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Abstract 

 

Abstract 

A mesoscale Oscillatory Baffled Reactor (“mesoscale-OBR”) is a laboratory-scale 

reactor (5mm inner diameter) with a total volume of approximately 5.5mL containing 

equally spaced baffles. Due to its small volume, it is suitable as a platform technology 

for process screening or investigating reaction kinetics. Traditionally, these are 

conducted in batch; however, continous screening can be performed in the mesoscale-

OBR, with flexible adjustment of the input and reduced reagent usage. In this project, 

continuous dynamic and “steady state” screening was demonstrated in the mesoscale-

OBR. These techniques can be used to rapidly and logically obtain process data and 

kinetics of any liquid-liquid reactions. Exothermic reactions of several aldehydes 

(benzaldehyde, o-tolualdehyde, m-tolualdehyde and p-tolualdehyde) with n-butylamine 

to form imines were chosen as the case studies to demonstrate the ability of the 

mesoscale-OBR. Online FTIR was used to monitor reactions. The mesoscale-OBR 

exhibited a high degree of consistency in experimental results: the uncertainty in the 

rate constant for benzaldehyde and n-butylamine imination was three times lower than 

in a conventional batch beaker method. MATLAB was used to model reaction kinetics 

and validated using experimental data. Both experiments and modelling demonstrated 

that the rate constant for 1-butanamine, N-(phenylmethylene)-synthesis was 2.1 x 10-

1mol-0.9L0.9s-1 with total reaction order of 1.9 (1.7 for benzaldehyde and 0.22 for n-

butylamine). The process development time when using “dynamic screening” (i.e 

continuous variation of one of the input parameters) was reduced by 50% compared to 

batch screening using beakers. A higher area to volume ratio of the mesoscale-OBR 

(than the beaker) allowed exothermic reactions to be screened safely and quickly e.g. 

temperature for solvent free imination was at ~40oC in a jacketed mesoscale-OBR, 

whereas ~90oC (above the boiling point of n-butylamine) for a jacketed beaker. To 

passively improve the temperature distribution along the length of the reactor, the 

centrally baffled mesoscale-OBR was constructed inside a thermosyphon: the 

temperature difference along the reactor length at residence times of 60s and 90s was 

reduced to 2oC, rendering the reaction safer and more amenable to determination of 

exothermic reaction kinetic parameters.  
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Chapter 1 Introduction 

1.1 Research background 

In general, most processes in the chemical industry use batch reactors or continuous 

stirred tank reactors (CSTRs) as they are well-understood technologies. Mixing is 

conducted using a mechanical agitator in batch processes and CSTRs or by operating 

conventional tubular continuous reactor systems in turbulent conditions thereby 

achieving plug flow. However, before scaling up chemical processes, laboratory 

screening of the process and condition parameters needs to be conducted. 

Conventionally, such investigations are conducted at laboratory-scale in batch mode 

using standardized glassware (Jas and Kirschning, 2003; Wiles and Watts, 2007). Other 

than this platform, higher multiple batch screening is also available such as the 96-well 

plates to obtain high through-put screening. The mixing in this batch screening 

platforms use apparatus such as magnetic stirrers or upright impeller mixers, leading to 

variations in mass transfer, energy transfer and mixing speed (Ehly et al., 2007). 

Furthermore, common un-baffled laboratory vessels produce different mixing profiles 

than pilot plant or industrial baffled reactor system. It also leads to substantial reagent 

usage and waste generation with screening in typical laboratory vessels (50-500mm 

diameter) (Hall et al., 2005). Even though high through-put screening are achieved with 

the multiple batch platforms, the changes in the difference apparatus use for the batch 

operation from the screening (96-ell plate), synthesis (beaker or conical flaks) to pilot 

plant (CSTR) might leads to inconsistencies outcome and necessitating time-consuming 

for re-optimisation. The results from laboratory and pilot plant scale can also be very 

different, due to the changes in surface to volume ratio for instance (heat transfer).  

Continuous screening, also known as the flow chemistry approach, has motivated the 

re-evaluation of the laboratory chemical reaction screening and synthesis (Figure 1-1). 

The continuous method means performing the chemical reaction, screening and 

synthesis in a tube or pipe, through which the reagents are pumped together and mixed 

in the same apparatus platform.  
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Figure 1-1: Chemical reaction conducted via (a) batch and (b) continuous flow 

screening (Baxendale, 2013a) 

The continuous flow chemistry can also be viewed as an approach in which chemical 

optimization and process intensification (Figure 1-2) (Baxendale, 2013a) are combined. 

This can be an important route towards sustainable manufacturing. This agrees with the 

roundtable discussion in 2007 by the Green Chemistry Institute (GCI) (a part of 

American Chemical Society (ACS)) as described by Wiles and Watts (2012). 

 

Figure 1-2: Cross disciplinary interaction in continuous flow chemistry (Baxendale, 

2013a). 

The advantages of flow chemistry are, in principle, faster and safer reaction platforms, 

rapid reaction optimisation screening and predictable scale-up. It also allows flexible 

adjustment of the input and output processes, renders monitoring and minimizes reactor 

downtime due to cleaning (Calabrese and Pissavini, 2011; Baxendale, 2013a). 

Furthermore, small-scale laboratory flow reactors offer considerable advantages with 

small quantities of reagent and minimizing waste during preliminary or screening 

laboratory work than the conventional glassware such as beaker and conical flasks. 
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With the continuous approach, it also uses similar apparatus and mixing characteristic 

from starting the screening to synthesis work, follow by optimisation and lastly 

producing the industrial volume of the product desire. Example of this approach was 

proven with the continuous reactor platform of microreactor (Watts, 2010). 

The use of continuous flow reactors for laboratory-scale process screening has rapidly 

grown in the last 10-20 years. This continuous flow approach has changed synthesis and 

screening chemical reactions both in the laboratory and at industrial scale. Chemical 

synthesis such as fine chemical or pharmaceutical products often involves multiple 

reaction steps. Continuous screening, can offer advantages in terms of reducing process 

development time, safety and space. For example, continuous screening in multiphase 

biodiesel production at four molar ratios of methanol to rapeseed oil (4:1, 5:1, 8:1 and 

12:1) was conducted in a sharp-edge helical mesoscale-OBR at 10% of the total time 

(40min) used in the conventional bench-scale stirred tank reactor (Phan et al., 2011). 

Several different designs ranging from micro to macro size are being developed and 

tested for different reaction mechanisms. The laboratory-scale “Mesoscale Oscillatory 

Baffled Reactor” (mesoscale-OBR) is one of the reactor platforms developed and is 

suitable for this continuous screening approach. The reactor platform have been used 

extensively in many types of application such as in biodiesel(Zheng et al., 2007; Phan et 

al., 2011; Phan et al., 2012) and bioprocessing(Reis et al., 2006a; Reis et al., 2006b) 

applications. However the capabilities as a laboratory screening platform not yet 

extensively explored. Therefore, the purpose of this work is to manipulate the 

advantages of the oscillation mixing with the continuous screening approach in 

obtaining screening data by exploiting the reaction experimental space.   
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1.2   Layout of the thesis 

The thesis will be divided into 5 chapters. Following this chapter, background and 

previous literature related to the study is reviewed in Chapter 2. This covers the 

development of OBR technology, investigation of mesoscale-OBR for screening and 

understanding the synthesis and kinetics of imine synthesis.  

 

The materials and method involved in the mesoscale-OBR characterization, aldehydes 

and n-butylamine reaction and screening via batch and continous, development of the 

new thermosyhphon mesoscale-OBR and numerical modelling is listed in Chapter 3.  

 

Chapter 4 describes the results obtained from experiments using the centrally baffled 

mesoscale-OBR, including characterization of the reactor, and imine synthesis with and 

without solvent in a continuous mode. Modelling validation on the reaction mechanisms 

and kinetic parameters obtain experimentally were also reported and discussed. 

Development and evaluation of the “heat pipe OBR” is also reported.  

 

Lastly, the conclusions and future work are summarized in Chapter 5. 
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Chapter 2 Literature Review 

This literature survey begins with an introduction to the Oscillatory Baffled Reactor 

(OBR) concept and its mixing mechanism. This is followed by a review of the scaled 

down OBR (the “mesoscale-OBR”) development and applications. Different types of 

laboratory screening platforms are also reviewed and discussed for comparison with the 

mesoscale-OBR reactor. Operation and advantages of the heat pipe and thermosyphon 

system as a chemical reactor are reviewed for further understanding on its isothermal 

capabilities.  Lastly, the imine synthesis reaction reviewed on the details of the reaction 

and common analytical instrument used in monitoring the process.  

2.1 Oscillatory Baffled Reactor 

An Oscillatory Baffled Reactor (OBR) is a reactor containing periodically-spaced 

orifice baffles along supporting rods in a cylindrical tube (Figure 2-1). 

 
Figure 2-1: Conventional OBR with spaced orifice baffles (Zheng et al., 2007). 

The fluid inside the system is oscillated by an oscillator placed at the base of the 

column. There are two different types of mechanisms: pulsing fluid and oscillating 

baffle (Figure 2-2). The oscillation by the former mechanism is generated using either a 

diaphragm, piston or bellows, whereas the latter involves oscillating the baffles using 

mechanical, hydraulic, pneumatic or electro-mechanical devices (Mackley, 1991; Ni et 

al., 1998). The reactor can be operated vertically, horizontally or at any angle (Ni et al., 

2001b).  
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Figure 2-2: Different Oscillation mechanisms for the OBR (a) Pulsing fluid mechanism 

and (b) Oscillating baffles mechanism (Ni et al., 1998). 

The reactor can also be operated in different configurations depending on its 

applications: in batch, continuous single tube, multi-pass or multi-tube  as shown in 

Figure 2-3 (Mackley (1991). 

 
Figure 2-3: Different orientations of OBR (a) batch, (b) continuous, (c) continuous 

multi-pass and (d) continuous multi-tube (Mackley, 1991)   
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During oscillatory motion, the fluid accelerates and decelerates according to a 

sinusoidal velocity time function (Stonestreet and Van Der Veeken, 1999). As shown in 

Figure 2-4, when the flow accelerates, the vortices are formed downstream of the 

baffles. When the flow decelerates, these vortices are swept into the bulk fluid and 

subsequently unravelled as flow accelerates in the opposite direction. As this motion 

repeats, effective and uniform mixing can be obtained in the reactor (Mackley and Ni, 

1991; Ni and Mackley, 1993).  

 
Figure 2-4: Schematic eddy motion in baffles tube 

Studies comparing the mixing profiles between unbaffled and baffled smooth tube with 

or without oscillation flow imposed provided a clear perspective on the advantages of 

the oscillation mixing (Mackley and Ni, 1993). With no baffles at a net flow of 

Ren=212, a similar degree in axial mixing was observed without (Figure 2-5 (a)) and 

with (Figure 2-5(b)) oscillatory mixing. This profile was also seen in the baffled tube 

without oscillation mixing (Figure 2-5(c)). However, when combining oscillation with 

periodic baffles as shown in Figure 2-5(d), uniform mixing was obtained in each baffle 

cavity due to the formation of vortices. When there is uniform mixing in each of the 

baffle cavities, the tube is essentially a series of well mixed stirred tanks (Stonestreet 

and Harvey, 2002; Vilar et al., 2008). 
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Figure 2-5: Flow profiles at net flow Reynolds Ren=212 for (a) no baffles and 

oscillation (b) no baffles with oscillation at Reo=2324, (c) with baffles and no 

oscillation and (d) with baffles and oscillation at Reo=378 (Mackley and Ni, 1993) 

The oscillatory mixing was found through the work by Binnie (1945), involving the 

liquid turbelence flowed through a long horizontal glass pipe. However, the concept 

evolved to the development of the OBR only in the late 1980’s. Unlike conventional 

tubular reactors, in which mixing is due to turbulence (net flow Reynolds>2000), the 

mixing inside OBRs is independent of net flow and controlled by oscillation conditions, 

leading to a greatly reduced ratio of length to diameter. The OBRs can provide plug 

flow at low net flow rates (in the laminar regime), leading to a niche application which 
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allows to convert long reactions from batch to continuous mode. This was shown 

through a saponification study by which the reactor volume was reduced 100-fold from 

the stirred tank batch method through converting the process to the continuous OBR 

system (Harvey et al., 2001). Safety aspects of the saponification process were 

improved due to the smaller reactor volume. Furthermore, the operating temperature 

was able to be lowered from 115oC to 85oC in the OBR for the ester saponification 

reaction (Harvey et al., 2001). This further improves the safety aspect of the process. 

This uniform mixing in each of the baffled cavity leads to a plug flow behaviour in the 

OBR. Plug flow refers to a fluid movement with a flat velocity profile as shown in 

Figure 2-6(a). It is different to laminar flow where the velocity is nearly zero at the wall 

and maximum at the centre region of the tube (Figure 1-6(b)). 

 
Figure 2-6: Velocity profiles of (a) plug flow and (b) laminar flow 

Plug flow behaviour is desirable as it provides consistent product quality. Plug flow can 

be achieved using a conventional tubular reactor in which the superficial velocity is 

sufficiently high to obtain good mixing (turbulent mixing, Ren≈2100) or through a 

series of continuous stirred tanks (normally number of tanks are above 10). However, in 

the OBRs, plug flow behaviour can be achieved at very low net flow rates (which 

represent a laminar regime in steady state) as the mixing in the OBR are govered by the 

baffle and oscillation motion (Stonestreet and Harvey, 2002). With that, discussion on 

the fluid mechanics of the OBR are discussed below.     

2.1.1 Fluid Mechanics 

The fluid mechanics in OBRs are governed by geometrical and dynamic parameters (Ni 

and Gough, 1997). The geometrical parameters are the distance between baffles (baffle 

spacing, L) and the ratio of baffle open area (S) as described in eqs.2-1 and 2-2. 
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L = 1.5D  eq. 2-1 

𝑆 =  
𝑑𝑜

2

𝐷2  (Typically in the range of 0.2-0.4)  eq. 2-2 

…where do is the orifice  diameter (m) and D is the tube internal diameter (m).  

The baffle spacing (L) parameter and the ratio of baffle open area (S) influence the 

shape of the eddies and the width of the vortices generated in a baffle cavity (Ni and 

Gough, 1997). The effect of baffle spacing ranging from 1.0-2.0 times the tube diameter 

on the mixing inside the tube were investigated. It was found that the optimum baffle 

spacing was 1.5 for the pulsing oscillation mechanism (Brunold et al., 1989) and 2.0 

times the tube diameter  for the oscillating baffle mechanism (Ni et al., 1998). Ni et al. 

(1998) found that decreasing the ratio of baffle open area (S) from 0.5 to 0.1 decreased 

the mixing time at different oscillation frequency (1-5Hz) and amplitude (2.5-10mm). 

However, the optimal ratio of baffle open area of around 0.2 gave the shortest mixing 

time. The effect of the gap size between the baffles and tube on the fluid mixing was 

also investigated (Ni and Stevenson, 1999). Increasing the gap size increased the mixing 

time regardless of the frequency or amplitude. This was due to the vortex split 

phenomenon between the baffle and the gap that reduces the intensity of eddy 

formation. A typical range of S was between 0.2 and 0.4, e.g. S=0.34 was used for a 

study related to energy dissipation and heat transfer (Baird and Stonestreet, 1995; 

Mackley and Stonestreet, 1995) whilst S=0.21 was used for a bioreactor application 

(Gaidhani et al., 2003)  

The dynamic dimensionless groups governing the fluid mechanics are the oscillatory 

Reynolds number (Reo), net flow Reynolds number (Ren) and Strouhal number (St) as 

described in eq.2-3 to 2-5 below respectively. The oscillatory Reynolds number 

describes the intensity of the mixing. It is similar to Ren but the superficial velocity (u) 

is replaced by the maximum oscillatory velocity (2πfxo).  Strouhal number (St), which is 

inversely proportional to the oscillation amplitude, measures the effectiveness of the 

eddy propagation in relation to tube geometry. In describing the interdependence of the 

Reo and Ren, the “velocity ratio” (ψ) (eq.2-6) is used. The oscillatory Reynolds number 

(Reo) was higher than the net flow Reynold number (Ren) to maintain the effect of the 

periodically reversing motion within each baffle cavity (Stonestreet and Harvey, 2002; 

Ni et al., 2003) or the velocity ratio ψ needs to be above 1. Stonestreet and Harvey 
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(2002) suggested that the maximum oscillatory velocity needs to be at least twice the 

value of the net flow, but Mackley (1991) found that the Ren need to be 5 times lower 

than the Reo. Stonestreet and Van Der Veeken (1999) found that that the velocity ratio 

should be maintained in the range of 2≤ψ≤6 for net flows Ren of 95-252 to obtain a high 

degree of plug flow (high number of tanks-in-series, N) as shown in Figure 2-7.  

