Newcastle Upon Tyne Hospitals 

Trust ethics committees for post-mortem research on brain tissue.  

Tissue from a total of 45 stroke survivors from the CogFAST study was analysed (26 

PSND and 19 PSD). After post-mortem examination, brains from subjects in the 

CogFAST study were cut into 1cm thick coronal slices and subdissected into blocks 

which were alternately fixed in 10% buffered formalin or frozen at -80C. There were no 

evidence of lesions in any of the chosen hippocampal blocks and sections were taken 

from either the left or right hippocampus in each case. Standard protocols for fixation, 

subdissection and processing were used for all other brains (Perry et al., 1990).Tissue 

from a total of 125 cases was used for these studies, subject demographics are 

presented in Table 2.2 and Table 2.2. 
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2.4 Paraffin-embedded tissue preparation 

After immersion fixation blocks were processed (dehydrated in alcohol and cleared in 

xylene), and embedded in paraffin wax. Unless stated otherwise, standard protocols 

described below were used for all tissue sectioning, dewaxing and mounting. 

2.4.1 Sectioning, dewaxing and mounting 

Sections were cut using a Shandon FinesseE+ rotary microtome from predefined 

paraffin-embedded hippocampal blocks as close as possible to coronal level 18-20 

according to the Newcastle Brain Map (Perry and Oakley, 1993). This level was defined 

as between the pregeniculate nucleus and the pulvinar at which the emergence of the 

ventricle is visible (Figure 2.1 A), where the dentate gyrus and CA regions 1-4 are 

clearly identifiable (Figure 2.1 B).  

To make slides more adhesive for tissue sections, clean slides were immersed in 

acetone for 5 minutes, drained of excess fluid then placed in a 2% solution of APES (3 

aminopropyl triethoxysilane) in acetone for 5 minutes. After draining, excess reagent 

was removed by gently dipping slides in fresh distilled water. Slides were dried at 45°C 

and stored until use. 

Before staining, sections were rehydrated through two 10 minute changes of xylene 

and decreasing concentrations of alcohol for 1 minute each in 100%, 95%, 75% and 

50%, then washed in water for 5 minutes. 

After staining, sections were dehydrated in 95% ethanol for 1 minute and two changes 

of 100% ethanol for 2 minutes each. Sections were then immersed in two changes of 

xylene for a minimum of 2 minutes each before coverslips were applied with DPX.  
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Figure 2.1. A, Levels 18 and 19 according to the Newcastle Brain Map (Perry and Oakley, 1993); 
B, Close-up of hippocampal formation at level 18 with clearly identifiable dentate gyrus and CA 
regions in a section stained with cresyl-fast violet. 

A      

 

 

 

B 
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2.5 Histology 

2.5.1 Cresyl Fast Violet (CFV) 

Cresyl Fast Violet (CFV) was used to stain tissue to visualise neuronal soma, nuclei and 

nucleoli. Sections were dewaxed and rehydrated to 95% alcohol for 1 minute, 

immersed in 1% acid alcohol for 5 minutes and rinsed in 3 changes of deionized water. 

Sections were incubated for 5 minutes in CFV solution pre-heated to 60°C, then cooled 

for 5 minutes. CFV solution was made using 20-25mls stock solution (0.2% w/v cresyl 

fast violet in deionized water) in 500mls deionized water and 500mls acetate buffer 

(13.5mls acetic acid, 23.5g sodium acetate to 2000mls in deionized water, pH 4.5). 

Sections were differentiated in 95% alcohol until the background was pale purple. 

Staining consistency was checked under a microscope before sections were 

dehydrated, cleared in xylene and mounted.  

2.5.2 Luxol Fast Blue (LFB) 

Luxol Fast Blue (LFB) is a copper phthalocyanine dye that is attracted to the 

lipoproteins of the myelin sheath which stains myelinated axons deep blue, therefore, 

LFB was used to visualize myelin in tissue sections. Sections were dewaxed and 

rehydrated to 95% ethanol, then incubated for 2 hours in LFB stain (1g of Luxol fast 

blue and 5mls of 10% acetic acid in 1000mls of 95% alcohol) preheated to 60C. 

Sections were cooled for 10 minutes, then washed in 70% ethanol for 1 minute. 

Sections were then differentiated in 4 cycles of; 1 minute in distilled water, 10 seconds 

in LiCoO3 and 1 minute in 70% ethanol. After 4 cycles of differentiation sections were 

viewed under a microscope to assess staining. If the grey matter still appeared blue, 

sections were differentiated further until the grey matter appeared clear. When 

sections were consistently stained they were immersed in water ready for the CFV 

counterstain. Sections were immersed in CFV solution (0.1% CFV in 1% acetic acid) for 

2 minutes at room temperature, washed in distilled water and differentiated in 95% 

ethanol. Sections were checked for staining consistency before being dehydrated, 

cleared in xylene and mounted.  
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2.5.3 Haematoxylin and Eosin (H & E) 

Haematoxylin and eosin (H & E) was used to visualize cell nuclei in blue and other 

eosinophilic structures in shades of red, pink and orange. Sections were dewaxed and 

rehydrated to water then immersed in haematoxylin solution for 3 minutes (5g 

haematoxylin, 0.5g sodium iodate, 40ml glacial acetic acid, 300ml glycerine, 700ml 

distilled water). After a wash in tap water, sections were dipped in 1% acid alcohol for 

40 seconds and washed again in water. Sections were then immersed in ammonia tap 

water for 1 minute and washed in water. Sections were then immersed in eosin for 3 

minutes (10g eosin, 0.25g phloxine, 0.25g erytheosin, 1000ml 20% alcohol). After being 

washed in tap water sections were differentiated in 95% ethanol to remove excess 

stain. Slides were checked under a microscope for staining consistency before 

mounting. 

 

2.6 Standard immunohistochemistry (IHC) protocol 

All immunohistochemical staining was performed using the following protocol unless 

stated otherwise. To minimize staining variability, wherever possible all sections 

stained with each antibody were stained simultaneously. Table 2.3 details the antigen 

retrieval method, buffer, block and antibody concentrations used in each experiment. 

Paraffin-embedded sections were dewaxed rehydrated to water. Antigen retrieval was 

performed using one of the following techniques:  

 For microwave antigen retrieval, sections were simmered in sodium citrate 

solution (diluted in deionized water from a 10x stock solution of 2.94g 

trisodium citrate in 1 litre of distilled water, pH 6) for 11 minutes in the 

microwave. Sections were left in the solution to cool for 20 minutes and 

washed in tap water.  

 For pressure cooker antigen retrieval, sections were immersed in boiling 10mM 

citrate buffer (pH 6) and cooked under pressure for ~8 minutes until pressure 

was reached. Sections were then rinsed in tap water.  

 For formic acid antigen retrieval, sections were dipped in 40% formic acid, then 

immersed in concentrated formic acid (10ml 99% formic acid in 90ml distilled 
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water, pH 2) for 4 hours (in a sealed container in a fume hood). Sections were 

then dipped in 40% formic acid and transferred to running tap water for 10 

minutes. 

After antigen retrieval, endogenous peroxidase activity was quenched using 0.3% 

hydrogen peroxide in buffer for 15 minutes. The buffers used were tris-buffered saline 

with 0.5% Triton-X (TBS-TX, 12g tris and 81g NaCl in 10l distilled water, pH 7.6), or 

phosphate buffered saline with 0.5% Triton-X (PBS-TX, 2.76g NaH2PO4.1H20, 11.36g 

Na2HPO4 anhydrous, 85g NaCl, in 10l distilled water, pH 7.2).  

After three washes in buffer, sections were incubated for 30 minutes at room 

temperature in blocking serum diluted in buffer. Excess solution was removed then 

sections were incubated overnight at 4C with the primary antibody. Sections were 

then washed in three changes of buffer, then incubated with 0.5% secondary antibody 

(biotinylated Universal antibody, Vector Vectastain Universal kit) and 1.5% blocking 

serum (15µl per 1ml TBS-TX) for 30 minutes at room temperature. Sections were 

washed in three changes of buffer then incubated with 20µls Avidin DH (reagent A) 

and 20µls of the paired biotinylated enzyme (Reagent B) from the Vector Vectastain kit 

per 1ml TBS-TX. Sections were washed in three changes of buffer and visualized with 

diaminobenzidine (DAB) for 5 minutes (100mg DAB and 167µl hydrogen peroxide per 

400ml TBS). A pale haematoxylin counterstain was often used to visualize cell nuclei. 

The method used to visualize GFAP differed slightly from this standard protocol, as 

nickel-DAB was used in the final stage. After the final wash in buffer (PBS-TX), sections 

were washed in acetate buffer (3.4g sodium acetate trihydrate per 250ml distilled 

water, to pH 6 with acetic acid). Following this wash, a nickel-DAB solution (2.5g di-

ammonium nickel-sulphate, 100ml acetate buffer, 50mg DAB, 40mg ammonium 

chloride, 200mg beta-D-glucose, 100µl glucose oxidase) was pipetted onto the sections 

and incubated for 10 minutes. Slides were then washed in acetate buffer, before being 

dehydrated, cleared in xylene and mounted.
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Antibody Target 
Manufacturer 
(product code) 

Species 
Concen-
tration 

Antigen 
retrieval 

Block Buffer 

4G8 Amyloid β,  
APP 

Signet 
(9220-10) 

Mouse 
(MAb) 

1:1000 F 1.5% NHS TBS-Tx 

ALDH1L1 Astrocytes eBioscience  
(14-9595) 

Mouse 
(MAb) 

1:500 M 5% NHS PBS-Tx 

AT8 Hyperphos-
phorylated tau 

Autogen Bioclear 
(90206) 

Mouse 
(MAb) 

1:2000 M 1.5% NHS TBS-Tx 

Beclin-1 Autophagic 
vacuoles 

Abgent 
(AM1818a) 

Mouse 
(MAb) 

1:100 M 5% NHS TBS-Tx 

CD68 Microglia Dako 
(M7013) 

Mouse 
(MAb) 

1:400 2xM 1.5% NHS TBS-Tx 

dMBP Degraded 
myelin basic 
protein 

Millipore 
(AB5864) 

Rabbit 
(PAb) 

1:2000 M 1.5% NGS TBS-Tx 

Drebrin Dendritic spine 
protein 

MBL 
(D029-3) 

Mouse 
(MAb) 

1:200 M 1.5% NHS TBS-Tx 

GFAP Reactive 
astrocytes 

Dako  
(Z0334) 

Rabbit 
(PAb) 

1:8000 M 5% NGS PBS-Tx 

LC3 Autophagic 
vacuoles 

Abgent 
(AP1801a) 

Rabbit 
(PAb) 

1:100 M 5% NGS TBS-Tx 

MAP2 Dendrites Sigma  
(M4403) 

Mouse 
(MAb) 

1:2000 M 5% NHS TBS-Tx 

P62 Protein 
aggregates 

BD Transduction 
Laboratories 
(610832) 

Mouse 
(MAb) 

1:600 P 1.5% NHS TBS-Tx 

PSD-95 Post-synaptic 
protein 

Abcam 
(AB 19258) 

Rabbit 
(PAb) 

1:750 M 3% NGS TBS-Tx 

Table 2.3. List of antibodies and methods used for immunohistochemistry. MAb = monoclonal 
antibody; PAb = polyclonal antibody; F = formic acid antigen retrieval; M = microwave antigen 
retrieval; P = pressure cooker antigen retrieval method; NHS = normal horse serum; NGS = 
normal goat serum.  
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2.7 Image analysis 

2.7.1 Image capture  

All analyses were carried out blind to diagnosis. Unless stated otherwise, images were 

captured using a Zeiss Axioplan2 brightfield microscope through x5, x10, x20 or x40 

planar using a Lumenera Infinity 2 digital camera (Lumenera Corporation). Low-power 

images were taken using a Zeiss Axio Scope A1 brightfield microscope through x2.5 N-

Achroplan lenses using a Lumenera Infinity 2 digital camera (Lumenera Corporation). 

All images were white balanced and captured using Infinity Capture software. 

2.7.2 Image Pro analysis  

Images were analysed using Image Pro Plus 6.3 (Media Cybernetics). The area of 

interest was delineated on-screen using the wand tool and the size of the area 

selected was recorded. Histogram based analysis was used to measure the number of 

pixels stained (‘per area’, PA) and intensity of stain (integrated optical density, IOD), as 

determined by the operator when only positive staining was highlighted and 

background was excluded (Figure 2.2). Using the sum of each of the three measures 

further calculations generated the measures reported in this thesis: Percent of the 

area of interest positively stained, ‘Percent area (%PA)’  = Per Area x 100; Mean 

intensity of stain per pixel, ‘Integrated Optical Density (IOD)’ = 255 – (sumIOD/area). 

The mean % PA and IOD were then calculated for each subject from the images taken. 

 

 

 

 

 

 

Figure 2.2. Example screen capture of image analysis using Image Pro. Histogram-based 
segmentation is performed to highlight in red all immunopositive staining.  
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2.7.3 Image Pro analysis of LFB stained sections and myelin index calculations 

10µm thick sections stained using LFB were viewed at 10X magnification. Five images 

were taken of the alveus adjacent to the CA1 and four images were taken of the alveus 

adjacent to the CA2, evenly sampled along the length of the alveus  (Figure 2.3A). An 

image was also taken from the white matter deep to the EC for comparison. An area 

equivalent to 300 x 900 pixels was delineated within the alveus in each image, and 

measurement for %PA and IOD were calculated for the region of interest in image.  

Myelin index was calculated across the alveus using methods described in (Yamamoto 

et al., 2009) and (Ihara et al., 2010). Images of the hippocampus were taken at low 

power using an Epson Perfection V700 Photo duel lens system scanner. A standardized 

area (0.33 x 0.43 pixels) was defined around the hippocampus and captured at 12800 

DPI (dots per inch). The alveus was delineated using the Image Pro wand tool. The 

range of blue stain intensity for each individual section was determined between 0 and 

255 (where 0 = black and 255 = white, as Image Pro is set up for fluorescent analysis). 

This range was divided into four quartiles, and within each quartile the median IOD 

was calculated and multiplied by %PA to generate the myelin index (Figure 2.3B).  

 

 

 

 

 

 

 

 

Figure 2.3 Diagrams demonstrating how images were taken throughout the alveus of LFB/CFV 
stained hippocampal sections. A, Red squares represent individual images taken at 10x 
magnification; B The alveus was delineated as one subfield for myelin index analysis. 
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2.7.4 Astrocyte counts 

Sections were stained using IHC for GFAP and ALDH1L1 to visualize astrocytes. Images 

were captured at 10x magnification and viewed using Image Pro Plus 6.3. A 3x4 grid 

was placed over images, where each square covered an area equivalent to 280µm x 

280µm (78400µm2)(Figure 2.5). Astrocytes within squares covering regions of interest 

were counted provided they did not touch the bottom or left borders of the counting 

grid. Numbers of images and squares analysed within different layers of the 

hippocampus are shown in Table 2.4. The number of grid squares analysed was 

decided based on the size of the region available for analysis in all sections. 

2.7.5 

Table 2.4 Location and numbers of images and grid squares in which astrocyte counts were 
performed. 

CA 
Region CA Layer 

Number 
of 

images 

Number of grid 
squares analyzed 

per image 

Total number of 
squares analyzed 

per layer 

CA1 Alveus 5 2 10 

 Stratum Pyramidal 5 2 10 

 Stratum Radiatum 5 3 15 

CA2 Alveus 1 2 2 

 Stratum Pyramidal 1 2 2 

 Stratum Radiatum 1 2 2 

CA3 Stratum Radiatum 1 2 2 

CA4 Stratum Pyramidal 4 4 16 

Figure 2.5. CA1 Stratum 
pyramidal stained for 
ALDH1L1 with3x4 counting 
grid overlay. Scale bar = 
100µm. 

Figure 2.4. CA1 stratum 
pyramidal stained for 
ALDH1L1 with 3x4 counting  
grid overlay. Scale bar = 
100µm. 
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2.7.5 3D Stereology for neuronal density and volume 

A 3D stereological technique was used to measure neuronal density and volume as 

described in (Gemmell et al., 2012). Three 30µm serial sections from each case were 

stained using CFV. Sections were viewed on a computer screen using a Zeiss Axioplan 

Photomicroscope with a Pixelink PL-B623CF colour digital camera. To define the area 

of interest, sections were viewed through a 2.5x objective lens and the investigator 

delineated CA1/CA2/CA3/CA4/ECV on-screen using stereological analysis software 

(Visiopharm Integration System, Hørsholm, Denmark). CA regions were clearly 

distinguishable based on the distribution and size of pyramidal neurons as described 

previously (Section 1.4.3, p20) and in (Duevernoy, 2005); CA4 neurons were enclosed 

within the v-shaped dentate gyrus (DG), CA3 neurons were larger and extended as a 

broad band of closely packed cells from the ‘mouth’ of the DG, CA2 neurons were in a 

much thinner band of large, densely packed and darkly stained neurons, CA1 neurons 

were in the widest band of more dispersed neurons. The CA1/subiculum border was 

identified when the distribution of neurons appeared more patchy in the straighter 

band of cells towards the entorhinal cortex (Figure 2.1B). Entorhinal cortex layer V 

(ECV) neurons were identified as a thin band of darkly stained large to medium sized 

pyramidal neurons, bordered superficially by a sparse layer as described by Canto et al. 

2008 (Canto et al., 2008). 

A uniform random sampling procedure was applied to select approximately 33 frames 

within the area of interest using a motorised stage (Prior ProScan II; Prior Scientific 

Instruments Ltd, Cambridge, UK) with an accuracy of 1µm. Therefore approximately 

100 frames per region were analysed within the three sections per case. Sections were 

analysed at 100x magnification using an oil immersion objective with a numerical 

aperture of 1.25. Each disector probe had an x-y area of 2548.66µm2 and a z depth of 

18µm, to ensure that a guard volume => 4µm was excluded from analysis at the top 

and bottom of the section. A Heidenhain z-axis microcator (Heidenhain GB Ltd, 

London, UK), accurate to 0.5µm was used to precisely measure disector depth and 

tissue thickness every 10 frames (mean section thickness = 26.3µm).   

Neuron density was calculated using the optical disector method (Sterio, 1984). 

Pyramidal neurons were identified by their characteristic triangular soma, Nissl stained 

cytoplasm and darkly stained single nucleolus (Rajkowska et al., 2005). The following 
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equation was used to calculate neuron density per tissue section, from which a mean 

density per case could be calculated: 

 

The soma of each counted neuron was measured using an independent uniform random 

orientated Nucleator probe (Figure 2.6)(Gundersen and Jensen, 1987), which therefore 

did not take into account the volume of axons or dendrites. Volumes of neurons were 

estimated based on six randomly projected lines from the nucleolus. Approximately 150 

neurons were analysed per subfield per case. A pilot study was performed to ensure that 

the average sampling error reached a satisfactory level demonstrating a high level of 

precision and that the observed variation could be attributed to biological variation. 

Using the Gundersen Jenesn method, the mean coefficient of error (CE) for neuron 

density was calculated to determine the level of sampling (methodological) error 

(Gundersen and Jensen, 1987): 

 

Where I = Neurons counted; Volume = Reference area *(sampling frame density)2 * section 

depth; N = number of frames.  

 

Figure 2.6. A, Diagram depicting the optical disector box within a 30µm thick tissue section; B, 
Representative image of a CA1 pyramidal neuron being measured using the nucleator tool: N 
indicates non-pyramidal neuron; P, pyramidal neuron; G, glial cell. Red and green lines 
delineate the disector frame. Scale bar = 10µm. 

A                                              B 
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2.7.6 3D stereology for dendritic length-density 

A 3D stereological technique was used to calculate the length-density of dendrites in 

the CA1 stratum radiatum. This technique had previously been applied to estimate the 

length-density of the hippocampal microvasculature in CogFAST subjects (Burke et al., 

2013). Fifteen 30µm thick sections were cut from pre-defined paraffin-embedded 

hippocampal blocks. Three sections were then selected from this series at 5 section 

intervals, thus sampling through a total of 450µm of hippocampal tissue. Sections were 

then stained using IHC for MAP2 to visualise dendrites. Sections were viewed using a 

Zeiss Axiolab brightfield microscope and 5x and 100x objectives and a JVC digital 

camera attached to a computer. The area of interest (stratum radiatum) was defined 

at 5x magnification using the Stereologer 2000 software (Stereologer, WV, USA) by 

drawing round the area on-screen. The software applied a stratified-random sampling 

procedure to select ~45 frames within the defined region of interest. Frames were 

viewed at 100x magnification with a numerical aperture of 1.25 under oil immersion.  

A spherical probe 18µm in diameter was used to measure the length-density of 

dendrites. Spherical probes are ideal to estimate the length of anisotrophic structures 

such as dendrites, as spheres are isotropic in three-dimensions (Gokhale, 1990). 

Viewed from above, the probe appeared as a circle of increasing and then decreasing 

diameter as the focal plane was moved through the z-axis. The operator marked 

whenever a dendrite came into focus intersecting the sphere border (Figure 2.7). 

Average section thickness was 23.4µm, ensuring a guard volume =>2µm was excluded 

from analysis at the top and bottom of each section. A pilot study was initially carried 

out to establish that analysing ~45 frames per case gave an acceptable coefficient of 

error demonstrating high level of accuracy (CE = 0.066 ±0.02SE). The software then 

calculated length density (Lv) from the number of dendrites intersecting the probe (ΣQ) 

within the area of the sampling probe (ΣA) using the equation  

Lv = 2(ΣQ/ ΣA) (Mouton, 2002).  
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Figure 2.7. Representative images of the spherical probe used to measure dendritic length 
density. A-C, as the focal plane moved downwards through the z-axis dendrites were 
measured when an in focus dendrite crossed the sphere boundary (red circle). 

 

2.8 Protein analysis in frozen hippocampal tissue 

Analysis of protein levels in frozen hippocampal tissue was carried out using a protein 

immunoblotting technique. Proteins were separated by gel electrophoresis (SDS-PAGE) 

and transferred to a nitrocellulose membrane to allow protein detection by 

immunoprobing with antibodies. This method allowed comparison of protein levels 

between disease groups using frozen tissue which therefore removed the effect of 

tissue processing and fixation. 

2.8.1 Tissue extraction 

Cryostat sections of 20µm and 100µm thickness were cut from frozen hippocampal 

blocks at level 18-20 according to the Newcastle Brain Map and stored at -80C. Each 

20µm section was stained with CFV for visualisation of tissue structure. Frozen sections 

were taken down through decreasing concentrations of alcohol to water (1 minute in 

100%, 95%, 75%, 50% ethanol and 5 minutes in water). Sections were immersed in acid 

alcohol for 5 minutes and incubated in pre-heated CFV solution in acetate buffer at 
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60C for 20 minutes, then left to air dry for 15 minutes. Sections were differentiated in 

95% alcohol for 30 seconds and checked for staining consistency, then dehydrated, 

cleared and mounted. 

Using the CFV stained 20µm section as a visual guide (Figure 2.8), the hippocampus 

was rapidly dissected from two 100µm thick frozen sections and homogenized in 

200µls of ice-cold extraction buffer (50mM Tris-Hcl, 5mM ethylene glycol tetraacetic 

acid (EGTA), 10mM enthylenemide tetra-acetic acid (EDTA), pH 7.4, following 

established method (Kirvell et al., 2010)). The buffer also contained protease and 

phosphatase inhibitors to block endogenous protease and phosphatase activity 

(Thermo Scientific Halt Protease Inhibitor Cocktail product #78430 and Halt 

Phosphatase Inhibitor Cocktail, product #78428). The tissue was then homogenized by 

rapidly repeat pipetting, vortexing and using a Hamilton Gastight 1µl micro-syringe 

until the solution ran smooth. Samples were kept on ice during homogenization. These 

whole homogenate samples were then stored at -20°C. 

2.8.2 DC protein assay 

Protein concentration was determined using the DC (detergent compatible) protein 

assay kit (BioRad). The DC assay is a colorimetric assay based on the Lowry assay 

(Lowry et al., 1951), which has been modified to save time. Six protein standards 

covering the working range of the DC assay were made up using Bovine Serum 

Albumin (BSA) at 0.2, 0.4, 0.5, 0.6, 0.8 and 1mg/ml and stored at -20C between assays. 

Samples were diluted 1:10 and 1:20 times in extraction buffer for the DC assay. 5µl of 

the protein standards and 5µl of each diluted sample were added in triplicate to a 96 

well plate. BioRad DC protein assay solutions A (25µl) and B (200µl) were added 

sequentially to each well and the plate was incubated at room temperature for 15 

minutes. The intensity of the colour was detected colorimetrically by absorption at 

750nM using a FLUOstar Omega plate reader (BMG Labtech). Mean absorbances were 

calculated for standards and samples. A standard curve of absorbance versus 

concentration was constructed from the known standards, allowing determination of 

sample protein concentrations from the equation of the curve. 
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2.8.3 Protein separation by SDS-PAGE 

Proteins in the samples were separated by molecular weight (MW) using SDS-PAGE 

(Sodium Dodecyl Sulphate - Polyacrylamide Gel electrophoresis). Running samples 

were prepared by diluting 100µl of whole homogenate from each sample in 100µl SDS-

mix-DTT  (20%w/v glycerol, 12.5% v/v 1M Tris-Hcl, pH 6.8, 3% w/v SDS (Sodium 

Dodecyl Sulphate), 15.4% w/v Dithiothreitol (DTT) and a few grains of bromophenol 

blue). Reducing agents in this solution denatured the tertiary structure of proteins for 

separation of proteins by electrophoresis. From the calculated concentrations of the 

whole homogenate, samples were diluted further with a 50:50 SDS-mix-DTT: water to 

make running samples with a standardized concentration of 2µg/µl. Samples with 

concentrations already below 2µg/µl were not diluted further, instead the volume 

loaded into the gel was adjusted maintain constant amount of protein loaded. Before 

loading, all running samples were vortexed and microcentrifued to ensure a 

homogeneous mix. 

 

Figure 2.8. Flow diagram depicting stages of frozen tissue extraction (A,B), the protein assay (C) 
and making up running sample (D).WH = whole homogenate; RS = running sample. 

 

Acrylamide gels 10cm long and 1.5mm thick were made according to details in Table 

2.5. To make the plug, 120µl 10% ammonium persulphate (AMPS) and 60µl N,N,NI,NI-

tetramethyl-ethyledediamine (TEMED) were added to 10mls of the main gel solution, 
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which was mixed by inversion and then quickly poured into two casts.  After five 

minutes the plugs were set and excess solution was removed with 3MM paper. To 

make the main gel, 400µl  10% (w/v) AMPS and 40µl  TEMED were added to the 

remaining 40mls of main gel solution and poured into the casts, leaving room for the 

stack and combs. A few ml of water saturated butanol was added to ensure the surface 

set smoothly while the gel was left to set for 15-30 minutes. Once set, water saturated 

butanol was washed off with distilled water, and excess water was removed with 3MM 

paper. The stack was prepared from 3.4mls acrylamide, 2.52mls 1M Tris-HCl pH 6.8, 

200µl  10% SDS and made up to 20mls with water. When ready, 200µl  10% AMPS and 

20µl  TEMED were added to the stack solution, which was quickly poured into the casts 

and 24-well combs were inserted. Gels were left for >30 minutes to completely set. 

Combs were then carefully removed and wells were washed out with distilled water 

before being placed in the running module.  

Gels were run using an upright electrophoresis tank (Complete OmniPAGE Mini Wide 

system, SLS ) at 150V constant in fresh running buffer (16.66g Tris, 144 g glycine, 10g 

SDS, to 2l with distilled water) for 50 minutes or until the blue dye had run into the 

plug. 10µl of pre-stained molecular weight marker (Spectra Multicolor Broad Range 

Protein Ladder, Thermo Scientific) was used to demonstrate the distance moved by 

known molecular weight (MW) protein standards, ranging from 10-260 kDa.  A 

standard mix made from all running samples was also loaded three times per gel to 

assess variation within and between gels. The amount of protein loaded is described 

for individual experiments. 

  6% 8% 10% 12% 

Target protein molecular weight (kDa) 100-300 50-200 20-100 10-50 
Acrylamide (mls) 10 13.3 16.7 20 
2M Tris-HCl pH 8.8 (mls) 9.4 9.4 9.4 9.4 
10% SDS (mls) 0.5 0.5 0.5 0.5 
Water Made up to 50mls 

Table 2.5. Protocol for making two 20 x 10cm acrylamide gels.  

