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ABSTRACT 

In reported pipeline failures globally, third-party interference (TPI) has been recognised as 

a dominant failure mechanism in the oil and gas industry, although there has been limited 

research in this area. The problem is receiving considerable attention within the oil and gas 

industry, because of the industry threats (e.g. Al Qaeda‟s capabilities) and the natural 

vulnerability of pipelines because of their long distance network distribution. The ability to 

predict and secure pipelines against TPI is a valuable knowledge in the pipeline industry, 

and especially for the safety of the millions of people who live near pipelines. This thesis 

develop an understanding of the relationships between the many and various contributory 

factors leading to potential TPI, frequently resulting in mass deaths, economic losses, and 

widespread destruction to property. The thesis used GIS-based spatial statistical 

methodologies, first, based on hotspot and cold spot cluster analyses to explain pipeline 

incident patterns and distributions; and a geographically weighted regression (GWR) model 

to investigate the determinants of TPI and to identify local and global effects of the 

independent variables. Secondly, a generalized linear model (GLMs) methodology of 

Poisson GLMs and Logistic Regression (LR) procedures, by using a combination of land 

use types, pipeline geometry and intrinsic properties, and socioeconomic and socio-political 

factors to identify and predict potentially vulnerable pipeline segments and regions in a 

pipeline network. The GWR model showed significant spatial relationship between TPI, 

geographical accessibility, and pipeline intrinsic properties (e.g. depth, age, size), varying 

with location in the study area. The thesis showed that depth of pipeline and the socio-

economic conditions of population living near pipeline are the two major factors 

influencing the occurrence of TPI. This thesis have prompted the need for selective 

protection of vulnerable segments of a pipeline by installing security tools where most 

needed. The thesis examined available literature and critically evaluated and assessed 

selected international pipeline failure databases, their effectiveness, limitations, trend, and 

the evolving difficulties of addressing and minimising TPI. The result of the review showed 

irregular nomenclature and the need for a universal classification of pipeline incidents 

database. The advantages and disadvantages of different detection and prevention tools for 

minimising TPI, used in the pipeline industry are discussed. A questionnaire survey was 

developed and employed, as part of the thesis, for the employees and managers in the 

pipeline industry. The results of the data analysis has contributed to the body of knowledge 

on pipeline TPI, especially the industry perceptions, prevention strategies, capabilities and 

complexities of the various application methods presently being implemented. The thesis 

also outlined the actions that governments and industry can and should take to help 

manage and effectively reduce the risk of pipeline TPI. The results of this study will be 

used as a reference to develop strategies for managing pipeline TPI. The results of the 

thesis also indicated that communications with all stakeholders is more effective in 

preventing intentional pipeline interference, and that the government‟s social responsibility 

to communities is the major factor influencing the occurrence of intentional pipeline TPI.  
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 GLOSSARY OF TERMS 

Oil and Gas Pipelines: Includes crude oil pipelines, refined products pipeline, and natural 
gas pipeline. Comprising: chemical liquids pipelines, natural gas 
liquids (NGL) pipelines, liquefied petroleum gas (LPG); and 
gathering, mains, transmission and distribution lines. 

 
Third-party Interference: A failure resulting from an action by a third-party either 

intentional or Unintentional (accidental). This also includes 
damage undetected when it occurred and resulting in a failure at 
some later point in time; and sabotage, theft, terrorism threats to 
pipelines. 

 
Dependent Variables A variable is any characteristic that is recorded for a subject in a 

study. The dependent variables are outcome variable on which 
comparisons are made 

 
Independent Variables The independent variables define the groups to be compared with 

respect to values on the dependent variables. "If x is given, then y 
occurs", where x represents the independent variables and y 
represents the dependent variables. 

 
Pipeline System All component part through which petroleum product moves 

during transportation including pipe, valves, compressor units, 
metering stations, regulator stations, delivery stations, holders and 
other fabricated assemblies.  

 
Detection The process of obtaining an inspection signal recognized as 

coming from a pipeline defect that produce signals that are both 
measurable and distinctive.  

 
Mitigation Procedures to alleviate, reduce the severity consequences of 

failure. 
 
Prevention  Activities and procedures initiated to prevent pipeline damage or 

failure. 
 
Right-of-way Corridor width over another person‟s property along a typical 

pipeline with a legal right of passage granted, and acquired for 
usage by pipeline operator.  

 
Euclidean Any two points can be joined by a straight line, or a a straight line 

segment can be extended indefinitely in a straight line 
 
Z-Score A statistical measure in data analysis that quantifies the distance 

(measured in standard deviations) a data point is from the mean 
of a data set. 

 
Multicollinearity A statistical phenomenon in regression analysis describing, 

because of the high degree of correlation between two or more 
independent variables, the difficulty to accurately separate the 
effect of each individual independent variable upon the 
dependent variable. 
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1 INTRODUCTION 

1.1 Background Information 

It is predicted that the global energy demand will rise by as much as 54 per cent over the 

next two decades and oil consumption constitutes 40 per cent of this energy demand (EIA, 

2008). This increased demand for more oil encourages exploration and production of more 

petroleum resources and therefore more pipelines are required to transport the oil from the 

production to the processing facility and on to the end user. These pipelines are generally 

designed, installed, and maintained using the best available engineering technology in order 

to comply with regulatory requirements. However, despite being one of the safest forms of 

oil transport, pipelines are still prone to several threats, which if not effectively managed 

can lead to failure, e.g. environmental damage, external and internal corrosion damage, 

defects, and third-party interference (TPI). The form of TPI include sabotage, theft, cyber-

attacks on control systems, and terrorism threats (Van Den Brand and Kutrowski, 2006b, 

Day et al., 1998).  

 

Presently, the study of TPI is of considerable interest in the oil and gas industry, especially 

in the current world oil and gas economy (Augusto et al., 2010). In all forms of pipeline 

failures reported all over the world, TPI has been recognised as one of the most dominant 

failure mechanism in the pipeline industry and yet it does not attract the attention of the 

research community. TPI is one of the major classifications of pipeline failures, generally 

classified into six cause categories, namely: (i) TPI, (ii) corrosion, (iii) design and 

construction defects, (iv) natural hazards, (v) operational error, and (vi) unknown causes 

(Miesner and Leffler, 2006, Bolt, 2001, Jones et al., 1996, Kiefner et al., 1994).  

 

International efforts to improve pipeline security, because of terrorism; and the continuous 

fluctuation of the oil price, which can be attributed to intentional attacks against pipeline 

installations, now requires more emphasis on TPI research than ever before. These threats 

(e.g. Al Qaeda‟s capabilities) have made pipelines naturally vulnerable because of their long 

distance network distribution nature, especially the opportunities the long stretch provides 

for TPI. For example, prior to September 11, 2001 (9/11), risk assessments in the pipeline 

industry focused less on TPI and more on other factors, but the terrorist events of 9/11 

have changed the outlook significantly (Parfomak, 2008, Lorenz, 2007, Baybutt and Ready, 
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2003, Baybutt, 2002). However, terrorism is not the only factor involved in pipeline TPI; 

many other factors could influence the occurrence. These other determinants factors are 

land use, environmental factors, socioeconomic and socio-political aspects, population 

density, and pipeline intrinsic properties (Lorenz, 2007, Miesner and Leffler, 2006, 

Muhlbauer, 2004, Mather et al., 2001, Macdonald and Cosham, 2005, Jager et al., 2002, 

Frisbie and Minnesota, 1977). The ultimate consequence of these determinant factors is the 

risk to human lives and properties, particularly with worldwide increasing lengths of 

pipelines. 

 

Consequently, the ability to predict and secure pipelines against TPI is valuable knowledge 

in the pipeline industry, especially for the safety of the millions of people who live near 

pipelines. Hence, there is the need for a prediction, monitoring and preventative 

methodology that can identify the most vulnerable pipeline segments in an overall network. 

This will inform the expert deployment efforts more efficiently (e.g. to high consequence 

areas), reduce response times, and help develop strategies for a well-functioning pipeline 

policing approach (Parfomak, 2008). Therefore, this thesis is aimed at predicting future 

occurrence of TPI and examines potential relationships between TPI, land use, 

environmental factors, socioeconomic and socio-political variables, population density, and 

pipeline properties using hybrid multivariate statistical methods and spatial analysis. This 

thesis will also allow for the effective allocation of preventative measures by identifying 

patterns and trends of TPI. 

1.2 The Study Area 

The above factors make the study area, Niger Delta, Nigeria, the most suitable choice, 

because of the prevalence of pipeline TPI in that region. The study area is the oil and gas 

producing region of Delta State, in the Niger Delta of Nigeria. Overall, the country has a 

network of over five thousand kilometres (5000km) of oil pipelines with an oil reserve 

estimated to be over 20 billion barrels and which has risen steadily to host the world‟s 10th 

largest reserves at about 25 billion barrels (NNPC, 2005). The oil and gas industry is the 

backbone of the Nigerian economy, accounting for the majority of the total foreign 

exchange revenue. However, pipeline TPI is a daily concern, and has continuously put the 

general environment, economy, ecosystem, and public health in danger. The avowed 

intentions of ethnic guerrilla groups such as the Movement for the Emancipation of the 

Niger Delta (MEND) and similar shadow gangs, have continuously threatened oil and gas 
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operations in the region. Such groups have captured hostages, destroyed pipelines, and 

threaten oil and gas installations. This thesis will examine the motivation for TPI and 

investigate the link between political instability, poverty and socio-economic deprivation 

and whether this results in third-party pipeline damage becoming a more common 

occurrence in the study area.  

1.3 Pipeline Third-party Interference 

Pipeline TPI is a term frequently used in the literature, but to date there is no consensus 

about its definition. TPI is simply any action taken to obstruct or tamper with the 

functional operation of energy infrastructures by an individual or group of people not 

directly (or indirectly) related to or hired by the operator of the utility (Muhlbauer, 2004). 

TPI within the context of this research means some form of system failure resulting from 

an action by a third party either intentional or unintentional (accidental). This includes 

damage that may have been initially undetected when it occurred and subsequently 

resulting in a failure at some later point in time. The term also includes sabotage, theft, and 

terrorism threats to pipelines.  

 

Sometimes, the knowledge of the past helps understand the present; TPI is one of the 

oldest pipeline problems dating back to the 1880s, and the threat posed by the 

Brotherhood of Pennsylvania Oil Haulers in the 1880s, in Pennsylvania, USA (Miesner and 

Leffler, 2006, Papadakis et al., 1999). While various definitions of TPI are found in the 

literature and several failure databases, they all recognise it as one of the most prevailing 

cause of pipeline failure. For example, Wan and Mita (2010), Focke (2009), Seevam (2009), 

Williamson and Daniels (2008), Ai et al. (2008), and Cao et al. (2007)  have all classified the 

most common causes of pipeline failures as being TPI and corrosion. Whilst there is much 

research regarding the threat of corrosion resulting in numerous research publications and 

data, there are very few studies concerned with TPI. Recent research in this area is concern 

on the development of remote sensing and surveillance technologies, in addition to models 

for pipeline hazard risk analysis. Nevertheless, with regard to current technologies, and 

taking advantage of the limited literature, TPI can be classified into the following two main 

categories: (1) Intentional, and (2) Unintentional. The following sections describe in more 

detail what is meant by intentional and unintentional pipeline interference.  
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1.3.1 Intentional Pipeline Third-party Interference 

In the literature, the term intentional TPI tends to be used to refer to the deliberate and 

illegal intrusion into a pipeline network without the operators‟ given consent and 

permission. In global terms, activities of intentional TPI include vandalism, smuggling, 

trespass, conspiracy, pilfering, sabotage and terrorism. It could also be in the form of 

piracy, intrusion, hijacking, bunkering, political extremism, false alarm, and guerrilla 

warfare. Intentional TPI also includes the use of mechanical equipment, firearms, and 

explosives to cause physical damage, for example, Figure 1-1 shows activities of TPI in the 

study area.  

  

Figure 1-1: Activities of pipeline TPI (intentional): Left picture: Saboteurs‟ typical illegal installed 
valves to steal oil from pipelines; Right-picture: Theft of pipeline product, a common occurrence in 

the study area (Watts and Kashi, 2008). 

Moreover, cyber (internet) attacks on pipeline network and the operation of monitoring 

control systems are also other forms of TPI, this is in addition to robberies, militia groups, 

hostage taking and kidnapping that now accompany pipeline TPI. This shows a need to be 

explicit about exactly what motivates intentional TPI, and makes pipelines vulnerable. This 

thesis hypothesises that these actions and threats are strongly influenced by environmental, 

physical, social and economic conditions. 

 

Intentional pipeline damage resulting from TPI is criminal. For example, the Royal Dutch 

Shell Company, the largest oil producer in Africa cut production by 500,000 barrels per day 

in 2006 (Watts and Kashi, 2008). This resulted in a revenue loss of about $35 million daily 

and was caused when kidnapping and attacks on facilities by militants and vandals became 

unbearable. In addition, vast volumes of oil are lost due to theft at oil flow monitoring 

stations; between 275,000 and 685,000 barrels of oil are on average each day stolen in 

Nigeria (NNPC, 2005). A total loss of between $1.5 and $4 billion annually are lost to the 
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illegal hot-tapping of pipelines. Globally, the oil and gas industry is currently under pressure 

to take a more proactive role at curbing such intentional pipeline damage (Parfomak, 2008).  

1.3.2 Unintentional Pipeline Third-party Interference 

Unintentional third-party interferences are external events and activities unexpectedly 

leading to the accidental damage of pipelines, and which could have been prevented if 

protective measures had been taken prior to their occurrence. The term embodies a 

multitude of possibilities; however, the activities are mechanical failure, operation error, 

control system failure, and also by humans and natural hazards, for example, road 

construction, farming, drilling, mechanical error, landslides, erosion, and earthquakes 

(James and McKinley, 2007, Houreld, 2007, Gale, 2006). 

 

  

Figure 1-2: Aftermath of pipeline TPI in Ghislenghien, Belgium, on the 30th July, 2004. Over 20 
fatalities and 33 people severely burned were reported (Papadakis, 2005). 

 

 

Recently, Nigeria (the study area) experienced a major disaster when an earth-moving 

vehicle accidentally collided with a petroleum pipeline. The resultant inferno raced through 

the neighbourhood, killing over 100 persons, including schoolchildren in a nearby nursery 

school (Nwankwo and Ezeobi, 2008). Similar pipeline disasters, as reported worldwide, are 

sometimes catastrophic and often result in mass deaths and widespread destruction of 

properties. For example, the Department of Justice (2007) and Papadakis (2005) reviewed a 

tragedy that involved various deaths, several serious casualties, and others who were 

hospitalised with severe burns when a Major Accident Hazard Pipeline (MAHP) near 

Ghislenghien in Belgium, that operated at a pressure of 70 bars, failed due to third party 

activities (Figure 1-2). For these reasons, there is the need to limit the consequences of 

pipeline TPI, especially since TPI can cause immediate pipeline failure, as well as future 

failure in undetected rupture and damage. 
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1.4 Objectives and Scope of the Thesis 

TPI is a serious threat to the integrity of the pipeline industry and with limited attention to 

it given within the research literature and few studies addressing theoretical and 

methodological issues, especially with respect to intentional pipeline TPI. However, this 

thesis, as described earlier, will develop an understanding of the relationships between the 

many and various contributory factors leading to TPI. In addition, the thesis will allow 

pipeline operators to effectively manage resources by the selective protection of vulnerable 

segments of a pipeline by installing necessary security.  

 

This thesis could be used to minimise the cost per mile of pipeline installations against 

possible TPI. Therefore, it could complement other solutions (as discussed in chapter 3), 

and considerably reduce the huge investment involved in protecting pipelines. The aim of 

this thesis, therefore, is to determine and explore relationships between land use, 

environmental factors, socioeconomic and socio-political factors, population density, and 

pipeline properties by using hybrid multivariate (and spatial) statistical methods and the 

subsequent design of a prediction model for pipeline TPI. The main objectives of this 

thesis are thus to: 

 

1. Develop an understanding and description of pipeline TPI, and investigate the 

many possible influencing factors, especially for intentional TPI, in developing, 

politically complex countries such as Nigeria. 

 

2. Review the available literature and critically evaluate and assess selected 

international pipeline failure databases, their effectiveness, limitations, trend, and 

the evolving difficulties of addressing and minimising TPI. 

 

3. Study the aspects of safety and effectiveness of various detection and prevention 

tools and approaches for minimising TPI, with their corresponding advantages, 

limitations and disadvantages; especially, the various ways for combating TPI that 

are currently implemented. 

 
4. Conduct a questionnaire based survey for participation of the employees and 

managers in the pipeline industry, to investigate perceptions regarding TPI and the 
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efficacy of prevention strategies, capabilities and complexities of the various 

application methods presently being implemented in the industry. 

 
5. Identify the significant factors of geographical accessibility to pipelines and 

vulnerable segments with alternative methodologies based on: (a) point pattern 

analysis to describe the spatial distribution of third-party damages in the study area; 

and (b) a geographically weighted regression model to show spatial variations in the 

relation between the occurrence of TPI and selected exploratory independent 

variables. 

 
6. Determine the factors in particular that affect the occurrence of pipeline TPI, in a 

measurable way, and the relationship patterns among the variables undertaken by 

using Factor Analysis (FA) approaches, in addition to identifying the most 

significant variables for subsequent use in prediction models. 

 
7. Develop a statistical prediction model with Generalised Linear Models (GLMs) to 

predict and estimate the likelihood of TPI in the future at postulated vulnerable 

pipeline segments, by modelling a combination of land use types, pipeline 

geometry, failures count data, socio-economic, socio-political and pipeline 

variables. 

 

8. Review the limitations of the tools and modelling approach and make 

recommendations for further research. 

 

9. Investigate the possible contribution of the thesis findings into the current pipeline 

safety policy in the study area, Nigeria. 

1.5 Structure of the Thesis 

In summary, this thesis provides a critical examination of pipeline TPI, and deals with the 

fundamental concepts of best approaches to prevent and manage the problem. This thesis 

consists of a general introduction; a detailed literature review of pipeline TPI issues; 

detailed review of pipeline failures and of various preventive measures; a description of 

various methodologies adopted and applied for the thesis; and a discussion and conclusion 

of the results obtained. 
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Specifically, Chapter 1 presents basic definitions and covers background research materials 

described in subsequent chapters. The chapter provides an overview of the meaning of 

pipeline TPI, with a review of theories of major contributory factors leading to TPI. The 

chapter presents the thesis‟s overall objectives, and concludes by describing the structure of 

the thesis, followed with a summary. 

 

 Chapter 2 discusses TPI in detail and reviews pipeline failures especially intentional and 

unintentional TPI. The chapter then focuses discussion on previous work on pipeline TPI. 

The chapter concludes with a presentation of an extensive description of general security 

and policy issues, regulations and legislations concerning pipelines. 

 

Chapter 3 describes and reviews various international pipeline failure databases. The 

chapter focused on the Nigeria National Petroleum Corporation (NNPC); European Gas 

Pipeline Incident data Group (EGIG); Office of Pipeline Security (OPS), U.S; 

Conservation of Clean Air and Water in Europe (CONCAWE); United Kingdom Onshore 

Pipelines Operators Association (UKOPA); and National Energy Board of Canada (NEB). 

The chapter concludes with a discussion on the findings of the review. The chapter 

concludes with commentary on the reviewed pipeline database as well as suggestions for 

proper definition of TPI in the databases. 

 

Chapter 4 provides an extensive description of the various detection and prevention tools 

that are available for undertaking third-party damage control, with their corresponding 

advantages, disadvantages and limitations. The review was based on review of literatures, 

and was divided into three broad categories: pre-installation, during-installation, and post-

installation. 

 

Chapter 5 discusses factors that affect and influence the occurrence of pipeline TPI. It 

starts by defining and discussing the characteristics of the individual factors, with reference 

to the Nigeria study area. The following factors influencing TPI are discussed in this 

chapter: land use, socioeconomic factors, Human Development Indicators (HDI); socio-

political factors; population density; geographical accessibility; pipeline intrinsic properties; 

topographical and geological factors. 
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Chapter 6 catalogues the overall methodology adopted for the analysis and development of 

the TPI models in the thesis. The following are described: the hot spot spatial approach 

and modelling; and model development with Multivariate Statistics. Chapter 6 also 

describes the various tools of multivariate statistical analyses and the application of 

Geographical Information System (GIS).  

 

Chapter 7 describes the results of the GIS hot-segment analyses from the Gi* and Gi 

statistics and the Geographical Weight Regression (GWR) based procedures. The chapter 

identifies a set of influential and significant factors using: (i) point pattern analysis of 

pipeline incidents to describe their spatial distribution; (ii) hotspot and cold spot cluster 

analyses to explain pipeline incident patterns and distributions; and (iii) GWR model, that 

showed spatial variations and relationship between the pipeline incidents, proximity access, 

and pipeline intrinsic properties (e.g. depth, age, size) as explanatory variables.  

 

In Chapter 8, the analyses and results of TPI activities from the study area using 

multivariate statistical analysis from Generalised Linear Model (GLMs) of Logistic 

Regression (LR) analysis are presented. The result obtained is by using a combination of 

land use type, pipeline geometry, socio-economic, socio-political and pipeline intrinsic 

properties to identify and predict potentially vulnerable pipeline segments. This chapter 

answered some of the most important questions involving TPI. Why are particular 

segments of a pipeline experiencing increased level of TPI? What might be causing this? 

What factors are contributing to higher than expected levels of interference?  

 

Chapter 9 outlines and discusses the significance of the questionnaire survey as part of this 

thesis. The chapter discuses the methodology for the administration of the survey, 

constructed to identify and investigate perception of various organisations that are involved 

in the pipeline industry and then compared them to the industry standards and 

requirements. It describes the most suitable research design and methods used to collect 

and analyse the questionnaire survey data collected. The chapter further discusses the 

considerations, sample size and limitations of the questionnaire survey.  
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Chapter 10 presents the results, analysis, and discussion of the assembled and analysed 

questionnaire. The chapter summarizes the findings from the survey, concluding with a 

recommendation resulting from the analysis. 

 

Chapter 11 presents a general discussion, in which the major conclusions are summed up, 

the chapter also reinforced the connections between various results obtained, in particular, 

describes how individual underpinning factors described in Chapter 5 contribute to the 

understanding and interpretation of the results. Limitations of the thesis are then 

presented,. Finally, potential future research directions and recommendations for future 

work are explored. 

 

Chapter 12 presents the overall conclusions of the work undertaken and presented in this 

thesis, their implications, and draws comparisons with the theories discussed in the opening 

literature review (Chapter 2). This is followed by an appendix containing the questionnaire 

survey sample, selected GIS and statistical outputs and correspondence presentations given 

by the author during the period of development of this thesis. The appendix also presented 

the elicited critical remarks from the respondents. 

1.6 Summary 

Current knowledge about TPI lacks a deep understanding of the interaction effects of the 

various factors influencing the occurrence. In summary, this chapter gives a brief 

introductory context of TPI, the objectives and scope of the study; and the structure of the 

thesis. Specifically, Section 1.2 provides an overview of the study area. It describes the 

characteristic of the pipeline network across the study area in a national context. Section 

1.3 describes intentional and unintentional pipeline TPI. The objectives and scope of the 

study are given in Section 1.4, followed by a description of the general organisation of the 

thesis in Section 1.5. The next chapter provides background and literature information 

necessary for understanding the concepts of pipeline TPI, and presents an evaluation of 

several studies about pipeline TPI, the theoretical and practical considerations of such 

studies, and an overview of previous research regarding pipeline TPI. 

 



Chapter II: Pipeline Third-party Interference, Security, and GIS-Based Statistics 

 
11 

 

2 PIPELINE THIRD-PARTY INTERFERENCE, 
SECURITY, AND GIS-BASED STATISTICS 

2.1 Introduction 

The negligence of pipeline third-party interference (TPI), especially aftermath of September 

9th, 2001 (9/11) could further put the pipeline industry and the local populations in serious 

danger.  The negligence have resulted in disruption of business activity, grave casualty, and 

economic loss in various oil and gas producing region of the world (Baybutt, 2002, Baybutt 

and Ready, 2003, Parfomak, 2008). The review of literature have shown that TPI is 

responsible for high failure rates for all types of pipelines, for example, longitudinal studies 

of pipeline failures by Conservation of Clean Air and Water (CONCAWE), reports that 

TPI is responsible for the increase in failure rates for crude oil pipelines in Europe 

(CONCAWE, 2000, 2006, 2007). 

 

General pipeline failure and the behaviour has been the subject of considerable study over 

the past forty years, according to Macdonald and Cosham (2005), with a large number of 

full-scale tests, various analyses and other related work having been undertaken. Literature 

reviews of pipeline failure studies confirm the growing number and complexity of the 

available mathematical and scientific models; while, specifically, TPI, a subject that is both 

technical, social, political and economic has been the subject of fewer studies. For instance, 

many authors (e.g. Hongqing (2005); Macdonald and Cosham, (2005); and Hopkins et al. 

(1999)) have all studied pipeline TPI from compiled historical data without consideration 

and proposals to mitigate damage caused by TPI.  

 

This chapter discusses and examine TPI in detail and reviews pipeline failures, especially 

intentional and unintentional TPI. The chapter focuses discussion on previous work in 

mitigating pipeline TPI. The chapter also introduces the application of statistical method 

and Geographic Information Systems (GIS) in the analysis of pipeline failure, and 

concludes with a presentation of an extensive description of general security and policy 

issues, regulations and legislations concerning pipelines. 
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2.2 Review of Pipeline Third-party Interference 

Energy infrastructures, for example, pipelines, truck tankers, refineries and oil and gas 

terminals are potential targets for terrorists and saboteurs. Many studies and reports have 

indirectly identified this potential (e.g. Nwankwo and Ezeob, (2008); Parfomak, 2008; 

James and McKinley (2007); Houreld (2007); and Gale (2006)). For example, rebels have 

bombed the Caño Limón oil pipeline in Colombia over 600 times since 1995 and similarly 

have detonated several bombs along Mexican natural gas pipelines in July 2007. The U.S 

President‟s Commission on Critical Infrastructure Protection (1997) and Parfomak (2008) 

both report how London police foiled a plot by the Irish Republican Army (IRA) to bomb 

gas pipelines and other utilities across the city. Similarly, in June 2007, the U.S. Department 

of Justice arrested members of a terrorist group planning to attack jet fuel pipelines at the 

John F. Kennedy (JFK) International Airport in New York. 

 

The successes of any intentional or unintentional interference on oil and gas pipeline have 

grave consequences that can be devastating for the local people and the environment. This 

is more probable, especially, considering numerous pipeline companies that are continually 

digging thousands of kilometres of construction holes to meet with the upsurge in 

technological advancement. For example, a pipeline TPI tragedy that occurred in California 

in 2004 resulted in the death of five utility workers. This was caused when an excavator, 

accidentally ruptured a high-pressure petroleum pipeline (Parfomak, 2008). There are other 

various records of similar occurrences in several international pipeline failure databases. 

 

CONCAWE (2000) detailed how 500 people died in 1998 when an attempt to remove oil 

product from a pipeline under its jurisdiction failed.  In addition to this, it also recorded 

how, in 1993, 51 people were burnt to death when a gas pipeline failed in Venezuela. The 

US Department of Transportation, in 1995, estimated that 50 people were seriously injured 

in 1994, when a 36-inch pipeline in New Jersey (USA) failed as a result of TPI. Parfomak 

(2008) also reiterated how “a 1999 gasoline pipeline explosion in Bellingham, Washington, killed two 

children and an 18-year-old man, and caused $45 million in damage to a city water plant and other 

property. In 2000, a natural gas pipeline explosion near Carlsbad, New Mexico, killed 12 campers, 

including four children”.  
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The early developmental history of what by now has cumulated into the above cases of 

TPI can be traced back to the nineteenth century.  In 1806, the London Westminister Gas 

Light and Coke Company (LWGL&C) laid the first gas mains amidst protest from third 

parties. In 1850, the Brotherhood of Pennsylvania Oil Haulers vandalised pipes and pumps, 

and interfered with production in the U.S. Similarly, in the 1880s, there were several 

monopolistic activities, blackmail of pipeline operators and saboteurs of pipeline as the 

industry and networks expanded. In the twentieth century, in 1906, the Hepburn Act 

deemed all interstate oil pipelines to be regulated common carriers, this was amidst various 

third-party protest and attempted attacks. The Levant pipeline built in 1932 to 1952 from 

Iraq through Israel to the Mediterranean has been held hostage several times for complex 

political and economic reasons. In 1950, the Tapline built from Saudi Arabia through 

Lebanon and Syria was closed down several times due to political reasons and TPI 

(Miesner and Leffler, 2006). Hence, pipeline TPI is as old as the history of oil exploration 

itself. 

2.2.1 Pipeline Third-Party Interference in Nigeria 

In Nigeria, militants have repeatedly attacked pipelines and related facilities resulting in 

great loss of life and property. The country has the highest cases of pipeline TPI in the 

world. This is combined with record high cases of hostage taking and extortion of money 

from oil companies, to avoid attack on pipelines. The Petroleum Product Marketing 

Company (PPMC), a subsidiary of the Nigerian National Petroleum Corporation (NNPC), 

documented over 12,770 cases of vandalism between 2000 and 2007. The number is 

alarming compared to the 450 cases of rupture for the same period (Figure 2-1) (Nwankwo 

and Ezeobi, 2008).  

 

Figure 2-1: Vandalism and rupture rate on pipelines in Nigeria from 1999 to 2005; from 2005 the trend 
and numbers of cases have been upwards (NNPC, 2005). 
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In January 2010, some unidentified group in the study area blew up Chevron‟s Makaraba-

Utonana pipeline; this forced the company to reduce the production of crude oil by 20,000 

barrels, per day. Earlier, in July 10, 2000 it was estimated 250 villagers were burnt to death 

in Jesse, Delta State, while pilfering fuel from vandalised pipeline. This was followed by a 

TPI of a pipeline that caught fire near the fishing village of Ebute near Lagos, killing over 

60 people in November 2000. 

   

Figure 2-2: Scenes of pipeline failures in the study area that burnt to death hundreds of people in 
Abule Egba, a suburb of Lagos in 2006 (Source: Unknown archive newspaper clip, 2007). 

 

A pipeline explosion at Inagbe Beach on the outskirts of Lagos resulted in the deaths of 250 

people in May 12, 2006. Pipeline TPI reached a new height in 2006, when on December 

26, 2006, about 269 recovered burnt bodies from the scene of pipeline fire in Abule Egba, a 

suburb of Lagos, make news headlines (Figure 2-2).  

 

 

Figure 2-3: Consequences of pipeline failures in Nigeria: (A) Shows various attempts by people 
siphoning oil from a vandalised pipeline; (B) Aftermath wide destruction of properties from a 

vandalised pipeline in Lagos, Nigeria; (C) Fire outbreak from a damaged pipeline; and (D) Humans 
burnt to death as a result of a pipeline explosion caused by a TPI (compiled from bbc.com). 
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Similarly, on June 19, 2003, a failed attempt at oil theft led to the explosion of pipelines in a 

village near Umuahia, Abia State; in this incident, 125 people died (Figure 2-3(b)). This was 

followed, in September 2004, when dozens of people died in a pipeline explosion in Lagos 

after thieves had tried to siphon oil product (Figure 2-3(C)). In addition, Nwankwo and 

Ezeob (2008) recount how Nigeria experienced increased pipeline vandalism including a 

simultaneous bombing of three oil pipelines in May 2007. In addition, on December 26, 

2007, over 45 people burnt to death in Lagos when fuel they were siphoning from a buried 

pipeline caught fire (Figure 2-3(D)). In May 2008, at least 100 people died and hundreds 

were injured when fuel from a pipeline ruptured by an earthmover exploded in a village 

near Lagos. 

 

Overall, attacks made on the pipeline inevitably disrupt oil production eventually, having a 

multiplier effect on the international oil price. For example, the total destruction of oil 

pipelines in Isaka and Abonema, both in Rivers State barely 72 hours after crippling the 

Adamakri crude flow line belonging to Shell Petroleum Development Company (SPDC) 

affected the international price of oil barrel (Nwankwo and Ezeob, 2008). Environmental 

pollution (water, air and solid waste) also results from these pipeline attacks and can be 

attributed to lack of/and or enforcement of regulatory standards. The activities of the oil 

companies in the study area have destroyed much of the land cover, for example, and as 

confirmed by the review of the NNPC database, thousands of oil spills occur yearly. The 

inadequacy of the oil companies to redress this issue, together with the destruction of 

livelihood, does lead people to vandalize and pilfer from the oil infrastructure, as a way of 

revenge and obtaining compensation. More worrisome are the large-scale attempts of 

armed groups against government reprisals, thus deepening pipeline TPI.  

2.3 Third Party Interference: Previous Research Studies 

Since the discovery of oil and its transportation by pipeline, only few studies have been 

conducted to examine pipeline TPI. This is in addition to the many questions that remain 

unattended to about unifying the various complex contributory factors influencing the 

occurrence of TPI. Particularly, the problem of intentional TPI and the ability to quantify 

and measure the salient factors, for example, geographical accessibility, socio-political and 

socioeconomic factors. These factors have not been adequately treated, especially the 

combined effect. These factors are imperative in developing an understanding of pipeline 

TPI.   Although more studies and articles have been written, for example, on unintentional 
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TPI, no studies have attempted to resolve the contradiction between intentional and 

unintentional TPI. The results of various representative studies relating to TPI are 

described in the following sub-sections. 

2.3.1 Depth of Pipeline 

It has been hypothesised that the deeper a pipeline is buried, the lower the risk. A 

pioneering study by Knight and Grieve (1974), cited by Mather et al.(2001) provided a 

comprehensive (although not exhaustive) overview of the influence of depth of cover on 

TPI. It complements the companion review by Neville (1981), also cited by Mather et al., 

(2001); although no data existed to confirm this, the study concluded that increasing the 

depth of cover will bring about a reduction in pipeline TPI. The two papers share the same 

understanding, which provides a description of the influence of depth of cover of 

pipelines; which today is still one of the major factors for third party damage risk reduction.  

 

Chen and Su (2009) studied the relationship between the depth of pipeline, geological fault, 

pipe-soil friction, and accidental pipeline damage using the predictive capability of Artificial 

Neural Network (ANN). The occurrences of the pipeline damage are assumed nonlinear in 

the analysis, and the numerical simulation of the model adequately produced an optimum 

structured network. However, this study has not treated pipeline damage from accidental 

interference in much detail. For example, the study did not capture the effects of the 

number of previous damages has on future probability of reoccurrence and on the model. 

The reliability and practical evaluation of the study would have improved if the author had 

not overlooked the fact that history of pipeline damages contributes to reliable prediction 

of future occurrence and to understanding TPI. 

2.3.2 Human Activities and Pipeline Third-party Interference 

One of the greatest single challenges to safe operations of pipelines is the accidental 

interference caused by human activities (Day et al., 1998). Geyer et al. (1990) investigated 

how organisations, management procedure, and human related factors might be quantified 

and included into pipeline risk assessments and safety procedures. Their study is a socio-

technical analysis of pipeline failures, taking into consideration various factors ranging from 

management procedures, design for preventive measures, engineering reliability, and 

human error as direct contributors of pipeline TPI. Their findings provide satisfactory 

explanation to understanding the effect of general human factors to occurrence of TPI, 
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however, the study failed to explore the association between population proximity and land 

use in reducing impacts. These two factors he failed to consider are basic significant human 

factors to understanding the occurrence of TPI. 

 

The availability of historical data further prompted Sljvic (1995) to study relationships 

between human activities and their contribution towards pipeline failure. He also 

recognised TPI as the single most probable cause of pipeline failure arising from, but not 

limited to, landowners, utility companies, contractors, and local authorities. It, however, 

conflicted with a companion paper (Hovey and Farmer, 1993) who contended that the 

probability of a spill, from TPI, along a pipeline is the responsibility of the risk managers 

and not socio-economic factors. The Sljvic‟s (1995) study, subsequently examined by 

Hongqing (2005), further encourages increased contact by pipeline operators with potential 

third parties through quality dissemination of information. However, a review and 

examination by Pipeline Safety Regulations (PSR) of 1996, aimed to make pipeline safer, 

with particular reference to TPI further concluded and points out that people who 

intentionally interfere with pipelines are responsible and liable for the consequences of 

their actions. These results are suggestive, it is expected that any TPI should be the 

collective responsibility of the owners of the pipeline and the third parties causing the 

interference. 

 

Furthermore, many analysts now argue that the strategy of involving all stakeholders in the 

prevention of TPI has been successful. Hongqing (2005), for example, argues that the 

differential impact of primary causes of TPI is community based. He therefore reinforced 

the need for traditional prevention of pipeline TPI (e.g. patrol and periodical survey). It can 

be concluded that geographical inequalities in infrastructural development and facilities 

between urban and rural areas also induced a high rate of migration into the urban areas 

from the rural areas, putting considerable pressure on the urban centres to gradually 

encroach into pipeline right-of-way (ROW). However, the study concludes that inadequate 

communication between pipeline operator and local inhabitants caused most TPI. In order 

to guarantee pipeline safety and security, he also investigated how pipelines can be 

protected from TPI using methods of GIS, Remote Sensing (RS) and direct surveillance by 

developing a model to fit similar data. The probabilistic model measuring failure rate of 

third-party pipeline damage was designed using historical data and structured opinion 



Chapter II: Pipeline Third-party Interference, Security, and GIS-Based Statistics 

 
18 

 

survey of experts. Pipeline characteristics and environmental factors were also considered 

in the probability model. 

2.3.3 Researches on Mechanical Methods for TPI 

Previous studies have reported how to remotely monitor any on-going TPI on an oil and 

gas pipeline using signal detection and classification (e.g. Wang et al. (2006) and Leis et 

al.(1998)). They tested for the effect of pipeline drilling, excavation, and mechanical 

hammering under normal typical working conditions. However, the model they employed 

failed to significantly identify and filter out false alarms and environmental noises that are 

common with signals detection using the acoustic method as demonstrated by Cao et al. 

(2007). Similarly, Nikles (2009) showed how fiber optic sensing technique was used to 

measure strain and temperature for cross-country pipeline. The system is able to monitor 

pipeline ground movement, interferences and detect leakages. The system was 

corroborated by case studies and practical field data test. Notwithstanding these results, it is 

unclear from these studies whether what was learned in one area could be applied to 

another. In addition, the main weakness of the study is the failure to address high 

investment cost and expensive optical line transmitters and receivers this method will incur, 

besides lacking industry standardisation (at least for now) and the limited acceptance in 

pipeline project procurement.  

 

Nam et al. (2006) introduced an on-line monitoring system for TPI for underground 

natural gas pipelines using accelerometers installed along pipeline, which could detect a 

propagated acoustic pressure and pulse from any pipeline interference. The model was 

validated with third-party damage simulation using hammer, drilling, etc. The study is 

similar to the one carried out by Wang et al (2006). However, all the studies reviewed so 

far, suffer from the fact that (according to Hopkins (1993)), over 80% of oil and gas 

pipeline are onshore, long haul and laid cross-country. Hence, a system that's cheap to 

implement and target vulnerable pipeline segments driven will do the industry good in term 

of resources management, although the advance security technologies are welcomed, and 

could be suitable in vulnerable segments of pipeline network. 

2.3.4 Application of Statistical Method in Pipeline Failure 

One area in which statistical approaches are commonly applied in pipeline failure are 

model-based procedures to investigate the influences of multiple variables. For example, 
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Wan and Mita (2010) presented a methodology for early warning of hazards to pipelines 

using Eigenvalues derived from Principal Component Analysis (PCA), as unique prediction 

signature, coupled with acoustic information applied to pipelines from third-party activities. 

The effectiveness of the method was investigated using an on-site application to a pipeline 

that indicated possible determination of early warning for pipelines.  

 

Cagno et al (2000) uses the Analytic Hierarchy Process (AHP) and Bayesian approach to 

investigate the pipeline failures and assess the probability of failure of low-pressure cast-

iron pipelines. The integration of historical data and knowledge of company experts to aid 

accurate rehabilitation policy was employed in the study. Expert opinion using the AHP to 

develop a Decision Support System (DSS) was also used by Dey (2004) to determine priori 

distribution of gas pipeline failures coupled with a DSS. However, there are several 

drawbacks of using this method. First, humans are not very good probability estimators 

(Paulson and Zahir, 1995). While Dey (2004) recognises pipeline risk analysis as a group 

effort, the unequal length of pipeline stretches (segment) used lacks homogeneity 

requirement and thus may negate unequal sample size, and lead to a loss in inference 

efficiency. This method is mostly based on the worst-conditions-first approach, which may 

not be the most cost-effective approach in pipeline risk management. Secondly, the 

Bayesian method by Cagno et al (2000) is vulnerable to a poor choice of factors for 

consideration. This is evident considering the inappropriateness of the in- house experts to 

give and determine adequate descriptive statistics for failure density.  

 

Limited research to date dealing with third-party pipeline damages using statistical 

techniques have also failed to consider many essential factors that affect the susceptibility 

of a pipeline network. Mather et al. (2001) for example, developed a predictive model, 

which can be used to assess the likelihood of pipeline failure caused by TPI using such 

factors as pipeline diameter, wall thickness, geographic location, and depth of cover. The 

EGIG and BG Transco data were used in the analysis. The Mather et al. (2001) analysis 

with reliance on these factors may be subjected to certain error in the prediction of 

frequency of TPI. This was evident in comparison of predicted failure frequency values 

derived from EGIG and BG Transco data investigated that showed a marked difference in 

the result. This approach of drawing inferences concerning TPI from the failure history 

and pipeline depth of cover rests on the assumption that vulnerability of pipeline is depth 
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related. However, it has been shown that a significant proportion of TPI activities do not 

depends on the depth of cover. Activities such as drilling and seismograph activities 

involving underground detonations are influential irrespective of pipeline cover 

(Muhlbauer, 2004). 

2.3.4.1 Advance Linear Statistical Model 

Previous research has usefully used the simple t-tests and least squares regressions methods 

for pipeline failures, assuming normal distributions of the pipeline data (e.g. Barteneva 

(1996)). However, many authors (e.g. Tabachnick and Fidell (2007)) question the ability of 

these assumption, by pointing out that assuming normal distributions of pipeline incident is 

an inappropriate approach. Perhaps the simplest approach to evaluate patterns of TPI 

measured by point counts is to use statistical tests that are more flexible about the 

distributional properties of the data, especially to make statistical inferences. Some authors 

add that approach and methods involving the use of exponential distribution families 

including the Poisson and Negative Binomial models to address the issue are more 

appropriate. 

 

In addition, many previous research in various studies in transportation, biology, physics, 

medical sciences, and marketing using least squares (e.g Jovanis and Chang (1986); Joshua 

and Garber (1990); and Miaou and Lum (1993)) indicates the inappropriateness of these 

techniques to modelling failure frequencies and recommends the employment of the 

Poisson distribution. The Poisson distribution, however, also suffers from variance 

disparity, where the variance is greater than the mean (over-dispersion) or when the 

variance is less than the mean (under-dispersion) (Hinde and Demetrio, 1998). This mean 

and variance equality constraint can leads to biased coefficient estimates. A more general 

distribution, such as the Negative Binomial has been employed in such situations to relax 

the issue. However, recent research shows the inadequacy of this approach.  The authors 

also show the misinterpretation of the inverse dispersion parameter when a sample size 

becomes small and the samples mean value is low (Maher and Summersgill, 1996, Wood, 

2002). 

  

Consequently, since these methods can lead to erroneous inferences and coefficient 

estimates, the Generalized Linear Models (GLMs), in which non-normal distributions can 

be specified, is appropriate because it relaxes the Poisson‟s mean-variance equality 
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constraint. The GLMs are “a broad class of models that include ordinary regression and analysis of 

variance for continuous response variables, as well as for categorical response variables”(Agresti, 1990). 

Several studies have attempted to use GLMs in varying degrees to model utility network 

(e.g. power transmission and water pipeline). Guikema et al. (2006) developed a model for 

infrastructure reliability of electric power system outages with Poisson GLMs, a Negative 

Binomial GLMs. The models include predictor variables that were used to measure the 

impacts of tree trimming on electric power system outages under normal operating 

conditions. 

2.3.4.2 Geographically Weighted Regression (GWR)  

Geographically Weighted Regression (GWR) is a technique pioneered at the Department 

of Geography of Newcastle University (UK) by Stewart Fotheringham, Martin Charlton 

and Chris Brunsdon. The technique, in recent years has experienced increasing interest in 

many science researches. One major theoretical issue that has made GWR dominated the 

field of linear statistics concerns the limitations of the ordinary least squares regression 

analyses. Ordinary Least Squares (OLS) regression analyses produce only global statistics 

with assumptions that relationships between variables are same in a given study area. The 

objective of using GWR is first, to investigate the spatial correlation between neighbouring 

geographical locations and the local contribution of the independent variables, especially 

how they influence the dependent variable‟s outcomes. Secondly, to examine how spatially 

consistent relationships between the dependent variable and each independent variable are 

across a given study area. This is simply to reveal where and how much variation is present 

in a model. 

 

A large and growing body of literature has investigated the use of GWR for different types 

of crime related analysis, for example, Malczewski and Poetz (2005) used it to explore the 

relationship between residential burglaries and neighbourhood socioeconomic context in 

London. Recent evidence suggests the applicability of GWR in socioeconomic context; for 

example, GIS based spatial analysis and modelling of land use distributions, and transport 

analysis as demonstrated by Dendoncker et al.(2007)  and Paez (2006). Previous studies 

have also reported the use of GWR as a suitable method for understanding the occurrence 

of accidents (e.g. pipeline incidents), for example, Adhikari (2006) applied GWR to 

improve the predictability of urban intersection vehicle accidents. These approaches with 

GWR are applied to pipeline TPI, especially intentional TPI in this thesis. 
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2.3.4.3 Logistic Regression  

Logistic Regression (LR) is a form of GLMs, and since its conception, it has been used 

exclusively in the clinical, botany, biology, geology, and psychology disciplines for the 

purpose of predicting events occurrence. In recent years, the use of LR in many 

engineering, environmental and social applications is very popular. Tabachnick and  Fidell 

(2007) recount how it is now one of the most widely used statistical methods for 

probability prediction of dependent and independent variables. The suitability includes 

predicting landslide, earthquakes, rockslide, and in manufacturing process. However, at 

present there is relatively little research published on the application of LR in the analysis 

of petroleum pipeline failure. This limitation is probably due to inadequate data obtainable, 

compared to other field where data can be reliably gathered successfully. Hence, this thesis 

presents a novel methodology of multivariate statistical techniques using the LR to 

investigate the failure characteristics of TPI. It hypothesised that the factors influencing 

TPI are environmental, socioeconomic, socio-political, and the pipeline geometry.  

2.4 Geographic Information Systems (GIS)  

Geographic Information Systems (GIS) first introduced in the 1960s in Canada is referred 

to as a computerised system for mapping (Longley et al., 2005). The technology is now 

being widely accepted for the exploration of oil and gas in today‟s multi-billion pound oil 

business; when geoscientists, engineers, and geologist look for oil they implement GIS 

(Day, 1998). GIS helps collect, store and integrate spatial data for analysis to generate new 

information in a map-based, database and graphical model formats. Cowen (1988), Parker 

(1988), DoE(1987), and Burrough (1986) have defined  GIS as: “a decision support system 

involving the integration of spatially referenced data in a problem solving environment”; “an information 

technology which stores, analyses and displays both spatial and non-spatial data”; “Integrated computer 

systems for capturing, storing, checking, manipulating, analysing and displaying data which are spatially 

referenced to the Earth‟s surface”; and as “a powerful set of tools for collecting, storing, retrieving at will, 

transforming and displaying spatial data from the real world” respectively. 

 

The advent of GIS coupled with readily available various dataset in environmental studies 

has made GIS increasingly useful in environmental assessment and monitoring. This is 

because of its statistical and spatial analytical ability. It also enables decision-making 

capability and the detection of complex spatial relationships within various factors for 
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consideration (Augusto Filho et al., 2010, Facchinelli et al., 2001, Malczewski, 1999, Rigina, 

1998). Researchers have used the statistical capability of GIS for analyses in diverse 

industrial applications. Josi and Iraokhahi (2010) used GIS-based AHP procedure to 

classify and assess numerous types of environmental risks to petroleum pipelines. The 

study showed that the most significant influencing factors to the occurrence of third-party 

damage in their study area are the local population and human activities. Partovi et al. 

(1999) used it for operations management decision-making. Dey et al. (1999) used it in 

managing the risk of projects. The methodology of this thesis relies on application of GIS-

based statistical analysis to predict vulnerable segments and regions of a pipeline network.  

This hybrid approach can identify and rank pipeline segments with potentially high risks 

for TPI so that preventive actions can be taken to reduce the risks in these segments. 
 

2.4.1 GIS Application in Pipeline Management  

Malczewski (1999) identified GIS as a decision-making tool, using different data from 

various sources for solving spatial problems through spatial analysis and modelling.  In the 

pipeline industry, Augusto et al. (2010); Kneller (2007); Hutson (2006); Luettinger and 

Clark (2005); and Gale (1999) have used GIS as a decision making tool for optimum 

pipeline  route selection and for related  oil and gas facilities. Characteristically, the 

technique used involves the analysis of spatial data using data captured by remote sensing; 

and these studies have only focussed on environmental impacts, risk management and 

construction costs factors. For example, Augusto et al. (2010) used GIS to developed 

qualitative models of pipeline hazard risk analysis using multicriteria decision investigation. 

The study indentified pipeline segments vulnerable to failure. TPI, geotechnical and 

environmental risks were considered. Although, despite the few research carried out on 

pipeline TPI, no single study exists which adequately covers extensive factors (e.g. 

socioeconomic, socio-political, geographic accessibility, and human factors), and combined 

with primary questionnaire survey to exploit opinion of the industry experts.  De 

Albuquerque et al. (2002) is critical of the conclusions that various authors draws about 

unavailability of data to fully exploit other factors for consideration.  He reviewed how GIS 

could exploit online data and how decision-making process can be taken to the internet 

where pipeline data and other multimedia documents via a computer network can be 

distributed and shared.  
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Wild et al. (2002) reassessed how Conoco Inc. used GIS technology in pipeline project 

development for sustainability growth of its asset by linking diverse organisations and key 

players together on the internet. They showed how sustainability and continuous use of 

GIS from planning to pipeline operation is beneficial to a decision-making framework, 

especially the consideration for eco-efficiency, socioeconomic, and socio-environmental 

factors. However, it is perceived that the growing advent of cyber security requires caution 

be taken in any implementation of pipeline web mapping. This is important, to avoid e-

hijack of a company‟s server or database, a form of third-party interference. 

 

An integrated use of GIS, for pipeline projects is useful in installation management, 

emergency prevention, preparedness, and response. A European leading oil and gas 

company, OMV, uses GIS for oil exploration and production workflow. They have used 

GIS to create analysis tools, reduce data redundancy, and allow easy manipulation and 

access to data, in addition to creating seismic navigation maps for oil exploration. The 

company built a prototype GIS-enabled internet system where remote operators and 

employees can view, query, interact with essential data online (Kamelger et al., 2006).  

 

Shields (2006) reviewed how Earth Science Associates (ESA), uses GIS to predict the 

impact of hurricanes on oil and gas production in the Gulf of Mexico between 2004 and 

2005. The combined impact of hurricanes Katrina, Rita, and Wilma implicitly “affects 

105,889,263 barrels of oil, an equivalent of approximately 19 per cent of the Gulf of 

Mexico's yearly oil production”. Particularly, GIS integrated with pipeline networks and 

50,000 wells were used to develop a comprehensive risk analysis and recovery operations 

planning. 

 

The holder of the world's largest oil reserves, the Saudi Arabian Oil Company explores the 

advantages of GIS. They used GIS to plan pipeline route surveying projects and develop a 

safety and emergency response system with a web based gas leak emergency response 

system. A land management system to manage land use permit and monitor encroachment 

in to the company's facilities was also developed with GIS (Saudi-Aramco, 2003). In 

addition, Petróleos de Venezuela S.A. (PDVSA), a Venezuelan petroleum company is using 

GIS to manage its operations of hydrocarbon transportation and distribution facilities. 

According to Leon et al. (2003), the GIS system developed manages Venezuela's 6,000 
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kilometres of pipelines. Integration of satellite images, basic cartography, petroleum 

pipeline data, well locations, and seismic data has improved oil and gas exploration and 

production (Leon et al., 2003). 

 

Gin et al. (2002) and Wild  et al. (2002) reviewed an industry-based role of GIS in the 

sustainability of pipeline integrity. They reviewed that the role of GIS in pipeline 

assessment and management provides the ideal tool for mapping pipeline attributes, 

content movement, and spatial analysis. They further claimed it is taking over from the 

traditional cartography and statistical methods. However, applications of GIS to socio-

political and socioeconomic characteristics is been poorly integrated with these advance 

techniques. Proper understanding of human activities and its relationship with the 

environment is very important to produce accurate representation of a phenomenon 

(Martin and Bracken, 1993).  Thus, for a good analytical GIS analysis for petroleum 

pipeline, it is important to recognise the many different roles various factors considered in 

this thesis play in supporting pipeline failures. 

2.4.2 GIS and Pipeline Security 

The rapid population growth worldwide is pressuring the energy infrastructure to a 

breaking point and resulting in high failure rates of pipeline. Such problems are not unique 

to developing countries. Developed countries that have had similar experience are currently 

using GIS tools to solve these problems by realising that GIS is a powerful tool for law 

enforcement, crime prevention and in risk assessments. Singularly, by applying GIS 

technologies, crimes (for example, intentional TPI) can be geo-located to reveal significant 

trends and relationships, thus helping in law enforcement planning and more effective 

resource allocation, to avert subsequent reoccurrence (De Albuquerque Vasconcelos et al., 

2002, Ratcliffe and McCullagh, 2001). This application of GIS is an indispensable tool in 

preventing TPI. In brief, the following are the main tasks that a GIS-based model can 

accomplish in protecting pipelines against TPI (Chainey and Ratcliffe, 2005): 

 

 Generate reports and hardcopy maps for different type of queries enabling the law 

enforcement agencies to visualise TPI patterns. 

 

 Show the hotspots in a typical pipeline segment (i.e. the areas with high rate of TPI) 

on a map to assist with resource allocation more efficiently. 
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 Show TPI in buffer zones around institutions like schools, villages, petroleum 

facilities. This zones can be use to map repeat calls where applicable, and also 

identify trouble spots and TPI prone areas. 

 

 Cross-reference the location of TPI with list of suspected vulnerable region to have 

an approximate idea about the operation area of susceptible regions. This can help 

prepare police patrols for quick response to maximise limited resources in 

combating TPI. 

 

 Customised GIS crime analysis model will provide the law enforcement agencies 

and pipeline operators capability to create density maps of TPI and analyze trends 

over time. 

 

 Compare TPI data to demographic data and analyse the probability and location of 

future TPI using the expected range of TPI activity. 
 

2.5 Pipeline Security: Policy Issues 

2.5.1 Pipeline Regulation and Legislation 

In the last few decades, environmental, political and financial awareness and consciousness 

concerning the negative aspects of pipeline failures have led to the development of various 

national policies to alleviate the consequences and probabilities of such failures. 

Consequently, different legal frameworks and many actions have been taken to implement 

a number of appropriate environmental protection laws. This legal initiative also aims to 

harmonise the existing protection legislation, and make it a constitutional duty of any 

responsible government at all levels to safeguard oil and gas pipelines. Pipeline failures not 

only influence the world energy supply of oil, but also cause serious environmental damage 

and pollution (Wolf and Stanley, 2003). Therefore, the importance of effective regulation 

and legislation for the prevention and remediation of pipeline damage cannot be over 

emphasised. In countries where terrorism persists, pipeline protection is given the utmost 

attention and no amount of money or research is considered too much in ensuring their 

protection and safety. 

 

The European Council and the parliament, have, over the past few years, reviewed 

regulations regarding pipeline accidents (and related petrochemical hazards) and the need 
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to follow strict international protocols to curb this global issue and which clearly indicated 

the „major accident hazard‟ potential of pipelines. Thus, the Seveso II Directive 96/82/EC of 

1999 became necessary considering the increase in the rate of environmental damage 

resulting from pipeline TPI. Papadakis et al. (1999) further points out that a number of 

guidelines and regulations on managing the environment and preventing pipeline failures in 

Europe are stipulated by various organisations, departments, ministries and international 

organisations that existed at that time. However, the platforms on which these numerous 

legislations operate form the framework of planning decisions, and are mostly, inadequate 

and limited in application. They do not have a comprehensive and undeviating „major 

accident hazard‟ legislation in place for minimizing pipelines failures from third-party 

interference (Wolf and Stanley, 2003).   

2.5.1.1 Pipeline Safety Legislation 

In the United Kingdom, the consequences of pipeline TPI and the continuous 

development of a nation‟s economy and human subsistence has been acknowledged since 

1996 and have prompted the implementation of the Pipeline Safety Regulations (PSR) of 

1996 statutory regime (Fisher, 1997). This statutory law is applicable to onshore and 

offshore pipelines throughout the entire life cycle of a pipeline, covering the following 

activities: planning, design, construction, operation, maintenance, and rehabilitation (Fisher, 

1997; cited by Mather et al., 2001). Prior to the PSR of 1996, several legislations have 

addressed the control of accidents and hazards from pipelines. In England and Wales the 

Maritime and Coastguard Agency (MCA) is the authority regulating the potential for 

pollution from shipping and offshore installations, for example pipelines. In addition, the 

Merchant Shipping Act (1995) is responsible for offshore installations to avoid pollution by 

implementing necessary command and control actions.  

 
However, the PSR of 1996 statutory regime deals rather poorly with the issue of potential 

TPI in terms of the requirements laid down under its regulations. Regulation 15 for 

example states:  „No person shall cause such damage to a pipeline as may give rise to a danger to 

persons‟, and Regulation 16 states: „For the purpose of ensuring that no damage is caused to a pipeline, 

the operator shall take steps to inform persons of its existence and whereabouts as are reasonable‟. This 

command-and-control statutory regime does not prescribe the form of protection to be 

used during pipeline construction, and only recommends that reasonable steps are to be 

taken to inform people (owners and occupiers of land in close proximity to a pipeline) of 



Chapter II: Pipeline Third-party Interference, Security, and GIS-Based Statistics 

 
28 

 

the existence of the pipeline followed by periodic surveying of the pipeline‟s alignment 

(Mather et al., 2001). This inadequacy prompted Zywicki (1995) to put forward many 

arguments challenging  such wide and general regulations, in that the distinction drawn by 

such regulations are sometimes narrow, political and unsocial; that choices in regulation 

affecting environmental damages and pollution (for example, resulting from pipeline 

damage) reflect political influence and interest. Zywicki‟s argument is that a more 

categorical statutory regulation is required for factors contributing toward the growing 

environmental problems like TPI. 

2.5.2 Legal and Administrative Framework in Nigeria  

The present trend of third-party interference in Nigeria has confirmed that more effort is 

required in establishing firm regulatory laws. In recognition, the federal government of 

Nigeria established the Federal Ministry of Environment (FMENV) with an overall 

directive to monitor, protect, and preserve all ecosystems of the country. Today, the 

FMENV is trying to implement the policy on the environment, coupled with some 

assistance from environmentally friendly organisations and non-governmental 

organisations, especially in creating the awareness for environmental consciousness 

regarding TPI.  

 

A number of pipeline safety guidelines and regulations have been stipulated by various 

national organisations, for example the Department of Petroleum Resources (DPR), 

various State ministries of environment and various international organizations such as the 

World Bank. According to FEPA (1991), these legislations now form the framework on 

which planning decisions are being made for pipeline installations in Nigeria. However, 

national policies on pipeline safety and environmental protection require companies to 

manage their pipeline networks in a socially responsible and ethical manner, in order to 

protect and ensure the safety and fitness for purpose of pipeline. Federal laws have since 

backed the initial guidelines produced by FEPA.  For example, paragraph 15(2) of the new 

regulations S.1.9 by FEPA states clearly “No oil, in any form, shall be discharged into public drain, 

rivers, lakes, sea, atmosphere or underground injection without a permit issued by the agency (FEPA) or 

an organization designated by the agency”. Paragraph 17 of the same legal instrument states “an 

industry or a facility which is likely to release gaseous, particulates, liquid or solid untreated discharges shall 

install into its system appropriate abatement equipment in such manner as may be determined by the 

Agency” (FEPA, 1991). 
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The overall objective of the foregoing legal instruments, regarding oil and gas related 

activities in Nigeria is to regulate operational environmental damage, for example, 

accidental spills of oil and gas from pipelines or processes within the territorial waters of 

the country. These guidelines, issued by FEPA, stipulate minimum required standards for 

all industrial waste, either operational or accidental. In addition, it is required that managers 

and operators of oil and gas pipelines must comply with the regulation, in order to improve 

the quality of the service delivery and other environmental hazards. However, literature 

review shows that the prevention of TPI and general management practice within each 

pipeline operator in the study area are been guided by environmental standards including 

those imposed by legislation and those established by self-regulating industrial codes of 

practice, industry standards and company policy. In general, some other related laws in 

Nigeria, albeit pipeline operator‟s policy, include pollution mitigation and industrial waste 

from the activities of the oil and gas company, and include the following: 

 

 The Harmful Wastes (Criminal Provisions) Decree No. 42 of 1988 

 Pollution Abatement in industries generating Waste Regulations: S.1.9 of 1991 

 Solid and Hazardous Wastes Management Regulations of 1991 

 1992 National Guidelines and Standards for Waste Management  
 

2.5.2.1 National guidelines for pipelines in Nigeria 

Department of Petroleum Resources (DPR): The Department of Petroleum Resources 

(DPR), among its other duties, is responsible for regulating the activities of the oil and gas 

industry in Nigeria. It also ensures strict compliance with relevant regulations in the 

industry. The DPR has published the environmental guidelines and standards for the 

petroleum industry, which stipulate the manner by which pipelines should be protected 

against TPI (FEPA, 1991). The methods include regular patrol of right-of-way and detail 

Environmental Impact Assessment (EIA) of pipeline projects. 

 

Federal Ministry of Environment: The FEPA (1991) Guidelines and Standards for 

Environmental Pollution Control in Nigeria (now the Federal Ministry of Environment) 

provide and regulate the permissible boundary and limits that will help to prevent 

indiscriminate discharge of  oil and gas product, for example, products from pipeline 

rupture,  into the environment and coastal waters. These frameworks are also applicable to 

the maintenance and rehabilitation of oil and gas pipelines (FEPA, 1991). 
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State Legislation: The Nigeria constitution allows States to make legislation, laws, and 

edicts on the environment. For example, the EIA Act No. 86 of 1992 recommends the 

setting up of state environmental monitoring agencies to corroborate the efforts of the 

federal government in regulating the consequences of all oil and gas pipeline related project 

development. For example, the edict setting up the Delta State Environmental Protection 

Agency (DELSEPA), in the thesis study area outlines the primary responsibilities of the 

agency, which is to protect and monitor all oil and gas activities with the potential to 

disrupt the general environment of the study area (FEPA, 1991). 

 

2.6 Summary 

This chapter provides a summary of the review of existing information about TPI and 

discussions on legal and administrative framework, in addition to a very detailed 

description of pipeline TPI. The chapter suggest the need for developing critical legislation 

in addition to technical capabilities to curb pipeline TPI. Specifically, in the study area, it 

was found that pipeline TPI experienced a high rate of failure commencing from 2005 to 

2009. The chapter also discusses several techniques in the literature that have been 

developed in the past to study and understand pipeline TPI. The following chapter, 

Chapter 3 presents the review of major international pipeline failure databases in Europe, 

America, Africa, Australia, and Asia. 
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3 REVIEW AND COMPARISON OF PIPELINE 
FAILURES DATABASES 

3.1 Introduction 

This chapter reviews and compares the major international pipeline failure databases in 

Europe, America, Africa, Australia and Asia. This comparative analysis of major pipeline 

incident databases is aimed at exploring the differences and similarities in order to 

understand the background frequencies estimation of pipeline third-party interferences 

(TPI), and contribute to literature, as a potential references for future development of 

pipeline incident database. The databases under comparison include: 

 Australian Pipeline Incident Database (APIA) 

 Conservation of Clean Air and Water in Europe  (CONCAWE) 

 European Gas Pipeline Incident data Group (EGIG)  

 Office of Pipeline Security (OPS)  

 National Energy Board (NEB) 

 United Kingdom Onshore Pipelines Operators Association (UKOPA)  

 Russian Association for Licensing (JSC Gazprom/Rostechnadzor) 

 Nigeria National Petroleum Corporation (NNPC) 

 

 

Figure 3-1: Map showing the major international pipeline failure databases review in this thesis, in 
Europe, America, Africa, Australia, and Asia. 
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Figure 3-1 illustrates the databases identified and reviewed for this thesis; however, only 

databases with its data in public domain, and are major world producers of oil and gas 

products were reviewed. However, while the databases under consideration have 

catalogued different causes of pipeline failures, this thesis is limited only to pipeline TPI in 

these databases.  