Reo = 
2 fxoD


   eq. 2-3       

Ren = 
Du


 eq. 2-4           

St = 
D

4 xo
  eq. 2-5 

 = Reo / Ren   eq. 2-6  

…where u (m/s) is the superficial velocity; D (m) is the tube diameter; µ (m2s-1) is the 

viscosity; xo (m) is the centre to peak amplitude of oscillation; f (Hz) is the oscillation 

frequency and  (kg m-3) is fluid density.  

 
Figure 2-7: The dependency of stage-wise efficiency on the velocity ratio at different 

net flow rate value. (stagewise efficiency relates the actual number (N) of stirred tank-

in-series with the theoretical number of ideal stirred tank.) (Stonestreet and Van Der 

Veeken, 1999) 
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The effect of dynamic parameters (Reo, Ren and St) on the mixing has been studied 

intensively (Stonestreet and Van Der Veeken, 1999). Different mixing regimes 

depending on Reo were identified as shown in Table 2-1. Howes et al. (1991) also found 

that at Reo=100 the vortices remained steady and symmetrical. At Reo above 300, the 

fluid mixing becomes more complex with the broken symmetry similar to turbulence.    

Table 2-1: Flow behavior for different Reo (Stonestreet and Van Der Veeken, 1999) 

Oscillatory Reynolds Number (Reo) Flow behavior 

<250 Laminar flow (low intensity) 

250-2000 Turbulent  

>2000 Fully turbulent 

 

Manipulation of this dynamics parameter have shown effects on the process properties. 

In using the OBR as a flocculator (Ni et al., 2001a) have shown significantly increased 

of the percentage of bentonite flocculated with increasing oscillation amplitude, while it 

remained constant with various oscillation frequencies, as shown in Figure 2-8, e.g. the 

flocculation percentage increased from 2% to 9% when increasing xo from 2mm to 

8mm.  

 
Figure 2-8: Effect of oscillation amplitude and frequency on the flocculation percentage 

of bentonite (Ni et al., 2001a). 

When the OBR was used as a fermenter (Gaidhani et al., 2003), the yield of a 

polysaccharide was increased (~50%) by increasing both the oscillation amplitude and 

frequency. It was found there was an optimum condition for both parameters (xo=20mm 

and f=2 Hz) to achieve the highest yield. This demonstrates the flexibility of the OBR 
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in changing the mixing intensity via the amplitude and frequency parameter to obtain a 

desired output. On plug flow characterisation behaviour of the OBR, there are extensive 

studies conducted related to this matter. Review on the studies are discussed below. 

2.1.2 OBR characterisation 

The conditions required to obtain a degree of plug-flow in the OBR was quantified by 

evaluating axial dispersion (D) or the number of tank-in-series parameter (N). The axial 

dispersion method has been performed by Dickens et al. (1989) to  investigate the effect 

of oscillation amplitude on the fluid mixing in a 24mm diameter OBR at a fixed net 

flow Ren=110 and oscillation frequency of 3.5Hz. The results showed that the 

dispersion coefficient increased with oscillation amplitude. For example, the dispersion 

coefficient was 0.025m2s-1 at 1mm oscillation amplitude, but 0.135m2s-1 at 4mm 

oscillation amplitude. Howes and Mackley (1990) also used an axial dispersion (D) 

method for a 51mm diameter OBR. At a fixed amplitude of xo=4mm and Ren=106, the 

oscillation frequency had little effect on the dispersion coefficient at 200≤Reo≤ 800. 

This study also showed the effect of varying Ren (Ren=40 and 106) on the axial 

dispersion value. At Ren=40, the minimum dispersion was in a range of Reo=200-300 

for both tested St=0.8 and 2.0. However, at Ren=106, the minimum dispersion was in a 

range of Reo=500-700 for St=0.8 and at Reo=320 for St=2.0.  

Stonestreet and Van Der Veeken (1999) characterised the plug flow behaviour of a 

24mm ID OBR using the number of tank-in-series (N) approach. In this study, the 

baffle spacing and open area were 1.5 times the tube diameter and 0.25 respectively. 

Over the range Ren=95-250, increasing the net flow increased the Reo at which the 

number of tanks-in-series (N) was at its maximum. For instance, the maximum N at 

Ren=95 was at Reo=200-300, whereas it was at Reo=300-600 for Ren=252. Plug flow 

behavior can be achieved with any net flow (Ren) by altering the oscillation condition 

(Reo).   

Generally, the mixing in the OBR is independent of the net flow. Plug flow behaviour 

can easily be achieved in a “operating window”, e.g. ψ=2-6.  

 



14 

 

Chapter 2: Literature Review 

 

2.1.3 OBR application 

The enhanced processing aspects which related to the mass and energy transfer, 

efficient mixing, narrow RTD profile and wide range of operating (amplitude and 

frequency) window have leads to various applications using the OBR. This are briefly 

summarizes in Table 2-2 below. 

Table 2-2: Main applications of the Oscillatory Baffled Reactor (OBR) 

Application Mode References 

Biodiesel production Continuous (Ghazi et al., 2008) 

Bioprocessing 
Batch 

Batch 

(Abbott et al., 2014) 

(Ni et al., 1995) 

Chemical reaction Batch (Ni and Mackley, 1993) 

Crystallisation 
Batch 

Continuous 

(Ni et al., 2004) 

(Lawton et al., 2009) 

Fermentation Batch (Gaidhani et al., 2003) 

Flocculator Batch (Ni et al., 2001a) 

Heat exchanger 
Continuous 

Batch 

(Mackley and Stonestreet, 

1995) 

(Stephens and Mackley, 2002) 

Phase transfer reaction Batch (Wilson et al., 2005) 

Photocatalytic Batch (Fabiyi and Skelton, 1999) 

Polymerisation Batch (Ni et al., 1999) 

Saponifications Continuous (Harvey et al., 2001) 

 

Superimposing oscillatory flow upon a net flow in the OBRs significantly enhances the 

mass transfer in an air-yeast culture application (Ni et al. (1995). The OBRs exhibited 

75% higher volumetric oxygen mass transfer coefficient than stirred tank bioreactors. In 

a fermentation process, the OBR demonstrated 2-fold higher levels of polysaccharide 

and biomass concentration compared to a stirred tank reactor (STR) with 50% reduction 

in reaction time (Gaidhani et al., 2003). Nusselt number (Nut) in a continuous OBR 

increased  30-fold compared to a smooth walled tube in a heat exchanger application 

(Mackley and Stonestreet, 1995). For a batch OBR (Stephens and Mackley, 2002) the 

Nut value was similar to that obtained from the continuous OBR system at zero net flow 

rates.    
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Using OBRs can also reduce power consumption. 90.0% flocculation was achieved in 

the OBRs at 13.1s-1 shear compared to  300s-1 shear in a stirred tank (Ni et al., 2001a). 

Beside this, the mixing conditions in the OBRs can easily be manipulated from “soft” to 

intense mixed regime by varying either the frequency or/and  amplitude of the 

oscillation mixing (Ni et al., 2003). For example, in a liquid-liquid phase-transfer (PTC) 

reaction, the final fractional conversion of phenyl-acetonitrile (PhCH2CN) increased 

from 0.1 to 0.9 when changing the oscillatory velocity (xof) from  10 mm/s to 70 mm/s 

(Wilson et al., 2005).  

2.1.4 OBR Scale-up  

Scale-up of OBRs is predictable through maintaining geometric parameters (baffle 

spacing and baffle open area) and dynamic parameters (Reo St, and Ren). Smith and 

Mackley (2006) studied the scale-up from  24mm, 54mm and 150mm inner diameter 

tube in continuous mode. A near pulse injection tracer was used and its concentration at 

two points downstream was measured, but the position (distance) of the sensors was not 

mentioned. The results showed that a similar axial dispersion value (D) was obtained in 

these tube diameters over a wide range of oscillation conditions (80 ≤ Reo ≤ 800) at a 

fixed Ren=107. Ni et al. (2001b) investigated the scale-up OBR with diameters ranging 

from 40mm to 150mm in both batch and continuous modes. Regardless of the 

differences in operation modes and baffle designs (close and loose fits), the axial 

dispersion coefficient (D) was linear with the mixing characteristic (xo and f) and the 

tube size. Numerical studies (Jian and Ni, 2005) showed that the flow patterns were 

similar for all tested diameters of the OBR (50mm, 100mm and 200mm). The fluids 

mechanics in terms of the velocity ratios value were found to be independent of the 

scale-up by maintaining the average surfaces mean velocity. Here the average surfaces 

mean velocity is referred to the sum of three instantaneous velocities on a plane (Vr, V 

and Vz) and divided by the number of points. The OBRs can also be scaled up using 

multi-tube rig configurations (Mackley and Ni, 1993).  

Generally, the OBRs provide significant processing advantages with flexible operating 

windows and net flow conditions. This was illustrated with the various applications 

such as in heat transfer (Mackley and Stonestreet, 1995; Stephens and Mackley, 2002), 

mass transfer (Ni et al., 2001a; Gaidhani et al., 2003), and organic synthesis (Harvey et 

al., 2001; Wilson et al., 2005). Furthermore, the scaling up of OBRs is also predictable. 
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However, for the purposes of screening operating conditions, these scales require a 

significant amount of reagents and consequently generate large amount of waste. Due to 

this, mesoscale-OBRs (~350mm length and ~5mm internal diameter) were developed to 

cover more potential applications, such as process condition screening and laboratory 

synthesis in applications such as biodiesel (Zheng et al., 2007), bioprocessing (Reis et 

al., 2006b), and organic reactions (Reis et al., 2008; Mohd Rasdi et al., 2013)  by 

manipulating the advantages of the oscillatory mixing. 

2.2 Mesoscale-OBR 

A mesoscale-OBR is a millimetre scale reactor of typical ~350mm length and ~5mm 

internal diameter. Glass tubes were used at this scale to allow observation along the 

reactor length during the screening or synthesis applications  

2.2.1 Smooth Periodic Baffled Column (SPC) 

The smooth periodical baffled column (SPC) is a mesoscale-OBR reactor consisting of 

smooth baffles. The smooth design was used to reduce shear rate compared to the sharp-

edged orifice baffles in OBRs. As shown in Figure 2-9, the SPC reactor was a glass tube 

of 350mm length and 4.4mm internal diameter. The baffle spacing was at 3.0 times the 

tube diameter and baffle open-cross section (S) of 0.13. These differ to the conventional 

OBRs described in section 2.1.1 (the baffle spacing of 1.5 times the tube diameter and 

baffle open-cross sectional area between 0.2-0.4).  

 
Figure 2-9: SPC tube configuration (a) the length of single tube (b) the dimension of 

single baffles cavity (Reis et al., 2006a)   
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Due to the new geometric design, the flow patterns in the SPC flow were studied in 

detail using particle image velocimetry (PIV) and computational fluid dynamics (CFD) 

on single-pass tubes operating in batch mode (Reis et al., 2005). Although the mixing 

profile obtained from PIV was similar to that in the conventional OBRs, the critical 

Reos (at which vortex rings were formed symmetrically and non-symmetrically) were 

lower in SPCs than in OBRs. In SPCs, the symmetric and non-symmetric flows 

occurred at Reo>10 and at Reo>100, respectively whereas they were at Reo >50 and 

>300 for the OBRs (Howes et al., 1991; Mackley and Ni, 1991). Furthermore, the fluid 

mixing behaved differently depending on the oscillation frequency and amplitude even 

at a similar Reo condition (Reis et al., 2005). For example, at Reo=117 the flow 

symmetry was observed  at oscillation conditions of 4Hz and 1.0mm, but broke at 

oscillation condition of 1.1 Hz and 3.8mm in the SPC.  

The SPC was also characterised by evaluating its residence time distribution (RTD) by 

tracer injection and response technique (Reis et al., 2004; Reis et al., 2010). The mixing 

coefficient (km) calculated for batch reactors showed that oscillation amplitude had a 

more pronounced effect on the mixing time than the oscillation frequency (f) (Reis et 

al., 2004). This was also observed in the continuous flow, where the oscillation 

frequency (0Hz ≤ f ≤ 15Hz) had a relatively small influence on the back mixing (g) 

compared to the oscillation amplitude (0mm ≤xo ≤ 3.0mm). The axial dispersion (D) in 

a batch SPC increased with an increase of Reo (Zheng and Mackley (2008)). However, a 

lower D was observed when using  a higher St (lower amplitude) for the same Reo 

conditions at 300. In the continuous system, it shows a minimal dispersion coefficient 

value (≤0.01) for all the tested Ren of 10, 19 and 58 at various Reo conditions (50-900). 

However it also shows that the oscillation amplitude affects the D value significantly 

compared to the oscillation frequency. For example, at fixed Ren=58 and f=2Hz, the D 

value changes from 6x10-3 to 3x10-3 for xo of 0.5mm and 1.0mm respectively.  

2.2.1.1 SPC applications 

The SPC was applied for biodiesel screening in batch and continuous modes (Zheng et 

al. (2007)) at various oscillation conditions to determine the optimal operating 

conditions in terms of enhancing mass transfer through droplet breakage and emulsion 

formation. Both in batch and continuous modes (τ=49min), high oscillation frequencies 
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(f ≥ 8Hz) and amplitudes (xo≥2.0mm) were required to achieve the level of triglyceride 

(TG) at ≤ 0.2% after 40 min of reactions.     

Reis et al. (2006a) used the SPC for bioprocessing in the production of -decalactone in 

batch and showed an increase in the production rate of -decalactone from 1x10-8 

mg.cells-1.h-1 to 16x10-8 mg.cells-1.h-1when increasing  Reo from 500 to1500. The time 

to obtain the maximum concentration of -decalactone was reduced by approximately 

50% compared to a traditional ST bioreactor or shake flasks. The SPC only required a 

minimal aeration rate of 0.064vvm compared to 1vvm aeration rate used in a ST 

bioreactor to obtain similar -decalactone concentration. .  

Evidence on the benefits of oscillatory mixing was also observed in gas-liquid systems, 

such as in fermentation, photosynthesis and gas-liquid catalytic reactions. The 

oscillatory mixing facilitates bubbles breaking to form smaller and more uniform 

bubbles than in conventional bubble columns, thereby increasing the bubble residence 

time inside the SPC or increasing the mass transfer (Reis et al., 2007; Reis et al., 2008). 

Biomass production increased from 83% and 214% when using the SPC as an aerobic 

fermenter compared to a stirred tank (ST) bioreactor and a shake flask (Reis et al. 

(2006b)).  

Generally, the SPC provides better and uniform mixing at a smaller volume than 

conventional shake flasks and ST bioreactors. It allows screening to be conducted 

through the effective oscillation mixing and follows the process intensification concept, 

increasing space-time yields.  Due to its small volume reactor, the SPC increases the 

safety of processes as it reduces the hazardous inventory in conducting any chemical 

reactions.  

