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Abstract

The filtration algorithm has recently been introduced as a way of increasing the speed

of ab initio modelling calculations using Cartesian Gaussian basis functions. It works

by developing a novel set of basis functions which are constructed specifically for the

system being modelled. It has been implemented in the ab initio density functional

theory based modelling package AIMPRO. The standard filtration process is found to

be accurate when the filtration radius is increased to at least 10 Bohr radii in silicon.

The standard filtration process uses all the basis functions centred on points inside

a sphere centred on each atom in turn. By rejecting some of these functions (a

trimming process), the filtration process can be speeded up, however there will be a

resulting loss of accuracy. Three approaches to developing a filtered basis for an atom

are considered, and compared. The most successful critertion for function trimming

is found to be where functions are kept which exceed a threshold value on the surface

of a sphere.

Structural optimisation using filtration produce accurate final structures, even

when using parameters that give rise to poorly converged absolute energies. For the

most time consuming elements of a calculation, a rapid filtration process is possible.

However, very poor filtration thresholds introduce small inconsistencies between en-

ergies and forces, which can make optimisation difficult if algorithms are chosen that

use both the energy and force. Algorithms that only use forces are implemented, and

shown to be stable and produce accurate structures. This is further demonstrated

using a new implementation of the Lanczos method for determining transition states.

This is compared against the current AIMPRO method, the nudged elastic band. The

new method is far superior in terms of speed, and offers greater stability towards the

end of calcuations.
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Chapter 1

CHAPTER 1: INTRODUCTION

Ab-initio modelling permits the calculation of the properties of molecules and solids.

It does not reply on experimental data, and so there is a huge variety of potential

applications. The results are far more accurate than semi-empirical [18] or force field

[1] methods. However the time taken to perform these calculations can be significant

depending on the size of the system being modelled. The time required scales with

the cube of the system size [34], so doubling the size of the system increases the

time of a calculation by at least a factor of eight. The in-house modelling package

AIMPRO [12, 38] is used for all developments and calculations, and exhibits this

behaviour along with most other electronic structure codes. This effectively imposes

a limit on the sizes of system that can be modelled, routinely 200-500 atoms at present.

The ability to model large systems is however particularly important when complex

problems are being considered. For example, a point defect can usually (but not

always) be modelled using a unit cell of 1000 atoms. This cannot be done so easily

if the problem involves an imperfect interface between two materials (possibly with

misfit dislocations), and the interest is on the behaviour of point defects interacting

with this complex environment. When modelling imperfect interfaces, to incorporate

the defects, strain and dislocations, large numbers of atoms are required before the

structure shows a repeating unit. Larger systems also allow for more types of interface

phenomena to be modelled, yielding results more appropriate for comparison to real

life situations and more accurate calculations of properties.

The filtration algorithm, introduced by Rayson and Briddon in 2009 [56], pro-

duces filtered basis functions by analysing the basis functions for the structure that

is being modelled. The resulting filtered functions reduce the time required for the

Hamiltonian diagonalisation process, by a factor of at least 100, to a factor of 1000
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and beyond. This process is the time dominant step for calculations for all but the

smallest of systems. This thesis investigates the effect of this algorithm on the speed

and accuracy of energy and structural optimisation calculations, for systems consist-

ing of defects in unit cells of silicon. As filtration offers greater and greater efficiency

savings for larger and larger systems, the system sizes investigated are at the small

to medium scale, mainly between 64 and 216 atoms. Some results for larger systems,

of up to 1000 atoms, are presented.

Alongside this, the implementation of a technique to identify transition states is

detailed, the Lanczos method [43]. Results for the new method are compared against

the existing Nudged Elastic Band method [16].
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Chapter 2

GENERAL THEORY

In this chapter the scientific theories and methods that form the foundation of modern

computational modelling will be outlined. The first topic outlines the system of units

adopted for convenience when dealing with energies and lengths at atomic scales.

Following this the Schrödinger equation, Born-Oppenheimer approximation, Density

Functional Theory, basis sets, pseudopotentials, supercells, k-points and finally self-

consistency are examined.

2.1 Atomic units

For computational modelling, the familiar SI units such as energies in Joules and

lengths in metres are not appropriate, as most quantities would involve large negative

exponents. The Hartree atomic units system (as opposed to the Rydberg atomic units

system used in spectroscopy) define the electron mass me, the charge on a proton e,

the Dirac constant h
2π

and Coulomb’s constant ke = 1
4πε0

as having a value of 1.

This results in changes to other familiar units. Two such units frequently encoun-

tered throughout this thesis are lengths, expressed in Bohrs/atomic units (a.u.) and

energies, expressed in Hartrees (Ha). 1 a.u.=0.529 Å. 1 Ha=27.2114 eV.

The main advantage is that the majority of quantities of interest in an atomic or

molecular environment are of order unity. Another advantage is the simplification of

equations by removing the need for many constants, such as seen in equation (3).

2.2 The Schrödinger Equation and the many body problem

A molecule, or a basis (i.e. the repeating sub-unit) of a periodic structure such as a

crystal, can be specified through the spatial coordinates of the nuclei and electrons.
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2.2 The Schrödinger Equation and the many body problem

The energy Ei of the ith state of this system can then be found by solving the many-

body Schrödinger equation [65], using an expression for the Hamiltonian operator Ĥ,

and solving for the wavefunction of the ith state of the system, Ψi:

ĤΨi = EiΨi (1)

The Hamiltonian represents the sum of the kinetic and potential energies of the

system. It can be split into 5 terms for a molecular system:

H = Te + Tn + Vee + Vne + Vnn (2)

where Te and Tn are the kinetic energy operators for electrons and nuclei respec-

tively, and Vee, Vne and Vnn describe the interactions between electrons, electrons

and nuclei, and nuclei respectively. If we represent the positions of the M nuclei by

R1, R2.....RM and the N electrons by r1, r2.....rn, (2) can be expanded to:

Ĥ =− 1

2

N∑
i=1

∇2
i −

1

2

M∑
k=1

1

Mk

∇2
k +

N∑
i=1

N∑
j>i

1

|ri − rj|

−
M∑
k=1

N∑
i=1

Zk
|Rk − ri|

+
M∑
k=1

M∑
l>k

ZkZl
|Rk −Rl|

(3)

where Mk and Zk are the mass and charge of nucleus k respectively. It is possible

to solve this equation mathematically for systems containing one electron and one

nucleus, such as a hydrogen atom or a He+ ion [36]. For more complex systems,

computational methods must be employed. However due to the large dimensionality of

equation (3) it quickly becomes a practical impossibility for anything but the simplest,

smallest system. To be useful, controlled approximations must be made. These

approximations must also simplify (3), and reduce its dimensionality. The following

sections in this chapter present such approximations utilised by AIMPRO, most of

which are employed by commonly used computational software.
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2.3 Born-Oppenheimer Approximation

2.3 Born-Oppenheimer Approximation

As discussed above, the equations (1)-(3) present a considerable challenge. For a

molecule as simple as ethane there are 24 nuclear (R1, R2, R3...) and 54 electronic

(r1, r2, r3...) spatial coordinates, totalling 78 for the time independent Schrödinger

equation. Born-Oppenheimer realised the equation could be approximated by sepa-

rating the nuclear and electronic terms [9]. This is possible because of the high mass

ratio between nuclei and electrons, and hence the kinetic energy of the electrons will

be of roughly an equal ratio larger than the kinetic energy of the nuclei. The nuclei

can hence be thought of as moving sufficiently slowly that the electrons are moving in

the Coulombic potential instantaneously created by them. The minimum mass ratio

is in hydrogen, and even here it is over 1836. If the wavefunction of the complete

system is written as ΨT , we can approximately separate the electronic and nuclear

wavefunctions as in 4:

ΨT (r, R) = Ψe(r;R)Ψn(R) (4)

in which the total wavefunction is a product of a nuclear wavefunction Ψn(R)

and an electron wavefunction Ψe(r). This allows us to develop an electronic only

version of the Schrödinger equation, and to ignore the motion of the nuclei, and the

associated kinetic energy term, T̂n. This gives us an equation as a function of r, with

R as parameters:

ĤeΨe(r1, r2...) = EeΨe(r1, r2...) (5)

Ĥe = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

M∑
k=1

N∑
i=1

Zk
|Rk − ri|

(6)

This is solved for a fixed set of nuclear coordinates, Rk, and then the nuclear

energy term T̂n is reintroduced, and the nuclear Schrödinger equation solved to give

the total energy of the system:

ĤtΨt = EtΨt (7)
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2.4 Density Functional Theory

[Tn + Ee(R)]Ψt = EtΨt (8)

2.4 Density Functional Theory

2.4.1 Overview

Density functional theory (DFT) is an ab-initio quantum mechanical method for

calculating an approximation to the solution of the Schrödinger equation for a system

of one or more atoms. Atoms, molecules, liquids and crystals can be studied using

DFT.

The fundamental quantity in this theory is the electron density, a function that

depends only on the three spatial coordinates. It is demonstrated that all ground

state properties of the system can be calculated as functionals of this quantity, for

example to get the total ground energy of a system. This function of a function is

referred to as a functional, so in DFT a functional of the electron density, hence the

name. Its usefulness as a computational modelling method can be quickly seen by

comparing the number of variables it uses to that in a wavefunction based approach

such as Hartree-Fock [23,28,63].

In Hartree-Fock, the energy levels for a system of N electrons are calculated

through the use of a Slater determinant [61, 62] of spin-orbitals (one for each elec-

tron). As this N ×N determinant can be generated from just the main diagonal (or

any row/column) there are N terms, each with 3 spatial and 1 spin variable, or 4N

variables in total.

In DFT the energy is a functional of the electron density, which depends on the

familiar 3 Euclidean spatial coordinates. This does not scale with the size of the

system one is attempting to model - for 10 or 1000 electrons the problem has been

reduced to the evaluation of a functional of a quantity, whose input argument has

only 3 degrees of freedom.
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2.4 Density Functional Theory

There is a problem however. The exact functional that gives the ground state

energy from the electron density is currently unknown. However, despite this draw-

back, the use of DFT with approximate functionals has proved to be a successful and

efficient method for calculating the properties of atomic systems.

2.4.2 Derivation

The emergence of DFT as we know it today started with the publication of the

1964 paper, Inhomogenous Electron Gas by Hohenberg and Kohn. One of the central

concepts of DFT was introduced early on in this paper, that a particular electron

density n(r) corresponds to a unique external potential V (r). There is thus a one

to one relationship in between the electron density function n(r), and the external

potential V (r). Here a proof is presented using the method of reductio ad absurdum,

in which we start by proposing which two systems have the same electron density

n(r) and hence potential arising from electron-electron interactions, Vee, but different

external potentials V1 and V2. It follows closely the original proof from the 1964

Hohenberg/Kohn paper. Assume the two systems have external potentials V1 and V2,

where V1 cannot be expressed as V2 +constant. In general, the electronic Hamiltonian

may be written:

H = T + V + Vee (9)

For the two systems, only V is different, so we have:

H1 =T + V1 + Vee

H2 =T + V2 + Vee

(10)

Hence

H1 = H2 − V2 + V1 (11)

As we have different Hamiltonians, and V1 6= V2 + c, we must have different

Schrödinger equations, and hence two different ground state wavefunctions, Ψ1 and
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2.4 Density Functional Theory

Ψ2. The ground state energies for the two systems are:

E1 = 〈Ψ1 |H1 |Ψ1〉

E2 = 〈Ψ2 |H2 |Ψ2〉
(12)

Due to the variational principle of quantum mechanics, the ground state wave-

function produces the lowest expectation value of energy for a particular Hamiltonian.

This means we can write:

E1 = 〈Ψ1 |H1 |Ψ1〉 < 〈Ψ2 |H1 |Ψ2〉

E2 = 〈Ψ2 |H2 |Ψ2〉 < 〈Ψ1 |H2 |Ψ1〉
(13)

Using:

H1 =H2 − V2 + V1

H2 =H1 − V1 + V2

(14)

we get:

E1 < 〈Ψ2 |H2 − V2 + V1 |Ψ2〉 =E2 +

∫
(V1(r)− V2(r) )n(r) dr = E2 + x

E2 < 〈Ψ1 |H1 − V1 + V2 |Ψ1〉 =E1 +

∫
(V2(r)− V1(r) )n(r) dr = E1 − x

(15)

where:

x =

∫
(V1(r)− V2(r) )n(r) dr (16)

Adding these two together gives:

E1 + E2 < E2 + E1 (17)

This is clearly a contradiction if the ground state is non-degenerate, so the original

assumptions were incorrect, i.e. V1 6= V2 + c.

Thus for a given density n(r) there exists a specific potential V (r) and vice versa.

This is known as the Hohenberg-Kohn theorem. If we take the operator F̂ defined

by:

F̂ = T̂ + V̂ee (18)
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2.4 Density Functional Theory

we can, for a system of N electrons with a density function n(r), write the Hamil-

tonian as:

Ĥ = F̂ + V̂ext (19)

with both of the right hand operators being specified fully by the system size N and

external potential (or equivalently of course, by the electron density function). This

in turn shows that the associated system wavefunction Ψ must also be determined

uniquely by the density. This allows use to write the energy of the system as a

functional of the density. Take first a system in the ground state, with a ground state

density, wavefunction and energy:

Egs = E[n(r)gs] = 〈Ψgs |Hgs |Ψgs〉 (20)

If we have a different wave function, Ψx, corresponding to a different density

nx(r)using the variational principle of quantum mechanics, we have:

Egs = E[n(r)gs] = 〈Ψgs |Hgs |Ψgs〉 < 〈Ψx |Hgs |Ψx〉 = E[nx(r)] (21)

Thus the density that minimises the energy is the ground state density. This is

the second theorem of Hohenberg and Kohn.

The problem now is to find E[n(r)]. We can write

E[n(r)] =

∫
n(r)Vextdr + F [n(r)] (22)

The classical electron-electron interaction term can be moved out of the functional

F[n(r)] to create a new functional G[n(r)]:

E[n(r)] =

∫
n(r)Vextdr +

1

2

∫
n(r)n(r′)

|r − r′|
drdr′ +G[n(r)] (23)

The problem is now to find an expression for G[n(r)]. A much earlier attempt

by Thomas-Fermi [21,66] produced reasonable energies of molecules in isolation, but

when these energies were subtracted to provide a description of bonding in molecules

the method proved inadequate [64]. A big step was taken towards this by Kohn and
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2.4 Density Functional Theory

Sham in the 1965 paper Self-Consistent Equations Including Exchange and Correla-

tion Effects [40]. Kohn-Sham proposed an approach that allowed an expression for the

energy functional to be written down that yielded energies and differences of energies

close to experiment. The idea was to introduce a fictional system of a non-interacting

gas of N electrons, with an electron density n(r) the same as the real system. The

expectation of the kinetic energy of the true system can be written in terms of the

kinetic energy of this fictitious non-interacting system Ts[n(r)] as:〈
Ψ
∣∣∣ T̂ ∣∣∣Ψ〉 = Ts[n(r)] + ∆T (24)

with the difference from the interacting system represented by ∆T . The hope is

that this 2nd term is small. This allows us to rewrite G[n(r)] as

G[n(r)] = Ts[n(r)] + Exc[n(r)] (25)

This would give the electron density of the system, n(r) as:

n(r) =
N∑
λ=1

|Ψλ(r)|2 (26)

where the Ψk’s are the states of this non-interacting system. Then we may write:

Ts[n(r)] =
N∑
λ=1

∫
Ψ∗λ(−

1

2
∇2)Ψλdr (27)

and E[n(r)] = Ts[n(r)] +

∫
n(r)Vext(r)dr +

1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)] (28)

Exc[n(r)] contains the difference in the kinetic energy between the real and non-

interacting system, and all the contributions to the electron-electron term and the

Hartree energy. The real electron-electron energy will differ from the Hartree energy

because electrons do interact, and will tend to stay away from each other, reducing the

energy of a system. This is the correlation part of Exc. The Pauli exclusion principle

has not been factored in, and this will also affect the energy of the system by keeping

electrons of parallel spin further away from each other. This is the exchange part of

Exc. A significant effort has been done to obtain an expression for Exc[n(r)], which is

not a trivial problem, and involves further approximations.
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2.4 Density Functional Theory

2.4.3 Estimating Exc: The Local-Density Approximation (LDA)

The LDA [49,67] provides an approximation to Exc, using the homogeneous electron

gas (HEG) model as a starting point. If n(r) does not vary too rapidly, one may

write:

Exc[n(r)] =

∫
n(r)Exc(n)dr (29)

where Exc(n) is the exchange correlation energy per electron of a HEG of density

n. This is the LDA. Exc is split into separate terms for the exchange and correlation

terms:

Exc = ELDA
x + ELDA

c (30)

The energy density is calculated locally at points on a grid, and if n(r) varies

slowly, it can be shown that for a HEG:

ELDA
x ∝ n(r)

1
3 (31)

V LDA
x ∝

∫
n(r)

4
3dr (32)

This leaves ELDA
c . Analytic expressions are available for high and low density

limits, which correspond to infinitely weak or strong correlations respectively. Quan-

tum Monte-Carlo simulations have been performed [15]. By interpolating between

these accurate results, using the high/low density information, and using theorems

about the limits of the functional forms of ELDA
c , approximations for ELDA

c can be

made, such as described by Perdew-Zunger in 1981 [50], and Perdew-Wang in 1992

(PW92) [49].

There are also other functionals, such as the GGA [6,27,37,48,49] where the first

derivative of the electron density n(r) is used. The calculations in this thesis use the

LDA PW92 functional.
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2.5 Basis sets

2.5 Basis sets

We now turn to the solutions of the Kohn-Sham equation.

−1

2
∇2ψ(r) + V (r)ψ(r) = εψ(r) (33)

The potential V(r) includes the external potential due to atomic nuclei, together

with the interactions between electrons. It is a somewhat surprising but important

result that this complex interaction can be represented in a simple potential, V(r). For

computational calculations these solutions need to be discretised to be represented

on digital computers. This is done by expressing the solution as a summation of

functions which can be described and stored as coefficients, ci.

ψ(r) =
∑
i

ciφi(r) (34)

In AIMPRO these functions are Gaussians. Gaussians are chosen as the calculation

of matrix elements produces integrals that are much easier to compute than is the

case with other functions, such as Slater-type orbitals [25]. Slater-type orbitals follow

the true wavefunction more closely than Gaussians, having the same rate of decay

(e−ar compared to e−ar
2
). This means more Gaussians are required to model the true

wavefunction. Although other types of functions may require fewer functions to be

used, using more computationally efficient Gaussians is many times faster than using

fewer less efficient functions.

The Gaussians themselves are positioned on each atom:

φ1(r) = e−αi(r−Ri)
2

(35)

The exponents αi determine the width of the Gaussian, a larger value meaning

a narrower Gaussian. The centre of the Gaussian is located at Ri. The exponent

parameters are difficult to determine, and are pre-calculated for every type of atom

in the solid being modelled-. The parameters are determined by varying them and

seeing which produces the lowest energy for each type of atom/solid. They are then
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2.5 Basis sets

fixed and transferred to other related systems (for example parameters determined

for bulk silicon are used for defects in silicon). The coefficients ci are determined

using the variational principle of quantum mechanics, i.e. they are varied until the

energy is minimised. This is done as part of each calculation. In practice, for an atom

such as silicon, four different exponents are used. For each exponent, there are almost

always multiple basis functions, created by pre-multiplying the basic Gaussians to

form Cartesian Gaussian Orbitals (CGO). They are akin to the s, p and d orbitals

from atomic orbital theory. The s-type function is the basic Gaussian (35). There are

3 p-type CGOs shown in (36) created by multiplying by 3 pre-factors, one for each of

the 3 Cartesian axes:

φ2(r) = (x−Rix)e
−[αi(r−Ri)2] (36a)

φ3(r) = (y −Riy)e
−[αi(r−Ri)2] (36b)

φ4(r) = (z −Riz)e
−[αi(r−Ri)2] (36c)

When the s and p CGOs are used they provide 4 independent functions sharing the

exponent. This approach is extended further with the addition of 6 more functions,

created by multiplying by combinations of 2 of the 3 pre-factors. This yields 5 d -type

CGOs and an additional s-type CGO as shown in (37).

φ5(r) = (x−Rix)
2e−[αi(r−Ri)

2] (37a)

φ6(r) = (y −Riy)
2e−[αi(r−Ri)

2] (37b)

φ7(r) = (z −Riz)
2e−[αi(r−Ri)

2] (37c)

φ8(r) = (x−Rix)(y −Riy)e
−[αi(r−Ri)2] (37d)

φ9(r) = (x−Rix)(z −Riz)e
−[αi(r−Ri)2] (37e)

φ10(r) = (y −Riy)(z −Riz)e
−[αi(r−Ri)2] (37f)

When the s, p and d CGOs are used they provide 10 basis functions for that

value of α. A common set of these basis functions, or basis set, involves ten functions

for each of the two smallest exponents and four functions for each of the two largest
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2.5 Basis sets

exponents. This means 28 basis functions per atom, and is referred to in this thesis as

a ddpp basis set. Each letter corresponds to one exponent, with the smallest exponent

listed first, the largest last. The majority of time spent in a large calculation is in

a routine whose time requirement is proportional to the cube of the total number of

basis functions. Filtration contracts these 28 functions per atom to a much smaller

number, typically 4 for an atom like silicon; most calculations in this thesis are done

using 4 contracted functions per atom. Another popular basis set for silicon uses 10

functions for each of the 4 exponents, i.e. a dddd basis set, with 40 functions per

atom.

As stated above, CGOs have the advantage of fast computation over Slater-type

orbitals. They are also flexible. Difficult elements, such as those with populated

valence f -orbitals can have extra f -functions placed on them, without having to change

the basis set for other atoms. Their rapid decay also aids in reducing the number of

elements of the Hamiltonian matrix formed as part of the AIMPRO calculation.

2.5.1 Alternative basis sets - Plane waves

Plane waves are another type of basis set, and they highly effective for systems with

periodic boundary conditions, such as the silicon crystals modelled in this thesis.

They are effectively a Fourier series, with each basis function a term in the series. As

these functions are periodic, they are a natural choice for modelling periodic systems.

They have many useful properties.

1. They are systematically convergent. In the case of Gaussians, adding extra

functions can lead to instability in the calculations due to small errors in the

storage of double precision numbers causing a singular overlap matrix (zero

valued eigenvalues). Plane waves do not suffer from this problem, are always

orthogonal to each other, hence adding terms converges the result correctly.

2. To increase the accuracy of a calculation there is a single parameter that can be
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2.5 Basis sets

changed, referred to as Ecut. This refers to the maximum energy of a plane wave,

and quickly tells you the quality of a calculation. It is also easy to change. This

compares to Gaussians where the process and quality involves many parameters,

some of which can effect each other.

3. Gaussians are placed on atoms. Placing them elsewhere such as on bonds leads

to problems, such as when bonds break. This means there is a nucleocentric bias

in the basis set. Plane waves cover the entire unit cell removing this restriction.

They also however present some limitations.

1. Typically a very large number of functions are needed, leading to large memory

requirements. AIMPRO using CGOs can model up to 4000 atoms on a desktop

PC with 16GB of memory, a task currently unachievable using plane waves.

2. Although convergence is theoretically possible, in practice due to the large num-

ber of functions required it is rarely achieved. As with CGO based calculations,

energy differences are obtained and converged, utilising the systematic nature

of the errors.

3. Molecules cannot be modelled, unlike cluster calculations in AIMPRO.

4. In AIMPRO if one atom is added, such as an 1 atom of oxygen into 1000 atoms

of silicon, the time required for the calculation will barely be affected as only

of the order of 28-40 extra basis functions are required. In plane waves the

addition of a single atom from the 2p (C, N, O, F) or 3d (Fe, Co, Ni, Cu, Zn...)

series will require the addition of a large number of basis functions.