2.8.4 Protein immunoblotting 

Nitrocellulose membranes of 0.45mm thickness  were hydrated in distilled water and 

western blot buffer (5% w/v isopropanol, 0.4M glycine, 2.5mM Tris buffer) for 10 

minutes each. Gels were removed from the SDS-PAGE casts and soaked in western blot 

buffer for 5 minutes. The western blot stack was constructed from layers of; sponge, 
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Whatman 3MM paper soaked in western blot buffer, the gel, the nitrocellulose 

membrane, a second layer of Whatman 3MM paper and sponge. These were 

compressed inside the cassette, which was immersed the transfer tank filled with 

western blot buffer with the gel towards the negative electrodes. The buffer was kept 

cool using a system running 16°C cool water through pipes immersed in the tank. A 

constant current of 350mA was applied for 120 minutes to ensure complete transfer.  

After transfer, membranes were dried on fresh blotting paper and the position of 

molecular weight markers were marked on in permanent pen. The membranes were 

washed in TBS-T for 5 minutes (20mM Tris HCL, pH 7.5, 150mM NaCl, 0.1% w/v Tween 

20). Membranes were then immersed in Ponceau stain for 1 minute (0.5% w/v 

ponceau S, 5% w/v trichloracetic acid), and rinsed in distilled water to check for 

successful protein transfer. The ponceau stain was removed using TBS-T.  

Enhanced chemiluminescent (ECL) assay for protein detection  

Proteins on the nitrocellulose membrane were detected using immunoprobing 

technique. To remove non-specific binding sites the nitrocellulose membrane was 

immersed in 5% w/v non-fat dried milk (Marvel) in TBS-T for 30 minutes at room 

temperature and gently mixed on a platform shaker. The membranes were then 

incubated with the primary antibody in 5% non-fat dried milk on a platform shaker 

overnight at 4C. After six 5 minute washes in 1% non-fat dried milk in TBS-T, 

membranes were incubated for 1 hour with the horse radish peroxidase conjugated 

secondary antibody (1:2000 dilution in 5% non-fat dried milk in TBS-T). The 

membranes were then washed in six 5 minute washes in 1% non-fat dried milk in TBS-

T, with a final wash in TBS-T.  

The membranes were then dried on fresh blotting paper, laid on a glass plate and 

incubated with a chemiluminescent substrate solution for 5 minutes (reagents A and B 

in a 1:1 ratio, Thermo Scientific, SuperSignal West Pico kit). A clear plastic sheet was 

then laid over the membrane to keep it moist. Membranes were imaged using a 

Fujifilm Luminescent Image Analyzer LAS4000 System cooled to -30C. Membranes 

were exposed for varying lengths of time to achieve optimal signal detection for 

analysis.  
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Quantification of protein blots 

The optical density of bands was measured using ImageJ image analysis software. Raw 

data were normalized to the optical density of β-tubulin. The amount of signal 

detected was corrected between gels using the mean value from the standards loaded 

on gels.  Data were expressed as the optical density of the band for each protein 

sample loaded. 

Primary 
antibody 

Target 
Manufacturer 
(Product code) 

Species Concentration 
Secondary 
antibody 

PSD-95 Post-synaptic 
protein 

Abcam 
(AB 19258) 

Rabbit 1:1000 Anti-rabbit 
(1:2000) 

SNAP-25 Pre-synaptic 
vesicles 

Affiniti  
Research 
Products, UK 

Mouse 1:2000 Anti-mouse 
(1:2000) 

SY38 Pre-synaptic 
vesicles 

Cymbus  
(MAB5258-
20UG) 

Mouse 1:2000 Anti-mouse 
(1:2000) 

α/Β-
Tubulin 

Loading  
control 

Cell Signalling 
(2148S) 

Rabbit 1:1000 Anti-rabbit 
(1:2000) 

Table 2.6. List of antibodies and concentrations used for protein immunoblots. Blots were 
incubated with primary antibodies at 4C overnight. 

 

2.9 Baboon model of acute chronic cerebral hypoperfusion 

The non-human primate model (baboons) have comparable vascular and brain 

anatomy, morphology, cellular physiology and biochemistry to the human brain, and 

develop Aβ and tau pathology with ageing, allowing greater insight into 

pathophysiological mechanisms of human brain disorders than rodent models can 

provide.  

Eighteen male olive baboons (Papio anubis) over 10 years old weighing 15-20kg 

underwent permanent three vessel occlusion (3VO) surgery where the left vertebral 

and both internal carotid arteries were ligated under deep anaesthesia (Figure 2.9). 

Animals were left to recover for 1, 3, 7, 14 or 28 days post-surgery before being 

euthanized with ketamine (Baneux et al., 1986).  Three age, weight and sex matched 
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baboons received sham surgery where they were anaesthetised and underwent 

surgery but no vessels were ligated. Sham animals were left for 24 hours to recover 

before being euthanized. Before being euthanized, animals were sedated and perfused 

with 4% buffered paraformaldehyde. The brains were removed and post-fixed in 4% 

buffered paraformaldehyde. The brains were then dissected into blocks, processed and 

embedded in paraffin wax.  

Surgery was performed by Dr. M. Ndung’U at the Institute of Primate Research, 

National Museums of Kenya. Funding for this study was obtained from US and 

Japanese sources, therefore ethical approval was granted through the ethical 

committee at the Institute for Primate Research, Kenyan Museums, Kenya. Permission 

to import and use tissues in the UK was obtained from Defra (Department for 

Environment, Food and Rural Affairs) under a CITES (Convention on International Trade 

in Endangered Species of Wild Fauna and Flora) institutional agreement. Newcastle 

University biological safety officers were fully aware of the importation and use of the 

material in the Institute for Ageing and Health, Newcastle University. 

Ten and 30µm thick sections were cut from paraffin embedded blocks containing the 

hippocampus at level A. 13.5- A.11 according to the Stereotaxic Atlas of the Brain of 

the Baboon (Davis and Huffman, 1968). Sections were cut and stained using the same 

methods as described for human tissue. 

Figure 2.9. A, Papio anubis; B, Diagram showing the sites of ligation for three vessel occlusion 
surgery (3VO). 

A                                    B 
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2.10 Statistical analyses 

Statistical analyses were carried out using SPSS v.19. Before using parametric tests, 

data were checked for normal distribution using the Shapiro-Wilk test and 

homogeneity of variance using Levene’s test.  

Normally distributed data were analysed using the following parametric tests; ANOVA 

with post-hoc Tukey’s to compare group means, Pearson’s correlation to find 

relationships between variables, and paired T-test to compare related means.  

When data were not normally distributed data were analysed using the following non-

parametric tests; Kruskall Wallis and Mann-Whitney tests to compare groups, 

Spearman’s correlation to find relationships between variables (and ordinal variables), 

and Wilcoxon signed rank test to compare related means. Corrections for multiple 

testing were carried out using the Bonferroni adjustment, by dividing the chosen alpha 

level (p < 0.05) by the number of tests carried out, to determine the p value cut-off for 

significance. Interpretation of significance using both cut-off points is discussed. 

Associations between categorical data were analysed using Pearson  χ2 test or Fisher’s 

Exact test with Phi and Cramer’s V. 
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Chapter 3. Neuronal Volume and Density Changes in Post-Stroke and 

Ageing Related Dementias 

 

3.1 Introduction 

Hippocampal atrophy is associated with cognitive impairment in AD, VaD and 

dementia caused by familiar small vessel disease (Bastos-Leite et al., 2007; O'Sullivan 

et al., 2009; Frisoni et al., 2010; Scher et al., 2011). MTL atrophy was also found to be a 

predictor of delayed PSD in stroke survivors from the CogFAST cohort (Firbank et al., 

2007). Historically, the cause of reduced tissue volume and associated cognitive 

impairment was believed to be neurodegeneration. This was based upon studies 

demonstrating reduced neuronal numbers in hippocampal subfields in VaD (Kril et al., 

2002b; Zarow et al., 2008), AD  (Giannakopoulos et al., 1996; Kril et al., 2002b; Rössler 

et al., 2002; Zarow et al., 2005) mixed VaD and AD (Zarow et al., 2005), and animal 

models of ischaemic stroke (Kirino, 1982; Olson and McKeon, 2004). In support of this 

theory, neuron number was shown to be related to hippocampal volume in ageing and 

AD (Kril et al., 2004). Therefore, I reasoned that greater neurodegeneration may 

account for the more severe cognitive decline and structural brain changes in stroke 

survivors who developed delayed PSD compared to those who maintained normal 

cognitive function.  

However, there is growing evidence that neuron loss is not the only factor that 

contributes to brain atrophy and functional decline. Studies into MCI and early 

dementia have found that hippocampal atrophy and cognitive decline develop before 

any significant loss of hippocampal neurons (Apostolova et al., 2010; Leal and Yassa, 

2013). In addition, although hippocampal atrophy is associated with memory 

impairment in AD and normal ageing (Apostolova et al., 2011),  studies have found 

that there is limited neuron loss with age (West et al., 1994; Pakkenberg et al., 2003) 

and neurodegeneration in AD may only make a weak contribution to tissue atrophy 

(Rössler et al., 2002). Furthermore, conflicting reports of CA1 neuron loss in VaD 

suggest other mechanisms contribute to tissue atrophy and cognitive dysfunction in 

CVD (Kril et al., 2002b; Korbo et al., 2004; Zarow et al., 2005). There is now growing 
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interest in changes to neuronal architecture as a possible mechanism causing tissue 

atrophy  and cognitive dysfunction through loss of structural connectivity and neuronal 

dysfunction (Terry et al., 1987; Swaab et al., 1994; Morrison et al., 2002; Freeman et 

al., 2008; Fjell and Walhovd, 2010). Therefore, I also investigated changes to neuronal 

soma volumes as an indicator of neuronal dysfunction, to explore whether changes to 

neuronal morphology were related to post-stroke cognitive impairment. 

3.1.1 Measuring neuronal volume and density using 3D stereology 

Historically, studies of neuron loss and neuronal volumes relied on counting and 

measuring neuronal profiles in thin tissue sections. However, these methods result in 

over-counting of larger neurons whose profiles appeared across several serial sections, 

and neuronal volume estimations were based on assumptions about the shape, size 

and orientation of neurons (Gundersen et al., 1988; Mayhew and Gundersen, 1996). 

To remove this bias, 3D stereology was developed to use thicker tissue sections 

(>30µm), allowing neurons to be viewed as whole particles within the tissue. Neurons 

are then only counted when a unique point within the cell comes into focus (e.g. the 

nucleolus), ensuring each neuron is only counted once. Neuronal volumes are also 

estimated from this standardized central point using the ‘nucleator’ tool (Gundersen et 

al., 1988), (described in detail in section 2.7.5). 3D stereology is now recognized as the 

gold standard technique for quantitatively measuring cell density and size, as it has 

been proven to generate more accurate and consistent results compared to earlier 2D 

methods (West, 1999; Baddeley, 2001; West and Slomanka, 2001; Schmitz and Hof, 

2007).  

 

Figure 3.1. Diagram demonstrating the 
differences between 2D and 3D 
stereological analysis of neuronal 
volumes and densities. The left diagram 
shows how neurons would be viewed 
within a thick tissue section using 3D 
stereology. The right diagram shows how 
2D analysis would result in inaccurate 
area measurements from profiles of each 
neuron, and demonstrates how larger 
neurons would be over-counted using 
this technique (3 neurons, 5 profiles).  
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3.2 Aims 

This study investigated neuronal densities and volumes in hippocampal CA subfields 

and entorhinal cortex layer V (ECV) in stroke survivors from the CogFAST cohort, using 

3D stereological techniques, to determine whether neuronal volume or density 

changes were related to post-stroke cognitive function. Hippocampal neurons in the 

CA subfields are known to be differentially vulnerable to age-associated disease 

processes. Therefore, I also analysed hippocampal neurons in elderly controls, VaD, AD 

and MD subjects to provide insight into the role of different disease processes in 

neuronal changes. 

In addition, neuronal volumes and densities were analysed in a small number of 

younger, cognitively normal controls to investigate the effect of ageing on neuronal 

volumes. Normal ageing is associated with brain atrophy, however 3D stereological 

studies have not found any evidence of neuron loss in healthy ageing, suggesting that 

changes to neuronal morphology and function may contribute to normal age-

associated cognitive decline (West and Slomanka, 2001).  

Neuronal volumes and densities were also measured in a non-human primate 

(baboon) model of chronic cerebral hypoperfusion (described in full in section 2.9, 

page 59), to gain insight into whether there were acute changes to neuronal volume or 

density at different time points after hypoxic injury.   

 

3.3 Methods 

3.3.1 3D stereological analysis of neuronal volumes and densities 

Neuronal volumes and densities were measured using the optical disector and 

nucleator techniques in three 30µm thick hippocampal tissue sections per subject, 

stained using cresyl fast violet (CFV) to view neuronal cell bodies and nucleoli 

(described on page 44).  
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3.3.2 Statistical analyses  

CA1 and CA2 neuronal volume and density data were not normally distributed, and 

were therefore analysed using non-parametric tests; group means were compared 

using the Kruskal-Wallis test and pairwise comparisons were performed using the 

Mann-Whitney U test. CA3 and CA4 neuronal volumes and densities were normally 

distributed and were analysed using one-way ANVOA with post-hoc Tukey’s test. 

Relationships between variables were correlated using Spearman’s rank correlation.  

 

3.4 Results 

3.4.1 Subject demographics 

Subject demographics are presented in Table 3.1. The control group had significantly 

shorter PMD than PSND, PSD, VaD and AD groups, and longer fixation length than the 

PSD and AD groups (p < 0.05). The mixed dementia (MD) group had a significantly 

longer fixation length than PSND and PSD (p < 0.05). However, no relationships were 

found between PMD or fixation length and neuronal volume or density results. 

Coefficient of error values for neuronal volume and density measurements were within 

the acceptable range in all regions, demonstrating a high level of precision: neuronal 

volume in CA1 p = 0.04, CA2 p = 0.02, CA3 p=0.052 and CA4 p=0.073; neuronal density 

in CA1 p = 0.06, CA2 p = 0.002, CA3 p=0.051 and CA4 p=0.07. 
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n 

Age, 
years 

Mean 
(range) 

PMD, hours 

Mean 
(range) 

Fixation 
length, 
weeks 
Mean 

(range) 

Braak 
Stage 

Median 
(range) 

CERAD 
score 

Median 
(range) 

Vascular 
pathology 

Mean 
(range) 

Controls 14 81.1  
(72-92) 

27.9  
(8-67) 

15.8  
(8-67) 

N/A N/A N/A 

PSND 22 84  
(78-94) 

40.4 
(10-96) 

10.2  
(2-32) 

2  
(1-5) 

1  
(0-2) 

12.6  
(7-16) 

PSD 15 87.7  
(80-98) 

41.2 
(10-96) 

8.2 
(4-14) 

3   
(0-6) 

1  
(0-3) 

12.3  
(8-17) 

VaD 13 85.5  
(71-97) 

51.2 
(24-84) 

15  
(4-52) 

2  
(1-4) 

1  
(0-2) 

13.8  
(12-15) 

MD 17 84  
(72-94) 

37.8  
(11-72) 

16.8  
(3-40) 

5  
(4-6) 

3  
(1-3) 

10.4  
(6-14) 

AD 13 83.7  
(70-91) 

39.4 
(5-83) 

8.40 
(2-24) 

5.5  
(4-6) 

3  
(2-3) 

5.5  
(5-6) 

Table 3.1 Subject demographics. PSND = post-stroke non-demented, PSD = delayed post-stroke 
dementia, VaD = vascular dementia, MD = mixed vascular and Alzheimer’s dementia, AD = 
Alzheimer’s disease, PMD = post mortem delay, N/A = information not available for the 
majority of control subjects.  

 

3.4.2 Neuronal density in PSD and ageing-related dementias 

Numerical values for group means and standard deviations are shown in Appendix 

Table 8.1Figure 8.1. CA1 neuronal densities were different between the groups [H (2) 

= 33.2, p < 0.001] (Figure 3.2). Compared to controls, CA1 neuronal density was 

reduced in the PS group (p = 0.025), PSND (p = 0.027), VaD (p = 0.012), MD (p < 0.001), 

and AD groups (p = 0.001). The MD and AD groups had lower neuronal density than 

the PSND group (p < 0.001 and p = 0.015 respectively).  There were no differences in 

CA1 neuronal density between the PSD and PSND groups (p = 0.643). CA2, CA3, CA4 

and ECV neuronal densities were not different between groups. In control subjects, 

neuron densities were greatest in CA2 and ECV > CA1 and CA3 > CA4 (shown in 

Appendix, Figure 8.1). 
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Neuronal densities were positively correlated between CA1 and CA2 (r = 0.311, p = 

0.005), CA1 and CA4 (r = 0.317, p = 0.003), CA1 and ECV (r = 0.247, p = 0.037), CA3 and 

ECV (r = 0.481, p < 0.001). In the post-stroke subjects only, CA3 neuronal densities 

were only correlated with ECV neuronal density (r = 0.503, p = 0.02). There were 

trends to negative correlations between neuronal volume and density in CA3 (r = -

0.373, p = 0.08) and CA4 (r = -0.403, p = 0.051).  
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Figure 3.2. Neuronal densities in CA1-4 and ECV. PSND = post-stroke non-demented, PSD = 
delayed post-stroke dementia, VaD = vascular dementia, MD = mixed vascular and Alzheimer’s 
dementia, AD = Alzheimer’s disease; *indicate difference to controls, + indicate difference 
compared to PSND; p < 0.05. 

 

3.4.3 Neuronal volumes in PSD and ageing-related dementias 

CA1 neuronal volumes were different between the groups [H (5) = 14.1, p = 0.015]. 

CA1 neuronal volumes were reduced in VaD (p = 0.047), mixed dementia (p = 0.039) 
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and AD (p = 0.037) compared to controls. Compared to the PSND group, CA1 neuronal 

volumes were reduced in all dementia groups (PSD p = 0.028, VaD p = 0.026, MD p = 

0.009 and AD p = 0.01).  There were no differences in neuronal volume between the 

PSND group and controls. 

CA2 neuronal volumes were different between the groups [H (5) = 19.1, p = 0.002]. 

CA2 neuronal volumes were reduced in all dementia groups; PSD p = 0.014, VaD p = 

0.021, MD p = 0.003 and AD p = 0.016. Compared to the PSND group, CA2 neuron 

volumes were also reduced in all dementia groups (PSD p = 0.009, MD p = 0.003 and 

AD p = 0.019, and there was a trend to significance with the VaD group (p = 0.08). 

There were no differences between the PSND and controls.  

CA3 neuronal volumes were different between the groups [F (5, 60) = 6.3, p < 0.001]. 

Compared to controls, CA3 neuronal volumes were reduced in PSD (p = 0.065) and MD 

(p < 0.001). Compared to the PSND group, CA3 neuronal volumes were reduced in PSD 

(p = 0.043), MD (p < 0.001). MD CA3 neuronal volumes were also lower than VaD (p = 

0.04). 

CA4 neuronal volumes were different between the groups [F (5, 61) = 9.4, p < 0.001]. 

Compared to controls, CA4 neuronal volumes were reduced in PSD (p < 0.001), MD (p 

< 0.001), AD (p = 0.001), and there was a trend to significance with the VaD group (p = 

0.089). Compared to the PSND group, CA4 neuronal volumes were reduced in PSD (p = 

0.001), MD (p < 0.001), and there was a trend to significance in AD (p = 0.052). MD CA4 

neuronal volumes were also lower than VaD (p = 0.025).  

ECV neuronal volumes were different between the groups [H (5) = 24.2, p < 0.001]. 

Compared to controls and PSND, ECV neuron volumes were reduced in MD (p < 0.001 

and p < 0.001 respectively) and AD (p = 0.007 and p = 0.018 respectively).  MD and AD 

ECV neuronal volumes were also reduced compared to PSD (p =0.002, p = 0.034) and 

VaD (p = 0.001, p = 0.04). MD neuronal volumes were reduced compared to AD (p = 

0.047). 

Neuronal volumes were highly correlated between all regions (Table 8.4).
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Figure 3.3. Neuronal volumes in CA1-4 and ECV. PSND = post-stroke non-demented, PSD = 
delayed post-stroke dementia, VaD = vascular dementia, MD = mixed vascular and Alzheimer’s 
dementia, AD = Alzheimer’s disease; *indicate difference to controls, + indicate difference 
compared to PSND; Red = p < 0.05, blue = p < 0.01. 
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When neuronal volumes were calculated as a percentage of control means they were 

10-28% smaller in the disease groups (Figure 3.4) (values in Appendix Table 8.2). 

Neuronal volumes were positively correlated between all regions (p < 0.05, values in 

Appendix Table 8.4). There were no differences in neuronal volumes or densities 

between male and female subjects in any subfield, or between results obtained from 

the right and left hippocampus. CA2 neuronal volumes were weakly negatively 

correlated with age (r = -0.226, p = 0.019). Control subjects neuronal volumes were 

greatest in CA2 and CA4 > CA3 and CA1 > ECV (shown in Appendix Figure 8.1).  

Figure 3.4. Neuronal volume as a percentage of control means. 

 

3.4.4 Clinicopathological correlations 

CAMCOG scores were positively correlated with neuronal volumes in CA1-4, and 

memory sub-scores were correlated with CA2 neuronal volumes (Figure 3.5)(Table 

3.2). When subjects with total CAMCOG < 40 (and any sub-scores = 0) were excluded 

due to possible inaccurate cognitive test scorings, these correlations remained 

significant at p > 0.05 (all r > 0.3). When subjects with memory sub-scores scores of 0 

were excluded, memory sub-score correlations with CA2 neuronal volumes remained 

significant (r > 0.4, p < 0.02) except learning (r = 0.352, p = 0.052). Neuronal densities 

were not correlated with CAMCOG scores in any region.  



72 
 

CA1 neuron density was negatively correlated with Braak stage and CERAD scores (r = -

0.379, p = 0.002 and r = -0.392, p = 0.001 respectively). CA2, ECV and CA4 neuronal 

volumes were negatively correlated with Braak stage (r = -0.392, p = 0.003; r = -0.395, 

p = 0.004 and r = -0.274, p = 0.036 respectively) and CA2 and ECV volumes were 

negatively correlated with CERAD score (r = -0.261, p = 0.059 and r = -0.419, p = 0.002).  

Global vascular pathology was not correlated with neuronal volumes or densities in 

any region. 

 

 

Figure 3.5. CA2 neuronal volumes were positively correlated with total CAMCOG scores (A) and 
memory sub-scores (B), with subjects with total CAMCOG score < 40 and memory score < 10 
excluded. o = PSD; x = PSND.   
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  CA1 Volume CA2 Volume CA3 Volume CA4 Volume 

CAMCOG total 
R 
p 

0.399,  
0.01 

0.445,  
0.007 

0.526,  
0.012 

0.572,  
0.004 

Memory total 
R 
p 

Ns 
0.481, 
0.006 

Ns Ns 

Recent memory 
R 
p 

Ns 
0.692, 

< 0.001 
Ns Ns 

Remote memory 
R 
p 

Ns 
0.428,  
0.016 

Ns Ns 

Learning 
R 
p 

Ns 
0.352,  
0.052 

Ns Ns 

Table 3.2. Correlations between CA neuronal volumes and CAMCOG scores and sub-scores. Ns 
= not significant. When correlations were corrected for multiple comparisons (20 tests), the 
cut-off for significance was reduced to p < 0.0025. 

 

3.4.5 Neuronal changes in younger versus elderly controls 

Elderly controls were significantly older than younger controls (p < 0.001). There were 

no significant differences in PMD or Fixation length between groups (Table 3.3).  

There were no significant differences in neuronal volume in younger compared to 

elderly controls. CA2 neuronal density was greater in younger controls compared to 

elderly controls (p = 0.009) (Figure 3.6). 

 

 
 

 
n 

Age, years 
Mean (range) 

PMD, hours 
Mean (range) 

Fixation, weeks 
Mean (range) 

Elderly controls 14 
81.1  

(72-92) 
27.9  

(8-67) 
15.8  

(8-67) 

Younger controls 5 
48.8  

(27-59) 
32  

(19-41) 
59.8 

(5-210) 

Table 3.3. Subject demographics in elderly vs. younger controls.  
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Figure 3.6 CA1 and CA2 neuronal densities (A) and volumes (B) in elderly and younger controls. 
Red asterisk indicates significant difference compared to controls. 
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3.4.6 Neuronal changes in a baboon model of acute cerebral hypoperfusion 

Numerical values for mean neuronal volumes and densities are presented in Appendix 

Table 8.5. When neuronal volume measurements from the left and right hemispheres 

were combined, there was a difference in CA1 neuronal volumes between groups (H 

(5) = 13.25, p = 0.021). The sham group had greater CA1 neuronal volumes than the 3 

day (p = 0.041), 7 day (p = 0.026) and 14 day groups (p = 0.004). The 28 day group CA1 

neuronal volumes were greater than 14 day (p = 0.002). 

When results were separated by hemisphere, no statistical analyses were performed 

between groups as there were only three animals per time point, limiting the validity 

and interpretation of statistical analyses. Neuronal volumes were very similar in the 

ipsi- and contra-lateral hemispheres (Figure 3.7 A), and the results indicated that 

neuronal volumes in the CA1 and CA2 were reduced in both hemispheres in the 1 day, 

3 day, 7 day and 14 day groups compared to the sham animals, whereas the 28 day 

group had larger neuronal volumes equivalent to those in the sham group. Mean 

neuronal densities were not different at different time points post-surgery (Appendix 

Figure 8.2 ), although when statistical analyses were performed on the combined 

hemisphere data, CA2 neuronal densities were lower in the 3 day group compared to 

the sham group (p = 0.015). 

Neuronal volumes were also related to data from a previous study using sections from 

the same block, where all neurons within the CA1 were rated as appearing ‘pyknotic’ 

or ‘healthy’ (Figure 3.7 B)(unpublished results). From this, the percentage of pyknotic 

neurons within the CA1 was calculated. CA1 and CA2 neuronal volumes were 

negatively correlated with the percentage of pyknotic neurons (CA1 r = -0.654,  

p < 0.001; CA2 r = -0.465, p = -0.465) (Figure 3.7 C).  
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Figure 3.7. A, CA1 and CA2 Neuronal volumes in a baboon model of cerebral hypoperfusion at 
different survival times post-surgery; 1D = 1 day, 2D = 2 day, 3D = 3 day, 7D = 7 day, 14D = 14 
days, 28D = 28 days post-surgery. Blue circles = left hemisphere (contralateral to surgery), 
green circles = right hemisphere (ipsilateral to surgery); B, Representative images of normal 
CA1 neurons in sham animal (top panel) and pyknotic CA1 neurons in 3 day animal (bottom 
panel), Scale bar = 50µm; C, CA1 neuronal volumes were negatively correlated with % pyknotic 
neurons in CA1 (r = -0.654, p < 0.001).  
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3.5 Discussion 

3.5.1 Reduced neuronal volumes in post-stroke and ageing-related dementias 

Hippocampal neuronal volumes were reduced by 10-20% in the CA subfields of stroke 

survivors who developed delayed PSD compared to PSND subjects, and decreased 

neuronal volumes were related to lower CAMCOG scores in stroke survivors.  These 

results provide novel evidence that decreased neuronal volumes were associated with 

post-stroke cognitive impairment, and suggest that decreased neuronal volumes 

reflect mechanisms contributing to cognitive decline. This finding was supported by 

similar observations in the other types of dementia, where neuronal volumes in CA1, 

CA2 and CA4 were also ~20% reduced in AD, VaD and MD compared to PSND and 

controls.  

In contrast to the neuronal volumes, there were no differences in hippocampal 

neuronal densities between PSND and PSD subjects, although both groups had lower 

CA1 neuron density than controls. This finding was consistent with previous reports of 

CA1 neuron loss after ischaemic stroke; however it was surprising not to find any 

association between lower neuron density and lower CAMCOG scores or PSD, as I had 

reasoned that neuron loss was likely to contribute to the observed MTL atrophy and 

dementia in stroke survivors. Although unexpected, this finding complements the 

neuronal volume results as it implies that differing mechanisms in the surviving 

neurons were important in determining cognitive outcome after stroke.  