2.2.2 New Baffle Designs (central, integral and helical baffles) 

Three different types of baffle designs, namely central baffle (Figure 2-10(a)), integral 

baffle (Figure 2-10(b)) and helical baffle (Figure 2-10(c)) were constructed by Phan and 

Harvey (2010). They are millimeter-scale glass jacketed tubes of 350mm long and 5mm 

internal diameter.  
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Figure 2-10: New designs of mesoscale-OBR baffles (a) Central, (b) Integral and (c) 

Helical (Phan and Harvey 2010) 

The baffle patterns vary from smooth to sharp-edge designs to  provide different mixing 

intensities. The baffle geometries were similar to those in conventional OBRs in terms 

of baffle spacing (1.5 times the reactor tube diameter) and ratio of open cross-sectional 

area (0.2-0.4). The central baffled design consisted of hexagonal stainless steel solid 

discs (approximately 4mm diameter) placed periodically at a distance of 1.5 tube 

diameters along a 2 mm narrow rod, providing 0.36 open cross seactional-area. With the 

integral baffled design, the baffle spacing was 7.5mm, with an orifice diameter of 

2.5mm diameter, providing an open cross sectional area of 0.25. As for the helical 

baffled design, it consisted of 1.1mm stainless steel wire coiled at a pitch of 7.5mm with 

the open area at each turn around 0.26. Summaries of the designs are listed in Table 2-3.  

Table 2-3: Different designs of baffles for mesoscale-OBRs (Phan and Harvey 2010). 

Design 
Central 

Baffles 

Integral 

Baffles 

Helical 

Baffles 

Parameters 

Baffle spacing (L), mm 7.5 7.5 7.5 

Ratio of open cross-

sectional area (S) 
0.36 0.25 0.26 

Diameter (D), mm 5 5 5 

 

Generally, the three types of baffles designs cover a wide range of applications. With 

the integral baffled design, it is suitable for shear-sensitive applications, such as 

bioprocessing applications (Reis et al., 2005; Reis et al., 2006a) whereas the sharp-

edged centrally baffled design provides high shear, which aids mixing in 2-phase liquid-

liquid systems such as biodiesel production. The helical baffled design has advantages 

for solid-liquid reactions, as the main flow is less constricted, thereby reducing particle 

clogging.  
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Residence Time Distribution (RTD) investigation for the integral, central and helical 

baffled designs was conducted at Ren ranging from 4.3 to 34.0 over various oscillation 

conditions (xo=0.5-4mm and f=1-6Hz) (Phan and Harvey, 2010). Plug flow behaviour 

for the central and integral baffled designs was significantly affected by oscillation 

amplitude compared to oscillation frequency. For example, for the integral baffled 

design, at a fixed frequency (f=3Hz), variances increased significantly from 0.068, 

0.132 and 0.223 when oscillation amplitude increased from 0.5mm, 2mm to 4mm. The 

change in variances from one condition to another was significant compared to the data 

obtained at a fixed oscillation amplitude, e.g. 0.087, 0.082 and 0.101 for oscillation 

frequency of 2Hz, 4Hz and 6Hz respectively at xo=2.0mm. The study also established 

that the suitable oscillation amplitude conditions were 0.5-1.0mm for the integral and 

central baffled design. Outside this range, the obtained RTD profiles were similar to 

those in a well-mixed ST, indicating that axial mixing was dominant. At different Ren 

(Ren=4-35), the variance increased significantly at Ren<10 for the various oscillation 

condition applied (Reo=10-500) and minimum variance changes (~0.1 difference) with 

Ren>25 for the both system design of central and integral baffled. Apart from that, in 

order to obtain a number of tank-in-series (N)  above 10, the velocity ratio () had to be 

in the range 4-10 for the central and integral baffled designs. 

However, at low net flow Reynolds number, e.g. Ren<5, the two designs exhibited 

different behaviour (Phan et al., 2011a). In the central baffled design, at xo=0.25-0.5mm 

(St=1.59-0.8) (Figure 2-11(a)) and xo=2-3mm (Figure 2-11(b)) the number of tank-in-

series (N) was around 10 (or normalised variance σ()2=0.10) and 25 for oscillation 

condition range of 10 ≤Reo ≤120 and 150 ≤Reo ≤500, respectively.  

 
Figure 2-11: Dependency of the number of tank in series at (a) xo=0.25-0.5mm and (b) 

xo=2-3mm onto the Reo at Ren=1.27 for central baffled mesoscale-OBR. (Phan et al., 

2011a). 
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However at xo=1.0-1.5mm (St=0.4-0.27), it exhibited an increase to an optimum value 

(N≈30) at the Reo range of 100-125 before decreasing to its minimum value of 10 

(Figure 2-12)  

 
Figure 2-12: Dependency of the number of tank-in-series at St=0.27-0.40 onto the Reo 

at Ren=2.55 for central baffled mesoscale-OBR. (Phan et al., 2011a). 

 

This trend was also observed at xo=4mm with maximum N=30 obtained at Reo≈50. 

However, regardless of tested Ren (1.27 or 2.55) and Reo, the minimum N for the central 

design was above 10.  At Ren=2.55 (Figure 2-13(a)), the integral baffled design behaved 

as a well-mixed ST (N<10) at oscillation amplitudes of 0.25mm (St=1.59), 0.5mm 

(St=0.8), 1.0mm (St=0.4) and 2.0mm (St=0.20) regardless of tested Reo. At xo=1.5mm,  

N reached its maximum (N=18) at Reo=50 (Figure 2-13 (b)).  

 
Figure 2-13: Dependency of the number of tank in series at (a) Ren=2.55 for various St 

= 0.20-1.59 and (b) xo=1.5mm for various Ren=1.27-4.30 for integral baffled mesoscale-

OBR (Phan et al., 2011a). 
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It can be concluded that the central baffled design had a wider operating window (i.e. 

high degree of plug flow over a wider range of oscillation conditions and net flows) 

than the integral baffle design. 

For the helical design, the more significant effect of oscillation amplitude on the plug 

flow behaviour than oscillation frequency was also observed (Phan and Harvey, 2010; 

Phan and Harvey, 2012). However, the oscillation amplitude (xo) was higher than (xo=2-

4mm) those obtained for the central and integral baffled designs (0.5-1.0mm). For 

example, tested at Ren=7.2 and f=3Hz the variance was 0.03-0.07 for xo=2-4mm in the 

helical design compared to 0.09-0.10at xo=0.5-1.0mm for the others. At different net 

flow conditions (Ren=1.25-10), N≥10 was established at a wider Reo operating window 

when using xo=4mm compared to xo=2mm with Reo range of 100-500 and 50-300 

respectively.  

The effect of oscillation conditions on mesoscale-OBRs with varying helical pitches 

was also investigated (Phan and Harvey, 2011b). The study examined five different 

helical pitches of 2.5mm, 5.0mm, 7.5mm, 10.0mm and 15.0mm. Different optimum Reo 

ranges were found for individual helical pitches in order to obtained high plug flow 

behaviour. For example, at xo=4mm and Ren=7.2, Reo range was 100-300 and 100-700 

for the helical pitches of 2.5mm and 15.0mm respectively. The degree of plug flow was 

found to be a function of the ratio of the oscillation amplitude and the helical pitch, e.g. 

the optimal ratio of oscillation amplitude to the helical pitch was in the range of 0.2-0.6. 

For example, variance decreased from 0.1 to 0.05 when decreasing amplitude from 

4.0mm to 1.0mm for 2.5mm helical pitch at Ren=7.2. The mixing inside the helical 

baffled design was achieved not only from the vortex formation but also from the 

swirling flow. This swirling flow was generated due to the effects of the helical design 

with the centre flow. Two distinct regions were observed on the dependency plots of the 

variance on  different Reo conditions with xo=4mm:  the effect of vortex flow (region I) 

and effect of swirling flow (region II) as shown in Figure 2-14 (Phan and Harvey, 

2012). This agreed with the study by Solano et al. (2012) using a numerical simulation. 

From the flow pattern assessment, the swirled flow was formed at the centre of the 

helical pitch and its rotation depended on the reversing effects of the oscillation motion. 

The radial mixing was also promoted by increasing Reo due to the formation of eddies 

downstream of the baffles.  
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Figure 2-14: Dependency of the fluid mixing (variance) on the oscillation Reynolds 

number (Reo) at Ren=7.2 with xo=4mm 

So far, these baffles (central, helical and integral) were used in biodiesel production. 

Continuous screening biodiesel at total flowrate of 1.98ml/min (Phan et al., 2011) 

showed that indistinct step changes between different ratio of methanol to oil were 

observed for both central and helical baffle designs. This was due to the immiscibility of 

the reactants (oil and methanol), indicating that the designs were not suitable to be used 

with a two-phase reaction system for screening purposes. Hence, modification was 

conducted by changing the smooth edge to a sharp edge helical wire and inserting a 

1mm rod in the helical design. This resulted in a clear step change in the methyl ester 

content when changing the ratio of methanol and oil from 4:1 to 12:1 (Phan et al., 

2011). Similar sharp-edged helical baffles with a central rod were used to compare the 

methyl ester content obtained from the  integral baffles and wire wool baffles (Phan et 

al., 2012). A Clear steady-state screening was observed for all the baffled designs at 

Reo≥107. However, the highest methyl ester was obtained in the integral design (82%)  

at Ren=1.74 and Reo=160. Eze et al. (2013) used the integral baffled design for the 

heterogeneously catalysed esterification of hexanoic acid in a continuous mode. A clear 

step change in hexanoic acid conversion was observed when changing the residence 

times from τ=30min to 60min. The catalyst suspended in mesoscale-OBR also exhibited 

a higher turnover frequency (TOF) of 57h-1 than in a conventional stirred tank TOF of 

31h-1. This was due to the reduction of water poisoning of the catalyst in the continous 

method compared to a conventional stirred tank method. From these applications, it is 

proven that the mesoscale-OBR allows a wide range of screening conditions to be 

explored easily and rapidly at a continuous mode. The mesoscale OBRs also decrease 

significantly reaction times compared to continuous or batch stirred tank for biodiesel 
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production. For example, the time to achieve steady-state operation in a continuous 

stirred tank was 300min compared to 15min in the continuous mesoscale-OBR (Phan et 

al., 2012). In addition, the mesoscale-OBR have the flexibility in changing the baffled 

designs to suit a given application compared to the fixed baffles and impeller designs in 

conventional stirred tank reactors. 

2.3 Other screening reactors platform 

Rapid screening, and use of a minimal amount of reagent and waste generated coupled 

with an increase in overall process safety are key drivers for the new approach to 

conduct preliminary screening and synthesis at laboratory scale. Here, various 

laboratory-scale screening reactors are reviewed to compare with the present work 

conducted using the mesoscale-OBRs. However the surveys are limited to reactors that 

are able to perform liquid phase reactions. 

2.3.1 Multiple batch screening reactor  

Multiple batch screening reactors are designed to screen reactions rapidly at various 

experimental conditions simultaneously. Raposo et al. (2009) demonstrated the 

influence of inoculum to substrate ratio on the anaerobic biodegradability of sunflower 

oil cake using this multiple batch reactor. Six different experimental conditions were 

screened simultaneously using 250 mL flasks with a magnetic stirrer for mixing. This 

method only took about 7 days to obtain the screening data from 6 different experiments 

compared to 42 days if conducted individually. In kinetic determination of the 

inactivation of broth and fruit juice (Parton et al., 2007), 6 of 2mL cylindrical steel 

reactors with screw caps (Figure 2-15) were used. Here, the mixing was achieved using 

a magnetic stirrer bar inside each reactor chamber. Apart from the 6 simultaneous data 

sets collected at different treatment times, this reactor set-up allowed more controllable 

conditions for each data point. For example, once the treatment time was reached, a 

reactor was removed and the number of microorganisms was counted and analysed 

without disturbing other reactor chambers with different treatment times. Furthermore, 

this reactors set up avoid a reduction in volume due to sample taken for analysis.    
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Figure 2-15: The (a) dimension of one of the six reactor in the multi batch system and 

(b) schematic diagram of the multi-batch reactor submerged in a thermostatic water bath 

(Parton et al., 2007).  

2.3.2 Microreactors  

A microreactor consists of microchannels etched on substrates such as metal, glass or 

silicon with diameter < 1 mm. The design of the channel varies from straight channels 

to a novel sine-wave pattern. The microreactor is associated with the steady growth on 

the flow chemistry concepts and explored to various chemical synthesis and kinetics 

studies (McMullen and Jensen, 2010; Calabrese and Pissavini, 2011; Baxendale, 

2013a). Several pumping methods such as hydrodynamic pumping, electrokinetic 

pumping or capillary flow is used  with the reactor system to move the fluid through the 

channels (Geyer et al., 2006). The hydrodynamic pumping involved with the usage of 

either a syringe or a high performance liquid chromatography (HPLC) pump that allows 

broad variation of flow speed from L min-1 to L min-1. With the electrokinetic 

pumping,  known as electroosmotic flow (EOF), the fluid movement inside the channel 

occurs as a result of an applied external electric field which causes to the formation of 

the electric double layer (EDL) (Figure 2-16) (Hisham, 2012).   

 
Figure 2-16: Schematic of velocity distribution in electroosmotic flow (EOF) (Hisham, 

2012) 

The EDL consists of immobile charges adjacent to the channel surface and mobile ions 

as a diffuse layer. Under the electric field, movement of these mobile ions also pulled 
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surrounding molecules through the viscous effect. However this pumping method 

requires polar solvent and can only be applied to analytical scale reactor (Geyer et al., 

2006). In capillary flow, the fluid moves through the channels without any external 

assistance such as pumps. This fluid movement significantly depends on the channel 

aspect ratio (channel depth / channel width) (Mukhopadhyay et al., 2010). Regardless of 

the pumping methods, the flow inside a microreactor is laminar with mixing caused by 

diffusion and convection effects (Wirth, 2008). The enhancement of the diffusion and 

convection are commonly conducted through side-by-side flow or segmented flow. The 

side-by-side flow exploit two fluid streams in parallel inside the mixing channel which 

causes diffusion interactions across the stream (Hartman et al., 2011). With the 

segmented flow, the recirculation patterns of fluid packets or slug are created inside the 

microreactor channel. This created an internal fluid vortex which caused rapid mixing 

within each segments. However the cross-section of the channel needs to be smaller 

than the length of the fluid plugs to avoid the formation of emulsion (Ahmed et al., 

2006).  

  
Figure 2-17: Schematic (a) side-by-side (Hartman et al., 2011) and (b) segmented 

flow(Ahmed et al., 2006) in microreactor channel. 

There are two basic principles used to generate mixing inside the microreactor. The first 

involves an active mixing, which is achieved by applying external forces onto the 

reactor system (Hessel et al., 2005; Hartman et al., 2011). The external forces can vary 

from ultrasound irradiation (Zhang et al., 2012b), periodical variation of pumping 

(Bottausci et al., 2007), magnetic microimpellers (Zhang et al., 2006), piecoelectrically 

vibrating membrane (Feth et al., 2013) etc. A microbioreactor was used in cultivating 

Escherichia coli cell growth using a magnetic microimpeller at 180rpm (Zhang et al., 

2006). A cell growth rate of 1.5hr-1 was comparable with Sixfors reactor system (1.55hr-

1) at 500rpm.      

The second means of mixing is known as passive mixing, generated through the 

pumping power or the designs of the microstructure channels (Hessel et al., 2005). 
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Various ways of achieving this passive mixing are listed in Table 2-4. The mixing 

behaviour can be chaotic eddy-based flow, multi-lamellae flow or turbulence depending 

on the types of methods used. Advantages of this passive mixing was demonstrated in 

biodiesel synthesis, exhibiting an increase in the biodiesel yield from 60% to 94% for 

10 and 350 curves respectively of the microreactor channel (Wen et al., 2009).  

