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Abstract 

The ever-increasing price of energy, combined with increasingly stringent legislation 

to reduce greenhouse gas emissions, is driving the UK process industries toward 

increasing energy efficiency. Significant gains can be made in this sector, as up to 

11.4TWh per annum (4% of total energy use) of the UK process industries’ energy 

consumption is lost as recoverable waste heat. Substantial recovery of this waste 

heat would have economic benefits of the order of £100s of million/year, and 

environmental benefits of the order of 100s of thousands of tonnes of carbon 

dioxide equivalent per year. 

This thesis describes the development of a knowledge-based system for the 

selection and preliminary design of equipment for low-grade waste heat recovery in 

the process industries. The system addresses two of the key barriers to low-grade 

waste heat recovery in the UK. Firstly, it provides a readily accessible and zero cost 

tool to replace expensive, time-consuming expert consultancy in the initial stages of 

waste heat recovery projects, and, secondly, it educates users regarding the range 

and benefits of novel waste heat recovery technologies.  

The system requires an input of easy-to-access data from the user. Based on this 

data, it then selects the most appropriate technologies for waste heat recovery for 

the case study in question from a database including various types of heat 

exchanger, vapour compression heat pumps, mechanical vapour recompression and 

organic Rankine cycles. It also generates a preliminary design including equipment 

size, efficiency/effectiveness, capital cost, cost savings, payback time and potential 

reductions in carbon emissions. This provides sufficient information to allow the 

user to make an educated decision regarding whether or not waste heat recovery is 

suitable for their needs. 

The knowledge-base of the system was built using a decision tree method that has 

been proven to be successful in the building of decision making tools for various 

engineering applications. The software is programmed using the Java language 
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which allows widespread free dissemination to computers running all common 

operating systems. 

The system was tested using case studies based on data from both existing 

publications and collaborating companies. The results were validated against 

published results, common modelling software results and the views of expert 

consultants. Broadly, in terms of equipment specification and cost, the knowledge-

based system produced the same results as the other methods. Furthermore, the 

preliminary designs generated were generally within 5% of the final figures from the 

other sources.  

In certain cases, the knowledge-based system suggested alternative technologies 

that were more viable (economically and/or practically) than those considered by 

the authors of published case studies. In all cases, system operating time (data input, 

and processing of results) was of the order of minutes, whereas studies by 

consultants or the use of existing modelling packages would be significantly more 

time-consuming (of the order of hours or days). Hence, the system can be used as a 

rapid optioneering tool for investigation of waste heat recovery technologies, 

requiring substantially less time than current available methods. 

 

Keywords: Knowledge-Based System; Low-Grade Waste Heat; Waste Heat Recovery; 

Equipment Selection Methodology; Heat Exchanger; Heat Pump; Organic Rankine 

Cycle; Process Industries 
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Chapter 1 

This chapter covers the motivation for this work via a discussion of UK industrial 

energy use and the vast potential for low-grade waste heat recovery in the UK 

process industries. The project aims and objectives are also given, along with a 

description of the structure of this thesis. 

1. Introduction 

1.1. UK Industrial Energy Use 

Energy use in UK industry is becoming increasingly scrutinized for a variety of 

reasons. Firstly, the rising cost of both electricity and fossil fuel resources (as 

depicted in Figure 1.1) is leading to ever-increasing utility expenditure which can be 

a severe constraint in the current uncertain financial climate. 

 

 

Figure 1.1. Utility prices for the process industries (DECC (a), 2013) 
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Figure 1.1 shows that the price of industrial utilities have sharply increased in the 

last ten years, with electricity and natural gas prices more than doubling in the 

period 2002 to 2011. Hence, an ever-increasing monetary incentive exists for 

reducing utility consumption. 

Secondly, self-imposed government legislation set out in the Climate Change Act of 

2008 requires the reduction of greenhouse gas emissions to achieve ambitious 

targets of a 34% reduction by 2020, and 80% by 2050 (based on 1990 levels). Figure 

1.2 below shows trends in greenhouse gas emissions across the whole of the UK 

from 1900 to 2010 (with predictions to 2050), while Figure 1.3 shows the 

contribution of the process industries to the overall emissions. 

 

 

Figure 1.2. UK greenhouse gas emissions from 1990 to 2010 (& predictions to 2050) 
(Committee on Climate Change, 2011) 

 

Figure 1.2 shows that the UK is not on course to achieve climate change targets, 

according to both predicted trend lines. Hence, wholesale changes are required 

across all sectors in order to make a step change in greenhouse gas emissions in line 

with the targets set out in the Climate Change Act. 
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Figure 1.3. UK carbon emissions by sector, 1990-2010 (Committee on Climate 
Change, 2011) 

 

Figure 1.3 shows that the industrial sector contributes approximately 20% to the 

overall greenhouse gas emissions in the UK, the third biggest contributor (behind 

power stations and transport). Hence, this sector is expected to come under 

increased scrutiny in the coming years. Note: emissions in this sector have dropped 

by almost a third since 1990; the explanation for this lies in the decline of heavy 

industry (by up to 60% in the years 1980-2010 (The Guardian, 2011)) rather than 

wholesale changes in industrial energy efficiency. 

Other drivers for reducing energy consumption include exhaustion of fossil fuel 

resources, corporate sustainability drives and pollution reduction (both heat and 

gaseous pollution). 

One way of increasing industrial energy efficiency and decreasing utility 

consumption is via recovery of waste heat, and this topic is investigated in this 

thesis (particularly low-grade waste heat which is considered the most difficult to 

recover). 
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1.2. Potential for Industrial Low-Grade Waste Heat 

Recovery 

Low-grade waste heat is defined as any process stream (liquid or gaseous) currently 

emitted to the environment at a temperature below 260oC (The Watt Committee, 

1994). 

Low-grade waste heat recovery has great potential for reducing industrial energy 

consumption, and increasing energy efficiency. Reay and Morrell (2007) studied the 

potential for waste heat recovery in the process industries and found that an 

estimated 11.4TWh of recoverable waste heat is currently emitted to the 

environment across all sectors. This data is broken down by sector in Figure 1.4 

below. Note: the term recoverable here refers to waste heat which may be 

recovered using current technologies including direct re-use of heat, heat transfer 

via heat exchanger, heat pumps (open and closed cycle) and power cycles. 

A study of the same topic by McKenna and Norman (2010) using a spatial modelling 

technique found the process industry waste heat recovery potential to be 14.4TWh, 

a reasonably good agreement with the data by Reay and Morell (2007). 

 

Figure 1.4. Waste heat recovery potential by sector (adapted from Reay and 
Morrell, 2007) 
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Figure 1.4 shows that the sectors with the largest proportion of recoverable waste 

heat are “coke and refined petroleum etc” (29%), “food, drink and tobacco” (25%), 

“chemicals and products” (14%) and “metal products” (8%). 

Figure 1.5 shows the breakdown of energy usage across all of the sectors studied by 

Reay and Morell. Note that data from the petroleum industry (“coke and refined 

petroleum etc”) is excluded from this data-set as it was unobtainable. The figure 

shows that the majority of the energy usage is in “low temperature processes” 

which are defined in the study as less than 300oC. Hence, it can be inferred that the 

majority of waste heat available across these sectors will be low-grade. 

Furthermore, drying/separation processes typically operate below 200oC, motors 

emit low-grade heat from cooling circuits and refrigeration condensers emit low-

grade heat, hence 66% of the energy use has the potential to emit low-grade waste 

heat. Therefore, it can be concluded that the majority of the 11.4TWh of 

recoverable waste heat is of low-grade. 

 

 

Figure 1.5. Energy consumption by process (adapted from Reay and Morrell, 2007) 
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1.2.1. Typical Low-Grade Heat Sources and Sinks 

Low-grade waste heat is emitted from a variety of processes via both liquid and 

gaseous effluents. Table 1.1 below (David Reay and Associates, 1994) shows a list of 

generic heat sources that may exist across all sectors of the process industries. 

 

Table 1.1. Generic heat sources (David Reay and Associates, 1994) 

Source of heat Nature of heat source 

Gas Liquid Vapour 

Air Compressor X X  

Boiler X X X 

Distillation  X X 

Drying X  X 

Evaporation X X  

Furnaces X X  

Gas turbine X X  

Kilns X  X 

Ovens X  X 

Pasteurisers X X  

Prime movers X X X 

Refrigeration X X  

Sterilisation X X  

Ventilation X  X 

Washing X X X 

 

 

Uses, or sinks, for the waste heat also vary considerably. The easiest and most 

economical method of recovery is by heat transfer from the heat source to a heat 

sink of suitably lower temperature, facilitated by a heat exchanger (or direct re-use, 

where possible). However, with low-grade waste heat recovery, it is often difficult 
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to “match” the heat source to a lower temperature heat sink. Hence, often novel 

methods of recovery must be considered. For example, vapour compression heat 

pumps can be used to upgrade the waste heat to heat a sink of higher temperature, 

absorption heat pumps may be used to convert low-grade waste heat into coolth 

and power cycles may be used to convert the waste heat into electricity (these 

technologies are discussed further in Chapter 3). Therefore, significant expertise is 

required to analyse all available uses for low-grade waste heat recovery. 

 

1.2.2. Potential Benefits of Waste Heat Recovery 

DECC, 2012 (b), state that the total energy consumption by the process industries in 

2012 was 290TWh. Hence, if all of the theoretically recoverable waste heat 

(11.4TWh) was to be recovered, this would represent a total energy saving of up to 

4% (depending on the methods of recovery for each individual case study). In order 

to quantify the economic and environmental effect of this, three theoretical 

scenarios can be envisaged (originally discussed with regards to the food industry in 

Law et al, 2012): 

1. All of the available waste heat is recovered via heat exchangers to replace a 

current gas heating duty of 75% efficiency 

2. All of the available waste heat is recovered by heat pumps with a COP of 3.5 

(generally the minimum target of a well-designed system) to replace a 

current gas heating duty of 75% efficiency 

3. All of the available waste heat is recovered by organic Rankine cycle 

machines with a thermal efficiency of 12% (generally the minimum target of 

a well-designed system) 

Calculations based on heat balances, current utility cost factors (DECC, 2013 (b)) 

and greenhouse gas emission factors (Carbon Trust, 2012) create the economic and 

environmental benefits shown in Table 1.2. 
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Table 1.2. Potential economic and environmental benefits of waste heat recovery 
in the UK process industries 

 Potential Cost Saving 

 

(£million/year) 

Potential Greenhouse Gas 

Emission Reductions 

(million tCO2eq./year) 

Scenario 1 459 2.79 

Scenario 2 108 0.510 

Scenario 3 111 0.718 

 

Table 1.2 shows that, under the best scenario of heat transfer via a heat exchanger 

between source and sink, low-grade waste heat recovery in the UK process 

industries has the potential to save £459m and 2.79 MtCO2eq per annum. Under 

the worst case scenario (heat pump heat recovery), the cost saving is £108m per 

annum and the greenhouse gas reductions 0.510 million tCO2eq per annum. Hence, 

waste heat recovery has huge potential economic and environmental benefits to 

the UK process industries. 

In reality, a combination of the three solutions would be required in order to 

recover all of the waste heat available, as well as other solutions such as absorption 

heat pumps (for cooling) and mechanical vapour recompression (all discussed in 

Chapter 3 of this thesis). Furthermore, the scenario assumptions will vary between 

case studies. Hence, the scenarios listed above (and a combination of the three) are 

not definitive. However, the data shows that the potential cost savings are in the 

region of hundreds of millions of pounds per annum, and the potential greenhouse 

gas reductions are in the region of (at least) hundreds of thousands of tonnes of 

CO2eq per annum. 

 

1.2.3. Barriers to Low-Grade Waste Heat Recovery 

Low-grade waste heat is traditionally the most difficult to recover due to difficulties 

in finding “matching” (i.e. lower temperature) heat sinks. Hence, the traditional 

method of heat exchanger waste heat recovery, as featured in common heat 
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integration methods such as Pinch technology (Linnhoff and Hindmarsh, 1983), is 

often not possible. This leads to the need for more novel and complex solutions 

such as heat pumps and power cycles. 

This creates a barrier, as there is a substantial knowledge-gap with regards to these 

more specialised waste heat recovery technologies in the UK process industries.  

This was highlighted by Sinclair (2001). Here, an industrial survey was undertaken to 

gauge the attitude of the process industries with regards to heat exchangers and 

heat pumps for waste heat recovery. As shown in Figure 1.6 below, the attitude 

towards heat exchangers and heat pumps varied significantly. While 87% of the 

study “support” heat exchangers, only 66% “support” heat pumps. Also, a 

combined 34% of the study are “unsure” about heat pumps or consider them to be 

a “risky” investment. This highlights a general gap in knowledge with regards to the 

more novel waste heat recovery methods, as heat pumps have been proven to be a 

sound economic investment on numerous occasions (for example Department of 

Energy, 1981, and Star Refrigeration, 2013, and see Section 3.2 for a full discussion 

of heat pumps for waste heat recovery). 

 

 

Figure 1.6. Process industry attitudes to waste heat recovery equipment (adapted 
from Sinclair, 2001) 
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This lack of knowledge, and the fact that industrial engineers often do not have 

time to investigate all waste heat recovery options, results in the need for expert 

consultancy from the initial stages of waste heat recovery projects. This is 

highlighted by the Good Practice Guide to Waste Heat Recovery (David Reay and 

Associates, 1994) where consultants are noted as “ideal for a preliminary 

assessment of the feasibility of the installation” and as having “good knowledge of 

equipment required”. Such consultancy can cost a great deal with no guarantees of 

positive results. Hence, this can be detrimental to the uptake of waste heat 

recovery projects. 

 

1.3. Project Aims and Objectives 

The project aim is to create a knowledge-based system (KBS) to encourage the 

uptake of waste heat recovery projects in the process industries by addressing the 

barriers to waste heat recovery discussed above. The system is intended to act as a 

consultancy tool for use in the initial stages of waste heat recovery system design. 

Hence, it must be able to select and design various types of equipment for use in 

waste heat recovery, and provide the user with sufficient data for a decision to be 

made regarding whether waste heat recovery is suitable at their plant. The system 

must have an educational element and present reasons for the decisions to the user.  

Therefore, the system is to address two of the key barriers as follows: 

i. Cost of consultancy: KBS provides a free alternative to outside 

consultancy during the initial stages of low-grade waste-heat recovery 

projects. 

ii. Awareness of best-available/novel technologies: they are highlighted 

when suitable. 

The system is also expected to be significantly faster than the use of traditional 

modelling techniques and/or expert consultants (of the order of minutes for the 
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KBS, as opposed to days for consultancies). Hence, the system may also be used as a 

rapid optioneering tool for screening of waste heat recovery technologies. 

 

1.3.1. Scope of knowledge-based system 

The scope of the system is: to select and design the most appropriate process waste 

heat recovery technologies for individual case studies. The target end-users are 

industrial engineers who are assumed to have the following characteristics: 

 Limited knowledge of waste heat recovery techniques 

 No previous experience of process waste heat recovery projects 

 Limited time to investigate all waste heat recovery options 

 Education in heat transfer engineering to undergraduate degree standard 

 Interested in waste heat recovery and therefore aware of other useful tools. 

For example, energy auditing tools such as EINSTEIN (Brunner, 2010) which 

may be used prior to this system to identify potential waste heat sources 

and sinks 

Therefore, the scope of the system is to achieve the objective stated above whilst 

accommodating the needs of the end user. This creates the following set of design 

constraints: 

1. Must be simple and intuitive to use: to aid users with no previous 

experience of process waste heat recovery 

2. Must make use of easy-to-access data: this will aid users with limited time in 

the collection of data for use in the software 

3. Must explain selection/design logic to the user: this will educate the user in 

the methods employed by the system thereby reducing/avoiding user 

confusion or mistrust 

4. Must allow easy dissemination into the industrial domain: different users are 

likely to run various operating systems (Apple OS, Linux, Windows etc) 

meaning the software must be multi-platform compatible 

5. Must allow a comparison of various technologies: this will educate users as 

to the benefits of each type of technology (when appropriate) 

6. Must give accurate results: results from this software must be comparable 

with other modelling tools (to be validated by case studies) 

7. Must include a variety of waste heat recovery techniques: this will allow a 

wide range of possible process conditions to be accommodated 
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8. Must include technologically viable results: results must be meaningful on 

an industrial scale. Technologies requiring significant further R&D should not 

be included 

9. Must include economically viable results: only technologies which have been 

proven to achieve economically viable results will be considered. 

Technologies incurring typical pay back times of greater than 5 years (under 

economic conditions at the time of writing) will be considered non-

economical 

A number of related methods/objectives were excluded from the scope of the 

system. They are as follows. 

 Energy audit analysis. This was excluded as software is already available for 

such tasks, for example the EINSTEIN energy auditing tool (Brunner, 2010) as 

discussed in Section 2.3. 

 Pinch analysis. This was excluded as such methods are well established, as 

discussed in Section 2.21. Software is readily available for such tasks such as 

the Aspen Energy Analyzer tool for Aspen HYSYS/Aspen Plus (Aspen Tech, 

2010) and HERO (Kemp, 2007).  

 Integration of renewables and/or combined heat and power systems (CHP). 

This was excluded as the objective of this work is to aid waste heat recovery 

only. Furthermore, software is available for such tasks such as, again, the 

EINSTEIN energy auditing tool (Brunner, 2010). 

 

1.4. Structure of the Thesis 

This thesis is presented in seven chapters, each of which considers a major aspect of 

the work and the development of the knowledge-based system for low-grade waste 

heat recovery. 

The first chapter provides an introduction to the work, listing the drivers and 

barriers to low-grade waste heat recovery in the UK process industries, which in 

turn leads to the motivation for the work and the scope of the knowledge-based 

system. 

Chapter two presents a review of literature relevant to the work completed in this 

thesis. This includes literature regarding tools and methods for the design of waste 
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heat recovery systems and knowledge-based/expert systems written for process 

industry applications. 

Chapter three covers a discussion of the state-of-the-art in waste heat recovery 

technology and the selection of suitable equipment for inclusion in the knowledge-

based system. The advantages and disadvantages of each technology are analysed 

and reasons provided for the inclusion/exclusion in the system knowledge-base. 

Chapter four discusses the logic, decision pathways and design equations of the 

knowledge-based system. Justification of the methods employed and schematics of 

the system logic are presented. 

Chapter five introduces the programming and compilation of the knowledge-based 

system using a suitable computer language. The choice of programming language is 

discussed, along with screenshots of the graphical user interface produced. 

Chapter six covers the testing of the system via case studies which are provided 

from both published literature and original data from industrial partners. The 

results of the knowledge-based system are compared to both published data and 

those of industry standard modelling tools in order to judge the validity and 

accuracy of the data. 

Finally, in chapter seven, conclusions are drawn based on the findings and 

recommendations for future work are presented. 

. 
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Chapter 2 

This chapter reviews current literature relevant to the work completed in this thesis. 

This includes literature regarding tools and methods for the design of waste heat 

recovery systems (including heat exchangers and thermodynamic cycles) and 

knowledge-based/expert systems written for process industry applications. 

2. Literature Review 

2.1. State of the Art in Waste Heat Recovery Techniques 

The state of the art in waste heat recovery techniques is covered in Chapter 3 

where a review of current literature, analysis of equipment data sheets and 

accompanying calculations is provided to justify the inclusion/exclusion of each 

technology in the software knowledge base. 

 

2.2. Tools and Methods for Waste Heat Recovery System 

Design 

Various tools and methods are available to aid the design of waste heat recovery 

systems and heat exchanger networks. They range from pinch technology methods 

to methods for exploring optimum designs of heat exchangers and thermodynamic 

cycles. 

 

2.2.1. Pinch Technology 

Heat integration was originally suggested by Linnhoff et al (1979) using composite 

curves to create an overall view of the heat demand of a process and highlight 

opportunities for heat recovery between hot and cold streams (heat sources and 

sinks). The method was later extended to include the concept of the pinch (Linnhoff 

and Hindmarsh, 1983), allowing energy targets to be realised in practice according 
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to a number of rules. This has led to heat integration being commonly referred to as 

“Pinch Technology”. 

The method requires the generation of hot and cold composite curves and the 

determination of a pinch point to allow realistic (with regards to size and cost of 

heat exchangers) recovery of heat between sources and sinks. A typical composite 

curve, showing the pinch point, heating target and cooling target is shown below in 

Figure 2.1 (Smith, 2000). 

 

 

Figure 2.1. Composite curves and pinch point (Smith, 2000) 

 

The composite curves are used to match heat sources and sinks according to certain 

rules employed by the method such as “no heat transfer across the pinch” (i.e. 

streams on right hand side of pinch may not be matched with streams on left hand 

side, and vice-versa). The external heating and cooling duties required are then 

shown by the overlap at the extremes of the plot. 

This method can be used for individual processes (for example in multi-product 

distillation where multiple heat sources and sinks exist) or can be extended for site-

wide heat integration. The matching of heat sources and sinks is decided via 

http://www.sciencedirect.com/science/article/pii/S1359431100000107
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mathematical methods. For example, graph theory was originally used by Linhoff et 

al (1979) to devise the minimise the amount of heat exchangers required in the 

network, thereby finding the optimum source-sink matches to minimise the capital 

expenditure of heat integration. More recently, complex algorithms, such as 

artificial neural networks (Smith et al, 2010) and the genetic algorithm (Ravagnani 

et al, 2005), have been used to find the best matching sources and sinks. Such 

methods are advantageous as they can take into account more variables, such as 

distance between source/sink, capital expenditure, cost savings and energy/exergy 

analysis. However, the complexity of the mathematics involved may impede clear 

explanation of these techniques, making it difficult to gain the trust of engineers in 

the industrial domain. 

In current practice, a grid diagram of matched sources and sinks is typically 

produced to show the suggested retrofitted network, as per the example shown in 

Figure 2.2 below (Smith et al, 2010).  In Figure 2.2, the red horizontal lines represent 

heat sources (numbered 1-8), the blue horizontal lines represent heat sinks 

(numbered 11-13), the black circles attached by black vertical lines represent new 

heat exchangers for waste heat recovery, and the blue and red circles represent 

existing heat exchangers for heating/cooling utilities. 

 

 

Figure 2.2. Example of a heat exchanger network map (Smith et al, 2010) 

 

http://www.sciencedirect.com/science/article/pii/S135943111000253X
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The original pinch method was designed for relatively simple continuous, single 

process situations, but has since been modified to consider batch processing (e.g. 

Kemp, 1990) site-wide integration (Varbanov et al, 2012), “cross-border” integration 

(between processing sites or district heating networks, Kapil et al, 2012) and 

integration of more complex waste heat recovery methods, such as heat pumps 

(Benstead & Sharman, 1990).  

Other techniques have been devised from the original heat integration 

methodology to cover efficient use of other plant commodities such as water (Wang 

and Smith, 1994) and integration of renewable energy (Muster-Slawitsch et al, 

2011). This is not further reviewed here, as it is outside the scope of this thesis. 

Kemp, 1990, investigated the use of pinch heat integration methods in batch 

processing. Here, the processes were divided into time intervals allowing 

calculations for heat integration targets at specific time periods. This highlights 

possibilities for optimal heat exchanger networks, heat storage and batch 

rescheduling, as well as displaying the time dependence of the utility demand. This 

concept was further developed by Adonyi et al, 2003, where an S-graph approach 

was taken to consider both heat integration and batch scheduling simultaneously 

rather than consecutively. This approach was shown to improve the optimum 

solution compared to the original methodology. However, complex mathematical 

algorithms (combinatorics and combinatorial algorithms) were required. Therefore, 

it is less likely that such a method would be accepted so readily into the industrial 

domain due to concerns with explanation/trust with local engineers. Furthermore, 

the resolution of batch scheduling may be a concern. If this is too small (i.e. second 

or minute scale) it is likely that the results will be too difficult to practically 

implement. 

Benstead & Sharman, 1990, considered heat pumps in process heat integration to 

allow matching of heat sources to heat sinks of greater temperature. Standard 

pinch technology methods were combined with heat pump thermodynamic models 

to identify opportunities for heat recovery incorporating the possible temperature 

lifts between sources and sinks in the grand composite curve. The method was 
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shown to be successful in producing economic optimum heat exchanger/heat pump 

networks, although greater computer processing power is required (compared to 

standard heat exchanger network techniques). However, the work has not led to 

any significant uptake of industrial heat pump installations in the UK since 

publication 23 years ago and an apparent scepticism in industry remains (as 

discussed in Section 1.2.3).  

Varbanov et al, 2012, investigated the concept of site-wide process heat integration. 

A new method was suggested based on carrying the minimum approach 

temperature (ΔTmin, pinch point) for each process (or major unit operation). This 

method was compared to the traditional method of one constant minimum 

approach temperature (simply an extension of traditional pinch technology to a 

greater number of sources/sinks). The new method was found to achieve a 30% 

greater decrease in cold utility requirement and an 18% greater decrease in hot 

utility requirement, although only one case study was presented. However, 

drawbacks exist, such as the greater complexity of the method and the need for 

greater computational power. In a discussion of future work, the authors stated 

that such a method could unlock potential for pinch methods to replace shell-and-

tube heat exchangers with more efficient options, such as plate heat exchangers. In 

this respect, the work presented in this thesis may be complimentary, and the 

methods created could be used in conjunction with the work of Varbanov to help 

identify the situations in which one could use a variety of different heat exchangers. 

This in turn could lead to the selection of a suitable ΔTmin based on which heat 

exchanger options are compatible with the source/sink in question. 

Kapil et al (2012) used an extension of pinch technology to study the feasibility of 

integrating process waste heat with district heating networks. It was shown that the 

concept was feasible and that waste heat (at a temperature of greater than 105oC) 

could be economically transported to a district heating hub up to 86.5km away. The 

system also significantly decreased the cost of thermal energy from the district 

heating system and negated the need for a second CHP boiler during normal 

operation. However, the methods presented were based on the assumption of an 

existing district heating network being in place. As such schemes are scarce in the 
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UK, the results presented here are not immediately relevant. Firstly, district heating 

facilities would have to be widely installed in the UK, but they are currently 

hindered by a number of economic, commercial and infrastructural barriers (as 

discussed by Davies and Woods, 2009).  

Numerous commercial software tools have been developed in an attempt to ease 

the dissemination of pinch methods into the industrial domain and increase 

industrial energy efficiency. Tools are available with different levels of complexity 

and cost. For example, Hero by Chepro ltd (Chepro ltd, 1994) was developed to 

produce only heating profiles, energy targets and the grand composite curves, 

without including heat exchanger network design (Kemp, 2007). The main drawback 

of such tools is that a certain degree of user expertise is still required in order to 

design the subsequent heat exchanger network. 

More sophisticated methods include Aspen Energy Optimisation (Aspentech, 2013), 

which is used in conjunction with the Aspen HYSYS (Aspentech [2], 2013) process 

modelling suite to optimise heat exchanger networks according to user-defined 

energy targets. This tool is very comprehensive and accurate economic analysis can 

also be performed (capital costs, cost savings, payback time etc). However, there 

are also several drawbacks. One drawback is that the software does not take into 

account heat source/sink nature and bases all heat exchanger networks (and 

resulting energy/economic analysis) on shell-and-tube heat exchangers, which are 

not always the most suitable (or appropriate design). Secondly, this software is very 

expensive to purchase and expert training is required. This would represent a 

barrier to many sectors of the process industries. Finally, this software cannot 

consider heat pumps or other novel heat recovery techniques (unless the user 

builds such systems into the flow-sheet themselves, which requires significant 

expertise). 

Another example of commercial software tools for this purpose is the recent 

“Expert System for an Intelligent Supply of Thermal Energy in Industry and other 

Large-Scale Applications”, or EINSTEIN (Brunner et al, 2010) which combines 

methods of pinch technology and renewable energy integration for process industry 
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(and large building) applications. This tool is again useful in accurately analysing the 

benefits of heat integration (and renewable integration), but has the familiar 

drawback of not being able to select/design the specific heat exchanger or 

thermodynamic cycle most suitable for heat recovery between the sources and 

sinks.  

Overall, pinch technology and its implementation has been very successful since the 

introduction by Linhoff et al (1979) and research is ongoing to improve and extend 

the methods as computational methods/power improves. 

However, one key drawback of all the pinch technology methods discussed is the 

lack of selection/design of equipment. Pinch methods are still based upon the use 

of shell-and-tube heat exchangers which are not the best design for many heat 

transfer duties. Furthermore, while methods incorporating novel recovery methods 

such as heat pumps do not provide a substantial cycle design. Therefore these 

methods would be complimentary to the knowledge-based system (KBS) developed 

in this work i.e. the pinch methods could be used to identify opportunities for heat 

exchanger/heat pump waste heat recovery, whilst the KBS could be used for 

specific heat exchanger/heat pump selection and design based on each individual 

case study. The extremes of the hot composite curve (i.e. where no sink can be 

matched) could also be assessed for utilisation in an organic Rankine cycle, for 

example. 

 

2.2.2. Heat Exchanger Selection/Design 

Heat exchanger selection and design has been studied for many years. A number of 

novel heat exchangers have been developed for various duties to replace the shell-

and-tube heat exchanger, which is often  described as the “work horse of the 

industry” (Klemes et al, 2008). However, many of these works focus more on 

optimization and design of specific heat exchangers, rather than advising the user 

on when to select which units. As a result, the shell and tube heat exchanger is by 

far the most common in the process industries although other types have found 

certain niche applications, such as the gasketted plate heat exchanger in the food 
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industry (due to ease of cleaning) and the printed circuit heat exchanger in offshore 

oil and gas facilities (due to compact size and weight). A full discussion of the merits 

of each type of heat exchanger is found in Section 3.1, but the focus in this section 

is the literature underpinning the selection and design of heat exchangers. 

The Best Practice Programme (2001) provided a comprehensive list of heat 

exchangers and their operating limits. This data is extremely useful in gaining an 

understanding of when one must not use a certain unit. For example, the report 

states that gasketted plate heat exchangers have a temperature limit of 175oC (a 

figure confirmed by manufacturer data, see Section 3.1). Guidance is also offered 

on when one should select one unit rather than another, suggesting that installed 

cost should be used as the main indicator. However, this suggested method ignores 

other, often crucial, factors such as fouling limitations and ease of maintenance etc. 

The problem of heat exchanger selection was addressed by Heppenstall and 

Halliday, 1990. Here, the authors attempted to develop an expert system for heat 

exchanger selection to try to negate the need for an expert contractor in heat 

recovery system design. The method in this work considered the following five key 

areas of consideration in heat exchanger selection: 

 Environmental conditions: Factors such as the nature of the streams, e.g. gas 

or liquid, temperature, pressure etc. 

 Material selection: Materials of construction must be compatible with heat 

source and sink. 

 Fouling: The type of heat exchanger must be appropriate for the fouling 

potential of the source and sink. 

 Effectiveness and pressure drop: The type of heat exchanger must meet 

reasonable effectiveness and pressure drop targets. 

 Cost: The type of heat exchanger must not be of exuberant cost 

The paper notes that an effective selection procedure must address each of the five 

areas stated above. The five key areas of consideration were combined in the 

“structure of the knowledge base”, as shown in Figure 2.3 below. 
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Figure 2.3. Overall structure of knowledge base of system by Heppenstall and 
Halliday, 1990 
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The authors sought clarification of their selection rules and procedures from 

numerous heat transfer “experts” in order to set limits for the selection of each 

type of unit (temperature, pressure, fouling etc) and to collect data such as typical 

materials of construction and pressure drop. 

The overall structure of the knowledge base was then broken down into detailed 

sub-sections that select specific heat exchanger types based on various criteria and 

heat exchanger limitations. An example of this is shown in Figure 2.4 overleaf. 

Note: Figure 2.4 has been reproduced by the author as an exact replica of the 

original version by Heppenstall and Halliday, 1990. This is due to the difficulty of 

photo-copying the original printed paper version with sufficient resolution for 

printing in this thesis. 
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Figure 2.4. Section of gas-gas knowledge base in system (exact replica of figure taken from Heppenstall and Halliday, 1990) 
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The method shown in Figure 2.4 can be reduced, in simplistic terms, to a method of 

the form shown in Figure 2.5 below, i.e. if an operating limit of unit A is exceeded 

(for example pressure, temperature, fouling potential) do not use unit A. 

 

 

Figure 2.5. Form of knowledge-base in Heppenstall and Halliday (1990) method 

 

The authors then considered a number of expert system “shells” in which to build 

the knowledge base. “Savoir”, “PC-PLUS” and “CRYSTAL” were considered (none of 

which are still commonly used). “Savoir” was chosen as the most appropriate shell 
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due to the simplicity of use, “good” user interface and robustness. The use of shells 

is still possible at the current time, however, given the advances in personal 

computers and programming languages in the past 25 years, it is now more 

common-place to simply write the code in its entirety. 

Overall, the system was found to perform well during testing, producing 

comparable results to the opinions of experts in the field of heat exchanger 

selection/design. The method of formulating the system knowledge-base was 

thorough and beneficial to the development of the system, despite being time 

consuming. However, several limitations were identified as follows: 

 The system was not able to produce detailed heat exchanger designs. Hence 

it was not possible for accurate cost estimates to be calculated which is 

often the deciding factor in selection procedures, particularly when it is 

possible to use more than one unit. The reason given was the difficulty in 

programming procedural routines into an expert system shell. 

 The system often produced too many results, with no way to effectively 

compare between available heat exchangers. This is linked to the point 

above as a detailed design/cost estimate is required to do so. 

 The system was not ready for commercial use. This was mainly due to 

difficulty of implementing a comprehensive testing scheme as the system 

was not user friendly and each tester of the system would have had to 

undergo a rigorous training procedure. 

Many of the drawbacks listed above can be addressed using modern computer 

programming methods (as discussed in Section 5.1), but beyond this, the 

conclusions from this paper are a useful starting point for this work: they can be 

used as a guide for the initial stages of system development. 

Many other software tools have addressed the topic of heat exchanger design. For 

example, Aspen Design and Rating (Aspentech [3], 2013) is a comprehensive tool for 

designing shell-and-tube heat exchangers, plate heat exchangers and plate-fin heat 

exchangers. This tool allows users to input inlet/outlet data for each stream (source 
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and sink) and select stream components from a vast database. The software results 

include a detailed design of the unit including cost estimates. 

However, the software again does not provide a method of heat exchanger 

selection. In order to gain valid results, the user must have a certain level of 

knowledge in this area in order to be sure that the particular type of heat exchanger 

is appropriate for use. A further drawback of this software is that it is very 

expensive and, perhaps as a consequence of this, has not reached all subsectors of 

the process industry. 

Numerous academic papers address the subject of optimal heat exchanger design 

without discussing which types of unit should be selected for which duties. For 

example, Gut and Pinto (2004) investigated the optimal design configuration for 

(gasketted) plate heat exchangers. They chose six parameters (number of channels, 

number of passes per stream, feed connection location, hot fluid location, type of 

flow in the channels) and a complex screening algorithm to find an optimum heat 

exchanger effectiveness for a user-defined number of transfer units. The method 

was shown to find optimum design solutions for a given case-study of heat transfer 

between two organic liquids. However, the method does not take into account the 

need to often oversize heat exchangers in practice due in order to compensate for 

unanticipated fouling/blockage. Therefore, the optimal heat exchanger design 

would be unlikely to be implemented in the industrial domain. Furthermore, it is 

unlikely that a user would define the number of transfer units prior to heat 

exchanger design in practice.  

Approaches such as this highlight the need for practicality to be taken into 

consideration when developing methods and tools which are to be disseminated 

into the industrial domain. Furthermore, this method again offers no procedure for 

the selection of this type of heat exchanger and assumes the reader (or person to 

implement the method in future) has a pre-existing knowledge of heat exchanger 

selection/design. 

Another example is given by Yousefi et al (2012). Here, the optimal design of plate-

fin heat exchangers is investigated using a hybrid evolutionary algorithm (essentially 
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a customization of the standard genetic algorithm). Results show that the new 

method was an improvement on standard genetic algorithm methods in that more 

efficient heat exchangers are designed (smaller area for the same duty) with lower 

pressure drop, while the computational time of the method is also reduced (for 

execution on the same computer). However, again the methods employed in this 

paper are only of use to a reader with a significant background in heat transfer, and 

the user will have also already devised that a plate-fin heat exchanger is suitable for 

the specific case study in question. 

 

2.2.3. Thermodynamic Cycles for Waste Heat Recovery 

The design of thermodynamic cycles such as heat pumps (vapour compression, 

absorption etc) and power cycles (organic Rankine, Kalina etc) has been studied for 

many years and is currently gaining more interest due to rising energy prices. 