For both CGO and especially plane wave based calculations, the use of pseudopo-

tentials is extremely useful in reducing the number of basis functions required to

achieve an accurate calculation. We consider this next.
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2.6 Pseudopotentials

2.6 Pseudopotentials

After DFT, the concept and implementation of pseudopotentials [2,7,26,39] is the sec-

ond most important approximation used in a modern modelling calculation. The idea

is based on the notion that only valence electrons are involved in bonding/chemical

reactions. The core electrons are so tightly bound that they take little part in the

chemistry taking place [59].

Core states are more difficult than valence states because they vary rapidly, and

because of the large Coulombic potential have a cusp at the nucleus. They also contain

many nodes, the position of which are important for the accuracy of the calculation.

They make the energy very large, so that even a small percentage error leads to a large

overall error, even when calculating energy differences such as for formation energies.

The potential they feel and the energies themselves are so large that a relativistic

treatment is required. Also they have a knock-on effect on the valence states, causing

them to oscillate. Rapid oscillations in the core, and consequently valence states

require large amounts of Gaussian basis functions, dramatically increasing the length

of a calculation. For plane wave based methods, this presents an insurmountable

problem.

By replacing the −Z
r

potential with a pseudopotential V ps(r) that is identical to

the original potential beyond a certain distance from the nucleus, a cut-off radius, but

simplified inside it, these problems can be removed. Most importantly, the number of

basis functions required for an accurate calculation is reduced. Figure 1 shows a real

potential and pseudopotential.

The development of pseudopotentials included two concepts that led to trans-

ferable pseudopotentials, i.e. potentials that can be developed for an atom such as

carbon, and then used to give accurate calculations on systems such as diamond,

graphite or hydrocarbons. Splitting the charge density and norm conservation [26].

Splitting the charge density (n(r)) into a valence (nv(r)) and core (nc(r)) charge
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2.6 Pseudopotentials

Figure 1: All electron wavefunction and potential in blue, and the pseudopotential and

resulting wavefunction in red. Note that the true wavefunction has rapid oscillations

near the core, and the pseudowavefunction is nodeless.

density (38) enables the removal of the valence potential from the pseudopotential

(39), creating an ionic pseudopotential V ps
ion(r). Without this potentials would vary

from system to system, and this method dramatically improves transferability. The

density is split:

n(r) = nv(r) + nc(r) (38)

so that the ionic-pseudopotential can be calculated as:

V ps
ion(r) = V ps(r)−

∫
nv(r)dr

|r − r′|
− Vxc[nv(r)] (39)

Before norm conservation the pseudopotential V ps(r) had to equal the true poten-
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2.7 Supercells and clusters

tial V (r) beyond a certain distance from the nucleus of the atom. Norm conservation

adds an additional requirement, that beyond this cut-off point the wavefunction so-

lution under the pseudopotential matches the wavefunction solution under the real

potential.

Determining which electrons to treat as valence can sometimes be tricky. For

elements like carbon and silicon the choice is straightforward.

C Core: 1s2 Valence: 2s2 2p2

Si Core: 1s2 2s2 2p6 Valence: 3s2 3p2

However for some elements this is not as straightforward. Transition elements can

have the outermost s and d shells lying close in energy to each other, and different

reactions will involve different orbitals. For example in ZnSe, if the 3d electrons are

treated as core electrons, the lattice constant is short by up to 10% when compared to

experiment. When they are treated as valence electrons the difference to experiment

is only 1% [41].

The pseudopotentials used in AIMPRO and in this thesis were developed by

Hartwigsen, Goedecker and Hutter (1998) [29]. These authors tabulated all the pa-

rameters necessary for all the elements in the periodic table, so the user must simply

state which pseudopotential is being used.

2.7 Supercells and clusters

Once a system (molecule(s), crystal...) has been decided upon, there are two main

methods of modelling it. In a cluster calculation only one isolated copy of the system

exists. In a supercell calculation the system becomes the unit cell, which is repeated

in space, with periodic boundary conditions introduced to simulate an infinite crystal.

Creating a supercell from a number of primitive cells of the crystal, then creating a

defect in this supercell, is a quick and useful way to model crystal defects. When using

this approach to extract useable real world data, it must be ensured the supercell is

large enough to prevent defects interacting with the equivalent defects in the neigh-
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2.7 Supercells and clusters

bouring unit cell. For the purposes of testing filtration this is largely irrelevant, as the

focus is on filtration producing the same results as unfiltered calculations. However

both small and large systems have been investigated for completeness.

Figure 2: 6 unit cells in a supercell calculation, showing the effect of one atom moving

into an adjacent cell.

In calculations involving atoms moving, such as structural optimisations and

nudged elastic band (NEB) runs, when an atom moves out of one cell it appears

on the opposite side of the cell. This is represented in figure 2.

In AIMPRO when performing a supercell calculation the lattice type and associ-

ated lattice parameters must be specified. Although it is possible to specify the lattice

through 3 lattice basis vectors, almost without exception the lattice is specified by

type. The lattice types are the 14 conventional 3-dimensional Bravais lattices. So for

a cubic lattice (simple, body-centred or face-centred) only one parameter representing

the length of a side of the lattice is required. For a simple tetragonal system it is two,

one for the length of the depth/width, and another for the height.

When building a supercell for systems containing a defect a typical strategy is to

take the 8 atom primitive cell and copy it n times in each direction. This leads to

supercells containing 8n×n×n atoms. For n=2 the supercell contains 2×2×2×8=64

atoms. For n=3, 216 atoms. For n=4 512 atoms, and for n=5 1000 atoms. Defects

can then be introduced into these large systems.

Supercell calculations also require the specification of k-points, which is described

in the next section.
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2.8 k-points

The first Brillouin zone is formed by taking the Wigner-Seitz cell in the reciprocal

lattice. When performing calculations on periodic systems with the supercell method,

most properties of the system such as the charge density, total energy or density of

states require a Brillouin zone integration. In practice this can only be done by

sampling at various points inside the Brillouin zone [4,8]. There are a variety of ways

to choose these points, but two methods have been employed for the calculations in

this thesis.

The most basic method, Γ point sampling, involves one sampling point at the cen-

tre of the Brillouin zone. For increased accuracy more points are required. Monkhorst-

Pack [45] defined an unbiased method where a grid of evenly spaced points, sharing

the lattice symmetry, are placed inside the Brillouin zone. As more and more points,

referred to as k-points, are used the answer will converge. For bulk silicon of 216

atoms or more a 2×2×2 grid provides reasonably converged results. This would be

referred to as MP 2 2 2 sampling in the text. The number of k-points can be reduced

using the symmetry of the reciprocal lattice. In the 2-atom FCC unit cell of bulk

silicon using MP 2 2 2 sampling the number of k-points is reduced from 8 to 2.

Although there are an infinite number of Brillouin zones, the first Brillouin zone

contains all the information necessary to fully describe the wavefunctions that are

solutions to the Kohn-Sham equations. When reference is made to the Brillouin zone,

it means specifically the first Brillouin zone.

The silicon calculations in this thesis use a simple cubic Bravais lattice, with all

three sides of length a. The corresponding reciprocal lattice and Brillouin zone is

also simple cubic, with all sides of length 2π
a

. In this case the reciprocal lattice will

share the same symmetry as the lattice in real space. As the number of atoms used

in the calculations increases, the Brillouin zone becomes smaller, and consequently

fewer k-points are required to maintain a specific level of accuracy.
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2.9 Self-consistency

When energy differences are being calculated, such as for formation energies, the

use of the same (or equivalent) k-points in all the systems typically leads to lower

errors than expected, due to cancellation.

2.9 Self-consistency

Self-consistency ensures the resulting electron density minimises the total energy of

the system. It consists of a repeated series of steps, in which the electron density n(r)

is changed using an iterative process. Each cycle of this process is referred to as a

self-consistent field (SCF) iteration/cycle/step. Starting with iteration k=0, and an

input density nin
k (r), you use the input density nin

k (r) to generate a potential, and then

solve the Kohn-Sham equations. This will yield a new density, nout
k (r). The current

and previous densities are then used to form a new input density.

nin
k+1(r) = αnout

k (r) + (1− α)nin
k (r) (40)

The value of α is small, usually 0.1 or above, and under 0.4. Larger values would

lead to energy densities changing too much from iteration to iteration, and smaller

values would take too many iterations to reach the state that minimised the energy.

When the difference between nin
k (r) and nout

k (r) is smaller than a pre-defined tolerance

value, nout
k (r) is accepted. Otherwise the iteration counter is increased, k → k + 1,

and the process is repeated.

Details of the steps that move from the input potential to the energy density

within an iteration of the SCF process can be found in section 3.2.

2.10 From Standard Theory to Filtration

This chapter has outlined the various bodies of theory that have come together to pro-

duce a standard AIMPRO calculation. This thesis concerns itself with both comparing

the accuracy of, and improving the speed of, calculations using filtration alongside the
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2.10 From Standard Theory to Filtration

techniques presented in this chapter. The next chapter introduces the theory behind

the filtration process, and explains both how the filtered functions are created and

used.
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Chapter 3

FILTRATION THEORY

3.1 Basis set filtration - the concept

Filtration is a method of reducing the number of basis functions in, and hence increas-

ing the speed of, a calculation without having a significant effect on the accuracy. A

typical silicon calculation, using Gaussian orbitals in AIMPRO, has 28 basis functions

per atom, and standard calculations produce 28Natom (Natom is the number of atoms

in the system) states of increasing energy. Of these, only the first 2Natom states are

occupied by the non-core electrons (all silicon calculations presented in this thesis use

a pseudopotential with 4 non-core electrons, and 2 of these non-core electrons are able

to occupy each state). The other states are not of direct interest, but are necessary

outcomes for an accurate calculation. The extra freedom offered to the calculation

through the large underlying basis set results in a higher accuracy.

The filtration method creates a fixed number of custom basis functions for each

atom in the system, which we will term filtered functions. For each atom, these fil-

tered functions are formed by analysing the basis functions on and close to the atom

in question. Filtered functions are created that span the occupied states, and far

fewer of the unoccupied states. This allows a much smaller basis set to be created

that still produces accurate calculations. The Hamiltonian diagonalisation step in

filtration calculations then uses a subspace Hamiltonian matrix, computed using fil-

tered functions instead of the full Gaussian set. If N basis functions are present in

the system in the unfiltered calculation, and the filtration step produces n filtered

functions for the system, this diagonalisation step will be (N/n)3 times faster. Typi-

cal values for unfiltered basis sets for silicon include 28 functions in a ‘ddpp’ basis set

or 40 in a ‘dddd’ basis set (see section 2.5). A filtered basis set for silicon is usually
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3.2 A conventional calculation

Figure 3: Energy levels produced by standard computational methods, and the much

smaller energy window which is of interest.

chosen to include 4 filtered functions. This means the Hamiltonian diagonalisation

step for a silicon calculation would be 343 (ddpp) or 1000 (dddd) times faster. This

cubic relationship has been demonstrated already in previous work [55].

For clarity, the original basis functions and the space they span are referred to as

the primitive basis set or primitive (basis) functions, and the primitive space. The

filtered equivalents are filtered functions, and the subspace. Terms such as subspace

Hamiltonian refer to the Hamiltonian after transformation from the primitive space

to the subspace.

3.2 A conventional calculation

In a conventional calculation the Hamiltonian matrix H is created using the full set

of basis functions φi(r) (41). H will be of size N × N , where N is the total number
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3.2 A conventional calculation

of basis functions in the system. We have

Hij =

∫
φi(r)(−

1

2
∇2 + V (r))φj(r)dr +

∫∫
φi(r)V

nl(r, r′)φj(r
′)drdr′ (41)

V (r) is the local potential, with the second term using V nl(r, r′) necessary when

using non-local pseudopotentials, such as those developed by Hartwigsen, Goedecker

and Hutter (1998) [29], used extensively in the calculations in this thesis. The overlap

matrix is then calculated, again using the full set of basis functions.

Sij =

∫
φi(r)φj(r)dr (42)

H and S are used to form the generalised eigenvector problem (43).

Hcα = λαScα (43)

If the vectors cα are combined to form the columns of a matrix c, and the eigen-

values λα to form the non-zero elements of a diagonal matrix Λ, (43) can be rewritten

as

Hc = ScΛ (44)

When solved, this yields a matrix c, which is used to produce the density matrix

b

b = 2cfFD(Λ)cT (45)

where fFD represents the Fermi-Dirac function, where the factor of 2 accounts for spin

in a restricted calculation.

The matrix b in turn gives us the electron density n(r).

n(r) =
N∑

i,j=1

bijφi(r)φj(r) (46)

n(r) is then used to create a new input n(r) (as outlined in section 2.9), and hence

a new V (r), and (41)-(46) cycled through until the self-consistency criteria is/are

achieved, and hence producing a self consistent n(r).
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3.3 Creating the filtered functions

3.3 Creating the filtered functions

The Kohn-Sham levels, ψλ(r), are expressed as a sum of every primitive basis function,

φi(r), of the whole system [56].

ψλ(r) =
N∑
i=1

ciλφi(r) (47)

By inverting this expression, the basis functions can be expressed as a sum of the

Kohn-Sham levels.

φi(r) =
∑
λ

diλψλ(r) (48)

λ takes values from 1 up to the number of electrons in the calculation (or half the

number of electrons in spin-restricted calculations such as in this thesis), and ciλ and

diλ are coefficients, where

diλ =

∫
ψλ(r)φi(r) dr =

N∑
j=1

Sijcjλ (49)

with Sij being the overlap matrix, defined in (42).

By inserting a Fermi-Dirac function into (48), a filtered function Φi(r) is created

that only spans the energy window indicated by the occupation function fFD(E) in

figure 3 [56]. f(Eλ) is thus the occupancy at the KS state of energy Eλ.

Φi(r) =
∑
λ

f(Eλ)diλψλ(r) (50)

By putting the expressions for ψλ(r) and diλ above into this we arrive at

Φi(r) =
∑
λ

f(Eλ)
∑
j

Sijcjλ
∑
i

ckλφk(r) (51)

or Φi(r) =
∑
j,k

bjkSijφk(r) (52)

where bjk =
∑
λ

f(Eλ)cjλckλ (53)
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3.4 Creating the K matrix

These equations can be combined to give

Φi(r) =
∑
k

Kkiφk(r) (54)

where K is termed the filtration matrix.

The trick now is to realise that Φi(r) is localised when a high temperature Fermi-

Dirac function is used [56]. The argument for this is in section 3.6. This allows each

Φi(r) to be constructed from the basis functions on atoms contained in a small sphere

around the atom (see figure 4). The radius of this sphere is the filtration radius,

Rcut, and can be altered but tends to produce converged results when it is chosen to

contain around 30 atoms. The calculation of Φi(r) has to be done for each atom in

the system, but as the sphere does not increase in size with the overall system, this

leads to O(N) scaling [56]. The time dominant step in a filtered basis calculation

still has O(N3) scaling, so as the system sizes increases, the filtration step itself will

become less and less significant in terms of its contribution to the overall length of a

calculation.

3.4 Creating the K matrix

This following process takes place for each atom in the system, one at a time. Firstly

as described above and illustrated in figure 4 the basis functions within the radius

Rcut around the atom are identified. The intersection of the rows and columns of the

Hamiltonian H and overlap matrix S that correspond to these identified functions are

kept, creating a smaller versions H ′ and S ′. This is represented pictorially in figure

5, where 5 basis functions are kept from the possible 36 in a fictitious system.

H ′ and S ′ then form the generalised eigenvector problem

H ′c′ = S ′c′Λ′ (55)

where Λ′ is a diagonal matrix of the eigenvalues. The matrix c′ is then used to
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3.4 Creating the K matrix

Figure 4: 2D representation of the process where Gaussians on atoms within a sphere

of radius Rcut centred around the red atom, here coloured black, are used to create

the filtered functions for the red atom. Gaussians on blue atoms are ignored. This

process is repeated for each atom in the system, so each atom’s sphere may contain

different numbers of atoms.

calculate the density matrix b′pq

b′pq =
∑
λ

f(Eλ)c
′
pλc
′
qλ (56)

where p and q label the (small, system size independent) number of functions retained

during the filtration step [56].

The filtration matrix K is formed by creating rows from the related columns of

b′pq using (52) and (54).
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3.5 Using the filtered functions

Figure 5: Representation of H or S for a system with a total of 36 basis functions.

For a particular atom 5 basis functions are within the sphere of radius Rcut. The

related rows and columns are shaded, and the black elements where they intersect are

used to form H ′ and S ′. The reduction in size of the two matrices, and hence of the

generalised eigenvector problem they form is clear. [56]

3.5 Using the filtered functions

The procedure for a conventional calculation outlined in section 3.2 using the full set

of basis functions is altered when using the filtered functions. After the Hamiltonian,

overlap matrix and filtered functions are formed, a transformation to the subspace is

performed. The density matrix is calculated in the subspace, after which a transfor-

mation back to the primitive space gives the full density matrix and hence electron

density in the primitive space.
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3.5 Using the filtered functions

3.5.1 Primitive to subspace transformation

With the matrix K having been created, the subspace Hamiltonian Hsub and overlap

matrix Ssub are required for the subspace generalised eigenproblem. We start with an

expression for Hsub.

Hsub
IJ =

∫
ΦI(r)ĤΦJ(r)dr =

N∑
i=1

N∑
j=1

KiIKjJ

∫
φi(r)Ĥφj(r)dr (57)

The terms integrated over r in this expression represent the element Hij of the

primitive Hamiltonian.

Hsub
IJ =

N∑
i=1

N∑
j=1

KiIKjJHij (58)

Hsub = KTHK (59)

Following similar steps we find the result

Ssub = KTSK (60)

forming the subspace generalised eigenproblem

Hsubcsub = SsubcsubΛsub (61)

Once solved and the matrix csub is formed, the subspace density matrix bsub is

found using

bsubIJ = 2
∑
λ

f(Λsub
λλ )csubIλ c

sub
Jλ (62)

with the factor of two again accounting for spin.

With bsubIJ calculated, the next step is to transform back to the primitive space to

obtain the primitive density matrix b and consequently the electron density n(r).
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3.6 Reasons why Filtered Functions are Localised

3.5.2 Subspace to primitive transformation

Writing the total number of filtered functions in the system as nsub, we can calculate

the electron density n(r) using

n(r) =
nsub∑
I,J=1

bsubIJ ΦI(r)ΦJ(r) =
nsub∑
I,J=1

N∑
i,j=1

KiIKjJb
sub
IJ φi(r)φj(r) =

N∑
i,j=1

bijφi(r)φj(r)

(63)

as

bij =
nsub∑
I,J=1

bsubIJ KiIKjJ (64)

which is a matrix product of the form

b = KbsubKT (65)

(46) can then be used as before to give the electron density n(r), and hence the

total energy. The strength of this approach is that once b is obtained in the primitive

basis, the code required to compute the energy density does not need to be modified

in any way.

3.6 Reasons why Filtered Functions are Localised

We start by defining a filtration operator F̂ that transforms our N basis functions

into n filtered functions (N ≥ n).

φ̄j(r) = F̂ φi(i = 1...N, j = 1...n) (66)

Assume we know the Kohn-Sham solutions, the ψns. We can then write, following

equations 51 - 54

F̂ φi(r) =

∫ ∑
n

fnψn(r)[ψ∗n(r′)φi(r
′)dr′] (67)

=

∫
ρ(r, r′)φi(r

′)dr′ (68)
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3.6 Reasons why Filtered Functions are Localised

where fn = fFD(En), and ρ(r, r′) is the charge density matrix:

ρ(r, r′) =
∑
n

fnψn(r)ψ∗n(r′) (69)

To proceed, we look at some of the properties of the charge density matrix. Firstly

as |r − r′| → ∞, ρ(r, r′) → 0. In other words as the two points go further apart the

density matrix tends to zero. Secondly for an insulator at any temperature (or any

material with a band gap) or at the other end of the band gap scale, a metal at high

temperature, ρ(r, r′)→ e−α|r−r
′|. For a metal however, as T → 0, ρ(r, r′)→ 1

|r−r′|α [44].

Referring back to (68) we note that φi(r
′) is a Gaussian and hence a localised

function. Because of these properties of ρ(r, r′), if we choose a high temperature

Fermi-Dirac function we ensure that ρ(r, r′) not only decreases faster than φi(r
′), but

that it also is a localised function. This means we are guaranteed the integral in (68)

will produce a localised function of r, and hence F̂ φi(r), the filtered functions are

localised. The degree of localisation is dependent amongst other things, on the value

of the exponent of the basis functions α, and on the temperature of the Fermi-Dirac

function. The higher the temperature is set the more localised the filtered functions

are, but conversely the more of the energy window that they span. It should be

noted here that the temperature used in the filtration process is unrelated to the

temperature used in the main calculation (equation 45). The filtration temperature

is chosen to be sufficiently high to guarantee a well localised ρ.

The discussion in this section is not sufficient to allow filtered functions to be

generated as they rely on knowledge of the Kohn-Sham solutions, the ψi’s which are

required to calculate ρ(r, r′). However only a knowledge of ρ(r, r′) for a small region

of the system is required. Thus ρ(r, r′) is calculated for a subsystem - this is the

process involving Rcut. A higher temperature Fermi-Dirac function reduces the size

of the subsystem required for a set level of accuracy, but may require more filtered

functions to be calculated and used in the calculation in the filtered subspace. A lower

temperature Fermi-Dirac function will span a smaller energy window and thus lead to

a smaller H’ in the filtered subspace, and thus a much faster calculation. However it
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3.7 The Fermi-Dirac function in Filtration

will also lead to less localised filtered functions, increasing the value of the parameter

Rcut required for an accurate calculation.

3.7 The Fermi-Dirac function in Filtration

The Fermi-Dirac function f(Eλ) as illustrated in figure 3 in section 3.1 has two main

parameters - the temperature of the function kT and the chemical potential Ef . The

chemical potential determines at what energy the Fermi-Dirac function reaches half

its maximum value. The temperature controls how fast the function drops off, with

a higher temperature giving a slower drop off. Hence a higher temperature means

more energy levels are spanned by the filtered functions, but a high temperature

function is required to ensure the filtered functions that are created are localised. If

the temperature of the function is not high enough, a large value of Rcut is required

for an accurate calculation [56].

It is possible to specify these parameters in a calculation, or to allow AIMPRO

to optimise these values automatically, based on the value of Rcut and the number

of filtered functions which are created and used. Both methods are used in the

calculations presented in this thesis, with details of which method was used is stated

for each set of results. When specifying a filtration temperature for silicon, a value of

between 2-3 eV is typically used.

The temperature of the Fermi-Dirac function used in filtration is not to be confused

with the temperature of the system used to populate the Kohn-Sham levels, which

will usually be much lower, typically 0.01 eV for a metallic system.

Having outlined the theoretical background behind the filtration process, the next

chapter investigates the performance of filtration, and the effect of changing the fil-

tration parameters such as Rcut, when it is applied to the calculation of energies of

defects in semiconductors.
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Chapter 4

ENERGY CALCULATIONS USING

FILTRATION

The previous two chapters introduced the most significant theories and approxima-

tions used in a CGO ab-initio calculation, the theory behind the filtration process,

and an outline of how it is implemented within the AIMPRO code. In this chapter fil-

tration is applied to calculate formation energies (FEs) for various defects in silicon.

The accuracy of these AIMPRO calculations is compared to the results for corre-

sponding AIMPRO calculations performed without filtration. There are two types of

filtration calculation, the previously published (standard) process [56] introduced in

the previous chapter, and another in which an additional step is added to reduce the

time taken to produce the filtered functions. Firstly a recap of the standard method is

outlined, then the new method involving the additional step is described. The results

for both methods are then presented.