It was surprising to find that only CA2 neuronal volumes were related to memory sub-

scores in stroke survivors, as neurons in the CA2 subfield are generally considered to 

be the most resilient to injury. However, the CA2 subfield is also the least well studied, 

and its role in cognitive processing has only recently begun to be understood (Jones 

and McHugh, 2011). Interestingly, a neuroimaging study of early AD found that CA2 

atrophy was more strongly associated with MCI and progression to dementia than CA1 

atrophy (Apostolova et al., 2010). Together these findings suggest an important role 

for CA2 neurons in cognitive function, and my results suggest that reduced neuronal 

volume may be a mechanism relating this sub-regional hippocampal atrophy to 

cognitive impairment in the early stages of dementia.  
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Corrections for multiple testing between the neuronal volume results and cognitive 

scores using the Bonferroni adjustment resulted in only the correlation between CA2 

neuronal volumes and recent memory achieving statistical significance. However, this 

adjustment may be overly strict resulting in increased false-negative results . For this 

reason, and because exploratory studies such as this require a flexible approach for 

design and analysis resulting in large numbers of tests, the use of appropriate multiple 

test adjustments in exploratory studies is difficult and controversial (Thomas, 1998). 

Therefore, it has been suggested that in this kind of study, interpretation of 

‘significant’ results may be considered as exploratory results which would require 

further testing in confirmatory studies to confirm the hypotheses (Bender and Lange, 

2001). Therefore, interpretation of the ‘significance’ of all results should be carefully 

considered. However, in this situation, I believe the risk of dismissing potentially 

important results when using strict multiple test adjustments in exploratory research 

outweighs the implications of reporting a simple coincidence. 

3.5.2 Neuronal volumes and densities in different disease processes 

Braak stages and CERAD scores were negatively correlated with CA1 neuron density, 

but there was no relationship between CA1 neuronal volume and AD pathology. 

Conversely, CA2, CA4 and ECV neuronal volumes were negatively correlated with AD 

pathology, but there was no relationship with neuron density. This is consistent with 

the well documented loss of CA1 neurons in AD and literature suggesting tangle 

burden is related to neuronal death (Zarow et al., 2005). The relationship between AD 

burden and neuronal volumes, but not densities, in the other subfields indicates that 

these neurons were affected by AD processes, but they did not cause neuronal death. 

Reduced neuronal volume may simply reflect damage to neurons caused by disease 

processes, or alternatively they may reflect increased damage to remote susceptible 

neurons which communicate with these neurons (i.e. CA1), resulting in loss of targets 

and deafferentation. This may have caused the retraction of processes and loss of axo-

dendritic arbour from the CA2/CA3/CA4 neurons, which has previously been 

implicated in the cause of neuronal volume loss (Hanks and Flood, 1991; Harrison and 

Eastwood, 2001). 
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There were no relationships between neuronal volumes or densities and ratings of 

CVD burden, which was surprising as neuronal volumes and densities were significantly 

decreased in pathologically confirmed PSD (VaD) and VaD subjects who had no other 

significant neurodegenerative disease pathology. This may therefore reflect limitations 

of the rating system which was not able to detect subtle changes in local vasculature 

which may have had a direct impact on hippocampal neurons. Alternatively, volume 

loss may have developed in neurons that lost inputs from cells that died as a result of 

spatially and temporally distant ischaemic lesions, which would be difficult to relate to 

hippocampal neuronal changes. 

Neuronal volumes and densities were consistently most severely reduced in the MD 

group in all regions analysed, indicating that the presence of multiple disease 

processes exacerbated the mechanisms causing neuronal volume loss. These findings 

therefore suggest a possible mechanism through which coexistence of these 

pathologies can have an additive effect on cognitive decline (Snowdon et al., 1997; 

Pasquier et al., 1998). Furthermore, my findings of reduced neuronal volumes in 

different causes of dementia build on previous research which has found decreased 

neuronal volumes in the hippocampus in AIDS dementia and in the prefrontal cortex in 

late-life depression (Sá et al., 2000; Khundakar et al., 2009). Together, these studies 

suggest that reduced neuronal volumes are associated with cognitive dysfunction 

caused by various different disease aetiologies. 

It was reassuring to find that ECV neuronal volumes were only reduced in MD and AD 

groups compared to controls, as this was consistent with the well-described 

involvement of the entorhinal cortex in AD (Schönheit et al., 2004). The clear 

distinction between the disease groups studied confirmed the robustness of the 3D 

stereological technique as it clearly identified the differential vulnerability of different 

neurons within the hippocampal formation to AD and CVD processes.  

3.5.3 Comparison with previous studies 

CA1 neuronal volumes were 28.3% reduced in AD subjects compared to controls, 

which falls within the range of previous reports in AD (25% - 39%) (Rinne et al., 1987; 

Riudavets et al., 2007). Riudavets et al. found that CA1 neuronal volumes were only 

9.8% reduced in MCI patients compared to controls, suggesting that the degree of 
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neuronal volume loss was related to severity of cognitive impairment, in agreement 

with the findings of negative relationships between CAMCOG scores and neuronal 

volumes in this study. Neuronal volumes in AIDS dementia subjects were found to be 

31% reduced in CA3 and 30% reduced in CA1 compared to controls, without any 

neuron loss (Sá et al., 2000). My results therefore provide further evidence that 

neuronal volume loss can occur in regions without neurodegeneration. 

Only one previous study had investigated neuronal volumes in VaD using 3D 

stereological techniques prior to this study. Zarow et al. found a non-significant (6%) 

reduction in CA1 neuronal volume in AD compared to non-AD subjects, but no 

reduction in neuronal volume in VaD subjects (Zarow et al., 2005). However they 

analysed only six VaD cases, compared to the 15 PSD and 22 PSND subjects in this 

project, which may have limited detection of statistically significant results. 

Furthermore, this study generally found greater differences in neuronal volumes 

between controls and dementia groups. This may have also contributed towards their 

finding of no relationship between neuronal volumes and cognitive function in AD, 

whereas I found neuronal volumes in the CogFAST subjects were positively correlated 

with CAMCOG scores. However, there was an average of 2 years between cognitive 

testing and death in the study by Zarow et al.; compared to just 7.6 months ( ±2SE = 

1.7) in the CogFAST study,  which meant CAMCOG scores from the CogFAST study were 

a more reliable indicator of cognitive status at death, and were more likely to relate to 

the observed neuronal changes.  

Neuron density in the CA1 subfield was reduced in stroke survivors, VaD, MD and AD 

groups, in agreement with previous literature describing loss of CA1 neurons in AD and 

VaD (West et al., 1994; Kril et al., 2002b; Rössler et al., 2002).  

3.5.4 Limitations of neuronal volume and density measurements  

Neuron density was used as a measure of neuron loss because tissue sections were 

only able to be taken from predefined paraffin-embedded blocks with a fixed starting 

point, which prevented the strict sampling procedure necessary to conduct Cavalieri 

calculations and estimate the total cell number within the whole hippocampus using 

the ‘fractionator’ method (Gundersen et al., 1988). Density measures are based on the 

relationship between the numerator (the cell counts) and denominator (the 



81 
 

extracellular matrix), so the effect of differential tissue processing cannot be ruled out. 

However, all sections were processed and handled in a standardized manner allowing 

comparisons to be made between subjects.  

Another possible factor confounding neuronal density results is the influence of tissue 

atrophy (Rössler et al., 2002). All the dementia types studied are associated with MTL 

atrophy. Therefore, if tissue atrophy had influenced results by bringing surviving 

neurons closer together then my findings would have underestimated neuron loss. 

Despite these limitations, my results were consistent with the literature describing 

significant loss of CA1, but not CA2 neurons in VaD and AD (West et al., 1994; Kril et 

al., 2002b). Previous reports of neuron loss in AD have ranged from 12% to 86% 

(Rössler et al., 2002). I found CA1 neuronal densities were 33% reduced in AD (17% 

reduced in both PSND and PSD subjects, 22% reduced in VaD, and 44% reduced in MD) 

which lies near the middle of this range. 

A further potentially confounding variable was variation in the coronal level at which 

sections were cut. As hippocampal tissue is highly sought after, in some situations 

sections had to be taken from more posterior blocks nearer level 20-21 according to 

the Newcastle Brain Map. However, when neuronal density and volume were 

compared in control sections from level 18 and level 21, there was no indication of any 

relationship between neuronal measurements and coronal level. Further studies to 

investigate changes in neuronal volume and density throughout the hippocampus 

would be required to establish the influence of coronal level on neuronal density and 

volume in healthy controls.  

3.5.5 Neuronal volumes in middle-aged and elderly controls  

It was surprising not to find any differences in neuronal volumes between middle-aged 

and elderly controls. I had reasoned that pathological processes of ageing; such as 

accumulation of neurodegenerative and vascular disease pathology and hippocampal 

atrophy, would have resulted in reduced neuronal volumes with age. Additionally, age-

associated neuronal atrophy had previously been reported in aged primates (Smith et 

al., 1999). However, my study was limited as it only sampled a very small and quite 

variable group of ‘younger’ controls, ranging from 27 – 59 years old. To establish 

whether neuronal volumes are affected with increasing age would require a larger 
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study of subjects under 40 years old, ideally without any age-associated 

neurodegenerative pathology. It would be interesting to compare ‘pathology free’ and 

‘normal ageing pathology’ cognitively normal controls at all ages, to explore whether 

age-associated pathology influences neuronal volumes. As elderly subjects can have 

significant Alzheimer’s-type pathology without cognitive decline (Esiri et al., 2001), one 

could postulate that these individuals would maintain neuronal volumes as a 

mechanism to maintain cognitive function.  

3.5.6 Neuronal volumes were reversibly reduced in acute cerebral hypoperfusion 

In the baboon model of acute cerebral hypoperfusion, CA1 and CA2 neuronal volumes 

were reduced from 1 – 14 days after the occlusion surgery, whereas 28 day neuronal 

volumes were similar to sham animals. This suggests that neuronal volumes were 

initially reduced in response to the hypoxic insult, but recovered normal neuronal 

volumes by 28 days. The relationship between the percentage of pyknotic neurons and 

neuronal volume suggested that the reduction in neuronal volume reflected a 

reversible pyknotic change, which was not surprising as one of the criteria for 

identifying pyknotic neurons was a shrunken cytoplasm. Interestingly, there did not 

appear to be any differences in neuronal volumes between the ipsi- and contra-lateral 

hemispheres, indicating that CA1 and CA2 neurons in both hemispheres were affected 

by cerebral hypoperfusion. There did not appear to be any significant loss of CA1 

neurons within this time period.  

Interpretation of these findings was limited due to the lack of statistical analysis and 

small numbers investigated. This model was also not a true model of stroke, so cannot 

be directly related to the long-term changes observed in the CogFAST cohort. Despite 

this, these results provide further evidence that cerebrovascular disease could cause 

neuronal volume loss, and indicate that hippocampal neuronal volume loss occurs as a 

reversible acute response to hypoxia. However, it is not known whether these volume 

changes were associated with cognitive decline, or whether there were long-term 

changes in neuronal volume or density. 
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3.6 Conclusions 

These observations provide novel evidence that reduced hippocampal neuronal 

volumes in CA1-4 were associated with cognitive impairment in post-stroke survivors, 

and were likely to reflect mechanistic changes contributing to cognitive decline. As 

neuronal volumes were also reduced in CA subfields in AD, VaD and mixed dementia, 

this mechanism appears to be involved in cognitive decline in brain disorders with CVD 

and AD. Subjects with mixed dementia had greater neuronal volume and density loss, 

indicating that co-existence of both disease mechanisms exacerbated neuronal 

damage.  

These results also suggest that reduced neuronal volume may be an important cellular 

substrate of hippocampal atrophy observed in neuroimaging studies of these 

disorders, occurring independently to or preceding neurodegeneration.  
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Chapter 4. Neurodegenerative Processes in Stroke Survivors 

4.1 Introduction  

The previous chapter described how reductions in hippocampal neuronal volumes 

were associated with dementia caused by CVD and AD, and that neuronal volumes 

were correlated with post-stroke cognitive function.  As all dementia groups exhibited 

neuron loss and reduced neuronal volumes in the CA1 subfield this suggested that 

dysfunctional and degenerating neurons in this subfield contributed to cognitive 

impairment. Although no significant neuron loss was observed in CA2, CA3 or CA4 in 

dementia subjects, reduced neuronal volumes in these subfields were also associated 

with poorer cognitive function, suggesting that neuronal function in these regions was 

also impaired.  

 

All the dementia subjects studied had CVD or AD which suggests that vascular or 

neurodegenerative disease mechanisms caused these neuronal changes. CA1 neuronal 

densities, and CA2, CA4 and ECV neuronal volumes were related to Braak stage and/or 

CERAD scores, indicating that the burden of AD pathology may have contributed to 

neurodegeneration and neuronal dysfunction in these subjects. However, these 

neuropathological ratings were derived from global assessment of the whole brain, 

and did not reflect subtle differences in local pathological burden within the 

hippocampus. Therefore, the next stage of this project aimed to further elucidate the 

role of neurodegenerative disease mechanisms in the hippocampus in causing 

neuronal volume and density changes and contributing to post-stroke cognitive 

decline. 

4.1.1 Hippocampal Alzheimer’s-type pathology 

I reasoned that AD pathology may be related to neuronal volume loss through the 

pathogenic effects of Aβ and hyperphosphorylated tau on neuronal processes and 

synapses. Neuronal soma shrinkage is thought to reflect a loss of axo-dendritic arbour, 

as neuronal soma size is related to amount of cellular machinery needed to support 

the neuronal processes (Harrison and Eastwood, 2001). Both Aβ plaques and tau 

pathology are associated with damage to neuronal processes and synapse loss. 
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Therefore, the local burden of AD pathology may be related to neuronal soma volume 

loss and cognitive function in the hippocampus through damage to neuronal structural 

and functional connectivity. 

 

Numerous studies have implicated Aβ in synaptic pathology in AD (Parihar and Brewer, 

2010), and synapse loss is the best pathological correlate of cognitive decline in AD 

(Terry et al., 1991). Soluble oligomers of  Aβ  have been shown to have a direct toxic 

effect at synapses (Walsh and Selkoe, 2007), however it is unclear whether Aβ deposits 

are responsible for synapse loss, or whether synaptic changes precede plaque 

formation (Parihar and Brewer, 2010). Under normal conditions, Aβ is thought to be 

released to provide negative feedback at excitatory synapses (Kamenetz et al., 2003). 

Therefore, when levels of Aβ are chronically high in AD, synapses are depressed and 

synaptic plasticity is impaired. Studies of transgenic (APP) mouse models of AD have 

shown that Aβ plaques cause loss of spines and atrophy of nearby dendrites (Tsai et 

al., 2004; Spires et al., 2005). Therefore, greater burden of Aβ pathology in 

hippocampal parenchyma is likely to indicate damaged and disrupted neuronal 

processes, loss of synapses and impaired synaptic plasticity, which may be related to 

decreased neuronal soma volumes and neuronal dysfunction.  

 

As 95% of abnormal tau pathology is found in neuropil threads or dystrophic neurites 

(Mitchell et al., 2000), the burden of hyperphosphorylated tau pathology is directly 

related to damaged neuronal processes. The critical step in tau-mediated 

neurodegeneration is believed to be the initial disruption of the ability of tau to bind to 

and stabilize microtubules, which results in impaired axonal transport and increased 

cytosolic concentration of tau. High concentrations of cytosolic tau then stimulate 

misfolding and formation of tau aggregates (pretangles and paired helical filaments), 

which sequester normal tau and other proteins involved in stabilizing microtubules. 

This further exacerbates the disassembly of microtubules and leads to synapse loss 

and retrograde neurite degeneration (Alonso et al., 1996; Ballatore et al., 2007). Large 

aggregates form NFTs and neuropil threads (NTs) which also act as a physical 

obstruction to neuronal transport, further impairing neuronal function and leading to 

neuronal death. Therefore, the presence of greater numbers of tangles and threads in 
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the neuropil is a sign of greater damage to hippocampal neuronal circuitry, which is 

likely to be reflected in reduced neuronal volumes and neuron loss.  

 

 

 

 

 

Figure 4.1. Diagram of the key mechanisms in cerebrovascular disease, Aβ and tau pathology 
relating to neuronal dysfunction and autophagy.  

 

4.1.2 Dysfunctional autophagy in AD and CVD 

Dysfunctional autophagy has been implicated in AD, ischemia and ageing, and 

autophagy has a role in maintaining neuronal function and morphology. Autophagy 

may influence neuronal soma volume through its role in regulating the morphology of 

neuronal processes and synapses (Xu et al., 2012). For example, autophagy has been 
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shown to be involved in axonal remodelling under normal and excitotoxic conditions 

(Wang et al., 2006). In healthy neurons, AVs form at synapses and carry proteins along 

neurites to be degraded in lysosomes in the soma. If the transport system becomes 

impaired, for example due to development of NTs and microtubule dissociation, this 

leads to swellings and build-up of AVs in axons and dendrites (Nixon, 2007). There is 

considerable evidence that AD is associated with deficiencies in autophagy, with AV 

build-up particularly evident in hippocampal neurons (Nixon and Yang, 2011). In AD 

subjects, accumulated autophagic markers have been shown  to co-localise with tau-

immunopositive dystrophic neurites and NFTs (Ma et al., 2010). Therefore, 

accumulation of AVs in AD is thought to be due to impaired transport and clearance 

(Nixon, 2006; Nixon, 2007), indicative of defects in the autophagic pathway rather than 

upregulated autophagy. The pathological effect of accumulated of AVs in AD is 

exacerbated as AV membranes are thought to be a source of increased Aβ production 

(Yu et al., 2005). Several mechanisms have been implicated in the cause of autophagic 

dysfunction and pathology in AD, including reduced levels of Beclin-1 (Pickford et al., 

2008), autophagy proteins being sequestered by abnormal protein aggregates, 

impaired trafficking and fusion with the lysosome, and impaired autophagolysosomal 

maturation (Levine and Kroemer, 2008).  

 

Another protein which has been suggested to have a pathogenic role in autophagy 

dysfunction and Alzheimer’s disease is P62, a regulatory protein involved in protein 

homeostasis (Salminen et al., 2012). P62 binds directly to LC3 and can target organelles 

for autophagic degradation, and has a role in regulating the degradation of 

ubiquitinated tau (Ramesh Babu et al., 2008). A recent study  has shown that increased 

levels of LC3 and P62 in hippocampal neurons and neuronal processes were associated 

with memory impairments in aged mice (Soontornniyomkij et al., 2012), providing 

further evidence for a relationship between autophagy dysfunction and 

neurodegeneration in ageing and cognitive decline. Studies also indicate that P62 has a 

role in synaptic plasticity, as P62 knock-out mice have significantly reduced levels of 

pre-synaptic protein synaptophysin, develop NFTs, and exhibit memory impairment 

after six months (Ramesh Babu et al., 2008). Another study has shown that P62 is 

involved in surface translocation of receptors in hippocampal synaptic plasticity (Jiang 
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et al., 2009). However, it is not known whether the pathological involvement of P62 in 

autophagic and neuronal dysfunction is only related to AD processes, or whether it is 

also involved in pathogenesis of CVD-mediated neurodegeneration.   

Autophagy in CVD  

Although there have been numerous recent studies of autophagy in AD, there are 

fewer studies of autophagy in relation to CVD and no previous studies in post-stroke 

dementia. Despite the relative lack of studies of autophagy in CVD, there is growing 

evidence that autophagy is enhanced following cerebral ischemia, and is stimulated in 

response to energy deficits, hypoxia, endoplasmic reticulum stress and oxidative stress 

(Xu et al., 2012). Cell culture studies have shown that cells lose mass by autophagy 

when subjected to prolonged glucose, oxygen and growth factor withdrawal, and then 

fully recover when they were returned to optimal conditions (Lum et al., 2005; Levine 

and Kroemer, 2008). As CVD causes similar conditions by restricting blood supply to 

neurons, autophagy could be a mechanism contributing to reduced neuronal volume 

in dementia. A study using a rat two vessel occlusion (2-VO) model of transient 

forebrain ischemia found a pathological increase in autophagic vacuoles in 

hippocampal neurons after ischemia, and suggested that the resultant accumulation of 

proteins could be a possible cause multiple organelle damage and delayed neuronal 

death (Liu et al., 2010). This suggests that hippocampal neurons are particularly 

susceptible to autophagic dysfunction in ischemia, and supports my hypothesis that 

autophagy may contribute to neuronal changes in stroke survivors and VaD. 

Autophagic dysfunction in hippocampal neurons during cerebral ischemia has also 

been reported in models of neonatal hypoxia-ischemia, where levels of LC3-II and 

Beclin-1 were increased (Zhu et al., 2005; Carloni et al., 2008; Xu et al., 2012). 

Increased Beclin-1 was also reported in the penumbra of a rat MCAO model, although 

not all Beclin-1 upregulating cells also showed increases in LC3 (Rami et al., 2008). 

However, interpretation of these results is difficult as it is unclear whether an increase 

or decrease in autophagy markers reflects mechanisms contributing to cell death or 

survival. Studies have suggested that the role of autophagy in neurodegeneration after 

ischemia is likely to depend on the brain region affected, maturity, severity of ischemia 

and timing of therapeutic interventions (Xu et al., 2012). 
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4.2 Aims 

This study compared the burden of amyloid-β and hyperphosphorylated tau pathology 

in the hippocampus of stroke survivors, controls, VaD and AD subjects, to determine 

whether AD processes were related to neuronal morphological and density changes in 

non-demented and demented stroke survivors, VaD, MD and AD subjects.  

Although the role of autophagy dysfunction in AD is becoming well studied, fewer 

studies have investigated the role of autophagy in cerebrovascular disease. As 

autophagy is involved in regulating neuronal morphology, is implicated in ageing and 

the pathogenesis of AD, and is altered after ischemia, levels of autophagy proteins LC3, 

Beclin-1 and P62 were investigated to explore dysfunctional autophagy as a possible 

mechanism causing neuronal soma shrinkage and cognitive impairment in post-stroke 

dementia. This study compared changes to CA1 and CA2 neurons as they are 

differentially vulnerable to neurodegenerative disease processes.  

 

4.3 Materials and methods  

4.3.1 IHC and image analysis  

Immunohistochemical staining for AT8, 4G8, LC3, Beclin-1 and P62 was carried out 

according to the protocol described in section 2.6 (Table 2.3). The antibody to LC3 

recognised both LC3-I and LC3-II. Image analysis of  LC3, Beclin-1 and P62 

immunostaining was carried out using Image Pro as described in section 2.7.2 (page 

48), generating values for percent per area (%PA) stained and mean integrated optical 

density (IOD, stain intensity). Images were taken at 10X magnification with a numerical 

aperture 0.3. Six images of the CA1 were taken where possible, evenly distributed 

across the proximal-distal axis. The whole CA2 subfield was imaged. 

4.3.2 Semi-quantitative rating of hippocampal Aβ pathology 

A parallel study had previously quantified burden of hippocampal AD pathology in 

CogFAST subjects using image analysis techniques (unpublished data). Therefore, I 

used established semi-quantitative methods to quickly rate hippocampal AD 

pathological burden.  
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The burden of Aβ pathology was rated in sections stained using the 4G8 antibody, 

using a 0-4 scoring system described by (Thal et al., 2006) (Figure 4.2 A). This method 

involved rating and characterising the development of Aβ in the MTL, which mirrors 

the  development of Aβ pathology throughout the brain (Thal et al., 2006). This system 

took into account the type of amyloid pathology, location and total amount of Aβ: 

 Neuritic plaques were rated in layers III and V of the neocortex, the EC, 

pyramidal layers of the hippocampus and subiculum, and molecular layer of the 

dentate gyrus. 

 Fleecy amyloid was rated in the inner layers of the EC, the CA1 and subiculum. 

 Band-like amyloid was rated in the subpial temporal and entorhinal molecular 

layers. 

Whilst applying these criteria it became clear that within each phase, particularly 3 and 

4, there was a great deal of variation in the burden of Aβ deposition. Therefore, I 

further sub-divided each phase to generate an intuitive 12 stage rating system, 

allowing more sensitive detection of differences between cases whilst maintaining 

quick and easy rating of pathology (Figure 4.2 B). Representative images of Aβ 

pathology at each stage are shown in Figure 4.3...  

4.3.3 Semi-quantitative rating of hippocampal tau pathology 

Hyperphosphorylated tau pathology was semi-quantitatively rated in sections stained 

for AT8 using criteria described in (Lace et al., 2009) (Error! Reference source not 

found.). Ratings were based on a 0-3 scale (none, mild, moderate, severe) in the DG, 

CA4, CA3, CA2, CA1, subiculum, EC and transentorhinal cortex, taking into account: 

 Tau positive neuropil threads 

 Tau positive neurons (tangles and pretangles) 

 Neuritic plaques 

 White matter neuropil threads 

4.3.4 Statistical analyses 

Ordinal data (AD pathology ratings) were compared using Mann-Whitney U test and 

Spearman’s rank correlation. LC3 and Beclin-1 data were normally distributed whereas 
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P62 data did not follow a normal distribution. Data were therefore analysed using 

parametric and non-parametric tests as described in section 2.10 (page 61). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thal Stage Modified Thal Stage Amyloid deposits in: 

1 1 Temporal cortex 

2 2 EC (fleecy in inner layers) and subiculum 

 3 CA1 and more in subiculum & EC 

3 4 Increasing density of deposits in: 

 5 • Molecular layer of DG 

 6 • White matter 

 7 • CA1 to temporal cortex 

4 8 Increasing density of deposits in: 

 9 • CA4 

 10 • White matter 

 11 • EC 

Figure 4.2 Thal staging (Thal et al., 2006) of amyloid β and criteria for modified Thal Stages. 
EC = entorhinal cortex, DG = dentate gyrus.  

 



92 
 

 

 

 

 

 

 

Fi
gu

re
 4

.3
. R

ep
re

se
n

ta
ti

ve
 

im
ag

es
 o

f 
h

ip
p

o
ca

m
p

al
 A

β
 

p
at

h
o

lo
gy

 s
ta

in
ed

 u
si

n
g 

4
G

8
, 

ta
ke

n
 a

t 
2

.5
x 

m
ag

n
if

ic
at

io
n

. 
Th

al
 s

ta
ge

s 
ar

e 
n

u
m

b
er

ed
 1

-4
 

in
 w

h
it

e,
 m

o
d

if
ie

d
 T

h
al

 s
ta

ge
s 

ar
e 

n
u

m
b

er
ed

 1
-1

1
 in

 b
la

ck
. 



93 
 

4.4 Results 

4.4.1 AD pathology 

Demographics of subjects analysed are shown in Table 4.1. Fixation length was 

significantly different between groups [F = 2.96 (5, 66) p = 0.018], and the MD group 

had longer fixation length than PSD (p = 0.015). There were no correlations between 

AD pathological burden and age, PMD or fixation length.  

 

Group n Age, years 
(range) 

PMD, hours 
(range) 

Fixation, weeks 
(range) 

Controls 11 80.1 (72-91) 21.3 (14-24) 14 (8-20) 

PSND 22 83.5 (78-94) 48.3 (24-96) 11.3 (2-32) 

PSD 13 87.3 (80-98) 45.4 (10-96) 7.2 (4-12) 

VaD 16 86.9 (76-97) 43.3 (24-63) 9.1 (4-16) 

MD 13 85.9 (72-94) 43.3 (24-63) 16.6 (3-40) 

AD 13 83.3 (70-91) 56 (24-72) 9 (6-20) 

Table 4.1 Demographics of subjects studied for Aβ and tau pathology. Slightly fewer subjects 
were analysed for tau pathology (Controls n = 10, PSND n = 19, PSD n = 10, VaD n = 13, MD n = 
13, AD n = 11).  

 

AD and mixed dementia groups had greater pathological burden of Aβ and tau than all 

other groups using Thal staging, modified Thal staging and Tau staging (p < 0.05). Tau 

pathological burden was not different between PSND and PSD groups, and they were 

not different to elderly controls or VaD.  However, it was interesting to find that the 

PSD group had significantly lower Aβ burden than PSND subjects and controls (Figure 

4.4). Frequency tables for rating of amyloid and tau pathology are presented in 

Appendix Table 8.6. 

The different methods used to quantify the burden Aβ and tau pathology were highly 

correlated (Table 4.2). There were no correlations between AD pathological burden 

and CAMCOG scores, age, PMD or fixation length.  