Table 2-4: Various methods in generating passive mixing in microreactors (Hessel et 

al., 2005)  

Passive Mixing 

Pumping power energy input method Microstructure design method 

 Interdigital multi-lamellae  T- and Y-flow configurations 

 Split-and-Recombine concepts 

(SAR) 

 Interdigital- and bifurcation flow 

distribution structures 

 Chaotic mixing by eddy formation 

and folding 
 Multi-holes plates 

 Nozzle injection in flow  Meander-like or zig-zag channels 

 Collision of jets  Tiny nozzles 

 

Conventionally, scale-up approach was used in increasing the production output from 

the laboratory to pilot plant and lastly the industrial scale. This method can be 

challenging due to the changes of the surface to volume ratio leading to the variation in 

effect on the mixing and heat and mass transfer properties of a reaction (Geyer et al., 

2006; Watts, 2010). Therefore it required re-optimisation on the operating conditions of 

the process thereby causing delays to achieve the commercial volume. For 

microreactors, increasing  the output of the production, can be done by  scaling out or 

‘numbering up’ approach (Mettler et al., 2010) as shown  in Figure 2-18. 
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Figure 2-18: Schematic comparing the (a) scale-up and (b) scale-out approach to 

commercial scale production 

Scaling out or numbering out method was seen as a more sensible and less risky as it 

used similar optimal laboratory conditions with each of the reactor sets, producing 

similar product conversions and yields every time (Wiles and Watts (2007) (Watts, 

2010) (Geyer et al., 2006)). However, to scale-out multiple miniaturise system is costly. 

2.3.2.1 Microreactor applications 

The microreactor can be used for various types of reaction: e.g. liquid-liquid, liquid-gas 

or liquid-solid (Geyer et al., 2006). Due to small dimension, microreactors reduce the 

use of reagents, efficient process control (heat and mass transfer), provide rapid 

screening conditions and enhance process safety (Jas and Kirschning, 2003; Benito-

Lopez et al., 2005). For example, 85% of 1, 3- dehydrochlorination of dichloropropanol 

(DCP) conversion was obtained when using a microreactor compared to 10% when 

using the conventional batch method Zhang et al. (2012a). This was due to the excellent 

mass transfer and mixing properties in the microreactor. 80% yield in a lithium−halogen 

exchange reaction was obtained  over a wide range of temperatures (-40 to 10oC) using 

a microreactor but only 50% when using 100mL round bottom flasks (Liu et al., 2013). 

In pharmaceutical applications, synthesis of an alcohol base compound increased the 

yield from 52% to 71% for batch and microreactor respectively (Wheeler et al., 2007). 

Using the microflow operation also reduced the process time by 100% compared to a 

batch system. With liquid-gas reactions, Ehrich et al. (2002) showed that the 

photochemical chlorination of toluene-2,4-diisocyanate resulted with 55% conversion 

and 80% selectivity of the desired product using microreactor system. Even though 



29 

 

Chapter 2: Literature Review 

 

higher conversion (65%) was achieved with the traditional batch glassware, the 

selectivity was reduced to 45%.  

On the applications as a screening reactor, esterification reaction between formic acid 

and methanol were screened based on the Central Composite Face-centered (CCF) 

experimental design (Naef et al., 2010). Different flowrates were adjusted to give 

different residence time. The output concentration profile was than analyse using FTIR 

spectrophotometer with the aim to determine the kinetics parameter. It resulted with 

forward (k1) and backward (k-1) rate constant at 2x10-4 and 5x10-4 mol.L-1.s-1 

respectively. It was also claimed that the method requires minimal personnel and 

material resources. Rapid screening for carbon dot (CD) reaction using microreactor 

also allow hundreds of reaction condition (various precursor, solvents and additive) to 

be screened at approximately 15min per condition in order to achieve the desired 

photoluminescence (PL) properties (Lu et al., 2014).Through this continuous screening 

it allows precise controlling of the reaction time that resulted with consistent PL 

properties of the CD. Other than that, the input into the reactor system can easily be 

adjusted with the continuous manner (Figure 2-19). 

  

Figure 2-19: Schematic illustration for the rapid screening of carbon dot reaction using 

microreactor platform (Lu et al., 2014).  

Manipulation of the segmented flow method in the development of microfluidic 

cartridges preloaded with nanoliter plugs of reagents highlights the advantage over the 

common 96-well plates screening platform(Chen and Ismagilov, 2006). The methods 

involve in 3 steps. First, nanoliters of reagants were dispensed in arrays of plugs in a 

capillary. Secondly, the plugs of reagants were merge in a merging junction with a 

substrate resulted with a spontaneous mixing due to diffusions. Lastly, the receiving 

capillary was detached from the merging junction for analysis. As the reagents were 

reacted and stored in a capillary, evaporation occurrence was reduced than the 96-well 
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plates screening platforms. Schematic flow of the method is illustrated in Figure 2-20. 

This approach also had been applied to screen reaction of bicyclo[3.2.1]octanoid 

scaffolds for pharmaceutical application(Goodell et al., 2009).   

 

Figure 2-20: Schematic process of the preloaded cartridges method screening using 

microfluidic platform (Chen and Ismagilov, 2006). 

However, microreactors are of limited use for liquid-solid systems. The solids may clog 

the narrow channel of the reactors and obstruct the continuous flow. With that, the solid, 

for example a catalyst, is restricted to use either by coating onto the inner wall of the 

reactor or pre-packing in a reaction cartridge. This was demonstrated by Snyder et al. 

(2005) with a reaction of phenyl-iodide and ethyl acrylate passed through a solid-phase 

catalyst cartridge of 10% palladium on charcoal. It yields 99% of the ethyl cinnamate in 

30min but at lower temperature of 130oC with the microreactor than 140oC with the 

conventional batch system.  

2.4 Heat pipe and thermosyphon  

Conventionally, a jacketed system is used with a reactor system to obtain an isothermal 

condition. However this requires external pumping system and also large amount of 

cooling or heating material to remove or supply heat to the reactor. This involves with 

additional operating and capital cost. On that note, a heat pipe or thermosyphon system 

was chosen as a platform to create a passive jacketed reactor system. 

2.4.1 Operating mechanism of heat pipe and thermosyphon 

Generally, thermosyphons or heat pipes consist of 3 main parts: a condenser section, an 

evaporator section and an adiabatic section (Figure 2-21). When the liquid at the 
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evaporator side is heated, it vaporizes. This vapor then moves to the cold end of the 

condensation side. The condensate then returns to the hot end (evaporator side) by 

gravity. As mentioned by Reay and Kew (2006), even though a large heat quantity were 

transported from the evaporator to the condenser side, the temperature difference along 

the heat pipe is small. Thermosyphons (Figure 2-21(a)) must be vertical with the 

evaporator at the bottom. The condensate returns to the evaporator side through gravity 

flow. The limitation for the orientation position can be overcome by introducing a wick 

inside the system. When there is also a wick, the system is known as heat pipe (Figure 

2-21 (b)). The wick facilitates the return of the condensate to the evaporator through 

capillary effects. This therefore does not restrict the tube orientation.   

 
Figure 2-21: Schematic diagram of a (a) thermosyphon and (b) heat pipe (Reay and 

Kew, 2006) 

Various studies have shown that the heat transfer from the evaporator and condenser is 

limited. One of the reasons is that the restriction of the vapor flow in the internal space 

(Parent et al., 1983). The filling ratio of the evaporator is critical in terms of reducing 

such limitations. An investigation by Kang et al. (2010) of a thermosyphon loop system 

showed that the optimal filling ratio was 10% with methanol and 30% with water. The 

system consisted of a 25mm inner diameter and 25mm long evaporator and 7 vertical 

smooth copper tubes of 4mm outer diameter and 80mm in length (Figure 2-22).  Noie 

(2005) found that the maximum heat transfer rate was obtained at filling ratios of 90%, 

60% and 30% for aspect ratio (Le/OD) of 7.45, 11.8 and 9.8 for a two-phase closed 

thermosyphon system. This demonstrates that the filling ratio is not a linear function of 

the system dimension. Here it show that, determination of the optimum filling ratio is 
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important before any work is conducted using the heat pipe or thermosyphon system. 

This is because the parameter reflects the occurrence of drying out or over-filling 

phenomena inside the heat pipe or thermosyphon systems. The latter phenomena 

prevent condensate to returns due to large volume of liquid in the evaporator side.   

 
Figure 2-22: Schematic diagram of a loop thermosyphon system (Kang et al., 2010) 

Other parameters, such as the working fluid and material of construction also play an 

important role in enhancing heat pipe or thermosyphon efficiency (Reay and Kew, 

2006). The main consideration in selection of working fluid is related to the operation 

working temperature range desire for the work conducted. Table 2-5 listed several 

working fluid used with the heat pipe and thermosyphon system (Reay and Kew, 2006). 

Table 2-5: Selection of working fluid use with the heat pipe or thermosyphon system 

(Reay and Kew, 2006) 

Working fluid 
Melting point  

(oC) 

Boiling point at 

atmospheric 

pressure (oC) 

Useful range  

(oC) 

Helium -271 -261 -271 to -269 

Nitrogen -210 -196 -203 to -160 

Ethanol -112 78 0 to 130 

Heptane -90 98 0 to 150 

Water 0 100 30 to 200 

Toluene -95 110 50 to 200 

Sodium 98 892 600 to 1200 

Silver 960 2212 1800 to 2300 
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Other concerns related to the working fluid determination are related to the fluid 

compatibility, latent heat, thermal conductivity, surface tension and vapour pressure 

properties (Reay and Kew, 2006). Merit number (M’) (e.q.) value is also used to obtain 

optimum performance of the heat pipe or thermosyphon system in the range of the 

working temperature desired. However, this M’ is relatively insensitive to temperature 

difference (Reay and Kew, 2006).  

 eq. 2-7 

As with the selection of the material of construction for the heat pipe or thermosyphon 

container, it depends on several factors such as the compatibility (both with the working 

fluid and the external environment), strength-to-weight ratio, thermal conductivity, and 

ease of fabrication, porosity and wettability (Reay and Kew, 2006 212). 

2.4.2 Heat pipe or thermosyhphon application as a reactor 

The heat pipe or thermosyphon system have proven to provide high isothermal 

conductivity in several application such as spacecraft (Swanson and Birur, 2003), solar 

cells (Armijo and Carey, 2013), chemical reactors (Parent et al., 1983; Richardson et 

al., 1988), heat exchangers (Vasiliev, 2005) and electronics cooling activities (Reay and 

Kew, 2006). In this section, only the applications related to chemical reactors are 

reviewed.    

The use of heat pipe in reactor applications was reported by Parent et al. (1983) and 

Richardson et al. (1988). Parent et al. (1983) used an annular heat pipe (AHP) for a tube 

wall reactor for an exothermic reaction in which naphthalene was oxidised to phthalic 

anhydride. This was compared to the conventional liquid cooled reactor system. At 

similar conversion of 96% of naphthalene, the AHP system only requires a shorter 

reactor length (1.6m) at a lower temperature (750K) than the conventional cooling fluid 

system (2.0m in length and 770K). The design consisted of 4 annular crescent-shaped 

channels joined together to form a heat pipe (Figure 2-23(a)). The tube wall reactor was 

then inserted inside this channel with the dimension at ~1.7m long. Richardson et al. 

(1988) used a heat pipe for an endothermic reaction of steam reforming of methane. The 

heat pipe exhibited a highly isothermal level along its length but severe temperature 
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gradients were observed in the catalyst bed. This was due to low flow rates of the feed 

into the reactor. The heat pipe was inserted in the center of the reactor with the 

evaporator side outside the length of the reactor (Figure 2-23(b)). This serves as a 

preheated region. This reactor is 2.13m long with a diameter of 15.2cm. 

 
Figure 2-23: Schematic diagram of heat pipe reactor for (a) exothermic naphthalene 

oxidation reaction (Parent et al., 1983) and (b) endothermic reaction of methane 

reforming (Richardson et al., 1988).   

As there were no external mixing apparatus attached to the system, it resulted in 

relatively long reactors for both systems in order to allow adequate length for heat 

transfer or mixing to occur (Figure 2-23).  

2.5 Imine Synthesis 

Single-phase liquid-liquid reactions of several aldehydes with primary amines to form 

imines were chosen to demonstrate the ability of the mesoscale-OBR as a screening 

reactor platform. Imines known as Schiff bases, are produced through an addition-

elimination reaction between aldehyde or ketone with amine. The reaction is exothermic 

and reported mostly to be reversible (Naqvi et al., 2009). As shown in  Figure 2-24, the 

mechanisms involve a nitrogen base attacking a carbonyl compound to form an 

intermediate, followed by dehydration steps to form an imine (Anderson and Jencks, 

1960). This is a 2-step process involving bond breaking and formation, including 

protonations and deprotonation (Page, 1983). The tetrahedral intermediate formed 

during the first step of the reaction is known to be reactive and unstable (Layer, 1963; 

Iwasawa et al., 2007). Hence, in practice, it is not possible to monitor the carbinolamine 

intermediate directly due to its vanishingly small concentration.   
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Figure 2-24: Imine reaction mechanisms of carbonyl and nitrogen compound 

Similar reaction mechanisms are also involved in the production of oxime, hydrazone 

and semicarbazone. The difference in the product was due to the type of amine used 

during this addition elimination reactions, as illustrated in Figure 2-25. 

 
Figure 2-25: Different types of addition-elimination reactions between aldehyde and 

different types of amines (Carey and Sundberg, 2007)  

The rate determining step in this two-step mechanism depends upon the pH of the 

reaction mixture. At neutral and alkaline pHs, the dehydration path was identified as the 

rate determining step, whereas the attack of the amine becomes rate determining in 

acidic conditions because of the conversion to its conjugate acid (Cordes and Jencks, 

1962). In order to facilitate the detection of imine formation, water removal via 

azeotropic distillation technique or reagents can be used (Reusch, 1999). Because the 

aromatic aldehydes are so reactive, the imines formed using this type of reagent can be 

detected quantitatively without the need for water removal (Layer, 1963).  

Imine has several applications such as in biological processes, polymer synthesis and 

dynamic combinatorial chemistry (Cordes and Jencks, 1963; De Carvalho Alcântara et 

al., 1996; Saggiomo and Lüning, 2009). In the enzymatic reaction, the imine reaction 

involves carbon nitrogen double bond formation between a substrate and enzyme; i.e. 

reaction of a lysine amino group from a protein with a carbonyl substrate (Page, 1983).  

Aromatic imines have also been found to be useful in applications as hydrogen sulphide 
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and mercaptan scavengers in the water and petroleum sectors (Westlund and Weller, 

2011). These initiated interest in its reaction kinetics. Currently, most of the imine 

reaction studies (synthesis, screening, kinetic studies) was conducted via batch 

reactions. Work by Jencks (1959) reported the rate constant (k) of benzaldehyde and 

hydroxylamine in aqueous solvent was 7.0x106 l.mol-1min-1. In aqueous solvent, the rate 

constant for the synthesis of benzaldehyde and t-butylamine was a function of pH 

(Cordes and Jencks, 1963). For instance, at pH <4, an average kobs (pseudo first order 

rate constant) was 0.01 min-1 and increased to approximately at 1.0min-1 at pH >8. 

Reaction kinetic studies related to imine synthesis to obtain parameters such as the 

reaction order, reaction rate and rate constant are normally conducted using the pseudo-

first-order method using a large excess of nitrogen base (samicarbazide, t-butylamine, 

n-butylamine, ethylamine, cycloexylamine, s-butylamine) (Anderson and Jencks, 1960; 

Cordes and Jencks, 1962; Rotondo et al., 1976).  

Apart from determination of kinetic parameters, there has also been interest in the effect 

of other reaction parameters such as temperature, solvent and reagents on the imine 

yield. De Carvalho Alcântara et al. (1996) found that the yield of imine increased with 

increasing temperature, 0.06% at 0oC but 2.0% at 36oC using 0.05M butyraldehyde and 

0.05M primary aliphatic amine. The results also showed that there was no correlation 

between polar and non-polar solvents in the yield of the imine. This was supported by 

other studies  (Simion et al., 2001; Saggiomo and Lüning, 2009) in water/aqueous 

medium. Comparisons of different steric effects of amine groups resulted in the 

equlibrium constant (K) at 156M-1 for t-butylamine and K=1008.3M-1 for 

adamantylamine (De Carvalho Alcântara et al., 1996). This indicated that less  the steric 

effect (such as in adamantylamine) produced a higher yield of imine (higher K value). 