4.1 Filtration Method 1 - Standard Filtration

This section commences with a summary of the SF process. This is followed by looking

at the effect of changing the parameter Rcut on the speed of a SCF iteration, and on

the overall calculation time for unit cells of bulk silicon of increasing size. After this,

the details of a proposed new step, and the anticipated differences to the speed and

accuracy of the calculations are outlined. This extra step also has a parameter τ ,

which like Rcut, can be adjusted, and which should give more accurate but slower

calculations as it increases.
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4.1 Filtration Method 1 - Standard Filtration

4.1.1 Recap of Standard Filtration Process

The filtration process introduced in the previous chapter can be summarised as follows:

1. Start with a system of atoms, with each atom having a number of primitive

basis functions centred on it.

2. For each atom in turn, capture the basis functions centred on the atom itself,

and on all atoms contained in a sphere of radius Rcut around it.

3. Use these functions to create filtered functions for the atom in question.

4. Repeat steps 2 and 3 for every atom in the system, creating custom filtered

functions for each atom.

5. Using these custom filtered functions, calculate the properties of the system

required. This chapter will investigate energies, the next chapter energies and

forces.

Throughout this thesis calculations performed without filtration will be referred to

as NF (no filtration) calculations. Calculations performed with the filtration process

outlined above will be referred to as SF (standard filtration) calculations. Filtered

calculations performed with the extra step (mentioned above, and described in detail

in section 4.2) will be referred to as AF (advanced filtration).

4.1.2 Effect of Rcut on calculation times

When analysing calculation times, there are two obvious choices for what is measured

from a timing point of view. These are the total time taken for the calculation,

and the time taken per self-consistent field (SCF) iteration. Each has its merits. A

user is simply interested in the total time taken, but this doesn’t allow for scientific

analysis, due to the large number of steps in which filtration and Hamiltonian matrix

calculations play no part.
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4.1 Filtration Method 1 - Standard Filtration

The time taken per SCF iteration is more useful. It contains the part of AIMPRO

that filtration speeds up, the diagonalisation step. This is true for all calculations. It

does include some other tasks, but has the advantage of being easily extracted from

the AIMPRO output files, and as system size gets bigger the diagonalisation step

takes up a larger and larger percentage of the total SCF time. The fixed portion

of the SCF time can also easily be differentiated from the variable part when a list

of results is available, such as seen in table 21. Another drawback is the danger of

comparisons between two runs, where the computational power differs, be it through

a system wide slowdown, or differing CPU power or number of nodes being used.

These can largely be eliminated by ensuring all runs for comparison take place in

similar environments, and by looking at the timings for parts of the run filtration

doesn’t affect. These timings should theoretically be the same, as they are doing

the same calculation. By looking at the variation here, one can get a sense of the

inherent randomness of timings, whether there was a problem with one of the runs,

or a hardware disparity between them. This has been checked for all SCF time data

in this thesis and will not be further referenced in the text.

In a NF calculation, the SCF process is dominated by the Hamiltonian diagonali-

sation step [30], especially for large systems, and systems with a fine k-point mesh. In

a SF calculation there are two main processes, the filtration step (where the filtered

functions are created) and the subspace Hamiltonian diagonalisation. The cubic rela-

tionship to the number of atoms for the diagonalisation step, contrasts with the time

required for the filtration step being linearly proportional to the number of atoms in

a system. So as the system size increases, the saving in the Hamiltonian diagonali-

sation step increasingly outweighs the increase in the time required for the filtration

step. Conversely for systems of a certain size and below, using filtration will increase

the total time, as the filtration step will outweigh the savings in the diagonalisation

step. By reducing the time taken for the filtration step, the system size for which

this happens can be reduced. Also for small to medium sized systems (hundreds of
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4.1 Filtration Method 1 - Standard Filtration

atoms) significant time savings can be made. How to do this without significantly

affecting the accuracy of the calculation forms the main part of this thesis. For SF

calculations, the only way to do this is by reducing the parameter Rcut.

The next two chapters focus entirely on defects in unit cells of silicon, where most,

if not all, atoms are silicon, and the total number of atoms in the system deviates

from the corresponding bulk system by only 1-3 atoms. This means theoretically, by

changing Rcut for bulk silicon, the effects on the numbers of functions kept, and hence

time taken by SCF steps will be broadly the same as seen for the defect systems. Also

a determination of the crossover point where filtration makes a calculation faster as

a function of Rcut can be done for bulk silicon, and the results expected to apply to

the defect systems used in the next two chapters.

It is useful to see the link between the number of functions presented to the

filtration process, and the parameter Rcut, and this is presented in table 1. The

number of atoms and hence functions, have an approximately cubic relationship with

the value of Rcut, due to the increasing volume of the sphere. Values of Rcut of

10-12 a.u. are typical values for a silicon based calculation.

Table 2 shows the average SCF times for an energy calculation of bulk silicon

systems of increasing size, for various values of Rcut. It is unusual to run a filtration

calculation with an Rcut of greater than 12 a.u. so results for greater values are not

presented. As the system size increases the average SCF time for a NF calculation

increases at a much faster rate than for the SF calculations. A 1000 atom calculation’s

SCF time is 6.6 times longer than for a 512 atom calculation, not far off the value

of (1000/512)3 = 7.5 for a N3 relationship. For system sizes of 512 atoms or more

calculations are faster when using filtration. As the system size becomes lower than

this, increasingly smaller values of Rcut are required to observe faster SCF iterations

than a NF calculation. For 1000 atom calculations, SCF iterations are roughly 7 times

faster than when using SF, even when Rcut=12 a.u. If an Rcut of 10 a.u. is used, this

rises to a factor of 19.

37



4.1 Filtration Method 1 - Standard Filtration

Table 1: Number of atoms (Natom), and functions (Nkeep), inside a sphere of radius

Rcut centred on an atom, for bulk silicon with lattice parameter 10.24 a.u. using a

ddpp basis set.

Rcut (a.u.) Natom Nkeep

1-4 1 28

5-7 5 140

8 17 476

9-10 29 812

11 35 980

12 47 1316

13 71 1988

14 87 2436

15 99 2772

16 123 3444
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4.1 Filtration Method 1 - Standard Filtration

Table 2: Average SCF times for bulk silicon energy calculations. For each system

size, results for SF calculations for varying values of Rcut and the corresponding NF

calculation are shown.

Rcut (a.u.)
Average SCF time (s)

64 atoms 216 atoms 512 atoms 1000 atoms

5 8 28 82 215

8 13 50 136 345

10 31 115 282 638

12 98 341 841 1735

(NF) 11 157 1826 12091

In generating this table the same MP sampling has been used for all cell sizes. In

fact it is often the case that MP grids with more points are needed for smaller systems

than larger ones, as the Brillouin zone being sampled is correspondingly larger. The

filtration step is however performed in real space, and therefore is done only once,

independent of the sampling grid. The speed up generated by filtration is therefore

multiplied by the number of k-points in these runs and hence will give a much greater

performance boost. Especially when looking at metallic systems, this can provide an

additional order of magnitude improvement for systems of less than 100 atoms.

One other point to observe in table 2 is the effect of increasing Rcut has on the

SCF time. As more functions are presented to the filtration step, it takes longer and

longer to produce the filtered functions. If it was possible to reduce the number of

functions presented without affecting the accuracy of the resulting filtered functions

it would be possible to decrease the time required for this step, and hence to lower

the size of system for when filtration becomes effective. A method of achieving this

is proposed here. The details of the idea, and its implementation into the AIMPRO

code are detailed in the next section.
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4.2 Filtration Method 2 - Advanced Filtration

As the system size increases, filtration becomes more and more effective at speeding

up a calculation. The system size below which it is faster to use a NF calculation

is dependent on the time taken by the step where the filtered functions are created

from the primitive basis set. This step is dependent on the number of atoms in the

system, and the number of primitive basis functions captured in the sphere of radius

Rcut. To make the filtration process faster, a version of this step known as advanced

filtration (AF) was developed, tested and implemented.

AF works by rejecting some functions captured in the sphere of radius Rcut. The

original process selects functions based only on the position of the centre of the Gaus-

sians. The first AF implementation, and the one used in this and the following

chapter, uses the integral of a product of each Gaussian in turn with a trial Gaussian

centred on the atom for which the filtered functions are being created. If this inte-

gral is greater than a parameter, the function is kept and presented to the filtration

process. This has the effect of keeping Gaussian functions of all exponents if they are

close to the central atom, but to keep only the more delocalised functions if they are

further away. As the number of functions trimmed in the AF process increases, the

calculation will deviate more and more from the corresponding SF calculation, and

the filtration step will take less and less time.

Another way of viewing this would be to focus on accuracy rather than speed,

and to use this overlap rather than Rcut as a way of selecting the functions. This

may be simulated by using a very large Rcut, such that it will be the overlap factor

rather than Rcut that determines the inclusion or otherwise of each function. It may

be (and in fact it will be shown to be true) that 1000 functions chosen in this way

will produce better filtered functions and hence a more accurate energy than 1000

functions produced using SF.
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4.2 Filtration Method 2 - Advanced Filtration

4.2.1 Theory Behind Advanced Filtration

In AF, each Gaussian basis function ϕj (centred at ~Rj with an exponent αj) inside the

sphere of radius Rcut is examined in turn. The expression (70) is calculated for each

one. ϕi is a Gaussian centred on the central atom at ~Ri, with an exponent αi equal

to the minimum exponent of the basis set. ϕi is referred to as the trial Gaussian. In

the ddpp basis set used for silicon in this thesis, the Gaussians have four exponents

of values 0.16145, 0.46343, 1.31473 and 3.75324, so the trial Gaussian ϕi will have an

exponent αi = 0.16145.∫
ϕiϕjd~r =

(
π

αi + αj

) 3
2

exp

[
− αiαj
αi + αj

(~Ri − ~Rj)
2

]
(70)

As |~Ri− ~Rj| → ∞ the value of this expression is controlled mainly by the exponent

term. The prefactor only varies weakly based on the values of the exponents. For

αj = 0.16145 the value of the prefactor is 30.9, for αj = 3.75324 the value is 3.9.

This is the full range of the prefactor, roughly one order of magnitude, as it does

not depend on the distance between the two Gaussians. In comparison, the exponent

term will vary by many orders of magnitude. This means the prefactor can be largely

ignored, and we use the exponent term to define a test for each Gaussian surrounding

the central atom. Specifically we reject the surrounding Gaussian if

exp

(
− αiαj
αi + αj

(~Ri − ~Rj)
2

)
< exp(−τ) (71)

which can be simplified to:

αiαj
αi + αj

(~Ri − ~Rj)
2 > τ (72)

If we increase the distance between the two Gaussians, the value of the left hand

side of (72) increases due to (~Ri− ~Rj)
2. If we narrow either Gaussian by increasing its

exponent, the value also increases due to
αiαj
αi+αj

. In both of these cases this corresponds

to the integral of the product of the two Gaussians decreasing, the left hand side of

(72) increasing, and the function only being kept for larger and larger values of τ . τ is
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4.2 Filtration Method 2 - Advanced Filtration

Table 3: The maximum useful setting for the AF parameter τ for silicon, at various

values of Rcut.

Rcut τmax

6 5.6

7 7.6

8 9.9

9 12.5

10 15.5

11 18.7

12 22.3

13 26.2

14 30.3

therefore a parameter which can be increased to keep more and more of the functions

captured within the sphere of radius Rcut. For a fixed value of Rcut, the maximum

value of the left hand side of (72), and hence the maximum useful value of τ , can be

calculated. We take a Gaussian on the edge of the sphere of radius Rcut, with the

narrowest spread and hence largest exponent αmax overlapping with the trial Gaussian

of exponent αi. The value of τmax above which no further functions will be included

is then

τmax =
αiαmax

αi + αmax

(Rcut)
2 (73)

For silicon using the ddpp basis set in this thesis, the various values of τmax for

values of Rcut can be seen in table 3.

One final point to note about this technique is that is does not take into account the

angular momentum of the basis function. A p or d function is treated as if it were an s

function, that is to say the expressions seen in (36-37) have their prefactors removed,

to look like the expression in (35). This is necessary, as p and d functions are highly
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4.2 Filtration Method 2 - Advanced Filtration

Figure 6: A schematic diagram to illustrate the effect of increasing both the distance

between Gaussians and of varying exponent values, on the value of the overlap integral

used in AF. The images on the right have the atoms further apart than those on the

left, to show schematically how quickly the overlap drops with distance and exponent.
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4.2 Filtration Method 2 - Advanced Filtration

directional. If a p-type orbital points in a direction orthogonal to its displacement

from the central atom, the overlap would always be zero, and these functions would

then be ignored. This is illustrated in figure 7.

4.2.2 Implementation and Testing of AF

When the SF Rcut based process is finished for an atom, a reduced size Hamiltonian,

overlap matrix and density matrix (H ′, S ′ and b′ij) are produced. They are reduced in

size further by AF, in a process illustrated in figure 8. These twice-reduced matrices

are then used to populate the relevant rows and columns of the K matrix.

After this has been done for all the atoms, the full K matrix has been created.

It will be the same size as it would have been using just SF. However the rows and

columns relating to the basis functions that have been rejected will be populated with

zeros, i.e. K will be sparser. It is obviously possible at this point to reduce the size

of the K matrix by removing these rows and columns, or to simply create a smaller

matrix in the first place. To do this would require some coding changes to create

the smaller matrix in the first place, but more importantly require extensive coding

changes and testing to the filtration section of AIMPRO. By keeping the K matrix the

same size, these changes are avoided. The changes and testing would have required

weeks if not months of effort to ensure no errors were introduced.

There is a small downside to this approach, in the transformations between the

primitive space and subspace. As the K matrix is larger, this will take longer than

necessary. It should be noted however that the interactions between atoms beyond a

certain distance are very small. For this reason, sparse matrix algorithms are pre-built

into the filtration process. The increased sparsity of the K matrix because of the AF

procedure will increase the efficiency of these algorithms. Although it will never be

as efficient as reducing the size of the K matrix, this novel approach allows most of

the benefit to still be present without the huge effort of recoding the majority of the

filtration code. The full impact of the reduced size of the Natom eigenproblems is of
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4.2 Filtration Method 2 - Advanced Filtration

Figure 7: Illustration of the problems encountered if overlap was calculated using

CGOs other than s-type. The central blue atom has a trial Gaussian (always s-type)

represented by the brown sphere. If the angular momentum of the surrounding CGOs

were taken into account, such as in the 3 orthogonal purple p-type CGOs shown here,

the use of the full overlap (including angular variation) in AF would only include the

p-type orbital pointing towards the central atom. Hence all surrounding CGOs are

treated as s-type when calculating whether or not they are rejected in the AF process.
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4.2 Filtration Method 2 - Advanced Filtration

course unaffected, which is the main time saving feature of AF.

This way only two procedures were required to be developed that sit around the

existing code. They fit around the existing code as follows:

1. Procedure 1 identifies the primitive functions that have failed the AF test, and

creates the reduced size matrices H ′′, S ′′ and b′′ij (as in steps C-E in figure 8).

2. H ′′, S ′′ and b′′ij are passed to the filtration algorithm.

3. The filtration process produces the columns of the filtration matrix K related

to the central atom.

4. H ′ and S ′ are not required any more, but b′ij is. It is thus recreated in procedure

2 from b′′ij by expanding into a matrix the size of b′ij, filling the gaps with zeros.

5. This process is repeated for every atom in the system, after which the full K

matrix is available.

4.2.3 Effect of τ on Calculation Times

As with Rcut in table 2, it is useful to see the effect of the AF parameter τ on the time

taken by a SCF step, and how many functions are kept. This was carried out on a

system of 216 atoms of bulk silicon, using Rcut=10 and 12 a.u. and Γ point sampling.

AF was applied for values of τ of 6, 8 and 10. The results are in tables 4 and 5.

It can be seen τ has a dramatic effect on the time taken for a SCF iteration. For

example cutting the number of functions by just 20% halves the average SCF time for

an Rcut of 10 a.u.. Cutting the number of functions by 25% obtains a similar speed

increase for AF calculations with an Rcut of 12 a.u. What must now be established is

the accuracy of calculations using various values of Rcut and τ . This is the focus of

the next section.
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Figure 8: Illustration of SF and AF reducing the size of the Hamiltonian or overlap

matrix (H ′ and S ′). A shows the full size matrix, which is reduced to matrix C in

the SF process. AF then further reduces this, creating matrix E. A similar process

operates on the density matrix b′ij, the process being slightly different as b′ij and b′′ij

are not square matrices.
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Table 4: The effect of changing τ on average SCF time and number of functions

presented to the filtration process. The system is 216 atoms of bulk silicon, with

Rcut=10 a.u..

Filtration type Nkeep Average SCF time (s)

AF, τ = 6 380 41

AF, τ = 8 584 58

AF, τ = 10 716 88

SF 812 115

NF - 157

Table 5: The effect of changing τ on average SCF time and number of functions

presented to the filtration process. The system is 216 atoms of bulk silicon, with

Rcut=12 a.u..

Filtration type Nkeep Average SCF time (s)

AF, τ = 8 548 58

AF, τ = 10 776 102

AF, τ = 12 992 172

SF 1316 341

NF - 157
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4.3 Filtration Results - Comparing Accuracies of Calcula-

tions

When determining the accuracy of calculations using SF, the goal or ‘ideal answer’ is

the answer given by AIMPRO under the same conditions but without using filtration,

a NF calculation. When the AF algorithm is being tested, the goal is then the answer

using SF, i.e. no trimming of the basis functions within the sphere of radius Rcut

around the central atom. Note the same value of Rcut must be used in both the SF

and AF calculation. To state this another way, the process is perfect from an accuracy

viewpoint if AF calculations produce no changes to the energy obtained without

function trimming taking place. This concept is central to the analysis presented in

this thesis.

These points can be reinforced with two examples. If a formation energy (FE)

is quoted as 14.5 meV, and AIMPRO without filtration comes up with -3.5 meV, we

want AIMPRO with SF to return an answer as close to -3.5 meV as possible. The task

of getting AIMPRO’s answer closer to the accepted one is a separate topic entirely.

Similarly, if the SF calculation ran on this system returned say -3.0 meV, and the

calculation ran for a third time, now using AF (with the same value of Rcut as the SF

calculation), we want the answer to be as close as possible to -3.0 meV, not -3.5 meV.

When discussing the AF process, we are focussed only on that and not the accuracy

of the untrimmed but filtered (SF) calculations.

The idea behind AF is to reduce the time taken for the filtration step, while

sacrificing only a small amount of accuracy, typically less than 10 meV. As the number

of functions trimmed in the AF process increases, the calculation will deviate more

and more from the corresponding SF calculation, and the filtration step will take

less and less time. The main goal is to see how far the filtration parameters can be

pushed before the accuracy of the calculation is compromised too much, i.e. beyond

the accepted 10 meV threshold.
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When data is presented, typically greater accuracy is recorded than presented. For

example when single energies are calculated, 10 decimal places are recorded and used

to calculate FEs, as well as absolute and percentage differences. As data is rounded

for display in each table sometimes two FEs that appear to be the same are only the

same to the nearest meV, and can still show a percentage and/or absolute difference.

4.4 Filtration Results - Ideal Vacancy In Silicon

This section presents results of evaluations of total energies and FEs for an ideal

vacancy in silicon, for various sized systems. An ideal vacancy consists of taking

the regular bulk silicon structure and removing one atom, without then relaxing the

structure. The FE is defined as the difference in energy of N silicon atoms in a regular

structure of N sites, to that of N atoms in a regular structure of N + 1 sites. Here

we calculate the energy of the regular structure, E(N), and the same structure with

one atom removed, E(N − 1). Hence the FE can be calculated as.

Formation Energy = E(N − 1)− N − 1

N
E(N) (74)

4.4.1 Details of Systems Modelled

• Three system sizes were investigated, N=64, 216 and 512 atoms.

• Calculations were performed using a simple cubic lattice, with a lattice constant

of multiples of 5.419Å, and Γ point sampling of the Brillouin zone.

• The DFT calculation used an LDA functional [49].

• The pseudopotential used were as presented in Hartwigsen, Goedecker and Hut-

ter (1998) [29].

• SF calculations used values of Rcut ranging from 5 to 12 a.u., AF calculations

used values for the AF parameter τ of 5-8.
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• The basis set for silicon was ddpp, and 4 filtered functions per silicon atom were

used.

• The Fermi-Dirac function used in the filtration process had a Fermi energy of

0.2 Ha, with kT set to 0.1 Ha.

4.4.2 Link Between Rcut and the Time Required for a SCF step

Before the accuracy of the calculations is examined, it is interesting to see the effect

on the length of time for a SCF iteration the Rcut parameter has. Table 6 shows the

average SCF time for the 63 and 64 silicon atom systems for both the NF run, and

the SF runs at the relevant Rcut radii. The 63 atom calculations are a little quicker

than the 64 atom ones. As well as speed increases due to the reduced system size as

the values of Nkeep are lower, the filtration process will be quicker for each atom as

well as having to run for one fewer atom. As predicted in section 4.1.2, the SCF times

for the 63 atom system calculations are very close to the 64 atom system calculations,

previously seen in table 2. This allows us to look to the value of Rcut when analysing

the effect on the time required for a SCF iteration, instead of having to calculate

average SCF times. Looking at Rcut and Nkeep instead of actual SCF times allows

effects such as computational power to be ignored.

4.4.3 Overview of Results

Three sections of results are presented for the bulk and ideal vacancy silicon calcula-

tions.

1. Section 4.4.4 looks at the differences between total energy calculations performed

using NF and SF. SF calculations were performed using values of Rcut ranging

from 5 to 12 a.u., for system sizes of 63/64, 215/216 and 511/512 atoms of silicon

(for the ideal vacancy and bulk structures respectively).
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Table 6: The effect of filtration radius Rcut on the number of functions presented

to the filtration algorithm (Nkeep), and average SCF times, for unit cells containing

64 atoms of bulk silicon, and 63 atom of bulk silicon with an ideal vacancy. For SF

calculations, as Nkeep increases, so does the time required for an average SCF iteration.

At this small system size, only the lowest value of Rcut leads to a faster SCF iteration

than when using NF.

Rcut (a.u.)
Nkeep Average SCF time(s) Nkeep Average SCF time(s)

63 atoms 63 atoms 64 atoms 64 atoms

5 138.2 7 140 8

8 468.9 12 476 13

10 799.5 29 812 31

12 1295.6 92 1316 98

NF - 10 - 11

2. Section 4.4.5 investigates the calculation of the FE of an ideal vacancy in silicon,

using the same system sizes and filtration methods/parameters seen in section

4.4.4.

3. Section 4.4.6 analyses the performance of AF, by comparing AF calculations of

FEs of an ideal vacancy in silicon to corresponding SF calculations. Rcut was

set to 10 a.u. for all calculations, with the AF parameter τ ranging from 5 to 8.

Calculations were performed on system sizes of 215/216, 511/512 and 999/1000

atoms.

4.4.4 Total Energy Calculations - NF vs SF

This section examines AIMPRO calculations of the total energy of bulk silicon and

the corresponding ideal vacancy systems. Calculations without filtration (NF) are

compared to ones using filtration (SF) for varying values of Rcut.
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Table 7: The effect of filtration radius Rcut on the energies of unit cells containing

64 atoms of bulk silicon, and 63 atoms of bulk silicon with an ideal vacancy. The SF

calculations becomes closer to the corresponding NF calculations as Rcut is increased.

The same effect can be seen in tables 8 and 9.

Rcut (a.u.)

E(Rcut) (Ha) E(Rcut) (Ha) E(Rcut)− E(NF ) E(Rcut)− E(NF )

64 atoms 63 atoms (meV per atom) (meV per atom)

64 atoms 63 atoms

5 -253.12570 -249.05343 136.5 134.5

8 -253.41976 -249.33542 11.5 12.7

10 -253.43218 -249.34873 6.2 7.0

12 -253.44338 -249.36117 1.4 1.6

NF -253.44674 -249.36488 - -

Table 8: The effect of filtration radius Rcut on the energies of unit cells containing 216

atoms of bulk silicon, and 215 atoms of bulk silicon with an ideal vacancy. The SF

calculations becomes closer to the corresponding NF calculations as Rcut is increased.