A full discussion of the merits of various thermodynamic cycles for waste heat 

recovery is presented in Chapter 3. Here, literature covering design and selection 

methodologies of the various cycles is reviewed. 

Many papers investigate various aspects of these cycles including working fluid 

selection (increasingly important due to a possible future phase-out of common 

hydro-fluoro-carbon working fluids), cycle configuration, exergy analysis and cycle 

optimization. 

Literature addressing working fluid selection in organic Rankine cycles and heat 

pumps is addressed in Section 4.35-4.37 where the methodology of selecting 

working fluids for use in this work is discussed. 

Nguyen et al (2010) studied optimal power generation from residual waste heat 

using organic Rankine cycles. Here, a number of parameters were considered 

including working fluid selection (discussed in Section 4.35-4.37) and cycle 

configuration (inclusion/exclusion of a recuperator). It was shown that the inclusion 

of a recuperator in the cycle increases the overall cycle efficiency by up to 5%. The 

authors conclude that this is an “effective means of improving overall cycle 
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efficiency”. However, no economic assessment was carried out to investigate the 

financial reward of this improvement in efficiency vs. the increased capital cost of 

the cycle. Therefore, the true benefit of this addition is not known. 

Quoilin et al (2011) studied a thermo-economic optimization of organic Rankine 

cycles. Here, the optimization of the cycle was performed by varying the working 

fluid evaporator temperature. The case-study used in the model was for the 

recovery of a sensible heating duty, hence the effect of varying the evaporator 

temperature would affect both the cycle thermal efficiency and the amount of 

waste heat recovered, hence an optimum point exists.  

The authors found two optimum points: the economic optimum and the 

thermodynamic optimum. The results varied for each working fluid, but a general 

trend existed in that the economic optimum was at a higher evaporation 

temperature than the thermodynamic optimum. The reason cited is that the fluid 

density increases at higher temperatures, hence the size of the purchase equipment 

is reduced. Furthermore, the fact that this would also require an evaporator of 

smaller heat transfer area must also have been a factor. The method is flawed, in 

that in reality the turbine (the highest capital cost component) would not be 

designed for use only at the optimal point, as one would have to account for an off-

design heat source temperature. Also, one would generally seek to find an “off the 

shelf” turbine in a standard size, rather than a costly custom design. Hence, in 

reality, the results of the economic optimization may be used as a guide but are not 

definitive. Therefore, in such cases the thermodynamic optimum should be used in 

the initial design. 

The literature regarding thermodynamic cycles is of a similar ilk to that discussed in 

Section 2.2.2 regarding heat exchanger selection/design, in that the majority of the 

papers focus on optimization of cycles rather than selecting when each type of cycle 

may be useful, i.e., the bulk of the literature does not cover the problem addressed 

in this thesis. 

A number of software tools are generally available to aid the design of 

thermodynamic cycles, including Aspen HYSYS (AspenTech [2] 2013) and IPSE Pro 
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(Sim Tech, 2013) amongst many others. However, again these tools require a large 

degree of existing expertise from the user and can often be very costly. Hence, such 

tools are not in direct competition with the aims of this thesis. 

 

2.3. Knowledge-based/Expert Systems in Process 

Engineering 

Knowledge-based systems and expert systems have been suggested for a variety of 

process industry applications. Examples include pipeline leak detection (Zhou et al, 

2011), heat exchanger fouling detection (Afgan and Carvalho, 1995), food dryer 

selection (Lababidi et al, 2003) and solvent selection (Chan, 1995).  

The focus of this section is on expert system/knowledge-based system literature 

linked to heat recovery/transfer and selection of industrial equipment as this is the 

most relevant to the work presented in this thesis. 

Abou-Ali and Beltagui (1995) created an expert system for the selection of type of 

shell-and-tube heat exchangers. The work was effectively a method of automating 

the initial shell-and-tube design process presented in the standards by TEMA 

(Tubular Heat Exchangers Manufacturing Association). An expert system shell was 

used to create the expert system and a decision-tree type knowledge-base was 

developed (similar to that presented by Heppenstall and Halliday, 1990). Again, the 

decision tree followed the “IF criteria fulfilled, THEN action” pathway, as depicted in 

Figure 2.6 below. 
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Figure 2.6. "IF-THEN" logic of expert system by Abou-Ali and Beltagui (1995) 

 

The system had the aim of presenting a full TEMA (TEMA, 2013) shell-and-tube heat 

exchanger design based on user data input consisting of source/sink data 

(temperatures, mass flows, specific heat capacity) and user answers to various 

questions. However, the final system had a number of drawbacks and did not 

produce all of the desired results. The following results were excluded from the 

system as presented in the paper: 

 The exchanger shell type 

 Fluid allocation 

 Heat exchanger geometry such as: 

o Tube diameter, thickness and length 

o Tube layout, pitch and number of passes 

o Shell diameter 

o Baffle spacing 

The results presented only included the type of shell and tube bundle (e.g. fully 

welded shell, gasketted shell) based on relatively simple questions such as 

anticipated fouling concerns. Methods are presented for the full selection criteria 

but the authors were not able to implement them in the expert system. 

The reason cited for this is the time taken to build the knowledge base. However, it 

is noted that the results missing from the system all stem from systematic 

calculations (for example, calculation of heating duty, then calculation of correction 
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factor, calculation of number of passes, calculation of tube and shell geometry). All 

of the results generated were from the user-answered questions only. Therefore, a 

parallel exists between these results and those presented by Heppenstall and 

Halliday, 1990 (discussed in Section 2.2.2). Heppenstall and Halliday stated that the 

use of an expert system shell was limiting due its inability to process procedural 

routines. It is possible that such problems existed in the work by Abou-Ali and 

Beltagui. Therefore, this adds weight to the suggestion that for such an application, 

one is not advised to use expert system shells in program development. It is also 

noted that in the 18 years since publication of this paper, computational 

programming methods have improved dramatically and the authors may have had 

more success using modern day languages and operating systems. 

Lababidi and Baker (2003) presented an expert system for food dryer selection. The 

problem addressed was similar to the work in this thesis in that a wide-range of 

potential options were available for selection, and were influenced by a wide-range 

of parameters. Here, the authors again used the decision tree “IF-THEN” method to 

select the most appropriate dryer based on user input data. The Java programming 

language was used in the development of the system, with ease of web-based 

dissemination cited as the main driver. A case study was used to test the viability of 

the system and results were shown to be in agreement with the views of 

industrialists, hence, the system was deemed a success. However, it is noted that 

only limited conclusions can be taken from only one published case-study. 

The favourable result of Lababidi and Baker compared to that of Heppenstall and 

Halliday (1990) and Abou-Ali and Beltagui (1995) suggests that the use of a modern 

programming language such as Java has led to the creation of a more successful 

system than those based on expert system shells. Furthermore, the same type of 

“IF-THEN” decision tree knowledge-base development was employed. This suggests 

that revisiting previous works of Heppenstall and Halliday, and Abou-Ali and 

Beltagui using modern computational techniques may be worthwhile. 

Chan and Tontiwachwuthikul (1995) developed an expert system for solvent 

selection for use in carbon capture processes. An expert system shell (G2) was used 
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to create the system and the decision tree “IF-THEN” methodology was used to 

create the knowledge-base. The system was successfully tested using two case-

studies, with results matching the views of industrial experts. Here, the authors 

stated that the use of an expert system shell was beneficial and that it would have 

taken significantly longer to develop the system without the use of one. However, it 

is worth noting that this system worked entirely by asking the user various yes/no 

questions, i.e. no procedural routines were required. 

Afgan and Carvalho (1996) created a knowledge-based expert system for fouling 

assessment of heat exchangers. Here, a combination of heat transfer theory (in 

particular, effectivenesses and overall heat transfer coefficients) and process 

knowledge was combined to produce a warning system for the fouling of heat 

exchangers. The theory was used to produce an online calculation of the heat 

exchange effectiveness. This was used to calculate the overall heat transfer 

coefficient, which in turn was compared to the original, or “clean” overall heat 

transfer coefficient. From there, the degree of fouling could be inferred. Process 

knowledge was then used to create procedures dictating when the system would 

advise of the various levels of fouling and when the unit should be cleaned. The 

system was comprised of an acquisition element (to acquire online measurements), 

a validation analyser and trend analyser (to calculate trends in heat exchange 

effectiveness) and the system knowledge base which would infer the degree of 

fouling and when the unit should next be cleaned. This is shown in Figure 2.7 below. 
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Figure 2.7. Flow diagram of expert system by Afgan and Carvalho (1995) 

 

The system knowledge-base was again built using the “IF-THEN” methodology. The 

system was written using the LISP programming language .This language allowed 

the author freedom to program as desired, rather than follow the limitations of an 

expert system shell. Although not explicitly mentioned by the authors, in light of the 

papers reviewed above it seems likely that the use of this language rather than the 

use of a shell allowed the user more freedom and allowed the integration of the 

knowledge base, acquisition element and data analysers all into one program, 

creating a comprehensive package.  

Overall, the authors stated that the concept was a success, although no case-study 

data was presented to demonstrate successful implementation of the methods. 

Brunner et al (2010) developed an expert system for the intelligent supply of 

thermal energy in industry (“EINSTEIN” - previously mentioned in Section 2.2.2). The 

program was designed to guide the user through an energy audit procedure before 

assessing energy demand at the site. Pinch heat integration methods are then used 

to “match” waste heat sources and sinks and economic/environmental analysis is 
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performed. This part of the program was not novel and was a based on the original 

works by Linhoff et al (1979). The user could then select a variety of alternative 

energy sources to replace existing equipment on site. For example, one could select 

a solar thermal system to replace an existing gas boiler. Economic and 

environmental analysis was also performed, allowing the user to make an informed 

decision about whether or not the results were viable on an individual case-study 

basis. 

While this tool is useful, it does not represent a significant improvement on the 

pinch integration methods suggested many years ago. Also, the tool integrates 

renewable energy, such as solar thermal, at the users discretion, meaning that the 

system only performs the relevant economic and environmental calculations, i.e. it 

does not use programmed knowledge to suggest renewable energy systems to the 

user. There are no published case studies available to prove the worth of the 

system, however, the system is of interest here from a programming perspective: 

the Python programming language is used rather than a traditional expert system 

shell. Again, the use of a traditional expert system shell has been avoided in favour 

of writing the program from scratch where procedural routines are required. 

 

2.4. Chapter Conclusions 

The following conclusions are taken from this literature review: 

 The previous literature shows that many methods and tools are available for 

use in the selection and design of waste heat recovery systems. In particular, 

a lot of time has been invested in research into pinch technology/heat 

integration methods for identifying opportunities for waste heat recovery by 

heat exchangers, heat pumps and other novel methods. However, current 

pinch methods are limited by the fact that they do not provide a full 

selection/design of the most suitable waste heat recovery equipment. 

Hence, the user must have significant knowledge prior to using pinch 

methods in order to design the waste heat recovery system (rather than 

revert to the shell-and –tube standard employed by these methods). 
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 Software has been developed for the design of specific heat exchangers or 

thermodynamic cycles, but does not offer advice on when particular 

technologies and/or cycles should be used. Furthermore, such software is 

often expensive, meaning that it is not generally accessible to every process 

industry subsector.  

 Many papers focus on the optimization of certain cycles or heat exchangers, 

but the methods are often overly complex and ignored in industry. 

 Expert systems have been developed for industrial applications with varying 

success for around 30 years. Early expert systems were hindered by old-

fashioned computational methods, in particular the use of expert system 

shells which do not allow the easy implementation of procedural routines. 

 Expert systems in the field of heat transfer engineering and heat exchanger 

selection tend to follow the decision tree “IF-THEN” method which has been 

proven successful. 

 

2.4.1 Original Contribution to Knowledge 

The conclusions of the literature review show that a number of methods exist to aid 

the recovery of low-grade waste heat in the process industries. Pinch technology 

has been the most successful and has widespread utilization. However, this and the 

other methods reported, are limited by the fact that they do not offer any advcice 

of when each different piece of equipment should be selected. Heppenstall and 

Halliday (1990) attempted to solve this problem with a view to constructing an 

expert system capable of selecting the most appropriate heat exchanger for 

industrial use, but were hindered by computing methods at the time. 

The work presented here is intended to produce a knowledge-based system for the 

selection and design of waste heat recovery equipment, including a comprehensive 

database of options (see Chapter 3). Therefore, this work intends to build on the 

work of Heppenstall and Halliday (1990) from a heat exchanger selection point of 

view (including subsequent economic and environmental analysis), but extend the 

concept to allow the design of heat exchangers and the selection/design of more 
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novel heat recovery methods such as heat pumps and organic Rankine cycles. 

Therefore, this work presents an original contribution to knowledge in the field of 

industrial waste heat recovery. 

Furthermore, this project has also contributed to knowledge through the following 

conference and journal publications: 

Law, R., Harvey, A. P., Reay, D. A. (2013) Techno-economic comparison of a high-

temperature heat pump and organic Rankine cycle machine for low-grade waste 

heat recovery in UK industry. Int. J. Low-Carbon Tech. 8 (Special issue - Heat 

Powered Cycles Conference 2012). pp i47-i54.  

 

Law, R., Harvey, A. P., Reay, D. A. (2013) Opportunities for low-grade heat recovery 

in the UK food processing industry. Applied Thermal Engineering 53. pp 188-196. 

 

Law, R., Harvey, A. P., Reay, D. A. (2013) A Knowledge-based system for low-grade 

waste heat recovery. American Institute of Chemical Engineers: Annual Meeting. 

San Francisco. CA. USA. November 2013. 

 

Law, R., Harvey, A. P., Reay, D. A. (2013) A Knowledge-based system for low-grade 

waste heat recovery. European Congress of Chemical Engineers 2013. The Hague. 

NL. April 2013. 

 

Law, R., Harvey, A. P., Reay, D. A. (2012) Techno-economic comparison of a high-

temperature heat pump and organic Rankine cycle machine for low-grade waste 

heat recovery in UK industry. Heat Powered Cycles 2012 Conference Proceedings. 

Alkmaar. NL. September 2012.[Later extended for journal publication as shown 

above] 

 

Law, R., Harvey, A. P., Reay, D. A. (2011) Opportunities for low-grade heat recovery 

in the UK food processing industry. SUSTEM 2011 Conference Proceedings. 

Newcastle-Upon-Tyne. UK. October 2011. [Later extended for journal publication as 
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shown above] 

 

Law, R., Harvey, A. P., Reay, D. A. (2011) Steam-raising heat pump for low-grade 

waste heat recovery. 12th UK Heat Transfer Conference Proceedings. Leeds. UK. 

August 2011. 
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Chapter 3 

This chapter covers a discussion of the state-of-the-art in waste heat recovery 

technology and the selection of suitable equipment for inclusion in the knowledge-

based-system. The advantages and disadvantages of each technology are analysed 

and reasons provided for inclusion/exclusion in the system knowledge-base.  

Much of this chapter is based on “Opportunities for low-grade waste heat recovery 

in the UK food processing sector” by Law et al (2013). However, it will also include a 

more detailed discussion, consideration of more process industry sectors and a 

critical evaluation of the credentials of each technology leading to its 

inclusion/exclusion in the system knowledge-base. 

3. Technology Selection 

A wide range of technologies are available for low-grade waste heat recovery, as 

briefly discussed in Chapters 1 and 2. In general, the various technologies fall into 

the following five categories: 

1. Heat exchanger heat transfer: heat transfer from waste heat source to 

matching waste heat sink (as defined in Section 1.2.1and Section 2.2.1) 

2. Heat pumps (heating): heat transfer from a lower temperature heat source 

to a higher temperature heat sink facilitated by the input of energy from an 

external source 

3. Power generation 

4. Generation of coolth 

5. Waste water treatment 

The selection of the most suitable technologies for the knowledge-based system 

was completed according to the scope of the system (Section 1.3.1) via review of 

literature and technical data, and accompanying calculations. In particular, points 7-

9 from the system scope are considered in this Chapter and are restated as follows: 
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7.  Must include a variety of waste heat recovery techniques: this will allow a 

wide range of possible process conditions to be accommodated 

8. Must include technologically viable results: results must be meaningful on 

an industrial scale. Technologies requiring significant further R&D should not 

be included 

9. Must include economically viable results: only technologies which have been 

proven to achieve economically viable results will be considered. 

Technologies incurring typical pay back times of greater than 5 years (under 

economic conditions at the time of writing) will be considered non-

economical 

 

3.1. Heat Transfer to Matching Heat Sink 

3.1.1. Gas-Gas Heat Transfer 

In gas-gas heat transfer a variety of heat exchangers are available to facilitate waste 

heat recovery. Here three scenarios are considered as follows: 

 Gas (non-condensable, n/c) heat source, gas heat sink. Sensible heat transfer 

only. A typical example of this would be recovery of waste heat from a spray 

dryer exhaust (above source dew point) to preheat inlet air. 

 Vapour heat source, gas heat sink. Sensible and latent heat transfer. A 

typical example of this would be recovery of vapour from the “Wort Boiling” 

process in brewing for space heating. 

 Humid gas heat source, gas heat sink. Majority sensible heating, some latent 

heat from condensation of water vapour. A typical example of this would be 

waste heat recovery from an industrial hood dryer (including condensation) 

to pre-heat the inlet air-feed.  

The three scenarios have varying design constraints and require a range of heat 

exchangers exhibiting different properties. Furthermore, each individual case study 
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will have further design constraints due to varying stream properties including 

pressure, corrosivity and fouling considerations. 

A summary of the various options considered is shown below in Table 3.1. 

 

Table 3.1. Summary of gas-gas heat exchangers considered for inclusion in system 
knowledge base 

Heat Exchanger Selected for system? Suitable for which 

scenario? 

Run-Around-Coil Yes Gas-Gas (Sensible heat 

only); Humid Gas-Gas 

(Some latent heat) 

Gas-Gas Plate Heat 

Exchanger (Air handling 

Unit) 

Yes Gas-Gas (Sensible heat 

only); Humid Gas-Gas 

(Some latent heat) 

Rotary Regenerator Yes Gas-Gas (Sensible heat 

only) 

Rotary Regenerator with 

moisture transfer 

No N/A 

Finned-Tube Yes Vapour-Gas (Majority 

latent heat) 

Shell and Tube Yes Gas-Gas (Sensible heat 

only); Humid Gas-Gas 

(Some latent heat) 

Welded Plate Yes Gas-Gas (Sensible heat 

only); Humid Gas-Gas 

(Some latent heat) 

Printed Circuit No N/A 

Heat Pipe No N/A 

Polymer No N/A 
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3.1.1.1. Gas-Gas Plate Heat Exchanger 

The gas-gas plate heat exchanger (often referred to as an air handling unit, 

particularly in non-process applications) is a proven technology in the area of gas-

gas waste heat recovery. Here, heat is exchanged between the source and sink 

across a series of metal (often stainless steel or aluminium) plates in a counter-

current or cross-flow configuration. The unit may also be configured with a drip tray 

for condensation collection in the recovery of latent heat from humid air sources 

(Reay, 1979). 

Figure 3.1 below shows the typical set-up of the cross-flow gas-gas plate heat 

exchanger (Reay, 1979). 

 

 

Figure 3.1. Typical gas-gas plate heat exchanger configurations (Reay, 1979) 

 

This use of this heat exchanger has been proven to provide economical and 

environmentally beneficial solutions. For example, British Bakeries Ltd (published in 

the Energy Efficiency Office, Energy Efficiency Demonstration Scheme, Profile 235, 

1987) demonstrate the use of 4 air handling units to recovery heat from both gas 
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burner exhausts (to pre-heat burner inlet air) and the oven exhaust (to heat the air 

inlet to the prover). The data reveal annual energy savings of 6,900 GJ/year and a 

project payback period of 2.6 years. 

Another case-study is presented by United Biscuits Ltd (published in the Energy 

Efficiency Office, Energy Efficiency Demonstration Scheme, Profile 76, 1982) where 

waste heat (including some latent heat) was recovered from an oven to provide 

space-heating in a packaging hall on site. Here, the gas-gas plate heat exchanger 

was shown to provide effective waste heat recovery. Furthermore, it is reported 

that the fouling build up caused by recovering latent heat was easily cleaned due to 

the simplicity of opening up the gasketted access panel for mechanical cleaning. 

Project payback time was stated as three years while the fuel consumption for 

space heating was reduced by 50% (16,400 GJ/year). 

In summary, the gas-gas plate heat exchanger is included in the system database as 

it is a proven technology in the field of gas-gas heat transfer. 

 

3.1.1.2. Rotary Regenerator 

The rotary regenerator (often referred to as a Heat Wheel) is again a proven 

technology in this area. Here, air in two adjacent ducts flows through a rotating 

matrix spanning the ducts which achieves heat transfer as shown in Figure 3.2 

(Sanaye et al, 2008). Note: the thermometers, electric coils and axial fans shown on 

the diagram are related to the experimental study carried out in the paper from 

which the diagram has been taken. 
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Figure 3.2. Schematic of the rotary-regenerator (Sanaye et al, 2008) 

 

The rotary regenerator is often chosen as an alternative to the gas-gas plate heat 

exchanger due to the high effectiveness of the unit (up to 95%). However, the unit 

has inherent problems with cross-contamination (up to 5% (Reay, 1979)) between 

streams due to gas entrainment between ducts during rotation of the matrix. Light 

fouling can be tolerated due to the inclusion of a purge section (Shah and Sekulic, 

2003). 

Numerous successful installations of the rotary regenerator are reported. For 

example, E Bottomley and Sons Ltd (published in the Energy Efficiency Office, 

Energy Efficiency Demonstration Scheme, Profile 7, 1981) installed the unit to 

facilitate waste heat recovery between two loose-stock fibre dryers and the air inlet. 

A payback time in the region of 3 years was reported. 

Another example is in paper drying, as published by the CADDET energy efficiency 

programme for the International Energy Agency (CADDET case study 316, 1998). 

Here, the rotary regenerator was used to pre-heat inlet air to the dryer by 

recovering heat from the exhaust of temperature 80-200oC (depending on the 

varying process conditions due to varying products being processed on site). This 

case study demonstrated a number of advantages of this unit. Firstly, the unit was 

shown to achieve an efficiency of 95%, as reported in other literature. This is shown 

below in Figure 3.3. Note: in this figure, the cooled exhaust efficiency was 
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maintained at around 70% by design to ensure that the stream was not cooled 

below the dew point to prevent the condensation of “harmful corrosive” 

compounds in the flue. 

 

 

Figure 3.3. Rotary regenerator efficiency (adapted from International Energy 
Agency, 1998) 

 

Secondly, the report also states that the outlet temperature of the exhaust can be 

controlled by altering the rotational speed (reducing the speed reduces the rate of 

heat transfer, thereby increasing the exhaust exit temperature). This shows that the 

rotary regenerator is particularly useful when temperature control is important. 

The project payback time for this case study was 2.2 years and no maintenance 

problems were reported. Therefore, the rotary regenerator is deemed a suitable 

technology for inclusion in the system knowledge-base as it meets the criteria 

outlined in the scope of the system. 

A number of manufacturers (Flakt Woods, 2013, and Air XChange, 2013) also offer a 

variation on the rotary regenerator that includes moisture transfer (i.e. 
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condensation of vapour from a humid stream into the regenerator matrix, which is 

then transferred to the heat sink stream). This is not beneficial to process waste 

heat recovery. Such a process is only beneficial when dealing with heat recovery 

and comfort/humidity control in buildings. Therefore, this variation is excluded 

from the knowledge base. 

 

3.1.1.3. Run-Around-Coil 

The run-around-coil heat exchanger is comprised of two separate coiled heat 

exchangers (often finned) which are connected by pipe work, as shown in Figure 3.4. 

Water or a brine solution is most commonly used as the heat transfer fluid, 

 

Source,out

Source,in

Sink, in

Sink,out
 

Figure 3.4. Typical run-around-coil configuration 

 

This heat exchanger configuration inherently gives the unit two distinct advantages 

over the other options listed in Table 3.1 in that, firstly, the probability of cross-

contamination of the two streams is close to zero and, secondly, the waste heat 

may be transported over large distances (dependant on the size of the pump 

installed and potential heat losses over the distance). However, as two approach 

temperatures are required (at either ends), the maximum overall heat exchanger 

effectiveness is around 60% (Reay, 1979). Therefore, this unit is normally only 

considered when the user has a need for the process advantages listed above. 
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Clayton Aniline Co Ltd (published by the Department of Energy, Energy Efficiency 

Demonstration Projects Scheme, Profile 78, 1982) have demonstrated the use of 

the run-around-coil to recover waste heat from a spray dryer to pre-heat inlet air. 

Here, the run-around-coil was selected due to the need for zero cross-

contamination. A further advantage was that the exhaust outlet temperature could 

be controlled using simple proportional methods by altering the circulating flow 

rate: this was crucial in this case study to prevent the condensation of corrosive 

components from the exhaust stream. Energy savings in the region of 1.4 GWh/year 

(natural gas) are reported, which would correspond to a GHG emission reduction in 

the region of 150 tonnes/year. Project payback time is quoted as 2 years. 

Another successful application of the run-around-coil was reported by Rockware 

Glass Ltd (published by the Department of Energy, Energy Efficiency Demonstration 

Projects Scheme, Profile 42, 1981). Here, waste heat was recovered at 55oC for use 

in space heating. A run-around-coil was employed due to the large distance 

between the heat source and the space heating station. It was deemed safer and 

more cost effective to use a run-around coil rather than install larger duct work for 

the gas streams. The data show energy savings in the region of 270 GWh/year and 

the project payback time was approximately 1.5 years.  

Therefore, from the reported data it can be concluded that the run-around-coil is 

proven to satisfy the scope of the knowledge-based system and is therefore 

included in the program. 

 

3.1.1.4. Shell-and-Tube Heat Exchanger 

The Shell-and-Tube heat exchanger is the most commonly used unit across the 

process industries and therefore must be considered for use in WHR. The unit is 

capable of withstanding high temperatures and pressures (>260oC, >500bar) and 

can facilitate heat transfer between two gaseous or two liquid streams (gas-liquid 

generally requires an extended surface on the gas side), as well as 

boiling/condensation duties. Fouling can be tolerated on the tube-side due to the 

relative ease of removing the tube bundle for cleaning. 
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The merits, limitations and various configurations are well known and therefore not 

further discussed here. Extensive further reading can be found in Chemical 

Engineering Volume 1 (Coulson and Richardson, 2005), Process Heat Transfer (Kern, 

1950) and in numerous literature by the Tubular Exchanger Manufacturers 

Association, Inc (TEMA, 2013). However, it is noted that generally this unit would 

not be considered for gas-gas WHR unless the other, more compact units were not 

suitable. 

Tubular heat exchangers should only be considered in gas-gas WHR “where size is 

not important but access for cleaning is essential” (David Reay and Associates, 

1994).  Other situations where this unit should be considered include when the 

source temperature exceeds the temperature limit of other gas-gas heat 

exchangers (greater than 200oC) or in custom solutions such as glass-tubular heat 

exchangers which proven useful in WHR from heavily fouled streams (Energy 

Conservation Demonstration Projects Scheme Case Study 146, 1983) due to the 

ease of cleaning. 

Therefore, this unit is included in the KBS gas-gas heat exchanger knowledge-base 

to provide a solution outside of the operating range of the other, preferred, units. 

 

3.1.1.5. Welded Plate Heat Exchanger 

The welded plate heat exchanger operates according to the same heat transfer 

principles set out in Figure 3.7, Section 3.1.2. This unit is most commonly used in 

liquid-liquid heat transfer, and is therefore discussed further in Section 3.1.2. 

However, this unit can also facilitate gas-gas WHR although it is less commonly used 

than the run-around-coil, gas-gas plate and the rotary regenerator. 

This unit can tolerate high temperatures and pressures (>260oC and up to 40bar) 

(Alfa Laval, 2013) but cannot tolerate fouling as the unit is fully welded and 

therefore difficult to clean. Therefore, this unit can be seen as a compact alternative 

to the shell-and-tube heat exchanger when the heat source temperature is out of 

range of the more commonly preferred units and fouling is not a concern. 
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3.1.1.6. Finned-Tube Heat Exchanger 

The finned-tube heat exchanger is considered when either the source or sink has a 

significantly limiting heat transfer coefficient. Therefore, it is useful in the case of a 

condensing vapour transferring heat to a gas stream. This unit is more commonly 

used in gas-liquid heat transfer and the reasons for inclusion of this heat exchanger 

are therefore discussed in Section 3.1.3.  

 

3.1.1.7. Heat Pipe Heat Exchanger 

The heat pipe heat exchanger is comprised of a number of heat pipes separated by 

a splitter plate. The source and sink flow on opposite sides of the splitter plate and 

heat transfer is facilitated by the heat pipes. The heat pipe itself is a passive two 

phase device of very high effective thermal conductivity (order of 100000 W/mK) 

achieved by the simultaneous evaporation and condensation of a working fluid at 

each end of the pipe. A schematic of a single heat pipe in this heat exchanger is 

shown in Figure 3.5 (Carbon Trust, 2012). 

 

 

Figure 3.5. Heat pipe heat exchanger (Carbon Trust, 2012) 
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The advantages of this unit in gas-gas waste heat recovery are, firstly, the heat pipe 

structure creates a fin-like extended surface, thus helping to overcome the low 

convective heat transfer coefficients associate with gases, and secondly, the heat 

pipes allow a high rate of heat transfer and low approach temperatures (as low as 

5K, Dunn and Reay, 1994). 

This heat exchanger has been proven to be economical in low-grade waste heat 

recovery, for example T. Lucas & Co. Ltd (published by the Department of Energy, 

Energy Efficiency Demonstration Projects Scheme, Profile 56, 1982) demonstrated 

the use of this unit to recover heat from a gas burner to pre-heat a spray dryer inlet. 

Here, payback times are reported to be in the region of two years. 

Another demonstration of this unit was in heat recovery from a paint surface 

coating oven by Alcan Plate Limited (published by the Department of Energy, Energy 

Efficiency Demonstration Projects Scheme, Profile 80, 1982). Here, heat was 

recovered from the oven exhaust to pre-heat inlet air. Again, favourable project 

economics are reported (payback time of 1.7 years). 

Despite favourable published data, this unit is not selected for inclusion in this 

system. This unit a custom build and algorithms for unit design are kept in house. 

Spirax Sarco (Amini, 2013), consider the heat exchanger to be a “Bespoke Unit”.  

Design procedure is therefore expected to be extremely difficult for this type of 

heat exchanger, as there are no published design procedures. The design task is 

summarised by Dunn and Reay, 1979, “There are a considerable number of variables 

which can affect heat pipe performance, and limitations exist at present on 

maximum operating temperature”. Clearly, if data are not made public by the 

manufacturers, then it is extremely difficult to formulate such procedures for use in 

this system. Hence, the heat pipe heat exchanger is deemed out of scope. 

 

3.1.1.8. Printed Circuit Heat Exchanger 

The printed circuit heat exchanger (PCHE) is a highly compact unit developed by 

Heatric, a division of Meggitt Ltd. The units are comprised of a number of plates 
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containing chemically etched flow channels joined via diffusion bonding. This 

creates a highly effective unit (up to 98% heat transfer effectiveness) which can 

withstand extreme temperature (from cryogenic temperatures to 900 oC) and 

pressure in excess of 600 bar (Le Pierres, 2013). This unit can be used for a variety 

of gas-gas, gas-liquid and evaporative/condensing duties. Figure 3.6 below shows 

the compact channel arrangement of the PCHE. 

 

 

Figure 3.6. Compact channel arrangement of PCHE (Le Pierres, 2013) 

 

The PCHE is excluded from the system knowledge base for two reasons. Firstly, this 

unit is extremely costly compared to the other units considered due to the complex 

multi-stage manufacturing procedure. As a result, it is most commonly used in 

situations where space and mass is at a premium, such as oil-and-gas platforms. The 

process industries have thus far neglected this unit in favour of cheaper options. 

Secondly, the design procedures and algorithms are kept under patent and are only 

available in-house at Heatric. Therefore, inclusion of the PCHE would require 

formulation of design procedure which is out of the scope of the system. 

 

The Polymer heat exchanger is not considered for gas-gas waste heat recovery for 

the reasons explained in Section 3.1.2.8. 
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3.1.2. Liquid-Liquid Heat Transfer 

In liquid-liquid heat transfer, the following scenarios are considered. 

 Liquid heat source, liquid heat sink (no boiling). A typical example of this 

would be heat recovery from spent wash water to pre-heat water to a hot 

well. 

 Liquid heat source, liquid heat sink (with boiling). A typical example of this 

would be waste heat recovery from a liquid effluent for use in a heat pump 

system. 

The following heat exchangers are considered for inclusion in the equipment 

database to satisfy the design constraints of the two scenarios. 

Table 3.2. Summary of liquid-liquid heat exchangers considered for inclusion in 
the system knowledge base 

Heat Exchanger Selected for system? Suitable for which 

scenario? 

Gasketted Plate (Plate and 

Frame) 

Yes Both 

Brazed Plate  Yes Both 

Welded Plate  Yes Both 

Plate and Shell  Yes Both 

Shell and Tube  Yes Both 

Spiral Plate Yes Sensible heating only 

Printed Circuit No N/A 

Scraped Surface No N/A 

Polymer No N/A 

 

3.1.2.1. Gasketted Plate Heat Exchanger 

The gasketted plate heat exchanger is commonly used for a variety of liquid-liquid 

heat transfer duties, including waste heat recovery. Figure 3.7 (Alfa Laval, 2013) 

depicts a typical schematic of the unit. 
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Figure 3.7. Plate heat exchanger flow configuration (Alfa Laval, 2013) 

 

This heat exchanger consists of a series of thin corrugated plates packed together 

using gaskets. The hot and cold fluids flow in a counter-current configuration in the 

adjacent flow channels created by the plate structure. This creates large heat 

exchange areas in excess of 200m2/m3 (Alfa Laval, 2013). 

The use of gaskets creates a number of advantages. First of all, the unit can be 

easily opened for cleaning and general maintenance, therefore light fouling can be 

tolerated. Secondly, the unit can be purchased off-the-shelf and assembled on site. 

This results in lower capital expenditure compared to similar units, such as the 

brazed and welded plate heat exchangers. However, the gaskets lead to 

temperature and pressure limitations of 180oC and 16 bar respectively (Alfa Laval, 

2013). 

A case-study by Corus Steel and Spirax Sarco (Spirax Sarco, 2013) proved that the 

gasketted plate heat exchanger can provide economical solutions to waste heat 

recovery. Here, flash steam was recovered from a slab furnace cooling system to 

pre-heat boiler feed water. Payback times are reported as less than 12 months. 

Kandilli and Koclu (2011) presented an optimisation of (gasketted) plate heat 

exchanger for waste heat recovery from fouled effluent to heat process water in the 

textiles industry. The unit was selected for use here due to its high effectiveness 
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and tolerance to fouling. Waste water and fresh water flowrates were varied in 

order to find the flowrates to maximise heat exchanger effectiveness and exergy 

efficiency. The study was highly empirical in nature, and the numerical results and 

conclusions are only valid to the particular case study in question (i.e. no models, 

equations or dimensionless analysis is presented for cross-case-study 

implementation of the methods involved). However, the study does highlight two 

key points about the unit. Firstly, it is suitable for use in fouling environments. 

Secondly, the unit exhibits effectivenesses ranging from 86.8% to 99.1%, although 

this data must be taken with caution as the typical effectiveness for this unit is 95%. 

Therefore it is assumed that the test unit in this paper was largely oversized upon 

achieving an effectiveness of 99.1%. In industrial scenarios it is likely this would be 

greatly detrimental to the economics of the project and the heat exchanger 

pressure drop. 

In summary, the gasketted plate heat exchanger is included in the knowledge base 

as it exhibits a number of advantages such as high effectiveness (due to high heat 

transfer coefficients), compact nature, tolerance to mild fouling and favourable 

project economics. 

 

3.1.2.2. Brazed Plate Heat Exchanger 

The brazed plate heat exchanger operates in an identical manner to the gasketted 

unit, although the plate structure is held together via brazing (most commonly 

copper brazing) rather than gaskets. The unit flow regime is identical to the unit 

shown in Figure 3.7 and described above. The advantage of this exchanger is that 

the brazing allows for high temperature and pressure limits of 225oC and 25 bar 

respectively (Alfa Laval, 2013). However, it cannot tolerate fouling or solid particles 

in the heat source/sink (Best Practice Programme, 2000) but other advantages such 

as the compact size and high effectiveness remain. This unit is considered in the KBS 

database as a high temperature/pressure alternative to the gasketted plate heat 

exchanger, only with fouling limitations. The brazed plate heat exchanger is more 
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costly that the gasketted plate heat exchanger due to associated costs of brazing 

compared to gaskets. 

