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Abstract

This thesis concerns the simulation of local field potentials (LFPs) from

cortical network activity; network gamma oscillations in particular. Al-

terations in gamma oscillation measurements are observed in many brain

disorders. Understanding these measurements in terms of the underlying

neuronal activity is crucial for developing effective therapies. Modelling

can help to unravel the details of this relationship.

We first investigated a reduced compartmental neuron model for use in

network simulations. We showed that reduced models containing <10

compartments could reproduce the LFP characteristics of the equival-

ent full-scale compartmental models to a reasonable degree of accuracy.

Next, we created the Virtual Electrode Recording Tool for EXtracellu-

lar Potentials (VERTEX): a Matlab tool for simulating LFPs in large,

spatially organised neuronal networks.

We used VERTEX to implement a large-scale neocortical slice model

exhibiting gamma frequency oscillations under bath kainate application,

an experimental preparation frequently used to investigate properties of

gamma oscillations. We built the model based on currently available

data on neocortical anatomy. By positioning a virtual electrode grid

to match Utah array placement in experiments in vitro, we could make

a meaningful direct comparison between simulated and experimentally

recorded LFPs.

We next investigated the spatial properties of the LFP in more detail,

using a smaller model of neocortical layer 2/3. We made several obser-

vations about the spatial features of the LFP that shed light on past

experimental recordings: how gamma power and coherence decays away

from an oscillating region, how layer thickness affects the LFP, which



neurons contribute most to the LFP signal, and how the LFP power

scales with frequency at different model locations.

Finally, we discuss the relevance of our simulation results to experimental

neuroscience. Our observations on the dominance of parvalbumin-expressing

basket interneuron synapses on the LFP are of particular relevance to epi-

lepsy and schizophrenia: changes in parvalbumin expression have been

observed in both disorders. We suggest how our results could inform

future experiments and aid in the interpretation of their results.
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This thesis is dedicated to the Gods of Rock.

May they smile upon us always.
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Chapter 1

Introduction

This thesis is concerned with interpreting measurements of brain dynamics. Brains

are fantastically complex organs, containing billions of electrically excitable neur-

onal cells communicating in intricate networks to generate global dynamics at a

wide variety of spatial and temporal scales (Mitra and Bokil, 2008). Neuroscientists

are faced with the task of explaining brain functions in terms of neuronal activity.

However, measurements of this activity are beset with uncertainty: the more precise

the measurement of the individual neurons, the fewer that can be measured simul-

taneously. This is problematic given that functionality results from the interaction

of populations of neurons. Neuronal activity can be measured with various different

techniques, but the relationship between these measurements and the behaviour of

individual neurons is nontrivial (Brette and Destexhe, 2012).

Understanding brain activity measurements can be improved by developing mod-

els that explain the relationship between the measurements and the underlying

neural activity. In this thesis, we develop tools and models for simulating extra-

cellular electrode measurements in cortical networks. We then apply these tools to

investigate the relationship between such measurements and neuronal network activ-

ity during network gamma oscillatory activity. We begin this chapter by expanding

on the concept of brain dynamics and summarise how they can be measured. We

then look at results linking brain dynamics, in particular gamma oscillations, to

various cognitive and disease processes. Finally, we introduce the experimental and

theoretical models that have been used to explain gamma oscillations, and describe

how our work expands on these previous studies.
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1.1 Brain dynamics

1.1.1 What are brain dynamics?

The study of a system’s dynamics is the study of how the state of the system evolves

in time. Brain dynamics, then, is the study of the evolution of the brain’s state from

one moment to the next; but “the brain’s state” is an ill-defined concept that could

be described by a near infinite combination of different variables. Investigations

of brain dynamics are also limited by what can be measured in the living brain.

Electrical activity is of particular interest, as measurements suggest that the brain

uses electrical signals to encode stimuli and control muscle movement (Kandel et al.,

2012) - in other words, an animal’s behaviour is a direct result of the brain’s electrical

activity. Our research in particular is motivated by the study of electrical brain

dynamics on timescales on the order of milliseconds to a few seconds. Electrical

dynamics on this time scale are mostly driven by networks of neurons in the brain,

so we also use the term neural dynamics to refer to the electrical dynamics of such

networks, or neuronal dynamics to the activity of neurons.

1.1.2 Neural oscillations

Ever since the first electrical signals were measured from brains in the late 19th

and early 20th centuries (Haas, 2003; Niedermeyer and Silva, 2005), neuroscientists

have been fascinated by the oscillations they observed in their recordings. Over the

past century, many different oscillatory regimes have been documented and correl-

ated with cognitive processes or actions. Divided into frequency ranges, the more

commonly studied of these are classified as delta (1.5 - 3Hz), theta (6 - 8Hz), alpha

(∼10Hz), beta (13 - 29Hz), gamma (30 - 80Hz) and very fast oscillations (>80Hz)

(Buzsáki and Draguhn, 2004). Whether these oscillations are an epiphenomenon

of neural dynamics or a fundamental mechanism of the brain’s processing is still

debated, but a wealth of evidence links characteristic oscillations with particular

cognitive states or actions(Engel et al., 2001; Wang, 2010). Alterations in oscillatory

activity have also been implicated in many brain diseases (Traub and Whittington,

2010). Clearly, even if oscillations are epiphenomena, the study of the mechanisms

that cause them - and that cause pathological changes in them - will prove crucial
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in efforts to prevent or treat these diseases (Traub and Whittington, 2010).

1.2 Measuring brain dynamics

Brain dynamics can be measured over many spatio-temporal scales by observing

different variables using a range of modalities (Brette and Destexhe, 2012). Each

method measures a different physical quantity that is in some way related to neuronal

activity. Establishing this relationship for each modality is crucial for obtaining a

better understanding of brain function and dysfunction, and provides us with our

motivation for modelling extracellular recordings. Here we give a brief overview of

the most common techniques for measuring network activity, placing our interest in

the extracellular recordings in the broader context of general neural measurement

techniques.

1.2.1 Global scale: fMRI, PET, EEG, MEG

Measurements of dynamics across the whole brain can be made using functional

magnetic resonance imaging (fMRI), positron emission tomography (PET), electro-

encephalography (EEG) or magnetoencephalography (MEG) (Brette and Destexhe,

2012). fMRI and PET do not measure neural dynamics directly, but provide proxy

measures based on variations in a quantity related to neural activity. In the case

of fMRI this quantity is the oxygenation level of blood in the brain (Logothetis

et al., 2001), and in the case of PET it is the level of a radioactive isotope indic-

ating the concentration of glucose or oxygen (Raichle and Mintun, 2006) (though

isotopes that bind to specific neuroreceptors can also be used, Kuhl et al., 1999;

Catafau et al., 2010) . In each case, presence of glucose or of oxygenated blood is

used as an indicator of the level of neural activity: higher neural activity uses more

energy, so flow of oxygenated blood increases to areas of increased activity. While

the spatial resolution of fMRI is extremely high - less than 1 mm3 with modern

scanners (Logothetis, 2008) - its temporal resolution is limited by the speed of the

haemodynamic response, i.e. how rapidly oxygenated blood is routed to an area of

high activity after that area becomes active. This response time is approximately

two seconds (Logothetis and Wandell, 2004), and while temporal resolution can be

improved by various methodological tricks, this physiological aspect is ultimately
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the limiting factor in fMRI temporal resolution. The blood oxygenation level de-

pendent (BOLD) signal is also difficult to relate to neural activity, as the details and

function of the increased neural activity that gives rise to higher oxygenated blood

flow are unknown. However, several studies have investigated how the BOLD signal

is correlated with changes in extracellularly measured electric potentials (see below)

. Interestingly, several results have suggested that the BOLD response correlates

most strongly with the gamma frequency band (30 Hz - 80 Hz) of the local field

potential (Koch et al., 2009; Niessing et al., 2005). Similar difficulties apply in PET

imaging - additionally, PET can only be used to monitor brief tasks as the half-life

of the radioactive isotopes is short. PET is frequently used in medical diagnosis as

certain diseases show characteristic reductions in brain glucose usage (Jagust et al.,

1991; Leiderman et al., 1992).

EEG and MEG both measure signals created directly by electrical neural activity:

the electrical potential at the scalp in the case of EEG, and the magnetic field in the

case of MEG (Nunez and Srinivasan, 2006). Both of these signals arise from the flow

of currents in brain tissue, though each has different properties. The MEG signal

is dominated by contributions from pyramidal neurons in the cortex’s sulci, while

the EEG contains contributions from the whole brain (though pyramidal neurons in

the gyrii contribute most because of their relative proximity to the EEG electrodes,

Lopes da Silva, 2013; Nunez and Srinivasan, 2006). This discrepancy is due to

the nature of magnetic fields created by current flow. At a distance, current flow

in pyramidal neurons can be approximated by current dipoles: current enters the

neuron at one location and leaves at another. A current dipole produces a magnetic

field according to Ampère’s law. The direction of the magnetic field lines is given

by the right-hand grip rule: they circle the axis of the current dipole. Pyramidal

neurons positioned in gyrii have their current dipoles aligned approximately normally

to the scalp, meaning that their magnetic fields are not visible outside the skull. In

the sulcii, however, pyramidal current dipoles are aligned tangentially to the head

surface, meaning that the magnetic field from these dipoles can be detected at the

scalp (Ahlfors et al., 2010; Lopes da Silva, 2013). The greater specificity of the

source locations picked up by MEG result in improved spatial resolution due to

lower spatial smearing of the signal (Hämäläinen et al., 1993; Lopes da Silva, 2013).

Skull and scalp also influence MEG less than EEG, further improving its spatial

4



resolution. Temporal resolution of each technique is very high, though, so rapid

neural dynamics can be observed.

The spatial resolution of EEG can be greatly improved by placing the electrodes

under the skull and dura, directly onto the surface of the brain. This method is

intracranial EEG (iEEG) or the electrocorticogram (ECoG) (Strong et al., 2002).

This method eliminates any filtering from the skull and scalp and places the elec-

trodes closer to the current sources, providing much improved spatial resolution.

ECoG is highly invasive, so can only be used in patients with intractable epilepsy

to help surgeons localise the epileptic focal point they want to resect .

While both EEG and MEG are a direct result of neural activity, it is difficult

to infer precisely what this neural activity is, and where it is located, given the

recordings. Making such an inference requires solving an inverse problem: given a

finite set of measurements, where are the dipole current sources located, and how

large are they? Unfortunately, inverse problems are extremely difficult to solve as an

infinite configuration of sources can result in the same set of measurements (Darvas

et al., 2004). Educated guesses must be made, based on prior knowledge of brain

shape and neural activity. Forward models have proved useful in testing inverse

solutions: instead of inferring a model from data, we start with a known model and

infer measurements based on our knowledge of the physics of the signal propagation

(Mosher et al., 1999).

1.2.2 Local scale: VSD and ISOI

Studies on the local scale - in the region of millimetres or centimetres - can provide

more detailed information about the local network activity, though such methods are

currently limited to animal studies. Several techniques are available that operate on

this scale, each working on different principles, thus providing different information

about the operation of the network. We first briefly survey two optical imaging

techniques: voltage-sensitive dyes (VSD), and intrinsic signal optical imaging (ISOI).

These methods are primarily used for recording population activity at high spatial

resolution.

In VSD imaging, a dye is applied to the neural tissue that binds to the surfaces

of cell membranes. When the dye molecules are excited using monochromatic light,

they fluoresce in proportion to membrane potential changes. This fluorescence is
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detected by a highly sensitive camera. This signal is very small (approximately

1 percent fluorescence change Chemla and Chavane, 2012), so experiments must

be repeated many times and averaged to obtain robust results. VSD imaging can

be used both in vitro and in vivo, including in awake-behaving animals (Ferezou

et al., 2006) (Grinvald and Hildesheim, 2004). It has very high temporal resolution,

as the fluorescent properties of the dye change instantly with the cells’ membrane

potentials. Scattering of the emitted signal limits spatial resolution (Chemla and

Chavane, 2010b), as does the use of a 2D sensor to image the sum of activity from

the 3D cortical structure (Chemla and Chavane, 2010a). Individual neuronal con-

tributions cannot be resolved; the signal at one camera pixel represents a weighted

sum of the membrane potentials of all cell membranes under that pixel.

ISOI measures the amount of light reflected from brain tissue with no extra

dyes added. Changes in the reflective properties of brain tissue that correlate with

neural activity cause this reflected light signal to vary in time, giving a measure of

underlying activity (Grinvald et al., 1986). In fact, some of the signal measured by

VSD imaging comes from the intrinsic optical signal. The intrinsic optical signal has

a relatively slow temporal resolution, as the changes in intrinsic tissue reflectiveness

are slow. However, using this ISOI is less invasive than VSD or calcium imaging: no

dye is required, so dye toxicity is not a problem. ISOI can also be used chronically

in rat in vivo, as only a thinning of the skull is required to obtain a usable signal

(Frostig and Chen-Bee, 2012).

1.2.3 Local scale: extracellular electrode recordings

Our focus in this thesis is on measurements made with extracellular electrodes (elec-

trodes positioned in the space between neurons). These measurements can be used

to study local network processing both in vivo and in vitro, in many different species.

Electrodes positioned in this way record the extracellular potential at the electrode

tip. This potential is created in exactly the same way as the EEG signal: neuronal

membrane currents flowing in the resistive extracellular medium give rise to an elec-

tric potential (Buzsáki et al., 2012). However, the tip of an extracellular electrode is

extremely small compared to an EEG electrode, so the number of neurons contrib-

uting to the extracellular potential is much smaller than the number contributing

to the EEG (the contribution of a current source to the extracellular potential is
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inversely proportional to distance, Nunez and Srinivasan, 2006). Extracellular elec-

trodes therefore provide a measure of the local population activity on a similar scale

to the imaging methods mentioned in the previous section.

Fluctuations in the extracellular potential are caused by the dynamics of neur-

onal membrane currents, resulting in measurements with a broad frequency range.

This broadband signal is often split into high and low frequency bands. The high

frequency (usually >500Hz, Pettersen et al., 2012) part of the signal is considered

primarily to reflect the spike output of individual neurons very close to the elec-

trode (Adrian and Moruzzi, 1939). This is termed the multi-unit activity (MUA),

and can be used to obtain single neuron spike trains from extracellular recordings

through spike-sorting methods (Pedreira et al., 2012; Quian Quiroga et al., 2004;

Quian Quiroga, 2007). Individual spikes are resolvable because they are very rapid

events (∼1 ms) so often do not overlap in time, even at high firing rates. The

low frequencies (usually <300Hz, Logothetis, 2003), called the local field potential

(LFP), contain information about slower currents; it is this part of the signal that

we are particularly concerned with in this thesis. A large proportion of the LFP is

due to synaptic activity. Synaptic time constants can range from ∼1 ms to hundreds

of milliseconds, so synaptic contributions to the LFP are likely to overlap in time,

especially as there are thousands of times more synapses in the cortex than neurons

(Shepherd, 2003). Additionally, the LFP contains contributions from slow mem-

brane currents, for example from the hyperpolarising current in a neuron after it

spikes or from sub-threshold membrane oscillations (Logothetis and Wandell, 2004).

Consequently, interpreting the LFP in terms of neuronal activity is more difficult

than interpreting the MUA, which provides some of the motivation for our model-

ling studies. The simplified assumption that the MUA contains information about

spiking and the LFP contains information about synaptic activity has led to the

characterisation of the MUA representing network output and the LFP representing

network input (Logothetis, 2003), though as the majority of synapses in the cortex

are local (Binzegger et al., 2004; Thomson et al., 2002), “output” should also be

understood to mean internal recurrent processing. The ability to simultaneously

record unit activity and LFPs at the same location is an important strength of ex-

tracellular electrode recordings: individual neuron firing can be observed in relation

to a measure of the overall local network activity.
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Recent increased interest in extracellular electrode recordings has been stimu-

lated by the development of multi-electrode arrays (MEAs) (Buzsáki, 2004; Einevoll

et al., 2012, 2013; Stevenson and Kording, 2011). MEAs are currently the only

invasive recording method approved for use in humans (House et al., 2006), where

applications include monitoring neural activity in patients with intractable epilepsy

(Schevon et al., 2009, 2008) and recording signals to control brain-machine inter-

faces (BMIs) (Ball et al., 2004). Both of these applications would benefit from an

improved understanding of LFP generation. In epilepsy, better knowledge of the

LFP’s spatial properties could help in more precise identification of seizure foci. In

BMIs, further knowledge of the neuronal activity creating particular LFP features

could improve learning of the control signal.

1.2.4 Single cell recordings

Single cell membrane potentials and currents can be measured using glass micro-

electrodes or patch electrodes. These recording methods are rarely used to measure

network dynamics, but they can be used in conjunction with extracellular electrode

recordings to provide more information on the sources of membrane currents in

single neurons (as in Ainsworth et al., 2011, for example). Potential differences

between the intracellular and extracellular media are measured by inserting a glass

microelectrode filled with conductive medium into a neuron, taking care to cause

minimal membrane damage, and a reference electrode into the extracellular space.

The membrane potential can then be measured under different conditions. Intracel-

lular electrodes can also be used to inject current into neurons to investigate their

passive membrane properties. Patch-electrodes, which have a larger diameter tip

than glass microelectrodes, do not pierce the cell membrane but attach to it by suc-

tion. This creates an extremely high resistance seal between the electrode and the

membrane, allowing the recording of membrane currents with very high signal to

noise ratio (Weckstrom, 2010). Currents through single ion channels can be meas-

ured, or, if the membrane is ruptured through further suction or using perforated

patch techniques, whole-cell recordings of the membrane current can be performed.

Single cell recordings using precursors of these techniques led to the development

of Hodgkin and Huxley’s famous model of action potential generation in the squid

giant axon (Hodgkin and Huxley, 1952), which still underpins our understanding of
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single neuron excitability today (Johnston and Wu, 1995; Koch, 1999).

Studies using these techniques have revealed the properties of the tens of different

kinds of ion channel present in neuronal membranes (Hille, 2001), as well as mem-

brane current and potential responses to different input patterns. Local functional

networks have been mapped out by injecting current into a presynaptic neuron, and

recording membrane responses from a series of potential postsynaptic neurons, so

that connectivity statistics can be quantified (Thomson and Lamy, 2007; Thomson

et al., 2002; Lefort et al., 2009).

One limitation of intracellular recordings is the extreme difficulty of recording

from thinner neurites, meaning that the membrane potential or current can usually

only be recorded at the soma (though recording at the apical dendrite of pyramidal

neurons has been done (Hay et al., 2011), these studies are the exception rather

than the norm). This is not a problem for many experimental questions, but means

that we suffer from a lack of data about current flow in dendrites. Very high-

density MEA recordings may improve this situation: if an MEA such as the 10

000 electrode array described in (Frey et al., 2009) is positioned over a neuron,

and that neuron is stimulated separately, then the extracellular potential over the

extent of that neuron’s dendritic tree can be measured. As we know the theoretical

relationship between neuronal membrane currents and extracellular potentials (see

Chapter 2), it may be possible to use this data to further constrain the active

membrane conductance parameters in that neuron’s dendrites (Gold et al., 2007).

1.3 Relating animal behaviour to measured dynam-

ics

The reason for measuring brain dynamics is to elucidate the mechanisms by which

animal behaviours are implemented. It is hoped that knowledge of these mechanisms

will improve the human condition in three ways: medically, technologically, and

philosophically. On the final point, it is believed that a knowledge of the brain will

help us to understand ourselves better - why we are as we are. On the second point,

it is hoped that knowledge of the how particular behaviours are implemented by

nature will allow us to construct better machines that exhibit these behaviours (for

example, object recognition or motor control). On the first point, it is suspected
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that knowing more about mechanisms in the brain will allow us to create better

medicines and therapies for when our brains break.

The study of gamma oscillations pertains to all three of these points. Gamma

rhythms have been observed in many brain areas as a correlate of an assortment of

high-level cognitive processes (Buzsáki, 2006). They have been proposed as a mech-

anism by which the brain encodes and transmits information between brain areas

(Ainsworth et al., 2012), as well as facilitating learning through synaptic plasticity

(Osipova et al., 2006). Finally, abnormalities in gamma oscillatory activity have

been observed in a variety of brain disorders (Başar, 2013; Cunningham et al., 2006;

Koenig et al., 2005; Lee et al., 2003a). Understanding precisely how gamma oscil-

lations are generated by healthy brains may provide important clues about disease

mechanisms and, potentially, how to counteract them.

1.3.1 Gamma rhythms and cognition

The prevalence of gamma frequency activity across many brain regions, and experi-

mental correlations with various tasks and cognitive states, has led to a wide variety

of different functions being ascribed to gamma rhythms. The focus of most studies

in humans has been on neocortical gamma rhythms, as these are easiest to record

with EEG. Gamma-band power increases have been measured by EEG, ECoG and

MEG in humans during working memory tasks (Mainy et al., 2007; Tallon-Baudry

et al., 2005, 1998), and during selective attention to stimuli (Bauer et al., 2006).

Increases in gamma-band power and synchronisation between brain areas were ob-

served (using ECoG) in visuomotor task performance in human sensorimotor cortex

(Aoki et al., 1999). Long term memory formation is predicted by the gamma activ-

ity measured during the encoding phase (Gruber et al., 2004; Jutras et al., 2009;

Osipova et al., 2006; Sederberg et al., 2007).

The theory of why gamma oscillations are involved in this variety of processes

relates to the properties of information processing during gamma activity. Gamma

oscillations were proposed as the physical method through which the brain binds

object representations together in the late 1980s/early 1990s (Eckhorn et al., 1990,

1988; Engel et al., 1991). Since then, a comprehensive theory of how gamma oscil-

lations are suited to implementing binding has been developed. Pascal Fries (Fries,

2009) proposes that gamma oscillations are the mechanism by which groups of neur-
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ons functionally segment converging inputs, and as such are a fundamental compu-

tational process in the cortex. Critics have argued that, as gamma is recorded

during so many cognitive processes, it may not be serving any particular function,

but rather represents an epiphenomenon of neural network processing (Burns et al.,

2011; Herrmann et al., 2004; Ray and Maunsell, 2010). However, while the gamma

frequency may not be directly used by the brain for information encoding or stimulus

binding as hypothesised, its pervasiveness means that understanding the mechan-

isms that give rise to gamma rhythms will likely help us to understand the general

principles of electrical dynamics in neuronal networks.

1.3.2 Gamma oscillations and disease

Just as gamma oscillations are correlated with cognitive states, alterations to gamma

oscillations have been observed in patients with brain disorders (Herrmann and

Demiralp, 2005). Decreases in gamma power or phase synchrony have been found

in patients with Alzheimer’s disease (Koenig et al., 2005; Stam et al., 2002), autism

and Williams syndrome (Grice et al., 2001), as well as after stroke and brain injury

(Molnár et al., 1997; Slewa-Younan et al., 2002) and with increasing age (Böttger

et al., 2002).

The picture is somewhat more complicated in schizophrenia. Gamma-band

power and synchronisation across areas is, in general, reduced for spontaneous,

task-related, and sensory-evoked gamma oscillations (Gallinat et al., 2004; Green

et al., 2003; Haig et al., 2000; Kissler et al., 2000; Light et al., 2006). However, the

degree of synchrony in the gamma band correlates with the positive symptoms of

schizophrenia (e.g. hallucinations) (Lee et al., 2003b; Spencer et al., 2004). Positive

symptoms also correlate with increased gamma power during sleep in schizophrenic

patients (Tekell et al., 2005). A recent review is provided in (Sun et al., 2011).

In epilepsy, increases in gamma-band activity related to seizures are often seen.

Gamma power is frequently observed to increase before seizure onset (Alarcon et al.,

1995; Fisher et al., 1992). Gamma activity can also show greatly increased amplitude

during the interictal (between-seizure) phase in patients with primary generalised

epilepsy (Willoughby et al., 2003). Increases in gamma activity have been observed

close to the seizure focal point in neocortical epilepsy (Worrell et al., 2004).

The relationship between schizophrenia and epilepsy is not clear, though a re-
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cent study uncovered a significantly increased incidence of schizophrenia in epilepsy

patients (adjusted hazard ratio of 7.65) and of epilepsy in schizophrenia patients

(adjusted hazard ratio of 5.88) in a retrospective cohort analysis (Chang et al.,

2011). However, we find it relevant that a reduction in the calcium buffering protein

parvalbumin (PV) is apparent in both diseases (Andrioli et al., 2007; Beasley and

Reynolds, 1997; DeFelipe et al., 1993; Hashimoto et al., 2003; Marco and DeFelipe,

1997). PV is expressed in basket interneurons (DeFelipe, 1997), a fast spiking in-

terneuron type that targets the perisomatic region of pyramidal neurons. These

interneurons are crucial for the generation of gamma oscillations in neocortex and

hippocampus (Bartos et al., 2007), so it is no surprise that reductions in PV affect

gamma activity. Establishing why the effect on gamma oscillations is different in

each condition could help to unravel the links between these disorders.

1.3.3 Gamma oscillation models

The interest in finding the mechanisms of gamma oscillations has led to the develop-

ment of various in vitro experimental preparations that allow the gamma-generating

network to be studied in isolation. Most of these preparations have looked at gamma

activity in hippocampus (Atallah and Scanziani, 2009; Buhl et al., 2003; Draguhn

et al., 1998; Ferguson et al., 2013; Oren et al., 2006; Traub et al., 1996a; van der

Linden et al., 1999; Whittington et al., 2001, 1997b,a; Traub et al., 2003b; Whitting-

ton et al., 1995), entorhinal cortex (Cunningham et al., 2003, 2004a; Dickson et al.,

2000; van der Linden et al., 1999) and neocortex (Ainsworth et al., 2011; Cunning-

ham et al., 2004b; Haenschel et al., 2000; Traub et al., 2005a; Whittington et al.,

1997b, 1995). Early studies showed how networks of tonically driven interneurons

could generate a gamma-frequency rhythm, measured in the LFP in rat hippocam-

pal slices, when synaptic excitation was blocked (Whittington et al., 1995). The

inhibitory rhythm generated in this way - interneuron network gamma (ING) - was

shown to be able to entrain the outputs of the pyramidal neurons to the oscillation.

This model was later shown also to be dependent on the presence of gap junctions

between inhibitory neuron dendrites, which cause the interneurons to track changes

in each others’ membrane potentials (Traub et al., 2001a). ING rhythms only last

for a few seconds.

The tetanic model of gamma oscillations (where gamma rhythms are induced
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by high frequency electrical stimulation) also lasts for a short time, but in this

model excitatory synapses are not blocked; in fact the oscillation depends on them

(Whittington et al., 1997a). Pyramidal neurons and interneurons fire on almost all

oscillation cycles, so this mode of operation is referred to as pyramidal-interneuron

network gamma (PING). PING rhythms capture many of the properties of sensory-

evoked gamma oscillations (Traub et al., 1999a).

Another model referred to as “persistent gamma” - gamma rhythms that persist

for hours rather than transiently after stimulation - was reported in (Fisahn et al.,

1998) to occur when carbachol was applied in the bath to hippocampal area CA3.

An important feature of this type of oscillation is that pyramidal neurons do not

fire on every oscillation cycle, but more sparsely, as is often the case in vivo. The

robustness of this oscillation allowed a huge variety of experiments to be performed

to determine the relevant mechanisms (Traub and Whittington, 2010). Persist-

ent gamma oscillations are dependent on the interneurons receiving phasic excita-

tion (Fuchs et al., 2007), but are not dependent on pyramidal-pyramidal excitation

(Fisahn et al., 1998). Persistent gamma also appears to depend on the presence of

gap junctions, this time between the axons of pyramidal cells rather than between

interneurons (Hormuzdi et al., 2001) (though gap junctions between interneurons

modulate the gamma power (Buhl et al., 2003)). It is currently unknown exactly

how the in vitro persistent gamma model relates to gamma oscillations with sparse

pyramidal cell firing in vivo. We return to the mechanisms of persistent gamma

generation in Chapter 5.

1.4 Theoretical oscillation models

Computational models have been crucial in developing the theory and guiding ex-

perimental studies into gamma oscillations. In this section, we review previous

work on theoretical models of neural oscillations more generally, ranging from the

highly abstract to the fantastically detailed, and draw some conclusions about how

to construct suitable models to investigate our particular area of interest.
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1.4.1 Simplified oscillation models

The mathematical study of oscillations in physical, chemical and biological systems

has a long history, going back to studies of the simple harmonic motion of a single

pendulum or spring. In neuroscience, electrical oscillations in brains were noted as

early as the late nineteenth century, and the invention of the electroencephalogram

(EEG) in the 1920s allowed oscillations to be observed in humans from scalp record-

ings (Niedermeyer and Silva, 2005). The underlying mechanisms of these oscillations

are quite different from those of simple linear systems, involving many complex,

non-linear interactions at multiple temporal and spatial scales, but surprisingly (or

perhaps not so surprisingly (Goldenfeld and Kadanoff, 1999)) many of their features

can be described mathematically by relatively few equations. Hordes of researchers

have studied oscillatory phenomena in biological systems and a comprehensive over-

view is beyond the scope of this thesis, though it is worth mentioning a few notable

applications of mathematics to study biological oscillators. Art Winfree was a pion-

eer in this field, as well as mathematical biology in general; his seminal 1967 paper

in the Journal of Theoretical Biology (Winfree, 1967) helped lay the foundations

for much future work on biological rhythms. He studied models of coupled oscil-

lators - naturally oscillating units interacting according to some non-linear coupling

mechanism affecting the oscillation phase of coupled units. Winfree’s generalised

models are difficult to analyse analytically, leading to the development of simpler

formulations, including the widely studied Kuramoto model (Kuramoto, 1975).

Since these early contributions, coupled oscillator theory has been applied to

many problems in biology, not least in modelling rhythms in the brain. Individual

neurons can be thought of as oscillators as they will spike periodically when they

receive a tonic excitatory input. Several important results about the mathemat-

ics governing different aspects of synchronous behaviour in neural systems include

coupled oscillators in central pattern generators for rhythmic motion (Kopell and

Ermentrout, 1988), properties of coupled oscillator systems leading to variation in

oscillation amplitude (Aronson et al., 1990), the conditions necessary for stable

phase-locking between neuronal oscillators and mechanisms of frequency control

(Gerstner et al., 1996; Kopell and Ermentrout, 2002), the role of inhibitory coupling

in rhythmogenesis (Wang and Rinzel, 1992), mechanisms of coherent oscillations in

heterogeneous oscillator networks (White et al., 1998), in networks with sparse, ran-
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dom connectivity (Börgers and Kopell, 2003), in networks with noisy drive (Börgers

and Kopell, 2005), in networks with delays (Roxin et al., 2005) and many other

regimes.

While these studies have provided important results about the dynamics of os-

cillations under various conditions, coupled oscillator theory is often not enough to

describe real oscillations occurring in neural tissue (Wang, 2010). Neurons mod-

elled as coupled oscillators will fire on every cycle of the oscillation, whereas many

oscillations observed in vitro and in vivo show cells firing more sparsely than the

network oscillation frequency (Bragin et al., 1995; Buhl et al., 1998; Colgin et al.,

2009; Csicsvari et al., 2003; Fisahn et al., 1998; Whittington et al., 2000).

Xiao-Jing Wang presents a different framework for understanding oscillatory

activity, based on work by Brunel, Geisler, Hakim, Hansel and himself (Brunel,

2000; Brunel and Hakim, 1999, 2008; Brunel and Hansel, 2006; Brunel and Wang,

2003; Geisler et al., 2005) . In this approach, neurons generate Poisson-like spike

trains driven by high background synaptic noise. Inhibitory networks of such neur-

ons, coupled by connections including transmission delay times, will exhibit high

frequency, sparse synchronisation. Neurons that happen to fire together in the noisy

regime will hyperpolarise connected neurons synchronously; these neurons will then

be more likely to fire close together, as the synaptic noise, on average, will raise them

to their firing thresholds from their hyperpolarised states at a similar rate. As the

network is randomly connected, the synchronising pulses are started by the noise in

random subsets of neurons, and the tonic firing and noise are much stronger than

the oscillation, the network can exhibit oscillations with sparse firing and individual

spike trains almost uncorrelated with the network frequency (Wang, 2010). The net-

work frequency can be shown analytically and in simulations to be independent of

neuronal firing rate, with synaptic and individual cell membrane properties shaping

the frequency of the network rhythm (Brunel and Wang, 2003).

1.4.2 Detailed network models

As more and more experimental data on individual neuron structure and behaviour

has been collected, increasingly complex models have been investigated that attempt

to incorporate as much detail as is practical. This approach is in contrast to that

described previously, where the simplest possible model to describe a phenomenon
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is used. Each approach has its own benefits and drawbacks. Reduced models are

more readily analysed mathematically, allowing proofs to be constructed about their

behaviours and intuitive insights to be gained about the system’s behaviours, while

detailed models must be simulated, introducing problems in interpretation and ana-

lysis, as well as difficulties with numerical methods and computational complexity.