The same effect can be seen in tables 7 and 9.

Rcut (a.u.)

E(Rcut) (Ha) E(Rcut) (Ha) E(Rcut)− E(NF ) E(Rcut)− E(NF )

216 atoms 215 atoms (meV per atom) (meV per atom)

216 atoms 215 atoms

5 -855.10331 -850.99417 132.7 132.9

8 -856.05438 -851.94019 12.9 13.2

10 -856.09488 -851.98162 7.8 7.9

12 -856.14012 -852.02744 2.1 2.1

NF -856.15658 -852.04432 - -
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Table 9: The effect of filtration radius Rcut on the energies of unit cells containing 512

atoms of bulk silicon, and 511 atoms of bulk silicon with an ideal vacancy. The SF

calculations becomes closer to the corresponding NF calculations as Rcut is increased.

The same effect can be seen in tables 7 and 8.

Rcut (a.u.)

E(Rcut) (Ha) E(Rcut) (Ha) E(Rcut)− E(NF ) E(Rcut)− E(NF )

512 atoms 511 atoms (meV per atom) (meV per atom)

512 atoms 511 atoms

5 -2027.18610 -2023.06812 131.2 131.3

8 -2029.40988 -2025.28801 13.0 13.1

10 -2029.50611 -2025.38519 7.9 7.8

12 -2029.61556 -2025.49514 2.1 2.1

NF -2029.65436 -2025.53435 - -

In tables 7, 8 and 9 the calculated energies of each structure are presented for SF

calculations of varying Rcut, and the corresponding NF calculation. The differences

of each SF calculation to the corresponding NF calculation in meV per atom is also

presented. When comparing single energy calculations, the energy difference per

subunit (in this case a silicon atom) of the structure should be examined, not the

total difference. If the total energy difference was used, it would increase linearly

with the size of the system, which doesn’t lend itself to useful analysis. Note this is

different to when examining FE differences. FEs can be directly compared between

different system sizes. As only one vacancy is present in each of the pairs of systems,

and it is only the energy of the vacancy that is calculated, the FE should converge

to a fixed answer as the system size is increased, with vacancy-vacancy interactions

between adjacent supercells tending to zero with increasing number of atoms per

supercell.

Four very basic conclusions can be drawn immediately.

For each of the six systems investigated, it can be seen that as the cut-off radius
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increases, the results converge towards the unfiltered value. This is to be expected,

as large values of Rcut reduce the truncation in filtration.

There is a clear trend of a less negative total energy with decreasing filtration

radius. This is due to the reduced freedom when constructing the filtered basis set,

therefore the energy is higher due to the variational principle.

The differences per atom for the three pairs of systems are very similar, with the

results for 215/216 and 511/512 atoms very close to each other for all values of Rcut,

especially Rcut > 5 a.u.. This is not a particularly surprising find, but is reassuring in

terms of the observed consistency of the filtration method. As gamma point sampling

of the Brillouin zone was used for these calculations, the large reciprocal lattice size

for 63/64 atom systems will mean the FE is not close to the convergence value.

The energy differences per atom at Rcut = 5 a.u. of over 130 meV in all 3 cases is

very high. This is much too large a difference in the absolute energies for filtration to

be an acceptable replacement method for unfiltered calculations. Typically differences

of the order of 1-5 meV per atom would be regarded as an acceptable difference. Rcut

= 10 a.u. has differences of 6-8 meV/atom, which is still a bit too high. Only a

value of Rcut = 12 a.u. yields a reasonable difference of 1.4-2.1 meV/atom. However

such calculations using filtration are commonplace, and still yield the time-saving

properties of filtration described earlier [56].

This being said, in computational physics or chemistry only differences of energy

are important and the error in the absolute energies are expected to be largely sys-

tematic, and indeed this is necessary for filtration to be a useful technique. This is

examined in the next section.

4.4.5 Formation Energy Calculations - NF vs SF

The previous section examined a single NF calculation against a single SF calculation.

In this section we look at formation energies, calculated using the formula outlined

in the introduction to section 4.4. This formula is based around the difference of two
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total energies, both of which use the same filtration method (i.e. E[NF1] - E[NF2] or

E[SF1] - E[SF2], never E[NF1] - E[SF2]). It is hoped this will lead to cancellation of

systematic errors.

Looking at the results in table 10 we can see the error in an energy difference

such as a FE is much smaller than the error in a total energy calculation. The

differences in the vacancy FE are far smaller than the individual differences making

up the calculation. They also don’t show a great deal of difference for different system

sizes. This means our analysis here, and for similar ones in the future, should focus on

quantities based on energy differences, such as a FE in this particular case. The idea

that basis set errors are largely systematic and cancel when looking at differences, is

well established. It is used routinely in quantum chemistry [30].

Table 10: Changes in total energies (∆E) and FEs (∆FE) for ideal vacancy forma-

tion in bulk silicon systems, modelled using SF with Rcut=12 a.u. compared to NF

calculations. The much larger differences in the total energies that scale with system

size contrast to the much smaller differences seen in the formation energies. This

demonstrates the cancellation of systematic errors necessary for filtration to provide

accurate results.

System size ∆E=E[NF]-E[SF] ∆E=E[NF]-E[SF] ∆FE=FE[NF]-FE[SF]

N-1/N atoms N atoms (mHa) N-1 atoms (mHa) (mHa)

63/64 atoms -3.36 -3.71 0.40

215/216 atoms -16.46 -16.88 0.50

511/512 atoms -38.80 -39.21 0.49

Although for the purposes of this and following analyses, single energy AIMPRO

results are not required, they are detailed for almost all results in this and the following

chapter. This is because they serve as useful data, and allow the possibility of further

analysis of this data, in ways not carried out in this thesis. With the volume of

data presented, and the overlap of some parameters in many of the calculations, it
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is possible some correlations will go unseen. There are a handful of cases where the

source single energy results are not present, in cases where a main point is being

supported by further results, and these further results are not central to the current

theme. An example of this is the result of moving a silicon atom by 0.1 pm increments

and finding the FE at each value, as this data is presented to support the observed

shifts in atoms by giving a feel for the energy changes at this level.

Table 11: Calculations of the FE of an ideal vacancy in a 64 atom unit cell of silicon,

using NF, and SF for a range of values of Rcut. The FEs are calculated using the

formula 74 in the introduction to section 4.4. As the filtration radius Rcut is increased,

the SF calculations converge to the NF result.

Rcut (a.u.) E[64] (Ha) E[63] (Ha) FE (eV)
FE[Rcut]-FE[NF]

|% Change|
(meV)

5 -253.12570 -249.05343 3.189 -124 3.76

8 -253.41976 -249.33542 3.392 79 2.38

10 -253.43218 -249.34873 3.363 49 1.49

12 -253.44338 -249.36117 3.324 11 0.33

NF -253.44674 -249.36488 3.313 - -

A more detailed analysis is now provided. For each of the 3 system sizes, FEs were

calculated using different values of Rcut, and each compared to the corresponding NF

result. The results are shown in tables 11-13. Looking at table 11 reveals that as Rcut

is increased, the magnitude of the FE difference to the NF calculation decreases. For

an Rcut of 10 a.u., the difference is around 50 meV, and for 12 a.u. around 10 meV.

10 meV is about the accuracy of any unfiltered calculation. Certainly the calculation

done with an Rcut of 12 a.u. gives an acceptable answer. Any filtration radius smaller

than 10 a.u. would be unacceptable for calculating FEs. With most electronic struc-

ture calculations the energies lie above the true answer, true in the sense of an ideal

measurement at 0K. However for a filtration radius of 5 a.u. we get an answer lower
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than our target FE, the unfiltered calculation that yields a FE of 3.313 eV. This is

because the FE is a function of two calculated energies. If say the 63 atom calculation

is further away from its unfiltered 63 atom counterpart than the 64 atom calculation

is from its 64 atom unfiltered counterpart, the FE will be lower than the unfiltered

calculation.

Table 12: Calculations of the FE of an ideal vacancy in a 216 atom unit cell of

silicon, using NF, and SF for a range of values of Rcut. The FEs are calculated

using the formula 74 in section 4.4. As the filtration radius Rcut is increased, the SF

calculations converge to the NF result.

Rcut (a.u.) E[216] (Ha) E[215] (Ha) FE (eV)
E[Rcut]-E[NF]

|% Change|
(meV)

5 -855.10331 -850.99417 4.091 48 1.18

8 -856.05438 -851.94019 4.108 65 1.62

10 -856.09488 -851.98162 4.078 35 0.87

12 -856.14012 -852.02744 4.056 14 0.33

NF -856.15658 -852.04432 4.043 - -

An examination of tables 12 and 13 shows the same trends as table 11. An Rcut of

5 or 8 a.u. is poor with differences to the unfiltered calculations of around 50-75 meV.

Rcut=12 a.u. FEs are 13-14 meV, just larger than the 10 meV threshold previously

discussed. These would be acceptable results. If a value of Rcut of 12 a.u. is required

for an accurate calculation, referring to table 2 shows for calculations of this type,

filtration becomes effective (i.e. reduces the time required for a SCF iteration) for

systems whose size is somewhere between 216 and 512 atoms. It is worth nothing

however that all these calculations were performed using Γ point sampling of the

Brillouin zone. For systems of this size the sampling would always take place on a

grid, typically with 4 or more symmetry-distinct k-points. The filtration process only
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Table 13: Calculations of the FE of an ideal vacancy in a 512 atom unit cell of

silicon, using NF, and SF for a range of values of Rcut. The FEs are calculated

using the formula 74 in section 4.4. As the filtration radius Rcut is increased, the SF

calculations converge to the NF result.

Rcut (a.u.) E[512] (Ha) E[511] (Ha) FE (eV)
E[Rcut]-E[NF]

|% Change|
(meV)

5 -2027.18610 -2023.06812 4.317 76 1.79

8 -2029.40988 -2025.28801 4.304 63 1.5

10 -2029.50611 -2025.38519 4.273 32 0.77

12 -2029.61556 -2025.49514 4.254 13 0.31

NF -2029.65436 -2025.53435 4.241 - -

needs to run once and can then be applied to all k-points. SF calculations using 4

k-points will suffer the penalty of one filtration step, but offer the advantage of a

reduced Hamiltonian diagonalisation four times in each SCF step. This will favour

SF calculations. Table 14 shows the effect of increasing the number of k-points on

the average time required for a SCF step. Filtration is effective for 216 atom systems

when using a MP grid of 4 4 4 or finer. In fact it reduces the time required for a SCF

iteration by over a factor of 3. For 64 atom systems filtration is still not effective for

a MP grid of 4 4 4, but only takes twice as long per SCF iteration, instead of the

factor of 9 seen for Γ-point sampling.

It should be noted that these results are for bulk silicon, which displays a large

amount of symmetry, helping to reduce the number of independent k-points. Almost

all systems to be modelled will not show this degree of symmetry, and consequently the

number of k-points will be larger when using the same 222 or 444 MP grid. Repeating

the 64 atom calculations, but moving a few atoms slightly to break the symmetry,

allows the effect of the higher number of k-points on the average SCF time to be seen.

These results are in table 15. Now the calculation using a MP 4 4 4 sampling grid is
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Table 14: Average times for an SCF iteration for bulk silicon energy calculations with

increasing number of k-points (Γ-point, MP 2 2 2, MP 4 4 4). Two system sizes, 64

and 216 atoms, were modelled. SF calculations used an Rcut of 12 a.u.. The effect of

the filtration step required to be performed only once per SCF iteration can be seen

through the rapid increase of the NF SCF times, compared to the gradual increase

seen for the SF calculations.

Filtration Average SCF time (s)

Method 64 atoms 216 atoms

Γ 2 2 2 4 4 4 Γ 2 2 2 4 4 4

SF 98 101 118 341 370 505

NF 11 19 57 157 457 1762

faster under SF than a NF calculation, even for 64 atoms.

The value of Rcut=12 a.u. has been shown to produce accurate calculations for

the ideal vacancy formation energy in silicon, for system sizes dependent on the k-

point sampling options. To achieve converged results, as the system size is reduced a

finer grid is usually necessary, which would mean filtration can be effective for system

sizes of 216 atoms, and possibly smaller. Once the system size approaches 64 atoms,

the filtration step itself takes longer than the savings it produces, unless a very fine

k-point sampling grid is employed in the calculation. However, the time required for

the filtration step can be reduced using AF. Hence the above calculations were then

repeated using AF, albeit for a different range of system sizes, the results of which

are detailed in the next section.

4.4.6 Formation Energy Calculations, SF vs AF

The calculations in this section were performed using AF, with values of the tolerance

parameter, τ , of 5-8. This time 215/216, 511/512 and 999/1000 atom systems were

used. Rcut was chosen to be 10 a.u., all other parameters the same as in section
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Table 15: Average times for an SCF iteration for total energy calculations for a unit

cell of 64 atoms of silicon, with 5 atoms slightly displaced to break the symmetry

of the unit cell. SF calculations used an Rcut of 12 a.u.. The effect of the filtration

step being performed only once per SCF iteration is even more pronounced than was

witnessed in table 14.

Filtration Average SCF time (s)

Method 2 2 2 4 4 4

SF 117 277

NF 56 408

4.4. Tables 16, 17 and 18 show the results for 215/216, 511/512 and 999/1000 atom

systems respectively.

Note the values at τ = ∞ still represent a filtered calculation, with the filtration

radius set to 10 a.u.. The lower the value of τ , the more functions that are dropped,

and the lower the accuracy. When τ =∞ no functions are dropped, producing a SF

calculation.

Before examining the FE results, one observation is worth noting from the data

presented in tables 16, 17 and 18. Previously when comparing single energy calcula-

tions using SF and NF, large energy differences were seen. However the systematic

nature of these allowed them to be used when comparing energy differences with much

more accuracy, as the differences tended to ‘follow’ each other. This is also seen here

when comparing SF calculations against AF ones.

Looking at the results for the three system sizes at once, the results are divisible

into two sets. For τ = 5, the difference between the SF calculation and the trimmed

one is about 28 meV in all 3 cases. This is an appreciable difference. For values of

τ = 6 or above, very small differences are seen, between 1 and 5 meV, less significant

than other sources of error inherent in computational calculations. A value of τ = 6

or more would be an acceptable filtration parameter for this and similar systems.
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Looking back to table 4 in section 4.2.3, we see a value of 6 for τ reduces the average

SCF time for this system from 115 seconds for a SF calculation, to 41 seconds, and

to 58 seconds for τ=8. A NF calculation had an average SCF time of 157 seconds.

This is an excellent result both from a timing and accuracy perspective.

Table 16: The effect of the AF parameter τ on calculations of FEs of an ideal vacancy

in a 216 atom unit cell of silicon. Rcut was set to 10 a.u.. Even very small values of

τ , down to as low as 6, lead to negligible differences in the resulting FE compared to

that achieved using SF.

τ E[216] (Ha) E[215] (Ha) FE (eV)
FE[τ ]-FE[SF]

|% Change|
(meV)

5 -855.94782 -851.83409 4.109 28 0.68

6 -855.97395 -851.86131 4.076 -5 -0.13

7 -856.06890 -851.95583 4.076 -5 -0.13

8 -856.07790 -851.96454 4.083 1 0.03

∞ (SF) -856.09501 -851.98162 4.081 - -

4.4.7 Conclusions from Results for Ideal Vacancy in Silicon

A summary of the main findings from this section is as follows:

1. Total energy calculations performed using SF or AF produce results that can

be different from the corresponding NF results, but that can be controlled with

Rcut and τ . The differences depend on system size, as well as the chosen values

of Rcut and τ .

2. Differences of total energy calculations using SF or AF, such as FEs, produce

small deviations from the equivalent NF calculations.

3. For the FE of an ideal vacancy in silicon, a SF calculation using a filtration

radius Rcut of 12 a.u. gives an acceptable result.
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Table 17: The effect of the AF parameter τ on calculations of FEs of an ideal vacancy

in a 512 atom unit cell of silicon. Rcut was set to 10 a.u.. Even very small values of

τ , down to as low as 6, lead to negligible differences in the resulting FE compared to

that achieved using SF.

τ E[512] (Ha) E[511] (Ha) FE (eV)
FE[τ ]-FE[SF]

|% Change|
(meV)

5 -2029.15237 -2025.03687 4.145 28 0.69

6 -2029.21574 -2025.10123 4.114 -2 0.05

7 -2029.44644 -2025.33143 4.116 1 0.02

8 -2029.46723 -2025.35198 4.121 5 0.12

∞ (SF) -2029.50613 -2025.39098 4.116 - -

Table 18: The effect of the AF parameter τ on calculations of FEs of an ideal vacancy

in a 1000 atom unit cell of silicon. Rcut was set to 10 a.u.. Even very small values of

τ , down to as low as 6, lead to negligible differences in the resulting FE compared to

that achieved using SF.

τ E[1000] (Ha) E[999] (Ha) FE (eV)
FE[τ ]-FE[SF]

|% Change|
(meV)

5 -3963.26535 -3959.14745 4.208 27 0.63

6 -3963.39010 -3959.27316 4.178 -3 0.07

7 -3963.84342 -3959.72591 4.182 0 0.00

8 -3963.88352 -3959.76580 4.186 5 0.11

∞ (SF) -3963.95965 -3959.84203 4.181 - -

4. When using AF to calculate the FE of an ideal vacancy in silicon, values of the

AF parameter τ as low as 6 produced acceptable results. This corresponds to

using only 40% of the functions present in the original sphere of radius Rcut,

and reduces the average SCF time to a similar percentage.
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The next section will the performance of SF and AF when used to calculate the

energy of a reaction, which involves calculating total energies for four silicon based

structures.

4.5 Oxygen defect in silicon

As a second example to test filtration, defects containing oxygen were considered in

silicon, specifically the energy of a reaction of two structures forming two others.

4.5.1 Details of Systems Modelled

The calculations in this section are of the energy of the reaction in which an oxygen-

vacancy centre captures an interstitial oxygen atom to create the VO2 defect [17].

E[Reaction] = E[216 Si] + E[VO2]− E[VO]− E[Oi] (75)

The four structures that appear in this reaction are as follows:

1. A unit cell of silicon containing 216 atoms of silicon in the relaxed configuration,

referred to as 216 Si.

2. A unit cell of silicon containing an extra interstitial oxygen atom, referred to

as Oi. To create this structure, an oxygen atom is introduced to an otherwise

perfect silicon unit cell of 216 atoms. This forms a defect in which a Si-Si

bond breaks and the oxygen atom inserts itself into this broken bond, forming

a bridging configuration [17].

3. A unit cell of silicon in which a silicon atom is replaced with an off-centre oxygen

atom. This structure is referred to as VO [17].

4. A unit cell of silicon in which a silicon atom is replaced with two oxygen atoms.

This structure is referred to as VO2 [17]. As the VO2 defect can be consid-

ered to be formed when a VO centre captures a Oi defect, the energy of this

transformation E[Reaction] is equivalent to equation 75.
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The total energy calculations for each of these four structures used the following

parameters:

• The supercells were made using a 3x3x3 grid of primitive cubic cells of 8 silicon

atoms, with a lattice parameter of 10.19 a.u..

• For the Oi, VO and VO2 structures, initial best guesses as to the relaxed struc-

ture were made. This was done by initially removing a silicon atom (for the VO

and VO2), then placing the oxygen atom(s) using a best guess. The structure

was then optimised in AIMPRO using the conjugate gradient algorithm. These

optimised structures were used for all the total energy calculations.

• The k-point sampling of the Brillouin zone used an MP 2 2 2 sampling grid [45].

• The Fermi-Dirac function used in the filtration process had a Fermi energy of

0.2 Ha, with kT set to 0.1 Ha.

• The filling of the energy levels took place at a temperature with kT set to

0.04 eV.

• The pseudopotentials for oxygen and silicon were as presented in Hartwigsen,

Goedecker and Hutter (1998) [29].

4.5.2 Overview of Results

Section 4.5.3 looks at the difference in the energy of the reaction using NF, and SF

using a filtration radius Rcut of 10 a.u..

Section 4.5.4 compares the calculated reaction energy between the SF result from

section 4.5.3 to AF calculations using values of the AF parameter τ of 5, 6, 8 and 10.

Finally in section 4.5.5 an analysis of the effect of the different filtration methods,

and parameters used in each, on the time required for SCF iterations is provided.
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Table 19: Comparison of NF and SF calculations of energy of reactants, energy of

products and overall reaction energy for the reaction (75). SF calculations used a

value of 10 a.u. for Rcut.

ENF (Ha) ESF, Rcut=10 a.u. (Ha) ENF-ESF (meV)

E[Oi] (Ha) -872.20824 -872.14660 -1677

E[216] (Ha) -856.16318 -856.10183 -1669

E[VO2] (Ha) -884.28124 -884.21883 -1698

E[VO] (Ha) -868.18638 -868.12429 -1690

E[Reaction] (eV) -1.355 -1.354 -1

4.5.3 Energy of Reaction - NF vs SF

Looking first at the SF results in table 19, we see the unfiltered reaction energy is

-1.355 eV, and the SF calculation gives an answer of 1.354 eV, a difference of only

1 meV. Again the differences in the individual energies are far larger than the differ-

ences in the reaction energy, here by a factor of over 1600. This is an outstanding

result, and suggests we may have room to make efficiency savings via AF.

4.5.4 Energy of Reaction - SF vs AF

In table 20 the comparison is between the SF energies, and the function trimmed

energies (the SF result is the target result for AF). For values of τ = 5 or τ = 6

large differences of 86 meV and 116 meV respectively are obtained. This is an order

of magnitude larger than the acceptance threshold of 10 meV. When the quality of

the calculation is increased with the AF parameters of τ = 8 and τ = 10 work much

better giving differences of 19 meV and 7 meV respectively. Only τ = 10 produces

a calculation of acceptable quality. It should be noted that the individual energy

differences are still much larger in absolute terms than the differences in the reaction

energy. That is to say the differences are still cancelling out, but not to the extent
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Table 20: The effect of parameter τ on AF calculations, for energy of reactants, energy

of products and reaction energy for the reaction (75). All calculations used a value of

10 a.u. for Rcut.

τ 5 6 8 10

E[Oi] (Ha) -871.97734 -872.01506 -872.12799 -872.14492

E[216] (Ha) -855.94265 -855.96951 -856.08427 -856.10065

E[VO2] (Ha) -884.04694 -884.08478 -884.20092 -884.21704

E[VO] (Ha) -867.95932 -867.99371 -868.10675 -868.12273

E[Reaction] (eV) -1.440 -1.239 -1.373 -1.362

Difference to SF (meV) -86 116 -19 -7

Difference to SF mod (%) 6.3 8.5 1.4 0.5

seen when just applying SF. This is to be expected to a certain degree, as lower values

of τ are reducing the quality of the basis set. However the differences are larger than

those seen in the ideal vacancy FE results.

4.5.5 Link Between Rcut, τ and the average time required for an SCF

iteration.

It would be useful to see what these values of τ mean, in terms of how much faster the

part of the calculation they affect runs. The average numbers of functions available

from which to construct the filtered functions in each of the calculations from table 20

are presented in table 21, along with the average time for a SCF step. The reduction

in this time reflects the faster speed of the generation of the filtered functions, which

depends cubically on Nkeep. The effect of this is also proportional to the number of

atoms, so that the speed up is greater as the system size reduces,.

The dramatic change in SCF time at the small end of the system spectrum due to

the speeding up of the filtration process is clear, with dropping the number of functions

by a factor of roughly 3.5 leading to a reduction in the SCF time by approximately a
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Table 21: Number of functions presented to the filtration algorithm (Nkeep) and av-

erage SCF times in seconds for SF and AF calculations for reactants and products of

reaction (75).