 

3.1.2.3. Welded Plate Heat Exchanger 

The welded plate heat exchanger operates in an identical manner to the gasketted 

unit, although the plate structure is held together via welding rather than gaskets. 

The flow regime is identical to that depicted in Figure 3.7 and described above. The 

advantage of this unit is that the welding allows for high temperature and pressure 

limits of >260oC and 40 bar respectively (Alfa Laval, 2013). However, this type 

cannot tolerate fouling or solid particles in the heat source/sink (Best Practice 

Programme, 2000). It is included in the KBS database as a higher 

temperature/pressure alternative to the brazed plate heat exchanger. It is also 

noted that the welded plate is more costly than the gasketted plate heat exchanger 

due to associated costs of welded compared to gaskets. 

 

3.1.2.4. Plate and Shell Heat Exchanger 

The plate and shell heat exchanger may be considered a hybrid of the plate heat 

exchanger and the shell-and-tube heat exchanger. This type features an outer shell 

enclosing pairs of welded circular plates. The cooling medium generally flows on the 

shell-side, between the plate pairs while the heat source flows between the welded 

plate pairs. The principal of design is to combine the high heat transfer coefficients 

of the plate heat exchanger with the rigid design of a shell-and-tube. This 

arrangement is shown below in Figure 3.8 (Best Practice Programme, 2000). 
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Figure 3.8. Plate and shell heat exchanger (Best Practice Programme, 2000) 

 

The plate and shell heat exchanger is included in the KBS database as a high 

pressure (100 bar) and high temperature (>260 oC) alternative to the plate-type 

heat exchangers. It can additionally handle corrosive media (Best Practice 

Programme, 2000).  

 

3.1.2.5. Shell and Tube Heat Exchanger 

The shell-and-tube heat exchanger is, again, noted as the most common unit in 

liquid-liquid heat transfer and as a result the merits of the unit are not further 

discussed here. This unit is included for situations when other, more compact, units 

are not suitable for selection. Such scenarios include fouling fluids (this unit can 

tolerate fouling on the tube-side), high temperature and high pressure. 

 

3.1.2.6. Spiral Plate Heat Exchanger 

The spiral plate heat exchanger is configured as two elongated plate channels rolled 

around a central core. The heat source and sink flow counter-currently in adjacent 

plates, as shown in Figure 3.9 (Alfa Laval, 2013). 
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Figure 3.9. Spiral plate heat exchanger (Alfa Laval, 2013) 

 

The smooth and curved channels of the unit tend to reduce fouling. Fouling is 

further reduced as any local fouling will result in a reduction in the channel cross 

sectional area which in turn increases the fluid velocity, creating a scouring effect to 

clean the channel (Best Practice Programme, 2000). Therefore, the spiral heat 

exchanger is generally considered for use when dealing with highly fouled, or slurry 

type media. Heavily fouling fluids can be accommodated on both sides of this heat 

exchanger. 

In summary, this unit is included in the KBS database for selection when both the 

heat source and heat sink have high fouling tendency. 

 

3.1.2.7. Scraped Surface Heat Exchanger 

The scraped surface heat exchanger has been specifically developed for use with 

fluids of complex rheology. This can include concentrated slurries, highly viscous 

fluids or non-Newtonian fluids. The unit is essentially a double pipe heat exchanger 

where the heating or cooling media flow in the outer pipe. The fluid of complex 
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rheology flows in the inner pipe, in which a blade rotates to remove (or scrape) any 

solids from the heat exchanger wall. This prevents fouling build up and ensures 

uniform heat transfer throughout the unit. This flow configuration is depicted in 

Figure 3.10 below (adapted from RheoHeat, 2013). 

 

 

Figure 3.10. Scraped surface heat exchanger (adapted from RheoHeat, 2013) 

 

A large range of scraped-surface heat exchangers are available from Alfa Laval 

(2013) including the Contherm for liquid-liquid duties, the Convap for 

evaporation/concentration duties and low-shear options. Design procedures and 

algorithms are not available for this unit. For this reason, and the fact that it is 

highly uncommon that one would recover waste heat from a highly viscous and 

potentially valuable product, this unit is considered a bespoke, custom solution. 

Therefore, it is not included in the KBS database. 

 

Motor 

Rotating Blade 

“Complex” Fluid 

Flow 

Heating/Cooling 

Utility Flow 
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3.1.2.8. Polymer Heat Exchanger 

The polymer heat exchanger has been developed in a number of configurations for 

specialist applications ranging from biotechnology environments to heat transfer in 

aggressive/corrosive fluids (Zaheed and Jachuck, 2004). The most common 

configurations of the polymer heat exchanger are plate (similar to a plate-fin 

structure), coil and shell-and-tube. The three common configurations are shown in 

Figure 3.11 below (adapted from Zaheed and Jachuck, 2004). 

 

 

3.11. Polymer heat exchanger configurations: (a) Plate, (b) Coil and (c) Shell and 
Tube (adapted from Zaheed and Jackuck, 2004) 

 

The coiled configuration is a submerged heat exchanger, while the other two are of 

standard flow configurations. Various polymers can be used for construction and is 

chosen according to application. 

Polymer heat exchangers are not widely accepted by the process industries as 

highlighted by the review paper by Zaheed and Jackhuck, 2004, “the use of polymers 

in industrial heat exchangers has remained a niche market for some time. Their 

acceptance in the process industries is not yet widespread”. Hence, the inclusion of 

this heat exchanger in the system knowledge base would be a violation of the scope 

of the system, particularly point 8. Therefore, the polymer heat exchanger is not 

included in the KBS database. 
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The Printed Circuit heat exchanger is not considered for liquid-liquid waste heat 

recovery for the reasons explained in Section 3.1.1.8. 

 

 

3.1.3. Gas-Liquid Heat Transfer 

In gas-liquid heat transfer a variety of heat exchangers are again available to 

facilitate waste heat recovery. Here we consider seven scenarios as follows: 

 Liquid heat source, gas heat sink. Sensible heating only. A typical example of 

this would be waste heat recovery from a liquid effluent for space heating. 

 Gas (n/c) heat source, liquid heat sink (no boiling). Sensible heating only. A 

typical example of this would be recovery of boiler flue gas (without 

condensation of water vapour) to pre-heat inlet water. Note: many process 

plants choose such an option, as liquid effluents can be costly to dispose of, 

and may have to be pre-treated 

 Vapour heat source, liquid heat sink (no boiling). Majority of latent heat 

recovered. A typical example of this would be recovery of flash steam to 

heat hot well storage water. 

 Humid gas heat source, liquid heat sink (no boiling). Majority involve 

sensible heating, some latent heat. A typical example of this would be 

recovery of boiler flue gas to pre-heat inlet water (with provision for the 

corrosive products of condensation). 

 Gas (n/c) heat source, liquid heat sink (with boiling). Sensible heating from 

source, latent heat in sink. A typical example of this would be recovery of 

waste heat from a dryer exhaust (without condensation) for use in a heat 

pump (possibly to pre-heat the inlet air). Note: many process plants choose 

such an option as liquid effluents can be costly to dispose of. 

 Vapour heat source, liquid heat sink (with boiling). Majority latent heat 

recovered with latent heating required in sink. A typical example of this 

would be recovery of flash steam for use in an organic Rankine cycle 

machine. 
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 Humid heat source, liquid heat sink (with boiling). Majority sensible heating 

with some latent heat in source, boiling of liquid heat sink. A typical example 

of this would be recovery of waste heat from a dryer exhaust (with 

condensation) for use in a heat pump. 

Again, a number of different heat exchangers are required to satisfy the varying 

design constraints present in each of the seven scenarios. Table 3.3 below 

summarises the heat exchangers considered. 

Table 3.3. Summary of gas-liquid heat exchangers considered for inclusion in 
system knowledge base 

Heat Exchanger Selected for system? Suitable for which 

scenario? 

Gasketted Plate (Plate and 

Frame) 

Yes Vapour heat source, liquid 

heat sink; Vapour heat 

source, boiling liquid heat 

sink 

Brazed Plate  Yes Vapour heat source, liquid 

heat sink; Vapour heat 

source, boiling liquid heat 

sink 

Welded Plate  Yes Vapour heat source, liquid 

heat sink; Vapour heat 

source, boiling liquid heat 

sink 

Plate and Shell  Yes Vapour heat source, liquid 

heat sink; Vapour heat 

source, boiling liquid heat 

sink 

Shell and Tube  Yes Vapour heat source, liquid 

heat sink; Vapour heat 

source, boiling liquid heat 
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sink 

Finned-Tube Yes Gas (n/c) heat source, 

liquid heat sink; Humid 

Gas heat source, liquid 

heat sink, liquid heat 

source, gas heat sink; Gas 

(n/c) heat source, boiling 

liquid heat sink; Humid 

gas heat source, boiling 

liquid heat sink 

Plate-Fin No N/A 

Polymer No N/A 

Spray Recuperator No N/A 

 

3.1.3.1. Plate Heat Exchangers 

The Gasketted Plate, Brazed Plate, Welded Plate, Plate-and-Shell, and Shell-and-

Tube heat exchangers are all described in Section 3.1.2. Each of these units are also 

suitable for use in duties involving condensing vapours exchanging heat with liquids 

(with optional boiling). For the reasons explained in Section 3.1.2, they are included 

in the KBS equipment database. 

 

3.1.3.2. Finned-Tube Heat Exchanger 

The fined-tube heat exchanger is an extended surface heat exchanger designed 

specifically for duties where one of the fluids has a significantly smaller film heat 

transfer coefficient than the other. Hence it is commonly utilised in gas-liquid heat 

transfer as gas film coefficients are typically around a tenth of the value for liquids 

(Coulson and Richardson, 2005). A typical tube with radial fins is shown below in 

Figure 3.12 (Coulson and Richardson, 2005). 
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Figure 3.12. Radial finned-tube (Coulson and Richardson, 2005) 

 

The finned-tube heat exchanger is commonly packaged in a shell-and-tube type 

configuration, and hence shares similarly high temperature and pressure limitations 

(> 260 oC and > 500 bar). The unit can also tolerate fouling due to the ability to 

remove the tube bundle for cleaning while protective coatings can be applied to the 

tubes to withstand any corrosivity concerns, particularly in duties such as 

economisers and condensing economisers. 

Therefore, the finned-tube heat exchanger is seen as an ideal unit for gas-liquid 

duties where an extended surface is necessary due to its operational flexibility and 

is included in the KBS database. Furthermore, this unit is viewed as the industrial 

standard in extended surface heat transfer (Sinnott, 2005). 

 

3.1.3.3. Plate-Fin Heat Exchanger 

The plate-fin heat exchanger is a compact alternative to the finned-tube type in 

extended surface heat transfer. The unit is assembled from flat sheets and 

corrugated fins which are stacked and joined by brazing or diffusion bonding. This 

creates a strong physical structure capable of withstanding extreme temperature 

(cryogenic to 650 oC) and high pressure (greater than 200 bar) (Best Practice 

Programme, 2000). Figure 3.13 below shows the typical heat exchanger 

configuration. 
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Figure 3.13. Plate-fin heat exchanger configuration (Best Practice Programme, 
2000) 

 

This unit is most commonly used in cryogenic applications, due to the tolerance to 

extremely low temperatures and high pressure. Other applications include offshore 

oil/gas platforms (due to the high surface area to volume ratio), fuel cells and high 

temperature heat recovery (such as gas turbine recuperators) (Best Practice 

Programme 2000; ALPEMA, 2013). 

The high cost of the manufacturing process of this unit, and the bespoke design 

procedure, has led to only specialist application of this unit and it is not considered 

for general process industry duties. Furthermore, the unit is prone to fouling and 

relatively high pressure drops which is of further detriment. Therefore, it is not 

suitable for generic low-grade waste heat recovery and is excluded from the KBS 

database of technologies. 
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The Polymer heat exchanger is not considered for gas-liquid waste heat recovery 

for the reasons explained in Section 3.1.2.8. 

 

3.1.3.4. Spray Recuperator 

The spray recuperator is a type of direct contact heat exchanger designed for gas-

liquid duties. The use of such a unit was suggested many years ago by Lyle (1947) to 

recover latent heat (and water) from evaporative processes for use as site wash 

water. The general configuration of the spray recuperator is a nozzle which sprays a 

fine mist of liquid (commonly water) into a stream of vapour (commonly steam). 

This is often done in a counter-current configuration with a packed bed to increase 

surface area. The resulting hot water then flows out of the unit.  

However, no common design algorithms exist for the design of this heat exchanger 

and the number of parameters (including physical size of unit, nozzle design, vapour 

velocity, liquid velocity) creates a very complex design problem. Hence, no standard 

design equations or algorithms exist. Therefore, the spray recuperator is considered 

to be a custom build solution and out of scope of the KBS. 

 

3.2. Heat Pumps 

Heat pumps are an important technology allowing the upgrade of low-grade waste 

heat to a more useful temperature (according to temperature lift limitations). Heat 

pumps should be considered when no matching heat sources are available for heat 

transfer as they required a significantly higher capital expenditure than a simple 

heat exchanger system (Law, 2013). Various types of heat pumps are available to 

perform this task, as summarised in Table 3.4 

 

Table 3.4. Summary of heat pump configurations considered for inclusion in 
system knowledge base 

Name Brief Description Selected for 
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System? 

Vapour Compression Heat 

Pump 

A reverse Rankine cycle where 

work is required to drive a 

compressor (most commonly 

using an electric drive) creating 

a temperature lift between the 

evaporator and condenser ends 

of the cycle 

Yes 

Absorption Heat Pump Heat-driven heat pump most 

commonly used to provide 

cooling. Discussed in Section 3.4 

No 

Adsorption Heat Pump Heat-driven heat pump most 

commonly used to provide 

cooling. Discussed in Section 3.4 

No 

Mechanical Vapour 

Recompression (MVR) 

An open cycle compression heat 

pump where the vapour leaving 

an evaporative/distillation 

process is compressed and used 

as a heat source in the 

evaporator/reboiler 

Yes 

Thermal Vapour 

Recompression (TVR) 

Similar to MVR only replacing 

the mechanical compressor with 

a thermal compressor (most 

commonly motive steam) 

No 

 

3.2.1. Vapour Compression Heat Pump 

The (closed cycle) vapour compression (VC) heat pump acts as a reverse Rankine 

cycle where work is input to a compressor (most commonly from an electric drive) 

to create a temperature lift between the two heat exchangers of the cycle, as 

shown in Figure 3.14 below. 
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Figure 3.14. Standard vapour compression heat pump 

 

Figure 3.14 shows the four basic components of the VC heat pump. The evaporator 

utilises waste heat to vaporise the working fluid at the low temperature/pressure 

end of the cycle. This low pressure vapour is then compressed to high pressure 

upon work input from the compressor/drive. The working fluid is then condensed at 

this higher pressure (and temperature) in the condenser, thereby heating the heat 

sink to a higher temperature than possible if one was to use a heat exchanger to 

directly transfer waste heat from the source to the sink. Finally, a throttle valve is 

then used to reduce the working fluid pressure and complete the cycle. 

Heat pump performance is determined by the coefficient of performance (COP) 

which is defined as the heating duty provided by the compressor (QC, kW) divided 

by the work of the drive (Wdrive, kW) as shown below. 

    
  

      
 (3.1) 

The COP determines both the economical and environmental impact of the heat 

pump. For example, if a heat pump is to be installed to replace a current gas heating 

duty, the COP must be greater than a) the ratio of the cost of electricity to gas, in 

order to be profitable and b) the ratio of the associated GHG emissions of grid 
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electricity to gas in order to incur reductions in greenhouse gas emissions. The 

efficiency of the current heating system should also be considered, as should any 

government incentives for heat pump usage (such as the renewable heat incentive 

(HM Government, 2013)). 

Therefore, the minimum COP in order to be profitable (COPmin,profit) and the 

minimum COP for GHG reductions (COPmin,GHG) can be defined as follows. 

              
     

                         
 (3.2) 

  

           
     

                   
 (3.3) 

Note: Celec (£/kWh) denotes the associated cost of grid electricity (to drive the motor); Ccurrent (£/kWh) 

denotes the cost of the utility currently used to heat the sink; ηcurrent denotes the efficiency of the 

current method of heating the sink; Eelec (tCO2eq/kWh) denotes the associated emissions of grid 

electricity; Ecurrent (tCO2eq/kWh) denotes the associated emissions of the current heating utility. 

For a typical base case of using an electric drive VC heat pump to replace a current 

gas heating duty of 80% efficiency, the minimum required COP is as follows 

(assuming no government economic incentive). 

 

Table 3.5. Minimum VC heat pump COP required for an economical and GHG 
reducing project 

Cost Grid Electricity (June 2013) (£/kWh) 1 0.0725 

Cost Natural Gas (June 2013) (£/kWh) 1 0.0237 

Associated Emissions Grid Electricity (tCO2eq/kWh) 2 0.000525 

Associated Emissions Natural Gas (tCO2eq/kWh) 2 0.000184 

COPmin,profit 2.45 

COPmin,GHG 2.29 

1
DECC, 2013 (c). 

2
Carbon Trust,2012. 

Table 3.5 shows that the minimum COP required for a VC heat pump waste heat 

recovery installation to be economically and environmentally favourable is 2.45. 
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However, this COP only represents the break-even point and therefore it is noted 

that a higher COP is favoured to incur lower project payback times. 

A number of published case studies show successful installations of VC heat pumps 

achieving larger COP than noted above. For example, Midlands Counties Dairy Ltd 

(published by the Department of Energy, Energy Conservation Demonstration 

Projects Scheme, Profile 34, 1981) demonstrate the use of a heat pump to recover 

waste heat at 53 oC from a bottle sterilisation unit. The heat sink in this case was the 

water feed to the hot well which was heated to 70oC. The project payback time was 

2 years, while the COP was 5.40 which is significantly greater than the minimum 

required COP required for profit as stated above which would ensure similar 

payback periods would be expected in a similar modern installation.  

One concern in comparing this data to modern day application is the change in 

working fluid legislation since the Montreal Protocol, 1989. The nature of the 

working fluid is not reported in this instance but a reasonable assumption is that a 

CFC or HCFC working fluid was employed such as R-114. However, numerous papers 

have been published with regards to new working fluids to replace (H)CFC’s without 

detriment to the coefficient of performance. For example, Devotta (1995) discusses 

the feasibility of HFCs which show no reduction in COP, and the IEA Heat Pump 

Centre (IEA Heat Pump Centre, 2013) now recognises HFCs as the industry standard 

in heat pump working fluids. Other working fluids are also available, for example 

ammonia (Pearson, 2011). A full working fluid discussion is provided in Section 4.3.5. 

Another interesting heat pump case study is provided by Smith, 1983. Here two 

heat pump units were installed in a dairy, both providing simultaneous useful 

heating and cooling. The first heat pump in the series recovered heat from the 

water treatment tank to produce cold water at the evaporator end, whilst 

preheating process water at the condenser end. This circuit produces an overall COP 

of 5.91. The second heat pump recovers heat from the chiller circuit at the 

evaporator end (again a useful cooling duty) whilst further heating the process 

water (from circuit 1) at the condenser end. The COP of circuit two is 5.09. A 

diagram of this system is shown below in Figure 3.15. 
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Figure 3.15. VC heat pump providing simultaneous heating and cooling (Smith, 
1983) 

 

The case study reports a project payback time of 2.7 years. No working fluid data 

are presented in the paper but it is a fair assumption that (H)CFC working fluids 

were utilised given the date of the publication. However, as stated above, a similar 

COP would be expected upon utilisation of modern working fluids such as HFCs. 

Therefore, the COP and economics reported in this study are assumed to still be 

valid. 

Star Refrigeration, 2013, offer a modular heat pump solution using ammonia as a 

working fluid and a screw compressor. This unit has been demonstrated in a food 

processing factory (Star Refrigeration, 2010) to produce 1.25MW of heating and 

3.20MW of cooling. Here, glycol solution was cooled in the evaporator from 0oC to -

5oC for use in the plant refrigeration circuit while hot wash water was heated to 

60oC. This produces a combined COP of 6.25. The payback time is not presented in 

the published data, but it is assumed a system of such high COP would incur a low 

payback time. Associated GHG emissions are said to have been reduced by 199 

tCO2eq./year, a significant saving. 
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Despite the favourable economic, energetic and environmental results shown in the 

published data, UK industrialists are still not convinced of the benefits of heat 

pumps. This is summed up in the study by Sinclair, 2002 (as discussed in Section 

1.2.3) where results show that 36% of UK engineers are “unsure” of the benefits of 

heat pumps in WHR or believe it to be a “risky” investment. It is hoped that the 

inclusion of VC heat pumps in the KBS presented in this thesis will encourage the 

uptake of such projects in industry and change widespread opinion. 

In summary, VC Heat Pumps are selected for use in the system as they provide a 

waste heat recovery option by upgrading low-grade waste heat when a matching 

heat sink is not available at the original source temperature. Furthermore, 

published data confirms the economic and energetic validity of this technology in 

low-grade waste heat recovery and it is hoped that the inclusion in this software 

will encourage further installations. 

 

3.2.2. Mechanical Vapour Recompression 

Mechanical Vapour Recompression (MVR) is an open cycle variation of the 

traditional VC heat pump. Here, low-pressure vapour from an evaporative process is 

re-compressed via a mechanical compressor/drive to a higher pressure and then 

used as a heating medium in the process, thereby negating the need for an external 

utility at steady-state operation. A typical set-up of the MVR system is shown in 

Figure 3.16 (Lazzarin, 1993) with an external circulation heat exchanger, however 

other systems often employ internal heating coils. Note: A diesel engine is depicted 

as the drive in this system but it is more common to use an electric drive. 
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Figure 3.16. Typical MVR installation (Lazzarin, 1993) 

 

The main components of an MVR system are noted as the compressor/drive and 

the heat exchanger, although this may be pre-existing. The COP is again used as a 

measure of performance and Equations 3.1-3.3 above, and data in Table 3.5 from 

Section 3.2.1 apply to MVR. 

Two common scenarios are considered by MVR as follows: 

 Water evaporative systems such as wort boiling (brewing) and processing of 

concentrated juices 

 Organic fluid evaporative systems such as petrochemical distillation columns 

In this work, only water evaporative systems are considered. Organic fluid systems 

are too wide ranging and a large chemical database would be required. This would 

probably require the use of an external chemical database, which in turn would 

require a license for use. This is a violation of the system scope which states that 

the software should be easy and free to disseminate into the industrial domain. The 

properties of water, however, can be programmed into the system with relative 
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ease.  Furthermore, steam-water evaporative systems are a lot more common than 

organic systems, particularly in the UK due to the prominent food processing sector 

and diminishing petrochemicals sectors. 

Successful MVR projects have been demonstrated across a broad range of 

industries. Reported COPs generally far exceed the minimum COP (3.45) required to 

achieve a profit outlined in Section 3.2.1. For example, Staveley Chemicals Ltd 

(published in the Energy Efficiency Demonstration Scheme, Expanded Project Profile 

259, 1989) installed an MVR system to provide the heating duty in a by-product 

evaporator. Here, payback time is reported as 4 years. However, it is noted that the 

plant experienced technical difficulties during commissioning as this was one of the 

first MVR plants installed in UK industry. Hence, the report states that a similar 

installation should in fact incur a payback time of 2.4 years. The COP of the system 

is not provided but can be calculated based on the data given as 22.1. This is 

significantly larger than the minimum COP currently required for a profitable system 

in the UK, hence a similar new installation would be anticipated to show a good 

economic performance and achieve a payback time in line with that outlined in the 

scope of the KBS presented here. 

Wu et al (2013), investigated a novel MVR system for use in desalination. Here, the 

main investigation focused on the design of a novel evaporator-condenser heat 

exchanger to prevent scaling, which is a common problem in MVR desalination 

systems. However, the MVR methodology (excluding the novel heat exchanger 

equipment) is common to all types of system, with vapour simply leaving the 

evaporator at low pressure before returning to the heat exchanger at high pressure 

via the compressor. Therefore, the data on the COP achieved is of interest to this 

study. The data shows that a COP of around 18 can be achieved for a compression 

ratio of around 1.12 which results in a temperature difference in the heat 

exchanger of around 10oC. Hence, the data shows that MVR systems can achieve a 

high COP, which would lead to favourable economic results and GHG emission-

reductions for moderate temperature/pressure lifts, which could theoretically use 

relatively cheap, fan-like, compressors. Furthermore, the heat exchanger 



74 
 

temperature difference of 10oC is rather conservative and would not require the 

use of novel, close-approach temperature heat exchangers. 

Despite the promising published data, MVR is not used on a large scale in UK 

industry. A number of opportunities are available, for example Brotherton, 2012, 

suggests the use of MVR in whiskey distillation; a concept that can also be applied 

to wort boiling in beer production. It is hoped that the inclusion of MVR technology 

in systems such as the KBS presented in this thesis will highlight its benefits and 

encourage industrial interest. 

In summary, MVR is included in the system as it can provide a waste heat recovery 

for many evaporative processes used throughout the processing industries. The 

high COP achievable in MVR suggests that low payback times and high associated 

GHG reductions are highly likely with this technology but exact values are not 

reported in the literature. 

 

3.2.3. Thermal Vapour Recompression 

Thermal Vapour Recompression (TVR) works on a similar principle to MVR, but 

requires only a thermocompressor rather than a mechanical compressor to provide 

the temperature/pressure lift. This principle is depicted in Figure 3.17 below (GEA, 

2013). 
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Figure 3.17. Thermal vapour recompression (GEA, 2013) 

 

The advantage of TVR over MVR is that no moving parts are required, hence 

maintenance costs are assumed to be lower. However, TVR has two key 

disadvantages as follows: 

 Motive steam is required to drive the thermocompressor. It cannot be 

assumed that all plants will produce such high pressure steam. Furthermore, 

it is assumed that any current boiler will have been designed according to 

the current steam demand. Any further steam demand will cause the boiler 

to operate outside of the design parameters and cause a decrease in 

efficiency 

 Motive steam will be mixed with the evaporator vapour. This may cause a 

problem if the condensed vapour is the final product of the process (such as 

product dilution and/or contamination) 

As one cannot assume that motive steam is readily available at all process sites, and 

that dilution of the evaporator vapour is acceptable, TVR is excluded from the KBS 

database. Furthermore, data from Brotherton, 2012, states that MVR incurs greater 

http://www.google.co.uk/url?sa=i&rct=j&q=GEA+thermal+vapour+recompression&source=images&cd=&cad=rja&docid=aqnS8vk3CatJxM&tbnid=ezTfO_OyGcFPfM:&ved=0CAUQjRw&url=http://climatetechwiki.org/technology/jiqweb-ihp&ei=8yLUUcGjJYm80QWghoCwCw&psig=AFQjCNHrcZVC--jH7D_AmajrnXOncCizYQ&ust=1372943469241446
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energy savings than TVR (80% vs 35%). Therefore, as they are generally used for the 

same purpose, MVR is the preferred technology. 

 

3.3. Power Generation 

Waste heat driven power generation is an increasingly attractive proposition for 

process plants due to the rising cost of electricity, as discussed in Section 1.1. A 

number of methods are available for waste-heat driven power generation as 

summarised in Table 3.6 below. 

 

Table 3.6. Summary of power generation options considered for the system 
knowledge base 

Name Brief Description Selected for 

System? 

Steam Rankine Cycle Common steam Rankine cycle 

used for electricity generation. 

Heat input required to raise 

steam which in turn drives a 

(series of) turbine(s).  

No 

Organic Rankine Cycle Variation on the steam Rankine 

cycle using more volatile organic 

working fluids (rather than 

steam).  

Yes 

Kalina Cycle Variation on the Rankine cycle 

using ammonia/water mixtures 

as the working fluid. A more 

complex cycle with more unit 

operations. 

No 

Thermoelectric Device Solid state semi-conductor 

material which generates a 

voltage when a temperature 

No 
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difference is established 

between two opposite ends. 

 

3.3.1. Thermoelectric Device 

Thermoelectric devices are solid state semi-conductor devices which generate a 

voltage when a temperature difference is established between two ends of the 

system. They are often referred to as Peltier effect devices due to the discovery of 

this phenomenon by J.C.A. Peltier in 1834. A schematic of a thermoelectric device is 

shown below in Figure 3.18, taken from Niu et al (2011). 

 

 

Figure 3.18. Thermoelectric device (Nie et al, 2011) 

 

The most common application of the thermoelectric device is in refrigeration, 

whereby a current is introduced to induce a temperature difference between the 

two ends of the system (i.e. the reverse of thermoelectric power generation). 

Examples of this are numerous (such as Brown and Rabb, 1965, Lindenblad, 1958 

and Thermovonics Co Ltd, 1993) and the technology is now commercially available 

for use in domestic refrigeration. 
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Riffat and Ma (2003) noted the main advantages of the thermoelectric device 

compared to other methods of power generation as follows (note: advantages 

relating to thermoelectric refrigeration are excluded): 

1. Thermoelectric devices have no moving parts and, therefore, need 

substantially less maintenance [than power cycles] 

2. Life testing has shown the capability of thermoelectricity devices to exceed 

100,000 hours of steady-state operation 

3. Thermoelectric devices contain no chlorofluorocarbons or other materials 

that may require periodic replenishment (Note: this paper was published 10 

years ago. Chlorofluorocarbons are no longer considered in refrigeration or 

power cycles. However, this argument still applies to “modern” working 

fluids such as HFCs which may be harmful to the environment due to their 

high global warming potential) 

4. Thermoelectric devices can function in environments that are too severe, 

too sensitive or too small for conventional refrigeration [or power cycles] 

5. Thermoelectric devices are not position-dependent 

The main drawback of thermoelectric devices, however, is low efficiency. Rowe and 

Min (1998) report typical efficiency for “High Power (hundreds of Watts to 

megawatts)” of 4.4%. This efficiency is similar to the reported efficiency of 4.5% of 

the HZ-20 module, commercially supplied by Hi-Z technology (2013). The HZ-20 

figures are quoted for a continuous source temperature of 250oC. An organic 

Rankine cycle, for example, operating at a similar heat source temperature is 

reported to have an efficiency of 15% (Wang et al, 2012). This highlights the 

advantage of power cycles over thermoelectric devices. 

Furthermore, the economics of thermoelectric devices are not favourable. Hi-Z 

technology quote the HZ-20 model as available for $125.00 (approx £82.00 based 

on June 2013 exchange rate of $1 = £0.66) excluding other essential components 

such as insulating wafers ($7.00 per unit), thermal grease ($45.00 per 20 grams) and 

heat sink components ($100-140.00 per unit). The total cost would therefore be 
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approximately $250.00 (£164.00) per unit excluding installation costs. The HZ-20 

model produces approximately 19W per unit. 

The number of units (N, kWh.year-1unit-1 ) of power generated per annum per HZ-20 

unit is calculated using eqn. 3.4 below (based on 8000 hours of operation per year, 

h). 

       (3.4) 

  

                                     (3.5) 

 

Based on the current cost of electricity in the UK of £0.0725/kWh (DECC (c), 2013) 

each unit would incur cost savings in utility bills of £11.78/year. Hence, the payback 

time per unit would be in the region of 14 years, excluding installation and 

maintenance costs.  

Therefore, thermoelectric devices are excluded from the knowledge-based system 

database as they are out of the scope of the system as they do not provide an 

economically viable option for waste heat recovery. 

However, research into these devices is ongoing and they do have certain niche 

applications. For example, Spirax Sarco (Miller, 2013) report the development of a 

steam dryness sensor powered by a thermoelectric generator. The thermoelectric 

device is advantageous in this case study as the sensor in question only requires a 

small power input (order of 10W). The thermoelectric device is ideal for such 

applications, as it can comfortably supply this magnitude of power in remote plant 

locations without the need for regular maintenance. It is expected that this is to be 

the future niche area of the thermoelectric device, rather than larger scale (order of 

100kW+) waste heat driven power generation, unless there are significant 

breakthroughs in cost, materials and/or efficiency. 
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3.3.2. Steam and Organic Rankine Cycle 

The steam Rankine cycle (SRC) is excluded from the system in favour of the organic 

Rankine cycle (ORC). The ORC has a number of advantages over the SRC when 

utilising low-grade waste heat, as discussed by Tchanche et al (2011). Table 3.7 

below provides a comparison between the two cycles. 

 

Table 3.7. Comparison of steam and organic working fluid properties (adapted 
from Tchanche et al, 2011) 

 Steam 

cycle 

Organic Rankine cycle 

Fluid Water Organic compound 

Critical pressure High Low 

Critical 

temperature 

High Low 

Boiling point High Low 

Condensing 

pressure 

Low Acceptable 

Specific heat High Low 

Viscosity Low Relatively high 

Flammability No Yes (fluid dependant) 

Toxicity No Yes (fluid dependant) 

Environmental 

impact 

No High (fluid dependant) 

Availability Available Supply problem (fluid 

dependant) 

Cost Cheap Expensive 

 

Table 3.7 shows that the ORC has an advantage over the SRC when utilising low 

temperature heat sources as the available fluids are more volatile leading to higher 

vapour pressures in the low-grade temperature range. Also, many organic working 
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fluids are classified as “dry” or “isentropic” meaning that dry turbine outlets can be 

achieved with minimal (or zero) superheat. In the case of the steam Rankine cycle, a 

large degree of superheat is required to ensure a dry turbine outlet which would 

not be possible when utilising a low-temperature finite waste heat source. Figure 

3.19 (Tchanche et al, 2011) shows the T-S for steam and various common working 

fluids highlighting the difference in nature. 

 

 

Figure 3.19. Temperature-entropy plot for steam and several organic working 
fluids (Tchanche et al, 2011) 

 

A number of ORC configurations are suggested in literature, but all systems contain 

the four key components (the working fluid pump, the pre-heater/evaporator, the 

turbine/generator and the condenser) as set out in the conventional ORC shown in 

Figure 3.20. 
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Figure 3.20. Conventional organic Rankine cycle 

 

Other configurations of ORC are possible, including the recuperative cycle and the 

superheated cycle. The recuperative cycle employs an internal heat exchanger to 

recover sensible heat from the turbine outlet (labelled 4 on Figure 3.20) to pre-heat 

the evaporator inlet (labelled 2 on Figure 3.20). The superheated cycle includes a 

super heater prior to the turbine inlet. However, the properties of organic working 

fluids (as previously discussed) are such that these additions are not advantageous 

overall. Further discussion on ORC configuration is provided in Section 4.4.4. 

The ORC has been shown to have great potential for low-grade waste heat recovery 

in a number of modelling studies. For example, Aneke et al (2012) investigated the 

feasibility of an organic Rankine cycle in utilising waste heat from two low-grade 

waste heat sources in food processing. Here, a thermal efficiency of 16% was 

reported when utilising a single gaseous heat source with an inlet temperature of 

164o C.  However, it is noted that the model only allows a 4o C rise in the cooling 

water (heat sink). This leads to a high required heat sink flow rate of 60kg/s which 

may not be feasible at the site in question (the author does not comment on this). 

Therefore, if a lower heat sink flow rate was required, the temperature rise would 
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be larger which in turn would reduce the turbine pressure ratio and the net power 

output of the cycle. 

This case study is further explored in the PhD thesis by Aneke (2012). Here a full 

economic and environmental analysis (including sensitivity analysis) of the 

proposed ORC system is presented. The payback period reported is dependent on a 

number of factors (forecast electricity cost, forecast carbon taxes) but the study 

shows that typical payback periods of around three years could be expected. This is 

acceptable for the KBS database. 

Another ORC case study example is presented by Law et al (2013) in which a 

comparison of an ORC and a high temperature heat pump is presented for waste 

heat recovery at an inorganic chemicals site. Here the heat source was the humid 

exhaust from a spray dryer with a dew point of 90o C. The results show a cycle 

thermal efficiency of 12.8% and a potential payback time in the region of 3.5 years 

(excluding any forecast carbon taxes). This data is, again, in line with the 

requirements for the programme database of technologies. 

Reported installations of ORCs are scarce despite the promise highlighted in 

modelling studies. In the UK only one published example of ORC utilisation is 

reported (DRD Power, 2011). The company has recently trialled a 200kWe unit at a 

chemical industry site in the North East of England. Only limited data have been 

released and no details are revealed regarding working fluid or cycle configuration. 

However, cycle thermal efficiency of around 15% is reported and the typical 

payback period is quoted as “around 3 years” while the overall trial was deemed 

“successful”. The published data are similar to those reported in the modelling 

studies and confirm the feasibility of organic Rankine cycles for industrial waste 

heat recovery. 