The more detailed a model, the more parameters there are to adjust, leading to

many possible parameter combinations that create similar behaviours in the model,

but that may not be biologically correct (Prinz et al., 2004). However, by carefully

incorporating biological detail from experimental data rather than creating abstract

phenomenological descriptions, we can be more confident that a model’s behaviour

represents what is occurring biologically rather than a potentially unhelpful carica-

ture of the system. Each variable and parameter also has a direct biological correlate,

which makes model results more easily relatable to experimental data.

Perhaps the best example of the use of detailed models in investigating neuronal

network oscillations, and of the interaction between modelling and experiment, is

the work of Roger Traub and colleagues (for overviews, see (Traub et al., 2005b,

1999a; Traub and Whittington, 2010)). Over many years Traub et al. have created

extremely detailed models of individual neuron types in various brain areas, in-

cluding hippocampus, thalamus and neocortex. These models reproduce the highly

complex membrane properties of the different neuron types, as well as approxim-

ating their dendritic trees and axons, to create neuron models that behave very

much like their real counterparts under a wide variety of conditions. These have

been used in network models to study the detailed mechanisms affecting oscillatory

activity in different brain areas. Some key results include a model of a hippocampal

slice displaying emergent rhythms with properties similar to those observed in vitro

(Traub et al., 1989), the role of excitatory currents on inhibitory interneurons in

defining the characteristics of oscillations and an explanation for gamma frequency

“tails” after synchronised activity bursts (Traub et al., 1996a), the firing of spike

doublets (two spikes in quick succession) by interneurons in coordinating gamma

oscillations over long distances (Traub et al., 1996b), the different synchronisation

properties of different frequency oscillations (Kopell et al., 2000), a novel mechan-

ism for synchrony at high frequencies by way of gap junctions between axons of

excitatory cells (Traub et al., 1999b) and a possible role for such gap junctions
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in generating seizures (Roopun et al., 2010; Traub et al., 2001b), the role of gap

junctions between interneuron dendrites in enhancing gamma frequency coherence

(Traub et al., 2001a), mechanisms inducing rhythmic bursting behaviour in super-

ficial layer pyramidal neurons (Traub et al., 2003a) and a potential role for these

neurons in gamma generation in these layers (Cunningham et al., 2004b; Traub

et al., 2005a), and mechanisms of rhythm generation through period concatenation

between different oscillation frequencies (Kramer et al., 2008; Roopun et al., 2008).

These and many other studies suggest a more complicated picture of how the brain

generates oscillations than those suggested by the simplified models discussed pre-

viously. Both kinds of model are useful for different questions, and can provide

different types of insight into a system’s behaviour. Choosing the “right” level of

abstraction for a model is a difficult challenge for the prospective modeller (Herz

et al., 2006; Staley et al., 2011)..

1.5 Contributions of this thesis

1.5.1 Models and tools for simulating LFPs in networks

Recent results have indicated the importance of using multi-compartment neuron

models when modelling the LFP (Lindén et al., 2010, 2011; Pettersen and Einevoll,

2008; Pettersen et al., 2012). However, these models are computationally expensive,

making network simulations unfeasible without access to large computing resources

(Markram, 2006). Most current models of neuronal network activity usually use sim-

plified, single-compartment neurons and homogeneous networks, so various attempts

have been made to estimate a realistic LFP signal from such models to (Einevoll

et al., 2013). Recent studies by Mazzoni et al. (Mazzoni et al., 2008, 2010) have

successfully captured features of experimentally recorded LFPs without considering

dendritic morphology, tissue filtering or spatial location. They simulated a simplified

model with two populations (excitatory pyramidal cells and inhibitory interneurons)

of single compartment leaky integrate-and-fire neurons, calculating the LFP as the

sum of the absolute values of excitatory and inhibitory currents on the pyramidal

neurons only. This summation method was further developed in (beim Graben and

Rodrigues, 2013) in an effort to incorporate knowledge about the filtering effects of
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pyramidal neuron dendrites. However, none of these methods considers the spatial

aspects of LFP generation, which are crucial when predicting the LFP at different

points in spatially organised models.

We therefore investigated a reduced compartmental model, assessing its suit-

ability for producing realistic spatial LFP characteristics and the improvement in

simulation time. We also developed a new simulation tool for the efficient simulation

of LFPs in spatially organised cortical networks using the reduced compartmental

models. We implemented this tool in Matlab (Mathworks Inc., Natick, MA, USA)

and provide a simple interface to maximise the tool’s utility to the neuroscience

community.

1.5.2 Model of LFP generation in vitro during persistent

gamma

High density multi-electrode arrays are increasingly being used to record from several

local network sites simultaneously. This necessitates the development of spatially

organised network models that incorporate experimental anatomical knowledge in

order to explain variations in activity observed in the experimental recordings. Our

experimental collaborators at the Newcastle University Institute of Neuroscience

have been using the Utah multi-electrode array to record from cortical slices in vitro

(Ainsworth, 2013). This MEA is a 10 by 10 grid with a 0.4 mm spacing between

electrodes; it covers a 3.6 mm by 3.6 mm square. The Utah array can therefore

sample extracellular potentials from the full depth of the cortex, as well as over a

substantial lateral distance. We used our simulation tool to implement a model of

neuronal dynamics in a neocortical slice preparation to use in conjunction with the

Utah array experiments. The model is large enough to include a virtual Utah array,

and incorporates details from the literature regarding neuronal composition, spatial

organisation, connectivity and dynamics. We simulate gamma oscillations in our

model, and compare simulated LFPs with experimental recordings.
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1.5.3 Investigation of LFP features during gamma oscilla-

tions

We provide a thorough analysis of the spatial properties of localised gamma oscilla-

tions, inspired by the observation of “patches” of gamma power in the LFP in vitro

(Ainsworth, 2013). Considering only neocortical layer 2/3 - the gamma-oscillation

generating layer - to simplify the analysis, we generated localised gamma oscillations

to study the spatial distribution and decay of gamma power and the phase-inversion

observed experimentally between layer 3 and layer 1 (Chrobak and Buzsáki, 1998;

Cunningham et al., 2003; Dickson et al., 2000). We explain some previously confus-

ing results regarding this phase inversion, and make some experimentally testable

predictions. We also investigate how each neuron type contributes to the LFP dur-

ing both random and gamma activity, something that is currently impossible to

do experimentally. We make a surprising observation regarding the influence of

soma-targeting basket interneurons on the LFP. We relate these findings to current

research in schizophrenia and epilepsy, and make suggestions for future experimental

and modelling studies based on our findings.

1.6 Summary

We are interested in understanding brain dynamics generated by the coordinated

activity of neurons. To study brain dynamics one must measure brain dynamics.

It is therefore crucial to understand precisely what is being measured in terms of

the underlying neural activity. Establishing this relationship for each measurement

modality is nontrivial, but understanding can be improved by building models that

explain the measurements.

Our particular topic of interest is the local field potential generated during

gamma oscillations. Gamma activity has been linked to many cognitive processes,

and alterations to gamma rhythms are implicated in many brain disorders. Under-

standing the mechanisms of functional and dysfunctional gamma oscillations will

provide important insights into the mechanisms of these disorders and potentially

suggest avenues for improved treatments. Most work in gamma oscillations has

been, and continues to be, performed using EEG or extracellular electrodes, with
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an increasing use of multi-electrode arrays to study activity across space. Under-

standing the neuronal contributions to, and spatial properties of, gamma oscillations

will greatly aid the interpretation of MEA recordings. We contribute to this under-

standing by studying models of the LFP generated by neuronal networks exhibiting

gamma activity.

1.7 Thesis structure

The remainder of the thesis is separated into a further five chapters:

• In Chapter 2, we summarise the physics of extracellular potential generation

in neural tissue and describe our experiments on LFPs generated by compart-

mental neuron models containing fewer than ten compartments (Bush and

Sejnowski, 1993). Our focus was on simulating LFPs from network activity,

so we needed a neuron model that would generate realistic extracellular po-

tentials (Łęski et al., 2013; Lindén et al., 2011; Pettersen et al., 2012), but

that was not too computationally demanding to simulate. We describe our

experiments to test the reduced model’s suitability for this.

• Chapter 3 introduces the Matlab-based software we created to simulate LFPs

in network models: the Virtual Electrode Recording Tool for EXtracellular

Potentials (VERTEX). We developed VERTEX as there was no currently

available simulation tool for modelling extracellular potentials in neuronal

networks. This chapter describes the mathematical models implemented in

VERTEX, how we implemented these models to try to maximise the simula-

tion speed for large populations, and the parallel programming methods used

to further improve simulation speeds.

• Chapter 4 describes a large-scale neocortical slice model that we implemen-

ted in VERTEX. The idea behind this model was to incorporate anatomical

and electrophysiological data into a model that represented the neurons in an

equivalent experimental slice on a roughly 1:1 basis. We describe the data the

model is based on, and the relevant parameters. We finally compared LFPs

generated at 100 virtual electrode locations with Utah array recordings from
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macaque neocortex in vitro. We describe the promise of this kind of large-scale

model as well as the many difficulties we faced in its implementation.

• In Chapter 5, we develop a smaller model of neocortical layer 2/3 in order to

investigate the properties of the LFP during gamma oscillations more thor-

oughly. We describe our experimental setup, in which we generate a localised

gamma oscillation surrounded by randomly firing neurons. This allowed us

to investigate how visible the gamma oscillation is outside of the generating

region, how each neuron group contributes to the LFP signal in both gamma

and desynchronised activity, and how gamma coherence decays across space.

We also make some theoretical predictions regarding the effect of layer thick-

ness on the LFP, and discuss the frequency scaling observed in our models in

the context of the current debate in the literature regarding the origin of low-

pass filtering of the LFP (Bédard et al., 2006b; Bédard and Destexhe, 2009;

Bédard et al., 2004, 2010; Łęski et al., 2013; Lindén et al., 2010; Logothetis

et al., 2007).

• In Chapter 6, we summarise our results and discuss them in the context of

interpreting experimental LFP signals, particularly those recorded in human

patients. We suggest several avenues for further work, including modelling

recent data in intra-laminar phase synchrony during gamma oscillations in

vitro and basket interneuron changes in schizophrenia and epilepsy.
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Chapter 2

Modelling Local Field Potentials

2.1 Introduction

In this chapter, we summarise experimentally observed features of extracellular po-

tentials, the physics of how extracellular potentials are generated, and how LFPs

arising from neuronal activity can be modelled using compartmental neuron models.

Previous modelling studies have used compartmental models created from whole-cell

reconstructions (Einevoll et al., 2007; Gold et al., 2006; Gratiy et al., 2011; Holt and

Koch, 1999; Łęski et al., 2013; Lindén et al., 2010, 2011; Pettersen and Einevoll,

2008; Reimann et al., 2013), but such compartmental models are computationally

expensive to simulate, making them impractical for large network simulations. We

identified a potentially suitable model reduction (Bush and Sejnowski, 1993) and

compared LFPs simulated using the detailed models against their reduced versions,

using the same methodology as (Lindén et al., 2011), to investigate the suitability

of the reduced models for simulating LFPs.

2.2 What do extracellular electrodes measure?

Extracellular electrodes measure the electric potential in the extracellular space;

that is, the space around the neurons. Extracellular electrodes can be used in vivo

and in vitro, in many different brain areas and species. In section 2.2.1, we describe

some experimentally observed features of extracellular potentials, and models of the

processes that give rise to these features. We then outline the physics of extracellular

potential generation from neuronal membrane currents.
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2.2.1 Features of extracellular potentials

The extracellular potential is a time-varying signal that represents some measure

of the dynamics of a local population of neurons around the measurement point.

A crucial question, then, is what exactly is meant by “local”: how far away can

neurons be from the measurement point and still contribute significantly to the

extracellular potential? Several groups have attempted to address this question

experimentally; however, results have been inconsistent, with estimates ranging from

several millimetres (Kajikawa and Schroeder, 2011; Kreiman et al., 2006; Logothetis

et al., 2001; Mitzdorf, 1985) down to a few hundred microns (Berens et al., 2008;

Katzner et al., 2009; Liu and Newsome, 2006; Xing et al., 2009). Differences in

methodology explain to some extent why such discrepancies in results exist, but not

at the level of the neuronal activity that might have differed between experiments.

Recent studies have attempted to address this question through modelling (Łęski

et al., 2013; Lindén et al., 2011). The advantage of this approach is that the posi-

tions of the neurons and the neuronal activity is specified and can be systematically

varied, so changes in the extracellular potential can be related directly to the known

changes in the underlying activity. Lindén et al. (2011) studied the spatial spread of

the extracellular potential created by synaptic activity in populations of compart-

mental neurons with realistic morphologies (Mainen and Sejnowski, 1996). They

found that the spatial spread of the LFP varied depending on the location of the

synapses on the dendrites and the level of correlation between the synaptic inputs.

Correlated synaptic input increases both the magnitude and spread of the LFP,

particularly when the input was localised to a particular dendritic region (e.g. only

to the basal dendrites): as each neuron’s contribution to the LFP sums linearly

(see below), there is greater opportunity for constructive interference when input

correlations are present. The spatial range also varied at different recording depths

above and below the level of the neurons’ soma positions: it was smallest at the

soma level, and increased above and below this level. The magnitude of the sig-

nal was greatest at the soma level, and decreased above and below this level. Łęski

et al. (2013) extended this approach, investigating the spatial spread of different fre-

quency components of the LFP signal. They found that the spatial reach of higher

frequencies was slightly lower than that of lower frequencies when neurons received

uncorrelated input, and much lower when input correlations were introduced. These
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studies provide a possible explanation for the discrepancies in experimental results:

firstly, the position of the electrodes relative to the LFP generating populations

in each experiment might have been inconsistent, and secondly, the synaptic input

correlations could have been quite different (Einevoll et al., 2013). These modelling

results show that considering the spatial organisation of the neuronal populations,

positioning of the electrode, and the synaptic activity are crucial factors to consider

when interpreting or predicting LFP measurements.

The results pertaining to frequency scaling reported in (Łęski et al., 2013) build

on previous studies inspired by the experimental observation that extracellular po-

tentials appear to be frequency filtered: fast extracellular potentials such as spikes

are only visible from neurons within a very small distance from the electrode (Buz-

sáki, 2004), compared with the lower frequencies that are not only greater in amp-

litude but also visible from a greater distance. Some debate has occured regarding

the origin of these frequency characteristics (Destexhe and Bedard, 2013; Einevoll

et al., 2013). One possibility is that brain tissue acts as a low-pass filter. Experi-

mental measurements have again provided conflicting results - (Gabriel et al., 1996)

suggesting that this is the case, while (Logothetis et al., 2007) indicated that at

physiologically relevant frequencies, the frequency filtering of brain tissue is neg-

ligible. Modelling results have suggested that the mechanism behind any tissue

filtering effects could be ionic diffusion (Bédard and Destexhe, 2009; Bédard et al.,

2010) and inhomogeneities in the extracellular medium (Bédard et al., 2006b, 2004).

However, these models did not consider the frequency filtering effects due to pass-

ive current flow through the spatial extent of neurons’ dendrites, which has been

shown in other modelling studies to produce a low-pass frequency filtering effect as

well (Łęski et al., 2013; Lindén et al., 2011; Pettersen and Einevoll, 2008). These

two effects may both contribute to the overall frequency profile of the extracellular

potential.

2.2.2 Physics of extracellular potentials

To understand the origin of the signal measured by an electrode inserted into brain

tissue, we must consider the physics of electric fields in biological tissue. Biological

tissues are considered as volume conductors: rather than the discrete elements of an

electric circuit, the tissue is a continuum containing currents and potentials that are
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functions of position (Plonsey and Barr, 2000). The equation relating the current

flowing in the volume conductor to the electric potential is:

∇σ · ∇Φ = −Iv, (2.1)

(Nicholson and Freeman, 1975), where Φ is the electric potential, Iv is the current

source density (or CSD; i.e. the volume density of current entering the extracellullar

space (Pettersen et al., 2012)), and σ is the conductivity of brain tissue. If σ is not

space-dependent - a reasonable assumption in many cases (though see discussion

below) - this becomes Poisson’s equation (Nicholson and Freeman, 1975; Plonsey

and Barr, 2000):

∇2Φ = −Iv
σ
. (2.2)

This equation allows us to relate the electric potential, which is the quantity meas-

ured by the extracellular electrode, to the currents that create it. These currents are

primarily neuronal membrane currents (Johnston and Wu, 1995); though membrane

currents in other cell types, such as glia, will affect the potential, these currents are

thought to be much smaller than those from neurons. If we know the tissue con-

ductivity σ, then we can estimate the current source density by measuring Φ at a

set of points with extracellular electrodes, and using some method to approximate

the second spatial derivative (Łęski et al., 2011; Nicholson and Freeman, 1975; Pet-

tersen et al., 2006). Though progress has been made to improve CSD estimation,

it is inherently limited by its characteristic as an inverse problem: an infinite con-

figuration of current sources could result in the potentials measured with a finite

number of electrodes (Pettersen et al., 2012). It is therefore not possible to ascribe

estimated current sources to currents in specific neurons, only to estimate a value

for the average of all current sources at the resolution of the measuring electrode

array.

2.2.3 Forward model of extracellular field potentials

An alternative approach to solving the inverse problem described above is to instead

specify a model of individual neuron dynamics and then calculate the extracellular

potential based on the current sources in this model. This is known as a forward
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modelling approach: rather than inferring a model from the data, we instead predict

data from a specified model (Einevoll et al., 2013). The advantage of this approach

is that the theory of current flow in single neurons is well developed, having been

studied extensively since the 1940s (Koch, 1999; Johnston and Wu, 1995). Given

that we have a well-established theory to calculate the membrane currents in a

neuron of arbitrary shape and size, we can combine this theory with Poisson’s equa-

tion to calculate extracellular potentials for a given neuron model. This approach

has been used to improve CSD estimates in certain cases by constraining the CSD

solution with prior knowledge of neuronal morphologies and synaptic connectivity

distributions (Einevoll et al., 2007; Gratiy et al., 2011; Pettersen et al., 2008).

To find the extracellular potential, we integrate Poisson’s equation (Plonsey and

Barr, 2000):

Φ (x′, y′, z′) =
1

4πσ

∫
Iv (x, y, z)

r (x, y, z, x′, y′, z′)
dxdydz, (2.3)

where x′, y′ and z′ are the coordinates at which the potential is measured, and r is

the radius between the potential measurement and the sources (Plonsey and Barr,

2000). If we assume that the current sources are a finite number K of point sources

- one per neuronal membrane segment - then equation 2.3 becomes

Φ (r′) =
1

4πσ

K∑
k=1

Ik
|r′−rk |

, (2.4)

(Pettersen et al., 2012), where we have replaced x′, y′ and z′ with the coordinates

vector r′, r with the coordinates rk of each point source k, and Ik is the membrane

current of point source k. Kirchoff’s current conservation law requires that the

total current across a neuron’s membrane is zero: currents flowing into a neuron are

balanced by currents flowing out of it. This requirement leads to the conclusion that

to generate an extracellular potential, a model must include neurons with a spatial

structure rather than the single compartment neurons frequently used in network

simulations (Pettersen et al., 2012).

Current flow in a neuron with a spatial structure can be calculated using the

cable equation (Niebur, 2008; Thomson, 1854):

ĈmR̂m
∂V

∂t
= El − V +

R̂m

R̂a

∂2V

∂x2
, (2.5)
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where Ĉm is the neuronal membrane capacitance per unit length, R̂m is the mem-

brane resistance per unit length, V is the membrane potential, El is the leakage

potential (the membrane potential at which there is no membrane current flow) and

R̂a is the axial resistance per unit length (the resistance along the neural processes).

The cable equation assumes that a neuron can be treated as a conducting cable, sur-

rounded by an insulating material (its cell membrane), placed in conducting medium

(the extracellular fluid) (Johnston and Wu, 1995; Niebur, 2008). The arrangement

of two conductors separated by a thin insulator causes the membrane to act as a

capacitor. However, the membrane has a finite resistance, so current can flow across

it. The cable equation also assumes that current only flows axially in one dimension:

neural processes are long and thin, so the variation in V will be much greater along

the long (x) axis than in any other direction (Niebur, 2008).

Equation 2.5 describes current flow in a passive cable. However, neuronal mem-

branes also contain many different ion channels, such as the sodium and potassium

channels involved in action potential generation. Localised membrane conductance

changes are also effected by synapses positioned over the neuron’s dendritic tree.

These influences can be inforporated into the equation by adding suitable terms to

the right hand side of equation 2.5.

Solving the cable equation for situations more complex than the simple passive

cable usually requires the use of numerical methods (Bower and Beeman, 1995;

Carnevale and Hines, 2006; Koch and Segev, 1998). We can discretise the equation

in space by considering finite-sized lengths ∆x of cable, resulting in

Ĉm∆x
dV

dt
= −ĝl∆x (V − El) +

V (x−∆x)− V (x)

R̂a∆x
− V (x)− V (x+ ∆x)

R̂a∆x
, (2.6)

(Niebur, 2008), where ĝl = 1/R̂m is the membrane conductance per unit length. A

discrete cable model is called a compartmental model: each compartment is con-

sidered to be small enough to have constant membrane potential along its length.

The length of each compartment is not necessarily the same - different lengths for

different neurite segments can be used. Including terms for active ion currents Iion

(for example, action potential generating sodium and potassium currents), synaptic

currents Isyn and an arbitrary number of adjacent compartments K to take into

account branching cables, the equation for the membrane potential of compartment
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j is then

Cm,j
dvj
dt

= −gl,j (vj − El)−
K∑
k=1

gjk (vj − vk) + Iion,j + Isyn,j, (2.7)

where Cm,j is compartment j’s membrane capacitance, vj is its membrane potential,

gl,j is its leak conductance, gjk is the axial conductance between compartments j and

k, and vk is the membrane potential of compartment k. We know from Kirchoff’s

law that the sum of currents entering and exiting the compartment must be zero.

Current flows into/out of the compartment either across its membrane or from its

adjacent compartments; therefore, the sum of the axial currents Iax,j at compartment

j must be equal to the negative of the sum of the membrane currents Imem,j:

Imem,j = −Iax,j =
K∑
k=1

gjk (vj − vk) = −Cm,j
dvj
dt
− gl,j (vj − El) + Iion,j + Isyn,j (2.8)

(Johnston and Wu, 1995). We now have an equation for calculating the membrane

current at every compartment in a compartmental neuron model. Finally, we note

that a discretisation of the dendrites into compartments as described above results in

a tree of connected cylinders. We could approximate the membrane current at each

cylinder as a point current-source for the purposes of calculating the extracellular

potential, but a more accurate approach is given by treating the cylinders as line-

sources (Holt and Koch, 1999; Holt, 1998). The potential due to a line current-source

j is given by

Φj =
Imem,j

4πσ∆sj
log

∣∣∣∣∣∣
√
h2
j + ρ2

j − hj√
l2j + ρ2

j − lj

∣∣∣∣∣∣ , (2.9)

where ∆sj is the length of the compartment, hj is the longitudinal distance of the

measurement point from the compartment’s end point, lj = ∆sj + hj is the longit-

udanal distance of the measurement point from the compartment’s start point, and

ρj is the perpendicular distance from the compartment (Holt and Koch, 1999; Pet-

tersen and Einevoll, 2008). We can now use equation 2.8 to calculate the membrane

current at each compartment in a compartmental neuron model, and equation 2.9 to

calculate the extracellular potential at an arbitrary location due to these currents.
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2.2.4 Model assumptions

The forward model described above contains several important assumptions, listed

in (Pettersen et al., 2012). We reproduce this list here and offer justifications and

implications of each assumption:

1. The quasistatic approximation of Maxwell’s equations is valid. The quasistatic

approximation assumes that, at the time scales of interest to the neurophysiolo-

gist (frequencies up to about 1000Hz), the magnetic and electric fields can be

treated as if they were uncoupled. Experimental parameters in biological tis-

sue suggest that this approximation is justified (Plonsey and Heppner, 1967;

Rosenfalck, 1969).

2. The extracellular medium is linear. This means that the electric field is linearly

related to the current density by the extracellular conductivity.

3. The extracellular medium is resistive. This means that the tissue’s capacitive

effects are negligible compared with resistive effects.

4. The extracellular conductivity is homogeneous and isotropic. This means that

the tissue conductivity is the same at all points in space and in all direc-

tions. Experimental measurements suggest these are reasonable assumptions

in cortical grey matter, though not in white matter (Logothetis et al., 2007).

As we are investigating local cortical circuits, we consider this assumption

to be reasonable. Recent results have opened up discussion on points 3 and

4: current-source density methods appeared to reveal the presence of current

monopoles in rat barrel cortex (Riera et al., 2012). While this result could be

explained by methodological artefacts as current monopoles are not possible in

resistive homogeneous biological tissue (Gratiy et al., 2013), monopoles could

be generated if assumptions 3 or 4 are false (Bedard and Destexhe, 2013).

5. The extracellular conductivity is not frequency-dependent. This assumption

is currently under discussion in the literature. Experimental studies have

found conflicting evidence regarding the frequency dependence of brain tissue.

Bédard et al. have used various methods to infer a low-pass filtering effect

inherent to the neural tissue itself (Bédard et al., 2010; Dehghani et al., 2010).

Other experiments, including direct measurements in macaque brain tissue,

29



have suggested that at frequencies of relevance to neurophysiology any tissue

filtering effects are negligible (Logothetis et al., 2007). Extracellular recordings

do show low-pass characteristics; while this could be due to tissue filtering

(Bédard et al., 2006b, 2004, 2010), an alternative explanation is that dendritic

filtering of the membrane current causes the low-pass filtering effect on the

extracellular potentials (Łęski et al., 2013; Lindén et al., 2010; Pettersen and

Einevoll, 2008).

As well as these assumptions, we make some further simplifications when simulating

extracellular potentials. We are particularly interested in the low frequency part

of the extracellular signal: the local field potential (LFP). It is usually assumed

that the membrane currents contributing to the LFP are primarily due to synaptic

activity, as the main active conductances in the membrane have fast dynamics (e.g.

spike generation). Our simulations therefore only considered passive compartmental

models with synaptic input, i.e. we set Iion in equations 2.7 and 2.8 to zero. A recent

modelling study has suggested that, in fact, active membrane currents can contribute

prominently to the LFP at frequencies as low as 50Hz (Reimann et al., 2013). This

is an important observation given the general assumption that LFPs are dominated

by synaptic activity. However, the results should be interpreted with some caution.

In a large and complex model as used in this study, very many different parameter

sets can give rise to very similar activity (Prinz et al., 2004). The ion channel para-

meters of the individual neuron models were constrained using intracellular rather

than extracellular measurements, and while care was taken to constrain these using

measurements in both soma and dendrites, the parameter ranges that produced the

correct membrane potential responses were quite broad (Hay et al., 2011). Synaptic

parameters were chosen apparently arbitrarily, so might not have reflected the true

synaptic strengths in the kind of network regimes that were simulated. A more sys-

tematic approach is required to truly pin down the contribution of active currents.

Another barrier to such investigations is the computational cost of simulating real-

istic active compartmental models: the simulations in (Reimann et al., 2013) were

performed on a supercomputer with 4 096 processors, with a second of simulation

time requiring 45 minutes to compute. Models considering only synaptic activity

and passive return currents are still very useful for interpreting experimental results:

interpretations of experimentally recorded LFPs usually assume that the signal is
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mostly generated by these currents, so a model of the experimental setup that in-

corporates only these currents can reveal to what extent this assumption is true for

that particular experiment.

2.3 Simplified neuron models for network simula-

tions

2.3.1 Need for a simplified model

Previous simulation work has used reconstructed neuron models each containing

hundreds of compartments to model LFPs (Einevoll et al., 2007; Gold et al., 2006;

Gratiy et al., 2011; Holt and Koch, 1999; Łęski et al., 2013; Lindén et al., 2010, 2011;

Pettersen and Einevoll, 2008; Reimann et al., 2013). Network models of such recon-

structions including active conductances require massive computational resources to

simulate, as described above. Even with simple passive dynamics, the large number

of compartments in each model makes simulating networks of reconstructed neurons

infeasible with the resources available to most labs. We wanted to be able to run

simulations on commonly available hardware to enable a wide range of theoretical

predictions to be made and to allow experimentalists to work directly with the mod-

els on their own computers. We therefore needed to choose a suitable method to

reduce the recostructed compartmental models to fewer compartments while pre-

serving the crucial features of the LFP that are due to the neuron shape and size.

2.3.2 Considerations for model reduction

As we intend to use the models to investigate the LFP across space, the reduced

model should preserve the spatial features of the LFP generated by synaptic input

on an individual neuron. This means that the currents flowing out of the neuron’s

dendritic tree in response to an input in the reduced model should have a similar

spatial profile and magnitude to those currents in the full model. This will depend

on the reduced model’s spatial extent being similar to the full model, and the degree

to which the membrane resistance and capacitance, as well as the axial resistance,

are conserved.
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We chose to investigate the compartmental reduction method of (Bush and Se-

jnowski, 1993). This method relies on conserving axial resistance, collapsing multiple

compartments into a single compartment based on their electrotonic distance from

the cell soma. The reduced compartment’s length is equal to the mean length of

the compartments it represents in the full model, so that the reduced model is of

a similar spatial size to the full model. Membrane resistance and capacitance are

not conserved, as the total membrane area is reduced. However, these values can

be scaled appropriately by multiplying the capacitance and dividing the membrane

resistance of each compartment by the ratio of the full model’s total membrane area

to the reduced membrane area (Bush and Sejnowski, 1993). Current inputs at vari-

ous locations on both the full and reduced models show similar voltage attenuation

at the soma, indicating that the current flow in the equivalent reduced model is

similar to that in the full model. We therefore decided to test how well the spatial

features of the LFP were preserved when performing equivalent simulations with

the full and reduced models. While the reduced number and lateral spread of the

compartments will alter the LFP due to identical synaptic input on a single neuron

level, we anticipated that the overall LFP spatial characteristics from a population

would be similar.

During our investigations with the reduced cell models, we noticed an inconsist-

ency between the reported compartment sizes in (Bush and Sejnowski, 1993) and

the reported reduction method. The soma compartment of each reduced model

was supposed to be the same size as the cell reconstruction on which it was based,

but the reduced model soma dimensions reported in (Bush and Sejnowski, 1993)

do not match with the original models. Additionally, a reduction of a layer 4

spiny stellate cell was not created in (Bush and Sejnowski, 1993) . We therefore

recalculated the compartment lengths and diameters from the three cell types spe-

cified in (Mainen and Sejnowski, 1996) using the method specified in (Bush and

Sejnowski, 1993). For these calculations, we used a version of the NEURON code

originally written by Alain Destexhe to reduce a compartmental model to 3 com-

partments (Destexhe, 2001), modified by Michael Hines to work for any number of

compartments. Michael Hines’ version of this code is available on the NEURON

forum at http://www.neuron.yale.edu/phpbb/viewtopic.php?f=13&t=589 (last ac-

cessed 16th January 2014). The recalculated cell dimensions are given in Table
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Figure 2.1: (A) Comparmental structures of morphological cell reconstructions from
(Mainen and Sejnowski, 1996). The layer 2/3 pyramidal cell, layer 4 spiny stellate
cell and layer 5 pyramidal cell are shown in red, green and blue, respectively. (B)
Compartmental models reduced from the structures in (A) according to the method
in (Bush and Sejnowski, 1993). Compartment numbers correspond to those in table
2.1.
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Layer 2/3
pyramidal

Layer 4 spiny
stellate

Layer 5
pyramidal

Compartment
number

Length Diameter Length Diameter Length Diameter

1 13 29.80 10 24.00 35 25.00
2 48 3.75 56 1.93 65 4.36
3 124 1.91 151 1.95 152 2.65
4 145 2.81 151 1.95 398 4.10
5 137 2.69 56 1.93 402 2.25
6 40 2.62 151 1.95 252 2.40
7 143 1.69 151 1.95 52 5.94
8 143 1.69 - - 186 3.45
9 - - - - 186 3.45

Table 2.1: Compartment dimensions of the reduced model neurons, calculated using
the method from (Bush and Sejnowski, 1993). Note: these values are different from
the values given in (Bush and Sejnowski, 1993), as we noticed discrepancies in the
originally reported values so re-calculated the dimensions. Membrane resistance/-
capacitance scale factors (see main text) were 2.96 for the L2/3 pyramidal neuron,
2.93 for the L4 spiny stellate neuron, and 2.95 for the L5 pyramidal neuron.

2.1. The membrane resistance/capacitance scale factors for the re-calculated re-

duced morphologies were 2.96 for the L2/3 pyramidal neuron, 2.93 for the L4 spiny

stellate neuron, and 2.95 for the L5 pyramidal neuron.

2.4 Validating the simplified LFP generation model

We tested the effects of this reduction on the generated LFP by reproducing the

experiments detailed in (Lindén et al., 2011). Ten thousand model neurons with the

same morphology were positioned randomly within a 1 mm radius cylinder, with

uniform spatial distribution and constant soma depth. The soma depth is chosen

as the centre of the layer in which the neuron’s soma resides, with layer boundaries

given in (Stepanyants et al., 2008). One thousand synapses (excitatory, current-

based, single exponential type with time constant 2 ms and fixed amplitude 50 pA)

were placed randomly on the dendritic compartments of each neuron, with uniform

density with respect to membrane area. Each synapse received an independent

Poisson spike input train with a rate of 5 Hz to simulate uncorrelated synaptic input.