Similar findings was reported by Godoy-Alcántar et al. (2005). Here it shows that the 

types of aldehyde and amine used in imine synthesis are important to obtain high 

conversions of the imine products. Layer (1963) reported that aromatic aldehyde 

produced stable and quantitative imines. However, low reaction rates were obtained 

when using weak amines regardless of the type of aldehydes 

A “green chemistry route” has also been developed for imine synthesis. Instead of using 

organic solvents, water was used due to its lower environmental impact (Simion et al., 

2001; Saggiomo and Lüning, 2009; Chu and Li, 2010). Although several studies stated 

that water pushed the reaction backward (Layer, 1963), 80% yield of imines have been 
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obtained. Other methods, such as microwave irradiation, were also used, with the aim of 

conducting the imine synthesis without solvent. Paquin et al. (2006) demonstrated the 

imine synthesis without catalyst, whereas Varma and Dahiya (1997) used catalysts 

combined with microwaves with imine yields ≥80%. However, the microwave 

irradiation method was limited to non-volatile amines. 

On the basis of continuous synthesis of the imine, Smith et al. (2011) used a 

microfluidic flow reactor to produce  imine with a high yield for various amine and 

aldehyde compounds, e.g. a 93% yield was obtained for the reaction between 

benzaldehyde and benzyl azide. However there are still limited works on continuous 

manner for these reactions. 

With regards of analysis, monitoring and quantifying the imine reaction, various 

instruments were used such as the spectrophotometer, Raman spectroscopy, nuclear 

magnetic resonance (NMR) and infrared spectroscopy (IR). Generally, the data 

collected through this analytical instument was used to determine reaction kinetic 

parameters (rate constant or reaction rate) or evaluating the product qualitatively or/and 

quantitatively. For example, Lee et al. (2003) used Raman spectroscopy to monitor 

qualitatively and quantitavely the imine synthesis from acetophenone and aniline 

through off-line analysis. The rate constant for this reaction was 1.06x10-2 M-1 min-1 at 

25oC, which was calculated through the disappearance data of C=O stretching at 

1684cm-1. Another example by Holsey (2006) used NMR to determine the imination 

kinetics between 5-methylfurfurylamine and piperonal conducted stoichiometrically in a 

vigorously shaken vial. The rate constant was 0.07M-1 min-1 NMR spectra were taken at 

several interval times for up to 22 hours also via the off-line method. Namli and Turhan 

(2006) and (2007) followed the imine synthesis using the in situ infrared spectroscopy 

(IR) at a carbonyl peak of 1702cm-1. The studies shows that the reaction was reversible 

with the reaction order of 2.0.  

With this findings, it can be concluded that imine reaction path can either go through a 

irreversible or reversible mechanism. This was proven with the calculated rate constant 

(k) and equilibrium constant (K) listed above depending on the types of aldehyde and 

amine reactions. Furthermore, quantitative imine (80%) was also detected when using 

water as a solvent that discard the claim of the reaction being pushed backward in an 
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imine reaction. The reasons of these difference are due to many factors such as the types 

of aldehyde and amine, solvents and catalyst used.  

2.6 Infrared Spectroscopy (IR) technique 

Infrared spectroscopy (IR) is a tool to determine any organic substances that covers both 

qualitative and quantitative aspects (Conley, 1972). The nondestructiveness of IR is an 

advantage when dealing with an expensive material. The infrared region can be divided 

into three segments; near-, mid- and far-infrared  as shown in Table 2-6. 

Table 2-6: Common subdivision of the infrared regions 

Region Frequency Range (cm-1) Wavelength Range(m) 

Near-infrared 14000-4000 0.8-2.5 

Mid-infrared 4000-400 2.5-25 

Far-infrared 400-10 25-1000 

 

Different regions of the IR spectrum excite different types of vibration (Conley, 1972). 

Overtone vibration is excited at high frequency energies of near-IR (14000-4000 cm-1), 

whereas skeletal vibration is excited at low frequency region of far-IR (400-10 cm-1). 

The most useful region in reaction monitoring is the mid-IR, which gives information 

on the fundamental vibration-rotation structure. Once the IR energy is absorbed by the 

molecule and matches the specific molecular vibrational energy, the photon is excited 

from the ground energy state to the vibrational energy state (Figure 2-26) (Betteridge 

and Hallam, 1972). Through this, a sample can be characterised to determine different 

chemical bonds.  

    
Figure 2-26: Schematic presentation of molecule absorption process (Betteridge and 

Hallam, 1972)  
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The molecule frequency arises from such energy transition are related through the Bohr 

frequency condition (eq.2-7).  

E  h 
hc


  eq. 2-8         

…where h is Planck’s constant: 6.6x10-34 J.s 

The relationship can also be expressed in terms of wavelenghts (). The wavelengths 

have an inverse relationship with the frequency (f) as the infrared radiation travels at the 

speed of light (c) (Conley, 1972). The relationship between the two is expressed as:  

  =  𝑐
𝜆⁄   eq. 2-9 

…where c= 3 x 1010 cm s-1, the speed of light.  

IR spectra are also often reported in terms of wavenumber (), which this is a reciprocal 

of the wavelength (eq.2-9). 

 =  1
𝜔⁄    eq. 2-10 

Information from the IR is obtained by monitoring the changes in the intensity or 

formation of the unique absorption band for each functional group. Regarding 

qualitative analysis, spectral interpretation is conducted by either comparing the 

collected spectra with known reference material spectra or by peak assignment (Conley, 

1972; International, 2002). The latter is conducted through step-by-step procedure, 

which starts with the peak identification related to the solvent used (if any). This is 

followed by identification of the common functional group absorption band (C=O, O-H, 

N-H, C=C) and lastly to the fingerprint region (1430-625 cm-1). The summary of 

characterisation of different functional group bands is easily accessed from literature 

(Conley, 1972; Socrates, 1994). For quantitative analysis, a calibration curve is needed 

for the conversion of the absorbance data to the concentration value according to the 

Beer-Lambert law relationship (eq.2-10). According to this law, the absorbance (A) has 

a linear relationship towards the molar absorptivity (), path length (b) and compound 

concentration (c).  
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A=bc  eq. 2-11 

The molar absorptivity and path length are constant; hence, concentration data can be 

obtained directly from the constructed calibration curve of absorbance data with several 

known concentrations. However, this linear relationship is not obeyed at high substance 

concentrations as shown in Figure 2-27 for cyclohexanone in cyclohexane solution.  

 
Figure 2-27: Calibration curve of cyclohexanone in cyclohexane solution at various 

concentration (Conley, 1972) 

Measurement of the absorbance data can be conducted either through the peak height or 

peak area methods. Regardless of the methods, the baseline position is important to 

avoid any deviation during data collection. There are various ways to construct a 

baseline during the analysis, as shown in Figure 2-28. The peak-zero (Figure 2-28(a) 

method involves constructing the baseline at zero wavenumber. In the tangent method 

(Figure 2-28(b)), the baseline is formed by joining the two lowest points at the peak of 

interest. The peak-peak (Figure 2-28(c)) method uses the baseline developing from the 

lowest peak beside the peak of interest. However, the peak-zero method reduces error 

compared to the tangent and peak-peak methods because the baseline is fixed at zero 

absorbance. However, the tangent and peak-peak methods can be used for qualitative or 

quantitative analysis of single substance as this does not involve any reaction that will 

change the position of the peaks.  
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Figure 2-28: Baseline construction through (a) peak-zero method, (b) tangent method 

and (c) peak-peak method (Conley, 1972; K. Laqua, 1988)     

Data treatment can improve experimental results. A second derivative treatment is the 

most common choice (Pierce and Wehling, 1994; A. L. Woodhead, 1997; Rieppo et al., 

2012) in treating data. Differentiating the Beer-Lambert law twice (eq.2-11) reduces the 

signal to noise ratio and improves the detectability of small and overlapping peaks (K. 

Laqua, 1988; Rieppo et al., 2012). This method also eliminates baseline shift and 

reduces systematic error in the analysis.  

  eq. 2-12 

…where A(ṽ) is the wavenumber dependent absorbance, α(ṽ) wavenumber dependent 

absorption coefficient, Ɩ is the absorption path and c is the concentration. 

2.6.1 Analysis of reaction kinetic parameters with quantitative data  

Data obtained from the IR was used to determine the reaction parameters of the process, 

e.g. rate constant, reaction rate and reaction order. Conley (1972) stated that reaction 

kinetics can be measured if a functional band of the reacting molecules significantly 

decreased. This quantitative approach was reviewed through an investigation of several 

reaction routes. For example, the reaction of benzaldehyde with aniline was monitored 

using the peak at 1702cm-1 for the C=O of benzaldehyde and 1619 cm-1 and 1499cm-1 

for H-N-H and C-N of the aromatic aniline, respectively (Namli and Turhan, 2007). The 

disappearance of the C=O peak data collected in situ was converted to its concentration 

profile using the constructed calibration curve (correlation coefficient of 0.996). With 

the calculated concentration data, it was found that the benzaldehyde reached its 



42 

 

Chapter 2: Literature Review 

 

equilibrium reaction at approximately 0.07M. Another example of this quantitative 

approach was in homogeneously catalysed liquid-phase sucrose hydrolysis (Pintar et al., 

2002). A calibration curve was constructed using data collected in the 1200-900 cm-

1region to cover the high absorbance profiles of sucrose, fructose and glucose. The 

calculated concentration data obtained was fitted to the pseudo-first order equation, 

giving a rate constant of 0.01224 l mol-1 min-1 for sucrose inversion. 

Generally, the reaction parameters (rate constant, rate of reaction and reaction order) of 

a reaction were determined by integrating differential equations of the rate expression 

(Capellos and Bielski, 1980; Wright, 2004). As shown in Figure 2-29, linear plots are 

obtained through the integration results. 

 
Figure 2-29: Integrated rate expression of (a) zero order reaction; (b) first order reaction 

and (c) second order reaction. ([A] is the concentration of a reagent) (Capellos and 

Bielski, 1980; Wright, 2004) 

The rate constant value was determined from the slope of the plots. The reaction order 

was measured through various fittings, i.e [A] vs time (zero order), ln [A] vs time (first 

order) and lastly 1/ [A] vs time (s order). As for reaction order >2, the integrated form in 

eq. 2-12 was used (Laidler, 1987).  

𝑘 =  1
𝑡(𝑛 − 1)⁄  [1

(𝐴𝑜 − 𝑥)𝑛−1⁄ − 1
𝐴𝑜

𝑛−1⁄ ]   eq. 2-13 

However, the determination of reaction order was valid only for the overall reaction 

order not for the individual reactant reaction order. This integrated rate expression was 

also applied when using the pseudo-order reaction method. The pseudo-order reaction 

method involves conducting reactions with one of the reactants in large excess (a 

minimum of a 20-fold stoichiometric excess). The changes in concentration of the 

reagent in excess are minor. Hence, a second order reaction will behave like a first order 
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reaction but the rate constant obtain from the plots is known as pseudo-rate constant 

(k). The true rate constant can then be obtained through the plots of ln (k) and various 

concentrations of the excess reactant.  

The determination or validation of the reaction kinetic parameters (rate constant, rate of 

reaction and reaction order) can also be conducted through kinetic modelling using the 

quantitative data collected with the IR. This has been conducted through multivariate 

fitting of absorption data with the kinetics model and reaction mechanisms (de Juan et 

al., 2000). Minimal sum of square of errors (SSE) is used to determine the fit between 

the experimental and the modelling data (de Juan et al., 2000; Abdallah, 2010). This 

SSE method was used to investigate many chemical reactions such as cyclometallation 

reactions between imines and palladium acetate  (de Juan et al., 2000), hydrosilylation 

(Imlinger et al., 2007) and acetylsalicylic acid synthesis (Imlinger et al., 2008). A 

software package (MATLAB) or computer programming (FORTRAN) can be used in 

modelling the process. Although the simulation platforms are different, the approach to 

determinate or validate the reaction kinetic parameters are similar (Abdallah, 2010; 

Seoud and Abdallah, 2010). Generally, the procedure begins by determining a reaction 

path, leading to a differential equation to be modelled (example see in Figure 2-30 for 

the reaction of saponification of di-esters).  

 
Figure 2-30: Saponification of di-esters (a) reaction path and (b) its derivative equations 

(Seoud and Abdallah, 2010) 

Then the experimental concentration-time data of the reaction is collected at any desired 

reaction conditions. In order to obtain the modelling concentration-time data for 
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comparison with the experimental concentration data, a rate constant and/or reaction 

order is required. This can be obtained by referring to previous published work or 

calculating through the integrated rate expression, initial rate method or by the 

differential method (Abdallah, 2010; Seoud and Abdallah, 2010). Once the entire 

requirement is met, the ordinary differential equations (ODE) can be solved numerically 

using the Runge-Kutta method to get the modelling concentration-time data. The data 

were compared to the experimental value with the aim to obtain minimal SSE. When 

this is reached, the rate constant and/or reaction order value used is the results for the 

reaction under study. This kinetic modelling allows iterative process by setting a range 

value of rate constant and/or reaction order based on the calculated value. Apart from 

that, it can also be used to deduce different reaction mechanisms easily by changing the 

initial setting of the reaction kinetic path.  

2.7 Summary  

This chapter reviews the development, design and process advantages of the OBRs. 

This reactor allows long residence time reactions to be conducted in a continuous mode 

with a significant reduction in length to diameter ratio. Scale-up in OBRs is linear by 

maintaining geometric (baffle spacing and baffle open area) and dynamic (Reo, Ren, St 

and ψ) for reactor diameters ≥ 25mm. Recently, OBRs have been scaled down to 

“mesoscale” (~5mm diameter). Different baffle designs allow a wide range of 

applications from shear-sensitive applications to multiphase to high-shear mixing 

applications. Plug flow is easily achieved in these reactors; meaning that rapid screening 

of reactions with residence times varying from several min to several hours is possible.  

However, there is limited work on rapid and dynamic screening capabilities using the 

mesoscale-OBR. In this study, the mesoscale-OBR was used to screen and manipulate 

experimental parameters to rapidly obtain reaction data in a continuous mode. The 

advantages of continuous processes have often been reported (Calabrese and Pissavini, 

2011; Baxendale, 2013b). Recently, micro- and macro-reactor systems have been used 

as flow channels in providing a new method of conducting chemical reaction, synthesis 

ans screening (Benito-Lopez et al., 2005; Stojkovič and Žnidaršič-Plazl, 2012). As for 

the “mesoscale” size, it bridges the gap between micro- and macroscale systems, and 

broadens the selection of laboratory or small-scale reaction analysis (Wheeler et al., 

2007). Table 2-7 illustrates the advantages and disadvantages of the microreactor and 
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mesoscale-OBR as a continuous screening and synthesis reactor platform. The 

microreactor only need reagent at microliter volume in conducting screening or 

preliminary laboratory work than the mesoscale-OBR (millimetre). However, the 

mesoscale-OBR provides the flexibility with the operation modes either at batch or 

continuous manner which is restricted with the microreactor system. Furthermore, the 

baffle types in mesoscale-OBRs can easily be changed as they are not embedded in the 

reactor. Other than that, mesoscale-OBR systems allow solid catalysts to be used 

without clogging based on (Eze et al., 2013) work that uses propylsulfonic acid 

derivatised SBA-15(PrSO3H-SBA-15) silica powder catalyst. Hence it is more flexible 

to be used as a laboratory screening platform.      