τ
Oi 216 VO2 VO

Nkeep SCF (s) Nkeep SCF (s) Nkeep SCF (s) Nkeep SCF (s)

5 261 28 260 15 261 27 260 26

6 384 65 380 41 380 66 379 65

8 555 86 548 58 565 87 562 85

10 723 115 716 88 725 113 720 113

SF 823 136 812 108 827 139 820 138

NF - 172 - 146 - 171 - 170

factor of 5. This is at the expense of accuracy however, with only a value of 10 for τ

giving an answer within 10 meV of the SF result. However this does reduce the time

required for an SCF iteration to roughly two thirds of that seen for a NF calculation,

without an appreciable loss of accuracy. It must be noted that this is at the smallest

end of the spectrum of system sizes for which filtration operates. For larger systems

the time savings obtained with filtration will be increased dramatically, tending much

more rapidly to two orders of magnitude, which comes the (N/n)3 theoretical limit

outlined in section 3.1. The ability to produce faster calculations for systems of this

small size is a good result.

4.5.6 Summary of Findings

The use of SF with an Rcut of 10 a.u. produces results only 1 meV different to the NF

result. When AF is introduced into this SF calculation, a value of τ=10 produced good

results. Use of these filtration parameters for these systems will produce improvements

for both small and large systems, an important result. This has been presented as a

trimming down of the functions captured using Rcut=10 a.u.. However, the possibility
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clearly exists to start with Rcut=15 a.u. or a suitably large value, and then use τ as

the fundamental parameter, rather than Rcut. This is examined in chapter 6.

4.6 Conclusions

Total energy calculations performed using filtration can produce results significantly

different to their NF counterparts. This difference, being an extensive quantity, in-

creases with system size. The energy difference per atom however does not, and can

be made sufficiently small with a large enough value of Rcut. When the systematic

nature of these differences are removed, by subtracting total energies, the resulting

SF and AF calculations lie much closer to the corresponding NF calculations.

For the systems studied here, SF calculations using a filtration radius Rcut of

12 a.u. produce results of acceptable accuracy, that is to say within 10 meV of the NF

result. For some systems Rcut can be lowered to 10 a.u.. For systems of 216 atoms and

above this leads to time savings, through the reduction in the time required for SCF

iterations, even when using Γ-point sampling of the Brillouin zone. When using a finer

sampling grid, filtration becomes effective for lower and lower sized systems. MP 4 4

4 grids and finer are faster using filtration than without for bulk silicon calculations

of only 64 atoms.

AF is a method of reducing the number of functions presented to the filtration

algorithm, and consequently speeding up the filtration process, which in turn reduces

the time required for an SCF iteration. Its use produces some savings, but care must

be used to ensure too many functions are not removed before the filtered functions

are created, as this can lead to divergence in calculated energies from the SF/NF

result. However in the next section, this is shown to not necessarily be a limitation,

as filtration is applied to structural optimisation, where filtration is used to calculate

forces rather than energies.

The use of τ rather than Rcut as a parameter to control the accuracy of a filtered

calculation has also been suggested. This is investigated in chapter 6, where various
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different methods of trimming the functions are applied to calculate four further

formation energies, to see which is the most effective. In these calculations, the value

of Rcut is made large enough so that only the AF parameters affect the functions

included in the creation of the filtered functions.
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Chapter 5

OPTIMISATION OF STRUCTURES USING

FILTRATION

Possibly the most common type of calculation performed using AIMPRO is the deter-

mination of the equilibrium structure of a molecule or solid. This process is referred to

as structural optimisation. It relies on AIMPRO providing the forces on each atom for

a particular set of coordinates for each atom. In this chapter, the use of filtration in

such calculations will be examined. The use of filtration in this area introduces some

problems, which require the development of new optimisation routines. After some

basic theory, these developments will be presented, then finally these new optimisa-

tion routines will be used in both SF and AF calculations, and the results presented

and analysed from perspectives of both accuracy and speed.

To reduce the time required for a structural optimisation, there are two main parts

of the calculation where this can take place. Firstly the number of times AIMPRO

is required to provide the forces on each atom (known as force calls) can be reduced.

This is mainly achieved by using more efficient optimisation algorithms. Filtration

requires the development of a new line minimiser, which forms an integral part of the

optimisation routine used by AIMPRO. This has been designed to use as few force

calls as possible, while still being accurate and stable. This development takes up the

first half of this chapter.

Secondly, each force call can be made faster. This is achieved through the use of

filtration. The more aggressively parameters can be set, namely Rcut and τ (intro-

duced in the previous chapter), without affecting the resulting structure, the quicker

each force call will be, and consequently the overall calculation. The application of

this methodology to defects structures in silicon forms the second half of this chapter.
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5.1 Structural Determination Calculations in AIMPRO

Before this, some basic concepts relevant to the discussions in this chapter are

outlined.

5.1 Structural Determination Calculations in AIMPRO

As explained in section 2.3, the Born-Oppenheimer approximation allows us to define

a specific energy for every set of atomic coordinates. Expressed in Cartesian coordi-

nates, this gives the energy as a scalar function of 3N dimensions for the x, y and

z values of the positions of the N nuclei in the structure under examination. This

surface is referred to as a potential energy surface (PES), and the concept forms the

backbone of the structural determination methods used in this thesis.

5.1.1 Potential Energy Surfaces

Two of the most commonly seen features on PESs are minima and saddle points. An

order n saddle point on a PES is a maximum in n dimensions and a minimum in

the other 3N − n. Unless specifically stated, this work deals with first order saddle

points, so it a point on the potential energy surface which is a maximum in one

direction, and a minimum in all the others. A minimum on the PES is referred to as

the equilibrium position, where the forces on the atoms of the structure represented

by this point are zero. If the temperature was 0K and zero point energy ignored,

the atoms would remain at this position indefinitely according to classical physics.

Around the equilibrium position, the shape of the potential energy curve with respect

to the distance between two atoms is roughly quadratic, that is it can be approximated

to:

PE = ax2 + bx+ c (76)

for this one-dimensional system.

The closer the positions of the atoms are to equilibrium, the more accurate this

approximation is. Most of the optimisation techniques employed assume a quadratic

PES. Although this clearly won’t be appropriate when far enough away from a local
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5.1 Structural Determination Calculations in AIMPRO

minimum or saddle point on the PES, the techniques used will still generally move

towards their goal of a local minimum or saddle point. As they do the methods

become more and more accurate. Examples of methods like this include conjugate

gradient (CG) [33, 52], BFGS [13, 14, 22, 24, 52, 58] and direction inversion in the

iterative subspace method (DIIS) [10, 19,20,53,54].

For structures which are so far away from the quadratic region of their PES that

methods of this nature could be unstable, methods that do not rely on this quadratic

approximation exist. The simplest, safest and often slowest to converge method in

this category is known as steepest descent. A safe way to move a structure towards

the desired quadratic region of a PES can be to start out with the steepest descent

method, then when closer to the minimum/saddle point, employing one of the faster

quadratically based methods.

A potential energy surface is multi-dimensional, a hypersurface. Hence they can

contain many minima. Even a simple PES with 2 spatial axes can be extremely

complicated and contain many minima and saddle points. The minima closest to the

starting point may not be the lowest energy minimum of all minima contained within

the region spanned by the PES. The lowest energy minimum is referred to as the global

minimum. It is not guaranteed the closest minimum to a starting structure is a global

minimum, and could instead be a local minimum. Unless you are dealing with a very

simple structure, usually or no more than 4 atoms, it is excessively time consuming

if the minimum you have located is the global minimum just by using optimisation

techniques. A knowledge of the chemistry of the system under investigation through

experience of similar systems is typically required to put the results into a useful

context.

This chapter deals with the effect of filtration on structural optimisation calcula-

tions. Chapter 7 is unrelated to filtration, and concerns itself with a faster method

of identifying saddle point structures without the identification of a minimum en-

ergy path (MEP). The previous technique known as the nudged elastic band (NEB)

73



5.1 Structural Determination Calculations in AIMPRO

method, identifies both the saddle point and the MEP, but is a computationally in-

tensive procedure.

5.1.2 Why Determine Minimum Energy Structures

The determination of minimum energy structures is a fundamental process of com-

putational chemistry. These structures are seen experimentally, and the results of

calculations can be compared to the results of x-ray diffraction experiments, which

allow the structure to be determined directly. Through computational methods, the

stable or meta-stable structures of molecules which are difficult to produce, short

lived or not yet realised experimentally, can also be predicted. The properties of such

structures can then be determined through further calculations, such as hyperfine

couplings, IR absoprtion properties, and using, when combined with knowledge of

transition state structures, activation energies for reactions. Calculations such as the

NEB, which reveal MEPs, require minimum energy structures for both the start and

end images. The algorithm used by AIMPRO to achieve this is now outlined.

5.1.3 Minima Finding Techniques - The Conjugate Gradient Algorithm

Of the variety of methods that can be employed to identify minima on a PES, AIM-

PRO uses the CG algorithm. It can be broken down into a series of repeated steps.

1. Set the initial search direction ~d0(=~di), to be equal to the initial force ~F0(=~Fi).

Here vectors such as ~F are of length 3N , where N is the number of atoms.

2. Move along this direction ~di to a position ~Ri+1 = ~Ri + α~di, until the force ~Fi+1

is orthogonal to ~di, i.e. ~Fi+1.~di = 0. This process is known as line minimisation.

In practice a tolerance value τLM is set, and the point ~Ri+1 is accepted when

|~Fi+1.~di| < τLM , where ~Fi+1 is the force at point Ri+1.

3. If at this point ~Ri+1, the maximum component of the force vector ~Fi+1, is less

than another pre-defined tolerance τCG, the minimum has been reached.
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5.1 Structural Determination Calculations in AIMPRO

4. If not, calculate a new search direction using (77).

~di+1 = ~Fi+1 + α~di (77)

where α is given by (78) [52].

α = ~Fi+1.(~Fi+1 − ~Fi)/|~Fi|2 (78)

5. Repeat the procedure from step 2, using the new force and direction, until the

check in step 3 is satisfied.

6. The CG direction is updated based on the previous directions and the current

force. After a fixed number of iterations, this direction is reset to the current

force, which effectively restarts the algorithm. Due to the non-quadratic nature

of PESs, and the fact that the line minimisations that take place are not exact,

this can prove restrictive. This is necessary for systems with small numbers of

atoms, or with few degrees of freedom. For example if only one atom is free to

move, only 3 conjugate directions are possible, so the CG algorithm needs to be

reset every 3 iterations. The actual formula used is the smaller of 10, and the

number of degrees of freedom in the system.

In its most basic terms, the CG method chooses a direction, and a line minimiser

determines how far to move along this direction. For filtration, the direction choosing

algorithm remains unchanged. However the line minimiser requires changes. AIM-

PRO has traditionally used a line minimiser that uses both energies and forces, using

cubic interpolation. However, there is a slight discrepancy between the energy and

forces produced by a filtration calculation [56]. This means that a line minimiser

should not use energies and forces to determine how far to move in the search direc-

tion.

Two different solutions were implemented. The first, used for all the results in

this chapter, is an optimisation method that does not require a line minimisation
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step, based on the DIIS algorithm. This was implemented, then tested to ensure it

produced the correct minimum energy structures, using the same or less force calls

than the previous method.

The second method, used for all the results in chapter 7, involved a complete

rewrite of the line minimiser. The development and testing of this was a significant

investment, and details are provided in chapter 7.

The next section uses the DIIS algorithm to calculate minimum energy structures

for unit cells of silicon, containing a variety of defects. Calculations are performed

using NF, SF and AF, and the effect of Rcut and τ on the accuracy of the resulting

structures investigated.

5.2 Comparing Structures

This chapter deals with relaxed structures produced by structural optimisation cal-

culations. Calculations using NF, SF and AF, with varying filtration parameters

are compared against each other. In the previous chapter, the comparisons were

energy-based, which lends itself to a straight forward comparison. When comparing

structures, this is not as straightforward. Methods which quantify the amount by

which two structures are different are required. Two are used in this chapter.

An idea of how close two structures are to each other can be obtained by calculating

the total energy of the resulting structures. As in the previous section, if different

filtration methods are used to calculate the final total energies, they should not be

compared directly. Instead a measure such as a FE should be calculated for the

NF calculation, and for the SF calculation, and the differences in the two resulting

formation energies is taken to be a measure of the difference in the structures obtained.

However, the filtration method used for the structural determination does not need

to be the same as the filtration method used for the final total energy calculation.

For example, AF could be used to calculate a structure, then NF used to provide the

total energy. In the examples in this chapter, the formation energies involve a total
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energy of a defect structure, and the total energy of bulk silicon. As the bulk silicon

structure is already a minimum energy structure, this does not undergo a structural

optimisation. Hence the energy of the bulk silicon structure only depends on the

filtration method and parameters used in the final total energy calculation. So if the

final energy calculations use the same filtration method and parameters, either the

total energies or formation energies can be directly compared, as the differences in

each will be exactly the same.

There is the possibility of two different structures having very similar energies

however, so another method is required to supplement this one. To really ensure

two structures are the same, it is necessary to compare the positions of the atoms

in each structure. This can be done either using the atomic coordinates themselves,

or using bond lengths and bond angles. Using atomic coordinates introduces some

complications. If a structure was to expand slightly, whilst maintaining the same

geometric centre, the change in position of outer atoms would be greater than that

observed for atoms closer to the centre, and for a large cluster, the maximum difference

of coordination would increase with cluster size. This would not be seen when using

bond angles and lengths. Rotations of one of the two structures relative to the other,

whilst not changing the actual structure or its total energy, can also produce this

effect when using absolute positions as opposed to the relative nature of bond angles

and lengths. However, both of these effects can only occur for clusters, not unit cell

based calculations performed at constant volume. Alternatively, if two atoms were to

switch positions in one structural optimisation, but not the other, bond length and

angle information would not instantly reveal this. Atomic position comparison would.

All of the results presented in this chapter are unit cell based, so atomic position shifts

are analysed. This is done in the following way:

1. Rotations in unit cells produce energy changes, translations do not. To ensure

translations did not take place in one of the structures being compared, when

comparing a set of structures, the geometric centre of the first structure is
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5.3 Single Silicon Interstitial in Bulk Silicon

calculated. Then the geometric centre of all of the other structures are forced to

be the same as the first. In practice it was found the shift in geometric centres

between structures was insignificant.

2. The final position of each atom is given in atomic units, with each atom being

numbered. This allows direct comparison of the position of atom 1 in structure

1, to that of atom 1 in structure 2 for example. The change in the x, y and z

coordinate for each atom ‘pair’ is then calculated, creating a list of ∆x, ∆y and

∆z values.

3. The maximum absolute value and standard deviation of each of these three sets

of numbers is calculated. This way, an indication of the largest individual shift,

and the average shift, is provided.

Having provided the analysis framework, the first set of results is now presented.

The first structures to be looked at involve unit cells of silicon with a single interstitial

silicon atom.

5.3 Single Silicon Interstitial in Bulk Silicon

This section presents formation energies of a single silicon atom interstitial in 216

atom silicon unit cells, for calculations performed using NF, SF and AF. Three dif-

ferent positions of the interstitial atom are modelled, creating three defect structures,

detailed in the next section. Once a total energy of the optimised defect structure X

is calculated, along with the total energy of the bulk silicon unit cell (using the same

filtration method and parameters), the FE is given by:

Formation Energy of X = E[X]− 217

216
E(216 bulk) (79)

5.3.1 Details of Systems Modelled

Three defect structures are examined in this section.
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5.3 Single Silicon Interstitial in Bulk Silicon

1. The interstitial is placed in the centre of a tetrahedral cage in the silicon struc-

ture. This structure is referred to as the tetrahedral defect, or Td for short. [42]

2. A split interstitial is created, replacing an atom with a pair of silicon atoms

along the [110] direction. This structure is referred to as the [110] defect, or

[110] for short. [42]

3. The interstitial is placed at a hexagonal site, the point at the centre of one of

the hexagonal chair structures in the silicon lattice. This structure is referred

to as the H defect, or H for short. [42]

The calculation details are as follows:

• The supercells were made using a 3 × 3 × 3 grid of primitive cubic cells of 8

silicon atoms, with a lattice parameter of 10.195 a.u..

• The k-point sampling of the Brillouin zone used an MP 2 2 2 sampling grid [45].

• The Fermi-Dirac function used in the filtration process had a Fermi energy of

0.2 Ha (roughly in mid-gap), with kT set to 0.1 Ha.

• The temperature used to fill the Kohn-Sham levels was 0.04 eV.

• The pseudopotentials for silicon were as presented in Hartwigsen, Goedecker

and Hutter (1998) [29].

• The optimisation routine used for the structural optimisations was the DIIS al-

gorithm, outlined in section 5.1.3. The structure was considered to be optimised

when the maximum component of the force was less than 10-4 Ha/a.u..

5.3.2 Comparison of Formation Energies — Use of Same Filtration Method

Throughout Calculation

The results in this section all use the same method of filtration for both the structural

optimisation and final total energy calculation. SF and AF calculations had a filtration
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5.3 Single Silicon Interstitial in Bulk Silicon

Table 22: FEs of [110], Td and H interstitials in unit cells of 216 atoms of silicon,

calculated using three filtration methods. Both the structure and final energy within

an individual calculation used the same filtration method. Significant differences when

changing filtration method are seen. SF and AF calculations had a filtration radius

Rcut of 10 a.u. and AF calculations used a value of τ of 6.

Filtration FE[110] FE[Td] FE[H]

Method eV eV eV

NF 3.541 3.691 3.648

SF 3.565 3.722 3.668

AF 3.626 3.788 3.751

radius Rcut of 10 a.u. and AF calculations used a value of τ of 6. The formation

energies of each of the three defects, for NF, SF and AF calculations, are shown in

table 22.

The differences between NF and SF formation energies are 24, 31 and 20 meV for

the [110], Td and H defects respectively. These are over twice the 10 meV threshold,

below which is considered an acceptable calculation. When comparing AF to NF

the differences are much larger - 85, 97 and 103 meV. These differences are far too

large, about an order of magnitude too large. These differences can be thought of as

arising from two distinct parts of the calculation. Firstly the equilibrium positions of

the atoms in the defect structures due to the change in the PES. Secondly, the final

energy calculation itself will contribute to the difference. It is possible using further

calculations to separate these two factors. This is examined in the next section,

where the filtration method for the structural optimisation is varied separately to the

filtration method for the final total energy calculation.
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5.3.3 Comparison of Formation Energies - Use of Different Filtration

Methods for Calculating Structure and Total Energy

The discussions that follow are going to use NF, SF and AF for finding the optimised

positions of the atoms. Then the final defect structure’s energy will be calculated

using either NF, SF or AF. To simplify matters first the method for optimisation

will be listed, then the method for the final energy. For example AF/SF means an

optimisation done using advanced filtration, and the final energy calculated using

standard filtration. Under this nomenclature, in the previous section we discussed

NF/NF, SF/SF and AF/AF calculations. In this fashion, a table for each defect

structure can be presented where the data along a row shows the same structure,

but varying the filtration method for only the final energy. Similarly the data down

a column shows three different structures obtained through three filtration methods,

but using the same filtration method for the energy. By looking at the spread of the

results in a column compared to that of a row the relative effects on the final energy of

the filtration methods from the positional and final energy portions of the calculation

can be assessed.

This information is presented in tables 23, 24 and 25. Looking initially at the

[110] results in table 23, it can be seen that changing the filtration method for the

structural optimisation part of a calculation between NF, SF and AF results in a

change in the final energy of 5 meV or less, regardless of which filtration method is

used to calculate the final energy. However when the same filtration method is used

for the structural optimisation, and the filtration method for just the final energy

calculation is varied instead, much larger differences of 79-89 meV are observed, about

40 times the size seen when varying the method used for the structural optimisation.

This is an important result, as it indicates that forces are much less sensitive to

filtration than energies. In a structural optimisation, most (typically 90% or more

- for large systems far from an equilibrium structure this can rise to over 99%) of

the effort is spent calculating the structure. This means that the highly efficient AF
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method, using extremely aggressive values of the AF parameter τ , can be used to

derive accurate structures, and then either a NF calculation, or a SF calculation with

a suitable value of Rcut performed at the end to produce an accurate total energy.

Looking at the results for Td in table 24, we see a 95-97 meV spread for the final

energy calculation dependence on the filtration method, and only a 1-2 meV variance

when varying the filtration method for the structural optimisation. In table 25 for the

H defect, a 101-117 meV energy spread compares to 1 meV for structural calculations

using the 3 filtration methods when the final energy is calculated using NF or SF,

and 17 meV when using AF for the final energy.

These results are impressive, especially when it is noted that for these calculations

Rcut is set to 10 a.u. a setting shown in the previous chapter to produce significant

efficiency gains, and that τ is 6, a low value, which again has been shown to greatly

reduce the time required to produce the filtered functions.

The formation energies have been shown to be very close using this technique of

AF then NF/SF. There is a chance however that the structures, although close in

energy, are different in terms of the positions of the atoms. This is examined next.

5.3.4 Comparison of Atomic Positions

In the output from AIMPRO each atom is numbered. This allows us to compare the

positions of each atom resulting from a structural optimisation using NF against one

performed using SF or AF. Each x, y and z component is analysed individually. The

maximum absolute change observed in any pair of atoms is recorded in table 27, as

well as the standard deviation of the absolute change.

The maximum shifts are reasonably low. In the SF calculation, a maximum shift of

0.288 pm, 0.097 pm and 0.406 pm were seen for the [110], Td and H defects respectively.

For AF, apart from a value of 1.677 pm for the z shift of one atom in [110] defect,

all the shifts are under 1 pm for the [110] defect, and under 0.5 pm for the Td and

H defects. This is compared to a bulk silicon-silicon bond length in this system of
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Table 23: FE of [110] interstitial in silicon, performed using three filtration methods

to calculate the structure (for example pos NF indicates no filtration was used to

calculate the minimum energy structure), then three filtration methods to calculate

the final energy (for example energy SF indicates standard filtration was used to

calculate the final total energy). The variation in the formation energies across rows,

and then down columns, can be seen by examining the max-min data. This shows

varying the method used for the structure results in far less variation in FE than

observed when varying the method used for the final total energy calculation. SF

and AF calculations had a filtration radius Rcut of 10 a.u. and AF calculations used

a value of τ of 6.

[110] Energy NF Energy SF Energy AF max-min

eV eV eV

pos NF 3.541 3.564 3.630 0.089

pos SF 3.543 3.565 3.630 0.087

pos AF 3.547 3.570 3.626 0.079

max-min 0.005 0.005 0.004
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Table 24: FE of Td interstitial in silicon, performed using three filtration methods

to calculate the structure (for example pos NF indicates no filtration was used to

calculate the minimum energy structure), then three filtration methods to calculate

the final energy (for example energy SF indicates standard filtration was used to

calculate the final total energy). The variation in the formation energies across rows,

and then down columns, can be seen by examining the max-min data. This shows

varying the method used for the structure results in far less variation in FE than

observed when varying the method used for the final total energy calculation. SF

and AF calculations had a filtration radius Rcut of 10 a.u. and AF calculations used

a value of τ of 6.

T(d) Energy NF Energy SF Energy AF max-min

pos NF 3.691 3.722 3.788 0.097

pos SF 3.691 3.722 3.788 0.097

pos AF 3.693 3.723 3.788 0.095

max-min 0.002 0.001 0.000
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Table 25: FE of H interstitial in silicon, performed using three filtration methods

to calculate the structure (for example pos NF indicates no filtration was used to

calculate the minimum energy structure), then three filtration methods to calculate

the final energy (for example energy SF indicates standard filtration was used to

calculate the final total energy). The variation in the formation energies across rows,

and then down columns, can be seen by examining the max-min data. This shows

varying the method used for the structure results in far less variation in FE than

observed when varying the method used for the final total energy calculation. Only

the AF/AF to AF/NF formation energies differs by more than the 10 meV accuracy

threshold, and only by a small margin. SF and AF calculations had a filtration radius

Rcut of 10 a.u. and AF calculations used a value of τ of 6.