Modified Thal staging of Aβ pathology was negatively correlated with CA1 neuron 

density (r = -0.607, p = 0.005) and ECV neuron volume (r = -0.55, p = 0.018). There 
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were trends to negative correlations between Thal stage and CA1 neuron density (r = -

0.419, p = 0.083) and CA4 neuron density (r = -0.434, p = 0.07).  Tau stage was weakly 

negatively correlated with CA1 neuron density (r = -0.325, p = 0.007), and neuron 

volume in CA4 (r = -0.36, p = 0.011), CA2 (r = -0.339, p = 0.007) and ECV (r = - 0.496, p = 

0.002). 

 

    
Lace Stage 

(tau) 
Thal Stage 

(Aβ) 
Modified Thal 

Stage (Aβ) 
Braak Stage 

(tau) 

Thal Stage 
 

R .607 

NA   P .028 
  Modified Thal  R .702 .903 

NA  P .005 <.001 
 Braak Stage 

 
R .872 .770 .797 

NA P <.001 <.001 <.001 
CERAD score R .664 .813 .873 .702 

p .013 <.001 <.001 <.001 

Table 4.2. Correlations between different methods used to rate Alzheimer type pathology. Pale 
blue indicates p < 0.05, dark blue indicates p < 0.01. 

 

  

Figure 4.4. Box plots of semi-quantitative ratings of Aβ (A) and hyperphosphorylated tau 
staining (B) in the CA1. Red lines show differences between groups (Mann-Whitney U test 
p<0.05).  

 

PSD subjects pathologically classified as ‘mixed dementia’ had modified Thal stages 

between 1-6 (1, 3, 4, 4, 6), whereas PSD subjects classified as ‘VaD’ were between 0-2 

A               B 
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(0, 0, 1, 1, 1, 1, 2, 2). The MD group generally had much higher modified Thal stages 

than the PSD ‘MD’ (2, 5, 6, 6, 7, 8, 8, 9 9, 9, 11, 11, 11), indicating that the PSD MD 

subjects did not have equivalent levels of amyloid deposition in the hippocampus as 

the stroke-free MD subjects.  

It was also interesting to observe that Braak staging did not always reflect burden of 

hippocampal tau pathology, demonstrated in Figure 4.5 where a PSND subject with 

Braak stage 1 had greater number of tau immunopositive neurons and neurites than a 

PSND subject with Braak stage 5.  

 

 

 

Figure 4.5. Representative images demonstrating the variability of AT8-positive staining in the 
CA1 in subjects with different Braak scores. A = PSND, Braak stage 1; B = PSND, Braak stage 5, 
C = PSD, Braak stage 3; D = AD, Braak stage =6.Scale bar = 50um. 
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4.4.2 Autophagy markers 

Group demographics for subjects analysed using LC3 and Beclin-1 are shown in Table 

4.3, and P62 in Table 4.4. There were no significant differences in age, PMD or fixation 

length between groups studied for LC3, Beclin-1 or P62 analysis.  

 

Group 
n Age, years 

Mean (range) 
PMD, hours 

Mean (range) 
Fixation, weeks 
Mean (range) 

Controls 8 82.4 (74-94) 34 (15-67) 9 (1-16) 

PSND 8 83.1 (78-89) 32 (11-48) 3(2-5) 

PSD 8 84 (80-89) 47 (10-81) 3 (2-5) 

AD 6 81 (70-91) 35 (6-72) 8 (5-20) 

Table 4.3 Demographics of subjects investigated using LC3 and Beclin-1.  

 

Table 4.4. Demographics of subjects investigated using P62.  

 

There were no significant differences in LC3 or Beclin-1 %PA or IOD between groups in 

CA1 or CA2 (Figure 4.6 A and B). Numerical values of mean IOD and %PA are presented 

in Appendix Table 8.7. P62 CA1 %PA was significantly different across all groups [H (3) 

= 7.934, p = 0.047] (Figure 4.6 C). The AD group had significantly greater P62 CA1 %PA 

than controls (p = 0.012) and trends to greater %PA compared to PSND (p = 0.081) and 

PSD (p = 0.094). However, when one outlier in the AD group was removed, these 

differences were no longer significant (p = 0.093). CA2 P62 mean IOD was also 

significantly different across all groups [H (3) = 5.04, p = 0.007]. AD had significantly 

greater CA2 IOD than PSND and PSD (p = 0.021 and p = 0.007 respectively). When the 

PSD group was divided based upon pathological diagnosis, there was a trend to PSD 

(MD) subjects having higher CA2 mean IOD than PSD (VaD) (p = 0.072).  

Group n 
Age, years 

Mean (range) 
PMD, hours 

Mean (range) 
Fixation, weeks 
Mean (range) 

Controls 6 82.4 (74-94) 34 (15-67) 10 (6-16) 

PSND 6 83.4 (78-89) 37 (11-76) 9 (3-20) 

PSD 10 84.1 (76-93) 42 (10-81) 9 (2-26) 

AD 7 82.4 (70-91) 40 (6-72) 9 (6-20) 
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Figure 4.6. Box plots showing CA1 % Per Area and Mean IOD results for A, LC3; B, Beclin-1; C, 
P62. Red lines indicate significant differences p < 0.05, dashed lines indicated p < 0.1. 
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4.4.3 Correlations between autophagy markers 

Correlations between the three autophagy proteins were investigated as I 

hypothesised that subjects with dysfunctional autophagy would have accumulation of 

all three markers. There were strong positive correlations between CA1 and CA2 LC3 

%PA and IOD measurements, which remained significant after correction for multiple 

testing. Beclin-1 IOD in CA1 and CA2 also remained significantly correlated after 

adjustment. P62 staining was less well correlated with the markers of autophagy, and 

not well correlated between and within subfields (Table 1.1 Comparison of the 

development and distribution of Amyloid-β and tau pathology in AD. *  = from (Thal et al., 

2002), ** = from (Braak and Braak, 1991).  

 

).  

 

 

 

Table 4.5. Correlations between LC3, Beclin-1 and P62 image analysis results. Light grey 
highlights correlations significant at p < 0.05. Dark grey highlight correlations that remained 
significant after correcting for multiple testing (p < 0.00074).  

Dark blue highlights p < 0.01, mid blue highlights p < 0.05, pale blue highlights trends p < 0.1. 
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4.4.4  Clinicopathological correlations 

P62 CA1 IOD was negatively correlated with modified Thal score (r = -0.651, p = 0.03) 

and there was a trend to a positive correlation with Tau stage (Lace) (r = 0.581, p = 

0.078). When the outlier in the AD group was removed, P62 CA1 IOD was positively 

correlated with Tau stage (r = 0.621, p = 0.006) and CERAD score (r = 0.513, p = 0.004).  

P62 CA2 IOD was correlated with Braak stage (r = 0.496, p = 0.022), and there were 

trends to significant correlations with CERAD score (r = 0.418, p = 0.067), and modified 

Thal score (r = 0.639, p = 0.064). LC3 CA2 IOD was negatively correlated with CERAD 

score (r = -0.444, p = 0.038), and modified Thal score (r = -0.651, p = 0.03) and there 

was a trend to negative correlation with tau stage (r = -0.589, p = 0.073). There were 

no correlations between Beclin-1 and AD pathology. 

Global vascular pathology scores were negatively correlated with Beclin-1 CA1 IOD (r = 

-0.849, p = 0.004) and there was a trend with P62 CA2 %PA (r = -0.721, p = 0.068). LC3 

CA1 IOD was positively correlated with vascular pathology scores (r = 0.689, p = 0.04). 

CAMCOG scores were negatively correlated with LC3 CA1 IOD (r = -0.715, p = 0.03) and 

memory scores were negatively correlated with LC3 CA1 %PA (r = -0.528, p = 0.052), 

and there was a trend with P62 CA1 IOD (r = -0.621, 0 = 0.074). There were no 

correlations between autophagy markers and age or fixation, however PMD was 

positively correlated with LC3 IOD in CA1 and CA2 (r = 0.398, p = 0.044 and r = 0.569, p 

= 0.004 respectively). 

 

4.5 Discussion 

4.5.1 Hippocampal AD pathology 

As expected, hippocampal Alzheimer’s pathological burden was highest in the AD and 

MD groups. However, it was surprising to find that the PSD group had significantly 

lower amyloid-β pathology than PSND and control groups, and that amyloid-β and tau 

pathology were not related to post-stroke cognitive impairment. This may be because 

stroke survivors with significant pre-existing AD pathology were less likely to be 

included in the CogFAST study, as they were less likely to recover full cognitive function 

after stroke. The higher mean amyloid burden in PSND group may reflect better 
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recovery or compensatory mechanisms in response to the ischaemic insult and AD 

processes, which was also reflected in greater neuronal volumes.  

 

The use of the modified Thal staging of Aβ pathology allowed identification of further 

relationships between Alzheimer’s type lesions and neuronal volume and CA1 

neuronal density changes. A parallel study recently quantified Aβ pathology within 

hippocampal subfields using image analysis techniques, and also found that the PSND 

group had greater Aβ pathology than PSD group (unpublished results). This therefore 

validated the modified Thal staging system as a quick and easy rating scale sensitive 

enough to detect subtle differences in hippocampal pathology between subjects, 

unlike the simpler four-stage Thal or CERAD scores.  

 

It was interesting to find that the PSD subjects pathologically diagnosed as MD did not 

have as great Aβ pathology as the stroke-free MD group using the modified Thal 

scores. Again, this may be because stroke survivors with severe pre-existing AD 

pathology were unlikely to have recovered normal cognitive function after the 

additional insult of ischaemic stroke. Furthermore, AD processes are insidious and 

develop over many years. If AD processes were triggered by ischemia, yet the mean 

survival time post-stroke was 6.72 years (Allan et al., 2011), this may not have been 

long enough to develop late-stage AD pathology in the hippocampus. 

 

There were no differences in the burden of tau pathology between post-stroke, VaD or 

control subjects, although tau stage was related to CA1 neuronal density and neuronal 

volumes in CA2, CA4 and ECV. Therefore, Lace et al.’s method of rating hippocampal 

tau burden was successful in identifying relationships between neuronal densities and 

volumes with AD pathology. The finding that tau pathology, but not amyloid burden, 

was related to CA1 neuron density was in agreement with previous literature relating 

tau pathology and CA1 neuronal death (Gómez-Isla et al., 1997). The finding that 

greater tau burden was associated with reduced neuronal volumes may reflect tau-

mediated degeneration of neurites in support of the hypothesis that reduced neuronal 

soma volume reflects reductions in axo-dendritic arbour. 
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All methods of rating AD pathological burden were positively correlated, confirming 

consistent rating of lesion burden and supporting current understanding of the 

relationship between development of tau and Aβ pathology through the brain in AD. 

However, it was interesting to find several subjects where the burden of hippocampal 

tau pathology was not directly related to the overall tau pathology burden according 

to Braak stages (Figure 4.5).This supports the importance of determining local burden 

of Alzheimer’s type pathology in relation to local neuronal changes, and may indicate 

that those subjects had a different pattern of development of tau pathology across the 

brain. 

 

Taken together, these results suggested that Alzheimer type pathology was not the 

most important factor contributing to post-stroke cognitive decline and hippocampal 

dysfunction in this cohort, as the PSND subjects had a greater burden of Aβ pathology 

than PSD subjects, and there was no difference in severity of tau pathology. This also 

provides further evidence in support of the discrepancies between Aβ pathology and 

cognition (Terry et al., 1991; Braak and Braak, 1996). The finding that tau pathology 

was correlated with CA1 neuron loss and CA2/3/4 neuronal volumes suggests a 

potential role for tau-mediated neurodegeneration as a mechanism causing neuronal 

volume loss in post-stroke and ageing-related dementia.  

4.5.2 Autophagy markers 

There were no differences in LC3 or Beclin-1 %PA or mean IOD in CA1 or CA2 between 

any of the groups studied. This was surprising as levels of autophagy markers had 

previously been shown to accumulate in AD (Nixon, 2007; Ma et al., 2010). However, 

ageing, AD and hypoxic/ischaemic may stimulate differing autophagic responses or 

dysfunction, for example ageing is associated with decreased autophagy proteins, 

while early AD (but not late AD) is associated with an increase, and hypoxic response is 

associated with upregulated autophagy. Therefore, in this group of elderly subjects 

with mixed pathologies, the net effect may be difficult to relate to one degenerative 

process. 

This complexity was reflected in the conflicting clinicopathological correlations with 

LC3 and Beclin-1. CA2 LC3 IOD was inversely associated with AD pathological burden, 
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in agreement with previous studies demonstrating that the accumulation of 

autophagic markers is highest earlier in AD (Ma et al., 2010). However, Beclin-1 levels 

were not associated with AD pathology, and there were conflicting correlations 

between LC3 and Beclin-1 levels and global CVD burden; increased LC3 CA1 IOD but 

decreased Beclin-1 CA1 IOD were associated with greater burden of CVD lesions. 

Furthermore, there were surprisingly few correlations between autophagy markers, as 

I had hypothesised that dysfunctional autophagy would result in increased levels of all 

autophagy markers. This suggests that there may have been differential effects at 

different stages of the autophagy pathway. As LC3 and Beclin-1 are involved in the 

early stages of autophagy, it remains unclear whether autophagy was upregulated or 

impaired in relation to CVD processes in these dementia subjects. Furthermore, the 

correlations between LC3 IOD and PMD suggests that LC3 may have had been affected 

during cell death processes, which should be taken into consideration when 

attempting to draw conclusions from these results.  

An additional factor that made these results difficult to interpret was the loss of 

neurons in CA1. As subjects in the disease groups had significantly reduced CA1 

neuronal density, autophagy marker %PA measurements could appear reduced even if 

they were actually present in a high proportion of the surviving neurons. A previous 

study has suggested that autophagy markers build up in neurons targeted for 

neurodegeneration (Ma et al., 2010), implying that surviving neurons have non-

impaired autophagy and therefore low levels of autophagy markers. This may be one 

reason why few differences or correlations were found with %PA results, as neurons 

with pathological autophagy dysfunction may have already been lost. 

P62 levels were related to AD pathology but not cerebrovascular disease. The AD 

group had greater P62 %PA in CA1 and IOD in CA2 than the other groups studied, and 

P62 levels were related tau stages, modified Thal scores and CERAD scores in the CA1 

and CA2. However, greater burden of Aβ pathology was associated with more intense 

P62 staining in CA2, but less intense P62 staining in CA1. This apparent disparity may 

be due to more severe AD pathology causing neurodegeneration in CA1 but not CA2. 

Greater burden of AD processes would result in loss of severely impaired neurons in 

CA1 and therefore loss of intense P62 staining, whereas CA2 neurons appear to resist 

neurodegeneration, despite development of intracellular NFT and P62 aggregates.  
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PSD cases pathologically diagnosed as MD had greater P62 IOD than PSD-VaD subjects. 

Together with the finding of greater intensity of P62 staining in AD subjects this 

support previous studies which have found that P62 is robustly present in tau 

aggregates (Kuusisto et al., 2002; Salminen et al., 2012). Although in most subjects P62 

staining was restricted to intense cytoplasmic staining, some AD cases also had thread-

like positive staining in the neuropil (Appendix Figure 8.3). Furthermore, some subjects 

had darkly stained extracellular circular structures similar to those seen in argyrophilic 

grain disease (Scott and Lowe, 2007). This wasn’t limited to cases with AD or mixed 

dementia, as it was also observed in two controls (Braak 3 and 2), one PSND (Braak 1), 

and three PSD subjects (two MD and one VaD), suggesting different disease 

mechanisms may also be involved in these subjects. 

4.6 Conclusions 

These results suggest that Alzheimer’s type pathology was not the most important 

disease mechanism contributing to post-stroke cognitive decline in this cohort, as 

although there were no differences in tau pathology burden, PSND subjects had 

greater Aβ pathology than PSD. Investigation of autophagy as a potential mechanism 

relating disease pathology to neuronal volume and density changes yielded 

contradictory results that were difficult to interpret. In agreement with previous 

studies, LC3 was higher in early stages of AD, however the relationship between LC3, 

Beclin-1 and vascular lesions appears to be complex. P62 was associated with AD 

pathology, but not necessarily related to markers of autophagy LC3 or Beclin-1. 

Determining the role of autophagy in CVD will require strictly controlled experiments 

without effects of other neurodegenerative or cellular stress mechanisms such as post-

mortem delay which may influence up- or down-regulation of autophagy markers. 
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Chapter 5. Hippocampal Dendritic Changes in Post-Stroke and Ageing-

Related Dementias 

5.1 Introduction 

Neuronal soma volume is thought to reflect the amount of cellular machinery needed 

to support the axonal and dendritic arbour (Harrison and Eastwood, 2001).  I therefore 

hypothesised that the observed decreases in neuronal soma volumes in post-stroke 

and ageing related dementia were associated with a loss of or reduced complexity of 

dendritic arbour. Other studies have previously suggested that reduced neuronal soma 

volume is related to dendrite loss and tissue atrophy even without neuron loss 

(Selemon and Goldman-Rakic, 1999). This ‘reduced neuropil hypothesis’ proposed that 

cortical tissue atrophy in schizophrenia was caused by shrinkage of neuronal soma 

volumes and interneuronal space, as studies had reported neuronal soma volume loss 

(Rajkowska et al., 1998) and dendritic spine loss in association with thinning of the 

prefrontal cortex (Selemon and Goldman-Rakic, 1999).  As PSD subjects in the CogFAST 

study were found to have greater MTL atrophy and smaller hippocampal neuronal 

volumes than PSND (Firbank et al., 2007), I reasoned that dendritic arbour and synapse 

loss may have contributed to neuronal volume reductions and cognitive impairment 

after stroke.  

5.1.1 Dendrites and dendritic spines 

Dendrites are the major site of neuronal excitatory inputs and make thousands of 

dynamic connections with other neurons. Dendrites of hippocampal pyramidal 

neurons contain numerous characteristic small protrusions called dendritic spines, 

which are the sites of excitatory synapses with passing axons Error! Reference source 

not found.(Harris et al., 1992). Dendritic spines are typically characterized by a 

mushroom shape, with a fine neck and bulbous head which contains the post-synaptic 

sites of excitatory synapses (Harris, 1999).  The number and morphology of dendritic 

spines is related to afferent activity (Jia et al., 2012), and reflects the stability and 

strength of responses (Holtmaat et al., 2006). This structural plasticity of dendritic 

spines therefore mirrors synapse function and plasticity, where long term potentiation 

is associated with spine enlargement and long-term depression with spine shrinkage 
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(Kasai et al., 2010).  It is now widely believed that dynamic changes in spine density, 

size and strength form the biological bass of learning and memory in the brain 

(Spronsen and Hoogenraad, 2010).  

As the size, extent and branching patters of dendrites directly influences the number 

and function of synapses, it is unsurprising that human and animal studies have found 

that dendritic alterations are important pathological features contributing to cognitive 

dysfunction and dementia (Cotter et al., 2000; Penzes et al., 2011). Indeed, 

dysfunctional neuronal communication has been suggested to be the underlying cause 

of many psychiatric and neurological diseases (Selkoe, 2002; Spronsen and 

Hoogenraad, 2010). This theory has been supported by numerous reports of 

disruptions to spine size, shape and number in disorders associated with deficits in 

information processing (Penzes et al., 2011). However, dendrites and dendritic spines 

are highly dynamic which presents particular challenges to studying them in post-

mortem tissue. 

5.1.2 Techniques used to study dendrite morphology: Golgi staining 

The Golgi method remains the preferred method for visualizing the fine structure of 

dendrites and dendritic spines (Golgi, 1873). The Golgi method is now broadly used to 

describe a group of techniques based on the original silver impregnation method. 

These techniques use potassium dichromate in the first step of impregnation, then 

tissue is immersed in silver nitrate and fine crystals of silver chromate are formed 

within the tissue, resulting in dark brown/black staining of <5% of neurons Error! 

Reference source not found.(Rosoklija et al., 2003). This technique allows unique 

visualisation of the profile of the entire dendritic arbour and dendritic spine 

morphology in fixed tissue, and has been a vital tool in our understanding of dendrites 

in health and dendritic changes in disease. However, the chemical basis of Golgi 

staining remains poorly understood, raising concerns about the capricious and 

inconsistent staining results, and the apparently random selective staining of only ~5% 

of neurons (Špaček, 1989). These inconsistencies have been suggested to be due to 

factors affecting Golgi impregnation such as pre-mortem agonal state (Flood, 1993) or 

post-mortem delay (Buell, 1982).  
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Studies aspiring to use Golgi staining in human post-mortem studies are limited by the 

availability of entire blocks of appropriate tissue which has been briefly fixed but not 

paraffin-embedded. Sufficient quantities of appropriate tissue are therefore scarce in 

brain bank settings where tissue is stored for long periods of time, although recent 

advances have been made in using Golgi techniques in thin tissue sections rather than 

whole blocks (Levine et al., 2013). However, hippocampal tissue from the CogFAST 

cohort was stored frozen or in paraffin-embedded blocks and was therefore 

inappropriate for a Golgi study of dendritic changes in delayed PSD. Therefore, 

alternative methods to investigate dendrites and dendritic spines were explored.  

5.1.3 Techniques used to study dendrite morphology: MAP2 IHC 

Immunohistochemical staining for the dendritic protein microtubule-associated 

protein 2 (MAP2) allows visualization of dendrites in paraffin-embedded tissue for 

morphological and quantitative investigation. Microtubule associated proteins (MAPs) 

are a major group of cytoskeletal proteins involved in regulating neuronal morphology, 

of which MAP2 is the most abundant in the brain. MAP2 has a critical role in regulating 

the structure and function of dendrites, as it stabilizes dendritic microtubules by 

forming cross-bridges between microtubules and other cytoskeletal components 

(Yanagihara et al., 1990; Conde and Cáceres, 2009). MAP2 therefore has an important 

role in determining the number, stability and location of synapses, and MAP2 

expression has been shown to be related to dendritic outgrowth, branching and 

remodelling (Liu et al., 2005). Changes to MAP2 have been suggested to underlie 

pathological alterations in neuronal morphology (Cotter et al., 2000), as degraded or 

dysfunctional MAP2 would result in impaired interactions between cytoskeletal 

proteins, leading to microtubule disassembly and degradation of dendrites (Liu et al., 

2005). 

5.1.4 Dendritic changes after ischemia 

Studies have reported a reduction in hippocampal MAP2 immunoreactivity in human 

and animal models of hypoxia; including after transient global ischemia caused by 

cardiac arrest in patients (Akulinin and Dahlstrom, 2003), in a gerbil model of transient 

cerebral ischemia (Kitagawa et al., 1989; Yanagihara et al., 1990; Yoshimi et al., 1991), 

and in a two-vessel occlusion (2-VO) rat model, where reduced hippocampal MAP2 
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mRNA and protein levels were also related to spatial memory impairments (Liu et al., 

2005). Rapid loss of MAP2 immunoreactivity has also been reported in damaged brain 

areas following hypoxia and ischemia in rodent models of stroke (Zhang et al., 1999; 

Kitano et al., 2004), and in an in vitro model of acute transient focal ischemia (Pastori 

et al., 2007). 

MAP2 is known to be particularly vulnerable in ischaemic injury, which indicates that 

dendrites are particularly susceptible to ischaemic damage (Yan et al., 2013). The 

vulnerability of dendrites to ischaemic injury has been suggested to be related to 

excitotoxic increases in intracellular calcium concentration, which activates calcium-

dependent proteases which degrade MAP2, leading to a rapid disassembly of 

microtubules (Yanagihara et al., 1990). However, some evidence suggests the acute 

loss of MAP2 immunoreactivity in dendrites after hypoxia reflects MAP2 relocation to 

neuronal soma rather than degradation (Hoskison and Shuttleworth, 2006), although 

either response indicates dendritic dysfunction. Therefore, I hypothesised that greater 

loss of MAP2 immunoreactivity would indicate greater hypoxic injury to neurons, and 

may be a mechanism related to cognitive impairment in PSD and ageing-related 

dementias.  

In contrast to dendritic MAP2 studies, an in-vivo intracellular recording and staining 

methods in rat model of transient forebrain ischemia reported acute increases in 

dendritic length up to 48 hours after ischemia, finding significant outgrowth of mid-

section dendrites from CA1 neurons after ischemia (Ruan et al., 2006). As 90% of CA1 

neurons were previously shown to undergo delayed neuronal death under these 

experimental conditions, dendritic outgrowth was suggested to contribute to 

excitotoxic cell death due to the increased receptive field of CA1 neurons. This 

outgrowth was suggested to be stimulated by increased CA3 activity activating NMDA 

receptors on mid-section CA1 dendrites via the Schaeffer collaterals, which is known to 

promote dendritic branching (Ruan et al., 2006). They also found a dramatic increase 

in the number of neurons with disoriented dendrites after ischemia (i.e. basal 

dendrites arising from apical dendritic trunks and vice versa), suggesting that 

mechanisms involved in regulating dendritic outgrowth were impaired.  
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These findings appear to contradict those from studies demonstrating a loss of 

hippocampal MAP2 after ischemia. Furthermore, a Golgi study of chronic cerebral 

hypoperfusion in 2-vessel occlusion (2VO) rats found that CA1 dendritic length and 

arborization started to decrease four weeks after surgery, while spine loss and 

memory impairments were detectable two weeks post-surgery (Jia et al., 2012). 

Although not entirely contradictory, these inconsistent reports of dendritic increases 

and decreases after hypoxic-ischaemic injury may reflect differences in the methods 

and time courses used in these studies to quantify dendrites. As the loss of MAP2 

indicates disintegration of dendritic microtubules and therefore dendritic dysfunction, 

MAP2 may allow more insight into the functionality of dendrites after ischemia than 

simple structural observations. 

Interestingly, Golgi studies have reported increases in dendritic arborization in the CA1 

neurons of diabetic rats (Martanez-Tellez et al., 2005) and pyramidal neurons of the 

prefrontal cortex in rat model of chronic hypertension (Vega et al., 2004), suggesting a 

possible vascular mechanism causing dendritic outgrowth. Studies have also reported 

increased MAP2 immunoreactive dendritic length in the CA1, CA2, CA3 and subiculum 

in schizophrenia (Cotter et al., 2000), but reduced MAP2 neuronal expression and 

reduced dendrite numbers in dlPFC in autism (Mukaetova-Ladinska et al., 2004).  

These variable findings of relationships between MAP2 levels in relation to cognitive 

dysfunction and ischemia suggested interpretation of studies using MAP2 would be 

challenging. However, the MAP2 was the best available marker to study dendrites in 

the tissue available, and was therefore the best way to continue investigations into the 

cause of neuronal volume reductions. To complement this work, I therefore also began 

investigation into post-synaptic proteins that would be found in dendrites and 

dendritic spines. 

5.1.5 Synapse loss in AD and stroke 

There is considerable evidence supporting synaptic dysfunction as an important 

mechanism preceding and contributing to neuronal death in AD (Selkoe, 2002; Arendt, 

2009), also discussed in Chapter 4. The hippocampus is particularly vulnerable to 

synapse loss, with numbers of synapses in the hippocampus of AD patients reported to 

be reduced by 44-55%, and 18% reduced in MCI patients (Scheff et al., 2007). There is 



110 
 

consistent evidence of dendritic spine loss in AD (Penzes et al., 2011), and a recent 

protein immunoblot study found reduced levels of hippocampal PSD-95 in patients 

with amnestic MCI (Sultana et al., 2010), in agreement with previous studies also 

reporting decreased PSD-95 in AD (Gylys et al., 2004; Love et al., 2006). However, a 

quantitative immunohistochemical study in AD reported an increase in entorhinal 

cortex PSD-95, and more punctate and filamentous staining particularly in the CA1 

(Leuba et al., 2008).  

The relationship between synapse loss and cognition in AD may not be as 

straightforward as initially thought. There is evidence of a biphasic change in pre- and 

post-synaptic markers in AD, as studies have found an initial increase in synaptic 

markers in early stages of AD followed by a decrease as the disease progresses 

(Arendt, 2009). Increases in presynaptic protein synaptophysin (Mukaetova-Ladinska 

et al., 2000), postsynaptic protein drebrin (Counts et al., 2006), and postsynaptic 

protein PSD-95 (Leuba et al., 2008) have been found in early AD and amnestic MCI and 

were suggested to indicate synaptic reorganization as a possible compensatory 

response to maintain neuronal function. However, other studies have found levels of 

pre-synaptic proteins such as SNAP25 and synaptophysin were reduced in the brains of 

AD patients (Schnaider Beeri et al., 2012). 