3.2 Australian Pipeline Incident Database (APIA) 

The safety of over 21,000 kilometres of high-pressure transmission pipelines and related 

facilities in Australia is the responsibility of the National Offshore Petroleum Safety 

Authority (NOPSA), a section of the Department of Industry, Tourism and Resources, 

responsible for monitoring all pipelines and administering safety legislation. These 

responsibilities include managing Australia‟s natural gas resources, which account for 

approximately 1.6% of the world combined oil and gas demand (Kimber, et al., 2003). 

 

 

Figure 3-2: Summary of pipeline failure from APIA‟s database from1987 to 2002. TPI damage is 
significant, and account for over 60 per cent of the entire occurrences (Kimber, et al., 2003). 

 

 

APIA defined TPI as any incident resulting in loss caused by land disturbance activities, for 

example, excavation, boring activities, and unauthorised activities in close proximity to 

pipelines. Some analysts (e.g. Kimber et al., 2003) have attempted to draw attention to the 

fact that pipeline TPI in Australia is low when compared to that of other countries with 

similar oil and gas statistics (EIA, 2008). For example, no fatalities have occurred since the 

1970s, and statistically, only one fatality per 60 years for the transmission system is 

expected. However,  TPI is the leading cause of pipeline damages in Australia, and this has 

been confirmed by the 82 incidents of TPI between 1987 and 2002, 60 per cent of the total 

number of incidents in that period (APPEA, 2008, Kimber et al., 2003). By way of 
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illustration, Figure 3-2 presents the overall pipeline failure statistics between 1987 and 2002 

in Australia, and shows how TPI dominates causes of pipeline failures. 

 

Many analysts argued that the strategy of NOPSA for protecting pipelines from damage, 

especially TPI, has been successful. Kimber et al. (2003), for example, argue that the reason 

for this is that pipeline research and schemes (for example, the Australian Standard for 

pipelines (AS2885) and the Australian Pipeline Industry associates annual conference) in 

Australia has focussed on preventing TPI through public awareness programmes. This 

strategy, according to Kimber et al. has worked successfully in minimising the occurrence 

of TPI in Australia. In other major studies in Australia (e.g. Brooker, 2002), objective 

measures have been shown to be very efficient compared to physical measures in 

protecting pipelines against TPI. Kimber (2001) for example, showed that using the 

maximum wall thickness as prescribed by the design standards, does not guarantee 

protection of pipelines against direct drilling or other cutting actions by third parties.  

 

The above studies corroborate the findings of a questionnaire survey, conducted as part of 

this thesis and described in Chapter 9, and the recommendations of the Australian 

Standard for pipelines (AS2885.1-1997) supporting the use of pipeline awareness 

programmes and risk based approaches in preventing TPI. For example, a respondent to 

the questionnaire states that “In Australia TPI is brought about by deficiencies in the risk assessment 

in the first instances failing to identify the threat and relevant controls of such interference. I disagree that 

third parties would intentionally seek to damage a pipeline; unless of course it is in a politically unstable 

environment e.g. Iraq and Afghanistan.” However, Roach (2003) points out that Australia‟s 

success in reducing TPI incidents lies in a systematic evaluation of each threat and 

proposing appropriate immediate action to eliminate such risk, in addition to remotely 

locating potential pipelines vulnerable to TPI. 

 

Figure 3-3 shows summarised plots of failure rate of all the databases reviewed in the 

thesis. Table 3-1 showed the trend calculations for pipeline failure statistics between 1998 

and 2007 where simple forecast analysis are implemented to show the trend of third-party 

interference in the APIA database, and other databases reviewed in this thesis. The percent 

change if the numbers of incidents changes from P1 to P2 is calculated by:  
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(Equation 3.1) 

In equation 3.1, P1 is numbers of incidents last year and P2 is the current‟s years numbers of 

incidents, for example, APIA had 8 numbers of incidents in 1998 and 7 incidents the 

following year. Therefore, the percent change from 1998 to 1999 is calculated by 

subtracting 7 from 8, divided by 8; this give 0.125 that is further multiplied by 100. 

Therefore, the number of incidents at APIA‟s database went down 12.5 per cent from 1998 

to 1999. This same procedure applies to tables in this chapter showing trend calculation of 

pipelines incidents. 
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Figure 3-3: A plot of failure rate calculated from the procedure described above, showing the trend 
comparison of pipeline incidents for the databases reviewed, from 1998 to 2007. 

 

The rate calculation in Table 3-1, for the various databases under consideration is by 

dividing the numbers of pipeline incidents by the total length of the pipelines, and 

expressed as a ratio.  However, some missing data, for example, length of pipelines for 

certain period of time where determined by using existing values, assuming the data  values 

increase or decrease at a steady rate.  The simple linear equation was used to calculate the 

least squares fit, and to predict subsequent estimated length of pipeline. 

 

Australia‟s relatively low rate (as can be seen in Table 3-1) of pipeline failure is probably 

because of the failure to address the voluntary provision of data by pipeline operators. 

Although, this is not a regulatory requirement, as provision of major pipeline incidents in 
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Australia is voluntary, according to Bolt (2006). This might explain the low failure rate, 

because as Bolt (2006) argued that not only does the voluntary submission of dataset 

provide an accurate measure of the Australia rate of pipeline failure, but also, Australia‟s 

low population density and relatively young age of most of its pipelines are other 

contributory subsequent estimated lengths of pipelines. 

 

Table 3-1: Trend analysis of Australian pipelines incidents from 1998 to 2007. 

Year No. of Incidents* % Change Length (Km '000)** Rate 
1998 8  26.314 0.304 
1999 7 -12.5% 26.778 0.261 
2000 30 328.6% 27.604 1.087 
2001 13 -56.7% 27.972 0.465 
2002 7 -46.2% 28.512 0.246 
2003 15 114.3% 29.109 0.515 
2004 16 6.7% 29.666 0.539 
2005 11 -31.3% 30.223 0.364 
2006 9 -18.2% 30.780 0.292 
2007 8 -11.1% 31.337 0.255 
* Pipeline Spillages by TPI for year 1998 through 2003; **2005 to 2007 predicted using existing values 

 

3.3 Conservation of Clean Air and Water in Europe (CONCAWE) 

Conservation of Clean Air and Water in Europe (CONCAWE) started in 1963, as a 

European organisation, comprising various oil and gas companies. The objectives are to 

monitor fuel quality, vehicle emissions, air quality, health, petroleum products, and cross-

country oil pipelines. The organisation monitors a combined network (as at the end of 

2006) of 35,390km onshore oil pipelines. They also produce annual statistical summary of 

reported spillages, in addition to records and reports of all the annual pigging inspection 

statistics of the participating seventy operating companies and agencies that provide data 

for its reports.   

 

CONCAWE, unlike EGIG (Section 3.5), analyses pipeline incidents by causes, procedures 

and clean up costs of spillages (Davis et al., 2008, Restrepo et al., 2009). “No spillage-

related fatalities or injuries were reported in 2008. Over the 38 reporting years there 

have been a total of 14 fatalities in five separate incidents in 1975, 79, 89, 96 and 99. 

All but one of these fatalities occurred when people were caught in a fire following a 

spillage”(Davis et al., 2009). Table 3-2 shows a summary output of a typical statistics 

from CONCAWE‟s database. 
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Table 3-2: Summary of failure statistic from the CONCAWE database of incidents on oil pipelines 
from 1971 to 2004. 

Failure Statistics 
(CONCAWE) 

Number of Incidents 
Percentage Gross Volume 

Spilled (m.cu/yr) 
Average per Year 

(1971-2004) 
Percentage 
(1971-2004) 

1971-2004 

Mechanical Failure 3 23.8 31.4 

Operational 0.9 6.8 3.6 

Corrosion 3.6 28.9 18.8 
Natural Hazard 0.4 3.5 4.1 

Third Party Activity 4.6 36.9 42.1 

 

The most obvious finding to emerge from CONCAWE‟s statistics is the identification of 

TPI and corrosion as the two most prevalent causes of spillage incidents (Table 3-2). For 

example, Davis et al. (2010) recently review the published report of CONCAWE for 2010 

that shows there were nine spillage incidents, and seven were attributed to TPI. This is an 

increase from Davies et al.‟s (2008) recorded eleven spillage incidents in 2005, two of 

which were because of unintentional TPI. It is perceived the nine spillages that were caused 

by intentional TPI is an unanticipated finding in the database (Davis et al., 2009). 

 

 

Figure 3-4: Pipelines spillage frequencies and distribution by major cause (CONCAWE, 2009). 

 

CONCAWE‟s (2007) statistics of pipelines spillage frequencies and distribution by major 

cause indicates a reduction in the number of incidents caused by corrosion. These results 

are consistent with those given in other databases. However, in contrast to other pipeline 

incident databases (e.g. NEB), evidence of pipeline TPI declining was not reported by 
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CONCAWE, an implication of this is the possibility that third-party interference has been 

increasing in Europe, and a conclusion that can be drawn from Table 3-3. 

Table 3-3: Trend analysis of CONCAWE pipeline spillages by TPI for year 1998 through 2003, 
and details from 2005 to 2007 were interpolated based on the previous year‟s values. 

Year No. of Incidents % Change Length (Km '000) Rate 
1998 9  29.670 0.303 
1999 11 22.2% 29.450 0.374 
2000 6 -45.5% 30.800 0.195 
2001 7 16.7% 35.575 0.197 
2002 6 -14.3% 35.592 0.169 
2003 10 66.7% 36.422 0.275 
2004 2 -80.0% 35.383 0.057 
2005 2 0.0% 35.807 0.056 
2006 2 0.0% 35.832 0.056 
2007 1 -50.0% 35.858 0.028 

 

Table 3-3 shows the calculated trend analysis, following the description given in Section 

3.2.1, as part of this thesis, indicating the trend and rate of occurrence of TPI in the 

database for CONCAWE. It can be seen from the data in Table 3-3 that the year 1999 and 

2003 reported significantly more numbers of incidents than other years. On average, it can 

be concluded that the trend of occurrence in the database is in the decline. 

3.4 European Gas Pipeline Incident data Group (EGIG) 

The European Gas Pipeline Incident Data Group (EGIG) comprises operators of gas 

transmission pipelines in twelve European countries (Figure 3-5). The overall objectives of 

the organisation are to communicate data regarding the safety performance of pipelines, 

and to provide a reliable and realistic picture of incident frequencies within member 

countries. Their other objectives are to prepare and maintain a database for statistical use in 

studies and research; periodically analyse the causes of incidents within members‟ network 

of pipelines; and recommend improvements for safety performance of pipeline networks. 

EGIG now collects data from over 130,000 km of pipelines and with an overall incident 

frequency of 0.37 incidents per year per 1,000 km from 1970 to 2007. 

 

The EGIG database uses the following variables to compile data for their database: pipe 

diameter, pressure, year of construction, coating-type, pipeline depth, material grade, and 

wall thickness. The incidents reported by the EGIG are however categorised by detection 

method for failure, leak size, cause of incident, ignition, consequences, and incidents 
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summary (Focke, 2009, Van Den Brand and Kutrowski, 2006a). These criteria, being use 

by the EGIG database records 1,172 incidents from 1970 to 2007. 

 

Figure 3-5: The EGIG countries, comprising Belgium,  the Czech,  Denmark,  Germany,  Finland,  
France, Italy,  Netherlands,  Portugal,  Spain,  Switzerland, and  the United Kingdom. 

 
One interesting observation from the data presented in Figure 3-6 is that despite an 

increase in the number of European companies becoming EGIG members, the numbers 

of incidents are reducing although the pipeline network size is increasing. It is considered 

that further data is required before the association between the increased membership of 

EGIG and the relative decrease in the number of incidents can be clearly understood.  

 

Figure 3-6: Primary failure frequencies per cause according to EGIG data. TPI, although 
decreasing, is the most dominant cause of pipeline failure in the database (EGIGI, 2005). 
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Table 3-4: The European Gas Pipeline Incident data Group (EGIG), showing the percentage rate 
changes of pipeline incidents according to the EGIG. The rate of pipeline incidents according to 

the EGIG database has decreased, and is decreasing in recent years. 

Year No. of Incidents % Change Length (Km '000) Rate 

1998 11  104.341 0.103 

1999 15 42.0% 105.729 0.144 

2000 9 -37.9% 106.761 0.089 

2001 10 1.9% 109.980 0.088 

2002 12 20.3% 111.125 0.104 

2003 8 -31.5% 119.111 0.067 

2004 12 48.1% 122.168 0.096 

2005 10 -16.5% 127.696 0.077 

2006 7 -30.3% 128.345 0.053 

2007 7 2.3% 129.719 0.054 

 

EGIG recognises the consequences of TPI, and their database is consistent with other 

similar databases that have also found TPI to be the leading cause of gas pipeline failures. 

Third-party interference accounted for over 50% of serious incidents in EGIG‟s database 

(Table 3-5). The database would be improved if EGIG had explicitly considered pipeline 

incidents with an intentional gas release. Although uncommon in Europe (until 9/11), 

intentional release cannot be entirely ruled out (Lords, 2010).  

 

Table 3-5: Summary statistic of EGIG database of gas pipelines (1970 to 2007), between 1970 and 
2004, the coverage exposure was 2.8 million km.yr km. 

Cause  Overall Percentage (%) 
External Interference 49.6 
Construction defect/Material failure 16.5 
Corrosion 15.4 
Ground movement 7.3 
Hot-tap made by error 4.6 
Other and unknown 6.7 

3.5 Office of Pipeline Security (OPS) 

The Office of Pipeline Security (OPS) is part of the US Department of Transportation‟s 

Pipeline and Hazardous Materials Safety Administration (PHMSA). They manage an 

estimated 244,000 km of petroleum pipeline products and 549,000 km of natural gas 

pipeline, as well as regulating over 2000 operators in the oil and gas industry. The OPS is 

responsible for the safety of pipelines by dissemination programs and practices to manage 

pipeline integrity and reduce the likelihood of pipeline failure (OPS, 2008). 
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Table 3-6: Trend analysis of pipeline incidence by Office of Pipeline Security (OPS) - US 
Department of Transportation from 1998 to 2007. The data is based on incidents of third-party 

incidence from OPS database for year 1998 through 2007. 

Year No. of Incidents % Change Length (Km '000) Rate 

1998 64  971.630 0.066 

1999 59 -7.8% 1000.599 0.059 

2000 54 -8.5% 1027.952 0.053 

2001 65 20.4% 1003.602 0.065 

2002 59 -9.2% 1034.131 0.057 

2003 72 22.0% 1076.971 0.067 

2004 58 -19.4% 1084.896 0.053 

2005 58 0.0% 1094.138 0.053 

2006 46 -20.7% 1105.795 0.042 

2007 52 13.0% 1093.774 0.048 

 

The September 11, 2001 (9/11) terrorist attack on United States has made the country one 

of the few countries that has taken serious precautions against all forms of intentional TPI. 

The Department of Homeland Security (DHS) and the pipeline industry are now jointly 

responsible for the security of pipeline systems against intentional pipeline interference (e.g. 

terrorist threats, cyber attacks and saboteur activities) in the country. The following are 

among the key initiatives taken to forestall the likelihood of TPI: (i) extensive 

communication systems, (ii) vulnerability assessments, (iii) consensus security guidance and 

development, and (iv) research sponsorships for detection technology and the continuous 

monitoring of rights-of-ways (Chen et al., 2007, Restrepo et al., 2009, OPS, 2008). 

 

Table 3-7: Causes of pipeline failures according to OPS‟s failure database from 1985 to 1995, 
estimated from the raw data (OPS, 2006). 

Cause of Failure  Natural Gas (%) Hazardous Liquids (%) 
Third Party 36 33 
Corrosion 24 42 
Weather related 11 3 
Previously damaged pipe 4 8 
Defective pipe seam 3 6 
Defective girth weld 3 4 
Defective fabrication weld 2 2 
Defective pipe 2 3 
Construction damage 1 0 
Stress corrosion cracking 1 0 

 
 

OPS identify the leading cause of pipeline incidents as being TPI (Table 3-7), and 

consequently encourage stakeholders to develop “Best Practices” for preventing damage to 



Chapter III: Review and Comparison of Pipeline Failures Databases 

 
41 

 

pipelines. For example, Common Ground Alliance (CGA), financed by OPS, ensures “Best 

Practices” are available to pipeline operators based on research findings and identifying 

emerging technology that is suitable for preventing pipeline damage (for example, the Dig 

Safely one-call programs). Evidence of the effectiveness of this initiative was ascertained in 

the questionnaire survey that was part of this thesis, when a respondent from the U.S 

stated that: “For the past 15 years, the government has been involved helping our pipeline industry reduce 

excavation damage to our pipelines. Our efforts has resulted in reducing these damages by more than 50% 

while miles of underground pipelines have increased by more than 30%. This has been done by effective 

public education, use of technology and strong and fair enforcement”.  

 

The U.S has been in the forefront of research in pipelines, and the incidents data analysed 

and classified by the PRCI of the OPS, grouped into 18 root causes pipeline failures (Table 

3-8). The PRCI also classified TPI to include weather related and outside force. The 

framework of the classification is the most detailed characteristic of pipeline failures. A 

combination of factors could explained the extensive and thorough research into TPI by 

the U.S than that of any other country, for example, the dependence on energy per person 

than any other country, and perceived threats, especially following the event after 9/11. 

Table 3-8: The classification of Department of Transportation classification of oil and gas pipeline 
failures grouped into 18 root causes. This data is extracted from OPS database (OPS, 2006). 

Main Causes Sub-divisions of the causes 

Time Dependent 

External Corrosion 

Internal corrosion 

Stress Corrosion Cracking 

Stable 

Manufacturing Defects 
Defective pipe seam 

Defective pipe 

Welding/Fabrication 
Related 

Defective pipe girth weld 

Defective fabrication weld 

Wrinkle bend or buckle 

Stripped threats and coupling failure 

Equipment 

Gasket O-ring failure 

Control/relief equipment malfunction 

Seal/pump packing failure 

Miscellaneous 

Time 
Independent 

Third Party/Mechanical 
Damage 

Incorrect Operations 

Weather related and 
outside force 

Cold weather 

Lightning 

Heavy rains 

Earth movements 
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3.6 The National Energy Board (NEB) 

The National Energy Board (NEB) is an independent federal agency with parliamentary 

powers that regulates about 45,000 km of pipelines in Canada operated by 104 companies. 

These companies compulsorily share their pipeline performance data with the NEB. The 

NEB attempts to ensure the proper functioning of pipelines by promoting safety and 

security, and thus ensuring an efficient energy infrastructure to the Canadian public. The 

NEB regulates the planning, design, construction, commission, and maintenance of all 

pipelines within Canada. 

 

The NEB (2008) Pipeline Crossing Regulations define TPI as unauthorized activities with a 

potential to damage a pipeline or to prevent maintenance access to a pipeline. The NEB 

identified damage prevention as one of the key indicators that provide an understanding of 

safety performance of pipelines. The NEB further recognises unauthorized mechanical 

excavation; unintentional contact with a pipeline; and right-of-way encroachments as 

indicators of TPI (Jeglic, 2004, NEB, 2008).  

 

Table 3-9: Third-party Interference on Rights of Way of NEB-regulated pipelines (NEB, 2008). 

 
 

Unlike the OPS, EGIGI and UKOPA where TPI is found to be the leading cause of 

pipeline failures, NEB‟s leading cause of failures are corrosion (internal and external), 

followed by operational errors. While TPI still occurs, it is relatively uncommon in NEB-

regulated pipelines (Figure 3-7). The NEB (2008) claim that for nine consecutive years 

(from 1998 to 2007), there were no fatalities involving employees, contractors, or third 

parties. In addition, there were no ruptures on regulated pipelines from 1991 to 2006.  

Therefore, considering the near zero fatality rate of the NEB database, illustrating the 

trend, for example, as shown in Table 3-6 is unfeasible. 
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Figure 3-7: Causes of Failures on the NEB-Regulated Pipelines (1991-2006), pipeline third party is not 
the most dominant cause of pipeline failure. 

 

The NEB has indirectly classified TPI as pipeline contacts (unauthorized activities), and 65 

such activities on NEB-regulated pipelines were reported in 2006 alone (Table 3-9). These 

activities, however, do not necessarily result in failure and Canada‟s parallel economic and 

urban growth, especially near pipelines, could be largely responsible for these isolated cases 

in 2006. Compared to Europe, significant differences in local population density could 

explain the higher incidence of TPI in Europe and the U.S. (NEB, 2003).  

The seven-year average of unauthorized activities of NEB-regulated pipelines is 51.3 (Table 

3-9), 2006 experienced a decrease in unauthorized activities from 71 in 2005 to 66; although 

this is still higher than the seven-year average. In the questionnaire survey, that was part of 

this thesis, a respondent remarked about pipeline TPI that:  “In Canada we have not seen a large 

presence of terrorism or other types of activities related to pipeline damage. There have been some pockets of 

criminal activities within the pipeline community however the greatest threat we face is from within our own 

ranks. That is, a contractor or landowner who performs a ground disturbance without calling for locates and 

hits a pipeline or other buried infrastructure”.  

3.7 United Kingdom Onshore Pipelines Operators Association  

The United Kingdom Onshore Pipelines Operators Association (UKOPA) is the 

organisation responsible for the UK Onshore Major Accident Hazard Pipelines (MAHPs) 

that are operated by fourteen major UK pipeline operators. According to the Pipelines 
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Safety Regulations (PSR), the MAHP pipelines are high-pressure natural gas transmission 

and distribution pipelines and other pipeline systems transporting oils, chemicals and other 

gases (e.g. ammonia and ethylene). The MAHP‟s total pipeline network at the end of 2006 

is 21,882 km, and 93% are crude oil and natural gas pipelines (UKOPA, 2008).  

 

 

Figure 3-8: Summary of Failure Incidents by Cause from the UKOPA Database (1962-2006) 

 

The UKOPA‟s database shows external interference (or TPI) as being one of the main 

causes of product loss in pipelines. The failure cause classified as "others" in the database 

includes internal cracking due to wet town gas, pipefitting welds, leaking clamps, lightning, 

soil stress, thread joint, and electric cable arc strike (Figure 3-8).  Hobell and Stancliffe 

(2008) claim that third-party damage to utility companies (including the pipeline industry) 

costs £150 million a year. However, damage per 1000km since the early 1970s, according to 

the database, has been falling steadily; hence considering the £150 million a year, this 

translates to a lesser cost to the utility companies. For example, the overall failure 

frequency reduced by 0.015 incidents per 1000km from 2004 to 2006. However, despite 

these statistics, TPI is still the major single cause of product loss in the UK. The database 

shows the following average features from 1962 to date (UKOPA, 2008): 
 

 In terms of failure frequencies associated with external interference and recorded 

by pipe diameter class, 0 to 4inch diameter pipelines have the highest failure 

frequency per 1000 km.yr. The failure frequency cause by external interference is 

inversely proportional to the diameter size of a pipeline-the lesser the pipe diameter 

the higher the failure frequency. 
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 The relationship between incidents caused by TPI and wall thickness shows that 

pipeline wall thicknesses of less than 5mm have the highest failure frequency of 

0.22 per 1000 km.yr from 1962 to 2006. In absolute terms, "the largest wall thickness 

for loss of product incident caused by external interference to date is 12.7mm". This is in 

addition to recorded incidents for wall thickness greater than this value. 

 

 According to UKOPA (2008), the failure frequency of external interference by land 

use shows that suburban and semi-rural areas (population density greater than 2.5 

persons per hectare, excluding central areas of towns or cities with a high 

population density) have the highest failure frequency of 0.156 per 1000 km.yr 

compared to mainstream rural areas that have a very negligible frequency. 

 

Table 3-10: Failure incident frequency by cause over the period 1962- 2006 compared with the 
frequency from 2002-2006. 

 
 

The UKOPA database does not have a standardised procedural methodology for the data 

collation of TPI. It also omits the age and length of the pipelines involved in the incidents. 

An accurate estimation of the age and length of a pipeline at the time of the incidents 

forms an important basis for the subsequent interpretation, evaluation and making of a 

comparison of pipeline failure risks. The lack of these technical parameters within the 

database could sully its intended performance record and claim of „operations and integrity 

management of pipelines‟. However, Lyons et al. (2009) identified how (UKOPA) is 

formulating additional procedures to the UK BSI PD 8010 code of practice for pipelines 

and the BSI PD 8010 by Institution of Gas Engineers. This is to provide a standardized 

approach for the design of quantified risk assessment. In the questionnaire survey, 
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undertaken as part of this thesis, the findings showed that Europe employed awareness 

campaigns to all stakeholders, and the application of proper standards in the industry. This 

is evident, considering the steady trend of incidents in the database (Table 3-11). 

 

Table 3-11: Trend analysis of UKOPA pipeline database and relationship between incidents and 
lengths of pipeline, the data is from UKOPA database for year 1998 through 2007. 

Year No. of Incidents % Change Length (Km '000) Rate 
1998 5  20.67 0.242 
1999 2 -60.0% 21.34 0.094 
2000 1 -50.0% 21.86 0.046 
2001 1 0.0% 21.87 0.046 
2002 0 -100.0% 21.83 0.000 
2003 0 0.0% 21.73 0.000 
2004 1 100.0% 21.73 0.046 
2005 1 0.0% 21.80 0.046 
2006 1 0.0% 21.88 0.046 
2007 1 0.0% 22.13 0.045 

 

However, there exists an ambiguous relationship between CONCAWE and UKOPA, 

because TPI is all-time in the decrease according Figure 3-4, and insignificant in UKOPA‟s 

database. It is difficult to explain this result; the most likely reason might be related to 

effective procedures of communication management in the United Kingdom.  

CONCAWE (2007), for example, states that “Overall, some 65% of the third party accidental 

spillages would most probably have been prevented by proper communication to pipeline operators by the 

third parties, in addition to 35% of the spillages caused by lack of care or skill by the third party works 

management and machinery operators”. This confirmed earlier studies by Hongqing (2005), and 

Sljvic (1995) that proper communications between all stake holders can mitigate TPI.  

3.8 Russian Association for Licensing (Gazprom/Rostechnadzor) 

The Russian pipeline incident database is not information that is available for public or 

peer review. The only publicly available references for this thesis are from unofficial 

sources, for example,  Det Norske Veritas‟s(2003) study on the causes of oil pipeline spills 

(Table 3-12) and unofficial published statistics from Lesikhina et al.(2007). EIA (2008) 

reviewed that: “Russia holds the world's largest natural gas reserves, the second largest coal reserves, and 

the eighth largest oil reserves. Russia is also the world's largest exporter of natural gas, the second largest oil 

exporter and the third largest energy consumer”. In all this, unofficial statistics estimate that oil 

leakages from pipeline accidents occur every two weeks in Russia (Lesikhina et al., 2007).  
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As in other countries with increasing pipeline infrastructures, TPI is always a concern, and 

Russia is no exemption.  In Russia‟s North Caucasus region, pipelines have been regular 

targets of attacks, for example, the Mozdok-Gazi-Magomed gas pipeline has been attacked 

over a dozen times (Zhukov, 2006). Such incidents are monitored by the state owned 

Russian gas company (JSC Gazprom), using the federal law of „Regulation of the Order of 

Technical Investigation of the Causes of Accidents at Hazardous Industrial Facilities‟. These are 

achieved by JSC Gazprom‟s use of a central alert system, as a diagnostic tool for 

monitoring pipeline networks, in addition to a real-time computerised recording of 

accidents (Bolt, 2006). However, in the event of an accident, a special committee headed by 

the Russian Federal Mining and Industrial Inspectorate (Rostechnadzor) - a central organ 

of federal executive power, performs technical investigation into the cause of the accident. 
 

Table 3-12: Number of oil spills by cause in the former Soviet Union (FSU): 1986 to 1996. The 
cause categories are according to CONCAWE definitions (Det Norske Veritas, 2003). 

Location/ 
Region 

Mechanical 
Failure 

Corrosion Operation
al Error 

Third party 
Activities 

Natural 
hazards 

 
Unknown 

Total 
Spills 

Azerbaijan 1 n/a n/a 1 n/a 1 3 

Belarus n/a n/a n/a n/a n/a 1 1 

Kazakhstan n/a n/a n/a n/a n/a 1 1 

Latvia 1 n/a n/a 1 n/a n/a 2 

Russia 26 13 7 15 3 37 101 

Ukraine 3 n/a n/a n/a 1 1 5 

Total 31 13 7 n/a 4 41 113 

 

Det Norske-Veritas‟s (2003) study on the causes of oil pipeline spills and recommendations 

for preventative measures, indirectly ascertain that eradicating pipeline failure in Russia is 

impossible. Singh (2010) also supports this view that “pipelines stretch for thousands of miles and 

there are literally thousands of opportunities for accidents or sabotage. Often the pipelines go through 

politically unstable regions, areas of extreme poverty and desperation and incredibly harsh terrain. As such, 

it would appear that, for now, no single countermeasure can single-handedly protect and secure the Russian 

pipeline system.” However, Det Norske-Veritas identified that good risk management 

procedures and satisfactory regulations would reduce their frequency. The study identified 

TPI as being one of the main contributing factors to the causes of oil spills in the countries 

of the former Soviet Union (FSU) in their over 84,000 kilometres of pipelines in 1998 (76 

per cent of which are located in Russia alone). In 2007, for example, about 1.3 million 

bbl/d of the almost 4.4 million bbl/d of crude oil exported by Russia were by the Druzhba 

pipeline supplying Central and Eastern Europe (Zhukov, 2006, EIA, 2008). 
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Figure 3-9: Comparison distribution of causes of pipeline failures in FSU and Western Europe, 
according to CONCAWE definitions during 1986–1996. 

 

Det Norske-Veritas (2003) also observed that third-party activities accounted for 24 per 

cent of the total number of oil spills by known causes between 1986 and 1996, and with 88 

per cent of this occurring in Russia alone (Figure 3-9). Mechanical Failure accounted for 43 

per cent of the total number of oil spills. The difference in mechanical failures, compared 

to other failure databases, could be due to differences in the ages of pipelines, construction 

standards, environmental, and climatic factors.  

 

As in other countries with increasing pipeline infrastructure, TPI is always a concern, and 

Russia is no exception, although, as shown in Table 3-13, the trend of incidents is reducing. 

The decline is insignificant, and one possible explanation for the observed trend is 

unavailability of widely published data. However, Det Norske Veritas‟s (2003) concludes 

therefore that, “the prevalence of failures due to third-party activities further emphasizes the importance of 

establishing effective regulatory and monitoring mechanisms in the countries for pipeline operations”.  

 

Table 3-13: Trend analysis of the Russian pipeline database byJSC Gazprom/Rostechnadzor. 

Year No. of Incidents % Change Length (Km '000) Rate 
1998 31  211 0.147 
1999 23 -25.8% 211 0.109 
2000 32 39.1% 213 0.150 
2001 55 71.9% 214 0.257 
2002 44 -20.0% 216 0.204 
2003 45 2.3% 219 0.205 
2004 51 13.3% 221 0.231 
2005 45 -11.8% 223 0.202 
2006 32 -28.9% 224 0.143 
2007 27 -15.6% 226 0.119 
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3.9 Nigeria National Petroleum Corporation (NNPC) 

Nigeria is Africa‟s leading oil and gas producer, and one of the world‟s top oil and gas 

producers. However, the severity of pipeline TPI in Nigeria (Figure 3-10) is higher than in 

the rest of the world combined. Many analysts have argued that poor governance, poverty, 

sabotage, and theft are the reasons. Critics have also argued that the problem is more 

complex and that technical and poor detection procedures contribute to this problem and 

are influenced by the fact that most pipelines in Nigeria were commissioned in the 1970s 

and thus due for decommissioning. There is, however, evidence from Guijt (2004a) and 

CONCAWE that an aged pipeline does not necessarily mean failure with time, rather, that 

the pipeline failure rate should drop.  Perhaps the most serious reason for the record-

breaking numbers of TPI in Nigeria is that until recently, the regulatory and monitoring 

systems in Nigeria were considered ineffective in preventing pipeline TPI. 

 

 

Figure 3-10: Pipeline third-party vandalism occurrence between 1999 and 2007 in Nigeria. The 
numbers of failures increased dramatically from 2003 to 2007 (NNPC, 2009). 

 

Directly managing and collating the activities of the industry is the responsibility of the 

Nigerian National Petroleum Corporation (NNPC), established in 1977. NNPC is a public 

organisation tasked with managing all government interests in the Nigerian oil and gas 

industry, and itself supervised by the Department of Petroleum Resources (DPR), a 

department within the Ministry of Petroleum Resources. The DPR ensures that all activities 

of the pipeline industry comply with industry and environmental regulations (NNPC, 2005, 

NNPC, 2009). The management of Nigeria‟s total pipeline length of about 10,858km 

comprising of 126km condensate, 2,812 km of gas; 125 km of liquid petroleum gas; 4,278 

km of oil; and 3,517 km of refined products is the responsibility of DPR. 
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Table 3-14: Trend analysis of pipeline incidence in Nigeria based on data extracted from Nigeria 
National Petroleum Corporation (NNPC, 2007). 

Year No. of Incidents % Change Length (Km '000) Rate 
1998 515  4.674 110.184 

1999 497 -3.5% 5.542 89.679 

2000 984 98.0% 5.542 177.553 

2001 461 -53.2% 5.542 83.183 

2002 516 11.9% 5.542 93.107 

2003 779 51.0% 5.399 144.286 

2004 895 14.9% 5.399 165.771 

2005 2237 149.9% 9.265 241.446 

2006 3683 64.6% 9.265 397.518 

2007 3,244 -11.9% 10.858 298.766 

 

In Nigeria, most of the terrorist and rebel attacks perpetrated against pipelines and 

personnel include incidents involving sabotage, arson and armed aggression. In 2007, 

Nigeria recorded an incredible 3,224 number of cases of pipeline vandalism and deliberate 

line breaks compared with only twenty (20) cases of pipeline rupture due to wear-and-tear. 

Petroleum product losses in the same year were about 242 metric tonnes translating into 

about £57 million pounds sterling. Figure 3-10 shows that over of 12,000 incidences of 

vandalism occurred between 1999 and 2007 resulting in over 3,000,000 barrels of oil having 

been spilled into the environment as a result. In 2006, for example, Shell Nigeria recorded 

241 oil spill incidents, of which sabotage accounted for 165 (69 %,) (NNPC, 2007). Table 

3-14 presents the trend of Nigeria‟s pipeline incidents from 1998 to 2007. 
 

3.10 Summary and Conclusions 

The review of literature identified the many causes of oil and gas pipeline failures, and can 

be considered to fall into one of five groups of basic causes, namely: corrosion, mechanical, 

external effects, natural events, and others (Table 3-15). The subclass in each group (as 

shown in Table 3-15) varies and each cause can be further characterised and classifiable by 

technical properties. The relevance of preventing pipeline TPI is clearly supported by the 

review of the pipeline incident databases, especially the recognition by most of the 

databases that it is one of the most dominant failure mechanisms. However, several 

limitations to this review need to be acknowledged. One significant shortcomings of the 

databases reviewed in this thesis is the inability to explicitly and uniformly define pipeline 

TPI across each database. 
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Table 3-15: Classification of incidence causes for pipeline database, third-party interference or 
external interference is present in most databases. 
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One of the issues with conducting such a comparison is that the definition and 

interpretation of the classification terms varies the across the databases. For example, the 

EGIG classifies external interference as being TPI leading to pipeline failure. The US 

Department of Transportation‟s PHMSA classifies external interference to include 

excavation, weather related, outside force, lightning, floods, and earth movements, which is 

a rather broad coverage. The NEB classifies unauthorized activities with potential to 

damage a pipeline or prevent maintenance access to a pipeline as third-party interference, 

with or without soil disturbance. All the databases reviewed have TPI in their database as 

one of the major cause of pipeline failures, and recognised it as being one of the single 

most serious causes of pipeline damage (Table 3-16), and one of the most significant 

current discussion topics in the industry. 

Table 3-16: Existing classification of pipeline failures causes, by various organisation and regions. 
Third-party interference (external interference) is common to all the databases. 

CONCAWE EGIG NEB APIA

Corrosion Corrosion Corrosion Corrosion 

Third-party External Interference Third Party damage Third Party Damage

Mechanical Material /Const. defect Material defects Storm/Erosion

Natural Ground movement Geotechnical Ground Movement 

Operation Hot-tap made by error Others Construction defects

Other and Unknown Others/Unknown

UKOPA OPS GAZPROM NNPC

Internal Corrosion Internal Corrosion Corrosion Corrosion

External Corrosion External Corrosion Third-party Activities Third Party damage

External Interference Stress Corrosion Cracking Mechanical failure Material /Const. defect

Girth Weld Defect Third Party damage Natural Geotechnical

Pipe Defect Defective pipe seam Operational error Others

Seam Weld Defect Defective girth weld Natural hazards

Ground Movement Degective pipe Unkown  
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However, in this thesis, these contradictions and shortcoming escape criticism considering 

the overall objectives and issues addressed, which include: to document trends and 

differences in TPI over time between various countries and regions; to examine possible 

correlation between TPI, failure frequencies and related length of pipeline; and to 

document best practices from individual database relatively to TPI. 

 

In conclusion, the review of the pipeline failure databases in this thesis has thrown up 

many questions in need of further investigation, for example, singular recognition, as a 

security concerns, of intentional pipeline TPI as part of all future classifications. In 

addition, the inability of a uniform nomenclature for a universal classification of pipeline 

incidents database is perceived to show the need for the industry to share experience and 

practices. The review also shows that a unified classification procedure is more effective 

than conventional classification of pipeline failures by various organisations. An 

international standard for the recording occurrences of pipeline failure will enhance fruitful 

exchange of useable statistics. 
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4 PREVENTION OF THIRD-PARTY INTERFERENCE 

4.1 Introduction  

In theory, the protection of pipelines is the most effective method of reducing the risk of 

third-party interference (TPI). If engineering design of a pipeline has been carried out in 

line with international best practices, the protection depends primarily on utilising the range 

of opportunities created at various stages of a typical pipeline project: planning, design, 

installation, and maintenance (Williamson and Daniels, 2008). The inspection and 

monitoring of a pipeline against damage presumes that the pipeline, as designed and 

installed, is structurally safe and fit for its designed lifespan. However, although several 

methods for preventing and detecting TPI exist, there are still various limitations in the 

application of these tools under certain conditions. These limitations are evident as, despite 

wide industry utilisation of the various prevention and detection methods, pipelines have 

continually experience TPI (Miesner and Leffler, 2006, Berman et al., 1994). 

 

Table 4-1: Various methods of detecting and preventing the potential for third-party 
interference: Pre-installation, During installation and Post-installation 

 Prevention Methods 

Pre-installation 

 Land Use/Land Cover Mapping 

 Stakeholders Participation  

 Optimal Pipeline Route Selection  

 Increased Pipeline Wall Thickness 

 Increased Depth of Cover 

During installation 

 Slabs, Tiles and Plates over Pipelines 

 Encasement Sleeves 

 High Tensile Netting 

 Maker Tapes 

 Pipeline Maker Post 

Post-installation 

 Aerial Surveillance 
 Vantage Point Survey 
 Full Walking Survey 
 Satellite Surveillance 
 Global Positioning System (GPS)  
 Electromagnetic Detection 
 Fibre Optic Sensors (FOS) 
 Site access Security 
 In-Line Geometry Inspection(ILGL) 

 

This chapter provides an extensive description of the various third-party interference 

detection and prevention methods that are available, and discusses their corresponding 
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advantages, disadvantages and limitations. Based on a review of literature, the methods are 

classified into three broad categories: pre-installation, during installation and post-

installation (Table 4-1). These categories are described in the following sections. 

4.2 Pre-installation 

The significant purpose of a pre-installation prevention method is to eliminate or reduce 

the potential for negative third-party impacts on pipelines before installation, a proactive 

first-step approach to preventing TPI. Pre-installation is the acquisition of all existing basic 

documents such as topographical and geological maps, aerial photographs, and technical 

documents relevant to the potential proposed routes. Prior to installation, at the planning 

stage, all relevant information is reappraised, synthesised and evaluated. Information is also 

required from various government agencies, academic and research institutions, and 

consulting firms. Where practicable, pipeline operators confer with local residents and 

professionals in order to validate information and identify gaps that could influence 

potential future pipeline TPI (Muhlbauer, 2004). The following methods of pre-installation 

prevention have been used, and found to be relatively effective: population density control, 

stakeholders' participation, optimal pipeline route selection, increased pipeline wall 

thickness, and increased depth of cover. These methods are discussed in more detail in the 

following sections. 

4.2.1 Internal and External Stakeholders Participation 

The purpose of this preventive method is to ensure continuity of pipeline security through 

to post-installation, and to establish future potential TPI monitoring strategies. Internal 

stakeholders are primary owners of businesses, customers, and employees; while external 

stakeholders share an interest in a business without owning the business (e.g. pressure 

groups, the press and media, governments and communities). Therefore, pipeline operators 

must solicit stakeholder participation at individual and group levels. At the individual level, 

questionnaires can be developed and used for a survey of local residents and officials. At 

the group level, public meetings are organised with representatives of the national and local 

government stakeholders, and non-governmental organisations. Public meetings are also 

held to provide feedback concerning the scope and impact of a pipeline project, and where 

the findings and recommendations from the process will be incorporated into the 

engineering design (Hopkins et al., 1999, Day et al., 1998).  
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This preventive method also helps to identifies and evaluates the positive and negative 

recommended impacts from stakeholders that are likely to result from a proposed pipeline 

project and to enable assigning technical values to curb or minimise the impacts. 

Stakeholders can sometimes recommend practical and cost-effective measures to prevent 

or reduce significant negative impacts from third-party interference to an acceptable level 

within their locality (Muhlbauer, 2004). Lastly, education about the risk and consequences 

of pipeline damage and a review of a sequence of events that can precede pipeline failure in 

an accommodating way to stakeholders, youth and communities can help to prevent third-

party interference.  

Table 4-2: Advantages and disadvantages of stakeholders‟ participation 

Advantages 

Opportunity to meet firsthand with potential third-party culprits  

Reduces total cost investments in preventing failures long term 

Increases public awareness and opportunity to educate them 

This method is a front-end prevention approach 

Disadvantages 

The benefits are unforeseeable and unpredictable 

It is dependent on  public acceptance and willingness to cooperate 

Long term strategy that might not be beneficial 

 
Sljivic (1995) recognised third-party interference as the most single probable cause of 

pipeline failure caused by landowners, utility companies, contractors, and local authorities. 

He studied the relationship between third-party activities and their influence on pipeline 

damage, and recommended that increased contact between the pipeline operator and 

potential third parties be encouraged through quality dissemination of information; a view 

that was also taken by Lu and Li (2005). In addition, work by Hovey and Framer (1993) 

confirms that the potential for a spill along a pipeline is the primary responsibility of the 

pipeline managers and not the influence of potential socio-economic factors. He further 

encourages collaborative communication between all the stakeholders, especially, the 

operators and the landowners. The advantages and disadvantages of stakeholder 

participation are presented in Table 4-2. 

4.2.2 Land Use/Land Cover Mapping 

The knowledge of Land use/land cover (LULC) is an important factor in the planning, 

installation and management of pipeline networks.  This is difficult to quantify considering 

the rapid urbanisation in almost every country and the need to meet energy demands. The 
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interrelationships between land use and land cover, both the observed and expected are an 

important component in the planning phase of a pipeline project, and play a key role in 

future potential third-party interference. The evidence of this can be clearly seen in pipeline 

codes, for example ASME B31.8: 2003 (Gas Transmission and Distribution Piping 

Systems). These design codes recommend some degree of caution to limit the potential for 

pipeline interference by ensuring some control of pipeline alignment to avoid regions with 

high population density (Hopkins et al., 1999). According to Day (1998), the method also 

provides some baseline information to evaluate potential third-party interference, since it 

identifies both formal and informal patterns of population growth operating within a 

pipeline‟s right-of-way and their potential influence. There are a number of important 

limitations of the method, and Table 4-3 presents the advantages and disadvantages of land 

use/land cover. 

Table 4-3: Advantages and disadvantages of Land Use/Land Cover Dynamics 

Advantages 

Highly feasible for unintentional third-party interference 

Reduces total cost of  equipment investments 

Increases public awareness 

Disadvantages 

Relies on accurate mapping and data 

No consensus system for the classification of land use data 

Not relatively effective against intentional TPI 

Not internationally recognized in prevention of TPI 

Requires complex computational spatial restrictions 
  

4.2.3 Optimal Pipeline Route Selection 

The efficient prevention of pipelines against TPI is also dependent on how the most 

optimal route selection is determined. In this method, it is assumed that the presence of 

towns, villages, and communities in close proximity to a pipeline alignment influence the 

occurrence of TPI (Watts and Kashi, 2008). In addition to reducing project capital 

expenditure and minimising effects on the environment, it is desirable that reconnaissance 

surveys along a proposed pipeline alignment are conducted in order to integrate 

environmental and physical components into the planning phase of a pipeline project 

(CEPA, 1997, TRB, 2004). One might argue that such an assessment may not be objective, 

but the strategy of avoiding pre-identified vulnerable areas has worked for preventing third-

party pipeline interference (Muhlbauer, 2004). 
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Figure 4-1: Three alternative pipeline corridors are evaluated based on cost, distance, and ground 
slope. The blue line shows the lowest possible cost, the red line shows the optimal route, but the 

greatest distance travel, and could possible affect installation cost. 
 

 

In general, the objective of this prevention method is to find the best pipeline route 

considering basic constraints such as: no pipeline shall pass through a densely populated 

zone and to find the best secured route by avoiding physical constraints which might 

influence or facilitate possible future interference. In addition, the method enables 

evaluation of alternative corridors and pipeline accessibility design and allows a pipeline 

route to be chosen that is likely to be the least vulnerable to TPI, considering both political 

and human factors. This is because where a local population region favours a pipeline route 

along their backyard; they often indigenously protect the pipeline against TPI (Jager et al., 

2002, Muhlbauer, 2004). However, these assumptions are based upon past occurrence, 

prior to the advent of full-blown terrorism and it is unclear if these differences persist with 

local population in support of pipeline along their jurisdiction or not, as no single study 

exists which adequately covers the issue directly. 

 

By way of illustration, Figure 4-1 shows how three alternative pipeline routes have been 

evaluated in order to select the optimal route to prevent third-party interference. However, 

the final route selection will always be a compromise between cost and security. One major 

advantage of this approach is that vulnerable segments along the proposed alignment are 

identified. In addition, this type of assessment study along a projected route is designed so 
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that inhabitants and the environment are not favourably opportune to the chance to 

interfere with the pipeline. This could be by limiting accessibility to pipeline alignments and 

avoiding local population as much as possible. The advantages and disadvantages of this 

method are presented in Table 4-4. 

Table 4-4: Advantages and disadvantages of Optimal Pipeline Route Selection 

Advantages 

Moderate capital investment  

Availability of technical expertise in pipeline route planning and design  

Less field work and involve mostly desktop study 

Disadvantages 

Method is not accurate 

Optimal route might be the most expensive alternative route 

Difficult to implement practically to curb third-party damage  

4.2.4 Increased Pipeline Wall Thickness 

Traditionally, pipeline designers have subscribed to the belief that the minimum allowable 

pipe wall thickness is based upon the consideration for internal pressure, diameter, and 

pipe material. However, such explanations tend to overlook the one major advantage of 

this approach, to prevent third-party damage, heavier pipe wall thickness may be installed 

at vulnerable segments of a pipeline network that are likely to be prone to TPI e.g. road 

and rail crossings. The thicker the pipe wall, the lower the probability of pipeline damage 

from TPI (Menon, 2005).  

 

Table 4-5: Advantages and disadvantages of Increased Pipeline Wall Thickness 

Advantages 

Easily implemented at the design stage of the pipeline project 

Provides increased and additional protection of pipeline 

Prevents major hazard in the case of accidental impact by excavation 
equipments 

Disadvantages 

Does not deter intentional pipeline damage( e.g. saboteurs and vandalism) 

Higher and additional budgetary cost of extra wall thickness 

Cannot be used for long distance pipelines, because thicker pipelines are 
expensive and requires additional cost per mile for installation 

 

Hopkins et al. (1999) also affirmed that: “Increased pipe wall thickness offers protection against 

damage. For example very few (about 5%) of excavating machines used in suburban areas will be able to 

penetrate 11.9 mm wall”. Although increased pipe wall thickness may be beneficial in 

preventing unintentional third-party interference, it is considered that increased thickness 

of pipeline does not secure pipelines from vandalism and sabotage as the intent is to 
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puncture the pipe wall, whatever the thickness. Table 4-5 presents the advantages and 

disadvantages of increasing pipe wall thickness as a method for preventing third-party 

interference. 

4.2.5 Increased Depth of Cover 

Increasing the depth of pipeline decreases damages cause by excavator, and discourages 

intentionally excavated cover of pipelines for pilfering products. This in addition to 

pipeline terrorism, have made the pipeline industry to identify the need to increase the 

depth of cover material on the top of pipeline during installation as an effective prevention 

method for potential TPI. Increasing the cover minimises the impact on a pipeline of third-

party activities. This method is favoured by many previous findings, that contributed 

additional evidence that suggests that the depth of pipeline (or pipeline cover) as one of the 

major dominant factors in reducing TPI (Muhlbauer, 2004, TRB, 2004, Jager et al., 2002, 

Taylor et al., 1984, Andersen and Misund, 1983a).  

 

Table 4-6: Advantages and disadvantages of Increased Depth of Cover for preventing possible 
pipeline third-party interference. 

Advantages 

Higher prevention rate and better protection against third-party activities 

Unnecessary alarm and effective if concealed from public knowledge  

Relatively effective if combined with other  methods of protection 

Disadvantages 
Higher cost per mile if implemented over extensive pipeline network 

Increased maintenance cost because of need for increased excavation 

 

For example, researchers have shown that the probability of damage to a pipeline is 

reduced by 90 per cent if the pipeline depth is doubled (Hopkins et al., 1999, Hopkins, 

1993, Potter, 1985, Taylor et al., 1984). Exposed or shallow pipelines are easier to vandalise 

or to create illegal valves on for stealing the pipeline contents. Brantingham and 

Brantingham (1981) term the above scenario a crime generator, as they provide places 

where crimes are likely to happen. However, there are limits to how far the concept can be 

taken, and Table 4-6 presents the advantages and disadvantages of increased depth of cover 

as a method for preventing third-party interference. 

4.3 During Installation 

The prevention of third-party interference at the installation stage ensures protection of 

pipelines both during and post-installation. Susceptible segments of a pipeline network 
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identified as being potential sites for TPI in accordance with pre-determined prevention 

specifications are actively protected from possible TPI. The methods include slabs and 

plates over pipelines; encasement sleeves: high tensile netting: marker tapes: and pipeline 

maker post. The following sections discuss these methods in detail. 

4.3.1 Slabs, Tiles and Plates 

This is the installation of precast or in-situ formed reinforced concrete planks, tiles or 

plates on top of the pipeline to intercept attempted disturbance to the pipeline beneath 

(Figure 4-2). This method of preventing TPI receives the first contact damage in any effort 

to excavate or physically interfere with the pipeline. The advantages and disadvantages of 

slabs, tiles and plates are presented in Table 4-7 (Muhlbauer, 2004, Mather et al., 2001). 

 

Figure 4-2: Illustration of precast slab tiles buried over pipeline, the slab material could be 
concrete, metal or other protective material capable to withstand interference. 

 

Table 4-7: Advantages and disadvantages of slabs, tiles and plates. 

Advantages 

Good for preventing interference when combined with other methods 

A very good form of physical protection of the pipeline 

Effective for very shallow depth of cover  

Disadvantages 
Can be penetrated by very large mechanical equipment 

Expensive if to be used for long distance pipelines 

4.3.2 Sleeves 

This protection method is achieved by encasing pipelines with ring-like casts, or casing, of 

either concrete or steel, as illustrated in Figure 4-3. The gap between the sleeve and the 

pipeline is filled with either concrete or other solid material (Heier and Mellem, 2007, 

Bruce, 2005). The advantage of this method is to offer an extra layer of protection to the 

pipeline. According to Mather et al. (2001), third parties however sometimes do not easily 

recognise the contents of the pipeline, until they penetrate the pipeline by the continuity of 

their activities. The key importance and limitations of this method are listed in Table 4-8.  
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Figure 4-3: Installation of sleeves around pipeline. This acts as additional protection, making direct 
contact with the pipeline difficult. 

 

Table 4-8: Advantages and disadvantages of Sleeves. 

Advantages 

Provides additional layer of protection against damage 

Effectively discourage intentional third-party interference 

Additional protection against other forms of defects, e.g. corrosion 

Disadvantages 
High capital investment to cover long distance pipeline 

The sleeve does not identify the content of the pipeline 

 

4.3.3 High Tensile Protection Mesh 

High Tensile (HT) nettings are relatively high ultimate strength mild steel grids or extruded 

plastic mesh materials installed to hold up excavation above a pipeline, and simultaneously 

serve as a warning symbol. Typically, mesh mattresses are buried above the pipeline 

(Zhuravlev et al., 2003, Crowhurst, 1983). The meshes are similar to those used in 

engineering for erosion control, slope protection and soil reinforcement (Figure 4-4(A)).  

 

Figure 4-4: Pipeline installation activities: (A) A typical fabric protective mesh being laid along with 
a pipeline during installation; and (B) Maker tape being installed on a pipeline (Telemark, 2000). 

 

However, it is only suitable for traversing short spans of pipeline or pipeline segments with 

difficult and unusual ground conditions. Another problem with this method of prevention 
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is that of the associated high cost investment if used for long distance pipeline. Table 4-9 

presents the advantages and disadvantages of using HT nettings during installation. 

Table 4-9: Advantages and disadvantages of High Tensile Protection Mesh 

Advantages 

Additional protection, if combined with other methods 

Allows other forms of inspection for the pipeline 

Simple to install compared to concrete slabs and sleeves 

Disadvantages 

High cost investment if used for long distance pipeline 

Legitimate third-party equipment can get entangled with the net 

The method is labour  intensive 

4.3.4 Marker Tape 

This method of preventing TPI is generally used in combination with other methods 

during pipeline installation (Figure 4-4(B)). The purpose of the installation of marker tapes, 

laid above pipelines is to serve as a warning mechanism during attempted excavation 

(Mather et al., 2001). Marker tapes with signs or symbols are cost effective enough that 

they can be used over the entire length of a pipeline. In addition, they can promptly 

identify the contents of a pipeline, however, they only warn of pipeline proximity during 

digging, and will not deter intentional pipeline damage. The advantages and disadvantages 

of this method of protection during installation are presented in Table 4-10. 

 

Table 4-10: Advantages and disadvantages of Marker Tape 

Advantages 

Additional protection, if combined with other methods 

Simple to install compared to concrete slabs and sleeves 

Can support, as platform for other from of protection 

Disadvantages 

High cost investment if used for long distance pipeline 

Legitimate third-party equipment can get entangled with the net 

Deteriorate with age of the pipeline 

4.3.5 Marker Posts (Signs and Notices) 

Marker posts are protruding poles, approximately 1.5m in height erected above the 

pipeline, and along its length. Marker posts are clearly marked and inscribed with warning 

signs. They are durable and designed to be weather resistant (Fig 4-5). They are cheap to 

install and could cover the entire length of a pipeline. However, possible physical damage 

by fire or water is a disadvantage, and they do not deter intentional pipeline damage. 
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Table 4-11: Advantages and disadvantages of Marker Post. 

Advantages 

Lower cost of installation compared to other during installation methods  

Can cover an entire long distance cross-country pipeline 

Quick identification by third-party activities 

Could conceal some forms of detection equipment, e.g. spy camera, CCTV 

Disadvantages 

Moderate prevention against intentional damage, might be an attraction 

Highly predisposed to direct damage from vandalism 

Difficulty in identification of pipeline if too widely spaced apart 

 
In addition, marker posts must be maintained in a legible condition throughout the life 

span of the pipeline (Miesner and Leffler, 2006, Mather et al., 2001). Table 4-11 presents 

the advantages and disadvantages of using Marker Posts. 

 

Figure 4-5: Typical variations of marker post used in pipeline right-of-way. 

4.4 Post-Installation 

Post-installation methods of protecting pipeline against third-party interference are aimed 

at detecting TPI prior to or during third-party activities. These methods include aerial 

surveillance, vantage point survey, full walking survey, satellite surveillance, Global 

Positioning System (GPS), electromagnetic detection, and Fibre Optic Sensors (FOS).  
  

4.4.1 Aerial Surveillance 

Aerial surveillance assists in the identification of illegal activities and changes in the land-

use pattern within a pipeline‟s right-of-way and is usually undertaken using a helicopter, 

fixed wing aircraft or an unattended remote controlled flying vehicle. This prevention 

method, if done periodically, can help security analysts to assess any unusual area or 

disturbance trend that could be detrimental to the pipeline (Gregga et al., 2008, Riquetti et 

al., 1996, Gallacher, 1996). Palmer and Associates (2002) conclude that an additional 
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benefit of aerial surveillance is that it serves as a reminder to the local population that there 

is a pipeline on their land and this could sometimes serve as a deterrent. In addition, aerial 

surveillance detects and confirms more targets and identifiable locations than satellite 

surveillance can achieve. The major disadvantage in helicopter surveillance methods 

remains the high costs associated with capital, operation, and maintenance. 

 

 

Figure 4-6: The sequence of typical helicopter surveillance (Palmer and Associates, 2002). 

 

In the above illustration of aerial surveillance procedures (Figure 4-6): (A) a helicopter 

observer is shown patrolling over a pipeline‟s right-of-way; (B) an on-board observer 

makes a preliminary classification of any infringement and suspicious activity; (C) an 

observer takes notes and photography, and collates a survey report after flight; (D) a 

pipeline engineer reviews, evaluates and analyses the survey report; (E) the pipeline 

operator schedules immediate site response, inspection and investigation if necessary.   

Table 4-12: Advantages and Disadvantages of Aerial Surveillance 

Advantages 

This method covers large pipeline network in a short time 

The presence of a helicopter could serve as a deterrent against intentional TPI 

Identifies other threats against a pipeline alongside third-party interference 

Can be automated if mounted with GPS/ camera for additional data capture 

Disadvantages High capital investment for equipment and machinery 

This method could be stalled by bad weather  

It requires frequent patrol frequency cycle to be effective 

 

B 

E 

D 

C 

A 
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This method is still being used for the prevention of pipeline TPI, and may be applied to 

other forms of pipeline inspection (e.g. vegetation growth and encroachments into the 

right-of-way of pipelines). Table 4-12 shows the advantages and disadvantages of using this 

method. 

4.4.2 Vantage Point Survey 

According to Mather et al. (2001), this method of preventing TPI utilises the highest 

geographical features along a pipeline‟s right-of-way having 360 area coverage. Unusual 

activities along the pipeline‟s right-of-way can be observed from these vantage points. This 

method is beneficial for selective segments of a pipeline. It is cheaper and simpler to 

operate and implement. However, its use depends on the presence of a high point for a 

good line of sight. In extreme risk circumstances, snipers could be located in these vantage 

points with camouflage and concealment to combat extremists (e.g. militants and 

saboteurs). Digital Terrain Models (DTM), a representation of ground topography in digital 

format, can be utilised for undertaking visibility analysis. The DTM terrain study can then 

be use to determine the locations of the vantage point from where the best visibility is 

obtainable. Finally, although extensive research has been carried out on the advantage of 

this method, it can be concluded that the method is relatively inexpensive, especially if it is 

self-administered by the pipeline operator. 

Table 4-13: Advantages and Disadvantages of Vantage Point Survey 

Advantages 

Directly covers  particular segments of large  pipelines in a short time 

Cost effective if used in selected segments of pipeline  

Could be used in conjunction with video monitoring to increase effectiveness 

Disadvantages 

Potential source of third-party damage are not always visible 

Requires extra manpower twenty four hours a day and seven days a week 

Unavailability of a suitable vintage point would be a disadvantage of the method 

4.4.3  Full Walking Survey 

This method of preventing TPI involves a periodic manual detailed condition survey of the 

pipeline route, highlighting all the susceptible areas that require immediate attention. 

Traditionally, many oil and gas companies have subscribed to the belief that this is an 

effective method to prevent potential pipeline damage (Chen et al., 2007, Badolato, 2004, 

O'Donnell, 1973).  The walking survey method is a comprehensive route evaluation 
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procedure that examines and re-examines any existing and possible threat to the pipeline 

alignment. Since a critical and thorough observation of the entire pipeline route is possible 

(Figure 4-7), this logically allows for visual observation of other forms of pipeline threat. 

For example, ground movement, oil spill, erosion and changes in pipeline intrinsic 

geometric characteristics. 

 

  

Figure 4-7: Example of Pipeline inspection using a full walking survey method; line measurement, 
records, and notes are all collated. 

 

 

However, time is frequently of the essence, and this method is time consuming (Mather et 

al., 2001), after all, „time is money‟. It could also be suggested this method distinctively 

requires frequent and several number of patrols for an effective results (Hopkins et al., 

1999). Table 4-14 presents the advantages and disadvantages of using a full walking survey. 

 

Table 4-14: Advantages and disadvantages of Pipeline inspection using a Full Walking Survey 

Advantages 

Moderate capital investment for equipment and machinery 

Effective against intentional third-party interference 

This method also identifies other threats, for example ground movement 

Disadvantages 

More intensive labor work is needed 

It is very time consuming 

Very dangerous in volatile oil and gas producing regions, e.g. the study area 

4.4.4 Satellite Surveillance 

Satellite surveillance as a preventive tool for TPI uses Remote Sensing (RS) technology. 

This is the observation from satellite produced images for interpretation of a pipeline route 

(Smith, 2002). Generally, satellite remote sensing technology provides an extensive variety 

of information about any location or target (e.g. pipeline) without physical contact 

(Lillesand et al., 2004). This assists in visual inspection and investigation of vulnerable 

pipeline alignments susceptible to TPI (Palmer-Jones et al., 2004a, Palmer and Associates., 
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2002, Gallacher, 1996). For example, Quiñones-Rozo et al. (2008) recently proposed the 

use of an RS image algorithm that can track excavation activities which is applicable to 

pipeline third-party interference. In a study for the Health and Safety Executive (HSE), 

Palmer-Jones et al (2004b) and Lothon and Akel (1996) evaluated pipeline surveillance by 

the use of a high resolution satellite for preventing TPI. Figure 4-7 shows a typical 

sequence in satellite monitoring of a pipeline (Palmer and Associates., 2002). 

 

 

Figure 4-8: (A) Satellite collects image data, (B) Space Imaging receives data and checks quality, (C) 
3. Service provider screens data for „high risk‟ points; (D) Local pipeline engineer reviews satellite 
images of „high risk‟ points, (E) Site investigation if necessary (Palmer and Associates., 2002). 

 

The advantage of RS is that analysing data is relatively inexpensive, when compared to 

sending teams of surveyors out into the field and “the average location accuracy of 29m (with a 

standard deviation of 16m) estimated for the satellite method is superior to that achieved with helicopter 

surveillance” (Palmer and Associates., 2002). This rapid collection and evaluation of data is 

thus much more efficient than undertaking a ground survey. RS has the further advantage 

of making otherwise inaccessible areas visually accessible to surveyors. In addition, the 

rapid production of maps and quick and easy manipulation by computers of satellite 

imagery makes RS an innovative technology aid in preventing pipeline TPI. Fig 4-8 

illustrates a typical scenario in satellite surveillance, and shows the mapping of a vehicle 

(circled in the pictures) progressing towards a pipeline‟s right-of-way.  

B A 
C 

D 
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Figure 4-9: Satellite Multi-spectral (colour) imagery with a resolution of 1m showing (clockwise, an 
excavator circled red) a typical fictitious scenario of an excavator advancing towards pipeline ROW. 

 

 

Table 4-15: Advantages and Disadvantages of Satellite surveillance 

Advantages 

This method covers large area of  a pipeline in a short time 

Rapid and quick production of analysis and result  

This method also facilitates the exchange of images and data between the 
various agencies concerned with pipeline security 

Identifies other threats against a pipeline, for example, oil spill  

Provides additional data for other and future analysis 

Disadvantages 

High capital investment for equipment and machinery 

Except the use of radar system, this method is affected by bad weather,  

It requires frequent and high spatial and temporal resolution images to be 
effective, e.g. Figure 4-9 could not be produced in minutes. 

 

Nonetheless, the cost of high-resolution satellite imagery make RS technology unattractive 

for surveillance and until prices reduce to the minimum cost per km, according to Palmer-

Jones (2004b), cost might be a major negative factor to the full utilisation of this technique. 