Therefore the ORC is deemed a suitable technology for inclusion in the system 

knowledge base as it satisfies the criteria set out in the scope of the system (Section 

1.3.1). It is hoped that the inclusion of the ORC in the system will increase industrial 

awareness of waste-heat driven ORC technology and encourage further installations 

in the UK process industries. 
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3.3.3. Kalina Cycle 

The Kalina Cycle is a variation on the Rankine cycle using a water-ammonia mixture 

as a working fluid. The basic Rankine-type cycle has been adapted to include a 

separation column and an absorber, as shown in Figure 3.21 below (adapted from 

Rotunds, 2013). 

 

 

Figure 3.21. Kalina cycle (adapted from Rotunds, 2013) 

 

The Kalina cycle has two advantages over the (organic) Rankine cycle. Firstly, the 

boiling point of the working fluid mixture is not isothermal, which allows a greater 

degree of heat recovery as, in a counter-current arrangement, the heat source can 

be cooled to a lower temperature. Secondly, the ammonia concentration of the 

working fluid at the condenser may be varied according to seasonal temperature 

variation in the heat sink (most commonly air or water-cooled) (Mlcak, 1996). Such 

advantages have led to claims of an increase in power output of up to 20% 

(compared to organic Rankine cycle). 
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However, other studies claim that this increase is significantly smaller. For example, 

DiPippo, 2004, provides a theoretical second law assessment of binary power plants 

utilizing low-grade geothermal fluids (heat source 130 oC). Here, the results show an 

increase of only 3% in the net power output. Bombarda et al (2010), found an 

increase in net power output of less than 1% for in a comparison of organic Rankine 

cycle and the Kalina cycle for waste heat recovery from a diesel engine and 

conclude that the increase in net power output does not compensate for the 

increased complexity of the cycle.  

Singh and Kaushik, 2013, present a theoretical optimisation of a Kalina cycle to 

recover waste heat from the flue gas of coal fired power plant. Here the heat source 

temperature was 134oC and the optimised thermal efficiency is reported as 12.95%. 

In the paper, both the turbine and working fluid pump are assumed to be isentropic, 

while no generator or motor efficiencies are included in the model. Hence, the 

predicted thermal efficiency would be considerably lower in reality.  It would 

therefore be expected that an ORC could achieve a similar thermal efficiency at 

such a source temperature, as discussed in Section 3.2.2. 

The Kalina cycle is yet to be implemented on a large scale, with less than 5 case 

studies published (none of which are in the UK). This suggests that the technology is 

not an established method of WHR and therefore not in agreement with the scope 

of the KBS (in particular, point 8). 

In summary, the Kalina cycle is a significantly more complex cycle than the ORC with 

limited (often less than 3%) improvements in net power output. The increased cycle 

complexity will lead to higher capital and maintenance costs which are not 

justifiably compensated by the relatively small potential increase in net power 

output. Furthermore, the Kalina cycle cannot be considered an established method 

of WHR in the process industries. Therefore, the Kalina cycle is excluded from the 

KBS equipment database. 
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3.4. Generation of Coolth 

Industrial refrigeration is most commonly achieved using vapour compression 

systems, akin to the vapour compression heat pumps described in Section 3.2.1 

albeit at a lower operating temperature. Such systems have been proven to achieve 

high COPs of greater than 4 (ETSU, 2001). 

The most common waste heat driven refrigeration systems are summarised in Table 

3.8. 

Table 3.8. Summary of coolth generation options considered for the system 
knowledge base 

Name Brief Description Selected for 

System? 

Absorption Refrigeration A temperature lift is achieved 

between the cycle evaporator 

and condenser via a (waste) 

heat driven absorber/desorber 

(regenerator) system. The 

pressure difference is provided 

by a liquid phase pump. 

No 

Adsorption Refrigeration Similar to the absorption cycle, 

only utilising a solid adsorbent 

rather than a liquid absorbent 

No 

ORC-Coupled VC 

Refrigeration 

Expander from organic 

Rankine cycle is used to drive 

the compressor in a standard 

VC refrigeration system 

No 

 

3.4.1. Absorption Refrigeration 

The absorption heat pump is a heat driven alternative to the vapour compression 

heat pump. The absorption cycle utilises two fluids in a mixture: the refrigerant and 

the absorber. The most common pairs are water-lithium bromide and ammonia-
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water with the latter preferred when refrigeration is required at sub-zero (< 0oC) 

temperatures due to the lower freeze point of ammonia (-77.7 as opposed to 0oC). 

A standard cycle schematic is shown in Figure 3.22 below (adapted from Herold and 

Radermacher et al, 1996). 

Absorber

ValvePump

RegeneratorCondenser

Valve

Evaporator

Heat In

Heat Rejected Heat In

Heat Rejected
 

Figure 3.22. Single-effect absorption cycle (adapted from Herold and Radermacher 
et al, 2996) 

 

One half of the absorption heat pump behaves identically to the vapour 

compression heat pump, with the high pressure refrigerant vapour being 

condensed in the condenser, before being expanded and evaporated in the 

evaporator. The difference is shown on the right hand side of Figure 3.22 where the 

combination of the regenerator, absorber, pump and a further valve operates in a 

heat driven process to replace the work-driven compressor of the VC heat pump. 

Here, the evaporated refrigerant is absorbed back into a carrier liquid before being 

pumped to high pressure and entering the regenerator. Heat is required to 

evaporate the refrigerant from mixture which in turn travels to the condenser, 

whilst the refrigerant-lean liquid returns to the absorber via an expansion valve. 
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Here, the high pressure required in the condenser end of the cycle is provided by a 

liquid pump rather than a vapour compressor which requires a relatively negligible 

work input. Therein lies the advantage of this cycle over the standard VC heat 

pump/refrigerator and this cycle would be recommended for use where the 

electricity supply is unreliable or there is a substantial quantity of waste heat in the 

correct temperature range for utilisation in the regenerator. Hence, the absorption 

refrigeration cycle is often used in tandem with domestic/commercially-sized 

combined heat and power systems (CHP) to produce coolth for air conditioning 

during the summer months (for example Tassou et al, 2007, and Minciuc et al, 

2003). 

This heat pump may be utilised according to the following two scenarios in 

industrial low-grade waste heat recovery: 

 As a refrigeration unit: heat to evaporator provides refrigeration effect, 

waste heat is used to drive the regenerator, condenser heat is expelled is to 

cooling water/air 

 As a heat pump: heat source provides the heat to the evaporator, an 

external heating utility such as steam or gas is used to drive the regenerator, 

useful heat is expelled from the condenser to an identified heat sink 

The main drawback of the absorption heat pump is the low COP achieved and the 

high capital cost. Typical COPs range from 0.5-1.2 depending on the temperature lift 

and the generator temperature, although this can increase with the introduction of 

double and triple effect systems (at greater capital expenditure) (ETSU, 1999). Also, 

in the case of absorption chillers, it may be seen as unreliable to rely on a waste 

heat source to drive a refrigeration system as often the flow of heat sources may be 

interrupted while refrigeration is generally required constantly (particularly in the 

food industry). 

The economics of absorption heat pumps/chillers is summed up in a case study by 

ETSU 1999. Here, an absorption heat pump driven by waste heat at 115oC was 

compared to a conventional vapour compression refrigeration system. The COP is 

given as 0.68 and 4.5 for the absorption and conventional cycles respectively, with a 
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brine outlet temperature of 7oC. The total capital cost for the absorption chiller is 

given as £150,000 while the savings in running costs between the two cycles is 

around £10,000. Hence, the payback period for a retrofit system (as assumed in 

waste heat recovery system design) would be 15 years. Such high pay back times 

are in violation of the scope of the KBS, particularly point 9. Hence, absorption 

refrigeration systems are excluded from the system knowledge-base. 

However, it is noted that absorption systems can provide a useful solution for 

refrigeration circuits, particularly when coupled with CHP systems although the 

economics may only be suitable in new build scenarios. They have also provided a 

useful solution in gas turbine power units by providing compressor inlet air cooling 

using waste heat from the exhaust (for example Habeebullah et al, 1998, and Najjar, 

1996). 

 

3.4.2. Adsorption Refrigeration 

The adsorption cycle operates on a similar principle to the absorption cycle only 

utilizing a solid adsorbant rather than a liquid absorbant. Suggested adsorbant-

refrigeration pairs include activated carbon-ammonia, silica gel-water and zeolite-

water (Wang et al, 2009). The typical system schematic is shown below in Figure 

3.23 (Wang et al, 2012). 
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Figure 3.23. Fluidised bed adsorption refrigeration system (Wang et al, 2012) 

 

One key difference between the absorption and adsorption cycle, as highlighted by 

Figure 3.23, is that the adsorption and desorption (regeneration) processes occur in 

the same unit operation by incremental heating, cooling and evacuation of the 

adsorbant chamber (in this case in a fluidised bed configuration). This has led to 

many papers attempting to optimise the design of the adsorber/desorber, for 

example the fluidised bed shown above and the plate-type system suggested by 

Critoph and Metcalf, 2004, below. 
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Figure 3.24. Plate-type adsorber/desorber (Critoph and Metcalf, 2004) 

 

Adsorption refrigeration is excluded from the KBS database as the technology 

requires a lot of further research before it is to become widely commercially 

accepted. Issues must be addressed such as poor heat and mass transfer in the 

adsorber/desorber and adsorbant deterioation. This is summed up in the review 

paper by Wang, 2010, in which it is stated “it can be predicted that adsorption 

refrigeration will not be used as popularly as the conventional absorption and 

vapour compression refrigeration in the near future if these problems are not 

completely resolved”. Therefore, this technology is in violation of the scope of the 

KBS, particularly point 8. 

 

3.4.3. ORC-Coupled VC Refrigeration 

A number of authors have suggested the use of an ORC to drive the compressors in 

a conventional vapour compression refrigeration system, as shown below in Figure 

3.25 (Wang et al, 2011). 
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Figure 3.25. Schematic of ORC-VC refrigeration system (Wang et al, 2011) 

 

Both Aphornratana and Sriveerakul (2010), and Li et al (2013) have modeled this 

system using a variety of working fluids and shown favourable results. The former 

found that when using R134a heat sources as low as 60oC may be utilized while 

cooling temperatures as low as -10oC are possible with COP ranging from 0.1 to 0.6. 

The latter used n-Butane and achieved a COP of 0.47 for a boiler exit temperature 

of 90oC (which would correspond to a liquid heat source in region of 120oC, or low-

grade flash steam) and a cooling temperature of 5oC. 

While such papers show that this technology is feasible, this variation on the ORC is 

not included in the system knowledge-base. For a retro-fit case, it would be 

extremely complex to design such a system to “drop-in” to the existing plant 

refrigeration circuit. Hence, this must be seen as a bespoke solution to waste heat 

recovery which may only be possible in the case of a new build. Therefore, this is 

outside the scope of the system. 

However, it is noted that standard ORC cycles are included in the system 

knowledge-base and the design results include the work produced and the electrical 

power generated. The user is free to investigate the use of the work produced to 
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drive current refrigeration compressors (if feasible on the site in question) or the 

user may choose to offset the electricity generated by the ORC against the current 

VC refrigeration system. 

 

3.5. Waste Water Treatment 

Waste-heat driven water purification is of growing interest, particularly in areas 

where supplies of fresh water are limited or in processes producing large amounts 

of waste water (which may be costly to dispose of). 

A number of heat-driven techniques are available for waste-water treatment and 

desalination. Two of the most commonly utilized techniques are discussed here, as 

summarised in Table 3.9 below. 

Table 3.9. Summary of waste water treatment techniques considered for inclusion 
in the system knowledge base 

Name Brief Description Selected for 

System? 

Multiple-effect-

desalination 

Waste heat drives the initial 

evaporation stage while each 

of the proceeding stages are 

held at lower pressure and are 

heated by vapour from the 

previous stage 

No 

ORC-driven reverse 

osmosis 

Waste heat drives an ORC 

which drives the high pressure 

pump in a reverse osmosis 

unit. Water molecules are 

transferred over a membrane 

hence separating fresh water 

from brine. 

No 
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3.5.1. Multiple-Effect-Desalination 

Multiple-effect-desalination (MED) is the most widely utilized method of waste heat 

driven water purification techniques which is operated as a common multiple-

effect-evaporation process, as shown below in Figure 3.26 (Van der Bruggen and 

Vandecasteele, 2002). 

 

 

Here, steam is required in the first effect to evaporate fresh water from the brackish 

water. In a waste heat driven system, this may be provided by waste flash steam if 

available at around 2 bar (temperature must be in region of 120oC) or more 

commonly via steam from a waste heat boiler. The vapour from each effect is then 

used to drive evaporation in the next effect which is held at lower pressure. Hence, 

a highly concentrated brine is produced following the final stage, while fresh water 

is condensed in each stage. 

However, many problems are associated with this process including the corrosion of 

columns and heat transfer surfaces from the brackish water. Therefore, custom 

designs are required for each individual case depending on the temperature of 

waste heat available, the salinity of the brackish water and the space available on 

site (this limits the number of effects possible). Hence, the design of such a system 

for a plant retrofit (as assumed in the waste heat recovery case studies for the KBS) 

is a complex procedure, requiring a number of iterations and site visits. For this 

Figure 3.26. Waste heat driven MED (Van der Bruggen and Vandecasteele, 2002) 
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reason, MED is out of the scope of the KBS and excluded from the equipment 

database. 

 

3.5.2. ORC-Driven Reverse Osmosis 

Reverse osmosis (RO) is the most commonly utilized water purification technique, 

as highlighted by Figure 3.27 (Fritzmann et al, 2007). 

 

 

 

Reverse osmosis operates by pumping water to high pressure through a membrane. 

This forces water molecules through the membrane, thereby separating fresh water 

from a highly concentrated brine solution. Hence, this is not a heat driven process. 

However, many have suggested the coupling of RO to an ORC machine. For example, 

Li et al, 2013 (see Figure 3.28 below) and Penate and Garcia-Rodriguez (2012). 

Therefore, the ORC-RO unit can be seen as an indirect waste-heat driven waste-

water treatment solution. 

 

Figure 3.27. Market share of the different desalination techniques for brackish 
water (Fritzmann et al, 2007) 



96 
 

 

Figure 3.28. ORC-RO system schematic (Penate and Garcia-Rodriguez, 2012) 

 

This particular variation on the ORC system is not included in the KBS as reverse 

osmosis is considered outside the scope of the system. The indirect nature of the 

waste heat recovery to power an RO unit is considered a custom solution and not 

currently widely accepted (despite a number of research papers investigating this 

concept). 

However, as the standard ORC cycle is included, the results of ORC selection and 

design may be interpreted by the user towards use in a RO plant. For example, the 

work generated is a result of the ORC design module. Therefore, the user is free to 

utilise this work as appropriate for the site in question whether it be for electricity 

generation (this result is also stated) or for use in RO. 

 

3.6. Chapter Conclusions 

The state of the art in waste heat recovery technologies has been discussed and the 

most appropriate methods are chosen for inclusion in the equipment data base 

according to the scope of the KBS. 
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Technologies have been selected to cover a broad range of expected case-study 

scenarios. In brief, the technologies included cover the five categories of waste heat 

recovery options, as follows: 

1. Heat exchanger heat transfer: a number of heat exchangers are included 

that cover all common scenarios 

2. Heat pumps (heating): vapour compression heat pumps are considered 

where a heat sink is available within a suitable temperature lift of the heat 

source. A number of working fluids are incorporated into the database to 

suit the constraints of individual plants, considering factors such as various 

heat source/sink temperatures, and health and safety requirements (as 

discussed in Section 4.3.5). 

3. Power generation: organic Rankine cycles are included for waste-heat power 

generation when no appropriate heat sinks are available. A number of 

working fluids are incorporated into the database to suit the constraints of 

individual plants, considering factors such as various heat source/sink 

temperatures, and health and safety requirements (as discussed in Section 

4.3.7) 

4. Generation of coolth: absorption and adsorption units were deemed outside 

the scope of the system for the reasons discussed. However, the user may 

choose to drive the existing VC refrigeration compressors using work from 

an ORC or offset the power consumption with that generated by an ORC 

5. Waste water treatment: multiple effect desalination systems are deemed a 

bespoke solution and thus outside the scope of the system for the reasons 

discussed. However, the user may choose to drive an existing RO unit using 

work from an ORC or offset the power consumption with that generated by 

an ORC 

Tables 3.10-3.12 overleaf provides a summary of each selected technology, 

including the operating limitations. Table 3.10 summarises the heat exchangers, 

Table 3.11 summarises the heat pumps and Table 3.12 summarises organic Rankine 

cycles. 
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Table 3.10. Summary of the heat exchangers included in system knowledge base (data adapted from various sources) 

Technology Max. 

temperature 

Max. 

pressure 

Typical materials of 

construction 

Phases Access for 

cleaning? 

Corrosion 

resistance 

Fouling considerations Max 

Viscosity 

Max 

Solid 

Particle 

Size 

Cross 

contamination 

considerations 

 oC bar      CP mm  

Brazed 

plate 

225 30 Stainless steel, 

titanium; copper 

brazing 

Liquid, liquid 

boiling, condensing 

vapour 

No: fully brazed Good: via 

coatings 

Cannot accommodate 

solid particles in feeds 

1000 N/A No issue 

Finned-

tube 

>260; 

Fin-side must not 

exceed 200 

Shell 300; 

Tubes 1400 

Stainless steel, 

titanium; fins 

aluminium or copper; 

shell may be in carbon 

steel; many others 

Tube-side: Liquid, 

liquid boiling, 

condensing vapour 

Shell-side: Gas, 

humid gas 

Yes: on tube side 

(remove bundle to 

clean) 

Good: via 

coatings 

Can accommodate 

fouling fluids on the 

tube-side 

3000 15 No issue 

Gas-gas 

plate 

150 

(aluminium); >260 

(stainless steel) 

16 

Max. 

pressure 

difference 

between 

streams: 1.05 

Stainless steel, 

aluminium 

Gas, humid-gas 

condensation can 

be tolerated via 

use of drip tray 

Yes: via gaskets Poor: not 

commonly coated 

to prevent 

corrosion 

Can accommodate light 

fouling on both sides 

N/A (gas 

phase 

only) 

N/A No issue 

Gasketted 

plate 

180 16 Stainless steel, 

titanium 

Liquid, liquid 

boiling, condensing 

vapour 

Yes: via gaskets Good: via 

coatings 

Can accommodate light 

fouling on both sides 

1000 2 No issue 

Plate and 

shell 

>260 100 Stainless steel, 

titanium; shell may be 

in carbon steel 

Liquid, liquid 

boiling, condensing 

vapour 

No: fully welded Good: via 

coatings 

Cannot accommodate 

solid particles in feeds 

8 1 No issue 

Rotary 

regenerator  

>260 Normally 

around 

ambient. 

Max. 

pressure 

Aluminium, Ceramics, 

Polymers 

Gas Yes, although can 

be configured to 

promote self-

cleaning 

Good: can be 

manufactured by 

a variety of 

materials 

Can tolerate light fouling 

as can be configured to 

promote self-cleaning 

N/A (gas 

phase 

only) 

N/A Up to 5% 
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differential 

between 

streams: 1.06 

Run-

around-coil 

200; Fins must 

not exceed 200 

75 

 

 

 

 

Stainless steel; 

aluminium or copper 

fins 

Gas, humid-gas 

condensation can 

be tolerated via 

use of a drip-tray 

Yes, via gaskets Good: via 

coatings 

Can tolerate light fouling 

as coils can be 

mechanically cleaned 

N/A (gas 

phase 

only) 

N/A No issue 

Shell and 

tube 

>260 Shell 300; 

Tubes 1400 

Stainless steel, 

titanium; shell may be 

in carbon steel 

amongst many others 

Liquid, boiling 

liquid, condensing 

vapour, gas 

Yes: on tube side 

(remove bundle to 

clean) 

Good: via 

coatings 

Can accommodate 

fouling fluids on the 

tube-side 

3000 15 No issue 

Spiral plate >260 30 Carbon steel, stainless 

steel, titanium 

Liquid Yes: via gaskets, 

although flow 

regime encourages 

scouring of fouling 

layer 

Good: via 

coatings 

Can accommodate 

fouling fluids on both 

sides 

>1000 20 No issue 

Welded 

plate 

>260 40 fully 

welded; 16 

on gasketted 

side if semi-

welded 

Stainless steel, 

titanium 

Liquid, liquid 

boiling, condensing 

vapour, gas 

(welded side) 

Yes: may be 

partially welded to 

allow access on 

one side via 

gaskets 

Good: via 

coatings 

Can only accommodate 

solid particles/fouling on 

the gasketted-side if unit 

is semi-welded 

1000 N/A No Issue 

Note: Data is adapted from various sources listed throughout Section 3.1. 
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Table 3.11. Summary of heat pumps included the system knowledge base 

Technology Max. Condenser 

Temperature 

Typical Pressure Ratio Typical Corresponding 

Temperature Lift 

Phases Design Notes 

 oC     

Vapour compression 

closed cycle 

140 (working fluid 

dependant)1 

2.8 (based on centrifugal 

compressor)2 

Around 40 All (dependant on heat 

exchangers) 

N/A 

Mechanical vapour 

recompression (open 

cycle) 

Generally around 

120 

1.25 - 2.5 (dependant on 

compressor type)3 

5-25 Water vapour source; 

boiling water heat sink 

Existing units most commonly use internal heating coils or an external 

heat exchanger; New MVR design may require a new heat exchanger or 

may aim to re-use existing unit 

Note: Data is adapted from various sources listed throughout Section 3.2; 1This is based on current standard refrigerants (working fluid discussion provided in Section 4.3.5); 2Centrifugal compressors are 

considered as they provide a compromise between cost and pressure ratio; 3In MVR, fan-type compressors are preferred if a small temperature lift can be tolerated. Else, centrifugal compressors may be 

considered. 

 

 

Table 3.12. Summary of electricity generation methods included in system knowledge base 

Technology Minimum Source 

Temperature 

Max. Evaporator 

Temperature 

Typical Min. Condenser 

Temperature 

Heat Source Phases Process Limitations Typical Heat 

Sinks 

 oC oC oC    

Organic Rankine 

cycle 
731 140 112 

All (dependant on heat 

exchangers) 

Heat source must be continuous, not 

intermittent 
Water, Air 

Note: Data is adapted from various sources listed throughout Section 3.3; 1This is based on the lowest reported heat source temperature for a successful ORC installation as stated by Brasz (2011) and 

Renewable Energy World (2013) amongst others. 2This is based on a cooling water heat sink with a minimum temperature of 1oC (to avoid freezing) with a 5oC temperature rise and a 5oC heat exchanger 

approach temperature. This value would vary with different heat sinks and heat exchanger effectiveness. 

 

 



101 
 

Chapter 4 

This chapter discusses the logic, decision pathways and design equations of the 

knowledge-based system. Justification of the methods employed and schematics of 

the system logic are presented.  

 

4. System Equations, Logic and Methods 

The system knowledge-base will define the decision making and design processes of 

the system and is therefore key to the success of the project. Much of the data and 

knowledge required was acquired in the study of the state of the art in waste heat 

recovery technology found in Chapter 3 (summarized in Tables 3.10 - 3.12), while 

methods for formulating the knowledge-base are discussed in Chapter 2. 

The system is to operate according to the schematic shown in Figure 4.1 below. 

 

 

Figure 4.1. Overview of KBS operation 
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Figure 4.1 shows the various stages of operation in the KBS. First of all, the user is 

required to input data to the system. Secondly, the KBS will use the system 

knowledge-base to select which technologies may be suitable for use in the case 

study. Thirdly, the KBS will use the knowledge-base to produce a “first design” of 

each of the suitable technologies. Finally, this data is fed back to the user and 

should be substantial enough for a “yes” or “no” answer on which technologies fit 

the criteria of that individual case study. 

Therefore, four key steps are required in developing the system knowledge-base as 

follows: 

1. Selection of a suitable decision making method for use in building the system 

knowledge-base. This determines how the data acquired in Chapter 3 will be 

exploited by the KBS in order to make intelligent and accurate decisions. 

2. Specifying the system data-input requirement. 

3. Creation of the technology selection knowledge base. This will be used by the 

KBS to select which technologies are appropriate for each case-study. 

4. Creation of technology design methodologies. This will determine how the KBS 

automatically designs each of the appropriate technologies. Key results such as 

equipment size, cost, payback time and greenhouse gas emissions must be 

calculated which may then be analysed by the user in order to make the final 

decision about waste heat recovery. 

 

4.1. Selection of Decision Making Method 

In selecting the most appropriate method of decision making for the KBS, the 

definition of the target end-user and scope of the knowledge-based system (see 

Section 1.3.1) must be adhered to, particularly with respect to the points below: 

Target end-user characteristics: 

 Limited knowledge of waste heat recovery techniques. 

 No previous experience of process waste heat recovery projects. 

 Limited time to investigate all waste heat recovery options. 
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Scope of knowledge-based system: 

 Point 4. Must make use of easy-to-access data: this will aid user with limited 

time in the collection of data for use in the software. 

 Point 5. Must explain selection/design logic to the user: this will educate the 

user in the methods employed by the system thereby reducing/avoiding user 

confusion or mistrust. 

A number of methods are available for use in decision making software tools. Here, 

we consider two types of method: decision tree type methods and 

mathematical/algorithm based methods. 

 

4.1.1. Mathematical/Algorithm-Based Methods 

Mathematical methods use algorithms to find the best available solutions to multi-

variable decision problems. For example, the Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) ranks each possible solution according to 

distance from an ideal solution.  

These methods have four distinct disadvantages for use in this case and are 

therefore deemed inappropriate.  

First of all, in some case there may be only one possible solution. For example, in a 

situation where only a waste heat source is present and no heat sinks are identified, 

then the only option available from the system will be to design an organic Rankine 

cycle (assuming the heat source is of sufficiently high temperature). Hence, multiple 

solutions do not exist and the system would automatically choose the ORC. Crucially, 

this would be done without providing any rational explanation to the user as the 

method is strictly mathematical (see point four for discussion of this problem). 

Secondly, an ideal solution is difficult to define in low-grade waste heat recovery 

and it would probably require that each case study to have a different ideal solution. 

This would be almost impossible to program. 
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Thirdly, many of the “variables” in the problem are non-numerical and subjective in 

nature. For example, plant preferences with regard to toxic/flammable working 

fluids for heat pumps/ORC are highly subjective. Therefore, accounting for such 

variables in a mathematical method would be difficult. 

Finally, the most significant factor against using numerical methods for this problem 

is that the entire selection process is lost within the mathematics of the method. 

Hence, it would be very difficult to provide a rational explanation of the programme 

to a user with no background in the programming of such methods. This is a 

violation of the scope of the system, particularly point 5 (as shown above, and in 

Section 1.3.1). 

 

4.1.2. Decision Tree Methods 

The decision tree method uses IF-THEN logic to formulate decisions. A number of 

such decisions can be built up in series or parallel in order to build multi-parameter 

decision criteria. This method has been successfully utilised in similar previous 

works. For example Heppenstall and Halliday (1990) used this method to produce a 

heat exchanger selection expert system, Abou-Ali and Beltagui (1995) used this 

method to create an expert system for the selection of shell and tube-bundle types 

in TEMA design of shell-and-tube heat exchangers, and Lababidi and Baker (2003) 

used this method to create an expert system for the selection of food drying 

equipment. This is further discussed in Section 2.3. 

The use of this method has two distinct advantages. Firstly, it has been proven to be 

successful in similar projects as previously discussed (briefly above, and in Section 

2.3). This is because it is a good match to the standard procedure used in the 

selection of waste heat recovery equipment: generally, the initial selection is based 

on equipment technological limitations while “final” selection will be based on user-

defined criteria, most commonly economical data such as project payback time. 

Hence, the decision tree method is suited to the initial selection process. Procedural 

routines can then be introduced to the code to produce a “first design” of each 
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selected technology in order to acquire the required design data (including process 

economic data etc), with which the user can then make the “final” decision. 

The second advantage is related to the educational aims of the software. Point 5 of 

the system scope (as listed above in Section 4.1) states that a degree of explanation 

must be given to the user. Logic displayed in decision tree format is easy and 

intuitive to follow for the user, thereby providing an appropriate degree of 

explanation. This will also prevent user mistrust as it does not require a knowledge 

of complex mathematical procedures (as described in Sections 4.1.1-4.1.3) to 

understand the system logic. 

For these reasons, the decision tree method of creating the system knowledge base 

is chosen. 

 

4.2. User Data Input to the System 

The specification of the data input to the system is crucial as it must strike a balance 

between the requirements for accurate results to be calculated and the expected 

time constraints of the target end-user of the KBS as pointed out in Section 1.3.1 

(revisited in Section 4.1 above). The scope of the system also states: 

 Point 2. Must make use of easy-to-access data: this will aid users with 

limited time in the collection of data for use in the software. 

Table 4.1, below, summarises commonly required heat source/sink data required 

for accurate design of heat exchangers, heat pumps and/or organic Rankine cycles, 

while Table 4.2 below summarises qualitative heat source/sink data that must be 

considered. 

 

 



106 
 

Table 4.1. Heat source/sink numerical data required for design of waste heat 
recovery systems 

 Symbol (units) Included 

Source phase N/A Yes 

Sink phase N/A Yes 

Source mass flow rate m (kg/s) Yes 

Sink mass flow rate m (kg/s) Yes 

Source temperature T (oC) Yes 

Source target temperature T (oC) Yes 

Sink temperature T (oC) Yes 

Sink target temperature T (oC) Yes 

Source specific heat capacity Cp (kJ/kg.K) Yes 

Sink specific heat capacity Cp (kJ/kg.K) Yes 

Source pressure P (kPa) Yes 

Sink pressure P (kPa) Yes 

Source density ρ (kg/m3) Yes 

Sink density ρ (kg/m3) Yes 

Source viscosity μ (kg/m.s) Yes 

Sink viscosity μ (kg/m.s) Yes 

Source thermal conductivity k (kW/m.K) No 

Sink thermal conductivity k (kW/m.K) No 

Source film heat transfer coefficient h (kW/m2.K) No 

Sink film heat transfer coefficient h (kW/m2.K) No 

 

Table 4.2. Heat source/sink qualitative data required for design of waste heat 
recovery systems 

 Notes Included 

Source solid content and 

nature 
Data required here includes the mass 

fraction of solids in the stream, the nature of 

the solids and the average particle diameter 

Yes  

Sink solid content and 

nature 

Yes  
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Source fouling tendency This is heavily linked to the source solid 

content although other types of fouling are 

noted such as scaling. It is difficult to 

definitively quantify fouling for every case 

study and this remains subjective 

Yes  

Sink fouling tendency  Yes  

Source corrosivity This is linked to both the source/sink 

properties and the materials of construction 

Yes  

Sink corrosivity Yes  

Source material 

compatibility 

This is heavily linked to the corrosivity of the 

two fluids. Some heat exchangers may only 

be constructed from certain materials, hence 

this influences heat exchanger selection 

Yes  

Sink material 

compatibility 

Yes  

Source access for 

maintenance/cleaning 

This is heavily linked to both corrosivity and 

fouling characteristics, i.e. if fluid(s) is (are) 

fouling and/or corrosive then access will be 

required 

Yes  

Sink access for 

maintenance/cleaning 

Yes  

 

In addition to that stated in Tables 4.1 and 4.2, a number of further data is required 

in order to carry out economic and environmental calculations during system design. 

This is summarised in Table 4.3 below. 

Table 4.3. Plant data required for design of waste heat recovery systems 

 Symbol (units) Included 

Current method of heating sink N/A Yes 

Efficiency of current method of heating sink η (%) Yes 

Utility costs N/A (£/kWh) Yes 

Utility associated emissions N/A (tCO2eq/kWh) Yes 

Plant hours of operation N/A (h/year) Yes 

 

The specified data input has been chosen to strike a balance between accuracy of 

selection/design procedures and the knowledge/time constraints of the target end-

user. The following justification is presented for each included/excluded parameter: 
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 Source/sink phase(s): this is crucial for selecting a suitable heat exchanger as 

discussed in Section 3.1 and is therefore included. 

 Source/sink mass flow: required to calculate heating duty and therefore 

must be included. 

 Source/sink specific heat capacity: required to calculate heating duty and 

therefore must be included. 

 Source/sink inlet temperature: required to calculate heating duty and 

therefore must be included. Also, temperature is a limiting factor in many 

types of heat exchanger. 

 Source/sink target temperature: required to calculate heating duty and 

therefore must be included. Also, sink target temperature is a limiting factor 

in heat pump working fluid selection. Note that a routine will be used to set 

the source/sink outlet temperatures for cases where the heat balance is 

unequal. 

 Source/sink pressure: this is a limiting factor in many types of heat 

exchanger and therefore must be included. 

 Source/sink density: required to calculate the Reynolds number which in 

turn may be used to estimate key design parameters such as pressure drop. 

Also needed to calculate volumetric and subsequent velocity (also required 

in Reynolds number and pressure drop calculations). Therefore this must be 

included. 

 Source/sink viscosity: required to calculate the Reynolds number. Also, this 

is a limiting factor in many types of heat exchanger and influences heat 

transfer coefficients. Therefore, this must be included. 

 Typical Source/sink film heat transfer coefficients: this is required to 

calculate required heat transfer areas. However, this data is not easily 

accessible and may be difficult to calculate or find for users with limited heat 

transfer knowledge. Therefore, inclusion of this term would violate point 2 

of the system scope and it is not included. Values for overall heat transfer 

coefficients from literature will be used in the system knowledge base as this 
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is accurate enough for a first estimate of system design. The production of 

final, optimal, designs is outside of the scope of the KBS. 

 Source/sink thermal conductivity: this data is used in calculations to find 

accurate estimates of the film heat transfer coefficients. However, as stated 

above, these values will be taken from literature and therefore the thermal 

conductivity will not need to be input by the user. Furthermore, this data is 

not easily accessible and may be time consuming to find. Hence it would 

violate point 2 of the scope of the system. 

 Source/sink solid content and nature: this information is a limiting factor in 

the selection of many types of heat exchanger and must be included. 

However, this data generally isn’t standardised between heat exchanger 

manufacturers and literature and therefore is subjective. In this case, it was 

decided to adopt the methodology from Best Practice Programme (2000) in 

which heat exchanger operation limits were given based on average particle 

diameter and “particle type” which may be selected from “shear sensitive”, 

“shear insensitive” and “fibre”. This source was chosen as it contains a 

comprehensive list of criteria for heat exchanger selection for a wide range 

of units and the data covers the majority of the heat exchangers chosen for 

selection in the knowledge base. The data for the heat exchangers missing 

from this source will be determined from various other sources that will be 

adapted for use in this methodology. 

 Source/sink fouling tendency: this information is a limiting factor in the 

selection of many types of heat exchanger and must be included. This is 

often directly linked to the solid content, although other types of fouling 

must also be considered, such as scaling. Again, this is a highly subjective 

area of heat exchanger design. In brief, if the heat transfer fluids are fouling 

it is required that the heat exchanger must be cleaned at regular intervals in 

order to maintain an acceptable overall heat transfer coefficient. Hence, if a 

fluid is fouling, a fully welded heat exchanger would not be suitable for use, 

for example. Due to the subjective nature of this data, it is decided that a 

user question will be included to capture this data, “Is access for cleaning 

due to fouling anticipated?” It is assumed that this data would be known to 
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the user as fouling would occur in a number of other units associated with 

the stream. 

 Source/sink corrosivity: this information is a limiting factor in the selection 

of materials of construction, which in turn is a limiting factor in the selection 

of many types of heat exchanger. A number of factors influence this, such as 

pH and stream composition. Specific data input for this factor would be 

difficult as this again is rather subjective. Therefore, it is more suitable to 

instead list a number of typical heat exchanger materials and for the user to 

select which are compatible with the fluid using “yes” or “no” answers. Also, 

a question is included on whether an anti-corrosion layer on a metallic heat 

exchanger would suffice as an anti-corrosion measure, as this is available on 

a number of units. This data should be easily accessible to the user and 

should decrease the complexity of the decision-making process. 

 Source/sink material compatibility: as discussed above 

 Source/sink access for cleaning/maintenance: this is linked to both the 

fouling and corrosion data as discussed above. Here, the user is simply 

required to answer “yes” or “no” as to whether access for 

cleaning/maintenance is anticipated due to corrosion or fouling concerns. 

The user should have easy access to this data as it will be similar for all other 

unit operations linked to the fluid. Also, this method should decrease the 

complexity of attempts to infer whether or not access will be required based 

on subjective questions/data regarding fouling and/or corrosion. 