LFPs were calculated at the centre of the population, at five depths corresponding to

the centre of each layer. Each neuron’s LFP contribution was calculated and stored

individually, so that the compound LFP could be calculated for different population
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Figure 2.2: Measuring the spatial reach of the LFP. A population of neurons re-
ceiving synaptic input is positioned within in a circle surrounding a central point
(shaded region), and the LFP due to this population is calculated at that point.
We add neurons to increase the population radius up to a maximum of 1 mm (solid
black circle), measuring the LFP with every 0.05 mm radius increase. The radius
at which the LFP magnitude reaches 95% of its value at the maximum population
radius is then defined as the LFP spatial range: neurons further away from the
electrode than this distance only contribute minimally to the LFP. This provides an
“electrode-centric” definition of LFP range.

radii, up to the maximum population radius of 1 mm. The magnitude of an LFP

signal was defined as its standard deviation. The LFP range at each depth was

calculated by varying the population radius from 0 mm to 1 mm in 0.05 mm steps,

and measuring the radius at which the LFP magnitude at that depth reached 95%

of its value at the maximum 1 mm radius (Lindén et al., 2011) - see Figure 2.2.

We repeated this procedure for the three neuron types used by Lindén et al.:

layer 2/3 (L2/3) pyramidal, layer 4 (L4) spiny stellate, and layer 5 (L5) pyramidal.

To minimise variability due to random positioning, we ensured that the x- and y-

coordinates for the position of each neuron’s soma were the same for each popula-

tion. We also added the same synapses to the neurons at the same coordinates in

the different populations, to minimise variability in the synaptic input distribution

between conditions. We compared LFPs generated by the morphological reconstruc-

tions of these neuron types from (Mainen and Sejnowski, 1996) - hereafter referred

to as Mainen cells - with the LFPs from reduced versions of these models created

using Bush and Sejnowski’s method (Bush and Sejnowski, 1993) - hereafter referred

to as Bush cells. We also compared results with morphological reconstructions of

other L2/3 pyramidal and L5 pyramidal cells from different labs, as a crude check of
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how the inaccuracies introduced by the model reduction compared with differences

due to differing morphology. The extra comparison morphologies used were down-

loaded from the NeuroMorpho.org database (Ascoli et al., 2007). We used a cat

visual cortex layer 2/3 pyramidal neuron from (Kisvárday and Eysel, 1992) (Neur-

oMorpho ID NMO_00856) - hereafter referred to as Kisvárday cells - and a cat

visual cortex layer 5 pyramidal neuron from (Contreras et al., 1997) (NeuroMorpho

ID NMO_00880) - hereafter referred to as Contreras cells. We used the following

passive parameters for each simulation: specific axial resistance RA = 200 Ω · m,

specific membrane resistance RM = 20 kΩ ·m2, and specific membrane capacitance

CM = 1 µF · m−2. The Bush neurons had their specific membrane resistance and

capacitance scaled by the relevant scale factors for each cell type as described above.

We implemented these experiments using LFPy (Lindén et al., 2014), a tool

for simulating extracellular potentials from single neurons written in Python. LFPy

uses the NEURON simulator (Hines and Carnevale, 1997) as a back-end for calculat-

ing membrane currents at each compartment of a neuron model. Before conducting

the experiments, we slightly modified LFPy to control how NEURON dealt with

the compartmentalisation of the neurons. NEURON’s implementation of compart-

mental modelling attempts to separate the biological issue of morphology from the

numerical issue of spatial discretisation (Carnevale and Hines, 2006). Users there-

fore specify the morphology in terms of connected “sections”, which are then broken

down into one or more “segments”, which is how NEURON refers to compartments.

NEURON automatically calculates the number of segments to break each segment

into based upon certain accuracy criteria, or into an arbitrary number specified by

the user. As the definition of the reduced cell models is in terms of a specific num-

ber of compartments rather than a dendritic branching morphology, we wanted to

make sure that NEURON would use one segment per section in the Bush cell model

definition. The LFPy interface does not let the user specify an arbitrary number

of segments per section, so we added this functionality and ensured that we ran all

our experiments with one segment per section for both the Mainen and Bush cells.

Our initial results obtained for the Mainen cells were similar to those reported in

(Lindén et al., 2011), suggesting that the inaccuracies introduced by our coarser

spatial discretisation were minimal.
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2.4.1 LFP range and magnitude

The results of these experiments are shown in Figure 2.3. For each neuron type, the

LFP range and magnitude in each layer for the population of Bush cells are close

to those for the population of Mainen cells. The LFP range is smallest in the soma

layer (<250 microns) with the range increasing in the layers above and below the

soma, while the LFP magnitude is largest in the soma layer and decreases in the

layers above and below the soma. The differences between the results for the L4

spiny stellate models is small, so we concentrate on the pyramidal neuron population

results.

For the L2/3 pyramidal neurons, the LFP spatial range in the soma layer is very

similar between the Bush and Mainen populations, but above and below this layer

the discrepancy increases, with the largest difference of ∼200 microns in L1. The

range differences in all other layers are <100 microns. For the L5 pyramidal neurons,

the LFP spatial range difference is again smallest in the soma layer, and approxim-

ately 150 microns in layers 4, 2/3 and 1. These differences are comparable to the

differences in LFP range between the Mainen population and the Contreras popu-

lation in L5, and the Mainen population and Kisvárday population in L2/3. The

differences in LFP magnitude in each layer are also comparable. This suggests that,

while the reduced models are not ideal substitutes for the morphological reconstruc-

tions, the errors incurred by the reduction method are similar to those introduced

by neglecting morphological diversity in reconstructed neuron model populations.

The general profile of the LFP across the layers, at least, is preserved adequately.

The results above were generated using uncorrelated synaptic inputs over the

entire dendritic tree of each neuron in each population. However, we also needed to

check the situation for highly correlated, spatially localised synaptic inputs. We are

ultimately interested in using these compartmental reductions in network models of

gamma oscillations, in which pyramidal neurons receive highly correlated inhibitory

synaptic input to their perisomatic region. We therefore repeated the previously

described experiments measuring the LFP magnitude and range, but positioned

each neuron’s 1000 synapses onto its soma compartment (we only repeated the

simulations for the pyramidal neuron morphologies, as the LFP spatial profile for

the spiny stellate cells was shown not to change significantly with correlated input

(Lindén et al., 2011)). In the previous experiments with no correlations between
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Figure 2.3: Comparison of simulated LFPs from the Bush and Mainen cell models.
Top (red): L2/3 pyramidal neuron, middle (green): spiny stellate cell (morphology
also used for interneurons), bottom (blue): L5 pyramidal neuron. (A) Comparison
of original and reduced multi-compartment models of each neuron type. (B) Range
and (C) magnitude of simulated LFPs. Circles show values for the original cell
reconstruction populations, triangles for the reduced neuron model populations.
Light blue circles in bottom panel show values for a different reconstructed L5 cat
pyramidal neuron. Grey dashed lines show layer boundaries. All y-axis values in
microns.
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synaptic inputs, each synapse was assigned an independent Poisson spike train, for

a total of 10000 × 1000 = 107 independent spike trains at 107 synapse locations.

To introduce correlations in the synaptic input, we followed the method described

by Lindén et al. (2011) and Łęski et al. (2013). Each synapse in the model was

now assigned a spike train drawn without replacement from a finite pool of pre-

generated spike trains. By reducing the number of Poisson spike trains in the pool

so that some synapses shared a common input pattern, we could control the level of

input synchrony to the neurons. The resulting input correlation is given by the total

number of synapses per neuron divided by the number of independent spike trains

(Łęski et al., 2013). To simulate highly correlated input, we used 2000 independent

spike trains, resulting in an input correlation of 1000÷ 2000 = 0.5 (in other words,

any two neurons share on average 1000× 0.5 = 500 common input spike trains).

For these simulations, we also introduced random variability in the soma depth

of the neurons. In real cortical tissue, neuronal cell bodies are not all at the same

depth within a layer, but are spread out between the layer boundaries (it would be

impossible for them to be at the same depth given usual measures for neuronal dens-

ity and soma diameter). A previous forward modelling study used a gaussian depth

profile, with the maximum cell body density in the centre of the layer, which decayed

towards the layer boundaries (Gratiy et al., 2011). However, it is unclear whether

this distribution is realistic, so we simply chose a uniform depth distribution as this

appears qualitatively to fit the distribution of cell bodies in Golgi-stained cortical

slices (Abeles, 1991). We distributed L2/3 pyramidal neuron somas between -334

microns and -534 microns, and L5 pyramidal neuron somas between -970 microns

and -1170 microns from the cortical surface. These ranges ensured that the neuron

somas remained within the correct layer boundaries, and that their apical dendrites

were not positioned above the cortical surface.

Figure 2.4 shows the spatial profiles of LFP for the different populations. In

these simualations, we measured the LFP at 50 micron intervals, to see how well

the Bush models preserved the LFP at this level of detail. We used 12 electrode

points in L1 and L2/3 with the L2/3 populations, and 26 electrode points spanning

all layers with the L5 populations. Both the range and magnitude profiles show that

the LFP from the Bush population matched the LFP from the Mainen population

well, again within the bounds the LFP profile of Kisvarday and Destexhe comparison
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populations. The minimum range and magnitude in the L2/3 populations are just

above the minimum soma depth, and a few hundred microns above the minimum

soma depth in the L5 population. This depth is where the synaptic currents at the

soma are approximately balanced by the opposite return currents in the dendrites;

below and above this minimum point, the somatic or the apical dendritic currents

dominate the LFP signal, respectively.

2.4.2 LFP frequency scaling

We also checked the power spectra of the simulated LFPs to make sure the Bush

model populations reproduced similar frequency scaling properties to the Mainen

cell populations. Results for the case of uncorrelated synaptic input given in Figure

2.5 show that, in each layer, the 95% confidence intervals for each model type overlap

over the range of frequencies from 2-450 Hz (the overlap continues down to 1 Hz;

this is not shown in order to improve the plot resolution at higher frequencies).

Results with correlated inputs at the soma compartment again show substantial

overlap of the 95% confidence interals for the power spectra at each electrode. Figure

2.6 A shows comparison at each electrode used in L2/3, while Figure 2.6 B only shows

results at every second electrode for the L5 simulations (100 micron spacing), for

ease of visualisation. The biggest discrepancy between the LFP power spectra for

each model occurs around the level of the LFP range minimum. The LFP power up

to 100 Hz is reliably reproduced at every measurement point, and up to 450 Hz at

all but one point with the L2/3 populations. This point corresponds to the point

at which the LFP range and magnitude are lowest. The reduced accuracy at higher

frequencies in the L5 models should be taken into account if frequencies above 100

Hz are analysed in models containing L5 pyramidal cells.

2.4.3 When is the simplified model not suitable?

Our results show that, despite the crude approximation using <10 compartments,

the reduction method proposed in (Bush and Sejnowski, 1993) creates neuron models

that reproduce the population LFP characteristics of the full neuron morphologies on

which they are based. Discrepancies in simulated LFPs between the full and reduced

model populations are generally small, and of a similar magnitude to differences
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Figure 2.4: Comparison of simulated LFPs from the Bush and Mainen cell models
for highly correlated input at the soma compartment. Top (red): L2/3 pyramidal
neuron, bottom (blue): L5 pyramidal neuron. (A) Range and (B) magnitude of
simulated LFPs. Bright red/blue lines show range and magnitude values for the
Mainen cell populations, dark red/blue lines show range and magnitude values for
the Bush cell populations. The faded red/blue dashed lines show these values for
the Kisvarday cell population in L2/3 and the Destexhe cell population in L5. Grey
dashed lines show layer boundaries, red/blue dot-dashed lines show the maximum
and minimum soma depths. All y-axis values in microns.
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Figure 2.5: Overlap of the 95% confidence intervals for the estimated LFP power
spectra produced by each population in each layer shaded dark (uncorrelated input
over dendritic compartments). Non-overlapping sections of the 95% confidence in-
tervals are shaded light. Power is plotted in dimensionless, normalised units for ease
of comparison. (A) L2/3 pyramidal neuron comparison. (B) L4 spiny stellate cell
comparison. (C) L5 pyramidal neuron comparison.
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Figure 2.6: Overlap of the 95% confidence intervals for the estimated LFP power
spectra produced by the layer 2/3 and layer 5 pyramidal neuron populations at
each electrode location shaded dark (correlated input at soma). Non-overlapping
sections of the 95% confidence intervals are shaded light. Power is plotted in di-
mensionless, normalised units for ease of comparison. (A) L2/3 pyramidal neuron
comparison. (B) L5 pyramidal neuron comparison (comparisons for 13 out of the
26 LFP measurement points are shown for ease of visualisation).
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observed when using models containing different reconstructed morphologies of the

same neuron type. This suggested that errors from model reduction were within the

bounds of general biological variability.

However, the reduced models would not be suitable in general, and the limit-

ations of the model should be acknowledged when simulating the LFP. We have

not tested the full range of possible synaptic inputs, but two extremes: uncorrel-

ated, distributed input and correlated, focal input. It may be that for other input

arrangements, inaccuracies introduced by the model reduction would be more ap-

parent. This seems unlikely, though, given the similarity of the LFP between models

for two very different input regimes. Secondly, the differences in the LFP have only

been measured at the population level. The LFP measured close to a Mainen cell

could be quite different to the LFP close to a Bush cell receiving the same input,

as overall morphology will have a greater effect on proximal LFP measurements.

Investigations into the LFP generated by single neurons, or small groups of neur-

ons, should therefore use morphologically reconstructed cell models. Thirdly, if the

frequency scaling profile above 100 Hz is important to the particular investigation,

the discrepancies shown in Figure 2.6 should be taken into account. Finally, the re-

duced models have only been tested with passive dynamics. Different neuron types

exhibit different ion channel densities across their dendritic trees, which would affect

the LFP depending on the distribution and dynamics of the resulting currents. As

the model reduction method does not specify how active conductances would be

mapped to the reduced compartments, this would need to be established and the

implications for the LFP investigated before the reduced models could be used in

such simulations.

2.5 Summary

The extracellular potential is created by neuronal membrane currents. Its distance-

dependence means that the signal depends on the position and morphology of the

neurons and the position of synapses on the neuron’s dendrites relative to the re-

cording point, as well as the activity of the synapses and any active membrane

currents. Network models are increasingly used to examine the activity of neuronal

networks, but tend to use simplified neuron models that are not suitable for simu-
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lating spatially realistic extracellular potentials. As morphologically reconstructed

neuron models containing hundreds or thousands of compartments are too compu-

tationally expensive to implement in network simulations, we investigated reduced

compartmental models with <10 compartments as a compromise between accuracy

and efficiency for simulating LFPs resulting from network activity. We found that

these reduced models preserved the key spatial and frequency scaling features of the

equivalent morphological reconstructions.

While LFPy provides an excellent solution for simulating LFPs from single neur-

ons, it currently does not allow the simulation of LFPs in network models. In the

next chapter, we describe the neuronal network simulator, VERTEX, that we de-

veloped to simulate LFPs resulting from network activity.
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Chapter 3

The VERTEX simulation tool

3.1 Introduction

In the previous chapter, we introduced the theory of extracellular potential gen-

eration in the brain, and showed that reduced compartmental neuron models can

be used to model the extracellular potential resulting from neuronal network activ-

ity. In this chapter, we describe the simulation tool we developed to implement

such networks: the Virtual Electrode Recording Tool for EXtracellular potentials

(VERTEX). We developed VERTEX to allow us to construct and simulate dynam-

ics in large networks of compartmental neuron models, and to simulate the local

field potentials arising from this activity. Even with reduced neuron models, large

networks are computationally expensive to simulate, so we used parallel program-

ming and code vectorisation techniques to reduce simulation times. This allowed us

to use VERTEX to calculate LFPs in network simulations containing hundreds of

thousands of reduced compartmental neurons.

Here we explain our rationale for developing VERTEX, and provide a description

of the software, including how networks are initialised, how dynamics are implemen-

ted, and the parallel programming and vectorisation methods used. In the next

chapter, we describe a large-scale neocortical model that we developed using VER-

TEX to use in conjunction with experimental multi-electrode array data recorded

in vitro.
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3.2 Need for a new simulation tool

A researcher is faced with many choices when beginning a new modelling project.

Models of complex systems not only require mathematical specification, but also

simulation, as many of the relevant equations are not solvable analytically. As re-

searchers within the same field frequently address similar problems, various software

tools have emerged that facilitate the specification and simulation of commonly used

models. Neuroscience is no exception, with hundreds of freely available tools avail-

able to assist with creating models of neural systems at every conceivable scale (see,

for example, the list at http://www.incf.org/resources/research-tools). An import-

ant choice for the researcher, then, is which software tools to choose for their partic-

ular modelling purpose, or whether to write custom simulation code from scratch.

This choice is influenced by the suitability of current tools for implementing the

models of interest, in terms of features, computational speed, software maturity and

ease of use.

Chapters 1 and 2 outlined our areas of interest and the approach we decided

on taking to investigate them: simulating the electrical dynamics of networks of

multi-compartment spiking neurons. Spiking neuronal networks are becoming in-

creasingly important for understanding the behaviour of real neuronal networks as

recent advances in computing power enable the simulation of large networks in reas-

onable time. Many tools already exist for running these kinds of simulations at

various levels of detail; for a review see (Brette et al., 2007). Efforts have also been

made to allow the specification of a model separately from any particular simulator,

meaning that models can be more easily shared between researchers using different

simulation tools. While some of these cross-simulator languages are now reason-

ably mature (Davison et al., 2009; Gleeson et al., 2010), they are still undergoing

development and were too incomplete for our purposes when the project started.

In Chapter 2, we assessed the suitability of reduced compartmental neuron mod-

els for simulating LFPs using the LFPy tool. LFPy provides Python classes and

functions to calculate extracellular potentials at predetermined locations based on

the membrane current at each compartment of a NEURON-simulated cell model.

This allows the user to leverage the power of NEURON to simulate extracellular

potentials from detailed compartmental single cell reconstructions. We showed in
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Chapter 2 that, given some caveats, simulation speed can be greatly increased while

retaining some important features of interest in the simulated extracellular poten-

tials using reduced compartmental models. Our simulations so far have been using

predefined synaptic release times rather than calculating the synaptic behaviour res-

ulting from spiking activity in a connected network. However, we are particularly

interested in the LFP resulting from network activity. The NEURON simulator has

features for network simulations, as well as parallel simulation to improve speed, but

the LFPy interface is not designed to be used in this way (Lindén et al., 2014). An

approach taken by Lindén et al. (2011) to calculate extracellular potentials from a

specific network was to record incoming spikes at each synapse in a network simula-

tion performed in the NEST simulator using point integrate-and-fire neurons, then

to replay these events at synapses in detailed compartmental models implemented

with LFPy. However, while NEST can simulate networks of tens of thousands of

neurons quickly, the calculations in LFPy take a relatively long time for large num-

bers of neurons, even if using the reduced compartmental models investigated in

the previous chapter. These factors, along with an enthusiasm to learn more about

the entire process of simulation and youthful naivety regarding the amount of work

involved in building a new simulator, led to the development of VERTEX.

Preliminary simulations performed at the start of the PhD were written in Mat-

lab, and as the project progressed the VERTEX simulation tool evolved from this

original code-base. Matlab is not known for its execution speed, so may seem like

a strange choice for solving large systems of differential equations as required in

neuronal network simulation. However, performance can be dramatically improved

through code vectorisation, which minimises the impact of code interpretation over-

heads. The Matlab Parallel Computing Toolbox allows further performance im-

provements by providing a very simple way to parallelise computations on multicore

computers or over networks. These factors, as well as its ease of use, popularity

in the neuroscience community, the ability to perform simulations and analysis in

the same environment, and the well-developed interface for integrating C or Fortran

functions for future performance enhancements influenced our decision to continue

the development of VERTEX in Matlab.
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3.3 Description of the VERTEX simulator

3.3.1 User interface

To perform a simulation, a user specifies a model in a set of Matlab structures.

VERTEX automatically initialises the simulation environment, generates the net-

work, and runs the simulation based on these parameters. We divide parameters

into five Matlab structures, each holding information about a different aspect of the

model and simulation:

• Neuron group properties (for each group: the neurons’ compartmental struc-

tures, dimensions and positions, electrotonic properties, spiking model para-

meters, afferent synapse properties)

• Connectivity (for each presynaptic group: number of synapses per layer per

postsynaptic group, allowed postsynaptic compartments to connect to contact,

axonal conduction speeds, neurotransmitter release times)

• Tissue properties (dimensions, layer boundaries, neuron density, tissue con-

ductivity)

• Recording settings (IDs of neurons to record intracellularly, extracellular elec-

trode positions, sampling rate)

• Simulation settings (simulation length, time-step, number of parallel pro-

cesses)

A model is initialised by positioning the specified number of neurons from each group

within the slice and layer boundaries, pre-calculating distances from the neuron com-

partments to the virtual electrodes, generating each neuron’s connections based on

its position, axonal arbour extent in each layer, and expected number of connec-

tions, and initialising the synapses. The initialised model can be saved to disk as

MAT files, so that it can be reloaded for future simulations, for visualisation, or for

analysing the connectivity (see Figure 3.1). We describe these processes in more

detail below.
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Figure 3.1: Overview of the VERTEX simulation software. (A) Simulation workflow.
The user provides parameters as Matlab structures to setup the neuron populations,
position them in layers, connect them together, and simulate their dynamics and
the resultant LFPs. Functionality to export to NeuroML is currently under develop-
ment. (B) Example program structure. The main simulation program only requires
calls to the initialiseNetwork() function and the runSimulation() function, with the
information required to setup the simulation specified in separate script files.
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3.3.2 Network initialisation

First, the model is initialised by distributing neurons across parallel processes (if

running in parallel), positioning the neurons, setting up the connectivity matrix, and

calculating axonal delays. Next, the electrode locations are specified and distances

between each electrode and each compartment are calculated, using either the point

distance for somas, or the line source distance for dendrites. Pre-calculating the

constant values used in the field potential calculations minimises the impact of

calculating the LFP during the simulation.

Neurons are positioned by randomly generating a location for their soma com-

partment within the model and relevant layer boundaries. Each neuron’s connections

are then generated. This can be done from a presynaptic or postsynaptic perspect-

ive. By default, the presynaptic perspective is taken: for each presynaptic neuron,

all neurons within its axonal arbour range are considered to be potential targets,

and connections are generated one postsynaptic group at a time. In simulations

with spatial boundaries, such as the simulated slice we describe below, this enables

the calculation of the proportion of each presynaptic neuron’s missing axonal arbour

according to the model boundaries (see below), and so simplifies the calculation of

how many connections each neuron is missing because of slice cutting. Neurons of

the same type in models with spatial boundaries will thus have varying out-degree

as well as varying in-degree. When boundaries are not specified to reduce the num-

ber of connections, the presynaptic perspective means that the out-degree of each

neuron in a neuron group is the same (unless specified to have some variance), but

the randomness of target selection in the connection algorithm means that the in-

degrees will still vary. We therefore also included a connection algorithm that works

in the same way as the default method, but takes a postsynaptic perspective, so

that neuron groups with constant in-degree can also be generated. This flexibility

was important, as in- and out-degree have been shown to have different effects on

network dynamics under various conditions (Roxin, 2011).

For models with spatial limits that represent physical boundaries in experiments,

such as in vitro slice preparations, VERTEX provides a method to calculate each

neuron’s missing number of synapses due to these boundaries. When a presynaptic

perspective is taken, this number can be found for each neuron by calculating the

proportion of the axonal arbour remaining within the slice boundaries, and mul-
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Figure 3.2: Illustration of the effect of slice cutting on a presynaptic neuron’s (light
green dot) axonal arbour (shaded area). Figure orientation is as if looking down
onto the surface of the brain, with slice boundaries indicated by the black bounding
box. Connections within the green shaded area remain, but those in the grey shaded
areas are removed by slicing.

52



tiplying this proportion by the expected number of neurons that neuron would have

made in an intact brain. The default assumption is that a neuron makes connec-

tions within its axonal arbour with a probability that decays away from its soma as

a 2D Gaussian in the x− y plane, and the probability in the z-direction is constant

within the layer, though the method can be adapted for arbitrary probability distri-

butions. In the case of the 2D Gaussian, the proportion ζli of neuron i’s connections

remaining in layer l after slicing is given by

ζli =

byi∫
ayi

bxi∫
axi

1

2πσ2
li

exp

[
−
(
x2 + y2

2σ2
li

)]
dxdy (3.1)

=
1

4

{[
erf
(

axi√
2σli

)
− erf

(
bxi√
2σli

)]
×
[
erf
(

ayi√
2σli

)
− erf

(
byi√
2σli

)]}
,

where axi is the distance from neuron i to the left edge of the slice, bxi the distance

to the right edge, ayi the distance to the front edge, byi the distance to the back

edge, σli is half the arbour radius of i in layer l (see Figure 3.2), and erf the Gaussian

error function (this solution is valid provided that axi and ayi are negative, and bxi

and byi are positive). This is illustrated in Figure 3.2.

Pyramidal neuron dendrites can span several layers above their soma layer, so we

decided to allow connectivity to be specified per layer per group, as some datasets

(e.g. (Binzegger et al., 2004)) include this information. As all neurons within a

population are the same size, but have different soma depths, each neuron’s com-

partments will cross the layer boundaries at different points. This means that each

neuron will have different proportions of its compartments in each layer. For simpli-

city, we ignore this variability for the purposes of generating the connectivity: the

layer crossing points for each compartment are found assuming that the soma is at

the centre of its layer. We then calculate the membrane area of each compartment

in each layer. When connectivity is specified per-layer, the connectivity algorithm

calculates a presynaptic neuron’s targets one layer at a time. The compartment

contacted by the presynaptic neuron in the layer under consideration is chosen ran-

domly, with each compartment having a probability of being selected equal to the

membrane area of the compartment in the layer divided by the neuron’s total mem-

brane area in the layer. Random targets can be chosen with or without replacement,
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allowing multiple connections between two neurons, and autapses can be allowed or

prevented. These options can be configured in the simulation parameters, but by

default, targets are chosen with replacement and autapses are not allowed. We

used these default settings in all our simulations, unless stated otherwise. After

the connectivity has been initialised and the relevant connection information ex-

changed between parallel processes, we calculate the constants that will be used

when determining the LFP, so as to minimise the impact of the LFP calculation on

simulation speed.

3.3.3 Dynamics simulation

VERTEX allows the simulation of single and multi-compartment neurons, though

as described in the previous chapter, multi-compartment neurons are required for

LFP simulation. We use the compartmental formulation of the cable equation

described in (Gerstner and Kistler, 2002) to model the passive dynamics of each

neuron. The user specifies the compartmental structure, axial resistivity, mem-

brane resistivity and membrane capacitance when the model is initialised. VER-

TEX then calculates the inter-compartmental resistance, axial resistance, mem-

brane resistance and capacitance of each compartment from these user-specified

parameters. The compartmental coupling resistance between compartments i and j

Rij = (Ra,i +Ra,j) /2 = 1/gij (Gerstner and Kistler, 2002), with the axial resistance

of each compartment Ra = lRA/πr
2. The membrane potential of each compartment

i then evolves according to equation 3.2:

Cm,i
dvi
dt

= −gl,i (vi − El)−
∑
j

gij (vi − vj) + Ii, (3.2)

where Cm,i is the compartment’s membrane capacitance, vi is compartment i’s mem-

brane potential, gl,i is its leak conductance (= reciprocal of membrane resistance), El

is the leak reversal potential, gij are the conductances between compartment i and

its neighbours j, vj is the membrane potential of the jth connected compartment,

and Ii is the input current to the compartment (including synaptic and injected

currents).

We limited ourselves to models with passive dendritic compartments, for sev-

eral reasons: firstly for simplicity, as estimating parameters for active conductances
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is notoriously difficult, especially if attempting to fit extracellular as well as in-

tracellular measurements (Gold et al., 2007, 2006); secondly because the reduced

compartmental models we were using had not been tested with active conductances,

including these conductances on the reduced morphology would have potentially

unrealistic effects on the extracellular potential; thirdly, because active conduct-

ances add further run-time costs. Models with active conductances are possible to

implement in VERTEX, but are not included by default.

For spiking neural network simulations, some mechanism is required by which a

neuron “decides” when to fire. We therefore implemented a version of the passive

compartmental model that also contained an adaptive exponential (AdEx) (Brette

and Gerstner, 2005) firing mechanism at the soma compartment as VERTEX’s

standard spiking neuron model. The AdEx model can reproduce most of the dynam-

ical features exhibited by cortical neurons (Naud et al., 2008), all its parameters have

a direct biological correlate (Gerstner and Brette, 2009) making the model easy to

interpret and modify in light of new experimental data, its sub-threshold behaviour

is realistic (Badel et al., 2008), and its bifurcation structure is well characterised

and is the same as the commonly used Izhikevich model (Naud et al., 2008; Touboul

and Brette, 2008). Crucially, it can easily be extended to include passive dendrite

compartments (Clopath et al., 2007; Gerstner and Brette, 2009) as it is formulated

as a conductance-based model. It is also much faster to simulate than a Hodgkin-

Huxley type model (Izhikevich, 2004). The somatic membrane potential vs in the

AdEx compartmental neuron then evolves according to equations 3.3 and 3.4:

Cs
dvs
dt

= −gleak,s (vs − Eleak)−
∑
j

gsj (vs − vj) + Is (3.3)

+gleak,s∆t exp

(
vs − Vt

∆t

)
− w,

τw
dw

dt
= α (vs − Eleak)− w, (3.4)

where ∆t is a constant defining the spike steepness, Vt is the instantaneous threshold

potential, w is a current representing the combined slow ionic currents, τw is the time

constant of the slow current w, and α is the scale factor of the slow current (Brette

and Gerstner, 2005) (other variables and parameters are as in equation 3.2, for soma

compartment s rather than dendritic compartment i) A neuron is said to have fired a
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spike when the membrane potential reaches a value vcutoff , which we always set to be

equal to Vt + 5mV. We found that having vcutoff set too high could cause the mem-

brane potential to explode to infinity even within a single time-step due to the expo-

nential term. Setting vcutoff to Vt + 5mV was recommended by Marc-Oliver Gewaltig

on the NEST mailing list as allowing the exponential term to influence the upstroke

of the spike without causing numerical issues (archive at http://ken.brainworks.uni-

freiburg.de/cgi-bin/mailman/private/nest_user/ for date 2012-04-26). When a spike

is fired, i.e. vs ≥ vcutoff , the following substitutions are made:

vs → vreset,

w → w + β,

where vreset is the membrane potential to which vs returns after a spike, and β is

the instantaneous increase in the value of the slow current w after a spike (Brette

and Gerstner, 2005).

The exponential term and slow current create additional membrane currents in

the otherwise passive cable models, so have an influence on the extracellular po-

tential. In particular, the instantaneous reset of the soma potential causes high

frequency spikes in the signal that are not physiologically realistic, and the slow

current w also contributes to the lower frequencies with unknown physiological rel-

evance. Depending on the number of neurons, their firing rates, the synaptic weights,

and the level of synchrony in the network, these contributions can often be negligible

compared to the synaptic contribution to the extracellular potential (see Chapter 4,

Figure 4.8). However, in cases where these currents make a significant contribution

to the simulated LFP, the membrane currents can be recalculated to include only

the synaptic contributions, by re-running the simulation with purely passive neurons

and using the previously generated spike times to drive the synaptic activity (see

“Spike loading” below).

The input current Ii to compartment i represents the sum of synaptic currents

Isyn,i and any other externally applied currents Iext,i. We provide both current-

based and conductance-based synapse models, with exponential decays, and used

both types in our simulations. For current-based synapses, incoming spikes affect

the synaptic current directly causing it to increase instantaneously by the synaptic
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weight (Isyn,i → Isyn,i +W ), after which it decays exponentially:

dIsyn,i
dt

= −Isyn,i
τsyn

, (3.5)

where τsyn is the synaptic decay constant. For conductance-based synapses, the com-

partment’s synaptic conductance gsyn,i is increased by the synapse weight (gsyn,i →

gsyn,i+W ) rather than the current being modified directly, and the synaptic current

is calculated as

Isyn,i = −gsyn,i(vi − Esyn), (3.6)

where Esyn is the reversal potential for that type of synapse. Again, the conductance

decays exponentially:
dgsyn,i
dt

= −gsyn,i
τsyn

. (3.7)

Contributions from each synapse onto a compartment sum linearly, so only one

variable for the synaptic current (and one for the conductance, if conductance-based

synapses are used) is required, reducing calculation time and memory usage.