However, advancements in satellite technology have overcome most of the shortcoming of 

satellite surveillance, including cost. It now competes as the best alternative to other forms 

of third-party surveillance because of the following reasons: time for delivery of images, 

fast data handling, and the reduction in cost of producing images. Satellite data can now be 

acquired quickly processed and analysed with fast super-computers. The emergence of 

more third-party vendors and carriers has all contributed to the appreciable reduction in 

the cost price of satellite images (Roper, 2003). 
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4.4.5 Global Positioning System (GPS) 

The Global Positioning System (GPS) technology has various uses apart from data 

collection. It is now in use as a tracking system in land, sea and air applications, and as a 

navigational aid. The GPS, if aided with a satellite communication system, facilitates quick 

delivery and exchange of data by enhancing good real time monitoring services (Qi et al., 

2008, Roper, 2003). In helping in preventing TPI in the pipeline industry, this method 

requires mechanical equipment (excavators, bulldozers, drillers etc.) to be fitted with a 

GPS, or inbuilt as is now common with most heavy industrial earth moving equipment. 

The position of the equipment is geo-located and rapidly deployed over communication 

network systems to a supervisory control and data acquisition centre. If the operation of 

third-party activities (equipments and machinery) in close proximity to a pipeline goes 

beyond a certain “comfort level”, a warning or caution alarm is consequently relayed back to 

the equipment to intersect and warn against a possible interference (Mather et al., 2001). 

 

 

Technology is moving very fast, with GPS equipment presently finding wide application in 

our daily use. If parents and guardians can track children and dogs, then tracking third-

party activities with GPS is much more important in order to prevent pipeline failures. 

Consequently, many GPS based communication satellites now provided additional services 

using their on-board systems to help monitor infrastructure. For example, Nigeria‟s recent 

NIGCOMSAT-1 (a hybrid geostationary satellite) comprises 2-L-band transponders 

(antenna) for global coverage and is useful for navigation purposes and serves as a space 

based augmentation system for global navigation satellite system such as GPS (NASRDA, 

2005). Table 4-16 shows the advantages and disadvantages of the Global Positioning 

System (GPS) methodology. 

 

Table 4-16: Advantages and disadvantages Global Positioning System (GPS) technology 

Advantages 

The method can work independently of the pipeline 

Operators know in real-time, activities within a pipeline‟s right-of-way 

Effective if used in conjunction with other forms of protection methods 

Adaptable with many daily navigational gadgets and machinery  

Disadvantages 

Requires pre-processing of pipeline networks on a pre-digitized base map  

Expensive in terms of capital, implementation, and operating costs  

Impractical for third-party activities that are not directly related or 
commissioned  by the pipeline operators 
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4.4.6 Fibre Optic Sensors (FOS) 

Pipeline Fibre Optical Sensors are intrusion detection systems that use signal recognition to 

detect and alert the operator to unauthorized TPI. The continuous optical fibres are 

encased in a thin core of suitable material with an outer cladding of transparent or other 

optical quality material. The fibres thereafter are laid alongside the pipelines during or post 

installation. The system relies on the basic principle of electromagnetic laws of 

transmission and reflection, detection being based on periodic light pulses travelling 

through the optical fibre. The vibration or fracture generated by any intrusion changes the 

light reflected and transmitted in the fibre, and with the known velocity of light, an 

intruder‟s location is easily determined by measuring the time difference of the reflected 

light pulse (Martins-Filho et al., 2008, Tennyson et al., 2007, Voet et al., 2005, Li et al., 

2003).  

 

The flexibility and ability of the fibre optics to detect various physical parameters, for 

example, acoustics, temperature, pressure, and magnetic field  means that it is now gaining 

acceptance in the pipeline industry, although there is still scepticism regarding its reliability 

(Possetti et al., 2008, Nikles et al., 2005, Voet et al., 2005, Re and Colombo, 2004). 

Although field measurements have validated the technique to some extent, further 

validation is required in order for confidence to be gained in their use. Moreover, besides 

industry standardisation and acceptance, the influence of installation cost is another 

disadvantage since wiring the entire length of the pipeline is required. However, this 

current thesis is aimed at developing predictive models that can be used to identify 

vulnerable segments of pipeline and that could be beneficial to the selective installation of 

the above method, thereby reducing overall cost and increase optimal security. Table 4-17 

summarises the advantages and disadvantages of the fibre optic method. 

Table 4-17: Advantages and disadvantages optical fibres sensors 

Advantages 

Very efficient detection of intrusion over long pipeline distances 

The method can continuously monitor pipeline in real-time 

Wide and growing acceptability because of the telecommunication market 
and decreasing price of faster data transmission rates 

Disadvantages 

Adsorption efficiency is highest with high tensile fibers, else booster 
transmitters are required over long distances 

Instrumentation and signal processing are complicated and require additional 
experts and operating cost. 

False alarms from inability to practically filter out environmental noise, e.g. 
above traffic, and nearby authorized construction activities 
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4.4.7 Target Motion and Smart Camera System 

This prevention method uses “change detection” and “automatic object recognition” 

technology to detect encroachment into a pipeline‟s right-of-way. Closed-Circuit Television 

(CCTV) and Closed Circuit Video Recording (CCVR) transmit activity signals to a control 

centre (room) where operators analyse and compare pictures presented to the system 

(Cumming, 1994, Dezham et al., 2007). Cumming (1994) have reported the use of this 

method to cover a distance range of over 2 km, where both transmitted and received data 

have been successfully analysed.  

 

Table 4-18: Advantages and disadvantages CCTV and CCVR 

Advantages 

Less manpower is required 

The method could operate independently and continuously 

Availability of  many producers and vendors means good price and quality 
competition 

Excellent for night monitoring in real-time if used with infrared camera 

Disadvantages 

Moderate prevention rate 

Lower qualities due to frequent presence of false alarms 

Requires good lighting condition if used at daylight 

Requires additional software for advanced image processing 

If video quality is poor the method could be subjective in detection 

 
The advantage of the method is the capability for continuous operation and the ability to 

operate in environments that are uninhabitable or dangerous for any reason to operators or 

patrol teams. For a successful prevention of TPI, this method depends on a good CCTV 

specification. The advantages and disadvantages of the “target motion” and “smart 

camera” systems are shown in Table 4-18. 

4.4.8 Acoustic monitoring devices 

Acoustic monitoring devices uses Acoustic Emission (AE), whereby ultrasonic elastic 

waves of up to 1MHz are converted from a mechanical wave into an electrical signal. 

Acoustic monitoring in the prevention of TPI employs the transmitted ultrasonic signal 

along the pipeline itself to generate the approximate source of interference. For example, 

TPI produces noise vibrations whose frequencies are ultrasonic and these are detectable by 

the pipeline operator via transducers that pick the signal (Koduru et al., 2008, 

Papadopoulou et al., 2008, Nam et al., 2006, Wang et al., 2006, Leis et al., 1998, Hou et al., 
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1999). British Gas, for example, has developed the method into a standard monitoring tool 

(Hopkins, 1993). The disadvantage of AE is the production of only qualitative estimates, 

therefore other complementary methods are required to undertake thorough examinations 

and furnish quantitative results of the location and extent of pipeline TPI. 

Table 4-19: Advantages and disadvantages of Acoustic monitoring device 

Advantages 

Higher capture rate and better quality of information about a location 

Independent method that does not require equipment attached to the pipeline 

Can detect other forms of threat such as leaks and product theft 

Covers long distances of pipeline and very effective against intentional damage 

Disadvantages 

Requires transmitter if required to cover long cross country pipelines 

Requires complicated signal and noise filtering to avoid false alarms 

Difficulties in differentiating acoustics from routine maintenance operations 
sources, for example, valve closures and traffic activities above pipelines 

 
Wang et al. (2006) and Leis et al. (1998) demonstrated the use of AE techniques in the 

prevention of pipeline third-party interference. They tested for drilling, excavation, and 

hammering near pipelines. However, the method fails to significantly identify and filter out 

false alarms and environmental noises common with signal detection (Papadopoulou et al., 

2008, Cao et al., 2005). In addition, this method will incur high investment cost with 

expensive transmitters and receivers, in addition to lacking industry standardisation (at least 

for now) and limited acceptance in pipeline project procurements. Table 4-19 shows the 

advantages and disadvantages of acoustic monitoring devices. 

 

4.4.9 Telephone calls prior to digging 

Summed up, this method can be simply termed as Call-Before-You-Dig. The US government, 

pipeline operators and underground utilities companies introduced this free telephone 

campaign (Watts and Kashi, 2008, Meadows and Sage, 1985, Miller, 1975). It requires that 

people with the intention of carrying out activities associated with digging, farming, 

construction, and excavation within a pipeline‟s right-of-way call a free telephone number 

to get information about pipeline facilities within their workspace. This method is now a 

legal requirement in the Netherlands, and a similar scheme now operates in the U.K 

(Hopkins et al., 1999). According to Sljvic (1995), the method also educates the public on 

locating pipelines markings and safe digging practices. In summary, no digging can occur 

until the “One Call” is made and a satisfactory response to proceed obtained (Jeong et al., 
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2003). The proper management of this method however depends largely on good 

administration and organisation as well as on active participation by trained and informed 

staff (Williamson and Daniels, 2008, Lu and Li, 2005, Jeong et al., 2003, Caldwell, 1997). 

 

Table 4-20: Advantages and disadvantages of telephone calls prior to digging. 

Advantages 

Opportunity to simultaneously educate the public on pipeline safety 

Simple to operate and easily prevent unintentional third-party damage 

Give immediate notification to pipeline operators of activities near pipeline 

Disadvantages 

Time constraint due to pre-processing procedures and bureaucracy  

Public observation and obedience of the method is not guaranteed  

Accuracy is based on the existence of a pipeline already in the database 

Difficult to implement if no markers exists to prompt calling the operator 
 

4.4.10  Intelligence Information 

Intelligence information is another method of preventing pipeline TPI. Pipeline companies, 

in association with government and security agencies, employ secret intelligence gathering 

in volatile regions having propensity for pipeline TPI. Based on the information provided, 

pipeline operators can supply security agencies with the necessary information to plan 

patrol locations, determine sites to mobilise security forces and to plan the security 

instruments and tools for managing susceptible areas. According to Krizan (1999), 

“Intelligence is more than information. It is knowledge that has been specially prepared for a customer‟s 

unique circumstances”. The intelligence control in this method could take the form of usage of 

satellite spy equipments, listening devices, and other espionage techniques (Muhlbauer, 

2004). Consequently, intelligence information will provide the law enforcement agencies 

and pipeline operators with the following capabilities: (i) visualize incident patterns; (ii) 

identify trouble spots by mapping repeat information; (iii) improve police officers safety; 

(vi) identify TPI prone areas; and (vi) maximise limited resources in combating TPI. 

 

Table 4-21: Advantages and disadvantages of intelligence information 

Advantages 

Highly feasible for saboteurs, vandalism and terrorists 

Usage of existing local security agencies, e.g. police, security outfits, individuals 

Relatively cheap and effective for intentional third-party damage 

Disadvantages 

Depends on peoples‟ willingness to cooperate and help 

Some of the security/ intelligence agencies may themselves be corrupt 

Difficult to quantify, depends on the quality of the information source 
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4.4.11  Site access security 

This is an expensive but effective preventive method for countering third-party 

interference. The surrounding critical areas and vulnerable segments of a pipeline are 

secured with chain-link security fences. These could be galvanized iron core, meshed and 

coated with PVC, and mechanically strained and supported with wires placed horizontally 

and fixed to posts. These intermediate posts must be spaced at intervals and cast into a 

concrete base. In addition, the installation of adequate wide lockable access gates at the 

valves, pump access points, suitably locked and secured are used to prevent unauthorised 

access. This method is an excellent method for preventing intentional TPI, although it does 

come with a high capital investment. Table 4-22 presents the advantages and disadvantages 

of site access security. 

Table 4-22: Advantages and disadvantages of Site access security 

Advantages 

Does not allow unauthorised direct access to the pipeline route 

Effective against intentional third-party damages, e.g. saboteurs/ vandals 

This method discourages casual intrusions  

Disadvantages 
High capital investment for equipment installation and maintenance  

Does not allow for immediate response, hence needs additional tools 

4.4.12  In-Line Geometry Inspection 

This method of preventing and detecting TPI uses In-Line Inspection (ILI) techniques, 

and as the name implies-they are inspection tools. The method utilises „intelligent pigs‟ or 

geometry pigs to transit through the pipeline and inspect and provide information about 

the geometric position of TPI that has modified the dimensions, properties and the profile 

of a pipeline (Huwener et al., 2007, Wilkowski et al., 2007, Bellamy, 2002). The most 

common is the use of caliper tools. They measure dents, wrinkles, ovality, and bend radius 

changes of the pipeline from interior measurements. These measurements reveal physical 

damage, deformations or any anomalies present in a pipeline, sometimes because of third-

party activities. Caliper tools now use new improved technologies to increase accuracy and 

provide relatively rapid profile information of pipelines, using electronic based and 

computerised state-of-the-art software and hardware.  

 

In mitigating TPI, once the geometry pig detects and indicates a problem, a response team 

could immediately be dispatched to locate the exact position. Sadly, not all pipelines are 

piggable; this is the industry challenge of considering this method in preventing TPI. 
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Table 4-23: Advantages and disadvantages of In-Line Inspection (ILL) method. 

Advantages 

Detects other anomalies extensively, e.g. leak detection, bend and cracks 

Allows for immediate response, saving time and money 

Very effective to locating imminent third-party damage  

Disadvantages 

Not effective against some intentional third-party damages, e.g. saboteurs 

The time between two ILI inspections could be several years 

Requires high cost of investment in machinery 

Disruptions of normal pipeline activities, dropping output production 

4.5 Summary 

This chapter has provided an extensive description of the various tools that are available 

for detecting, measuring, monitoring and/or preventing TPI. Although not exhaustive, it 

has identified the well-established and standard methods in use in the industry. It also 

discusses various corresponding advantages, disadvantages and limitations of the three 

broad categories. 

 

In a questionnaire survey, as part of this thesis, respondents were asked to complete a 15-

item Likert scale to measure their perception about various methods of preventing third-

party interference during and post-installation. The answers were recorded into a 5-point 

rating scale from excellent to poor. The results of this study indicate that increasing 

pipeline wall thickness is the most preferable methods to prevent unintentional pipeline 

third-party interference by respondents. This is perceived as representative of their various 

organisations. In addition, a Multidimensional scaling (MDS) analysis performed to 

transform respondents‟ judgments and preference into multidimensional spatial maps, 

shows that  some groups of methods are expensive to implement (e.g. GPS, acoustics, RS, 

and fibres). 

 

From the forgoing, it could thus be concluded that the dwindling resources available to 

pipeline operators have prompted the need for selective protection of vulnerable segments 

of a pipeline by installing security tools where most needed. The results of this thesis could 

be used to minimise the cost per mile of pipeline installations against TPI, and to develop 

an understanding of relationships between the various contributory factors. Therefore, it 

could complement other solutions as discussed above, and appreciably reduce the huge 

investment in the protection of pipelines. 
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5 FACTORS INFLUENCING THE OCCURRENCES OF 
PIPELINE THIRD-PARTY INTERFERENCE 

5.1 Introduction 

The improvement of protection and prevention technologies for pipeline failures to date 

has tended to focus less on the root influencing factors of TPI. Although, the needed 

improvement is detail understanding of these various factors influencing the occurrence. 

This is expected to be the most significant current discussions in pipeline security. This 

chapter describes and discusses currently available information on the several factors 

influencing the occurrence of pipeline TPI. A detail review is also given on the 

characteristic and justification for use of each of the factors in this chapter. The chapter 

subsequently examines various dependent and independent variables associated with these 

factors. In general, this chapter present several hypotheses regarding factors that potentially 

influence the occurrences of TPI. 

 

As explained in Chapter 1, one of the objectives of this thesis is to determine, using hybrid 

multivariate statistical analysis models, identify and predict vulnerable and susceptible 

pipeline segments. This is be achieved by examining relationships between occurrence of 

pipeline TPI and various factors, using a combination of socioeconomic and socio-political 

factors and several pipeline variables (described in the following sections). The thesis 

hypothesised that these are the major contributory factors influencing the occurrence of 

TPI, and form the considerations for inclusion into the multivariate statistical and spatial 

models. The data under consideration consists of twenty-five independent variables, 

collected and collated from the years 1999 to 2003, as the majority of all information 

needed for the thesis are available for this period. The twenty-five variables fall into one of 

the seven categories or groups of factors: land use, socioeconomic, socio-political, 

population density, accessibility to pipeline; pipeline intrinsic properties (age, diameter, 

buried or aboveground pipelines); and topographical conditions. These factors are 

discussed in the following sections. 

5.2 Land Use 

The increasing land use, for example, population encroachment on pipeline rights-of-way 

has been potentially identified as a major contributing factor for the decline of pipeline 
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safety. More recent arguments supporting the influence of land use have been summarised 

by Kash et al. (2004), that “Land use decisions can affect the risks associated with increased human 

activity in the vicinity of transmission pipelines”, and that “Pipeline safety and environmental regulation 

have generally focused on (a) the design, operation, and maintenance of pipelines and (b) incident response. 

They have not directed significant attention to the manner in which land use decisions can affect public safety 

and the environment”.  Therefore, the relationship between land use and occurrence of 

pipeline TPI is an intriguing one that needs a more detailed understanding. Particularly, 

how land use affects the decision about the use of rights-of-way, pipeline design procedure, 

and depth of cover. 

 

 

Figure 5-1: An abuse of land use in vicinity of a pipeline network in the study area, this typical 
scenario is very common throughout the study area where aboveground pipeline are encroached 

into and abused (Watts and Kashi, 2008). 

 

This thesis particularly examines land use as a major primary factor, and the rationale for 

the inclusion is that the impacts, positive or negative, that rapid land use in most countries 

have on existing pipelines, are becoming dominant. For example, Figure 5-1 shows a 

typical scenario in the study area, an example of direct encroachments into right of way of 

pipeline alignments. This type of land use pattern has been shown to directly influence the 

occurrence of pipeline TPI, especially the risks to the local population in proximity to 

pipelines (Muhlbauer, 2004 and Kash et al., 2004). 
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One of the important factors defining the way in which pipeline safety are designed is land 

use planning, primarily to decrease damage risk to pipelines. This is achieved by keeping 

human activity away from pipelines, especially in the event of pipeline failure. The problem 

with full utilisation of this technique is that land use change decisions are not regional ones,  

about 95 per cent of land use decisions and policies are actually made locally (Kleppel et al., 

2006). Therefore, a land use decision in one region differs relatively in another region.  A 

questionnaire survey, undertaken as part of this research, did show significant results that 

land use is one of the major influencing factors promoting TPI, and as the most ranked 

factor for consideration in mitigating intentional TPI.  

 

The above reasons justifying the importance of land use factor on pipeline TPI, has also 

made it of global concern in the pipeline industry. Land use has become a central issue, and 

a recent statutory directive in this area of land use planning, for example, is the Article-12 

of the Directive Seveso II on dangerous substances. This requires that land use regulatory 

planning policies stipulate safe distances between a potentially dangerous facility and local 

urban infrastructural developments (Cozzani et al., 2006, Directive, 1996). Likewise, Kash 

et al. (2004) infer that regulatory agencies “have not systematically considered risk to the public from 

transmission pipeline incidents in regulating land use”.  

 

Land use regulations promulgated by most regulatory agencies do not consider risk to the 

public from eventual pipeline failures, and while pipeline integrity procedures are 

comprehensive, they are not however being utilised in planning land use. These are 

typically left at the judgement of various land regulatory bodies that may be less 

knowledgeable about transmission pipeline mechanics. This relationship of transmission 

pipeline and land use also illustrates why Kash et al. (2004) concludes that many political 

and policy “decision makers lack adequate tools and information to make effective land use decisions 

concerning transmission pipelines”. 

 

There is no consensus system for the classification of land globally, regionally or locally. 

The classification system for land use cover varies primarily because it‟s based on the 

objective of a particular LGA or council governments.  Therefore, the classification and 

definition of land use and land cover types vary considerably in existing literature, mapping 

ambiguity and different interpretation of results are significant in the development of the 

concern (Mücher et al., 1993, Singh, 1986).  
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The knowledge of land use and land cover is an important factor for planning and the 

management of earth‟s activities (Muhlbauer, 2004). The Land use classification according 

to the FAO/UNEP Land Cover Classification System (LCCS) methodology is adopted 

considering its applicability to the requirement of the study area. In particular, the LCCS is 

a standard in used by various land use mapping projects, and the standard was chosen for 

this thesis as shown in Table 5-1. 

 

Table 5-1: Land Cover Classification System (LCCS) adopted for the thesis, according to the 
FAO/UNEP classification system. 

Value Label 
11 Post-flooding or irrigated croplands (or aquatic) 
14 Rainfed croplands 
20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%) 
30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)  
40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 
50 Closed (>40%) broadleaved deciduous forest (>5m) 
60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 
70 Closed (>40%) needleleaved evergreen forest (>5m) 
90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 

100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 
110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  
130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 
140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) 
150 Sparse (<15%) vegetation 
160 Closed to open (>15%) broadleaved forest regularly flooded  
170 Closed (>40%) broadleaved forest or shrubland permanently flooded  
180 Closed to open (>15%) grassland or woody vegetation on regularly flooded  
190 Artificial surfaces and associated areas (Urban areas >50%) 
200 Bare areas 
210 Water bodies 

 

5.3 Socioeconomic Factors 

The socioeconomic status of a region reflects the economic type and position of its 

population relative to other neighbouring regions, and is based on the total average income, 

education level, and types of occupation. While various definitions of the term have been 

suggested, this thesis will use it as a measurement that provides a feedback on a 

community‟s standard of life, comprising historical background, cultural norms, 

demographic characteristics, morbidity rate, mortality rate, occupations, income 

distribution, health and overall social infrastructure. This agrees with Goodchild and Kemp 

(1990) who identified socioeconomic factors as relating to all human activities (e.g. farming, 
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infrastructure developments). Their relative socioeconomic variable classes include the 

derivatives of the following (Goodchild and Kemp, 1990): 

 Housing quality and cost 

 Transportation infrastructure 

 Retailing (customer locations, store sites, mailing lists). 

 Demographics-age, sex, ethnic and marital status, education, and 

 Economics- incomes, employment, occupations, industry, regional growth. 

An implication of this is the possibility that the socioeconomic status of a region suggests 

or infers that people from poor and deprived areas are more likely to interfere 

(intentionally) with a pipeline than are those from an area that is better-off. For example, 

Bennett (1991) found that the theft rate was directly related to gross domestic product per 

capita of a region, this was supported by Blau and Blau (1982), who suggest that poverty 

and deprived economic empowerment in a region can result in frustration, thus leading to 

higher rates of crime (e.g. TPI) in that region. Many authors (e.g. Chainey and Ratcliffe 

(2005)) have also shown a relationship between risk of crime occurrence and the 

socioeconomic status of a region. 

 

Specifically, in the current study area, Nigeria, unemployment and economic neglect are 

prevalent. The socioeconomic level of the population in the study area is essentially low; 

particularly health, education, social and community facilities are lower than the expected 

national standard (Siraj, 2002). The socioeconomic status of the study area supports the 

significance of this factor as one of the major factors influencing the occurrence of TPI. 

For example, a socioeconomic survey of selected areas by Siraj (2002) in the study area 

reveals very interesting picture of the local population. The average family sizes of 

households are 6 to 8 persons, and local trading is the major occupation. The average 

family income is less than a £100 per month, with majority of the households lacking 

drinking water, health and transportation, amongst other important basic amenities. This 

large gap is hypothesised to no doubt encourage TPI, especially intentional interference. 

5.4  Human Development Indicators 

In addition to land use factor, the human development index of a region is an important 

factor that could indicate how widespread the incidents of intentional and unintentional 
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pipeline TPI in that region area. Recent evidence (e.g. Sagar and Najam (1998)) suggests 

that these indices could be used to explain the unease of the people, and of a region‟s 

political and administrative status, particularly the state of the local social infrastructure and 

services.  

 

Therefore, various indices and data extracted from the Niger Delta Human Development 

Report, prepared by the United Nations Development Programme (UNDP), were used in 

this research as proxies for human factors. The key aspects of these indices are Life 

Expectancy Index (LEI); Gross Domestic Product (GDP); Human Development Index 

(HDI); Gender-related Development Index (GDI); and Gender Empowerment Measure 

(GEM); and Human Poverty Index for developing countries (HPI-1) (UNDP-Nigeria, 

2006). The “human development index” (HDI) theory has been  strongly challenged in 

recent years by a number of writers (e.g. McGillivray, 1993) However, the HDI, as used in 

this thesis is to assesses development levels via life expectancy, adult literacy and local 

purchasing power using per capita GDP. It is used as an index, reflecting the human 

development significance of the study area. In general, these factors are briefly described in 

the following paragraphs. 

 

The term Life Expectancy Index (LEI) has come to be used as a measurement of mortality 

that indicates the average number of further years of life remaining for a person from 

his/her present age, using population demography and age-specific data.  Similarly, GDP 

can be defined as the measurement of a region‟s cumulative human activities in terms of 

the economic production, distribution, and consumption of goods and services per 

calendar year.  

 

According to UNDP (2006), the Human Development Index (HDI) “is a summary measure of 

human development”. This factor measures the average achievements in three basic 

dimensions of human development: (a)  healthy life rate, using life expectancy at birth as a 

measurement; (b) education level, using the adult literacy rate; and (c) standard of living, 

derived from the GDP per capital of a region (UNDP-Nigeria, 2006). The term GDI is a 

relative socio-economic parameter, commonly referred to as the measurement of average 

achievement, reflecting the relative inequalities between men and women. This factor uses 

the following dimensions (UNDP-Nigeria, 2006): “(i) a long and healthy life, as measured 

by life expectancy at birth; (ii) knowledge, as measured by adult literacy rate and the 
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combined primary, secondary and tertiary gross education enrolment ratio; and (iii) a 

decent standard of living, as measured by estimated earned income”.  

 

The UNDP (2006) apparently uses the term, GEM as the ratio measurement of political 

and economic participation and decision-making of female and male shares of 

parliamentary seats, and, in particular, gender control over available economic resources 

(measured as female and male estimated earned income). The term Human Poverty Index 

for developing countries (HPI-1) refers to a social factor characterised as a probability 

measurement of a long and healthy life at birth (but of not surviving to age 40) together 

with adult illiteracy rate (UNDP-Nigeria, 2006). In conclusion, and from the foregoing, the 

influence of human factors is significant in the occurrence of TPI, and this explains why it 

is normally included in safety management system. Therefore, the understanding of this 

factor can help in decision making of protecting the pipelines against TPI. 
 

5.5 Socio-political Factors 

Socio-political factors, a relative combination of social and political variables (e.g. ethnic 

group and cultural status) provide a measure of the understanding of a societal structure 

and how it affects human activities. An understanding of the socio-political aspects of a 

society is required in order to understand crime formation, for example, a crime like 

intentional TPI. Little research has been undertaken, which explores how socio-political 

factors influence the occurrence of oil and gas pipeline failures, and TPI in particular. In 

addition, the motivation and instigation of intentional pipeline damage (e.g. vandalism, 

saboteurs, thefts, cyber-attacks etc.) are sometimes politically motivated (Lorenz, 2007). 

Therefore, it could be hypothesised that minority and low-income communities are more 

negatively motivated and likely to cause damage to a pipeline compared to proportionate 

communities that are more politically and socially favoured.  

 

Miethe and Meier (1990) have shown that criminal tendencies are dependent not only on 

socioeconomic factors but also on the social-political conditions as well. An excellent 

socio-political status can influence the rate of crime in a society; for example, good 

employment opportunities and unemployment benefits can psychologically reduce the 

tendency to vandalism and theft. The following variables from Mauro (1995) socio-political 

forecasting review are used in this thesis: (a) adult literacy rate; (b) government expenditure 
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capital projects; and (c) socio-political indices from the Niger Delta Human Development 

Report prepared by the UNDP.  

 

Information about the socio-political situation is readily available from public sources, 

largely because of extensive media coverage. However, gathering consistent data from the 

study area is difficult. Hence, ethnicity, percentage literacy, presence of pipe borne 

(domestic) water; presence of oil and gas facilities; and percentage of oilfield are used as 

proxies for socio-political variables in the multivariate analysis part of this thesis. This 

approach agrees with Ascher‟s (1979) socio-political forecasting review, in that the “use of 

social indicators, usually of society-wide phenomena such as the distribution of wealth, levels of alienation, 

consumption patterns, and broad aspects of the political climate” are alternative elements of socio-

political factors.  In addition, the average total sum of government‟s expenditure on each 

spatial unit (of the study area) for capital project was used in this thesis, as one of the 

proxies for the underlying dimensions of socio-political variables. 

5.6 Population Density 

The rapid population growth worldwide is pressuring urban infrastructures to breaking 

point; and one of the effects, in Nigeria, the study area, is the encroachment of right-of-

way (ROW) of petroleum pipelines. Pipelines laid in previously sparsely populated areas, 

are now vulnerable because of rapid population growth, especially with people now living 

near to these pipelines. It is important, therefore, to understand the potential impacts of 

population growth (and patterns of migration) on future possible pipeline TPI and the 

effects on the management of pipeline networks.  

 

In the history of risk estimation development, growth of population density has been 

thought of as a key factor that has serious implications for public safety and lifespan 

security of the pipelines (Kash et al., 2004, Bilo and Kinsman, 1998). However, Radevsky 

and Scott (2004) point out that “having populations close to the pipeline is not entirely a negative 

factor. An operator may wish to involve the local population in pipeline monitoring and incident reporting”.  

While this seems logical, this can critiqued, in the study area, because, the immediate 

populations around pipeline networks are indirectly responsible for TPI, especially in 

politically unstable oil and gas producing regions.  

 

According to Siraj (2002), only 31 per cent of the total population in the study area is 

employed and the balance of 69 per cent is a combination of infants, children, aged 
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persons and persons seeking employment. Pipeline alignment tends, where possible to 

avoid large population density, thus smaller settlements, with limited resources, facilities at 

their disposal, and a limited economy to support its development are more likely to have 

pipeline traversing their neighbourhood. Thus, because of unavailability of these facilities, 

the settlements are constraints, and often result in the likelihood of a pipeline to experience 

TPI. The underlying influence of population density on the occurrence of TPI is the fact 

that it is often governed by the socio-political and administrative importance of the 

settlement amongst all other factors. This is because the probability and area of 

opportunity for occurrence of TPI increased as human activity increases. 

 

Muhlbauer (2004) points out that design provision from population density classification 

provide an inaccurate measurement of the consequences of pipeline failures. Such 

exposition is satisfactory and shows the degree of the significance of population density as 

an influencing factor to the occurrence of TPI. Therefore, the significance of population 

density as one of the dominant factor influencing TPI relies heavily on the argument that 

sufficient protections are need for the local population and the pipeline in close proximity. 

5.7 Geographical Accessibility to Pipeline Network 

The importance of geographical accessibility to the pipeline right-of-way when considering 

the security of energy infrastructure (e.g. pipeline) cannot be overemphasised. The 

susceptibility of a region to pipeline TPI is highly related, and can be explained by 

criminological theories. For example, these assumption agrees with Brunndon and 

Corcoran‟s (2006) and Cohen and Felson‟s (1980) evaluation of Routine Activity Theory 

(RAT), that the opportunity, a potential offender, and an appropriate target are all that is 

needed for potential occurrence of crime (e.g. intentional pipeline TPI). 

 

The implication is that, the closer the proximity of roads, rivers, streams and railways to a 

pipeline, the higher the likelihood of TPI (Muhlbauer, 2004). Chainey and Ratcliffe (2005); 

Brantingham and Brantingham (1981); and Frisbie and Minnesota (1977) have argued that 

ready accessibility to a crime location (e.g. intentional TPI) is important in understanding 

crime incidents and how to prevent them. For example, illegal planning to attack pipeline is 

often by taking advantage of the easiest accessibility, and the typical access is only by roads, 

river, streams or railways. Therefore, using degree of accessibility as a model variable would 
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help to establish a greater degree of accuracy in examining and anticipating TPI and 

develop an understanding of the influence of the “journey to crime”.  

 

From the foregoing, this thesis separately investigates the geographic accessibility by 

looking at how using the unrestricted travelable distance to a pipeline as a dependent 

variable could predict future pipeline TPI. Thus it was hypothesised that the determinants 

factors of accessibility, as independent variables, to a pipeline are related to the fastest and 

shortest accessibility distance of a „third party‟ to a potential pipeline. These variables are: 

(i) shortest distance from villages to a pipeline incident; (ii) shortest distance from rivers to 

a potential pipeline incident; and (iii) shortest distance from roads to a potential pipeline 

incident. 

5.8 Pipeline Intrinsic Properties 

Pipeline intrinsic properties that influence the potential occurrence of TPI are age, location, 

diameter, length, burial depth, pipeline type, and pipeline facilities (Andersen and Misund, 

1983b, Jeglic, 2005). For example, numerous studies have identified depth of pipeline (or 

pipeline cover) as one of the dominant factors observed in general pipeline failure 

(Muhlbauer, 2004, Kash et al., 2004, Jager et al., 2002, Andersen and Misund, 1983b). 

Critics have also argued that not only do aboveground pipelines provide a general security 

risk, but that they also provide a criminal with easy access opportunities, because it is 

simply easier to vandalise or create illegal valves for stealing products from an above 

ground pipeline compared with a buried pipeline. Brantingham and Brantingham (1981) 

termed this scenario a crime generator. Aboveground or surface pipelines simplify the 

maintenance routines of pipelines and save on installation time; however, it is a major 

concern with some pipelines in political and economic high-risk areas. Third-party 

interferences are generally more limited if pipelines are buried. Other unlikely but possible 

factors that could affect aboveground pipelines are fallen trees, or third party direct impact 

damage, e.g. vehicle contact (CONCAWE, 2006, Radevsky and Scott, 2004). 

 

The length of a pipeline is another factor that could influence TPI. It has been suggested 

that longer pipelines over shorter alternative alignments increase exposure to TPI, in 

addition to increasing maintenance costs of the pipeline right-of-way (Day et al., 1998). The 

relationship between location and type of pipeline has also been widely investigated 

(Radevsky and Scott, 2004, Day et al., 1998). When possible, pipelines should traverse areas 
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where they will be easy to patrol or be otherwise monitored. Lastly, ancillary pipeline 

facilities (pump stations, valves, pig receiving stations, and compressor stations) could also 

influence TPI. These facilities, if not strategically located, apart from meeting the required 

security specification, could be attacked or be an anchor point for TPI. 
 

5.9 Topographical and Geological Factors 

The topographical and geotechnical formation of the underlying soil structure, supporting 

and surrounding a pipeline affects ground stability, physical accessibility, and various types 

of possible man-made activities.  For example, rugged topographic terrain make access for 

intentional damage to pipeline more difficult, and geotechnical conditions determine the 

probability rate of corrosion, landslides and earthquakes. In addition, steep terrain slopes 

could encourage potential soil erosion and land stability, particularly following rainfall. 

Therefore, topographical and geotechnical characteristics are important contributory 

driving factors for potential pipeline TPI (Sweeney, 2004, Day et al., 1998). 
 

The topographical and geotechnical variables considered in this thesis, are hypothesised to 

influence the risk of TPI. For example, natural hazards (geohazards) are often referred to 

as a form of TPI, and are recognized as a contributor to pipeline failures. This thesis thus 

included these factors in the statistical model because numerous studies have attempted to 

explain the influence of this factor, (for example, Porter et al. (2004)) that: “where geologically 

active terrain is encountered and not properly recognized during pipeline design, construction, and operation, 

natural hazards may have an overriding influence on pipeline risk and system reliability”.  

The geological characteristics of a pipeline alignment influences the consequences of 

geotechnical hazards, for example, soil heave, landslides, debris flows, ground settlement 

and subsidence, all of which are possible in the study area except for landslides. In addition, 

the original pipeline cover may be lost due to geological properties (e.g. erosion and 

undercutting from debris through rain and abrasion). This justifies the inclusion of 

geological variables of the study area in this thesis.  The pipelines in the study area traverse 

six geological zones and comprise: (a) Abandoned beach ridges; (b) Alluvium; (c) Coastal 

plains sands; (d) Mangrove swamps; (e) Meander belt, back swamps fresh water swamps; 

and (f) Sombreiro Deltaic Plain. The inherent presences of these geological characteristics 

also justify their inclusion as one of the factors. 
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5.10 Summary 

Current knowledge about TPI lacks a deep understanding of the interaction effects of the 

various factors influencing the occurrence. Therefore, this chapter has discussed several 

factors influencing the occurrence of TPI, and the theoretical properties of the failure 

mode. In conclusion, this thesis examines various hypotheses to determine whether any of 

the factors described in this chapter account for the observed occurrence of TPI in the 

study area. In addition, the thesis examines the unique relationship between each factor and 

a combination of factors for predicting occurrence of TPI. The next chapter will explain 

the methodology employed for the overall thesis in four part namely, the study area and 

data; spatial disaggregation of the study area; hotspot spatial modelling; and the 

development of the multivariate statistical models.  
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6 RESEARCH METHODOLOGY 

6.1 Introduction 

As stated in Chapter 3, the pipeline industry generally recognised that third-party 

interference (TPI) is the dominant cause of pipeline incidents, throwing up many questions 

in need of further investigation, for example, the recognition of influencing factors, as a 

security concern, to minimise pipeline TPI. The success of the review of TPI in Chapter 2 

and review of various international pipeline incident database reported in Chapter 3 led to 

the adoption of the research methodology described in this chapter. One of the goal of this 

thesis is to determine and the explore relationship between the factors that influence the 

occurrence of pipeline TPI, using a hybrid spatial regression model based approach. The 

subsequent prediction models developed examines land use, environmental factors, 

socioeconomic and socio-political factors, population density, and pipeline characteristics, 

such as diameter and age. To assess the thesis hypotheses, as examined in Chapter 5, this 

chapter therefore examines the various theoretical characteristics of GIS based statistical 

models and of their suitability for modelling pipeline TPI. Three different applications of 

GIS statistical analysis for hot spot identification and vulnerability prediction were used in 

this thesis, and to define TPI prone locations and ranking of the main factors considered to 

be influencing the possible occurrence.  

 
Apart from general descriptive statistics, the first application of the hybrid-GIS based 

statistical methods involved the use of Getis-Ord Gi* statistics and the Geographical 

Weight Regression (GWR) statistical methods for spatial hotspot determination. After the 

pipeline incidents hotspots were investigated, two GIS-based prediction methods of 

Generalised Linear Models (GLMs) were developed in order to examine all the factors 

considered to influence the TPI phenomenon and to predict possible occurrences in 

pipeline segments and in spatially divided units of the study area. The GLMs procedures 

used are the Logistic Regression (LR) analysis and the Poisson GLMs. In general, the LR 

model was used to model the probability of TPI, and the Poisson GLMs were used to 

model the association and the relationship between the factors under consideration. These 

procedures are summarised in Figure 6-1 showing the overall methodology flowchart used 

in the thesis. 
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Figure 6-1: The overall methodology flowchart of the thesis 
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6.2 The Study Area and Research Data  

The selected study area is the Delta State of Nigeria, and which is one of the major oil and 

gas producing regions of the country (Figure 6-2). The study area is approximately 8000 

sq.kms, with a population of 0.96 million and having a population density of 

approximately 120 persons per sq. km, representing 1.1 per cent of the population of 

Nigeria (Siraj, 2002). There are six major ethnic groups: lgbos, ljaws, lsokos. ltsekiris, Ukwanis 

and Urhobos, and over seventy per cent of the state‟s population live in rural areas.  The 

study area is swampy and marshy, crisscrossed with many rivers and creeks, and the main 

rivers are the Benin, Escravos, Forcados, Warri and Ramos in the west and the Niger River 

in the east.  The network of rivers and creeks serve as the only corridor for movement 

within the study area where transportation is only through boats and waterways, in the 

absence of a reasonable systems of roads and railways (Adewumi, 2006). 

 

 

Figure 6-2: Map showing the selected study area in Nigeria for the thesis. 
 

The primary raw data source used for the thesis was obtained from Siraj International and 

from the Department of Petroleum Resources (DPR), Nigeria, for the four years from 

1999 to 2003. This duration, although considered relatively limited, was used because other 
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available secondary data are accessible and available for this period. One additional reason 

for this period of time frame is because the occurrences of pipeline incidents are generally 

sporadic, with no reported incidents, sometimes, within a four-year period, combined with 

the inconsistent way that incidents data, in the study area are collated and recorded. 

Table 6-1: The secondary raw data used in the thesis and their various sources. 

Data Source 

Land Use FAO-UN, Land cover of Nigeria (Source:www.fao.org/geonetwork/srv) 

Ethnicity www.waado.org/NigerDelta/Maps/delta_state/delta_state_ethnic.html 

Average Daily Households Income FAO(www.gisweb.ciat.cgiar.org/povertymapping/download/Nigeria.pdf) 

Percentage Literacy Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

Capital expenditure (revenue 
allocation by government) 

Delta State Capital Expenditure Report (Source: 
www.globalratings.net/attachment_view.php?pa_id=222) 

Geological type Zephyrgold Int‟l, Extracted from the GIS based Geological Map of Nigeria 

% of Households with Electricity Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

% of Households with water Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

Total Road length Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

Total river/stream lengths Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

Total length of Pipeline Department of Petroleum Resources, Nigeria (with permission) 

Pipeline status  Department of Petroleum Resources, Nigeria (with permission) 

Average pipeline diameter Department of Petroleum Resources, Nigeria (with permission) 

Average age of pipeline  Department of Petroleum Resources, Nigeria (with permission) 

Population density 
Extracted from Gridded Population Density of Nigeria (GPWv3): By 
Center for International Earth Science Information Network (CIESIN). 
Available at www.sedac.ciesin.columbia.edu/gpw 

Presence of oil/gas facilities Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State) 

Percentage of oilfield/wells From 'Regional Development Plan for the Riverine Area of Delta State' 

Nos. of third-party incidents Siraj Int‟l (Regional Development Plan for the Riverine Area of Delta State 

Life Expectancy Index 
Niger Delta Human Development Report by UNDP Nigeria. Available at: 
www.hdr.undp.org/en/reports/nationalreports/africa/nigeria/name,3368 

Gross Domestic Product (GDP) 
Niger Delta Human Development Report by UNDP Nigeria: 
www.hdr.undp.org/en/reports 

Human Development Index 
(HDI) 

Niger Delta Human Development Report by UNDP Nigeria: 
www.hdr.undp.org/en/reports 

Gender-related Development 
Index (GDI) 

Niger Delta Human Development Report by UNDP Nigeria: 
www.hdr.undp.org/en/reports 

Gender Empowerment Measure 
(GEM) 

Niger Delta Human Development Report by UNDP Nigeria: 
www.hdr.undp.org/en/reports 

Human Poverty Index (for 
developing countries)(HPI) 

Niger Delta Human Development Report by UNDP Nigeria: 
www.hdr.undp.org/en/reports 

Geopolitical locations www.waado.org/NigerDelta/Maps/delta_state/delta_state_ethnic.html 

Digital Elevation Model (DEM) www.gdem.aster.ersdac.or.jp 

 

The other data considered for the thesis consists of twenty-five independent variables, 

covering the period between 1999 and 2003, as the majority of all the information required 
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for the thesis is available for this particular period. The thesis also used data obtained from 

references and from offices and organisations in Nigeria (e.g. Federal Ministry of 

Environment (FME)). In addition, data was gathered from other multiple sources, as 

shown in Table 6-1. Additional data was collated manually, for example, village locations, 

date, and distances from roads, rivers and villages. These data were all digitised on screen, 

using ArcGIS, and entered into an ArcGIS geodatabase, so that different analyses could be 

performed on the various variables. Table 6-1 shows the list of variables and indicates their 

various sources, they fall into one of the seven categories or groups of factors: land use, 

socioeconomic, socio-political, population density, pipeline accessibility, pipeline intrinsic 

properties (age, diameter, buried or aboveground pipelines), and topographical conditions.  

6.3 Spatial Disaggregation of the Study Area 

All spatial based modelling and analyses requires appropriate geographical units in order to 

better represent data in a model and to avoid the Modified Areal Unit Problem (MAUP) 

(Wong and Lee, 2005). For example, the United Kingdom is composed of four countries, 

namely Northern Ireland, Wales, Scotland and England; England can be further 

subdivided into nine regions, which can be further subdivided into smaller regional levels 

of ninety counties, and a further refinement into the smaller districts level at an areal unit, 

thus forming a hierarchical partitioning system. If data from different zones and scale 

levels are simply combined for analysis purposes, they produce results that are often 

inconsistent, and are known as zonal and scale effects respectively. The combination of 

these two effects is known as the MAUP. These two phenomena affect statistical analysis, 

especially correlation analysis (Wong and Lee, 2005).  

 

The selected study area suffers from the above defined MAUP problem. It does not have 

an established distribution of appropriate geographical units to meet the required level of 

data available, hence the need for disaggregation of the study area in order to meet the 

required level for data analysis. The disaggregation was made by using village hierarchy 

procedures, and the main objective was to reorganise the existing structure of villages, 

growth spurs, and facility nodes, to provide a more balanced and even distribution of 

development in the region. In the procedure that was adopted, villages in the study area are 

grouped together, to form clusters of villages, according to the demographic function that 

they perform. These hierarchical patterns (Figure 6-3) show the dependencies of villages 

on a lower order hierarchy on the villages at a higher order.  
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This procedure of hierarchy planning is an adoption of the United Nations Environment 

Programme (UNEP). This method have been applied by Siraj (2002) to a study in Nigeria, 

using the population analytical report of Nigeria‟s National Population Commission (NPC) 

and the Delta State statistical year book, published by the Delta State in collaboration with 

UNEP. In general, Nigeria does not have further district or ward level spatial areal units, 

hence the consideration of this method to depict the actual socio-economic context of this 

selected study area. The method will also ensure accurate spatial analysis for the thesis. 

 

6.3.1 The Village Hierarchy Planning 

It was considered that quantitative measures would usefully supplement the required level 

for spatial analysis, especially to eliminate the MAUP discussed earlier. Therefore, the 

village hierarchy procedures were adopted for the study area, and the “Central Place 

Theory” was employed to accomplish this. This is a location patterns analysis method that 

attempts to explain the spatial order of distribution patterns, and the size and number of 

villages. The theory, originally introduced by Christaller (1933) affirmed this procedure 

as:"examining and defining the functions of the village structure and the size of the hinterland with which 

he found it possible to model the pattern of village locations.  In the present case the Central Place Theory is 

used for evolving a central place pattern to serve a given population for the provision of community 

facilities”. 

 

 

Figure 6-3: The hierarchy identified for the distribution of facilities of the region. Hierarchy I 

includes regional growth centre, which includes all the villages included in the Warri Effurun 
master plan, the figure shows how lower order villages depend upon higher order villages for 
facilities and how thus a dependency network is formed (Adapted from Siraj (2002)). 

 

The overall study area is a developing region, hence, preferred method would be to apply 

Christaller‟s model. However, because of the incomplete and inadequate spatial data in the 

study area, the Christaller‟s model could not be satisfactorily applied. This is in addition to 

other limiting factors, for example, the domination of the terrain by water bodies and the 



Chapter VI: Research Methodology 

 
94 

 

socio-economic context, shaped to an extent, by various ethnicities composing the regional 

population. For all the above reasons, additional parameters were used in establishing the 

village hierarchy for the Siraj (2002) study; for example, population density and the 

numbers of available educational facilities within the study area.  

6.3.2 The Application of Central Place Theory 

The Christaller‟s procedures selected as the measurement tool provided a scoring table 

built on planning parameters specific to the study area. In Siraj‟s (2002) study, the 

classification of a village into a hierarchy is conducted by obtaining a sub-facilities score 

for the village, which was then arithmetically divided by the total number of the same sub-

facilities available in an area. The total score for each village is the result of the summation 

of all sub-facilities available in the specific village under consideration, derived from the 

percentage conversion of the individual score for the given sub-facility. For example, if 

Warri (in the study area) has 50 primary schools and the total number of primary schools 

in the overall study area is 300. Hence, the score for the sub-facility of primary schools in 

Warri will be (50/300*100)*100= 1667. Similarly, if Warri town, for example, has 20 

secondary schools and the total number of secondary schools in the study area is 110. 

Hence, the score for the sub-facility of secondary schools in Warri will be 

(20/110*100)*100=1818 (Siraj, 2002). 

 

Table 6-2: Results of classification: The proposed hierarchy (Siraj, 2002). 

Units Types of Growth Centres 
Hierarchy I Regional Growth Centre 
Hierarchy IIA Growth Centre serving a population of around 300,000 
Hierarchy II B Sub Growth Centre serving a population of 60,000-75,000 

Hierarchy III Service Centre serving a population of about 5,000 – 30,000 

 

The same type of calculation is applied to all of the remaining facilities available in Warri, 

and the total score obtained for Warri are added up for that facility. Similarly, the total 

score for each village then shows the relative importance of that village in the study area. 

The Central Place Theory, as described above, relates to the catchment area of each village, 

considering the relative economic and social importance of operations within the 

boundaries of each village‟s territorial perimeter. The villages thus selected will operate 

within that general clusters, with specific roles assigned to each one according to its 

relative importance, and subsequently assigned to one of the hierarchy levels shown in 
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Figure 6-3. The growth centres are then organised based on a regional planning approach 

as shown in Table 6-2, this approach follows Siraj‟s (2002) procedure. 

6.4 Defining the Study’s Catchment Areas 

The basic spatial units used for the thesis were prepared by first delineating the study area 

using the population distribution, and the distribution of oilfields in the same area as the 

basis. It was decided that this was the best approach, because pipelines usually traverse 

oilfields, and it was thus considered more important to use the oilfield distribution as the 

measurement for creating the spatial units.  

 

 
 

(A) Oilfields and villages vector layer were 
converted to raster layer in arcGIS. These were 
the original data from the above procedures  

(B) CostAllo: this is ArcGIS Costallocation of 
oilfield raster and village raster, and serve as the 
primary input features into ArcGIS 

  
(C) Euclidean Allocation:  by using CostAlloc in 
ArcGIS, with raster output (the shade of gray is 
for simple graphic display purposes). 

(D) The final conversion of Eucallocation from 
the raster format to vector layer for further 
analysis in ArcGIS. 

Figure 6-4: The actual ArcGIS procedure used in the Cost-Allocation analysis, figures from (A) to 
(D) shows the output result how the study area was disaggregated into 151 spatial units. 
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The data management and analysis was performed using ArcGIS 9.3; specifically, the 

image analysis functions of the Cost-Allocation and Euc-Allocation tools in ArcGIS were 

used to subdivide the entire study area into units, this was considered more precise than 

employing Thiessen polygons, according to Chou (1997). The ArcGIS image analysis 

function of Cost-Allocation derives spatial unit from the input features (Figure 6-4 (A)), 

using their spatial location and using the oilfield raster feature as weights. The costs (not a 

monetary value) are distance calculations from the input feature, the villages, and 

multiplied by the cost raster weight, the oilfields. Thereafter, the EucAllocation Spatial 

Analyst function allocates each village (from the disaggregated hierarchy) by association 

with the nearest oilfield (Figure 6-4). 

 

Figure 6-5: The final map of the study area showing the final disaggregated 151 different spatial 
units subsequently used in the various analyses for the thesis. 

After the study area was disaggregated into 151 different individual spatial units, the total 

road length, river length, and pipeline length was calculated within each spatial unit. The 

same procedure was also applied to the population density and number of incidents per 

spatial unit. The Identity-Overlay in ArcGIS analysis tools were used for the analysis; some 

typical parameters were Input Features (e.g. roads dataset) and Identity Features (the study 

area). This procedure splits the lengths of roads, rivers and pipelines at the borders 
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between spatial units, creating a new layer that contains a joint attributes listing. The 

ArcGIS summary statistics tool was then used to create a spreadsheet formatted database 

that was joined to the original spatial unit‟s dataset thereafter. 

6.5 Hotspot Spatial Approach and Modelling Methodology 

A hotspot (black spot, black zone, or cold spot) is generally referred to as being an area 

having a noticeably higher than average cluster density of incidents (e.g. pipeline TPI), and 

could identify concentrations of events due to spatial interaction between neighbouring 

locations (Flahaut et al., 2003). This thesis analyses the spatial distribution of pipeline TPI 

incidents by detecting concentrations of hot segments in a network. A „segment‟ is defined, 

in this thesis, as a subdivided section of a pipeline alignment in a network, and is 

represented as a feature. It is considered to be a hotspot if it experiences more than an 

expected number of occurrences of TPI, compared with otherwise normal random 

occurrences. There are different geographical and statistical methods that have been 

developed to model and analyse point patterns for hotspots, and their distributions and 

clustering. The red box in Figure 6-1 shows the overall methodology flowchart used in the 

hotspot analysis and spatial variation of the variables using the GWR. 

 

Wong and Lee (2005) provided several reasons why considering the spatial local 

autocorrelation technique, which is a linear clustering technique, are useful, for example 

for the investigation of problem such as pipeline hot-segments (hotspots) and potentially 

vulnerable regions. They further emphasised how this technique gives a consistence and 

actual representation of a linear network (e.g. pipelines), unlike other methods (e.g. the 

Kernel Estimation Method) that analyses only the location of points. The local 

autocorrelation technique includes the attributes of the points in the analysis, and this 

allows for measurement of location proximity and differences in the characteristics of each 

of the points (Wong and Lee, 2005). This method is adopted as one of the most practical 

ways of examining the direct influence of factors that affect the occurrence of TPI, and 

makes it possible to investigate further the significant relationships between two or more 

factors. 

 

The spatial local autocorrelation corresponds to Tobler‟s (1970) First Law of geography, in 

that all things are related, but closer things are more strongly related. The spatial local 

autocorrelation effect is a phenomenon that is always present to a certain degree in every 
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spatial data whose patterns are clustered, dispersed or random. The measurement of these 

patterns of similarity or dissimilarity through space is known as spatial autocorrelation. 

Positive spatial autocorrelation occurs if neighbouring spatial units are more alike, and 

negative autocorrelation describes patterns where neighbouring spatial units are unrelated. 

The study of spatial autocorrelation starts with the introduction of Morans‟ I (Li et al., 

2007, Shiode, 2008), for determining and measuring the level of spatial autocorrelation 

between spatial units. Morans‟ I is used for both polygon or points data with continuous 

variables and it compares a specified value at any one location with all other neighbouring 

values (Li et al., 2007, Wong and Lee, 2005). 

6.5.1 Spatial Neighbourhood and Weights 

The specific characteristics of the linear distribution of network utilities (e.g. pipelines) that 

is to be used in identifying hotspots needs utmost consideration in order to avoid a biased 

interpretation of the results. The use of Euclidean distances (direct distance between two 

points), appropriate connectivity and movement restrictions are examples of issues that 

make the analysis of patterns and clusters difficult. To increase the reliability of the 

measurements, it was decided that the best method to adopt in order to avoid biased 

interpretation of the results was the development of network spatial weights. This is done in 

order to improve the performance of spatial relationships among the pipeline network 

dataset, for example, pipeline TPI incidents. Many applications (e.g. accessibility to 

services, emergency response, and pipeline incidents) are found in real world travel 

networks and simple Euclidean distance measurements do not properly define actual 

spatial relationships.  

 

Spatial weight matrices, used to determine the network spatial weights, are ways in which 

relationships between a geographic defined feature (e.g. a point incident) and its immediate 

neighbours (other point incidents) are spatially represented as part of a model. This is 

typically an n x n matrix, where n is the number of geographical units (points or polygon), 

and each unit is represented by both a row and a column. The value of 0 or 1 could 

represent whether a unit is considered spatial related to an adjacent unit. Apart from using 

the adjacency distance, the centroid distances between two areal units (e.g. polygon 

features) can be used to define their spatial relationship (Wong and Lee, 2005). The 

following sections describe a typical procedure for the creation of the spatial neighbourhood 

weight. 
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In Figure 6-6, two spatial units (1 and 3) of the study area, as labelled, illustrate how spatial 

weights matrix file was generated. A sample extract from a binary spatial weights matrix 

file from ArcGIS output is shown in Table 6-3, using the „Queen‟s move adjacency‟ 

analogy (De Smith et al., 2006). 

Table 6-3: A ArcGIS software procedure for determining spatial weights matrix file 

    1 3 
p1, p2,..., p3 (IDs of the three neighbors) 

     3 4 
q1, q2,..., q4(IDs of the four neighbors) 

Here, the first line indicates that spatial unit 1 (Agoro, in the study area) has 3 spatial 

neighbors, followed by the IDs of the three neighbors (p1, p2, p3); while spatial unit 3 

(Torugbene, in the study area) has 4 spatial neighbors (q1, q2,..., q4). Therefore, based on this 

proximity, a set of spatial weights matrix was computed using the Euclidean distance 

(d1, d2,..., dn) from the centroids of each spatial units (figure 6-6). 

 

    Figure 6-6: Spatial weights computation, using a segment of the study area as an example. 

 

This relationship weight given for two feature of interest, often denoted by w (a spatial 

weights matrix) captures the spatial aspects of the problem of expressing the relative 

proximity of pairs of features or places. The above procedure can be similarly applied to 

entire spatial units in the study area, to determine the spatial neighbourhood weights. 

6.5.2 Hotspot Analysis Using Getis-Ord Gi* Statistics 

Several studies have used the Moran's I measurement of spatial autocorrelation discussed 

above for hotspot determination in a linear network. While these models indicate a 

relatively high (positive or negative) autocorrelation, they generally lack accuracy. This is 

because they do not explain local differences between areas with high concentrations 

(hotspots) and those having low concentrations (cold spots) and thus one cannot 

distinguish between areas (called hotspots and cold spots) with different spatial 
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autocorrelation. This thesis considered it to be an important factor in choosing an 

appropriate method to identify clusters of high or low value, by using local G-statistics 

(Mitchell, 2005, Wong and Lee, 2005).  This statistic computes a comparison between 

neighbouring features within a given distance to show the extent of how features are 

surrounded by similar high or low values.  

 

There are two alternative methods for determining the G-statistic. The first is the Gi- 

statistic method, where the value of a specific feature of interest is not included in the 

computations. The second method, Gi* statistic includes the value of the specific feature 

of interest in the computations. Since the value of a target feature is considered to 

contribute to the occurrence of a cluster, the Gi* statistic method is most suitable for 

finding hotspots and cold spots. The Gi* statistic is neighbourhood based and uses 

adjacent features or a specified distance, the distance not necessarily Euclidean, and could 

be related to travel time, between occurrence of two successive events. The Gi* statistic is 

calculated using GIS, and this is done by summing the values within a feature‟s 

neighbourhood and dividing by the sum of all values in the overall study area. The 

computation formula for the Gi* statistic is given in equation 6.1, and is to test hypotheses 

about the spatial concentration of the TPI incidents within d of the of another TPI 

incident (Mitchell, 2005)： 

 

 
 

(Equation 6.1) 

 

 
The )(* dGi

 in equation 6.1 is the Getis & Ord measurement of clustering and is for a 

feature (i) at distance (d), where  jij xdw )( is the summed result of each value of a 

neighbour‟s feature (x) multiplied by the weight of the feature of interest pair wij.  The 

strength of the spatial relationship, 
j

jx is the sum of the values of all neighbours ( jx ) of 

all the features in the dataset of the study area. A group of features, for example pipeline 

incident points, with a high value of *iG  indicates a cluster of a particular feature with 

high attribute values and is thus defined as a hotspot, while the group of a feature (e.g. 

pipeline incident points) with low *iG  value reveals a cold spot.  The *iG  statistic is also a 

measure of standard deviation or the Z-score, a test of statistical significance that 
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determines whether the null hypothesis should be rejected. In *iG  statistic, the Z-scores 

are calculated by subtracting the expected *iG  from the calculated *iG  value given a 

random distribution, and dividing by the square root of the variance of all the features 

(Mitchell, 2005). The expected Z-score is thus calculated as: 

 

 
      

(Equation 6.2) 

 

The *)( iGZ  in equation 6.2 is the expected Z-score for *iG ; and  *)(* ii GEG   is the 

expected *iG  subtracted from the observed *iG ; while *)( iGVar is the square root of 

the variance (Equation 6.2). The computation for the expected *iG is the sum of the 

weights at distance (d), divided by the number of features, minus one. The formula is: 

 
 

 
 
(Equation 6.3) 

 

 

The GIS-based statistical analysis calculates the Z-score for each feature at distance (d), a 

high value indicates high similar attributes among neighbours, and a low value indicates 

low similar attributes. The aim of identifying clusters of similar high or low values is to 

determine the statistical significance of the Z-score. At a confidence level of 95%, for 

example, a Z-score would have to be less than -1.96 or more than 1.96 to be accepted as 

being statistically significant.  Therefore, the  individual values of *iG  that have been 

derived can be mapped in ArcGIS, to show clusters of high or low Z-scores (Mitchell, 

2005, Wong and Lee, 2005). 

 

Finally, an attractive feature of this method is in the computationally efficient combination 

of the original *iG  statistic and the Z-score for use as a single measurement. The Getis-

Ord *iG  statistic has same interpretation as the Z-score, if the local sum is much different 

from the expected local sum, the difference is too large to be the result of random chance, 

and thus a statistically significant Z-score results. The Getis-Ord *iG  statistic is a 

derivative of equations 6.1 to 6.3 (Ord and Getis, 1995). 
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6.5.2.1 The Application of the Getis-Ord Gi* Statistic 

One of the most significant objectives of this thesis is to define the locations of segments 

of a pipeline alignment with unexpectedly high occurrences of TPI in relation to the 

distance from nearby roads, rivers, and villages as variables. The ArcGIS 9.3 Getis-Ord 

Gi* (d) statistic approach (equation 6.1) ,described in section 6.5.2, is one of the more 

practical ways of identifying statistically significant high or low attribute values as clusters 

using data points of TPI incidents. Since pipeline TPI data shows geographic patterns 

based on occurrence location, spatial statistical techniques were considered as being an 

effective tool for analysing such patterns.  

 

The ArcGIS Network Analyst extension tool was used to generate and model the network 

spatial weights matrix (described in Section 6.5.1) in order to represent the spatial structure 

of the pipeline network in the study area. This tool uses, as point feature class, the 

geographical location of pipeline incidents  and the linear pipeline network dataset in order 

to generate the spatial weights quantifying distances and the degree of proximity between 

each and every other pipeline incident (Getis and Aldstadt, 2004, Haining, 2003). The 

spatial relationships, based on the spatial weights matrix calculations are thereafter used in 

further statistical analyses, for example, the spatial autocorrelation (Moran‟s I) and hotspot 

analysis (Getis-Ord Gi*). This procedure is necessary in order to remove the uncertainty 

regarding spatial interactions between each incident along a linear pipeline network. 

 

Subsequently, the Getis-Ord Gi* (d) statistic method was used to statistically show 

significantly high and low relative hot-segments in pipeline alignment. This was performed 

with the analytical spatial statistical tool in ArcGIS, using the Getis‐Ord Gi* algorithm. 

This tool required various input fields, these include: input feature class (pipeline 

incidents); input field (weights: distances from villages, roads and rivers); and 

conceptualization of spatial relationships from the network spatial weight matrix file described 

in Section 6.5.1. The network spatial weight matrix defines the spatial relationships and 

improves the statistical computation performance. In addition, different applications of the 

GIS, such as the map calculator, buffer and network analysis were applied to the datasets. 

The hotspot analysis (Getis‐Ord Gi*), like other local spatial autocorrelation statistics (e.g. 

cluster and outlier analysis, and Morans I), does not use individual incidents but rather uses 

weighted points. Therefore, the distances from roads, rivers, and villages were employed as 

the relevant weights for the analyses. 
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6.5.3 Geographically Weighted Regression (GWR) 

In this thesis, the geographically weighted regression (GWR) method was used to examine 

the significance of geographical accessibility to pipelines, especially vulnerable pipeline 

segments. This approach also shows spatial variations of the exploratory independent 

variables, especially since accessibility to pipelines is a function of distance. In this thesis, 

geographic access to the pipeline was evaluated by using the travelable distance (i.e. the 

relative ease of access distance) to the pipeline as a dependent variable; to explore the 

connection, the distances from rivers, roads, and villages to the pipeline were used to 

measure accessibility. The assumption is that the when pipeline networks are less 

accessible, interference becomes difficult, and might discourage intentional interference. 

This means pipeline segments with limited and physically difficult access are relatively safe 

and less exposed to interference opportunities, especially intentional interference 

(Brantingham and Brantingham, 1984). Brunsdon and Corcoran (2006) also discusses how 

criminal tendency is a product of motivated offenders and suitable targets, hence, if 

adequately studied and examined, can facilitate and promote appropriate preventative 

measures.  