Few studies have investigated synaptic changes post-stroke. A recent study of a rodent 

stroke mode (rat transient middle cerebral artery occlusion) did not find any neuron 

loss or synaptic marker changes in the hippocampus 30 days post-stroke, although 

hippocampal long-term-potentiation was reduced and correlated with impairments in 

learning and memory (Li et al., 2013). A study of a mouse model of stroke found that 

even after severe ischemia (<10% blood supply), spine and dendrite structure could be 

mostly recovered when reperfusion occurred within 60 minutes (Zhang et al., 2005), 

indicating that dendritic damage caused by ischemia/hypoxia can be reversed if blood 

flow is promptly restored. In a model of chronic cerebral hypoperfusion, memory 

deficits were related to reduced levels of post-synaptic protein PSD-95 and pre-

synaptic marker synaptophysin 30 days after the occlusion surgery (Wang et al., 2010), 

indicating that chronic hypoxia resulted in reduced synapse density. A previous 

quantitative immunohistochemical study within the CogFAST cohort found lower levels 

of the dendritic spine protein drebrin in the hippocampus of PSD compared to non-
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demented stroke survivors, indicating loss of dendritic spines (A. Hamdan, unpublished 

data). However, it was unclear whether the loss of drebrin was due to loss of dendritic 

spines, loss of dendrites or both.  

5.2 Aims  

This project aimed to investigate dendritic changes in the hippocampus in order to 

establish whether loss of dendritic extent was related to neuronal volume loss and 

cognitive impairment in delayed PSD. As it was not possible to assess the dendritic 

arbour using Golgi techniques, IHC for the dendrite-specific protein MAP2 was used to 

visualize and quantify dendrites. 2D image analysis techniques were used to 

investigate neuronal immunoreactivity in the pyramidal layer of CA1 and CA2.  

During image analysis of CA1 and CA2 neuronal soma it became apparent that there 

were differences in MAP2 dendritic staining in the stratum radiatum, where the 

greatest density of dendrites are found in the hippocampus. Furthermore, 2D analysis 

at low magnification was not able to distinguish staining of fine dendrites from 

background staining. Therefore, a novel 3D technique was used to quantify dendritic 

length-density in the CA1 stratum radiatum at 100x magnification. The CA1 stratum 

radiatum contains the apical dendrites of CA1 neurons, which generally receive inputs 

through the Perforant path (from EC)  and from CA3 neurons more distant from the 

CA1 (Ishizuka et al., 1990). Synapses in this regions are highly plastic and are thought 

to have an critical mechanistic role in memory and learning (Kerchner et al., 2012). 

Therefore, a reduction in MAP2 immunopositive dendrites in this region would reflect 

a fundamental disruption to the hippocampal circuitry resulting in impaired function. 

Patterns of immunohistochemical staining for post-synaptic proteins PSD-95 and 

drebrin were also investigated in relation to MAP2 dendritic staining, to explore 

whether there was any relationship between MAP2 staining and other post-synaptic 

proteins found in dendrites. Immunohistochemical staining for these proteins was also 

investigated in tissue from the perfusion-fixed baboon model to investigate how post-

mortem delay may have influenced staining and results. Levels of PSD-95 and 

presynaptic proteins synaptophysin and SNAP-25 were quantified in subjects from the 

CogFAST cohort using protein immunoblotting techniques, as accurate quantification 
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of these proteins by low-power image analysis is difficult due to their abundance in the 

neuropil and lack of contrast to background staining.   

5.3 Materials and methods  

5.3.1 IHC  

IHC staining for MAP2, PSD-95 and drebrin was carried out in 10µm thick paraffin-

embedded hippocampal sections as described in section 2.6. Three 30µ thick sections 

were stained for MAP2 for 3D stereological analyses of dendritic length-density. 

5.3.2 Image Pro analysis of MAP2 in the pyramidal layer 

MAP2 staining in the pyramidal layer of CA1 and CA2 neurons was quantified using 

Image Pro analysis in images taken at X20 magnification as described in section 2.7.2. 

Cases were selected with relatively short fixation (<9 weeks) as fixation was believed 

to influence staining.   

5.3.3 Novel 3D analysis of dendritic length density in the stratum radiatum 

Dendritic length-density was quantified using a novel 3D stereological technique in the 

CA1 stratum radiatum (described in section 2.7.6). Cases were selected with short 

post-mortem delay (PMD) to minimize the effect of PMD on staining variability.  

 

 

 

 

 
 
Figure 5.1. The CA1 stratum radiatum  
in a section stained for MAP2.  
 

5.3.4 Investigation of CA layers stained for MAP2 and other post-synaptic proteins 

Clear differences in MAP2 distribution and staining intensity were observed during 

previous MAP2 analyses. Therefore a semi-quantitative rating scale (0-3) was used to 
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rate different patterns of staining in layers of the CA1 to quickly determine whether 

unusual staining was associated with clinicopathological variables. Regions and 

characteristics rated were:  

 Mottled/patchy stratum moleculare 

 ‘Stringy’ stratum radiatum,  

 Intensity of soma staining in the pyramidal layer (Figure 5.5). 

MAP2 staining patterns were also visually compared with sections stained for post-

synaptic proteins PSD-95 and drebrin in human tissue, and drebrin in baboon tissue. 

Representative images are shown in results.  

5.3.5  Protein immunoblots of synaptic markers 

Levels of pre- and post-synaptic markers PSD-95, synaptophysin and SNAP-25 were 

quantified by protein immunoblot according to protocols described in section 2.8. 

20µg of protein was loaded into each well for each experiment. 

5.3.6 Statistical analysis 

Age, PMD and MAP2 staining data were normally distributed. Therefore, group means 

were compared using ANOVA with post-hoc Tukey’s test for pairwise comparison. 

Fixation length was analysed using non-parametric tests. Western blot results were 

non-normally distributed and analysed using non-parametric tests. 
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5.4 Results 

5.4.1 MAP2 2D image analysis 

Demographic details of subjects analysed using MAP2 with 2D Image Pro techniques 

are presented in Table 5.1. There were no significant differences in age, PMD or 

fixation time between groups. 

 
N Age, years 

Mean (range) 
PMD, hrs 

Mean (range) 
Fixation 

time, weeks 
Mean (range) 

Braak stage 
Median 
(range) 

CERAD, 
Median 
(range) 

Controls 6 82 
(72-98) 

42 
(23-59) 

8  
(8) 

3  
(1-3) 

0.5 
(0-1) 

PSND 9 84 
(78-89) 

42 
(19-96) 

7  
(5-12) 

3 
(1-5) 

1 
(0-2) 

PSD 7 87 
(80-96) 

53 
(10-96) 

7 
(6-8) 

2 
(0-4) 

0 
(0-1) 

AD 9 83 (76-91) 47 
(6-72) 

7 
(6-8) 

5 
(4-6) 

3 
(3) 

Table 5.1 Demographics of subjects analysed with 2D Image Pro analysis of MAP2 
immunostaining.  

 

There were no differences in MAP2 %PA (% of stained pixels in the area of interest) or 

IOD (intensity of stain) in neuronal soma in the CA1 or CA2 between controls, PSND, 

PSD and AD groups. Group means are presented in Appendix Table 8.8. CA2 IOD 

appeared to be reduced in the PSND group compared to PSD and other groups, 

however this did not reach significance (Figure 5.2A). There was considerable variation 

in neuronal MAP2 staining within groups (demonstrated in Figure 5.3 and Appendix 

Figure 8.4). MAP2 CA1 %PA was positively correlated with CA2 %PA (r = 0.596, p = 

0.003). CAMCOG scores were negatively correlated with MAP2 CA2 IOD (r = -0.603, p = 

0.02) and there was a trend to negative correlation with CA1 IOD (r = -0.473, p = 

0.075). MAP2 CA1 and CA2 %PA were negatively correlated with PMD (r = -0.444, p = 

0.02 and r = -0.473, p = 0.02 respectively) (Figure 5.2 B). There were no correlations 

with AD pathology, fixation or age.  
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Figure 5.2 A, Box-plots of CA1 and CA2 MAP2 % Area (%PA) staining and IOD; B, Negative 
correlations between MAP2 %PA and post-mortem delay. 

A 

 

 

 

 

 

 

 

 

B 
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Figure 5.3. Images demonstrating variability in CA1 MAP2 staining in the pyramidal layer 
between subjects within the same group. A, B = Controls; C, D = PSND; E, F = PSD; G, H = AD. 
Scale bar = 100µm. 
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5.4.2 MAP2 dendritic length density 

Demographic details of subjects analysed using MAP2 with 3D stereology to measure 

dendritic length density are presented in Table 5.3. There were no differences in age, 

or fixation length between groups. There was a trend in the VaD group having 

significantly longer PMD compared to PSD group (p = 0.053). The coefficient of error 

(CE) of dendritic length density measurements was 0.066 (±2SE = 0.002), 

demonstrating high level of accuracy.  

 

 

N Age, years 
Mean (range) 

PMD, hrs 
Mean (range) 

Fixation 
time, Mean 

weeks 
(range) 

Braak. 
Median 
(range) 

CERAD, 
Median 
(range) 

Controls 8 81 
(71-91) 

33 
(22-67) 

22 
(5-105) 

3 
(0-5) 

0 
(0-3) 

PSND 8 86 
(80-92) 

29 
(10-48) 

10 
(5-20) 

2 
(1-3) 

0.5  
(0-1) 

PSD 6 88 
(82-95) 

22 
(10-42) 

7 
(4-12) 

3 
(2-4) 

1.5 
(0-2) 

VaD 8 84 
(71-97) 

48 
(24-76) 

19 
(5-52) 

2 
(1-4) 

1 
(0-2) 

AD 8 82 
(70-91) 

34 
(16-64) 

11 
(2-24) 

5 
(4-6) 

3 
(3) 

Table 5.2. Demographics of subjects studied using 3D stereology to quantify dendritic length-
density.  
 

There were no differences in CA1 dendritic length-density (DLD) between groups 

(Figure 5.4). Numerical values for the group mean DLD are presented in Appendix 

Table 8.8. DLD was negatively correlated with post-stroke memory scores (r = -0.746, p 

= 0.013) and fixation length (r = -0.343, p = 0.038). There were no correlations with 

Braak stage, CERAD scores, CAMGOG scores or neuronal volume or density results. 

There were no correlations between DLD and 2D measurements of MAP2 

immunopositive staining in the pyramidal layer. 
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Figure 5.4. Dendritic 
length density in CA1 
stratum radiatum. 

 

 

5.4.3 Visual investigation of MAP2 and post-synaptic markers  

There were no clear relationships between the patterns of MAP2 staining in layers of 

the hippocampus and disease groups, PMD or fixation length. Representative images 

of different patterns of staining are shown in Figure 5.5.  

Variability in PSD-95 immunostaining between subjects was particularly striking, as 

several subjects had little/no positive staining, which was not related to PMD, fixation 

or Braak stage (Figure 5.6 E, F). Surprisingly, strong drebrin immunoreactivity was 

found in the neuronal soma, rather than in the dendrites as expected (Figure 5.6 C, D). 

When sections were viewed at lower power, immunoreactivity was more uniform 

across hippocampal layers stained for drebrin and PSD-95 than MAP2. 
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Figure 5.5 Representative images of the different types of hippocampal layer staining using MAP2. A, 
mottled stratum radiatum; B, Even staining across all layers; C, Patchy stratum moleculare, pale 
neuronal staining; D, solid stratum molecular of CA layer, pale stratum moleuclare of DG, dark 
neuronal staining; E, ‘Stringy’ stratum radiatum; F  Few MAP2 positive dendrites in stratum radiatum. 
Scale bar = 200µm.  
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Figure 5.6 Variability in pyramidal layer staining for MAP2 (A, B), Drebrin (C, D) and PSD-95 (E, F) 
in two PSND subjects with similar PMD, fixation length and Braak stage; A, C, E PMD = 48h, 
Fixation = 7 weeks, Braak stage = 3; B, D, F PMD = 46h, Fixation = 12 weeks, Braak stage = 3. 
Scale bar = 100µm 
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Figure 5.7 Variability in staining for MAP2 in hippocampal layers; (A, B), Drebrin (C, D) and PSD-
95 (E, F) in two PSND subjects with similar PMD, Fixation and Braak stage; A, C, E PMD = 48h, 
Fixation = 7 weeks, Braak stage = 3; B, D, F PMD = 46h, Fixation = 12 weeks, Braak stage = 3. 
Scale bar = 200µm 
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5.4.4 MAP2 and drebrin staining in perfused non-human primate model 

To investigate the possible effect of PMD on results of studies investigating post-

synaptic proteins and dendrites, staining patterns were visually compared to those in 

the perfused baboon model. In the sham and 7 day animals, MAP2 dendritic staining 

appeared generally more intense and uniform across the hippocampal layers (Figure 

5.8 A). Dendritic staining was clearer than in human tissue when viewed at high power 

(Figure 5.8 B).  

Interestingly, there were considerable differences in drebrin staining compared to the 

human tissue, as there was greater staining in the neuropil than neuronal soma, in 

contrast to human tissue where drebrin staining was concentrated in neuronal soma 

(compare Figure 5.6 C and D with Figure 5.8 E-H). However, in the animals which have 

previously been found to have greatest neurodegenerative neuronal changes at 7-days 

post-surgery, there was intense neuronal soma staining in a few neurons at the 

CA1/CA2 border (Figure 5.8 G, H).However, there were little changes to MAP2 staining 

between sham and 7-day animals (Figure 5.8 A-D). 
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Figure 5.8 A, B, MAP2 staining in sham baboon; C, D, MAP2 staining in 7-day baboon; E, F, 
drebrin staining in sham baboon; G, H, drebrin staining in 7-days post-surgery baboon. A, C, E 
scale bar = 200µm; B, D, F scale bar = 100µm. 
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5.4.5 Protein immunoblots of synaptic markers 

Group demographics of subjects analysed using protein immunoblotting techniques 

are presented in Table 5.3. There were no differences in age or PMD between groups. 

 

 
N Age, years 

Mean 
 (range) 

PMD, hrs Mean  
(range) 

Braak Stage 
Median (range) 

CERAD, Median 
(range) 

Controls 8 80 
(72-91) 

23 
(10-34) 

3 
(0-4) 

0 
(0-1) 

PSND 12 85 
(78-94) 

24 
(10-34) 

1 
(1-4) 

0 
(0-2) 

PSD 12 86 
(75-98) 

31 
(10-76) 

2.5 
(0-6) 

1.5 
(0-3) 

AD 8 81 
(70-91) 

22 
(6-37) 

5 
(4-6) 

3 
(2-3) 

Table 5.3. Demographics of subjects analysed for synaptic proteins in frozen hippocampal 
tissue.  
 

There were no differences in mean relative band intensity for PSD-95 or synaptophysin 

between groups. There was a trend to the PSND group having greater mean band 

intensity (IOD) for SNAP25 than control group (p = 0.069) (Figure 5.4). SNAP25 IOD was 

positively correlated with PSD-95 IOD (r = 0.509, p = 0.001) and memory scores (r = 

0.619, p = 0.018).  
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Figure 5.9. Box-plot and representative protein immunoblots probed for A, pre-synaptic 
protein SNAP-25; B, Post-synaptic protein PSD-95; C, Pre-synaptic protein synaptophysin. 
Dotted red line indicates trend to significant difference (p < 0.1). S = loading standard, C = 
control. 
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5.5 Discussion 

5.5.1 MAP2 in the pyramidal layer 

This investigation revealed that there was considerable variation in MAP2 

immunopositive staining in the pyramidal layer between subjects, as demonstrated in 

Figure 5.3 and reflected in the broad spread of area positively stained for MAP2 (% PA) 

between subjects. These results were surprising as I expected to find a reduction in 

MAP2 staining in the post-stroke groups compared to controls and AD, reflecting 

dendritic damage due to the effects of hypoxic/ischaemic injury from the stroke or 

other cerebrovascular disease mechanisms. I reasoned that as analysis was restricted 

to the pyramidal layer of CA1 and CA2, this may be because results were largely based 

on soma staining rather than dendritic staining. Therefore, it was surprising to find 

negative correlations between CA1 and CA2 %PA and PMD, as increasing PMD has 

previously been shown to cause reduced dendritic MAP2 staining but increased soma 

staining (Schwab et al., 1994).  However, Schwab et al.’s study of MAP2 and PMD only 

examined changes up to 8 hours post-mortem; therefore loss of MAP2 may continue in 

neuronal soma during longer PMD, as PMD in these subjects reached up to 96 hours. 

This study was also limited as quantification of MAP2 immunopositive staining using 

standard image analysis techniques was difficult at 20X magnification as it was 

impossible to distinguish background staining from fine dendrites in the neuropil.  

5.5.2 MAP2 dendritic length density in the stratum radiatum 

To address these issues, I adapted a 3D stereological technique previously used to 

quantify vascular length density (Burke et al., 2013), to quantify dendritic length 

density of MAP2 positive dendrites in the stratum radiatum. To my knowledge, this 

technique had not previously been attempted. In contrast to the 2D analysis at low 

power, even small MAP2 positive dendrites were easily identifiable at 100x 

magnification, appearing as fine dark brown threads running through the tissue (Figure 

2.7). Dendrites in the stratum radiatum were numerous, permitting analysis of large 

numbers of dendrites to achieve acceptable coefficient of error values.  

Although the variability of results within groups was reduced compared to 2D 

methods, no significant differences in dendritic length density were detected between 
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groups. However, the disease group means were lower than the control group mean in 

agreement with previous studies which have reported loss of MAP2 immunoreactivity 

after ischemia and in AD. Due to the time-consuming nature of the study, exclusion of 

subjects with longer post-mortem delay, and requirement of relatively large amounts 

of tissue, numbers of subjects analysed were small. Addition of greater numbers of 

subjects to be analysed using this technique may improve the power to generate 

statistically significant differences. 

However, addition of further subjects for analysis may not easily resolve significant 

differences between groups as the issue of variability in MAP2 staining between 

subjects within the same disease group remains. Visual inspection of different patterns 

and intensity of staining in the different hippocampal layers did not reveal any 

relationships with disease groups, fixation or PMD. As there is considerable literature 

describing rapid loss of hippocampal MAP2 after ischaemic injury, these differences 

may result from other factors causing hypoxic/ischaemic damage and subsequent 

changes to MAP2 distribution in the CA1. Possible factors likely to affect MAP2 staining 

include subsequent strokes, cause of death and pre-mortem agonal state. 

Furthermore, few previous studies have reported long-term changes to MAP2 after 

ischemia. Although loss of MAP2 immunoreactivity may be an early marker of 

ischaemic damage (Kühn et al., 2005), long-term compensatory mechanisms involving 

dendritic plasticity may restore MAP2 levels in some stroke survivors.  

Furthermore, ageing and neurodegenerative diseases have been associated with 

increased MAP-2, which in turn has also been associated with cognitive impairment 

(Mukaetova-Ladinska et al., 2000; Haley et al., 2010; VanGuilder et al., 2011). The 

conflicting effects of reduced MAP2 immunoreactivity after ischemia or post-mortem 

interval may be countered by increases in MAP2 immunoreactivity in response to 

other neurodegenerative disease or age-related mechanisms. Currently, the 

relationship between MAP2 immunoreactivity, dendrite loss or dysfunction, post-

mortem delay, ischemia and cognitive function is not well understood. The unknown 

influence of these factors on these results therefore limits the interpretation of these 

findings. 
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A 7-Telsa MRI study recently reported that thinning of the CA1 stratum radiatum was 

related to memory impairments in early AD (Kerchner et al., 2012), in agreement with 

autopsy findings that the stratum radiatum contains greater levels of AD pathology 

than the pyramidal layer, which is thought to cause apical dendrite degeneration and 

stratum radiatum thinning in AD (Braak and Braak, 1997; Thal et al., 2000). High-

resolution neuroimaging studies of CVD and stroke survivors may therefore be able to 

provide more accurate insight into dendritic changes in the stratum radiatum in the 

pathogenesis of VaD and delayed PSD. 

There are no previous studies reporting use of 3D stereology to analyse dendritic 

length density. The most similar previous study investigated dendrites in subjects with 

schizophrenia using 14µm thick hippocampal sections stained for MAP2 and non-

phosphorylated MAP2. However, this study estimated dendritic length using linear 

probes in 2D analysis (Cotter et al., 2000). They also measured dendrites within the 

pyramidal layer, which includes both apical and basal dendrites, in contrast to my 

study of only apical dendrites. Cotter et al. found an increase in MAP2 immunoreactive 

dendritic length in the CA1 and subiculum of schizophrenic subjects compared to 

controls, although their results contrasted with previous studies reporting reduced 

MAP2 expression in schizophrenia (Rosoklija et al., 2005). These conflicting findings 

were attributed to PMD, although they are also likely to reflect the previously 

discussed issues around current understanding of the relationship between MAP2 

levels and cognition in post-mortem studies of human tissue.  

 

 

 

 

 

 

 

 

Figure 5.10. Representative image of 
CA1 pyramidal layer stained for non-
phosphorylated MAP2 from (Cotter et 
al., 2000). Lines represent linear 
probes. Scale bar = 50µm.  
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5.5.3 MAP2 and AD pathology 

Results from 2D and 3D analysis of MAP2 immunopositive dendrites were not related 

to AD pathology (Braak stage or CERAD score) (as demonstrated in Figure 8.5). 

However, previous studies have reported a biphasic change in MAP-2 levels in AD 

where subjects with Braak stage 4 had the highest MAP-2 staining before it dropped 

off in Braak stages 5 and 6 (Mukaetova-Ladinska et al., 2000), which would hinder the 

detection of a linear relationship between MAP2 and AD pathology stage. When the 

MAP2 data were divided by Braak stage, there was no evidence of a biphasic change 

although MAP2 was generally lower in Braak stages greater than 4.  This is likely to be 

due to the greater loss of CA1 neurons in subjects with greater tau pathology burden. 

Previous studies have also suggested that abnormally hyperphosphorylated tau 

sequesters MAP2 in aggregates, however I did not find evidence of this as intensity of 

MAP2 staining was not related to Braak stage (Iqbal and Grundke-Iqbal, 1997). 

5.5.4 Visual investigation of MAP2, drebrin and PSD-95 staining 

There were sometimes striking differences in the appearance of MAP2 staining 

between subjects. This was due to darker, lighter, or patchier staining in different 

layers of the CA subfields and dentate gyrus. I initially thought this may reflect loss of 

MAP2 immunoreactivity due to the effect of PMD; however I could not find a 

consistent effect related to PMD. I was then interested to know whether staining for 

other dendritic proteins, specifically post-synaptic proteins involved in the structure 

and function of dendritic spines, would also display similar staining patterns within and 

between subjects. 

Drebrin staining was relatively consistent and restricted to neuronal soma, which was 

surprising as drebrin is a protein involved in regulating dendritic spine morphology and 

function (Ivanov et al., 2009). PSD-95 staining was also unusual. As PSD-95 is the most 

abundant scaffolding protein found at dendritic spines, I expected to find high density 

of staining in all CA layers (Chen et al., 2011b). However, PSD-95 staining ranged from 

dark staining of the pyramidal layer and molecular layer, to almost non-existent 

staining. This did not appear to be directly related to PMD, fixation or Braak stage, 

suggesting that other factors, such as additional disease mechanisms or pre-mortem 

agonal state may have had significant impact on these proteins.  
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To further elucidate the importance of PMD in the distribution of immunoreactive 

staining for MAP2 and drebrin, I compared the staining patterns with those in 

hippocampal sections from the perfused baboon cohort. Identical antibodies and IHC 

protocols were used for human and baboon tissue, and generated similar staining 

results. Therefore it is unlikely that any differences observed were due to differences 

in species. The MAP2 staining appeared fairly similar to human staining, although the 

sham animals had very even staining across all layers, suggesting that the appearance 

of clearly defined layers reflects pathological change in the human tissue. Although it is 

difficult to draw any conclusions from the MAP2 work, these differences suggest that 

the loss of uniform staining in the human cohort may reflect a change in connectivity 

in response to disease mechanisms.  

The drebrin staining was completely different in the baboon hippocampus, with very 

little staining in neuronal soma and intense staining in the neuropil. In the 7-day 

animals, where greatest neuronal volume loss was observed, a few neurons at the 

CA1/CA2 border had dark staining in the soma which suggests that appearance of 

drebrin in the soma may reflect pathological response to hypoxic damage.  

Interestingly, a stereological study of Golgi stained neurons found that CA1 neurons 

near CA2 had significant loss of total dendritic length and branching in AD (Hanks and 

Flood, 1991), suggesting that these neurons may be particularly vulnerable to dendritic 

damage.  

A previous study investigated drebrin immunoreactivity in pyramidal layers of CA1 and 

CA2 in stroke survivors from the CogFAST cohort. This study indicated that there were 

reduced levels of drebrin in PSD compared to PSND subjects. However, interpretation 

of these results is limited as the study did not investigate levels of drebrin in the 

stratum radiatum, where the level of protein would be assumed to reflect the number 

of dendritic spines and therefore synapses. Further studies would be required to 

determine whether the accumulation of drebrin in neuronal soma reflects a post-

mortem artefact or pathological response. 

5.5.5 Pre- and post-synaptic proteins in frozen hippocampal tissue 

Levels of proteins determined by immunoblot analysis also demonstrated variability 

between groups which prevented the detection of statistically significant differences 
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between groups. Although analysis of frozen tissue removes the possibility of tissue 

fixation and processing affecting protein immunogenicity, these dynamic synaptic 

proteins are likely to be more significantly affected by post-mortem delay or other 

factors that could have influenced protein levels. A previous immunoblot study of 

glutamatergic synaptic proteins in VaD and PSND also did not find any differences in 

the levels of pre-synaptic protein synaptophysin, in agreement with my results (Kirvell 

et al., 2010). They reported correlations between CAMCOG scores and VGLUT1 

(vesicular glutamate transporter 1) concentration in the dlPFC and inferior temporal 

cortex (Kirvell et al., 2010). VGLUT1 is a pre-synaptic protein involved in long-term 

potentiation and memory, therefore the authors suggested that upregulation of 

VGLUT1 was associated with preserved cognitive function in patients with CVD.  

I found that SNAP-25 levels were increased in PSND compared to control subjects, and 

appeared higher in PSND compared to PSD subjects. Therefore, upregulation of SNAP-

25 may have occurred as a compensatory response to maintain connectivity in 

surviving hippocampal neurons. However, previous studies have suggested that SNAP-

25 may be deposited at degenerating presynaptic terminals (Ishimaru et al., 2001). 

Previous studies have also shown that synaptophysin and SNAP-25 levels fluctuated in 

a gerbil model of stroke (5 minutes bilateral common carotid artery occlusion). 

Western blot and immunohistochemical quantification of these proteins in the CA1  

found that protein levels were decreased at day 2 post-surgery, but increased (130-

140%) of control levels at day 14 (Ishimaru et al., 2001), in agreement with previous 

studies reporting increased SNAP-25 immunoreactivity after hippocampal injury, 

including ischemia and kainite-induced neuronal damage, that resulted in selective 

neuronal loss (Marti et al., 1998). Therefore, the functional consequences of the 

perceived increase in SNAP-25 in PSND subjects are unclear. 

Interpretation of my findings in frozen hippocampal tissue were limited as it is 

assumed that the ratio of the area of different subfields was the same between all 

subjects studied. However, depending on the shape, size and plane that the 

hippocampal sections were taken from, some subjects may have had a greater amount 

of tissue from the CA1, whereas others may have had a larger CA4 etc. Therefore, 

although these results inform us on the level of each protein within the hippocampal 

formation at that coronal level, they do not indicate changes to specific regions or 
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subregions such as the CA1 or stratum radiatum. When planning this study, I had 

initially hoped to sub-dissect the CA1 subfield only. However, this would not have 

generated great enough protein yields for analysis. A future study could try laser 

capture microdissection of neurons to establish protein or mRNA levels within neurons 

from specific subfields. However, this will not eliminate the issues associated with 

post-mortem delay, and as only the neuronal soma could easily be dissected (i.e. not 

the dendrites), results will still require careful interpretation. 

 

5.6 Conclusions 

Dendrites, dendritic spines and synapses may be one of the most challenging 

structures to study due to their dynamic plasticity. The changes that these structures 

undergo during post-mortem interval before fixation, and during different pre-mortem 

agonal conditions, are not well characterized or understood. This makes it very difficult 

to draw any specific conclusions from post-mortem studies attempting to quantify 

dendrites and synaptic markers, and is likely to be major contributor to the conflicting 

findings in the literature. Furthermore, it has been suggested that measuring dendritic 

extent at one point in time may not accurately reflect neuronal function, as the ability 

of dendrites and spines to remain plastic is critical to maintaining neuronal function. 