H Energy NF Energy SF Energy AF max-min

pos NF 3.648 3.667 3.766 0.117

pos SF 3.649 3.668 3.749 0.100

pos AF 3.650 3.668 3.751 0.101

max-min 0.001 0.001 0.017
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Table 26: For reference purposes, the individual total energy data behind the forma-

tion energies seen in tables 22 to 25.

Energy NF Energy SF Energy AF

Si -856.29060 -856.22769 -856.09459

110 pos[NF] -860.12477 -860.06072 -859.92460

110 pos[SF] -860.12470 -860.06070 -859.92460

110 pos[AF] -860.12457 -860.06052 -859.92474

Td pos[NF] -860.11926 -860.05493 -859.91879

Td pos[SF] -860.11925 -860.05493 -859.91878

Td pos[AF] -860.11920 -860.05488 -859.91879

h pos[NF] -860.12083 -860.05695 -859.91960

h pos[SF] -860.12081 -860.05691 -859.92021

h pos[AF] -860.12078 -860.05690 -859.92014

Table 27: Maximum observed differences in atomic positions for structures optimised

using two filtration methods. For each of the three structures ([110], Td and H

interstitials in unit cells of 216 atoms of silicon) NF vs SF, and NF vs AF results are

presented. All values are in picometers. SD(x) refers to the standard deviation of

the change in the x-coordinate of each atom. SF and AF calculations had a filtration

radius Rcut of 10 a.u. and AF calculations used a value of τ of 6.

Max. Diff.(x) Max. Diff.(y) Max. Diff.(z) SD(x) SD(y) SD(z)

110 NF vs SF 0.288 0.288 0.253 0.052 0.052 0.104

110 NF vs AF 0.872 0.872 1.677 0.217 0.217 0.394

Td NF vs SF 0.097 0.097 0.097 0.035 0.035 0.035

Td NF vs AF 0.444 0.444 0.444 0.107 0.107 0.107

H NF vs SF 0.406 0.406 0.406 0.112 0.112 0.112

H NF vs AF 0.380 0.380 0.380 0.112 0.112 0.112
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5.3 Single Silicon Interstitial in Bulk Silicon

Figure 9: Graph to show change in energy in a unit cell of bulk silicon as one sili-

con atom is moved towards its second nearest neighbour. The quadratic nature of

displacements of atoms at this level can be clearly seen. The changes in position

recorded in table 27 produce negligible changes in the total energy of the system.
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234 pm. This is the maximum shift; the standard deviation which gives an indication

of the shift per atom pair is even lower in each case. For the SF calculations the

values are around 0.1 pm, an insignificant amount. For AF calculations the standard

deviations are also extremely low, 0.217 pm, 0.107 pm and 0.112 pm for the [110], Td

and H defects respectively.

The change in energy for shifts of 0.1 pm to 2 pm for one atom in a unit cell of

silicon are shown in figure 9, to give a sense of the energy changes that variations in

this range could generate. A shift of 0.1 pm leads to an energy change of less than a

hundreth of 1 meV, 0.4 pm about a tenth of 1 meV. Even though these changes have to

be summed over all the atoms, the differences are so small that they can be neglected

around the 0.1 pm range, and cause only small differences in the 1-2 pm range.

5.3.5 Conclusions for Single Silicon Interstitial in Bulk Silicon

It is clear that the structures produced when using either SF or AF during the struc-

tural optimisations performed in this section are very close to those produced when

performing an NF calculation. The differences in formation energies, maximum ob-

served differences of atomic positions, and standard deviations of differences of atomic

positions are all extremely low. In the next section, we revisit the reaction analysed

previously in section 4.5.

5.4 Oxygen defects in bulk silicon

This section will compare results using NF, SF and AF for formation energies for the

reaction (75), and the positional changes in the optimised structures Oi, VO2 and

VO. Initially NF is compared against SF for formation energies, and then changes in

the three structures. Then SF is compared against AF using values of τ of 5, 6, 8

and 10, again for formation energies and changes in the three structures. Finally the

structures resulting from AF/SF and SF/SF calculations are compared.
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5.4.1 Details of Systems Modelled

The three systems were described in section 4.5. The calculation details were as seen

in section 4.5, with the following additions:

• The tolerance for the SCF iterative process was set to 1.0× 10−7 Ha.

• The optimisation routine used for the structural optimisations was the DIIS

algorithm, introduced in section 5.1.3. The structure was considered to be

optimised when the maximum component of the force was less than 10-4 Ha/a.u..

5.4.2 Comparison of Reaction Energy - Standard Filtration

Table 28: Total energy and FE from reaction (75) results for SF/SF and SF/NF

calculations, with comparison to NF/NF results. Rcut was set to 10 a.u..

SF/SF SF/NF NF/NF

Oi -872.26800 -872.33111 -872.33111

Si 216 -856.22763 -856.29051 -856.29051

VO2 -884.33844 -884.40231 -884.40232

VO -868.24039 -868.30386 -868.30387

Energy (Ha) -0.05768 -0.05785 -0.05785

Energy (eV) -1.570 -1.574 -1.574

Diff. to NF/NF (meV) 5 0 -

Table 28 shows the formation energies using SF/SF, SF/NF and NF/NF. Using

SF for both positions and final energy gives a 5 meV difference to the NF result.

This is a very good result because it is less than the 10 meV target. If an SF/NF

calculation is performed, the difference drops to less than 1 meV, which is an excellent

result. To see how the structures differ in terms of atomic position, table 29 shows

the standard deviation in the x, y and z coordinates varies from 0.024-0.028 pm for
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5.4 Oxygen defects in bulk silicon

Oi, to 0.051-0.084 pm for VO and 0.056-0.093 pm for VO2. The maximum shift of any

atom in the Oi case was 0.21 pm, for VO2 0.435 pm and 0.525 pm for VO. These are

all incredibly small differences and would be unnoticable in a graphic representation

of the unit cell, and of the order of 0.23% of a silicon silicon bond length for the

maximum shift, and 0.04% or less for the standard deviation. This shows that SF

can be applied to the whole calculation in this case without any significant change

in the formation energy being produced, and negligible change if the final energy is

calculated using no filtration.

Table 29: Maximum and standard deviation (SD) of the differences of position of

atoms produced using NF and SF optimisation of the three defect structures. All

values in picometers.

Max. Diff.(x) Max. Diff.(y) Max. Diff.(z) SD(x) SD(y) SD(z)

Oi 0.210 0.210 0.105 0.028 0.028 0.024

VO2 0.435 0.234 0.234 0.093 0.056 0.056

VO 0.525 0.256 0.256 0.084 0.051 0.051

5.4.3 Comparison of Reaction Energy - Advanced Filtration

Comparing SF/SF against AF/AF, the results in table 30 show the formation energy

resulting when both the position of the atoms through structural relaxation, and the

resulting energy of this structure are calculated using AF with varying values of τ , i.e.

AF/AF. This is compared to the results using SF/SF. Large differences in formation

energy are obtained for τ = 5 and τ = 6. τ = 8 is a borderline acceptable result,

whilst τ = 10 is a good result. Now the structures determined using AF are put into

a SF energy calculation, i.e. an AF/SF calculation, the results being shown in table

31.

The results for τ = 5, 6 are now very good at 10 meV and 3 meV respectively, and
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5.4 Oxygen defects in bulk silicon

Table 30: Total energy and FE from reaction (75) results for four sets of AF/AF

calculations, with comparison to SF/SF results. Rcut was set to 10 a.u., and the AF

parameter τ between 5 and 10.

τ = 5 τ = 6 τ = 8 τ = 10 SF

Oi -872.09591 -872.13112 -872.25021 -872.26652 -872.26800

Si 216 -856.06551 -856.09330 -856.21076 -856.22667 -856.22763

VO2 -884.16367 -884.20185 -884.32141 -884.33675 -884.33844

VO -868.07224 -868.10764 -868.22357 -868.23897 -868.24039

Energy (Ha) -0.06103 -0.05639 -0.05839 -0.05793 -0.05768

Energy (eV) -1.661 -1.534 -1.589 -1.576 -1.570

Diff. to SF (meV) -91 35 -19 -7 -

Table 31: Total energy and FE results for reaction reaction (75). Structures were

optimised using SF, and then AF with 4 values of the AF parameter τ . The final

structures obtained were in all cases calculated using SF. A comparison of AF/SF

results to SF/SF results is also presented. Using SF for the final energy greatly

reduces the differences in FE between SF and AF. Rcut was set to 10 a.u., and the AF

parameter τ between 5 and 10.

τ = 5 τ = 6 τ = 8 τ = 10 SF

Oi -872.26776 -872.26788 -872.26799 -872.26801 -872.26800

Si 216 -856.22763 -856.22763 -856.22763 -856.22763 -856.22763

VO2 -884.33826 -884.33835 -884.33844 -884.33844 -884.33844

VO -868.24010 -868.24032 -868.24039 -868.24039 -868.24039

FE (Ha) -0.05803 -0.05778 -0.05769 -0.05767 -0.05768

FE (eV) -1.579 -1.572 -1.570 -1.569 -1.570

Diff. to SF (meV) -10 -3 0 0 -
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5.4 Oxygen defects in bulk silicon

for τ = 8, 10 the results are less than 1 meV, an excellent result, an order of magnitude

less than the 10 meV acceptance threshold. The structures are now analysed from an

atomic position perspective.

Tables 32, 33 and 34 show the positional shifts in the AF structures compared to

the SF ones. The differences are larger than seen when comparing SF to NF in table

29. The results for Oi and VO2 are still acceptable for all values of τ , although τ=5

or 6 produce much larger differences than 8 or 10. All measures are under 1.5 pm

however, and this is a small distance, approximately 0.6% of a silicon silicon bond

length. The VO results for τ=5 show differences that could be classed as significant.

One atom (the oxygen atom) is translated nearly 6 pm in the x-direction, and the

standard deviations are approximately 20 times larger than seen if τ is increased to

8 or 10. Overall, a value of 6 or above for τ would be an appropriate choice, which is

an excellent result. At this level, results from table 4 indicate a reduction in average

SCF times from a SF calculation of a factor of 3. If greater precision in the final

structure was required, one the maximum component of the force vector had dropped

beneath a certain value, for example 10 times the exit force tolerance, the value of τ

could be raised to 10. Using this method, the same minimum on the PES would be

located using aggressive and hence efficient filtration parameters, then the final few

iterations performed using more accurate filtration parameters.

5.4.4 Conclusions for Oxygen Defects in Silicon

The FEs and positional analyses have shown using an AF calculation with a low value

of τ (as low as 6) and reasonable value of Rcut (10 a.u.) to produce a minimum energy

structure, followed by a total energy calculation on the resulting structure using SF,

produces a result equivalent to that of using NF throughout the calculation. The

NF/NF result for this FE was 1.574 eV, an AF/AF calculation (τ was 6, Rcut was

10 a.u.) produces a result of 1.572 meV. The two sets of structures obtained using NF

and AF differed from each other in positional terms by under 2 pm, with the average
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5.4 Oxygen defects in bulk silicon

Table 32: Maximum and standard deviation (SD) of the differences of position of

atoms produced using AF and SF optimisation of the Oi defect structure. All values

in picometers. The changes in position are extremely small (less than 1 pm).

τ Max. Diff.(x) Max. Diff.(y) Max. Diff.(z) SD(x) SD(y) SD(z)

5 0.636 0.636 0.628 0.143 0.143 0.141

6 0.874 0.874 0.338 0.115 0.115 0.104

8 0.594 0.594 0.111 0.047 0.047 0.023

10 0.097 0.097 0.038 0.013 0.013 0.010

Table 33: Maximum and standard deviation (SD) of the differences of position of

atoms produced using AF and SF optimisation of the VO2 defect structure. All

values in picometers. The changes in position are extremely small (around 1 pm for

tau = 5, less than 1 pm for greater values of τ).

τ Max. Diff.(x) Max. Diff.(y) Max. Diff.(z) SD(x) SD(y) SD(z)

5 1.402 0.888 0.888 0.293 0.202 0.202

6 1.004 0.290 0.290 0.165 0.064 0.064

8 0.127 0.085 0.085 0.033 0.021 0.021

10 0.042 0.041 0.041 0.016 0.012 0.012
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5.5 Conclusions

Table 34: Maximum and standard deviation (SD) of the differences of position of

atoms produced using AF and SF optimisation of the VO defect structure. All values

in picometers. τ=5 produces changes that are becoming significant. τ=6 or above

produces changes in position that are extremely small (around 1 pm or less).

τ Max. Diff.(x) Max. Diff.(y) Max. Diff.(z) SD(x) SD(y) SD(z)

5 5.892 2.685 2.685 0.517 0.403 0.403

6 1.062 0.427 0.427 0.160 0.093 0.093

8 0.122 0.091 0.091 0.023 0.018 0.018

10 0.063 0.202 0.202 0.013 0.024 0.024

shift much lower than this. This demonstrates the power of filtration in terms of

efficient calculations. If further precision is required, the final structure from an AF

structural optimisation can be tidied up using a more precise one. The possibility

also exists to link the value of τ during a calculation to the maximum component of

force, which would achieve this automatically.

5.5 Conclusions

The concept of using AF with low, extremely aggressive parameters, followed by an

NF or SF total energy calculation has been proved to be successful for modelling

defects in silicon. Extremely low values of the AF parameter τ , that proved unusable

for energy calculations, can be used for structural optimisations. This is particularly

significant, as the vast majority of CPU time required in modelling is used in this

activity. The calculation of a final energy with improved Rcut adds an insignificant

overhead. It should also be noted that τ = 10 also produces excellent structures, with

differences of only 10−4 Å— insignificant in real calculations. Even more approximate

values such as τ = 6 produced structures good enough to give final energy differences

differing by only 1 meV.
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5.5 Conclusions

The next chapter looks at different methods of removing functions in the AF

process, to see if a more efficient method than the overlap-based one employed in this

and the previous chapter is possible.
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Chapter 6

INVESTIGATION OF ADVANCED

FILTRATION METHODS

In this chapter, three different methods of AF will be compared against one another.

The specific measure of each method will be its ability to produce FEs for four different

systems, each consisting of a defect in a unit cell of 64 silicon atoms. The goal is to

produce AF FEs as close to the NF FE, whilst using filtered functions created from

the minimum number of primitive basis functions.

One method of AF has already been introduced and explained, in section 4.2. The

work presented in this chapter alters this method, by introducing more parameters,

making the method more flexible. Specifically, a parameter is introduced for s-type

functions, another for p-type, and another for d -type. This introduces the concept of

differentiating between functions based on their angular momentum, without the com-

plications of building this into the actual calculation of the overlap integral, outlined

in section 4.2.1. This method is referred to as toltrim.

This concept of separate parameters will also be included as an extension to the SF

method considered previously, by allowing different values of Rcut for s-type, p-type

and d -type functions. This will be the second method, referred to as autofilt.

A third method, referred to as radtrim, is also detailed. This also will have different

parameters for s-type, p-type and d -type functions.

The next section will explain these three methods in detail.

6.1 Explanation of Advanced Filtration Methods

The three methods are autofilt, toltrim and radtrim. Toltrim and autofilt are varia-

tions of the AF and SF processes used in previous chapters, hence the explanations
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6.1 Explanation of Advanced Filtration Methods

Figure 10: The autofilt method employing differing radii for s, p and d functions.

The two atoms inside the inner sphere of radius Rcut-d have s, p and d functions kept.

The three atoms within the outer sphere of radius Rcut = Rs = Rp only, have just s

and p functions retained for the creation of the filtered functions.

will only show the differences arising from differentiating primitive basis functions

based on their angular momenta. Radtrim however is a new technique, and will be

explained in greater detail.

6.1.1 Autofilt

S, p and d functions can each be assigned a different value of Rcut, giving Rs, Rp

and Rd. Internally, within the code, Rcut is still used to generate the initial list of

functions, and is consequently set to be the largest value from Rs, Rp and Rd. An

illustration is provided by figure 10.

6.1.2 Toltrim

The required overlap τ between the two Gaussians can be set for s functions, another

value for p and for d. Along with the value for the exponent of the Gaussian trial

function αFix, we have τs, τp and τd, a total of four adjustable parameters. Rcut is set
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6.2 Systems under investigation

to be just large enough to include all atoms whose basis functions have a chance of

being included.

6.1.3 Radtrim

The third method analysed is a form of compromise between these two methods. A

fixed radius Rsphere is drawn around the central atom. All functions inside this sphere

are kept. Functions outside this sphere, but inside the sphere of radius Rcut are kept

if the value of the Gaussian when it touches the sphere of radius Rsphere is greater

than a tolerance e−τ . Figure 11 shows a 2d representation of this, with the one atom

within the inner sphere having all its functions kept. The four atoms between the two

spheres are subjected to a further test, shown in figures 12 and 13. In figure 12 the

red atom is the atom for which filtered functions are being constructed. The black

atom lies between the two spheres. Gaussians A and B are kept as their values at

the edge of the inner sphere are greater than the tolerance parameter τ . In figure 13

the atoms are further apart, and only Gaussian A is kept. Note that in practice, e−τ

is very much smaller than shown in these schematic diagrams, as τ typically takes

values of 5 and above.

The cut-off value for the basis function where it touches the sphere of radius Rsphere

can be set for s, p and d functions giving 4 parameters. Rsphere, τs, τp and τd. Again

Rcut is set to be the smallest value than encompasses all possible functions that could

be kept.

Now the methods used in this chapter have been explained, the structures to which

they will be applied are detailed.

6.2 Systems under investigation

The systems chosen for investigation were 4 defects in 64 atoms of bulk silicon. The

defects structures chosen were [51,57]:

• A [110] split interstitial. The extra silicon atom was placed into a unit cell of

98



6.2 Systems under investigation

Figure 11: The radtrim AF method. All functions on atoms inside the inner sphere of

radius Ris are kept. Functions outside this sphere, but inside the sphere of radius Rcut

are kept if their value at the edge of the inner sphere is above a pre-defined tolerance,

e−τ .

bulk silicon and the resulting structure optimised without filtration. Referred

to as [110] .

• A vacancy structure, formed by removing one silicon atom from a unit cell of

bulk silicon, followed by a structural optimisation without filtration. Referred

to as V.

• An I3 tri-interstitial. The three extra silicon atoms were placed into a unit cell

of bulk silicon, and then the resulting structure optimised without filtration.

Referred to as I3.

• Amorphous silicon, a non-crystalline form of silicon, containing some atoms

without the four-fold coordination of bulk silicon. Referred to as amorphous, or

Am.
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6.2 Systems under investigation

Figure 12: The central atom for which filtered functions are being created is red.

The black atom is one of the surrounding atoms, whose primitive basis functions are

subjected to the radtrim test, to decide whether or not they are kept, i.e. included in

the process which creates the filtered functions. Primitive basis functions are kept if

their value at the edge of the inner sphere (radius Ris) is greater than e−τ (A and B).
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6.2 Systems under investigation

Figure 13: Following on from figure 12. Another surrounding atom is located further

away from the red central atom. Now only function A is kept, as both functions B and

C have decayed below the tolerance e−τ at the surface of the inner sphere of radius

Ris.
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6.2 Systems under investigation

6.2.1 Details of Systems Modelled

Of the five structures used in the calculations in this chapter, four required structural

optimisations to obtain the minimum energy structures required for the FE calcula-

tions. The bulk silicon structure is already relaxed. For the amorphous structure,

a data file of a 64 atom unit cell containing a model of amorphous silicon was pro-

vided [60]. This required both a structural relaxation, and a lattice optimisation.

Details are provided in section 6.2.3. For the vacancy structure, one atom was re-

moved, and then this resulting structure optimised. For the [110] and I3 interstitial

systems, one and three atoms respectively were placed into a unit cell of silicon into

roughly the correct place, and the resulting structure optimised. Optimisations were

performed using the following parameters:

• The supercells were made using a 2×2×2 grid of primitive cubic cells of 8 silicon

atoms, with a lattice parameter of 10.193231 a.u., calculated through a lattice

optimisation of the 8 atom unit cell using the same computational parameters

as the structural optimisations.

• K-point sampling of the Brillouin zone used an MP 2 2 2 sampling grid [45].

• No filtration was used for the structural optimisations.

• The filling of the energy levels took place at a temperature with kT set to

0.04 eV.

• The optimisation routine used for the structural optimisations was the CG algo-

rithm, using the newly developed force only based line minimiser (section 5.1.3).

The structure was considered to be optimised when the maximum component

of the force was less than 10-5 Ha/a.u., i.e. less than 1meV Å.

• The tolerance for the SCF iterative process was set to 1.0×10−9 Ha. This smaller

SCF tolerance was required because of the lower maximum force component

tolerance in the previous item.
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6.2 Systems under investigation

• A ‘ddpp’ basis set was employed, with exponents values of 0.16145, 0.46343,

1.31473 and 3.75324.

• The pseudopotentials for silicon were as presented in Hartwigsen, Goedecker

and Hutter (1998) [29].

The total energy calculations used the same relevant parameters as used for the

structural optimisations. For the total energy calculations using filtration, the Fermi-

Dirac function used in the filtration process had the Fermi energy and kT optimised

by AIMPRO during each calculation.

6.2.2 Calculation of FEs

The formation energies were calculated using:

FE = E(110)− 65

64
E(64 bulk) (80)

FE = E(I3)−
67

64
E(64 bulk) (81)

FE = E(V)− 63

64
E(64 bulk) (82)

FE = E(amorphous)− E(64 bulk) (83)

6.2.3 Note on Amorphous Silicon

For amorphous silicon the lattice parameter was determined through lattice optimi-

sation to be 10.25898 au. Calculations using this material therefore used different

lattice parameters for the amorphous and bulk calculations, which as they are both

the relaxed values is the usual method. This does lead to another question. Should

the filtration parameters relating to distances from the central atom, such as Rcut,
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6.3 Choice of parameter sets and how to interpret the resulting data

Table 35: Effect of slight increase in Rcut for amorphous silicon on FE per atom.

Rcut = 8 Rcut = 8.051602 NF

Bulk (Ha) -253.68663 -253.68663 -253.71240

Amorphous (Ha) -253.23580 -253.23686 -253.27594

FE (Ha) 0.45085 0.44977 0.43646

|∆FE| per atom (meV) 6.118 5.659 -

be accordingly increased for the amorphous runs. Theoretically there will always be

a different number of basis functions passed to the filtration algorithm for each of

the two calculations making up a FE. Without forcing filtration parameters to ensure

matching number of presented functions, for say a bulk and an ideal vacancy defect

system, this has to be accepted. The scenario when moving to having two different

lattice parameters in the two systems making up a FE is no different. However it is

useful to see what difference it does make.

Table 35 shows the FE per atom for 64 atoms of amorphous silicon firstly without

filtration, secondly with filtration using an Rcut of 8 a.u. in both systems, and last

using an Rcut of 8 a.u. for bulk and 8*10.25898/10.193231=8.051602 for amorphous.

A difference of 0.46 meV/atom, although a shift of nearly 10%, is quite small for such a

small value of Rcut. When this is repeated for a value of Rcut = 12 a.u., this difference

drops to 0.15 meV/atom, showing the results are converging as Rcut is increased.

6.3 Choice of parameter sets and how to interpret the result-

ing data

It is straightforward enough to increase the accuracy of a filtered calculation by in-

creasing the number of functions presented to the filtration algorithm, either through

increasing Rcut in a SF or AF calculation, or reducing the amount of trimming in

an AF calculation. To quantify which of the three AF methods is the most efficient,
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6.3 Choice of parameter sets and how to interpret the resulting data

calculations using similar number of functions must be compared against each other.

To ensure comparable data is gathered, the number of functions kept, i.e. the Nkeep

values, must be known in advance. As this is not a trivial calculation, pre-work using

bulk silicon was carried out, and the resulting parameter sets obtained applied to the

bulk and 4 defect structures.