 

In addition to proximity and geographical accessibility, the intrinsic properties of the 

pipeline itself are important factors for consideration in evaluating TPI. For example, 

numerous studies have describe the influence of pipeline age and diameter on failures of 

pipelines (Section 5.8), therefore there is a potential for reducing TPI by altering these 

variables, albeit at the design and installation stages. Therefore, based on the availability 

and nature of data for analysis (point data), the age and diameter of pipelines were used as 

additional independent variables for inclusion into the model. The inclusion of these two 

additional variables is based on the assumption that its knowledge determines the attack 

strategies of saboteurs (intentional interference). Most intentional interference reflects the 

character of easy of accessibility, first because they are not a random attack, and second 

because they are always reasonably well planned, that does indicate some prior knowledge 

of the intrinsic properties of the pipeline. 

 

 The ArcGIS hotspot analysis using the Getis-Ord Gi* (d) statistic, described in section 

6.5.2 and so far, examines the spatial patterns of the pipeline incidents to determine 

pipeline segments that persistently experience TPI as shown by the clustering of a higher 
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than expected proportion of incidents in the study area. However, the most important 

question involves asking why these particular segments of pipelines TPI. What might be 

causing this? What other factors contribute to a higher than expected TPI? How can 

mitigating actions that will reduce interference be identified and implemented? To answer 

these questions a potential approach is to use the Geographically Weighted Regression 

(GWR) technique, which is a local version of the popular Ordinary Least Squares (OLS) 

regression technique that models, examines, and explores spatially varying relationships 

among sets of variables. For example, it could enable a pipeline operator to understand the 

major characteristics of these contributory factors to assist in designing legislation and 

mitigation measures aimed at protecting pipeline facilities. 

 

6.5.3.1 The Basics of the Geographically Weighted Regression (GWR)  

The Geographically Weighted Regression (GWR) technique is an extension of the 

Ordinary Least Squares (OLS) regression model where parameters vary by location. It is a 

modelling technique that is used for analysing spatial data, where the measurements of 

local relationships are mapped spatially. The GWR is not limited to global models, as is the 

OLS, and allows it to be rewritten as (Fotheringham, Brunsdon and Charlton, 2002):   

 

                           
(Equation 6.4) 

 

In equation 6.4, xik are observations for i = 1,..,n cases and k = 1,..,m independent 

variables,  yi  is the dependent variable,  's are the estimates of the coefficients, and  's are 

the normally distributed error terms.  In this thesis, n equals 266, the total number of 

pipeline TPI incidents in the overall study area, the independent variables xik are distance 

variables (proximity distances to pipeline); shortest distance from villages to a pipeline 

incident; shortest distance from rivers to a pipeline incident; diameter of pipeline; shortest 

distance from roads to a pipeline incident and age of pipeline at time of incident. The 

dependent variable, yi, is the geographical shortest accessibility distance of a „third party‟ to 

a pipeline (MinDist). 

 

In order to identify the geographical coordinates, the standard x and y coordinates of a 

point, Fotheringham, Brunsdon and Charlton (2002) showed that: 

 

 
k

iikki xy 0
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(Equation 6.5) 

 
In equation 6.5, (ui,vi) are the x and y coordinates of the ith point in space, and  k(ui,vi) are 

spatially varying, continuous functions at point i. In this thesis, the coordinates of the ith 

point correspond to the particular geographic location of a pipeline TPI incident. 

Furthermore, Fotheringham, Brunsdon and Charlton (2002) showed that  k(ui,vi) is: 

 

                          yWXXWX ),()),((),( 1ˆ
ii

T

ii

T

ii vuvuvu   (Equation 6.6) 

 
Where ),( ii vuW  is an nn  matrix in which the off-diagonal elements are zero and the 

diagonal elements denote the geographical value of each n observed data for a given 

regression point i. Using the standard regression equation in matrix form,   XY   

and   
YXXX TT 1)(ˆ  . Hence, the GWR equivalent is as given in equation 6.7 below: 

 

                           1XbY )(  
(Equation 6.7) 

 

Where the tensor operator ' ' means that each element of matrix b is multiplied by the 

corresponding element of X. Therefore, for n data points and k independent variables, 

dim(x) = )1(  kn and 1 is a 1)1( k  vector of 1‟s. Therefore, B is given as:  

 

 

Thus, the estimated parameters in each row are obtained with equation 6.8: 

 

                          yWXXWX )())(()( 1 iii TT 


  (Equation 6.8) 

 

In equation 6.8, y is a location-based weighted least squares estimator, and i is a matrix 

row, while the W(i) is an nn  spatial weighting matrix:  W(i), and is given as: 
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Where wij is the weight given to a data point j in the calibration model for location i.  

6.5.3.2 The Application of Geographically Weighted Regression 

According to Brunsdon and Corcoran (2006), “people travel along known activity pathways to 

nodes around which the offender searches for potential targets”. Therefore, the dependent variable in 

modelling the determinants of accessibility to a pipeline, in this thesis, is the shortest 

possible accessibility distance for a „third party‟ to travel to the pipeline (MinDist). The 

independent variables are: (i) shortest distance from villages to a pipeline incident site 

(DistVlg); (ii) shortest distance from rivers to a pipeline incident site (DistRiver); (iii) 

diameter of pipeline (DiaPipe); (iv) shortest distance from roads to a pipeline incident site 

(DistRoad); and (v) the age of pipeline at incident (AgePipe). This thesis hypothesised that 

the occurrence of TPI is a function of geographic accessibility to pipeline, and is is directly 

proportional to the age and diameter of a pipeline; and inversely proportional to the 

distances from roads, rivers, and villages. The relationship between the age and diameter of 

a pipeline and the occurrence of TPI has been widely investigated (Section 5.8). 

 

The first set of analyses conducted before the application of the GWR technique was to 

examine the statistical and spatial relationships between the variables. Accordingly, 

descriptive statistics and a Pearson's product moment correlation were used to determine 

initial characteristics and relationships between all the above variables. The data for the 

model were transformed to meet the assumptions of statistical analysis, using SPSS 17 

procedures. The distances from rivers, roads and villages do not conform to a normal 

distribution, and the distributions are generally positively skewed and display various 

degrees of kutosis, leaving no option but to transform the data. The most appropriate 

transformation method is the natural logarithmic method. Therefore, the correlation 

analysis between the variables was to determine their suitability as reasonable predictors of 

geographic accessibility to a pipeline network, especially to detect the absence or presence 

of multicollinearity. 
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On completion of the preliminary descriptive analysis and the Pearson's correlation 

analysis, the variables were fitted into the GRW procedure using the ArcGIS 9.3 facility. It 

was decided, following Charlton and Fotheringham‟s (2005) study, that the best method to 

adopt for this model was to use the spatial kernel as a geographic weighting tool, and with 

a coefficient that also controls the size of the kernel. The density of the data in the study 

area was considered to be clustered by visual observation of the TPI occurrence in the 

data; hence ADAPTIVE kernel method of the GWR-ArcGIS tool is appropriate. The 

ArcGIS tool provides various choices for selecting the bandwidth (the width of the range 

of point data that can be used for a given set of analysis); however, the automatic method 

for finding the bandwidth was the preferred choice after Charlton and Fotheringham‟s 

(2005) rationale that it gives the best more meaningful predictions. 

6.6 The Development of Multivariate Statistics Model 

Multivariate statistics are a collection of procedures for use in analysing, exploring, 

examining or manipulating two or more independent variables at a time. The multivariate 

statistics approach was chosen because pipeline third-party interference is characterized by 

many correlated variables interacting with the pipeline‟s intrinsic properties. Therefore, the 

methodology employed here consists of the application of three techniques, namely, the 

Principal Component Analysis (PCA), the Generalised Linear Model (GLMs) and the 

Logistic Regression (LR) analyses, in order to develop a statistical base from which to 

predict and estimate the likelihood of third-party interference at vulnerable pipeline 

segments.   

6.6.1 Factor Analysis: Principal Component Analysis  

The Factor Analysis (FA) method is a statistical approach that analyses the structure and 

correlations among a given set of variables to identify various dimensions of the structure 

of the body of data and to determine how each variable is explained by each dimension. 

The objective of FA in this thesis is to reduce the number of independent continuous 

variables by summarizing the important information contained in a set of variables by a 

smaller number of factors. This technique allows for the grouping of the variables into a 

smaller set of underlying factors. The overall aim is to identify the significant information 

in the data: (i) to find out the statistical variance of each variable, which is the measure of 

the variability of the variables across dataset; and (ii) to identify if these variables can be 

grouped and decreased into a smaller number. 
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The dataset considered for the thesis, for each of the 151 spatial units described in Section 

6.4, consists of twenty-five independent variables collected between 1999 and 2004. 

However, the use of large numbers of variables make examining the patterns of 

relationships among these variables difficult; this is in addition to the fact that some 

variables are likely to repeat essentially the same information indirectly. The FA method of 

Principal Components Analysis (PCA) was used to solve these problems by simplifying 

and reducing the dimensionality of the set of multivariate data, and to produce a smaller 

number of significant variables. This procedure ensures that the selected principal components 

(factors) accounted for the larger percentage of the total variance. However, all of the 

variables that are pipeline related and are intrinsic were excluded from the PCA analysis. 

These variables are: 

 Total length of pipeline 

 Average pipeline external status (buried or aboveground) 

 Average pipeline diameter 

 Average age of pipeline  

 Presence of local oil and gas facilities  

 Percentage of oilfield and wells 

 
The ten types of derived land use characteristics of the study area, based on the 

classification system of ILLC model, were also excluded from the PCA because they were 

considered integral part of the objective of the study, and especially because relevant 

research conducted for TPI have always acknowledged their influence. The thesis primarily 

concerns pipeline TPI, and based on a review of the literature, the following variables were 

also omitted from the reduction and simplifying process. This is because they are 

considered important and a major significant variable to the occurrence of TPI, especially 

as they pertain to accessibility: (a) total road length per each areal unit; (b) total 

river/stream lengths; and (c) population density. The geological types, ethnicity, and 

geopolitical locations of the study area were also excluded due to effect of spatial 

autocorrelation, namely: geological type; ethnicity; and geopolitical location.  

 

The general characteristics of the excluded variable are perceived significant to the 

occurrence of TPI and because they do not exhibit similar associations or measure similar 

theme. However, the following remaining eleven continuous variables were subjected to 
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the PCA analysis, mainly because they are assumed be correlated using the SPSS PCA 

procedure:  

 Average daily household income  

 Percentage literacy 

 Capital expenditure (revenue allocation by government) 

 Percentage of household with electricity 

 Percentage of household with pipe borne water 

 Life Expectancy Index (LEI) 

 Gross Domestic Product (GDP) 

 Human Development Index (HDI) 

 Gender-related Development Index (GDI) 

 Gender Empowerment Measure (GEM) 

 Human Poverty Index (HPI), for developing countries. 

 

6.6.2 Theoretical Considerations of Generalised Linear Model 

The general and conventional linear regression model is not adequate to model or describe 

discrete and non-negative variables that are typical of sporadic events such as pipeline 

failures, particularly TPI. This is because such records generate count data, and failure 

frequency inventories that are always either zero or a positive integer. Zeros populate the 

distribution of such data because one cannot count or even recognise a negative number 

of failures. In addition, when the number of failure events counted is low, the frequency 

distribution of failures is likely to be a highly non-normal distribution, and statistically 

right-skewed, with a majority of observations near zero or otherwise. This type of 

distribution follows a Poisson distribution. 

 

A Poisson distribution is the foundation of most statistical regression models. One of the 

objectives of this thesis is to use Poisson GLMs distributions to establish an explicit 

relationship between the various factors influencing TPI (land use type, socioeconomic, 

socio-political parameters, etc). The general framework for the Poisson distribution and 

GLMs are the underlying assumptions presented in the following sections.  

 

The GLMs procedure is an extension of the linear regression model, where a dependent 

variable Y is linearly associated with a series of independent variables X (Agresti, 1990). 

The dependent variable can be non-normal, continuous or categorical. The GLMs is 

specified as: 
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Y= xx p  ...110

+ ε (Equation 6.9) 
 

 
Equation 6.9 shows the estimated regression coefficients as β1, β2 ... βp and the first part of 

the right-hand side of the equation ( xx p  ...110
) specifies the expected value of 

y given x1...xj. This is called the 'mean' part of the equation and contains a linear 

combination of x variables. The ε in equation 6.9 is the error variability that cannot be 

accounted for by the dependent variables. Therefore: 

 

                           (Equation 6.10) 

   
 
Where Y is the dependent variable, an occurrence of TPI; and X are independent 

variables, for example, pipeline segment, population density, land use type, etc. In equation 

6.10, the β is the unknown parameters; and ε is the error term, and the expected value of Y 

can be calculated by using equation 6-11:  

 
                           (Equation 6.11) 

 
Therefore, µ, in equation 6.11, is the expected value of Y. For example, it is possible to 

estimate and model (i.e. predict) an occurrence of pipeline TPI as a function of a 

combination of land use types, pipeline geometry, failures count data, socio-economic, 

socio-political and pipeline variables. However, in the GLMs, the relationship between 

E(Y) and µ is defined by a non-linear link function called g(µ), which could be alternatively 

defined as either Poisson, Normal, Gamma, Inverse Normal, Binomial, or multinomial 

distributions. Thus, we introduce the non-linear link function into equation 6.11, and we 

have the expected value of Y as: 

 

                           (Equation 6.12) 

 

The link function for Generalised Linear Poisson Regression as specified from equation 6.12 

could be written as: 

                           (Equation 6.13) 

 

The values of the parameters, from β0 to βj are obtained using Maximum Likelihood 

Estimation (MLE) procedures. The MLE determine maximize the probability the 
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parameters of the sample data, and usefull for estimating good statistical properties and 

considered more to different types of data (Agresti, 1990). The Generalised Linear Poisson 

Regression (Poisson GLMs) requires that the ratio of the deviance to degrees of freedom be 

approximately 1 to avoid biased coefficient estimates. If the model‟s variance is greater 

than the mean, the model is considered overdispersed, and if the variance is less than the 

mean, the model is underdispersed. In an overdispersed model, Negative Binomial Regression 

models can be used (Agresti, 1990). 
 

6.6.3 Application of the GLMs to the pipeline data 

The selected study area consists of 16 political wards that were disaggregated, divided into 

151 units (Figure 6-3). Section 6.4 addressed the issue of dividing the study area into 

useable spatial units for the analyses. In order to evaluate and test the variables that are 

considered to influence the occurrence of pipeline TPI and if and how they contribute  as 

prediction parameters, the GLMs model (using the log link function), was developed using 

the SPPS GENLIN procedure. The exponential distributions family, the Poisson GLMs 

distribution was then used as a first step to fit the model.  

 

The Poisson distribution describes the number of events that will occur over a certain time 

interval, and will approximate a binomial distribution when the binomial parameter p is 

small. If an event occurs randomly and within a unit time interval, on the average, there 

will be  occurrences. Hence, the number of occurrences m in time t will be given as: 

 

tm   (Equation 6.14) 

 

Assuming that the numbers of occurrences in different time intervals is independent, we 

could use the assumption that the probability of observing r events in time t will be given 

as P(r,t). In a considerable time interval t, of such duration that it may contain one 

random event but the probability of it containing more than one event is negligible. Thus 

the probability of one event in this interval is ttP  ),1(  and conversely, the 

probability of no events in this interval is ttP  1),0( . Assuming independence of 

occurrences, the formula for the Poisson distribution could be given as: 
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The application of the Poisson GLMs to the available data results in the value of the 

deviance‟s ratio to its degrees of freedom was greater than 1, and this suggests some 

overdispersion in the model. Thus, the overdispersed Poisson model was fitted and 

redefined using a Negative Binomial distribution for the dependable variable. Table 6-4 

shows the twenty-three variables used for the development of the GLMs model. 

6.6.4 Logistic Regression Analysis  

The methodology for employing the Generalised Linear Poisson Regression (Poisson 

GLMs) for predicting the numbers of occurrences of TPI has been described previously. 

However, the problem is that pipeline operators are more specifically interested in the risk 

and the likelihood of TPI in segments of their pipelines, or in a local region, than the 

numeric numbers of TPI. The knowledge that a segment will experience or not experience 

TPI is invaluable. Therefore, a model for the prediction, in addition to predicting the 

numbers of occurrence, to determine this potential of risk should be robust, and without 

any misspecification. This robustness can be achieved with the aid of LR. 

Table 6-4: The list of variables used in the multivariate statistical analysis. 

Short Name Description 

Numb Numbers of Pipeline Third-party Interference 

PcBW Percentage of Household with Pipe Borne Water 

PcLt Percentage Literacy 

HDI Log of Human Poverty Index for developing countries (HPI-1) 

OilF Area of Oilfields/Wells 

PiLe Total Length of Pipelines 

RvLe Total Length of Rivers and Major Streams 

RdLe Total Road Length 

PopD Population Density 

Age Average Pipeline Age 

PDia Pipe Diameter 

PiSt Pipeline Status(aboveground or buried) 

Geol Geology Classification 

wb % LandUse: Water Bodies 

esd % LandUse:Evergreen semidecidous forest 

mvc % LandUse:Mosaic vegetation / cropland 

tsg % LandUse:Thicket, Secondary Growth 

mbw % LandUse:Marsh brakish water 

cgl % LandUse:Closed grassland 

glf % LandUse:Mosaic grassland/forest or shrubland 

blf % LandUse:Broadleavedforest 

sbl % LandUse:Shrubland/grassland 

mfc % LandUse:Mosaic forest / cropland 
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In statistics, LR is a predictive analysis method, involving the prediction of a dichotomous 

dependent variable (independent variables can also be continuous or dichotomous). 

Logistic regression is similar to Ordinary Least Squares (OLS) regression, except that OLS 

is unsuitable for use with a dichotomous variable as the dependent variable. Logistic 

Regression, however, can predict a discrete outcome, for example, a pipeline failure or the 

possibility of pipeline failure for a given series of regions within a pipeline network, from a 

dataset that may be continuous, discrete, or dichotomous. Although, similar to 

discriminant analysis and ordinary regression analysis methods, LR is more flexible. It does 

not fulfil the assumption of normality of the independent variables and it does not have a 

problem in predicting negative probabilities.  

 

Logistic Regression predicts probabilities between 0 and 1, using the odds-ratio () that 

indicates the number of times the probability of one region (with pipeline failures) is larger 

than the probability of the other region (with no pipeline failures). Thus, we could have:  

 

                         
i

i

Y1

Y


   (Equation 6.16) 

 

In equation 6.16, Yi = P(pipeline TPI), and is the probability that a region i will experience a 

pipeline third-party interference, and 1-Yi = P(no pipeline TPI), and indicates the probability 

that a region i is unlikely to experience a pipeline third-party interference over a given 

period of time. For example, suppose region i has experienced pipeline TPI, such that 

P(pipeline TPI) = 0.8 and P(no pipeline TPI) = 0.2. Therefore, the calculations are that, it is 

four times more likely for region i to experience TPI than not to experience one. The odds 

ratio,  lies between 0 and infinity. This result from equation 6.16 is generally restricted, 

and therefore a logit Li, a natural logarithm of the odds ratios is used to scale the dependent 

variable with an unlimited range. Thus: 
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In LR, based on equation 6.17, the logarithm function converts the parameters results of 

equation 6.16 into intervals of real numbers by a linear combination of the independent 

variables, and is given as: 
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ppi xxL   ...110

 
(Equation 6.18) 

 
The ln symbol in equation 6.17 refers to a natural logarithm and 

110 x   in equation 

6.18 is the general equation of the regression line. Therefore, P can be theoretically 

calculated, by the expected probability that Y = 1 for a given value of X. Thus: 
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The LR approach, described so far, was chosen because it does not fulfill any assumptions 

of normality, linearity, and homogeneity of variance for the independent variables. 

Therefore, with the available data, the thesis evaluated the probability that a region (spatial 

unit) will experience pipeline TPI or will not. TPI was used as a binary outcome variable, 

and the odds ratio of TPI was estimated. The SPSS version 17.0 was used to conduct the 

LR analysis, in order to produce a mathematical combination of the variables that best 

predicts the probable occurrence of TPI.  The SPSS direct logistic regression method was 

used to construct the model, and the forward stepwise procedure was used to check for 

agreement. This evaluates the quality and accuracy of our model. The SPSS estimates 

coefficients using the MLE method. The model reports coefficients that express the effect 

of changing one of the factors on the probability of the outcome, analogous to a linear 

regression model (y = a + bx) where changing b influences y.  

 

The model‟s initial logistic regression output were in logodds, but in order to model the 

actual probability of a region experiencing TPI, they were converted into odds, by 

exponentiating (elogodds = odds). Thus, determining the probability of occurrence is given as 

probability = odds/ (1+odds). Finally, the probability of occurrence was subtracted from 1 

in order to obtain the probability of TPI occurrence (probability of TPI occurrence = 1 – 

probability of occurrence). The resulting model from the logistic regression analysis was 

redefined as data and was then exported into ArcGIS raster calculator to develop a 

vulnerability and probability graphic map. 

6.7 Summary 

This chapter have discussed the various methodologies and applications adopted for this 

thesis. The chapter explored and discussed the methods considered the most appropriate, 

as well as the reliability. The chapter describe three applications of GIS statistical analysis 
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for hot spot identification; two GIS-based GLMs, the LR analysis and the Poisson GLMs. 

Another important aspect of the thesis was also presented in this chapter, which is the 

appropriate disaggregation of the study area into several geographical units in order to 

meet the required level of data. The next chapter, Chapter 7 utilised the methodologies 

presented in this chapter for the subsequent analysis of the in the thesis. 
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7 GETIS-ORD GI*AND GEOGRAPHICALLY 
WEIGHTED REGRESSION (GWR) STATISTICS 

7.1 Introduction 

In order to be able to manage the threat of pipeline third-party interference (TPI) and 

mitigate against it, a detailed knowledge of the occurrence patterns (particularly of 

intentional interference) is essential. This thesis, therefore, seeks to address these 

questions, and this chapter, in particular, presents and discusses the results of the analysis 

of the hotspot and pattern variations for the study area selected. The analyses were 

examined using the Getis-Ord Gi* (d) statistic and geographically weighted regression 

(GWR) described in section 6.5.2 and 6.5.3 respectively. 

7.2 Result of the Spatial Neighbourhood Weights Statistics 

This thesis used the network spatial weights matrix in order to limit the edge problem 

commonly associated with linear clustering (Section 6.5.1), particularly to determine 

appropriate and realistic spatial relationship among incidents, taking into consideration the 

linear nature of the pipeline  (Steenberghen et al., 2004). The procedure that was employed 

created a binary spatial weights matrix file (swm) that defines the relationships among 

pipeline incidents, and the pipeline network itself. This procedure, according to Wong and 

Lee (2005), improves performance, optimizes the data processing, and reduces unnecessary 

calculations. Table 7-1 shows the summarised output of the spatial weights matrix file, 

following the example procedure described in Section 6.5.1; and Section 6.5.1.  

 

Table 7-1: Summary output of spatial weights matrix from ArgGIS spatial modelling module. 

 Number of Features: 266  

 Percentage of Spatial Connectivity:  3.01 

 Average Number of Neighbours:  8. 

 Minimum Number of Neighbours:  8    

 Maximum Number of Neighbours:  9    

 
It was found that there was no significant change or difference between the results of the 

analyses carried out with or without the network spatial weights matrix. The results of hot 

segment analysis using the Getis-Ord Gi* and GWR statistics are not significantly different 

from the one using the binary spatial weights matrix file created. This result is surprising as 

it does not support the considered importance of the spatial attributes in the analysis of the 

pipeline incidents. This is because the understanding of the relationships and connectivity 
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between pipeline segments is important in planning and in network spatial analysis. Wong 

and Lee (2005) concluded that the “connectivity of links is the most fundamental attributes of a 

network”, because good spatial analysis relies on this phenomenon. 

 

Figure 7-1: Map showing the pipeline network and the pipeline incidents in the study area. 

 

The importance of network spatial weights matrix for analysis cannot be overemphasised, for 

example, in Figure 7-1, the pipeline segment '3' connects to the overall network, the 

clusters of pipeline segments in the west, and in the north; while pipeline segment '4', 

connects to the overall network, the clusters of pipeline segments in the east and in the 

north (Wong and Lee, 2005). If any of these segments is removed, the network will be 

divided into two or three separate systems; this analysis can determine the vulnerability of 

the entire network, and how the overall network will be protected. The aim of network 

spatial weights matrix analysis is to assess objectively the connectivity in a network.  

 

It was, therefore, although not convenient, considered fundamental to use the created 

spatial weights matrix file in order to define the relationships among pipeline incidents, and 

fulfil the normal requirement for spatial pipeline network analysis. One of the most 

significant findings to emerge from the development of the network spatial weights matrix is 

that fewer links in a pipeline network make accessibility to a pipeline segment an easier 

3 4 
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task (Wong and Lee, 2005). An implication of this finding is that both the number of links 

and the degree of robust connectivity should be taken into account when planning a 

pipeline network in a region. In addition, prior to the spatial analysis of network data, the 

accurate visual and spatial connection of nodes and links (e.g. accurate snapping of vertices 

and nodes) is crucial to a successful implementation. However, the spatial data in this 

thesis were rather difficult to use, because they lack robust connectivity, therefore, the 

entire pipeline network was re-examined and carefully redrawn. 

7.3 The Getis-Ord Gi* (d) Statistic 

The Getis-Ord Gi* (d) statistic determines hotspots by relatively calculating the statistical 

significance of each feature in a dataset, by identifying whether a feature is of a high or a 

low value, relative to the value of neighbouring features. For example, a pipeline segment 

with high numbers of TPI is only recognised as a hotspot if it has high numbers of 

incidents and is surrounded by other incidents with high values. The results of this thesis, 

as discussed in this chapter, show that Getis-Ord Gi* (d) statistic successfully answers such 

questions as, “where is the most vulnerable segment of a pipeline?” using various proximity 

distances as factors. 

7.3.1 Villages as the variable for hot/cold spot analysis 

Figure 7-2 shows the output map of the Getis-Ord Gi* (d) ArcGIS analysis results for 

hotspot and cold spot occurrences of TPI using the shortest distance to the nearest village from 

an incident as the variable. The red segments shown in Figure 7-2 indicate statistically 

significant hotspots while the dark blue segments shows statistically significant cold-spots, 

both at 95 per cent confidence level. The measurement determining the statistically 

significance at the confidence level is the Gi*Z-score, measured in standard deviations, it 

indicates the direction of deviation from a distribution's mean. In other words, the large 

negative value of the Gi*Z-score (Section 6.5.2, equation 6.2) indicates that a pipeline 

incident (represented as a point feature), is surrounded by neighbours with dissimilar 

values.  A large positive value indicates that surrounding values are similar. The larger value 

of the Getis-Ord Gi* (d) statistic means that the shorter distances from villages to pipeline 

incidents are found together (hot spots), and a small value of the Getis-Ord Gi* (d) 

statistic  means longer distances away from pipeline incidents are found together (cold spots). 
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Figure 7-2: Getis-Ord Gi* (d) statistic output from ArcGIS using the shortest distance to the 
nearest village from an incident as the variable 

 

After the data processing for the Getis-Ord Gi* (d) generated output of the Gi*Z-score 

map, an Inverse Distance Weighted (IDW) surface map was created. According to ESRI 

(2009), “IDW is a method of interpolation that estimates cell values by averaging the values of sample 

data points in the neighbourhood of each processing cell”. The objective is to provide a visual 

understanding of the influence of the selected variable. The ArcGIS output map in Figure 

7-3 shows the surface map that was created. The map indicates that pipelines in the 

western region of the study area (Warri North and Warri South-West) are at highest risk 

from TPI. The results from the Getis-Ord Gi* (d) statistic analysis is similar to variety of 

ways that hotspot have been measured, for example, the Kernel Density Estimators 

(KDE) method, a non-parametric density estimators (Silverman, 1998). However, the 

Getis-Ord Gi* (d) statistic is a more practical way and specific in identifying the underlying 

characteristic of the variable that drives the occurrence of events. 

 

This result is quite revealing, the hot segments produced is perceived to be because the 

pipelines that lie in close proximity to shoreline villages are more vulnerable, possibly due 

to the additional effect of fishing boat and ship anchors interfering with the pipelines. It is 

apparent from the results that TPI at shorelines are hotspots, and this is especially so at 

Madagho in Warri Southwest local government of the study area (Figure 7-3).  
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Figure 7-3: IDW surface output for hot and spot analysis using Getis-Ord Gi* (d) statistic 
GiZscore using the shortest distance to the nearest village from an incident as a variable. 

 
These findings further support the view that local population density plays a significant 

role in determining and understanding the level occurrence of pipeline TPI. This is evident 

in Table 7-3, where, Warri North and Warri South-West account for the lowest share of 

the study area‟s population density, but with highest occurrence of TPI, compared to 

LGAs with high population density (e.g. Uvwie) with very low hotspots in the study area. 

Therefore, these findings do not support the assumption that high population density 

regions tend to have higher hotspots experience of pipeline TPI, as reported in most 

studies (e.g. Kash et al.(2004), Bilo and Kinsman (1998), and Sljivic (1995)). 

 

Table 7-2: Population density of the study area, from the 1991 population census of Nigeria. 

LGA Area (Sq. km) Population Density (Persons/Sq. km) 
Warri North 2187.98 49,635 22.68531 
Warri South-West 1683.32 41,098 24.41485 
Warri South 543.84 239,553 440.4843 
Uvwie 97.69 141,669 1450.189 
Udu 166.22 72,583 436.6683 
Burutu 1907.99 169,077 88.61524 
Ughelli South 783.85 139,349 177.7751 
Bomadi 168.65 74,114 439.4545 
Patani 277.86 34,213 123.1304 
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Another most striking observation to emerge from the analysis for hotspots using villages 

as a variable is that the hotspots are prevalent amongst the Itsekiri ethnic group, one of the 

major linguistic and ethnic groups of the Niger Delta. This ethnic group has been 

struggling for regional democratic and development reforms, especially with reference to 

the absence of educational facilities, health facilities, and infrastructure developments in 

the region. Therefore, this could be a major factor, in the motivation of these peoples to 

sabotage local pipelines (Ikelegbe, 2001, Ifeka, 2000). These findings suggest that, in 

general, accessibility to pipelines should be reduced correspondingly, possibly outside 

normal design standards and specifications. This will avoid the consequences of risk (e.g. 

pipeline explosion and fire) caused by the activities of peoples in the villages, especially 

those that are located at shorelines, and in close proximity to pipelines. Therefore, this risk, 

in a social approach, should to be communicated to both the local communities and the 

pipeline industries. 

 

Figure 7-4: The distribution of villages in the study area, where the results of the hotspot analysis 
shows that hotspots are prevalent amongst the Itsekiri ethic group. 

7.3.2 Distance to the Nearest River as the Variable for the Hotspot  

The results of Getis-Ord Gi* (d) statistical analysis using the shortest distance to the 

nearest stream/river from an incident (pipeline TPI) as the variable is shown in Figure 7-5, 

along with the IDW surface output for both  hot and cold spots being given in Figure 7-6. 

These maps present the spatial clustering of both high and low attribute values in the 
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Warri South-West and Ughelli North regions of the study area. There is a clear trend of the 

consistent occurrence of TPI in Warri South-West. As mentioned in the literature review, 

this area is criss-crossed largely by various rivers and streams, which can support people 

carrying vessels. 

 

 

Figure 7-5: Getis-Ord Gi* (d) statistic output from ArcGIS using the shortest distance to the 
nearest stream/river from an incident as variable 

 

In general, within the study area, there are approximately, 244 km of navigation channels 

for ocean-going ships (International Channels), 750 km of federal waterways and several 

hundred km of major and minor rivers and creeks that could provide various degrees of 

access to oil and gas facilities. Generally, physical obstacles such as shallow depths, sharp 

bends and shifting sandbanks, especially during the dry season, limit navigation, thereby 

preventing effective patrolling of the pipelines and facilities by law enforcement agencies. 

 

It is apparent from the results that very few of the region‟s water bodies appear to exhibit a 

relationship between distances with the occurrence of TPI.  Therefore, it is likely that any 

connection that exists between TPI and the hotspots are because significant proportions 

of these hotspots are in local regions without safe water. For instance, in Warri South-
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West and Ughelli North only 33 per cent of the local population have access to pipe-borne 

water (Siraj, 2002). In some cases, some of the rivers that are the only source of drinking 

water in the region are polluted by hydrocarbons released from oil companies‟ facilities. 

This underdevelopment has led to growing vandalism in response to perceived injustice 

from both the government and the oil companies in the region.  

 

 

Figure 7-6: IDW surface output for hot and cold spots analysis using Getis-Ord Gi* (d) statistic 
GiZscore using the shortest distance to the nearest village from an incident as a variable. 

 

 

There are, however, other possible explanations, especially for the inconsistent ratio of 

river density and the occurrence of TPI in the hotspot segments in Ughelli North, 

compared to other regions. This may be due to the unchecked proliferation of illegal 

structures sited in close proximity to pipelines and waterways, including local trader‟s 

activities along drainage channels in Ughelli North. The relationship between the 

occurrence of TPI and the river network in Ughelli North was unexpected, especially 

considering the fact that the LGA is one of the farthest from the coast and hence the least 

affected by the swampy conditions that are associated with the coast. 

7.3.3 Roads as a Variable for the Hot/Cold Spot Analysis 

The results of Getis-Ord Gi* (d) statistical analysis using the shortest distance to the 

nearest road from a pipeline incident as the variable can be seen in Figure 7-7, and the 
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IDW surface output for both hot and cold spots is shown in Figure 7-8.  The Getis-Ord 

Gi* (d) statistic-generated map shows a very distinct and bias spatial pattern of clustering 

of third-party interference in regions with high road density. This shows that pipeline 

incidents in the study area are clustered in patterns that appear to signify that they are 

affected by road proximity to the pipelines. These spatial patterns of road proximity are 

predominant in the eastern part of the study area, as shown in Figure 7-7; and visual 

inspection of the map indicates that roads are almost non-existent in the most western part 

of the study area where the spatial patterns are clearly considerably lower.  

 

 

Figure 7-7: Getis-Ord Gi* (d) statistic output from ArcGIS using the shortest distance to the 
nearest road from a pipeline incident as a variable. 

 

 

Sapele LGA (Table 7-7 and 7-8) shows significant presence of TPI hotspots. The major 

problem in Sapele LGA is, again, sabotage of pipelines as a form of protest (Agyeman et 

al., 2003), especially against the inadequate and inefficient economic movement of goods 

and services within, to, from and through the region. The existing road network is 

perceived as being inadequate to provide accessibility and connectivity to villages and 

towns in the LGA. However, this perception, as a justified reason (albeit immoral and 

illegal) to vandalise and sabotage pipelines has a number of limitations.  
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Table 7-3: Descriptive statistics summary by LGAs for roads, pipeline length, numbers of pipeline 
accidents, population 2002(estimates). 

LGAs Populations Road length
Road 

Density
%Literacy

pipeline 

length (m)
Electricity %

Nos. 

incidents

Bomadi 98141.77 20533.74 4.78 78.32 18,798 99.00 3

Burutu 199795.82 94558.90 2.11 62.17 122,081 94.10 15

Ethiope East 178704.88 207235.90 0.86 76.89 0.00 41.30 0

Ethiope West 181196.88 371421.70 0.49 76.89 42,169.00 41.30 12

Isoko North 128297.95 336997.20 0.38 74.84 35,531.00 67.60 18

Isoko South 202663.68 382970.40 0.53 74.81 35,070.00 67.60 22

Okpe 115725.81 29461.70 3.93 87.19 85,210.67 30.30 12

Patani 46218.89 104206.95 0.44 67.00 6,898 43.85 0

Sapele 152980.32 20261.00 7.55 88.22 47,123.89 9.40 33

Udu 126832.81 213966.45 0.59 0.00 7,548.13 43.84 0

Ughelli North 168559.34 340010.03 0.50 80.37 88,592 52.00 21

Ughelli South 190082.64 28275.00 6.72 80.37 36,076.00 51.60 14

Uvwie 170410.08 171287.17 0.99 0.00 20,783 65.12 5

Warri North 122197.00 71770.00 1.70 88.54 35,902.18 12.60 4

Warri South 270041.13 201623.14 1.34 88.54 39577.54 13.40 12

Warri South-West 53203.80 49120.76 1.08 44.34 99,598.88 12.45 95  
 

According to Siraj (2002), the creation of new roads in the study area cannot be justified 

only by the conventional reasoning of economic benefit, because the swampy terrain, that 

is the geo-physiographical and hydrological status of the study area, makes road 

construction difficult and relatively expensive. This is in addition to the fact that there are 

low levels of traffic in the study area. For example, the average road density in the study 

area, in terms of km/million population is 14, and the second largest road density by 

LGAs is observed in Ughelli South (Table 7-3), an area that has experienced high clusters 

of incidence as determined from the results of Getis-Ord Gi* (d) statistical analysis.  

 

All of the studies reviewed so far, however, suffer from the fact that the absence of roads 

has considerably constrained economic activities in the region, and made access practically 

impossible for the effective socioeconomic development of the region. However, the 

objective should really be to assist the LGAs socially, so that they can improve their 

conditions and thus can contribute to the total regional development, and as a result 

possibly interfere less with the pipelines. 

 

There are many reasons that emerge from the preliminary analysis of the road 

transportation network in the region, and that possibly could explain the occurrence of 

sabotage to pipelines as a form of protest. The road network in the study area is almost 

non-existent in most parts of the study area, according to Siraj (2002) the entire region 

“lacks consistent pattern in the overall road network, for example, the total road length in Ughelli South is 

428 km whereas in Warri South West it is only 8 km”. Field assessments (site visit to the study 
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area) also indicated that the general road conditions, especially in the hotspots of this 

analysis, are poor, with typically several potholes and damaged surfaces commonly found 

along any given length of road.  

 

 

Figure 7-8: IDW surface output for hot and cold spots analysis using Getis-Ord Gi* (d) statistic 
GiZscore using the shortest distance to the nearest road from a pipeline incident as a variable 

 

In conclusion, the result the Getis-Ord Gi* (d) statistic has gone some way towards 

enhancing the understanding of how the proximity of settlements and villages, roads and 

rivers influence the occurrence of pipeline third-party interference, and in how the Getis-

Ord Gi* (d) statistic can be use to determine hotspot (hot-segments) for use in network 

surveillance activities. In addition, the Getis-Ord Gi* (d) statistic is showed to be suitable 

for investigating the minimum distance at which the proximity of pipelines should be 

positioned away from roads, villages, and rivers. 

7.4 Results and Discussion from Geographically Weighted 
Regression (GWR) Model Analyses 

Fotheringham et al. (2002) and the literature review in Section 6.5.3 discussed in detail the 

use of Geographically Weighted Regression (GWR) as a technique for determining 

exploratory spatial varying relationships between variables, based on the primary principle 
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of the Ordinary Least Squares (OLS) regression. It was decided that it was the best method 

to adopt for this thesis, for investigating the spatial varying relationships between variables. 

In crime analysis, this technique is being widely used, for example, Cahill and Mulligan 

(2007) and Brunsdon and Corcoran (2006) have used the technique to explore local crime 

patterns, by exploring spatial patterns of crime using various independent variables. 

However, while geographical accessibility, using distances from villages, roads, and rivers 

was the only focus addressed by the Getis-Ord Gi* (d) statistic method, the GWR 

incorporates pipeline intrinsic properties (average pipeline age and diameters) as additional 

variables. This approach is to focus, in addition to the hotspots determination by the 

Getis-Ord Gi* (d) method, the local influence and relationships of the pipeline intrinsic 

properties as variables most directly related to TPI. The aim is to broaden the scope of 

important variables beyond only accessibility to pipelines, and to connect the targets 

(pipelines) and the means (various accessibilities) by exploring the relationships. 

 

7.4.1 Descriptive Statistics of the Variables for GWR Statistics  

This section examines the quantitative descriptions of the variables for inclusion in the 

analysis with the GWR statistics. This is the general first step in quantitative data analysis, 

and where the basic characteristics and statistical summaries about the variables are 

examined. The measurement for the descriptive statistics was performed using SPSS 17.0. 

The statistical summary for the variables are presented in the Figure 7-9. Skewness and 

kurtosis describe the shape of the distributions of the variables, and are zero if the 

distribution are perfectly normal; positive value for skewness indicate positive skewness, 

while negative value of kurtosis indicates a distribution that is flatter (Coakes, 2005).  

 
 

Table 7-4: Summary descriptive statistics of each variable (shortest distances from village, rivers, 
and road combined to a pipeline) used in the subsequent analyses for determining hotspot of 

pipeline TPI incidents. 

Variable Name DistVlg DistRiver DistRoad MinDist* DiaPipe AgePipe 

Mean 1598 1885 4336 408 13.8 7.86 

Median 1354 974 940 301 12 8 

Mode 3203 1194 57 57 8 1 

Std. Deviation 995.73 2312.35 5767.68 367.05 5.83 4.69 

Skewness 0.672 2.159 0.998 1.895 0.496 0.076 

Kurtosis 0.249 4.455 -0.815 4.363 -1.053 -0.72 

Minimum distance 69 45 23 23 4 1 

Maximum distance 5923 10765 16902 1990 26 22 

   *MinDist= average shortest distances from village, rivers, and road combined to a pipeline, in metres (m) 
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Table 7-4 illustrates the characteristics and descriptive statistics of the variables used in the 

GWR model, it is apparent that the average age of the pipeline in the study area is eight 

years and that the minimum combined distance from rivers, villages, and roads (MinDist) 

is relatively short compared to the average distances of each of these variables. It is 

interesting to note that the skewed nature of the data in the datasets as shown in Figure 7-9. 

However, GWR analysis requires that variables have multivariate normal distributions; 

hence the data were screened and transformed for normality prior to analysis with GWR. 

 

  

  

Figure 7-9 The graphs showing the histogram quantitative descriptions of the variables (min 
distance, distance from villages, distance from roads, and distance from rivers) for analysis with the 

GWR. It shows that the variables are highly skewed. 
 

7.4.2 Correlation Analysis of Variables for the GWR 

Correlation analysis between the independent variables, using the Pearson correlation 

technique, suggests there are initial relationships and associations in the variables that make 

them suitable as predictors of geographic accessibility to pipelines. In addition, the absence 

of multicollinearity (a situation of high degree of correlation in which two or more variables 

are highly correlated, r >0.9 and above) indicates that the factors are independent and 

hence suitable in the GWR model. The diameter and age of a pipeline are included because 

they are primary intrinsic properties of a pipeline and potential major contributing factors 

for the occurrence of TPI. The result in Table 7-5 shows the expected associations of the 
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independent variables with the selected dependent variable. The application of GWR 

analysis does not like multicollinearity, hence the collinearity diagnostics analysis to show that 

the variables correlate substantially, not to high and not too low. The result in Table 7-5 

shows no violation of the assumption of multicollinearity.  
 

Table 7-5: Correlation coefficients between variables. 

 DistVlg DistRiver DistRoad MinDist DiaPipe AgePipe 

DistVlg 1 .369** -.432** 0.04 .241** 0.114 

DistRiver .369** 1 -.513** -0.106 0.071 0.119 

DistRoad -.432** -.513** 1 .577** -.154* 0.093 

MinDist 0.04 -0.106 .577** 1 .199** .302** 

DiaPipe .241** 0.071 -.154* .199** 1 -.310** 

AgePipe 0.114 0.119 0.093 .302** -.310** 1 

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed). 
 

7.4.3 Geographically Weighted Regression Model 

The dependent and independent variables of the spatial dataset were fitted to the GWR 

procedures using the ArcGIS 9.3 software. The model uses the spatial kernel as a 

geographic weighting tool in models, and a coefficient that controls the size of the kernel. 

The density of the data in the study is clustered, and hence the ADAPTIVE kernel 

method, of the GWR-ArcGIS tool is considered to be appropriate. The ArcGIS tool 

provides various choices for selecting the bandwidth for the spatial data for analysis; 

however, the automatic method for finding the bandwidth was the preferred choice after 

ESRI (2010), as it gives the most accurate predictions. 

 

Table 7-6 outlines the results of the analysis from the GWR-ArcGIS, the results contain 

general diagnostic statistics and a list of coefficient values. The 266 in Table 7-6 is the 

neighbours‟ value (numbers of pipeline TPI as spatial points) used in the estimation of 

each set of coefficients, and it indicates that each kernel used 100% of the dataset. In 

statistical terms, the ResidualSquares value is the sum of the squared residuals; the 

EffectiveNumber is a measure of the complexity of the model; and Sigma is the square root of 

the normalised residual sum of squares. Accordingly, the AICc is the corrected Akaike 

Information Criterion; and R2 and R2Adjusted are indications of the goodness of fit of the 

model. A further definition of these terms, with example, is described by Fotheringham et 

al. (2002). 
 

Table 7-6: Summary of the GWR analysis output. 

Neighbours   266 
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ResidualSquares 61.76666 

EffectiveNumber 11.50265 

Sigma 0.492645 

AICc 388.2947 

R2 0.721837 

R2Adjusted 0.710358 

 
 

The results of the model diagnostics given in Table 7-6, indicate the multiple goodness-of-fit 

measurements for the model, for example, the R2 and R2Adjusted values are 0.72 and 0.71 

respectively. The R2 value is a measurement of the proportion of the variation explained in 

the dependent variable, where values closer to 1 indicate a good predictive performance of 

the model. The R2Adjusted, as the name implies, is simply an adjustment of the R2 value 

based on the numbers of variables. A value of 0.71 in the model indicates that it accounts 

for 71% of the variation in the dependent variable. This is satisfactory and shows the 

model has a strong predictive value. Using the ArcGIS tool, the output of the GWR 

analysis was visualised by mapping the StdResid (the standardised residual) coefficient 

estimates from the GIS attribute table of the output data. The objective is to spatially 

display pipeline segments with unusually high or low residuals and to see if they are 

spatially autocorrelated (Figure 7-10). 

 

Figure 7-10: Map showing the visualisation of the standardised residual (StdResid) coefficients that 
identifies pipeline segments with high or low residuals in the study area, indicating possible 

misspecification. 

 



Chapter VII: Hotspot Spatial Analysis: Getis-Ord GI* and GWR Statistics 

 
136 

 

Figure 7-10 provides the plot of the StdResid values obtained from the GWR analysis, and 

there are clear indications of hotspots of pipeline TPI. The red spots are the segments of 

the pipeline network with very large positive residuals (StdResid > 2) in the study area; they 

occur in Warri South, Warri South West, and Okpe.  This would be expected as the 

pipelines that pass through these regions are relatively close to clusters of rivers, roads and 

villages. These segments of pipelines having locations with high positive residual values 

have diameters from 8inches to 12inches and their average age prior to interference is 

approximately seven years.  

 

These independent results corroborate the findings of the previous analysis that was 

undertaken using the Getis-Ord Gi* (d) statistic to determine hotspots, as both analyses 

showed Warri South West as being the most vulnerable. However, the Okpe LGA, in this 

later analysis showed more hotspots than the two Warri locations combined. The findings 

of the current analysis are consistent with those of Onoiribholo (2005) who noted that the 

Okpe LGA experienced daily incidents of pipeline vandalism. For example, a pipeline 

explosion in 2000 resulted in the death of 250 people in this LGA. A further possible 

explanation for some of these results may be a lack of adequate maintenance and 

replacement of old aboveground pipelines in Okpe LGA. 

7.5 GWR Local Coefficient Estimates of Variables  

While the previous section presented a general collective overview of hotspots within the 

study area with a single combined consideration for all variables, in this section, the GWR 

local coefficient estimates associated with each of the independent variables considered in 

the model are extracted and mapped. The mapping of the GWR local coefficient estimates 

is a graduated surface colour rendering of the feature, which will help to understand the 

visual variation in the variables. Figure 7-11 to 7.15 inclusive shows the map patterns for 

the local coefficients from the GWR model analysis. 

 

7.5.1 Spatial Variation of Distance from Villages to Incidents 

The map for the local coefficients of distance from village variable reveals considerably 

varying influence, with a strong central-north direction orientation. The Inverse-distance 

weighted (IDW) contour plots of the GWR output for the local coefficient estimates 

shows a strong influence of villages in the northern part of the study area. The variation 

tends towards Ethiope West LGA from Sapele LGA. An implication of this is the 
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possibility, that in the north, distances from villages to pipelines have a positive 

(statistically) relationship with TPI. There are similarities between the results expressed in 

Figure 7-11 in this thesis and those described by Chokor (2004), that growing restiveness 

in Ethiope West and Sapele has led to various conflicts between local communities and the 

oil companies. This has forced local people to vandalise pipelines, for example, in 1998, an 

oil pipeline explosion in the region killed over 1000 people who were scavenging 

petroleum products. However, more research, particularly a socio-economic investigation 

on the northward trend (towards Ethiope West) of the influence of this variable, needs to 

be undertaken in order to provide critical explanations of the results and to clearly 

understand the phenomenon.  
 

 

 

Figure 7-11: Inverse-distance weighted (IDW) contour plots of the GWR model for spatial 
variation of distance from villages to a pipeline incident (DistVlg). 

 

7.5.2 Spatial Variation of Distance from Rivers to Pipeline Incidents  

The IDW map of the GWR model for local coefficients of distances from rivers and 

streams to locations of pipeline incidents reveals the significant influence of this variable in 

the southeast of the study area.  
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Figure 7-12: Inverse-distance weighted (IDW) contour plots of the GWR model for spatial 
variation of distance from rivers/streams to a pipeline incident (DistRiver). 

 

The results are inconsistent in the expected influence of this variable in the western and 

northwest regions of the study area, where there are large numbers of rivers and streams. 

The reason for this result is not clear but one possible interpretation is that a village in the 

study area with limited numbers of navigable rivers tends to seek other means of accessing 

pipelines. This suggests that, when accessibility by rivers and streams are taken into 

consideration, deprived communities in the west and south of the study area tend to 

interfere less with pipelines than other regions in the study area. 

 

The results also suggest that distances from rivers and streams to pipelines have a positive 

(statistically) relationship with TPI in the southeast of the study area, especially for 

pipelines in the central Ughelli North LGA and Isoko South LGA regions. Interestingly, 

these results are similar to those obtained from the use of the Getis-Ord Gi* (d) statistical 

analysis, made using the shortest distance to the nearest stream/river from an incident 

(pipeline TPI). In general, therefore, it seems that distances from rivers to pipeline 

positively influence the occurrence of pipeline TPI in Ughelli North LGA. Therefore, 

monitoring of activities along the rivers and navigable streams in this LGA could be a 

major factor in preventing or minimising TPI in this region.  
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It is possible, therefore, that activities such as fishing are a major contributing influence, 

especially since fishing is the major occupation of the region. The study area is in the 

floodplain formation of the Niger River, with productive water bodies for fish, and the 

fisheries resources of the Ugelli North LGA can be classified as freshwater and 

marine/brackish water and suitable for aquaculture (Siraj, 2002). These findings also 

corroborate the ideas of Berman et al (1994), who suggested that fishing nets and 

associated apparatus do interfere with pipelines. It seems possible that these could occur 

because the hand-operated gears and drag net usage typifies fishing in the study area. 

There is also the presence of industrial fisheries, characterised by large fishing boats or 

vessels carrying in-board engines and mechanically operated gear, such as trammel and 

purse seine nets, operating in the continental shelf and inshore (Omoweh, 1995, Inoni et 

al., 2006). 

7.5.3 Spatial Variation of Distance from Roads to Pipeline Incidents 

The map for the local coefficients of distance from roads to a pipeline incident reveals that the 

influence of this variable in the model varies widely in the southeast region of the study 

area. 

 

Figure 7-13: Inverse-distance weighted (IDW) contour plots of the GWR model for spatial 
variation of distance from roads to a pipeline incident (DistRoad). 

 
One of the two major regions in the study area with a significant positive relationship with 

the influence of „distance from roads to a pipeline incident‟ is in the southeast region of 
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the study area (Figure 7-13). An important feature of this region in the study area, where the 

influence of the proximity to roads is highest, is the presence of a high-density road 

network. This observation is relatively contrary to the previously discussed influence of 

rivers and stream proximity (Figure 7-12), where a high density of rivers was not seen to be 

positively related to the occurrence of TPI. 
 

These findings cannot be simply extrapolated to all of the study area because high road 

network density is also visible in other parts of the study area. Field studies indicate that 

the majority of these are access roads to the manifold, oilfield, and flare points in the 

pipeline system. Similar to other parts of the study area, many pipeline third-party 

interference incidents are attributed to sabotage. Another possible explanation is the 

observation that industries in this region of the study area are agro-based and oil servicing 

private companies and are well connected by roads, and it is probable therefore, that some 

personnel take advantage of their expertise to simply pilfer oil products.  

7.5.4 Spatial Variation of Pipe Age in the Study Area 

The map of the local coefficients of the pipeline age reveals that the influence varies widely 

in the western part of the study area (Figure 7-14). The average age of a pipeline in this part 

of the study area is 20 years, compared to the eastern and northern parts, which have an 

average age of 8 years. In the study area, many pipelines are over 50 years old, and this has 

raised concerns about their integrity and safety. Hence, it could conceivably be 

hypothesised that older pipeline are more vulnerable to TPI, relative to the newer 

pipelines. A possible explanation may be due to the observation that the older pipelines 

were installed without adequate provisions for future pigging, monitoring and installed 

security, compared to newer pipelines. 

 

There are similarities between the explanation of the results in this study and those 

described by Kuprewicz (2001) in that older pipeline are more prone to damage compared 

to newer ones because they are sometimes manufactured with a smaller Factor of Safety 

(FS) (possibly resulting in reduced wall thickness) and with lower toughness steel. Thus, 

three reasons were further identified by Kuprewicz (2001) as major contributing factors 

for the increase of the likelihood of failure of older pipelines compared with new ones:  

 Operating pressures and stresses in older pipelines increases with age 

 Misleading  reliance on protection devices 

 There is variation with age in pipeline operations 
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The previous research findings into the effect of pipeline age have also raised concern 

about age and the risk of interference. For example, the Berman et al. (1994) suggested 

that: “The rapid growth in the number of firms operating marine pipelines has also caused some concern, 

because many are new entrants who have assumed control of major operators' older and less profitable 

pipelines in hopes of lowering operating costs”. This combination of findings provides some 

support for the possibility that pipelines in the selected study area are not well maintained 

towards the end of their ownership. 

 

Figure 7-14: Inverse-distance weighted (IDW) contour plots of the GWR model for spatial 
variation of pipeline age in the study area. 

 

7.5.5 Spatial Variation of Pipeline Diameter in the Study Area 

The map for the local coefficients of pipeline diameter reveals that the influence of this 

variable in the model varies in the southeast of the study area (Figure 7-15). This result, in 

general, indicates that larger diameter pipelines (about 20 inches or greater) are more 

vulnerable than are the smaller diameter pipelines in the southeast of the study area, and 

they are positively related to the occurrence of third-party interference in southeast of the 

study area, especially, at both Ughelli North and Isoko South LGAs. These two LGAs 

have been reported to experience frequent oil spills, especially in Uvwiamuge, Oleh, Ozere 

and Ekakpamre communities (Atakpo and Ayolabi, 2009).  
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However, without detailed pipeline characteristics, such as pipeline diameter by segments, 

caution must be applied in any associations, as the findings might not be interpretable 

based on the diameter of pipeline alone. It may be the case, therefore, that these variations 

of pipeline diameter with occurrence of TPI in the southeast are based on the possibility 

that saboteurs, common in these LGAs, deliberately target large pipelines on the 

assumption that a larger pipeline presents a greater opportunity for causing damage and 

more product releases than do smaller pipelines. Muhlbauer (2004) suggests a further 

possible motivation for saboteurs to target large diameter pipelines because “they lead to 

more expensive repairs due to higher material cost, greater excavation requirements, and increased repair 

challenges, and the need for larger equipment”. 

 

 

Figure 7-15: Inverse-distance weighted (IDW) contour plots of the GWR model for spatial 
variation of pipeline diameters in the study area. 

 

The results of this thesis, and the explanations offered above contradict Muhlbauer‟s 

(2004) assumption, although specifically for unintentional pipeline interference,  that 

smaller diameter pipelines are more susceptible to interference, because of the strength 

factor. This is because large diameter pipelines have stronger mechanical contact loading 

capacities, and should be structurally more resistive to interference. 
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7.6 Conclusions and Summary 

Geographic Information Systems could help to understand the complex dynamics of how 

proximity to a pipeline affects the probability of third-party interference, and this thesis 

has indicated that this assessment can be performed using the independent variables that 

have been considered for the model. The results of this thesis clearly show that the 

observed patterns of occurrence of pipeline third-party interference are not completely 

spatially random. The thesis also confirms previous findings by other researchers and 

contributes additional evidence that suggests that the proximity of roads, rivers and villages 

to pipelines can determine how to solve resource allocation problems aimed at preventing 

TPI. This thesis has explained the central importance of hotspot analysis for a pipeline 

network in the monitoring of clusters of areas experiencing higher percentage of pipelines 

failures. It can thus be concluded that pipeline hotspots segments should be the focal point 

of a countermeasure implementation strategy of the pipeline industry to prevent future 

pipeline third-party interference. 

 

The GWR made significant improvement on the Getis-Ord Gi* (d) statistic method, first, 

it highlighted the non-spatial variables individually, suggesting non-stationarity in the 

procedures. In addition, it reveals directional hotspots and trend of the spatial distribution 

of the TPI that could be valuable concern of further detail research. The GWR also model 

the spatial relationships, for example, determined how the relationship between TPI and 

distances from rivers is consistent across the study area, and what are the key factors 

contributing to TPI in the overall study area. While, given a set of weighted features, the 

Getis-Ord Gi* (d) statistic (hotspot analysis) can identifies clusters of features with high 

values (hot spots) and clusters of features with low values (cold spots).  

 

The results of the two models indicate that they produce similar results indentifying 

vulnerable segments and hotspots on the pipeline distribution network. However, the 

GWR models provided useful information on the distribution variation of pipeline TPI by 

determining the relationship between the occurrence and individual variables considered in 

the model. One of the more significant findings to emerge from this analysis is that the 

spatial patterns of incidents show similar trends in variation across the study area. 

Therefore, the findings of this study suggest that the application of GIS and spatial 

modelling, using both the Getis-Ord Gi* statistic and GWR techniques, yield an 

understanding of the spatial pattern of pipeline TPI in the study area. 
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In conclusion, the GWR models have shown that Ughelli North and Isoko South are the 

most vulnerable regions of the selected area. This is confirmed by the history of a chain of 

various pipeline incidents because of TPI in the two LGAs. For example, in 2001, the 

Afiesiere River in Ughelli North was heavily polluted when a wellhead was stolen; similarly, 

in 1992, a leakage caused by TPI on the Ogini pipeline destroyed farmlands in Isoko 

North LGA of the study area. Therefore, the destruction of the soil and farmland; the 

pollution of water systems, the disturbance of economic and social activities from oil 

spillage; unemployment in the host communities, could be the major factors 

(socioeconomic and socio-political), if not the only ones, causing intentional pipeline TPI 

in the study area. 
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8 ANALYSIS AND RESULTS OF GENERALISED 
LINEAR MODELS 

8.1 Introduction 

One of the key objectives of this thesis, as outlined in Section 1.3, was to predict and 

examine the likelihood of the future occurrence of TPI in pipeline segments, by modelling 

a combination of land use types, failures count data, socio-economic, socio-political and 

pipeline intrinsic variables. The recognition of these variables and their successful linkage 

to the occurrences of TPI has permitted the use of the Generalised Linear Models (GLMs) 

methodology in developing the model for this thesis. Chapter 6 of the thesis discussed in 

detail the GLMs component (Poisson and Logistic Regression (LR) models) that map out 

the methods that were utilised for the results discussed in this chapter. This indicates the 

probability of occurrence of pipeline TPI, in addition to predicting the probable number 

of interferences over a given period of time. The statistical analyses for these tests were 

conducted using SPSS v.17.0. The instruments used are discussed and detailed descriptive 

statistics of the data are presented in this chapter. 

8.2 Factor Analysis: Principal Component Analysis (PCA) 

One of the requirements for the statistical analysis of a real world dataset is a multivariate 

normal distribution of the variables in the proposed model, especially for inferential 

statistical analysis. This is because the assumption of multivariate normality of a dataset 

significantly improves the precision and accuracy of the results. Therefore, the selected 

continuous variables in this thesis were subjected to Factor Analysis (FA), using the 

Principal Component Analysis (PCA) technique, discussed in Section 6.6.1.  
 

Table 8-1: List and abbreviations of the selected variables used in the thesis 

TPI Occurence of Pipeline Third-party Interference

PcEl Percentage of Household with Electricity

PopD Population Density

PcLt Percentage Literacy

EXHD Returns on Capital Projects by the Government (£)

OilF Area of Oil and Gas Fields/Wells

PipL Total Length of Pipelines

RdL Total Road Length

Age Average Age of Pipeline

HDI Human Development Index (HDI)

GeoP GeoPolitical Location

 

Geol Geological classifications

PiSt Pipeline Status(aboveground or buiried)

PVF Presence of Oil and Gas Facilities

wb %LandUse: Water Bodies

esd %LandUse:Evergreen semidecidous forest

mvc %LandUse:Mosaic vegetation / cropland

tsg %LandUse:Thicket, Secondary Growth

mbw %LandUse:Marsh brakish water

cgl %LandUse:Closed grassland

glf %LandUse:Mosaic grassland/forest or shrubland

blf %LandUse:Broadleavedforest

 
The list of abbreviations for the selected variables used in the analysis is shown in Table 

8-1. In addition, Section 6.6.1 has identified eleven variables as being major contributing 
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factors for consideration for the FA, and how they were subjected to the PCA, using the 

SPSS PCA procedure. The result of the FA showed that seven of the variables subjected to 

the PCA analysis, because they are assumed be correlated, failed to meet the assumption of 

normality. These variables include percentage literacy, returns on capital projects executed, 

total length of pipelines, total river length, total road length, and Gender Empowerment 

Measure (GEM). Therefore, to meet the requirement of normality, each of these variables 

was subjected to statistical data transformation (mathematical modification of the dataset). 

The majority of the variables test normal after various transformations, using rule-of-

thumb procedure suggestions by Coakes (2005). However, due to their importance and 

significance in TPI occurrence, some variables that did not meet the normality test were 

not discarded, especially the pipeline intrinsic properties (Figure-8-1).   

  

  
  

  
  

Figure 8-1: The graphs showing the variables that were not normally distributed. The 
transformation to normality is a requirement for statistical inference analysis. 

 

8.2.1 Output of Factor Analysis with SPSS 

The first step in the application of FA is to evaluate the correlation between the variables. 

The SPSS Output (Table 8-2) shows an abridged Pearson correlation coefficient between 

all the variables, where the patterns of relationships are displayed. The correlation matrix 

procedure shows no corresponding variable having a correlation coefficient greater than 
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0.9. This is because a correlation above 0.9 is considered high, especially in the context of 

this thesis, and indicates the presence of multicollinearity, a situation where two or more 

variables are related or effectively measure the same phenomenon (Field, 2009). 
 

 

Table 8-2: Pearson correlation coefficient between all the variables. 

PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI

PcEl
1.000 -0.802 0.058 -0.401 0.197 -0.192 -0.335 -0.178 0.070 -0.268 0.213

PcBW
-0.802 1.000 -0.305 0.647 -0.348 0.330 0.434 0.336 -0.203 0.411 -0.329

PcLt 0.058 -0.305 1.000 -0.433 0.127 -0.116 -0.099 -0.161 0.054 -0.199 0.058

EXHD -0.401 0.647 -0.433 1.000 -0.792 0.799 0.690 0.777 -0.657 0.827 -0.745

ADHI 0.197 -0.348 0.127 -0.792 1.000 -0.981 -0.866 -0.967 0.895 -0.967 0.919

LEI -0.192 0.330 -0.116 0.799 -0.981 1.000 0.849 0.978 -0.901 0.976 -0.920

GEM -0.335 0.434 -0.099 0.690 -0.866 0.849 1.000 0.847 -0.774 0.923 -0.799

HDI -0.178 0.336 -0.161 0.777 -0.967 0.978 0.847 1.000 -0.942 0.952 -0.884

GDP 0.070 -0.203 0.054 -0.657 0.895 -0.901 -0.774 -0.942 1.000 -0.851 0.851

GDI -0.268 0.411 -0.199 0.827 -0.967 0.976 0.923 0.952 -0.851 1.000 -0.898

HPI 0.213 -0.329 0.058 -0.745 0.919 -0.920 -0.799 -0.884 0.851 -0.898 1.000  

 

Following the Pearson correlation coefficient between all the variables, Table 8-3 presents 

the results obtained from the PCA output for Kaiser-Meyer-Olkin (KMO) and the Bartlett‟s 

Test of Sphericity for the variables considered. The KMO measures the sampling adequacy, 

and the value, in statistics, is normally between 0 and 1. The value of the KMO from this 

analysis is 0.77, which falls into the recommended range of between 0.5 and 0.99 (Field, 

2009). The KMO value indicates that all variables are not correlated or measure the same 

phenomenon; otherwise, the correlation coefficients would be zero. 
 