We provide several types of currents and conductances that can be applied to

individual compartments or whole neurons, including constant current injections

and randomly fluctuating currents or conductances. We most commonly use an

Ornstein-Uhlenbeck process to model random background input, as used to model

in vivo conductance (Destexhe et al., 2001) or current (Arsiero et al., 2007) fluctu-

ations. The update rule for the Ornstein-Uhlenbeck process is the exact discretisa-

tion method described in (Gillespie, 1996). In the case of a fluctuating conductance

gext,i, the update rule is:

gext,i (t+ δt) = gext,i (t) +

(
1− exp

(
−δt
τext

))
× (mext − gext,i (t)) (3.8)

+

√
1− exp

(
−2

δt

τext

)
× Sext ×Next (0, 1) ,

where δt is the length of the time-step, τext is the noise correlation time constant,

mext is the mean current value, Sext is the standard deviation and N (0, 1) is a

normally distributed random number. The current is then calculated as

Iext,i = gext,i (vi − Eext) , (3.9)
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where Eext is the externally applied conductance’s reversal potential. In the case of

a fluctuating current, equation 3.9 is used to update the value of the current directly

(the gext,i terms are simply replaced by Iext,i).

LFPs can be calculated online (during the simulation) or offline (after the simu-

lation has finished) by storing all compartments’ membrane currents. Online calcu-

lation slows the simulation and loses information regarding the LFP contribution of

each individual compartment, but greatly reduces the amount of disk space required

as only one time series per electrode, rather than one time series per compartment,

is saved. Calculating LFPs offline also increases the time required to load the saved

data from disk. LFPs are found by summing the membrane currents of each com-

partment weighted by distance from the electrode tips, using the line-source method

for dendritic compartments and point-source method for somatic compartments as

described in the previous chapter. We use the method described in (Holt, 1998) for

calculating the potential due to a line current source, which reduces round-off error

when h > 0 and l > 0:

Φ =
I

4πσ∆s


log

√
h2+ρ2−h√
l2+ρ2−l

for h < 0, l < 0

log

(√
h2+ρ2−h

)(√
l2+ρ2+l

)
ρ2

for h < 0, l ≥ 0

log

√
l2+ρ2+l√
h2+ρ2+h

for h ≥ 0, l ≥ 0,

(3.10)

where the numerator and denominator in equation 2.9 in Chapter 2 have been

multiplied by
√
l2 + ρ2 + l when l ≥ 0, or

√
h2 + ρ2 + h and

√
l2 + ρ2 + l when

h ≥ 0 & l ≥ 0 (Holt, 1998). This method is also implemented by LFPy. Also

similar to LFPy, we set a minimum distance that a current source can be to an

electrode, so that the electrode cannot be “inside” a compartment. This minimum

distance can be specified as a parameter set by the user. The membrane current

Imem,i of compartment i is just the negative of the axial current Iax,i entering the

compartment (Johnston and Wu, 1995):

Imem,i = −Iax,i =
∑
j

gij (vi − vj) . (3.11)
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3.3.4 Numerical methods

We used a second order Runge-Kutta method to solve all the differential equations.

The forward Euler method is the simplest and fastest numerical integration method,

and is equivalent to a first-order Runge-Kutta method. The global error for the

Euler method is proportional to the length of the time-step. We chose the second

order Runge-Kutta method (specifically, the midpoint method) because it remains

relatively easy to implement compared to the Euler method, while reducing the

global error to be proportional to the time-step squared (Press et al., 2007). It is

more computationally intensive, but not prohibitively so. It is also a commonly used

method in neuronal network simulations (Henker et al., 2011), and is implemented as

a standard integration method in the Brian simulator (Goodman and Brette, 2009).

The size of the time-step can be specified by the user; in all our simulations, we used

a time-step of 0.0325ms. Smaller time-steps did not qualitatively affect the results

for the simulations we ran, while larger time-steps resulted in numerical instability

when using the compartmental AdEx neuron models. For an investigation into the

accuracy of various numerical methods commonly used in neural simulators, see

(Henker et al., 2011).

3.3.5 Vectorisation methods

Interpreted languages like Matlab and Python incur a performance overhead with

every line of code executed, as the interpreter must first translate the line to machine

code before executing it. For intensive computations this performance overhead can

be extremely costly, especially in large systems. For example, to update all the

membrane potential variables in a time-step, the programmer would traditionally

write a loop to update each variable in the simulation one at a time, thus incurring

the interpretation overhead at each step of the loop. Even for relatively small

simulations, this performance overhead can become prohibitively large.

Matlab (and the NumPy extension for Python) has a built-in programming con-

struct to help alleviate this performance issue. Instead of individually applying a

particular function to every element of a matrix, one can apply the function to the

entire matrix in a single step. As the built-in mathematical functions are highly

optimised, they run at approximately the same speed as equivalent functions in

59



compiled C code. By reducing the interpretation overhead to a single command

that runs the optimised function over the whole matrix instead of incurring the

overhead for every matrix element in a loop, execution time can be dramatically re-

duced. The performance improvements from vectorisation improve with array size,

too: the interpretation overhead is roughly constant, so the proportional time for

interpretation decreases with increasing array size (Brette and Goodman, 2011).

We made use of the vectorised algorithms and data structures outlined in (Brette

and Goodman, 2011). This paper describes vectorised solutions for common tasks

in neuronal network simulation including updating the neuronal state matrices, ini-

tialising network connectivity, and propagating spikes including transmission delays.

However, updating the state matrices for compartmental neuron models is not

covered. We therefore developed a vectorised method to handle this. We do not

claim that the method is optimal, but it is certainly faster than iterating through

compartments individually.

The method assumes that the compartmental structure of a neuron forms a

binary tree, so each compartment has a maximum of three neighbours: its parent and

up to two children. The somatic compartment is the root of the tree, so has no parent

compartment. The tree is specified as an array listing the parent compartment

of each other compartment. During initialisation, VERTEX converts this array

into three matrices: the first containing the mapping of compartments to their

parents, the second the mapping of compartments to their first children, and the

third the mapping of compartments to their second children (see Figure 3.3 c). The

conductances between the compartments are also calculated and stored in three

arrays corresponding to the parent, child 1 and child 2 matrices. The current Iij

at compartment i due to compartment j is then −gij (vi − vj). By indexing the

membrane potential matrix using the parent, child 1 and child 2 matrices, we can

calculate all the current flows between the compartments in three vectorised steps

with the values for i and j stored on the parent, child 1 and child 2 matrices. This

is illustrated in figure Figure 3.3.

3.3.6 Parallel programming methods

Vectorisation can dramatically improve performance, but large-scale simulations can

still take a long time through the sheer number of calculations that must be executed.
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Figure 3.3: Illustration of vectorisation method for updating currents between com-
partments. (A) Example neuron structure with numbered compartments (in this
case, a layer 2/3 pyramidal neuron with 8 compartments). (B) Binary tree rep-
resentation of the compartment structure. (C) The three matrices (M1, M2, M3)
listing the connections between compartments. During model initialisation, three
matrices (g1, g2, g3) containing the conductances between the compartment pairs
defined in M1, M2 and M3 are also calculated. (D) Matlab code for updating the inter-
compartment currents. I, v, g1, g2 and g3 are matrices with each row representing
a neuron and each column representing a compartment in the neuron. I stores the
total current at each compartment due to its neighbouring compartments, and v
stores the membrane potential of each compartment.
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Parallel programming can further reduce simulation time by splitting these calcula-

tions across many processors so that each one performs a subset of the calculations

simultaneously. Matlab’s Parallel Programming Toolbox provides an easy way to

define parallel simulations. We used the Single Program Multiple Data (SPMD)

formulation to distribute the variables for each neuron group among the parallel

processes (or “labs” as they are referred to in Matlab). SPMD, as its name suggests,

allows the same code to execute on the different variables spread across the labs.

Crucially, it also allows labs to communicate data with each other. This formulation

is ideal for simulating spiking networks: the main simulation loop runs the same in

each lab, but operates on a different subset of neurons. The ability to send and re-

ceive data between labs allows neurons to communicate with each other, whichever

lab they happen to be on.

We used this formulation to implement the parallel algorithms described in (Mor-

rison et al., 2005) for neuronal communication. These methods assume that spikes

are discrete events that are locked to a time grid, which we set to be the same as

the integration time-step. They minimise the communication overhead by storing

synapse information (delays, postsynaptic neuron IDs and compartment IDs) on

the postsynaptic side, so only spiking presynaptic IDs and timestamps need to be

exchanged between processes.

The spike exchange algorithm works as follows (Morrison et al., 2005). At the

start of a simulation, a presynaptic spike buffer is created. This buffer consists of

a circular array with a length equal to the number of time-steps of the smallest

axonal delay time in the model, and a variable that points to the current index to

be accessed in the circular array. Each time-step, the pointer variable is incremented

after the IDs of the neurons that have reached spiking threshold during that time-

step are stored in the currently indexed array element. Once the last element of the

array is reached, the buffer is sent to all other parallel processes, and the indexing

variable completes the circle back to the first array element. After the spikes have

been exchanged, they are then put into postsynaptic buffers, which assign each

presynaptic spike to the correct postsynaptic compartment, to be delivered after the

relevant axonal delay time. Because we know when the presynaptic neuron spiked

given the length of the presynaptic spike buffer, we can subtract the relevant time

since spiking from the delay time on the postsynaptic side. This method minimises
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both the amount of information to exchange (just presynaptic neuron IDs) and

the number of exchanges (once per minimum axonal delay time, rather than every

time-step).

We also use the same algorithm as in (Morrison et al., 2005) to arrange the

sequence in which processes do the information exchange to ensure minimal wait

times. This is the Generalised Pairwise Exchange Algorithm (GPEX), listed below

(Morrison et al., 2005; Tam and Wang, 2000). Each lab must send its spike list to

every other lab, and receive back every other lab’s list of spikes. The order in which

the labs communicate is decided by the GPEX algorithm, which ensures that all

pairs of labs communicate in a minimum number of steps, and without bottlenecks.

This algorithm runs independently on each lab.

3.3.6.1 Simulation speed

To give the user an idea of the performance compared to LFPy, we performed equi-

valent simulations using layer 5 Bush pyramidal neurons in LFPy and in VERTEX

(no synapses, one random fluctuating current per neuron, 0.0325ms step size &

sample rate). LFPy took ∼260 minutes to simulate the LFP from 10 000 neurons

at 50 electrode points, while VERTEX running in serial mode took ∼14 minutes

to simulate the LFP from 10 000 neurons at 50 electrode points (both running on

a 2.66 GHz Intel Core i7-920 desktop computer with 6 GB RAM). While this per-

formance improvement is important for our purposes, it should be noted that LFPy

is designed to simulate extracellular potentials from single cells rather than large

populations. As it gives the user all the power and flexibility of the NEURON simu-

lator (including access to a large selection of single neuron models from ModelDB -

http://senselab.med.yale.edu/modeldb/ - or NeuroMorpho.org (Ascoli et al., 2007))

to achieve this, it remains the superior tool for smaller-scale studies where more

fine-grained control is required.

To show how VERTEX’s performance improves in parallel mode, we compared

the run times for two network models, one large (123 517 neurons with on average 1

835 synapses per neuron) and one small (9 881 neurons with on average 256 synapses

per neuron), using VERTEX on a single multicore server. The maximum number of

labs available on a single computer is currently limited to 12 by Matlab’s licensing

restrictions, but further cores could be recruited by using the Matlab Distributed
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Algorithm 3.1 Generalised Pairwise Exchange Algorithm, adapted from (Tam and
Wang, 2000). p is the number of labs, myid is the ID of the local lab, and k is
the number of data packages to be exchanged. The Matlab Parallel Programming
Toolbox provides the labSendReceive() function, which we use to implement lines
7-8 (this function simultaneously sends and receives the specified data between the
two specified labs).

1 round = odd(p) ? p : p-1
2 for i = 1 to round do
3 partner = EdgeColor(i,myid ,p)
4 if (partner = -1)
5 I am idle in this step
6 else
7 send_data(data , partner)
8 received[partner] = receive_data(partner)
9 endif
10 endfor
11
12 EdgeColor(i, myid , p)
13 S = odd(p) ? p : p-1
14 if (myid < S’)
15 v = (i + S - myid) mod S
16 else
17 v = odd(i) ? (((i+S)/2) mod S) : i/2
18 endif
19 if (odd(p) AND v = myid)
20 partner = -1
21 else if (v = myid)
22 partner = S
23 else
24 partner = v
25 endif
26 return partner
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Computing Server, either in a virtual cluster on the single multicore machine or by

using a physical cluster. Each model had two populations: layer 5 pyramidal (P5)

neurons and layer 5 basket (B5) interneurons. Spike rates in each small model (large

model) simulation were ∼6Hz (∼7Hz) and ∼24Hz (∼31Hz) for the P5 and B5 neur-

ons, respectively. The large model shows linear speed-up with increasing number of

cores for model initialisation and close-to-linear speed-up in simulation time (Figure

3.4). The speed-up for the small model is sub-linear: as the interpretation overhead

for a vectorised operation on a small matrix is the same as on a large matrix, this

overhead starts to dominate the calculation times below a certain number of neur-

ons (Brette and Goodman, 2011). Therefore, splitting already small neuron state

matrices between more processes does not significantly improve performance. This

limit is not reached in larger models.

Figure 3.4 also shows how increasing the number of virtual electrodes affects

simulation speed. Using more electrodes affects initialisation times proportionally

more than run times, in both the large and the small model. The proportional

impact on initialisation time from adding electrodes was greater in the small model

than in the large model. This is because the large model not only has more neurons,

but also more synapses per neuron. The increase in time spent connecting the

neurons is proportional to the number of synapses, while the increase in time spent

calculating constants for the LFP measurements is proportional to the number of

compartments (roughly proportional to the number of neurons).

3.3.7 Data recording and analysis

When the simulation is run, recordings (membrane potentials, LFPs, spike times,

synaptic currents) are automatically saved to disk at user-specified time intervals

(we tended to save every 100ms - 200ms, so that memory usage did not grow too

large). The simulation run can be performed in serial or parallel (requires Matlab

Parallel Computing Toolbox). After the simulation is finished, these files are loaded

and recombined for analysis.

Network dynamics can be simulated directly by providing the model neurons with

a spiking mechanism. Alternatively, previously generated spike times (arbitrarily

specified, or generated by spiking neurons in VERTEX, or by another simulator)

can be imported into the simulation. Neurons are then specified with purely passive
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Figure 3.4: Parallel simulation performance with increasing numbers of Matlab
workers (i.e. parallel processes). Top row: model initialisation times for (A) the
9 881 neuron model and (B) the 123 517 neuron model. Bottom: simulation times
for 1 second of biological time for (C) the 9 881 neuron model and (D) the 123
517 neuron model. Thick black lines indicate linear speed scaling; legends indic-
ate the number of electrodes used in each simulation run. The sub-linear speed-up
in the small model is due to the decreasing relative performance influence of code
vectorisation for smaller matrices (see Results).
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membrane dynamics. This is similar to the approach used in (Lindén et al., 2011)

to link spiking output from a cortical model implemented in the NEST simulator

(Gewaltig and Diesmann, 2007) to their LFP generating model implemented in

LFPy. However, VERTEX simplifies the simulation of the LFP due to a specific

network structure, as imported spikes are delivered to target neurons according to

the generated connectivity matrix rather than pre-assigned to postsynaptic targets.

By contrast, in (Lindén et al., 2011) the spikes from NEST-simulated neurons were

considered as external input to the neurons in the LFPy simulation, so were delivered

to synapses without a connectivity model within the LFPy-simulated population.

VERTEX simplifies modelling the LFP resulting from intrinsic network dynamics,

when connectivity is known or when different spatial connectivity models are to be

tested. We used the spike import feature to run the control experiment to confirm

that the AdEx spiking mechanism has a negligible impact on the simulated LFP

(see Chapter 4).

3.4 Summary

In this chapter, we described the VERTEX simulation tool, which we developed to

address our need for a simulator that would allow us to investigate LFP generation

in spiking neuronal network models. VERTEX includes functionality for generating

spatially constrained networks of several neuron populations, whose parameters are

easily specified in Matlab structures. “Virtual electrodes” can be positioned at arbit-

rary locations in the model to simulate the LFP generated by the network. Parallel

computing and code vectorisation allows VERTEX to simulate network activity and

LFPs in reasonable time.

In the next chapter, we describe the implementation and simulation results from

a neocortical network model. The model illustrates the ability of VERTEX to scale

to large model sizes. We also show how simulations using VERTEX can be used in

conjunction with experimental extracellular recordings.
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Chapter 4

Simulating the LFP during persistent

gamma oscillations

4.1 Introduction

In the previous chapter, we described the VERTEX simulation tool. We developed

VERTEX to allow us to construct and simulate dynamics in large networks of com-

partmental neuron models, and to simulate the local field potentials arising from

this activity. In this chapter, we describe our implementation of a neuronal network

model in VERTEX, representing a preparation of neocortical tissue in vitro. We

developed the model to gain insights into the experiments being performed in vitro

by our collaborators at the Newcastle University Institute of Neuroscience. These

experiments examined the extracellular potentials in macaque neocortical slices ex-

hibiting gamma frequency oscillatory activity induced by bath application of the

glutamate receptor agonist kainic acid (kainate). They used Utah multi-electrode

arrays, which cover a 3.6 mm by 3.6 mm area with 100 electrodes, spaced in a square

grid. We designed the model with these dimensions in mind, so that we could simu-

late extracellular recordings using a virtual Utah array, allowing a direct comparison

to be made between the experimental and simulated results.

The in vitro persistent gamma model also had some benefits for simulating the

LFP. First, the theory of how neocortical persistent gamma arises in vitro, and how

individual neurons participate in the network oscillation, has been comprehensively

documented (Ainsworth et al., 2011; Bartos et al., 2007; Buhl et al., 1998; Cunning-

ham et al., 2003, 2004b; Draguhn et al., 1998; Fisahn et al., 1998; Roopun et al.,
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2008; Traub et al., 2005a,b; Whittington et al., 2011, 1995). We could therefore fit

the spiking activity of the network to the experimentally observed spiking patterns

and simulate the resulting LFPs across the network. Second, the slice preparation

ensures that all synapses are local. The MEA recordings are therefore influenced only

by the local circuit dynamics, so we did not need to worry about including synaptic

input from other brain regions in the model: the slice edges provide natural spatial

boundaries for what needs to be included in the model. Third, persistent gamma

is known to depend on rapid synaptic interactions, rather than intrinsic oscillatory

currents in individual neurons. We could therefore assume that the majority of the

experimental signal is synaptically generated, so our LFP model incorporating only

synaptic and passive return currents would be adequate for simulating the LFP in

this activity regime.

In the first part of this chapter, we describe the experimental persistent gamma

oscillation model: how it is generated, the neuronal spiking activity that creates it,

and experimentally observed features of the LFP. In the second part, we describe

our neocortical slice model and compare our modelling results with experimental

data.

4.2 Persistent gamma frequency oscillations in vitro

4.2.1 Why model persistent gamma oscillations?

In Chapter 1, we discussed the presence of oscillations in EEG and LFP record-

ings. Particular oscillations correlate with particular behavioural states, or show

alterations in various neurological disorders. Much of the work done to understand

the mechanisms of these oscillations has been performed in brain slice preparations

in vitro (Traub and Whittington, 2010). The in vitro persistent gamma oscillation

model first described in (Fisahn et al., 1998) has been particularly useful in un-

ravelling the mechanisms involved in generating gamma frequency rhythms in the

brain: it provides a stable model of an oscillation that can be studied over a period

of several hours, and the firing patterns of the different neuron groups appear to

correspond well to firing during gamma oscillations in vivo (Csicsvari et al., 2003;

Hájos and Paulsen, 2009). Understanding the generation of the LFP during this well
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characterised in vitro oscillation could therefore shed light on the neuronal activity

during gamma oscillations in vivo.

4.2.2 Persistent gamma oscillation mechanism

Gamma frequency oscillations can be induced in cortical slices in vitro by bath

application of the glutamate receptor agonist kainate (Cunningham et al., 2003,

2004b,a; Traub et al., 2005a), or cholinergic agonist carbachol (Fisahn et al., 1998;

Buhl et al., 1998). These kinds of oscillation are frequently referred to as persist-

ent gamma oscillations as they remain stable over several hours (Whittington et al.,

2011), distinguishing them from shorter periods of gamma activity evoked by tetanic

stimulation or localised glutamate application. The cellular and synaptic mechan-

isms underlying persistent gamma are well characterised and have been studied in

detail in hippocampus (Atallah and Scanziani, 2009; Buhl et al., 2003; Draguhn

et al., 1998; Ferguson et al., 2013; Oren et al., 2006; Traub et al., 1996a; van der

Linden et al., 1999; Whittington et al., 2001, 1997b,a; Traub et al., 2003b; Whit-

tington et al., 1995), entorhinal cortex (Cunningham et al., 2003, 2004a; Dickson

et al., 2000; van der Linden et al., 1999) and neocortex (Ainsworth et al., 2011;

Cunningham et al., 2004b; Haenschel et al., 2000; Traub et al., 2005a; Whittington

et al., 1997b, 1995). The proposed mechanism generating the oscillation involves the

excitation of the neuronal network through spiking in pyramidal cell axons. Each

pyramidal cell axon is coupled to other pyramidal axons by gap junctions, which

allow spikes to cross between the axons if the junction resistance is low enough.

The active channels in each axon allow each spike to propagate through many other

axons in the gap-junctionally connected axonal plexus, so that a single spike will

cause glutamate to be released at many pyramidal axon terminals. This provides

continuous excitation to the cells in the network, as pyramidal cells form synapses

with most other cell types (Binzegger et al., 2004).

The continuous excitation provided by the active axonal plexus drives a gamma

oscillation by means of synchronous firing of inhibitory interneurons; in particular,

fast-spiking basket cells. The exact mechanism by which the interneurons gener-

ate the rhythm, and the dependence on different excitatory cell populations, varies

between brain regions. For example, a study in rat neocortical slices suggested that

persistent gamma in this region was dependent upon the existence of a small pop-
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ulation of fast rhythmic bursting (chattering) pyramidal cells in superficial layers,

which inject bursts of action potentials into the axonal plexus at gamma frequency

(Cunningham et al., 2004b). In hippocampus this cell type is not required (Cun-

ningham et al., 2004b); a possible cause of the continued the axonal plexus activity

in hippocampus is the spontaneous release of gamma-Aminobutyric acid (GABA)

at interneuron axon terminals, which can have an excitatory effect on pyramidal cell

axons (Traub et al., 2003b). Additionally in auditory neocortex, different gamma

generating networks exist in different layers, and are activated differentially by dif-

ferent concentrations of kainate (Ainsworth et al., 2011).

The key aspect of persistent gamma in all the different preparations is fast inhib-

ition (Bartos et al., 2007; Fisahn et al., 1998; Mann et al., 2005). In each model, fast

spiking interneurons fire synchronously, in phase with the oscillation as measured

in the LFP Hájos et al. (2004). These interneurons make many connections to the

perisomatic regions of pyramidal cells, providing them with strong phasic inhibition

(Kawaguchi and Kubota, 1997). They are also recurrently connected, so receive

inhibition immediately after their synchronous firing. The oscillation frequency is

then dependent upon (amongst other factors such as strength of external drive and

membrane time constants (Economo and White, 2012)) the decay time constant of

the inhibitory synapses (Fisahn et al., 1998), as this defines the amount of time that

the strong inhibitory current lasts and so the time window during which a cell is

prevented from spiking. If we consider this crucial dependence on fast phasic inhib-

ition to be the defining factor of persistent gamma, then we can create a model of

the oscillation that captures this aspect of the oscillatory mechanism while ignoring

many of the variable details, including the unknown parameters of the axonal plexus

and the dependence on chattering cells in neocortex. Simplified mathematical mod-

els have shown that persistent gamma-like oscillations can be generated in networks

of excitatory and inhibitory neurons even when the details of the excitatory drive

from activity in the axonal plexus are ignored, and the drive is approximated by

independent, random synaptic inputs or randomly fluctuating currents (Ainsworth

et al., 2011; Börgers and Kopell, 2005; Economo and White, 2012).
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Figure 4.1: Example of an extracellular electrode recording (left) performed in
macaque auditory neocortex in vitro, showing a strong gamma frequency oscilla-
tion as revealed by the large peak at 30 Hz in the power spectrum plot (right). The
electrode was positioned in cortical layer 3. The gamma oscillation was induced
by bath application of the glutamate agonist kainate. Scale bar: 10 microVolts.
Raw data provided by Matthew Ainsworth at the Newcastle University Institute of
Neuroscience.

4.2.3 LFP features during persistent gamma

The most obvious feature of persistent gamma is the very clear rhythmic compon-

ent in the signal, often at a frequency of between 30Hz and 40Hz. This signal is

stable for many hours, but varies across space. Several studies have investigated the

spatial profile of gamma oscillations, usually looking at the variation with cortical

depth using laminar electrode arrays (Dickson et al., 2000; van der Linden et al.,

1999). Recent recordings made by our collaborators using Utah MEAs also allow

the investigation of lateral variations in the LFP (Ainsworth, 2013).

One spatial feature of neocortical gamma oscillations is of particular note. A

phase inversion in the LFP is observed when the electrode is moved down from

the cortical surface through the layers towards the white matter boundary. This

inversion usually occurs somewhere between layers 1 and 3, and has been observed

in guinea pig whole-brain preparations (Dickson et al., 2000; van der Linden et al.,

1999), in rat entorhinal cortex in vitro (Cunningham et al., 2003) and in recordings

made in freely behaving rats (Csicsvari et al., 2003). The reason for this phase in-

version was investigated by Cunningham et al. (2003), who observed a phase change

between layers 2 and 3. They measured inhibitory postsynaptic potentials (IPSPs)
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in layer 2 stellate cells and layer 3 pyramidal cells simultaneously with the LFP,

showing that IPSPs in both layer 3 cells and layer 2 cells were in anti-phase with

the LFP, while IPSPs in layer 3 cells were in phase with the layer 2 LFP. This

suggested that neurons in layers 2 and 3 shared the same source of inhibitory input,

and that the phase inversion was caused by a separation of current sinks and sources

rather than separate gamma generating networks (localised perisomatic inhibitory

currents result in an opposite return current in the apical dendrites of the pyramidal

neurons).

4.2.4 Individual neuron spiking during persistent gamma

The spiking behaviours of different types of neurons during persistent gamma oscilla-

tions have been confirmed in many previous experiments. Fast spiking interneurons

fire synchronously on most or all of the gamma cycles, while pyramidal cells fire

more sparsely and tend to be less strongly locked to the oscillation phase (Hájos

et al., 2004). Other interneuron types also fire in phase with the oscillation, but

at lower rates than the fast-spiking interneurons. The low firing rate of pyramidal

neurons appears to be a good representation of the in vivo case, in which pyramidal

neurons spike at much lower frequency than the network oscillation (Csicsvari et al.,

2003; Hájos and Paulsen, 2009).

Using this information on spike timing, and combining it with a connectivity

model so that the postsynaptic effects of a spike make a suitable contribution, allows

us to simulate the LFP resulting from this spiking activity: given the firing pattern

of each neuron, the connectivity between neurons, and their positions in space, what

is the theoretically predicted LFP at a particular location? In the next section, we

describe the network model we implemented to integrate the relevant information

for studying the spatial LFP properties during persistent gamma oscillations.

4.3 Neocortical Slice Model

The novel use of the Utah MEA allowed our experimental collaborators to record

LFPs at many locations simultaneously. To model the recordings from these ex-

periments, we not only needed to consider the dynamics of the individual neurons

and synapses, but also the connectivity between neurons and the spatial organisa-
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Figure 4.2: Example macaque neocortical slice, stained for non-phosphorylating
neurofilament. Utah electrode positions are indicated with translucent red circles.
Scale bars: 800 microns. Slice image provided by Matthew Ainsworth.

tion of the network. Any such model will inevitably only provide a caricature of

the real biological system, but the increasing availability of experimental data has

enabled modellers to improve and refine their caricatures. Discrepancies between

experimental and modelling results can also be enlightening, potentially suggesting

areas in which we need to refine our knowledge of the experimental system in order

to create a more accurate model.

4.3.1 Model structure and connectivity

In order to create a model that incorporated the elements identified above, we took

inspiration from published anatomical data to specify the different neuron types,

their locations, and their connectivity. The model comprises fifteen neuron groups,

defined in Table 4.1. It is designed to contain a similar number of neurons to a

comparison experimental slice. This was calculated to be 175 421 neurons, based

on the slice dimensions and neuron density of 38,335 neurons per cubic millimetre

(Binzegger et al., 2004). The slice has clear spatial boundaries: neurons cannot be
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Figure 4.3: Slice model structure. Layer boundaries are given in microns. Subsets
of soma locations from each neuron group are shown in faded black for excitatory
neurons, or faded magenta for inhibitory neurons. Triangles represent pyramidal
neuron somas, stars are spiny stellate cell somas, circles are basket interneuron
somas and diamonds non-basket interneuron somas. One example full cell is shown
for each neuron group, in solid black for excitatory neurons or solid magenta for
inhibitory neurons. Compartment lengths are to scale; compartment diameters are
not. Black circles are virtual electrode positions (first 8 rows shown).
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Abbreviation Neuron group description Proportion of

total model (%)

Compartments

P23 pyramidal neurons in layer 2/3 (L23) 27.4 8

SS4(L4) spiny stellate neurons in L4 projecting to L4 9.7 7

SS4(L23) spiny stellate neurons in L4 projecting to L23 9.7 7

P4 pyramidal neurons in L4 9.7 8

P5(L23) pyramidal neurons in L5 projecting to L23 5.0 9

P5(L56) pyramidal neurons in L5 projecting to L56 1.4 9

P6(L4) pyramidal neurons in L6 projecting to L4 14.1 9

P6(L56) pyramidal neurons in L6 projecting to L23 4.7 9

B# basket interneurons in L# 13.7* 7

NB# non-basket interneurons in L# 4.7* 7

*Proportions given for the whole model rather than per layer; proportions per layer are given in
the Appendix

Table 4.1: Neuron groups, abbreviations, and number of compartments within our
model. Basket interneuron groups are in L23, L4, L5 and L6. Non-basket in-
terneuron groups are in L23, L4 and L5. Compartmental structures are shown in
Chapter 2.

positioned outside of the slice edges, and axons cannot ’wrap around’ these bound-

aries. We therefore required a connectivity model that would produce a suitable

number of synapses given the large number of neurons, and that took into account

each neuron’s position in relation to the slice boundaries.

To set the number of connections between neurons of each type, we used the ana-

tomical data from (Binzegger et al., 2004) (see Appendix). In this paper, the authors

made reconstructions of 39 neurons from cat area 17, estimating connection num-

bers between groups using an improved version of Peters’ rule (Peters and Payne,

1993). This provides one of the most complete quantitative descriptions of neocor-

tical connectivity in the literature. Recently, Potjans and Diesmann (2012) created

an integrated connectivity map using this anatomical data as well as physiological

data from paired-pulse measurements (Thomson et al., 2002). We decided to use

the numbers directly from (Binzegger et al., 2004) because the distinctions in con-

nectivity between different interneuron sub-types are lost, while other aspects of the

maps are quantitatively similar.

The data in (Binzegger et al., 2004) provide the number of neurons and connec-

tions, but not the spatial pattern of those connections. We specified a 2D Gaussian

spatial profile to model the decay in connection probability with increasing distance

from a presynaptic neuron, as data from layer 2/3 in rat visual cortex suggests that

connection probabilities decay away from the presynaptic neuron with a this profile
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L1 L2/3 L4 L5 L6
P23 0.55 1.12 0.15 1.00 0.15
B23 - 0.50 0.15 0.15 -

NB23 0.20 0.20 0.20 0.20 0.20
SS4(L4) - 0.30 1.12 0.40 0.15

SS4(L23) 0.15 0.40 0.50 0.15 0.15
P4 0.15 1.12 0.15 0.15 0.15
B4 - - 0.50 0.55 -

NB4 0.20 0.20 0.20 - 0.20
P5(L23) 0.15 0.40 0.30 0.20 0.25
P5(L56) - - 0.15 0.50 1.00

B5 - - - 0.50 -
NB5 0.20 0.20 0.20 0.20 0.20

P6(L4) - 0.15 1.00 0.15 0.15
P6(L56) - - 0.15 0.50 1.00

B6 - - - 0.10 0.50

Table 4.2: Axonal arborisation radii for each neuron group in each layer (mm),
adapted from Figure 8 of the supporting information of (Izhikevich and Edelman,
2008). Where no radius was given for a neuron group in a layer in which connections
are specified in the connectivity table given in the Appendix (marked with hyphens
here), we set the radius to 0.05mm.

(Hellwig, 2000). The standard deviation parameter of the Gaussian profile was set

using axonal arborisation radius measurements reported in (Blasdel et al., 1985;

Fitzpatrick et al., 1985), as adapted in (Izhikevich and Edelman, 2008). These were

different for each neuron group in each layer (see Table 4.2). Finally, we modelled

the effect of slice cutting on connectivity by reducing the number of connections a

presynaptic neuron could make by the proportion of the integral of its Gaussian con-

nectivity profile that fell outside the slice boundaries, as described in the previous

chapter.