For bulk silicon only, a small set of parameters for each method was created, and

AIMPRO altered so that the program stopped after the first Nkeep calculation. These

results gave a rough idea of the link between a choice of parameters, and the resulting

value of Nkeep. This allowed the creation of a large set of parameters, sets of 300

for each method. These were again ran through the altered AIMPRO to obtain a

large set of parameters and their resulting Nkeep values. For the autofilt method a

parameter set was chosen that gave a spread of Nkeep values, and the number of results

in ranges of Nkeep 100 wide (i.e. 400-500, 500-600...) counted. Then it was ensured

the parameter sets for the radtrim and toltrim method produced the same count in

each band. This would ensure comparable results.

The value of Nkeep produced by a particular parameter set, would obviously change

when the parameter set was transferred to one of the defect structures. However, Nkeep

bands which were under-represented could be filled in by the addition of a few more

runs. A total of 85 autofilt, 94 radtrim and 85 toltrim results were obtained for each of

the 5 structures (bulk silicon and the 4 defect structures). The range of Nkeep includes

some very low values, and consequently large |∆FE| values. This is deliberate, as it

is hoped when they are applied to calculations such as structural optimisations, this

would not significantly degrade the calculation, especially near the start when exact

forces are not as critical.

The FEs calculated (using equations 80 to 83) using AF were not compared to

the corresponding SF result. This was because the calculations were using different

values of Rcut, which would have produced different SF results for each structure.

An unfiltered result does not suffer from this problem, and a fixed baseline simplifies
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6.4 Results - [110] Interstitial

what is already quite a complex comparison due to the number of variables present

in the method. The results are shown in figures 14, 15, 16 and 17.

As well as the obvious goal of as low a difference as possible in AF FEs to the

corresponding NF FE, another desirable property of the results is a small spread of

|∆FE| for a range of Nkeep. In practice when choosing the parameters for a calculation

we will not have the luxury of a chart showing the most efficient parameters for that

particular structure, so an AF with a range and hence uncertainty of ±20 meV is

preferable to a one with a range of ±50 meV.

The results are presented for each of the four defect structures in turn, starting

with the [110] interstitial.

6.4 Results - [110] Interstitial

The graph in figure 14 shows the absolute differences in calculated FEs of a [110]

interstitial in silicon for the three AF methods, when compared to the NF FE. For

each method, a varied parameter set was used to produce calculations with a varied

range for Nkeep.

As Nkeep increases, it is expected that the FE will approach the corresponding NF

calculation. This trend is clearly shown by all three methods. More significant is the

change in the variation of the |∆FE|s for a small range of Nkeep. For low values of

Nkeep there is an extremely large range of |∆FE|, about 140 meV for autofilt, 100 meV

for toltrim and 60 meV for radtrim. The radtrim and toltrim methods show a rapid

decrease in this variation as Nkeep increases. However the autofilt method even for

large Nkeep has a much larger range of values of |∆FE|, over 30 meV. Radtrim offers

the smallest variation in |∆FE| for all values of Nkeep.

Having established the the radtrim method produces results in the narrowest

range, qualitative analysis of the average |∆FE| is required. This is provided in

table 36, which shows the average value of |∆FE| for bands of Nkeep 100 wide. In

the data, the upper range for Nkeep was ignored due to the sparsity of data for some
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methods/structures, with the analysis focusing on the range of Nkeep=500-1400. In

the results alongside the average |∆FE|, Nkeep averages are given to show where the

average point lies. Due to the different methods having different function selection

methods, some averages may lie to the left or right of the band. When for example

comparing an average Nkeep of 1020 for one method, against an average Nkeep of 1090

for a different method, the difference in the number of functions should be taken into

consideration.

Table 36 shows these results for the [110] interstitial. The average |∆FE| tends to

decrease with increasing Nkeep, though each method does display the odd jump. The

average Nkeep values are quite close to each other, with the maximum variation lying

in the 700-800 band, where the average value ranges from 736.7 for autofilt to 767.5

for the radtrim method. This is still not a terribly significant difference, and allows

us to directly compare the average |∆FE| results between the three methods for each

band of Nkeep.

At lower values ofNkeep of 500-800 the autofilt and radtrim methods perform better

than the toltrim method. By Nkeep=800, the radtrim method is the best performer,

coming in at under half the average |∆FE| of the other two methods. In every band

from 800 upwards, radtrim has the lowest average |∆FE|. The toltrim method is

particularly poor at very low values of Nkeep (500-800), giving average |∆FE|s of

56.9-79.3 meV.

For the calculation of the formation energy of the [110] interstitial, radtrim is the

best method with regards to the two measures of average |∆FE|, and the range of

|∆FE| results.

6.5 Results - Amorphous Silicon

For the amorphous structure figure 15 shows the distribution of |∆FE| against Nkeep

for the 3 methods. From a range perspective, autofilt performs significantly worse

than the other two methods. Toltrim and radtrim are fairly similar, with radtrim
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6.5 Results - Amorphous Silicon

Table 36: Average |∆FE| and Nkeep values for each AF method, for [110] interstitial

in a unit cell of 64 silicon atoms, analysed for 100 wide Nkeep bands.

|∆FE| (meV) Nkeep

Nkeep range Autofilt Radtrim Toltrim Autofilt Radtrim Toltrim

500-600 60.6 51.5 79.3 560.2 554.5 554.5

600-700 57.0 58.5 56.9 643.9 656.4 647.7

700-800 37.3 43.4 61.0 736.7 767.5 753.5

800-900 51.2 25.0 55.7 837.7 848.2 856.6

900-1000 41.5 25.9 39.9 947.5 943.4 949.8

1000-1100 33.5 31.6 33.0 1048.1 1045.7 1056.0

1100-1200 37.1 27.8 28.8 1152.5 1148.6 1145.8

1200-1300 35.2 24.2 29.6 1255.7 1251.7 1243.1

1300-1400 28.9 20.4 24.1 1353.8 1339.5 1332.1

offering slightly more consistent results. It is also clear looking at the graph, the

radtrim results lie closer to the unfiltered result. A qualitative analysis is available in

table 37. The maximum range of Nkeep averages between the three methods is under

20 for every Nkeep 100-wide band, allowing direct method-method comparison using

just |∆FE| results. All the |∆FE| values tend to drop with increasing Nkeep as before.

Again radtrim is easily seen as the most efficient method throughout the whole range

of Nkeep values. Toltrim is the next most efficient method, with autofilt the least.

For calculations of the amorphous silicon FE, as for the [110] interstitial FE,

radtrim produces the best results in terms of both low, and relatively consistent

|∆FE|.

6.5.1 Results - I3 Tri-Interstitial

Figure 16 shows the |∆FE| results against Nkeep for the I3 tri-interstitial. Autofilt

results again show a large variation in |∆FE| for the whole range of Nkeep. Only at
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6.5 Results - Amorphous Silicon

Table 37: Average |∆FE| and Nkeep values for each AF method, for amorphous silicon,

analysed for 100 wide Nkeep bands.

|∆FE| (meV) Nkeep

Nkeep range Autofilt Radtrim Toltrim Autofilt Radtrim Toltrim

500-600 543.0 325.3 405.4 555.2 556.8 547.9

600-700 442.1 333.6 320.1 652.3 642.0 636.9

700-800 448.7 229.1 290.7 754.3 753.7 741.4

800-900 487.2 146.4 251.7 858.2 853.4 842.0

900-1000 471.3 151.2 190.5 961.7 942.2 948.1

1000-1100 374.9 131.5 180.0 1054.9 1044.6 1045.2

1100-1200 296.6 99.4 164.7 1141.5 1157.1 1150.2

1200-1300 173.0 87.5 125.4 1254.2 1251.0 1250.1

1300-1400 168.4 57.2 169.9 1355.6 1343.3 1343.1

Nkeep=1200+ does the variation start to reduce, and then only by a small amount

from about 230 meV below 1200 to about 160 meV above 1200. Radtrim and toltrim

both have variations of up to 150 meV from Nkeep=500-850. By Nkeep=850 onwards

radtrim becomes more consistent with a variation of about 75 meV to Nkeep=1030,

then reducing to about 30 meV from Nkeep=1030+. Toltrim starts to become more

consistent after Nkeep=1000, keeping the same level of variation to the highest values

of Nkeep, about 75 meV. Radtrim |∆FE| values from Nkeep=850+ are closer to zero

than toltrim, but some autofilt results lie closer to zero. From Nkeep=1250+ radtrim

results are closer to zero than most autofilt and toltrim results.

For a numerical analysis of the |∆FE| values, the I3 results in table 38 show

average Nkeep values are close to each other for the three methods, apart from in the

Nkeep band 1200-1300 where the autofilt method lies at the upper end at 1275.6, with

radtrim in the centre at 1250.7 and toltrim slightly to the lower end at 1246.5. This

still does not alter the results, as in this range autofilt performs the worst of the three
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6.6 Results - Vacancy

Table 38: Average |∆FE| and Nkeep values for each AF method, for I3 tri-interstitial,

analysed for 100 wide Nkeep bands.

|∆FE| (meV) Nkeep

Nkeep range Autofilt Radtrim Toltrim Autofilt Radtrim Toltrim

500-600 163.0 184.3 221.3 546.4 552.1 552.6

600-700 172.8 163.8 175.2 644.3 637.7 653.9

700-800 112.5 152.6 152.6 748.0 739.6 753.1

800-900 105.8 88.0 148.3 860.2 847.9 854.0

900-1000 120.9 90.0 138.8 959.5 948.1 945.2

1000-1100 97.3 97.4 104.3 1050.0 1054.7 1043.7

1100-1200 122.3 89.1 95.2 1156.6 1139.2 1139.1

1200-1300 121.7 76.1 88.5 1275.6 1250.7 1246.5

1300-1400 96.0 61.6 72.5 1360.1 1354.2 1337.5

methods despite this slight advantage of more functions. In the lower Nkeep range of

500-800 the autofilt method is the most efficient, but by a small margin. There is not

much to separate the three methods. Beyond this however, radtrim once again is the

most efficient method with the lowest |∆FE| values. The other two methods in this

structure are much closer to the radtrim method in this mid-upper range of Nkeep,

and by Nkeep=1100 or more, toltrim is a close second to radtrim.

Radtrim is the obvious choice again, it performing better than autofilt and toltrim

in both categories of variation, and having results closer to the unfiltered answer

(|∆FE|=0).

6.6 Results - Vacancy

Figure 17 clearly shows a large variation in toltrim |∆FE| values in Nkeep values

from 400 to 950 of about 130 meV, falling dramatically at Nkeep=950 onwards to
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6.6 Results - Vacancy

Table 39: Average |∆FE| and Nkeep values for each AF method, for vacancy in silicon,

analysed for 100 wide Nkeep bands.

|∆FE| (meV) Nkeep

Nkeep range Autofilt Radtrim Toltrim Autofilt Radtrim Toltrim

500-600 56.8 39.1 77.0 568.6 548.9 552.5

600-700 54.0 40.6 74.4 663.0 659.6 656.2

700-800 44.8 22.4 59.5 749.0 759.2 750.0

800-900 42.9 16.6 33.4 847.5 852.2 852.0

900-1000 34.6 19.3 31.3 951.3 946.5 946.5

1000-1100 39.6 22.6 23.1 1055.0 1045.7 1043.7

1100-1200 34.1 18.3 20.0 1153.7 1155.2 1153.4

1200-1300 26.3 12.9 16.2 1244.0 1252.3 1255.1

1300-1400 25.5 13.2 30.3 1339.2 1335.0 1359.8

about 25 meV. Autofilt results have a variation for all values of Nkeep that is fairly

consistent, about 75 meV. Radtrim results have a variation of about 55 meV up to

Nkeep=800 where the variation in |∆FE| falls to about 30 meV, then falls again at

Nkeep=1000 to about 10 meV. The radtrim method again displays the lowest degree

of variation.

Qualitatively it is clear the radtrim results lie closer to the |∆FE|=0 goal, and this

is analysed quantitatively in table 39. Table 39 shows similar trends as for the other

three defect structures. The Nkeep averages are close to each other, again allowing

direct method-method comparisons. Radtrim is the method giving the lowest |∆FE|

values, and does so in every 100-wide Nkeep band. The second best method is autofilt

for lower values of Nkeep, and toltrim for higher values of Nkeep.

Again radtrim seems to be the best choice for the AF algorithm, both in terms of

giving results close to the unfiltered result, and the lowest variation.
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6.7 AF Method Comparison - Conclusions

6.7 AF Method Comparison - Conclusions

Taking all four structures into account, it would seem the radtrim method offers

not only the lowest |∆FE| for most ends of the Nkeep spectrum, but also the lowest

variation in |∆FE|. The results clearly point to radtrim being the most effective

trimming algorithm for both low, medium and high values of Nkeep. For low values

of Nkeep, toltrim and autofilt perform badly compared to radtrim. For medium-high

and greater values of Nkeep autofilt continues to be poor, but toltrim is a reasonable,

but still second, choice to radtrim.

6.8 Radtrim Rsphere Parameter Investigation

The previous results and findings were based on using varying parameters for each

method. Radtrim proved to be the most effective AF method. The radius of the inner

sphere is clearly an important parameter for this method, and from the data available

it is possible to perform an analysis, to determine if a particular value performs better

than others. The 3 different inner sphere radii used as part of the parameter set for

radtrim were 3, 5 and 7 a.u. Scatter graphs of |∆FE| against Nkeep were produced for

each of the four structures, with the three different values of Rsphere represented by

three different colours.

Figures 18a to 19b show the radtrim results separated by the value of Rsphere - 3, 5

or 7 a.u.. The four charts are very similar, and will be discussed simultaneously. The

first thing to notice is the narrow region where the results from the 3 values of Rsphere

overlap. Due to the way radtrim works, the larger the sphere the more functions that

are going to be included, regardless of the values of the s, p and d parameters. This

means each value of Rsphere will occupy a distinct region of the chart. There is enough

data in the overlap region to compare the effectiveness of the 3 values, for values of

Nkeep between 750 and 900. Results where Rsphere is 3 a.u. have the highest values

of |∆FE|. The increase in functions presented to the filtration algorithm doesn’t
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6.8 Radtrim Rsphere Parameter Investigation

help move the results in the regions occupied by results where Rsphere is 5 or 7 a.u.,

they lie above them or at the upper limits. Looking at just values of 5 or 7 a.u.

for Rsphere, 5 a.u. is clearly a much more efficient choice for this parameter. These

results offer the lowest |∆FE| values at their ranges of Nkeep. In fact for all structures

but amorphous, they offer the lowest |∆FE| values for any calculations using much

higher values of Nkeep, over 1400 functions. Even for the amorphous structure FE,

Rsphere=5 a.u. results perform as well as Rsphere=7 a.u. results where Nkeep=1100+,

despite only using between 700 and 950 functions.

Rsphere=5 a.u. performing so well, seems to indicate a good calculation requires two

types of functions to be presented to the filtration algorithm. Firstly it is important

to include a certain number of functions close to the central atom. For bulk silicon

a value of Rcut of 5-7 a.u. includes the first shell of nearest neighbours, the closest 4

tetrahedrally arranged atoms. A value of 3 a.u. doesn’t include this shell. Although

we are not dealing with bulk silicon here, it is a good approximation for where the

majority of the atoms will lie. This value leads to poor |∆FE| results, even when other

parameters are increased to compensate for the reduced number of kept functions.

Secondly it is important to use the lowest value of Rsphere that includes this shell, so

any functions on the next shell of atoms are only included if they are long ranged

enough to have some penetration towards the central atom. A value of Rsphere=7 a.u.

puts the edge of the inner sphere right next to the second shell of atoms, meaning

they will always be included unless extremely low parameters are used for τs, τp and

τd.

In summary, for AF FE calculations using the radtrim method, for the systems

investigated here, a choice of the internal sphere of 5 a.u. produces results closer to the

corresponding NF results than 3 a.u., or results using 7 a.u. where the total number

of kept functions is less than 1400. Using the parameters Rsphere=5, and values of τs,

τp and τd that produce values of Nkeep of about 700-950 functions when a reasonably

good calculation is required of greater speed. To achieve better accuracy, over 1400
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6.8 Radtrim Rsphere Parameter Investigation

(a) Radtrim 110 results split by Rsphere parameter

(b) Radtrim amorphous results split by Rsphere parameter

Figure 18: Radtrim results - effect of Rsphere parameter
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6.8 Radtrim Rsphere Parameter Investigation

(a) Radtrim I3 results split by Rsphere parameter

(b) Radtrim vacancy results split by Rsphere parameter

Figure 19: Radtrim results - effect of Rsphere parameter
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6.9 Conclusions

functions are required before any improvement is seen.

6.9 Conclusions

When calculating FEs for silicon systems, the radtrim method has been shown to be

the most efficient AF algorithm of the three investigated. It performs better than

the currently implemented method, toltrim, and should clearly replace it in future

releases of the code. With the findings from chapter 5, structural optimisations for

silicon systems performed using radtrim, setting the parameter Rsphere to 5 a.u., could

use low values of the AF parameter τ significantly speeding up the filtration process.

This would enable the efficiency advantages of the filtration method to be applicable

for all but the smallest of systems. It also means the results in chapters 4 and 5 can

be improved, whilst simultaneously maintaining or reducing the filtration time.
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Chapter 7

TRANSITION STATE IDENTIFICATION - THE

LANCZOS METHOD

This chapter takes a departure from filtration. The current method of choice for the

identification of the structure of a transition state is the Nudged Elastic Band (NEB)

method. It is a powerful tool, but has some drawbacks, primarily the number of force

calls required to complete a calculation. A new method is implemented that could

reduce this, and compared to the NEB method.

As a reaction or structural change proceeds, the energy of the system will typically

rise and fall between two states that are minima on the PES. Along this path, the

state with the highest energy is referred to as a transition state. A transition state is

always a saddle point on a PES, almost always (but not necessarily) a first-order saddle

point. The identification of transition states is an important aspect of computational

modelling. By determining the difference between the energy of the initial state of

the system, and the energy of the system in its transition state configuration, the

activation energy of the reaction has been determined. The activation energy is an

important measure of how quickly a reaction will proceed, and determines the reaction

rate’s dependence on temperature.

The current method of choice in AIMPRO for calculating a transition state is the

nudged elastic band method (NEB) [16]. It suffers from some drawbacks, the primary

one being that the whole reaction path must be modelled, using a series of images

to represent the system at different points on the reaction path. All these images

must be optimised simultaneously, leading to an optimisation of high dimensionality,

which typically means a long calculation, with a significant number of force calls. This

reaction path is referred to as the minimum energy path (MEP).
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7.1 The Nudged Elastic Band Method

Other methods are available, and one class involves the identification of an ‘uphill

direction’. This is the direction on a PES in which movement uphill (i.e. in a direction

of increasing energy) is necessary to arrive at a transition state. This approach is

not without its difficulties, but has the potential to greatly reduce the number of

force calls required to identify the transition state. The Dimer method [31] is an

example of an uphill direction identification algorithm. The method used to identify

the uphill direction in this thesis, is an implementation of the Lanczos algorithm. The

Lanczos algorithm [43] forms the basis of transition state location methods such as

the Activation Relaxation Technique (ART) [5, 43,46].

Once the uphill direction has been identified, the component of the force is ‘flipped’

in this direction, and effectively a minimisation is performed on the altered PES. This

can be achieved using the methods employed for structural optimisation outlined in

chapter 5. The uphill direction will of course change as the minimisation moves the

structure on the PES, so periodically the uphill direction is recalculated.

Before the Lanczos method and its implementation in AIMPRO is explained, the

current NEB method is explained, as well as the difficulties encountered in using the

method, which prompted this work.

7.1 The Nudged Elastic Band Method

The NEB method requires the knowledge of the structures of the products and reac-

tants. The transition state can be guessed by simply interpolating the positions of

the atoms between the initial and final structures. This of course will not work if the

reaction is a structural change where the product and reactant are the same. Even

if this is not the case, this method often produces structures too far away from the

actual transition state. Some knowledge of the the likely structure or properties of the

transition state lead to much more efficient and successful NEB calculations. These

three structures, or images, are points on the PES. More images are created between

these three images using linear interpolation. These images are then connected by
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7.1 The Nudged Elastic Band Method

Figure 20: Illustration of the NEB method. The blue spheres represent images on

a PES, with the arrows showing what happens when the energy of each image is

minimised. The sequence of images provides an approximation to the minimum energy

path. As more images are used, the accuracy of both this path and the energy of the

transition state become more accurate. Usually between 9 and 21 images are used.

virtual elastic bands, so movement away from the starting position causes a restoring

force on the PES. This ensures the images are equally spaced on the PES, and do

not slip into the minima on the PES representing the structures of the products and

reactants. This is represented in figure 20 below.

Getting the maximum component of force below 10-2 Ha/a.u. is much harder than

reducing it to this value. Small changes in one image can be transferred via the

forces in the elastic band to other images. Also the minimisation routines used often

are based on assuming quadratic behaviour of the energy with respect to changes in

position. This assumption works well for structural optimisations. In NEB calcula-

tions, only the forces from the elastic bands parallel to the tangent of the MEP are

kept. Also only the forces from the gradient of the PES perpendicular to the tan-

gent of the MEP are retained [32]. This projection can disrupt the effectiveness of

quadratic-based minimisers [32].

Typical behaviour is shown in the NEB calculations towards the end of this chap-

ter, in figures 23 and 24.
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7.2 The Lanczos Method

As each image needs to be minimised at each iteration, large number of force calls

are required. This combined with the oscillatory behaviour make an alternative to

the NEB method an attractive prospect.

7.2 The Lanczos Method

The Lanczos method requires only a single structure as a starting point. The starting

structure will preferably be located near a saddle point, but it can be located near

or even at a minimum on the PES. The procedure requires an initial direction, which

can be specified, or more commonly a random direction is generated. An iterative

procedure then refines this uphill direction, which is an eigenvector of the Hessian

matrix, calculating the corresponding eigenvalue. This is the lowest eigenvalue. The

procedure starts with a structure represented by a position ~x0 on the PES, a random

direction vector ~r0, β = ||~r0||, and ~q0 = 0. The following iterative procedure (with k

as the iteration counter) then takes place [47]:

~qk =
~rk−1
βk−1

(84)

~uk =
∇V (~xk + 10−3~qk)−∇V (~xk)

10−3
(85)

where ∇V (~xk) is the gradient of the energy at the point ~xk.

~rk = ~uk − βk−1~qk−1 (86)

αk = ~qtk~rk (87)

~rk = ~rk − αk~qk (88)

βk = ||~rk|| (89)
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7.3 Choice of Minimisation Algorithm

αk and βk are used to form a tridiagonal matrix T :

T =



α1 β1 0 0 0

β1 α2 β2 0 0

0 β2 α3 ... 0

0 0 ... ... βi−1

0 0 0 βi−1 αi


(90)

The size of this matrix increases after each iteration, starting out as a 1x1 matrix.

The lowest eigenvalue λTk of this matrix is calculated using standard Fortran routines.

When equation (91) is satisfied, the uphill direction ~uk is considered to be the true

one.

|λ
Tk − λTk−1

λTk−1
| < 10−3 (91)

With the uphill direction identified, the force on the structure at this point on

the PES is ‘flipped’ in this direction, effectively converting the problem into one of

minimisation. This is illustrated in figure 21.

With this uphill direction, a pre-defined number of minimisation iterations (typ-

ically 6) take place before the uphill direction is recalculated. This procedure of

calculating the uphill direction, then performing 6 minimisation steps, and repeating,

is continued until, as in structural optimisations, the maximum component of the

force falls below a pre-defined tolerance.

7.3 Choice of Minimisation Algorithm

When coding and testing the Lanczos method, a set of small organic molecules, known

as the Baker set [3], close to a transition state for various reactions and structural re-

arrangements, were chosen as the test structures. This was because they offered steep

and shallow areas on their respective PESs. The hydrogen atoms in particular could

move around without significantly affecting the energy and forces on the structure.

The internal parameters required for the method to work were optimised so that the
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7.4 Force-only Based Line Minimiser

Figure 21: Illustration of how the uphill direction is used to convert the force vector

to point towards the saddle point/transition state in the Lanczos method.