 Current method of heating sink: Required to calculate the cost and 

greenhouse gas reductions due to waste heat recovery, two key results from 

the KBS. Here, options include “natural gas”, “electricity”, “steam” and 

“other”. The latter is included to account for any relatively obscure heating 

utilities (such as biomass), while the others are the most common process 

plant utilities. 

 Efficiency of current heating method: required to accurately calculate the 

utility saving from implementing waste heat recovery, which in turn directly 

influences the economic and environmental benefits. This data should also 

be easily accessible. Therefore, it is included. 
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 Utility costs: required to accurately calculate the economic benefits of 

implementing waste heat recovery for the specific plant in question. This 

data should also be easily accessible. 

 Utility associated emissions: required to accurately calculate the greenhouse 

gas reductions associated with waste heat recovery. This is automatically 

programmed into the software for electricity and natural gas as this data is 

widely available (for example, the Carbon Trust, 2013). However, for the 

case that a relatively obscure heating utility is included (i.e. “other” is 

selected as the current heating utility) then the user is required to input the 

data. It is assumed that this data is easily accessible if the plant in question 

has invested time and money in installing a novel heating utility system. 

 Plant hours of operation: Required to accurately calculating the economic 

and environmental benefits of waste heat recovery. This should be easy to 

access based on plant downtime data. 

 Data regarding the cooling utility in heat pump design: In heat pump design, 

simultaneous useful heating and cooling is considered, as this has been 

proven to significantly boost the COP and subsequent economics of heat 

pump projects (as discussed in Section 3.2.1). Therefore, data is also 

requested for the current cooling utility in heat pump system 

selection/design where appropriate. This includes the same questions as 

requested for the heating utility including the current utility (for example, 

cooling water or a refrigeration circuit), efficiency of current method (COP of 

refrigeration circuit, for example) and the cost of the current utility. 

The data input to the system is required to undergo a “data check” procedure in 

order to identify and solve any errors prior to the selection/design processes 

described below. This data check is designed to identify any unrealistic values 

(negative pressure, density for example) and thermodynamic anomalies 

(temperature cross between source/sink data, for example). Examples of the “data 

check” rules are displayed in Appendix I. 
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4.3. Technology Selection Knowledge Base 

The selection of technologies by the KBS is to be completed on two levels, as per a 

consultant engineer would tackle such a problem. The first level, or “Initial Selection 

Procedure” is relatively simple and addresses the availability of potential heat sinks 

and the aims of the plant in question. This is described in Section 4.3.1.  

The second level is more complex and is based on the technological limitations of 

the equipment chosen for inclusion in the knowledge-base. For ease of display, this 

is split into the five general categories of heat recovery technology included in the 

system knowledge base: gas-gas heat exchangers, gas-liquid heat exchangers, 

liquid-liquid heat exchangers, heat pumps (MVR and closed cycle) and organic 

Rankine cycles. Each is described in Sections 4.3.2 - 4.3.7 respectively.  

 

4.3.1. Initial Selection Procedure 

As described above, the initial selection procedure is designed to address the 

availability of potential heat sinks and the aims of the plant in question. From an 

educational perspective, this step will also act as an introduction to the various 

technologies available for low-grade waste heat recovery. 

Here, relatively simple statements are considered, for example: 

 IF a “matching” heat sink is NOT available THEN one may not use a heat 

exchanger. 

 IF a heat sink within a reasonable temperature lift (~40K) is NOT available 

THEN one may not use a heat pump. 

 IF the plant has no interest in electricity generation THEN one may not use 

an organic Rankine cycle 

Such statements can be extended to consider the various types of heat exchangers 

included in the system, for example, thereby creating logic such as: 
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 IF a “matching” heat sink is available AND heat source is in the liquid phase 

AND heat sink is in the liquid phase THEN one may use a liquid-liquid heat 

exchanger. 

(Note: the selection of which types of liquid-liquid heat exchanger are suitable is 

then considered in level 2 of the selection logic) 

Figure 4.2 overleaf shows the level 1 technology selection logic displayed in decision 

tree format. Figure 4.3 shows a continuation of the heat exchanger level 1 selection 

logic in order to select which heat exchanger category is required based on the 

phase of the heat source and sink.  
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Figure 4.2. Level one of the technology selection knowledge base 
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Figure 4.3. Level one of the technology selection knowledge base (heat exchangers only) 
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When the level 1 technology selection procedure is complete, first stage in waste 

heat recovery system design has been performed, i.e. the general categories of 

possible waste heat recovery system have been identified.  

At this stage, there is an argument for the system selecting only the simplest (or 

cheapest) method of waste heat recovery for each case study. For example, this 

logic would suggest that if a “matching” heat sink is available and a heat exchanger 

may be used for waste heat recovery, then more complex solutions such as organic 

Rankine cycles should not be considered. This logic is suggested in the paper 

“Opportunities for low grade heat recovery in the UK food processing industry” by 

the author (Law et al, 2013), and summarised in Figure 4.4 below.  

 

 

Figure 4.4. Typical technology selection logic in waste heat recovery system design 
(Law et al, 2013) 

 

Note that in the paper, the authors state that the selection process should be 

directly correlated to the capital outlay. Hence, if a cheaper option is available (for 

example a heat exchanger) then one should not consider the more expensive 

options (for example an ORC). 
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Here, for the case of this knowledge-based system, the educational aims of the 

software must be considered. By including and generating results for all possible 

options, the user will be able to identify the key differences in each type of system. 

For example, for a case where a liquid heat source is identified and a liquid heat sink 

is identified, the obvious solution would be to design a liquid-liquid heat exchanger 

although it would theoretically be possible to also use the waste heat to drive an 

organic Rankine cycle. Therefore, the KBS will produce a first design for both 

options. An experienced heat recovery consultant may consider this unnecessary, 

but it allows the users to compare the results and conclude that the heat exchanger 

is by far the most economical option for waste heat recovery (for a typical case), 

thereby helping the user to gain a knowledge of the merits of each type of 

technology. The user may also consider other drivers such as system complexity 

(with regards to installation and maintenance) which will be apparent in the system 

results (via a process flow diagram of the proposed technologies). 

 

4.3.2. Gas-Gas Heat Exchanger Knowledge Base 

The second level of equipment selection decisions is based on the operational 

limitations of each technology, as previously discussed in Chapter 3, and 

summarised in Tables 3.10-3.12. 

Figures 4.5-4.7 overleaf show the gas-gas heat exchanger section of the level two 

selection knowledge-base. Figure 4.5 (a and b) is concerned with heat exchangers 

suitable for non-condensing gaseous heat sources, Figure 4.6 is concerned with heat 

exchangers for condensing vapour heat sources and Figure 4.7 is concerned with 

heat exchangers suitable for the condensation of water from a humid air heat 

source. 

Note: in the following figures, temperature is in oC, pressure in bar and viscosity in 

cP. 
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Figure 4.5. Gas-gas heat exchanger selection knowledge-base for non-condensing heat sources (part a) 
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Figure 4.5. Gas-gas heat exchanger selection knowledge-base for non-condensing heat sources (part b) 
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Figure 4.6. Gas-gas heat exchanger selection knowledge-base for condensing vapour heat sources 
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Figure 4.7. Gas-gas heat exchanger selection knowledge-base for humid air heat sources 

 



122 
 

4.3.3. Liquid-Liquid Heat Exchanger Knowledge Base 

The second level of equipment selection decisions is based on the operational 

limitations of each technology as previously discussed in Chapter 3, and 

summarised in Tables 3.10-3.12. 

Figure 4.8 (a and b) overleaf shows the liquid-liquid heat exchanger section of the 

level two selection knowledge-base. 

Note: in the following figures, temperature is in oC, pressure in bar and viscosity in 

cp. 



123 
 

 

Figure 4.8. Liquid-liquid heat exchanger selection knowledge-base (part a) 
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Figure 4.8. Liquid-liquid heat exchanger selection knowledge-base (part b) 
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4.3.4. Gas-Liquid Heat Exchanger Knowledge Base 

The second level of equipment selection decisions is based on the operational 

limitations of each technology as previously discussed in Chapter 3, and 

summarised in Tables 3.10-3.12. 

Figures 4.9 to 4.11 overleaf show the gas-liquid heat exchanger section of the level 

two selection knowledge-base. Figure 4.8 features heat exchangers suitable when 

the heat source is a liquid and the heat sink is gaseous. Figure 4.9 features heat 

exchangers suitable for a gaseous heat source (both non-condensing and humid air) 

and the heat sink is a liquid (boiling or constant phase). Figure 4.10 (a and b) 

features heat exchangers which are suitable when the heat source is a condensing 

vapour and the heat sink is a liquid (boiling or constant phase). 

Note: in the following figures, temperature is in oC, pressure in bar and viscosity in 

cp. 
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Figure 4.9. Gas-liquid heat exchanger selection knowledge-base for liquid heat sources 
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Figure 4.10. Gas-liquid heat exchanger selection knowledge-base for n/c gas and humid air heat sources 
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Figure 4.11. Gas-liquid heat exchanger selection knowledge-base for condensing vapour heat sources (part a) 
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Figure 4.11. Gas-liquid heat exchanger selection knowledge-base for condensing vapour heat sources (part b) 
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4.3.5. Heat Pump Knowledge Base 

The second level of equipment selection decisions is based on the operational 

limitations of each technology as previously discussed in Chapter 3, and 

summarised in Tables 3.10-3.12. 

In the field of heat pump design, the decision is focussed on the selection of the 

most appropriate working fluid based on the user-input data. In general heat pump 

selection/design, the working fluid selection is based on the following criteria: 

 Legality: only working fluids which are not ozone-depleting should be 

considered, in agreement with the Montreal Protocol, 1989. 

 Industry Standards: only working fluids which are “industry standard” will be 

considered by this system as the results must be valid on an industrial scale 

(see system scope, point 8, Section 1.3.1). The definition of “industry 

standard” used here is that any working fluid must have been given an 

official safety rating by the American Society of Heating, Refrigeration and 

Air-conditioning Engineers (ASHRAE), as listed in the ASHRAE Fundamentals 

Handbook (ASHRAE, 2009). 

 Health, safety and environmental properties: only working fluids which are 

tolerable at the site in question must be used. i.e. final selection must be on 

an individual case study basis dependant on the plant tolerance to 

detrimental working fluid properties, such as flammability and toxicity. 

Hence, working fluids must be included in the system to cover all 

eventualities. 

 Range of operation: working fluids operate in an optimum 

temperature/pressure range. Hence, working fluid selection should be 

dependent on the heat source temperature and sink target temperature. 

Therefore, a wide-range of working fluids should be included to cover the 

entire expected temperature range. 

The expected COP of each working fluid should be considered. However, the 

difference in COP between two suitable fluids across the same temperature range is 

minimal and hence this does not influence the selection to the same degree as the 
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criteria specified above.  The volumetric capacity of the working fluid (amount of 

energy stored per unit volume per degree centigrade) is also important as this is 

directly linked to the size of the equipment required and hence the capital cost. 

However, as the criteria above states that only standard working fluids should be 

considered, it is assumed they are all of suitable volumetric capacity. An example of 

this is that water would not be considered for the system, as it is not a standard 

heat pump working fluid: water shows improved COP performance compared to 

standard working fluids over the same operating range, but is currently not 

considered due to the low volumetric capacity (and other issues such as superheat 

during compression). 

According to the criteria discussed, four heat pump working fluids were selected for 

inclusion in the system knowledge-base. The second level of selection for heat 

pumps concerns selecting which of the four is appropriate on an individual case 

study basis. The four working fluids are as follows (Table 4.4) 

 

Table 4.4. Heat pump (closed cycle) working fluids selected for system knowledge-
base 

Name Classification Critical 

Temperature 

Critical 

Pressure 

Maximum 

Condenser 

Temperature 

Global 

Warming 

Potential 

ASHRAE 

Safety 

Classification 

  (oC) bar (oC)   

R134a HFC 101.1 40.6 85 1430 A1 

R245fa HFC 154.0 36.5 140 1030 B1 

R600 HC 152.0 38.0 140 20 A3 

R717 Natural 132.3 113.3 120 <1 B2 

Note: HFC stands for Hydrofluorocarbon; HC stands for hydrocarbon; ASHRAE safety rating A 

denotes no toxicity at concentrations below 400ppm; ASHRAE safety rating B denotes toxicity at 

concentrations below 400ppm; ASHRAE safety rating 1 denotes non-flammable; ASHRAE safety 

rating 2 denotes moderate flammability; ASHRAE safety rating 3 denotes high flammability. 
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The fluids shown in Table 4.4 are sufficient to provide a heat pump solution for 

most eventualities. For example, if high flammability cannot be tolerated, three 

fluids are available for use (R245fa, R134a and R717) and if moderate flammability 

cannot be tolerated two fluids are available (R245fa and R134a). Also, if toxicity 

cannot be tolerated, two fluids are available for use (R600 and R134a). Finally, if 

both toxicity and flammability cannot be tolerated then R134a is available for use 

with the drawback that the maximum output (condenser) temperature of this fluid 

is only 85oC. However, this drawback is unavoidable as no standard working fluids 

exist with both an ASHRAE safety rating of A1 and critical temperature greater than 

101.1 oC. 

The second level of selection for heat pumps, therefore, is the selection of one of 

these four working fluids based on the plant tolerance to flammability, toxicity and 

the outlet temperature required for the heat sink. This is depicted overleaf in Figure 

4.12. 
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Figure 4.12. Heat pump working fluid selection knowledge-base 
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4.3.6. Mechanical Vapour Recompression Knowledge Base 

In mechanical vapour recompression there is no secondary level of equipment 

selection. If MVR is deemed suitable following the first level of equipment selection, 

then the system proceeds straight to the design phase. The “final” decision will then 

be made by the user following the results of the design phase. 

 

4.3.7. Organic Rankine Cycle Knowledge Base 

The second level of equipment selection decisions is based on the operational 

limitations of each technology as previously discussed in Chapter 3, and 

summarised in Tables 3.10-3.12. 

As with heat pumps, in organic Rankine cycle selection the decisions are focussed 

on the selection of the most appropriate working fluid based on the user-input data. 

Organic Rankine cycle working fluid selection is based on the same criteria as heat 

pumps, as outlined in Section 4.3.5. However, in this case it is also important to 

consider the nature of the fluid. As previously, explained in Section 3.3.2, in organic 

Rankine cycle design only “dry” working fluids should be considered in order to 

ensure a dry turbine outlet without the need for a large superheat at the inlet 

(which would be detrimental to the overall thermal efficiency when using a finite 

heat source such as industrial low-grade waste heat). Therefore, R717 (ammonia) is 

excluded from the list of selected working fluids for the organic Rankine cycle 

knowledge-base, and the considered fluids are as follows (Table 4.5). 

 

Table 4.5. Organic Rankine cycle working fluids included in the system knowledge-
base 

Name Classification Critical 

Temperature 

Critical 

Pressure 

Maximum 

Evaporator 

Temperature 

Global 

Warming 

Potential 

ASHRAE 

Safety 

Classification 

  (oC) bar (oC)   

R134a HFC 101.1 40.6 85 1430 A1 

R245fa HFC 154.0 36.5 140 1030 B1 
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R600 HC 152.0 38.0 140 20 A3 

Note: HFC stands for Hydrofluorocarbon; HC stands for hydrocarbon; ASHRAE safety rating A 

denotes no toxicity at concentrations below 400ppm; ASHRAE safety rating B denotes toxicity at 

concentrations below 400ppm; ASHRAE safety rating 1 denotes non-flammable; ASHRAE safety 

rating 2 denotes moderate flammability; ASHRAE safety rating 3 denotes high flammability. 

 

The fluids shown in Table 4.5 are sufficient to provide an ORC solution for most 

eventualities. For example, if flammability cannot be tolerated, two fluids are 

available for use (R245fa, and R134a). Also, if toxicity cannot be tolerated, two 

fluids are available for use (R600 and R134a). Finally, if both toxicity and 

flammability cannot be tolerated then R134a is available for use with the drawback 

that the maximum evaporator temperature of this fluid is only 85oC which will be 

detrimental to the overall thermal efficiency of the cycle. However, this drawback is 

unavoidable as no standard working fluids exist with both an ASHRAE safety rating 

of A1 and critical temperature greater than 101.1 oC. 

The second level of selection for organic Rankine cycles, therefore, is the selection 

of one of these three working fluids based on the plant tolerance to flammability, 

toxicity and the available heat source temperature. Also considered at this stage is 

the minimum source temperature required to use an organic Rankine cycle which is 

defined as 73oC (Brasz, 2011) (see Table 3.12). If the heat source temperature is 

lower than this constraint then one cannot use an organic Rankine cycle. 

The second level of selection for organic Rankine cycles is depicted overleaf in 

Figure 4.13. 
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Figure 4.13. Organic Rankine cycle working fluid selection knowledge-base 
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4.4. Technology Design Knowledge-Base 

The final stage of the KBS is to provide a first design of the chosen technologies in 

order to provide the user with data as to which is the best solution for the plant in 

question. Therefore, the final stage of developing the knowledge-base system is 

split into two parts. First of all, the results the system must generate must be 

specified (see Section 4.4.1). Secondly, design methodologies must be devised for 

each of the technologies (see Sections 4.4.2 – 4.4.4). 

 

4.4.1. Knowledge-Based System results 

The KBS must provide the user with enough data to be able to make an informed 

decision regarding whether waste heat recovery is suitable at the plant in question, 

hence, the calculated results are key to the success of the system. The following 

results are necessary to the “final” decision making process for the user and are 

therefore included in the system: 

 Size (kW) of the units: this is crucial for all types of system. For heat 

exchangers this will be one value, for heat pumps this will be the size of each 

heat exchanger and the compressor/drive required, for organic Rankine 

cycles this will be the size of each heat exchanger, the turbine and the pump, 

and for mechanical vapour recompression this will be the heat exchanger 

and compressor/drive size. 

 Physical dimensions: this will be provided for heat exchangers using data 

from manufacturers when available. This will aid the transition from KBS 

results to project realisation. This is more difficult for other types of system 

as full mechanical design of any turbines/compressors would have to be 

completed by a professional contractor before installation. Hence, this data 

is only included for heat exchangers. 

 Capital cost: This will be provided for all types of system (where available). 

Suitable estimation techniques must be used which will vary in accuracy 

depending on the data available. It must be acknowledged that not all 
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manufacturers are willing to provide capital cost data for such projects and 

hence some data may be missing. 

 Utility savings: To be provided for all types of system. This can be calculated 

based on the design data (heat exchanger duties, net power output of ORC 

etc) and the plant hours of operation per year. 

 Potential cost savings: To be provided for all types of system. This can be 

calculated based on the utility savings and the utility costs. 

 Potential greenhouse gas emission savings: To be provided for all types of 

system. This can be calculated based on the utility savings and the 

associated emissions of utilities. 

 Effectiveness: This is an indicator of how efficient a heat exchanger design is 

and therefore must be included. 

 Thermal efficiency: This is an indicator of how successful an organic Rankine 

cycle design is and therefore must be included. 

 Coefficient of performance (COP): This is an indicator of how successful a 

heat pump (closed cycle and mechanical vapour recompression) design is 

and therefore must be included. 

 Inlet/outlet temperature and pressure (pressure drop in heat exchangers): 

This data is included for all types of system in order to aid a physical design 

of the suggested waste heat recovery equipment should the user decide the 

results are suitable. For heat pumps, organic Rankine cycle and mechanical 

vapour recompression this must include a number of temperatures and 

pressures at each stage of the cycle in a flow diagram. 

 

4.4.2. Heat Exchanger Design 

Methods for heat exchanger design are well established and numerous shortcut 

methods are available for sizing the equipment which are to aid the building of the 

design knowledge base. Where available, manufacturer data will also be used to 

create accurate data for key results such as physical size, pressure drop, 

effectiveness and capital cost. Other data such as “typical” overall heat transfer 
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coefficients and “typical” costs will be used where more accurate manufacturer 

data is not available. 

The initial stage in the design of any heat exchanger is the completion of the heat 

balance, which is included in the system knowledge-base according to Figures 4.14-

17 overleaf. 
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Figure 4.14. Routine to calculate the heat balance in heat exchanger design 
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Figure 4.15. Routine to calculate heating duties and reduce duty incrementally when no phase change occurs 
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Figure 4.16. Routine to calculate heating duties and reduce duty incrementally when boiling or condensation occurs 
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Figure 4.17. Routine to calculate heating duty and reduce duty incrementally for a humid air heat source 

 



144 
 

The list of equations relevant to Figures 4.14 - 4.17 is as follows: 
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                 ̇            kW 
Eq. 

4.14 

                   ̇                                  kW 
Eq. 

4.15 

                                                                kW 
Eq. 

4.16 

Note: (1) the saturated water vapour pressure found in Eq. 4.8 must be converted to units of mmHg 

for use in Eq. 4.9 using the conversion mmHg = 0.0075Pa. (2) The overall system pressure in Eq. 4.9 is 

provided by the user in units of bar which must be converted to Pa using the conversion bar = 

100000Pa. (3) in Eq. 4.9, the “-273” term is introduced to convert the final temperature value from 

Kelvin scale to degrees centigrade. (4) In Eq. 4.11 the “(1/0.0075)” term is included to convert the 

final pressure from mmHg to Pa. (5). Eq. 4.11 is the vapour pressure equation for water and the 

constants are specific to this fluid only. 

 

Following the procedures in Figures 4.14-4.17, a correct heat balance is in place and 

the source/sink duty is defined along with the outlet temperatures. At this stage, 

the software must make use of equations/data specific to the type of heat 

exchanger in question in order to produce a “first design” of the unit. The design 

data available for each type of heat exchanger varies from unit-to-unit, as listed in 

Table 4.6  overleaf along with brief details of the design methodology. 
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Table 4.6. Summary of heat exchanger design methodologies for use in KBS 

Heat Exchanger 

Type 

Data Available /Assumptions made Design Methodology 

Run-around-coil Data from numerous manufacturers stating maximum 

effectiveness, maximum volumetric flow rate for varying size of 

units, typical pressure drops (for each size of unit). Source: Reay 

(1979). Relevant data also found in common texts such as Coulson 

and Richardson, as this unit is essentially a finned-tube-in-shell 

heat transfer between water and a gas (hence heat transfer 

coefficients are relatively easy to predict). Capital cost data may be 

estimated using data for finned tube heat exchangers according to 

Best Practice Programme (2000) data 

Combination of various sources: 

 Use estimate heat transfer coefficients to size 

the coils 

 Use manufacturer recommendations for 

effectiveness to set the LMTD 

 Use manufacturer data for “typical” pressure 

drop 

 Size pump for carrier fluid using tubular 

pressure drop equations 

 Estimate capital cost using data for finned tube 

unit 

 See Figure 4.18 

GG-Plate Data from numerous manufacturers stating maximum 

effectiveness, maximum volumetric flow rate for varying size of 

units, typical pressure drops (for each size of unit). Source: Reay 

(1979) 

Use manufacturer data: 

 Select unit size based on volumetric flow of 

source/sink 

 Set outlet temperatures based on maximum 

effectiveness 

 Calculate pressure drop according to “typical” 

data 

See Figure 4.18 

(note: no accurate capital cost data available for this 

unit) 

Rotary 

Regenerator 

Data from numerous manufacturers stating maximum 

effectiveness, maximum volumetric flow rate for varying size of 

units, typical pressure drops (for each size of unit). Source: Reay 

(1979) 

Use manufacturer data: 

 Select unit size based on volumetric flow of 

source/sink 

 Set outlet temperatures based on maximum 

effectiveness 

 Calculate pressure drop according to “typical” 

data 

See Figure 4.18 

(note: no accurate capital cost data available for this 

unit) 

Welded Plate Data from Alfa Laval (2013) stating typical plate/overall unit sizes 

and maximum flow rates. Data from Best Practice Programme 

(2000) stating typical heat transfer coefficients for common fluid 

types, pressure drop equations and estimate cost functions. 

Combination of both data sources: 

 Use Best Practice Programme data to estimate 

overall heat transfer coefficients 

 Use log mean temperature difference method 

(LMTD) to size unit 

  Use Alfa Laval data to select best plate size and 

calculate physical dimensions of unit 

 Use Best Practice Programme data to estimate 

pressure drops 

See Figure 4.17 
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Shell and Tube Numerous data from a variety of sources stating design 

methodologies, typical shell/tube sizes, typical number of passes, 

pressure drop equations and overall heat transfer coefficients for 

common fluid types. Main sources: Coulson and Richardson (2005), 

TEMA (2013) and Best Practice Programme (2000). 

Combination of all data sources: 

 Use LMTD method and estimate heat transfer 

coefficients to size the unit 

 Select from “typical” shell and tube dimensions 

to calculate physical dimensions of unit 

 Use common equations to estimate pressure 

drops 

See Figure 4.17 

Gasketted Plate Data from Alfa Laval (2013) stating typical plate/overall unit sizes 

and maximum flow rates. Data from Best Practice Programme 

(2000) stating typical heat transfer coefficients for common fluid 

types and pressure drop equations and estimate cost functions. 

Combination of both data sources: 

 Use Best Practice Programme data to estimate 

overall heat transfer coefficients 

 Use log mean temperature difference method 

(LMTD) to size unit 

  Use Alfa Laval data to select best plate size and 

calculate physical dimensions of unit 

 Use Best Practice Programme data to estimate 

pressure drops 

See Figure 4.17 

Brazed Plate Data from Alfa Laval (2013) stating typical plate/overall unit sizes 

and maximum flow rates. Data from Best Practice Programme 

(2000) stating typical heat transfer coefficients for common fluid 

types and pressure drop equations and estimate cost functions. 

Combination of both data sources: 

 Use best practice programme data to estimate 

overall heat transfer coefficients 

 Use log mean temperature difference method 

(LMTD) to size unit 

  Use Alfa Laval data to select best plate size and 

calculate physical dimensions of unit 

 Use best practice programme data to estimate 

pressure drops 

See Figure 4.17 

Plate and Shell Data from Alfa Laval (2013) stating typical plate/overall unit sizes 

and maximum flow rates. Data from Best Practice Programme 

(2000) stating typical heat transfer coefficients for common fluid 

types for other plate units is assumed to be valid for this unit due 

to similar flow regimes. 

Combination of both data sources: 

 Use best practice programme data to estimate 

overall heat transfer coefficients 

 Use log mean temperature difference method 

(LMTD) to size unit 

  Use Alfa Laval data to select best plate size and 

calculate physical dimensions of unit 

See Figure 4.17 

(note: no accurate cost or pressure drop data available 

for this unit) 

Spiral Plate Very limited data for this unit. Heat transfer coefficient estimates 

are published by Best Practice Programme (2000). Data from Alfa 

Laval state typical unit sizes and throughputs. Correlations for 

capital cost and pressure drop factors do not exist in the public 

domain 

Combination of both data sources: 

 Use best practice programme data to estimate 

overall heat transfer coefficients 

 Use log mean temperature difference method 

(LMTD) to size unit 

  Use Alfa Laval data to select best plate size and 

calculate physical dimensions of unit 
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See Figure 4.17 

(note: no accurate cost or pressure drop data available 

for this unit) 

Finned-Tube Numerous data from a variety of sources stating design 

methodologies, typical shell/tube sizes, typical number of passes, 

pressure drop equations and overall heat transfer coefficients for 

common fluid types. Sources include Coulson and Richardson 

(2005), TEMA (2013) and Best Practice Programme (2000). 

Combination of all data sources: 

 Use LMTD method and estimate heat transfer 

coefficients to size the unit. Here fin pitch and 

type must be selected based on the type of 

liquid (and subsequent difference in heat 

transfer coefficients on each side). 

 Select from “typical” finned-tube and shell 

dimensions to calculate physical dimensions of 

unit 

 Use common equations to estimate pressure 

drops 

See Figure 4.17 

Note: Appendix II shows examples of the data acquired to aid the design of each type of unit 
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Decision trees detailing how the system then designs each type of unit (according to 

the brief description given in Table 4.6) are shown in Figures 4.18-4.20 overleaf. 

Figure 4.18 shows the design methodology for plate and tubular-type heat 

exchangers using a log meant temperature difference (LMTD) type method, Figure 

4.19 shows the design methodology for air-handling-type heat exchangers based on 

typical effectiveness according to manufacturer data and Figure 4.20 shows the 

methodology for calculating utility savings due to waste heat recovery and the 

subsequent economic/environmental benefits. 
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Figure 4.18. Design routine for tubular and plate-type heat exchangers 
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Figure 4.19. Design routine for air-handling-type heat exchangers 
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Figure 4.20. Routine for calculating utility savings and associated benefits in heat 
exchanger design 
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The list of equations relevant to Figures 4.18 - 4.20 is as follows: 

     
       

  
   

   

 oC Eq. 4.17 

  
 

       
 m2 Eq. 4.18 

   
   

 
  Eq. 4.19 

     [   (
 

  
)      ]       Pa Eq. 4.20 
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 kg/s Eq. 4.29 
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        kW Eq. 4.30 

       
     

      
 kW Eq. 4.31 
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                         kWh/year Eq. 4.32 

                             tCO2eq/year Eq. 4.33 

   
        

      
 Year Eq. 4.34 

                          kWh/year Eq. 4.35 

                            £/year Eq. 4.36 

                                £/year Eq. 4.37 

                                tCO2eq/year Eq. 4.38 

Note: (1) Eq. 4.23 and 4.24 represent the Reynolds number and pressure drop equations specifically 

for Alfa Laval plate heat exchangers. As Alfa Laval dimensions are used in the heat exchanger design, 

it is assumed this method is more accurate than “standard” pressure drop/Reynolds number 

equations; (2) In Eq. 4.25, for the case of the heat sink, replace source data with sink data; (3) in Eq. 

4.30 the pump efficiency is taken as 75%; (4) in Eq. 4.30 the “0.001” term is included to convert the 

units to kW from W; (5) in Eq. 4.31 the drive efficiency is taken as 95% 

 

4.4.3. Heat Pump and MVR Design 

Design routines for heat pumps and MVR are not as common as for heat exchangers 

(as discussed in Section 4.4.2). Therefore, methods must be created which 

encapsulate the following aspects: 

 Limitations of working fluids (temperature, pressure limits etc) (closed cycle 

vapour compression heat pumps only) 

 The minimum system COP required for the system to be profitable in terms 

of both economics and greenhouse gas emissions (as discussed in Section 

3.2.1) 

 An attempt to achieve user-requested target temperatures for the heat 

source/sink 

 The ability of the heat pump to provide simultaneous useful heating and 

cooling (closed cycle vapour compression heat pumps only) 
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 The ability of an MVR heat pump to accommodate existing heat exchangers 

thereby reducing the capital cost required of the system (where possible, 

this will be done and both results will be shown to the user) 

 

Only the standard cycle configurations are considered, as shown below in Figures 

4.21-4.23. This is deemed sufficient for cycle “first design”. It is assumed that any 

further optimization or inclusion of further heat exchangers would occur during full 

physical design.  

Note that for some working fluids, superheat is required at the compressor inlet to 

ensure a dry outlet feed. In such cases, the superheated cycle is used. For MVR 

design, two batch-type configurations were considered as shown in Figure 4.22 and 

4.23. Figure 4.22 shows the use of an internal heating coil to transfer heat to the 

boiling vessel, whereas Figure 4.23 shows the use of an external heat exchanger to 

transfer heat to the vessel. In MVR systems using an external heat exchanger 

(Figure 4.23), the recirculating fluid (from the evaporator) is kept at a certain 

pressure to ensure the heat exchanger outlet temperature is below the boiling 

point. Boiling then occurs upon re-entry to the vessel. 
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Figure 4.21. Standard vapour compression heat pump configuration 
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Figure 4.22. Standard MVR configuration with internal heating coils 
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Pevap, Tevap
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Pcondensate
Tcondensate

Supplementary Steam
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Motor

WcompPower Consumed

 

Figure 4.23. Standard MVR configuration with an external recirculation heat 
exchanger 

 

The methods created are displayed in the form of decision trees in Figures 4.24-4.26 

shown overleaf. Figure 4.24 shows the design method for closed cycle vapour 

compression heat pumps, Figure 4.25 shows the initial design stage for MVR to 

determine whether or not the existing heat exchanger may be used for MVR and 

Figure 4.26 shows the subsequent design procedure. 
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Figure 4.24. Design routine for close-cycle vapour compression heat pumps
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Figure 4.25. Routine to assess current heat exchanger suitability for MVR system
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Figure 4.26. Design routine for MVR 
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The following data/assumptions are used during the closed cycle vapour 

compression heat pump and MVR design procedures shown in Figures 4.24-4.26: 

 Compressor isentropic efficiency of 80%. 

 Motor efficiency of 95%. 

 Back-up steam in MVR is provided by a gas boiler of 75% efficiency 

 MVR heat exchangers are assumed to be copper coil for internal heating 

systems (with a 10oC typical approach temperature) and a gasketted plate 

heat exchanger (with a 5oC typical approach temperature) for external 

heating systems. 

 Working fluid data for close-cycle heat pumps and data for water/steam in 

MVR is provided by ASHRAE, 2009. See Appendix III for an example of the 

thermophysical data tables used. This data is programmed into the KBS 

database and the software can “look-up” the data as required. 

 Heat transfer coefficients required for calculations in MVR design 

(particularly when assessing whether the existing heat exchanger is suitable 

for the new MVR duty) is taken from Coulson and Richardson, 2005. 

 Capital cost factors for close-cycle heat pumps are taken from the US 

Department of Energy, 2008. Historical currency conversion data and the 

engineering price indices (The Engineer, 2013; Coulson and Richardson, 2005) 

are used to create cost factors valid in the UK at the present date. 

 Compressor cost factors for MVR are taken from Coulson and Richardson, 

2005. Again, engineering price indices are used to create cost factors valid 

for the present date. 

 An overall system cost factor for MVR is used to account for key ancillary 

equipment such as de-misters, piping and civil engineering. This is taken 

from Allen et al, 1983, as 2 times the compressor cost. 

 Maintenance cost factors for MVR and vapour compression heat pumps are 

taken from Coulson and Richardson, 2005. 

 The compressor type is assumed to be centrifugal with a max. single stage 

pressure ratio of 2.8. The maximum number of stages for MVR systems is 1 

as steam compressors command a higher capital cost than closed cycle 
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vapour compression heat pumps due to the low volumetric capacity of 

steam compared to typical working fluids (HFC’s etc). Brotherton (2012) 

states that MVR project profitability is severely reduced if the number of 

MVR compression stages is greater than 1, hence, here the maximum is 

limited to 1 stage. 

 Heating coil cost factors (for MVR internal heating systems) are taken from 

Coulson and Richardson, 2005. Gasketted plate heat exchanger cost factors 

are taken from the Best Practice Programme (2000), as described in Section 

4.4.2. 

 

The list of equations relevant to Figure 4.24-4.26 is as follows: 

              
     

                   
  Eq. 4.39 
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            (                    )               
 kg/s Eq. 4.48 

                        (                    )

               

kW Eq. 4.49 

                                     kW Eq. 4.50 

                                 kW Eq. 4.51 

       
     

      
 kW Eq. 4.52 

        
        

     
  Eq. 4.53 

                                kWh/year Eq. 4.54 

                                        £/year Eq. 4.55 

                                         tCO2eq/year Eq. 4.56 

       
       

          
 

       

  
 kg/s Eq. 4.57 

                                         £/year Eq. 4.58 

                       
       

          
        kWh/year Eq. 4.59 

                           kWh/year Eq. 4.60 

                                £ Eq. 4.61 

                                         £/year Eq. 4.62 

   
        

                  
 

Year 
Eq. 4.63 

              kW Eq. 4.64 

  
 

         
 m2 Eq. 4.65 

             
 

      
       oC Eq. 4.66 
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 oC Eq. 4.67 

                    kW Eq. 4.68 

                                              kW Eq. 4.69 

                        kW Eq. 4.70 

            
           

      
 kg/s Eq. 4.71 

    
     

      
  Eq. 4.72 

                   
           

    
        kWh/year Eq. 4.73 

                                              £ Eq. 4.74 

                               £ Eq. 4.75 

     (                               )               £ Eq. 4.76 

Note: (1) The KBS does not consider renewable heat levies, hence Eq. 4.39 only considers utility costs. 

(2) In Eq. 4.44 the temperature is in Kelvin but is displayed in 
o
C throughout other areas. A sub-

routine is programmed into the KBS to alter units where necessary. (3) The number of compression 

stages (Eq. 4.53) is rounded up to a whole number. (4) In Eq. 4.57, plant cooling water is assumed to 

allow a temperature change of 10
o
C. (5) In Eq. 4.71 if the additional duty required is less than 0, this 

is set to 0. (6)In Eq. 4.53 “2.8” is the max. pressure ratio of a centrifugal type compressor. This 

constant would vary if using a different compressor. 