Table 2-7: Comparison between mesoscale-OBRs and microreactors 

 Volume Mixing 
Operation 

mode 

Mixing 

channel or 

baffled 

Increased 

production 

size 

Mesoscale-

OBR 
milimeter 

oscillation 

and 

diffusion 

Batch and 

continuous 

Different 

baffled design                

(central, 

integral and 

helical) 

Scale-up 

Microreactor microliter diffusion continuous 

straight to a 

novel sine-

wave pattern 

channels 

Scale-out 

 

Even though the multiple batch reactors screening platforms provide rapid screening 

data especially related to kinetics study, its design limits its application. The magnetic 

stirrer without baffles to break up the mixing flow leads to inconsistencies in mass, 

energy transfer and agitation that could lead to misleading data. Using a magnetic bar 

(Halász et al., 2007) also show to create a cylindrical dye curtain developed around the 

vortex axis when the dye was injected at the centre of the system, indicating insufficient 

mixing within the system (Figure 2-31). 
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Figure 2-31: Developing cylindrical dye curtain below the vortex using a magnetic bar 

stirrer (Halász et al., 2007) 

Heat distribution in a continuous reactor is more rapid, leading to a smaller temperature 

gradient inside and along the reactor than that in batch reactor (Junkers, 2014). This 

reduces the occurrence of hot spots that may promote the formation of undesirable 

products. Due to that, the mesoscale-OBR was combined with a heat pipe or 

thermosyphon system to create a passive jacketed reactor system.  Generally, review on 

the heat pipe and thermosyphon showed that the filling ratio of the evaporator section 

plays an important role as one of the factors affecting the heat distribution within 

system. A good temperature control for either exothermic or endothermic reactions was 

observed when applying the heat pipes and thermosyphon systems as a chemical reactor 

shows. Yet it resulted in relatively long reactors due to high feed flow rates required to 

achieve adequate mixing. 

Imine synthesis reviewed shows that the reaction has several applications in biological 

processes, polymer synthesis and dynamic combinatorial chemistry (Cordes and Jencks, 

1963; De Carvalho Alcântara et al., 1996; Saggiomo and Lüning, 2009; Murugesan et 

al., 2012). Previous studies shows that types of aldehyde (aromatic) and amine 

(primary) used in imine synthesis are important to obtain high conversions of the imine 

products. Other than that, the findings show that the imine reaction path can either go 

through a irreversible or reversible mechanism due to many factors such as the types of 

aldehyde and amine, solvents and catalyst used. However, almost of the imine reaction 

studies (synthesis, screening, kinetic studies) were conducted via batch reactions using 

conventional glassware set-up (beaker and conical flaks). Apart of performing the imine 

reaction screening continuously using the mesoscale-OBR in the present study, the 

reason imine reaction was used is due to its simple reaction as it do not involve any 
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competitive reactions path. This eased the reaction monitoring process to established the 

fundamental platform in conducting continous screening using the mesoscale-OBR.    

Any type of analytical instrument can be used for collecting and analysing the data by 

the continuous method to obtain representative information with the reaction under 

study such as Raman and Infrared (IR) Spectroscopy (Lee et al., 2003; Namli and 

Turhan, 2006; Namli and Turhan, 2007).Outcome from the data collected with this 

various analytical instrument resulted with different information related to the reaction 

understudy such as the kinetic parameters, product yield and selectivity. Choosing 

analysis method depends upon the reaction conducted and the detection limitation with 

the system (solvent and reagent used). In this study the in situ infrared spectroscopy 

(IR) was used as the analytical instrument in assisting the imine screening determination 

The IR determination involves a non-destructive sampling process, which is an 

advantage when dealing with small volumes or expensive samples. Furthermore, in situ, 

real-time data collection is faster and more efficient than off-line techniques, because it 

eliminates the possibility of any further reactions and removes the need for sample 

preparations (Pintar et al., 2002).  

2.8 Research objectives  

The main aim of this research was to demonstrate the ability of the mesoscale-OBR to 

rapidly and logically screen and manipulate the experimental reaction space (residence 

time, chemical ratio or temperature) continuously for liquid-liquid phase reactions. The 

data collected was then used to determine kinetic parameters, such as rate constant and 

reaction order. In situ IR was used to monitor real-time quantitative and qualitative 

characteristics of the reaction system.  

To achieve the objective of the study, five research tasks were identified:- 

1. To characterize the modified central baffle mesoscale-OBR (enlarged from 5mm 

to 20mm at the outlet to accommodate the 16mm diameter IR probe) at different 

net flow rates, corresponding to 6.0 ≤ Ren ≤ 120 over a range of oscillation 

conditions 62<Reo<246 to determine its operating window for plug flow 

behaviour.   
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2. To screen reactions and determine kinetic parameters using the mesoscale-OBR 

in batch, continuous multi steady-state and continuous dynamic modes 

(continuous variation of the residence time), and to validate the techniques 

against one another, and against conventional batch (beaker) screening. 

3. To model the reaction kinetic parameters (rate constants, reaction order) and 

reaction mechanism, and validate it using experimental data.  

4. To characterise the performance of the jacketed and non-jacketed mesoscale-

OBR system for an exothermic reaction in batch and continuous multi steady-

state, and to compare the results to conventional jacketed and unjacketed beakers 

in batch mode.   

5. To develop and evaluate a thermosyphon mesoscale-OBR for a highly 

exothermic reaction.  
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Chapter 3 Materials and methods 

The methods and instruments used in reactor characterization and continuous screening 

of imine synthesis in a centrally baffled mesoscale oscillatory baffled reactor 

(mesoscale-OBR) are described in this chapter. The mesoscale-OBR was characterized 

over a wide range of net flows and oscillatory conditions to determine its residence time 

distribution behaviour, and associated degree of plug flow. The results were used to 

investigate the kinetics of an imine reaction in a continous mode using a typical reagent-

solvent mixture to suppress the exotherm generated during the reaction. This was 

conducted through continous multi-steady state and dynamic screening, varying one or 

more parameters (residence time and molar ratio of benzaldehyde to n-butylamine). 

Dynamic screening through multiple sets of different types of imine reactions was also 

conducted to obtain data without having to refill and discharge. This demonstrates the 

flexibility and advantages of the mesoscale-OBR system as a screening platform for 

obtaining data rapidly and logically. Comparison to batch mesoscale OBRs and 

standardized laboratory beakers was also carried out. The data was collected in situ 

using infrared spectroscopy (IR) with second derivative data treatment applied. 

The imine reaction was also conducted solvent-free using the mesoscale-OBR to exhibit 

the heat transfer advantages of the system. The screening was carried out using a 

jacketed mesoscale-OBR and a mesoscale-OBR coupled with a thermosyphon heat pipe 

system. This was compared to the non-jacketed mesoscale-OBR system to evaluate the 

effects of imposing greater isothermality during the synthesis.  

3.1 Chemicals 

The reactants used in this study were n-butylamine (C4H11N), benzaldehyde (C7H5O), o-

tolualdehyde (C8H8O), p-tolualdehyde(C8H8O) and m-tolualdehyde(C8H8O). All were 

>98% pure and were supplied by Sigma-Aldrich. N-hexane (n-C6H14) with >95% purity 

was used as a solvent in the kinetics experiments. Benzaldehyde was diluted in n-

hexane to 0.25 mol dm-3 whilst n-butylamine was prepared at a set of various 

concentrations of 0.25, 0.50, 1.00 and 1.50 mol dm-3. For o-tolualdehyde, p-

tolualdehyde and m-tolualdehyde, the reactions were conducted at a molar ratio of 1:1 

of the aldehyde to amine at the concentration of 0.25 mol dm-3. 
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3.2 Experimentation Methods 

Each “mesoreactor” consisted of a glass tube of 360mm length and 5.0mm inner 

diameter inserted with central baffles, giving a total working volume of 7mL (Figure 

3-1a). The central baffles (axial baffles) were hexagonal stainless steel solid discs 

(approximately 4mm diameter) periodically spaced 1.5 tube diameters apart along a 2 

mm rod as presented in Figure 3-1b (Phan and Harvey, 2010; Phan et al., 2011a).  The 

outlet of the reactor was modified from the 5mm diameter to 20mm diameter to 

accommodate the IR probe for analysis purpose (Figure 3-2).   

 
Figure 3-1: (a) Mesoscale-OBR glass tube inserted with central baffle and (b) central 

baffle with hexagonal stainless steel solid disc along a 2mm rod.  

 
Figure 3-2: (a) Modified mesoscale-OBR for in-situ analysis using IR spectroscopy and 

(b) normal mesoscale-OBR 

The central baffles design was used in the present work as it is suitable for the 

continuous single phase liquid-liquid imine reaction screening understudy. Apart from 



51 

 

Chapter 3: Materials and Methods 

 

that, the design has not been tested with the reaction system conducted (single phase 

liquid-liquid). Compared to the integral baffled design, the number of tank-in-series (N) 

of the central baffles at different Reo (10 to 700) and Ren (1.27 to 34) was always at 

minimum of 10 which reflects to a plug flow behaviour(Phan and Harvey, 2010; Phan et 

al., 2011a). This gives wider operation window in changing the residence time 

(flowrates) during the screening process while maintaining the plug flow condition. 

With the imine reaction understudy in the present work (i.e. benzaldehyde with n-

butylamine), it does not involved any usage of solid catalyst, with that the less 

constricted baffles design (helical baffles) was not used. 

3.2.1 Characterisation of the Modified Mesoscale-OBR 

The experimental set-up and diagram used to characterise the reactor is shown in Figure 

3-3. Figure 3-4 is the schematic of the same equipment. A similar experimental set-up 

was used in the imine screening using the mesoscale-OBR. This is later described in 

section 3.2.3. Three PVM Confluent syringe pumps (Eurodyne Ltd.) were used to 

provide net flows, inject the tracer (benzaldehyde 98% purity) and oscillate the fluid 

(hexane was used as the working fluid).  

 

Prior to an experiment, the pump systems and reactor must be air-free by filling the 

system with the working fluid (hexane). The pumps were set to the desired oscillation 

condition by adjusting frequency and amplitude and net flow (Ren). The oscillation 

frequency was determined by the speed of piston movement whilst the oscillation 

amplitude was obtained by the amount of liquid dispensed. Approximately 0.5mL of 

benzaldehyde was injected at the highest flowrate of ~3400 mL/hr (Ren=470) to obtain a 

sharp pulse injection (Phan and Harvey, 2010). At the outlet of the reactor, the IR probe 

was immersed to monitor the reaction progress. The C=O peak at 1714cm-1 was 

measured and monitored until the peak height was zero. The conversion of the peak 

height-time data to tracer concentration-time was conducted directly due to the linear 

relationship of the both parameter according to Beer-Lambert law (Conley, 1972). 
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Figure 3-3: Experimental set-up for plug flow determination using a mesoscale-OBR 

 

 
Figure 3-4: Schematic for experimental set-up for characterisation of the mesoscale-

OBR 

3.2.2 Characterisation of the Multi-tube Mesoscale-OBR 

Three different designs of baffles were characterised: central (Figure 3-5 (a)), integral 

(Figure 3-5(b) and helical baffles (Figure 3-5(c)). All the baffles have similar baffle 

spacing of 1.5 times the tube diameter (7.5mm). The central design consisted of evenly 

spaced 4mm hexagonal stainless steel solid discs with 36% open cross sectional area 

(S). This baffle was known as a “sharp edged” baffle. As for the integral design, the 

baffle open-cross sectional area was 25% and consisted of smooth baffles. Lastly, the 
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design of the helical baffle was constructed with baffle open-cross sectional area at 

26%.  

 
Figure 3-5: Different types of baffled designs; (a) Central baffles; (b) Integral baffles 

and (c) Helical baffles 

The experimental set-up for the multi-tube RTD analysis is shown in Figure 3-6.  

 
Figure 3-6: Experimental set-up for RTD analysis for multi-tube mesoscale OBR 

Three PVM Confluent syringe pumps (Eurodyne Ltd) were used to provide the net flow 

(water was used in this case), inject the tracer (potassium chloride (KCl)) and oscillate 

the fluid. Five mesoscale-OBR reactor tubes were used in this characterisation. This is 

equivalent to approximately 1.4m length with a total volume of 25ml. Before starting 

the experiment, the pump system and reactor must be air-free. The pumps were set to 

the desired oscillation condition (frequency and amplitude) and net flow (Ren). The 

oscillation conditions were manipulated via the piston movement. The frequency of the 

oscillation was controlled by the speed of the piston, whereas the amount of water 

dispensed determined the amplitude. The determination started by injecting 0.5 ml of 

3.0 mol dm-3 potassium chloride (KCl) tracer at the inlet. This was conducted at the 

highest flowrate (~3400mL/hr) possible to obtain a sharp pulse in the concentration. 
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Together with this, the system was continously filled with water dispensed from the 

reservoir. At the outlet, the conductivity was measured using a 4mm diameter of 2-pole 

conductivity probe (E61014) connected to a CDM210 conductivity meter (Hach-Lange 

Ltd). This measurement was conducted until the reading returned to zero following the 

pulse. The data was collected using a “Picolog” recorder and analysed using a 

spreadsheet package (Excel). This process was repeated for various different baffle 

designs and Rens. However, Phan et al. (2011a) showed that the RTD (E() was 

independent of the injection pulse volume and the tracer concentration (Figure 3-7) in 

the same conditions.  

 

Figure 3-7: E curves for different tracer concentration and flow at 2mm and 6Hz 

However this characterisation will be discussed in Appendix G. This is because the 

outcome of this determination is not related with the main objective of the main results 

and discussion chapter.     

3.2.3 Reaction in a Mesoscale-OBR 

The experimental set-up for the imine synthesis was similar to the characterisation 

experiment shown in section 3.2.1. Two syringe pumps (Eurodyne Ltd.) were used for 

providing reagent net flows (benzaldehyde and n-butylamine) and the other was used 

for oscillating the reaction mixture. The oscillation conditions (via frequency and 

amplitude) and net flow of the reagents (Ren) were adjusted to the desired value via a 

computer.  
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3.2.3.1 Solvent Reaction of Imine Synthesis 

3.2.3.1.1 Batch Reactions Screening 

At a temperature of approximately 25oC, reactions in batch were performed by 

dispensing n-butylamine and benzaldehyde into the reactor at the same flow rate 

(stoichiometric molar ratio of 1:1) until the reactor was filled and the tip of the IR probe 

was covered with the reaction mixture. The mixing conditions (oscillatory Reynolds 

numbers, Reo) were in the range 35- 400, which represents mixing regimes from “low” 

to “high” intensity. The highest flow rate of the syringe pump was used (~3400 mL/hr) 

for individual reagents to minimise the filling time. As soon as the reaction mixture 

reached the tip of the IR probe (about 15s), the IR started recording the spectra of the 

reaction. Each spectrum was taken at 15s intervals for 60 min. The 15s interval period 

was used as it was the quickest interval available with the IR data collection system in 

monitoring the reaction trend in situ visually. The same procedure was applied to 

investigate the reaction at various molar ratios of benzaldehyde to n-butylamine, e.g. 

1:2, 1:4 and 1:6 at the oscillation condition Reo=62.   

3.2.3.1.2 Continuous Steady-state and Dynamic Screening  

The mixing condition of Reo = 62, corresponding to an oscillation amplitude of 1mm 

and frequency of 1Hz, was chosen because it provided a high degree of plug flow 

(N~13) for the central baffle design (Phan and Harvey, 2010). Various residence times, 

corresponding to different flow rates as shown in Table 3-1, were tested at a molar ratio 

of n-butylamine to benzaldehyde of 1:1 of which each residence time was maintained 

for approximately 4 min. IR data/spectra were collected as soon as the reactor was filled 

and the IR probe tip was covered. Each spectrum was taken at 15s intervals for 60 min.  
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Table 3-1: Flow rates at each residence time in steady-state flow reaction using the 

mesoscale-OBR 

Flow rates, mL/hr Net flow Reynolds Number (Ren) Residence time (τ), s 

840 117 30 

420 58 60 

280 38 90 

210 29 120 

168 23 150 

140 19 180 

105 15 240 

53 7 480 

42 5 600 

 

In “dynamic” screening, the first step (screening at τ=30s) was maintained for 

approximately 4 min to obtain a steady state whilst each subsequent step change in the 

residence time lasted for only ~15s. The rapid step changes from one set of conditions 

to another were conducted to provide a fast ramp input to the system. This was 

conducted by adding smaller step change between each residence time performed at 

steady state condition (i.e. between 30s and 60s) which was schematic illustrated in 

Figure 3-8 and numerically in Table 3-2. The targeted residence time in dynamic 

screening is referred to the similar residence time conducted in the steady-state 

screening. 