Table 8-3: SPSS output for KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.77 
Bartlett's Test of Sphericity -Approx. Chi-Square 3193.377 
df* 55 
Sig.** 0.00 

* Degree of freedom; ** Significance, outcome statistically significant (i.e. p <.05) 
 

 

The Bartlett‟s Test of Sphericity results as given in Table 8-3, is the null hypothesis that the 

original correlation matrix is an identity matrix. Therefore, if the result is significant, 

proving otherwise, the dataset is free of multicollinearity. In this analysis, the Bartlett's test is 

significant, less than 0.001 (p < 0.001) (Table 8-3, row 4). Therefore it was concluded that 

multicollinearity is absent in the model, and that the variables are not identical. 

 

The SPSS output statistics in Table 8-4 also show the eigenvalues associated with each linear 

component before extraction, representing the variance explained by a component. In 

statistics, a component is the combination of two or more correlated variables, combined 
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into one factor. The SPSS analysis output in Table 8-4 displays the percentage of variance 

explained by a variable as being the eigenvalue. For example, component (or factor) 1 in Table 

8-4 accounts for 67.184% of total variance in the variables, while the subsequent components 

explains the other variance. For example, as shown in Table 8-4, components 2 and 3 explain 

the 16.107 and 9.311% of the remaining variance respectively.  
 

Table 8-4: SPSS output of Total Variance Explained for the Factor Analysis 

Rotation Sums of 

Squared 

Loadings
a

Total
% of 

Variance

Cumulative 

%
Total

% of 

Variance
Cumulative % Total

1 7.390 67.184 67.184 7.390 67.184 67.184 7.263

2 1.772 16.107 83.291 1.772 16.107 83.291 2.708

3 1.024 9.311 92.602 1.024 9.311 92.602 1.613

4 0.257 2.340 94.942

5 0.180 1.640 96.581

6 0.156 1.422 98.003

7 0.113 1.026 99.029

8 0.072 0.650 99.679

9 0.023 0.213 99.892

10 0.010 0.094 99.986

11 0.002 0.014 100.000

Extraction Sums of Squared Loadings

Component

Initial Eigenvalues

Extraction Method: Principal Component Analysis.  
 
 

The SPSS procedure implemented extracted the three factors having eigenvalues greater than 

1, which are listed in the columns named Extraction Sums of Squared Loadings in Table 8-4. In 

the column labelled Rotation Sums of Squared Loadings, eigenvalues of the factors after rotation (a 

step that allows the identification of distinct factor names or clusters of relationships) are 

displayed, as shown in Table 8-4. The purpose of running the PCA is to sufficiently reduce 

the dimensionality of the data. The SPSS analysis shows that the first three principal 

components accounted for 92.27% of the total variance in the model, the remaining 

components thus being of little significance.  

 

The decision regarding the number of factors to extract from the overall FA is at the 

discretion of the researcher (Field, 2009). However, because there are fewer than 30 

variables under consideration and the output of the total average of the communalities 

after extraction are greater than 0.7, the extraction rule suggested by Kaiser's criterion was 

taken to be acceptable. Therefore, three components are extractable based on Kaiser's rule,  a 

selection rule for acceptable number of factors 'm', to equal the number of eigenvalues 

greater than 1 (Table 8-4). In addition to Kaiser's rule, the scree plot (Figure 8-2), produced 

from SPSS output, was also used to determine the numbers of factors to be extracted. 
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Component four on this plot indicates the point at which the curve began to straighten. 

Therefore, the numbers of components to be extracted for further analysis are taken to be 

three. The corresponding variables of these components were then used, in addition to 

other variables, as dependent variables in the GLMs analysis. 

 

 

Figure 8-2: The scree plot illustrating the 3-factor solution from the result of the FA with SPSS. 

 

The correlation between the original eleven variables and the new components (1, 2, and 3) 

reveals the variables that are highly correlated with the components. Table 8-5 shows 

component 1 is highly correlated (0.982, highly close to 1.00) with GDI and LEI; and 

component 2 is correlated with PcEl (percentage of household with electricity) and PcBw 

(percentage of household with pipe borne water). Similarly, component 3 is correlated with 

PcLt (Percentage of literacy). However, since GDI and LEI are dependent and indirectly 

related to HDI, thus, component 1 was assigned as HDI (Table 8-2). The components that have 

been identified therefore enabled the reduction of the variables dimensionality, and thus 

further multivariate statistical analysis can be performed, as described in the following 

sections, on these three principal components, in addition to land use and other variables 

(Section 6.6.1 explains the reasons why land and other variables are not included in the 

above described FA analysis. 
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Table 8-5: Output of the communalities after extraction and Output of Component Matrix. 

 Component 

 1 2 3 
GDI 0.982   
LEI 0.972   
ADHI -0.972   
HDI 0.966   

HPI -0.922   

GEM 0.901   

GDP -0.888 0.313  

EXHD 0.868   

PcBW 0.494 0.816  

PcEl -0.333 -0.801 -0.419 

PcLt  -0.403 0.875 

Extraction Method: Principal Component Analysis. 
 

8.3 Results of Poisson Generalized Linear Model (GLMs) 
Analysis 

8.3.1 The Poisson Generalized Linear Model (GLMs)  

The methodology for the adoption of the Poisson GLMs analysis for this thesis was 

described in Chapter 6. In this thesis, the GLMs model is used to predict the potential 

numbers of pipeline TPI, especially to understand and examine the relationship of the 

variables influencing TPI. The abridged results of the descriptive statistics information of 

the categorical variables are presented in Tables 8-6. The detailed results output from the 

SPSS GLMs analysis are given in Appendix I. 

Table 8-6: Descriptive statistics information of the categorical variables Categorical 
Variable Information. 

  N Percent 

PDia 

Pipelines Less than 12 Inches 109 72.20% 

Pipelines Greater than 12 Inches 42 27.80% 

Total 151 100.00% 

PiSt 

Buried Pipeline 18 11.90% 

aboveground pipeline 54 35.80% 

No pipeline 79 52.30% 

Total 151 100.00% 

Geol 

Abandoned Beach Ridges 17 11.30% 

Alluvium/Coastal Plains Sands 18 11.90% 

Mangrove Swamps 26 17.20% 

Meander Belt,Back Swamps Fresh Water Swamps 24 15.90% 

Sombreiro Deltaic Plain 66 43.70% 

Total 151 100.00% 
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The OmnibusTest Table from the SPSS output result in Table 8-7 shows the likelihood ratio of 

the model. This is defined as the difference in likelihood values between the designed model 

and the model with the intercept only. A significant likelihood ratio shows that the model‟s 

coefficients are different from zero, hence the null hypothesis can be rejected or that the 

coefficients are not different from zero. 
 

Table 8-7: Omnibus Testa result table from SPSS output 

Likelihood Ratio Chi-Square df Sig.

220.679 25 0

Dependent Variable: Num bers  o f P ipeline  Third-party Interference  

M o del: (Intercept), P Dia, P iS t, Geo l, P cB W, P cLt, HDI, OilF, P iLe, R vLe, R dLe, P o pD, A ge, wb, es d, m vc, ts g, m bw, cgl, glf, blf, s bl  

a. Co m pares  the  fitted m o del agains t the  intercept-o nly m o del. 
 

Table 8-8 illustrates some of the main characteristics of the SPSS GLMs procedures, 

indicating the Deviance, Scaled deviance, Pearson chi-square, Scaled Pearson chi-square, Log-likelihood, 

Akaike's information criterion (AIC), Finite sample corrected AIC (AICC), Bayesian information 

criterion (BIC), and Consistent AIC (CAIC). The table indicates the Goodness of Fit statistics, and 

enables a comparison of various alternatives GLMs using their associated deviances and 

the goodness of fit information given in Table 8-8. 

 

Table 8-8: Goodness of Fitb for the Negative Binomial  

  Value df Value/df 
Deviance 87.018 125 0.696 

Scaled Deviance 87.018 125   
Pearson Chi-Square 117.338 125 0.939 
Scaled Pearson Chi-Square 117.338 125   
Log Likelihooda -159.457     
Akaike's Information Criterion (AIC) 370.914     

Finite Sample Corrected AIC (AICC) 382.237     

Bayesian Information Criterion (BIC) 449.364     
Consistent AIC (CAIC) 475.364     

Dependent Variable: Occurrence of Pipeline TPI 

Model: (Intercept), PDia, PiSt, Geol, PcBW, PcLt, HDI, OilF, PiLe, RvLe, RdLe, PopD, Age, wb, esd, mvc, tsg, 
mbw, cgl, glf, blf, sbl 

a. The full log likelihood function is displayed and used in computing information criteria. 

b. Information criteria are in small-is-better form. 

 
The likelihood value in Table 8-8 indicates how the model reflects the observed patterns 

from the original data used in the model. A larger likelihood value shows a better model 

fit, and it can be concluded that the coefficients in the model are accepted, and that the 

model thus rejects the null hypothesis that the coefficients are not different from 0. A 

carefully developed parametric predictive model should be expected to fit any given 

empirical observations. Therefore, in a fitted model for generalized linear model (GLMs), 
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the ratio of the deviance value to its degrees of freedom should be approximately 1.  The 

preliminary SPSS Goodness of Fit result shows that the Pearson chi-square/df ratio is 

greater than 1 for the Poisson GLMs (output shown in Appendix I). Since this ratio is 

greater than 1, reassessment of the model is required; because the model is described as 

being overdispersed (i.e. the variance is greater than the mean). In this situation, a Negative 

Binomial model (Section 6.6.3) was considered to fit the model. The result of the negative 

binomial GLMs analysis (Table 8-8) shows for the model a lower chi square to df ratio of less 

than 1, and implies a better fitting of the model. The results of the Poisson regression 

analysis, as given in Appendix I, without consideration for overdispersion, showed that 

thirteen of the variables are significant at the p < 0.05 level, as compared with only six 

variables after correcting for overdispersion. 

8.3.2 Parameter Output Estimates of the Generalized Linear Model  

After running the SPSS program for the Negative Binomial model, the other parameters in 

Table 8-9 were examined and interpreted. The Wald Chi-Square values, given in Table 8-9, 

are the test statistics for the individual regression coefficients in the model, and it is the 

mathematical squared ratio of the coefficient B to the Standard Error of each independent 

variable (Field, 2009). 

 
 

The Wald Chi-Square is similar to Chi-Square distribution in the general regression analysis, 

of a two-sided alternative hypothesis, that B(regression coefficients) is not equal to zero.  

The column label df, in Table 8-9 indicates the degrees of freedom for each of the 

independent variables in the model, and that are all found to be 1 for each of the variables 

in the model. Similarly, the Sig. (significance) is the p-values of the coefficients or the 

probability that, the null hypothesis of an independent variable‟s coefficient is zero, 

derived using the Wald Chi-Square test statistics. Pipeline status (PiSt), Oilfield (OilF), 

pipeline length (PiLe), water bodies (wb), and Mosaic vegetation/cropland land use 

variables are significant at p-value less than 0.05 (highlighted in Table 8-9). Therefore, the 

best-fit regression equation for the model is given by Equation 8.1, where the parameter 

definitions are the same as in the description of the data above. The following section 

presents the results for each significant variable in the model. 

 

                            
(Equation 8.1) 

 
 

 

mvcwbPiLe

OilFPiSt

127.0739.0078.0

331.0331.2log 0



 
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Table 8-9: The results output for the parameter estimates of the Generalized Linear Model 
(GLMs) using the SPSS procedure. 

Lower Upper
Wald Chi-

Square
df Sig. Lower Upper

(Intercept) -1.132 2.440 -5.914 3.651 0.215 1 0.643 0.322 0.003 38.496

[PDia=1] 0.051 0.610 -1.145 1.246 0.007 1 0.934 1.052 0.318 3.476

[PDia=2] 0
a . . . . . . 1.000 . .

[PiSt=1] 2.682 0.650 1.409 3.955 17.052 1 0.000 14.613 4.092 52.188

[PiSt=2] 2.331 0.691 0.977 3.686 11.377 1 0.001 10.292 2.656 39.891

[PiSt=3] 0
a . . . . . . 1.000 . .

[Geol=1] -0.710 0.946 -2.564 1.144 0.563 1 0.453 0.492 0.077 3.139

[Geol=2] 0.396 0.660 -0.897 1.689 0.360 1 0.548 1.486 0.408 5.413

[Geol=3] 0.099 0.684 -1.242 1.440 0.021 1 0.885 1.104 0.289 4.220

[Geol=4] 0.114 0.557 -0.977 1.205 0.042 1 0.838 1.121 0.376 3.337

[Geol=5] 0
a . . . . . . 1.000 . .

PcBW -0.009 0.015 -0.038 0.019 0.401 1 0.527 0.991 0.963 1.019

PcLt -0.013 0.015 -0.043 0.017 0.733 1 0.392 0.987 0.958 1.017

HDI -0.148 0.227 -0.593 0.296 0.428 1 0.513 0.862 0.552 1.345

OilF 0.331 0.158 0.021 0.641 4.380 1 0.036 1.392 1.021 1.898

PiLe 0.078 0.031 0.018 0.139 6.487 1 0.011 1.081 1.018 1.149

RvLe -0.006 0.019 -0.042 0.031 0.093 1 0.760 0.994 0.959 1.031

RdLe 0.159 0.125 -0.085 0.403 1.628 1 0.202 1.172 0.918 1.496

PopD -0.002 0.002 -0.006 0.003 0.490 1 0.484 0.998 0.994 1.003

Age -0.002 0.041 -0.083 0.079 0.002 1 0.962 0.998 0.921 1.082

wb 0.739 0.377 0.000 1.479 3.837 1 0.050 2.095 1.000 4.389

esd 0.040 0.025 -0.009 0.090 2.513 1 0.113 1.041 0.991 1.094

mvc -0.127 0.052 -0.228 -0.026 6.050 1 0.014 0.881 0.796 0.975

tsg -0.030 0.027 -0.083 0.022 1.278 1 0.258 0.970 0.920 1.023

mbw -0.042 0.038 -0.118 0.033 1.208 1 0.272 0.959 0.889 1.034

cgl -0.056 0.061 -0.175 0.063 0.844 1 0.358 0.946 0.839 1.065

glf -0.023 0.030 -0.081 0.035 0.597 1 0.440 0.977 0.922 1.036

blf -0.036 0.037 -0.109 0.036 0.955 1 0.329 0.964 0.897 1.037

sbl -0.055 0.054 -0.161 0.052 1.015 1 0.314 0.947 0.851 1.053

(Scale) 1
b

(Negative 

binomial)
1.000

Dependent Variable: Occurrence  o f P ipe line  Third-party Interference

M o del: (Intercept), P Dia, P iS t, Geo l, P cB W, P cLt, HDI, OilF, P iLe , R vLe , R dLe , P o pD, A ge , wb, es d, m vc , ts g, m bw, cgl, glf, blf, s bl

a. S e t to  zero  becaus e  this  param eter is  redundant.

b. Fixed at the  dis played value .

Variables B Std. Error

95% Wald Confidence 

Interval
Hypothesis Test

Exp(B)

95% Wald Confidence 

Interval for Exp(B)

 

8.3.3 Pipeline Diameter (PDia) 

Although pipeline diameter is not statistically significant in the model, it is important and 

meaningful to interpret the result, because it is a major pipeline intrinsic properties. From 

the parameter estimates in Table 8-9, the odds ratio or relative risk for pipeline diameters 

can be obtained by using the B value of 0.051, which is the estimate for pipelines less than 

12 inches. Thus, the ratio of possible TPI for those pipelines less than 12 inches relative to 

those greater than 12 inches  is exp(0.051) = 1.052.  Exp(B) in Table 8-9 is the odds ratio, 

and represents “the change in odds of being in one of the categories of outcome when the value of an 

independent variable increases by one unit”, according to Tabachnick and Fidell (2007). The 
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possibility of the occurrence of pipeline interference for those pipelines less than 12 inches 

in the study area is 1.05 times higher than that of those pipelines greater than 12inches; this 

resulting difference is considered to be insignificant. However, the results are consistent 

with those of other studies (e.g. Jo and Ahn (2005)) and suggest that failure rates varies 

with pipeline diameter, and pipelines less than 12inhes are more vulnerable. Another 

possible explanation for this is that crude-oil pipelines in the study area are operated by 

larger pipeline diameter, and recorded TPI in the study area are mostly on oil-products 

pipelines of diameter between 8 and 12 inches. 
  

8.3.4 Pipeline status (PiSt), buried or aboveground 

This is the estimated regression coefficient used when comparing whether a pipeline is 

buried (PiSt=1), aboveground (PiSt=2) or no pipeline (PiSt=3) in a region, given that the 

other variables are held constant in the model. The estimated regression coefficient, for 

example, that a pipeline is buried is 2.682 from the parameter estimates (Table 8-9), thus, 

we can obtain the odds ratio or relative risk about pipeline status using the B value of 

2.682, the ratio of possible damage for buried pipelines relative to aboveground pipelines  

is exp (2.682) = 14.613.  The possibility of pipeline interference for exposed pipelines is 

thus about 146% more than that of those of buried pipelines.  

 

The aboveground pipelines experience more TPI than buried pipelines. This finding 

regarding pipeline status in this model corroborates the findings of a great deal of the 

previous work in this field, on the influence of buried pipelines on the occurrence of TPI. 

However, the high observed difference (146%) between aboveground and buried pipelines 

in this result was expected and confirm that the influence of other factors have 

significantly contributed to the high probability of TPI on aboveground pipelines, for 

example, intentional TPI (e.g. sabotage and vandalism of aboveground pipelines). 

8.3.5 The presence or absence of oilfields (OilF) 

The presence of oil (and gas) fields in a region is a significant variable in the model 

(p<0.05). If all other variables are held constant, the greater the area of oilfields (in square 

kilometres) in a region, then the higher the possibility of pipeline TPI. The presence of a 

large oilfield, especially representing the drilling and rig business in the study 

area, influences the positive results of the thesis 
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Figure 8-3: Map showing how pipeline traverses across the oilfields in the study area. 

 

The odds ratio indicates that, since the Exp(B) is greater than one, this means the 

independent variable increases the log-odds and therefore increases the risk of a possible 

pipeline TPI.  For instance, for OilF in Table 8-9, B = 3.331, and the corresponding odds 

ratio (the exponential function, eb) is 1.392. Therefore, when the area of a region‟s oilfield 

increases by 1 km.sq, the odds or risk of pipeline TPI increases by a factor of 1.4, when 

other variables are held constant.  

 

The study area has 36.2 billion barrels of proven oil reserves from the oilfields, the 11th 

largest in the world (EIA, 2009). Therefore, maximum production from this oilfield 

typically means more pipelines and Figure 8-3 shows that pipelines traverse more clusters 

of oilfields than isolated oilfields. Therefore, the observed increase of pipeline TPI by a 

factor of 1.4 for regions with oilfields could be attributed to increased oil and gas activities. 

Moreover, the area of oilfields are a surrogate for land use, therefore, as economic and 

political attention is drawn to areas with high reserves of oilfield, it follows that such an 

area will inevitably experience a high level of TPI. 



Chapter VIII: Analysis and Results of Generalised Linear Models 

 
156 

 

8.3.6 Pipeline Length (PiLe) 

Pipeline length was significant in the model (p=0.011), and the odds ratio (Exp(B)) is 1.08 

(Table 8-9). The results indicated that the higher the total length of pipelines in a region, 

the higher the likelihood of pipeline TPI. For every extra length of pipeline in a region, the 

odds of experiencing TPI increase by a factor of 1.08, all other factors being equal. This 

argument supports various analyses of general pipeline failures, and the assumption has 

always been that the rate of failure or damage is proportionally related to the length of the 

pipeline. In the model, the pipeline TPI was approximately proportional to the length of 

pipeline in a region. The result is straightforward and logical, and as would be expected. 

8.3.7 Water Bodies (wb) 

Water bodies are significant (p<0.05) and B= 0.739, indicating that the larger this land use 

type the higher the likelihood of pipeline TPI. The corresponding odds ratio, the 

exponential function Exp(B) is 2.095 (Table 8-9). This indicates that if a pipeline were to 

traverse this land use type by one kilometre, then the odds or risk of pipeline TPI increases 

by a factor of 2.095, when other variables are held constant.  

 

 

Figure 8-4: Map showing how pipelines traverse across and along rivers and streams in the study 
area, especially in the south and south west. 
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As mentioned in the literature review, the selected study area is crisscrossed by several 

water bodies, and the ingress of pipelines into and across water bodies is inevitable. As can 

be seen from Figure 8-4, the pipelines avoid the rivers and streams in the study area as 

much as possible, however, a vast number are still woven with the water bodies.  The 

various pipelines that conjoined these rivers and villages are expected to play a significant 

role in influencing the occurrence of pipeline TPI more so than for the other natural 

occurring factors.  

8.3.8 Mosaic vegetation / cropland (mvc) 

Mosaic vegetation/cropland (mvc) in Table 8-9 is seen to be significant (p<0.05) and B= -

0.127 is the regression estimate for a one unit increase in land use area, given the other 

variables are held constant in the model. If a pipeline were to traverse this land use type by 

one kilometre, then the difference in the logs of expected counts of pipeline TPI would be 

expected to decrease by 0.127 units. This land use type is only 3.14 per cent of the total 

land use in the selected study area, with the majority of this type found in Warri SouthWest 

and Ethiope West and East LGAs, indicated in red, in Figure 8-5. The overall study area in 

general consisted mostly of shoreline and thick rain forest, and pipelines stretch across 

these areas of land use mostly, while the percentage of pipelines traversing the mosaic 

vegetation/cropland land use type are very few. In addition, the relative absence of this 

land use type, could explain the few cases of pipeline TPIs in these land use type. 

 

 

Figure 8-5: Map showing the mosaic vegetation / cropland (mvc) (highlighted red) land use and 
other land use type and the pipelines in the study area. 



Chapter VIII: Analysis and Results of Generalised Linear Models 

 
158 

 

8.4 Results of the Binomial Logistic Generalized Linear Model 

As described previously in Chapter 6, Logistic Regression (LR) is part of the GLMs, which 

can predict group membership and also examines the relationships and strengths of 

variables. Logistic regression not only models the binary response variables, but also 

models numeric, categorical and multinomial data. In this thesis, LR was used to predict 

the probability that a region will or will not experience pipeline TPI (Hosmer and 

Lemeshow, 2000). The model indicates the probability of occurrence of an event (e.g. 

TPI), and if it is 1, the event will occur, and if it is 0 then it will most likely not occur.  

 

The typical output of a logistic regression model includes the B, the Standard Error (S.E) 

of the B, the Wald test statistic, the degrees of freedom (d.f), the significance level, and the 

exponentiated coefficient of B (Exp(B)). When the value of B is 0, this signifies that there 

is no change in the odds of occurrence; also, when Exp(B) is 1, this indicates that the 

particular independent variable is of no effect on the dependent variable. However, if the 

Exp(B) is over 1, a positive relationship exists, and the independent variable will have a 

positive relationship and effect on the dependent variable. In addition, if the value of the 

Exp(B) is less than 1, then a negative relationship exists and the odds or risk of an 

occurrence decreases (Hair et al., 2006). In dichotomous independent variables, as in this 

thesis, the odds ratio is given by: 

 

                       [Exp(B) -1] x 100   (Equation 8.2) 

8.4.1 Pearson Product-Moment Correlation for Variables 

Logistic regression requires that the relationships between two or more variables do not 

influence model fitting if they increase or decrease together (i.e. correlated). Before the 

data were fit to the model, the Pearson product-moment correlation was utilised to 

determine the specific independent variables that should be included in the LR model for 

the thesis; and to determine the strength and direction of the linear relationship between 

two or more variables without removing the effects of the other variables.  

 

Tabachnick and Fidell (2007) identify several advantages of this procedure, especially since 

the research question was to explore whether there is a relationship between the variables. 

The variables in Table 8-1, and described in Chapter 5, are those used in the LR analysis of 

GLMs. The correlation between the variables was tested, and Table 8-10 compares the 

inter-correlations among the twenty-two derived variables. The relationship between the 
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variables using the Pearson product-moment correlation shows there were both small (r = 

±0.01 to ±0.29) negative and positive correlations between the variables, and very few 

large (r= ±0.50 to ±1.0) negative and positive correlations. For example, the correlation 

between population density and Human Development Index (HDI) is +0.537; and the 

correlation between mosaic land use type (mbw) and length of rivers is -0.61 (Table 8-10). 

However, this does not assume that this correlation implies causation, for example, 

increase in population density does not automatically imply or causes increase in HDI. 
 

Table 8-10: Correlation analysis of the variables used for the LR GLMs analysis. 

P cBW    P cLt    HDI     OilF     P iLe     RvLe    RdLe    P o pD    Age      P Dia(1) P Dia(2) P iSt(1) P iSt(2) wb      es d     mvc      ts g     mbw     cgl     glf     blf     s bl     

-0.301 -0.361 -0.552 -0.055 0.029 -0.081 -0.238 -0.524 -0.285 -0.006 0.094 -0.09 -0.229 -0.001 -0.336 0.079 -0.211 0.008 -0.068 0.242 -0.055 -0.302

P cBW    1 0.096 -0.005 -0.22 -0.692 -0.265 0.168 0.194 -0.172 -0.261 0.209 -0.465 -0.254 -0.545 -0.08 0.164 0.258 0.106 0.048 0.272 0.48 0.746

P cLt    0.096 1 -0.16 0.212 -0.034 -0.2 -0.132 -0.37 0.051 -0.149 -0.21 -0.018 -0.033 -0.1 -0.161 -0.262 0.033 0.281 -0.289 0.085 0.134 0.133

HDI     -0.005 -0.16 1 -0.052 0.027 0.104 0.042 0.537 0 -0.258 0.018 -0.184 -0.149 -0.011 0.247 0.045 0.252 -0.171 0.359 -0.316 0.037 0.223

OilF     -0.22 0.212 -0.052 1 0.143 0.049 -0.055 -0.117 -0.003 0.047 -0.077 0.224 0.065 -0.095 -0.071 -0.256 -0.299 -0.172 -0.131 -0.248 -0.042 -0.179

P iLe     -0.692 -0.034 0.027 0.143 1 0.25 -0.083 -0.134 0.167 0.335 -0.048 0.367 0.446 0.424 0.138 -0.045 -0.089 -0.147 -0.236 -0.345 -0.502 -0.556

RvLe    -0.265 -0.2 0.104 0.049 0.25 1 0.413 0.188 0.22 0.073 -0.275 0.354 0.085 0.555 -0.073 -0.149 -0.396 -0.612 -0.419 -0.246 -0.533 -0.345

RdLe    0.168 -0.132 0.042 -0.055 -0.083 0.413 1 -0.067 0.085 0.112 0.02 0.057 0.112 0.219 0.082 -0.32 -0.334 -0.097 -0.184 -0.348 -0.136 0.167

P o pD    0.194 -0.37 0.537 -0.117 -0.134 0.188 -0.067 1 0.089 -0.072 0.036 0.067 0.065 0.072 0.276 0.282 0.18 -0.26 0.314 -0.022 0.043 0.187

Age     -0.172 0.051 0 -0.003 0.167 0.22 0.085 0.089 1 0.423 -0.627 0.352 0.542 0.294 0.127 -0.218 -0.022 0.052 -0.063 -0.348 -0.302 -0.408

P Dia(1) -0.261 -0.149 -0.258 0.047 0.335 0.073 0.112 -0.072 0.423 1 0.127 0.249 0.624 0.226 0.108 0.013 -0.095 0.072 -0.091 -0.215 -0.313 -0.426

P Dia(2) 0.209 -0.21 0.018 -0.077 -0.048 -0.275 0.02 0.036 -0.627 0.127 1 -0.473 -0.145 -0.315 0.08 0.292 0.129 0.04 0.107 0.148 0.146 0.389

P iSt(1) -0.465 -0.018 -0.184 0.224 0.367 0.354 0.057 0.067 0.352 0.249 -0.473 1 0.536 0.395 0.143 -0.105 -0.341 -0.202 -0.21 -0.132 -0.372 -0.559

P iSt(2) -0.254 -0.033 -0.149 0.065 0.446 0.085 0.112 0.065 0.542 0.624 -0.145 0.536 1 0.207 0.034 -0.062 -0.031 0.075 -0.049 -0.282 -0.333 -0.323

wb      -0.545 -0.1 -0.011 -0.095 0.424 0.555 0.219 0.072 0.294 0.226 -0.315 0.395 0.207 1 0.054 -0.207 -0.251 -0.332 -0.29 -0.182 -0.427 -0.536

es d     -0.08 -0.161 0.247 -0.071 0.138 -0.073 0.082 0.276 0.127 0.108 0.08 0.143 0.034 0.054 1 -0.178 -0.008 -0.013 0.1 -0.082 -0.252 -0.144

mvc     0.164 -0.262 0.045 -0.256 -0.045 -0.149 -0.32 0.282 -0.218 0.013 0.292 -0.105 -0.062 -0.207 -0.178 1 0.256 -0.096 0.138 0.263 0.23 0.209

ts g     0.258 0.033 0.252 -0.299 -0.089 -0.396 -0.334 0.18 -0.022 -0.095 0.129 -0.341 -0.031 -0.251 -0.008 0.256 1 0.194 0.454 -0.228 0.081 0.343

mbw     0.106 0.281 -0.171 -0.172 -0.147 -0.612 -0.097 -0.26 0.052 0.072 0.04 -0.202 0.075 -0.332 -0.013 -0.096 0.194 1 0.063 0.19 0.349 0.139

cgl     0.048 -0.289 0.359 -0.131 -0.236 -0.419 -0.184 0.314 -0.063 -0.091 0.107 -0.21 -0.049 -0.29 0.1 0.138 0.454 0.063 1 -0.2 0.288 0.174

glf     0.272 0.085 -0.316 -0.248 -0.345 -0.246 -0.348 -0.022 -0.348 -0.215 0.148 -0.132 -0.282 -0.182 -0.082 0.263 -0.228 0.19 -0.2 1 0.404 0.129

blf     0.48 0.134 0.037 -0.042 -0.502 -0.533 -0.136 0.043 -0.302 -0.313 0.146 -0.372 -0.333 -0.427 -0.252 0.23 0.081 0.349 0.288 0.404 1 0.432

s bl     0.746 0.133 0.223 -0.179 -0.556 -0.345 0.167 0.187 -0.408 -0.426 0.389 -0.559 -0.323 -0.536 -0.144 0.209 0.343 0.139 0.174 0.129 0.432 1
 

8.4.2 Classification Accuracy 

The Classification Table, from the SPSS output in Table 8-11 shows the overall percentage 

of correctly classified aggregated spatial units of the study area (151 areal units) in Figure 6-

5. This is a basic and simple classification model, based on direct arithmetic combination 

of the original classification. The result shows that 66.2 per cent was successfully classified 

before the actual contributions of the independent variable are considered in the model. 

Table 8-11: Classification Table
a, b

 

No Thirdparty 

Interference

Thirdparty 

Interference

No Thirdparty 

Interference
100 0 100

Thirdparty 

Interference
51 0 0

66.2

Occurence of Pipeline 

Third-party Interference

Overall Percentage

a. Constant is included in the model; b. The cut-off value is .500

Observed

Predicted

Occurence of Pipeline Third-party 

Interference Percentage 

Correct

 
The Omnibus Tests of Model Coefficients (Table 8-12), in the SPSS binary logistic 

regression, reports the collective significance levels of the independent variables and how 

they have performed in the model in order to predict the dependent variable. The test is, in 
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general, a goodness of fit test and a significant value, e.g. less than (p<) 0.05 is preferable. 

The result from the model is less than 0.0001; hence, the model containing the whole 

independent variables is statistically significant. The reported chi-square value is 122.803, 

with 22 degrees of freedom; this shows that there is an adequate fit of the data to the 

model (Tabachnick and Fidell, 2007). 

 

Table 8-12: Omnibus Tests of Model Coefficients. 

  Chi-square df Sig. 

Step 1 

Step 122.803 22 .000 

Block 122.803 22 .000 

Model 122.803 22 .000 

8.4.3 Multicollinearity and R2 

The SPSS output for the Model Summary (Table 8-13), indicates how the usefulness of the 

model in this thesis, and it is a preferable measure of the effect of size and strength of 

association. SPSS supports two R2-like measures for binomial logistic regression analysis: 

the Cox and Snell's and the Nagelkerke‟s R2. These two values provide an indication of the 

amount of variation in the dependent variable explained by the model. Both the Cox and 

Snell's and Nagelkerke‟s values are pseudo R square statistics rather than the general R 

square in multiple regression analysis. In this thesis, the Cox and Snell's and the 

Nagelkerke‟s values are 0.557 and 0.771 respectively, indicating that between 55.7 per cent 

and 77.1 per cent of the variability is explained by the variables (Table 8-13). 

 

Table 8-13: Model Summary: Cox & Snell R Square, and Nagelkerke‟ values from the result from 
the Logistic regression analysis  

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square

1 70.335
a 0.557 0.771

a. Estimation terminated at iteration number 9 because parameter estimates changed by 

less than .001.  

8.4.4 Hosmer and Lemeshow Goodness-of-Fit  

Table 8-14 presents the results obtained from the LR analysis for the Hosmer and 

Lemeshow chi-square test of Goodness-of-Fit that shows how worthwhile a model is, and 

it is considered to be the most important test of model fit (Tabachnick and Fidell, 2007).  

In the Hosmer and Lemeshow test of goodness-of-fit, a poor fit is indicated by a 

significance value of less than 0.05, especially in cases of continuous independent variables 

or in a model with a small sample size. In this thesis, the value of Hosmer and Lemeshow 

is 6.86, and a significance level of 0.552. This value is significantly greater than 0.05, as 
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required for a well-fitting model, therefore the model adequately fits the data significantly 

and is very meaningful. This also implies that the model's estimates fit the data adequately. 

Table 8-14: Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.862 8 .552 

 
It is useful to note that the Hosmer and Lemeshow's goodness-of-fit test calculates the 

chi-square value from observed and expected frequencies, using the predicted probabilities 

from each separate case. The p value is then derived from the chi-square distribution with 

8 degrees of freedom in order to test the fit of the model.  

Table 8-15: Classification Tablea for the final model 

No Thirdparty 

Interference

Thirdparty 

Interference

No Thirdparty 

Interference
91 9 91

Thirdparty 

Interference
6 45 88.2

90.1

a. The cut value is .500

Observed

Predicted

Occurence of Pipeline Third-party 

Interference Percentage 

Correct

Step 1

Occurence of Pipeline 

Third-party Interference

Overall Percentage

 
 

The Classification Table from the SPSS output (Table 8-15) indicates that the model 

correctly classifies 90.1 per cent of the cases. This is an indication of how well the model 

predicts the correct categories, that is, TPI or no TPI in a region. This is a significant 

improvement compared with result shown in Table 8-11, when the variables were not 

included in the model. 

8.4.5 Assessing the Model: the Log-Likelihood Statistic 

The (log) likelihood ratio statistic (-2 Log Q statistic) and the Wald statistic were used to 

assess the goodness-of-fit of the model in the LR. The Wald statistic is included in the 

output of the SPSS; the likelihood ratio statistic will be calculated to test the robustness of 

the model. The fitted LR model between the variables is given in Table 8-16, such that the 

regression equation is: 

 

In (odds) = 0.262 -0.11PcBW -0.011PcLt +0.014HDI +0.556OilF 
+0.378PiLe +0.04RvLe +0.169RdLe -0.003PopD +0.034Age 
+2.417PDia (1) +0.885PDia (2) +1.537PiSt (1) -0.136PiSt (2) +1.455wb 
+0.061esd -0.025mvc -0.046tsg -0.074mbw -0.159cgl -0.132glf -0.171blf -
0.247sbl 

  (Equation 8.3) 
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Table 8-16: Variables in the Equation, the logistic regression predicting likelihood of a region 
experiencing pipeline TPI 

Lower Upper

PcBW -0.11 0.043 6.503 1 0.011 0.896 0.823 0.975

PcLt -0.011 0.033 0.105 1 0.745 0.989 0.927 1.055

HDI 0.014 0.492 0.001 1 0.977 1.014 0.387 2.658

OilF 0.556 0.282 3.891 1 0.049 1.744 1.004 3.029

PiLe 0.378 0.113 11.127 1 0.001 1.459 1.168 1.821

RvLe 0.04 0.041 0.966 1 0.326 1.041 0.961 1.128

RdLe 0.169 0.271 0.389 1 0.533 1.184 0.696 2.014

PopD -0.003 0.005 0.463 1 0.496 0.997 0.987 1.006

Age 0.034 0.116 0.087 1 0.768 1.035 0.825 1.298

PDia 4.221 2 0.121

PDia(1) 2.417 1.196 4.082 1 0.043 11.211 1.075 116.931

PDia(2) 0.885 1.409 0.394 1 0.53 2.423 0.153 38.366

PiSt 2.192 2 0.334

PiSt(1) 1.537 1.272 1.461 1 0.227 4.65 0.385 56.208

PiSt(2) -0.136 1.815 0.006 1 0.94 0.873 0.025 30.614

wb 1.455 1.015 2.054 1 0.152 4.283 0.586 31.305

esd 0.061 0.047 1.717 1 0.19 1.063 0.97 1.165

mvc -0.025 0.097 0.069 1 0.793 0.975 0.807 1.178

tsg -0.046 0.055 0.697 1 0.404 0.955 0.858 1.063

mbw -0.074 0.068 1.195 1 0.274 0.929 0.813 1.06

cgl -0.159 0.145 1.198 1 0.274 0.853 0.642 1.134

glf -0.132 0.061 4.646 1 0.031 0.876 0.777 0.988

blf -0.171 0.083 4.276 1 0.039 0.842 0.716 0.991

sbl -0.247 0.122 4.129 1 0.042 0.781 0.615 0.991

Constant 0.262 4.07 0.004 1 0.949 1.3

a. Variable(s ) entered on s tep 1: PcBW, PcLt, HDI, OilF, PiLe, RvLe, RdLe, PopD, Age, PDia, PiSt, wb, esd, mvc, tsg, mbw, cgl, glf, blf, sbl.

Variables B S.E. Wald df Sig. Exp(B)
95% C.I.for EXP(B)

 
 

This model can now be used to predict the odds that a region will experience pipeline TPI 

or that it will not. The Wald statistics for testing significance of the independent variables 

in Table 8-16 are approximately χ2 (Chi-squared), with the degrees of freedom being given 

in the column 'd.f.'; the p-values in the corresponding column of some of the independent 

variables exceed 5% (Table 8-16). However, the degree of difference from zero for the 

Wald statistics was used to select the independent variables that go into the reduced model 

(Tabachnick and Fidell, 2007). 

 

Rather than relying on the Wald test, the likelihood ratio test was used to test significance 

of independent variables and the goodness-of-fit of the overall model. The log likelihood 

ratio statistic (often called -2 Log L) for the full model, containing all independent 

variables is compared with the log likelihood for the reduced model, containing all 

independent  variables except PcLt,HDI, RdLe, PopD, Age,mvc,tsg. For example, if the 

full model is significantly better than the reduced model, then the difference between -2 
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Log L(reduced) and -2 Log L(full) will be significantly large (Tabachnick and Fidell, 2007). In 

this case, the null-hypothesis that the excluded variables are non-significant is rejected. 

However, if the reduced model explains the data almost as well as the full model, then the 

difference will be close to zero, and the null-hypothesis that the excluded variables are 

non-significant can be accepted. 

 

In the thesis, the model fit for the full model, taken from the SPSS output is given by 

(Table 8-13):  

-2 Log L (full)  =70.335  
 
In order to test significance of the excluded variables, we compare the value -2 Log L(full) 

to the value of the model fit for the model with reduced variables based on the screening 

of the Wald statistic in selecting excluded variables. The model fit for the reduced model, 

repeating the SPSS calculations is: 

 

 -2 Log L (reduced) =78.174 
 

Therefore, the log likelihood statistic is the difference between the two model fits, and is 

equal to 7.81. This result is an observation from a χ2 distribution with 8 degree of freedom 

(d.f) (i.e. number of independent variables in the full model minus the numbers in the 

reduced model). From Samprit et al. (2000), the 5% critical value of the chi-square with 8 

df is 15.51. Therefore, it is concluded that the excluded non-significant variables can be 

deleted from the model without affecting the predictive power of the original model. The 

final model is thus: 

 

In (odds) = -0.417 -0.078PcBW +0.501OilF +0.316PiLe 
+ 0.031RvLe -1.668PiSt (2) +1.061wb +0.054esd -
0.078mbw -0.127cgl -0.109glf -0.133blf -0.149sbl 

 

(Equation 8.4) 

8.4.6 The 'variables in the equation' in Table 8-16  

The 'variables in the equation' table as given in Table 8-16 provide general information 

regarding the contribution of each independent variable to the final model. The Wald 

statistic (test), an output from SPSS, tests the significance of each variable. From Table 8-16 

seven variables were considered to contribute significantly to the predictive ability of the 

model, using p ≤ 0.05 as a cut-off standard for including variables in the equation: PcBW( 

p=0.011); OilF (p=0.049); PiLe (p=0.001); PDia(1) (p=0.043); glf (p=0.031); blf (p=0.039); 

and sbl (p=0.042). Therefore, the major significant factors influencing whether a spatial 
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unit will experience TPI in the study area, are: socioeconomic factor (percentage of 

household with water); total area of oilfield; total length of pipelines; pipeline diameter; 

percentages of mosaic grassland/forest or scrubland land use; broad leaved forest (blf); 

and shrubland/grassland (sbl). The age of pipeline, volume of roads; population density 

and all other factors did not significantly contribute to the performance of the model. 

However, there are observed difference between the Poisson GLMs and Logistic GLMs, 

while some variable are significant in the earlier model (e.g. pipeline status), they are not 

significant in the later. The reason could be the objectives of the two separate models, 

described Section 8.6. 

 
The relationship between other variables not mentioned above and "a region experiencing 

pipeline TPI" were found to be statistically not significant for the model (p>0.05). While 

these variables may not be important in the prediction model, there were still significant 

differences in these variables regarding their influence on the occurrence of TPI, especially 

as supported by earlier empirical studies, e.g. hotspot spatial analysis (Chapter 7). 

 

8.4.6.1 The B Value 

The 'B' values in Table 8-16 are the equation parameters that will determine the probability 

of whether a region/areal unit will experience TPI or it will not. The mathematical sign (+ 

or -), in the tabled 'B' values also determines the direction of the relationship. For example, 

which factor, when increased, will increase or decrease the likelihood of a region to 

experience pipeline TPI.  A negative 'B' value indicates that increasing an independent 

variable results in the probability of a region recording a score of 1, and in this case, a 

region will be likely to experience pipeline TPI.  

 
The variable 'percentage of households with pipe borne water' in the study area, a proxy 

measuring a major socioeconomic factor, showed a negative 'B' value (-0.11). This shows 

that the higher the provision of such an infrastructure quality measure to a region, the less 

likely it is that the region will experience pipeline TPI. The same conclusion was drawn 

when investigating the relationship between the possibility of pipeline TPI and overall 

length of pipeline in a region. The variable, 'total pipeline length' in a region showed a 

positive 'B' value (0.378), suggesting regions with higher cumulative lengths of pipelines are 

more likely to experience pipeline TPI. This result indicated that each additional kilometre 

of pipeline significantly increased the odds of the occurrence of pipeline TPI, other 

variables being fixed. 
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The significant category variables in the model, the pipeline diameter, showed each 

category having a positive 'B' value. This indicates that pipelines in this particular category 

are more likely to experience pipeline TPI. However, the land use, Mosaic grassland/forest 

or scrubland land use; Broad leaved forest (blf); and Scrublands/grassland (sbl) all showed 

a negative 'B' value (-0.132; -0.171; and -0.247 respectively). This value suggest these land 

use types offer less likelihood of (or are not contributory to) pipeline TPI occurring 

compared with other types of land use. 

 

8.4.6.2 The Exp(B) and The Wald Statistics 

The Exp(B) column in the 'Variables in the Equation' Table 8-16 is the exponentiation of the 

B coefficient, and is the odds ratio (OR) for each of the independent variables. This is the 

change in odds of being in one of the categories of the dependent when the value of an 

independent variable increases by one unit (Tabachnick and Fidell, 2007). Because it could 

be deduced that the logistic regression odds ratio bear a resemblance to relative risk, 

therefore, the exponentiation of the 'B' coefficient could be used to determine the risk of a 

region experiencing a TPI. 

 

The 'total length of pipeline' in a region is another significant independent variable in the 

model, with a significance value of 0.003. It can be seen from the result in Table 8-16 that 

the odds ratio is 1.918, a value greater than 1. This indicates that when holding all other 

variables constant, the more pipelines a region gets or has, the more likely it is to 

experience pipeline TPI; therefore, for every additional one kilometre of pipeline a region 

gets increases the odds of experiencing TPI by a factor of 1.918, all other factors being 

equal. However, the odds ratios described above are interpretable with 95 per cent 

confidence interval as shown in the 'Variables in the Equation' table (95% CI for EXP(B)) 

displaying the lower and upper value. The 95 per cent confidence encompasses the true 

value of the odds ratio. 

Table 8-17: Casewise List
b
 

Case 
Selected 

Statusa 

Observed 
Predicted 

Predicted 

Group 

Temporary Variable 

TPI Resid ZResid 

63 S T** .053 N .947 4.215 

73 S T** .019 N .981 7.145 

82 S N** .775 T -.775 -1.855 
(a). S = Selected, U = Unselected cases, and ** = Misclassified cases. (b). Cases with studentized residuals greater than 2.000 are listed. 
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Table 8-17 gives information about cases (regions) in the sample that the model does not 

fit properly, and these are determined by cases with ZResid values greater than 2 and are 

considered misclassified cases. For example, some regions (region 63 and 73) were 

predicted to have pipeline TPI, but in reality have not experienced TPI. The three regions 

misclassified could be considered negligible, 2 per cent of the total regions. 

8.4.7 Discussion of Significant Variables in the Model 
 

8.4.7.1 Age of pipeline 

The age of a pipeline was found to be statistically insignificant at p = 0.768 (p > 0.05), 

however, the Exp(B) is1.035 and indicated that if the age of a pipeline is increased by one 

year, the odds or risk of an occurrence increases by a multiple of 1.035, controlling other 

variables in the model. Therefore, it can be concluded that an increase in age, yearly, of a 

pipeline may be positively associated with a change in the odds of possible occurrence of 

TPI, when all other variables are held constant. 

8.4.7.2 Percentage of households with pipe borne water 

The percentage of households with pipe borne water was found to be statistically 

significant at p = 0.011 (p < 0.05). The corresponding Exp(B) is 0.896 in the model, and 

indicated a slight negative relationship between percentage of households with pipe borne 

water and the occurrence of pipeline TPI. A 1 per cent increase in households with pipe 

borne water reduced the odds of occurrence of pipeline TPI by a multiple of 0.896 or 10.4 

per cent holding all other variables constant in the model.  
 

8.4.7.3 Area of oilfield 

The area of an oilfield was found to be statistically significant at p = 0.045 (p < 0.05), and 

the corresponding Exp(B) value of 1.744 indicated that there is a positive relationship 

between the area of oilfield and the occurrence of TPI. This result is similar to the results 

obtained from the Negative Binomial GLMs (Section 8.3.5), thus if the area of an oilfield 

in a region is increased by one square kilometre, the odds or risk of an occurrence of 

pipeline TPI increases by a multiple of 1.744, holding all other variables constant in the 

model.  

8.4.7.4 Population density 

The variable population density was not found to be statistically significant at p = 0.496 (p 

> 0.05), and the corresponding Exp(B) is 0.997 in the model, and indicated a slight 

negative relationship between population density and the occurrence of pipeline TPI. 
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Therefore, an increase in population density, measured by persons per square kilometre 

will reduce the odds of occurrence of pipeline TPI by a multiple of 0.997 or 0.3% holding 

all other variables constant in the model. 
 

8.4.7.5 Pipeline Diameter 

The categorical variable, pipeline diameter, has two levels: 1, pipelines less than 12inches in 

diameter and 2, pipelines greater than 12 inches in diameter. For the first category of 

pipeline diameter, the odds ratio (Exp(B)) is 11.21. Therefore, the odds of not 

experiencing TPI compared to experiencing it are decreased by a factor of 11.21 when the 

region is dominated with pipelines less than 12 inches compared to regions with pipeline 

greater than 12 inches in diameter, controlling for other variables in the model. However, 

the other category, pipeline diameter greater than 12 inches, is not significant in the model. 

8.4.8 The final Logistic Regression results 

A direct logistic regression was performed on the likelihood of a region to determine if 

such was to experience pipeline TPI or not considering various variables of factors 

described in Chapter 5. Table 8-16 shows the logistic regression coefficient, the Wald test 

results, and odds ratios for the independent variables. The model contained twenty four 

independent variables (Table 8-1).  

 

The full model for the logistic regression was determined to be statistically significant 

X2(29, N=151)=143.08, p <0.001, indicating that the model developed for the analysis was 

able to distinguish between regions that experienced and those that did not experience 

pipeline TPI. The model was also able to explain 61.20 per cent (Cox and Snell R square) 

and 84.40 per cent (Nagelkerke R squared) of the variance in the status of pipeline TPI and 

correctly classified 94 per cent of the designated regions into the two membership groups.  

 

In addition, using the 0.05 criterion of statistical significance, seven independent variables 

were found to make a strong statistical significant contribution to the regression model 

(pipeline status- buried or aboveground); age of pipeline, length of roads; presence of 

oilfields; population density, capital expenditure on spatial units, and types of land use 

(excluding the mosaic grassland/forest or shrubland).   
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Figure 8-6: Created surface maps from the coefficients derived from Equation 8.5 for each of the 
independent variables using  ArcGIS Raster Calculator. 

 
 -0.078PcBW     0.501OilF 
 

 
 0.316PiLe     0.031RvLe 
 

 
 -1.668PiSt (2)     1.061wb 
 

      
0.054esd      -0.078mbw 
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  -0.127cgl     -0.109glf 
 

 
    -0.133blf     -0.149sbl 

8.5 Map Building: Applying the LR model to ArcGIS 

The significant variables in the final model were reclassified and transformed into a GIS 

raster format. The various generated coefficients, based on the resulting Equation 8.3 were 

applied to the variables to generate an ArcGIS prediction map. The generated maps from 

the ArcGIS outputs were classified into different classes for visualization. Figure 8-17 

presents the results obtained from the ArcGIS raster manipulation analysis of the 

generated coefficients from the logistic regression model. 

 

In (odds) = -0.417 -0.078PcBW +0.501OilF +0.316PiLe + 
0.031RvLe -1.668PiSt (2) +1.061wb +0.054esd -0.078mbw -
0.127cgl -0.109glf -0.133blf -0.149sbl 

 

 (Equation 8.5) 

 

The raster calculator in ArcMap was applied to the formula in Equation 8.5, generated 

from the prediction model of LR analysis using the following procedure:  

 

variables1 = (-0.078 * [PcBW]) + (0.501 * [OilF]) + (0.316 * 
[PiLe]) + (0.031 * [RvLe]) + (-1.668 * [PiSt_2]) + (1.061 * [wb]) 
+ (0.054 * [esd]) + (-0.078 * [mbw]) + (-0.127 * [cgl]) + (-0.109 * 
[glf]) + (-0.133 * [blf]) + (-0.149 * [sbl]) 

(Equation 8.6) 
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The [variables1] in Equation 8.6 is based on Equation 6.19, in Section 6.6.4. Therefore, the 

log of the odds for occurrence of pipeline TPI is: logodds = (-1 * (-0.417 + [variables1])); and 

the odds = EXP([logodds]).The logodds and odds is then used to calculate the final probability 

map for the model.  

 

The Probability = (1 / (1 + [odds])) (Equation 8.7) 

 

Figure 8-7 presents the application of equation 8.7 to the study area, and is the probability 

of occurrence of pipeline TPI in the study area. The probability map based on the GIS 

output groups the occurrence of pipeline TPI into classes showing a graduated colour 

maps to represent a range of classes of probabilities of pipeline TPI. 

 

Figure 8-7: Probability of pipeline TPI to occur in the study area. 

8.6 Summary 

This chapter explains the conceptual framework, the assumptions and the appropriateness 

of using the GLMs in conjunction with GIS spatial data.  Independent variables that are 

expected to influence the occurrence of TPI are explained, together with the interpretation 

of the results obtained. The result of the Poission GLMs showed that pipeline diameter, 

length and status (buried or aboveground), area of oilfield, water bodies, and land use are 

the significant predictors of TPI. On the other hand, the result of the Binomial Logistic 

regression analysis for the thesis showed that pipeline age, socioeconomic factors 
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(percentage of households with pipe borne water), area of oilfield, population density, land 

use, and pipeline diameter are the significant predictor of TPI in the study area. The 

negative and positive effects of the significant variables on the odds of TPI occurrence are 

as expected. Therefore, to obtain predicted odds of occurrence for TPI for a region, values 

of the corresponding variables for a particular region are substituted into equation 8.2. 

 

Binary logistic regression models and Poisson generalised linear models can be used to 

describe and analyses association between variables, to understand how it influences the 

occurrence of an event. However, an important practical distinction is that the Logistic 

regression is a predictive analysis procedure that produces probability predictions of 

whether a region will experience TPI or will not (or high/low risk of TPI), while the 

Poisson generalised linear models procedure study and estimate an incidence rate of an 

event from the independent variables. Specifically, the comparison of the two analyses 

(Negative Binomial GLMs and Logistic Regression) for the thesis shows that land use, area 

of oilfield, and pipeline diameter are common significant variables to the models.  

 

The negative binomial GLMs proved to be useful both for identifying the possible 

numbers of failures and for understanding the relationship between influencing variables. 

However, after the occurrence of TPI in a network, subsequent maintenance using a 

predictive model, like the logistic regression becomes more useful to predict probability of 

a region to experience another TPI rather than the expected numbers of future occurrence. 

These fully acknowledge the significance of logistic regression over the negative binomial 

GLMs. While this thesis did not confirm the influence and significance of the overall 

factor hypothesised, it did partially substantiate the recognition of pipeline intrinsic 

variables that past researches have acknowledged. The results also show that a 

combination of these two methods is preferable for technical understanding and 

prediction for TPI.  

 

The following two chapters will discuss the main design, methodology and analysis of the 

data gathered from the questionnaire survey utilised as part of this thesis. The rationale is 

to come up with pertinent findings about pipeline TPI and to augment the 

recommendations provided in the thesis. 
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9 QUESTIONNAIRE SURVEY: RESEARCH METHODS 

9.1 Introduction 

This thesis is based on a mixed-method approach to the understanding of the occurrence 

of pipeline TPI. Hence, additional qualitative data collection and analyses form part of the 

study. This method allow for a range of creative solutions to be employed to help to 

resolve the difficulties of getting pipeline data, generally considered to be confidential, 

from organisations. This prompts the need to use a questionnaire survey, most 

importantly, to get a consensus view and perception from the pipeline industry about TPI.  

The mixed and complex proposal of this thesis to examine both intentional and 

unintentional TPI necessitates a combination of statistical methods for the primary analysis 

of the questionnaire.  

This chapter describes and justifies the different aspects of the questionnaire survey 

implemented as part of this thesis, including the significance of the survey, data collection, 

survey instruments, design procedure and the statistical techniques. The survey used a 

web-based approach for recruiting respondents from government agencies, academia, 

private companies, professional bodies, and pipeline service providers. The respondents 

selected were involved in the planning, design, installation and maintenance of pipelines 

worldwide. The survey assessed each respondent‟s demographic characteristics, opinions, 

experiences, management practice, and perception of both intentional and unintentional 

TPI.  

As the questionnaire survey elicited the opinion regarding pipeline TPI from those who are 

directly involved, the survey thus enhanced and provided additional understanding and 

salient knowledge regarding TPI. In general, it provided a new insight into this problem 

area and ways to understand practical strategies being adopted in the oil and gas industry. 

It also provided a valid and reliable survey base for future research.  

The result of questionnaire survey is used to compared and further discuss the results of 

the various GIS-based statistical analyses implemented in the thesis. For example, the 

insights from the content analysis of the open-ended survey responses also unveil 

interesting perceptions and opinion from the industry experts on TPI. 
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The significance and the structure of the questionnaire survey are described in Sections 9.2 

and 9.3 respectively. The adopted methodology and the analysis techniques are discussed 

in Sections 9.4 and 9.5 respectively, while Section 9.6, 9.7, and 9.8 discusses the analysis of 

the open-ended questions, limitation and conclusion respectively.  

9.2 The Adopted Use of Internet Survey 

Online or internet questionnaire surveys are easy to manage, cost-effective, and most 

importantly, they are environmentally friendly. They are similar to mail surveys, and are 

becoming increasingly popular because of their low cost, speed of data collection and easy 

data collation (Dolnicar et al., 2009). However, Czaja and Blaire (2005) point out some 

recognised drawbacks of internet surveys. They observed that internet accessibility is still 

not affordable by the entire population and therefore the difficulty in extracting a 

representative sample from internet users is one of the disadvantages of internet survey. 

They further identified the likelihood of low response rate, potential response biasness, 

web security for anonymity, knowledge of website design, and computer literacy as other 

major disadvantages of internet survey.  

 

However, contrary to the reasons presented above by Czaja and Johnny, the present study 

was designed for a special population and the sample frame is more likely to have high 

internet usage compared to the rest of the population (Kaplowitz et al., 2004). In addition, 

the world internet users and usages are increasing exponentially, for example, over 300% 

users‟ growth was reported between 2000 and 2008. Literature also argued that the ease of 

collecting data from an international sample and the positive cooperation with respect to 

open-ended questions are some of the many advantages of internet survey over other 

methods of questionnaire survey  (Czaja and Blair, 2005, Bertot, 2009). In summary, a 

web-based survey has the following advantages over other modes of expert opinion 

polling: 

 Minimal cost and eco-friendly 

 Immediate transmission to respondents 

 Utilisation of advanced security features 

 Time efficient by the elimination of paper mail procedures 

 Automatic filtering of questions and respondents  

 The conveniences of time to respondents to response to the survey 
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 Software based for automated and reminder e-mails 

 The possibility of graphics, animation and large text usage 

 Management of space to accommodate longer open-ended questions 

 A possibility to combine the survey answers with pre-existing information 

9.3 Structure Development of the Questionnaire Survey 

The questionnaire survey used a web based HTML content interface. The target gruop 

(government agencies, academia, private companies, professional bodies, and pipeline 

service provider) completed the questionnaire between November 2008 and March 2009. 

The survey was in three sections, consisting of the demographic data and organisational 

details (Section I); perception about unintentional pipeline damage (Section II); and 

perception about pipeline intentional TPI (Section III). The summary section requested 

extra feedback from respondents about TPI not raised in the survey. The complete sample 

of the questionnaire survey is included in Appendix III. Figure 9-1 shows the summarised 

methodology adopted for the questionnaire survey. 

 

 

Figure 9-1: Summarised methodology flowchart adopted for the questionnaire survey. 
 

Multiple regression statistical analysis method was used to explore relationship and 

perception about motivation for intentional TPI, and to predict an organisation‟s effort in 

mitigating intentional TPI. A two-way between-groups analysis of variance (ANOVA) was 

used to explore the perception about TPI of countries and organisations, while a Kruskal-
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Wallis Analysis of Variance test was used to examine significant statistical difference in a 

developed risk mitigation scale. A multidimensional scaling (MDS) analysis on 

respondents‟ perceptions about various methods of preventing TPI during and after 

pipeline installation was transformed into spatial maps to reveal different spatial clusters of 

preferences. 

9.3.1 Section II of the Questionnaire Survey 

Section II of the questionnaire survey comprises questions that seek the opinion of the 

respondents about unintentional TPI. The respondents were also asked how they agree 

with the following statements about pipeline safety and security in Section II of the 

questionnaire survey (Questions 1-4): 

 

i. Pipeline security is a worldwide problem that needs a serious attention as any 

other sector of the economy. 

ii. A pipeline surveillance technology should protect only vulnerable segments of 

a pipeline network. 

iii. Although TPI is the leading cause of pipeline damage, it is currently under-

researched. 

iv. Pipeline safety regulations now existing are satisfactory for preventing TPI. 

These questions were included because it is important to understand the perception of the 

industry about TPI, especially from organisational representatives. In addition, it was 

comprehended that the absence of these types of questions as part of the survey will make 

the overall objectives meaningless. 

  

Question 5 is an open-ended question, and respondents were asked to suggest the other 

various methods of preventing pipeline TPI.  This is in case their representative 

organisations do implements other methods of prevention not mentioned in the survey. 

The next closed-question (Question 6) in Section II of the questionnaire survey asked 

respondents which of the following they prefer for the physical security of pipeline 

networks, representative of their organisation: (a) perimeter fencing of pipelines right-of-

way; (b) electronic monitoring and intrusion detection; (c) pipeline communications 

security techniques; (d) pipeline surveillance and monitoring; and (e) company specific 

measures. These questions were asked because it is perceived that different organisation 

have additional company-specific methods for preventing TPI, and this may form part of a 

growing body of literature on preventing TPI.  
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The next question (Question 7) asked respondent‟s expert opinion regarding developing a 

risk mitigation strategy for a pipeline network. TPI cannot be eliminated, therefore, risk 

mitigation strategies are required by the pipeline industry to minimise the likelihood and 

lower the impact of any eventualities. Based on a review of the literature, (e.g. Muhlbauer 

(2004); Baybutt (2002); Meshkati (1996); and Corder (1995)), respondents were asked to 

rank on a ten-point scale ranging from most important to least important, the extent of the 

role of the following techniques as a risk-mitigation strategy for pipeline security 

assessment, representative of their current work environment. The techniques are:  

 

(a) Threat assessment of pipeline network;  

(b) Community relations and public education;  

(c) The role of host government;  

(d) Prosecution and punishment of offenders;  

(e) Inaccessibility of facilities by road, etc;  

(f) Developing an integrated security plan;  

(g) Incident response capability;  

(h) Environmental response;  

(i) Personnel security surveillance on the pipeline; and  

(j)  Physical protection of the pipeline.  

 

The respondents‟ rankings were converted to a scale, a risk score of 1 was considered 

acceptable, a score of "5" considered the judgemental boundary, and a risk score of "9" was 

considered unacceptable. Ranking items on this scale represents a more comparative 

decision strategy compared to other measurement techniques in qualitative surveying, 

because straight opinions are eliminated. 

 

The next sets of questions in this section were on TPI prevention during and after pipeline 

installation. These questions were designed to seek a respondent‟s preference, viewpoint 

and awareness of various existing methods and measures for protecting pipeline. 

Therefore, Questions 9 and 10 of the questionnaire asked respondents to complete a 7-

item list on 5-point rating scale (from excellent to poor) to measure their perception 

regarding various methods of preventing TPI during and after pipeline installation. The list 

included sleeve as additional protective layer; slabs, tiles and plates over pipelines; high 

tensile net buried above pipeline; increasing pipeline wall thickness; marker posts along 

pipeline length; marker tape above pipeline; and fibre optics installed at intervals. 
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According to recent statistical studies, TPI has increased slightly over the last few years 

(Williamson and Daniels, 2008, Achim et al., 2007, Cao et al., 2005).  Therefore, Question 

11 of the questionnaire survey asked respondent‟s opinion regading TPI over the past ten 

years. The questions asked whether TPI as a problem has been: (a) reduced; (b) eradicated; 

(c) slightly increased; (d) increased vastly; (e) remained the same; (f) undergoing 

development in solution; (g) paid less attention; (h) can‟t be controlled by technology. This 

item was analysed using descriptive statistics. 

9.3.2 Section III of the Questionnaire Survey 

Intentional TPI is described in Section 1.3.1. The study area, like many countries 

throughout the world (e.g. Iraq, Mexico, Columbia, Venezuella, United States), is facing an 

increasing challenge in dealing with intentional TPI. In addition, most agencies and 

pipeline operators have had difficulties designing preventive strategies into their decision-

making process, Section III of the questionnaire survey explore the opinion of the 

respondents regarding intentional TPI. The first question of this section asked respondents 

how their organisation's surveillance procedure of pipeline monitors the following: (a) 

pipeline vandalism; (b) theft of product; (c) sabotage (internal and external); (d) guerrilla 

attacks; (e) likelihood of terrorism; (f) intrusion into aboveground facilities; (g) right-of-way 

encroachment; and (h) and cyber attack.  