 

4.4.4. Organic Rankine Cycle Design 

Design routines for organic Rankine cycles are not as common as for heat 

exchangers (as discussed in Section 4.4.2). Therefore, a method must be created 

which encapsulates the following aspects: 

 Limitations of working fluids (temperature, pressure limits etc)  

 Maximising the net power output. This is chosen rather than the thermal 

efficiency as waste heat is taken as a free resource (in terms of both 
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emissions and cost). Therefore, project economics and greenhouse gas 

reductions are proportional only to the net power output, rather than the 

thermal efficiency 

 An attempt to achieve the user-defined heat source target temperature 

Only the standard organic Rankine cycle configuration is considered, as shown 

below in Figure 4.27. This is deemed sufficient for a “first design” of the cycle. It is 

assumed that any further optimization or inclusion of further heat exchangers (such 

as a recuperator) would occur during full physical design. Note: for some working 

fluids (R245fa, R600) superheat is required at the turbine inlet to ensure a dry 

outlet feed. In such cases, the superheated cycle is used. Further discussion of 

organic Rankine cycle configurations is provided in Sections 2.2.3 and 3.3.2. 

 

Pump

Condenser

Turbine/Generator

3

41

2

Waste Heat

Evaporator

Rejected Heat

Electricity

 

Figure 4.27. Standard ORC configuration 

 

The methods created for automated ORC design are shown overleaf in Figure 4.28-

4.29. Figure 4.28 is for heat sources with either sensible heat only (liquid or non-

condensable gas) or humid air heat sources while Figure 4.29 is for (isothermal) 

condensing vapour heat sources. 
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Figure 4.28. Design routine for ORC with heat sources containing sensible heat only or humid air heat sources 
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Figure 4.29. Design routine for ORC with condensing vapour heat sources 
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The following data/assumptions are used during the ORC design procedures shown 

in Figures 4.28-4.29: 

 Turbine isentropic efficiency of 85%. 

 Generator efficiency of 95%. 

 Pump efficiency of 75%. Pump motor efficiency of 95%. 

 5oC minimum approach (or “pinch”) temperature in heat exchangers. 

 Working fluid data is provided by ASHRAE, 2009. See Appendix III for an 

example of the thermophysical data tables used. This data is programmed 

into the KBS database and the software can “look-up” the data as required. 

 Capital cost factors are taken from the US Department of Energy, 2008. 

Historical currency conversion data and the engineering price indices (The 

Engineer, 2013; Coulson and Richardson, 2005) are used to create cost 

factors valid in the UK at the present date. 

 

The list of equations relevant to Figure 4.28-4.29 is as follows: 
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 K Eq. 4.78 
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 kg/s Eq. 4.84 

      
      

      

           

     
 kW Eq. 4.85 

                        kW Eq. 4.86 

                      kW Eq. 4.87 

         
    

     
  Eq. 4.88 

     
     

               
 kW Eq. 4.89 

                          £ Eq. 4.90 

                                         £/year Eq. 4.91 

                                    kWh Eq. 4.92 

                                                   £/year Eq. 4.93 

                                                     tCO2eq/year Eq. 4.94 

   
        

                              
 

Year 
Eq. 4.95 

                                              kW Eq. 4.96 

Note: (1) In Eq. 4.85, pressure is in kPa rather than bar. The KBS has a routine to change units where 

required. 

 

4.5. Chapter Conclusions 

This chapter has presented methods for the selection and design of equipment for 

the recovery of low-grade industrial waste heat and thereby forms the equation, 

logic and methods of the knowledge-based system presented in this thesis. 

The programming of this data into the knowledge based system is described in the 

next chapter, Chapter 5: System Programming. 
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Chapter 5 

This chapter covers the programming and compilation of the knowledge-based 

system using a suitable computer language. The choice of programming language is 

discussed, along with screenshots of the graphical user interface produced. 

 

5. System Programming 

The programming of the system is a key step in the overall production of the KBS 

and must lead to a programme that adheres to the rules set out in the scope of the 

system in Section 1.3.1.  

As the system equations, logic and methods have already been devised (Chapter 4), 

the key step here is the selection of a suitable programming language. The selected 

language must allow the production of a clear and functional user interface, whilst 

allowing wide, preferably free, dissemination into the public domain. This is covered 

in Section 5.1, while Section 5.2 briefly discusses some example code (found in 

Appendix IV) and Section 5.3 shows screen shots of the system GUI. 

 

5.1. Selection of Suitable Programming Language 

A number of programming languages and techniques were considered for use in 

writing the software including Java, C++, Matlab and Visual Basic. Java was chosen 

according to design constraint number 4 (see Section 1.3.1): for ease of 

dissemination into the public domain. Java allows the developer to write and 

compile code which may be ran anywhere and everywhere - write once, run 

anywhere/everywhere (WORA/WORE) (Lewis and Loftus, 2005). Therefore, 

developed java applications will run on any operating system which supports the 

java runtime environment without further compilation. This includes Linux, Solaris, 

Windows and Mac OS (Lewis and Loftus, 2005). Furthermore, the java runtime 
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environment is available as a free download, meaning that there would be no 

financial constraints on the dissemination of the software. 

This gave java a distinct advantage over the other options considered. For example, 

C++ programming operates according to the write once, compile anywhere (WOCA) 

principle. Therefore, a different version would have to be created for each different 

type of operating system, or the end user would be required to compile the code 

prior to running the software.  Visual Basic programs are only available for use on 

the Windows operating system, therefore multi-platform dissemination using this 

language would not be possible. Finally, any code written in Matlab would require 

the user to have a Matlab license in order to run the software. This would create a 

financial constraint which would be detrimental to the use of the system. 

Other advantages of using Java to write this system are summarised in Table 5.1 

below. [Note: information taken from a combination of sources (Lewis and Loftus, 

2005; Oracle, 2013) and the authors own experience].  

 

Table 5.1. .Summary of advantages of the java programming language for the KBS 
(Adapted from Lewis and Loftus, 2005; Oracle, 2013; authors knowledge) 

Ease of use Java is relatively simple to learn, write, 

compile and debug. This allows more 

time to be focussed on the technical 

(engineering) content of the program. 

Object-Oriented Language This allows the creation of modular and 

reusable code. This is useful for this 

system as a lot of design code will be 

shared between the different types of 

heat exchangers, for example. 

Platform Independence As discussed above. 

Security Java was developed with safety in mind. 

The result of this is that online 

downloads of Java programs may be 
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trusted - crucial for ease of 

dissemination via the web. 

Robustness The Java compiler places emphasis on 

early detection of errors. This allows 

more time to be focussed on the 

technical (engineering) content of the 

program. 

Graphical user interface Java allows the use of commonly known 

HTML tags to build up the graphical user 

interface. This allows a simple, 

functional interface to be created with 

relative ease 

 

5.1. Example Code 

An example of the java code written for this system is shown in Appendix IV. Note: 

this code corresponds to the section of the system knowledge-base depicted in 

Figures 4.14-4.16 in Section 4.4.2.  

 

5.2. System User Interface 

The system user interface is designed to be both simple and functional. i.e, it must 

be simple to use and navigate, and it must display all of the required data fields (for 

example, all of the required data input to the system and also all of the required 

results data). 

Figure 5.1 below shows the system home screen, Figure 5.2 shows the initial user 

questions screen designed to guide the user towards the correct type of waste heat 

recovery technology (as depicted by the part of the system knowledge-base shown 

in Figure 4.2-4.3, Section 4.3.1), Figure 5.3 shows an example of the data input 

screen (for an organic Rankine cycle system), Figure 5.4 shows an example of the 

general results screen (again, for an organic Rankine cycle system) and Figure 5.5 

shows an example of detailed process flow diagram results (again for an organic 
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Rankine cycle system). Note: Figures 5.1-5.4 are representative of the steps taken in 

Case Study 1 shown in Section 6.1. 

 

Figure 5.1. KBS home screen 

 

Figure 5.1 shows the KBS home screen. The interface is designed to be basic and 

functional, displaying key data and points in an ordered manner. This screen briefly 

introduces the software and features a “start” button which launches the main 

application. 
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Figure 5.2. KBS initial user questions 

 

Figure 5.2 shows the initial questions the user is asked in order to select which 

categories of waste heat recovery technology it is possible to use in the case study 

(as described in Figures 4.2-4.3 in Section 4.3.1). In this case, the user has selected 

that no heat sinks have been identified, in which case only “Electricity Generation” 

is possible. Hence, the “Start” button underneath “Electricity Generation” is 

activated. The GUI is, again, simple and functional with clear questions given in the 

black font and explanation of the decisions displayed in the blue font. 
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Figure 5.3. KBS data input (ORC) 

 

Figure 5.3 shows the source data input required for the system to design an ORC. 

Note that this differs for each type of technology, and further screenshots are 

shown in Appendix V. Here, the user has inputted the required data, ran the data 

check process and hit the start button. The data did not contain any errors, hence 

“Data Input OK, Proceed” is displayed on the screen and the user was able to press 

the “Start” button. The “Results” button is now activated as the KBS has generated 

results for the case study. 
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Figure 5.4. KBS results (ORC) 

 

Figure 5.4 shows the results generated during ORC design.. Note that the results 

differ for each type of technology, and further screenshots are shown in Appendix V. 

The user has the option to “Print” the results screen, and also view a cycle 

schematic (as shown in Figure 5.5). 
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Figure 5.5. KBS process flow diagram of results (ORC) 

 

Figure 5.5 shows a process flow diagram of the cycle designed by the KBS. The 

screen is, again, simple but functional and displays all of the required data. Note 

that the process flow diagram screen differs for each type of technology, and 

further screenshots are shown in Appendix V. The user again has an option to “Print” 

these results. 

Figures 5.1-5.5 show that the GUI is simple but functional, therefore making the 

system easy to use. The GUI also features all of the necessary data entry fields and 

results as set out in Section 4.4.1. 
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Further screenshots from various case studies are shown in Appendix V. Further 

details about the corresponding case studies can be found in Chapter 6. 

 

5.3. Chapter Conclusions 

A number of programming languages were considered for use including Java, C++, 

and Visual Basic. Java was selected for use because of a number of key factors 

including ease of dissemination (due to the “write once, run anywhere” nature of 

the language), ease of use and the robustness of the language. 

A simple but functional GUI has been created which clearly defines the user data 

input requirements, provides explanation of the system decisions and displays all of 

the required system results. 
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Chapter 6 

This chapter covers testing of the knowledge-based system via case studies. The 

case studies were based on both published literature and original data from 

industrial partners.  

6. Testing of Knowledge-Based System 

Testing the knowledge-based system (KBS) was necessary in order to assess the 

success of the system in terms of making a positive contribution to the methods 

and tools available to aid industrial waste heat recovery, and comparing the final 

system to the criteria set out in the scope of the system ( Section 1.3.1). 

Testing was completed via 5 case studies (summarised in Table 6.1) which were 

chosen to cover a broad range of the process industry subsectors and scenarios. The 

case study results also covered the 4 main recovery technologies in the system 

knowledge-base: heat exchangers, heat pumps (closed-cycle vapour compression), 

mechanical vapour recompression and organic Rankine cycles. Hence, results for 

each of the included technology groups are analysed. The case studies are a 

combination of existing published case-studies and new case-studies provided by 

collaborative partners.  

 

Table 6.1. Summary of case studies 

Case Study Reference Process Industry 

Sector 

Primary 

technology 

category 

1. Potato Crisp 

Production 

Aneke et al (2012) 

Aneke (2012) 

Food and beverage Electricity 

generation: ORC 

2. Textile 

Production 

Pulat et al (2009)  Textiles Heat transfer to 

matching heat 
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sink: heat 

exchanger; 

Electricity 

generation: ORC 

3. Industrial 

Washing Process 

Paarske (2011) Metal Products Heat upgrade: 

vapour 

compression heat 

pump 

4. Brewery N/A: Original Case 

Study 

Food and beverage Heat upgrade: 

mechanical vapour 

recompression 

5.Inorganic 

Chemical 

Production  

N/A: Original Case 

Study 

Chemicals Heat transfer to 

matching heat 

sink: heat 

exchanger; 

Electricity 

generation: ORC 

 

6.1. Case Study 1: Potato Crisp Production 

This case study was originally published by Aneke et al (2012) and is further 

investigated in the thesis by Aneke (2012) which provided additional information, 

particularly economic and carbon emission data. This was a theoretical case study, 

with modelling results generated using the IPSEpro (SimTech, 2013) modelling 

package. However, it was based on real process data from a food processing plant 

in the UK. 

 

6.1.1. Case Study Summary 

Waste heat recovery was investigated in a UK food processing plant producing 

potato crisps. The main area of interest was the frying process, the most energy 
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intensive process in the plant. A process flow diagram of the fryer is shown in Figure 

6.1. 

 

Figure 6.1. Process flow diagram of “fryer” from case study 1(Aneke et al, 2012) 

 

Two main heat sources were identified and are denoted by large green arrows in 

Figure 6.1: the “Exhaust Gas to Stack” [leaving the “heat exchanger”] and the “Foul 

Gas” [leaving the “FRYER”]. No suitable heat sinks were identified to allow waste 

heat recovery via a heat exchanger or heat pump, hence it was decided that waste-

heat driven electricity generation should be investigated. 

However, it was not stated whether or not other methods of recovery were 

investigated. For example, most food processing plants require large quantities of 

hot wash water and it could be hypothesized that an opportunity for waste heat 

recovery via a heat exchanger may have been possible. In this case, only the data as 

presented can be considered, and so it must be concluded that the authors 

considered all options for waste heat recovery to find that electricity generation 

was the only valid option for waste heat recovery. 
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6.1.2. Source/Sink Data Provided 

Tables 6.2 and 6.3 below show data for the two heat sources, and the heat sinks 

available for use in the condenser end of the ORC. 

 

Table 6.2. Case study 1: source/sink data for foul gas (Aneke et al, 2012) 

Heat Source Name Foul Gas 

Heat Source Nature Non-condensable gas1 

Heat Source Temperature (o C) 120 

Heat Source Target Temperature (oC) 87.01 

Heat Source Specific Heat Capacity (kJ/kgK) 1.548 

Heat Source Mass Flow Rate (kg/s) 3.17 

Heat Sink Nature Liquid (water) 

Heat Sink Temperature (o C) 6.00 

Heat Sink Specific Heat Capacity (kJ/kgK) 4.20 

1The paper stated it is “desirable” to operate above the dew point of the foul gas. This is 

assumed to be upon request of the host plant and is therefore taken as the source target 

temperature, and the source is treated as a non-condensable gas. 

 

Table 6.3. Case study 1: source/sink data for exhaust gas (Aneke et al, 2012) 

Heat Source Name Exhaust Gas 

Heat Source Nature Non-condensable gas1 

Heat Source Temperature (o C) 164 

Heat Source Target Temperature (oC) 80.01 

Heat Source Specific Heat Capacity (kJ/kgK) 1.388 

Heat Source Mass Flow Rate (kg/s) 10.5 

Heat Sink Nature Liquid (water) 

Heat Sink Temperature (o C) 6.00 

Heat Sink Specific Heat Capacity (kJ/kgK) 4.20 
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1The paper stated it is “desirable” to operate above the dew point of the exhaust gas. This 

is assumed to be upon request of the host plant and is therefore taken as the source target 

temperature, and the source is treated as a non-condensable gas. 

Table 6.4 shows general plant data from Aneke (2012), including plant hours of 

operation, utility costs and plant tolerance to harmful working fluid properties 

 

Table 6.4. Case study 1: general plant data (Aneke, 2012) 

Plant hours of operation (hours/year) 7000 

Cost of electricity  (£GBP/kWh) 0.1131 

Plant tolerant to toxic working fluids (according to ASHRAE 

safety classification “B”) 

Yes2 

Plant tolerant to flammable working fluids (according to 

ASHRAE safety classification “3”) 

No2 

1The current cost of electricity at the plant is not discussed here. In the economic 

evaluation, the authors compared project value over a range of hypothesized electricity 

prices ranging from 0.01£/kWh to 0.35 £/kWh. Hence, for this case study the cost of 

electricity is obtained from DECC (Department for Energy and Climate Change) and is taken 

as £0.113 £/kWh (DECC (c), 2013). 2Working fluid selection with regards to plant constraints 

is not discussed (the author simply compares R-245a to R134a, the “two industry standards” 

and conclude R-245fa has a more useful operating range). However, it is assumed the plant 

may tolerate B-class working fluids as R-245fa is used in the paper. It is also assumed that 

the plant would not tolerate “3-class”, highly flammable fluids, as food processing sites may 

not have the health and safety measures in place to deal with such hazardous materials.  

 

6.1.3. Results and Discussion 

In the published results (in both the journal article and the thesis), the aim was to 

optimize the net power output of the system by integration of both sources into the 

same cycle. Five cycles were produced as follows: 

1. Single source cycle using “Foul Gas” source 

2. Single source cycle using “Exhaust Gas” source 
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3. Dual source using two sources in parallel and one turbine. “Foul Gas” source 

provides pre-heating and “Exhaust Gas” source drives evaporation 

4. Dual source using two sources in parallel and one turbine. “Exhaust Gas” source 

provides pre-heating and “Foul Gas” source drives evaporation 

5. Dual source using two heat exchanger-turbine combinations in a re-heat cycle 

configuration. “Exhaust Gas” source drives the initial pre-heat/evaporation for 

the “high pressure turbine” and the “foul gas” re-heats the exit vapour which 

then drives the low-pressure turbine. 

Figure 6.2 below shows the “dual heat exchanger” cycles described by cycles 3 and 

4 above, and Figure 6.3 shows the “re-heat” cycle described by cycle 5 above. Cycles 

1 and 2 are standard single-source cycles described numerous times previously (for 

example Figure 3.20, Section 3.3.2 and Figure 4.27, Section 4.4.4). 

 

 

Figure 6.2. Dual source ORC using two heat exchangers in parallel (adapted from 
Aneke et al, 2012) 
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Figure 6.3. Dual source ORC using a dual turbine re-heat cycle (adapted from 
Aneke et al, 2012) 

 

The cycles were modelled using IPSEpro (SimTech 2013). In all cases, the models 

were optimised for maximum power generation according to the following 

constraints: 

 Minimum pinch point in evaporator of 5oC 

 4oC temperature rise in cooling water 

 Saturated vapour at turbine inlet 

 Heat source outlet temperature greater than dew point 

As the KBS only considers standard ORC cycles, only the results of cycles 1 and 2 are 

used for comparison. The dual source cycles are considered to be novel, optimised 

cycles and as such are out of the scope of the system. The relevant results by Aneke 

et al are displayed in Tables 6.5 and 6.6 below. 
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Table 6.5. Technical results for foul gas heat source (Aneke et al, 2012) 

Working Fluid R-245fa 

Heat Source Inlet Temperature (o C) 120 

Heat Source Outlet Temperature (o C) 87.0 

Pre-heater + Evaporator Duty (kW) 162 

Heat Sink Inlet Temperature (o C) 6.00 

Heat Sink Outlet Temperature (o C) 10.0 

Condenser Duty (kW) 138 

Heat Sink Mass Flow Rate (kg/s) 8.23 

Working Fluid Mass Flow Rate (kg/s) 0.618 

Working Fluid Turbine Inlet Temperature (o C) 99.6 

Working Fluid Turbine Inlet Pressure (bar) 12.5 

Working Fluid Turbine Outlet Temperature (o C) 40.7 

Working Fluid Turbine Outlet Pressure (bar) 1.02 

Working Fluid Condensation Temperature (o C) 12.6 

Plant Gross Power Output (kW) 23.1 

Working Fluid Pump Power (kW) 1.03 

Net Power Output (kW) 22.1 

Plant Thermal Efficiency (%) 14.0 

 

Table 6.6. Technical results for exhaust gas heat source (Aneke et al, 2012) 

Working Fluid R-245fa 

Heat Source Inlet Temperature (o C) 164 

Heat Source Outlet Temperature (o C) 80.1 

Pre-heater + Evaporator Duty (kW) 1223 

Heat Sink Inlet Temperature (o C) 6.00 

Heat Sink Outlet Temperature (o C) 10.0 

Condenser Duty (kW) 1011 

Heat Sink Mass Flow rate (kg/s) 60.2 

Working Fluid Mass Flow Rate (kg/s) 4.40 
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Working Fluid Turbine Inlet Temperature (o C) 133.6 

Working Fluid Turbine Inlet Pressure (bar) 25.0 

Working Fluid Turbine Outlet Temperature (o C) 47.5 

Working Fluid Turbine Outlet Pressure (bar) 1.024 

Working Fluid Condensation Temperature (o C) 12.6 

Plant Gross Power Output (kW) 208.7 

Working Fluid Pump Power (kW) 15.2 

Net Power Output (kW) 193.5 

Plant Thermal Efficiency (%) 16.0 

 

The case study source, sink and general plant data displayed in Tables 6.2-6.4 was 

used to run the knowledge based system, and the results are as follows. Note that 

screen shots from this case study are shown in Figures 5.1-5.5 in Section 5.2. 

Table 6.7 shows the results from the first stage of technology selection, whereby 

the general categories of waste heat recovery technology are selected for the case 

study. These results show that the KBS found that waste-heat driven electricity 

generation (via an organic Rankine cycle) is the only option in this case study. This is 

in agreement with that of the Aneke et al (2012) and Aneke (2012). 

 

Table 6.7. Case study 1: KBS initial selection results 

  Reason 

Heat Exchanger Heat Recovery 

Possible 

No No matching heat sink 

Closed-Cycle Vapour Compression 

Heat Pump Possible 

No No heat sink within 

reasonable temperature 

lift 

Mechanical Vapour 

Recompression Possible 

No Not an evaporative 

process 

Organic Rankine Cycle Possible Yes N/A 
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Tables 6.8 and 6.9 below show the technical results generated by the KBS and 

comments comparing the data to that in the published case study. 

Table 6.8. Case study 1: KBS technical results for foul gas heat source 

  Comment on comparison 

with published data 

Working Fluid R-

245fa 

Equal 

Source Inlet Temperature (o C) 120 N/A 

Heat Source Outlet Temperature (o C) 87.0 Approximately equal (<1% 

larger [compared to 

ambient]) 

Pre-heater + Evaporator Duty (kW) 162 Approximately  equal (<1% 

smaller) 

Heat Sink Inlet Temperature (o C) 6.00 N/A 

Heat Sink Outlet Temperature (o C) 16.0 Higher (by 6 oC) 

Condenser Duty (kW) 141 Larger (2.2%) 

Heat Sink Mass Flow Rate (kg/s) 3.36 Smaller (59.2%) 

Working Fluid Mass Flow Rate (kg/s) 0.66 Larger (6.8%) 

Working Fluid Turbine Inlet Temperature (o 

C) 

96.2 Lower (by 3.4 oC) 

Working Fluid Turbine Inlet Pressure (bar) 11.5 Lower (by 1 bar) 

Working Fluid Turbine Outlet Temperature 

(o C) 

42.1 Higher (by 1.4 oC) 

Working Fluid Turbine Outlet Pressure (bar) 1.34 Higher (by 0.32 bar) 

Working Fluid Condensation Temperature (o 

C) 

21.0 Higher (by 8.4 oC) 

Plant Gross Power Output (kW) 20.9 Lower (9.7%) 

Working Fluid Pump Power (kW) 0.70 Lower (32%) 

Net Power Output (kW) 20.2 Lower (8.8%) 
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Plant Thermal Efficiency (%) 12.5 Lower (11%) 

 

Table 6.9. Case study 1: KBS technical results for exhaust gas heat source 

  Comment on comparison 

with published data 

Working Fluid R-245fa Equal 

Source Inlet Temperature (o C) 164.0 N/A 

Heat Source Outlet Temperature (o C) 80.0 Approximately equal (<1% 

smaller [compared to 

ambient] 

Pre-heater + Evaporator Duty (kW) 1223 Approximately equal (<1% 

smaller) 

Heat Sink Inlet Temperature (o C) 6.00 N/A 

Heat Sink Outlet Temperature (o C) 16.0 Higher (by 6 oC) 

Condenser Duty (kW) 1068 Larger (5.7%) 

Heat Sink Mass Flow Rate (kg/s) 25.4 Smaller (57.8%) 

Working Fluid Mass Flow Rate (kg/s) 4.81 Larger (9.3%) 

Working Fluid Turbine Inlet Temperature 

(o C) 

126 Lower (by 7.4 oC) 

Working Fluid Turbine Inlet Pressure (bar) 21.6 Higher (by 3.4 bar) 

Working Fluid Turbine Outlet Temperature 

(o C) 

50.5 Higher (by 3 oC) 

Working Fluid Turbine Outlet Pressure 

(bar) 

1.34 Higher (by 0.32 bar) 

Working Fluid Condensation Temperature 

(o C) 

21.0 Higher (by 8.4 oC) 

Plant Gross Power Output (kW) 167 Lower (20.0%) 

Working Fluid Pump Power (kW) 10.2 Lower (19.1%) 

Net Power Output (kW) 156 Lower (19.0%) 

Plant Thermal Efficiency (%) 12.8 Lower (19.9%) 
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The results show a very good match between the KBS cycle results and those 

generated using IPSEpro by Aneke et al, for both cases. The relatively simple 

optimisation strategy used in the KBS, which alters the evaporation temperature of 

the working fluid by reducing it incrementally, finds an optimum extremely close to 

that of the published results (KBS turbine inlet temperature within 3.5oC for foul gas, 

and within 7.4oC for the exhaust gas). 

The main difference between the results lies in the turbine outlet temperature, 

condensation temperature, working fluid mass flow rate and heat sink results. This 

ultimately culminates in a relatively large difference between the net power output 

results for the KBS and published results (8.8% for the foul gas and 19.9% for the 

exhaust gas source).  

This difference, however, is explained by the model assumptions rather than errors 

in the KBS methodology. Aneke et al assume only a 4oC rise in the cooling water, 

while the KBS assumes 10oC. Furthermore, the model in the KBS assumes a pinch 

point of 5oC in the condenser, while the results by Aneke et al show a pinch point of 

around 3oC. Therefore, the model by Aneke et al allows a significantly lower 

condensation temperature and pressure than the model in the KBS (12.6oC/1.02bar 

as opposed to 21oC/1.34bar). This explains the difference in heat sink flow rate 

(according to Equation 6.1 & 6.2 below), working fluid flow rate (according to 

Equation 6.3 below), gross power output (according to Equation 6.4 below), net 

power output (according to Equation 6.5 below) and thermal efficiency (according 

to Equation 6.6 below). 

                      (      (               ))

                   

kW Eq. 6.1 

   

      
               (      (               ))

            
 

kg/s Eq. 6.2 

 

The heat sink mass flow rate (msink) in the results by Aneke et al is larger than in 

those by the KBS as it is inversely proportional to the temperature change in the 
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heat sink (ΔTsink). Furthermore, the temperature change between the turbine outlet 

(Tturb,out)  and condensation point (Tcond) is larger, as is the latent heat of 

vaporisation (ΔHvap,ref) at lower temperatures (although this difference is minimal). 

     
     

                            
 

 

Note: Qevap is equal to the source duty 

kg/s Eq. 6.3 

 

The refrigerant mass flow rate (mref) is equal to the pre-heater/evaporator duty 

(Qevap) (determined from the heat available in the heat source) divided by the 

specific sensible (Cpref * (Tevap – Tcond)) and latent heat (ΔHvap,ref) required to fully 

evaporate the working fluid. In the results by Aneke et al the temperature change is 

significantly larger than in the results generated by the KBS, while the difference in 

latent heat of vaporisation is minimal. Hence, the working fluid mass flow rate is 

larger in the results by Aneke et al. 

 

                                      kW Eq. 6.4 

 

                  kW Eq. 6.5 

 

The gross power output (Wgross) in the results by Aneke et al is larger than in the 

results generated by the KBS as, firstly, the turbine inlet temperature/pressure is 

larger, which leads to a greater specific enthalpy at the turbine inlet (Hturb,in), and 

secondly, the turbine outlet pressure is smaller which leads to a smaller specific 

enthalpy at the turbine outlet (Hturb,out). The generator efficiency (ηgen) is also 

assumed to be higher by Aneke et al (96% as opposed to 95%). This also leads to a 

larger net power output (Wnet) as the difference in pumping power (Wpump) is 

insignificant. 
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 - Eq. 6.6 

 

The thermal efficiency (ηthermal) in the results by Aneke et al is also larger due to the 

larger net power output (Wnet) and approximately equal pre-heater/evaporator 

duty (Qevap), due to the source duties being approximately equal. 

These results suggest that it may be beneficial to change the model assumptions in 

the KBS in order to produce solutions approaching the optimal, as presented by 

Aneke et al. However, in this case the conservative assumptions are beneficial to 

the overall aims of the software. The KBS is designed to provide only a “first” design, 

hence the use of conservative assumptions is advised. The results may then be later 

optimised. The case for this is strengthened when one considers the results for the 

condenser end of the cycle presented by Aneke et al. Here, for the exhaust gas heat 

source, 60.2 kg/s of cooling water is required (approximately 217 tonnes /hour). 

Such a large water requirement may seem excessive to some users, particular those 

who are new to organic Rankine cycle waste heat recovery. Furthermore, the pinch 

point of 3.2oC used by Aneke et al would necessitate very large heat exchangers. 

Whilst it is not argued that this was not acceptable at the plant in question, it may 

not be suitable for every process plant.  

Therefore, it is concluded that it is best to maintain conservative assumptions in the 

KBS while noting that further optimisation could be completed later, once the user 

has decided that an ORC machine would be beneficial at their site. This further 

optimisation may lead to smaller condenser pinch points and heat sink temperature 

rise according to the requirements/limitations of the host plant. 

Economic and environmental results for this case study are presented by Aneke 

(2012) in the PhD thesis. However, this is only provided for the dual-heat source 

cycle (with foul gas providing pre-heating, exhaust gas providing evaporation heat) 

is considered. Hence, a direct comparison is not possible with the KBS results. 

However, it should be noted that the dual source results are analogous to the 

exhaust gas results. Both cycles are gas-source driven ORC cycles, hence the only 
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difference is that a larger quantity of waste heat is available, necessitating larger 

equipment. Therefore, the results are comparable as long as the difference in size is 

accounted for. 

The economic results presented by Aneke are shown in Table 6.10 below and the 

results for the key cycle units are shown in Table 6.11 along with a comparison to 

the results generated by the KBS for exhaust gas case study. 

 

Table 6.10. Case study 1: Comparison of economic and environmental results by 
the KBS and Aneke et al (2012) 

 Aneke 

(2012) 

Dual Source 

KBS Results 

Exhaust Gas 

Source 

Estimate Capital Cost (£GBP) 525990 421792 

Estimate Maintenance Cost (£GBP/year) 10520 8436 

Estimate Cost Savings (£GBP/year) 157725 124004 

Estimate Payback Period (years) 3.57 3.65 

Estimate Carbon Dioxide Reductions 

(tCO2eq/year) 

549.9 575.7 

 

Table 6.11. Case study 1: Comparison of key unit duty of KBS exhaust gas results 
and dual source results by Aneke (2012) 

 Aneke 

(2012) 

Dual 

Source 

KBS Results 

Exhaust Gas 

Source 

Comment on 

comparison with 

published data 

Pre-heater/Evaporator Duty 

(kW) 

1385.4 1223.2 Smaller (11.7%) 

Gross Power Output (kW) 214.6 166.97 Smaller (22.2%) 

Turbine Inlet Temperature 

(oC) 

127.0 126.2 Approximately 

equal 
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Pump Power (kW) 15.2 10.2 Smaller (32.9%) 

Condenser Duty (kW) 1175.5 1068.1 Smaller (9.1%) 

 

The capital cost of the dual source ORC system by Aneke is expectedly larger than 

the capital cost estimate of the single source system calculated by the KBS. If the 

concept of dual source is ignored in this analysis, and it is seen simply as a gas-

source ORC then the difference in capital cost can be explained by the difference in 

size of each unit (in terms of duty).  

In the KBS single-source results (exhaust gas source) each of the required duties is 

smaller. The pre-heater/evaporator is 11.7% smaller (in terms of duty, which would 

approximately correspond to area as the heat transfer coefficients and pinch points 

are equal between the two cases). The gross power output (or turbine work) is 22.2% 

smaller for approximately the same inlet temperature/pressure (hence the specific 

volume of the refrigerant would be equal and the physical size difference would be 

correlated to the mass flow through the turbine and the subsequent work 

generated). The pump power is 32.9 % smaller (for approximately the same 

pressure change, hence this can be correlated to mass flow rate and physical size). 

Finally, the condenser duty is 9.1% smaller (in terms of duty, which would 

approximately correspond to area as the heat transfer coefficients are similar 

between the two cases). This data leads to the conclusion that the physical size of 

the equipment required in the case by Aneke would be larger than the single-source 

case investigated by the KBS. Hence, the capital cost is larger. 

The ratio of capital cost to cost savings remains approximately equal, as the project 

payback periods are 3.57 (Aneke) and 3.65 (KBS), a difference of only 2.2%. 

The only large discrepancy between the results is the greenhouse gas reductions 

achieved by the ORC installation. Here, one would expect the greenhouse gas 

emission savings generated by the KBS to be lower due to the smaller net power 

output of this system. However, it is larger (575.7 as opposed to 549.9 tCO2eq/year). 

This is explained by different emissions factors assumed by each method. Aneke 

used a method based on a mass balance of an “energy mix” power plant which 
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resulted in an emissions factor of 0.394kg/kWh whereas the KBS assumes a value of 

0.525 kg/kWh, as recommended by the Carbon Trust (2012) as the true emissions 

factor of grid electricity in the UK. Hence, it is deemed that the ORC model 

assumption remains valid in this case. 

Furthermore, a hand calculation of the greenhouse gas emission savings for the KBS 

data using the emissions factor suggested by Aneke (2012) leads to greenhouse gas 

reductions of approximately 432tCO2eq/year for the case study. This is 78% of the 

value of the data by Aneke (2012), which is correlated to the difference in net 

power outputs between the two cases (also 78%).  

Overall, this case study has proven that the relatively simple methods employed by 

the KBS can produce results that are comparable with those achieved using a 

proven power cycle software package such as IPSEpro (SimTech, 2013). The 

optimisation loop used in the KBS knowledge-base to maximise net power output 

produces comparable results (in terms of turbine inlet temperature, and net power 

output) to the published methods. Also, the methods for producing economic and 

environmental data are comparable.  

Furthermore, it has shown that the KBS can suggest a viable waste heat recovery 

solution for a process plant where, superficially, no obvious solutions were present. 

Finally, drawbacks exist such as the inability to combine multiple heat sources into 

one cycle and the inability to optimise via addition of heat exchangers. However, 

the results have shown that the system produces a good initial analysis which is 

enough to base an initial decision on. Further optimisation may then be completed 

later during the final design phase. 

 

6.2. Case Study 2: Textile Industry 

This case study is based on the data of Pulat et al (2009). It presents the potential 

for waste heat recovery from textile production in the Turkish city of Bursa. This is 

primarily a theoretical study using in-house models generated by the authors, 

although it is based on real plant data. 
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6.2.1. Case Study Summary 

Waste heat recovery was investigated for an “average” textile plant in Bursa, Turkey. 

Data was collated for over 200 active dyeing plants in the city, and average values 

produced for various heat sources as shown in Table 6.12. 

 

Table 6.12. Summary of waste heat availability in Turkish textile industry (Pulat et 
al, 2009) 

Process Effluent Temperature 

(oC) 

Volume per shift 

(L/shift) 

Bleaching 96 5000 

Washing 96 5000 

Acidification 50 5000 

Dyeing 96 5000 

Washing 90 5000 

Hot Rinse 70 5000 

 

The authors state that an accepted approach to waste heat recovery at these sites 

was to store the effluents in a well-insulated buffer tank, thereby creating a steady-

state supply of hot waste water at an approximately constant temperature. It was 

stated that filters were used to ensure no insoluble solids are present in the heat 

source stream. This resulted in an approximately steady-state heat source which is 

further described in Section 6.2.2. 

The heat sink is defined as the feed to the low-temperature water store to be used 

in the “finishing” process. The required water temperature is stated as 60oC. 

Further data for this heat sink is given in Section 6.2.2. 

The authors only considered waste heat recovery by shell-and-tube heat exchanger. 

The KBS will consider further options to find the most recommended approach to 

waste heat recovery at this plant. Parametric exergy analysis was also carried out by 
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the authors but this is outside the scope of the KBS, and this analysis is based on the 

modal values stated by the authors. 