 
Figure 3-8: Schematic diagram of (a) steady step change and (b) dynamic step change 

screening conducted using  PVM Confluent syringe pumps (Eurodyne Ltd.). 
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Table 3-2: Smaller step changes between two targeted residence time in dynamic flow 

reaction using the mesoscale-OBR 

Flow rates, mL/hr Residence time (τ), s 

840 30 (targeted) 

720 35 

630 40 

560 45 

504 50 

458 55 

420 60 (targeted) 

The same procedure for steady-state and dynamic screening was applied for molar ratios 

of 1:1.5 and 1:2 of benzaldehyde to n-butylamine. 

3.2.3.1.3 Continuous Dynamic Multiple Variable Screening 

Two variables (residence time and molar ratio of benzaldehyde to n-butylamine) were 

varied by changing the flow rate of each reagent at an oscillation condition Reo of 62 as 

illustrated in Table 3-3 for a residence time from 210 to 240 s. The initial condition of 

the screening (τ=30s, 1:1 ratio of benzaldehyde to n-butylamine) was maintained at 4 

min to obtained a steady-state profile. A similar subsequent procedure for dynamic 

screening as in section 3.2.3.1.2 was used with about ~15 s for each of the residence 

time steps.  

Table 3-3: Flow rates at two targeted residence times in a dynamic flow reaction for 

multivariable screening using the mesoscale-OBR 

Flow rates, 

mL/hr 

(Benzaldehyde) 

Flow rates, 

mL/hr 

(N-butylamine) 

Residence time 

(τ), s 

Molar ratio 

of Benzaldehyde to N-

butylamine) 

94 121 210 (targeted) 1:1.3 

84 113 215 1:1.3 

75 104 220 1:1.4 

65 95 225 1:1.5 

55 86 230 1:1.6 

46 77 235 1:1.8 

35 69 240 (targeted) 1:2.0 
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3.2.3.1.4 Continuous Dynamic Screening of Different Imine Synthesis 

A schematic of the experimental set-up for screening different imine synthesis is shown 

in Figure 3-9.  

 
Figure 3-9: Schematic diagram for experimental set-up for dynamic screening of 

different imine using mesoscale-OBR 

Six pumps were allocated to conduct the reaction screening continuously. Four syringe 

pumps (Eurodyne Ltd.) were used for providing aldehyde net flows (p-tolualdehyde, o-

tolualdehyde, m-tolualdehyde and benzaldehyde), one for providing n-butylamine net 

flow and one was used for oscillating the reaction mixture. This screening involved 

repeated cycling of the dynamic screening procedure for reaction of n-butylamine with 

p-tolualdehyde followed by o-tolualdehyde, m-tolualdehyde and benzaldehyde 

respectively. This sequence was used due to the similar absorption peak of C=O 

stretching for p-tolualdehyde and m-tolualdehyde at 1711cm-1 (Figure 3-10) using IR 

analysis.  
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Figure 3-10: Infrared Spectra for C=O streching of benzaldehyde, o-tolualdehyde, p-

tolualdehyde and m-tolualdehyde in hexane.  

This allowed clear determination and observation during the screening process without 

overlapping peak occurrence. Each cycle was screened from 30s to 600s residence time 

at a stoichiometric ratio of 1:1 with oscillation condition (Reo) of 62. Similar detailed 

dynamic screening procedure was used, as mentioned in section 3.2.3.1.2, which 

involved maintaining the initial screening condition (30s) at approximately 4 min to 

obtain a steady state profile. Once this was completed, the conditions were altered 

rapidly in small steps, one every 15 s, for every residence time. Screening IR 

data/spectrum was collected at intervals of 15 s.  

3.2.3.2 Non-Solvent Reaction of Imine Synthesis 

3.2.3.2.1 Thermosyphon Mesoscale-OBR Reactor  

The thermosyphon reactor system was a copper tube of 360mm length, consisting of 

two main units: a 5mm inner diameter mesoscale-OBR reactor placed inside a 20mm 

outer diameter copper thermosyphon tube (Figure 3-11). The thermosyphon tube was 

tightened at both ends using end caps to create a sealed tube shown in Figure 3-11 (a). 

A steam valve was welded near the outlet of the reactor at the side of the thermosyphon 

to release steam during the outgassing process. Water was used as a working fluid as it 

covers operating temperatures in the range 30 - 200oC (Reay and Kew, 2006). For the 
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mesoscale-OBR, three inlets were welded onto the end cap for the reactor tube, of 

which two were used to provide net flows into the reactor system and the third to 

oscillate the reaction mixture. The outlet of the reactor was expanded to 20mm diameter 

to insert the IR probe for analysis purposes (Figure 3-11(b)). 

 
Figure 3-11: Dimension of (a) schematic diagram and (b) photograph of the 

thermosyphon reactor system for non-solvent imine reaction screening. 

3.2.3.2.1.1 Outgassing Process 

The outgassing for the thermosyphon mesoscale-OBR was conducted to release trapped 

gas inside the thermosyphon tube system. Two methods were applied and evaluated for 

this determination as shown in Table 3-4. 
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Table 3-4: Outgassing methods conducted in the thermosyphon meso-OBR system to 

obtain isothermal condition along the system 

Method A 

50mL water (50% volume of the thermosyphon) was pumped into the system. 

The reactor was heated (direct contact with fire) and steam was condensed at the 

steam-valve outlet. The process was stopped and the steam valve was closed 

after 20mL water was collected. 

Method B 

30mL water was pumped into the system. The reactor was heated (direct contact 

with fire) with a valve closed. Once the temperature of the top and bottom for 

the annular section (5cm and 28cm from the outlet, respectively) reached 

≥100oC, the valve was opened and closed immediately to release a small portion 

of the steam formed inside the reactor. 

 

3.2.3.2.1.2 Imine Reaction Screening 

A similar procedure as that described in sections 3.2.3.1 (for batch) and 3.2.3.1.2 (for 

the steady-state screening) at a stoichiometric ratio of 1:1 of benzaldehyde to n-

butylamine but without solvent was used for imine reaction screening. Two 

thermocouples were inserted inside the mesoscale-OBR at the distances of 10cm and 

30cm from the outlet to measure the temperature inside the system. 

3.2.3.2.2 Jacketed Mesoscale-OBR  

The modified mesoscale-OBR reactor system was jacketed to perform non-solvent 

imine reactions (Figure 3-12). Cool water (~13oC) at 186 mL/min flow rate was used as 

the cooling fluid during the imine screening process. Two thermocouples were inserted 

at a distance of 10cm and 30cm from the outlet. Similar procedures described for the 

imine synthesis in sections 3.2.3.1 (for batch) and 3.2.3.1.2 (for steady-state continuous 

screening) were also applied for this work.    
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Figure 3-12: Jacketed modified mesoscale-OBR experimental set-up for non-solvent 

imine synthesis. 

3.2.4 Reaction in Beakers 

3.2.4.1 Batch Reactions in Beakers  

The 1-butanamine, N-(phenylmethylene) reaction was also carried out in a beaker at a 

temperature of 25oC for comparison as shown in Figure 3-13. Approximately 40 mL of 

n-butylamine (0.25mol dm-3) and 40mL benzaldehyde (0.25mol dm-3) were added into a 

100mL beaker. The reaction mixture was agitated using a magnetic stirrer set at a speed 

range of 200rpm – 1200rpm, equivalent to an impeller Reynolds number (Reimp) from 

3000-14700 (Raju et al., 2005). The reaction spectra were continuously taken at 15 s 

interval for 60 min by immersing the IR probe at the middle of the beaker.  

   
Figure 3-13: Experimental set-up for imine synthesis using a 100 mL beaker 

This same process was applied for o-tolualdehyde, m-tolualdehyde and p-tolualdehyde 

at a mixing speed of 537rpm. This mixing speed was used as it gives moderate mixing 
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vortex. Apart from that, it was shown that there are no effects on the apparent reaction 

kinetics at different mixing speed (Mohd Rasdi et al., 2013). Similar set-up and 

procedure was also used for the solvent free reaction of benzaldehyde with n-

butylamine at the ratio of 1:1 for the non-jacketed beaker. Similar mixing speed at 

5737rpm was used. 

3.2.4.2 Batch Non-Solvent Reaction in Jacketed beaker 

The non-solvent imine reaction was also conducted in a jacketed beaker for comparison 

as shown in Figure 3-14. Cool water (~13oC) at 186 mL/min flow rate was used as the 

cooling fluid during the imine reaction screening. Temperature was recorded by using a 

thermocouple immersed at the centre of the reaction mixture. Similar procedure as 

describe in section 3.2.4.1 was also applied for this determination.   

 

Figure 3-14: Schematic set-up for non-solvent imine synthesis using a 100mL jacketed 

beaker 

3.3 Analytical and characterisation methods  

3.3.1 Infrared Spectroscopy (IR) 

The IR used was a Mettler Toledo ReactIR 4000 equipped with DiComp (diamond) 

probe with a mercury cadmium telluride (MCT) band detector. The diamond probe was 

used due to its resistance in any acidic or alkaline solution ranging from pH 1-14 with 

temperature tolerance from -80 to 200oC. The range of detected functional wavenumber 

of the diamond probe is 4000-2250cm-1 and 1950-650cm-1. The blind spot in the region 

of 2250-1950cm-1 was due to diamond absorption of the infrared energy, which masks a 

few functional group frequencies, such as the isocyanate and azide. The consistency and 

accuracy of the spectrum/data collected with the IR instrument was assured through the 

determination of the signal to noise ratio (SNR) together with the collection of 
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background spectrum prior to each experiment. The SNR for the instrument was 

maintained at the range of 2500-3500 to give better detection of the sample (Toledo, 

2010) and to minimise variation between the experiments conducted. To eliminate any 

instrument response in the desired spectrum, a background spectrum of air was 

collected.     

The experiments spectrum and data for peak heights were recorded using an iC-IR vers. 

4.2.26 software at a resolution of  8cm-1. All collected spectrum data were treated using 

a second derivative method (refer to section 2.6) to improve the detectability of small 

and/or overlapping peaks on a main band. Peak-zero method (refer to section 2.6) was 

used for the quantitative analysis prior to this second derivative method. Through this 

peak-zero method it fixed the baseline at zero regardless of any changes or movement 

on the peak under study (C=O stretching). As shown in Figure 3-15(a) below, the 

reduction of benzaldehyde (peak at 1714cm-1) and the formation of imine (peak at 

1652cm-1) obtained during the reaction was difficult to determine without a derivative 

treatment. The baseline shifts between measurements and the peaks of benzaldehyde 

and imine overlap with other peaks. However, when using the second derivative data 

treatment as shown in Figure 3-15(b), these peaks were isolated, with a clear, sharp 

peak on the same baseline.  

 
Figure 3-15: Reaction spectrum of imine synthesis (a) without second derivative 

treatment (b) with s derivative treatment. 
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3.3.2 Syringe Pumps  

A syringe pump (Eurodyne Ltd.) was coupled to a flexible plunger and driven by a 

stepper motor with a speed moving from 1.2 s to 20 min for each full stroke. Different 

sizes of glass syringes were used together with the pump, which range from 1mL to 

5mL. Glass material was chosen to eliminate any side reactions occurring during its 

application. The pumps were controlled via a computer using “Sapphire” software. List 

of common commands used for the system are listed in Appendix D. The syringe was 

calibrated by measuring the volume dispensed using graduated cylinder.   

3.3.3 Calibration Curve 

3.3.3.1 Aldehyde Calibration 

A set of various concentrations (0.0-1.0 mol dm-3) of benzaldehyde solutions were 

prepared at room temperature (approximately 25oC) using hexane as a solvent. The set 

chosen covered the concentration range of the experiments. A spectrum for each 

solution was taken at 15s intervals for 3 min to provide 12 data points for every analysis 

conducted. A peak height at a wavenumber of 1714cm-1 was extracted from the 

spectrum. This represents the carbonyl stretch in aldehyde species. The average value 

from 12 data points for each solution was plotted to establish a relationship between the 

peak height and benzaldehyde concentration. The same procedure was applied for o-

tolualdehyde, p-tolualdehyde and m-tolualdehyde. 

 

3.3.3.2 1-butanamine, N-(phenylmethylene) Calibration 

As the imine product of 1-butanamine, N-(phenylmethylene) from benzaldehyde and n-

butylamine is not available in the market, the product was synthesised via batch method 

using mesoscale-OBR. This was conducted at the concentration of 0.25 mol dm-3 for 

each reagent at the molar ratio of 1:1 of the benzaldehyde and n-butylamine in hexane 

as the solvent. The reaction was completed once the C=O peak at 1714cm-1 reached 

zero peak height. Next the solvent (hexane) was removed from the mixture through 

rotary evaporator. Finally, the sample obtained after the rotary evaporation was analyse 

using the IR and NMR before being used in preparing the calibration curve. 

The calibration curve were constructed at a set of various concentrations (0.0-0.6 mol 

dm-3) using hexane as the solvent. This was prepared at room temperature 
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(approximately 25oC). Similar procedure as in section 3.3.3.1 was used in collecting the 

data which involved a spectrum taken at a 15s interval for 3 min. This provides 12 data 

appoints for each concentration analyse. Peak at 1652cm-1 was used to extract the data 

which represent the C=N bonding in the imine species. The data collected was plotted to 

establish the relationship of the concentration and peak height.  

3.3.4 Quantification of the Residence Time Distribution  

The quantification of residence time distribution (RTD) in this study was based on the 

statistical moment method, and used the mean residence time (τ), distribution curve 

(E(t)), variance (σ) and skewness. These variables were transformed to their 

dimensionless forms (eq.3-1 to eq.3-5) to give a better comparison of the measurements 

with diferent process parameters.  

Mean residence time:  
tiCitii
Citii

 eq. 3-1 

Dimensionless time:   =  𝑡𝑖 𝜏⁄  eq. 3-2 

Distribution curve: 𝐸() = 𝜏𝐸(𝑡) =  𝜏(Ci ∑ (∆tiCi ))i⁄   eq. 3-3 

Variance: 𝜎()2  =  𝜎(𝑡)2 𝜏2⁄ =  ∑ [(𝑡𝑖 −  𝜏)2𝐸(𝑡)∆𝑡𝑖] 𝜏2⁄𝑖        eq. 3-4 

Skewness: γ()3 = (t)3 𝜎(t)3⁄  

                            = ∑ [(𝑡𝑖 −  𝜏)3𝐸(𝑡)∆𝑡𝑖] (∑ (𝑡𝑖 − 𝜏)2𝐸(𝑡)∆𝑡𝑖𝑖 )3/2⁄𝑖   eq. 3-5 

….where Ci the existing tracer concentration at time ti and Δti is the interval between 

two measurements.  

The E() curve shows the distribution of the tracer injected inside the system. This 

varies according to the flow behaviour, e.g. a narrow and symmetric distribution 

represents plug flow behaviour, whereas a monotonic decay with a long tail indicates 

mixing inside a reactor similar to that of a stirred tank. Variance (eq.3-4) and skewness 

(eq.3-5) parameters are used to characterize this E() curve, e.g. σ(θ)2 and γ(θ)3 are zero 

when plug flow is achieved. 