Lanczos method would perform well, even for these difficult structures. While this

testing was taking place, it was realised the DIIS minimisation technique, although

offering excellent efficiencies (DIIS requires only one force call per iteration, as it

does not use a line minimiser), was not sufficiently stable. The conjugate gradient

algorithm was used, and proved to be much more stable. However, this required the

development of a line minimiser which used only forces, if this was ever to be used in

conjunction with the filtration algorithm. The development of this is detailed in the

next section.

7.4 Force-only Based Line Minimiser

The function of the line minimiser is to move along a direction ~d on a PES until the

force vector ~f is orthogonal to ~d. This exit criteria will be said to be achieved when
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7.4 Force-only Based Line Minimiser

|~f.~d| < τLM . (92)

in which ~d is a unit vector, and τLM is set to be a tenth of the initial value of ~f.~d

when the line minimiser was called.

7.4.1 Outline of Main Steps

The basic method of the line minimiser will be as follows:

1. The line minimiser will start at the initial point, ~R1, and move a trial amount

to the trial point ~R2, in the direction ~d1 provided by the conjugate gradient

algorithm. The initial direction is given by the direction on the PES equivalent

to the initial force ~f1 on the structure. How the trial point is determined is

outlined in section 7.4.2.

2. The force vector is calculated at this trial point, giving ~f2. There is a possibility

that by chance this point will satisfy the exit criteria for the line minimiser, so

~f2 is checked against this (92).

3. If this check is unsuccessful, using the information from the initial point and

the trial point, a third calculated point ~R3 is calculated, where the force ~f3 is

hoped to satisfy the exit criteria. How this third point is chosen is detailed in

section 7.4.3.

4. ~f3 is calculated and checked against the exit criteria.

5. If the check is unsuccessful, two of the points ~R1, ~R2 and ~R3 are kept as the

initial point and the trial point, and the algorithm returns to step 3. The process

of determining which point becomes which is detailed in section 7.4.4.
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7.4 Force-only Based Line Minimiser

7.4.2 Choice of Trial Point

In the following sections, the trial point will be referred to as point 2, the initial point

point 1, and point 3 is the calculated point using the information from points 1 and

2. ~fmax
1 refers to the component of ~f1 with the maximum absolute value. The trial

point is always along ~d, so ~R2 can be specified by αtrial, where:

~R2 = ~R1 + αtrial
~d (93)

and the calculated point ~R3 can be similarly specified by αcalc, where:

~R3 = ~R1 + αcalc
~d (94)

For the first trial point of a structural optimisation calculation, α is set to be a

multiple of the lower of unity or ~fmax
1 . Every subsequent line minimisation, say the

(i+ 1)th, sets the trial step to be of a size such that:

αtrial(i+1)
~fmax
i+1 = 2αtrialcalc(i)

~fmax
i (95)

This ensures the maximum distance any component of any atom moves from ~R1 to

~R2 at the start of a line minimisation, is exactly double the maximum distance moved

in the previous successful line minimisation. This is useful, as this will usually lead to

the point where ~f.~d=0 (from now on referred to as the FD0 point) lying between the

initial and trial point. This is advantageous as it it will lead to better estimates of the

FD0 point, and will mean future steps are interpolating rather than extrapolating.

7.4.3 Estimating the Location of the FD0 Point

They may be more than one FD0 point. The FD0 we require is the closest one in the

direction of the force vector. The direction of the force vector at a point on the PES

will be in a direction that decreases the total energy of the system:

~f = −∂E
∂~x

(96)
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7.4 Force-only Based Line Minimiser

Close to a minimum (or saddle point) the potential, and hence energy and the

PES, varies quadratically with ~x. This means the force varies linearly with respect to

~x, and therefore with α. As we have two points on the PES, if we assume quadratic

behaviour, we can estimate the FD0 point by linearly interpolating between the two

points on a ~f.~d vs. α chart. Specifically, we calculate αcalc to place into 94:

αcalc = αtrial

(
~f. ~d1

~f. ~d1 − ~f. ~d2

)
(97)

The closer to the minimum or saddle point, the better the assumption that the

PES is quadratic will be, and the more accurate this estimate will be.

There are two situations where this falls down quite badly. Firstly, at the start

of a structural optimisation the structure could lie on a point on the PES far away

from the quadratic region. Typically the CG algorithm will still result in the energy

reducing, just not as efficiently as it theoretically could. For a perfectly quadratic

PES, the CG will find the exact minimum in n steps, which means n + 1 force calls,

where n is the dimensionality of the system.

The second situation causes more difficulties. A ‘shoulder’ is a region on the PES

that has increasing ~f.~d in the search direction. It occurs when the energy is decreasing

faster and faster as the minimum is approached. This is checked for in the algorithm

and the system moved through this ’shoulder’ region until ~f.~d starts decreasing in

the search direction. Once it does, the linear interpolation strategy is resumed. To

reduce the number of force calls, to move through the region initially, a trial point

three times further away from the start point, as was originally chosen, is selected.

Each failed attempt after this sees this factor doubling, to 6, then 12, then 24 etc.

Further checks are in place to prevent the structure changing too radically within this

process, and are detailed later in section 7.4.5.

7.4.4 Recursive Algorithm Details

The line minimiser will continue to choose points, and test the value of ~f.~d until it is

less than a tenth of the initial value (at the very start of the line minimiser, not the
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7.4 Force-only Based Line Minimiser

initial value of each linear interpolation), or less than the exit tolerance τLM. When

an estimate of the FD0 point does not meet either of these criteria, another linear

interpolation is performed to provide a new estimate of the FD0 point. Figure 22

shows exactly how this is done, based upon the values and positions of the previous

initial, trial, and FD0 points.

7.4.5 Further Refinements and Checks

The PES of a molecule is never perfectly quadratic. Structures can be specified whose

starting positions can give rise to large forces, such as when they are placed too close

together. Certain molecules and structures can have PES that vary rapidly in some

directions, and very slowly in others. These and other unforseen problems require

checks to be built into this process, to ensure an atom is not moved too far. In small

molecules, where atoms are being transferred, such as those in the Baker set, atoms on

the edge of the system can ‘escape’ from the main system. An easy way to minimise

the forces on an atom is to move it to infinity. By limiting the distance an atom can

move, situations like this can be prevented. A list of such measures is now presented.

1. Upon entry to the line minimiser, it is ensured ~f.~d > 0. This ensures ~d points in

a direction that lowers the energy of the structure. If it is not the CG algorithm

is initialised.

2. The trial step is always checked to be greater than a minimum value, currently

set at 1.0×10−7 a.u. This is low enough to accomodate the small steps required

for very small/accurate exit force tolerances near the end of a structural optimi-

sation. It is also high enough to ensure numerical noise is orders of magnitude

smaller than the changes the step produces in the force vector. If it is not it is

set to be the minimum value.

3. The trial point at the start of the line minimiser is set such that the maximum

shift of any component of any atom will be equal to half of the maximum shift
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7.4 Force-only Based Line Minimiser

Figure 22: An illustration of how the recursive part of the line minimiser algorithm

operates. The blue FD0 point estimate should lie on the x-axis. The actual value of

~f.~d may be above or below the tolerance band of width 2τLM around the x-axis, and

another linear interpolation is performed. Five different scenarios are possible.
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7.4 Force-only Based Line Minimiser

of any component of any atom observed in the previous line minimisation. After

this is calculated, it is checked it is not beyond a maximum value, currently set

to be 0.15 a.u., and if it is it is the step is shortened accordingly.

4. If the zero point does not lie between the initial and trial point, extrapolation

is required to estimate the zero point, as opposed to interpolation if it does.

Interpolation is much safer in terms of stability, as it does not allow large changes

to happen to any part of the structure. Extra checks are thus performed for line

minimisations that require extrapolation. The first of these is that the difference

between ~f1.~d and ~f2.~d must be greater than a minimum value, currently set to

1.0× 10−5Ha/ a.u.. If this check is failed, a second trial point that satisfies this

criteria is chosen.

5. The second of these type of checks is that (~f1.~d)/(~f2.~d) is less than 0.99. This

ensures not only an absolute minimum difference in the values of ~f.~d but a

minimum relative difference as well. Both of these checks reduce the possibility

of large erroneous jumps on the PES if the PES is highly non-quadratic. If this

check is failed, a second trial point that satisfies this criteria is chosen.

6. At the start of the line minimisation the position of every atom is recorded.

During the line minimisation the maximum change in any component of the

position of any atom can change by a maximum of 0.3 a.u.. When this check

fails, the line minimser exits with the most recent calculated structure.

One final task performed by the line minimiser is to let the CG algorithm know

when a problem with the PES has been encountered, or the structure has moved

too much. This means the new search direction should not be influenced by the

previous ones. As the CG algorithm produces directions that are conjugate to all the

previous ones, the new direction is influenced by the previous ones. Hence in these

circumstances, the algorithm is reset, and the new search direction is given by the
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force on the structure at that point on the PES, as was done in the first structural

optimisation iteration.

7.4.6 Output from the Line Minimiser

A direct comparison of the previous method of line minimisation, which used both

energies and forces, and this force based only line minimiser, is not a fair test as the

previous method has access to more information, and would be expected to perform

more efficiently. However it should be ensured that the reduction in efficiency is small.

By running unfiltered structural optimisations using both methods, this can be done.

The specific measures will be the number of force calls required for each method, the

maximum component of force on the final structures, and the values of ~f.~d from the

estimated FD0 points.

As a first test, a unit cell of 64 silicon atoms in the bulk configuration was taken

as a starting point, then 3 atoms were moved 0.3% of the interatomic distance in

the direction of each of the three lattice vectors. All other parameters were the

same as in the silicon vacancy calculations in section 4.4, except the tolerance for the

SCF process, which was set to three orders of magnitude lower. This was to ensure

highly accurate forces were presented to both line minimisers, as forces smaller than

1.0×10−3Ha/ a.u. require a more accurate SCF tolerance. If this isn’t set, an element

of randomness is introduced into the process, which would blur the distinction between

the methods. Two calculations were then performed, both using the CG algorithm,

firstly with the existing force and energy based line minimiser, and then with the

new force only based one. The results are shown in table 40. The energies of the

structures are identical to 7 decimal places, and the resulting structures were both

of bulk silicon. The maximum force component is slightly higher for the force based

only minimiser, but both are much lower than the initial value of 0.0035011 Ha/a.u..

The output from the force based line minimiser shows how much ~f.~d is reduced. In

the output below, the first number indicates 1 as the initial point, 2 as the trial point,
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7.4 Force-only Based Line Minimiser

Table 40: The maximum component of force on a bulk silicon system with 3 atoms

moved 0.3% of the silicon-silicon interatomic distance, after a line minimisation step

using two different line minimisers, one force and energy based, and the other a

filtration-compliant method using just forces. Both methods used three force calls for

the process. It can be seen the minimisers perform as well as each other. The initial

maximum force component on the structure was 0.0035011 Ha/a.u..

Line Minimiser Maximum Force Component Energy of Structure

Type (Ha/a.u.) (Ha)

Energy & Force 0.00018902 -253.44673

Force only 0.00019775 -253.44673

and 3 as the calculated point. The second number is α, i.e. how far in multiplies of

~d has been moved, the third number the energy in Hartrees, and the last number is

the value of ~f.~d. The line minimiser requires a final value of ~f.~d 10 times less or more

than the initial value. Here it has reduced the value by a factor of over 14,000, using

the minimum number of force calls.

LINMIN: 1 0.0000000000 -253.4467068660 0.0035011240

LINMIN: 2 0.0038754819 -253.4467289004 0.0015340682

LINMIN: 3 0.0068978941 -253.4467341354 0.0000002420

As a second test, a unit cell of 64 silicon atoms in the bulk configuration were randomly

shifted from their equilibrium positions, to a maximum of a tenth of a silicon-silicon

bond length. Both line minimisers were again used in conjunction with the CG al-

gorithm., The results of the structural optimisation are in table 41. In this instance,

the force only based minimiser produces a lower maximum force component in fewer

force calls than the its energy and force based counterpart. The differences are small

enough to be negligible however - the conclusion is that the use of a force only based
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Table 41: The maximum component of force on a randomised bulk silicon system after

structural optimisation using CG, but with two different line minimisers, one force

and energy based, and the other a filtration-compliant method using just forces. Each

atom was moved up to a maximum of 10% of the silicon-silicon interatomic distance.

The number of force calls required to reduce the force to this level is also provided.

The initial maximum force component on the structure was 0.0601515 Ha/a.u.. Both

line minimisers work as well as each other, with the force only based one producing

slightly lower forces for slightly fewer force calls.

Line Minimiser Maximum Force Energy of Structure Number of

Type Component (Ha/a.u.) (Ha) Force Calls

Energy & Force 0.00022969 -253.44673 25

Force only 0.00019109 -253.44672 23

minimiser, when properly implemented, does not need to affect the efficiency of struc-

tural optimisation calculations.

The force only based line minimiser has been shown to be as effective as the force

and energy based one in the two cases above. It is used not only in the Lanczos

method, but also is an option for structural optimisation and NEB calculations. In

both these cases it performs well for all structures it has encountered.

7.5 Results - Transition State Identification Using the Lanc-

zos Method

To test the Lanzcos method against the NEB, outputs from previously completed

NEB calculations were used. The structure of the highest energy image at, or near,

the start of the NEB calculation was used as the starting structure for the Lanczos

method. The resulting energies of the structures obtained from the two methods were

compared, and used as a check that the same structures were obtained. A further
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check on all the resulting structures from the Lanczos method was carried out to

ensure the resulting structures were saddle points, by calculating the actual Hessian

matrix, and ensuring it had one and only one negative eigenvalue. This check ensures

a first order saddle point.

All of the NEB calculations were of diffusions of defects and self-diffusion in dia-

mond [11,35]. They were as follows:

• NCN - One saddle point in the process of diffusion of an A centre in diamond

(two adjacent substitutional nitrogen atoms).

• V - Diffusion of a neutral vacancy in diamond.

• P1 - Saddle point associated with diffusion of single substitutional nitrogen atom

in diamond.

• R2 - [100] split interstitial in diamond.

• N2VH - Reorientation in a vacancy decorated by two nitrogen atoms and a

hydrogen atom.

• CE - Self diffusion, concerted exchange in diamond.

Table 42 displays the results for the identification of the transition states relating

to these six diffusion processes. It can be seen that the differences in energy are

very small, less than 1 meV in all cases. This would indicate the two methods have

identified the same transition state. The final maximum force component for the

Lanczos calculations are lower than seen for the NEB calculations, except in the case

of N2VH, where both are extremely low. In every case, the Lanczos has arrived

at the transition state found by the NEB, but using significantly fewer force calls.

The difference in the efficiency of the two methods is displayed more convincingly in

graphical format. This is provided in figure 23 for NCN, and figure 24 for CE. It is

clear how effective it is to use the NEB to provide an estimate of the structure of a

transition state, and then using the Lanczos method to perfect it.
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Table 42: Lanczos vs. NEB results for transition state location in diamond diffusions

and self-diffusions.

NEB ∆E Force calls Force calls Init Force Final Force Final Force

Model meV NEB Lanczos mHa/a.u. NEB mHa/a.u. Lanczos mHa/a.u.

NCN -0.55 884 12 5.445 0.994 0.055

V -0.12 63 16 0.187 0.340 0.090

P1 0.09 476 15 0.300 1.294 0.048

R2 -0.93 150 60 1.266 1.410 0.085

N2VH 0.00 165 44 15.838 0.004 0.009

CE -0.01 1440 22 8.981 0.400 0.057

Figure 23: Comparison of Lanczos and NEB method for identification of NCN saddle

point. Maximum force component is shown against the number of force calls. Note

the logarithmic scale for the maximum force component axis.
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Figure 24: Comparison of Lanczos and NEB method for identification of CE in dia-

mond saddle point. Maximum force component is shown against the number of force

calls. Note the logarithmic scale for the maximum force component axis.
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7.6 Advanced Features

The Lanczos method and the NEB work well together, so a further small, but highly

useful, development was carried out. An option was added for NEB calculations, so

that when the calculation was completed, the structure of the highest energy image,

and the current uphill direction (identified as the direction of the elastic band at

this image), were output in a file. The Lanczos method could then use this file,

removing the need to create an initial random uphill direction. This has the dual

effect of reducing the initial number of force calls required to calculate the initial

uphill direction, and to ensure the starting uphill direction is the one related to the

MEP of interest. The exit maximum component force tolerance for the NEB is set

much higher, typically 10−1 to 10−2 Ha/a.u., so that the oscillatory behaviour of the

NEB is not encountered. Results as to how effective this is are not presented, but

would be of great interest. This is an ideal area for further work, and marks the end

of this chapter, and thesis.
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Chapter 8

CONCLUSIONS AND FURTHER WORK

The majority of this thesis has investigated the filtration algorithm, specifically its

effect on the reduction of the time required for a SCF iteration, and the resulting

accuracy of calculations. The standard filtration (SF) method was supplemented

with the implementation of a technique referred to as advanced filtration (AF), where

the number of primitive basis functions to be presented to the filtration process, is

reduced, based on various criteria. SF and AF were applied to formation energy

calculations in chapter 4, and structural optimisations in chapter 5.

8.1 Conclusions

Chapter 4 compared the effect of SF and AF on formation energy calculations for

defects in silicon. For the formation of an ideal vacancy in silicon, an Rcut of 12 a.u.

produced differences to the unfiltered calculation of less than 10 meV. AF quality was

linked to a parameter τ . When AF was applied, it was a value of τ of 6 or above

that was acceptable from an accuracy viewpoint. For the formation of a VO2 defect

in silicon from VO and Oi defects, a value of Rcut of 10 a.u. produced results within

10 meV of the unfiltered calculation, however a value of τ=10 was required to stay

within this limit. To guarantee SF or AF results within 10 meV of the corresponding

unfiltered result two options appear to be available. Either Rcut=12 a.u. with a low

value of τ , 6 or 8, or Rcut=10 a.u. with a high value of τ , 10 or more. Both of these

choices reduce the time required for an SCF iteration for systems of 216 atoms with

high symmetry and Γ-point sampling of the Brillouin zone, or as low as 64 atom

systems with a finer sampling grid or low degrees of symmetry. Any systems with

more atoms, finer sampling grids, and/or lower symmetry will see SCF times reduced
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significantly.

Chapter 5 started out applying either SF or AF to the entirety of a structural op-

timistion calculation. Rcut values of 10 a.u. produces changes in the formation energy

calculations of the resulting stuctures that were too large, over 20 meV. When AF was

applied, this effect was increased, and differences of up to 90 meV were witnessed. By

simply changing the final total energy calculation to an unfiltered one, these differ-

ences were almost completely eliminated. This method ensures the efficiency savings

of filtration are applied to the vast majority of a calculation. The overhead of one

final unfiltered calculation is very small compared to the savings gained by using AF

for all the preceeding calculations performed to determine the final structure. If a

very large system was involved, the final energy could be performed using SF with a

large enough value of Rcut, which would offer a speed-up factor close to the theoretical

maximum. Forces appear to be more insensitive to filtration than energies.

The results of chapters 4 and 5 mean that optimisations of unit cells contaning 500

atoms or so can be completed at least an order of magnitude faster than before. This

shows that filtration is not just a “specialist” technique, applicable to large unit cells

of thousands of atoms, but can produce remarkable time savings for more standard

calculations currently being peformed on cells of 200-700 atoms. Also, in practice

the savings could often be many times this, as the specimen calculations done here

frequently used Γ point sampling, whereas finer grids would often be employed on

systems in practice.

Chapter 6 looked at three new developments to the filtration technique. These

focus on determining the most efficient way of imposing a spatial cutoff to the filtered

functions by selecting the functions which are to be retained during the filtration step.

Previously, only one method to do this had been implemented, and development or

testing of alternative strategies had not been considered. The new techniques were

applied to formation energy calculations for four systems involving defects in silicon.

A method named Radtrim, involving an inner sphere in which all functions centred
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inside this are kept, and a selection method for functions outside of this sphere, proved

to be the optimal method of choice. For a fixed number of kept functions, it produced

formation energies closest to the unfiltered result. It also displayed the smallest

variation in resulting formation energies when parameters were varied. During a

structural optimisation, this small variation of energies and forces will clearly be

advantageous in reproducing the PES of the unfiltered calculation.

The idea of an angular momentum based Rcut process failed to produce any im-

provement to the results. It had been supposed that smaller cutoffs with higher

angular momenta would be acceptable, but this turned out to be incorrect. The

conclusion was that the original strategy of including all functions sharing the same

exponent was in fact optimal, although this is now known as a fact.

Chapter 7 detailed the implementation into AIMPRO of a technique for the iden-

tification of transition states, the Lanczos method. Previously, the standard method

of choice was the Nudged Elastic Band (NEB) method, which suffered from two main

problems. Firstly as it required multiple images to span the reaction path, the method

is CPU intensive, requiring a large number of force calls. Also once the maximum

force component reaches a certain level, the method struggles to reduce it further. It

has difficulty optimising all the images at once. The Lanczos method showed it was

possible to take the structure of the highest energy image from a NEB calculation,

and reduce the force extremely quickly, using very few force calls. The use of the

NEB to get a structure reasonably close to a transition state/saddle point, followed

by the Lanczos method to quickly home in on the nearest saddle point, appears to

be a highly efficient and useful combination. With a view to this, a tool to stop a

NEB run, and then output a file to be used by the Lanczos method was developed.

This file included both the structure and highest energy image, to ensure the Lanczos

method headed towards the desired transition state.
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8.2 Further Work

This work has established the radtrim method, as the most efficient method for impos-

ing localisation on the filtered fuctions, and should be implemented as the standard

choice for fltration calculations in future releases of the AIMPRO code. It would

clearly be important to confirm that these conclusions also hold in dfferent materials,

and some work to do this is already underway with encouraging results [REF PRB

private comm]. It is also important to verify this conclusion when modelling derived

quantities such as hyprfine couplings, infrared spectra, population analyses, dipole

moments and so on. Partially completed work suggests this will be the case, but this

needs to be definitvely established and published.

The work in this thesis has done a great deal of variation of parameters attached

to filtration, but clearly this is not at all desirable in a project applying the technique

to a problem in materials science. It is necessary to ensure that all parameters can

be set automatically by the code as part of a run. Following an examination of the

effect of the Rsphere parameter on calculations in other materials, the setting of this

parameter could be optimised automatically, leaving τ as the remaining parameter

pertaining to the localisation of filtered functions. This could remain as a type of

‘quality’ parameter to be set by the user, but it is still preferable for this to be done

automatically. It would be an obvious further optimisation to gradually increase

this parameter as part of the self consistent cycle — at present extremely accurate

filtration is performed, even when a run is far from self consistency, and this imposes

an unnecessary overhead. The value of τ could be increased from an approximate

starting value until the energy is converged to a certain tolerance (which could have

a default setting, but could also be over-ridden by the user as an energy convergence

has a much more physically transparent meaning).

In structural optimisation, the initial optimisation steps do not require Rcut and τ

to be set to high values. By the end of the calculation, if a very precise final structure
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is needed, the reverse is true. By linking the maximum component of the force to the

value of Rcut, and especially τ , both efficient and extremely accurate AF calculations

could be performed transparently automatically without user intervention. In the

spirit of the previous paragraph, the final value fo τ could be chosen to guarantee the

default final force tolerance in an optimisation (e.g. 1 meV/Å) is safely achieved.

Moving on to the determination of saddle points, an investigation into the effect

of providing the Lanczos with an uphill direction from a NEB calculation would be

both interesting and useful. This has the potential to greatly speed up transtion

state indentification, and to allow larger structures, and more complex reactions to

be investigated.

By combining the Lanczos method, AF, and the three techniques mentioned above,

filtered transition state identifications using the Lanczos method could be made to

be extremely efficient, and accurate. This has the potential to open up structures for

transition state identification, whose size previously precluded them from full DFT

calculations, which is an exciting prospect.
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