 

Questions 2 to 5 of Section III of the questionnaire survey, termed Organisational Efforts‟ 

scale, used a five point Likert-type scale (very poor to very good). The items of the survey 

included: (Question 2) how would you rate your organisation‟s ability to identify pipeline 

terrorism, vandalism, theft, sabotage or criminal activities; and (Question 3) how has your 

organisation sought to identify areas vulnerable to intentional interference. The two last 

question of this scale are: (Question 4) is guidance being sought on pipeline security and 

damage control from: the insurance industry, security agency, and the communities; and 

(Question 5) how well do you work with vendors of monitoring schemes and technologies 

to detect incidents of TPI on your pipelines. In the collation of the result, a summed high 

score, for example, represents a high approach and stance to mitigate intentional TPI, and 

is taken as representative of a respondent‟s organisation. Question 6 is an open-ended 

question that asked respondents to state what simple methodology they considered as 

most effective for protecting pipeline against TPI. 
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Questions 7 to 12 of Section III of the questionnaire survey are termed Occurrence Factor of 

intentional TPI. High scores represent a respondent‟s knowledge and perception of 

prevention priority for intentional TPI. The respondents were asked how they agree with 

six Likert scale items as the major factors affecting the occurrence of intentional pipeline 

damage from strongly disagree (1) and strongly agree (5). The scale items are: (i) 

Population distributions (urban growth with people now leaving close to pipelines); (ii) 

Land use and human activities (e.g.  farming, commercial area, industries, and construction 

activities); (iii) The socio-economic conditions of population living near a pipeline 

(e.g. demography, morbidity, occupations, health, and social infrastructure; (iv) 

Accessibility to pipeline network (proximity of roads, rivers, streams and rail); (v) Socio-

political factors (e.g. literacy rate, employment, political stability violence, revolutions, and 

rebels etc); and (vi) Depth of pipeline (exposed pipeline can often provide criminal 

opportunities). Accordingly, the reasons for the above questions are because bodies of 

literature have not examined exhaustively the factors affecting the occurrence of TPI the 

attention it deserves. In addition, a more thorough understanding of the causes and effects 

of TPI is required. Moreover, prevention methods cannot be optimally employed until 

these factors are better understood. 

 

Questions 15 to 20 of the questionnaire survey examined motivation for TPI, where high 

scores represent the perceived objectives of intentional TPI. The scale‟s item are 

agreements with the following statements: (1) third-party-interference is an indirect attack 

on the government; (2) an avenue to draw attention and promote or publicise  unrelated 

issues in the country; (3) a form of protest for political, social and environmental reasons. 

The other items are: (4) poverty level and socioeconomic condition influence indirect 

intentional TPI; (5) to incite the public against her government‟s inability to provide basic 

services and security; and (6) no extent of  security and surveillance can mitigate intentional 

sabotage and vandalism of pipeline. Every intentional pipeline TPI is motivated by 

something, and it depends on the interaction of various factors. Thus, the above questions, 

Questions 15 to 20 of the questionnaire survey are asked to understand respondent‟s 

perception and comments on what factors motivates intentional TPI. For example, is TPI 

motivated by financial rewards, revenge, and job security? If organisations understand the 

primary motivations for TPI, it is perceived that they will be able to establish clear 

principles and priorities for prevention of TPI. 
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All other questionnaire questions not included above are open-ended question, and were 

separated from the forgoing and analysed separately. Open-ended questions in a 

questionnaire survey are unanswerable directly with, for example, a simple "yes" or "no", 

detailed specific comments or answers are required. These included the following 

questions (Appendix III shows the question‟s items): 

 

a) Do you have any further opinion about preventing and monitoring pipeline TPI? 

(Section-II: Question 5) 

b) Which other method do you prefer for physical security of pipeline networks? 

(Section-II: Question 6g) 

c) Question nine, section two: what other pipeline damage prevention measures will 

you suggest that will mitigate damage cause by third-party activity during 

installation (Section-II: Question 9i) 

d) What other Pipeline damage prevention measures will you suggest that will mitigate 

damage cause by third-party activity post installation (Section-II: Question 10h) 

e) What simple method would you suggest is most effective for pipeline damage 

prevention? (Section-III: Question 6) 

f) What other factors influence the occurrence of intentional pipeline damage? 

(Section-III: Question 13) 

g) Do you have any feedback or observation about pipeline third-party damage not 

covered by this questionnaire? 

9.4 Adopted Methodology for the Questionnaire Survey 

The development of the questionnaire survey was completed after an extensive review of 

the literature, to determine the various survey variables. The final data collection 

instrument consisted of seventy items regarding demographic characteristics, pipeline 

safety and security practice, damage prevention, protection characteristics, as well as 

opinions about factors influencing intentional pipeline interference. Prior to carrying out 

the survey, all ambiguous questions were revised or discarded for clarity, in a pilot-like 

survey (Kent, 2001). 

 

The survey utilised different response formats, including multiple-choice questions, Likert 

scales (and items), and open-ended questions. A Microsoft Excel database was used to 

collate the raw information from the survey, and was imported into SPSS statistical 

software for analysis. SPSS (Statistical Package for the Social Sciences) like Excel, SAS, and 
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MINITAB is suitable for analysis of survey data, and the responses to the questionnaire 

are taken as variable and coded as numeric code, for example, sex is be coded as 

something like 1=male, 2=female. In each section, first general statistical analysis was 

conducted consisting of descriptive statistics to characterise respondents and explore 

response patterns, by measuring differences in opinions, experiences, and perceptions by 

respondent‟s occupation, country, organisation (government agency, academia, 

professional body, service provider, and private companies).  

 

A five-point Likert scale (from strongly agree to strongly disagree), Likert item (excellent 

to poor), and a ten-point ranking scale (very important to least important) were used in the 

three sections of the questionnaire. Likert scale, a bipolar scaling technique, is one of the 

most popular measurement procedures in science and technology; it measures preferences, 

attitudes, and subjective reactions (positive or negative) to a statement. Likert item are 

either interval or ordinal. They are ordinal data when using levels for response without the 

assumption of equidistant between each level of option, and could be analysed using non-

parametric tests, such as the Mann-Whitney test or the Kruskal-Wallis test. However, 

when summed in several related Likert items, they may be treated and analysed as interval 

data and parametric statistical tests, (e.g. regression analysis) is applicable.  

 

The Likert scales can also be reduced to nominal data by aggregating responses into two 

categories of "accept" or "reject". A considerable amount of literature has been published 

on Likert scales. These studies have enumerated the advantages and disadvantages of 

Likert scales. Previous critique studies have reported the likelihood of respondents‟ central 

tendency bias; the „sitting-on-the-fence‟ scenario; or attempt to personalise and portray issues 

in a more favourable light.  In summary, a large and growing body of literature favoured 

Likert scale, and it has become one of the most and widely used techniques despite these 

critiques (Mearns and Yule, 2009, Clason et al., 2007, Kent, 2001, Matell and Jacoby, 

1971). 

9.4.1 Survey Procedures and Sample 

There is a need in any survey to select the right sample (group) from the population to 

represent the entire population, because, in general, questionnaire surveys create many 

non-respondents, and therefore getting the right people to participate is important. 

Samples are determined using either probability or non-probability sampling techniques. 
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Non-probability sampling is non-random, and includes systematic sampling, convenience 

sampling, quota sampling, and snowball sampling (Thomas, 2004). The questionnaire 

survey in this thesis utilised the quota recruited non-probability method of sampling. This 

method is similar to stratified probability (random) sampling where identified subgroups 

(e.g. pipeline industry of the oil and gas sector) are the sample frame. The recruited sample 

enlisted respondents from the subgroups via e-mail and they are provided with the URL of 

a web-based questionnaire. 

 

9.4.1.1 Reliability and Validity  

All measurements in science come with some degree of error, which could be human or 

observational, producing another different set of variables. This variability is an integral 

part of survey measurement, even if repeatedly taken, because slightly different results are 

obtained at each attempt. Therefore, there is the need for consistency of scores of any 

measuring instrument. This measurement is known as reliability, and it concerns the 

accuracy of a measure in a survey, for example, are a set of questions accurate? While 

validity, on the other hand concerns the actual question under measurement, for example, 

what does the question actually measure?  

 

As stated above, reliability is the test of assurance for a measurement to produce same result 

repeatedly. The SPSS alpha model method measures reliability for a group of questions in a 

questionnaire survey, and was used in the thesis to measure the consistency of all the 

summated rating scale and Likert type scaled questions. The Cronbach‟s Alpha measures the 

average of all possible reliability coefficients, and if this alpha is 0.7 and above, the items 

are reliable, as a rule of thumb (Coakes, 2005, Kent, 2001, Nunnally, 1978). All related 

items needing this test in the questionnaire survey passed the reliability and validity test. 

9.5 Statistical Techniques 

A statistical problem requires the selection of the most appropriate statistical technique. 

The following section describes the statistical tests selected and implemented for the 

results of the questionnaire survey.  

9.5.1 Spearman’s Rank Order Correlation Analysis 

Spearman‟s Rank Order Correlation analysis describes the strength and direction of linear 

relationship between two or more variables without removing the effects of other 

variables. This method of statistical analysis is measured as Spearman's Rho, a non-
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parametric correlation analysis method. The measurement for correlation is designated 

Pearson‟s Product Moment Correlation Coefficient, or Pearson‟s r (Tabachnick and Fidell, 2007, 

Bryman and Cramer, 1997). The correlation results for Spearman correlations are between 

+1 and -1, and results from data analysed are interpreted in the same way. 

 

Figure 9-2: Examples of correlation relationships, illustrating the two typical cases of correlation 
(positive and negative correlation), adapted from Tabachnick and Fidell (2007). 

 

A positive correlation of r = 1.0 would means the line‟s slope is at 45 degrees upward, and 

a negative correlation of r = -1, is at 45 degrees downward, for example, if correlation, r = 

0 with a horizontal line, there is no correlation or a significant relationship. However, a 

correlation approaching +1 is said to be positively correlated, as one variable increases, the 

other variable increases (Figure 9-2). A correlation approaching -1 is negatively correlated, 

and is the opposite of the positive correlation. Also, a correlation of 0 means no linear 

relationship exists between the variables under consideration. However, an assumption 

that a correlation implies causation is false, because correlations amongst variables only 

sum up the strength of a relationship, and not causation. The outputs of correlation 

analysis only reveal relationship between two variables if negative, nonexistent, or positive. 

The p-value from statistical analysis suggests a relationship, and the correlation to be 

examined if one exists (Tabachnick and Fidell, 2007). 

In this thesis, the Spearman's Rank Order Correlation Coefficient was used to investigate 

and describe the possible correlation between variables (measuring scales in Table 9-1). 

For example, since most pipeline operators bear the brunt of pipeline damage, it is 

hypothesised that there might be an association between an organisation‟s effort to 

prevent TPI and motivation for such intentional interference (Davis et al., 2007, Guijt, 

Correlation 
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2004b, Agoncillo, 2002).  Table 9-1 shows the question group used as the measuring 

instrument for the scales. 

Table 9-1: Measurement scales for Questions 2 to 5, 7 to 12, and 15 to 20 in Section III of the 
questionnaire survey. 

Measurement Questions from Questionnaire Measuring Scale 

Section III: Questions 2 to 5 Organisational Effort Scale 

Section III: Questions 7 to 12 Occurrence Factor Scale 

Section III: Questions 15 to 20 Motivational Scale  

 

On the scale of Occurrence Factor of intentional TPI, high scores also represent knowledge 

and prevention priority for intentional TPI.  The survey questions on motivation were 

worded negatively, this is to force respondents to read carefully and understand the 

question; they were recoded positively before analysis. 

9.5.2 Multidimensional Scaling (MDS) 

Multidimensional scaling (MDS), considered an alternative to Factor Analysis (FA), is a 

statistical technique that represents and plots the preferences and visual perceptions of 

respondents about a set of given variables, into what could be termed a judgment or 

consensus map. The MDS method is one of the more practical ways in perceptual 

mapping; moreover, it has the advantage over other methods (e.g. Factor Analysis and 

Discriminant Analysis) in that it relies less on researcher‟s judgments and examines the 

underlying dimensions from respondents‟ judgements. Some of the Likert item used in the 

survey are ordinal scale type data, hence, the consideration for the MDS (Bronstein et al., 

2006, Borg and Groenen, 2005, Coakes, 2005). Specifically, MDS was adopted for the 

statistical analysis of Question 9 and 10, of Section II of the questionnaire survey. It was 

decided that the best method to adopt for the dimensionality of perception regarding 

various methods for preventing TPI both during and after pipeline installation was by the 

use of MDS techniques, this is to reduce dimensionality and to enhance clearer 

interpretability (de Rooij, 2009).  

9.5.3 Multiple Regression Analysis 

Multiple regression analysis explores relationships between two or more groups of 

variables by examining and explaining how much variance in a dependent variable is 

explained by the independent variables. Multiple regression analysis also allows the 
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investigation of the contribution of a variable to the predictive ability of a model. 

Following this, and based on literature review, it was hypothesised that a high ranking on a 

risk mitigation scale (Question 7, Section II) is a result of high perception and awareness of 

factors responsible for the occurrence of TPI. It also measures the degree of respondent‟s 

assessment of the motivation for TPI, especially intentional interference.  

 

From the foregoing, it was possible to investigate the significant relationships between 

these factors further; using multiple regression analysis. The intent was to explore how well 

the understanding of intentional TPI occurrence factors and perception regarding 

motivation are able to predict scores on a risk mitigation scale. In addition to how much 

variance in the risk mitigation scale can be explained by scores on these two scales, 

regression analysis also determines which variables are the best predictor of the risk 

mitigation score. Prior to commencing the analysis, the distributions of the variables are 

ascertained to be normally distributed and meet all of the required assumptions of a 

multiple regression analysis. 

9.5.4 Two-way between groups ANOVA 

Two-way between groups analysis of variance (ANOVA) examines the individual and joint 

effect of two independent variables on one dependent variable, e.g., what is the effect of a 

respondent‟s occupation on the score for risk mitigation scale for each type of organisation 

they are employed? In addition, risk mitigation score may increase across a geographical 

location based on level and degree of TPI and hence could be describe as an interaction effect, 

which also could describe the effect that need to be specified for the exact geographical 

location. This means that the influence of geographical location on the risk mitigation scale 

can be examined if different for the academia, government agencies or the private 

companies (Pallant, 2007). Questions 7 of Section II of the questionnaire was analysed 

using this statistical technique. 

9.6 Multiple Response Analysis of Open-ended Questions 

This section describes the methodological approach and the qualitative analysis of the 

findings from the open-ended questions used in the questionnaire survey. The goal was to 

describe the patterns of the commentary; responses frequency and associations from a 

respondent‟s unique experiences that are organisation specific. Open-ended questions give 

respondents the liberty to formulate replies, comments, and observation from experience 

in addition to the closed question in a survey. Open-ended questions are qualitative data, 
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and are a source of rich description and diagnosable explanations of process or procedure 

in a context that could generate or revise a research‟s theme and framework (Kent, 2001). 

Multiple response analysis is one of the most commonly used methods of analysis for 

open-ended questions in a survey. The appropriateness of open-ended questions for this 

research is justified because: 

 

a) The questionnaire survey is for international respondents, and because TPI are 

country specific, it was therefore considered inappropriate to close some question 

by specifying only eligible options. 

 

b) Open-ended questions are more engaging and avoid the likelihood of pre-

judgement and biasness that might result when answer options are suggested to 

respondents. 

 
c) An open-ended question captures all views and perceptions that have not been 

considered as part of the closed questions of the questionnaire survey. 

 

Qualitative data, like open-ended questions are non-numerical records, commentary, 

description, and feedback that produce an immediate understanding with further 

processing. Coding is therefore the process of converting such qualitative data into 

numerical records, referred to as multiple response analysis (Kent, 2001). The maximum 

numbers of responses to a particular open-ended question are determined from the 

collated questionnaire after the survey and the identified responses defined as variables for 

further analysis. Questions 5 of Section II and Questions 6, 9, and 10 of Section III of the 

questionnaire were analysed using this statistical technique (Section 10.5). 

9.7 General Limitations of the Questionnaire Survey 

The study within this thesis suffered from several limitations: 
 

 An important limitation of the survey is that it did not take the years of 

professional experience of the respondents into account, which is likely to affect 

and limit the effectiveness of the result.  

 

 The questionnaire survey also failed to take into consideration the participation of 

the general civil society, for example, pressure groups and independent regulatory 
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bodies in the oil and gas industry. While this creates an opportunity for further 

research, it also implies a weakness on the quality of the study. 

 

 The questionnaire survey is a cross-international survey of pipeline TPI, hence, we 

cannot determine causality, given that TPI is prevalent and perhaps increasing in 

some regions (e.g. Africa and South America) than others. Causation can only be 

explained by understanding a country's specific situation and the legal framework 

in place individually. 

 

 The open-ended questions are labour intensive and the data collation is slow, and 

difficult to establish validity and reliability.  

 

 The multiple response questions could not be further analysed because no 

statistical test is available that can analyse group of responses apart from simple 

counts and percentages. 

9.8 Conclusion 

The questionnaire survey provide a critical analysis of TPI by exploring organisational 

representatives‟ perceptions and identification into why the pipeline industry view certain 

risk mitigation strategy and preventative measures as being more important than others. 

The findings of the survey is important, especially considering the dramatic changes in 

security problems worldwide, that have proved traditional security technologies incapable, 

with more consequence on the safety of oil and gas pipelines.  
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10  QUESTIONNAIRE SURVEY: ANALYSIS AND 
RESULTS 

10.1 Introduction 

The recent developments in third-party interference (TPI), especially intentional TPI, have 

heightened the clearly impractical ability to observe actual pipeline interference directly, 

therefore, the need for questionnaire survey. The aim of the questionnaire survey is to 

elicit the knowledge, experience, and perceptions of the pipeline industry about third-party 

interference from participants. The objective is to collect opinions that are organisation 

representative on both intentional and unintentional pipeline TPI, solicited from those 

directly involved with the problem in the oil and gas industry. This insures a potentially 

expanded understanding of pipeline TPI, beyond the selected study area in Nigeria. 

 

Figure 10-1: The various organisations of 
respondents that participated in the 

questionnaire survey. 

 

Figure 10-2: Occupation and percentage of 
respondents that participated in the 

questionnaire survey. 

 

The study population consisted of practicing members of the oil and gas industry, 

including health and safety engineers, pipeline engineers, pipeline service providers, and 

project engineers; encompassing oil and gas companies, government agencies, and 

professional bodies (Figure 10-1 and 10-2). In total, two hundred and twenty nine (229) 

responses were received, collectively from thirty-eight countries as shown in Table 10-1 

and Figure 10-3. Out of the original 1640 sample size (recipients of the initial e-mail), 38 

per cent were untraced (for example, rejection from the recipient's e-mail address server). 

The remaining 1016 eligible respondents received the questionnaire, however, 787 

potential respondents declined to participate. The response rate was 23 per cent. The 

response rate was unexpected, and this probably suggests that data confidentiality policy of 
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some respondent‟s organisation and the difficulty of anonymous response to the 

questionnaire affected the response rate, especially since oil and gas pipeline data are 

confidential in most organisations and countries.  

 

Table 10-1: The list of all countries of from 
where responses were received for the 

questionnaire survey. 

Australia Iran Romania Germany 

Brazil Ireland Russia Greece 

Belgium Italy Spain India 

Bulgaria Japan Switzerland Indonesia 

Canada Macedonia Saudi Arabia UAE 

Colombia Mexico Turkey UK 

Czech Netherlands USA Tunisia 

Ecuador New Zealand China Oman 

France Nigeria Mauritius  

Singapore Uzbekistan Spain  
 

 

Figure 10-3: The numbers and continent 
distribution of respondents that participated in the 

questionnaire survey. 
 

This chapter presents the result of the qualitative analysis of the questionnaire survey, and 

provides interpretations of the various statistical testing results. The result of the 

response‟s validity and reliability and the analyses of the raw data for the open-ended 

questions are also discussed in this chapter. Finally, the chapter concludes with a number 

of conclusions. 

10.2 Section I: General Information of the Questionnaire 

The questions that were asked in this section are described in Chapter 9, and included the 

methodologies adopted for analysing the questionnaire survey. It is interesting to note that 

various organisations participated, and approximately 39 per cent of the survey 

respondents were pipeline engineers and 25 per cent were pipeline service providers. The 

distribution is as shown in Figure 10-2. When categorised by organisation, the majority of 

respondents are from private companies with experience of operation in the pipeline 

industry. In addition, the overall responses is geographically balanced, with 50 respondents 

from Africa, 24 respondents from Asia Pacific, 92 respondents from Europe and 63 

respondents from America (Figure 10-3). 

10.3 Section II: Unintentional Pipeline Third-Party Interference 

Questions 5 and 8 of Section II, and Questions 6 and 13 of Section III of the 

questionnaire survey contained open-ended questions. In this section (and Section 10.4), 

these questions were omitted from the sequential treatment of the overall questionnaire, 
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choosing to focus on the structure of the closed questions first. However, they were 

separately analysed in Section 10.5 of this chapter, this structured approach is to allow for 

greater clarity of the open-ended and closed questions. The survey‟s question items 

discussed in the following section are described in Section 9.3 and are listed in an abridged 

format of the questionnaire in Appendix III. 

10.3.1    Section II: Unintentional TPI, Question 1 

The questionnaire survey examined whether respondent‟s occupation and geographical 

location influenced their perception about pipeline security. The SPSS results of cross-

tabulation analysis between a respondent‟s geographical location and pipeline security 

being a worldwide problem showed no such relationship. From the data in Table 10-2, it is 

apparent that 88.1 per cent of all respondents agreed that pipeline security is a worldwide 

problem that needed serious and urgent attention. However, the results (Table 10-2) also 

showed that 20 per cent of the respondents in the pipeline services sector disagreed with 

the statement, twice more than other organisational types.  

 

The perception of the pipeline services sector could be influenced by the type of services 

which they provide, that are intrinsic to the smooth operation of pipelines (e.g. 

maintenance and services). Interestingly, government agencies and academia, with 92.5 per 

cent and 94.7 per cent respectively, agreed more than any other organisational type with 

the Question 1 posed in Section II of the questionnaire. 
 

Table 10-2: Crosstabulation of Question-1 with respondent's organisation. 

 

Pipel ine security i s a world-wide problem * Respondent's Organisation Crosstabulation

23 11 52 8 18 112

57.5% 57.9% 44.8% 88.9% 40.0% 48.9%

14 7 52 0 17 90

35.0% 36.8% 44.8% .0% 37.8% 39.3%

2 0 5 1 9 17

5.0% .0% 4.3% 11.1% 20.0% 7.4%

0 1 2 0 0 3

.0% 5.3% 1.7% .0% .0% 1.3%

1 0 5 0 1 7

2.5% .0% 4.3% .0% 2.2% 3.1%

40 19 116 9 45 229

100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Strongly Agree

Agree

Disagree

Strongly Disagree

No Opinion

Pipeline

security is a

world-wide

problem

Total

Government

Agency Academic Private Company Professional Body Pipeline Services

Respondent's Organisation

Total
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10.3.2    Section II: Unintentional TPI, Question 2 

The majority of respondents surveyed, 52.8 per cent disagreed with the question that 

pipeline surveillance technology should protect only vulnerable segments of a pipeline 

network. However, the cross-tabulation analysis of the geographical location of the 

respondents showed that 87.5 per cent of the respondents from Oceania disagreed with 

the question, compared with 75 per cent of respondents from Asia that agreed with the 

same question. The most striking result to emerge from the data is that for Africa, where 

48 per cent of the respondents agreed with the statement and 48 per cent disagreed.  

 

Third-party interference (mostly sabotage and theft) in oil and gas producing countries in 

Africa, especially Nigeria, is a daily occurrence, with conflicting and divided opinion about 

the root causes. While some suppose that the oil companies effectively encourage TPI, 

others think the local population are responsible for the high numbers of occurrence. This 

equal and opposite views could explain this result of the survey. For example, in a 

response to an open question, a respondent observed that: “the cause and solution to the 

problem of third party damage to pipelines in Nigeria are well known. There seems to be a reticence on the 

part of government to address the root causes. The oil companies themselves support the local communities in 

which they work but the government does not support them in the appropriate manner”. 

 

 Table 10-3: Crosstabulation of Question 2 with respondents' organisation 

 
 

In a cross-tabulation of results to examine the influence of a respondent‟s occupation on 

the response to the same survey question, 66.7 per cent of all respondents from 

professional bodies agreed that any pipeline surveillance technology should protect only 

A pipel ine surveillance technology should protect only vulnerable segments of a pipeline network * Respondent's Organisation Crosstabulation

7 3 7 1 6 24

17.5% 15.8% 6.0% 11.1% 13.3% 10.5%

11 6 38 5 16 76

27.5% 31.6% 32.8% 55.6% 35.6% 33.2%

15 8 45 2 18 88

37.5% 42.1% 38.8% 22.2% 40.0% 38.4%

5 1 21 1 5 33

12.5% 5.3% 18.1% 11.1% 11.1% 14.4%

2 1 5 0 0 8

5.0% 5.3% 4.3% .0% .0% 3.5%

40 19 116 9 45 229

100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count

% within Respondent's

Organisation

Count
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Agree

Disagree

Strongly Disagree
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Government
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vulnerable segments of a pipeline network compared to the overall 43.7 per cent of the 

entire respondents (Table 10-3). 

10.3.3    Section II: Unintentional TPI, Question 3 

The majority of respondents (88.2%) felt that there has been limited research in the area of 

TPI, in response to Question 3 of the questionnaire, compared with 8.7 per cent that 

considered otherwise. Interestingly, 50 per cent of respondents from Oceania disagreed 

that there is only limited research in the area of TPI, whereas 100 per cent of all 

respondents from professional bodies agreed that there is limited research in the area of 

TPI, followed by academia with 89.5 per cent. 

10.3.4    Section II: Unintentional TPI, Question 4 

In response to Question 4, 60.7 per cent of all of the respondents disagreed that pipeline 

safety regulations presently existing are adequate for the prevention of TPI. However, 50 

per cent of respondents from Oceania agreed, while on the hand, 54 per cent of 

respondents from Africa disagreed. It should be noted that the oil and gas exploration 

legislation in Africa is generally very weak compared to that of other oil and gas producing 

countries, and in recent times there have been calls for stricter enforcement of the law 

against, for example, intentional TPI.  

 

 

Figure 10-4: Bar chart plot of respondent's answers to Question 4 asking if existing pipeline safety 
regulations are adequate for the prevention of third-party interference. 

 

The result of the survey showed that 60.7 per cent of all respondents disagreed that the 

current regulations were adequate. In a cross-tabulation of the same question with 

respondent‟s occupation, 60 per cent of the safety engineers that responded disagreed with 

the statement that pipeline safety regulations presently existing are adequate for the 
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prevention of TPI (Figure 10-4). Likewise, the cross-tabulation of the question with regard 

to the respondent‟s organisation shows over 30 per cent of respondents from government 

agencies agreed that the current regulations were adequate. 

10.3.5    Section II: Unintentional TPI, Question 6 

In Question 6, Section II of the questionnaire, the respondents were asked to identify and 

select all their preferred methods for protecting pipeline networks against TPI. The 

following are the options: (a) perimeter fencing of pipelines right-of-way; (b) electronic 

intrusion detection; (c) pipeline communications security gadgets; (d) direct pipeline 

surveillance and monitoring; (e) company specific system; and (f) specification of other 

methods not mentioned in the questionnaire. The frequency analysis of the multiple 

responses used a multiple dichotomy analysis in SPSS. Each of the items in the question 

was given a label and a code, 1 if a method is selected and 0 if it is not selected. This 

collation was descriptively analysed using the multiple response analysis technique.  

 

Table 10-4: Summary analysis of respondent's answer to question on ensuring security and safety 
of pipeline networks. 

 Responses 

Preferred physical security of pipeline networks N Percent 

Perimeter fencing of pipelines right-of-way 48 9.90% 

Electronic intrusion detection 138 28.50% 

Pipeline communications security gadgets 65 13.40% 

Pipeline surveillance and monitoring 161 33.20% 

Company specific system 46 9.50% 

Others 27 5.60% 

Total 485 100.00% 

 
 

The inspection of the frequency table (Table 10-4) for the multiple response analysis 

indicates that pipeline surveillance and monitoring are the most frequently chosen protection 

procedures preferred for pipeline safety (33.20%), followed by electronic intrusion detection 

(28.50%). The analysis by continents showed that respondents from Europe preferred 

pipeline surveillance and monitoring (37.16%, i.e. 14.00% of 37.7%) than the other methods 

(Table 10-5). The crosstabulation of Question 6 and respondent's geographical location is 

shown in Table 10-5. 
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Table 10-5: The crosstabulation of Question 6 and respondent's geographical location. 

 
 

10.3.6    Section II: Unintentional TPI, Question 7 

Question 7 of the questionnaire survey measures the techniques used for developing a risk 

mitigation strategy for pipeline security by organisations. The designs of the risk mitigation 

questions are after Muhlbauer‟s (2004) suggestion and described in Section 9.3. 

Table 10-6: Descriptive Statistics and Kendall's W Test Ranks. 

 Mean Std.Dev Mean Rank 
Threat assessment of pipeline network 2.88 2.511 4.67 
Community relations and public education 3.03 2.515 4.98 
The role of host government 3.34 2.540 5.52 
Prosecution and punishment to offenders 3.50 2.680 5.59 
Inaccessibility to facilities by road, etc 5.21 2.654 7.63 
Developing an integrated security plan 3.12 2.353 5.22 
Incident response capability 2.81 2.429 4.70 
Environmental response 3.13 2.484 5.17 
Personnel security surveillance on pipeline 3.46 2.316 5.62 
Physical protection of the pipeline 3.70 2.565 5.89 

N=224, Kendall's Coefficient of Concordance=0.095, p=0.000; D.F=9 
 

The results in Table 10-6 clearly shows that incident response capability and threat assessment of 

pipeline network are the highest ranked risk-mitigation strategies by respondents, with an 

average descriptive mean of 2.81 and 2.88 respectively. Interestingly, inaccessibility to pipeline 

facilities with an average mean of 5.21 is the least ranked. However, to check if the 

respondents responses have been unanimous or random, a Kendall's coefficient of 

concordance (Kendall‟s W ranking) was used to evaluate agreement among respondents, it 

ranges from 0 (no agreement) to 1 (absolute agreement).  The test statistic W, produced 
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with SPSS software, was 0.095 (Table 10-6). Therefore, it is concluded that the responses 

are random and that there was no overall trend of agreement among the respondents 

(Kendall and Smith, 1939).  

 

10.3.6.1    Two-way between groups ANOVA 

The thesis hypothesised that the geographical location of organisations determines how 

they perceive and manage their risk mitigation strategy for TPI. Therefore, the Two-Way 

Analysis of Variance (ANOVA) was used to simultaneously test for the effects of the 

following for Question 7: 

a) The differences in the types of organisation on the risk mitigation scale. 

b) The differences in risk mitigation score by geographical locations (Africa, Asia, 

Europe, etc.).  

c) The interaction of these variables for difference in the effect of location on risk 

mitigation scores for the different types of organisations.  

 

 

 

Figure 10-5: Histogram for Question 7 

 

Figure 10-6: Box Plot for Question 7 

 
 

In accordance with the procedure described in Chapter 9, it is required to determine 

whether the distributions of the variables are statistically normal, because the assurance of 

normality is a prerequisite for any inferential statistical procedures. Therefore, a plot of 

histogram and a boxplot were used to ascertain normality of the variables. The results 

obtained from the preliminary analysis of normality are shown in Figure 10-5 and Figure 

10-6. This confirms that the risk mitigation scale is skewed, and the data are not normally 

distributed. However, the distinction shown by the skewed distributions is very important, 

for example, it can be shown that half the respondents in our sample are rated high on the 

risk mitigation scale.  

 

9.07.56.04.53.0

40

30

20

10

0

Risk Mitigation Strategy Scale

Fr
e

q
u

e
n

c
y

Histogram of Risk Mitigation Strategy Scale

11

10

9

8

7

6

5

4

3

2

R
is

k
 M

it
ig

a
ti

o
n

 S
tr

a
te

g
y

 S
c
a

le

Boxplot of Risk Mitigation Strategy Scale



Chapter X: Questionnaire Survey: Analysis and Results 

195 

 

 
Figure 10-7: The natural logarithmic 

transformation. 

 

Figure 10-8: Box plot for log transformation 
for Mitigation Scale. 

 

The data were transformed with natural logarithms, and the statistics and graphs in Figure 

10-7 and Figure 10-8 indicate that the use of the natural logarithmic transformation was 

appropriate. The distribution been relatively normal, the data was reasonably satisfactory 

for further statistical analysis. 

 

Table 10-7: ANOVA output result from SPSS indicating the tests of between-subjects effects 

Source 
Type III Sum 

of Squares 
df 

Mean 
Square 

F Sig. 
Partial Eta 

Squared 

Corrected Model 1.271(a) 26 .049 1.237 .208 .137 

Intercept 11.016 1 11.016 278.76 .000 .580 

Continent .337 5 .067 1.705 .135 .040 

Organisation .147 4 .037 .931 .447 .018 

Continent * Organisation .625 17 .037 .930 .539 .073 

Error 7.983 202 .040    

Total 62.386 229     

Corrected Total 9.253 228     
 a  R Squared = .137 (Adjusted R Squared = .026) 

 

 
On completion of the normality test, the process to compare the scores of the scale was 

carried out by employing the ANOVA procedure. The examination of the SPSS output in 

Table 10-7 for the possibility of interaction effect indicates that there is no significant 

difference in the effect of the geographical location of respondents on the risk mitigation 

scores for different types of organisation (i.e. Continent * Organisation‟s sig.=0.539). Since 

there is no significant interaction effect on the variables, the main effect of one independent 

variable is not correlated to another, for example, different types of organisation do not 

correlate with the geographical location of the respondent. From the SPSS output in Table 

10-7, the sig. level for organisation is 0.447, this indicates there is no significant main effect, 

that respondents from different organisation do not differ on the risk mitigation scale, and 
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the same is evident for the geographical location of the respondents (Sig. =0.135). In 

addition, the Levene‟s Test of Equality of Error Variances shows the sig. level is 0.058 

(SPSS output not shown), which is more than the statistic significance level of 0.05; hence, 

the assumption of homogeneity of variances is not violated in this analysis. 

 

 
 

Figure 10-9: Estimated Marginal Means of risk mitigation scores by respondent‟s geographical 
location and respondent‟s organisation. 

 

SPSS output also produce line (interaction) plots of the estimated means of two or more 

independent variables with a dependent variable. The profile plot of risk mitigation scores 

by respondent‟s geographical location by respondent‟s organisation is shown in Figure 10-

9. This figure indicates that there are medium and small differences in the risk mitigation 

scores by respondent‟s geographical location and respondent‟s organisation. For example, 

for government agencies, the mean score for Europe (Mean=0.52, Std. Deviation=0.18) 

was significantly different from Asia (Mean=.35, Std. Deviation=0.18). This SPSS output 

visually inspect the relationship among variables. 

10.3.7     Section II: Unintentional TPI, Question 9  

The question items of Question 9 and 10 are presented in Section 9.3.1 with an abridged 

format in Table 10-8. These questions (Table 10-8) are sets of summated rating scale 

questions, with the response options ranging from “excellent” to “poor”. However, a question 

item: Avoid pre-identified vulnerable zone was removed because it was found to be redundant. 
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Following this, the thesis examined the reliability of the question's item results using the 

SPSS reliability test, a measure to confirm whether the same survey will produce the same 

result repeatedly. The SPSS alpha model method measures the consistency of the 

summated rating scales. The Cronbach‟s Alpha value measures the average of all of the 

possible reliability coefficients calculated, and if this alpha value is above 0.7, then the 

items are, as a rule of thumb, assumed to be reliable (Coakes, 2005, Kent, 2001, Nunnally, 

1978). The reliability statistics obtained from the SPSS analysis shows that the question has 

a good internal consistency, with a Cronbach's Alpha coefficient of 0.725. 

 

Table 10-8: An abridged list of the questionnaire items for Questions 9 and 10 for perception 
about pipeline TPI during and after installation. The option varies from excellent to poor. 

Question 9: Perception about the following in pipeline 
TPI  during installation 

Question 10:Perception about the following in pipeline 
TPI  post-installation 

 Sleeve as additional protective layer 

 Slabs, Tiles and Plates over pipelines 

 High Tensile Net buried with pipeline 

 Increasing pipeline wall thickness 

 Marker posts along pipeline length  

 Marker Tape buried above pipeline 

 Fibre optics installed at intervals 

 Aerial and Helicopter Surveillance 

 Full walking patrol 

 Remote Sensing Satellite Surveillance 

 Global Positioning System (GPS/GIS)  

 Direct Surveillance  

 Electromagnetic Detection/ Acoustic 

 Identify and Monitoring „Hot Spots‟ 

 

10.3.7.1 Frequency distributions for Question 9 

The frequencies analysis in Table 10-9 gives an overview of each protection method. It is 

apparent that the overall rating of protection by increasing pipeline wall thickness is the highest, 

compared with other methods or measures in preventing TPI, whilst the rating for marker 

tapes above pipeline is relatively low. This result about pipeline wall thickness is surprising, 

although not considered in the GIS-based multivariate statistical analysis, if the thesis is to 

be moved forward, a better understanding of this variable needs to be developed.  

 

However, this procedure does not provide a critical composite evaluation of the scale 

items and the summated combined items of Questions 9 and 10 were used in a 

Multidimensional Scaling (MDS) analysis, to determine the perceptual relationships 

between the items in both groups. For example, do respondents perceive the relationship 

between prevention measures for during-installation (Question 9) and post-installation 

(Question 10) of pipeline differently. These relationships are discussed in the following 

section (Section 10.3.8). 
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Table 10-9: Table of frequency results for Question 9. 

    Count   %     Count    %      Count  %      Count  %     Count %

Sleeve as additional protective layer 24 10.5% 17 7.4% 58 25.3% 94 41.0% 36 15.7%

Slabs, Tiles and Plates Over Pipelines 16 7.0% 21 9.2% 44 19.2% 108 47.2% 40 17.5%

High Tensile Net Buried above Pipeline 17 7.4% 26 11.4% 75 32.8% 88 38.4% 23 10.0%

Increasing Pipeline Wall Thickness 15 6.6% 23 10.0% 56 24.5% 77 33.6% 58 25.3%

Marker Posts along Pipeline Length 14 6.1% 18 7.9% 59 25.8% 96 41.9% 42 18.3%

Marker Tape above Pipeline 16 7.0% 34 14.8% 73 31.9% 79 34.5% 27 11.8%

Fibre Optics Installed at Intervals 21 9.2% 25 10.9% 79 34.5% 73 31.9% 31 13.5%

Excellent
Methods

   Poor Fair Average Good

 

10.3.8     Section II: Unintentional TPI, Question 10  

Multidimensional scaling (MDS) analysis transforms respondent‟s judgments and 

preferences into multidimensional spatial maps, showing the relative position and 

relationship of all items (Holmes, 2009). The various items in Questions 9 and 10 were 

combined to examine the overall perception of the various mitigation methods. However, 

items for which it was difficult to ascertain the difference in both set of questions were 

excluded from the MDS analysis.  The SPSS MDS module was used in this analysis, and 

Table 10-10 presents the results obtained from the MDS analysis, measuring actual 

representation of preferences of Questions 9 and 10 combined (Coakes, 2005). 

  

Table 10-10: The Stress and Fit Measures from the SPSS output of the multidimensional scaling 
(MDS) analysis, in two dimensions. 

Normalized Raw Stress .03353 

Stress-I .18312(a) 

Stress-II .48306(a) 

S-Stress .09459(b) 

Dispersion Accounted For (D.A.F.) .96647 

Tucker's Coefficient of Congruence .98309 

PROXSCAL minimizes Normalized Raw Stress. 
(a)  Optimal scaling factor = 1.035; (b) Optimal scaling factor = .970. 

 
 

According to Coakes (2005), the most commonly used stress measurement and measure of 

fit, showing actual representations of preferences in a multidimentional scale is the Stress-I, and 

this needs to be minimised. This is because the lower the stress, then the better the fit 

between the data. However, both the measure of the „Dispersion Accounted For‟ and „Tucker‟s 

Coefficient of Congruence‟, when greater than 0.90 indicate a good fit of preference, and Table 

10-10 indicates both measures recorded  0.97 and 0.98 respectively. 

 

The SPSS procedure determines the numbers of dimensions the solution should have that 

offers good improvements in the stress, which also makes the results easier to interpret. 

The scree plot of the variables in Figure 10-11 also shows the guide to the appropriate 
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number of dimensions to consider, however, the representation in two dimensions was 

chosen to better display the output of the MDS. The scree plot suggests that a three-

dimension solution is satisfactory, as the “elbow” begins at this dimension. It also illustrate 

a better graphical representation, however, interpretation is complex. The two-dimension 

solution produced and used in this analysis is to reduce the observed complexity of the data, 

since a two-dimensional map visualize the output easily. The common space plot in Figure 

10-10 indicates four different spatial units and regrouping of the original variables. Remote 

sensing satellite surveillance; Global Positioning System (GPS); electromagnetic detection and acoustics; 

and fibre optics installed at intervals are in the southwest quadrant of the common space. The 

walking patrol is farther in the cluster of identify and monitoring hotspots and others, and could 

probably indicate its less preference by the respondents in mitigating third-party 

interference. 

 

 

Figure 10-10: Common space plot 
created with SPSS‟s multidimensional 

scaling module  

 

Figure 10-11: Scree plot of the variables, a SPSS 
multidimensional scaling output 

It is also possible to interpret Figure 10-10 based on clustering, for example, there is a post-

slabs-thickwall cluster as well as a nets-sleeve-tape cluster in Figure 10-10. However, there is 

subjectivity and ambiguity involved in creating the space plots shown in Figure 10-10, 

because the higher the stress, the less reliable the position of the variable in the spatial 

space plots. Furthermore, the scree plot with an elbow at the three-dimensional solution of 

Figure 10-11 indicates there is a significant improvement between the two- and three-

dimensional solutions, compared with the improvement between three- and four-

dimensional solutions. In addition to the above, the interpretation of the MDS test 

requires distinguishing what commonalities between the variables. Therefore, the GPS-

acoustic-RS-fibre cluster indicates a group of measures that are expensive. 
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10.4 Section III:    Intentional Third-Party Pipeline Interference 

Section III of the questionnaire (Appendix III) consisted of questions analysed in this 

sections, and, as discussed in Section 9.3, Questions 6 and 13 were excluded because they 

contained open-ended questions. 

10.4.1    Section III: Intentional TPI, Question 1 

The SPSS multiple dichotomy analysis method was used to provide frequencies and 

percentages for this survey question and to determine the most frequently indicated 

response. The analysis of the demographic characteristics of a respondent‟s choice based 

on occupation, organisation and geographical location were also undertaken and the results 

examined. Table 10-11 presents the results obtained from the analysis using the SPSS 

dichotomy analysis. 
 

Table 10-11: Frequency distribution for Question 1 of Section III 

 
 

 

The majority of respondents, 97.4 per cent, indicated more than one activity, and an 

inspection of the frequency table (Table 10-11) indicates that direct pipeline vandalism, 

followed closely by theft of product were the most frequently identified. In an analysis by 

geographical location, respondents from Africa, North America and Oceania most 

frequently indicated direct pipeline vandalism as being the main priority of their surveillance 

programmes, while respondents from Asia and Europe indicated right-of-way encroachment; 

only South American indicated theft of product and pipeline facilities.  

 

The present findings seem to be inconsistent with other results from Section II of the 

survey, primarily because it focused on intentional TPI. There are differences between the 

responses expressed by respondents in this section and those given in Section II. Similarly, 

$S3_Question1 Frequencies

108 14.6% 48.4%

101 13.7% 45.3%

101 13.7% 45.3%

39 5.3% 17.5%

72 9.8% 32.3%

100 13.6% 44.8%

116 15.7% 52.0%

32 4.3% 14.3%

69 9.3% 30.9%

738 100.0% 330.9%

Direct Pipeline Vandalism

Theft of product or facilities

Sabotage to pipeline network

Guerrilla attacks

Likelihood of Terrorism against pipeline facilities

Intrusion to above ground facilities

Right-of-Way Encroachment

Cyber attack and potential hijack of network facilities

No Opinion

                                  Total

N Percent

Responses

Percent of Cases
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in a frequency analysis by organisation, the majority of respondents from academia and the 

professional bodies indicated no opinion (possibly, because they have no direct responsibility 

or involvement in protecting pipelines, while the respondents from government agency 

indicated direct pipeline vandalism and right-of-way encroachment. Respondents from all private 

companies and pipeline services also indicated right-of-way encroachment. 

10.4.2    Section III: Intentional TPI, Questions 2 to 5 

Respondents were asked how they would rate their organisation‟s ability to identify 

pipeline terrorism, vandalism, theft, sabotage and criminal activities. Overall, 53.3 per cent 

of the respondents felt that their organisation‟s ability was good. Approximately half of 

those surveyed from South America rated their organisation‟s ability as being below 

average in identifying intentional TPI, while 85 per cent of respondents from Oceania 

rated their organisation‟s ability as being fair. Almost two-thirds of the respondents from 

academia (66.6%) rated their organisation‟s ability poor, compared with a similar poor rating 

by 25 per cent of pipeline project engineers. In another and different perception, 56.6 per 

cent of the respondents from private companies indicated their organisation‟s ability as 

being good. The results are presented in Figure 10-12.  

 

 

Figure 10-12: Bar chart plot of Question 2 

 

Figure 10-13: Bar chart plot of Question 3 

 

The third item (in Section III) assessed the extent to which an organisation sought to 

identify segment of the pipeline considered particularly vulnerable to intentional TPI. In 

the results, 83 per cent of the entire respondents responded to this question, and 76.8 per 

cent of the respondents rated their various organisations as good. The highest rating is from 

the majority of respondents who responded from Oceania (75%), who felt very good about 

their organisation‟s ability in identifying pipeline vulnerable segments. The majority of 

pipeline project engineers and respondents from private companies rated their 
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organisation‟s ability as being good, 68.6 per cent and 85.5 per cent respectively. The results 

are presented in Figure 10-13. 

 

Question 3, of Section III requested responses on how guidance has been sought on 

pipeline security and damage control from the insurance industry, security agency, and the 

communities. The result shown in Figure 10-13 indicates that, of the 229 respondents who 

completed the overall questionnaire, 187 (81.7%) responded to this question and of these, 

only 41.7 per cent rated their organisations as being good in response to the question. The 

highest rating was from respondents from Asia (61.5%) who rated their organisation good, 

in contrast to just 11.1 per cent of respondents from South America who rated their 

organisation good. In the respondents from professional bodies, the responses were divided 

almost equally between those who indicated their organisation poor (50%) and those that 

indicated good (50%).  

 

Table 10-12: Summary of respondents' answers to Questions 2 to 5 in Section III. 

 
Very 
Poor 

Poor Fair Good 
Very 
Good 

How would you rate your organisation‟s ability to 
identify pipeline terrorism, vandalism, theft, sabotage 
or criminal activities? 
 

6.7% 21.0% 19.0% 44.6% 8.7% 

How has your organisation sought to identify areas 
particularly vulnerable to intentional damage? 
 

3.7% 15.8% 29.5% 41.6% 9.5% 

How has guidance been sought on pipeline security 
and damage control from (a) The insurance industry, 
(b) The security industry, (c) The police, (d) The 
communities, and (e) Vendors of pipeline security 
equipments? 
 

6.4% 15.0% 36.9% 31.0% 10.7% 

How well do you work with vendors of monitoring 
systems to detect incidents of third party damage on 
your pipelines? 

7.4% 20.6% 34.9% 24.9% 12.2% 

 
 

Many respondents (63%) ranked their organisation‟s work with vendors of the monitoring 

systems used to detect incidents of TPI on pipelines as fair. In response to the same 

question, most of those surveyed (57%) from the Oceania indicated poor, with only 14 per 

cent agreeing to their organisation‟s strategy having been good. Overall, 80 per cent of 

respondents from South America recognised their organisation‟s partnership with vendors 

of monitoring and detection systems as important in curbing intentional TPI. The majority 

of the respondents and in particular respondents from the professional bodies (57.1%) 

rated their organisation‟s work with vendors very good, which was the highest rating. 
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Similarly, 44.2 per cent of the safety engineers rated their organisation‟s work with vendors 

very good. 

10.4.3    Section III: Intentional TPI, Questions 7 to 12 

Respondents were asked to indicate their agreement with six Likert type ranked items as 

being the major factors influencing the occurrence of intentional pipeline interference 

from strongly disagree (1) through to strongly agree (5). The six scale items are: (i) population 

distributions; (ii) land use and human activities; (iii) the socio-economic conditions of 

population living near a pipeline; (iv) accessibility to pipeline; (v) socio-political factors; 

and (vi) depth of pipeline (Table 10-13). 

Table 10-13: Descriptive statistics of the responses for how respondents agree with as being the major 
factors affecting the occurrence of intentional pipeline interference. 

Section III: Questions 7 to 12 
Strongly 
Disagree 

Disagree 
No 

Opinion 
Agree 

Strongly 
Agree 

Q7.    Population distributions (rapid urban growth 
with people  in close proximity to pipelines) 
 

3.5 20.2 14 43 19.3 

Q8.    Land use and human activities (e.g.  Farming, 
commercial area) 
 

3.1 13.2 11 53.3 19.3 

Q9.    The socio-economic conditions of population 
living near a pipeline 
 

2.6 15.4 14 45.6 22.4 

Q10.  Accessibility to Pipeline Network (proximity 
of roads, rivers, streams and rail) 
 

2.2 20.2 11.4 50.9 15.4 

Q11.  Socio-political factors (e.g. literacy rate, 
employment discrimination, etc) 
 

3.9 13.6 15.4 38.6 28.5 

Q12.  Depth of Pipeline (exposed pipeline can often 
provide criminal opportunities) 

1.3 13.2 7.9 50 27.6 

 

The majority of respondents who responded to these questions felt that depth of pipeline; the 

socio-economic conditions of population living near a pipeline; socio-political factors, with a mean 

score of 3.89, 3.74 and 3.73 respectively, are the major factors affecting the occurrence of 

intentional TPI (Table 10-13). These perceptions from the survey corroborates the factors 

identified as being statistically significant from the result of Generalized Linear Models 

(GLMs) in this thesis, with predictions and estimations of the likelihood of TPI have 

showed effects of land use types, pipeline geometry, socio-economic, as being variables 

most influencing the occurrence of TPI.  

 

As can be seen from Table 10-13, it is evident that the overall observation with population 

distributions is considered the lowest factor compared with the other elements on the item 
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scale. However, this perception contradicts the GLMs analysis of the thesis, therefore, the 

study area could be a reason for this, for example, and populations leaving near pipelines 

have in the past violently targeted pipeline facilities, politically motivated (Onduku, 2001, 

Onduku, 2004). This data must be interpreted with caution because, during the period 

covered by the analysis, crisis in the study area were precipitated by the Ijaws, because of 

ethnic claims for economic and environmental compensation from the operators of the 

various pipelines crisscrossing their regions. 

10.4.3.1    Correlation and Regression Analysis 

Correlation analysis describes the relationship between two continuous variables and 

enables the strength and direction of the relationship between them to be explored 

(Pallant, 2007). Therefore, using bivariate analysis, the perception regarding the motivation 

for intentional TPI coupled with an organisation‟s effort in mitigating such intentional TPI 

was examined. Since most pipeline operators bear the brunt of pipeline damage, this 

suggested that there might be an association between an organisation‟s effort to prevent 

international TPI and motivation (Motivational Scale, using Questions 15 to 20) for such 

intentional interference. The Likert scaled items of Questions 2 to 5 of Section III of the 

questionnaire (made up of statements about efforts of organisations in mitigating TPI) was 

used as measurement for the Organisational Effort scale. While Questions 7 to 12 of 

Section III of the questionnaire was used for the Occurrence Factor Scale measurement, 

the scale is made up of statements about variables influencing the occurrence of TPI. 

 

Table 10-14: Measurements for organisational efforts, occurrence factor and motivational scale.  

Measurement Questions from Questionnaire Measuring Scale 

Section III: Questions 2 to 5 Organisational Effort Scale 

Section III: Questions 7 to 12 Occurrence Factor Scale 

Section III: Questions 15 to 20 Motivational Scale  

 

On the scale of Occurrence Factor of intentional third-party interference, high scores 

represent the respondents‟ knowledge and level of prevention priority for mitigating 

intentional TPI. The survey questions on motivations were negatively worded deliberately, 

to force respondents to carefully read and understand the questions; they were then re-

coded positively before analysis. A reliability test was performed in order to measure the 

consistency of the Likert-type items. The Cronbach‟s Alpha measures the average of all 

possible reliability coefficients, and the statistics obtained using SPSS for the items gives 
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Cronbach's Alpha values of 0.83, 0.71 and 0.81 on Organisation‟s Effort, Occurrence Factors and 

Motivation for Intentional TPI respectively. The significance of this measurement showed that 

each individual item in the scales correlates with the sum of the remaining items, and are 

consistent among individual items in the scale. One item (Question 20, Section III of the 

questionnaire) was removed because it was perceived not to be measuring the same 

underlying characteristics as the other items (Pallant, 2007). Therefore, the reported 

Cronbach alpha coefficients for the three scales show good internal consistency between 

items on the various scales. 

10.4.3.2    Normality and Linearity and Correlation Analysis 

The distribution of variable scores for correlation analysis are required to be statistically 

normal, and Figure 10-14 shows the plot of each histogram for the three variables. The 

inspection of the histograms shows normality in each case. The linearity was checked by 

inspection of the scatterplots and they show a good relationship between the scale of 

occurrence factors and motivations. In addition, it is evident from the scatterplots that the 

variables do not violate the assumption of homoscedasticity (an assumption that the 

variance around a typical regression line in a model, for one variable, is similarly the same 

for other values of the other variable). 

 

The Skewness and Kurtosis values provide indication of the normality of the distribution, a 

requirement for variables that use parametric statistical techniques for analysis. The 

Normal Q-Q Plots also assess the normality of distribution of scores and, from Figure 10-

14, the scores and plot appear to be reasonably normal and suggests a normal distribution. 

The relationships between scale of Organisational Efforts, Occurrence Factors, and Perception 

about Motivation were investigated using Pearson product-moment correlation coefficients. 

The only significant correlation found from this analysis is between the Occurrence Factor 

and Perception about Motivation, r=0.34, n=229, p<0.0005. There is no significant correlation 

between efforts by organisations to mitigate TPI by alleviating the motivations. 
  

10.4.3.3    Nominal independent Variables with Continents 

Some countries are more susceptible to intentional third-party interference than others are; 

therefore, this thesis estimates the association between continents (geographical location) 

and the perception of motivation for intentional third-party interference (motivational 

scale). Africa was chosen as a reference continent with which to compare the other 

continents, and to improve the accuracy of the regression coefficients. This procedure is 

an assessment of association between a continuous dependent variable and a nominal 
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independent variable; continents of respondent were recoded as dummy variable (into two 

categories, 1 and 0).  

 

To measure the degree of perception of intentional third-party interference by comparing 

other continents with Africa, a reference category was chosen and a dummy variable for 

each of the other continent was created. For example, the respondents from Europe are 

assigned a value of 1, and respondents from the other five continents are assigned a value 

of 0, and so forth. Thus the regression function is: 

yi = a + b1∙x1i + b2∙x2i + + b3∙x3i ++ b4∙x4i ++ b5∙x5i +ei, 
 

 

Figure 10-14: Probability Plots for Questions (2-5), (7-12), and (15-20) of Section III. 

 
 

In the above expression,  yi represents the motivational scale values, x1i the „Asia‟ dummy 

variable values, x2i the „Europe‟ dummy variable values, x3i the „North America‟ dummy 

variable values, x4i the „South America‟ dummy variable values, and x5i the „Oceania‟ 

dummy variable values. The coefficient of determination, r2 using the Pearson correlation 

of 0.317 gives only 8.1 per cent shared variance between the variables (Table 10-15). This 

indicates that the difference between the mean motivational scales of the six continents 

sample explains 8.1% of that variable‟s total variance. 
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Table 10-15: The nominal regression model summary (b) 

R R Square Adjusted R Square Std. Error of the Estimate

.317(a) 0.101 0.081 0.84659
Model

 
(a)  Predictors: (Constant), Respondents from Oceania, South America, Asia, North America, and Europe 
(b)  Dependent Variable: Scale of Perception about Motivation for ITPI 
 
 

The Constant coefficients in Table 10-16 estimates the mean level on motivation scale of 

respondents belonging to the reference category from Africa. Africa‟s values on both x-

variables are 0, therefore Africa‟s predicted motivational scale value is 3.653. The coefficient 

of the „Asia‟ variable is interpreted as an estimate of the difference in mean Motivational 

Scale between Asia and Africa. If the x-values of a person who lives in Asia are inserted, 

the function will read: yi = a + b1∙1 + 0 + ei. Thus, the predicted mean value of the 

dependent variable is a + b1, which has been estimated as 3.16 (3.653 -0.490); the estimated 

mean level on Motivation Scale of Asia is 3.16(on a scale of 1 to 5). Similarly, the mean level 

on Motivation Scale of those who live in Europe is 3.052, less than the score for Africa.  

 

The significant of the above result is that, on a scale of 1 to 5, Africa, with a score of 3.65, 

has a strong awareness of the various factors that motivates intentional TPI, compared to 

Asia and Europe with a score of 3.16 and 3.057 respectively. Specifically, the high score on 

perception about motivation of TPI in Africa is because all stakeholders are fully aware of 

the primary key issues and challenges relating to and affecting third party pipeline 

interference in Nigeria. The activities of the oil companies in the study area have destroyed 

much of the land cover, for example, and as confirmed by the review of the NNPC 

database, thousands of TPI occur yearly. The inadequacy of the oil companies to redress 

this issue, together with the destruction of livelihood, does lead people to vandalize 

pipeline, as a way of revenge and obtaining compensation.  

 

Table 10-16: Coefficients (a) for scale of Perception about Motivation for ITPI 

Standardized 

Coefficients
t Sig.

B Std. Error Beta B Std. Error

(Constant) 3.653 0.112 32.57 0

Respondent from Asia -0.49 0.24 -0.142 -2.046 0.042

Respondent from Europe -0.601 0.145 -0.33 -4.146 0

Respondent from North America -0.386 0.163 -0.182 -2.365 0.019

Respondent from South America -0.586 0.269 -0.148 -2.179 0.03

Respondent from Oceania -1.178 0.32 -0.245 -3.684 0

Unstandardized 

Coefficients

 (a)  Dependent Variable: Scale of Perception about Motivation for ITPI 
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The results of the GIS-based statistical models of this thesis support the view that socio-

economic depravity in the study area has made third-party pipeline interference to become 

a common occurrence. On the other hand, these observations of pipeline third-party 

interference are not only common to the Africa. In 2007, Margonelli (2008) described how 

in Colombia, the equipment of seven thousand barrels of oil product are stolen every day. 

In Iraq, the pilfering of oil product and pipeline third-party interference is a well-

established “industry”, and includes pipeline interference in both Chechnya and Moscow. 

 

10.4.4     Section III: Intentional TPI, Question 14 

Respondents were asked to select the three factors that are most important that could be 

used to determine the potential for TPI, and rank them from 1 to 3 (with 1 as the most 

important). The results, as shown in Table 10-17, indicate that land use and human activities 

were the most selected and thus the most highly ranked factors for consideration in 

mitigating intentional TPI. The second most ranked factor is depth of pipeline, and followed 

by accessibility to pipeline network (proximity of roads, rivers, and streams). 

 

Table 10-17: Selected factors that could measure the potential for third-party interference. 

 

10.5 Multiple Response Analysis of Open-ended Questions 

This section describes the methodological approach, qualitative analysis and the general 

findings of the various open-ended questions that were used in the questionnaire survey. 

The goal was to describe the patterns of the respondent‟s commentary; frequency analyses 

and associations from respondents‟ unique experiences, which are organisation specific. To 

achieve this goal for the open-ended questions, the coding of the data, a process of 

converting qualitative data into numerical records, referred to as multiple response analysis 

(Kent, 2001) was used in the thesis. 

80 34.9% 118 51.5% 132 57.6% 137 59.8% 105 45.9% 198 86.5%

86 37.6% 40 17.5% 19 8.3% 30 13.1% 29 12.7% 4 1.7%

36 15.7% 42 18.3% 27 11.8% 41 17.9% 52 22.7% 6 2.6%

27 11.8% 29 12.7% 51 22.3% 21 9.2% 43 18.8% 21 9.2%

229 100.0% 229 100.0% 229 100.0% 229 100.0% 229 100.0% 229 100.0%

None Selected

1st Most Important
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3rd Most Important
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Count %
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Count %
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Count %

Socio-political
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Count %
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can often provide

criminal

opportunities)

Count %

Other factor in

your opinion not

mentioned that

influence 
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10.5.1     Open-ended questions for Question 5 of Section II 

The survey asked the respondent to suggest other various methods of protecting pipeline 

against TPI, the maximum number of responses obtained from a single respondent was 

four. The overall response to this question was positive, and twenty different possible 

methods of protecting pipelines against TPI were identified for this question. The first 

column in Table 10-18 are the list of the overall response to this question. The table also 

shows the frequency table of the multiple response analysis to open-ended questions.  

Using SPSS, a frequency analysis of the multiple responses of the respondents‟ suggestions 

was examined for distribution. The overall response to this question was reasonable, 45 

per cent of the respondents surveyed suggested one or more methods for preventing TPI. 
 

Table 10-18: Frequency table of the multiple response analysis to open-ended questions 

 Responses Percent of 
Cases Category label from respondents' view N Percent 

Impact alert system 1 0.50% 1.00% 

Greater  awareness  campaign to stakeholders 23 12.20% 22.30% 

Use new Modern technology, e.g. optical fibres 16 8.50% 15.50% 

Enforcement of strict  safety requirements 16 8.50% 15.50% 

Improve rapid response capability 5 2.60% 4.90% 

Address motivations of causes 6 3.20% 5.80% 

Accurate collation of pipeline database 5 2.60% 4.90% 

Install fence along ROW 1 0.50% 1.00% 

Better land use planning guidelines 7 3.70% 6.80% 

More Research and Development 20 10.60% 19.40% 

Intensive surveillance on Hotspots 9 4.80% 8.70% 

Evaluate Social and Environmental Impacts 8 4.20% 7.80% 

Statutory Punishment to offenders 9 4.80% 8.70% 

Increase burial depth 2 1.10% 1.90% 

Remote monitoring 8 4.20% 7.80% 

Application of proper standards and procedures 26 13.80% 25.20% 

Prevent all activities near Pipelines 4 2.10% 3.90% 

One-Call Systems 8 4.20% 7.80% 

Engage community cooperation 9 4.80% 8.70% 

Education on consequences of pipeline failure 6 3.20% 5.80% 

Total 189 100.00% 183.50% 

 

The frequency table, Table 10-18, of the multiple responses set indicates that the following 

are the most frequently suggested methods by the respondents: 

i. Application of proper standards and procedures (13.80%)  
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ii. Greater awareness campaign to all stakeholders (12.20%)   

iii. More Research and Development (R&D) (10.60%) 

The most striking result to emerge from the data is that increase burial depth, contrary to the 

literature review, is one of the least suggested methods and therefore of lower importance, 

going by the result of the survey questionnaire. However, in a frequency analysis by 

geographical location, the respondents from Africa frequently suggested use of modern 

technology and evaluation of social and environmental impact. Respondents from Europe mostly 

suggested greater awareness campaign to all stakeholders, while application of proper standards and 

procedures was the most frequently suggested by respondents from the North America. 

Similarly, in a crosstabulation analysis by organisation, the government agencies frequently 

suggested „Application of proper standard and procedures‟. While respondents from the 

professional bodies frequently indicated „More Research and Development‟. One respondent 

divulged: “In a recent report that was issued by the EU Commission on safety of pipeline transportation 

systems, the main findings included: Third party damage is the main cause of pipeline incidents and 

therefore should receive the main focus and the availability of an effective Pipeline Integrity Management 

system is one of the key elements for control”. 

 

10.5.1.1 Open-ended questions for Questions 9 and 10 of Section III 

Respondent perceptions were assessed as to what other prevention measures they would 

consider to mitigate damage caused by TPI both during and after pipeline installation. The 

maximum number of responses obtained from a single respondent was two, and the 

respondents (Table 10-19) collectively identified ten possible methods.   

 

Table 10-19: Frequency table of responses to open-ended questions for Questions 9 and 10 

Responses to open-ended question N Percent % of Cases 

Education of Third-parties 2 7.70% 10.00% 

Fibre optic cable 2 7.70% 10.00% 

Jet grouting protections to vulnerable portions 3 11.50% 15.00% 

Material selection against external load 1 3.80% 5.00% 

Community Investment Strategy 3 11.50% 15.00% 

One call notification systems  advertised 3 11.50% 15.00% 

Coating, possibly concrete 1 3.80% 5.00% 

Sufficient Burial depth 1 3.80% 5.00% 

Satellite monitoring 2 7.70% 10.00% 

Surveillance frequency by risk assessment 8 30.80% 40.00% 

       Total 26 100.00% 130.00% 
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The frequency table of the multiple responses analysis indicates that surveillance frequency by 

risk assessment is the most frequently indicated. This was closely flowed by Jet grouting protections 

to vulnerable portions; Community Investment Strategy; and one call notification systems advertisement. 