Figure 4.4 shows the number of connections between neuron groups compared

with the original numbers specified in (Binzegger et al., 2004). The proportional

reduction in synapses is not the same for each connection type because of the varying

axonal arbour radii. These reductions are important to consider when assessing the

effect of connectivity changes on dynamics, but they illustrate that the general profile

of connections between neuron groups is not substantially altered - connections from

P23 to P23 and P5 neurons remain the most numerous, for example. Modelling

thinner slices, or different axon arbour profiles, could lead to the over- or under-

representation of particular connections in the model.

We use connectivity data from cat neocortex, but our comparison data was recor-
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Figure 4.4: Changes in connectivity between neuron groups after slice cutting. (A)
Expected number of connections from population of presynaptic neurons (columns)
onto single postsynaptic neurons (rows) before slicing. (B) as (A), but after slice
cutting. While overall connection number decreases (note different scale bars), some
connections are affected more than others because of differing axonal arborisation
sizes.
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ded in macaque neocortex. The validity of the comparison between our model and

the experimental data is therefore in question. Previous anatomical studies have em-

phasised the similarities between cat and macaque cortical connectivity (Callaway,

1998). Additionally, data collected by our experimental collaborators shows remark-

able similarities in persistent gamma oscillations across different species, including

rat, marmoset, macaque and human. Spike rates, peak frequency and spatial vari-

ation are all similar between species, suggesting that particularities of anatomy are

not particularly relevant for the generation of gamma rhythms (Ainsworth, 2013).

4.3.2 Single neuron properties

Each neuron was represented using the default passive compartmental models with

AdEx dynamics at the soma. As gamma oscillations can be generated by networks

containing many different neuron types with many different individual neuron para-

meter values, we did not attempt to fit the spiking behaviour of each neuron type

quantitatively to experimental data (in fact, (Brette and Gerstner, 2005) repor-

ted that the adaptation parameters of the AdEx model can be varied greatly and

make little difference to the output spike trains produced during high conductance

states). Instead we chose parameters to reproduce the general patterns of spiking

behaviour observed in real neurons, using the membrane potential traces reported

in Appendix A of (Traub et al., 2005b) as a guide ((Traub et al., 2005b) describes a

layered cortical network model used to simulate, amongst other behaviours, persist-

ent gamma oscillations in vitro). Each cell type’s passive parameters were defined

by its morphology and the electrotonic parameters given in Table 4.3; therefore,

the parameters adjusted to fit the spiking responses of the Traub neurons were the

spike slope factor ∆t, threshold Vt, adaptation time constant τw, adaptation coup-

ling parameter α, reset value vreset, and instantaneous adaptation current increase

β. We employed a qualitative approach to parameter adjustment, guided by the

analysis of the AdEx model in (Naud et al., 2008). According to the classifications

in (Naud et al., 2008), B, SS and P6 cells have a sharp reset, while NB, P23, P4 and

P5 cells have a broad reset. B cells are non-adapting; SS and P6 cells are adapting;

P23, P4, P5 and NB cells show an initial burst.

The model includes conductance-based alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA, reversal potential 0mV) and GABAA (reversal potential -75mV) syn-
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Neuron

type

Cm

(μFcm-2)

Rm

(kΩcm-2)

Ra

(Ωcm)

El

(mV)

VT

(mV)

∆T

(mV)

α

(nS)

τw

(ms)

β

(pA)

vreset

(mV)

P23, P4 2.96 6.76 150 -70 -50 2.0 2.60 65 220 -60

SS4 2.95 5.12 150 -70 -50 2.2 0.35 150 40 -70

P5 2.95 6.78 150 -70 -52 2.0 10.00 75 345 -62

P6 2.95 6.78 150 -70 -50 2.0 0.35 160 60 -60

B 2.93 5.12 150 -70 -50 2.0 0.04 10 40 -65

NB 2.93 5.12 150 -70 -55 2.2 0.04 75 75 -62

Table 4.3: Neuron model parameters, used in all reported simulations (simulations
of purely passive neurons only have Cm, Rm, Ra, and El specified.

Figure 4.5: Responses to step-current injections into the soma compartment of each
neuron type. Spikes are detected and cut-off at Vt + 5 mV; we extend the spike
trace up to +10mV for illustrative purposes. Step current magnitudes were 0.5nA
for the P23 neuron, 0.333nA for the SS neuron, 1.0nA for the P5 neuron, 0.75nA
for the P6 neuron, and 0.4nA for the B and NB interneurons, as in (Traub et al.,
2005b).
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EAMPA (mV) EGABA (mV) τAMPA (ms) τGABA (ms)
P 0 -75 2.0 6.0

SS 0 -75 2.0 6.0
B 0 -75 0.8 3.0

NB 0 -75 0.8 3.0

Table 4.4: Synaptic parameters, taken from (Traub et al., 2005b). Row headers list
the postsynaptic neuron type.

apses, the minimal set required for persistent gamma oscillations(Fisahn et al., 1998).

Synaptic weights (Table 4.4) were chosen based on those reported in (Traub et al.,

2005b), scaling the weights according to the number of synapses between groups

in our model compared with the Traub model. Our neuron populations did not

match theirs exactly, with the following differences (in addition to different numbers

of neurons and synapses): our model includes interneurons in every layer, while

the Traub model has only "superficial" and "deep" interneurons (with the deep

interneurons providing inhibition to layer 4); the Traub model only has spiny stel-

late cells in layer 4 (no pyramidal or interneurons); the Traub model contains fast

rhythmic bursting pyramidal cells in layer 2/3 and intrinsically bursting pyramidal

cells in layer 5 - our model contains no bursting neurons; our model contains syn-

apses between some neuron groups that are not present in the Traub model. We

therefore had to make several arbitrary decisions when setting some synapse weights

between groups. We give the synaptic weights in the Appendix.

We stimulated our model to mimic the bath application of kainate. This stimu-

lates the pyramidal cell axonal plexus, providing the neurons with excitatory drive

(see next chapter). We simulate this by applying independent random input cur-

rents to each neuron (Börgers and Kopell, 2005), modelled as Ornstein-Uhlenbeck

processes as described above. The random current is distributed across the neuron’s

compartments proportionally to the compartment membrane areas.

4.3.3 Example model and outputs

In slice experiments with nanomolar kainate concentrations, the gamma oscillation is

driven by L23, where neurons receive noisy excitatory drive from the excited axonal

plexus of P23 neurons (Ainsworth et al., 2011; Cunningham et al., 2003, 2004b). We

simulate this by providing a relatively large noisy current to P23 neurons, similar to

(Ainsworth et al., 2011; Börgers et al., 2005). We set synaptic strengths [based on
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Mean current
(pA)

Standard
deviation

(pA)

Noise correlation
time constant (ms)

P23 360 110 2.0
SS4 205 50 2.0
P4 250 70 2.0
P5 860 260 2.0
P6 660 170 2.0
B 200 60 0.8

NB 160 40 0.8

Table 4.5: Random current input parameters.

(Traub et al., 2005b)] and noise currents to match the spiking activity and observed

membrane potential fluctuation sizes reported in previous studies in vitro. Model

parameters are given in tables the Appendix.

As described in previous experiments (Ainsworth et al., 2011; Cunningham et al.,

2003, 2004b; Traub et al., 2005a,b), P23 neurons spike infrequently, while B23 neur-

ons spike on most oscillation periods. Excitatory neurons in L4 do not take part

in the oscillation (though still spike infrequently), while L4 interneurons are weakly

entrained to the oscillation. In addition to the L23 gamma, the comparison slice

exhibited increased gamma power in part of the infra-granular layers (see Figure 4.7

A, electrodes 6, 7, 16, 17, 26, 27), presumably caused by L5 as in (Ainsworth et al.,

2011). We therefore used a relatively high coupling strength of P5 to B5 and NB5

neurons and a larger noisy drive current to L5 neurons to enable the L23 gamma to

generate gamma in L5. The L5 gamma oscillation also weakly entrained L6 neurons

to the oscillation.

The resulting spiking behaviour is shown in Figure 4.6, which shows a spike raster

for 5% of the neurons in the model, along with example somatic membrane potential

traces for each neuron group. The spike raster reveals that neurons near the slice

x-boundaries (neurons nearest the cyan boundary markers in Figure 4.6) are less

strongly entrained to the oscillation than neurons in the centre of the slice, because

they receive fewer inhibitory inputs than more central neurons. This can be seen

more clearly in the gamma power map in Figure 4.7. This effect is difficult to verify

experimentally: recording spikes from enough neurons simultaneously is currently

not possible, and the general patchiness of the LFP in experimental recordings means

that it would not be possible to establish whether reductions in gamma power at
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Figure 4.6: Spike raster and individual neuron responses during gamma oscillation.
We use black to represent excitatory neurons and magenta for inhibitory neurons.
(A) Spike raster showing spiking activity of 5% of all the neurons in the model
(reduced number shown for clarity). Boundaries between neuron groups marked in
cyan. Note strong persistent gamma oscillation in L23, with weaker oscillation in
L5. Neuron IDs are arranged such that the lower the ID of the neuron (relative to
the IDs of the neurons in its group), the further left on the x-axis the neuron is
in the model. (B) Example soma membrane potential plots for the various neuron
types. Most neurons fire sparsely, while B23 and B5 neurons fire on most oscillation
periods. Spikes are cut-off at V t + 5 mV in the simulation; we extend them up to
10 mV here for illustrative purposes. (C) Close-up of P23 neuron soma membrane
potential (cut-off -45 mV). Scale-bar: 5 mV.
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slice edges were a result of slice cutting or other tissue properties that alter the

gamma oscillation power. However, the effect of slicing on the dynamics at the

slice edge observed here should be taken into account when interpreting the LFP

recorded near slice boundaries in vitro.

4.3.4 Comparison with experimental data

Having verified that the model produced the expected spiking output, we looked

at the simulated LFPs and compared them with those recorded in vitro. The raw

experimental data of MEA recordings from resected macaque temporal cortex was

kindly provided by Matthew Ainsworth at the Newcastle University Institute of

Neuroscience (now at the University of York). Persistent gamma oscillations were

induced by bath application of kainate (400nM - 800 nM). The recordings were

first re-referenced to the common average, then resampled at 1 kHz (Matlab Signal

Processing Toolbox resample() function, which applies an anti-aliasing filter). We

removed line-noise and harmonics by band-pass filtering each recording at 49-51

Hz, 99-101 Hz, 149-151 Hz, 199-201 Hz and 249-251 Hz (symmetrical Butterworth

filter, 8th order) and subtracting the resulting signal from the original signal. The

recordings were then band-pass filtered between 2 Hz and 300 Hz (symmetrical FIR

filter, Kaiser window, 2000th order). Filters were run forwards and backwards so no

phase distortion was introduced (reported filter orders take this into account). We

restricted our analysis to an 18 second segment of the recording that was identified

as artefact-free in all channels by visual inspection of the filtered traces. After

filtering, these segments were normalised to zero mean, unit standard deviation to

facilitate signal comparison across the MEA. Total LFP power at each electrode

varied considerably (possibly due to variable electrode impedances in the tissue,

and possibly because of other non-gamma activity that we were unaware of) and

as we were interested in the gamma band as it related to rest of the signal, this

allowed us to account for this overall signal level variation when considering gamma

power over the whole electrode array. As the total signal power was not nearly so

variable in the model data - electrode impedances are constant and no activity other

than the gamma oscillation is present - we did not normalise the LFP recordings

from the model in this way. As the model LFPs also contained prominent gamma

harmonics that varied in power depending on electrode position (see Figure 4.9),
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and which were absent in the experimental recordings, this kind of normalisation

would not have been suitable for comparing gamma power across space in the model

recordings.

Figure 4.7 shows a comparison over the whole electrode array between the model

and the experimental recordings. Figure 4.7 A shows a power map over the MEA of

the signal magnitude in the low-gamma frequency band, calculated by integrating

the power spectrum of the LFP at each electrode (calculated using the Thomson

multitaper method - Matlab Signal Processing Toolbox pmtm() function) between

20Hz and 40Hz and using bicubic interpolation (Matlab interp2() function) to es-

timate the power between electrodes. The shape of the experimental neocortical

slice is apparent as electrodes placed in the white matter (bottom left) or above

the cortical surface (top right) are greyed out. As predicted by previous research,

strong gamma power is apparent in the supra-granular layers. The gamma power

at each electrode is highly variable, resulting in a patchy power map. This is not

captured by the model, whose structure is homogeneous along the x-axis (the power

map was constructed in the same way as for the experimental recordings, using

1.5s simulated data and without common average re-referencing or normalisation

- see above). To check that the gamma oscillation profile across the slice was in

fact “patchy” and that the gaps between patches were not simply a result of fluc-

tuations in the power of an oscillation being generated by the same network across

space, we found the cross-correlations between the LFPs from 9 electrodes in the

two largest gamma patches shown in Figure 4.7 A and all other electrodes in the

grid (again, excluding those electrodes in the white matter or above the slice). The

results are shown in Figure 4.8. To create this figure, we first band-pass filtered the

experimental LFPs between 25 Hz and 40 Hz. We then took the cross-correlations

between the LFP at the selected electrode in layer 2/3 and the LFPs at all other

electrodes, with a maximum lag time of 100 ms. We found the maximum (absolute)

correlation values within this lag time for each electrode comparison. The decay

in correlation strength was similar for the nine electrodes we chose to investigate,

and no correlation structure matching the gamma power over space emerged. We

took this to suggest that the gamma oscillation was indeed “patchy”: the oscillation

measured at each electrode (or at close-by electrodes) is likely to be generated by

subsets of neurons that are not taking part in the same collective oscillation as the
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Figure 4.7: Comparison of experimental and simulated MEA recordings. (A) Map
of gamma frequency power across the electrode array. Electrode positions shown as
grey dots, corner numbers indicate electrode IDs. Shaded areas show where elec-
trodes were discounted because they fell either outside the slice boundaries or within
the white matter. Gamma power is strongest at the top of the slice, correspond-
ing to L23. (B) Example LFP traces from electrodes 41 to 44 [indicated by grey
rectangle in (A)]. Traces have been normalised to unit standard deviation for ease
of comparison. (C) Cross correlation of signals from electrodes 41 to 44 with sig-
nal from electrode 42, illustrating phase inversion in the signal from electrode 41.
This electrode was identified as being in layer 1 by post hoc histology (not shown).
Gamma map & cross-correlations estimated from 18s of data. (D-F) As (A-C), but
for the neocortical slice model (gamma map & cross-correlations estimated from
1.5s of data). The model produces a strong gamma oscillation in L23, with a weaker
oscillation in L5. LFPs in E have been normalised to unit standard deviation for
ease of comparison, but non-normalised LFPs were used to calculate the gamma
map in D (see main text).
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neurons at more distant electrodes.

The phase inversion between layer 1 and layer 2/3, illustrated in Figure 4.7 B

and C, does emerge in the model (Figure 4.7 E and F). This is from the positioning

of current sinks and sources on the P23 neurons during the gamma oscillation. This

result is in agreement with the source-sink interaction mechanism of phase inversion

demonstrated experimentally in kainate-induced gamma oscillations in entorhinal

cortex in vitro (Cunningham et al., 2003) and which we explore further in the next

chapter. The cross-correlations between electrodes shown in Figure 4.7 C and F

also reveal how the strong gamma oscillation in L23 dominates across the electrodes

more than in the experimental recordings. This is, again, a result of the synchronous

activity in L23 along the x-axis in the model, meaning that the LFP signal created by

the gamma oscillation is not degraded by influences from the non-oscillating areas in

the slice as occurs in vitro. Finally, figure Figure 4.9 shows large peaks at harmonics

of the base gamma frequency. These peaks result from the shape of the oscillatory

signal, which is closer to a saw-tooth wave than a sine wave. This shape is very

clear in the simulated LFP (figure Figure 4.7 E), as the coherent layer 2/3 oscilla-

tion totally dominates the signal. By contrast, in the experimental recordings, the

gamma frequency harmonics in the power spectrum are mostly concealed by noise

except at the electrodes where gamma power is strongest, where the first gamma

oscillation harmonic is visible in the power spectrum (see Figure 5.17 in Chapter 5,

which shows LFP power spectra at electrodes 41 and 42 as indexed in Figure 4.7). In

summary, our model appears to capture the LFP features observed during gamma

oscillations through the depth of the slice, but not laterally, a discrepancy that could

arise through lateral inhomogeneities in connectivity patters, synaptic strengths, or

cell densities. Further models and experiments should investigate these possibilities.

4.3.5 Checking the influence of the AdEx spiking mechanism

The LFPs recorded from the model contain potentially unrealistic contributions from

the AdEx spiking mechanism in the model neurons (see above). To check if these

contributions significantly affected the results, we reran the simulation with the

AdEx mechanism in each neuron removed, using VERTEX’s spike-import feature

to replay the spiking activity in the network. The results for two of the electrodes

in the virtual MEA are shown in Figure 4.9. In this model, with a large number of
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Figure 4.8: Correlations between 9 electrodes in the gamma patches and all other
electrodes in the slice. The reference electrodes for the cross-correlations are marked
with a cross. All reference electrode positions are in the layer 2/3 gamma patches
revealed in Figure 4.7 A. Absolute values of negative correlations were taken to pro-
duce the correlation maps. The decay in correlation strength around each selected
electrode is quite similar, with no long-range correlations apparent. Specifically, a
correlation structure linking the different gamma patches is not apparent (compare
with Figure 4.7 A), suggesting that the gamma power is indeed “patchy” and that
separate local circuits could be generating the gamma oscillation at different points
in the network. The comparison electrodes (from top left, moving columnwise) are
12, 13, 22, 23, 42, 43, 53, 63, 73.
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neurons receiving synchronous synaptic input, the influence of the AdEx mechan-

ism compared with the synaptic input is very small. Electrode 97 has presumably

been positioned close to the soma compartment of a neuron, and the spike in the

extracellular potential reflects the instantaneous membrane potential reset of the

AdEx mechanism. Many of these very rapid events will have been missed during

the simulation, as the extracellular potential is only sampled at 1kHz, while the

time-step of the simulation is 0.0325ms. The spike causes significantly increased

power above ∼100Hz compared with the extracellular potential recorded from the

purely passive model with spike replay, but the spectrum is unaffected at lower fre-

quencies. We therefore suggest that, though analysing simulated LFPs from models

containing multi-compartment AdEx neurons can be useful during explorative model

runs, they should be checked against LFPs produced by an equivalent passive model

using the spike-replay functionality. This is particularly important when the LFP

contributions from the summed synaptic currents do not dominate the influence of

the AdEx mechanism, such as in smaller models with less synchronous firing.

4.4 Summary

We created a large-scale, spatially organised model of a neocortical slice to use in

conjunction with MEA recordings in vitro. The model is similar in scale to the

brain slice preparation - an experimental method that allows the study of isolated

network dynamics, and that has proved extremely useful in elucidating the mech-

anisms of various patterns of network activity (Traub and Whittington, 2010). As

we are interested in how the LFP relates to network activity across space, simula-

tions containing a number of neurons approaching an experimental preparation are

preferable so that the LFP is not distorted by overly strong synaptic currents (as

frequently used in reduced network models so that neurons receive adequate input

to fire), and each neuron contributes an appropriate amount to the simulated LFP

signal. A model on this scale also allows a direct comparison to be made with the

experimental recordings.

However, several problems remain when investigating a model of this scale and

incorporating as much detail. Firstly, a large number of parameters must be estim-

ated. Experimental measurements can be used as constraints, but these are often
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Figure 4.9: Comparison of simulated LFPs when using purely passive neurons with
imported spike times, and when using the AdEx spiking model in the neocortical
slice model. Traces in (A) and (C) have been normalised to zero mean, unit standard
deviation so that the shape of the LFP signal can be more easily compared, but are
otherwise unfiltered. The adaptive current of the AdEx mechanism introduces an
offset in the simulated LFPs, but does not dramatically affect the shape of the signal.
(A) Simulated LFPs from electrode 42; AdEx version in black, passive version in
grey. (B) Power spectral density overlap of these signals (estimated for 500 ms
signal), with overlapping parts of the estimated spectrum shown in dark grey and
non-overlapping shown in light grey. (C) As A, but for electrode 97. Note the
small, sharp spike at ∼230 ms in the AdEx signal. This is a result of the AdEx
reset mechanism creating a very short, fast current from a neuron very close to the
electrode. (D) As B, but for electrode 97. Power spectra diverge above ∼100 Hz
due to high frequency spike contamination in the AdEx model, but match closely
below 100 Hz.

90



statistical estimates, come from various different species, or are otherwise incom-

plete. Synaptic strengths are not well defined and can vary dramatically depending

on activity and environment, and statistical connectivity estimates hide possible

inhomogeneities in synapse density across space. We are therefore forced to make

many arbitrary assumptions based on best guesses. Secondly, the analysis of the

model must necessarily be more constrained than for a smaller, simpler model, as

simulation and analysis take longer and visualisation becomes more challenging.

Finally, while it is possible to compare simulation output directly to experimental

recordings, various aspects of the model that cannot always be established from

the comparison data influence the LFP. In our case, the experimental data used to

create the model come from a different part of the neocortex and different species

than the comparison experimental LFP recordings. While the relative uniformity

of the neocortical circuit, and indeed persistent gamma oscillations, across species

(Ainsworth, 2013) means that these details are not necessarily crucial when mod-

elling the spiking statistics in the network, different neuronal densities, connection

densities and even layer boundaries all have an effect on the measured LFP.

For the next step in our investigations, we decided to focus on the LFP during

gamma oscillations in a simplified model of layer 2/3, allowing us to perform a more

thorough analysis of particular features of the LFP during this activity regime. We

describe this analysis in the next chapter.
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Chapter 5

LFP features during gamma

oscillations

5.1 Introduction

The main reason for our investigations into the LFP is so that experimental LFP

recordings can be more easily interpreted in terms of the underlying neuronal activ-

ity. In the previous chapter, we described a large-scale model of persistent gamma

oscillations in a neocortical slice, implemented with the VERTEX simulation tool.

The virtual electrode functionality in VERTEX allowed us to simulate LFPs during

this activity regime, so we could make a direct comparison with experimental extra-

cellular recordings. This model reproduced certain features of the experimentally

recorded LFP, but the spiking activity was too synchronous across the width of the

slice model and the spatial LFP properties did not match comparison experimental

recordings made using Utah MEAs.

To investigate the LFP during persistent gamma more thoroughly, we decided to

focus only on the generating layer, creating simplified network models of layer 2/3.

We imposed artificial conditions on the spiking activity in the models, so that we

could systematically investigate LFP features across space due to precisely known

and constrained spiking activity and connectivity. We used the set of models to

investigate how the firing of each neuron type influenced the LFP, how layer depth

affects LFP power and the location of the experimentally observed phase inversion,

the visibility of the gamma rhythm outside of the network region that generated

it, and the LFP’s frequency scaling characteristics. We relate our results to various

92



experimental findings regarding the origin and features of LFPs.

5.2 Model of persistent gamma in neocortical layer

2/3

We chose to continue to base our gamma oscillation model on the in vitro slice

preparation with bath-applied kainate, both because we had previous experience in

modelling this particular type of gamma oscillation, and because the neuronal firing

patterns (sparse pyramidal firing and relatively regular basket interneuron firing)

appear to correspond with the in vivo case (Csicsvari et al., 2003; Hájos et al.,

2004). Our results therefore have implications for synaptically-driven oscillations in

general, rather than specifically in vitro gamma oscillations after kainate application.

To simplify our analysis we concentrate only on layer 2/3, as this layer generates

the gamma oscillation in vitro.

We chose to investigate three aspects of the LFP that we thought could help in

the interpretation of experimental LFP recordings: the contribution of each neuron

type to the total LFP, the spatial profile of the gamma power in the LFP, and the

location of the phase inversion. Taking inspiration from the experimental observa-

tion of patchy gamma power, we decided to investigate these aspects in a model

containing a gamma-generating region surrounded by regions that did not parti-

cipate in the gamma oscillation (i.e. the neurons in these regions fired randomly).

These enforced conditions allowed us to study the spatial profile of the LFP from dif-

ferently sized gamma patches, while minimising the number of variables we changed

between simulations. Additionally, we could make observations about properties of

the LFP during random activity in the layer 2/3 network.

In the next sections we describe the composition, topology, connectivity and

dynamics of the model, as well as the LFP calculation method for investigating

different sizes of gamma generating networks embedded in surrounding tissue with

randomly spiking neurons. We refer to a single model; in fact, we generated ten

models with identical parameters but different random number seeds, so that the

random connectivity and input currents in each model were different. We measured

the reported quantities in each model realisation, and report the mean of these

measurements in the results section. This was so that random effects in network
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initialisation were averaged out, to ensure that the measurements we report are

generic and not specific to a particular network realisation.

5.2.1 Model composition

The simplest network models of persistent gamma include only basket interneurons

and pyramidal cells (Börgers and Kopell, 2003, 2005). However, other types of in-

terneuron also fire during persistent gamma, but at a lower rate than the basket

cells (Traub et al., 2005a). While they do not contribute to gamma generation,

they affect the LFP as they primarily target pyramidal cell dendrites, so the res-

ulting current sources and sinks have a different spatial profile from those created

by basket cell synapses. The characterisation of the different interneuron types into

soma-targetting or dendrite-targeting is extremely simplified, as a huge number of

different interneuron categories has been identified (DeFelipe, 1997; DeFelipe et al.,

2013; Jonas and Buzsaki, 2007; Kawaguchi and Kubota, 1997; Markram et al., 2004;

Petilla Interneuron Nomenclature Group et al., 2008). We decided to use this char-

acterisation - as in (Traub et al., 2005a,b) - because different roles for the different

interneuron sub-types in persistent gamma have not been elucidated. We therefore

included three cell types in our simplified layer 2/3 model: pyramidal neurons (ex-

cluding chattering cells), basket interneurons, and dendrite-targeting interneurons

(which we refer to as non-basket interneurons, as before). We again abbreviate

these populations as P, B and NB cells, respectively, and use A to refer to the three

populations combined.

As in the previous chapter, we made use of the population size estimates in

(Binzegger et al., 2004) to set the size of each population. We limited ourselves to

modelling the in vitro slice, so specified a model width of 4 mm and a slice thickness

of 0.4 mm. Neurons were positioned with their somas contained within a soma-layer

of a certain depth, with the pyramidal neuron dendrites extending above the soma-

layer towards an imaginary cortical surface. We wanted to investigate the effect of

varying the soma-layer depth on the LFP while minimising the number of variables

between conditions, so we chose the number of neurons given the shallowest soma-

layer depth (100 microns) and kept this number constant. The neuronal density in

layer 2/3 in the Binzegger et al. (2004) data is ∼69,000 mm-3, resulting in a total

model size of 11,000 neurons. There were 9000 pyramidal cells, 1000 basket cells
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and 1000 non-basket cells, which we refer to as P, B and NB, respectively (as in

Chapter 4). Neurons were initialised with their somas at random points within the

soma-layer and slice boundaries, but their dendrites were allowed to extend outside

them, so the top of the pyramidal neurons’ apical tuft compartments could reach

a maximum model height of 430 microns with a soma-layer depth of 100 microns.

We also tested model depths of 200 microns and 300 microns, for which we kept the

connectivity, x- and y-coordinates the same as the original 100 micron soma depth

model but shifted each neuron along the z-axis by a constant multiplier of 2 or 3.

5.2.2 Connectivity

Connectivity between neuronal groups was calculated using the same method as in

Chapter 4: connection numbers were taken from (Binzegger et al., 2004), and the

connection probability decayed with a 2D Gaussian profile (Hellwig, 2000), with con-

nection numbers adjusted to account for slice boundaries using the method described

in Chapter 3. This introduces some heterogeneity into the number of connections

each neuron makes: each cell’s location in relation to the model boundaries is differ-

ent, so the range of the integral for calculating the remaining number of connections

for each cell will be different. We also reduced the number of connections made

by each neuron by a half because of the reduced number of neurons in the model:

we wanted to approximate the right level of network synchrony given the number of

neurons, as this dramatically affects the LFP magnitude. The number of connections

is consistent with the estimated convergence given a model size of 11,000 neurons

in (Potjans and Diesmann, 2012), taking into account the extra missing synapses

from slice cutting. We set the axonal arborisation radius to be 500 microns (i.e.

250 micron standard deviation parameter) for all neuron types so that the impact

of this somewhat uncertain estimate on the LFP’s spatial profile was the same for

each neuron group. In fact, a uniform Gaussian distribution with a large radius, as

used in the full slice model, may be a poor model for layer 2/3 pyramidal neuron

connectivity in cat and macaque (at least), as it appears that these neurons make

long-range projections to specific patches of postsynaptic neurons (Bauer et al.,

2012; Binzegger et al., 2007; Kisvárday and Eysel, 1992) rather than targetting all

neurons at the same distance with equal probability (see discussion in Chapter 4).

The current simplified model, then, can be considered as ignoring these long-range
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(A) Convergent connectivity (B) Divergent connectivity
P B NB Total P B NB

P 694 97 61 852 P 694 872 549
B 440 81 86 607 B 49 81 86

NB 405 81 36 522 NB 45 81 36
Total 788 1034 671

Table 5.1: Simplified layer 2/3 model connectivity. (A) Average number of con-
nections received by one postsynaptic neuron (rows) from each presynaptic group
(columns): convergent connectivity. (B) Average number of connections made by
one presynaptic neuron (columns) onto each postsynaptic group (rows): divergent
connectivity.

connections and only considering local connectivity, for which a Gaussian profile

appears reasonable (Hellwig, 2000). Modelling patchy projections would introduce

too many variables into the present study, but future investigations should certainly

investigate how the properties of the superficial patch system affect the LFP. Fi-

nally, unlike in the full slice model, we set the maximum distance for connections to

500 microns so that all connections are made within a known range. We kept the

connectivity constant for each dynamics simulation performed. Mean connection

numbers between groups are given in Table 5.1. Neurons could form synapses with

the postsynaptic compartment IDs specified in Appendix 1.

5.2.3 Neuron dynamics

We use the reduced compartmental models described in Chapter 2 for the neuron

morphologies, with interneurons having the same morphology as the reduced spiny

stellate cell models as in the previous chapter. Using a different cell type morpho-

logy to represent smooth interneurons means that we cannot guarantee that the

membrane currents of the interneuron populations contribute suitably to the LFP.

However, we made the assumption that this would not affect the LFP greatly: pyr-

amidal neurons are larger than interneurons and make up over 80% of the neurons

in the model, so we assumed that the majority of the LFP signal is due to pyram-

idal cell membrane currents. We check this assumption below. Each neuron had an

AdEx mechanism at the soma compartment to generate spikes, with parameters the

same as for the equivalent layer 2/3 neurons described in the Chapter 4.

We used current-based synapses to maintain linearity (Lindén et al., 2010). This

allowed us to consider each presynaptic population’s contribution to the LFP in-
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P B NB
P 1.0 -3.5 -1.8
B 37.0 -1.0 -0.1

NB 37.0 -6.0 -0.2

Table 5.2: Synaptic weights for the simplified layer 2/3 model. These values rep-
resent the instantaneous increase in synaptic current, in pA, at a postsynaptic com-
partment (rows) on receiving a spike from a presynaptic neuron of the specified type
(columns).

dependently by running the simulation with the imported spike times from one

presynaptic group at a time. The total LFP is found by summing each presynaptic

group’s contribution (we used the same principal to calculate each postsynaptic

group’s contribution to the LFP to check our assumption about the contribution of

pyramidal cells). We used single-exponential type synapses, with synaptic weights

given in Table 5.2. To set these, we took the weights of the conductance-based

synapses used in (Cunningham et al., 2004b), scaled them according to the number

of connections in our model, and calculated the instantaneous current change due

to these conductances given a membrane potential of -55 mV.

5.2.4 Network dynamics

The gamma oscillation was generated by applying independent randomly fluctuat-

ing excitatory currents to each neuron, as in Chapter 4. A single random current

was spread across a neuron’s compartments, scaled according to the compartments’

relative membrane areas. While this scenario is unrealistic given the source of the

noisy drive in persistent gamma, it allowed us to ignore the details of the stimu-

lation source for the purposes of this investigation so we could focus on the LFP

of the resulting network activity. A persistent gamma type oscillation emerged in

this network. We ensured that the size of inhibitory postsynaptic potentials in the

pyramidal cells matched those reported in (Ainsworth et al., 2011).

We also ran simulations in which neurons fired randomly, to simulate the network

LFP generated under random spiking conditions. For these simulations, we did not

apply any random currents and removed the AdEx mechanism from the somatic

compartments. Each neuron’s spike times were generated by an independent Poisson

process. We simulated two randomly spiking regimes: a high activity regime with

neurons firing at 5 Hz, and a low activity regime with neurons firing at 1 Hz.
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Synaptic currents were integrated as normal, but did not influence cell spiking at

all. Unless otherwise mentioned, the results reported here are with the high activity

surrounding regions.