Therefore, the measured extent of dendrites in static post-mortem material may not 

be a useful measure of the functional integrity of that neuron (Flood, 1993). 

This study did not find any differences in dendritic proteins or dendritic length-density 

between PSD and PSND subjects or in VaD or AD. Results suggested that MAP2 

immunostaining may be affected by PMD; however there were no differences in mean 

PMD between groups, and differences in MAP2 staining intensity and distribution 

could not be solely attributed to PMD. Therefore, these differences may also reflect 

reorganization of dendrites in response to pathogenic processes associated with 

disease, cause of death or pre-mortem agonal state. Difficulties interpreting these 

results were compounded by poor understanding of the functional implications of 

increased/decreased MAP-2 immunoreactivity on cognitive function. Similar results 

were found with post-synaptic markers drebrin and PSD-95 using both IHC and 



133 
 

molecular techniques. Further studies to establish the stability of these proteins during 

the post mortem interval would ensure correct interpretation of findings.  

This study established a new technique to quantify dendritic changes using a 3D 

stereological technique to measure dendritic length density in 30µm thick sections 

stained for MAP2. However, the usefulness of this technique relies on being able to 

correctly interpret the findings. Therefore, future studies using this technique could be 

tested in brain tissue from rapid autopsies or carried out in perfusion fixed tissue from 

animal models where post-mortem autolysis can be controlled, to ensure that changes 

to dendritic length density accurately reflect pathogenic processes. 
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Chapter 6. Hippocampal white matter changes and involvement of 

astrocytes and microglia 

6.1 Introduction 

I previously explored potential changes in the structure and function of hippocampal 

neurons in relation to disease mechanisms that may have contributed to cognitive 

impairment after stroke. In this study I investigated axonal damage in the 

hippocampus as a possible mechanism contributing to reduced neuronal volume and 

cognitive dysfunction. As neuroglia also play a critical role in neuronal and synaptic 

function and survival, pathological changes to astrocytes and microglia were also 

examined to assess potential mechanisms contributing to the pathogenesis of delayed 

PSD. 

6.1.1 White matter changes in the alveus 

Myelinated axons from hippocampal neurons in the CA subfields form the alveus, a 

well-defined white matter tract which runs along the transverse axis of the 

hippocampal formation (Figure 6.1). This relatively simple arrangement with single 

layers of pyramidal neurons and connective circuitry running along the transverse axis 

has allowed the organization of hippocampal axonal connections to be better 

characterized than any other functionally connected cortical areas (Cenquizca and 

Swanson, 2007). Axons from CA1 neurons project to the alveus where they bifurcate to 

extend one branch through the fornix to cortical regions, and the other branch to the 

subiculum and entorhinal cortex. There are also numerous local collateral branches 

within the CA1 subfield (Cenquizca and Swanson, 2007). Axons from CA2 neurons also 

project to the alveus, although their projections have been less well characterized. 

Physiological studies indicate that the majority of CA2 axons projecting to the CA1 

terminate in the stratum oriens close to the pyramidal layer, and provide strong 

synaptic input to the CA1 (Jones and McHugh, 2011; Shinohara et al., 2012). As the 

alveus contains axons originating from neurons in the hippocampal pyramidal layers, 

this allows investigation into white matter changes in relation to neuronal and 

pathological changes previously characterized within these CA subfields.  
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Few studies have previously examined changes to the white matter of the alveus in 

stroke or dementia.  An MR diffusion tensor imaging (DTI) study of transient neonatal 

hypoxia-ischemia detected changes to the white matter in the alveus which were 

associated with severe hippocampal volume loss  24 hours after ischemia (Stone et al., 

2008). Another neuroimaging study found changes to the MRI signal in the alveus of 

middle cerebral artery (MCA) occluded rats 24 after surgery, which was suggested to 

indicate remote oedema (Izumi et al., 2002). These findings indicate that the white 

matter of the alveus undergoes pathological changes following hypoxia, which may 

reflect the well-characterized vulnerability of hippocampal neurons to hypoxic-

ischaemic insults. In addition, studies have indicated that axons can become damaged 

by hypoxic-ischaemic injury through mechanisms independent of the neuronal soma 

(Pantoni et al., 1996), and oligodendrocytes in the white matter are known to be 

particularly vulnerable to ischaemic injury and glutamate excitotoxicity (Giaume et al., 

2007). Therefore, loss of oligodendrocytes and changes to axonal structure may result 

in impaired functional connectivity and white matter degeneration without 

corresponding loss of neuronal cell bodies.  

 

Axonal dysfunction is implicated in AD as the aggregation of hyperphosphorylated tau 

causes impaired axonal transport. Axonal dysfunction may be a fundamental 

consequence of AD processes as mouse models of AD overexpressing mutant forms of 

APP, Presenilin-1 and/or tau demonstrate defective axonal transport (Gallagher et al., 

2012). Neuroimaging studies have found evidence of impaired functional connectivity 

in regions associated with hippocampal axonal projections in amnestic MCI patients, 

including the hippocampus, parahippocampal gyrus, thalamus and amygdala (Stebbins 

and Murphy, 2009; Carmeli et al., 2013). These impairments are likely to reflect early 

pathological changes in hippocampal projection neurons which are affected early in 

disease progression. As the disease becomes more severe and these neurons 

degenerate, the hippocampal formation becomes isolated from its inputs and outputs, 

resulting in worsening of memory impairments (Hyman et al., 1984). Therefore, a 

similar situation may arise in CVD where susceptible neurons and axons are lost after 

hypoxic-ischaemic injury, resulting in loss of connections to and from the 

hippocampus. Therefore, I reasoned that loss of and damage to the white matter in 

the alveus, indicating impaired structural connectivity of hippocampal neurons, may 
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contribute to cognitive impairment and be associated with reduced soma volume 

and/or reduced neuronal density in stroke survivors.  

Typically, post-mortem microscopic studies of white matter damage in CVD and 

dementia have investigated the loss of or damage to myelin as an indicator of axonal 

damage and dysfunction (Deramecourt et al., 2012; Smallwood et al., 2012). These 

studies frequently use the histological dye Luxol fast blue (LFB), which stains 

myelinated axons deep blue (Figure 6.1 B). Areas of pale staining or no staining 

therefore reflect destruction of the myelin and white matter infarcts (Deramecourt et 

al., 2012). Although it is not well understood whether loss of myelin reflects loss of 

axons, it is assumed that loss of myelin will at least indicate areas of axonal dysfunction 

and impaired functional connectivity, due to the slowing or loss of signal transmission. 

To complement this technique, it can be useful to also use immunohistochemistry for 

myelin components or axonal proteins. Degraded myelin basic protein (dMBP) is a 

pathologically exposed epitope of myelin basic protein (MBP) which is detected in 

areas of demyelination, white matter damage and focal ischaemic damage (Ihara et al., 

2010). IHC to dMBP has been shown to stain degenerating myelin sheaths and 

abnormal appearing oligodendrocytes in damaged areas in VaD and hereditary forms 

of VaD (Yamamoto et al., 2009; Ihara et al., 2010).  
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Figure 6.1 A, Diagram of the alveus in the hippocampal formation (dark blue), adapted from 
(Duevernoy, 2005); B, Image of a hippocampal section stained using LFB to visualize myelin in 
the alveus, with CFV counterstain to visualize neuronal cell bodies in the pyramidal layers and 
dentate gyrus. 
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6.1.2 Neuroglia in stroke and AD 

Astrocytes 

The integral role of astrocytes in maintaining neuronal function during ischaemic injury 

and their involvement in synaptic plasticity and neuronal connectivity suggests that 

astrocytes are likely to be involved in the pathogenesis of the hippocampal neuronal 

changes investigated in my previous studies. Astrocytes are believed to contribute to 

the selective vulnerability of neuronal populations such as the CA1 to ischemia, 

however their precise role remains unclear (Nedergaard and Dirnagl, 2005).  

Pathological increases in numbers of reactive astrocytes (astrogliosis) forms part of the 

brain’s defence system to contain lesions and aid remodelling of affected neuronal 

circuitry (Sofroniew, 2009). Reactive astrogliosis describes a spectrum of astrocytic 

cellular changes; from mild, reversible changes which are likely to resolve the initial 

trigger, to an extreme response to tissue lesions and inflammation where astrocytes 

proliferate, overlap, and form glial scars. The activation of astrocytes has been 

suggested to contribute to neuronal dysfunction and degeneration, as when astrocytes 

become reactive their normal supportive functions become impaired (Sofroniew, 

2009).  

Hippocampal astrogliosis has been reported in animal models of stroke preceding and 

continuing after neurodegeneration in the CA1 (Tanaka et al., 1992; Briones et al., 

2006; Okada et al., 2013). An increase in the number of reactive astrocytes was found 

in the hippocampus of a rodent model of chronic cerebral hypoperfusion 10 weeks 

after surgery, which was correlated with impairments in glutamate uptake and 

cognitive impairment (Vicente et al., 2009). In AD, there is an abnormal increase in the 

number of reactive astrocytes around Aβ plaques, which take up substantial amounts 

of Aβ-42 and neuronal debris, and may ultimately cause the astrocytes to lyse forming 

small GFAP-rich astrocytic amyloid plaques (Nagele et al., 2004).  

These findings implicate astrogliosis in the pathogenesis of delayed PSD through 

activation and/or possible dysfunction after hypoxic injury and neurodegenerative 

disease processes. Therefore, I investigated changes to the numbers of astrocytes and 

reactive astrocytes in the hippocampus in relation to neuronal and clinicopathological 

findings in the CogFAST cohort.  
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Historically, immunohistochemical studies on astrocytes have used antibodies to GFAP, 

a cyto-architectural protein found in the main branches of reactive astrocytes, to 

detect astrocytes. However, GFAP is therefore not a marker of all astrocytes as it is not 

expressed in non-reactive astrocytes in healthy brain tissue (Sofroniew and Vinters, 

2010). Studies using GFAP may have led to the over-estimation of the proliferation of 

astrocytes in response to brain lesions, as perceived increases in numbers of GFAP-

positive astrocytes may have simply reflected increased numbers of activated 

astrocytes, though the total number remained unchanged (Barreto et al., 2011). 

Recent studies have identified the protein Aldh1L1 (also known as 10-

formyltetrahydrofolate dehydrogenase (FDH)), as a highly specific marker for 

astrocytes expressed in most if not all astrocytes in healthy tissue (Barres, 2008; Cahoy 

et al., 2008). This relatively new marker therefore allows more reliable investigations 

into astrocyte numbers in neurodegenerative disease (compare Figure 6.2 A and B). 

However, no markers have yet been proven to be entirely specific for and ubiquitously 

expressed in all astrocytes (Oberheim et al., 2012). At the time of planning this study, 

there were no previous reports of Alhd1L1-posisitve astrocytes in dementia studies. 
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Figure 6.2. Comparing methods to identify astrocytes in the CA2 subfield of a control subject. 
A, using antibodies to Aldh1L1, DAB stained brown with a very pale hematoxylin counterstain; 
B, antibodies to GFAP, nickel-DAB stained black, with no counterstain although neurons are 
still visible in the pyramidal layer as pale brown. There are noticeably fewer astrocytes positive 
for GFAP (B) than Aldh1L1 (A), particularly in the pyramidal layer. SR = stratum radiatum, PL = 
pyramidal layer, A = alveus. Scale bar = 100µm. 

 

Microglia 

Microglia can also influence neuronal survival after injury through their dual role in 

neuroprotective and neurotoxic processes. Ramified microglia have a neuroprotective 

role in releasing neurotrophic factors and removing excess glutamate and cell debris 

from the neuropil (Vinet et al., 2012), and when activated, microglia are involved in 

lesion repair and tissue remodelling (Perego et al., 2011). However, activated microglia 

can also promote neurotoxicity, blood-brain barrier dysfunction and oedema through 

the release of inflammatory components such as IL-1β, TNF-α, proteases and reactive 

oxygen species (Nedergaard and Dirnagl, 2005). Aβ plaques also stimulate a neurotoxic 
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inflammatory response in microglia, which is considered to have an important role in 

causing neurodegeneration in AD (Akiyama et al., 2000; Meraz Rios et al., 2013). One 

antigen commonly used to identify activated microglia is CD68, a lysosomal protein 

expressed during active phagocytosis. Microglia have been shown to engulf Aβ (Meraz 

Rios et al., 2013) and degenerating neurons, which may have a beneficial effect in 

removing irreversibly damaged neurons after injury. I hypothesised that an increase in 

CD68 immunoreactivity would  be associated with poorer cognitive outcome after 

stroke, reflecting activation of microglia in response to greater cerebrovascular and/or 

neurodegenerative injury in elderly stroke survivors. 

 

6.2 Aims 

Damage to the white matter in the alveus was investigated using LFB stained sections 

to assess myelin integrity and antibodies to dMBP to assess myelin breakdown and 

pathological accumulation in oligodendrocytes. Based on the known vulnerability of 

white matter to CVD, hippocampal neuron loss and volume reductions in PSD, VaD and 

AD, and disruptions to hippocampal connectivity contributing to cognitive dysfunction 

in these disorders, I reasoned that greater white matter damage would be found in 

stroke subjects who developed delayed PSD compared to controls and non-demented 

stroke survivors from the CogFAST cohort. I was also interested in determining 

whether the white matter was differentially affected in CVD and AD.  

As neuronal function is now widely believed to rely on neuroglial support, I 

investigated astrocyte numbers and activation of astrocytes and microglia in the 

hippocampus of post-stroke and ageing-related dementia subjects.  

I hypothesised that loss of astrocytes may be related to secondary neuronal cell death 

after stroke, and therefore investigated total astrocyte numbers using IHC to Aldh1L1 

to visualize both activated and non-activated astrocytes. The number of activated 

astrocytes was also investigated using IHC to GFAP, to elucidate whether there was 

differential astrocyte activation in PSD and PSND subjects, and elderly subjects with 

VaD and AD. As astrocytes have a critical role in regulating synapses and white matter 

changes, Aldh1L1-positive and GFAP-positive astrocytes densities were separately 
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analysed for different layers of the hippocampus (the CA1 and CA2 pyramidal layer 

(PL), stratum radiatum (SR), alveus, and CA3 and CA4 pyramidal subfields)  to 

determine whether astrocytes in different layers were differentially affected in post-

stroke survivors, VaD and AD.  

Microglia are implicated in the pathogenesis of delayed neuronal death after ischemia 

and in the pathogenesis of AD. Therefore, I investigated levels of reactive CD68-

positive microglia to assess whether differences in microglial responses were 

associated with different cognitive outcomes and pathological processes in post-stroke 

survivors, VaD and AD subjects.  

 

6.3 Methods 

6.3.1 Histological and IHC staining 

Sections were stained using Luxol fast blue with Cresyl fast violet counterstain as 

described in section 2.5.2. Immunohistochemistry for degraded myelin basic protein 

(dMBP), astrocyte markers glial-fibrillary acidic protein (GFAP) and Aldh1L1, and 

microglia marker CD68 were performed according to protocol described on 2.6. GFAP 

was visualized using nickel-DAB to increase the contrast and make it easier to identify 

astrocyte cell bodies.  

6.3.2 Image analysis 

LFB 

LFB staining in the alveus was assessed using Image Pro to calculate %PA and IOD 

staining in the CA1 and CA2 as described on section 2.7.3. Images were taken at 10X 

magnification, and areas of a standardized size were analysed from the CA1 and CA2 

alveus, and ECV white matter. Myelin index was also calculated as described on section 

2.7.3 and in (Yamamoto et al., 2009), from low power scanned images of the 

hippocampal formation,  within which the white matter tract around the CA2-CA1 was 

delineated for analysis as one region of interest. 

dMBP in the alveus and neurons 

dMBP staining was assessed in the alveus using Image Pro as described in section 2.7.2 



143 
 

from images taken at 20X magnification.  Based on previous investigation using LFB, 

the alveus was analysed as one area of interest rather than sub-dividing into CA1 and 

CA2. Unexpected intense neuronal soma staining was found in the pyramidal layers of 

the CA regions, and was investigated using Image Pro analysis of dMBP 

immunopositive staining in the CA1 and CA2 pyramidal subfields. Semi-quantitative 

rating of myelin integrity (Figure 6.3) and dMBP staining (Figure 6.4) in the alveus and 

pyramidal layer was also conducted based on a 0-3 scale. 

 

Figure 6.3. Representative images of the alveus stained using LFB to visualize myelin. A, PSND; 
B, PSD; C, PSD; D PSND. Scale bar = 100µm. 
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Figure 6.4 Representative images of dMBP staining rating in the alveus (CA1). A, 0 = none; B, 1 
= mild; C, 2 = moderate; D, 3 = severe. Scale bar = 100µm. 

 

Neuronal Pyknosis Rating 

As pyknotic-appearing neurons had been related to neuronal volumes in the non-

human primate (baboon) model, the severity of the number pyknotic appearing 

neurons were visually rated on a 4 point scale from 0 (no pyknotic appearing neurons) 

to 3 (many/all pyknotic appearing neurons) in the human cohort (Figure 6.5), stained 

using H & E as described in section 2.5.3.  

 

 Figure 6.5 Pyramidal neurons in the CA1 stained using H&E. A, Pyknotic appearing pyramidal 
neurons (PSD); B, normal appearing pyramidal neurons with clear nucleolus (PSND). Scale bar 
large images = 50µm, small images = 10µm. 
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Astrocyte Density 

Astrocyte density was calculated using a counting grid as described in section 2.7.4, 

where each grid square had an area equivalent to 0.08mm2 (283.3 x 283.3µm) (Figure 

2.5). Astrocyte counts were performed in the CA1 and CA2 alveus, pyramidal layer and 

stratum radiatum, the CA3 pyramidal layer and whole CA4 subfield. The mean number 

of astrocytes per grid square was calculated from which the number of astrocytes per 

0.8mm2 was calculated and expressed as astrocyte density. 

6.3.3 Statistical analysis 

PMD, fixation length and measures of LFB and dMBP staining were not normally 

distributed and were therefore analysed using non-parametric tests. Associations 

between ratings and dementia status were analysed using χ² test with Phi and 

Cramer’s V.  GFAP-positive astrocyte counts were normally distributed and analysed 

using parametric tests, whereas Aldh1L1-positive astrocyte counts were non-normally 

distributed and analysed using non-parametric tests. CD68 group demographics and 

data were normally distributed and analysed using parametric tests as described in 

section 2.1.   
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6.4 Results 

6.4.1 White matter changes in the alveus 

Demographics of subjects studied for LFB, dMBP and pyknosis are shown in Table 6.1. 

There were no differences in age, PMD or fixation length between groups. 

Group N Age  
 

Mean 
(range) 

Fixation 
length, 
weeks 
Mean 

(range) 

PMD, 
hours 
Mean 

(range) 

Braak 
Stage 

Median 
(range) 

CERAD 
score 

Median 
(range) 

Controls 7 
83.5  

(74-94) 
10.1  

(6-16) 
31  

(15-67) 
2  

(0-4) 
0 

(0-1) 

PSND 10 
83.3  

(78-89) 
8.9  

(3-20) 
36.7  

( 11-76) 
2  

(1-4) 
2  

(1-2) 

PSD 12 
84.4  

(76-93) 
9.1  

(2-26) 
41.9  

(10-81) 
3  

(0-6) 
2  

(0-3) 

AD 8 
82.4  

(70-91) 
9 

(6-20) 
41.1 

(6-72) 
5  

(4-6) 
3  

(3-3) 

Table 6.1 Demographics of groups analysed for LFB, dMBP and pyknosis rating studies.  

 

LFB analyses  

There were no differences in myelin staining between groups in CA1 or CA2 (%PA, 

mean IOD or myelin index) (Figure 6.6 A, B). There were no correlations between 

myelin staining and CAMCOG scores, Braak stage, CERAD score, age, PMD or fixation. 

EC mean IOD was negatively correlated with Braak stage and CERAD score (r = -0.505 p 

= 0.002 and r = -0.478 p = 0.007 respectively). There were no associations between 

semi-quantitative rating of myelin loss (LFB staining patchiness) and dementia status 

or dMBP stain rating (Figure 6.7). Frequency tables of myelin ratings are presented in 

Appendix Table 8.9.  

CA1 LFB IOD was positively correlated with CA1, CA2 and CA4 neuronal volumes (r = 

0.401, r = 0.512 and r = 0.445 respectively, all p < 0.05). CA2 LFB IOD was also 

positively correlated with CA1, CA2 and CA4 neuronal volumes ( r = 0.437, r = 0.474, r = 

0.515, p < 0.05) and was negatively correlated with CA2 neuronal density (r = -0.4, p = 

0.043).  
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dMBP analyses 

There were no differences in dMBP %PA or IOD staining in the alveus between groups 

(Figure 6.6 C, D).  There were no correlations between dMBP immunoreactivity and 

Braak stage, CERAD score, CAMCOG score, fixation time or age, however dMBP IOD in 

the alveus was negatively correlated with PMD (r = -0.428, p = 0.014). 

dMBP %PA staining was negatively correlated with temporal lobe vascular pathological 

burden (r = -0.564, p = 0.019) and CA4 neuronal density (r = -0.458, p = 0.032). There 

were no correlations between myelin staining (LFB %PA, IOD or myelin index) and 

dMBP staining (%PA or IOD) (Figure 6.6). dMBP staining rating was not associated with 

dementia status. 

Figure 6.6 A, Area of myelin stained using LFB in the alveus adjacent to CA1 (%PA); B, and CA2 
(%PA); C, Area of the CA1 alveus immunoreactive for dMBP (%PA); D, Mean intensity (IOD) of 
dMBP staining in the CA1 alveus.  
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6.4.2 Neuronal dMBP staining 

There were no differences in dMBP %PA or mean IOD in the CA1 or CA2 pyramidal 

layers between groups (Figure 6.6). CA2 dMBP IOD was positively correlated with 

Braak stage (r = 0.416, p = 0.002) and CERAD score (r = 0.528, p = 0.003). There were 

no correlations between dMBP neuronal staining and CAMCOG scores, PMD, fixation, 

or age. Neuronal dMBP staining was positively correlated with dMBP staining in the 

alveus (Table 6.2). There were no associations between dementia status and neuronal 

dMBP staining rating. 

      CA1 CA2 Alveus 

      %PA IOD %PA IOD %PA IOD 

CA1 

%PA 
r 

- 
     

p      

IOD 
r 0.22 

- 
    

p 0.235     

CA2 

%PA 
r 0.789 0.256 

- 
   

p <0.001 0.164    

IOD 
r 0.487 0.61 0.491 

- 
  

p 0.006 <0.001 0.005   

Alveus 

%PA 
r 0.576 0.283 0.445 0.569 

- 
 

p 0.002 0.153 0.02 0.002  

IOD 
r 0.313 0.406 0.352 0.619 0.532 

- 
p 0.112 0.036 0.072 0.001 0.002 

Table 6.2 Correlations between dMBP staining in the alveus and neuronal soma 
(pyramidal layer). Dark grey highlights correlations p < 0.001, light grey highlights p < 
0.05. 
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Figure 6.7 Comparison of dMBP immunopositive staining and LFB myelin staining in serial 
sections from the same cases. Numbers indicate rating score where 0 = none, 1 = mild, 2 = 
moderate, 3 = severe. There were no relationships between dMBP and myelin damage. Scale 
bar = 100µm. 
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6.4.3 Neuronal pyknosis rating 

There were no differences in pyknosis rating between groups, and no correlations 

between pyknosis rating and clinical or pathological features including neuronal 

volumes and densities. There was a broad spread of ratings in the disease groups, 

although all control cases were rated as 0 or 1.  

D 

Figure 6.8. Immunopositive dMBP staining in soma of CA1 neurons in controls (A, B) 
and PSD (C), Scale bar = 50µm; D, box plots of neuronal dMBP immunoreactivity in 
CA1 and CA2. 
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6.4.4 Astrocyte density 

Demographics of subjects analysed for astrocyte counts are shown in Table 6.3. There 

were no significant differences in mean age, PMD or fixation between groups. 

Group N Age, 
years 
Mean 

(range) 

Fixation 
length, 
weeks 
Mean 

(range) 

PMD, 
hours 
Mean 

(range) 

Braak 
Stage, 

Median 
(range) 

CERAD 
score, 

Median 
(range) 

Controls 8 81.8  
(74-91) 

10 
(6-16) 

34 
(15-67) 

N/A N/A 

PSND 9 84.4 
(79-89) 

9 
(3-20) 

41.8 
(11-76) 

2 
(1-4) 

2 
(0-2) 

PSD 11 83.6 
(76-93) 

11 
(5-26) 

39.6 
(10-81) 

3 
(0-6) 

2 
(0-3) 

AD 7 82.6 
(70-91) 

9 
(6-20) 

36.7 
(6-72) 

5 
(4-6) 

3 
(3) 

Table 6.3. Group demographics of subjects analysed using astrocyte counts.  

 

 

Figure 6.9. Diagram showing the areas where astrocyte densities were calculated. Section from 
a PSND subject, stained to visualize Aldh1L1.  
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GFAP-positive astrocytes 

There were no significant differences in GFAP-positive astrocyte densities between 

groups in any regions sampled. Group mean astrocyte densities are presented in 

Appendix Table 8.10. There was a trend to a difference in CA2 GFAP-positive astrocyte 

density in the pyramidal layer [F = 2.387 (df 24), p= 0.085] (Figure 6.10 A). GFAP-

positive astrocyte densities were positively correlated between regions analysed (see 

Appendix page 193 for values). There were no correlations with CAMCOG scores, age, 

PMD or fixation.  

There were positive correlations between GFAP-positive astrocyte densities and AD 

pathological burden; astrocyte density in the CA1 and CA2 pyramidal layer (PL) and 

CA2 stratum radiatum (SR) was correlated with Braak stage (all r >0.42, p < 0.05), and 

CA2 PL astrocyte density was correlated with CERAD score (r = 0.504, p = 0.012). 

Conversely, there were negative correlations between GFAP-positive astrocyte density 

and vascular pathological burden; CA1 PL and SR was correlated with global (r = -0.82, r 

= 583) and temporal lobe vascular pathological burden (r = -0.582, r = -0.672 all p = < 

0.05), and CA3 PL astrocyte density was negatively correlated with global vascular 

pathology burden (r = - 0.607, p = 0.036). 

GFAP-positive astrocyte density in the CA1 SR was negatively correlated with dendritic 

length-density (r = -0.709, p = 0.007). There were positive correlations between GFAP-

positive astrocyte density and neuronal volumes and densities: CA1 and CA2 alveus 

astrocyte densities were positively correlated with CA1 neuronal volumes (r = 0.524, r 

= 0.572 p < 0.02) and CA4 neuronal volumes (r = 0.609, r = 0.574, p< 0.02); CA2 SR 

astrocyte densities were positively correlated with CA4 and ECV neuronal density (r = 

481, r = 0.528, p<0.05). GFAP-positive astrocyte density in the CA2 PL was negatively 

correlated with ECV neuronal volumes (r = -0.833, p < 0.001). 
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Figure 6.10. GFAP-positive astrocyte density in A, CA1 pyramidal layer; B, CA2 pyramidal layer; 
C, CA1 stratum radiatum; D, CA2 stratum radiatum; E, Negative correlation between GFAP-
positive astrocyte density and dendritic length density in the CA1 stratum radiatum; F, Positive 
correlation between astrocyte density and CA1 neuronal volume. Dotted red lines indicate 
trend to significant difference (p < 0.1), solid red lines indicate significant difference (p < 0.05). 
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Figure 6.11 Representative images of Aldh1L1-positive astrocytes stained brown using DAB 
(A, C, E) and GFAP-positive astrocytes stained black using nickel-DAB (B, D, F). A and B are 
from the CA1 stratum radiatum / moleculare of an AD subject; C and D are from the CA1 
stratum radiatum / moleculare of a PSND subject; E and F are high-power representative 
images of Aldh1L1-positive astrocytes and GFAP-positive astrocytes in the CA1 of the PSND 
subject. Scale bar in A-D = 100µm, E-F = 50µm. 



155 
 

Aldh1L1-positive astrocyte density 

There were no differences in Aldh1L1-positive astrocyte densities between groups in 

any of the regions studied (Figure 6.12). There was a trend to the PSD group having 

greater Aldh1L1-positive astrocyte density than controls in the CA1 stratum radiatum 

(p = 0.069), and the AD group having greater astrocyte density than PSND in the CA4 (p 

= 0.054) (Figure 6.10 C). Aldh1L1-positive astrocyte densities were positively correlated 

between regions (see Appendix page 193 for values). There were no correlations with 

CAMCOG scores, Braak stage, CERAD score, age, PMD or fixation. 