 

6.2.2. Data Provided 

The heat source (as described above) is a combined waste water source and the 

heat sink is the water feed to the low-temperature store. This data, along with 

general plant data, is shown in Table 6.13. 

 

Table 6.13. Case study 2: heat source data (Pulat et al, 2009) 

Source Nature Liquid (waste water) 

Source Temperature (oC) 83.0 

Source Target Temperature (oC) 20.01 

Source Mass Flowrate (kg/s) 8.33 

Source Pressure (bar) 1.01 

Insoluble solids in source No 

Source Viscosity (cp) 1.002 

Source Density (kg/m3) 10002 

Source Material Compatibility Only Stainless Steel 

Source Access for Cleaning Required Yes 

  

Sink Nature Liquid (water) 

Sink Temperature 20.0 

Sink Target Temperature 60.0 

Sink Mass Flowrate (kg/s) 12.1 

Sink Pressure (bar) 4.00 

Insoluble Solids in Sink No 

Sink Viscosity (cp) 1.00 

Sink Density (kg/m3) 1000 

Sink Material Compatibility No constraints listed (source 
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limiting) 

Sink Access for Cleaning Required Yes (scaling possible) 

  

Current Heating Utility Gas 

Efficiency of Current Heating Method Assumed in paper to be 100% 

Cost of Gas (£/kWh) 0.0223 

Cost of Electricity (£/kWh) 0.0793 

Operating hours/year 7200 

Plant tolerant to working fluids with toxicity 

levels of less than or equal to 400 ppm by 

volume 

Yes4 

Plant tolerant to working fluids with high or 

moderate flammability? 

Yes4 

Note: 1This is not explicitly given but is taken as the ambient condition stated by the 

authors. 2Values of viscosity and density are taken as those for water under standard 

conditions. 3The cost of electricity is not given. Therefore, this was acquired using IEA data 

for Turkey via DECC (d) (2013). The gas cost data is therefore taken from the same source 

for consistency purposes. 4This data was not given explicitly as heat pumps/ORCs are not 

considered by the authors. However, the KBS results showed that an ORC was viable (see 

Section 6.2.3), therefore this data is inferred from the fact that various hazardous chemicals 

are used during textile manufacture (during bleaching, for example). Hence, it is assumed 

toxic and flammable chemicals can be tolerated. 

 

6.2.3. Results and Discussion 

The published results show the design of a shell and tube heat exchanger with four 

tube passes and one shell pass. The technical results are as follows: 
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Table 6.14. Technical design results by Pulat et al, 2009 

Heat Source Inlet Temperature 

(oC) 

83.0 

Heat Source Outlet Temperature 

(oC) 

25.0 

Heat Source Pressure Drop (bar) 0.00 (assumed by author, not 

calculated) 

Heat Sink Inlet Temperature (oC) 20.0 

Heat Sink Outlet Temperature (oC) 60.0 

Heat Sink Pressure Drop (bar) 0.00 (assumed by author, not 

calculated) 

Heat Exchanger Duty (kW) 2030 

Heat Exchanger Area (m2) 228.4 

Number Tubes 185 

Number Tube Passes 4 

Tube Outer Diameter (m) 0.025 

Number Shell Passes 1 

Heat Exchanger Effectiveness (%) 92.1 

 

Table 6.15, below, shows the results of the initial analysis to decide which waste 

heat recovery technology categories are possible for the case study. Screenshots 

from this case study are shown in Appendix V. 

 

Table 6.15. Case study 2: KBS initial selection results 

  Reason 

Heat Exchanger Heat Recovery 

Possible 

Yes N/A 

Closed-Cycle Vapour Compression 

Heat Pump Possible 

No Heat sink does not require a 

temperature lift in source 
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Mechanical Vapour Recompression 

Possible 

No Not an evaporative process 

Organic Rankine Cycle Possible Yes N/A 

 

Table 6.15 shows that the results are in agreement with Pulat et al in that heat 

exchanger waste heat recovery is possible. However, it also shows that organic 

Rankine cycle waste heat recovery is also a possibility. Hence, results are generated 

for both options as shown in Tables 6.16-6.18 below.  

Table 6.16 shows the selection of particular liquid-liquid heat exchangers available 

for the duty. 

 

Table 6.16. Case study 2: KBS heat exchanger selection results 

Heat Exchanger 

Type 

Selection Reason 

Plate and Frame Yes N/A 

Brazed Plate No Access for cleaning/maintenance not possible 

Welded Plate No Access for cleaning/maintenance not possible 

Plate and Shell No Access for cleaning/maintenance not possible 

Shell and Tube Yes N/A 

Spiral No Only considered when at least one fluid is a 

slurry 

 

Table 6.16 shows that the results are in agreement with Pulat et al regarding the 

suitability of a shell and tube heat exchanger for this duty. However the plate and 

frame (or gasketted plate) heat exchanger is also suitable. The technical results for 

each are shown in Tables 6.17-18 below. Note: the results for shell and tube heat 

exchanger also include comments comparing the results to those by Pulat et al. 
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Table 6.17. Case study 2: KBS shell-and-tube technical design results 

  Comment 

Heat Source Inlet Temperature (oC) 83.0 N/A 

Heat Source Outlet Temperature (oC) 30.0 Higher (5oC) 

Heat Source Pressure Drop (bar) 0.0001 Larger 

Heat Sink Inlet Temperature (oC) 20.0 N/A 

Heat Sink Outlet Temperature (oC) 56.5 Lower (3.5oC) 

Heat Sink Pressure Drop (bar) 0.0001 Larger 

Heat Exchanger Duty (kW) 1854 Smaller (8.7%) 

Heat Exchanger Area (m2) 175.1 Smaller (23.3%) 

Number Tubes 457 Larger (factor of around 2.5) 

Number Tube Passes 1 Lower (factor of 4) 

Tube Outer Diameter (m) 0.05 Larger (factor of 2) 

Number Shell Passes 1 Equal 

Unit Length (m) 2.44 Not stated by Pulat et al 

Unit Diameter (m) 1.66 Not stated by Pulat et al 

Heat Exchanger Effectiveness (%) 84.1 Lower (8.6%) 

 

The results show some discrepancies between the KBS and methods of Pulat et al. 

Firstly, the source outlet temperature is higher by 5oC which results in a lower sink 

outlet temperature (due to the heat balance). This is due to the KBS’s assumption 

that the minimum approach temperature in a shell-and-tube heat exchanger should 

be 10oC, whereas it appears this has been set as 5oC by Pulat et al. An approach 

temperature of 10oC is standard for the “first design” of shell and tube heat 

exchangers, as suggested by Coulson and Richardson (2005), Kern (1950) and Perry 

and Green (2008), amongst others. Therefore, this assumption should not be 

changed. 

Secondly, the KBS results show a lower required area (175.1m2 as opposed to 

228.4m2, a difference of 23.3%). This is again due to variation in the inlet/outlet 

temperatures of the source/sink. The KBS results have a logarithmic mean 
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temperature difference (LMTD) of 16.9oC as opposed to 11.8oC in the results by 

Pulat  et al. This difference in LMTD explains the smaller area required in the KBS 

results and show that the overall heat transfer coefficient estimates used in the 

knowledge-base are approximately equal to those used in the methods by Pulat et 

al. This suggests that the estimate heat transfer coefficients are sufficient to create 

a “first design” of the heat exchangers, as required in the scope of the system. 

Finally, the configuration of heat exchanger is very different. The KBS results show a 

1-shell and 1-tube pass heat exchanger, whereas Pulat et al suggest the use of a 1-

shell and 4-tube pass unit. Initially it appeared that this was a possible error in the 

KBS code, as generally one would employ a multi-pass shell-and-tube heat 

exchanger where possible. However, the KBS results were proven accurate, for the 

following reason: 

The KBS considers the three most common pass arrangements for shell-and-tube 

heat exchangers as follows (in order of preference): (1) 2-shell-pass, 4-tube-pass; (2) 

1-shell-pass, 2-tube-pass; (3) 1-shell-pass, 1-tube-pass. The system uses the 

correction factor equations (Perry and Green, 2008) to analyse whether each pass 

configuration is possible as shown below in Equations 6.7-6.12. The KBS calculates 

the correction factor, and if the correction factor is found to be less than 0.8, or the 

configuration is not possible due to temperature crosses, then the configuration in 

question is not possible. If both multi-pass configurations are not possible then the 

design reverts to a single pass counter-flow design. 
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Where F1-2 is the correction factor for a 1 shell pass, 2 tube pass configuration, F2-4 is 

the correction factor for a 2 shell pass, 4 tube pass configuration, and R, P, A and B 

are equal to the following: 
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Where upper case “T” denotes the source temperature, lower case “t” represents 

the sink temperature, “1” denotes the inlet, “2” denotes the outlet. 

For both configurations, upon input of the source/sink temperature data, the 

denominator of the correction factor equation is the natural logarithm of a negative 

number which is not a meaningful value. This indicates that the use of each 

configuration would result in a temperature cross and hence they are not possible. 

Therefore, the KBS suggested a 1-shell and 1-tube pass configuration. It is noted 

that the results by Pulat et al show a 1-shell and 4-tube pass configuration. However, 

the KBS could not be expected to produce such a result as this is a non-standard 

configuration, which is not listed in the common texts of Coulson and Richardson 

(2005) and Kern (1950). The KBS, however, has produced a valid design, comparable 

to that produced by Pulat et al. 

The results for plate and frame heat exchanger are as follows: 

 

Table 6.18. Case study 2: KBS plate-and-frame technical design results 

Heat Source Inlet Temperature (oC) 83.0 

Heat Source Outlet Temperature (oC) 25.0 

Heat Source Pressure Drop (bar) 0.0021 

Heat Sink Inlet Temperature (oC) 20.0 

Heat Sink Outlet Temperature (oC) 59.9 

Heat Sink Pressure Drop (bar) 0.0021 

Heat Exchanger Duty (kW) 2029 
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Heat Exchanger Area (m2) 46.8 

Plate Height (m) 0.72 

Plate Width (m) 0.23 

Unit Depth (m) 1.03 

No. Plates 282 

Heat Exchanger Effectiveness (%) 92.1 

 

Table 6.18 shows that the use of a plate and frame heat exchanger in this case 

would be preferred to a shell-and-tube from a technical point of view. The plate and 

frame achieves a higher effectiveness, allowing it to achieve the heat sink target 

temperature of 60oC as requested by the user. The results also show a much more 

compact unit, with unit dimensions of 0.72 x 0.23 x 1.03m (height x width x depth) 

as opposed to 1.66 x 1.66 x 2.44m for the shell and tube. This results in a volume of 

0.171m2 for the plate and frame, and 5.28m3 for the shell and tube, a 31-fold 

reduction. This is often preferred in retro-fit waste heat recovery systems due to 

space limitations. 

There is also the disadvantage of increased pressure drop with 0.002bar for plate 

and frame and 0.0001 bar for the shell and tube (for both source and sink). 

However, this remains less than 1% of the inlet pressure for both sides, hence the 

pressure drop is insignificant and would not affect the final choice of heat 

exchanger. 

The heat exchanger design results for this case study highlight the advantage of 

using the KBS to investigate waste heat recovery rather than considering only one 

technology, in this case conventional shell and tube heat exchangers. 

 

The final option for waste heat recovery in this case study is for power generation 

via an ORC. The data generated for this option is shown in Table 6.19 below. 
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Table 6.19. Case study 2: KBS ORC technical design results 

  

Working Fluid R-245fa 

Source Inlet Temperature (o C) 83.0 

Heat Source Outlet Temperature (o C) 58.2 

Pre-heater + Evaporator Duty (kW) 868 

Heat Sink Inlet Temperature (o C) 20.0 

Heat Sink Outlet Temperature (o C) 30.0 

Condenser Duty (kW) 824.5 

Heat Sink Mass Flow Rate (kg/s) 19.6 

Working Fluid Mass Flow Rate (kg/s) 4.36 

Working Fluid Turbine Inlet Temperature (o C) 56.9 

Working Fluid Turbine Inlet Pressure (bar) 4.19 

Working Fluid Turbine Outlet Temperature (o 

C) 

41.3 

Working Fluid Turbine Outlet Pressure (bar) 2.18 

Working Fluid Condensation Temperature (o 

C) 

35.0 

Plant Gross Power Output (kW) 42.9 

Working Fluid Pump Power (kW) 0.94 

Net Power Output (kW) 41.9 

Plant Thermal Efficiency (%) 4.82 

 

These results imply that an ORC would not be a suitable option for waste heat 

recovery at this site. The thermal efficiency of the cycle is very low at 4.82% and the 

net power output of 41.9kW would not generate a large revenue in terms of utility 

savings: typically, the thermal efficiency would be greater than 10% to be 

considered viable (Brasz, 2011). The increased complexity of the cycle (as 

highlighted by the cycle diagram generated by the KBS, shown in the case study 

screen shots in Appendix V) also implies that the ORC would not be suitable for the 

case study compared to the heat exchanger options that are available. 
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However, as stated in the scope of the system (Section 1.3.1), it is important for the 

KBS to consider and display all available options as this enhances the educational 

value of the system. 

The final decision on which technology is most suitable for this case study should 

also consider the economic and environmental results, as shown in Table 6.20. Here, 

a comparison of the results by Pulat et al, the shell and tube results by the KBS, the 

plate and frame results by the KBS and the ORC results by the KBS is presented. 

(note: the data by Pulat et al is converted from $USD to £GBP using the 2011 

exchange rate of 1.61 $USD to £1GBP [Oanda, 201]). 

 

Table 6.20. A comparison of the economic and environmental results generated 
by the KBS and Pulat et al, 2009 

 Pulat et al: Shell 

and Tube Heat 

Exchanger 

KBS: Shell and 

Tube Heat 

Exchanger 

 

KBS: Plate Heat 

Exchanger 

KBS: ORC 

Estimate 

Capital Cost 

(£GBP) 

68803 (34400 

for heat 

exchanger 

alone) 

12204 5308 108260 

Estimate 

Maintenance 

Cost 

(£GBP/year) 

2981 Not given Not given 2165 

Estimate Cost 

Savings 

(GBP/year) 

263253 293708 321416 23839 

Estimate 

Payback 

Period (years) 

0.29 0.04 0.02 4.99 
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Estimate 

Greenhouse 

Gas 

Reductions 

(tCO2eq/year) 

Not given 2451 2682 158 

 

Comparison of Shell and Tube data by Pulat et al and the KBS results 

The economic results produced by both Pulat et al and the KBS for the shell and 

tube heat exchanger show a large difference in the capital cost and maintenance 

costs.  Pulat et al estimate the capital cost to be 5.6 times greater than the KBS: 

£68803 as opposed to £12204. The method by Pulat et al included the cost of the 

heat exchanger, installation, pumps, valves, connections, freight, local taxes, retrofit 

of current system and testing. It was stated that the additional costs (non-heat 

exchanger capital costs) are approximately double the cost of the heat exchanger 

itself. Hence, the heat exchanger itself would cost an estimate £34400. This remains 

almost three times larger than the estimate by the KBS. It is devised using a similar 

cost factor method to that used in the KBS, albeit with larger cost factors. 

Both methods use cost factors originating from studies of manufacturer data. Hence, 

it is difficult to determine which is more accurate or define the accuracy without 

obtaining a cost estimate from a potential manufacturer. Hence, it is difficult to 

judge whether the heat exchanger capital costs estimation methods employed by 

the KBS are accurate based on this case study. This highlights a flaw in the KBS 

methodology as the accuracy of cost factor methods is highly subjective. However, 

this could only be rectified by obtaining a significant amount of economic data (for 

all heat exchangers) from a wide range of industrial partners. 

The KBS also does not consider the need for maintenance costs to be included in 

heat exchanger economic analysis, whereas Pulat et al include a maintenance 

charge of £2981 per year. It is not stated where this figure was calculated from, 

hence it is difficult to analyse whether this is accurate. 
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The cost savings estimated by the KBS and Pulat et al differ by 11.5%. This is due to 

a varying estimate of gas prices. Pulat et al use a Turkish source which was not 

accessible rather than stating the gas cost at the plant in question. During KBS 

operation, a value was taken from IEA (via DECC (d), 2013) as this can be considered 

accurate. Therefore, a direct comparison is not possible. However, the error is not 

due to the methods of the KBS, but instead due to the differences in the input data 

to the two models. 

The difference in both the capital cost and cost savings estimates leads to a rather 

large difference in payback time estimate, with Pulat et al estimating 0.29 years and 

the KBS estimating 0.04 years. Again, this is down to different cost factors being 

used in the two methods. 

Discussion of KBS results 

First of all, the economic and environmental results for the ORC, as generated by 

the KBS, confirm that this technology is not the most suitable for this case study. 

The capital cost estimate is significantly higher than the other options, and the 

estimate cost savings are significantly lower, as are the potential greenhouse gas 

reductions. When this is coupled with the increased complexity of this solution, this 

technology can be ruled out for use in this case study. However, this result is  

important from an educational point of view, as it highlights the advantages of heat 

exchanger waste heat recovery (compared to ORC), and shows that one would not 

use such a complex solution if a simpler solution was available, for cost reasons 

alone. 

From this point of view, the results are in agreement with Pulat et al in that a heat 

exchanger is the recommended technology for waste heat recovery in this case 

study. 

However, the KBS results show that the plate and frame heat exchanger would be 

preferred to the shell-and-tube heat exchanger. This heat exchanger is around half 

the capital cost of the shell-and-tube, and achieves higher cost savings and 

greenhouse gas reductions (due to the high effectiveness of this unit, as discussed 
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previously). Therefore, the economic and environmental results are in agreement 

with the technical results (as discussed following Table 6.18) and the plate and 

frame heat exchanger would be the preferred heat exchanger for this case study. 

 

In conclusion, this case study has shown that the KBS has selected heat exchanger 

waste heat recovery as the most suitable technology for waste heat recovery, in 

agreement with the work of Pulat et al. However, the KBS recommends the use of 

the plate-and-frame heat exchanger which has numerous advantages such as 

compact size, higher effectiveness and greater project economic value. There is a 

large discrepancy between the capital cost estimates employed by Pulat et al and 

those programmed into the KBS. The accuracy of the methods is highly subjective 

and cannot be judged without obtaining a genuine cost estimate from a supplier. 

 

6.3. Case Study 3: Industrial Washing Process 

This case study was originally published by Paarske (2011). It presents both 

theoretical and experimental (via a technology trial) data. 

 

6.3.1. Case Study Summary 

Waste heat recovery was investigated in a metal-parts processing plants in Austria 

by a group of energy consultants from the Danish Technological Institute. The 

washing section of the process was the main focus as it is the only significant 

consumer of low-grade thermal energy. In this section of the plant, a number of 

small continuous drum-type washers are used to clean metal parts. Each requires 

an average of 25.0kW of thermal energy in the final wash/rinsing stage, to provide 

hot demineralised water at 62oC. Currently, this heat sink is heated using electrical 

heating elements. The case study was concerned with only one of the washing units, 

although comments are made regarding the impact of applying waste heat recovery 

to every unit in the plant. A sketch of the process is shown in Figure 6.4. 
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Figure 6.4. Sketch of industrial washing process 

 

6.3.2. Data Provided 

The heat source identified was the exhaust gas leaving the washers which was 

described as a humid air stream. The case study data (including source data, sink 

data and general plant data) required to run the KBS is shown in Table 6.21. 

 

Table 6.21. Case study 3: Case study data (Paarske, 2011) 

Source Nature Humid Air 

Source Temperature (oC) 53.0 

Source Target Temperature (oC) 20.01 

Source Mass Flowrate (kg/s) 0.122 

Source Pressure (bar) 1.01 

Water Vapour Fraction (mass %) 8.32 

  

Sink Nature Liquid (Demineralised 

water ) 

Sink Temperature (oC) 58.0 

Sink Target Temperature (oC) 62.0 

Sink Mass Flowrate (kg/s) 1.49 

Sink Specific Heat Capacity (kJ/kgK) 4.20 
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Current Method of Heating Sink Electricity 

Efficiency of Current Heating Method (%) 99.03 

Cost of Electricity (£GBP/kWh) 0.09 

Operating hours/year 8000 

Plant tolerance to working fluids with toxicity levels of 

less than or equal to 400 ppm by volume? 

No 

Plant tolerance to working fluids with high or moderate 

flammability? 

No 

Is heat sink duty “useful”? No 

Note: 1This is not given and is therefore taken as a typical ambient temperature. 2This is not 

given and is therefore calculated from the data stated which is a relative humidity of 95%. 

3This is not given but assumed to be this relatively high value as electric heaters are 

generally highly efficient. 

 

6.3.3. Results and Discussion 

The published results cover the design of a standard heat pump cycle with a scroll 

compressor. The technical results are summarised in Table 6.22. 

 

Table 6.22. Technical heat pump design results (Paarske, 2011) 

Working Fluid  R-134a 

Heat Source Inlet Temperature (o C) 53.0 

Heat Source Outlet Temperature (o C) 38.0 

Evaporator Duty (kW) 18.0 

Heat Sink Inlet Temperature (o C) 58.0 

Heat Sink Outlet Temperature (o C) 62.0 

Condenser Duty (kW) 25.0 

Working Fluid Mass Flow Rate (kg/s) 0.189 1 

Working Fluid Evaporation Temperature (oC) 15.0 

Working Fluid Evaporation Pressure (bar) 4.892 
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Working Fluid Condensation Temperature (oC) 65.0 

Working Fluid Condensation Pressure (bar) 18.9 2 

Compressor Work (kW) Not Specified 

Motor Work (kW) 7.00 

Compressor Pressure Ratio (Pcond/Pevap) 3.87 

No. Stages 1.00 

COP 3.57 

1Working fluid mass flow rate is not explicitly given. Therefore, this is calculated using the 

condenser heating duty and heat of vaporisation data from the ASHRAE Fundamentals 

Handbook (ASHRAE, 2009). 2Working fluid pressures are not explicitly given. Therefore, 

they are found using vapour pressure data from the ASHRAE fundamentals handbook 

(ASHRAE, 2009). 

 

Table 6.23 shows the results of the initial analysis to decide which waste heat 

recovery technology categories are possible for the case study. NB: Screenshots 

from this case study are shown in Appendix V. 

 

Table 6.23. Case study 3: KBS initial selection results 

  Reason 

Heat Exchanger Heat Recovery Possible No No matching heat sink 

Closed-Cycle Vapour Compression Heat 

Pump Possible 

Yes N/A 

Mechanical Vapour Recompression 

Possible 

No Not an evaporative process 

Organic Rankine Cycle Possible No Source temperature too low (less 

than 73oC) 

 

The results above are in agreement with that of Paarske, and show that a vapour 

compression heat pump waste heat recovery is the only option in this case study. 
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The heat pump design results generated by the KBS are shown in Table 6.24 below 

along with comments comparing the data to that published by Paarske. 

 

Table 6.24. Case study 3: KBS technical heat pump design results 

  Comment 

Working Fluid  R-134a Equal 

Heat Source Inlet Temperature (o C) 53.0 N/A 

Heat Source Outlet Temperature (o C) 20.0 Lower (18oC) 

Evaporator Duty (kW) 19.4 Larger (1.4) 

Heat Sink Inlet Temperature (o C) 58.0 N/a 

Heat Sink Outlet Temperature (o C) 62.0 Equal 

Condenser Duty (kW) 25.0 Equal 

Working Fluid Mass Flow Rate (kg/s) 0.18 Smaller (4.76%) 

Working Fluid Evaporation Temperature (oC) 15.0 Equal 

Working Fluid Evaporation Pressure (bar) 4.89 Equal 

Working Fluid Condensation Temperature (oC) 67.0 Higher (2oC) 

Working Fluid Condensation Pressure (bar) 19.7 Higher  (1.8 bar) 

Compressor Work (kW) 5.62 N/A 

Motor Work (kW) 5.91 Smaller (15.6%) 

Compressor Pressure Ratio (Pcond/Pevap) 4.03 Higher (4.1%) 

No. Stages 2 Higher (100%) 

COP 4.22 Higher (9.0%) 

 

Table 6.24 shows a good agreement between the data presented by Paarske and 

the results of the KBS. The main difference is in the heat source outlet temperature 

which is 18oC lower in the KBS results. This suggests a difference in the heat balance 

calculations between the two methods.  

The total heating duty of the source is made up of sensible heat by air cooling and 

the latent heat of water condensation as shown in Equations 6.12-6.17 below. The 
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sensible heat of liquid water cooling is ignored in the KBS method, as it may “drip” 

from the heat transfer surface before cooling. Hence, it cannot be guaranteed that 

this heat will be transferred to the sink. 

 

                          kW Eq. 6.12 

 

        (                            )         kW Eq. 6.13 

 

                              kW Eq. 6.14 

 

The mass of water vapour out for the results by Paarske can be found by firstly 

calculating the water vapour pressure at the outlet temperature (Eq. 6.15), then 

calculating the stream humidity (Eq. 6.16) before finally converting this into a mass 

flow, as follows: 

 

                    
    

 
  

mmHg Eq. 6.15 

Note: T here is in Kelvin and is therefore 311K for the Paarske results.  

 

The partial pressure of water vapour at the outlet (Pw,out)is found to be 76.4mmHg. 

 

       
      

              

  

  
 

kg/kg Eq. 6.16 

 

Note: The system pressure is atmospheric pressure (as stated in the case study data) and is 

input as 760mmHg for unit consistency. Mw and MA are the molar mass of water (18.0) and 

air (29.0) respectively.  

The air humidity at the outlet (Hw,out) is found to be 0.0695kg/kg. 
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                           kg/s Eq. 6.17 

 

The water vapour mass flow rate at the outlet was found to be 0.00778 kg/s. The 

water vapour mass flow rate at the inlet is 0.0101 kg/s. Hence, the source duty in 

the results presented by Paarske can be calculated using this data and the 

inlet/outlet temperatures using Equation 6.12-14, and was found to be 7.12 kW, 

which is significantly lower than the 18.0 kW reported. Hence, the results of the KBS 

are correct for this case study and an error in the heat balance is evident in the 

results of Paarske. 

One other result showing a discrepancy is the motor work of the compressor. Here, 

the KBS results indicate that the motor work required for compression is 5.91kW 

whereas Paarske’s results show a motor size of 7.00 kW. This is probably due to the 

discrepancy between the assumed efficiency of the compressor and motor in the 

KBS method (75% and 95% respectively). However, no comparison is available as 

this data is not specified in the results by Paarske. 

The final difference between the results is in the selection of compressor. The KBS 

results show the use of a 2-stage centrifugal compressor, while Paarske has 

designed a system using a single-stage scroll compressor. This highlights a drawback 

of the KBS whereby only one compressor type is considered. In this case study, it is 

clearly beneficial to use the scroll compressor suggested by Paarske, as a single 

stage compression system is less complex than a 2-stage system. 

Overall, however, there is a good agreement between the KBS models and the 

results by Paarske. The key temperatures and pressures throughout the cycle are 

approximately equal, and only small discrepancies exist between other key results 

such as motor work and evaporator duty. Hence, it can be concluded that the 

technical results of the KBS are suitable for a “first design” of the system, as was 

specified in the system scope. Further improvements (such as optimal compressor 
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selection, for example) would then be investigated later once this method of waste 

heat recovery was chosen. 

The economic and environmental results presented by Paarske are shown in Table 

6.25 below, along with those generated by the KBS. As the case study is from 

Austria, the economic results are presented in the Euro currency. Therefore, this 

has been converted using the 2011 exchange rate of 1.11 (Euro per GBP) (Oanda, 

2011). 

Table 6.25. A comparison of the economic and environmental results generated 
by the KBS and Paarske, 2011 

 Results, 

Paarske 

(Cost in £GBP) 

Results, KBS 

(Cost in 

£GBP) 

Estimate Capital Cost (Unit Currency) 27027 13918 

Estimate Maintenance Cost (Unit 

Currency/year) 

Not Given 278 

Estimate Cost Savings (Unit Currency/year) 10909 11595 

Estimate Payback Period (years) 2.50 1.23 

Estimate Carbon Dioxide Reductions 

(tCO2eq/year) 

50 81.1 

 

Table 6.25 shows that the capital cost provided by Paarske is almost twice that 

estimated by the KBS. This is due to the fact that the data presented by Paarske was 

for the full installed system, including retrofit costs, freight, testing and monitoring, 

control systems and local taxes. The cost estimates provided by the KBS are for the 

heat pump system only. When all of the additional costs are considered, it can be 

concluded that the KBS estimate capital cost is accurate enough for a “first design” 

although this is difficult to quantify due to the inherent subjective nature of the 

estimates, and geographic and temporal variation of such costs. 

There is a good match between the cost savings. The small difference between the 

two values is due to increased COP and decreased motor work in the KBS results. 
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The heat pump’s electricity demand is therefore lower, which increases the overall 

cost savings. 

The KBS results show larger associated greenhouse gas emission reductions than 

the results by Paarske. This can be explained as the KBS assumes a UK value for grid 

electricity associated emissions of 0.525 kg/kWh. As the case study is based in 

Austria, this assumption is not valid. The grid electricity associated emissions in 

Austria ars 0.310 kg/kWh (IEA, via DECC (e), 2013). Hence the associated emissions 

in the UK are 69.4% larger while the KBS result for reduction in greenhouse gas 

emissions is 62.2% larger. Hence, it can be concluded that this discrepancy in results 

is due to the varying associated emissions between the two countries. This 

highlights a key drawback of the KBS in that it has been programmed primarily for 

use in the UK, therefore any assumptions made are generally based on UK data 

which may not be valid elsewhere. 

Overall, this case study has validated the KBS. The technical and 

economic/environmental results generated by the KBS are of reasonable accuracy 

compared to those of Paarske. The KBS results are therefore comparable with those 

of an expert waste heat recovery contractor and the KBS may be used in the initial 

stages of investigation as a viable alternative to such services. 

 

6.4. Case Study 4: Brewery 

This is an original case study using data provided by an industrial partner: a brewery 

located in southern Scotland, UK.  

 

6.4.1. Case Study Summary 

The brewery is best described as a “medium” sized brewery, producing 

approximately 2,500,000 litres of beer per annum. A variety of beers are produced, 

and this analysis is based on the most commonly produced beer which accounts for 

around 90% of the total production. 
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The plant has an active energy manager who has implemented a number of 

measures to increase the energy efficiency of the process, including energy audits, 

installation of energy efficient/variable speed drives and heat integration. 

However, the “Wort Boiling” process remains extremely inefficient. Here, water is 

boiled from the “wort” (a brewing liquor made up of organic sugars from the 

“malting” grains dissolved into water) in order to concentrate the solution before 

fermentation. This is currently achieved using a calandria gas heater, in a run-

around configuration, as depicted in Figure 6.5. 

 

Figure 6.5. "Wort boiling" process from case study 4 

 

The evaporation vessel (or “Copper” as it is referred to in brewing) is operated as a 

batch process. Initially, pre-heating is required to heat the wort from the inlet 

temperature of 65oC to the boiling point of approximately 100oC. This takes around 

2 hours. Following this, 4% of the total mass of water is evaporated in a boiling 

process which is effectively at steady-state for 70 minutes. 784kg of water 

representing approximately 1770 MJ of latent heat is boiled from the wort and 

vented to the atmosphere. The water contains a negligible amount of volatile 

organic compounds and can be treated as pure water for the sake of 

thermodynamic analysis (as described for the case of both brewing and whiskey 

production by Brotherton (2012)). 
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No suitable heat sinks were identified for the transfer of the waste heat from the 

source via either a heat exchanger or vapour compression heat pump. It was 

suggested that the vapour could be used to heat water stored in the “hot well” of 

the process (used in production of the wort). However, this was rejected by the 

plant manager for the following reasons: 

 The plant boiler is designed and optimised for current load. Reduction in 

load would be detrimental to boiler performance and service plan. 

 The intermittent nature of the heat source (due to batch processing) would 

provide intermittent heat to the hot well feed. Hence, a new and relatively 

complex fuzzy controller would be required to utilise the waste heat as and 

when it was available, and to use conventional process steam when it was 

not available. The plant manager was not willing to employ such a system at 

the plant. 

Therefore, the problem was reduced to one heat source (vapour from wort boiling) 

and no (“standard”)heat sinks. 

 

6.4.2. Data Provided 

As previously stated, the “copper” boils at approximately steady-state for 70 

minutes per batch. There are four batches per day (Monday-Friday) and two 

batches at weekends. The plant has two weeks of down-time per year. Hence, 1200 

batches are produced per year, giving a total steady-state operation of 1400 hours 

per year. 

The source/process and general plant data is summarised in Table 6.26 below: 

 

Table 6.26.Case Study 4: data 

Evaporation Temperature (oC) 100 

Evaporation Pressure (bar) 1.01 

Evaporative Rate (kg/s) 0.187 
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Circulation Mass Flow Rate (kg/s) 5.28 

Circulation Pressure (bar) 2.00 

Wort Temperature at Heat Exchanger Outlet (oC) 119 

  

Current Heating Utility Gas 

Heat Exchanger Type  Tubular 

Efficiency of Current Heating Method (%) 60.0 

Hours of “steady state” evaporation per cycle 1.17 

Cycles per day 3.431 

Operating days per year 351 

Total hours of “steady state” evaporation per year 1400 

Cost of Gas (£GBP/kWh) 0.024 

Cost of Electricity (£GBP/kWh) 0.105 

Note: 1This is the average of 24 cycles per week divided by 7 days 

 

6.4.3. Results and Discussion 

The data provided was used by the KBS to generate the results shown below in 

Tables 6.27-6.28. As there is no published data to compare the results to in this case 

study, the technical results are compared to the results of using Aspen Plus (Aspen 

Tech, 2012) to design the system. Unfortunately there is therefore no valid 

economic comparison for this case study. This is because methods from literature 

were reviewed, analysed and used in building the section of the system knowledge-

base which produces the estimate capital costs, cost savings and other related data. 

Hence, if the same methods were then used manually for comparison, the same 

result would be found so, this comparison would be invalid. 

The initial stage of results generated by the KBS is as follows and screenshots from 

this case study are shown in Appendix V. Table 6.27 shows the results of the initial 

analysis to decide which waste heat recovery technology categories are possible for 

the case study. Here, as expected based on the source/sink data provided, the only 

option for waste heat recovery is to use Mechanical Vapour Recompression (MVR). 
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Table 6.27. Case study 4: KBS initial selection results 

  Reason 

Heat Exchanger Heat Recovery 

Possible 

No No matching heat sink 

Closed-Cycle Vapour Compression 

Heat Pump Possible 

No No standard heat sink within a 

reasonable temperature lift 

Mechanical Vapour Recompression 

Possible 

Yes N/A 

Organic Rankine Cycle Possible No Only continuous processes considered 

 

Another result generated by the KBS is the determination of whether existing heat 

exchangers may be used in the new MVR system. In this case, the result is “No”. 

This is because it is not possible to modify a gas burner in such a way. 

Table 6.28 below shows the technical results generated by the KBS for MVR design. 

 

Table 6.28. Case study 4: KBS technical MVR design results 

Evaporative Duty (kW) 421.9 

Compressor Inlet Temperature (oC) 100 

Compressor Outlet Saturation Temperature (oC) 124 

Maximum Possible Condenser Duty (kW) 438 

Compressor Inlet Pressure (bar) 1.01 

Compressor Outlet Pressure (bar) 2.29 

Compressor Work (kW) 35.1 

Drive Work (kW) 36.9 

Compressor Pressure Ratio (Pcond/Pevap) 2.29 

COP 11.9 
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The system was simulated in Aspen Plus (AspenTech, 2012), according to the data 

shown in Table 6.26 (source data) and the model flow diagram shown in Figure 6.6, 

in order to compare the technical results of the KBS with a standard industrial 

modelling tool. The steam tables fluid property package was used as this was the 

most accurate for water/steam calculations. The Aspen model uses the same 

assumptions as the KBS (discussed in Section 4.4.3) i.e. the compressor isentropic 

efficiency is assumed to be 75%, the motor efficiency of the compressor is assumed 

to be 95% and the heat exchanger pinch point is assumed to be 5oC. 

 

 

Figure 6.6. Simplified MVR model in Aspen Plus 

 

The model results are shown in Table 6.29 along with comments comparing the 

results to those generated by the KBS in Table 6.28. 