5.2.5 LFP simulation

We used various combinations of the gamma and random activity regimes to study

the spatial properties of the LFP during localised gamma oscillations. In order to

create a compound LFP, we added the LFP generated by the spiking of a central

subset of neurons during gamma (we refer to this sub-population as Pγ, in gamma-

generating region Rγ with spatial width Xγ) to the LFP generated by the spiking

of the remaining surrounding neurons during random firing (we refer to this sub-

population as PR, in randomly spiking region RR with spatial width XR). This

method allowed us to vary the size of the gamma generating patch of tissue, while

keeping all other aspects of the simulation constant. Before creating this compound

LFP signal, we removed any LFP contributions from the AdEx mechanism and input

currents in sub-population Pγ by using the spike-loading function of VERTEX to

replay the gamma spiking activity in the same network of purely passive neurons

with no input currents.

We were interested in how far away from Rγ the gamma oscillation would be

visible in the LFP, as well as the depth of any phase inversion both inside and

outside Rγ, so we calculated LFPs at 1215 locations forming a 81 by 15 grid on the

x-z plane. The grid was placed so that the bottom left electrode was at (0, -50)

microns and the top right electrode was at (4000, 650) microns on the x-z plane,

with a spacing of 50 microns and a constant y-value of 200 microns (see Figure 5.1).

All reported spatial LFP values are therefore constrained by this grid placement and

resolution.

For each experimental condition, we calculated the contribution of each popula-

tion to the LFP separately, both from a presynaptic and postsynaptic perspective.

The LFP for the whole model was found by summing these group contributions.

5.2.6 Definitions of measures

We quantify various features of the LFP using the following measures:
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Figure 5.1: Experimental setup - slice anatomy. Shows 5% of cell soma positions
within slice boundaries (grey) for 100 micron deep slice, plus examples of dendrite
morphologies for pyramidal (black) and basket (magenta) cells. Electrode positions
are shown as crosses. The area shaded green shows the region of cells participating
in a persistent gamma oscillation. The vertical green marks to the left and right of
this region mark the maximum range of synaptic connections made from this region.
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Figure 5.2: Spike rasters and example simulated LFPs. (A) Cell spiking during
simulated gamma oscillation. (B) Cell spiking during random activity. (C) Com-
bined gamma and random activity, to simulate spatially localised gamma generation.
Pyramidal cell spikes shown in (faded) black, basket cell spikes in (faded) magenta.
(D-F) Simulated LFP recorded at x = 1100 microns, z = 500 microns (black trace),
z = 200 microns (medium grey trace) and z = -50 microns (light grey trace). (D)
LFP from central gamma generating region only. (E) LFP from surrounding random
activity only. (F) Combined total LFP.
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• Magnitude: standard deviation of the LFP recording.

• Power: variance of the LFP recording.

• PSD (power spectral density) or power spectrum: the power in the LFP as a

function of frequency. We calculated the PSD using the Thomson multitaper

method (Percival and Walden, 1993; Thomson, 1982), with a time-bandwidth

product of 3, as implemented in the Matlab Signal Programming Toolbox.

The integral of the PSD over the frequency range of the signal is proportional

to the LFP power.

• Gamma power: LFP power in the gamma frequency band. This is found

by integrating the PSD between 25 Hz and 40 Hz (though the gamma-band

is usually defined up to 80 Hz, the peak frequency in our simulations was

between 30 Hz and 35 Hz, so cutting-off at 40 Hz prevented harmonics of this

fundamental frequency from being integrated as part of the gamma power).

• Gamma spatial range, or gamma visibility: after finding the PSD in a model

Mγ with a gamma generating region (Rγ) surrounded by randomly firing

neurons (RR), we then find the PSD in a model MR containing only randomly

firing neurons (i.e. Xγ = 0 microns). If the lower 95% confidence interval of

the PSD in Mγ overlaps the upper 95% confidence interval of the PSD in MR

between 25Hz and 40Hz at 3 frequency bins or more, we consider there to be a

significant gamma component in the LFP (see Figure 5.3). The x-coordinate

at which the oscillation first becomes insignificant, moving away laterally from

the centre of the slice (at x = 2000 microns), is defined as the gamma spatial

range, or gamma visibility. This is calculated for each z-depth of the electrode

grid. We specify 3 or more frequency bins as the minimum required overlap

for the following reason. We are comparing 15 frequency bins (between 25 Hz

and 40 Hz). As the comparison is between 95% confidence intervals, we would

expect them to overlap by chance on 5% of the bin comparisons. Considering

a binomial distribution (they either overlap or they don’t), if we make 15 bin

comparisons then the probability of one chance overlap is 0.54, of two chance

overlaps is 0.17 and of three chance overlaps is 0.036. The highest accepted

p-value for the presence of a gamma oscillation in the signal, requiring 3 bins
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Figure 5.3: Method for measuring gamma oscillation LFP spatial range (shown here
for LFPs measured at z = 50 microns). Solid red lines show the lower 95% confidence
interval bound of the LFP PSD for the gamma model with Xγ = 500 microns; solid
black lines show the upper 95% confidence interval bound of the LFP PSD for the
entirely randomly spiking model (i.e. Xγ = 0 microns); dotted red and black lines
show the LFP PSD estimate forXγ = 500 microns andXγ = 0 microns, respectively.
(A) PSD for LFP measured at x = 1300 microns: no significant gamma. (B) PSD
for LFP measured at x = 1400 microns: overlap of 2 frequency bins of the CI bounds
- gamma not deemed to be visible. (C) PSD for LFP measured at x = 1500 microns:
clearly significant gamma oscillation visible at this range.

to overlap, is therefore 0.036.

• Gamma coherence: the coherence in the 25 Hz to 40 Hz frequency band,

measured between the LFP recorded at the centre of the slice (at x=2000

microns) and the LFP recorded at some distance along the x-axis away from

the centre, at the same depth. The coherence spectrum between two LFP

signals is calculated using the Matlab Signal Processing Toolbox’s mscohere()

function, and the gamma coherence is found by integrating the coherence

between 25 Hz and 40 Hz.

• Power ratio, pow(Pre,Post↔All,All): the ratio between the power of the

LFP due to the specified pre- and postsynaptic populations and the total

LFP from all neurons. For example, the presynaptic pyramidal power ratio,
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pow(P,A↔A,A), is equal to the power of the LFP resulting only from pyr-

amidal cell firing divided by the power of the total LFP. The postsynaptic

pyramidal power ratio, pow(A,P↔A,A), is the power of the total LFP divided

by LFP resulting only from synaptic activity onto pyramidal neurons. A value

of 1 means that the LFP generated by the specified pre- and postsynaptic

groups contains the same power as the total LFP. It is possible for the power

ratio to be >1, if other LFP contributions are out of phase with the pre- and

postsynaptic populations under consideration.

• Correlation coefficient, CC(Pre,Post↔All,All): the correlation coefficient between

the LFP signal due to the specified pre- and postsynaptic populations and

the total LFP signal. CC(Pre,Post↔All,All) ranges from -1 (totally anti-

correlated, i.e. the presynaptic neuron synapses onto the postsynaptic popu-

lation actually reduce the total LFP power) to 1 (totally correlated).

• Phase-inversion: if the depth cross-correlation between the LFP and the LFP

at the bottom of the slice (i.e. as compared to the electrode at the same x-

location and at z = 0 microns) is negative, then it is considered to be phase

inverted (see Figure 5.4).

• Phase-inversion depth: the depth at which a phase inversion is first observed,

if moving upwards along an electrode column from the bottom of the slice.

5.3 Results

5.3.1 Population contributions to the LFP

Before further investigating the total LFP across space in the layer 2/3 models,

we first wanted to establish the contribution of each neuron group to the total

LFP. To enable us to look at each population’s presynaptic LFP contribution, we

used the spike-import feature of VERTEX to load and replay spikes fired by each

group in turn, recording the resulting LFP resulting from each group’s activity.

We further subdivided the LFP signal by postsynaptic contribution, by setting all

synapse strengths to zero, except for those onto the postsynaptic population of

interest.
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Figure 5.4: LFPs measured during gamma oscillation in 500 micron wide central
network section, no additional random spiking. Each subfigure shows results at
depths of z = 500 microns (dark grey), z = 250 microns (medium grey) and z = -50
microns (light grey). All measurements from the 100 micron deep slice. (A) LFP
at slice edge, x = 0 microns. (B) LFP at x = 1000 microns. (C) LFP at centre
of gamma generating region, x = 2000 microns. (D) Cross-correlation of signals
recorded at each depth with signal at z = -50 microns (x = 0 microns). No phase
inversion. (E) As (D), but x = 1000 microns. Phase inversion between z = 250
microns and z = 500 microns. (F) As (D), but x = 2000 microns. Phase inversion
between z = -50 microns and z = 250 microns.
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We first checked our assumption that synapses onto pyramidal neurons domin-

ated the LFP by calculating pow(A,P↔A,A). For every slice depth and gamma-

region width, mean pow(A,P↔A,A) over all electrode positions was 0.99 or more,

with a maximum standard deviation of 0.03. The lowest ratios were at the phase-

inversion depth (see below). We also measured CC(A,P↔A,A): the mean CC(A,P↔A,A)

over all electrode positions was 1.00, with a maximum standard deviation of 0.01,

again for every slice depth and gamma-region width. We therefore assume that,

even if using incorrect interneuron model sizes underestimates their contribution to

the LFP, this will have had a minimal impact on our calculations because of the

magnitude of the pyramidal cell dominance.

We next investigated the LFP contribution from each presynaptic population.

We show results from the model with layer depth 200 microns andXγ = 500 microns,

but the general patterns are similar for each model size. The top row of Figure 5.5

shows (A) pow(P,A↔A,A) (B) pow(B,A↔A,A) and (C) pow(NB,A↔A,A) over the

space of the model, when only Rγ was spiking (i.e. the surrounding neurons were

silent). The power ratio was calculated at each electrode, with bicubic interpolation

used to smooth the resulting image (Matlab interp2() function). The LFP is clearly

dominated by basket cell activity, across the whole space of the model, while pyram-

idal activity contributes a small amount in a small region above the soma-layer. This

region is where the basket cell activity contribution is also slightly reduced. The bot-

tom row of the figure shows (D) CC(P,A↔A,A) across the slice, (E) CC(B,A↔A,A)

across the slice, and (F) CC(NB,A↔A,A) across the slice. Again, for each plot CC

was calculated at each electrode and smoothed with bicubic interpolation. As ex-

pected from the power ratio results, CC(B,A↔A,A) is very close to 1 across the

whole slice, except in the small regions above the phase-inversion depth, which cor-

respond to where pow(B,A↔A,A) is also reduced. CC(P,A↔A,A) is mostly close

to 0, except in the locations in which pow(P,A↔A,A) is slightly elevated. Finally,

CC(NB,A↔A,A) is negative over the whole space of the model, indicating that while

the NB interneurons spike roughly synchronously with the B interneurons, their LFP

contribution is out of phase with the total LFP. CC(NB,A↔A,A) increases in the

same region that CC(P,A↔A,A) increases, but remains negative.

Next, we examined the LFP contributions in the model including randomly spik-

ing neurons in the regions surrounding Rγ. We only present results for surround-
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Figure 5.5: Presynaptic contributions to LFP for each group during a gamma oscilla-
tion in the centre of the slice, with the surrounding neurons not firing at all. Dashed
grey lines show the slice borders and the extent of the gamma-generating network re-
gion; dotted grey lines show the maximum extent of the gamma-generating region’s
axonal arbours. (A) Ratio of the LFP power due to excitatory synaptic activity to
the total LFP power, across the space of the model. (B) Ratio of the LFP power
due to basket interneuron synaptic activity to the total LFP power, across the space
of the model. (C) Ratio of the LFP power due to non-basket interneuron synaptic
activity to the total LFP power, across the space of the model. Basket interneurons
dominate the LFP power, across the whole space of the slice. (D) Correlation coeffi-
cient between the LFP due to pyramidal synapses and the total LFP. (E) Correlation
coefficient between the LFP due to basket interneuron synapses and the total LFP.
(F) Correlation coefficient between the LFP due to non-basket interneuron synapses
and the total LFP. The basket interneuron contribution is highly correlated across
the slice, while non-basket interneurons show a negative correlation, meaning that
their LFP contribution would interfere negatively with the gamma oscillation.
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ing regions with high random activity (5 Hz firing rate per neuron); the results

are similar with low random activity (1 Hz firing rate per neuron), but the in-

fluence of Rγ extends further to the left and right. Figure 5.6 shows the same

plots as Figure 5.5, for a gamma-generating region surrounded by randomly firing

neurons. The power ratio and CC maps both reveal a clear boundary between

LFPs that are primarily influenced by the gamma oscillation, and LFPs primar-

ily influenced by the random activity. This boundary occurs close to the axonal

arborisation extent of Rγ in both the soma layer and at the apical dendrite level,

but widens towards the top of the measurement area. Basket cell synaptic activ-

ity still dominates the LFP even outside of the gamma-generating region, though

pow(B,A↔A,A) and CC(B,A↔A,A) are reduced outside the gamma-generating re-

gion, while pow(P,A↔A,A), CC(P,A↔A,A) and CC(NB,A↔A,A) are increased.

The reduction in pow(B,A↔A,A) and CC(B,A↔A,A), and corresponding increases

in pow(P,A↔A,A) and CC(B,A↔A,A) are more pronounced within the soma layer

than at the apical dendrite level. The variability across space of these values

is also more pronounced in the soma layer - the values at the apical dendrite

level appear to be spatially smoothed. Just above the soma-layer, pow(P,A↔A,A)

and CC(P,A↔A,A) make the largest contribution to the LFP outside the gamma-

generating region, while pow(B,A↔A,A) and CC(B,A↔A,A) are greatly reduced.

pow(NB,A↔A,A) shows a very small increase outside the gamma-generating region,

while CC(NB,A↔A,A) becomes positive, though close to zero.

These results show clearly that different presynaptic neuron groups will contrib-

ute in different ways depending on the network state - hardly surprising given the

range of firing rates and correlation strengths between these different groups. It

is interesting to note, though, how different groups, though firing synchronously,

can interfere positively or negatively with the overall LFP signal depending on the

placement of their synapses on the pyramidal cell dendrites. More surprising is the

dominance of basket interneuron synapses in the LFP signal during random activity.

The LFP contribution from spiking interneurons has only recently been investigated

experimentally (Bazelot et al., 2010; Menendez de la Prida and Trevelyan, 2011;

Oren et al., 2010; Trevelyan, 2009; Glickfeld et al., 2009). Our results regarding the

dominance of basket interneuron firing on the LFP in Rγ fit with the experimental

results reported by Trevelyan (2009), who found a high correlation between LFPs
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Figure 5.6: Presynaptic contributions to LFP for each group during a gamma oscilla-
tion in the centre of the slice, with the surrounding neurons firing randomly at 5Hz.
Dashed grey lines show the slice borders and the extent of the gamma-generating net-
work region; dotted grey lines show the maximum extent of the gamma-generating
region’s axonal arbours. (A) Ratio of the LFP power due to excitatory synaptic
activity to the total LFP power, across the space of the model. (B) Ratio of the
LFP power due to basket interneuron synaptic activity to the total LFP power,
across the space of the model. (C) Ratio of the LFP power due to non-basket in-
terneuron synaptic activity to the total LFP power, across the space of the model.
Basket interneurons dominate the LFP power, most prominently in the gamma-
generating region but also in the randomly firing region. Their contribution is lowest
at the point of phase-inversion, indicating that the phase inversion is primarily due
to currents from basket interneuron synapses. (D) Correlation coefficient between
the LFP due to pyramidal synapses and the total LFP. (E) Correlation coefficient
between the LFP due to basket interneuron synapses and the total LFP. (F) Correl-
ation coefficient between the LFP due to non-basket interneuron synapses and the
total LFP. In the randomly firing regions, all contributions are positively correlated
with the total LFP, even if to a small degree in the case of non-basket interneur-
ons. The non-basket interneurons are negatively correlated with the total LFP in
the gamma-generating region, as in the previous figure. The LFP contribution of
different neuron types clearly varies between different network states.
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and simultaneously recorded inhibitory postsynaptic potentials in pyramidal neur-

ons, and Oren et al. (2010), who showed that inhibitory currents in the perisomatic

region of pyramidal neurons were the LFP generator during hippocampal gamma

oscillations. The large contribution of basket cells to the LFP during random fir-

ing was not expected, but is consistent with the results reported by Bazelot et al.

(2010), who found in rat hippocampal slices that single interneuron spikes evoked

measurable LFPs, but single pyramidal neuron spikes did not.

Menendez de la Prida and Trevelyan (2011) propose some explanations regarding

the contribution of inhibitory currents to the LFP, suggesting that high visibility

may arise from (1) more synchronous firing patterns due to gap junction coupling,

(2) their higher synaptic release probabilities compared with glutamatergic synapses,

(3) the location of glutamatergic synapses on dendritic spines, which create smaller

currents than synapses located directly on the dendrites or soma, (4) the density of

connections each basket cell makes, and (5) the localisation of basket cell synapses to

the perisomatic region of the pyramidal cells. We can estimate the impact of these

points by considering the LFP generated by a theoretical neuron firing a Poisson

spike train at a set rate. We assume that this neuron makes a large number of

connections and its connectivity pattern is radially symmetrical, so we can neglect

the influence of spatial variation in connectivity. We also assume that it makes

all its synapses at the same location on all its targets, and that its targets are

identical, so we can ignore the influence of synapse location and neuron morphology.

Starting with point 4, if we increase the number of synapses (i.e. the synaptic

density), maintaining radial symmetry in the connectivity, then the LFP magnitude

will increase proportionally to the number of synapses. In this simplified situation,

this is also equivalent to increasing or decreasing the synaptic weight (points 2 and

3); the LFP magnitude changes proportionally to the weight. The LFP magnitude

also increases proportionally to the square root of the synaptic decay time constant.

Instead of (or in addition to) increasing the number of synapses, we could increase

the number of neurons by introducing extra identical neurons at the same location.

If each fires an independent Poisson spike train, then the total LFP magnitude will

increase proportionally to the square root of the number of neurons, i.e. the number

of Poisson processes (Benedek and Villars, 2000). If each neuron fires at the same

time (point 1), then the effect of adding more neurons will have the same effect as
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increasing the synaptic weights, so the LFP magnitude will increase proportionally

to the number of neurons. So, our estimate for the magnitude of the LFP
∣∣∣φ̃∣∣∣ due

to a presynaptic population of N theoretical neurons is

∣∣∣φ̃∣∣∣ ∝
nsyn · wsyn ·

√
τsyn ·

√
N if firing is uncorrelated

nsyn · wsyn ·
√
τsyn ·N if firing synchronously

, (5.1)

where nsyn is the number of synapses per theoretical neuron, wsyn is the synaptic

weight, and τsyn is the synaptic decay time constant. The one factor mentioned above

that is excluded from this model is the location of the synapses on the postsynaptic

neurons’ dendrites. Note that the LFP magnitude or power estimated in this way

is a different measure than the proportional power plotted in Figures 5.5 and 5.6.

The proportional power takes into account the contributions of other populations

to the total LFP, while the rough LFP magnitude estimate considers an individual

presynaptic population.

For our model, P cells and NB cells can make synapses onto the same compart-

ments of their synaptic targets, so synapse location should not affect the relative

LFP magnitude from each of these populations. Considering only synapses onto

pyramidal neurons (as these dominate the LFP), the P cell LFP magnitude in the

uncorrelated firing regions should be proportional to 694×1×
√

2×
√

9000 = 9.3×104,

while the NB cell LFP magnitude should be proportional to 549×1.8×
√

6×
√

1000 =

7.7× 104. In other words, the LFP magnitude due to P cell spiking will be roughly

1.2 times the LFP magnitude (1.5 times the power) due to NB cell spiking. Dis-

counting the different localisation of B cell synapses, the LFP magnitude due to their

firing should be proportional to 872× 3.5×
√

6×
√

1000 = 23.6× 104, or 2.5 times

the P cell LFP magnitude. However, if our synaptic weight assumptions are wrong,

and B cell & P cell synapses are in fact similar in strength, then we would predict

that, without including synaptic localisation, the B cell LFP magnitude would be

0.73 times that of the P cell LFP magnitude (0.53 times the power).

We investigated this possibility by scaling the LFP contributions from each pair

of populations by relevant synaptic weights - equivalent to scaling all the weights to

be equal to 1 due to the linearity of the model. The results on the LFP contribution

from each group in this case are shown in figure Figure 5.7.

109



Figure 5.7: Presynaptic contributions to LFP for each group during a gamma os-
cillation in the centre of the slice, with the surrounding neurons firing randomly at
5Hz, as in the previous figure. For these results, all synaptic strengths were scaled
to be equal, so that we could see the LFP contribution of each presynaptic neuron
group independently of synapse strength parameters. Results are similar to the
previous figure, except that non-basket interneurons contribute more to the LFP in
the randomly spiking region. The basket interneuron contribution above the phase
inversion level is also reduced compared to the previous figure; this is because bas-
ket interneuron synapses were 3.5 times stronger than pyramidal neuron synapses
in that figure. Interestingly, though, basket interneurons remain the primary LFP
contributor, suggesting that our previous results were not a result of our incorrect
synaptic strength parameters.
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The pattern of power ratios and CCs shown in Figure 5.7 is similar to that in

Figure 5.6 with LFPs calculated using the original synaptic weights. The most ob-

vious differences are a slightly increased pow(NB,A↔A,A) and CC(NB,A↔A,A)

outside of the gamma dominated region and a slightly reduced pow(B,A↔A,A) and

CC(B,A↔A,A), with corresponding increases in pow(P,A↔A,A) and CC(P,A↔A,A),

just above the soma-layer outside of the gamma dominated region. The variability

in the power ratio in the soma layer is also reduced.

Our results demonstrate that the location of the basket cell synapses at the per-

isomatic region of their pyramidal targets allows the activity of basket interneurons

to dominate the LFP during random firing. This is true even when the LFP is

measured at the level of the pyramidal neuron apical dendrites, which are primar-

ily targeted by other pyramidal neurons and non-basket interneurons. The level of

basket cell dominance increases during gamma oscillations to the extent that con-

tributions from the firing of other neurons has a negligible influence on the LFP

signal. This is because the basket cells fire with the greatest synchrony during the

oscillation. Though we did not consider variable firing rate in our simplified analysis

above, the rate of basket interneuron firing can be an order of magnitude greater

than pyramidal neuron firing during gamma oscillations, which will also increase

their LFP dominance.

5.3.2 Phase inversion

Figure 5.8 shows raw LFP traces at the central electrode column (i.e. for all elec-

trodes at x=2000 microns), along with gamma power and phase as functions of

depth, for the model with a soma-layer depth of 300 microns and gamma-generating

region width of 1000 microns, showing a phase inversion at 300 microns above the

bottom of the soma layer. Two peaks in the gamma power are apparent either side

of the phase inversion depth: one at 100 microns and a second at 450 microns. We

will return to the power in the next section.

Our gamma oscillation model provides theoretical support for the observation

made in (Cunningham et al., 2003) (see Figure 5.9): the spiking activity in the

model matches that observed experimentally, and the inhibitory synaptic currents

are localised to the perisomatic region of the pyramidal neurons, causing the return

current to originate primarily from the apical dendrite. Also as observed experi-
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Figure 5.8: Raw LFP traces from a single run, mean power and mean phase over
nine runs, measured at the central electrode column. Xγ = 1000 microns, soma
layer depth = 300 microns. A: raw LFP traces from top electrode (z=650microns)
to bottom electrode (z=-50microns). B: Gamma power at each electrode (± 2 SEM).
C: phase relative to the electrode at the bottom of the soma layer (± 2 SEM).

mentally (Dickson et al., 2000, - see below), the power of the gamma oscillation is

greatly reduced at the point of phase inversion, as the influence on the LFP from

the current sinks and sources approximately balances.

We can make a further observation from our model regarding the location of the

phase inversion point at a particular x-location, Φ−x , when we measure the LFP at a

greater lateral distance from the gamma generating area: Φ− occurs higher up the

z-axis the further we measure laterally from the gamma generating region (though

note that this only occurs in the model with no random surround firing; as such,

this observation would be difficult to test experimentally). To create a profile of the

phase inversion location measured across the slice for each size of gamma-generating

region, we found the phase-inversion depth for each electrode column. The results of

this analysis are shown in Figure 5.10, plotted against the basket interneuron power

ratio pow(B,A↔A,A) to show how the reduction in basket cell influence matches

the measured phase inversion depth.

The spatial profile of the phase inversion is similar for each condition: the phase

inversion occurs higher further away from the gamma generating region. Φ−x reaches

a minimum Φ−min outside of the boundaries of the gamma generating region for each
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Figure 5.9: Figure 3 from (Cunningham et al., 2003), showing LFP recordings from
slices of rat medial entorhinal cortex with gamma oscillations induced by bath kain-
ate application. (A) shows the raw LFP traces measured in different cortical layers.
(B) shows the power in the gamma frequency band (in this case, between 20Hz and
80Hz), phase, and peak frequency as a function of cortical depth. Scale bar in A
shows 50 milliseconds horizontally and 50 microVolts vertically.
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Figure 5.10: Phase inversion depth plotted for each soma-layer depth and Xγ, over
the relevant pow(B,A↔A,A) map. Phase inversion depth is the light line, with
the standard deviation plotted as darker grey dashed lines. Dashed green lines show
soma layer and Rγ boundaries, dotted green lines show maximum extent of synapses
from Rγ. In many cases, the phase inversion depth plot does not extend to the model
edges at x = 0 and x = 4000 microns. This indicates that a phase inversion was not
detected at these electrode columns.
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XΓ, though this minimum is proportionally widest for smaller Xγ (for example, at

the 100 micron layer depth, Φ−x = Φ−min from x = 1500 microns to x = 2500 microns

for XΓ = 100 microns, while Φ−x = Φ−min from x = 1200 microns to x = 2800

microns for XΓ = 1000 microns i.e. the proportional width of the minimum is

(2500 − 1500)/100 = 10 for Xγ = 100 microns and (2800 − 1200)/1000 = 1.6 for

Xγ = 1000 microns).

The change in depth, and eventual disappearance of, the phase inversion with

increasing distance from the gamma generating zone is a result of the distance de-

pendence of the LFP and the particular spatial spread of the membrane currents

along the pyramidal cells’ dendrites. The largest membrane current in each pyram-

idal cell is at the soma, where it receives strong inhibition from the synchronous

spiking of basket interneurons. Much of the return current flows through the apical

dendrite, with each apical compartment contributing to a fraction of the return cur-

rent. When the LFP is measured close to the pyramidal cell somas, the current from

the somas dominates, and when it is measured close to the apical dendrites, the cur-

rents from the apical compartments dominate, though the soma currents are larger.

If we take a point near the apical dendrites, then move it laterally away from Rγ,

the distance between the point and the apical compartments increases at a greater

rate than the distance between the point and the somas, so the somatic currents

have an increasing influence on the measured LFP, thus causing Φ−x to increase.

5.3.3 Gamma power and range

Next, we investigated the spatial profile of the gamma power to see how it decayed

with distance from the gamma generating region, and at what range a significant

oscillation would be observed in the LFP given random surrounding activity. To

investigate gamma range, we defined what we considered to be a significant oscil-

lation, as specified in section 5.2.6. This definition of LFP range is different from

the definition used in Chapter 2 - and in (Lindén et al., 2011) - because of the dif-

ferent experimental setup: in our current experiments we wanted to measure how

far outside the generating network a particular pattern of activity could be detected

in the LFP, while in Chapter 2 we were measuring the maximum distance from a

recording point that neurons can influence the LFP magnitude.

To visualise how the depth of the soma layer and width of the gamma-generating
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region affect the spatial profile of the gamma power, we plot gamma power maps

over the space of the model. Figure 5.11 shows the variation in gamma power over

space for each model condition, as well as the range of the oscillation away from the

gamma-generating region. The gamma power is always greatest in the soma layer in

the gamma-generating region, where the density of synapses receiving spikes from

neurons entrained to the gamma oscillation is greatest. The power in this region also

decreases with layer thickness: the number of neurons in the layer is constant, so

the effect of increasing the layer thickness is to reduce the neuronal density. Gamma

power decreases with decreasing density because the neurons are more spread out,

meaning that the average distance of the pyramidal cell somas to any given recording

point is larger. However, the power of the secondary gamma peak above the phase-

inversion depth does not decrease in proportion to the decrease at the soma level,

meaning that the difference in power between the two peaks decreases with increasing

soma-layer thickness.

This effect is due to how the current sources and sinks are localised on the pyr-

amidal cells. To illustrate this, consider two P cells in the model receiving identical

inhibitory synaptic input at their somas, with their somas at points (x1, z1) and

(x2, z2) and two electrode locations half way between these neurons at different cor-

tical depths - one at the soma level and one at the apical dendrite level - as illustrated

in Figure 5.12 A. The dominant LFP contribution at the bottom electrode will be

from the soma compartments, so will be proportional to 1/d1 + 1/d2, while the

dominant LFP contribution at the top electrode will be from the apical dendrites

and proportional to 1/d3 + 1/d4 + 1/d5 + 1/d6. As we increase the soma depth as

illustrated in Figure 5.12 B, we increase the distance z2 − z1, so d2 will increase

proportionally to arcsin (z2 − z1). However, while d6 increases as z2 − z1 increases,

d5 decreases, so that the LFP change at the top electrode will be much smaller. In

the model with a Xγ= 1000 microns, for example, the peak gamma power at the

dendrite level is only 1.4 times as great when the soma-layer depth is 100 microns as

it is when the soma-layer depth is 300 microns, while at the soma level it is 3.4 times

as great. We list the ratio of peak gamma power in the dendritic region to peak

gamma power in the soma region for each model configuration in Table 5.3, which

shows that this effect is consistent for each width of gamma-generating region.

The results in Table 5.3 suggest a possible mechanism by which the gamma
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Figure 5.11: Magnitude and spatial range of the gamma oscillation for various values
of Xγ and layer depths. Far left: Xγ = 100 microns, centre: Xγ = 500 microns, far
right: Xγ = 1000 microns. Top row: thickness of soma layer = 100 microns, centre
row: thickness of soma layer = 200 microns, bottom row: thickness of soma layer =
300 microns. Note different scale bars. Gamma range is plotted in light grey solid
lines, with standard deviation indicated by grey dashed lines. Dashed green lines
show soma layer and Rγ boundaries, dotted green lines show maximum extent of
synapses from Rγ. Note the error bars showing a large variability in range between
the different network instances for the thin gamma generating region.

100 microns 500 microns 1000 microns
100 microns 0.18 0.19 0.19
200 microns 0.30 0.32 0.32
300 microns 0.47 0.47 0.47

Table 5.3: The ratio of maximum mean gamma power above the soma-layer to
maximum mean gamma power in the soma-layer, for each model configuration.
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Figure 5.12: Simplified explanation of why the change in gamma power at the apical
dendrite level is small compared to the change at the soma level for increasing
soma-layer depth. Colours represent the direction of current flow: blue for outward
currents (from inhibitory synapses) and red for inward currents (the return current).
(A) Model with a small soma layer depth. The relative distances between equivalent
compartments on the two neurons to the two electrode points are the same. (B)
Model with increased soma layer depth. The LFP at the bottom electrode will be
reduced as the d2 increases. However, while d6 increases, d5 decreases, so the overall
effect on the LFP magnitude at the top electrode is small compared with that at
the bottom electrode.
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Figure 5.13: Figure 1 C from (Dickson et al., 2000) showing LFP recordings from a 16
site linear silicon probe placed in medial entorhinal cortex (mEC) in the guinea pig
whole brain preparation. Gamma oscillations were evoked with arterial perfusion of
carbachol. Raw LFP traces are shown on the left, with power, phase and coherence
measurements along the depth of the probe show in the middle, and the probe tract
shown on the right.

oscillation power observed in the guinea pig whole-brain preparation by Dickson

et al. (2000) was actually greater at the apical dendrite level - in layer 1 - than at

the soma level (layer 2/3, see Figure 5.13). If the soma-layer depth in the medial

entorhinal cortex where they measured was thicker than 300 microns, as it appears

to be in Figure 5.13, then the reduction in gamma power at the soma level could

possibly be large enough that the power at the apical dendrite level will be greater

than at the soma level. Unfortunately we made this observation rather late in the

day so did not have time to test our hypothesis in a model with a thicker soma layer,

but this would be very easy to do as a next step in our research.