 

10.5.1.2  Open-ended questions for Question 6 of Section III 

In response to the question regarding the methodology the respondent would suggest as 

being most effective for pipeline TPI prevention, Table 10-20 shows the results of the 

frequency analysis of the collected responses. 

 

Table 10-20: Frequency distribution of open-ended question for Question 6 of Section III 

Suggested prevention methods for intentional 
pipeline damage by respondents 

Responses Percent of 
Cases 

 N Percent N 

Punishment of offenders to deter others 3 1.90% 3.00% 

Maximum pipeline burial with addition protection 19 11.80% 19.00% 

Involvement of specialist security organisations 8 5.00% 8.00% 

Electromagnetic detection and acoustics 8 5.00% 8.00% 

Public education/ Awareness of pipeline location 19 11.80% 19.00% 

Direct physical protection of vulnerable segments 13 8.10% 13.00% 

Remote and aerial surveillance 21 13.00% 21.00% 

Alignment based on Risk/Consequence design 6 3.70% 6.00% 

Customised solution tailored to fit the environment 14 8.70% 14.00% 

Increase pipe wall thickness 5 3.10% 5.00% 

Involve the community to guard pipelines 18 11.20% 18.00% 

Communications with all stakeholders 27 16.80% 27.00% 

Total 161 100.00% 161.00% 

 

The frequency table of the multiple responses set indicates that communications with all 

stakeholders (16.80%) is the most frequently recommended preventive measure by 

respondents. In addition, punishment of offenders to deter others is the least recommended 

measure (Table 10-20). 

 

 

In an analysis by geographical location undertaken (Table 10-21), respondents from Africa 

frequently recommended involve the community to guard pipelines, while majority of responses 

from Europe recommended communications with all stakeholders. Respondents from North 

America mostly recommended public education/ awareness of pipeline location. Similarly, in a 

crosstabulation analysis of respondents‟ organisations and the open-ended question, 

respondents from government agencies frequently recommended communications with all 

stakeholders. 
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Table 10-21: The crosstabulation analysis by geographical location Question 6 of Section 3. 

 Geographical Location of Respondent (count) 

 Africa Asia Europe 
North 

America 
South 

America 
Oceania 

Punishment of offenders to deter others 1 0 0 2 0 0 

Maximum pipeline burial with addition protection 2 1 7 7 0 2 

Involvement of specialist security organisations 2 1 3 1 1 0 

Electromagnetic detection and acoustics 1 0 4 2 0 1 

Public education/ Awareness of pipeline location 2 1 7 8 0 1 

Direct physical protection of vulnerable segments 2 2 5 4 0 0 

Remote and aerial surveillance 3 0 9 7 0 2 

Alignment based on Risk/Consequence design 0 0 2 3 0 1 

Customised tailored solution for the environment 2 1 4 4 2 1 

Increase pipe wall thickness 0 0 5 0 0 0 

Involve the community to guard pipelines 10 0 5 3 0 0 

Communications with all stakeholders 7 1 12 6 0 1 

Total 19 4 40 30 2 5 

 

10.5.1.3 Open-ended question for Question 13 of Section III 

Respondents were asked what other factors in their opinion influence the occurrence of 

intentional pipeline TPI. The frequency distribution in Table 10-22 presents the 

distribution of the results. 

Table 10-22: Frequency distribution of open-ended question for Question 13 of Section III. 

 Responses %( Cases) 

 N Percent N 

Petro-terrorism 17 17.50% 29.80% 

Political reasons 11 11.30% 19.30% 

Burial depth of pipeline 4 4.10% 7.00% 

Strict penalty to offenders 1 1.00% 1.80% 

Public education and communication 13 13.40% 22.80% 

Absence of laws for pipeline security 7 7.20% 12.30% 

Ignorance of the consequences of failure 7 7.20% 12.30% 

Government and social responsibility to communities 20 20.60% 35.10% 

Economy situation of a country (e.g. theft of product) 17 17.50% 29.80% 

       Total  100.00% 170.20% 

 

The frequency distribution table of open-ended question thirteen (Section III) indicates 

that government and social responsibility to communities (20.60%) is the most frequently 

commented factor perceived by respondents that influence the occurrence of intentional 

pipeline TPI; followed by petro-terrorism and economy situation of a country, for example poverty 

and theft of product (Table 10-22). 
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In a crosstabulation analysis by location undertaken, Table 10-23, respondents from Africa 

frequently indicated government/social responsibility to communities and economy situation of a country 

(e.g. poverty and theft of product). In support of the above findings, two respondents support 

the result that the: “failure of government commitment to the people of the oil producing communities in 

Nigeria, and resentment of government policy implementation expressed as vandalism to company pipeline 

assets for economic gains”; and that “Poverty/purchasing power of nearby population in relation to value 

of product in pipelines; and socio-political factors - wealth distribution, employment opportunities, absence of 

effective community development programs, environmental pollution etc”. On the other hand, 

respondents from Oceania countries mostly indicated petro-terrorism.  Similarly, petro-terrorism 

was the most frequently indicated factor by pipeline engineers compared to other 

professions, for example, pipeline project engineers whose majority indicated government 

and social responsibility to communities.  

Table 10-23: The crosstabulation analysis by location of Question 13 of Section III 

 Geographical location of respondents 

Africa Asia Europe North 
America 

South 
America 

Oceania 

Petro-terrorism 3 1 6 3 1 3 

Political reasons 4 1 2 2 1 1 

Burial depth of pipeline 0 0 3 1 0 0 

Strict penalty to offenders 1 0 0 0 0 0 

Public education and communication 5 1 3 3 0 1 

Absence of laws for pipeline security 1 0 2 4 0 0 

Ignorance of failure consequences 1 0 2 4 0 0 

Government responsibility 7 0 8 5 0 0 

Countries‟ economy situation  7 0 5 4 1 0 

 

10.6 Analysis Limitations of the Questionnaire Survey 

The study within this thesis suffered from several limitations: 

 Gathering or sourcing information on oil and gas pipeline is intrinsically complex 

because of the heterogenic policies of many organisations. Therefore, the observed 

response rate of 23 per cent is practically undesirable. 

 

 Statistical significance was not satisfied by the study for all hypotheses, therefore 

some examined procedures might require further considerations and analyses.  
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10.7 Conclusions 

The analysis of the results from the questionnaire survey has shown that TPI concerns 

differ from one country to another, and are inherently dependent on socio-economic and 

communication factors. African, North American and Asian countries are at higher risk 

than other global regions, but with commensurate measures taken to protect their 

pipelines. However, given the unpredictable nature of intentional TPI, it is very difficult to 

prevent. Therefore, susceptible countries will need to intensify anticipation and prevention 

efforts and increase investment in prevention schemes. In addition, it is essential that 

stakeholders seek to remove motivation reasons for TPI and for it to become mandatory 

for the industry to increase organisational efforts and implement anti- interference 

education.   

In addition, the questionnaire survey examines the problem of intentional TPI in the oil 

and gas pipeline industry and suggests important procedures in obtaining high levels 

reliable prevention strategies for TPI. For example, the survey identifies four factors that 

are important in preventing and understanding third-party interference: risk mitigation 

strategy, organisational efforts; preparedness against motivation; and perception of factors 

influencing the occurrence. The survey confirms that TPI is recognised as a leading cause 

of pipeline damage, but despite this knowledge and various preventive efforts, it still 

threatens all concern stakeholders. The accomplishment for the prevention of TPI 

therefore, is not only with professional adherence and modification of existing pipeline 

design standard, but with attention to the realities of organisations‟ multiple roles within 

the pipeline industry and the community. 

 

Furthermore, the insights obtained from the statistical content-analysis of the open-ended 

responses unveiled interesting perceptions and opinions from the industry experts. For 

example, whilst the existing literature has emphasised the importance of the pipeline burial 

as being an excellent means of protecting pipelines against TPI, this thesis has showed that 

undertaking a public awareness campaign before, during, and after installation of a pipeline 

influences positively the reduction in occurrence of TPI. The questionnaire also contains 

open-ended items inbuilt into the survey to provide more detailed opinion from the 

respondents, and Appendix IX presented selected remarks from the collated survey. 
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11 GENERAL DISCUSSIONS 

11.1 Introduction 

The motivation for this thesis was the perceived lack of a systematic developmental 

approach that could support the understanding of pipeline third-party interference (TPI), 

especially for policy makers and the pipeline operators. Recent developments, as outlined 

in Chapter 2 of this thesis, have heightened the need for studies about pipeline TPI. 

Perhaps the most significant driver is that over sixty countries already have in excess of 

2000 kilometres of pipelines, with the worldwide potential for a further 10,000 kilometres, 

of new pipelines to be added annually for the next few years (EIA, 2004).  

 

In the study area of Nigeria, the largest oil producer in Africa and 11th largest in the world, 

12,845 incidences of TPI were recorded between 1999 and 2007. Approximately 35,000 

barrels of crude oil are stolen per day, a well-known trend in the study area (NNPC, 2005). 

This thesis, therefore, presented different approaches that investigated and examined the 

geographical, statistical, and industry perception problem associated with TPI. The thesis 

determined and explored relationships between land use, environmental factors, 

socioeconomic and socio-political factors, population density, and pipeline properties by 

using GIS-based hybrid multivariate (and spatial) statistical methods. The discussion that 

follows the results of this thesis concentrates on the primary objective of the thesis in 

relation to the study area (Section 1.4).  

 

The findings of this thesis correspond with other international studies regarding the factors 

primarily responsible for and influencing pipeline TPI (Chapter 5). However, some other 

factors such as the population density, which might be thought, from the literature, to 

influence TPI, did not show a significant impact in the study area. This unexpected result 

suggests that these variables have no prediction ability and more research needs to be 

undertaken before the association between a geographical region and the possibility for 

that region to experience TPI is more clearly understood. Meanwhile, the Poisson and LR 

GLMs methods produced similar results. They both have strong statistical foundations; 

however, the interpretation of the results and subsequent discussion are based on the 

proper understanding of the selected variables and the interaction with the study area.  
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The use of GIS spatial regression analysis (GWR) and the hot spot determination method 

(Getis-Ord Gi*) considered the regional non-stationarity of the independent variables and 

the spatial structure of the TPI respectively. While the statistical methods (GLMs) have 

stronger analytical power, the GIS methods encompass advanced spatial analytical 

capabilities; however, they require accurate spatial positioning of the variables, especially 

the geographical location of the TPI. This, however, was a difficult requirement to 

accomplish, especially in the study area. For example, topographic maps of Nigeria are 

obsolete, dating back to the 1960s, following aerial photographs taken in 1963. 

11.2 Factors Influencing Pipeline Third-party Interference 

11.2.1 Geographical Accessibility 

The GWR and Getis-Ord Gi* analysis showed a positive relationship between accessibility 

to the pipeline and incidents of TPI. According to the GWR results (Section 7.5), there are 

positive significant relationships between all the variables considered for the Getis-Ord 

Gi* analysis and the occurrence of TPI in the study area. This means that increasing 

accessibility distances and travel time to a pipeline will result in minimised occurrence of 

TPI. These two models confirm that TPI is a local event, following the routine activity 

theory (RAT) described in Section 5.7, and that the occurrence is a function of the 

variables considered. The result of the GIS hotspot analysis and the GWR indicated that 

spatial variations of the variables are significant, and most of the same variables also 

support the findings in the GLMs model; for example, the inverse relationship between 

pipeline intrinsic properties and geographical locations of TPI. However, the GLMs model 

only determined the relationship at the global scale. The results of the GLMs did not show 

local variations in the study area as demonstrated by the GWR and Getis-Ord Gi*. 

 

The application of GWR to the occurrence of TPI and the comparison to the results of 

the Getis-ord hotspot analysis (Section 7.3) yielded some remarkable results. This is, 

however, not the case with the two GLMs statistical models; although aspatial, they are not 

as robust as expected. Only seven of the twenty-five variables are statistically significant in 

the logistic GLMs model (Table 8-16) and six out of the twenty-five variables are 

significant in the Poisson GLMs models (Table 8-9). Several variables that showed a 

positive relationship, although not statistically significant, with TPI in the GIS model are 

insignificant in the GLMs model, in particular population density, age and diameter of 

pipelines. Therefore, it is considered that GWR has a major advantage over advanced 
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multivariate statistical methods for determining the relationship between variables. 

Although not efficient in computer processing time, more importantly this method allows 

a policy-led investigation to be conducted, using the strength association of the 

independent and the dependent variables, into the spatial geographical region suggested by 

the GWR result. 

 

The same independent and dependent variables used for the GIS hotspots were used to 

develop the GWR model as well as two other variables, described in Section 7.4.3. 

Although the variables considered captured the three major elements of criminal 

opportunity, GWR identified the nature and patterns of spatial non-stationarity in the 

study area. One advantage of the statistical methods (GLMs) is the ease with which the 

significance of the results can be tested, which is not easily achievable with the GWR 

method. Although the calibration of the GWR software by Forthringham et al. (2003) is 

possible using the Monto-Carlo test, this provides a p-value for each variable that indicates 

significant spatial variation.  

 

Taken together, these findings suggest that the role of accessibility factors in protecting 

pipelines can reduce cost and help policy makers to refine and define appropriate measures 

to maintain the integrity of pipelines. Another implication of these findings is that both the 

hotspot analysis (Getis-Ord Gi* statistic) and analysis for the spatial influence of variables 

(using GWR) should be taken into account when there are concerns about seemingly 

disparate pipeline incidents. This has important implications for future prevention 

practices by all stakeholders (e.g. law enforcement agencies). It will enable attention to be 

focussed on particular pipeline segments or a local spatial unit of the study area, and thus 

reduce the potential for further occurrence with limited resources. 

11.2.2  Population Density 

According to the result of the GLMs models, population density is statistically 

insignificant, and showed a negative relationship (Table 8-9 and 8-16). This finding is 

confirmed by both the GWR and the Getis-Ord Gi* analysis. The GWR showed a 

moderate spatial positive relationship with regions with low local population density 

(Figure 7-11). One possible explanation for this relationship is that many perpetrators of 

TPI live in areas with low population density and most of the pipelines traverse small 

communities (Muhlbauer, 2004). Therefore, they have easy and quick travel routes to 

pipelines and are usually less concerned, because of familiarity, with the rugged delta 
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terrain in which they operate. Alternatively, as high population density areas have seen an 

increase in the number of security personnel, the number of potential offences has 

decreased.  

 

Opposed opinions were expressed on this issue in the questionnaire survey, and the 

findings reveal a mixed representation on how population density influences accessibility 

and the occurrence of TPI. For example, in a question (Table 10-13) asking what are the 

most important factors that influence TPI, population density was one of the least selected 

options. Second, in the open-ended question, the reference to population density was 

insignificant and thus not fully represented in the analysis. However, this picture changes 

when the geographical location of the respondents was considered. For example, in 

Nigeria, 63 per cent of the respondents said they were confident that population density is 

a major factor that is responsible for the occurrence of TPI. This is contrary to the result 

of the thesis, as explained above, and somehow not in agreement with the method of 

selecting optimal pipeline route as a form of protecting pipelines (Section 4.2.3).  

 

The results from the questionnaire reflect a more significant problem in the study area, 

namely the lack of consideration and assessment for the increased risk to pipelines from 

communities encroaching and living in close proximity to pipelines. The evidence from 

this thesis suggests that prior regulations (e.g. NNPC, 2005) indicating the importance of a 

safety minimum distance of 30 metres from a pipeline in the study area need review. The 

question, therefore, is whether this safety distance is sufficient considering the result of 

this thesis, especially in the local rural areas.  

11.2.3 Land use Planning 

In the thesis, land use was found to play a significant role in TPI observed in the study 

area, but with geographically varying influences on the study area. While mosaic 

grassland/shrubland, broadleaved forest, and shrubland/grassland reduce the probability 

of TPI occurrences in the logistic GLMs, it was not found to be significant in the Poisson 

GLMs model. The differences is because the two GLMs models (logistic and Poisson) 

have differences in modelling assumptions and specifications, relatively producing 

different effects on the results. On the other hand, there was a statistically significant 

positive relationship between the mosaic vegetation/cropland and TPI, and a statistically 

significant negative relationship with water bodies in the Poisson models. This result may 

be explained by a number of different factors. Agriculture is the dominant economic 
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activity in the study area, and occurs mainly in the mosaic vegetation/cropland land use 

type. Shifting cultivation is practised, as the people believe their soil to be poor in 

nutrients. The land under cultivation varied between a minimum of 0.2 per cent in Warri1 

North to a maximum of 30.45 per cent in Udu, followed by 25.61 per cent and 25.26 per 

cent in Patani and Ugheli South respectively. These land use types are seriously protected 

by the local population against any action that could be detrimental to their farmlands. 

Therefore, the fear of reprisal attacks can cause vandals to avoid pipelines that traverse 

these land use type. 

 

Water bodies in the GLMs model were statistically significant. This finding is in agreement 

with Krone's (1985) findings, which showed mitigating impacts on wetlands and water 

bodies where pipelines traverse is especially important in preventing TPI. For example, the 

Royal Dutch/Shell‟s Russia Sakhalin II 800 kilometres oil pipeline project crosses over 

1000 watercourses by trenching. Similar pipeline installations are common in the study 

area, and such exposures have been marred by unintentional TPI. However, the effect of 

alternative means of installation, as in the case of Russia‟s project which utilised horizontal 

directional drilling, can reduce overall TPI. 

 

The other land use types (e.g. thicket secondary crop land and closed grassland) represents 

the major land cover patterns available in the study area, for example forestland, swampy 

land, coastal area and residential land. The general types of lands are the Iyanomo land 

developed on the coastal plain and sand formation. The soils are very deep, well-drained 

with sandy clay loam sub-soil with low base saturation. The flood plain land type has soils 

derived from alluvium of the coastal plains on lagoon marshes, brackish and fresh water 

swamps (Siraj, 2002). It is interesting to note that, in the two GLMs models utilised in this 

thesis, pipelines laid in these land use types witness more incidence of TPI, and could be 

concluded to be more vulnerable in the pipeline distribution network. 

 

Although the exclusion of the statistically insignificant land use types did reduce the 

occurrence of TPI, these results were interpreted with caution. Another possible 

explanation, in addition to the above, is the presence of soil movement in these land use 

types. For example, commercial plantation is common practice in the study area, as 

currently over 4000 hectares of land is under forest plantation, and intertwined with 

pipelines. These assumptions are consistent with those of other studies; for example, 

Berman et al. (1994) suggested that soil movement in deltaic regions (e.g. Mississippi and 
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Atchafalaya river mouths) deposited rapidly during high river flow cause pipeline failure, 

particularly when pipelines are laid above ground. This explanation is possible considering 

that human activities in the study area affect the water resources, especially channelisation 

of streams, creeks and estuaries, through dredging, sand mining, and drainage of adjacent 

wetland. It can thus be suggested that the significant land use types do not support 

substantial bank erosion, which will expose buried pipelines.  

 

It has been observed that encroachments into pipeline right-of-ways are more often 

inadvertently planned, especially in developing countries (Kashi, 2006). In view of these 

aspects, monitoring of activities in the vicinity of pipelines is of utmost importance 

(Huebler, 2002). Internationally, these issues have already been discussed and debated, for 

example the UNECE Safety Guidelines for Pipelines have been adopted by the UNECE 

countries. The UNECE issued guidelines concerning land use planning (monitoring of 

settlement and land use) and the recommendations for avoidance of TPI. For example, 

article 27 of the guideline states: “UNECE member countries should establish a system of permits 

and of land use planning procedures with the involvement of the public in order to ensure that pipelines are 

planned, designed, constructed and operated in a safe way. They should also ensure adequate monitoring 

and control.” In Germany, safety distances have to be considered when permitting the 

construction of pipelines. These safety distances, as required in the “Technical Rule for 

Pipelines”, serve primarily to protect the pipeline route against external impacts (Howe, 

2009). 

 

The regulatory approach for pipelines in the United Kingdom (UK) reflects the opinion 

expressed in the questionnaire survey. The methods of mitigating the occurrence of TPI 

put more emphasis on regulatory approval procedure, risk assessment and safety 

management. According to Howe (2009), the HSE provides local authorities with 

information about land use in the proximity of pipelines. These are used for assessment of 

potentially increased risks using a special dedicated team to consider aspects of land use 

planning for the entire UK. “The HSE only has an advisory function in the system of land use 

planning. It is not authorized to reject approvals by local authorities or requests for permission. It is within 

the discretion of the competent authority to take decisions and to weigh local needs and advantages against 

other aspects of planning” (Howe, 2009). 
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11.2.4 Pipeline Intrinsic Properties 

11.2.4.1 Pipeline Diameter 

The result of the GLMs models indicated that there is a positive relationship between 

pipeline diameter and TPI; the results also indicated that pipeline diameter is statistically 

significant in the logistic GLMs model. The GLMs models are global models using the 

average diameter of the pipeline; therefore it is possible that the Poisson GLMs model may 

hide interesting spatial variation, as was investigated in the GWR models. This is a possible 

explanation for the statistical insignificant variable (pipeline diameter) in the Poisson 

GLMs model. Overall, the results of the models substantiate the results of the 

questionnaire that suggested that increased pipeline diameter increases the occurrence of 

TPI. For example, from the result of the questionnaire, the overall rating of increasing 

pipeline wall thickness (high wall thickness corresponds to high pipe diameter) is higher 

when compared with other measures used in preventing TPI. This thesis produced results 

which corroborate the findings of many of the previous works about pipeline diameter and 

TPI. According to Williams et al. (2007), the potential damage caused by a pipeline failure, 

and the number of consequences, increases as pipeline diameter increases. It has also been 

suggested that the importance of pipeline diameter, as shown by the EGIG report for 

pipeline incident data, is solely classified on pinhole, using the diameter of the defect. The 

EGIG report also identifies that the extent of damage caused by TPI is dependent on 

pipeline intrinsic properties, such as pipe diameter, depth of cover, and wall thickness 

(Mather et al., 2001). 

 

Concerning the significance of the pipeline diameter and occurrence of TPI, it has been 

well established in the literature, as stated above, that TPI increases with increased pipeline 

diameter. For example, in the study area, large pipelines (>12 inches) account for 60 per 

cent of the TPI. These results need to be interpreted with caution, as they could be 

attributed to operating characteristics of the pipeline. However, this thesis has been unable 

to demonstrate the assumption that larger diameter pipelines are structurally stronger 

because of thicker walls and thus can withstand more force than smaller diameter 

pipelines. Nevertheless, useful results were obtained that showed the spatial variation 

influence of pipeline diameter within the study area. It can therefore be concluded that 

large pipelines, according to the result of this thesis, experience a larger number of TPI 

incidents than smaller diameter pipelines. It is interesting to note that large diameter 

pipelines are located to the shoreline of the study area. Therefore, by focusing attention on 
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these regions, security will be better provided in addition to identifying other possible 

activities that are responsible for TPI. 

11.2.4.2  The Length of Pipeline and Percentage of Oilfields  

The Poisson and logistic GLMs models described in this thesis both specify a 

multiplicative relationship between the occurrence of TPI and the length of pipeline and 

percentage of oilfields. These two variables are statistically significant in both the Poisson 

and logistic GLMs models, although the strongest associations were found with the logistic 

GLMs model. Overall, the results are significant in at least two major respects. Firstly, the 

length of the pipeline determines the amount of exposure to TPI; secondly, the area of the 

oil and gas resources of a region determines the probability of occurrence of TPI. On the 

other hand, these results yielded dissimilar results when compared with results of the 

questionnaire. It is somewhat surprising that no respondent mentioned or indicated an 

interest regarding percentage of oilfield being an important factor in understanding the 

occurrences of TPI. The evidence, albeit statistically significant in the model, suggests that 

little research has examined systematically the linkages between TPI and the presence of an 

oilfield in a region. This finding was unexpected and suggests that, although the results of 

the questionnaire are from the industry experts, this factor is not recognised as being 

significant in the industry and therefore is not considered in the current TPI mitigation 

strategies. 

 

The length of pipelines and the area of oilfields are an indirect substitute for each other, 

and it is hypothesised that regions with large numbers of pipelines might be associated 

with large percentages of oil and gas. If an oilfield is associated with high numbers of 

pipelines, according to the above argument, regions with longer pipelines would be 

expected to experience more TPI. These explanations explaining the influence of these 

variables are rather plausible; nevertheless, they are satisfactory. Thus, in addition to these 

explanations, it is recommended that oil and gas pipeline lengths should be short in these 

vulnerable regions, and proportionally correspond to the socioeconomic and socio-

political status. 

 

Another possible explanation is the coexisting activities of intentional and unintentional 

TPI. For example, it is expected that, in oilfields, supply vessels from 20 to 60 metres long 

work simultaneously with various drilling activities. According to Berman et al. (1994), the 

activities of the vessels, working closely around drilling rigs, are mostly concentrated in 
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regions with high numbers of pipelines, and hence the high likelihood of TPI. In view of 

the probable disturbances to pipelines in oilfields, which may be expected, and the 

detrimental effects of irregular oil spills on the adjacent land, particular attention is 

required to protect pipelines in the regions. 

11.2.4.3  Pipeline Status: Buried or Aboveground 

There are similarities between the findings expressed by the result of the GLMs for 

pipeline status in this thesis and those described by Neville (1981) which state that 

increasing the depth of cover of pipelines (to about 1.6m) will reduce damage caused by 

TPI. A longitudinal study by Mather et al. (2001) also reports that 50 per cent of all 

pipeline damage is concentrated in the 30 per cent of pipelines that have a depth of cover 

of less than 1.05 metre. However, it was observed in the questionnaire survey that many 

questions related to pipeline intrinsic properties were unanswered. An implication of this is 

the possibility of privacy and security concerns regarding a pipeline‟s geographical location 

and intrinsic properties, especially after the events of 9/11. For example, in Europe, 

information that is available to the general public about pipelines is decreasing, because 

pipelines are classified by the European Union as critical facilities. However, with a small 

response rate, caution must be applied, as the findings might not be transferable to a 

security concern.  

 

The result of the Poisson GLMs showed that pipeline status (buried or above ground) is 

statistically significant, even so, it is imperative to assume that pipeline status influences the 

occurrence of TPI. However, since the measurement of pipeline status in the thesis is 

rather ambiguous and several other factors determining why a pipeline is buried or 

aboveground are not captured by the variable, the result was interpreted with caution. The 

result was a subjective expectation; nevertheless, the findings do support other previous 

research, as stated earlier, that aboveground pipelines have higher probability of TPI than 

buried pipelines. However, in the study area, buried pipelines are relatively not safer. This 

is because TPI damage to buried pipelines is common, and is attributed to pilfering of oil 

product and to saboteurs. Other studies have confirmed that other major causes of TPI, 

especially to buried pipelines, are digging activities (e.g. excavators), construction 

contractors, and property owners (Sljivic, 1995). These combinations of findings provide 

some support for the conceptual premise that pipelines, buried and aboveground, are 

exposed to the same risks of TPI. 
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11.2.5 Socioeconomic Factors  

The low socioeconomic status of local populations in developing countries like Nigeria is 

one cause, according to the literature (e.g. Nwankqo and Ezeobi, 2008; Hongqing, 2005), 

that is responsible for pipeline TPI in the study area. The findings from this thesis have 

shown this is not the case. None of the socioeconomic variables were significant in the 

GLMs models implemented. On the other hand, only one socio-political variable, namely 

the percentage of households with pipe-borne water, was significant in the GLMs models. 

This result is surprising considering the key issues and challenges relating to and affecting 

TPI in the study area which are interrelated with these factors (Dey, 2004). These results 

appear to portray TPI, in the study area, as more of a technical rather than a socio-

economic problem. 

 

A higher TPI risk may be considered to be related to a poor socioeconomic factor. In 

regions with a low socioeconomic status, the proportion of potential occurrence of TPI 

might be high (Okechukwu, 2010). Furthermore, a poor provision of social infrastructure 

may reflect a poor economic status of the local population, and hence the likelihood of 

interfering intentionally with a pipeline. For example, the lack of transportation facilities 

and electricity supply has limited the economic and social development of the study area. 

In addition, inadequate water supply and unhygienic conditions have led to various health 

hazards over the years. Therefore, the unemployment due to limited development leads to 

economic imbalance and severe poverty and thereby vandalism and saboteurs of pipelines 

throughout the study area. These observations might be related to the higher TPI in the 

study area, and are characteristic of a socioeconomic factor that can be crucial when 

measuring the occurrences of pipeline TPI. Surprisingly, this was found to be the reverse 

in the above model with socioeconomic factors. The key aspects of the results can be 

listed as follows: 

i. The lack of association between socioeconomic variables and the occurrences of 

pipeline TPI in the study area contradicts previous research that has found a 

positive relationship between crimes (e.g. intentional pipeline TPI) and 

socioeconomic factors (Bennett, 1991; Blau and Blau, 1982). According to these 

researchers, there are a number of factors which contribute to the relationships. 

Conversely, only a few studies have evaluated the direct association between TPI 

occurrence and socioeconomic factors (Dey, 2002; DPR, 1997; Okechukwu, 2010). 

Dey‟s (2002) study, for example, evaluated this association on a cross-country 
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pipeline rather than on regional spatial units, as used in this thesis. It is important, 

therefore, to note that it is possible that the above statistical insignificance of the 

socioeconomic variables in this thesis were due to the generalisation of the data at 

the individual regional spatial unit level.  

 

ii. Another possible explanation for this result is that the socioeconomic factor of the 

study area is not exclusively measured by the variables considered in the thesis 

(Section 5.3). Therefore, it is possible that the variables considered present a less 

optimistic and realistic relationship with TPI in the study area. Consequently, this 

might suggest the possibility of ecologic fallacy for the socioeconomic variables 

used in the study area. This data requirement and limitation is one source of 

weakness in this thesis which could have affected the measurements of the 

socioeconomic factor. This could be improved, for example, a primary survey to 

measure the many households with no access to safe water and electricity. A 

substantial proportion of the population continues to rely on water from wells, 

rivers and lakes, which constitutes a serious health hazard to the people (Siraj, 

2000). 

 
iii. The socioeconomic and socio-political factors are somehow interconnected and 

may contribute indirectly to other statistically significant factors in the thesis. For 

example, low government expenditures may lead to lower quality of social 

infrastructure, which in turn increases attractiveness to urban areas. Therefore, 

future research could test further the link between socioeconomic factors and 

occurrences of TPI, for example by examining other regions in the country and 

analysing percentage changes in socioeconomic variables over time compared with 

the frequency of TPI occurrence.  

 

Finally, the major policy lesson is that socioeconomic factors in the study area, despite the 

assumptions reported in the literature, are not responsible for TPI in the study area, rather 

accessibility and land use planning are the main causes. It can be concluded that the lack of 

integrated land-use planning in the study area means that the socioeconomic factors not 

accurately defined within the study area. However, caution must be applied, as the findings 

might not be transferable to other area. The result of the questionnaire showed that, in the 

study area, opinions are divided on the causes of TPI. For example, the majority of the 

respondents from the oil industry perceived TPI as an act of sabotage; while much 
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literature (e.g. Kash, 2004) blames the government for the low socioeconomic status of the 

study area. Some literature (e.g. Dey, 2004) presented several views; for example, they 

identified the continued negligence of the nation's pipeline as the main cause of TPI. 

11.2.6     Socio-political Factors 

This thesis has successfully examined the socio-political factor as a determinant of pipeline 

TPI. While previous studies have examined the impact of this factor, there is no study that 

has systematically examined the relative importance of a socio-political factor, particularly in 

conjunction with other factors potentially influencing TPI. The results obtained lend 

support to the hypothesis that, in addition to the standard pipeline intrinsic properties, a 

socio-political factor is significant in investigating TPI, particularly in the study area. The few 

studies that focused on the relationship between socio-political factor and TPI have 

recognised that, in addition to socioeconomic problems in developing countries (e.g. the 

study area), socio-political failures also increase the occurrence of TPI. Okechukwu (2010), 

for example, found that political unrest influence the occurrence frequency of TPI. For 

example, political protests and internal uprisings in the study area involving the local 

populations where pipeline traverses are detrimental to the integrity and security of these 

pipelines. Hence, this thesis was able to analyse these variables, and found them to be 

statistically significant. 

 

The negative association between percentage of households with water and TPI 

contradicts the hypothesis derived from routine activity theory (Section 5.7), which 

assumes that TPI will take place most frequently in regions with large numbers of 

attractive targets (pipelines distribution network). Also, the result of the Poisson GLMs 

contrast with findings from the logistic GLMs results regarding socio-political factors. 

However, it should be noted that the socio-political variables in this thesis were based on 

national disaggregated data and the varying demography of the study area; therefore, the 

collation format may have resulted in the statistical insignificant results of the logistic 

GLMs model.  

 

In general, the results of the thesis indicate that socio-political factors are more influential 

than socioeconomic factors on the occurrence of TPI. Therefore, there are policy 

recommendations that can be drawn from the result. Socio-political instability and social 

unrest (ethnic, political unrest and government instability) associated with the study area 

are significant factors influencing the occurrence of TPI.  Therefore, developing countries 



Chapter XI: General Discussions 

227 

 

can recreate policy reforms to take care of these socio-political problems. It may also be 

more important to improve the quality of the existing infrastructure than to engage in 

further public investment for new proposed pipeline projects. This recommendation 

applies internationally because it is not only in the study area that socio-political factors 

significantly influence occurrence of TPI. For example, the routing of pipelines from the 

Middle East to the Mediterranean avoided Israel, and the “new pipelines linking Central Asia 

with the Mediterranean are being routed in response to the ethnic and religious mosaic of the republics in 

the Caucasus” (Markel, 2006). 

 

Finally, a number of important issues need to be considered in understanding the statistical 

significance of the socio-political factor in the study area. First, the majority of the 

inhabitants of the region live below the poverty line. There is poor governance and low 

level of accountability in the use of local and state government resources for development, 

with attendant poor service delivery and suboptimal deployment of scare resources (Siraj, 

2002). The provision of infrastructure is politically derived, teachers are inadequate in 

terms of quantity and quality, and almost all schools are ill-equipped and dilapidated. The 

result is that schools have become what has been described in some quarters as „restive 

youth factories‟, whose students cannot compete in order to get good jobs, and are not 

endowed with skills for farming or other self-employment, thus swelling unemployment 

ranks and becoming ready recruits for militant groups to vandalise pipelines.  

11.2.7 Human Development Indicators 

There are contradictory positive and negative relationships in the GLMs models regarding 

the influence of this factor. For example, the HDI showed a positive relationship with TPI 

in the LR model, but a negative relationship in the NB model. This is contrary to 

expectations, and a possible explanation for this result may be the mixed representation in 

both the GLMs models. The variables were used as a proxy for the human development 

factor, and were disaggregated from a national scaled data; therefore, representation for a 

count dependent variable (Poisson distribution) and nominal dependent variable (binomial 

logistic distribution) will not be true in every region. Therefore, it is important to reiterate 

that the objective of this study is to understand the relationship between the factors, hence 

this particular result does not jeopardise the overall objective. Moreover, since this thesis 

includes a questionnaire survey that has shown that human factors are highly significant in 

understanding TPI, the performance of the GLMs model may not have been affected 

adversely by these isolated cases. Therefore, in investigating TPI, it was interesting to 
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introduce human factors for which the relationship aspects have been investigated 

regarding the occurrence of pipeline TPI and are well understood.  

In general, it can be concluded that regions with a low Human Development Index (HDI) 

have a high propensity and likelihood of experiencing pipeline TPI. This is especially true 

for most of the local population where a pipeline traverses, but where there is also a lack in 

social infrastructure, for example access to safe water and electricity. However, caution 

must be applied, as the findings might not conclude that, for example, poverty reduction 

and adequate living standards will lead to the improvements of pipeline security. 

Therefore, the evidence presented in this thesis (Chapter 8) confirms the possibility that 

the lack of infrastructure needs is a major reason for the high occurrence of TPI. 

11.3 Pipeline Failure Databases  

Whilst various international pipeline failure databases, reviewed in Chapter 3, are well 

established and maintained by the individual collating institutions, their research potential 

is not yet fully exploitable. The review in this thesis has provided a perspective regarding 

the constraints of their use. This thesis has also highlighted many of the key issues facing 

the selected pipeline failure databases and the industry today. The following are the key 

developmental issues: 

 

(i) The findings from the review of various pipeline failure databases, while broad and 

objective, suggest that the various databases could be subjected to considerable 

criticism because, until recently, there have been little cross-coordinated 

understanding of TPI. One of the issues is that many of the databases identified 

did not use a consistent definition of TPI and therefore database comparison was 

not possible. This limited the usefulness of these databases for comparative 

research. This finding is rather disappointing, particularly considering the fact that 

failure database linkage would allow pipeline failures in a different region, recorded 

at different times to be collated and merged. These differences are, in part, 

explained by the classifications procedures of the various organisations involved 

and individual application of statistical comparison to the data. The need for 

industry unification is useful; particularly post 9/11, where information relating to 

oil economics, health risk, terrorism and service delivery is required by regulating 

and security agencies. 
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(ii) A systematic comparison of various pipeline failure databases was difficult to 

accomplish, which suggests that a weak link may exist between various databases. 

The reason why uniform comparisons are difficult is because of the operating 

purpose of the pipeline (i.e. gathering, transmission, and distribution) and the 

criteria for determining an incident as a failure. For example, in 2002, the OPS 

decided that only pipeline failures resulting in the release of 19 litres or more are to 

be included in the database (OPS, 2008).  

 
(iii) Lastly, there is a need to produce a uniform nomenclature and homogeneous 

database for TPI. It is considered that this is a basic requirement for effective 

management of pipelines, although it is recognised that this will require thorough 

supervision by the collating agency and external quality control to produce such a 

database. The advantages of uniform nomenclature and a homogeneous database 

for use in pipeline failure research cannot be overemphasised. First, such databases 

will offer high statistical power in predicting and understanding the occurrence of 

pipeline failure. Rare occurrences in some regions and frequent occurrences in 

others can therefore be studied more productively. Secondly, collation and 

categorisation can be done relatively promptly, thereby saving costs on a database‟s 

administrative and audit procedure. However, it is imperative that, if a uniform 

nomenclature is to be adopted, there is continuous quality monitoring, to ensure 

accuracy and completeness of such a database. 

 

 

Figure 11-1: Third party damage comparison of pipeline incidents database; the numbers of 
pipeline incidents are in logarithmic base. This is because the NNPC data are extremes, with 

numbers of pipeline incidents in thousands, compared to other databases. Hence, the need for the 
manipulation of the data to enable easy visual characterisation of the database. 
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The thesis review showed that EGIG, UKOPA and NEB publish periodic reports that 

would be far more useful and interesting if they had also considered publishing the raw 

data collected from the original input to their databases. At the present time this cannot be 

fully enforced because, according to Bolt (2006), data collection can be mandatory or 

voluntary; either collected and owned by a private company, and managed by regulatory 

agencies, or jointly managed through cooperation between groups of stakeholders. In the 

USA, it is a regulatory requirement that companies must publish all related pipeline 

incident data, and the OPS‟s database has extensive and numerous publications about 

general pipeline failures. They have also made the most comprehensive classification of all 

pipeline failures; for example, while most database reviews have used general terms (e.g. 

others, unknown) to classify some failures, OPS have been specific. The OPS attempts to 

publish all relevant raw data on its pipelines, and is available online from the Office of 

Pipeline Safety website.  

 
The strategy of APIA and CONCAWE in critical assessment, consistencies, and 

compilation of pipeline incident data has been successful. Figure 11.1 shows the close 

similarity in trend between APIA and CONCAWE. Restrepo et al. (2000), for example, 

praise CONCAWE‟s high reliability, especially the setting up of study groups for pipeline 

failures. In addition, the nomenclature of the EGIG database is very similar to APIA 

regarding the classification of pipeline failures. However, there is a difference in how 

pipeline TPI is defined; while APIA specifically identifies pipeline TPI, EGIG generalised 

the understanding by using the term “external interference”. 

Finally, returning to the question posed at the beginning of this thesis, it is now possible to 

state that the thesis, through the examination of an in-depth literature review, has provided 

a comparative examination of the international pipeline failure databases. It also highlights 

specific characteristics of the databases in terms of their descriptions of pipeline TPI. In 

general, a detailed pipeline database review could help the industry maintain failure data 

consistency, define effective protection measures, enable regulatory bodies to establish safe 

network, and facilitate application for future design strategies against TPI. 

11.4 Protection Methods for TPI 

There are various methods for protecting a pipeline against TPI (Chapter 4); however, 

there are limitations, under certain conditions, that reduce their usefulness. Thus, of all the 

methods reviewed for protecting pipelines against TPI, the remote sensing application is 
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the most preferred. This method can be used to continuously monitor pipelines against 

unintentional TPI. There are many reasons for this; firstly, remote sensing (RS) 

surveillance provides the ability to regularly monitor the pipeline; secondly, it enable the 

use of change detection analysis and, with stereo forward overlapping satellite imagery, RS 

enables 3D inspection of potential intrusions. On the other hand, the thesis concludes that 

the best method for protecting the pipeline against intentional TPI is the use of Fiber-

Optic Systems (FOS). This system can continuously monitor pipelines in real-time, 

covering tens of kilometres. The methodology for detecting vulnerable regions used in this 

thesis would enable the FOS to be located disjointedly at different locations along 

vulnerable segments in pipeline network.  

 

Over the last few decades, various forms of protection of pipeline against TPI, and 

pipeline failure in general, have grown and developed considerably. However, despite these 

advances, pipeline failure still occurs on a regular basis. Therefore, it appears that, despite 

various additional researches in protecting pipelines, there is evidence that more research 

needs to be done, a conclusion drawn from the result of the questionnaire survey. The 

following can be generally concluded: 

 

i. Emphasises should be placed on redeveloping the existing protection systems to 

effectively protect particularly vulnerable segments of pipelines using spatial 

analysis techniques developed in this thesis. 

 

ii. There is need for attention and coordination between different agencies to 

understand „indigenous‟ practices, which will help the industry in general. The 

practices, for example, are the utilisation of local communities to protect pipelines.  

 

iii. The results of the questionnaire showed that many respondents properly 

understood the severity of TPI threat. However, there is evidence from the result 

that suggests that the industry, in terms of protecting pipelines, needs to readjust 

its strategy to cope with the worsening threat of TPI. 

 

iv. In light of the limitations of the various protection methods, there was the 

suggestion in the questionnaire that any adapted protection methods should take 

into account the anticipated probabilistic risk. This should be accompanied by 
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constant re-evaluation and implementation of changes corresponding to the spatial 

non-stationarity of the occurrence of TPI. 

11.5 Questionnaire survey 

The survey confirms that TPI is recognised internationally as a leading cause of pipeline 

damage; but despite this knowledge and various preventative efforts, it still threatens all 

concerned stakeholders. The accomplishment of a methodology for the prevention of TPI 

not only requires professional adherence and modification of existing pipeline design 

standards, but also attention to the realities of an organisation‟s multiple roles within the 

pipeline industry and the local community. This result has also demonstrated that the 

prevalence of TPI in Africa is associated with the socio-political and socioeconomic status. 

The findings from the survey highlight the need for stakeholders to consider:  
 

 The demonstration of high levels of commitment to the communities through 

which a pipeline traverses.  

 The development of programmes and a support structure to optimise risk 

mitigation strategies to achieve maximum protection against TPI. 

 The benefits of the various modern technologies applicable to the prevention of 

pipeline third-party interference. 

11.6 Recommendations for Further Research 

It is believed that an improved understanding of pipeline TPI has been achieved by the 

work undertaken in this thesis; however, some gaps in the knowledge could not be filled 

because of the limitations imposed by a combination of data availability and time. These 

limitations provide an opportunity for future study, especially in the following areas: 

 

 This thesis developed models to better understand and predict the potential for 

pipeline TPI that included various independent variables. Future researchers 

should develop other models that will include additional variables, for example the 

types and modes of pipeline TPI. This will enable the pipeline TPI types to be 

individually analysed rather than using the collective and total of the number of 

occurrences for a certain period. In addition, a combination of geological, 

geophysical and other related crime data may help improve the level of 

understanding of pipeline TPI if included in future models. 
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 For future research, it is recommended, within the scope of investigating pipeline 

failures, that the methodologies used in this thesis be extended to other causes of 

pipeline failures (e.g. geological, operator error and materials), depending on data 

and time availability. It will also be valuable if similar analyses of pipeline TPI from 

other regions of the study area (Nigeria) were performed in order to compare the 

trends of occurrence and to identify any significant similarities or differences. 

 

 This thesis on TPI has been locally oriented; as such, the possible areas for future 

research should address the extent of TPI on national and international level. In 

addition, such research should build on the limitations of this research, and 

critically evaluate and thoroughly address the issue of litigation and criminology, 

combining quantitative and qualitative studies.  

 

 Future research could concentrate on the investigation and development of a 

management and security decision tool. For example, a survival time analysis 

model, being a predictive model that will estimate the probable time interval to the 

occurrence of the next TPI. In addition, a forecasting model, such as Artificial 

Neural Network model (ANN) can be complementary to further research. 

 

 Existing pipeline failure databases, particularly in developing countries, are limited 

in scope and definition and, as a consequence, may be misleading. In addition, 

datasets may be unreliable and incomplete. For example, geo-referencing existing 

datasets with reference to satellite imagery in the study area may reveal 

inconsistencies in the data collected. These databases do not reflect the priorities of 

pipeline operator; therefore, future research could exploit the linkage between 

existing international pipeline failure databases by potentially establishing a 

comprehensive international nomenclature for databases where the priorities of 

pipeline operators, security agencies and policy makers are borne in mind. 

11.7 General Limitations of the Thesis 

This thesis has made significant contributions to literature on TPI; however, there are 

several limitations that should be recognised. These are: 

 Inadequate metadata was available for useful determination of accurate and 

appropriate datasets for most of the secondary data used in the thesis, although, 

this is common in developing countries like Nigeria, and does not affect the overall 
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result of the thesis. However, it is believed that the results show what can be 

achieved in a country with complex political and geographical variations. 

Therefore, such a thesis as this is needed in the future as it will enable researchers 

to answer research questions of data collection in similar study areas. 

 

 The data collection for the thesis was not exhaustive. This was because most 

pipeline incident data are not well collated by the accountable authority in the 

specific study area, and there is a large amount of missing, potentially useful, 

observations in the data, for example the exact location of the TPI. However, it 

was concluded that the data are representative of the selected study area, although 

the results from the analysis may be less representative in the global context of 

pipeline TPI. 

 

 It is not possible to account for all the possible factors that influence the relative 

occurrence of pipeline TPI in a region. The measurements of some factors (e.g. 

socio-political) in the thesis are limited; however, appropriate proxies (where 

applicable) are used, and they arguably capture the main situations that are of 

interest to the thesis objectives. In particular, the use of HDI data is for each of the 

LGAs and is not directly designed for the basic spatial units. The interpretation of 

the results was, however, made with caution, because of the possible problem of 

endogeneity. 

 

 The thesis could not utilise primary surveys, especially to facilitate a more 

authenticated selection of variables considered. This would have led to a more 

significant productivity of the statistical techniques and procedures because 

kidnappings and violence are prevalent in the study area. This is in addition to the 

presence of cultural and traditional belief systems in the selected study area, for 

example the presence of fearful shrines and local deities. The sacred groves and 

shrines are out of bounds to strangers, women and children who are non-initiates 

of the order. Hence, conducting a primary survey in the study area would be a high 

risk task for an outside researcher. 
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12  CONCLUSIONS AND RECOMMENDATIONS  

Chapters 7, 8, and 10 presented the results from the thesis and reported the key issues used 

to examine relationships between land use, socioeconomic and socio-political factors, 

population density, and pipeline intrinsic properties. This chapter summarises the key 

conclusions with reference to the research objectives stated in Chapter 1, together with 

recommendations made for the pipeline industry, with particular reference to the study 

area. This thesis has extracted analytical approaches from various science and engineering 

disciplines that are not commonly found in pipeline failure prevention research. An 

understanding of the physical characteristics of the study area forms an important aspect 

of the interpretation and evaluation of the various results obtained.  

 

The thesis approach is innovative in the area of TPI research, especially the combination 

of data collation and manipulation from a variety of disparate sources; the review of major 

pipeline incident databases; exploratory review of prevention methods; the use of a 

primary questionnaire survey; and the employment of GIS-based multivariate statistical 

tests. The thesis has provided a more complete understanding of the complexity of 

pipeline TPI than any previous studies have accomplished, especially the contribution to 

the literature from the mixed-methods approaches that have been implemented. The main 

objective of this thesis has been achieved as set out in Section 1.4. Therefore, this thesis 

reached important conclusions, which include the following: 

 

i. Pipeline TPI is inevitable and cannot always be prevented. However, this thesis has 

demonstrated that the ability to identify potential future occurrences can be 

understood and achieved. A clear repeatable methodology to minimise the 

occurrence and consequences of TPI, especially as established by standard 

procedures as formulated in this thesis, has been achieved. 

 

ii. The use of the GIS for spatial statistical analyses and the cartographic capability to 

model and visualise the spatial distributions of pipeline TPI hotspots has shown 

that GIS can provide a vital tool for use in the pipeline industry. In the context of 

this thesis, a GIS has successfully revealed trends and inter-relationships of factors 

that may be otherwise difficult to identify by simple statistical design or the 

traditional visual route inspection. 
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iii. The understanding of future possible occurrences of TPI, let alone their 

prediction, is a challenge, since it depends on numerous factors as described in 

Chapter 5. It was concluded that the GWR is the best instrument to model pipeline 

TPI spatial data when compared with the other models that have been examined. 

This is because it allows for a critical evaluation of any hidden attributes of a 

variable in a global context, and enables the investigation of salient relationships 

between factors in a local context. The thesis provides additional evidence with 

respect to younger pipelines, in that they are less vulnerable than older pipelines. 

The thesis suggests that, while younger pipelines had better protection because of 

the employment of modern protection technology, older pipelines were a lot more 

accepting to interference than is often thought to be the case. 

 

iv. The use of GLMs methodology in this thesis identified that the total length of 

pipeline distribution network in a region, the perimeter of oilfields, selected land 

use types, and pipeline status (buried or aboveground) are the most significant and 

predictive factors influencing TPI in the study area. Moreover, the evidence in this 

thesis suggests that some pipeline intrinsic properties (e.g. pipeline diameter) are 

more important in risk assessment than others, and contribute more significantly 

to the understanding of TPI than previously thought. This finding is in agreement 

with existing literature such as Hereth et al. (2007) and Muhlbauer (2004), which 

showed the importance of pipeline intrinsic properties and pipeline length on 

failure rates.  

 

v. This thesis has explained the central importance of GIS spatial analysis in 

predicting the occurrence of pipeline TPI, and the following conclusions can be 

drawn from the thesis: (i) the probability of pipeline TPI in most cases is 

proportional to the total length of pipeline distribution network in a region. The 

LR analysis showed this variable as statistically significant in determining the 

likelihood of the presence or absence of pipeline TPI; (ii) when holding all other 

variables constant, the more pipelines installed in the mosaic grassland/forest or 

scrublands land use type, the less likely the segments of pipeline system will 

experience TPI. 

 

vi. The findings of the thesis have raised a number of important implications for the 

categorisations used in pipeline incident databases, and have shown that a 

harmonisation, in theory, of all the existing pipeline failure databases is possible 
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and urgently needed. The understanding of TPI from these databases needs further 

identification and reclassification in order for the global scale of the problem to be 

more accurately determined. This can be achieved through the development of a 

uniform nomenclature and a unified approach to data collection. 

 

vii. One of the primary goals of this thesis, presented in Chapter 6, was to study the 

aspects of safety and the effectiveness of various TPI detection and prevention 

methods. This includes an evaluation of the approaches for minimising pipeline 

TPI vulnerability, with their corresponding advantages, limitations and 

disadvantages. When evaluating these methods, the socioeconomic and socio-

political status within the monitored geographical region, in addition to population 

density over time, influenced the implementation of these methods. In conclusion, 

these findings have a number of important implications for future practice; the 

effectiveness of methods must be determined in each new application in a manner 

that will incorporate changes in these influencing factors, especially the significant 

variables considered in this thesis. 

12.1 Recommendations for Industry 

The findings of this thesis have a number of important implications for future practice and 

the industry in general. Therefore, the thesis concludes by making a series of 

recommendations to the pipeline industry, particularly in the study area. In spite of 

numerous TPI incidents experienced by the study area, there is no single recognised 

agency which can be tasked with the responsibility of safeguarding the pipeline 

infrastructure. The NNPC and the Department of Petroleum Resources (DPR), which 

oversees and moderates the safety of pipelines in the country, have no capacity to provide 

effective surveillance for the pipelines. The fundamental problem, based on the responses 

to the questionnaire survey in this thesis, is the absence of effective patrol teams and 

sophisticated technologies for monitoring pipelines in the study area. Therefore, the 

following observations and recommendations are worth serious consideration by all the 

stakeholders in the study area and in other geographical regions of the world that have a 

similar problem: 

 

i. The thesis has shown that practical involvement of all stakeholders, especially by 

the relevant pipeline authority, in campaigns and public education, particularly the 

nearby local population within the pipeline distribution network, minimises the 
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occurrences of TPI. The pipeline industry should therefore endorse this important 

route in order to optimise prevention and protection procedure for efficient 

security of the pipeline distribution network. 

 

ii. It is essential that the industry influences the inadequate legal framework regarding 

pipeline failures, especially in the study area. It is demonstrated that such legal 

regulations effectively deal with pipeline TPI, for example as practised in the 

United Kingdom. The Control of Major Accident Hazards (COMAH) Regulations 

of 1999 require Local Authorities to prepare and be ready with Off-Site 

Emergency Plans in order to prevent and respond to major pipeline-related 

incidents. This arrangement seeks to limit the consequences of any subsequent 

failure to the environment and to the people, and is enforced by the Health and 

Safety Executive (HSE) and the Environment Agency (EA) in the United 

Kingdom. 

 

iii. In order to protect pipeline distribution networks in vulnerable land use types, it is 

recommended that a potential pipeline operator carry out integrated studies for a 

better understanding of the local ecosystem, for example cartography, biodiversity, 

hydrology and socioeconomic status. For the protection of oil and gas pipeline 

facilities, strategies based on ecological principles of protection, creative 

approaches, and technical research are recommended. Similarly, in order to protect 

the local environment from the adverse effects of pipeline failures, a suggestion for 

control is the organisational setup of local pipeline protection agencies and for the 

strict implementation of laws for pipeline management. 

 

iv. The existing state of the pipeline infrastructure in the study area needs a complete 

system overhaul. As acknowledged by the Managing Director of the SHELL 

Nigeria, Basil Omiyi: “We do have a substantial backlog of asset integrity work to reduce 

pipeline spills” (Ikelegbe, 2001). This lack of maintenance, as required in the industry, 

does lead to TPI. It is therefore imperative that these pipelines be adequately 

maintained and, if possible, be buried deeper in the ground. A potential for a 99 

per cent reduction in TPI is possible if a depth of 3m is considered for burying 

pipelines; it is most unlikely that intentional TPI will occur at this depth of cover. 

This depth of cover should reduce both intentional and unintentional TPI to 

pipelines (Borysiewicz et al., 2004). 
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v. The findings from the analysis of open-ended questions utilised in the 

questionnaire survey highlight the need for stakeholders, globally, to consider: (i) 

creation of quality practice with high levels of commitment to threat assessment 

procedures; (ii) development of programs and support to optimise risk mitigation 

strategies; and (iii) the benefits and understanding of various modern technologies 

applicable for protecting pipelines against TPI.  

 

vi. The thesis has indicated that TPI will continue to be prevalent in the study area; 

the government should therefore embrace the growing importance of security 

investment and a beneficial decision-making process. Specifically, from the results 

in Chapter 7, it is recommended that more susceptible countries need to intensify 

prevention efforts and increase investment in prevention schemes, including the 

following: the implementation of proper standards and procedures; increase the 

use of awareness campaign by all stakeholders; intensify Research and 

Development; increase surveillance frequency as determined from risk assessment; 

discourage, by all means, right-of-way encroachment; encourage adequate 

communications with all stakeholders; adhere to government and social 

responsibility to communities; and monitor land use and human activities within 

the pipeline network. 

 

This thesis has contributed to knowledge about TPI, especially the identification of the key 

influencing factors. The understanding of these factors could therefore be adopted as the 

fundamental criteria for assessing and selecting a suitable protection strategy. This shows 

that the prevention of TPI can only be accomplished through a combined approach of 

professional adherence and modification of existing pipeline designs, standard, attention to 

the realities of the identified and significant factors in this thesis; and awareness of an 

organisation‟s multiple roles within the pipeline industry and the community where 

pipelines mostly traverse. 

12.2 Summary 

This chapter has shown that all the thesis objectives set out in Chapter 1 were met by the 

research undertaken. Recommendations were then made showing that there is a clear need 

for the implementation of the conclusion of this thesis, which might enable the pipeline 

industry to enhance the decision-making process. 
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APPENDIX I: OUTPUT OF ANALYSES FROM SPSS 

Factor Analysis 
 

DATASET ACTIVATE DataSet1. DATASET CLOSE DataSet10. FACTOR   

/VARIABLES PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI   /MISSING 

PAIRWISE   /ANALYSIS PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI   

/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION   /FORMAT SORT 

BLANK(.3)   /PLOT EIGEN   /CRITERIA MINEIGEN(1) ITERATE(25)   

/EXTRACTION PC   /CRITERIA ITERATE(25) DELTA(0)   /ROTATION OBLIMIN   

/METHOD=CORRELATION. 

 

Notes 

 Output Created 29-Jan-2010 14:25:15 

Comments  

Input Data H:\ProjectAnalysis\GLM\FactorAnalysis.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data  151 

Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined missing 

values are treated as missing. 

Cases Used PAIRWISE: Correlation coefficients for each pair 

of variables are based on all the cases with 

valid data for that pair. The factor analysis is 

based on these correlations. 

 FACTOR 

  /VARIABLES PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI 

  /MISSING PAIRWISE 

  /ANALYSIS PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI 

  /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION 

  /FORMAT SORT BLANK(.3) 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) DELTA(0) 

  /ROTATION OBLIMIN 

  /METHOD=CORRELATION. 

 

Resources Processor Time 0:00:00.327 

Elapsed Time 0:00:00.328 
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Notes 

 Output Created 29-Jan-2010 14:25:15 

Comments  

Input Data H:\ProjectAnalysis\GLM\FactorAnalysis.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data  151 

Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined missing 

values are treated as missing. 

Cases Used PAIRWISE: Correlation coefficients for each pair 

of variables are based on all the cases with 

valid data for that pair. The factor analysis is 

based on these correlations. 

 FACTOR 

  /VARIABLES PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI 

  /MISSING PAIRWISE 

  /ANALYSIS PcEl PcBW PcLt EXHD ADHI LEI GEM HDI GDP GDI HPI 

  /PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION 

  /FORMAT SORT BLANK(.3) 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) DELTA(0) 

  /ROTATION OBLIMIN 

  /METHOD=CORRELATION. 

 

Resources Processor Time 0:00:00.327 

Elapsed Time 0:00:00.328 

Maximum Memory Required 16004 (15.629K) bytes 

 
 

[DataSet1] H:\Project SPSS Analysis\GLM\FactorAnalysis.sav 

 

Correlation Matrix 

  PcEl PcBW PcLt EXHD ADHI LEI GEM 

Correlation PcEl 1.000 -.802 .058 -.401 .197 -.192 -.335 
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PcBW -.802 1.000 -.305 .647 -.348 .330 .434 

PcLt .058 -.305 1.000 -.433 .127 -.116 -.099 

EXHD -.401 .647 -.433 1.000 -.792 .799 .690 

ADHI .197 -.348 .127 -.792 1.000 -.981 -.866 

LEI -.192 .330 -.116 .799 -.981 1.000 .849 

GEM -.335 .434 -.099 .690 -.866 .849 1.000 

HDI -.178 .336 -.161 .777 -.967 .978 .847 

GDP .070 -.203 .054 -.657 .895 -.901 -.774 

GDI -.268 .411 -.199 .827 -.967 .976 .923 

HPI .213 -.329 .058 -.745 .919 -.920 -.799 

 

Correlation Matrix 

  HDI GDP GDI HPI 

Correlation PcEl -.178 .070 -.268 .213 

PcBW .336 -.203 .411 -.329 

PcLt -.161 .054 -.199 .058 

EXHD .777 -.657 .827 -.745 

ADHI -.967 .895 -.967 .919 

LEI .978 -.901 .976 -.920 

GEM .847 -.774 .923 -.799 

HDI 1.000 -.942 .952 -.884 

GDP -.942 1.000 -.851 .851 

GDI .952 -.851 1.000 -.898 

HPI -.884 .851 -.898 1.000 

 

 

KMO and Bartlett's Test 

 Kaiser-Meyer-Olkin Measure 

of Sampling Adequacy. 
.770 

Bartlett's Test of Sphericity Approx. Chi-Square 3193.377 

df 55 

Sig. .000 
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Communalities 

 Initial Extraction 

PcEl 1.000 .928 

PcBW 1.000 .922 

PcLt 1.000 .971 

EXHD 1.000 .883 

ADHI 1.000 .971 

LEI 1.000 .977 

GEM 1.000 .829 

HDI 1.000 .965 

GDP 1.000 .888 

GDI 1.000 .969 

HPI 1.000 .883 

Extraction Method: Principal 

Component Analysis. 

 

 

Total Variance Explained 

Compo

nent 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Total % of Variance Cumulative % Total % of Variance 

1 7.390 67.184 67.184 7.390 67.184 

2 1.772 16.107 83.291 1.772 16.107 

3 1.024 9.311 92.602 1.024 9.311 

4 .257 2.340 94.942   

5 .180 1.640 96.581   

6 .156 1.422 98.003   

7 .113 1.026 99.029   

8 .072 .650 99.679   

9 .023 .213 99.892   

10 .010 .094 99.986   

11 .002 .014 100.000   

Extraction Method: Principal Component Analysis. 

 

 

Total Variance Explained 
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Compo

nent 

Extraction Sums 

of Squared 

Loadings 

Rotation Sums of 

Squared 

Loadings
a
 

Cumulative % Total 

1 67.184 7.263 

2 83.291 2.708 

3 92.602 1.613 

Extraction Method: Principal Component 

Analysis. 

a. When components are correlated, sums of 

squared loadings cannot be added to obtain 

a total variance. 

 

 
 

 

Component Matrix
a
 

 Component 

 1 2 3 

GDI .982   

LEI .972   

ADHI -.972   

HDI .966   

HPI -.922   

GEM .901   
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GDP -.888 .313  

EXHD .868   

PcBW .494 .816  

PcEl -.333 -.801 -.419 

PcLt  -.403 .875 

Extraction Method: Principal Component 

Analysis. 

a. 3 components extracted. 

 

 

Pattern Matrix
a
 

 Component 

 1 2 3 

LEI .998   

ADHI -.990   

HDI .989   

GDP -.985   

GDI .952   

HPI -.947   

GEM .858   

EXHD .662  -.354 

PcEl  -.997  

PcBW  .881  

PcLt   1.000 

Extraction Method: Principal Component 

Analysis.  

 Rotation Method: Oblimin with Kaiser 

Normalization. 

a. Rotation converged in 4 iterations. 

 

 

Structure Matrix 

 Component 

 1 2 3 

LEI .988   

ADHI -.985   
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HDI .981   

GDI .981 .352  

HPI -.937   

GDP -.926   

GEM .895 .407  

EXHD .811 .552 -.540 

PcEl  -.951  

PcBW .367 .941 -.379 

PcLt   .983 

Extraction Method: Principal Component 

Analysis.  

 Rotation Method: Oblimin with Kaiser 

Normalization. 

 

 

Component Correlation Matrix 

Compo

nent 1 2 3 

1 1.000 .294 -.187 

2 .294 1.000 -.220 

3 -.187 -.220 1.000 

Extraction Method: Principal Component 

Analysis.   

 Rotation Method: Oblimin with Kaiser 

Normalization.  

 

Poisson Generalized Linear Models 
 

* Generalized Linear Models. GENLIN Freq BY PDia PiSt Geol 

(ORDER=ASCENDING) WITH PcBW PcLt HDI EXHD OilF PiLe RvLe RdLe PopD Age 

wb esd mvc tsg mbw cgl glf blf     sbl mfc   /MODEL PDia PiSt PcBW 

PcLt HDI EXHD OilF PiLe RvLe RdLe PopD Age wb esd mvc tsg mbw cgl glf 

blf sbl mfc INTERCEPT=YES  DISTRIBUTION=NEGBIN(1) LINK=LOG   /CRITERIA 

METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=200 MAXSTEPHALVING=5 

PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYS    ISTYPE=3(WALD) 

CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL   /MISSING CLASSMISSING=INCLUDE   

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION 

(EXPONENTIATED). 