Aldh1L1-positive astrocyte densities were negatively correlated with vascular 

pathological burden; CA1 and CA2 pyramidal layer astrocyte density with global 

vascular pathology (r = -0.487, p = 0.04 and r = -0.603, <0.001) (Figure 6.12 D), and CA2 

pyramidal layer with temporal lobe vascular pathological burden (r = -0.595, p = 

0.009).   

Figure 6.12. Aldh1L1-positive astrocyte densities in the CA1 stratum radiatum (A) and 
pyramidal layer (B), and CA4 (C); D, Correlation between CA1 pyramidal layer Aldh1L1-positive 
astrocyte density and global vascular pathological burden. 
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Aldh1L1 versus GFAP-positive astrocyte densities 

Aldh1L1-positive astrocyte densities were different to GFAP-positive astrocyte 

densities in all layers analysed (p < 0.001). In the CA1 SR, CA1 PL and CA2 SR, Aldh1L1 

positive astrocyte densities were 2-3 fold greater than GFAP, whereas in the CA1 and 

CA2 alveus GFAP-positive densities were around twice as high as Aldh1-L1 (Figure 

6.13).The ratio of Aldh1L1 : GFAP – positive astrocyte densities in the CA1 SR and PL 

were higher in the PSD group than the PSND group (p = 0.012 and p = 0.06), and higher 

than the AD group in the CA1 PL (p = 0.004)(Figure 6.13 ).  

Aldh1L1-positive astrocyte densities in the CA1 pyramidal layer (PL) were positively 

correlated with GFAP-positive astrocyte densities in the CA1 PL, SR, and CA2 PL (r > 0.4, 

p < 0.5). Aldh1L1-positive astrocyte densities in the CA2 PL were positively correlated 

with GFAP-positive astrocyte densities in the CA1 and CA2 PL, and CA1 and CA2 SR (r > 

0.4, p < 0.05). 

GFAP-positive and Aldh1L1-positive astrocyte densities were significantly greater in the 

CA1 and CA2 pyramidal layer than the alveus (p < 0.001), though there was no 

difference in densities between the CA1 and CA2 pyramidal layer and the stratum 

radiatum. 
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Figure 6.13 A, Correlations between Aldh1L1- and GFAP-positive astrocyte densities in CA1 and 
CA2; B, Graph showing ratio of Aldh1L1 : GFAP positive astrocyte densities in the different 
layers analysed. Asterisks indicate significant difference to the PSD group. SR = stratum 
radiatum, PL= pyramidal layer, A = alveus. 
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6.4.5 Microglia 

Demographics of subjects analysed using CD68 for activated macrophages are shown 

in Table 6.4. There were no differences in age, PMD or fixation between groups.   

 

 

N Age,  
years 

Mean (range) 

PMD,  
hours  

Mean (range) 

Fixation 
length,  
weeks  

Mean (range) 

Braak  
stage,  

Median 
(range) 

CERAD  
score, 

Median 
(range) 

Controls 6 84.4 
(7494) 

38.6 
(15-67) 

10 
(6-16) 

2.4 
(1-3) 

0 
(0) 

PSND 7 85.2 
(81-89) 

39 
(11-76) 

9 
(5-16) 

2.8 
(2-4) 

1.6 
(1-2) 

PSD 8 85 
(80-89) 

59 
(24-81) 

8 
(2-18) 

2.3 
(1-4) 

1.4 
(0-3) 

AD 9 82.3 
(70-91) 

31 
(6-72) 

10 
(8-20) 

5 
(4-6) 

3 
(3) 

Table 6.4. Group demographics of subjects analysed using CD68 to visualise activated microglia.  

 

There was a trend to CA1 CD68 IOD being different across groups [F (20) = 0.273, p = 

0.077], and there was a trend to the AD group having greater CA1 IOD than controls (p 

= 0.059) (Figure 6.14 C). CA1 IOD was correlated with CA2 IOD (r = 0.706, p = 0.001), 

and CA1 and CA2 IOD were correlated with CERAD scores (r = 0.504, p = 0.024 and r = 

0.463, p = 0.053) and Braak stage (r = 0.436, p = 0.048 and r = 0.442, p = 0.058). CA1 

CD68 %PA was negatively correlated with CA1 neuron density (r = -0.473, p = 0.011). 

There were no correlations with CAMCOG scores, vascular pathological burden, age, 

PMD or fixation. 
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Figure 6.14. Representative images of CD68 immunostaining in the CA1 of PSND (A, C) and AD 
subject (B, D). A-B Scale bar = 100µm, C-D Scale bar = 50µm. E, Box-plots of CD68 mean IOD in 
the CA1 and CA2. Dotted line indicates trend to significant difference (p = 0.059).  
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6.5 Discussion 

6.5.1 White matter damage 

This study did not find any differences in myelin integrity in the alveus between the 

PSD and PSND groups using LFB staining for myelin or dMBP for degraded myelin basic 

protein. Furthermore, myelin and dMBP levels were not related to post-stroke 

CAMCOG scores or dementia status. The considerable variation in myelin staining 

between subjects within groups, particularly the controls, may have masked actual 

disease related differences. Some subjects in the elderly control group exhibited 

similar pathological white matter changes in the alveus to post-stroke and AD subjects, 

which may have reflected age-associated white matter damage. Histopathological 

studies have shown white matter damage, including myelin pallor, loss of white matter 

fibres, and malformation of myelin sheaths, is a common feature in normal ageing 

(Marner et al., 2003; Gunning-Dixon et al., 2009). As there does not appear to be 

significant neuron loss with ageing, damage to white matter is therefore likely to 

underlie the general slowing of cognition consistently found with increasing age 

(Marner et al., 2003). Memory function declines with age (Peich et al., 2013), therefore 

this may be related to myelin loss in the alveus causing slowing or loss of axonal 

communication in the hippocampal circuitry. 

Although there were no clear associations between LFB myelin staining and cognitive 

status, there was considerable variability in myelin staining between subjects. Myelin 

staining was positively correlated with neuronal volumes in the CA1, CA2 and CA4, 

which suggests that subjects with reduced neuronal volumes had fewer myelinated 

axons in the alveus, in agreement with my hypothesis that reduced neuronal volumes 

may be related to axonal arbour. The AD group had the lowest mean LFB %PA staining 

in CA1 and CA2, which is likely to reflect secondary axonal degeneration due to 

hippocampal neurodegeneration and axonal damage caused by AD pathology. 

Similarly, Braak and CERAD scores were only related to LFB staining in the EC white 

matter, reflecting the well-described selective vulnerability of EC neurons to AD 

processes.  

Mean dMBP immunostaining was also similar between groups with a broad spread of 

results within each group. Levels of dMBP did not appear to be directly related to 
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neuronal volumes or AD pathology, which may be because dMBP staining in white 

matter is more closely related to oligodendrocyte than neuronal dysfunction. 

Furthermore, areas with low LFB staining may have already undergone severe myelin 

loss and axon degeneration, therefore there was less myelin was available to be 

degraded and accumulate as dMBP. Therefore, accumulation of greater amounts of 

dMBP may precede myelin loss after white matter injury. Interestingly, the area 

stained for dMBP was related to temporal lobe vascular pathological burden, which fits 

with current understanding of axonal and oligodendrocyte susceptibility to 

hypoxic/ischaemic damage (Giaume et al., 2007), as subjects with greater 

cerebrovascular pathology had greater dMBP. A previous study found that dMBP levels 

were inversely related to the size of oligodendrocytes in the frontal white matter of 

VaD subjects (Ihara et al., 2010). It would therefore be interesting to determine 

whether there were reductions in oligodendrocyte number and/or size in the alveus of 

subjects with greater myelin damage. However, dMBP levels were negatively 

correlated with PMD, which suggests results may be influenced by PMD and should 

therefore be interpreted with caution.  

It was surprising to find intense dMBP staining in the soma of neurons in the CA 

subfields. This staining was also not found to be different between disease groups or 

related to cognitive status; however the stain intensity was related to AD pathological 

burden in the CA2, and was positively correlated with dMBP levels in the alveus. This 

suggests that dMBP may be taken up by neurons and accumulated in the neuronal 

soma, possibly becoming sequestered with protein aggregates associated with AD 

processes. DMBP-positive immunostaining was also found in neuronal soma in the 

cortex, and appeared more intense in subjects with more intense hippocampal staining 

(as shown in Appendix Figure 8.6). However, neuronal staining using dMBP has not 

previously been reported and was expected to only be found in the white matter and 

oligodendrocytes, therefore the functional implications of these findings are unclear. 

LFB analyses were limited as the hematoxylin counterstain meant that oligodendrocyte 

and astrocyte nuclei within the alveus were included in the myelin stain analyses. 

However, the presence/absence of these nuclei also reflects mechanisms contributing 

to myelin and axonal integrity, as loss of oligodendrocytes would result in 

demyelination and axonal dysfunction. Variability in the intensity of LFB stain may have 
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influenced results, although the myelin index calculations were carried out to 

normalize LFB staining differences. Stains for axonal proteins such as tau may be useful 

markers to complement studies of this kind and determine whether myelin loss 

reflects axon degeneration. 

Pyknosis ratings were variable within groups, although all control subjects were rated 

as 0 or 1. It was interesting not to find any relationship between the severity of 

pyknotic-appearing neurons and neuronal volume or density measures, as reduced 

neuronal volumes in the baboon model were related to pyknosis and cytoplasm 

shrinkage was a possible mechanism contributing to neuronal volume loss in the 

dementia subjects. Further investigation of markers of degenerating neurons, such as 

poly (ADP-ribose) polymerase 1 (PARP) or Fluoro-Jade C, would be needed to establish 

whether neuronal volume changes indicated cell death mechanisms. However, the 

finding of neuronal volume loss without significant reductions in neuronal density 

suggested that these neurons were not degenerating.  

6.5.2 Astrocyte densities 

Immunohistochemical staining for Aldh1L1 revealed greater numbers of astrocytes 

than GFAP in the CA1 and CA2 pyramidal layers and stratum radiatum, which 

confirmed that Aldh1L1 was a broader maker for astrocytes than GFAP. Aldh1L1-

positive protoplasmic astrocytes were evenly distributed across the hippocampus, in 

agreement with the literature describing astrocytes completely tiling the brain and 

occupying non-overlapping domains (Ogata and Kosaka, 2002; Sofroniew and Vinters, 

2010). Surprisingly, the density of GFAP-positive astrocytes in the alveus was greater 

than Aldh1L1-positive astrocytes. This may suggest that non-astrocytic GFAP-positive 

cells were counted, as it is known that not all cells that express GFAP are astrocytes 

(Oberheim et al., 2012). However, GFAP-positive staining was often intense in the 

white matter of the alveus and close to the surface, making identification of astrocytic 

cell bodies considerably more challenging (as shown in appendix Figure 8.8), therefore 

astrocyte counts in the alveus may not have been accurate using GFAP. 

There were no significant differences in Aldh1L1-positive astrocytes between groups, 

although mean densities appeared higher in the CA1 in disease groups than controls. 

Immunohistochemical staining for GFAP revealed greater differences in reactive 
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astrocyte densities between groups.  The highest density of reactive astrocytes was 

found in the AD subjects, and GFAP-positive astrocyte density was correlated with AD 

pathology in the CA1 and CA2 pyramidal layers and stratum radiatum. These findings 

are in agreement with previous studies demonstrating hippocampal astrogliosis in 

response to AD pathology, although the precise role of astrocytes in the pathogenesis 

of AD remains unknown (Grolla et al., 2013).  

Conversely, increased vascular pathological burden was related to lower reactive 

astrocyte density in the CA1 and CA3 pyramidal layers and the CA1 stratum radiatum. 

As Aldh1L1-positive astrocyte density was also negatively correlated with vascular 

pathological burden in the CA1 and CA2 pyramidal layers, these findings suggest that 

CVD processes may result in loss of hippocampal astrocytes. This opposing effect of AD 

and CVD processes on astrocyte densities may have prevented the detection of clear 

differences in astrocyte densities in the groups studied, which are likely to have had 

some degree of both cerebrovascular and neurodegenerative disease pathology.  

The ratio of Aldh1L1- to GFAP-positive astrocyte density in the CA1 stratum radiatum 

and pyramidal layer was greater in the PSD group compared to PSND, with PSD 

subjects having a similar ratio to controls, whereas the PSND group were similar to AD. 

This was surprising, as I had hypothesised that PSND would be more similar to 

controls, reflecting the neuronal volume findings observed in chapter 1. This may 

therefore reflect differing astrocytic response in the stroke survivors contributing to 

cognitive decline, or be related to astrocytic activation by greater Aβ pathology in the 

PSND group. Further investigation of reactive astrocytes in relation to AD pathology 

may determine whether the density of GFAP-positive astrocytes was primarily 

influenced by Aβ plaque density. 

It was interesting to discover that GFAP-positive astrocyte density was inversely 

related to dendritic length-density in the CA1 stratum radiatum as I had previously 

failed to find any markers or factors related to dendritic length density. This finding 

suggests that astrocytes within this subfield were responding to local dendritic 

pathological changes, possibly through dendritic remodelling and synaptic function, 

although reactive astrocytes have also previously been implicated in contributing to 

neurodegeneration (Tanaka et al., 1992). However, due to the previously discussed 
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issues using MAP2, this relationship should be considered with caution. The finding 

that GFAP-positive astrocyte density in the alveus and stratum radiatum was positively 

correlated with neuronal volumes in CA1, CA2 and CA4, and that astrocyte density in 

the CA2 stratum radiatum was related to CA1 and ECV neuronal density, suggests that 

increased numbers of reactive astrocytes were associated with a neuroprotective 

response to restore neuronal function, in agreement with previous studies (Briones et 

al., 2006).  

This investigation into astrocyte density was limited by the previously discussed 

limitations associated with 2D estimates of cell densities, and could not take into 

account possible variations in tissue atrophy. However, due to time constraints, full 

investigation using 3D stereological analyses was not possible. These results indicate 

that it would be extremely interesting to use a 3D stereological method to quantify 

hippocampal astrocyte density and cell body size. Shrinkage of astrocyte volumes and 

arbour have previously been reported in the EC in models of AD and were suggested to 

be contribute to the selective vulnerability of the EC to AD pathology (Yeh et al., 2011), 

whereas reactive astrogliosis is associated with increased astrocyte diameter 

(Sofroniew, 2009). Double staining using immunofluorescence could be used to 

identify the number of astrocytes that express both GFAP and Aldh1L1 for further 

investigation into differences in reactive astrocyte densities between subjects and 

hippocampal regions in different disease aetiologies.  The use of additional astrocyte 

markers such as S100β and glutamine synthetase will also allow further insight into 

mechanistic changes to the hetereogeneous population of astrocytes in the 

hippocampus after stroke. 

6.5.3 Microglia  

In agreement with published observations, activated microglial markers were related 

to AD pathological burden. Although there were no significant differences in CD68 

immunoreactivity between groups, the AD group had more intense staining than 

controls and post-stroke subjects in CA1, and staining intensity in CA1 and CA2 was 

correlated with AD pathology, in agreement with previous studies reporting microglial 

activation in response to Aβ deposits in the neuropil and vessel walls (Meraz Rios et 

al., 2013). The finding that greater CD68 staining was related to lower CA1 neuron 
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density may reflect the role of CD68-positive microglia in phagocytosing neurons in AD 

(Neher et al., 2012).  Based on these observations in CA1, it was therefore surprising to 

find mean CD68 was highest in the PSD group in the CA2. I did not find any 

relationships between CD68 and vascular pathology, suggesting that the microglial 

activation was more closely related to AD pathology. This was supported by the (non-

significant) increase in mean CD68 levels in PSND subjects compared to PSD in the CA1, 

which may reflect the greater burden of Aβ pathology I previously found in the PSND 

group.  

6.6 Conclusions 

This study found considerable variation in myelin integrity in the alveus in elderly 

subjects with and without dementia. Although myelin density and dMBP staining was 

not related to cognitive status, loss of myelin staining  in the alveus was related to 

neuronal volumes in CA1, CA2, and CA4. This supported my hypothesis that there may 

be a relationship between neuronal volume loss and impairment in neuronal 

connectivity, as reduced myelin integrity is likely to reflect loss of, or dysfunctional 

axonal connections. Conversely, dMBP immunoreactivity was not related to neuronal 

volumes or LFB staining, but was related to vascular pathological burden in the medial 

temporal lobe. This suggests that oligodendrocyte damage was greater in subjects with 

more severe CVD, which is in agreement with literature describing the particular 

susceptibility of oligodendrocytes to hypoxic-ischaemic damage.  

There were no differences in astrocyte or reactive astrocyte densities between the PSD 

and PSND groups, and they were not related to post-stroke cognitive function. 

However, IHC to Aldh1L1 identified 2-3 times more astrocytes in the pyramidal layer 

and stratum radiatum than GFAP, and they were distributed in a homogeneous 

manner throughout all layers confirming that Aldh1L1 is a more reliable marker for 

astrocytes. Interestingly, the PSD group had a higher ratio of Aldh1L1 to GFAP-positive 

astrocytes than the PSND group, which had greater proportion of GFAP-positive 

astrocytes similarly to AD subjects. This may have reflected the positive relationship 

between increased density of reactive astrocytes and AD pathology, in agreement with 

previous studies (Grolla et al., 2013). Astrocyte densities may also have been affected 

by CVD, as they were negatively correlated with increasing vascular pathology. CD68-
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positive microglial immunoreactivity was also related to AD pathology in agreement 

with previous studies (Nagele et al., 2004; Bolmont et al., 2008).   
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Chapter 7. Discussion 

7.1 Introduction 

This study investigated neuronal morphological changes, neurodegenerative 

pathological mechanisms, and neuroglial responses in the hippocampus of stroke 

survivors from the CogFAST cohort and attempted to elucidate mechanisms 

contributing to delayed post-stroke dementia. The key findings of this study are listed 

below and discussed in detail in the following subsections: 

 Hippocampal neuronal soma volumes were 10 – 20% reduced in post-stroke 

and ageing-related dementia subjects compared to non-demented stroke 

survivors and controls.  Surprisingly, CA1 neuron density was not related to 

post-stroke cognitive status, and all stroke survivors had reduced neuron 

density in the CA1 compared to controls. The degree of neuronal atrophy was 

related to: 

o severity of post-stroke cognitive impairment (CAMCOG scores) 

o burden of hippocampal hyperphosphorylated tau pathology and Braak 

stage 

o reactive astrocyte density in the alveus and stratum radiatum 

o myelin density in the alveus 

 Amyloid-β pathology was not related to cognitive function, and the non-

demented stroke survivors had a greater burden of Aβ pathology than PSD 

subjects. 

 Reactive astrocytes and microglia were associated with greater burden of AD 

pathology. Conversely, astrocyte density was inversely related to the CVD 

pathological burden. 

 Greater burden of CVD pathology in the temporal lobe was related to 

accumulation of degraded myelin basic protein in the alveus. 

 Interpretation of differences in dendritic and synaptic marker levels and 

distribution were limited due to the poor understanding of the influence of 

ischemia, agonal and post-mortem conditions. 
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 Standard markers of autophagy appeared to be differentially affected in AD 

and CVD; but were not related to cognitive status. 

7.2 Neuronal atrophy as a mechanism contributing to cognitive impairment  

This study provided novel evidence that neuronal volume reductions were associated 

with cognitive impairment in PSD, AD, VaD and mixed dementia. As non-demented 

stroke survivors maintained neuronal volumes similar to controls, and neuronal 

volumes were related to cognitive test scores, this suggests that reduced neuronal 

volumes reflected mechanistic changes contributing to cognitive decline. There were 

no differences in CA1 neuron density between non-demented and demented stroke 

survivors, which was surprising as neuron loss is believed to contribute to cognitive 

dysfunction. However, this finding supported the hypothesis that dysfunction in the 

surviving neurons was an important determinant of cognitive function.  

Since the publication of these findings (Gemmell et al., 2012), further studies from 

other members of the neurovascular research group have found that neuronal 

volumes were similarly reduced in layers III and V of the dorsolateral pre-frontal cortex 

(dlPFC) in PSD subjects from the CogFAST cohort , VaD and AD subjects compared to 

controls and PSND subjects (manuscript in preparation). Neurons in the CA1/subiculum 

directly innervate the prefrontal cortex via the hippocampo-prefrontal pathway, and 

the prefrontal cortex is known to have an important role in learning and memory 

formation (Laroche et al., 2000). Therefore, neuronal volume reductions in the dlPFC 

may reflect deafferentation from hippocampal neurons lost or impaired by ischaemic-

hypoxic or neurodegenerative insults. However, neuronal volumes in the anterior 

cingulate cortex and orbitofrontal cortex, regions also involved in memory processing 

and long-term storage, were not reduced in subjects with dementia. Together with my 

finding that EC neuronal volumes were only reduced in subjects with severe AD 

pathology, this suggests that neuronal atrophy is not a global effect, but that neurons 

in different areas of the brain are differentially vulnerable to mechanisms causing 

these morphological changes.  

These findings have interesting therapeutic implications, as they suggest that cognitive 

function may be preserved or recovered even after significant loss of neurons, when 
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the surviving neurons maintain normal volumes. Studies to determine the mechanisms 

protecting neurons from structural and functional decline in stroke survivors may 

therefore provide the basis for the development of therapeutic strategies to prevent 

or slow cognitive decline after stroke and in other age-related dementias. 

7.3 Investigating mechanisms causing neuronal atrophy 

My subsequent studies built on these findings to explore possible mechanisms causing 

or contributing to neuronal atrophy and dysfunction.  

7.3.1 Alzheimer’s disease pathology 

Hyperphosphorylated tau pathology was related to neuronal densities in CA1 and 

neuronal volumes in CA2, CA4 and ECV. These findings suggested that tau pathology 

contributed to neurodegeneration in the CA1 and neuronal dysfunction in the other 

subfields, which may be due to loss of neuronal connectivity due to CA1 target loss or 

tau pathology causing neurite dysfunction. These results were in agreement with 

previous studies demonstrating relationships between tau pathology, CA1 neuron loss 

and cognitive impairment (Gómez-Isla et al., 1997; Giannakopoulos et al., 2003), but 

no relationship with amyloid-β pathological burden (Braak and Braak, 1991). The 

finding that PSND subjects had maintained neuronal volumes despite greater burden 

of Aβ pathology suggests that neuronal volume could be an indicator of brain reserve, 

where the surviving neurons had maintained functional connectivity or had 

upregulated compensatory mechanisms which protected against neuronal dysfunction 

and loss caused by disease processes. Anatomical differences in dendritic spines and 

synapses have previously been suggested as possible quantitative measures of brain 

reserve (Barulli and Stern, 2013), therefore neuronal volumes may reflect similar 

mechanisms.   

7.3.2 Autophagy 

As autophagy is highly efficient in healthy neurons, I reasoned that increased staining 

for autophagy proteins LC3 and Beclin-1 would be associated with cognitive 

dysfunction in PSD. Accumulation of autophagic vacuoles indicates autophagic stress, 

neurite damage caused by impaired protein degradation and trafficking, and leads to 

structural changes and neuronal dysfunction. My findings were generally in agreement 
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with previous studies demonstrating increased build-up of AVs in subjects with AD 

(Nixon and Yang, 2011). However the conflicting correlations between LC3 and Beclin-1 

with global pathological burden were difficult to interpret. Imbalanced autophagy is 

implicated in neurodegeneration, and autophagy can become imbalanced due to 

down- or up-regulation or impaired clearance. Previous studies have suggested that 

activation of autophagy can promote neuronal survival in the initial stages of ischaemic 

brain injury (Carloni et al., 2008), although increased LC3 and Beclin-1 are more 

commonly associated with neuron death due to excessive activation of autophagy 

(Cherra III and Chu, 2008). Furthermore, chronic impairment in autophagy has been 

shown to cause axonal and synaptic degeneration, while increased autophagy can lead 

to neurite retraction and reduced neuronal communication (Cherra III and Chu, 2008). 

Therefore, the functional significance of finding increased levels of autophagy markers 

in CVD is unclear. Studies will first need to establish the role of autophagy in 

hippocampal neurodegeneration and cognitive dysfunction in carefully controlled 

animal models of stroke and hypoxia, to allow insight into the effects of CVD in the 

absence of other age-associated disease processes.  

7.3.3 Neuronal connectivity; dendrites, dendritic spines and synapses 

Neurons represent the fundamental information processing unit in the brain, and their 

structure influences how information is received and processed to generate action 

potentials. Therefore, dysfunctional neuronal communication can be assessed through 

changes to neurite structure or abnormal expression of proteins involved in synaptic 

transmission. As the extent and complexity of the axo-dendritic arbour is believed to 

influence neuronal soma volume (Harrison and Eastwood, 2001), and contribute to 

loss of neuropil volume and tissue atrophy in cognitive impairment (Selemon and 

Goldman-Rakic, 1999), changes to dendrites and axons were investigated as putative 

mechanisms contributing to soma volume loss, neuronal dysfunction, hippocampal 

atrophy, brain reserve and cognitive impairment in stroke survivors who developed 

delayed PSD. 

I hypothesised that dendrites and/or synaptic markers in the stratum radiatum would 

be reduced in relation to cognitive impairment and neuronal loss and/or neuron 

atrophy. However, finding an appropriate technique to investigate dendritic changes in 
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human post-mortem material was particularly challenging. Previous studies of 

dendrites in human tissue have generally attributed surprising or conflicting findings to 

post-mortem delay (Schwab et al., 1994; Cotter et al., 2000). This is a reasonable 

assumption, as it is hard to believe that such plastic structures specialized to constantly 

dynamically adapt for learning and memory formation do not also undergo significant 

changes or degradation during the interval between death and fixation. However, the 

precise effects of post-mortem autolytic processes on dendritic and synaptic markers 

are not well characterised. One study, (Siew et al., 2004), has previously investigated 

the stability of synaptic proteins after post-mortem delay up to 72 hours at 20°C and 

4°C in rodent and human post-mortem tissue using ELISAs (enzyme-linked 

immunosorbent assays). They found that synaptophysin levels were stable in rodent 

and human tissue post-mortem, while levels of PSD-95 and pre-synaptic protein 

syntaxin were considerably reduced in human frontal cortex from 24 hours post-

mortem. This demonstrated that post-mortem delay longer than 24 hours resulted in 

inter-species and regional differences in synaptic marker stability, and that different 

synaptic markers may be degraded at different rates. The authors attributed the 

greater stability of synaptophysin to its multi-transmembrane structure which make it 

more resistant to degradation (Siew et al., 2004). Further investigation would be 

required to determine the reliability of interpreting changes in levels of other synaptic 

markers using IHC in tissue with varying post-mortem delays. In human tissue, I found 

that the dendritic spine protein drebrin was concentrated in neuronal soma with very 

little in the stratum radiatum or moleculare. In contrast, drebrin levels were 

concentrated in the neuropil in the perfusion-fixed non-human primate model, 

suggesting that drebrin may be moved from dendritic spines to accumulate in the cell 

body during the post-mortem interval. This has previously been shown with MAP2 and 

tau, and further demonstrates that microtubules are not stable post-mortem (Schwab 

et al., 1994).  

MAP2 is also known to be particularly sensitive to hypoxic-ischaemic injury, which 

further complicated interpretation of changes to MAP2-positive dendrites in stroke 

survivors. Despite these limitations, I used MAP2 as it was the best marker to assess 

dendritic changes in the paraffin-embedded tissue available. As expected, 

interpretation of results using MAP2 was difficult. Differences in distribution patterns 
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and intensity were clearly visible by eye, but did not appear to be directly related to 

disease pathology, cognitive function, neuronal volume/density changes, or PMD. 

Similarly, there was variation in the distribution of post-synaptic proteins drebrin and 

PSD-95 staining. Further work is required to determine the stability of these proteins 

post-mortem and determine whether these differences reflect disease processes. 

Despite these limitations, this study demonstrated a successful new 3D stereological 

method to assess MAP2-positive dendritic length-density using a spherical probe. 