Figure 5.11 also shows the gamma oscillation range away from the centre of

the slice, defined as the distance away from the central electrode column at which

significant 25 Hz - 40 Hz power in the signal is no longer visible. The range is

smallest just above the soma-layer, and increases above and below this depth. The

standard deviation of the gamma spatial range is very small above the soma-layer,

but large within it and very large at the phase-inversion depth. This was particularly

the case when the gamma-generating region was only 100 microns wide. This width

only contains 225 P cells, 25 B cells and 25 NB cells, so variation between model

runs due to randomness in the connectivity, neuron placement, and spike timing
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Figure 5.14: Gamma coherence (coherence in the gamma frequency band, measured
in relation to the centre of the model) for various values of Xγ and layer depths. Far
left: Xγ = 100 microns, centre: Xγ = 500 microns, far right: Xγ = 1000 microns.
Top row: thickness of soma layer = 100 microns, centre row: thickness of soma layer
= 200 microns, bottom row: thickness of soma layer = 300 microns. Gamma range
is plotted in light grey solid lines, with standard deviation indicated by grey dashed
lines. Dashed green lines show soma layer and Rγ boundaries, dotted green lines
show maximum extent of synapses from Rγ.

will be much greater than in the models with larger Xγ. If the surrounding regions

produced by chance an LFP with particularly low or high gamma frequency content,

this would affect the gamma range to a greater extent than in models with larger

gamma-generating regions. The reduced variance above the soma-layer indicates a

spatial smoothing effect of the return current through the apical dendrites, given

that the gamma oscillation is primarily created by B cell inhibitory currents at the

soma level.

To visualise how rapidly the gamma oscillation disappears away from Rγ, we

plotted the mean gamma coherence over the space of the slice for each model config-

uration, along with the gamma range values, in Figure 5.14 . The coherence profiles

fit very closely with the gamma range profiles, decreasing to their minimum values
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close to the gamma range. Interestingly, the coherence profiles for the 100 micron

wide gamma-generating region do not exhibit the same degree of variability as the

gamma range profiles. They show a rapid decrease down to the lowest value close

to the edge of where the gamma power remains visible.

As an alternative visualisation of the coherence to get a better idea of the rate

of decay away from the centre of the slice, we plot the coherence level across space

for individual rows of electrodes (top, bottom and the row at the phase-inversion

depth) for the three gamma-generating widths in Figure 5.15. All plots in Figure

5.15 show results for a model with a 200 micron soma depth. To see how the decay in

coherence away from the centre of the slice changed with the level of activity in the

surrounding regions, we also plotted the same measurements made when neurons

in the surrounding regions were firing at 1Hz (Figure 5.15 D-F) rather than the

5Hz rate used previously (Figure 5.15 A-C). The effect on the coherence is to widen

the central region of high coherence, with the rate of decay outside this central

region similarly steep. The gamma range in the low surround-activity regime was

greater at all depths, but otherwise showed a similar spatial profile. The cause of

the additional coherence peak at the centre of the slice in the model with the 1000

micron gamma-generating region is unknown, but may be because there is some

spatial variation in the gamma oscillation in the original gamma generating model

(see Figure 5.2 A). Only when the gamma-generating region incorporates enough

neurons does the effect of this variation become apparent in the hybrid model.

These results suggest that, when a gamma oscillation is observed in the LFP

- at least during persistent gamma in vitro - we can be reasonably certain that

the network generating the oscillation is close to where the electrode is positioned

rather than being further away but spread out through volume conduction. This

is important to consider when measuring lateral network synchrony using LFP re-

cordings from MEAs (Ainsworth, 2013).

5.3.4 Frequency scaling

The final LFP feature we looked at in the model was the power spectrum, to invest-

igate the frequency scaling properties at different points in the model. Figure 5.16

shows log-log plots of the normalised LFP power spectra at 20 electrode locations in

the model with soma-layer depth 200 microns and Xγ= 500 microns. The gamma
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Figure 5.15: Gamma coherence in the model with soma-layer depth of 200 microns,
measured at z = 650 microns (dark grey line), at z = 250 microns (medium grey
line, at the phase-inversion depth), and at z = −50 microns (light grey line),. (A-
C) Gamma coherence in the model with high surrounding random activity, for (A)
Xγ = 100 microns, (B) Xγ = 500 microns, (C) Xγ = 1000 microns. (D-F) Gamma
coherence in the model with low surrounding random activity, for (D) Xγ = 100
microns, (E) Xγ = 500 microns, (F) Xγ = 1000 microns.
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peak can be seen clearly in the central column (x=2000 microns), as well as in the

top row (z=650 microns) at x=1000 microns and x=3000 microns (as the gamma

spatial range is greater at the top of the model; see above).

Several aspects of the LFP frequency scaling are apparent in Figure 5.16. Firstly,

at all horizontal locations, the frequency scaling is shallower at the electrodes in the

soma layer than at the electrodes above the soma layer. In the top row of electrodes,

frequencies above ∼40 Hz show approximately 1/f 3 (where f is the frequency)

scaling except at the central column, while in the bottom row the frequency scaling

is closer to 1/f 2 except at the central column. The power spectra in central electrode

column (in the gamma generating region) are dominated by the gamma oscillation

and its harmonics up to ∼90 Hz. Above this, the frequency scales more steeply than

in surrounding regions, steeper than 1/f 3 in the soma layer and even steeper above.

The synaptic input to the pyramidal neurons that generates the majority of

the LFP signal is primarily from basket interneurons, as described above. This

means that it is localised to the perisomatic region, and the return current is low-

pass filtered by the apical dendrites. This is clear from the different frequency-

scaling exponents at the apical and soma levels in Figure 5.16. These results are

consistent with those reported in (Lindén et al., 2010; Pettersen and Einevoll, 2008)

regarding the origin of the low-pass filtering of LFPs. However, they contrast with

the frequency scaling mechanism proposed by Bédard and Destexhe (2009), who

suggest that the scaling effect is a result of neural tissue properties (see discussion

in Chapter 2). To illustrate how synaptic input to pyramidal neurons would not

produce the correct frequency scaling characteristics under in vivo-like, noisy input

conditions, Bédard et al. (2010) simulated a “ball-and-stick” neuron (a neuron model

with one soma compartment, and a chain of compartments extending vertically

above the soma to represent the apical dendrite) receiving noisy synaptic input along

the whole length of the dendrite, which they argue is representative of the conditions

in vivo. The frequency scaling in the power spectrum of the simulated LFP showed

no low-pass filtering, as the synaptic currents dominated over the passive return

currents. However, as we have shown above, the localisation of basket interneuron

synapses at the perisomatic region causes these inputs to dominate the LFP, even

during random firing (which we suggest is also similar to the decorrelated state in

vivo). When Bédard et al. (2010) simulated localised synaptic input to the ball-
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Figure 5.16: Mean power spectra of the LFP at 20 locations across the model (over
all model runs) with gamma-generating region width 500 microns and soma layer
depth 200 microns (log-log scale). Model coordinates for each electrode in the figure
are given at the left and along the top of the figure, in microns. Scale bars show
1/f 2 and 1/f 3scaling. Note the shallower slope in the soma layer (bottom row)
compared with the slope at the apical dendrite level (top two rows). The slope at
higher frequencies also becomes steeper closer to the gamma-generating region.

124



and-stick model, strong low-pass filtering was observed, in agreement with (Lindén

et al., 2010). We suggest that the perisomatic localisation of basket interneuron

synapses would create such localised input even in decorrelated states in vivo.

The results reported in (Bédard and Destexhe, 2009) include comparisons between

their proposed LFP model and example data recorded from cat in vivo, but do not

report the electrode depth, so it is difficult to draw any firm conclusions from these

observations. We make a comparison of our model results with the macaque slice

data reported in Chapter 4, as we have the advantage of knowing where the elec-

trodes were positioned. Figure 5.17 shows the LFP power spectra from electrodes

41 (in layer 1) and 42 (in layer 2/3) from the Utah array recording. As in our

simulation, the frequency up to ∼90 Hz is dominated by the gamma oscillation and

its harmonics. Above this frequency, the LFP power recorded at electrode 41 scales

more steeply than 1/f 3, while the LFP frequency scaling at electrode 42 is shallower,

both than at electrode 41 and at the soma layer in our model. We suggest that this

relatively large high-frequency content comes from the low-frequency contributions

from spikes. Many neurons fire synchronously and rapidly during persistent gamma

oscillations (particularly the chattering pyramidal neurons), so the LFP contribu-

tion from spiking activity is likely to be greater than during network states with low

spike rates. Frequencies from extracellular spikes have been shown to contaminate

the LFP at frequencies as low as 90 Hz (Schomburg et al., 2012; Zanos et al., 2011),

and perhaps even lower in some cases (Waldert et al., 2013; Reimann et al., 2013).

That the frequency scaling at the apical dendrite level (electrode 41) is still steep

above 90 Hz suggests that the source of the increased high frequency component

in the LFP at electrode 42 is localised close to electrode 42, and is filtered by the

pyramidal apical dendrites. This fits with the hypothesis that this frequency con-

tent is due to spiking. Finally, the simulated LFP at the soma layer in our model,

containing no spiking components, exhibits steeper frequency scaling than the data

from electrode 42 right up to 300 Hz, but otherwise matches it.

Further work is required to investigate the causes of frequency scaling in the

LFP during gamma oscillations - indeed during any activity regime. We have only

shown results from two electrodes in a single experiment, as we did not have time

for a thorough analysis of other similarly positioned electrodes from other, similar

experiments. Such data is available from our collaborators at the Newcastle Uni-
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Figure 5.17: Example power spectra for LFPs recorded in macaque auditory neo-
cortex with a Utah MEA (see Chapter 4), showing similarity of frequency-power
scaling to the model results. The light grey line shows LFP power recorded in layer
1 (electrode 41), dark grey the LFP power recorded 400 microns below, in layer 2/3
(electrode 42). Scale bars show 1/f 2 and 1/f 3scaling. Increased power at higher
frequencies compared to the model - particularly in layer 2/3 - is likely to be because
of spikes, which are not present in the model LFP.

126



versity Institute of Neuroscience, so should can be explored further in conjunction

with our model.

5.4 Summary

To investigate the LFP in more detail during gamma oscillations, we focussed on

a simplified model of neocortical layer 2/3. We used this model to explore several

aspects of LFP generation. Firstly, we found that perisomatic synaptic currents

on pyramidal neurons resulting from basket interneuron firing dominate the LFP

during gamma rhythms, in agreement with recent experimental results (Oren et al.,

2010). We also predict that basket interneurons will contribute the majority of the

LFP signal during random, uncorrelated activity because of the location of their

synapses at pyramidal neuron somas. Secondly, we showed that an implementation

of the proposed mechanism behind the experimentally observed phase-inversion in

the LFP between layers 3 and 1 - a separation of the current source at the soma level

and current sink a the apical dendrite level - matched experimental observations.

Thirdly, we investigated how gamma power from a localised gamma-generating re-

gion in the model spread due to volume conduction. We found that the spatial

range of the oscillation increased above and below the top of the soma-layer, and

depended on the level of surrounding activity in the non-oscillating network. We

also showed how the relative gamma frequency power above and below the point of

phase inversion changes with soma depth. Finally, we investigated frequency scaling

in the LFP power spectrum across space. We showed that LFPs at the apical dend-

rite level are predicted to echibit a low-pass filtering effect, which is absent from

LFPs recorded at the soma level, due the relative dominance and localisation of the

basket interneuron input. We confirmed that this matched the frequency scaling in

our comparison experimental data, and, based on the frequency characteristics in

our model, proposed that the experimentally recorded LFP could be contaminated

by spiking activity at frequencies as low as ∼90 Hz.

While we have made some significant progress in understanding LFP generation

using network models, there is always more work to be done. We have not yet cre-

ated a model that explains the lateral patchy gamma power observed in experimental

MEA recordings in vitro. An obvious extension to our modelling approach described
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here would be to incorporate patchy connectivity into the pyramidal neuron’s con-

nection patterns using the models described by Voges et al. (Voges et al., 2009,

2010). The question of the frequency scaling properties of the LFP needs to be

more fully addressed, which will involve further modelling work informed by exper-

imental data. Investigation of network states other than gamma oscillations and

random activity, and an extension to the in vivo setting, are also necessary.

In the next chapter we summarise the past four chapters and discuss our results.

Finally, we propose various areas of research that could benefit from simulations of

LFPs in spatially organised network models.
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Chapter 6

Discussion & Outlook

The local field potential is a widely used measurement of neuronal network dynam-

ics, yet it is still unclear exactly how the LFP relates to the underlying neuronal

network activity (Einevoll et al., 2013). A better understanding of this relationship

will improve our knowledge of neuronal network function and dysfunction by im-

proving our ability to interpret experimental results. Recent modelling studies have

begun to investigate the origin of the LFP and its relationship to neuronal activity

(Bédard et al., 2006a; Bédard and Destexhe, 2009; Bédard et al., 2004; Diwakar

et al., 2011; Lindén et al., 2010, 2011; Reimann et al., 2013), but so far these models

have tended to examine LFPs created by specified synaptic inputs rather than gen-

erated by intrinsic network dynamics. We have attempted to add to these previous

efforts by developing a simulation tool, using it to implement network models, and

investigating the LFP generated across space in these models.

In this final chapter, we first summarise the key results of our research. We then

describe how these results can be helpful for interpreting experimental recordings, as

well as constraining network models. Finally we make suggestions for improvements

to our methods and future research directions.

6.1 Summary of key results

6.1.1 Simplified compartmental model for LFP generation

Spiking neural network models are increasingly being used to investigate neuronal

network dynamics, but there is currently no established method for reliably simu-
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lating local field potentials resulting from activity in this kind of model (Einevoll

et al., 2013). Various approximations to the LFP have been used when compar-

ing model output with experimental recordings (beim Graben and Rodrigues, 2013;

Mazzoni et al., 2008, 2010), but these approximations are not valid generally, and

are particularly unsuitable for simulating the LFP in space - an important missing

dimension if we are to understand the function of real neural networks. The phys-

ics underlying LFP generation are well established, though, and previous studies

incorporating this knowledge have shown that the LFP is dependent on the distri-

bution of current sources and sinks along a neuron’s dendrites (Łęski et al., 2013;

Lindén et al., 2010, 2011). This distribution can be calculated using compartmental

neuron models. To ensure a realistic distribution of currents in space, these models

used reconstructed neuron models containing hundreds of compartments. These are

computationally expensive to simulate, especially in a network. We therefore tested

reduced compartmental models containing <10 compartments (Bush and Sejnowski,

1993) to assess their suitability for modelling LFPs, with a view to using these less

resource-intensive models in network simulations.

The reduced models were created from specific morphological reconstructions,

so we compared simulated LFPs from populations of the reduced models with pop-

ulations of the equivalent morphologically reconstructed models. We also compared

LFPs simulated from populations of the same neuron type but from different whole

cell reconstructions, to gauge the magnitude of the errors introduced by the reduc-

tion method in terms of the general variability between different neuron models.

We found that the reduced neuron models reproduced the LFP magnitude, spatial

range, and frequency scaling characteristics of the full cell reconstructions to a good

degree of accuracy; the errors were of a similar size to the differences in these values

observed when using the alternative full cell reconstructions. Care should be taken

when interpreting results from the reduced compartmental models: our comparis-

ons for different synaptic inputs were not exhaustive, and the reductions may not be

appropriate when modelling active conductances. However, used appropriately, the

reduced models will hasten the progress of LFP modelling research. We proceeded

to use the reduced models for network simulations, but first we needed to build a

simulator.
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6.1.2 VERTEX simulation tool

Currently, one simulation tool is available for simulating extracellular potentials due

to neuronal membrane currents (Lindén et al., 2014). LFPy allows the simulation

of the extracellular potential generated by a single neuron, but does not currently

allow network simulations. It is possible to generate network activity in a separ-

ate network simulator, and then simulate the LFP in a population one neuron at

a time using this pre-generated spiking input (Lindén et al., 2011). However, sim-

ulating large numbers of neurons individually like this takes a long time. It also

requires separate simulators to generate the spike times and simulate the LFPs. We

developed the first tool designed to simulate the spatial characteristics of LFPs res-

ulting from neuronal network activity: VERTEX. VERTEX is written in Matlab,

and provides a simple user interface for specifying models, maximising its utility to

the general neuroscience community. It also provides a significant speed improve-

ment over LFPy when simulating large numbers of neurons. Many labs already use

their own Matlab code for analysis of electrophysiology experiments. These tools

can be applied directly to the data generated by VERTEX simulations, allowing

users to run models and analyse their output from within the same computing en-

vironment. VERTEX’s functionality is currently aimed particularly at exploring

experiments in vitro, providing functions for calculating missing connectivity due

to slice preparation, but networks exploring in vivo LFP generation can also be

developed. Finally, VERTEX can be run in parallel using the Matlab Parallel Com-

puting Toolbox, improving computation time approximately linearly in proportion

to the number of parallel processes used. Though we have yet to test it on a cluster

or in the cloud, running VERTEX in these distributed environments using the Mat-

lab Distributed Computing Server is theoretically possible without modifying any

of the code. This will allow the rapid simulation of large-scale models, or speed-up

parameter exploration in smaller models. VERTEX’s ability to scale to large-scale

simulations was demonstrated by the implementation of a neocortical slice model

containing 175 000 neurons.
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6.1.3 Neocortical slice model

One of our goals for the development of VERTEX was to create a model that could

be used in conjunction with recent recordings made by our collaborators using Utah

multi-electrode arrays in vitro. The Utah array records across the depth and breadth

of the slice, allowing the analysis of network dynamics across space both within and

between cortical layers. We therefore created a neocortical slice model based on

experimental anatomical and connectivity data, arranged in space to emulate the

experimental setup. We stimulated the model to create a gamma oscillation, as ob-

served experimentally after bath kainate application (Ainsworth et al., 2011; Cun-

ningham et al., 2003; Fisahn et al., 1998). The neurons in the model were stimulated

so that their spiking matched previously collected experimental data on neuron fir-

ing during persistent gamma oscillations. Given this spiking activity and the model

connectivity, we used VERTEX to simulate the resultant LFPs measured by a sim-

ulated Utah array. The model reproduced the phase-inversion in the LFP observed

between layer 3 and layer 1 in the experimental data, but the lateral coherence of the

simulated LFP was much greater than in the experimental recordings. Variations

in the gamma frequency power could result from many factors: local variations in

connectivity, synaptic strengths, neuronal density, or individual neuron properties

are all potential explanations. Given the currently available data, we suggest that

the patchy connectivity of pyramidal neurons in layer 2/3 (Binzegger et al., 2007;

Kisvárday and Eysel, 1992) could potentially result in these kinds of local variations

in gamma power.

6.1.4 LFP features during network activity

We turned to a simpler model to investigate the generation of the LFP during gamma

oscillations in more detail. First, we examined a highly simplified model of how a

presynaptic neuron contributes to the LFP based on its synaptic connectivity and

how it fires in relation to other neurons of the same type. This model allows us to

predict theoretical upper and lower bounds for the relative magnitude of the LFP

caused by different presynaptic neuron types, ignoring the effect of synaptic localisa-

tion on the dendrites. We next looked at simulations of localised gamma oscillations

surrounded by randomly firing populations, to study the differences between these
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two activity regimes and how the gamma oscillation signal spread due to volume

conduction. We found that basket interneurons totally dominated the LFP in the

gamma-oscillating region, but also made the largest contribution to the LFP dur-

ing random spiking activity due to the localisation of their synapses on pyramidal

neuron somas. The visibility of the gamma oscillation was smallest at the phase-

inversion point and widened above and below this point, similar to the LFP range

calculations in chapter 2, and those reported in (Lindén et al., 2011). The gamma

coherence dropped abruptly outside of the gamma generating region; lower random

activity did not change the abruptness of the coherence drop, but did extend the

distance at which it occurred.

These results are important for the interpretation of experimental recordings.

Firstly, we can see that gamma power does not spread far outside of the gamma

generating region through volume conduction, given standard rates of neuronal firing

outside of this region. We can be fairly sure, then, that high coherence between

electrodes in an MEA indicates that there is network synchrony between those two

points and not just that the oscillation is visible at both points due to volume

conduction. Secondly, the dominance of basket interneuron firing on the LFP even

during entirely random activity has interesting implications for the interpretation

of LFPs in general. If LFPs primarily contain contributions from basket cells, then

disorders known to affect basket cell activity or numbers should have measurable

effects on the LFP across many states and not just during gamma oscillations.

Further work is required to establish the general validity of this result: the simplified

layer 2/3 model does not contain any synapses from external sources (other layers

or thalamic inputs), which under different network conditions may contribute more

to the LFP than the basket cells. However, it is to be in agreement with recent

experimental observations regarding the visibility of inhibitory contributions to the

LFP (Menendez de la Prida and Trevelyan, 2011; Oren et al., 2010; Trevelyan, 2009).

6.2 How can LFP simulations lead to a better un-

derstanding of neuronal dynamics?

The development of MEAs, and the increasing availability of cheap hardware to store

the large data sets collected by MEAs, means that the LFP is likely to continue to
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be used as an experimental measure of network activity for the foreseeable future.

To make the best use of these measurements, it is essential to understand how

they relate to the underlying neuronal activity. We will now consider how our

results impact on the understanding of neuronal network activity, how the models

and tools we developed can be used in future experiments to gain specific knowledge

that would not be possible to obtain without simulating LFPs generated by neuronal

network models.

6.2.1 Consideration of electrode position

We saw in Chapter 5 that the depth of the extracellular electrode, and thickness

of the cortical layer, influences both the power and phase of the recorded LFP. An

electrode positioned at the phase-inversion point will record a very low-power signal

compared with an electrode a mere tens of micrometers above or below it. This

has important implications for experiments comparing LFP characteristics recorded

from two or more different groups of animals, where the groups have been subjec-

ted to different manipulation (gene knockout, for example). In these cases, it is

important to check that cortical thickness, or the relative thickness of each cortical

layer, has not also been affected. It is possible that some manipulations will lead

to subtle differences in cortical thickness that result in electrodes being positioned

at a different relative cortical depth between groups. Differences in LFP measures

could then be a result of this positional difference, rather than a true reflection of

altered network dynamics. A related effect has been demonstrated at the level of

the EEG: the position of the brain - and therefore the distribution of cerebro-spinal

fluid in the skull - depends on head angle, which can significantly affect signal power

in different frequency bands (Rice et al., 2013).

6.2.2 Checking spiking models

Neuronal spiking is profoundly under-sampled in any electrophysiology experiment,

even with the use of high density MEAs. Experimentally recorded LFPs are use-

ful for gauging overall network activity at a higher level than looking at individual

neuron spiking. Modelling the LFP resulting from what is thought to be represent-

ative spiking activity underlying a network state, as we have done for gamma oscilla-
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tions (Chapter 4), allows us to check the consequences of this under-sampling: given

the presumed pattern of spiking and the network connectivity, is the experimentally

measured LFP reproduced by the model? If not, has there been a systematic bias in

the spike sampling, or is the connectivity or spatial positioning model inadequate?

We simulated a network using experimentally derived connectivity statistics, and

tuned the model to reproduce the experimentally observed spiking patterns. How-

ever, this model did not account for the lateral variations in gamma frequency power

that were observed experimentally. While this variation could have various different

underlying causes, we suspect that deficiencies in our spatial connectivity model are

the most likely explanation, as we did not include details of the patchy connectiv-

ity seen in the superficial layers of macaque and cat neocortex (Binzegger et al.,

2007; Kisvárday and Eysel, 1992). Dynamics in networks with “patchy” connectiv-

ity have only just begun to be investigated (Bauer et al., 2012; Voges et al., 2009,

2010), but an obvious next step for our neocortical slice model would be to incor-

porate this spatial connectivity feature. Given the other potential explanations for

this gamma power distribution, further experiments will also be required to verify

whether patchy connectivity is the main contributor to the patchiness in gamma

power. These experiments would, ideally, map out the gamma frequency power over

the space of the slice, and subsequently co-register these maps with the patterns of

synaptic boutons from layer 2/3 pyramidal neurons.

6.2.3 Verifying spike-field coherence measures

The LFP and MUA are usually treated as resulting from different processes when

analysing neuronal activity. However, the separation between MUA and LFP is

made by filtering at an arbitrary cutoff frequency, below which it is assumed syn-

aptic activity is the dominant contributor and above which spiking is the dominant

contributor. Several recent studies have shown that the LFP can contain a signi-

ficant spiking component even at frequencies lower than 100 Hz (Schomburg et al.,

2012; Zanos et al., 2011). A recent study systematically investigated the possible

contamination of spikes into lower frequencies of the LFP, showing that, neurons

firing at high rates with large spike-widths, the frequency contamination could the-

oretically extend as far down as 10 Hz (Waldert et al., 2013).

This contamination is important for the interpretation of simultaneously meas-
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ured spiking and LFPs. The spike field coherence (SFC) is a measure of the phase

synchronisation between the LFP and spikes, as a function of frequency (Fries et al.,

2001). It indicates how strongly entrained a particular neuron is to a particular LFP

frequency. However, if spikes contribute significantly to the LFP, then the SFC is

really measuring how strongly entrained the neuron’s spiking is to itself. Strategies

for mitigating against this are discussed in (Waldert et al., 2013). We propose that

network simulations of the LFP as detailed in this thesis can also be used to check

experimental SFC results. LFPs can be simulated to only incorporate synaptic and

return currents, as in Chapter 5. By implementing various network models that

are thought to describe the experimental system under investigation and simulating

spiking and the resultant “pure” LFPs in the network, a range of SFC predictions

for a given experiment can be generated. The experimentally measured SFC can be

compared to these predictions, and if it is within the simulated bounds, the exper-

imenter can be reasonably sure that the SFC measurement is not contaminated by

the low frequency component of the spikes.

6.2.4 Spatio-temporal dynamics of LFPs in disease models

Building a reliable and informative model of a disease process to explain an alteration

in observed brain dynamics is a particularly difficult task, as a wide variety of

different changes can lead to similar pathological network activity (Spencer, 2009a;

Staley et al., 2011). We propose that simulating the LFP at different spatial locations

in neuronal network models of disease could provide an extra constraint on such

models, if relevant extracellular recordings are available for comparison. We consider

two examples related to gamma rhythms and basket interneurons.

Basket interneurons are known to be crucial for the generation of gamma oscilla-

tions (Bartos et al., 2007), and in our investigations were shown to be the cells whose

synaptic activity dominates the LFP during gamma rhythms. Basket interneurons

are the primary parvalbumin (PV - a calcium buffering protein) expressing neuron in

the cortex (Freund and Katona, 2007; Kawaguchi and Kubota, 1998; Kosaka et al.,

1987; Zaitsev et al., 2005). It may come as little surprise, then, that disorders in

which gamma rhythm alterations have been observed show changes in PV expres-

sion compared to healthy controls. Reduction in PV expression has been observed

in tissue samples both from patients with several kinds of epilepsy Alonso-Nanclares
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et al. (2005); Andrioli et al. (2007); DeFelipe et al. (1993); Marco and DeFelipe

(1997), and patients with schizophrenia Beasley and Reynolds (1997); Behrens and

Sejnowski (2009); Cunningham et al. (2006); Lewis et al. (2012). However, the phen-

otypes of these disorders are very different, and the changes in gamma frequency

activity opposite (in general): in schizophrenia, gamma power is frequently observed

to be reduced, or gamma synchrony between regions reduced (Gallinat et al., 2004;

Green et al., 2003; Haig et al., 2000; Kissler et al., 2000; Light et al., 2006), whereas

in some epilepsies gamma power increases have been observed interictally in gen-

eralised epilepsy (Willoughby et al., 2003) and prior to seizure onset in some focal

epilepsies (Alarcon et al., 1995; Fisher et al., 1992).

It is still unclear as to whether the loss of PV in these conditions reflects the

death of basket cells, or whether basket cells are still present but with reduced PV

expression, or if there is a combination of these effects. Recent evidence from a

rodent schizophrenia model suggested that basket interneurons are still present, but

that a proportion of them do not express PV (Powell et al., 2012). A computational

model implemented to investigate the dynamical consequences of various anatomical

changes observed in schizophrenia found that reducing basket interneuron synaptic

efficacy, or reducing the number of basket interneuron synapses - similar to reducing

the number of basket interneurons through cell death - both reduced gamma fre-

quency power (Spencer, 2009b). Another computational model of network gamma

oscillations incorporating proposed effects of reduced PV expression at the basket

interneuron synapses predicted a reduction in gamma power through increased asyn-

chronous GABA release by the interneurons (Volman et al., 2011). If suitable MEA

recordings from animal models of schizophrenia are available, they could be com-

pared with simulated LFPs from spatially organised networks implementing each of

these potential mechanisms, as each could produce a different spatial gamma oscil-

lation profile. A most likely underlying mechanism for the observed changes could

then be proposed and inform future experimental work.

Reductions in PV are also seen in epilepsy (Andrioli et al., 2007; DeFelipe et al.,

1993; Marco and DeFelipe, 1997), that could also result from these cells ceasing PV

expression (Scotti et al., 1997) or from cell death or reduction in connectivity (Marco

et al., 1997; Marco and DeFelipe, 1997). However, the reductions in PV appear to

be highly localised to abnormal regions. Experiments on resected human epileptic
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neocortex by our collaborators at the Newcastle University Institute of Neuroscience

have begun to investigate correlations between these localised anatomical changes

and MEA recordings (Simon et al., 2014). Modelling the network in space will

aid in our understanding of how abnormal activity can spread out of the abnormal

anatomical regions, and simulating the LFP will allow model predictions to be com-

pared directly with the experiments. We have already begun to add functionality

to VERTEX to simplify the specification of spatially inhomogeneous networks; see

Figure 6.1.

6.3 Avenues for future research

In addition to the nonspecific future research directions outlined above, we have

several suggestions for specific projects that draw on our methods and results.

6.3.1 Improvements to VERTEX

Several improvements can be made to VERTEX regarding performance and func-

tionality. Performance-wise, some optimisations are possible that have not yet been

implemented through lack of time. Memory consumption was reduced to an extent

by using the smallest possible data types for each kind of value rather than Matlab’s

standard 64-bit floating point representations. However, further memory savings can

be made by incorporating the indexing scheme outlined in (Morrison et al., 2005).

This allows small integers to be used to store indices: relative rather than absolute

indices are used. The slowest running sections of code can also be re-implemented

in C or Fortran to be called from Matlab using its MEX interface. In particular,

the spike queue and delivery mechanism is only vectorised over spikes, so increas-

ing spike rates increase code interpretation overheads. The spike queuing code is

therefore a priority target for implementation in a compiled language. Finally, VER-

TEX should be thoroughly tested for use on clusters or cloud-based systems such

as Amazon’s Elastic Compute Cloud. Theoretically, VERTEX should work on any

cluster running the Matlab Distributed Computing Server.

Regarding features, an important next step will be to allow users to import their

own compartmental models rather than relying on the currently implemented neuron

morphologies, or having to specify their own morphologies by hand. The ideal solu-
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Figure 6.1: Example results from a model with inhomogeneous connectivity. Such
models could be used to investigate spatially localised changes in anatomy as seen,
for example, in focal epilepsy. Top: model structure and neuron dynamics. The
model is 4 mm wide, and contains layer 5 pyramidal (P5) and layer 5 basket cells
(B5) only. The red shaded region (1 mm wide) shows the localised region we modify
the connectivity in to produce the bottom spike raster. (A) show the basline spiking
activity and LFPs at different electrodes. (B) shows the same model with the number
of excitatory synapses increased (simulating synaptic sprouting). (C) shows the same
model, with the number of inhibitory synapses in the central region reduced by 80%.
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tion would be to allow VERTEX to import standardised descriptions of full network

models from (Gleeson et al., 2010) or to add compatibility with the PyNN Python

interface (Davison et al., 2009); in the short term, an importer for single neuron

morphologies from NEURON hoc files or NeuroML would be more practical, and

still very useful. VERTEX can currently only specify random connectivity based

on spatial distributions. It might be useful to import specific connectivity patterns

that have been investigated separately, or have been collected from experimental

data as appears to be increasingly likely over the next few years. Adding further,

more elaborate - but still probabilistic - connectivity patterns will also aid with the

investigation of network synchrony over space. The superficial neocortex is known

to contain patchy projections from pyramidal neurons, a structure that is not well

described by the currently implemented uniform or Gaussian spatial decay probab-

ilities. This may help to answer questions on the role of connectivity in synchronous

activity across the network. Finally, it will be important in future to allow users to

specify arbitrary model shapes. Cortical tissue is highly convoluted, and large MEAs

can extend over regions that include curved tissue. As pyramidal neuron membrane

currents dominate the LFP, and they are aligned with their apical dendrites per-

pendicular to the cortical surface, the LFP across space will be dependent on this

curvature. This will be important to take into account for future comparisons with

experimental MEA recordings.

6.3.2 Closed-loop stimulation modelling

Recent advances in intra-cranial implants have led to the development of closed-

loop stimulation devices for epilepsy (Berényi et al., 2012; Fountas and Smith, 2007;

Smith et al., 2010). The term “closed-loop” refers to the manner in which the signal

measured from the brain drives the stimulating device, and this stimulation then

alters the brain activity, and thus the measured signal, and so on. This is in contrast

to more conventional brain stimulation systems such as the Deep Brain Stimulation

(DBS) devices used, for example, to control the symptoms of Parkinson’s disease

(Benabid et al., 2000), in which stimulation is constantly applied, or switched on

and off by the physician or patient rather than stimulating in response to measured

activity. Closed loop systems are particularly important for managing seizures, as

the stimulation must be applied rapidly in response to the first sign of a seizure.
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The problem to be solved for closed loop stimulation is how best to stimulate to

reduce the likelihood of a seizure, given the measured activity.