Notes 

 
Output Created 29-Jan-2010 19:08:47 

Comments  
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Input Data H:\Project SPSS Analysis\Logistic 

Regression\Poission regression-FINAL.sav 

Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working 

Data File 
151 

Missing Value Handling Definition of Missing User-defined missing values for factor, 

subject and within-subject variables are 

treated as valid data. User-defined missing 

values for any other variables in the model 

are treated as missing. 

Cases Used Statistics are based on cases with valid data 

for all variables in the model. 

 
Weight Handling not applicable 

Syntax  GENLIN Freq BY PDia PiSt Geol 

(ORDER=ASCENDING) WITH PcBW PcLt 

HDI EXHD OilF PiLe RvLe RdLe PopD Age 

wb esd mvc tsg mbw cgl glf blf sbl mfc 

  /MODEL PDia PiSt PcBW PcLt HDI EXHD 

OilF PiLe RvLe RdLe PopD Age wb esd mvc 

tsg mbw cgl glf blf sbl mfc INTERCEPT=YES 

 DISTRIBUTION=NEGBIN(1) LINK=LOG 

  /CRITERIA METHOD=FISHER(1) 

SCALE=1 COVB=MODEL 

MAXITERATIONS=200 

MAXSTEPHALVING=5 PCONVERGE=1E-

006(ABSOLUTE) SINGULAR=1E-012 

ANALYSISTYPE=3(WALD) CILEVEL=95 

CITYPE=WALD LIKELIHOOD=FULL 

  /MISSING CLASSMISSING=INCLUDE 

  /PRINT CPS DESCRIPTIVES MODELINFO 

FIT SUMMARY SOLUTION 

(EXPONENTIATED). 

 

 

Elapsed Time 0:00:00.156 

 
 

[DataSet1] H:\Project SPSS Analysis\Logistic Regression\Poission 

regression-FINAL.sav 
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Warnings 

The maximum number of step-halvings was reached but the log-likelihood value cannot be further 

improved. Output for the last iteration is displayed. 

The GENLIN procedure continues despite the above warning(s). Subsequent results shown are based on 

the last iteration. Validity of the model fit is uncertain. 

 

 

Model Information 

Dependent Variable Freq 

Probability Distribution Negative binomial (1) 

Link Function Log 

 

 

Case Processing Summary 

 N Percent 

Included 151 100.0% 

Excluded 0 .0% 

Total 151 100.0% 

 

 

Categorical Variable Information 

   N Percent 

Factor PDia Pipelines less than 8 Inchs 93 61.6% 

9 to 15 Inchs Pipelines 27 17.9% 

Pipelines greater than 16 

Inches 
31 20.5% 

Total 151 100.0% 

PiSt Buried Pipeline 18 11.9% 

aboveground pipeline 54 35.8% 

No pipeline 79 52.3% 

Total 151 100.0% 

Geol Abandoned Beach Ridges 14 9.3% 
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Alluvium 5 3.3% 

Coastal Plains Sands 7 4.6% 

Mangrove Swamps 29 19.2% 

Meander Belt,Back Swamps 

Fresh Water Swamps 
24 15.9% 

Sombreiro Deltaic Plain 72 47.7% 

Total 151 100.0% 

 

 

Continuous Variable Information 

  N Minimum Maximum Mean Std. Deviation 

Dependent Variable Freq 151 0 64 1.72 5.825 

Covariate PcBW 151 5 68 37.97 21.913 

PcLt 151 44 89 74.49 15.715 

HDI 151 .54645 6.90776 3.6217874 1.10345984 

EXHD 151 -2.46326 6.90776 3.2343395 2.09739794 

OilF 151 .000 8.919 1.97171 1.701956 

PiLe 151 .00 63.98 5.0869 8.07816 

RvLe 151 .001 208.500 22.24364 29.658104 

RdLe 151 .000 11.613 3.88047 2.753099 

PopD 151 45.62 523.48 248.7007 139.77047 

Age 151 .00 16.00 3.6887 5.35934 

wb 151 .001 4.784 .32717 .701594 

esd 151 .320 76.800 18.27378 13.532754 

mvc 151 .001 33.920 1.75629 4.468995 

tsg 151 .001 59.360 11.01145 10.848711 

mbw 151 .001 70.400 3.87230 10.147017 

cgl 151 .001 56.000 3.66422 6.017229 

glf 151 .001 52.320 8.57538 8.815815 

blf 151 .001 35.360 3.99807 6.160491 

sbl 151 .001 67.200 3.85213 9.466219 

mfc 151 .001 1.120 .02850 .147347 
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Goodness of Fit
b
 

 Value df Value/df 

Deviance 81.636 126 .648 

Scaled Deviance 81.636 126  

Pearson Chi-Square 105.623 126 .838 

Scaled Pearson Chi-Square 105.623 126  

Log Likelihood
a
 -156.766   

Akaike's Information Criterion 

(AIC) 
363.532   

Finite Sample Corrected AIC 

(AICC) 
373.932   

Bayesian Information 

Criterion (BIC) 
438.964   

Consistent AIC (CAIC) 463.964   

Dependent Variable: Numbers of Pipeline Third-party Interference 

Model: (Intercept), PDia, PiSt, PcBW, PcLt, HDI, EXHD, OilF, PiLe, 

RvLe, RdLe, PopD, Age, wb, esd, mvc, tsg, mbw, cgl, glf, blf, sbl, 

mfc 

a. The full log likelihood function is displayed and used in computing 

information criteria. 

b. Information criteria are in small-is-better form. 

 

 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

226.061 24 .000 

Dependent Variable: Numbers of Pipeline 

Third-party Interference 

Model: (Intercept), PDia, PiSt, PcBW, PcLt, 

HDI, EXHD, OilF, PiLe, RvLe, RdLe, 

PopD, Age, wb, esd, mvc, tsg, mbw, cgl, 

glf, blf, sbl, mfc 

a. Compares the fitted model against the 

intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-Square df Sig. 

(Intercept) .262 1 .609 

PDia 3.916 2 .141 

PiSt 6.888 2 .032 

PcBW 1.633 1 .201 

PcLt 1.347 1 .246 

HDI .278 1 .598 

EXHD .002 1 .964 

OilF 6.647 1 .010 

PiLe 3.395 1 .065 

RvLe .019 1 .889 

RdLe 4.021 1 .045 

PopD .358 1 .549 

Age 1.020 1 .312 

wb 4.584 1 .032 

esd 2.419 1 .120 

mvc 6.581 1 .010 

tsg 2.327 1 .127 

mbw .759 1 .384 

cgl .219 1 .639 

glf 2.674 1 .102 

blf 2.554 1 .110 

sbl 4.112 1 .043 

mfc 3.172 1 .075 

Dependent Variable: Numbers of Pipeline Third-party 

Interference 

Model: (Intercept), PDia, PiSt, PcBW, PcLt, HDI, EXHD, 

OilF, PiLe, RvLe, RdLe, PopD, Age, wb, esd, mvc, tsg, 

mbw, cgl, glf, blf, sbl, mfc 

 

 

 

Parameter Estimates 

Parameter  95% Wald Confidence Interval 
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B Std. Error Lower Upper 

(Intercept) -.434 2.3668 -5.073 4.205 

[PDia=1] .036 .6573 -1.252 1.325 

[PDia=2] 1.014 .6570 -.274 2.301 

[PDia=3] 0
a
 . . . 

[PiSt=1] 1.842 .7795 .314 3.370 

[PiSt=2] 1.743 .6881 .395 3.092 

[PiSt=3] 0
a
 . . . 

PcBW -.020 .0160 -.052 .011 

PcLt -.018 .0152 -.047 .012 

HDI -.236 .4472 -1.112 .641 

EXHD -.012 .2679 -.537 .513 

OilF .386 .1496 .092 .679 

PiLe .062 .0334 -.004 .127 

RvLe .003 .0196 -.036 .041 

RdLe .256 .1275 .006 .506 

PopD -.002 .0025 -.006 .003 

Age .050 .0499 -.047 .148 

wb .889 .4154 .075 1.703 

esd .042 .0273 -.011 .096 

mvc -.119 .0464 -.210 -.028 

tsg -.038 .0249 -.087 .011 

mbw -.032 .0372 -.105 .040 

cgl -.027 .0580 -.141 .087 

glf -.048 .0290 -.104 .009 

blf -.063 .0393 -.140 .014 

sbl -.108 .0533 -.213 -.004 

mfc -2.329 1.3075 -4.891 .234 

(Scale) 1
b
    

(Negative binomial) 1    

Dependent Variable: Numbers of Pipeline Third-party Interference 

Model: (Intercept), PDia, PiSt, PcBW, PcLt, HDI, EXHD, OilF, PiLe, RvLe, RdLe, 

PopD, Age, wb, esd, mvc, tsg, mbw, cgl, glf, blf, sbl, mfc 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 

 

Parameter Estimates 
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Parameter 

Hypothesis Test  

95% Wald Confidence Interval for 

Exp(B) 

Wald Chi-Square df Sig. Exp(B) Lower Upper 

(Intercept) .034 1 .855 .648 .006 67.012 

[PDia=1] .003 1 .956 1.037 .286 3.761 

[PDia=2] 2.381 1 .123 2.756 .760 9.988 

[PDia=3] . . . 1 . . 

[PiSt=1] 5.584 1 .018 6.309 1.369 29.075 

[PiSt=2] 6.419 1 .011 5.716 1.484 22.018 

[PiSt=3] . . . 1 . . 

PcBW 1.633 1 .201 .980 .949 1.011 

PcLt 1.347 1 .246 .983 .954 1.012 

HDI .278 1 .598 .790 .329 1.898 

EXHD .002 1 .964 .988 .584 1.670 

OilF 6.647 1 .010 1.471 1.097 1.972 

PiLe 3.395 1 .065 1.063 .996 1.135 

RvLe .019 1 .889 1.003 .965 1.042 

RdLe 4.021 1 .045 1.291 1.006 1.658 

PopD .358 1 .549 .998 .994 1.003 

Age 1.020 1 .312 1.052 .954 1.160 

wb 4.584 1 .032 2.433 1.078 5.493 

esd 2.419 1 .120 1.043 .989 1.101 

mvc 6.581 1 .010 .888 .811 .972 

tsg 2.327 1 .127 .963 .917 1.011 

mbw .759 1 .384 .968 .900 1.041 

cgl .219 1 .639 .973 .869 1.090 

glf 2.674 1 .102 .954 .901 1.009 

blf 2.554 1 .110 .939 .870 1.014 

sbl 4.112 1 .043 .898 .808 .996 

mfc 3.172 1 .075 .097 .008 1.264 

Dependent Variable: Numbers of Pipeline Third-party Interference 

Model: (Intercept), PDia, PiSt, PcBW, PcLt, HDI, EXHD, OilF, PiLe, RvLe, RdLe, PopD, Age, wb, esd, mvc, 

tsg, mbw, cgl, glf, blf, sbl, mfc 

 

 

 

Results of SPSS Logistic Regression Analysis 
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LOGISTIC REGRESSION VARIABLES TPI   /METHOD=ENTER PcBW PcLt HDI EXHD 

OilF PiLe RvLe RdLe PopD Age PDia PiSt wb esd mvc tsg mbw cgl glf blf 

sbl   /CONTRAST (PDia)=Indicator(1)   /CONTRAST (PiSt)=Indicator   

/CLASSPLOT   /CASEWISE OUTLIER(2)   /PRINT=GOODFIT CORR ITER(1) CI(95)   

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(100) CUT(0.5). 

 

Notes 

 Output Created 29-Jan-2010 16:11:22 

Comments  

Input Data H:\Project SPSS Analysis\Logistic 

Regression\logistic regression-

FINAL.sav 

Active Dataset DataSet11 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data 

File 
151 

Missing Value Handling Definition of Missing User-defined missing values are treated 

as missing 

 Syntax LOGISTIC REGRESSION VARIABLES 

TPI 

  /METHOD=ENTER PcBW PcLt HDI 

EXHD OilF PiLe RvLe RdLe PopD Age 

PDia PiSt wb esd mvc tsg mbw cgl glf 

blf sbl 

  /CONTRAST (PDia)=Indicator(1) 

  /CONTRAST (PiSt)=Indicator 

  /CLASSPLOT 

  /CASEWISE OUTLIER(2) 

  /PRINT=GOODFIT CORR ITER(1) 

CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) 

ITERATE(100) CUT(0.5). 

 

Resources Processor Time 0:00:00.047 

Elapsed Time 0:00:00.046 

 
 

[DataSet11] H:\Project SPSS Analysis\Logistic Regression\logistic 

regression-FINAL.sav 
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Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases Included in Analysis 151 100.0 

Missing Cases 0 .0 

Total 151 100.0 

 Unselected Cases 0 .0 

Total 151 100.0 

a. If weight is in effect, see classification table for the total number of 

cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No Thirdparty Interference 0 

Thirdparty Interference 1 

 

Categorical Variables Codings 

   Parameter coding 

  Frequency (1) (2) 

PiSt Buried Pipeline 18 1.000 .000 

aboveground pipeline 54 .000 1.000 

No pipeline 79 .000 .000 

PDia Pipelines less than 8 Inchs 93 .000 .000 

9 to 15 Inchs Pipelines 27 1.000 .000 

Pipelines greater than 16 

Inches 
31 .000 1.000 

 

 
Block 0: Beginning Block 

Iteration History
a,b,c

 

Iteration 

 Coefficients 

-2 Log likelihood Constant 

Step 0 1 193.158 -.649 

2 193.138 -.673 

3 193.138 -.673 
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a. Constant is included in the model. 

b. Initial -2 Log Likelihood: 193.138 

c. Estimation terminated at iteration number 3 

because parameter estimates changed by less than 

.001. 

 

Classification Table
a,b

 

 

Observed 

Predicted 

 Occurrence of Pipeline Third-party 

Interference 

 No Thirdparty 

Interference 

Thirdparty 

Interference 

Step 0 Occurrence of Pipeline Third-

party Interference 

No Thirdparty Interference 100 0 

Thirdparty Interference 51 0 

a. Constant is included in the model. 

b. The cut value is .500 

 

Classification Table
a,b

 

 

Observed 

Predicted 

  

 Percentage 

Correct 

Step 0 Occurrence of Pipeline Third-

party Interference 

No Thirdparty Interference 100.0 

Thirdparty Interference .0 

 Overall Percentage 66.2 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

  B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.673 .172 15.313 1 .000 .510 

 

 

Variables not in the Equation 

   Score df Sig. 



Appendix I: Output of Analyses from SPSS 

276 

 

Step 0 Variables PcBW 4.239 1 .040 

PcLt .753 1 .385 

HDI .147 1 .702 

EXHD 3.497 1 .061 

OilF 15.859 1 .000 

PiLe 51.819 1 .000 

RvLe 1.214 1 .271 

RdLe 10.304 1 .001 

PopD .975 1 .323 

Age 31.734 1 .000 

PDia 58.508 2 .000 

PDia(1) 28.462 1 .000 

PDia(2) 16.481 1 .000 

PiSt 67.889 2 .000 

PiSt(1) 17.691 1 .000 

PiSt(2) 32.018 1 .000 

wb .005 1 .943 

esd .069 1 .794 

mvc 2.375 1 .123 

tsg 3.427 1 .064 

mbw .019 1 .891 

cgl .330 1 .566 

glf .053 1 .818 

blf .425 1 .515 

sbl 1.041 1 .308 

 Overall Statistics 89.325 23 .000 

 

 
Block 1: Method = Enter 

 

 

Iteration History
a,b,c,d

 

Iteration  Coefficients 
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-2 Log likelihood Constant PcBW PcLt HDI EXHD OilF 

Step 1 1 100.228 -1.225 -.009 .001 -.025 -.014 .167 

2 81.009 -1.503 -.024 -.003 .047 -.081 .341 

3 73.191 -1.772 -.047 -.013 .331 -.237 .455 

4 70.324 -1.552 -.077 -.021 .594 -.387 .521 

5 69.726 -1.032 -.098 -.024 .696 -.474 .566 

6 69.703 -.909 -.102 -.025 .717 -.499 .581 

7 69.703 -.903 -.103 -.025 .718 -.500 .582 

8 69.703 -.903 -.103 -.025 .718 -.500 .582 

a. Method: Enter 

b. Constant is included in the model. 

c. Initial -2 Log Likelihood: 193.138 

d. Estimation terminated at iteration number 8 because parameter estimates changed by less than .001. 

 

Iteration History
a,b,c,d

 

Iteration 

Coefficients 

PiLe RvLe RdLe PopD Age PDia(1) PDia(2) 

Step 1 1 .090 -.002 .073 -.001 -.029 .998 1.019 

2 .157 .007 .142 -.002 -.037 1.397 1.333 

3 .235 .023 .194 -.001 -.015 1.778 1.290 

4 .312 .034 .191 -.001 .023 2.244 .985 

5 .361 .038 .165 -.002 .050 2.620 .719 

6 .373 .039 .161 -.002 .055 2.717 .678 

7 .373 .039 .160 -.002 .055 2.721 .676 

8 .373 .039 .160 -.002 .055 2.721 .676 

a. Method: Enter 

b. Constant is included in the model. 

c. Initial -2 Log Likelihood: 193.138 

d. Estimation terminated at iteration number 8 because parameter estimates changed by less than .001. 

 

Iteration History
a,b,c,d

 

Iteration 

Coefficients 

PiSt(1) PiSt(2) wb esd mvc tsg mbw 

Step 1 1 1.018 .841 .050 .010 .017 -.011 -.018 
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2 1.102 1.210 .259 .024 .013 -.026 -.035 

3 .724 1.388 .755 .047 -.003 -.035 -.053 

4 .220 1.473 1.355 .066 -.019 -.043 -.060 

5 -.155 1.526 1.747 .075 -.029 -.051 -.059 

6 -.237 1.548 1.831 .077 -.031 -.053 -.059 

7 -.240 1.549 1.834 .077 -.031 -.053 -.059 

8 -.240 1.549 1.834 .077 -.031 -.053 -.059 

a. Method: Enter 

b. Constant is included in the model. 

c. Initial -2 Log Likelihood: 193.138 

d. Estimation terminated at iteration number 8 because parameter estimates changed by less than .001. 

 

Iteration History
a,b,c,d

 

Iteration 

Coefficients 

cgl glf blf sbl 

Step 1 1 -.063 -.024 -.014 -.006 

2 -.120 -.052 -.046 -.041 

3 -.135 -.089 -.092 -.097 

4 -.148 -.114 -.127 -.176 

5 -.157 -.124 -.144 -.239 

6 -.160 -.126 -.147 -.253 

7 -.160 -.126 -.147 -.253 

8 -.160 -.126 -.147 -.253 

a. Method: Enter 

b. Constant is included in the model. 

c. Initial -2 Log Likelihood: 193.138 

d. Estimation terminated at iteration number 8 because parameter estimates changed by less than .001. 

Omnibus Tests of Model Coefficients 

  Chi-square df Sig. 

Step 1 Step 123.435 23 .000 

Block 123.435 23 .000 

Model 123.435 23 .000 
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Model Summary 

Step -2 Log likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 69.703
a
 .558 .774 

a. Estimation terminated at iteration number 8 because 

parameter estimates changed by less than .001. 

 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 5.079 8 .749 

 

 

Contingency Table for Hosmer and Lemeshow Test 

  TPI = No Thirdparty Interference TPI = Thirdparty Interference  

  Observed Expected Observed Expected Total 

Step 1 1 15 15.000 0 .000 15 

2 15 14.989 0 .011 15 

3 15 14.939 0 .061 15 

4 14 14.815 1 .185 15 

5 15 14.376 0 .624 15 

6 13 12.361 2 2.639 15 

7 7 7.686 8 7.314 15 

8 5 4.321 10 10.679 15 

9 1 1.352 14 13.648 15 

10 0 .163 16 15.837 16 

 

 

Classification Table
a
 

 

Observed 

Predicted 

 Occurrence of Pipeline Third-party 

Interference 

 No Thirdparty 

Interference 

Thirdparty 

Interference 
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Step 1 Occurrence of Pipeline Third-

party Interference 

No Thirdparty Interference 90 10 

Thirdparty Interference 9 42 

a. The cut value is .500 

 

Classification Table
a
 

 

Observed 

Predicted 

  

 Percentage 

Correct 

Step 1 Occurrence of Pipeline Third-

party Interference 

No Thirdparty Interference 90.0 

Thirdparty Interference 82.4 

 Overall Percentage 87.4 

a. The cut value is .500 

 

Lower Upper

PcBW -0.11 0.043 6.503 1 0.011 0.896 0.823 0.975

PcLt -0.011 0.033 0.105 1 0.745 0.989 0.927 1.055

HDI 0.014 0.492 0.001 1 0.977 1.014 0.387 2.658

OilF 0.556 0.282 3.891 1 0.049 1.744 1.004 3.029

PiLe 0.378 0.113 11.127 1 0.001 1.459 1.168 1.821

RvLe 0.04 0.041 0.966 1 0.326 1.041 0.961 1.128

RdLe 0.169 0.271 0.389 1 0.533 1.184 0.696 2.014

PopD -0.003 0.005 0.463 1 0.496 0.997 0.987 1.006

Age 0.034 0.116 0.087 1 0.768 1.035 0.825 1.298

PDia 4.221 2 0.121

PDia(1) 2.417 1.196 4.082 1 0.043 11.211 1.075 116.931

PDia(2) 0.885 1.409 0.394 1 0.53 2.423 0.153 38.366

PiSt 2.192 2 0.334

PiSt(1) 1.537 1.272 1.461 1 0.227 4.65 0.385 56.208

PiSt(2) -0.136 1.815 0.006 1 0.94 0.873 0.025 30.614

wb 1.455 1.015 2.054 1 0.152 4.283 0.586 31.305

esd 0.061 0.047 1.717 1 0.19 1.063 0.97 1.165

mvc -0.025 0.097 0.069 1 0.793 0.975 0.807 1.178

tsg -0.046 0.055 0.697 1 0.404 0.955 0.858 1.063

mbw -0.074 0.068 1.195 1 0.274 0.929 0.813 1.06

cgl -0.159 0.145 1.198 1 0.274 0.853 0.642 1.134

glf -0.132 0.061 4.646 1 0.031 0.876 0.777 0.988

blf -0.171 0.083 4.276 1 0.039 0.842 0.716 0.991

sbl -0.247 0.122 4.129 1 0.042 0.781 0.615 0.991

Constant 0.262 4.07 0.004 1 0.949 1.3

a. Variable(s ) entered on s tep 1: PcBW, PcLt, HDI, OilF, PiLe, RvLe, RdLe, PopD, Age, PDia, PiSt, wb, esd, mvc, tsg, mbw, cgl, glf, blf, sbl.

Variables B S.E. Wald df Sig. Exp(B)
95% C.I.for EXP(B)

 

 
 

Correlation Matrix 
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Constant PcBW     PcLt     HDI      EXHD     OilF     PiLe     

Step 1 Constant 1.000 -.474 -.146 -.548 .313 -.050 .245 

PcBW     -.474 1.000 .028 .141 -.149 -.213 -.682 

PcLt     -.146 .028 1.000 -.509 .493 .084 -.039 

HDI      -.548 .141 -.509 1.000 -.881 .109 .006 

EXHD     .313 -.149 .493 -.881 1.000 -.155 -.016 

OilF     -.050 -.213 .084 .109 -.155 1.000 .175 

PiLe     .245 -.682 -.039 .006 -.016 .175 1.000 

RvLe     -.064 -.258 -.148 .041 .021 .055 .243 

RdLe     -.200 .150 -.108 .017 .019 -.042 -.074 

PopD     -.572 .237 -.459 .542 -.339 -.058 -.146 

Age      -.122 -.137 -.074 .211 -.240 .038 .166 

PDia(1)  .136 -.206 -.282 .177 -.339 .119 .329 

PDia(2)  .080 .202 -.079 -.154 .177 -.086 -.077 

PiSt(1)  -.097 .226 .144 -.164 .262 -.125 -.448 

PiSt(2)  -.078 -.096 .049 -.066 .087 .083 -.209 

wb       -.056 -.421 -.288 .390 -.456 .014 .397 

esd      -.394 .020 -.334 .457 -.418 .018 .121 

mvc      .073 .156 -.176 -.066 .093 -.261 -.067 

tsg      -.126 .226 .104 -.060 .190 -.328 -.109 

mbw      -.028 .120 .085 .151 -.256 -.143 -.136 

cgl      -.058 .027 -.287 .168 -.002 -.127 -.233 

glf      .076 .284 .072 -.096 -.059 -.241 -.340 

blf      -.265 .483 -.070 .302 -.322 -.018 -.465 

sbl      -.411 .727 .173 .022 .105 -.209 -.571 

 

Correlation Matrix 

  RvLe     RdLe     PopD     Age      PDia(1)  PDia(2)  PiSt(1)  

Step 1 Constant -.064 -.200 -.572 -.122 .136 .080 -.097 

PcBW     -.258 .150 .237 -.137 -.206 .202 .226 

PcLt     -.148 -.108 -.459 -.074 -.282 -.079 .144 

HDI      .041 .017 .542 .211 .177 -.154 -.164 

EXHD     .021 .019 -.339 -.240 -.339 .177 .262 
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OilF     .055 -.042 -.058 .038 .119 -.086 -.125 

PiLe     .243 -.074 -.146 .166 .329 -.077 -.448 

RvLe     1.000 .410 .187 .214 .054 -.282 -.088 

RdLe     .410 1.000 -.064 .080 .123 .029 -.105 

PopD     .187 -.064 1.000 .173 .018 -.063 -.132 

Age      .214 .080 .173 1.000 .465 -.646 -.586 

PDia(1)  .054 .123 .018 .465 1.000 .052 -.653 

PDia(2)  -.282 .029 -.063 -.646 .052 1.000 .217 

PiSt(1)  -.088 -.105 -.132 -.586 -.653 .217 1.000 

PiSt(2)  .198 -.082 -.016 -.346 -.513 -.200 .694 

wb       .471 .171 .203 .371 .350 -.379 -.312 

esd      -.074 .093 .367 .216 .251 -.005 -.161 

mvc      -.124 -.302 .229 -.229 -.040 .284 .098 

tsg      -.377 -.335 .116 -.056 -.150 .154 .068 

mbw      -.587 -.092 -.143 .106 .158 .000 -.131 

cgl      -.386 -.171 .303 -.056 -.083 .097 .047 

glf      -.246 -.350 -.014 -.327 -.199 .140 .276 

blf      -.500 -.122 .141 -.207 -.171 .097 .230 

sbl      -.337 .154 .144 -.422 -.443 .411 .363 

 

Correlation Matrix 

  PiSt(2)  wb       esd      mvc      tsg      mbw      cgl      

Step 1 Constant -.078 -.056 -.394 .073 -.126 -.028 -.058 

PcBW     -.096 -.421 .020 .156 .226 .120 .027 

PcLt     .049 -.288 -.334 -.176 .104 .085 -.287 

HDI      -.066 .390 .457 -.066 -.060 .151 .168 

EXHD     .087 -.456 -.418 .093 .190 -.256 -.002 

OilF     .083 .014 .018 -.261 -.328 -.143 -.127 

PiLe     -.209 .397 .121 -.067 -.109 -.136 -.233 

RvLe     .198 .471 -.074 -.124 -.377 -.587 -.386 

RdLe     -.082 .171 .093 -.302 -.335 -.092 -.171 

PopD     -.016 .203 .367 .229 .116 -.143 .303 

Age      -.346 .371 .216 -.229 -.056 .106 -.056 
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PDia(1)  -.513 .350 .251 -.040 -.150 .158 -.083 

PDia(2)  -.200 -.379 -.005 .284 .154 .000 .097 

PiSt(1)  .694 -.312 -.161 .098 .068 -.131 .047 

PiSt(2)  1.000 .046 .020 .009 -.242 -.269 -.119 

wb       .046 1.000 .229 -.227 -.313 -.154 -.261 

esd      .020 .229 1.000 -.227 -.122 .079 .043 

mvc      .009 -.227 -.227 1.000 .273 -.114 .137 

tsg      -.242 -.313 -.122 .273 1.000 .144 .452 

mbw      -.269 -.154 .079 -.114 .144 1.000 .086 

cgl      -.119 -.261 .043 .137 .452 .086 1.000 

glf      .225 -.131 -.034 .243 -.239 .186 -.229 

blf      .040 -.209 -.095 .192 .026 .412 .275 

sbl      -.070 -.535 -.166 .224 .354 .101 .167 

 

Correlation Matrix 

  glf      blf      sbl      

Step 1 Constant .076 -.265 -.411 

PcBW     .284 .483 .727 

PcLt     .072 -.070 .173 

HDI      -.096 .302 .022 

EXHD     -.059 -.322 .105 

OilF     -.241 -.018 -.209 

PiLe     -.340 -.465 -.571 

RvLe     -.246 -.500 -.337 

RdLe     -.350 -.122 .154 

PopD     -.014 .141 .144 

Age      -.327 -.207 -.422 

PDia(1)  -.199 -.171 -.443 

PDia(2)  .140 .097 .411 

PiSt(1)  .276 .230 .363 

PiSt(2)  .225 .040 -.070 

wb       -.131 -.209 -.535 

esd      -.034 -.095 -.166 
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mvc      .243 .192 .224 

tsg      -.239 .026 .354 

mbw      .186 .412 .101 

cgl      -.229 .275 .167 

glf      1.000 .384 .131 

blf      .384 1.000 .374 

sbl      .131 .374 1.000 

 
             Step number: 1 

 

             Observed Groups and Predicted Probabilities 

 

      80 +                                                                                                    

+ 

         |                                                                                                    

| 

         |                                                                                                    

| 

F        |                                                                                                    

| 

R     60 +                                                                                                    

+ 

E        |                                                                                                    

| 

Q        |N                                                                                                   

| 

U        |N                                                                                                   

| 

E     40 +N                                                                                                   

+ 

N        |N                                                                                                   

| 

C        |N                                                                                                   

| 

Y        |N                                                                                                   

| 

      20 +N                                                                                                   

+ 

         |N                                                                                                   

| 

         |NT                                                                                                 

T| 

         |NNNNN  T N                                                                                    

T   TT| 

Predicted ---------+---------+---------+---------+---------+---------

+---------+---------+---------+---------- 

  Prob:   0       .1        .2        .3        .4        .5        .6        

.7        .8        .9         1 

  Group:  

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 

 

          Predicted Probability is of Membership for Thirdparty 

Interference 
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          The Cut Value is .50 

          Symbols: N - No Thirdparty Interference 

                   T - Thirdparty Interference 

          Each Symbol Represents 5 Cases. 

 

Casewise List
b
 

Case 

 Observed  Temporary Variable 

Selected Status
a
 TPI Predicted Predicted Group Resid ZResid 

50 S T** .298 N .702 1.535 

63 S T** .072 N .928 3.594 

73 S T** .020 N .980 7.086 

82 S N** .833 T -.833 -2.230 

109 S N** .815 T -.815 -2.097 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 
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APPENDIX II: EXTRACTS OF CORRESPONDENCES 

Dear <<<<<<>>>>> 
 
Apologies for the cross posting. I got your email address from the <<<<< ...>>>>>.  I am a PhD 

student in Engineering Science in Marine Environment in the faculty of Science and 

Engineering at Newcastle University, UK under the supervision of Professor Richard 

Birmingham and Dr. Julia Race. I am writing to solicit for your participation in my research, 

sponsored by the Petroleum Technology Development Fund (PTDF), Nigeria in form of a 

questionnaire. The result of this research will help me to investigate the problem of Pipeline 

Third-Party Interference: to assess and develop a model to predict interferences using 

multivariate statistical analysis model. The University link below shows the questionnaire that 

asks a variety of questions, which should take you about 10 minutes to complete. 

 

 http://www.students.ncl.ac.uk/rowland.adewumi/ 
 

 

I guarantee that your responses will not be identified with you personally, and promise not to 

share any information about you with anyone outside my research group. If you have any 

questions or concerns about completing the questionnaire please do not hesitate to contact me, 

and if you are not in the best position to contribute to the questionnaire, please kindly forward it 

to someone you think will be able to help. 

Thank you. 

 
  
 Adewumi Rowland (ADRO) 
 PhD Research Student 
 School of Marine Science and Technology 
 Newcastle University Newcastle upon Tyne 
 NE1 7RU 
 United Kingdom 

https://owa.ncl.ac.uk/OWA/redir.aspx?C=fa5b45e518ce4ab7bbf48e32e7345cd3&URL=http%3a%2f%2fwww.students.ncl.ac.uk%2frowland.adewumi%2f
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APPENDIX III: QUESTIONNAIRE SURVEY 

PhD Research Questionnaire on Pipeline Third-party Interference  

In all reported pipeline failures worldwide, third-party activities have been recognised as the most dominant failure mechanism in the oil and gas industry, and 
with limited attention within the research literature. The aim of this research project therefore, is to determine and explore correlations and relationship 

between land use, population density, pipeline intrinsic properties (e.g. depth, thickness, and size), and environmental, socioeconomic and socio-political factors 
using hybrid multivariate statistical methods by designing a prediction model with Geographic Information System (GIS) to predict where third party 

interference will occur in a pipeline alignment. In addition, since September 2001, Al Qaeda‟s maritime threat has made pipelines naturally vulnerable because 
of their long distance network. Hence, your participation in this questionnaire will enable us to investigate the problem of Pipeline Third-Party damage. This 
research is sponsored by the Petroleum Technology Development Fund (PTDF) of Nigeria under the supervision of Professor Richard Birmingham and Dr. 

Julia Race. 
Please complete the questionnaire by checking where appropriate and providing explanation where necessary. Please, If you have any questions about this 

questionnaire kindly contact Adewumi Rowland, at +44(191) 222-5533, or by email  

This survey will not take more than ten minutes to complete. We guarantee that your responses will 

not be identified with you personally, and not to share any information about you with anyone outside the research 
group. Your email address is required in order to send you results of the survey and to confirm receipt of entry.

 

Section I: General Information 

. 

Name* 
 

email* 
 

Address 
 

Country United Kingdom
 

Organisation 
   

 
(a) Which of the following best describes 
your Organisation 

 (b) Your Occupation 

Government Agency 

Academia 

Private Company 

Professional Body 

Service Provider  

Other 

Health and Safety Engineer 

Piping Technician 

Pipeline Project Engineer 

Pipeline Engineer 

Oil and Gas Service Provider 

Pipeline Installer/Inspector 

 

Section II: Unintentional Pipeline Damage 
. 

How do you agree with the following general statement about pipeline security? 
i 

Pipeline security is a worldwide problem 
that need a serious attention as any other 
sector of the economy 

Strongly agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No Opinion 

 

A pipeline surveillance technology 
should protect only vulnerable segments 
of a pipeline network  

Strongly agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No Opinion 

 

http://www.ncl.ac.uk/marine/staff/profile/r.w.birmingham
http://www.ncl.ac.uk/marine/staff/profile/j.m.race
http://www.ncl.ac.uk/marine/staff/profile/j.m.race
mailto:rowland.adewumi@newcastle.ac.uk
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Although third party interference is the 
leading cause of pipeline damage, it is 
currently under-researched 

Strongly agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No Opinion 

 

Pipeline safety regulations presently 
existing are adequate for the prevention 
of third party interference 

Strongly agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No Opinion 

 

Do you have any further views about 
preventing and monitoring pipeline third 
party interference 

 

 
6) Which of the following do you prefer for the physical security of pipeline networks? (Check all that apply) 

Perimeter fencing of pipelines right-of-way  

Electronic monitoring and intrusion detection 

Pipeline communications security gadgets 

Pipeline surveillance and monitoring 

Company specific system 
 

 Other (Please Specify)  

 
07) How do you rank the role of following as a risk-mitigation strategy for pipeline security (On a scale of 1 to 10) KEY: 

1=VERY IMPORTANT, 10=NOT IMPORTANT 

  1 2 3 4 5 6 7 8 9 10 

Threat assessment of pipeline network 
          

Community relations and public education 
          

The role of host government  
          

Prosecution and punishment to offenders 
          

Inaccessibility of facilities by road, etc 
          

Developing an integrated security plan 
          

Incident response capability 
          

Environmental response 
          

Personnel security surveillance on pipeline 
          

Physical protection of the pipeline 
          

Others (Please specify) 
 

 
8)From your organisation’s experience, please indicate if any one of these variables is significantly more important than 
the others in assessing the potential for third party damage to a typical pipeline? 
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I 

(a) Factor Importance for Weighing 
(b) Which 

is most 
Important? 

  
Very 

Important 
Quite 

Important 

Neither 
Important 

nor 
Unimportant 

Not very 
Important 

Not 
Important 

At All 

Please tick 
one only in 
the column 

a. Minimum depth of Cover 
      

b. Activity level near the pipeline 
      

c. Susceptibility of land use activities  
      

d. Public education program  
      

e. Accurate line locating & marking   
      

 
9. How would you describe the following in pipeline damage prevention measures during installation 
i 

a. Sleeve as additional protective layer Excellent Good Average Fair Poor 

b. Slabs, Tiles and Plates over pipelines Excellent  Good Average Fair Poor 

c. High Tensile Net buried with pipeline Excellent  Good Average Fair Poor 

d. Increasing pipeline wall thickness Excellent  Good Average Fair Poor 

e. Avoid Pre-identified Vulnerable zone  Excellent  Good Average Fair Poor 

f. Marker posts along pipeline length  Excellent  Good Average Fair Poor 

g. Marker Tape buried above pipeline Excellent  Good Average Fair Poor 

h. Fibre optics installed at intervals Excellent  Good Average Fair Poor 

i. Others (Please specify) 
 

 
10. How would you describe the following third-party damage prevention method post pipeline installation 

I 

a. Aerial and Helicopter Surveillance Excellent Good Average Fair Poor 

b. Full walking patrol Excellent Good Average Fair Poor 

c. Remote Sensing Satellite Surveillance Excellent Good Average Fair Poor 

d. 
Global Positioning System 
(GPS/GIS)  Excellent Good Average Fair Poor 

e. Direct Surveillance  Excellent Good Average Fair Poor 
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f. Electromagnetic Detection/ Acoustic Excellent Good Average Fair Poor 

g. Identify and Monitoring „Hot Spots‟ Excellent Good Average Fair Poor 

h. Others (Please specify) 
 

 
11. Do you think the issue of third party interference has changed over the past 10 years as a problem? 

I 

Problem has been reduced 

Problem has been eradicated 

Slightly increased as a problem 

Problem Increased immensely  

Problem has remained the same 

Problem still undergoing development 

Problem is paid less attention 

Technology can‟t control the problem 
. 

 

Section III: Intentional Pipeline Damage 

1. Does your organisation's surveillance of pipeline monitor the following? (Please check all that apply) 
. 

a. Pipeline Vandalism 
 

b. Theft of product or facilities and criminal activities 
 

c. Sabotage of any form to pipeline network 
 

d. Guerrilla attacks 
 

e. Likelihood of Terrorism against pipeline facilities 
 

f. Intrusion to above ground facilities 
 

g. Right-of-Way Encroachment 
 

h. Cyber attack/potential hijack of network facilities  
 

i. No opinion 
 

 
Question 2 to 6: General Information about Intentional Pipeline damage 

. 

2.    
How would you rate your organisation‟s ability to 
identify pipeline terrorism, vandalism, theft, sabotage 
or criminal activities? 

Very Poor 

 

 Poor 

 

Very Poor 

 

Good 

 

Very 
Good 

 

3. 
How has your organisation sought to identify areas 
particularly vulnerable to intentional damage? 

Very Poor 

 

Poor 

 

Fair 

 

Good 

 

Very 
Good 

 

4. 
How has guidance been sought on pipeline security and 
damage control from: The insurance industry, security 
agency, and the communities 

Very Poor 

 

Poor 

 

Fair 

 

Good 

 

Very 
Good 

 

5. How well do you work with vendors of monitoring Very Poor Poor Fair Good Very 
Good 
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systems to detect incidents of third party damage on 
your pipelines?      

6. 
What simple methodology would you suggest is most 
effective for pipeline damage prevention? 

 

 
How do you agree with the following as the major factors affecting the occurrence of intentional pipeline 
damage? We would also welcome more detail/comments. 

. 

7. 
Population distributions (urban growth with 
people now leaving in close proximity to pipelines) 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

8. 
 Land use and human activities (e.g.  farming, 
commercial area, industries, and construction 
activities) 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

9. 
The socio-economic conditions of population 
living near a pipeline (e.g.  demography, morbidity, 
occupations, health, and social infrastructure 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

10. 
Accessibility to Pipeline Network (proximity of 
roads, rivers, streams and rail) 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

11. 
Socio-political factors (e.g. literacy rate, 
employment, political stability violence, 
revolutions, rebels, coups, and assassinations, etc) 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

12 
Depth of Pipeline (exposed pipeline can often 
provide criminal opportunities) 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly 
Disagree 

 

No Opinion 

 

 
14: Please could you select the three factors that are most important that could assess the potential for third 
party damage, and rank them below from 1 to 3 (with 1 as the most important) 

. 

(a) Land use and human activities 0
 

(b) Socio-economic conditions of population living near a pipeline 0
 

(c) Accessibility to Pipeline Network (proximity of roads, rivers, streams) 0
 

(d) Socio-political factors (e.g. literacy rate, political stability, and violence 0
 

(e) Depth of Pipeline (exposed pipeline provide criminal opportunities) 0
 

(f) Other factor in your opinion not mentioned  0
 

(g) Unable to Answer 
 

 
How well do you agree with the following motivation for third party interference? 

. 

15. 
It is an indirect attack on the government and 
underestimation of it‟s security 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 
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16. 
An avenue to draw attention and promote or 
publicise  unrelated issues in the country 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 

 

17. 
A form of protest for political, social and 
environmental reasons 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 

 

18. 
Poverty level and socioeconomic condition influence 
indirect intentional third party interference 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 

 

19. 
To instigate the public against its government‟s 
inability to provide basic services and security 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 

 

20. 
No extent of security and surveillance can mitigate 
intentional sabotage and vandalism of pipeline 

Strongly Agree 

 

Agree 

 

Disagree 

 

Strongly Disagree 

 

No 
Opinion 

 

 
21. Lastly, in your opinion, which should be the main priority stage to mitigate third party interference? 

  

Planning 

Design 

Maintenance 

Construction 

Operation  

Rehabilitation 

 
Remark (Optional) 

Do you have any feedback or observation about pipeline 
third-party damage that have not been covered by this 
questionnaire?  

 

 

Do you want the results of this survey be sent to you later?    Yes  No  (Please reconfirm your email address above ) 

 

Submit
 

Thank you very much for taking the time to complete. The result of this research will contribute to how we intend to investigate the problem of Pipeline Third-
Party damage: to assess and develop a model to predict interferences using multivariate statistical analysis model. 
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APPENDIX IV: SELECTED REMARKS FROM THE 
QUESTIONNAIRE SURVEY 

The questionnaire survey asked respondents about any feedback or observation about 

pipeline third-party interference not covered by the questionnaire, for example, any further 

views about preventing and monitoring pipeline TPI. These are some selected responses 

from the open-ended questions collated: 

 “Industry here held a meeting with various governmental entities to discuss the issue of possible terrorist 
acts against pipelines, platforms, etc.  The lead agency in these discussions was the FBI.  FBI recognized 
that no effective means exists that can prevent a terrorist act.  Their desire was that industry set up video 
surveillance on its facilities with the intent that were such an act to take place that they could retrieve the 
video for use in investigation of the crime.  Industry did not view this favourably in that the approach was 
tantamount to  FBI requesting a “black box” recorder to investigate a disaster after the fact.  In other 
words; FBI accepts the fact that facilities and personnel are in fact helpless to prevent such an attack and as 
such can only serve to provide possible evidence of the crime after it has been committed.  Moreover; even if 
industry were to set up its own security measures, such measures would not be effective it that no effective 
counter-response capability exists.  Industry representatives even went so far as to suggest that it be allowed 
the use of firearms to protect it pipeline and associated assets, e.g. offshore platforms.  Government did not 
like this suggestion.  Note: it is illegal to possess firearms on such properties.  Industry effectively responded 
that government was powerless to stop industry from arming itself.  Government effectively has turned a 
blind eye to industry‟s intentions in this regard. As to pipeline yet to be installed; burial, i.e. “hiding” these 
assets is the most effective means by which to lessen the possibility of their being compromised.  Markers are 
also effective as is membership in a “Dig Alert” organization.  Markers however have the disadvantage of 
advertising placement of pipelines. While your study is very well intentioned and may even provide some 
positive fruit, it is generally felt here that pipelines are at greatest risk from terrorist activity over which no 
control or preventative measure is possible.  This is not fatalistic viewpoint; it is the reality of the world at 
this juncture.  Joint governmental/industry continued cooperation does exist as regards reacting to reported 
suspicious activity.  However, this is not a pro-active stance.  It merely serves the purpose of being able to 
state that something is being done; no matter how impotent it really is.  The recognized truth the matter is 
the tacit acknowledgement that an attack on a pipeline may be affected with virtual impunity” 

 
 “Use of modern technology to track interference, alert impact and determine location will be helpful.” 

 
“the government developing rural areas (Villages where the pipeline runs through and Towns where the oil 
drillings take place) that is places where oil wells and float stations is located. Also the government of oil 
producing country like Nigeria need to come up with a new regulatory laws that will help the oil producing 
states most especially the communities where the drilling take place, by providing them with modern 
amenities and infrastructures such as school, Health Centres or hospitals, community skill acquisition 
centres  and good jobs after graduation from school.” 

 
“Greater pipeline awareness and their consequences of damage to be issued to third parties, UKOPA are 
currently investigating methods. I suggest you contact them for more information that will help.” 

 
“Pipeline security initiatives will fail if they remain reactive.  It will prove futile to attempt to harden the 
vast length of critical pipeline infrastructure against attack, as it will always be easier for potential 
adversaries to improve their ability to disrupt a pipeline than it will be to prevent this.  Instead, pipeline 
security should focus on creating a combination of 1) addressing the root motivations of adversary groups, 2) 
improving rapid response capabilities, and 3) diversifying, decentralizing, and overlapping pipeline networks 
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to minimize single points of failure.” 

 
“Whilst I would agree with the statement that third party interference is a leading cause of pipeline damage, 
I am not aware of how much research has been done and cannot comment on the effectiveness of current 
safety regulations. In terms of research I am aware of the PARLOC initiative which applies to North Sea 
pipelines and risers. PARLOC provides very useful information on pipeline failures and their causes.” 

 
“Better land use planning guidelines. Regulations governing the protection of pipeline from third party are 
inconsistent from one jurisdiction to the next.  Preventing and monitoring pipeline third party interference 
require more resources than its being put to it” 

 
“Regulator to specify the geodetic parameters for surveying (helps prevent misunderstanding between pipeline 
operators).Pipeline surveillance could be more intensive in areas of higher risk and less so in other areas. It 
needs to satisfy cost/benefit criteria which may be difficult for many Australian pipelines which are 
generally in remote areas.” 

 
“Planning of new pipeline system, especially in the third world countries should take into account the 
current land use, environmental conditions and potential social impacts” 

 
“A remote control network system for monitoring the activities of the third party should be introduced” 

 
“Third Party Damage is the top risk in our Networks Risk Assessment annually as it is outside of the 
companies‟ control. All you can do currently is to advertise, make people aware, punish the act and respond 
asap when it happens.” 

 
“What of when these pipe lines vandalism are politically motivated, take for e.g. issues with the 'Niger 
Delta' in Nigeria, where pipe lines are vandalised for crude oil theft, are there measures to curb excessive 
and unnecessary crude oil spillages by creating emergency shutdown systems on the pipe lines?” 

 
“Better records are required, particularly on older pipelines. Historical records are very poor, these should 
always be updated whenever maintenance is carried out.” 

 
“There should be legal implications if one damages a third party pipeline. Instant fines and the removal of 
licence to operate.” 

 
“Public Enlightenment to the relevant legal and other regulatory provisions with respect to pipeline 
protection is needed. Political and economic policies should ensure even spread of development to proactively 
manage disenchantment within the pipeline host communities.” 

 
“The prevention of third party interference is also reliant on the application of standards and procedures by 
the operating company.  In countries where these are regulated it is easier to draw conclusions or state 
opinions, but in the Middle East for instance, there is a lack of formal regulation and in some cases this 
can result in a lack of understanding in the need to enforce and ensure the proper preventative measures are 
taken” 

 
“Effective surveillance is a key means of preventing third party interference (i.e bunkering)” 

 
“Most Pipeline damage is committed by personnel who are not a party to the relevant codes and procedures” 

 
“Certain terrains, political climate have challenged the efficacy of conventional techniques in pipeline 
surveillance. Thus in developing a workable monitoring/ surveillance strategy specific non-technical 
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variables need to be addressed” 

 
“Review of existing safety regulations, aware campaigns of damagers associated with pipeline vandalism, 
enactment of active governmental policies of pipeline policies.” 

 
“Third party interference can be 3 types, accidental, sabotage and theft of product. Regulations generally 
cover accidental damage however the other two cannot be prevented by design or operator only measures and 
requires government assistance.” 

 
“It's not that the pipeline safety (Federal) regulations are adequate, it‟s the inadequacy of damage 
prevention state laws, i.e. On-Call systems that needs to be addressed.” 

 
“Third party damage may be one of the prevalent threats to pipeline failure, but it is not the prevalent 

threat in all cases.  In our jurisdiction, corrosion issues are by far the prevalent threat to pipeline integrity.  

Third party damage is relatively infrequent in comparison.  This will be different when comparing 

production pipelines versus clean product transmission pipelines.” 

“Providing adequate and meaningful legislation to reduce the occurrence of third party damage seems to be a 

step that the BC Government is reluctant to do. I have been trying for years” 

“All jurisdictions must have a system in place for registering buried facilities, ie oil and gas pipeline, fibre 

optic and other instruments. Within this system a one call needs to exist where the third parties can call free 

of charge prior to digging. Pipeline locates must be done free of charge to encourage third parties to use the 

system. A widely distributed public relations campaign needs to be implemented to broadcast the system to 

all third party, including homeowners.” 

 

“There is a great lack of understanding by the public as to who is responsible for protecting pipelines. Right 
of way encroachment leads to invasion of space by third parties. The public thinks that they can do 
whatever they want to do on the right of way and the pipeline operator is responsible for fixing anything 
that goes wrong.” 

 
“Mandatory use of one call systems supported by appropriate pipeline safety regulations is highly desirable.” 

 
“As a regulator, I strongly endorse the need for industry to develop risk based strategies for third party 
interference commensurate to the risk of third party interference to the pipeline.” 

 
“In New Zealand we have a procedural means of controlling these activities through the Resource 
Management Act by "Designating" the pipeline Corridor. This enforces all Local Territorial Authorities 
to delineate the line (with conditions and restrictions imposed and agreed) on the Local District Plan which 
is the only "Legal" document for all members of the public to utilise when performing works or development 
of existing land. We have nearly achieved this (by end May this year) after 3 years of Legal lodgement, 
submissions and appeals.” 

 
“There needs to be a distinction between inadvertent third party interference and deliberate wilful damage by 
3rd parties. They are different sides of the same problem, and the latter problem may require additional 
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unconventional solutions.” 

 
“In case of Nigeria, Pipeline safety is poor. Existing infrastructure is not just low in technology but it is left 
unmaintained” 

 
“Regulations to prevent third party damage should not only be focussed on the pipeline industry but 
certainly also on the construction industry and agricultural industry” 

 
“Statutory protection and financial sanction against unauthorised working over pipelines. Insurance risk 
for contracting companies to reflect this which would concentrate the efforts of the persons working 
unheeded.” 

 
“Use of a national one call system should be mandatory in the UK” 

 
“Statistics show that the incidents with a major consequence are very rare at all. Also statistic gives evidence 
that in countries with a frequent surveillance (like in Germany) third party damages are much less than in 
countries where surveillance is less frequent and dense.” 

 
“Pipeline damage in Nigeria is a consequence of socio-economic problem peculiar to that country. What 
research concludes that third party interference is the leading cause of damage to pipelines. Damage needs to 
be defined and not just used to satisfy the purpose of this work.” 

 
The protection of pipelines is best guaranteed if left in the hands of the community in which the pipelines are 
situated and the youths are well motivated to stop vandalisation of pipelines” 

 
“Third party interference is more social economic case than technical problem” 

 
 “Land use act in Nigeria should be modified. Enforce stricter penalties for 3rd party violators of pipeline 
system.  For example, if a 3rd party fails to utilize the mandated one-call system and then is caught 
operating near a known system, penalize the violator to the maximum extent.” 

 
“Federal Government of Nigeria should ensure further effort in checkmating pipeline vandals and as well 
giving adequate consequences management to any defaulter or offender.( to act as deterrent to other. not after 
arresting the offender the next moment or day they are out to continue with their evil activities)The vandals 
are all humans that can be fished out.” 

 
“In addition to pipeline surveillance technology for all the pipeline networks, the host communities should 
continuously be educated about dangers in pipeline vandalisation and as well engage them for local 
surveillance.” 

 
“Approach to the prevention of third party interference or damage of pipeline must not be viewed narrowly 
from legalistic perspectives. There are other socio-economic and political factors that underpin third party 
interference, whether wishfully or unintentionally. And this dimension must be explored.” 
“All agencies need to work together to reduce in incidence of third party damage. Existing safety regulations 
are suitable for the prevention of 3rd party interference following construction (i.e. wall thickness, depth of 
cover, material grade).  However regulations for dealing with interference during construction (protesters on 
site, machines getting vandalised) is unsuitable.” 

 
“to preventing third party interference we should use remote sensing technologies and satellite images. And 
at the beginning the project we should determine the most suitable route. This is most important. Also 
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geographical information technologies should be used.” 

 
“Pipeline safety is only as good as the local government (whether it is state, county or city) enforces whatever 
laws they have regarding pipelines.  If you don't have an enforceable law, you are not accomplishing what 
really needs to be done; make the people who are excavating near the pipeline be attentive to the situation 
and the hazards involved.” 

 
“We have been working with Fibre optic sensing technology that solves this problem. I'd like to point out 
that the PHMSA mission does not include a security component.  I agree that some safety aspects can 
double for addressing security ones.  Pipeline security in the US is not such a problem as seen across the 
world.  I agree that some sort of protection is warranted only on some systems but much more than just 
surveillance technology should be part of the plan.  For what today's technology can provide (cheaply), i 
disagree that not enough research has been done.  Efforts are well targeting the threats and just need to pan 
out before we can judge if more research is required.  In addition, the problem involves more than just 
technology.  People, process and technology must work hand in hand with a given safety threat.  I have no 
opinion on the adequacy of regulations because the US is now under rulemaking to address damage 
prevention among other items and the final output may strengthen existing regulations.” 

 
 “One call systems with real penalties for those that don't use it and working with contractors and the 
public to raise awareness.” 

 
 ““Regulations and civil penalties should be enhanced; Consider using thicker wall pipe in areas that might 
be closer to populated sites. Pipeline Aerial survey is still very useful” 

 
“In Canada, communication break-down is a key component of the underlying causes of third-party 
damage. In my line of work, I function as a Pipeline Accident/incident investigator (for over 30 years). 
The lack or break-down in communication is a principle and underlying cause that appears to be outside of 
the ability of Government to regulate.” 

 
“Safety regulations should have more guidance on pipeline third party prevention. Hazards vary between 
nations.  In North America, wilful damage is unlikely where as in South America, theft and sabotage are 
probably a leading cause of pipeline damage.” 

 
“A strong enforcement program has showed a decrease in the number of damages to all underground 
facilities. However, most states or jurisdictional authorities are reluctant to take on this responsibility.” 

 
“Local Government Authorities should support Oil and Gas companies in protecting the pipelines. Strong 
local regulations/laws and enforcement programs are needed to reduce excavation damage to pipelines.” 

 
“Pipeline Operators need to work more on prevention programs than only execute what is considered by 
pipeline safety regulations.” 

 
“In our case, we have TPD due to illegal taps and we are working in that way.  But the industry should 
work in how monitoring the pipeline before drilling the pipeline.  I think it can be a universal problem.” 

 
“There should be much more emphasis on educating the public about damage prevention, particularly 
contractors involved in excavation.  Enforcement of damage prevention laws needs to be improved and 
fines/civil penalties need to be strengthened.  Entities damaging underground facilities, disregarding damage 
prevention regulations should be penalized.” 
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“TPI is not a worldwide problem, but a serious problem in some parts of the world. Pipeline should be 
protected along the whole length (against unintended damage. From my point of view issues of Security and 
those of Safety are too much mixed in your statements)) TPI not under researched, but in practice more 
possible (and known) measures could and should be taken for protection, as in Germany” 

 
“This is basically a social case that requires the attention of both public and private partnership. The 
economic situation especially in the third world countries has made vandals to interfere with our pipelines to 
collect products and sell to make ends meet.” 

 
“To prevent Third party Interference it must be increased the awareness of all the contractors excavating or 
digging in the proximity of pipelines or other buried services. Very often these contractors are completely out 
of control of the Pipeline operators which cannot do anything to prevent possible damages to their 
infrastructure.” 

 
“We do not perceive there to be a shortage of research related to prevention of pipeline damage.  Also, we 
believe pipeline surveillance technology is not necessary across the pipeline system, rather is potentially 
appropriate for selection locations only (partially due to risk/reward scenarios).” 

 
“Stronger laws with stronger enforcement, regulation without enforcement are only suggestions” 

 
“In our country there is animal attack (Mouse) .Especially for PE 20 pipe. Until now I don\'t take a 
measure for this problem. Also other pipe interventions such as Water, Elektricity are a problem. if there 
are leakage in water that effects Natural gas line in some cases. I experienced that even steel pipe (pin hole) 
by damaged by small water leakage.” 

 
“an highly developed automatic signalling system that will locate and detect any pipeline leakage from fixed 
station can serve as the best solution” 

 
“Government security involvement to protect the pipelines.  Then the Thieves should get severe and capital 
punishment to deter others. People blame everything on poverty but the power brokers in politics are behind 
the vandals in Nigeria particularly in the Delta and Riverine area.” 

 
“In reference to the Niger-Delta states in Nigeria, the government should eliminate middle men and 
negotiate directly with host communities where the oil drilling take place without any pre-conditions.”  

 
 “An integrated approach to security and environmental protection with involvement of specialist 
organisations.” 

 
 “Adequate depth burial with protective measures and leak detection equipment from surface. No markers, 
burial.  Effectively hiding the presence of pipelines to maximum feasible extent” 

     
“Public education for those living near the pipeline and related facilities, with a simple, 24 hour means of 
notifying the operations center of suspicious activities.” 

  
“The vast majority of our pipelines cross remote areas and liaison with the landowners is very important to 
educate them and remind them of our location.  We use good market signs and sufficient depth to avoid 
land use damage.   Our Standard requires us to protect against rupture or serious leak in built up areas, 
we utilise concrete capping for that purpose normally.” 
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“Remote Surveillance is excellent. Also, 1. Avoid vulnerable areas. 2. Work with local communities, 
make them feel responsible for the pipeline. 3. Ensure government support for asset protection. 4. Physical 
protection measures and monitoring.” 

  
“Intentional damage is very hard to prevent if someone really is intent on damaging a pipeline.  Other than 
deep burial, there is not a lot you can do.  Even sophisticated surveillance methods will not help in cases 
where the pipeline travels through sparsely populated areas as any response to intrusion would come too late 
to prevent damage.” 

 
“Public communication and monitoring programs. The problem posed by pipeline prevention is a hydra 
headed one and is region-specific and thus requires a customised solution tailored to fit the environment in 
question. E.g. the use of high tech gadget, while proven to be successful in other countries may not be the 
same in the Niger Delta region, where the means to power such gadgets are non-existent.” 

   
“One call systems, and make it difficult to dig into the right of way. Grasscrete grids at the surface make 
the area look like a green field, but make it very difficult to dig. This also spreads out the load of a vehicle 
driven on the right of way.  Cost is an issue and gresscrete can only be used on the highest risk areas.” 

    
“Good relations with local community promoting awareness of the pipeline location and the potential 
dangers to safety and environment if damaged.” 

     
“Public education about pipelines that run through their neighbourhood; what activity they might normally 
see on the ROW, what type of equipment they might see, learn to report any suspicious activity to the local 
authorities.” 

 
“Public education and good neighbour policies are often the most effective means of preventing intentional 
damage.  If your neighbours believe that the pipeline and facilities are dangerous, ot a nuisance, or that the 
operator doesn't care, then they will not be cooperative in reporting potential threats.  Burial depth of 
pipeline can be significant, depending on surrounding activity.  For example, in agricultural areas where 
deep ploughing is practiced or where tile drainage systems are installed, extra depth of burial is warranted.” 

 
“In Australia intentional interference is not such an issue, rather unintentional interference brought about 
by deficiencies in the risk assessment in the first instances failing to identify the threat and relevant controls 
of such interference. I disagree with the any inference that third parties would intentional seek to damage a 
pipeline. Unless of course it is in a politically unstable environment e.g. Iraq and Afghanistan.” 

 
“New Zeakland is fortunate at present to not experience most of the factors listed for intentional pipeline 
damage. Others would be vandalism in remote areas and mostly occurs at valve stations and facilities in 
general (graffiti, theft of fire extinguishers, signage etc.” 

 
“Most damage in the US is caused by 3rd party operators not following the pre-scribed process for 
identifying underground faculties prior to excavation activity.  If the penalties were stronger, there would few 
fewer incidents.” 

 
“The reasons for damage can vary by location. e.g. in FSU it is 100% economic (oil theft). In Nigeria it is 
a mixture of economic and protest. In Colombia it was 100% protest. Protest (terrorism) probably cannot 
be prevented but should be of limited impact. Economic will remain endemic until the political system has 
the will to stop it as this does not usually seriously damage the pipeline.” 
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“In Canada we have not seen a large presence of terrorism or other types of activities related to pipeline 
damage. There have been some pockets of criminal activities within the pipeline community however the 
greatest threat we face is from within our own ranks. That is a contractor or landowner who performs a 
ground disturbance without calling for locates and hits a pipeline or other buried infrastructure.” 

 
“In a western world country like Australia the risk of third party interference is considered from an 
unintentional point of view. That is, resulting from poor risk mitigation measures adopted by Pipeline 
Company such as failing to adequately identify land use and hence put in appropriate and effective controls. 
People, unless terrorists, don't go round seeking to blow up pipelines!” 

 
Third party damage is typically not an act of sabotage but rather an unintentional interference with the 
pipeline caused by local activity. The solution is avoidance. Avoidance requires design and construction 
techniques that identify the pipeline and detection technology on excavating equipment. Where avoidance is 
not possible then monitoring is required. Solutions must be cost effective” 

 
“The importance of ensuring that Risk assessment is always conducted with the number of increasing events 
demonstrated the importance of reviewing the pipeline controls for reduction in third party interference. This 
is normally (in New Zealand)by way of neglect in searching land title for easements coupled with no 
delineation of the pipeline on District Council Maps. With designation secured the pipeline will be shown 
on District Council Maps and must be reported to any member of the public seeking a LIM (Land 
Information Management) Report for development or work.” 

 
“You may be aware of the report that was issued by the EU Commission on safety of pipeline 
transportation systems. The main findings included: Third party damage is the main cause of pipeline 
incidents and therefore should receive the main focus and the availability of an effective Pipeline Integrity 
Management system is one of the key elements in controlling the risks. You can search the website of the 
Commission the find the report within the Transport section.”  

”Although third party interference is the single main cause for pipeline damage, the cases of major pipeline 
incidents (on transmission pipelines)is so rare that additional safety measures are not required at all. Major 
incidents mainly occur on the distribution networks close to the buildings, mainly caused by manipulation of 
the supply connection directly. e.g., as an attempt of steeling gas, or due to the design for low pressures 
(plastic pipes).” 

 
“You seem to have overlooked the issue of parochial business interest of some actors, underpinned by 
corruption. In one of my (field study) interaction with some local people where some Nigeria\'s oil pipelines 
transverse they argue that some firms or personnel that specialize in repair of pipelines connive with some 
vandals to puncture these pipes to achieve their mutual interest. The vandals benefit from this through 
siphoning of the products, while the firms/personnel gain from the award of contracts to effect repairs.” 

 
“Intentional damage is not a problem in NA at least not yet.  Most damage is due to contractors not using 
one call or facilities not being properly marked (which could go back to good records of the location of the 
pipeline). We need to make it very convenient for contractors to use first call and very painful if they don't 
use it.” 

 

“For the past 15 years Virginia government has been involved helping our pipeline industry reduce 

excavation damage to our pipelines. Our efforts has resulted in reducing these damages by more than 50% 

while miles of underground pipelines have increased by more than 30%. This has been done by effective 

public education, use of technology and strong and fair enforcement.” 