Further work will be required to validate the even penetrance of the 

immunohistochemical stain in 30µm thick sections, as variable staining has been 

documented as a potential confounding factor for 3D stereology (Mouton, 2002; 

Melvin and Sutherland, 2010). However, for studies such as mine which compared 

differences between groups rather than determining absolute numbers of particles, as 

all sections were processed and stained in the same way, any differences would have 

affected all sections equally, allowing fair comparisons between subjects. Although 

interpretation of these results in human post-mortem material face limitations 

described previously, this technique could be applied to elucidate changes to dendritic 

length and complexity in relation to neuronal volumes and memory impairments in 

animal models of stroke with no PMD.  

7.3.4 White matter changes in ageing and CVD 

Myelin density in the alveus was correlated with neuronal volumes, suggesting that 

reduced neuronal volume was associated with axon loss or dysfunction. Myelinated 

axons do not undergo the dynamic plastic changes that dendrites do, therefore 

allowing more reliable reflection of structures in life. However, myelin density was not 

related to cognitive status or disease pathology in this study. This was apparent from 

inspecting only the control group, where there was considerable variation in myelin 

staining between subjects. Variability in white matter changes in controls has also 

recently been shown in a DTI study which reported “tremendous individual variation 

within a single control group” (Aine et al., 2014). Aine et al. also found that control 

subjects often had a range of vascular risk factors, which had robust effects on brain 

anatomy and function. This therefore highlights the current lack of understanding of 



173 
 

the functional impact of cerebrovascular lesions and white matter pathology on 

cognition.  

Myelin density was not related to levels of degraded myelin basic protein, although 

accumulation of dMBP was associated with CVD burden in the temporal lobe. As 

previously discussed, this may be because reduced myelin staining reflects myelin loss, 

therefore there is less myelin left to become degraded. The relationship between 

dMBP and CVD supports current understanding of the particular vulnerability of 

oligodendrocytes to hypoxic-ischaemic injury. Further studies to investigate the 

number and functionality of oligodendrocytes may elucidate relationships between 

myelin staining and dMBP levels, as loss of myelin indicates loss of oligodendrocytes. 

7.3.5 Role of astrocytes and microglial activation 

The pivotal role of astrocytes in synaptic transmission, vessel function, and the 

pathogenesis of neurological diseases have only recently begun to be recognized 

(Sofroniew, 2009; Oberheim et al., 2012). As my central hypothesis focussed on loss of 

hippocampal neuronal connectivity as a mechanism contributing to delayed PSD, I 

reasoned that pathological changes to astrocytes were likely to be involved in neuronal 

and cognitive dysfunction. Therefore, I investigated total astrocyte density using IHC to 

a new specific marker of astrocytes (Aldh1L1) and reactive astrocytes using GFAP. 

Astrocyte densities were not related to post-stroke cognitive function or different 

between PSD and PSND groups, however the positive correlations between reactive 

astrocyte densities in the alveus and stratum radiatum and neuronal volumes 

suggested that reactive astrocytes had a neuroprotective role in maintaining neuronal 

connections. Reactive astrocyte densities were also related to AD pathology, although 

they were related to Braak stage more than CERAD score, which was surprising as 

previous studies have reported accumulation of astrocytes undergoing gliosis around 

Aβ plaques (Rodríguez et al., 2009). There was also increased activation microglia in 

subjects with greater AD pathology, in agreement with the literature describing 

increased gliosis in AD (Meraz Rios et al., 2013).  

Interestingly, studies of AD have found that astrocytes distant from amyloid plaques 

develop atrophy, which has been suggested to result in impaired synapse support, 

synaptic remodelling and disrupted neuronal circuitry (Rodríguez et al., 2009). As my 
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findings indicated there may be a role for astrocytic activation and/or dysfunction in 

relation to neuronal changes in post-stroke subjects, it would be interesting to conduct 

a 3D stereological study of astrocyte density and volumes in the hippocampus of these 

stroke survivors, for more accurate investigation into the relationships between 

neuronal volume, connectivity and astrocytes.  

 

7.4 General strengths and limitations 

7.4.1 Unique strengths of the CogFAST cohort 

The CogFAST cohort is a unique prospective study allowing insight into the disease 

mechanisms causing delayed post-stroke dementia in elderly subjects.  The extensive 

detailed clinicopathological information made it possible to deduce relationships 

between neuronal changes and clinical or pathological features. As all subjects were 

recruited, assessed and all tissue was processed under the same conditions, this allows 

for reliable comparison between subjects. The large numbers of subjects within the 

cohort allowed my studies to have good statistical power. 

The mean interval between last cognitive test and death was 7.6 months (± 2SE = 1.7), 

providing a fairly accurate estimate of cognitive status at death. However, it is 

impossible to know precisely how accurate these measures were, as subjects may have 

experienced further or rapid cognitive decline between assessment and death. 

Variability in degree of cognitive impairment in PSD subjects ranged from CAMCOG 

scores 24 – 80 and PSND subjects from 76 – 99. Therefore, variability in pathological 

changes would be expected within these groups to account for the variability in 

cognition. However, this variability may have prevented detection of statistically 

significant differences between groups, although providing a good range for 

correlation analyses. 

7.4.2 Additional factors to consider 

Hippocampal tissue was randomly taken from either the right or left hemisphere 

depending on which was available. There were no differences in neuronal volumes or 

densities when data obtained from the right hippocampus was compared to that from 
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the left (p > 0.05). However, the hemisphere tested may have influenced the strength 

of relationships between memory dysfunction and pathological changes, as studies 

have found that different aspects of memory processing are more strongly associated 

with the left or right hippocampus, with the left hippocampus being more involved in 

context-dependent episodic memory, whereas the right is particularly involved in 

memory for locations (Burgess et al., 2002).  

Although none of the subjects studied had significant hippocampal vascular lesions, 

there may have been asymmetrical damage to brain tissue caused by larger vascular 

lesions such as the initial stroke. Therefore, it is possible that the hippocampus on the 

contralateral hemisphere may have been less damaged by the more distant lesion.  

However, no significant differences were found between the volumes of left and right 

hippocampus of subjects who received volumetric MRI (Firbank, M. et al., unpublished 

data), suggesting that both hemispheres were equally affected. 

Furthermore, the number of risk factors (such as hypertension, cardiovascular events 

etc.) and treatments (antihypertensive, antidepressants, anti-inflammatories) may 

have also impacted on brain mechanisms contributing to pathological changes. 

Although assessment of these variables was beyond the scope of my PhD, the detailed 

information available in the CogFAST cohort allows the influence of these factors to be 

investigated in future studies. 

7.4.3 Limitations associated with human post-mortem studies of age-associated 

dementia 

The use of age-matched controls may limit detection of significant changes compared 

to disease groups, as elderly cognitively normal subjects can have varying degrees of 

physiological brain changes due to age-associated vascular lesions or 

neurodegenerative pathology (Riley et al., 2002; Aine et al., 2014). It is therefore 

critical that wherever possible, full clinical and neuropathological reports should be 

available for control subjects to allow selection of appropriate subjects for studies into 

disease mechanisms. However, although selection of ‘pathology-free’ controls may 

provide more insight into disease mechanisms, it will not further current 

understanding of why some elderly people maintain cognition despite significant 

‘disease’ pathology. The contribution of variation in the burden of age-associated 
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pathology in different control subjects may have resulted in the often broad spread of 

results within the control group in my studies. For example, atrophy of the CA1 

subfield, which I reasoned may be due to loss of neurons or neuronal volume, has 

been shown to also occur in cognitively normal elderly individuals (Wang et al., 2003; 

Mueller et al., 2007).  

The limitations of studying tissue with long or variable post-mortem interval were 

discussed previously, and are not unique to this study. The use of PMD as a measure of 

autolysis is also limited, as it does not take into account important factors such as 

temperature (i.e. room temperature compared to storage in a mortuary refrigerator) 

and tissue pH, which will influence the impact that duration of the interval between 

death and fixation had on tissue degradation. Therefore, although studies of dendritic 

and synaptic changes do appear to yield interesting results, interpretation of these 

findings should be carefully considered and compared with findings in perfusion-fixed 

animal models to ensure they are not reflecting artefacts of cell death and post-

mortem interval.   

As with all post-mortem studies we also cannot rule out the possibility that tissue 

morphology was affected during tissue processing. However all cases in the present 

study were treated and analysed the same way, particularly the CogFAST subjects 

which were recruited and processed as one cohort, therefore all groups should have 

been equally affected allowing valid comparisons to be made. 

 

7.5 Future Directions 

7.5.1 Short-term studies 

 There are still many unanswered questions regarding neuronal volume changes 

in ageing and dementia. Further 3D stereological analysis of neurons in young 

subjects, without age-associated neuropathology or confounding cause of 

death (e.g. cardiovascular or respiratory disease) will determine whether 

hippocampal neuronal volume loss also occurs in normal ageing and may 

contribute to age-associated brain atrophy.  
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 Investigation of neuronal volumes in cortical regions of the brain that would be 

expected to have little involvement in pathogenesis of dementia may provide 

further evidence to determine whether neuronal atrophy only selectively 

affects vulnerable regions of the brain. 

 Three-dimensional stereological analysis of Aldh1L1-positive hippocampal 

astrocytes in the CA1 pyramidal layer and stratum radiatum will allow more 

sensitive detection of subtle differences in astrocyte density between subjects 

and disease states, to determine whether astrocyte densities are reduced in 

CVD. Analysis of astrocyte volumes may also indicate whether astrocyte 

function was impaired, as astrocyte shrinkage has been associated with 

astrocyte and neuronal dysfunction in AD (Rodríguez et al., 2009), or whether 

astrocytes were reactive with larger soma diameters. 

 Immunofluorescent double labelling of astrocytes with antibodies to Aldh1L1 

and GFAP will allow further investigation into the putative protective role of 

reactive astrocytes. This may also indicate whether there is astrocyte 

proliferation or loss in specific regions such as vulnerable CA subfields or 

around Aβ plaques. 

7.5.2 Medium-term studies 

 To investigate differential changes to protein expression within the CA 

subfields, laser-capture microdissection of individual neurons and/or astrocytes 

could be used to select individual cells from frozen tissue. However, as only the 

soma could be expected to be extracted, this method would be suited for 

comparison of mRNA levels using RT-PCR (reverse transcription polymerase 

chain reaction). This may allow insight into different gene expression in 

different neuronal populations and between disease groups. It would be 

particularly useful to determine the expression of genes involved in dendrite, 

axonal and synaptic structure and function. 

 Changes to protein expression and distribution assessed using IHC techniques 

within sections with increasing post-mortem delay should be investigated to 

aid appropriate use of these techniques and more reliable interpretation of 

findings. Ideally, this should be carried out in subjects with minimal disease 

pathology, and post-mortem delays up to at least 72 hours. Results should also 
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be compared with a rodent model to investigate the effects of increasing post-

mortem delay as described by (Siew et al., 2004), at 4C and 20C, and perfusion-

fixed rodent tissue. Commonly used synaptic and dendritic proteins should be 

investigated, as well as markers of cell stress and death mechanisms. This 

resource would also then allow all markers to be assessed before carrying out 

studies into mechanisms that are likely to be affected by death, PMD or tissue 

fixation. 

7.5.3 Long-term studies 

 To establish whether neuronal volumes are related to changes in dendritic 

arbour after stroke will require tissue from a perfusion-fixed animal model of 

stroke. Perfusion fixation will allow rapid and uniform preservation of the tissue 

as close to its natural state as possible. The tissue can then be fixed under the 

optimal conditions for the technique chosen.  

o Despite the capricious nature of Golgi silver-impregnation techniques, 

they remain one of the best ways to visualize dendrites and dendritic 

spines. Recently, Golgi-Cox methods have been optimised for use in 60 

– 100µm thick sections (Levine et al., 2013), which could then be used 

for 3D analysis of dendritic spine length and complexity, in combination 

with neuronal soma volume measurements. In addition, serial sections 

could be taken for IHC analysis of local pathological burden.  

o Fluorescent dyes may be used to trace neurite structure in fixed tissue, 

through electroporation of Lucifer Yellow or biotin analogues or the 

more recent “DiOlistic labelling”, where microparticles coated with a 

lipophilic dye are fired at tissue sections. When a particle is embedded 

in a neuron, the dye diffuses throughout the cell producing fluorescent 

labelling of the entire structure (Staffend and Meisel, 2001). 

o Following any of the above techniques, computer assisted dendrite and 

spine tracing through thick tissue sections can be used to generate 3D 

reconstructions of neuron and dendrite structure for quantitative 

assessment of dendrite complexity and branching patterns using Sholl 

analysis (Milosevic and Ristanovic, 2007). 
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 Ideally, the animal model of stroke would also undergo cognitive testing at 

different time points after surgery to assess acute and chronic hippocampal 

morphological changes in relation to memory impairment.  

 

 

7.6 Conclusions 

This project provided novel evidence that reduced hippocampal neuronal soma 

volume is a pathological substrate of cognitive impairment in post-stroke and ageing-

related dementias. Neuronal volumes were reduced ~20% in CA1, CA2, and CA4 in PSD 

and VaD, and EC layer V neuronal volumes were also reduced in AD and MD subjects. 

Both cerebrovascular and Alzheimer’s disease processes appeared to contribute to this 

loss of neuronal volume, therefore this study provided novel evidence for a vascular 

basis of hippocampal neurodegeneration.   

Hippocampal neuronal volumes were related to hippocampal tau pathology burden, 

but amyloid burden was not related to neuronal volumes or post-stroke cognitive 

function. Greater neuronal volumes were associated with the density of reactive 

astrocytes in the stratum radiatum and alveus, suggesting that astrocytes had a 

protective role in maintaining neurite structure and function. This was further 

supported by the finding of a relationship between reactive astrocyte density in the 

stratum radiatum and dendritic length-density, although interpretation of dendrite 

measures was limited by the influence of post-mortem interval and other unknown 

variables on staining patterns.  

Future studies to investigate the role of astrocytes in the pathogenesis of delayed PSD 

may provide further evidence of a mechanism contributing to neuronal and vascular 

dysfunction in stroke survivors. Perfusion-fixed animal models of stroke will be 

required to determine the precise relationship between neuronal volume loss and axo-

dendritic arbour in CVD.  
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Chapter 8. Appendix 

 

 

    Neuronal Volume (µm3) Neuronal Density (neurons/mm3) 

  Group Mean Std. Deviation Mean Std. Deviation 

CA1 Controls 2357.1 470.4 25040.6 7195.0 

  All PS 2180.5 452.6 20819.6 4427.0 

  PSND 2332.4 344.5 20829.7 4023.0 

  PSD 1957.7 509.3 20804.7 5110.7 

  VaD 2072.9 333.8 19546.1 3639.4 

  Mixed Dementia 2021.3 395.5 14041.6 4180.2 

  AD 1926.0 437.2 16703.6 5141.4 

CA2 Controls 3072.1 452.9 33947.5 8955.2 

  All PS 2787.0 572.3 30957.3 5741.1 

  PSND 3002.0 416.2 30311.3 5222.8 

  PSD 2396.2 627.0 32131.7 6686.0 

  VaD 2634.1 549.2 30250.9 4738.5 

  Mixed Dementia 2421.9 556.7 28663.2 6634.3 

  AD 2515.0 675.9 31076.8 6953.3 

CA3 Controls 2513.4 374.6 24228.3 4404.0 

  All PS 2151.4 716.7 24281.6 3337.2 

  PSND 2447.0 610.6 23842.4 2706.6 

  PSD 1997.7 427.8 24800.6 4034.5 

  VaD 2254.1 516.2 24024.7 2783.5 

  Mixed Dementia 1721.5 317.1 23805.8 5794.6 

  AD 2073.1 389.7 22127.8 4572.8 

CA4 Controls 3045.5 400.3 14288.3 3839.2 

  All PS 2580.4 492.9 13678.2 1996.6 

  PSND 2758.8 370.5 13301.6 1626.9 

  PSD 2353.3 550.7 14157.5 2382.2 

  VaD 2603.4 321.8 13366.3 3485.2 

  Mixed Dementia 2046.2 345.0 14315.0 3848.7 

  AD 2324.3 364.3 11978.0 1410.7 

ECV Controls 1368.0 324.7 34493.1 6938.4 

  All PS 1256.0 255.5 32467.7 5310.3 

  PSND 1227.3 211.0 32418.1 5160.8 

  PSD 1308.2 326.5 32557.7 5829.2 

  VaD 1201.2 186.7 32453.0 4570.8 

  Mixed Dementia 922.9 127.0 28969.6 6563.3 

  AD 1050.6 155.0 29551.8 6156.9 

Table 8.1 Numerical values for neuronal volume and density measures. PS = post-stroke; Std. = 
standard. 
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Figure 8.1. Neuronal  densities (A) and volumes (B) in hippocampal subfields of controls. Error 
bars ±2SE. 

 

 
CA1 Vol CA2 Vol CA3 Vol CA4 Vol ECV Vol 

PSND 99.0 97.7 90.4 90.6 89.7 

PSD 83.1 78.0 79.5 77.3 95.6 

VaD 87.9 85.7 89.7 85.5 87.8 

Mixed 85.8 78.8 68.5 67.2 67.5 

AD 81.7 81.9 82.5 76.3 76.8 

Table 8.2. Hippocampal neuronal volumes in CA1-4 and ECV as percentage of control means. 

 

  CA1 Dens CA2 Dens CA3 Dens CA4 Dens ECV Dens 

PSND 83.2 89.3 98.4 93.1 94.0 

PSD 83.1 94.7 102.4 99.1 94.4 

VaD 78.1 89.1 99.2 93.5 94.1 

Mixed 56.1 84.4 98.3 100.2 84.0 

AD 66.7 91.5 91.3 83.8 85.7 

Table 8.3 Hippocampal neuronal densities in CA1-4 and ECV as percentage of control means.  

A        B 
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CA3 CA2 CA1 ECV 

CA4 r=0.718, p<0.001 r=0.627, p<0.001 r=0.462, p<0.001 r=0.373, p=0.001 

CA3 - r=0.555, p<0.001 r=0.386 p<0.001 r=0.325, p=0.005 

CA2 - - r=0.406, p<0.001 r=0.311, p=0.012 

CA1 - - - r=0.231, p=0.05 

  Table 8.4. Correlations between neuronal volumes in hippocampal subfields CA1- CA4. 

 
Figure 8.2. Neuronal densities in a baboon model of cerebral hypoperfusion at different survival times 
post-surgery; 1D = 1 day, 2D = 2 day, 3D = 3 day, 7D = 7 day, 14D = 14 days, 28D = 28 days post-surgery. 
White bars = left hemisphere (contralateral to surgery), grey bars = right hemisphere (ipsilateral to 
surgery). 
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    Right Left 

  Group Mean Std. Deviation Mean Std. Deviation 

CA1 neuron density 
(neurons/mm3) 
  
  
  
  
  
  

Sham 16965.8 2773.9 18080.8 2885.0 

1 Day 16355.8 979.5 17326.3 1627.2 

3 day 16711.2 948.7 16000.4 423.6 

7 day 17085.3 1776.1 17495.1 1713.2 

14 day 19621.9 3852.6 18055.9 1735.5 

21 day 20110.6 6751.5 18048.1 4238.6 

28 day 18855.7 1798.5 18153.5 1120.4 

CA1 neuron volume 
(µm3) 
  
  
  
  
  
  

Sham 2964.8 546.2 3043.5 1457.7 

1 Day 1944.4 602.7 2133.7 753.5 

3 day 1913.0 659.6 1754.4 718.6 

7 day 1900.7 607.9 1859.5 582.5 

14 day 1693.3 428.7 1497.8 345.8 

21 day 2314.7 474.3 2705.0 1118.2 

28 day 2707.3 606.0 2466.6 40.0 

CA2 neuron density 
(neurons/mm3) 
  
  
  
  
  
  

Sham 22234.9 3340.1 21443.0 5112.8 

1 Day 19908.4 575.1 17657.1 568.2 

3 day 18030.8 337.7 16388.7 1676.9 

7 day 19039.8 875.9 16768.1 2094.3 

14 day 18277.5 1809.1 17962.7 2326.6 

21 day 22493.3 5859.4 18854.5 3372.6 

28 day 20122.6 4663.3 16934.6 2651.8 

CA2 neuron volume 
(µm3) 
  
  
  
  
  
  

Sham 2627.8 996.0 2688.0 667.8 

1 Day 2098.2 135.1 2101.4 27.0 

3 day 2057.6 371.7 1953.7 402.6 

7 day 2146.4 573.9 2098.7 666.3 

14 day 1936.3 604.4 1891.6 434.0 

21 day 2820.7 250.3 2932.0 143.6 

28 day 2746.0 467.1 2740.5 621.8 

Table 8.5 Numerical values for neuronal volume and density measures in baboon model cohort. Right = 
right hippocampus, left = left hippocampus. 
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Table 8.6 Frequency tables for ratings of amyloid and tau pathology.  
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Table 8.7 Numerical values for image analysis of autophagy markers LC3, Beclin-1 and P62 in 
CA1 and CA2. %PA = percentage of the area of interest positively stained; IOD = integrated 
optical density (intensity of stain); Std = standard. 

Group Mean Std. Deviation Mean Std. Deviation

LC3 CA1 Controls 0.00831 0.00289 102.5 4.7

PSND 0.00813 0.00184 107.2 6.4

PSD 0.00980 0.00274 105.5 8.2

AD 0.00957 0.00110 97.5 6.2

LC3 CA2 Controls 0.01590 0.00499 103.4 10.2

PSND 0.01390 0.00113 106.4 7.4

PSD 0.01685 0.00313 105.7 8.0

AD 0.01708 0.00218 94.8 9.9

Beclin-1 CA1 Controls 2.30688 1.80221 136.4 55.6

PSND 2.40621 1.11512 155.3 6.1

PSD 2.82310 1.70090 158.2 6.2

AD 3.34838 0.52319 158.3 3.7

Beclin-1 CA2 Controls 8.49895 1.74246 161.0 11.0

PSND 8.00919 2.33600 162.5 10.1

PSD 8.53998 1.83073 163.5 6.3

AD 8.61105 1.97772 167.4 5.7

P62 CA1 Controls 1.63461 3.25593 157.9 10.0

PSND 1.35384 2.06469 159.8 11.8

PSD 0.99538 0.84991 159.5 10.6

AD 2.63617 2.79693 168.5 6.5

P62 CA2 Controls 2.72984 2.54887 157.5 13.9

PSND 2.08923 2.76588 150.6 9.0

PSD 1.96987 1.16177 150.7 6.5

AD 3.16026 3.76433 168.4 12.1

%PA IOD
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Figure 8.3 Unusual and different patterns of P62 staining. A, AD outlier (high IOD); B, 

spherical staining in the alveus of a PSD subject; C, intense spherical staining in the CA1 

of a PSND subject; D, spherical staining in the CA2 of a control subject; E, Plaque-like 

staining in an AD subject; F, tangle like staining in the CA2 of an AD subject. Scale bar 

A-D = 100µm, E = 200µm, F = 50µm. 
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Table 8.8 Numerical values for MAP2 dendritic length-
density (DLD) and image analysis. %PA = percentage of 
area of interest positive stained; IOD = integrated 
optical density; Std. = standard. 

Group Mean
Std. 

Deviation

CA1 DLD Controls .01700 .00289

PSND .01592 .00379

PSD .01569 .00301

VaD .01580 .00443

AD .01510 .00348

MAP2 CA1 %PA Controls .497 .862

PSND 1.202 1.092

PSD .887 1.012

AD .740 .489

MAP2 CA1 IOD Controls 140.3 6.7

PSND 131.2 19.7

PSD 132.1 13.8

AD 140.1 8.6

MAP2 CA2 %PA Controls 2.089 2.420

PSND 3.764 2.205

PSD 4.823 4.226

AD 3.326 4.095

MAP2 CA2 IOD Controls 133.6 11.0

PSND 116.4 16.4

PSD 133.1 15.0

AD 133.5 10.9
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Figure 8.4. Differences in dentate gyrus staining for MAP2. A, control; B, PSD; C and D, PSND. 

Scale bar = 100µm. 
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Figure 8.5 Images of subjects with different MAP2 staining and different Braak stages: A = 

PSND, Braak stage 5; B = PSND, Braak stage 1; C and D = AD, Braak stage 6. 
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Figure 8.6. dMBP-positive neurons in the temporal cortex of control subjects with intense 
hippocampal dMBP neuronal immunostaining (A, C) and pale/little hippocampal dMBP 
neuronal immunostaining (B, D). A-B, Scale bar = 100µm, C-D scale bar = 50µm.  
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Group Rating Frequency
Valid 

Percent

Cumulative 

Percent

Controls 1 3 42.9 42.9

2 2 28.6 71.4

3 1 14.3 85.7

4 1 14.3 100.0

PSND 0 2 20.0 20.0

1 4 40.0 60.0

3 2 20.0 80.0

4 2 20.0 100.0

PSD 0 5 45.5 45.5

1 2 18.2 63.6

2 1 9.1 72.7

3 2 18.2 90.9

4 1 9.1 100.0

AD 1 3 37.5 37.5

2 4 50.0 87.5

3 1 12.5 100.0

Group Rating Frequency
Valid 

Percent

Cumulative 

Percent

Controls 1 2 33.3 33.3

2 2 33.3 66.7

3 2 33.3 100.0

PSND 0 1 10.0 10.0

1 4 40.0 50.0

2 2 20.0 70.0

3 3 30.0 100.0

PSD 0 1 10.0 10.0

1 2 20.0 30.0

2 5 50.0 80.0

3 2 20.0 100.0

AD 0 1 14.3 14.3

1 2 28.6 42.9

2 2 28.6 71.4

3 2 28.6 100.0

LFB rating

dMBP rating

 

Table 8.9 Frequency tables for ratings of myelin integrity in the alveus. 
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Table 8.10 Numerical data from investigation into Aldh1L1- and GFAP-positive astrocyte 
densities. Mean = mean astrocyte density per 0.8mm2; Std = standard; SR = stratum radiatum; 
PL = pyramidal layer; WM = white matter (alveus). 

Region Group Mean
Std. 

Deviation
Mean

Std. 

Deviation

CA1 SR Controls 12.11 4.52 5.87 3.40

PSND 15.00 4.64 8.75 2.23

PSD 16.80 6.07 5.87 2.28

AD 15.37 5.54 7.33 3.44

CA1 PL Controls 11.77 2.92 6.99 4.00

PSND 12.17 2.94 8.12 4.30

PSD 12.04 3.30 5.01 2.48

AD 12.97 3.54 9.52 2.37

CA1 WM Controls 5.74 3.49 16.56 3.98

PSND 6.64 2.55 20.14 4.42

PSD 6.41 3.09 17.26 6.31

AD 7.04 2.10 18.06 4.85

CA2 SR Controls 14.50 4.27 9.79 6.16

PSND 10.19 6.88 9.50 1.22

PSD 12.14 6.37 10.29 4.16

AD 11.43 6.48 10.50 4.65

CA2 PL Controls 11.50 2.48 7.00 5.36

PSND 8.63 5.77 10.10 6.72

PSD 9.86 4.57 5.43 2.67

AD 11.50 5.25 13.10 4.57

CA2 WM Controls 5.19 3.43 17.79 2.20

PSND 4.50 3.95 19.30 5.32

PSD 4.45 2.76 16.36 6.73

AD 4.93 2.42 15.80 7.26

CA3 Controls 12.81 4.37 16.36 7.84

PSND 8.50 5.92 22.10 5.97

PSD 11.09 5.25 19.50 6.88

AD 12.00 6.97 18.10 5.73

CA4 Controls 10.60 4.87 17.26 5.55

PSND 9.81 3.29 21.31 5.29

PSD 12.14 1.70 19.77 5.84

AD 13.39 1.39 18.80 4.08

Aldh1L1 GFAP
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Figure 8.7. GFAP-positive astrocyte density in the CA1 and CA2 stratum radiatum. 

 

GFAP-positive astrocyte counts were positively correlated between regions: CA1 SR 

(stratum radiatum)  – CA2 PL (pyramidal layer), CA3 and CA4; CA1 SR – CA2 PL,; CA1 

alveus – CA2 a;lveus, CA3 – CA4 (all r > 0.43, p < 0.05).  

There were positive correlations between CA1 SR – CA1 PL and CA1 alveus; CA1 PL – 

CA2 PL; CA1 alveus – CA2 alveus; CA2 SR – CA2 PL, CA3 , CA4; CA2 alveus – CA3; CA3 – 

CA4 (all p < 0.05, r > 0.3). 
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Figure 8.8 Astrocytes in the pyramidal layer and alveus of A) AD subject and B) PSD subject 
(Braak score 2, CERAD score 0). GFAP was visualized using IHC with Nickel-DAB. Scale bar = 
100µm.  
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