Modelling can make a significant contribution to solving this problem. In cur-

rently available closed-loop systems such as that described in (Smith et al., 2010),

measurement and stimulation are performed by electrodes. Modelling the network

activity believed to cause the LFP that triggers stimulation in this system will allow

different stimulation scenarios to be tested, so that the best simulated outcomes

can be trialled in the real system. This kind of simulation would need to take into

account the location of the measurement electrodes in relation to the neurons and

how the errant behaviour that the stimulator looks for comes about. This kind of

simulation is possible in VERTEX. Ideally, we would also like to close the loop in

the simulation, so that we could predict, given a particular pattern of potentially

pathological activity, the optimal timing, location and magnitude of the stimulation.

Extracellular stimulating electrodes are not yet implemented in VERTEX; this is

certainly a feature that should be added. However, we have already used VER-

TEX in preliminary tests of a proposed closed-loop stimulation system that targets

a specific subset of optogenetically altered neurons using light (Andrew Jackson,

personal communication). In the proposed system, a subset of neurons is altered

using a safe viral vector to express channelrhodopsins in their cell membranes. The

extracellular potential is continuously monitored and modulates the strength of a

light source. The benefit of this system is that the stimulation can be targeted to

a specific subset of neurons, rather than being applied generally to the network via

extracellular current injection.

Figure 6.2 shows an example preliminary attempt at modelling this kind of

closed-loop feedback setup. We used a simplified model of neocortical layer 5, con-

taining 8500 pyramidal neurons and 1500 basket interneurons arranged in a cylinder

of radius 800 microns and soma-depth of 290 microns, with similar connectivity stat-

istics to layer 5 in our neocortical slice model detailed in Chapter 4. We measured

the LFP at the apical dendrite level, at the centre of the cylinder. We applied ran-

dom currents to the neurons to simulate a persistent gamma oscillation, as described

in the preceding chapters. After 1000 ms, we switched on the feedback stimulation.

This consisted of applying a current proportional to the half-wave rectified LFP

signal to 10% of the pyramidal neurons in the population, representing the opto-
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Figure 6.2: Model of closed-loop stimulation to reduce gamma oscillation power.
Top: LFP recorded from a simulation of a gamma oscillation in neocortical layer
5. After 1 s, a “stimulator” is switched on. This simulates the currents in a subset
(10%) of the pyramidal cell population created by a light source whose intensity
is controlled by the half-wave rectified LFP signal. Bottom: Reduction in gamma
power due to stimulation. The black line shows the LFP power spectrum prior to
stimulation, and the grey line shows the LFP power spectrum during stimulation.
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genetically altered neurons. As can be seen in Figure 6.2, the power of the gamma

oscillation decreases, confirmed in the LFP power spectra calculated both before

and during feedback stimulation (Figure 6.2, bottom).

While this model makes many simplifications that require further investigation

(the kinetics of channelrhodopsin, for instance), it shows how simulations of the LFP

from network models already have an important role to play in the development of

new treatments. This kind of model will help to direct investigations into:

• which subgroup of neurons is best to stimulate, and at what time, given the

LFP,

• how large this stimulation should be to reduce the likelihood of a seizure but

have minimal other effects on the network,

• whether stimulating different sub-populations with different channelrhodopsins

could result in improved control of the network (Carter and de Lecea, 2011;

LaLumiere, 2011),

• how electrode position affects the LFP (this is very important if, for example,

we want to stimulate during peaks or troughs of an oscillation whose phase is

dependent on electrode position, as in gamma rhythms).

VERTEX is ideally suited to implementing models to investigate these questions.

6.3.3 Ephaptic coupling

Several exciting experimental results have recently shown that neuronally gener-

ated electric fields impact on the membrane potentials of nearby neurons without

requiring any synaptic contact. Such “ephaptic” coupling of neurons was invest-

igated in a modelling study in the late 1990s (Holt and Koch, 1999), and more

recently confirmed in experiments showing that such interactions could entrain ac-

tion potentials (Anastassiou et al., 2011) and potentially contribute to the spread

of epileptiform activity (Zhang et al., 2014). We have purposefully ignored the con-

tribution of ephaptic interactions in our models for the sake of simplicity. However,

the recent experimental results show that the role of ephaptic interactions on net-

work activity must be investigated further. As VERTEX can simulate the LFP at

arbitrary locations in a network, it would be possible to incorporate an ephaptic
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coupling mechanism that depended on the LFP. However, doing this rigorously

would entail measuring the LFP near every compartment in the model, which is

not feasible. Developing suitable approximation methods for incorporating realistic

ephaptic coupling is therefore an important direction for future research.
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Appendix A

Parameter tables for the cortical

slice model

Extra parameters for the neocortical slice model described in Chapter 4.
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Table A.1: Model composition. Neuron population sizes are given as percentage
of total model size. The maximum number of synapses received by a postsynaptic
neuron is specified per-layer for pyramidal neurons, whose apical dendrites span
several layers. The proportions of these synapses made by each presynaptic neuron
group are given in percentages of these maximal synapse numbers. Neurons in the
slice model receive fewer than the maximum number of possible synapses because of
the effects of slice cutting. Adapted from (Binzegger et al., 2004), with long-range
connections removed.
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Table A.2: Synaptic weights, in nS.

Table A.3: Compartment IDs in each postsynaptic group that presynaptic neurons
connect onto. Based on (Traub et al., 2005).
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Appendix B

Experimental procedures in vitro

Here we summarise the experimental approach used to collect the comparison slice

data presented in Chapters 4 and 5. Methods provided by Matt Ainsworth and

Mark Cunningham. Experiments performed by Matt Ainsworth.

All experiments were carried out in accordance with the European Communit-

ies Council Directive 1986 (86/609/EEC), the US National Institutes of Health

Guidelines for the Care and Use of Animals for Experimental Procedures, and the

UK Animals Scientific Procedures Act.

B.1 Surgical preparation

The monkey (Macaca mulatta, male, 8 years old) used in this study was subject

to experiments in vivo involving extracellular recording of neural activity and local

drug application (iontophoresis). All tissue samples used in this study were taken

from intact brain areas that were not the subject of studies performed before tis-

sue extraction. Tissue extraction was performed under general anaesthesia, which

was maintained over the course of four days. For the anaesthesia the animal was

initially sedated with a 0.1 ml/kg ketamine intra-muscular injection (100mg/ml).

Thereafter, bolus injections of propofol were administered intravenously to allow

for tracheotomy and placement of catheters for measuring intra-arterial and central

venous blood pressure. During surgery, anaesthesia was maintained by gaseous an-

aesthetic (2.5-3.9% sevoflurane) combined with continuous intravenous application

of an opioid analgesic (Alfentanil, 120μg/kg/h), a glucocorticoid (Methylpredniso-

lone, 5.4mg/kg/h) and saline (50ml/h). The animal’s rectal temperature, heart
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rate, blood oxygenation and expired CO2 were monitored continuously during an-

aesthesia.

B.2 Slice preparation

Neocortical slices of 450 micron thickness were prepared from tissue resected from

macaque temporal cortex. Following resection, cortical samples were immediately

placed in ice-cold sucrose artificial cerebrospinal fluid (ACSF). Neocortical slices

containing all layers were cut at 450 micron (Microm HM 650V), incubated at room

temperature for 20-30 minutes, then transferred to a standard interface recording

chamber at 34-36°C perfused with oxygenated ACSF. Persistent gamma frequency

oscillations were induced by the application of kainate (400nM - 800 nM) to the

circulating ACSF and were deemed stable if there was no change to frequency or

power after 1 hour. LFP recordings were taken using multichannel 10x10 silicon

electrodes with an inter-electrode distance of 400 microns (Utah array, Blackrock

Microsystems, Salt Lake City, UT, USA). Time series were digitally sampled at 10

kHz.
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Appendix C

VERTEX user guide

A key outcome of this thesis was the development of the Virtual Electrode Record-

ing Tool for EXtracellular potentials (VERTEX), described in Chapter 3. In this

appendix, we provide a user manual and example code for simulating the layer 2/3

model studied in Chapter 5. VERTEX is still under active development, so the

underlying code is likely to change in the future. While we do not intend to make

significant changes to the top-level interface, small changes may render sections of

this guide inaccurate in future. Any changes to this guide will be made available at

Marcus Kaiser’s web-site www.biological-networks.org along with the latest version

of VERTEX.

C.1 Introduction

VERTEX is a Matlab tool designed to facilitate the simulation of extracellular po-

tentials generated by activity in spiking neural networks; in particular, spatially-

organised networks containing thousands or hundreds of thousands of neurons.

VERTEX’s interface and model specification options were designed with this par-

ticular task in mind. It is therefore less flexible than other neural simulators (e.g.

NEURON, NEST, Brian, GENESIS, Moose), but the limited scope has allowed us

to simplify the user interface so that a simulation can be specified simply by setting

some parameters and run using a few function calls. The parameters are divided

into five categories: neuron group properties, ConnectionParams, tissue properties,

recording settings, and simulation settings. The parameters associated with each

category are specified in Matlab structures or structure arrays.
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C.2 Installation

To install VERTEX, first download the code from the link provided at www.biological-

networks.org and unzip the archive to the directory you want VERTEX to reside in.

To start using VERTEX in Matlab, you simply need to add this directory and its

sub-directories to Matlab’s path (right click on the VERTEX directory within Mat-

lab and choose ’Add to Path’ -> ’Selected Folders and Subfolders’). Currently only

one function in VERTEX is implemented in C using Matlab’s Mex interface (though

this number is likely to increase in future, we will always provide pure Matlab func-

tions for people that have trouble compiling the C code). If you can’t compile this

file, VERTEX will still run, but you won’t be able to allow multiple synapses between

two neurons (see below). To compile the mex file, go into your VERTEX directory,

then into the ’vertex_mex’ directory. If you have Matlab set up properly with your

C compiler, you should simply be able to type mex multiSynapse.cpp and Matlab

will compile the function, making it available to VERTEX. For instructions on how

to set up a C compiler with Matlab, see the MathWorks web-site.

You should now be able to use VERTEX to create and run simulations. In the

next section, we walk through setup of a simple, single neuron population network

containing randomly firing reduced layer 2/3 pyramidal neurons.

C.3 Simple simulation walkthrough

C.3.1 Tissue parameters

In this example, we walk through the different parameter settings for creating a

single group of neurons that synapses with itself. We start with the structure array

holding the overall information about the piece of brain tissue we are modelling,

which we call TissueParams. The order in which parameters are specified does not

matter to VERTEX, so we proceed in what seems to us like a reasonable order,

starting with the size of the model.

TissueParams.X = 2500;
TissueParams.Y = 400;
TissueParams.Z = 200;
TissueParams.neuronDensity = 50000;
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X, Y and Z specify the dimensions of the model, in micrometres. The model

space in this case is cubic, as in the brain slice models described in this thesis.

Alternatively, if we do not specify X or Y, but instead specify R, then VERTEX

will create a cylindrical model with radius R micrometres and depth Z micrometres.

neuronDensity gives the overall density of neurons in the model, in neurons per

cubic millimetre. The number of neurons in the model is then calculated automat-

ically (in this case there will be 2.5 × 0.4 × 0.2 × 50, 000 = 10, 000 neurons in the

model).

Next we specify some more parameters concerning the spatial layout of the model:

TissueParams.numLayers = 1;
TissueParams.layerBoundaryArr = [200, 0];
TissueParams.numStrips = 10;

numLayers is the total number of layers we want to create in the model. In

this simple case, we just have the one layer. As we assume the layer boundaries

are defined as x-y planes, we can set the boundaries by specifying their z-depths.

layerBoundaryArr contains a list of these depths, going from the top of the highest

layer to the bottom of the lowest one. The length of layerBoundaryArr should be

equal to numLayers+1. Finally, we introduce the concept of strips. When setting

up the neuron positions in a cuboid model, VERTEX will by default position each

neuron’s soma randomly within the boundaries of its containing layer. This often

does not matter, but sometimes it is useful to know more precisely where the neur-

ons are positioned - when plotting spike trains to reveal spatial variation in firing

patterns, for example. A cuboid model can be divided into two or more spatial

’strips’, which are ordered from left to right on the x-axis. Neurons are then posi-

tioned by strip so that the lowest neuron IDs are at the strip to the farthest left, and

the highest neuron IDs are at the strip to the farthest right (see Figure C.1). The

width of each strip is the width of the model, X, divided by the number of strips.

Changing numStrips does not affect the model’s dynamics as such; it affects the

precision of the placement of neurons along the x-axis.
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Figure C.1: Arrangement of strips for a cubic model, showing a model with 10,000
neurons and 10 strips. Ids of the neurons contained within the strips are shown in
each strip location.

TissueParams contains two final parameters:

TissueParams.tissueConductivity = 0.3;
TissueParams.maxZOverlap = [-1, -1];

tissueConductivity sets the conductivity of the extracellular medium, in Siemens

per metre. This parameter is only required when using simulated extracellular elec-

trodes. maxZOverlap sets the maximum distance outside the model’s upper and

lower z-boundaries that a neuron’s dendrites can extend. As neurons are posi-

tioned according to their soma compartment, if the soma is randomly placed close

to the model’s boundaries, then its dendritic compartments will extend outside these

boundaries. In the present model, we set the model z-depth to be 200 microns, so

pyramidal neuron apical dendrites are bound to extend above the model space. In

the current case this is desirable, as we set the 200 micron depth to be the depth of

the soma-layer rather than meaning it to be the depth of the whole layer. There-

fore we set maxZOverlap to be -1, meaning that we do not want to set a maximum

z-overlap length. In the 15 population cortical slice model described in chapter 4,

though, the layer boundaries are meant to represent the entire depth of the layer

and the full size of the model. In that case, we set maxZOverlap to be [0, 100].

This prevented the uppermost pyramidal neuron dendrite compartments from above

the top of layer 1, but allowed dendritic compartments at the bottom of layer 6 to

extend below the model by up to 100 microns into the “white matter”.
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C.3.2 Neuron group parameters

We have now finished specifying the TissueParams structure, so now we specify the

neuron group information in a structure array we call NeuronParams. We store the

parameters for our only neuron group in NeuronParams(1), in case we want to add

further groups at a later date. This neuron group is henceforth referred to as neuron

group 1.

NeuronParams (1). modelProportion = 1;
NeuronParams (1). somaLayer = 1;
NeuronParams (1). neuronModel = ’passive ’;

The first line defines the proportion of the total model size made up by neuron

group 1. In this case we are only modelling a single neuron group, so the whole

model is made up of neurons in this group. The second line specifies which layer of

the model this neuron group is in. The third line specifies neuron group 1 as having

passive cell dynamics. These kinds of groups can be useful for simulating the LFP,

but will not generate any spikes in the simulation. Instead, we will specify group 1

to consist of neurons randomly firing with Poisson statistics, and a firing rate of 5

Hz:

NeuronParams (1). neuronModel = ’poisson ’;
NeuronParams (1). firingRate = 5;

Next we specify the number of compartments per neuron we want.

NeuronParams (1). numCompartments = 1;

If we specify 1 compartment, then VERTEX will treat this group as consisting

of point neurons. No further parameters would be required in the NeuronParams

structure array in this case. This is useful for specifying groups of “external” popu-

lations that provide external input to the simulation, but do not contribute to the

LFP, for example. However, as we want to simulate the LFP in this group, we need
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to use compartmental neurons. We will use the layer 2/3 pyramidal neuron models

described in Chapter 2, which contain 8 compartments.

NeuronParams (1). numCompartments = 8;
NeuronParams (1). compartmentParentArr = [0, 1, 2, 2, 4, 1, 6, 6];
NeuronParams (1). compartmentDiameterArr = [29.8, 3.75, 1.91, 2.81, ...

2.69, 2.62, 1.69, 1.69];
NeuronParams (1). compartmentXPositionMat = [0, 0; 0, 0; 0, 124; 0, 0; 0, 0; ...

0, 0; 0, -139; 0, 139];
NeuronParams (1). compartmentYPositionMat = [0, 0; 0, 0; 0, 0; 0, 0; 0, 0; ...

0, 0; 0, 0; 0, 0];
NeuronParams (1). compartmentZPositionMat = [-13, 0; 0, 48; 48, 48; 48, 193; ...

193, 330; -13, -53; -53, -139; ...
-53, -139];

compartmentParentArr gives the compartmental structure. As we have as-

sumed our neurons will always be binary trees (see Chapter 3), each compartment

will have a maximum of one parent compartment - and no parent for the soma.

compartmentParentArr lists the parent compartment ID at the index of each child

compartment; compartment ID 1 is the soma so has no parent compartment and

is set to 0. compartmentDiameterArr gives the diameter of each compartment in

microns, again with the indices of the array representing the compartment IDs.

The compartment[XYZ]PositionMat values specify the start and end coordinates

of each compartment, presuming the soma compartment is positioned at (0,0,0).

During network construction, these values are used to calculate the position of each

compartment of each neuron after random positioning and rotation. They are also

used to calculate the length of each compartment (though a compartmentLengthArr

list containing the length of each compartment as defined by the user can be spe-

cified to override the automatic calculations). Row indices represent compartment

IDs, column 1 holds compartment start coordinates and column 2 holds column end

coordinates.

Next we specify the neurons’ passive properties:

NeuronParams (1).C = 1.0*2.96;
NeuronParams (1). R_M = 20000/2.96;
NeuronParams (1). R_A = 150;
NeuronParams (1). E_leak = -70;

C is the specific membrane capacitance in μFcm-2, R_M is the specific membrane
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resistance in Ωcm-2, R_A is the axial resistance in Ωcm and E_leak is the membrane

leak conductance reversal potential in mV. If we were using the AdEx model (by

specifying NeuronParams(1).neuronModel = ’adex’;) then we would also need to

specify the other AdEx parameters (delta_t, V_t, v_cutoff, tau_w, a, b, v_reset).

The next code listing, in italics, is entirely optional, but useful when specifying

the model ConnectionParams. We specify labels for the different compartments

in the model, so that we don’t have to remember explicitly the numbers of the

compartments that comprise different sections of the neuron. The name of each

parameter is chosen to be descriptive, but could be chosen arbitrarily.

NeuronParams (1). somaID = 1;
NeuronParams (1). basalID = [6, 7, 8];
NeuronParams (1). proximalID = [2, 6];
NeuronParams (1). distalID = [7, 8];
NeuronParams (1). obliqueID = 3;
NeuronParams (1). apicalID = [2 3 4 5];
NeuronParams (1). trunkID = 2;
NeuronParams (1). tuftID = 5;

As we are only specifying one neuron group, we are now finished with the

NeuronParams structure array (further groups would have their parameters specified

in NeuronParams(2), NeuronParams(3) etc.).

C.3.3 Input parameters

In the current example, neurons fire randomly so synaptic input does not affect their

spiking output at all. However, in most simulations we will be using neurons with

dynamics that cause them to spike, and behaviour will emerge from the dynamics

of this spiking and the network connectivity. We therefore need some way to drive

the neurons to start spiking in the first place - input currents or conductances.

We can specify these in another structure called Input. Each neuron group in the

NeuronParams structure array can have an Input structure array attached to it to

define inputs to the population.
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NeuronParams (1). Input (1). inputType = ’I_ou ’;
NeuronParams (1). Input (1). meanInput = 330;
NeuronParams (1). Input (1). tau = 2;
NeuronParams (1). Input (1). std = 90;
NeuronParams (1). Input (1). startTime = 0;
NeuronParams (1). Input (1). compartments = [7, 8];

In this example, we have one Input of type ’I_ou’, which adds an independent

random current (I) defined as an Ornstein-Uhlenbeck process (ou) to each neuron

in the group. We set the mean input current to 330 pA, the time constant tau to 2

ms and the standard deviation std to 90 pA. We also tell VERTEX that we want

this current to be applied starting at time startTime = 0, so right from the start of

the simulation (we can have currents starting after set amounts of time by changing

this parameter). Finally, we specify which compartments of the neuron the currents

should be delivered to - in this example, just the two basal dendrite compartments.

When specifying multiple compartments like this, the same current will be applied

to each compartment, scaled down by the compartment’s membrane area. To add

independent currents to different compartments, you can specify additional inputs

in the Input structure array. The Ornstein-Uhlenbeck process is the only currently

implemented random process for stimulation, but a DC stimulus can be applied

by setting the std parameter to 0. We also provide a conductance-based version:

inputType = ’g_ou’. The parameters to set for the conductance-based input are

identical as those for the current-based input, except that meanInput and std are

now in nanoSiemens, and you will additionally need to specify a reversal potential

in a parameter called E_rev.

In our simple network example, adding inputs to the neuron group will not

change the network dynamics, but will alter the LFP.

C.3.4 Connectivity parameters

VERTEX treats spikes as discrete events that trigger some postsynaptic event at

targeted neurons. Connectivity is specified probabilistically in terms of connections

between groups of neurons. We specify the relevant parameters in a structure array

called ConnectionParams.
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ConnectionParams (1). prePost = ’pre ’;

First we need to establish whether we want to connect the neurons using a pre-

synaptic or postsynaptic perspective (see Chapter 3, section 3.3.2). The connection

algorithms establishes connections one neuron at a time. If we choose a postsynaptic

perspective, then each neuron has a set of presynaptic neurons selected that connect

to it. If we choose a presynaptic perspective, then each neuron has a set of postsyn-

aptic targets selected to connect to. The sets of presynaptic/postsynaptic neurons

are chosen randomly, according to some distance rule (specified below). The effect

of choosing one method over the other is that either the in-degree (postsynaptic per-

spective) or out-degree (presynaptic perspective) of each neuron can be controlled.

Additionally, if a presynaptic perspective is chosen and the model is a cube, then

the number of connections made by each presynaptic neuron will automatically be

scaled down proportionally to the amount of its axonal arbor falling outside the

model boundaries - see Chapter 3 for details.

In terms of parameter specification, choosing to set prePost to either ’pre’ or

’post’ has consequences for the interpretation of the remainder of the parameters

specified in ConnectionParams. Most parameters are specified for connections in-

volving two neuron groups, rather than just for one group. Parameters are therefore

specified in cell arrays. When taking the postsynaptic perspective, we assume that

the index of the structure array refers to the postsynaptic neuron group, and the

index of the cell array refers to the presynaptic group. For example:

ConnectionParams (1). numConnectionsToOneFromAll {13} = 1000;

means that each neuron in postsynaptic group 1 receives 1000 connections from

neurons in neurons in group 13. In our example model, though, we have only one

population and specify a presynaptic perspective:

191



ConnectionParams (1). numConnectionsToAllFromOne {1} = 1000;
ConnectionParams (1). synapseTypes {1} = ’i_exp ’;
ConnectionParams (1). targetCompartments {1} = [NeuronParams (1). basalID , ...

NeuronParams (1). apicalID ];
ConnectionParams (1). weights {1} = 10;
ConnectionParams (1). tau{1} = 2;

In the above code, we first say that each presynaptic neuron in group 1 (index

of the structure array) makes 1000 connections to postsynaptic neurons in group

1 (index of the cell array). We specify that the type of these synapses is ’i_exp’

- single exponential, current-based synapses (the other currently available synapse

type in VERTEX is ’g_exp’, which are conductance-based single exponential syn-

apses; in this case, a reversal potential for the synapse must be specified in the

relevant E_rev parameter cell). targetCompartments lists which compartments on

the postsynaptic neurons are allowed to be contacted by the presynaptic neurons

(this is where the labels we gave to the compartment numbers comes in handy).

Finally we specify the weight of these synapses - for current-based synapses in pi-

coAmps, and for conductance-based in nanoSiemens - and the exponential decay

time constant in milliseconds.

When a model contains more than one layer, we can specify the number of

synapses on a per-layer as well as per-group basis. In the 5 layer model described

in chapter 4, for example, each element of the numConnectionsToAllFromOne cell

array contains an array of length 5, specifying the number of connections to be made

in each layer from a presynaptic neuron to the postsynaptic group. For example:

ConnectionParams (1). numConnectionsToAllFromOne {13} = [100, 200, 500, 200, 50];

In this example, each neuron in group 1 makes 100 connections with neurons in

group 13 in layer 1, 200 connections in layer 2, 500 in layer 3, 200 in layer 4 and 50

in layer 5. This is useful in particular for pyramidal neurons spanning several layers.

Finally, we need to specify the axonal arbour properties.

ConnectionParams (1). axonArborSpatialModel = ’gaussian ’;
ConnectionParams (1). axonArborRadius = 250;
ConnectionParams (1). axonArborLimit = 500;
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The axon arbour of each neuron is defined as a 2D probability distribution

in the x-y plane centred at the presynaptic neuron, and defines how the prob-

ability of making a connection to a postsynaptic neuron varies in space. Spe-

cifying the axonArborSpatialModel to be ’gaussian’ means that the connec-

tion probability decays away from a presynaptic neuron as a 2D gaussian with

standard deviation given by the axonArborRadius parameter. If we instead set

axonArborSpatialModel to be ’constant’, the axonArborRadius parameter would

represent the maximum extent of the arbor and the connection probability would

be constant within this radius. These are the two currently implemented connectiv-

ity profiles; we intend to add more complex profiles (e.g. non-isotropic gaussians,

patchy projections) in the future. axonArborLimit is an optional parameter for

gaussian arbors, and specifies a cutoff point beyond which no connections can be

made. If this parameter is not set, then neurons have no limit on their maximum

connection distance.

Axon arbor radii and limits can be specified per-layer in the same way as the

number of connections; for example in a 5 layer model we could specify:

ConnectionParams (1). axonArborRadius = [100 250 200 500 100];
ConnectionParams (1). axonArborLimit = [200 500 400 2000 200];

C.3.5 Recording parameters

In order to analyse the output of a model, we need to be able to record the variables

over the time course of the simulation. We specify what we want to record in the

recording parameters structure. VERTEX will save the spike trains of all neurons

by default, but can also record individual neuronal membrane potentials and LFPs.

RecordingSettings.saveDir = ’~/ VERTEX_results /’;
RecordingSettings.LFP = true;
[meaX , meaY , meaZ] = meshgrid (0:100:2500 , 200, 650:100: -50);
RecordingSettings.meaXpositions = meaX;
RecordingSettings.meaYpositions = meaY;
RecordingSettings.meaZpositions = meaZ;
RecordingSettings.minDistToElectrodeTip = 20;

First we set the directory in which we want to save the files that VERTEX
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generates. Then we set LFP to true, so VERTEX knows we want to record LFPs.

We then use Matlab’s meshgrid() function to calculate x, y and z coordinates (in

microns) of our multi-electrode array. VERTEX expects electrode coordinates in

the format output by meshgrid, but it isn’t necessary to use the meshgrid function

to specify the electrode positions - they can be placed arbitrarily. Model coordinates

in VERTEX use standard x, y and z axis directions, so we specify the z-coordinates

of the MEA in descending order so that they are numbered from top to bottom as

in the experimental MEA in Chapter 4. This example produces a 2.5 mm by 0.7

mm MEA with 208 electrodes, at a constant y-coordinate of 0.2 mm, with an inter-

electrode spacing of 0.1 mm. Finally we set minDistToElectrodeTip - this value

ensures that no neuronal compartment can be positioned too close to an electrode

tip and therefore unrealistically dominate the LFP. We choose 20 microns, which is

the default value if this parameter is not set by the user.

We can also choose which neurons we want to record the membrane potential

from, if any. We provide this in a list of neuron IDs. While the IDs are only

generated during model initialisation, we know roughly where in the model space

the neuron of each ID will be because of the method of using strips to constrain the

x-coordinates of the neurons. We can sample membrane potentials of one neuron

from each strip, for example, to look at differences in membrane potentials across

the space of the model. Referring to Figure C.1, we will specify:

RecordingSettings.v_m = 500:1000:9500;

to tell VERTEX to record from neuron IDs 500, 1500, 2500, ... 9500, ensuring

that we record from one neuron in each strip. The membrane potential is always

recorded at the soma compartment.

Next we set the sample rate and the maximum simulation time between saves:

RecordingSettings.maxRecTime = 200;
RecordingSettings.sampleRate = 1000;

maxRecTime specifies, in milliseconds, the amount of time that VERTEX records
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for before saving the recordings to disk and starting recording again. This chunks the

recordings into files of length maxRecTime× sampleRate / 1000, and ensures that for

large MEAs the file sizes and memory usage do not grow too large. We have found

that setting this to 200 ms provides a good compromise between memory usage and

slowing the simulation down due to excessive file save operations, though the optimal

value will depend on your model details. In smaller models with few electrodes, it

may be suitable to set this to be equal to the total simulation length. sampleRate is

simply the rate at which VERTEX samples the LFP, in Hz. High values can severely

slow simulation time in large models, or for large numbers of electrodes. 1000 Hz

provides a good resolution for most LFP investigations (note: in the next section

we will describe how to set the simulation timestep. If the simulation timestep and

specified sample rate are incompatible, VERTEX will automatically sample at the

closest (higher) frequency that is compatible with the timestep).

C.3.6 Simulation parameters

Finally we need to specify some overall simulation settings.

SimulationSettings.simulationTime = 1000;
SimulationSettings.timeStep = 0.03125;
SimulationSettings.parallelSim = true;
SimulationSettings.poolSize = 4;
SimulationSettings.profileName = ’local ’;

We set the total simulation time to 1000 ms, and the global integration timestep

to 0.03125 ms. We then tell VERTEX to create a parallel simulation by setting

parallelSim to true, setting the Matlab pool size, and defining the Matlab parallel

profile to use. If poolSize and profileName are not set, then VERTEX will ask

Matlab to start a parallel job with the default settings.

C.3.7 Generating the network

Now that we have set all the required parameters for our simulation in the relevant

structures, we can generate the network.
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Model_1 = initialiseNetwork(TissueParams , NeuronParams , ...
ConnectionParams , RecordingSettings , SimulationSettings );

The initialiseNetwork() function performs a number of operations. Firstly

it sets up the parallel environment if a Matlab parallel pool is not already running.

Secondly, it creates the neuron groups, positions them in space, and if necessary dis-

tributes them between parallel processes. Thirdly, it calculates the model connectiv-

ity based on the connection statistics and neuron positions. Finally, if recording the

LFP, it pre-calculates the constants required for the line-source extracellular poten-

tial calculation based on the neuron and electrode positions. initialiseNetwork()

returns all this in an Matlab object, with class VertexNetwork (you don’t need to

know about object-oriented programming in Matlab to use VERTEX). In our ex-

ample we call this Model_1. After the model is initialised, we can save it to disk

using the vertex_save function:

vertex_save (’~/ vertex_models/Model_1.mat ’, Model_1 );

and similarly load it back into Matlab using vertex_load(path_to_model).

These functions deal with both serial and parallel simulation setups (though so far

parallel saving has only been tested in the case of a parallel job running on a single

multicore machine). In the parallel case, the standard Matlab Parallel Computing

Toolbox psave() function is used, which saves each lab’s data in a separate file,

numbered with the ID of the lab it resided on. vertex_load() will deal with this

case or the serially saved case automatically.

C.3.8 Running a simulation

Now that we have generated the network, we can run the model to simulate the

dynamics in the network.

runSimulation(Model_1 );
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This function will run the dynamics in the simulation according to the specified

parameters and previously generated network, storing the variables that have been

specified to record from in the location set in RecordingSettings. The timestep will

be printed every few milliseconds so you can keep track of how long the simulation

has left to run. Once the simulation has run (this may take some time depending

on your computer and the size of the model), you can load the results for analysis.

C.3.9 Loading the results

VERTEX provides a script called loadSimulationResults.m which can be run to

load and plot the results of a simulation. The user needs to provide the script with

the directory in which the simulation results were saved, and the rest of the loading

is then handled automatically. Running the script in its entirety will produce simple

plots of each of the recorded variables.

Spike times are loaded into an N by 2 matrix called spikes, where N is the

number of spikes. The first column of this matrix contains the ID of the neuron

that fired, and the second column contains the time at which the neuron fired.

The user can write their own scripts to plot this data, or can use VERTEX’s

plotSpikeRaster(spikes) function.

LFPs are loaded into a NE by rs matrix called LFP, where NE is the number of

electrodes and rs is the sample rate used. To plot the LFP from electrode 1, for

example, you would use plot(LFP(1, :)).

Membrane potentials are loaded into a Nv by rs matrix called v_m, where Nv is

the number of neurons recorded from. The ordering of the rows in this matrix is the

same as the order of the neuron IDs specified in the RecordingSettings structure.

C.4 List of physical units used in VERTEX

VERTEX uses a consistent set of units, which we list below in Table C.1. Any time

a physical quantity is specified as a parameter, it will be in the units specified in

this table.
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Physical quantity Unit used Example

Electric potential mV membrane potential v

Conductance nS synaptic conductance gsyn

Current pA synaptic current Isyn

Specific resistance Ω · cm2 Specific membrane resistance RM

Specific capacitance μF · cm−2 Specific membrane capacitance CM

Longitudinal resistance Ω · cm Intracellular axial resistance RA

Conductivity S ·m−1 Extracellular conductivity σ

Time ms Synaptic time constant τsyn

Length μm Model width X

Table C.1: Units used in VERTEX
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