 

Table 6.29. Case study 4: Technical MVR design results generated using Aspen Plus 

  Comment 

Evaporative Duty (kW) 423.5 Equal 

COMP

LP-VAP

HP-VAP

HP-LIQ

HEX

CIRC-IN CIRC-OUT
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Compressor Inlet 

Temperature (oC) 

100 Equal 

Compressor Outlet 

Saturation Temperature (oC) 

124 Approximately equal (less than 1% 

difference compared to ambient 

temperature) 

Maximum Possible 

Condenser Duty (kW) 

437 Approximately equal (less than 1 % 

difference) 

Compressor Inlet Pressure 

(bar) 

1.01 Equal 

Compressor Outlet Pressure 

(bar) 

2.3 Equal 

Compressor Work (kW) 34.8 Approximately equal (less than 1% 

difference) 

Drive Work (kW) 36.6 Approximately equal (less than 1% 

difference) 

Compressor Pressure Ratio 

(Pcond/Pevap) 

2.29 Equal 

COP 12.0 Approximately equal (<1% difference) 

 

The results for the Aspen model are almost identical to those calculated by the KBS 

model. This shows that the KBS models function correctly and can produce results 

comparable with conventional modelling software. Hence, the KBS is capable of 

replacing an expert contractor with access to such software in the initial stages of 

waste heat recovery system design, as specified in the scope of the system (Section 

1.3.1) 

The economic and environmental results generated by the KBS are shown in Table 

6.30. As previously stated, there is no basis for comparison for this case study as it is 

from original data rather than a publication or other source. 
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Table 6.30. Case study 4: KBS economic and environmental results 

Units of gas saved per year (kWh/year) 1028459 

Units of electricity required per year (kWh/year) 51987 

Cost saving (£GBP/year) 19224 

Potential GHG saving (tCO2eq/year) 162 

Capital cost estimate (£GBP) 55826 

Estimate Maintenance Costs (£GBP/year) 1117 

Simple payback time (years) 3.08 

 

The data in Table 6.30 show that the MVR is suitable for this case study. The system 

has the potential to reduce utility bills by around £19000 per year due to a 

significant reduction in the gas demand, whilst expending a relatively small amount 

on electricity to drive the MVR compressor. The cost estimate generated is around 

£56000, giving a simple payback time of 3.08 years. The system also shows potential 

to save 162 tCO2eq/year, which would be a direct emission saving at the plant due 

to the removal of a gas burner. The data in Table 6.30 would be sufficient to make a 

decision on whether to proceed with waste heat recovery at this plant. 

Although a direct economic comparison was not available for this case study, it is 

noted that the results for payback time and system COP are similar to those 

reported in other works. For example, Staveley Chemicals Ltd (published in the 

Energy Efficiency Demonstration Scheme, Expanded Project Profile 259, 1989) 

installed an MVR system to provide the heating duty in a by-product evaporator. 

Here it was stated that typical pay back times for MVR systems would be in the 

range of 2-4 years. Similarly, Brotherton (2012) (an expert contractor in the field of 

MVR) states that typical MVR payback times in the whiskey industry (with highly 

similar production methods to brewing) are in the region of 3-5 years. (Note: a 

review of MVR literature is provided in Section 3.2.2). The payback time for this 

case study falls into this range, thereby suggesting that the methods employed are 

correct. 
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In conclusion, this case study has shown that the KBS has correctly identified that 

MVR is the only course of action for waste heat recovery at the plant in question. 

The KBS technical results were approximately equal to those generated using the 

conventional modelling tool Aspen Plus (Aspen Tech, 2013), thereby proving that 

the KBS may be used to replace an expert contractor in the initial stages of waste 

heat recovery design. Finally, the KBS economic and environmental results are 

detailed enough to allow a decision on whether or not this technology is feasible at 

the plant, and despite the lack of a direct comparison, data from previously 

published case studies suggest that the economic data generated by the KBS is 

reasonably accurate. 

 

6.5. Case Study 5: Inorganic Chemicals Drying 

This is an original case study using data provided by an industrial collaborator: an 

inorganic chemical production plant based in northern England. In particular, the 

case study concerns a large spray dryer unit in the downstream processing section 

of the plant. This is one of the largest consumers of low-grade thermal energy in the 

plant, consuming around 17.9 GWh of natural gas per year. 

 

6.5.1. Case Study Summary 

The process under investigation is a large spray drying tower. Here, fresh air is input 

heated to (on average) 300oC before entering the dryer via a gas burner. The 

exhaust feed from the dryer is typically at 95oC with significant moisture content. A 

sketch of the process is shown below in Figure 6.7. 
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Figure 6.7. Spray dryer process from case study 5 

 

The heat source is the spray dryer exhaust which is currently sent to the stack. This 

is a humid air heat source, containing solid particles. The mass fraction of the solid 

particles is known to be less than 1%, and the particle size is less than 20µm, and it 

is known that any heat exchanger installed would require cleaning/maintenance 

due to fouling. The only heat sink of interest to the host plant was the fresh air inlet 

to the spray dryer. This is because they would be unwilling to consider heat sinks 

further from the source due to civil engineering complexity and cost. The process is 

continuous, operating for 24 hours per day, 7 days per week for 48 weeks per year. 

 

6.5.2. Data Provided 

The heat source, as discussed above, is a humid air heat source from a spray dryer, 

and the heat sink is the fresh air feed to the process. The data provided by the host 

plant is summarized below in Table 6. 31. 

 

Table 6.31. Case study  5: data 

Source Nature Humid Air 
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Source Temperature (oC) 95.0 

Source Target Temperature (oC) 20.0 

Source Mass Flowrate (kg/s) 6.21 

Source Pressure (bar) 1.01 

Water Vapour Fraction (mass %) 10.4 

Solids in source Yes. 

Solid Size (mm) 0.02 

Solid Fraction (mass %) <1 

Source Viscosity (cp) 0.01981 

Source Density (kg/m3) 1.001 

Source Material Compatibility No constraints 

Source Access for Cleaning Required Yes 

  

Sink Nature Gas (Air)  

Sink Temperature 20.0 

Sink Target Temperature 50.0 

Sink Mass Flowrate (kg/s) 5.56 

Sink Specific Heat Capacity (kW/kgK) 1.00 

Sink Pressure (bar) 1.01 

Insoluble Solids in Sink No 

Sink Viscosity (cp) 0.01981 

Sink Density (kg/m3) 1.001 

Sink Material Compatibility No constraints 

Source Access for Cleaning Required No 

  

Current Heating Utility Gas 

Efficiency of Current Heating Method 

(%) 

70 

Cost of Gas (£/kWh) 0.0266 

Cost of Electricity (£/kWh) 0.0867 

Operating hours/year 8060 
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Plant tolerance to working fluids with 

toxicity levels of less than or equal to 

400 ppm by volume 

Yes2 

Plant tolerance to working fluids with 

moderate flammability? 

Yes2 

Plant tolerance to working fluids with 

high flammability? 

No2 

ORC Heat Sink Availability? Yes - Cooling 

water 

Heat Sink Temperature (oC) 10 

Note: 1Density and viscosity for both source and sink taken as data for air under standard 

conditions. 2Plant stated that they would not be willing to employ extra health and safety 

measures required when using “flammable working fluids such as hydrocarbons” but 

toxicity/flammability of “ammonia levels” is acceptable (an ammonia chiller circuit is 

employed elsewhere on site). 

 

6.5.3. Results and Discussion 

The data provided was used by the KBS to generate the results shown below in 

Tables 6.32-6.36 and screen shots for this case study are shown in Appendix V. 

Firstly, the general categories of waste heat recovery technologies are devised as 

shown in Table 6.31 below. 

 

Table 6.32. Case study 5: KBS initial selection results 

  Reason 

Heat Exchanger Heat 

Recovery Possible 

Yes N/A 

Closed-Cycle Vapour 

Compression Heat Pump 

Possible 

No No heat sink within a 

reasonable 

temperature lift 

Mechanical Vapour No Not an evaporative 
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Recompression Possible process 

Organic Rankine Cycle 

Possible 

Yes N/A 

 

The KBS results in Table 6.32 show that two options are possible for waste heat 

recovery in this case study: heat transfer from source to sink via a heat exchanger 

and electricity generation via an ORC. 

The results for which type of gas-gas heat exchangers may be suitable for this 

application are then generated, as shown in Table 6.33. 

 

Table 6.33. Case study 5: KBS heat exchanger selection results 

Heat Exchanger Type Selection Reason 

Run-around-Coil Yes N/A 

Gas-Gas Plate Yes N/A 

Shell-and-Tube Yes N/A 

 

Table 6.33 shows that all three of the heat exchangers suitable for a humid gas duty 

in the knowledge-base are suitable for use in this case study. Hence, design results 

are generated for each of the three heat exchangers (see Table 6.34 and also the 

other option shown in Table 6.32, organic Rankine cycle (see Table 6.35) 

 

Table 6.34.Case study 5:  KBS technical heat exchanger design results 

 Run-around-Coil Gas-gas Plate Shell-and-Tube 

Heat Source Inlet 

Temperature (oC) 

95.0 95.0 95.0 

Heat Source 

Outlet 

Temperature (oC) 

57.4 57.4 57.4 
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Heat Source 

Pressure Drop 

(bar) 

0.0009 0.0047 0.220 

Heat Sink Inlet 

Temperature (oC) 

20.0 20.0 20.0 

Heat Sink Outlet 

Temperature (oC) 

50.0 50.0 50.0 

Heat Sink Pressure 

Drop (bar) 

0.0008 0.0042 0.0144 

Heat Exchanger 

Duty (kW) 

166.7 166.7 166.7 

Heat Exchanger 

Area (m2) 

113.7 Not given 23.2 

Number Tubes N/A N/A 41 

Number Tube 

Passes 

N/A N/A 2 

Tube Outer 

Diameter (m) 

N/A N/A 0.05 

Number Shell 

Passes 

N/A N/A 1 

Unit Length (m) N/A 1.27 1.83 

Unit Height (m) N/A 1.02 1.13 

Unit Depth (m) N/A 1.65 1.13 

No Units (m) 1 2 1 

Heat Exchanger 

Effectiveness (%) 

40.0 40.0 40.0 

 

The data in Table 6.34 shows equal performance by the three heat exchanger 

options in terms of effectiveness. This is due to a conservative heat sink target 

temperature. Hence, the required effectiveness of the unit is 40% and this is not a 
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constraint of the units (run-around-coils can achieve a maximum effectiveness of 

60%, gas-gas plate 65%, shell-and-tube 90% as discussed in Section 3.1.1). 

Hence, the analysis of the three options and decision is based on other factors. The 

shell and tube results show a pressure drop of 0.22 bar on the source side, which is 

an order of magnitude greater than the other two options. This shows why typically 

shell-and-tube heat exchangers would not be used for gas-gas waste heat recovery 

duties when it is possible to use specific air handling units (such as the gas-gas plate, 

and run-around-coil for example). The heat sink pressure drop is also larger than 

the other two options: around 3.5 times greater than the gas-gas plate and 18 times 

greater than the run-around-coil. 

However, the shell-and-tube heat exchanger performance is greater than both of 

the other two options. This is due to higher heat transfer coefficients in the shell 

and tube unit due to greater levels of turbulence. Hence, the shell-and-tube heat 

transfer area is around 20% of that required by the run-around-coil, and the overall 

shell-and-tube size is around half that of the two gas-gas plate units required. 

Furthermore, the run-around-coil requires a water pump which increases the 

complexity of maintenance procedures (this is made evident to the user by the flow 

diagram of the heat exchangers, shown in the case study screenshots in Appendix 

V). Clearly, each of the three heat exchangers has advantages and disadvantages, 

and the final decision would not be solely based on the technical design results. 

The results in Table 6.34 also highlight a drawback of the system, which is lack of 

design data for certain heat exchangers. “Off-the-shelf” type heat exchangers such 

as run-around-coils and gas-gas plates do not have full design algorithms for use in 

the KBS. Hence, some data is missing, such as heat exchanger dimensions for the 

run-around-coil, and overall heat transfer surface area for the gas-gas plate. Further 

information of the design of such units can be found in Section 4.4.2. 

As shown in Table 6.32, organic Rankine cycles are also viable for this case study. 

Table 6.35 shows the technical design results for an ORC for comparison with the 

use of a heat exchanger. 
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Table 6.35. Case study 5: KBS technical ORC design results 

Working Fluid R-245fa 

Source Inlet Temperature (o C) 95.0 

Heat Source Outlet Temperature (o C) 55.9 

Pre-heater + Evaporator Duty (kW) 1104 

Heat Sink Inlet Temperature (o C) 10.0 

Heat Sink Outlet Temperature (o C) 20.0 

Condenser Duty (kW) 1050 

Heat Sink Mass Flow Rate (kg/s) 25.0 

Working Fluid Mass Flow Rate (kg/s) 5.41 

Working Fluid Turbine Inlet Temperature (o C) 45.5 

Working Fluid Turbine Inlet Pressure (bar) 3.01 

Working Fluid Turbine Outlet Temperature (o 

C) 

30.4 

Working Fluid Turbine Outlet Pressure (bar) 1.56 

Working Fluid Condensation Temperature (o 

C) 

25.0 

Plant Gross Power Output (kW) 51.7 

Working Fluid Pump Power (kW) 0.83 

Net Power Output (kW) 50.9 

Plant Thermal Efficiency (%) 4.61 

 

The results in Table 6.35 show that the organic Rankine cycle is capable of 

recovering significantly more of the available waste heat than the heat exchanger 

options, 1104kW as opposed to 167kW. This is due to the fact that the heat source 

is cooled to a lower temperature in the organic Rankine cycle pre-

heater/evaporator, as it is not limited by a specific heat sink target 

temperature/duty as in the heat exchanger design. 
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The thermal efficiency of the ORC is 4.61% and only 50.9 kW of useful power 

(electricity) is generated from the cycle, whereas all of the heat recovered by the 

heat exchanger options is utilized in heating the sink. However, as electricity is of 

higher energetic and economical value than low-grade thermal energy, the 

economic and environmental results must be studied in order to make a final 

decision on which technology is most suitable for waste heat recovery in this case 

study.  

The economic and environmental results for all options (three heat exchangers and 

ORC) are shown in Table 6.36. 

 

Table 6.36. Case study 5: KBS economic and environmental results 

 Run-around-

coil 

Gas-Gas Plate Shell-and-Tube ORC 

Estimate 

Capital Cost 

(£GBP) 

Not available Not available 7614 158055 

Estimate 

Maintenance 

Cost 

(£GBP/year) 

N/A N/A N/A 3161 

Estimate Cost 

Savings 

(GBP/year) 

51073 51088 51088 35554 

Estimate 

Payback 

Period (years) 

Not available Not available 0.15 4.88 

Estimate 

Greenhouse 

Gas 

Reductions 

(tCO2eq/year) 

352.5 352.6 352.6 215 
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Table 6.36 highlights another limitation of the KBS in that economic data is not 

available for some types of heat exchanger, particularly the gas-gas plate and run-

around-coil in this case study. This is an unavoidable limitation due to lack of 

published data in this particular area, and the lack of suitable industrial partners on 

the project. However, the economic data for the shell-and-tube heat exchanger and 

the organic Rankine cycle can be compared, and greenhouse gas reductions for all 

of the options. 

The associated greenhouse gas reductions for each of the heat exchanger options 

are approximately equal. Only the run-around-coil option is slightly lower due to the 

need of a small pump to circulate the water in the coil. Each of the heat exchangers 

reduce associated emissions by around 352tCO2eq/year, which is approximately 60% 

larger than the ORC (215tCO2eq/year). Hence, from this viewpoint the heat 

exchanger options would be preferred. 

The capital cost, cost savings and payback time of the shell-and-tube option is also 

greatly preferred to the ORC. The capital cost is approximately 5% of that for the 

ORC (£7614 as opposed to £158055) while the cost savings are 44% larger 

(£51088/year as opposed to £35554). Hence, from the economic viewpoint this 

option is preferred. 

 

Overall, for this case study the heat exchanger waste heat recovery option would be 

preferred as it shows the best results from both a technical and 

economic/environmental viewpoint. Firstly, it provides a useful heating duty of 167 

kW as opposed to 50.9kW of electricity generated by the ORC. The organic Rankine 

cycle is also a significantly more complex solution, as shown in the process flow 

diagram of each technology in the case study screenshots shown in Appendix V. 

Secondly, the economic and environmental analyses show that the increased value 

of electricity compared to low-grade thermal energy does not transfer into greater 

economic/environmental performance, and the shell-tube-heat exchanger 
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outperforms the ORC in terms of lower capital cost, greater cost savings, lower 

payback period and greater reduction in associated greenhouse gas emissions. 

The case study also highlights some flaws in the KBS performance. Some design and 

capital cost data is missing for some heat exchanger options (particularly the gas-

gas heat exchanger and run-around-coil in this case). Hence, a full comparison of 

the different heat exchanger options was not possible based on the results of the 

KBS alone. 

 

6.6. Chapter Conclusions 

Testing the KBS has shown that the system has been successful in achieving the 

aims set out in the scope of the system (Section 1.3.1). In particular, points 5-7 are 

of interest here, as shown below: 

5. Must allow a comparison of various technologies: this will educate users as 

to the benefits of each type of technology (when appropriate) 

6. Must give accurate results: results from this software must be comparable 

with other modelling tools (to be validated by case studies) 

7. Must include a variety of waste heat recovery techniques: this will allow a 

wide range of possible process conditions to be accommodated 

 

Case studies 1 and 5 in particular have shown that the KBS is capable of allowing a 

comparison of various technologies thereby educating the user about the benefits 

of each type of technology (as stated in point 5 above). In both these cases, heat 

exchangers and organic Rankine cycles were selected as suitable for use. The 

benefits and drawbacks of each technology were displayed to the user via the 

technical and economic/environmental results of the KBS. In both cases, heat 

exchangers were found to be the most appropriate solution, as would be expected 

by an expert heat recovery consultant. 

The results for each category of waste heat recovery technology (heat exchangers, 

vapour compression heat pumps, mechanical vapour recompression and organic 

Rankine cycles) have been proven to be accurate and comparable to the use of 
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more conventional methods. Organic Rankine cycle results are shown to be 

comparable to the use of IPSE Pro (SimTech 2013) in case study 1, heat exchanger 

results are shown to be comparable to common computational design methods in 

case study 2, vapour compression heat pump results are shown to be comparable 

to both the results of an expert contractor (using various modelling techniques) and 

test data in case study 3, and mechanical vapour recompression results are shown 

to be comparable to those of Aspen Plus (AspenTech 2013) in case study 4. Hence, 

the aims of point 6 of the system scope have been achieved. 

Point 7 of the system scope has also been achieved. The results show that results 

were generated for a variety of scenarios across a range of process industry sub-

sectors. Furthermore, systems involving various different types of heat source (and 

sink, where available), such as liquid waste water, dry and humid exhaust gases, and 

low pressure water vapour have been investigated. 

The testing process has also highlighted some of the inherent limitations of the 

system: full design and economic data is not available for every technology in the 

knowledge-base, such as the gas-gas plate heat exchanger and the run-around-coil. 

This flaw is unavoidable as such data is not published. This may be rectified at a 

later date by collaboration further industrial partners. Furthermore, the accuracy of 

all of the capital cost estimate methods used by the KBS are difficult to design due 

to the inherently qualitative nature. This, however, is unavoidable without the use 

of further industrial/manufacturing collaborators in the project to provide accurate 

and realistic data. 
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6.7. Case Study References 

The full references of the published case studies referred to in this chapter (case 

studies 1-3) are as follows: 

 

Table 6.37. Full references of cited case studies 

Case 

Study 1 

Aneke, M., Agnew, B., Underwood, C., Wu, H. & Masheiti, S. (2012) 

Power generation from waste heat in a food processing application. 

Applied Thermal Engineering, 36, 171-180. 

Aneke, M. C. (2012) Optimising Thermal Energy Recovery, Utilisation and 

Management in the Process Industries, PhD Thesis, Northumbria 

University, Newcastle, UK 

Case 

Study 2 

Pulat, E., Etemoglu, A. B. & Can, M. (2009) Waste-heat recovery potential 

in Turkish textile industry: Case study for city of Bursa. Renewable and 

Sustainable Energy Reviews, 13(3), 663-672 

Case 

Study 3 

Paarske, B. (2011) Heat pumps in industrial washing applications. 

European Heat Pump Summit 2011. 28-29/09/2011. Nuremburg. 

Germany 
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Chapter 7 

In this chapter, conclusions are drawn based on the findings of the work and 

recommendations for future work are presented. 

7. Conclusions and Further Work 

7.1. Conclusions 

This thesis reports the development of a novel knowledge-based system (KBS) for 

low-grade waste heat recovery equipment selection and (preliminary) design. The 

aim of the system was to provide a tool capable of encouraging the recovery of low-

grade waste heat in the process industries by addressing the following two barriers: 

i. Cost of consultancy: KBS provides a free (or very low cost) alternative to 

outside consultancy during the initial stages of low-grade waste-heat 

recovery projects. 

ii. Awareness of best-available/novel technologies: they are highlighted 

when suitable (in an educational format). 

A literature review of methods for heat recovery selection and design was 

conducted and a gap in this particular area was identified. For example, pinch 

methods for heat integration have been highly successful, but do not provide a 

selection/design of the most suitable waste heat recovery equipment. Furthermore, 

many modelling tools are available for thermodynamic cycle analysis but they are 

highly expensive, do not offer advice on when to use each type of cycle, time 

consuming and (often) require specialist training. Hence, the KBS will make a 

contribution to knowledge in this area as it is a system that simultaneously selects 

and designs waste heat recovery systems from a range of options. This is 

complementary to pinch methods which can highlight potential heat sources and 

sinks, and it expands on other previously developed methods for heat exchanger 

selection by including more advanced technologies (such as organic Rankine cycles 

and heat pumps). 
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Various types of waste heat recovery technology were analysed for inclusion in the 

knowledge-base and heat exchangers (various types), vapour compression heat 

pumps, mechanical vapour compression and organic Rankine cycles were 

considered the most appropriate according to the scope of the system and hence 

included. These technologies cover a wide range of scenarios including heat sources 

of various temperature and phase, availability of “matching” heat sinks, availability 

of a heat sink requiring a temperature lift and lack of heat sink to transfer waste 

heat. 

The system knowledge-base was built according to a “decision tree” type 

methodology which has the advantage of mapping the knowledge-base with 

inherent explanation as the decisions are visualised in a flow diagram, which is 

relevant to the educational aims of the software. Furthermore, this methodology 

has proven to be successful in the building of expert systems for similar engineering 

problems such as in selection of food drying equipment and selection of shell-and-

tube bundle types in TEMA design of shell-and-tube heat exchangers. 

The system was programmed using the Java language which has a number of 

advantages for this application, the primary being that it allows ease of 

dissemination into the industrial domain due to the “write once, run 

anywhere/everywhere” (WORA/WORE) principle of the language. This allows the 

software to run on any operating system upon download of the free Java runtime 

environment. 

Testing of the system was achieved via case-studies derived from both published 

literature and new data from industrial partners. Overall, testing was a success and 

the results closely matched those produced by published results, common process 

modelling software and the work of expert consultants. In some cases, the KBS 

suggested technologies for waste heat recovery that were more appropriate than 

those considered in the published investigation. 

However, testing also highlighted some of the inherent problems in the KBS 

methodology particularly that the accuracy of cost factor estimates is subjective and 
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hence difficult to quantify. Also, cost factors are missing from some types of heat 

exchanger as they were unobtainable. 

In order to judge the overall success of the system, it is important to revisit its scope 

and compare the results to what was initially intended. Hence, the scope of the 

system is listed as follows (originally displayed in Section 1.3.1). 

1. Must be simple and intuitive to use: To aid users with no previous 

experience of process waste heat recovery. 

This has been achieved, as is evident in the screen shots of the KBS operation. The 

system has a simple but functional GUI that requires only text-box and radio-button 

data entry. 

2. Must make use of easy-to-access data: this will aid users with limited time in 

the collection of data for use in the software. 

This has been achieved. Only data that was judged to be easily accessible was 

included in the data entry forms, and the system makes use of typical data in its 

assumptions to replace more detailed data required for the design process. 

Examples of this include film heat transfer coefficient assumptions (which are 

accurate enough for a preliminary design), utility greenhouse gas emission factors 

and built-in calculations of dew points for humid gas streams. 

3. Must explain selection/design logic to the user: this will educate the user in 

the methods employed by the system thereby reducing/avoiding user 

confusion or mistrust. 

This has been achieved as the system gives reasons for why equipment is not 

chosen for use. This is highlighted by the case study testing. 

4. Must allow easy dissemination into the industrial domain: different users are 

likely to run various operating systems (Apple OS, Linux, Windows etc) 

meaning the software must be multi-platform compatible. 

This was achieved by writing the system in the Java programming language which 

can run without further compilation or cost on all common operating systems. 

5. Must allow a comparison of various technologies: this will educate users as 

to the benefits of each type of technology (when appropriate). 
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This was achieved as highlighted by case study testing. For example, case study 2 

and case study 5 show that an organic Rankine cycle and heat exchanger were 

possible for waste heat recovery. Here, preliminary designs of both systems are 

provided, allowing the user to view the benefits and drawbacks of each design. 

6. Must give accurate results: results from this software must be comparable 

with other modelling tools (to be validated by case studies). 

This was demonstrated via case study testing. The results of the knowledge-based 

system were shown to be comparable with those of published results, common 

process modelling software and the results of experienced waste heat recovery 

consultants. 

The KBS has also exhibited some advantages when compared to common process 

modelling tools and the work of consultants. Firstly, the time taken to input data 

and run the KBS is of the order of minutes, whereas this would be of the order of 

hours (or days) when using other methods. Secondly, in some case studies, the KBS 

found solutions that were better than those suggested by published results and that 

had not been previously considered by the authors. 

7. Must include a variety of waste heat recovery techniques: this will allow a 

wide range of possible process conditions to be accommodated. 

This was achieved, as four key types of heat recovery equipment were included, 

covering a wide range of possible scenarios. However, there is scope to expand the 

equipment database and include further technologies such as absorption heat 

pumps (for cooling) and other novel technologies as they develop. 

8. Must include technologically viable results: results must be meaningful on 

an industrial scale. Technologies requiring significant further R&D should not 

be included 

This has been achieved as each of the included technologies were rigorously 

analysed and selected according to this constraint. 

9. Must include economically viable results: only technologies which have been 

proven to achieve economically viable results will be considered. 

Technologies incurring typical pay back times of greater than 5 years (under 
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economic conditions at the time of writing) will be considered non-

economical 

This has been achieved as this was, again, was a constraint in selecting the chosen 

technologies. Furthermore, each of the designed technologies in case study testing 

shown anticipated payback times of less than 5 years. 

Overall, the system has achieved what was set out in the scope of the system and 

can therefore be deemed a success. Case study testing has validated the system as a 

viable alternative to expert consultancy and existing modelling software as, broadly, 

in terms of equipment specification and cost, the KBS produced the same results as 

the other methods. Furthermore, the preliminary designs generated were generally 

within 5% of those from the other sources. 

In certain cases, the KBS suggested alternative technologies that were more viable 

(economically and/or practically) than those considered by the authors of published 

case studies, hence validating the educational aims of the software. In all cases, 

system operating time (data input, and processing of results) was of the order of 

minutes, whereas studies by consultants or the use of existing modelling packages 

would be significantly more time-consuming (of the order of hours or days). This 

highlights the ability of the system to be used as a rapid optioneering tool for 

investigation of waste heat recovery technologies. 

However, various improvements could be made the system as considered in Section 

7.2. 
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7.2. Recommendations for Future Work 

Future work should focus on improving the system and addressing the drawbacks 

highlighted by testing. The main improvement required is to the method for 

obtaining capital cost estimates as the accuracy of cost factor methods employed is 

highly subjective, particularly considering that various sources were used for each 

of the technologies. Also, the missing capital cost data for some types of equipment 

must be found. 

In order to improve this, significant input will be required from current 

manufacturers of these technologies. However, this is a difficult task given the wide 

range of technologies featured in the system knowledge-base, but it would 

considerably improve the validity of the economic results of the system, which in 

turn would considerably improve the system overall. 

Other suggested improvements include expansion of the equipment database of 

the system to include all available (on an industrial scale) options. In this work, only 

the best available (according to constraints in the system scope) were considered 

for selection due to time constraints of the project. However, future iterations of 

the system should include other technologies such as absorption heat pumps, 

thermal vapour recompression and specialist heat exchangers (scraped surface, for 

example), all of which can provide useful solutions in certain circumstances. A 

regular review of emerging equipment should also be considered with a view to 

expanding the equipment database as future technologies develop on the industrial 

scale. 

 

7.2.1. Commercialisation of the Knowledge-Based System 

Commercialisation of the software is key to its overall success. Funding will be 

sought to build an online infrastructure with which to easily disseminate the 

software. This will allow further testing of the system, which will allow iterative 

improvements of the software. 
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Appendix I 

The following is an example of some of the “data check” rules employed by KBS in 

order to ensure that no inconsistency exists in the user data input. This particular 

example refers to the “data check” rules for the data input to the liquid-liquid heat 

exchanger module and is only a small example of the total number of rules in the 

code, 

IF (any data box is empty) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “At least one text input field is 
empty” 
IF (sourceTin > 260) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Low-grade waste heat 
recovery only. Source temperature exceeds upper limit, 260oC” 
IF (sourceTtarget ≥ sourceTin) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Source target 
temperature cannot exceed inlet temperature” 
IF ((sourcemflow ≤ 0) OR (sinkmflow ≤ 0)) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Mass flow rates must be 
greater than 0” 
IF ((sourcePin ≤ 0) OR (sinkPin ≤0)) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Source & sink pressure 
(absolute pressure) must be greater than 0” 
IF (sinkTtagrget ≤ sinkTin) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Sink target temperature 
must be greater than inlet temperature” 
IF (planthours ≤ 0) 
 DATA CHECK RESULT = NEGATIVE. DISPLAY: “Error: Plant hours of operation 
must be greater than 0” 
IF (all conditions ≠NEGATIVE) 
 DATA CHECK RESULT = POSITIVE. DISPLAY: “Data input OK. Proceed” 
Note: sourceTin denotes the source inlet temperature, sourceTtarget denotes the 
source target temperature, sourcemflow denotes the source mass flowrate, 
sinkmflow denotes the sink mass flowrate, sourcePin denotes the source inlet 
pressure, sinkPin denotes the sink inlet pressure, sinkTin denotes the sink inlet 
temperature, sinkTtarget denotes the sink target temperature, planthours denotes 
the plants hours of operation per year. 
 

A screenshot showing an example of a negative data check result is shown in Figure 

A1.1, and a screenshot showing an example of a positive data check result is shown 

in Figure A1.2. 
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Figure A1.1. Example of a negative data check result 

 

Figure A1.2. Example of a positive data check result 
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Appendix II 

The following is an example of the data acquired from Alfa Laval (2013) regarding 

plate sizes for plate and frame heat exchangers. 

 

Figure A2.1a. Example data from Alfa Laval (2013): Gasketted plate heat 

exchanger (part 1) 
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Figure A2.1b. Example data from Alfa Laval (2013): Gasketted plate heat 

exchanger (part 2) 
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The following is an example of the typical overall heat transfer data provided by 

ESDU via the Best Practice Programme (2000). This example is for a welded plate 

heat exchanger. 

 

 

Figure A2.1b. Example data from ESDU (via Best Practice Programme, 2000) 

regarding typical overall heat transfer coefficients of various types of heat 

exchangers 
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Appendix III 

An example of the thermophysical working fluid data by ASHRAE used in the KBS 

knowledge-base is shown below in Figure A2.1. This example is for the R-600 

working fluid. 

 

Figure A2.1. ASHRAE thermophysical data for R-600. (ASHRAE, 2009) 
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Appendix IV 

This Appendix displays an example of Java code used to write the software. This 

short section of code is the routine to calculate the heat balance in heat exchanger 

design which is shown in Figures 4.14 and 4.15, Section 4.4.2, where only sensible 

heat is transferred. The two figures are revisited here as follows: 

 

Figure A4.1. Routine to calculate the heat balance in heat exchanger design 

(previously Figure 4.14) 
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Figure A2.2. Routing to calculate heating duties and reduce duty incrementally 

when no phase change occurs 
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The corresponding Java code is as follows (note: comments not relating to the 

operation of the routine are displayed in green, proceeded by “//”): 

START OF CODE 

double sourcemflow, sourceCp, sourceTin, sourceTtarget; //defining source 
variables that will be provided by user data 
 
String a = SOURCEMFLOW.getText(); //instructing the program to get the data from 
the text box entitled "SOURECMFLOW", the source mass flow rate 
String b = SOURCECP.getText(); //instructing the program to get the data from the 
text box entitled "SOURCECP", the source specific heat capacity 
String c = SOURCETIN.getText(); //instructing the program to get the data from the 
text box entitled "SOURCETIN", the source temperature 
String d = SOURCETTARGET.getText(); //instructing the program to get the data 
from the text box entitle "SOURCETTARGET", the source target temperature 
 
sourcemflow = Double.parseDouble(a); //setting the value to that of the string 
above 
sourceCp = Double.parseDouble(b); //setting the value to that of the string above 
source Tin = Double.parseDouble(c); //setting the value to that of the string above 
sourceTtarget = Double.parseDouble(d); //setting the value to that of the string 
above 
 
double sinkmflow, sinkCp, sinkTin, sinkTtarget; //defining sink variables that will be 
provided by user data 
 
String e = SINKMFLOW.getText(); //instructing the program to get the data from the 
text box entitled "SINKMFLOW", the sink mass flow rate 
String f = SINKCP.getText(); //instructing the program to get the data from the text 
box entitled "SINKCP", the sink specific heat capacity 
String g = SINKTIN.getText(); //instructing the program to get the data from the text 
box entitled "SINKTIN", the sink temperature 
String h = SINKTTARGET.getText(); //instructing the program to get the data from 
the text box entitle "SINKTTARGET", the sink target temperature 
 
sourcemflow = Double.parseDouble(e); //setting the value to that of the string 
above 
sourceCp = Double.parseDouble(f); //setting the value to that of the string above 
source Tin = Double.parseDouble(g); //setting the value to that of the string above 
sourceTtarget = Double.parseDouble(h); //setting the value to that of the string 
above 
 
double sourceQ, sinkQ; //defining the source and sink duty variables 
double sourceTout, sinkTout; //defining the source and sink outlet temperature 
variables 
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sourceTout = sourceTtarget; //setting the initial value of the source outlet 
temperature as equal to the target temperature 
sinkTout = sinkTtarget; //setting the initial value of the sink outlet temperature as 
equal to the target temperature 
 
sourceQ = sourceCp * sourcemflow * (sourceTin - sourceTout); //calculating the 
source duty 
 
sinkQ = sinkCp * sinkmflow * (sinkTout - sinkTin); //calculating the sink duty 
 
while (sourceQ < sinkQ) 
 {sinkTout = sinkTout - 0.001; 
 sinkQ = sinkCp * sinkmflow * (sinkTout - sinkTin);} //loop to reduce sink duty 
incrementally 
 
while (sinkQ < sourceQ) 
 {sourceTout = sourceTout + 0.001; 
 sourceQ = sourceCp * sourcemflow * (sourceTin - sourceTout);} //loop to 
reduce sink duty incrementally 
 
//At this stage: the heat balance is equal and realistic stream temperatures are 
defined 
 

END OF CODE 
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Appendix V 

Screenshots from case study 2 (Section 6.2): 

 

Figure A5.1. Initial user questions for case study 
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Figure A5.2. Data input for case study (heat exchanger module) 

 

Figure A5.3. Further data input for case study (heat exchanger module) 
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Figure A5.4. Further data input for case study (ORC module) 

 

Figure A5.5. Heat exchanger selection results for case study 
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Figure A5.6. Shell and tube heat exchanger design results for case study 

 

Figure A5.7. Plate and frame heat exchanger design results for case study 



271 
 

 

Figure A5.8. Organic Rankine cycle design results for case study 

Screenshots from case study 3 (Section 6.3): 

 

Figure A5.9. Initial questions for case study 
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Figure A5.10. Data entry for case study 

 

Figure A5.11. Heat pump design results for case study 
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Figure A5.11. Heat pump cycle diagram for case study 

Screenshots from case study 4 (Section 6.4): 

 

Figure A5.12. Data entry for case study 
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Figure A5.13. MVR design results for case study 

 

Figure A5.14. MVR (open) cycle diagram for case study 

Screenshots from case study 5 (Section 6.5): 
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Figure A5.15. Heat exchanger data entry for case study 

 

Figure A5.16. ORC data entry for case study 
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Figure A5.16. Heat exchanger selection results for case study 

 

Figure A5.17. Shell and tube heat exchanger design results for case study 
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Figure A5.18. GG plate heat exchanger design results for case study 

 

Figure A5.18. Run-around-coil heat exchanger design results for case study 
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Figure A5.19. ORC design results for case study 

 

Figure A5.20. ORC cycle diagram results for case study 
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END 