The tanks-in-series (N) model was used to represent the flow in mesoscale-OBR. The 

model is based on a fluid flowing through a series of perfectly mixed tanks. This model 

was used in this study with an assumption that the mixing in each baffle cavity was 
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similar and uniform. This validated the usage of the model for the mesoscale-OBR 

system. This method is simple and flexible yet effective in determining the plug flow 

behaviour of a reactor system because it describes the system in one parameter (number 

of N) (Levenspiel, 1999). The quantification for the model used the number of tank-in-

series which is obtained from the RTD curve (eq.3-6). In order to approach a Gaussian 

RTD curve, which reflects plug flow behaviour, the number of tank-in-series (N) must 

be ≥10 (Figure 3-16) (Levenspiel, 1999; Phan et al., 2011a).  

E() = τE(t) = [N(N)N−1 (N − 1)!]⁄ e−N  eq. 3-6 

The N was determined from the experimental data using an initial estimated N shown in 

eq.3-7. The RTD curve obtained from the experimental data (eq.3-3) and initial 

estimated value of N (eq.3-9) was compared in terms of shape, spread and height of the 

curve distribution until the best fit was obtained (Phan and Harvey, 2010; Phan et al., 

2011a).  

σ()2 =  σ(t)2 τ2⁄ =  ∫ ( − 1)2E()d() = 1 N⁄
∞

0
  

N =  1 σ(t)2⁄   eq. 3-7 

 
Figure 3-16: Residence time distribution curve for the tank-in-series model (Levenspiel, 

1999) 
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3.4 Kinetic Modelling of Imine Synthesis 

3.4.1 Expression of Reaction Rates 

Generally, the chemical reaction path for the imine reaction process was represented 

through a reversible process, with (eq.3-8) (Jencks, 1959; Layer, 1963; Rotondo et al., 

1976) and with negligible formation of intermediates (eq.3-9) (Saggiomo and Lüning, 

2009). Differences between the former and latter reaction expression are associated with 

the type of catalyst. The former was conducted in the presence of acid catalysts, 

whereas the latter was performed without acid catalysts. However, there is also 

available literature describing using a stoichiometric equation that contains an 

irreversible reaction with the negligible formation of the intermediates (eq.3-10) 

(Crowell and Peck, 1953; Cordes and Jencks, 1962; Guzen et al., 2007). The reasons for 

these differences are due to many factors, such as the types of aldehyde and amine, 

solvents and catalyst used.  This indicates that the mechanism of the reaction can vary. 

Due to the several different possibilities of the reaction mechanism, mathematical 

modelling was used to facilitate understanding the 1-butanamine, N-(phenylmethylene) 

reaction process in hexane, and to obtain its reaction kinetic parameters. With 

modelling, it is possible to validate easily different proposed mechanism paths. The 

validation was conducted through comparison with the experimental data. An example 

of four reaction mechanisms proposed are shown in eqs.3-8 to .3-10, below, which 

contain the reaction paths mention previously, but with the addition of the reaction path 

shown in eq.3-10. The addition reaction path (eq.3-10) was proposed to try to 

understand the effect of combining the irreversible reaction and the formation of 

intermediates. Although the tetrahedral intermediate was reported to be too unstable and 

reactive to detect via analytical instruments (Evans et al., 2002; Iwasawa et al., 2007), 

the reaction kinetics related to its formation can be predicted with the mathematical 

modelling method.   

 eq. 3-8 

 eq. 3-9 
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 eq. 3-10 

 eq. 3-11 

…where A, B, C, D and E represent benzaldehyde, n-butylamine, intermediate, imine 

and water, respectively. k1 and k2 are the forward rate constants, and k-1 and k-2 the 

reverse rate constants. 

The proposed reaction mechanisms were expressed as ordinary differential equations 

(ODEs). Here, each ODE is a derivative function that provides changing rate with 

respects to its independent variable. Typically, an initial or boundary value is needed to 

solve these types of functions. Also known as the hard-modelling method, the related 

kinetic parameters (rate constant and reaction order) were adjusted until they adequately 

fitted the experimental data within the error limits of the measurement. Below listed are 

the example of the ODEs for eq.3-14 reaction model (Table 3-5). 

Table 3-5: Example of ordinary differential equations (ODE) for irreversible reaction 

with the formation of intermediates proposed for (1-butanamine, N-(phenylmethylene)) 

synthesis. 

Reaction mechanism model Ordinary Differential Equations (ODE) 

 

 

...where m, n, and o are reaction orders    
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3.4.2 Modelling Procedure 

Kinetic parameters (reaction orders and rate constant) were modelled using MATLAB 

version R2011a following the procedure shown in Figure 3-17 (following page). The 

first step was to input the initial concentration for all species involved and initial kinetic 

parameter value (rate constant and reaction order), based on the proposed reaction 

mechanism. The present study used the rate constant and reaction orders at a molar ratio 

of 1:1 (stoichiometric ratio) obtained from experimental data using batch mesoscale-

OBR. Then the ordinary differential equation (ODE) of the reaction model was solved 

numerically using an ODE45 function. The ODE45 is the standard MATLAB solver for 

the ODE. This function implements fourth and fifth order Runge-Kutta formulae with 

variable time-step. Generally, solving the ODE through the ODE45 function requires 

the determination of the mathematical function (right-hand side of eq. 3-12) and the 

initial condition (x = xo at time to). Comparison between experimental and modelling 

data was quantified via the sum of squares of errors (SSE) value (eq. 3-13), where the 

tolerance error was set to be at ≤ 1.0%. If multiple data fits gives SSE value ≤1.0%, the 

lowest SSE value should be taken as the best fits.  Lastly, the reaction order and rate 

constant value were obtained from the simulated concentration time profile data to 

represent the chemical reaction.   

 
Figure 3-17: Process of obtaining the chemical kinetics parameter 
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 eq. 3-12 

 

𝑠𝑠𝑒 =  ∑(𝐶𝑖𝑒 −  𝐶𝑖𝑚)2  𝑥 100   eq. 3-13 

…where Cie the experimental concentration and Cim the simulated concentration at time 

t.
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Chapter 4 Results and Discussions 

4.1 Introduction 

This chapter presents the results obtained from experiments using the centrally baffled 

mesoscale OBR, including characterization of the reactor, and imine synthesis with and 

without solvent in a continuous mode. The flexibility and advantages of continuous 

screening are discussed and compared with a conventional batch screening method.  

The kinetics for 1-butanamine, N-(phenylmethylene)- reaction from benzaldehyde and 

n-butylamine were also investigated numerically and experimentally.  

4.2 Infrared Spectroscopy (IR)  

4.2.1 Quantitative Analysis of Imine Synthesis Reagents  

The quantitative infrared technique used in this study involved construction of a 

calibration curve for the absorption of a known reagent concentration (Beer’s Law). It is 

important to monitor a suitable peak to avoid, for instance, overlapping peaks that will 

result in a false interpretation of a reaction profile. IR spectra of benzaldehyde and n-

butylamine are presented in Figure 4-1, below: 

 
Figure 4-1: Infrared Spectra of benzaldehyde and n-butylamine. 
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The absorption band assignment at different wavenumbers for these chemicals are well 

known (Silverstein and Bassler, 1962; Conley, 1972; Morimoto et al., 1974). It is clear 

that the strongest absorption band, which can be used to quantify the benzaldehyde, was 

at 1714cm-1 for the C=O stretching and the pair peaks at the regions of 2800cm-1 and 

2700cm-1 for the C-H stretches. N-butylamine exhibits the NH2 bending vibration at 

1600cm-1 and the CH2 bending vibration at 1460cm-1 and 1380cm-1. The common 

indicative amino-containing substance at peaks at 3370cm-1 and 3280cm-1 were not 

evident in a dilute non-polar solution of n-butyalmine, although other work (Conley, 

1972) showed a clear spectrum in those regions (Figure 4-2). Furthermore, the peaks of 

n-butylamine and benzaldehyde at 1600cm-1, 1460cm-1 and 1380cm-1 overlapped 

(Figure 4-1 above) . Therefore, only the C=O peak at 1714cm-1 was chosen to monitor 

the imine synthesis in situ in this study.  

 
Figure 4-2: Infrared spectrum for n-butylamine for pure, 1 mol dm-3 and 0.5 mol dm-3 

concentration 

For o-tolualdehyde, m-tolualdehyde and p-tolualdehyde, a region around the C=O 

stretch at 1700-1740 cm-1 was also used to monitor the reaction. The peaks occurred at 

1706cm-1 and 1711cm-1  as shown in Figure 4-3.  
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Figure 4-3: Infrared spectra of o-tolualdehyde, m-tolualdehyde and p-tolualdehyde at 

0.5mol dm-3 

4.2.2 Solvent Effect on Infrared Spectra of Benzaldehyde   

As mentioned in 4.2.1, the imine synthesis was monitored in situ via infrared 

spectroscopy (IR) by observing the benzaldehyde reduction at the 1714cm-1 peak 

representing the C=O stretch. This peak did not interfere with the peak from n-

butylamine and therefore it was used to quantify the benzaldehyde concentration profile. 

However, the effect of the solvent was not taken into account. This section determines 

the effect of different solvents on the C=O strectching of benzaldehyde.    

Generally, most of the chemical reactions in laboratories or industries are carried out in  

the liquid phase with the presence of solvents (Buncel et al., 2003). There are many 

types of solvents available to cater for a wide range of reaction applications and/or 

synthesis. The interaction of a chemical with a solvent varies depending on its 

classification, i.e. non-polar, polar aprotic and polar protic solvents. Methanol, 

chloroform and hexane were used to determine the compatibility of benzaldehyde in this 

study (Rotondo et al., 1976; Lee et al., 2003; Shah and Shah, 2013).  

As shown in Figure 4-4 below, the non-polar (hexane and chloroform) solvents gave 

strong peak intensities at 1714cm-1 compared to the polar-protic solvent (methanol). 
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Figure 4-4: Effect of solvents on the C=O stretching in 0.5 mol dm-3benzaldehyde . 

This was because the effects of solute-solvent intermolecular interactions in non-polar 

solvents on the C=O structure were minimal (Conley, 1972; Reichardt, 2006). A 

homogenous solution in hexane can be achieved because of the compatibility of the 

carbon chain with the benzene ring of benzaldehyde, whereas in chloroform, the 

interaction of solute-solvent was between an active hydrogen atom of benzaldehyde and 

the highly electonegative chlorine atom in the chloroform (Li et al., 2012). The shift in 

peak wavenumber from 1714cm-1 in hexane to 1710cm-1 in chloroform was due to 

hydrogen bond formation in the chloroform (Li et al., 2012). Compared to the polar-

protic solvents (e.g. methanol), the interaction of the O-H structure with the C=O was 

stronger than the interaction between the linear carbon chain of methanol and the 

benzene ring of benzaldehyde. This reduced the double-bond characteristic of the 

carbonyl group, leading to a reduction in the peak intensity. This agreed with the 

findings of Gonjo et al. (2011). Although the C=O intensity in methanol was lower than 

that in the non-polar solvents, the strength intensity for all the three solvents are suitable 

for the imine synthesis reaction with IR monitoring.  

Choosing a solvent is restricted not only by the compatibility with the analytical 

method, but also the uniformity of the solute dispersion, carcinogenicity, reactivity of 

the solvent towards the reagent or product and the energetics of the reaction 
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(exothermic/endothermic). Chloroform was not used in the study due to its 

carcinogenicity according to International Agency for Research on Cancer (IARC).  It 

was reported (Meadows and Darwent, 1952) that methanol reacted with aldehyde 

spontaneously to form hemiacetal (Figure 4-5), which reduced the benzaldehyde 

reactivity to n-butylamine to form imine. Therefore, hexane was chosen as the solvent 

for this study. 

 
Figure 4-5: Mechanism of the formation of hemiacetal from aldehyde and alcohol 

4.2.3 Aldehyde Calibration  

A calibration curve of benzaldehyde in hexane was constructed to convert the peak 

height data collected from the IR into its corresponding concentration. This quantitative 

analysis would allow calculation of kinetic parameters, such as rate constants and 

reaction order. The calibration curve for benzaldehyde is shown in Figure 4-6 over a 

concentration range from 0 to 1.0 mol dm-3. This range was chosen to cover all 

experiments concentration conducted for the screening work. The correlation coefficient 

obtained was at  R2=0.988. The fit was substantially non-linear for concentration 

between 0.1- 1.0 mol dm-3 with an average deviation of ~15%.    

 
Figure 4-6: Benzaldehyde calibration curve analysis for concentration range from 0.0 to 

1.0 mol dm-3. 
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However, this calibration curve (Figure 4-6) generated negative concentrations, as 

shown in Figure 4-7. This indicated that the lowest region in the concentration range 

does not follow Beer-Lambert law.  

 
Figure 4-7: Benzaldehyde concentration reduction profile    

This suggests that the calibration cannot be described by a simple linear curve, and 

instead needs to be segmented (see Figure 4-8). 3 different trends have been identified: 

0.2-1.0 mol dm-3 (Figure 4-8(a)), 0.0018-0.2-mol dm-3 (in between the trends in Figure 

4-8(a) and Figure 4-8 (b)) and 0.000-0.0018-mol dm-3 (Figure 4-8(b)).  

 
Figure 4-8: Segmented trends of benzaldehyde calibration curve at (a) 0.2-1.0 mol dm-3 

and (b) 0.0000-0.0018 mol dm-3 

A linear relationship was only observed for the concentration ranges of 0.2-1.0 mol dm-3 

(Figure 4-9(a)) and 0.0018-0.2 mol dm-3 (Figure 4-9(b)) with correlation coefficients of 
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R2=0.9998 and 0.9964, respectively. For the concentration range of 0.000-0.0018 mol 

dm-3 (Figure 4-9(c)), an exponential relationship was observed with a correlation 

coefficient of R2=0.9914.  

 

 

 
Figure 4-9: Benzaldehyde calibration curves at (a) 1.0-0.2 mol dm-3 , (b) 0.2-0.0018mol 

dm-3  and (c) 0.0018-0.000mol dm-3. 



79 

 

Chapter 4: Results and Discussions 

 

With the new calibration curves, benzaldehyde concentration decreased to zero, as 

presented in Figure 4-10.  

 
Figure 4-10: Benzaldehyde concentration reduction profile using the segmented 

concentration calibration curve 

A similar segmented concentration analysis was also applied for the o-tolualdehyde 

(Figure 4-11), m-tolualdehyde (Figure 4-12) and p-tolualdehyde (Figure 4-13) 

calibration curves. 

 
Figure 4-11: Calibration curves for o-tolualdehyde for (a) 1.0-0.2 mol dm-3, (b) 0.2-

0.0018 mol dm-3 and (c) 0.0018-0.000 mol dm-3 concentration range. 
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Figure 4-12: Calibration curves for m-tolualdehyde for (a) 1.0-0.2 mol dm-3, (b) 0.2-

0.0018mol dm-3 and (c) 0.0018-0.000mol dm-3 concentration range. 

 
Figure 4-13: Calibration curves for p-tolualdehyde for (a) 1.0-0.2 mol dm-3, (b) 0.2-

0.0018mol dm-3 and (c) 0.0018-0.000mol dm-3 concentration range. 

Deviation from Beer’s law was observed at the lowest concentration range for all three 

types of aldehydes. At these conditions the noise in the signal becomes significant.  The 

correlation coefficients (all R2>0.99) for these reagents are listed in Table 4-1.  

Table 4-1: Correlation coefficients for calibration curves of different types of aldehyde 

at various concentration ranges  

 Types of Aldehyde 

Concentration range o-tolualdehyde m-tolualdehyde p-tolualdehyde 

1.0-0.2 mol dm-3 0.9995 0.9919 0.9979 

0.2-0.0018 mol dm-3 0.9988 0.9967 0.9982 

0.0018-0.000 mol dm-3 0.9965 0.9939 0.9910 

 

4.3 Characterisation of the modified central baffled mesoscale-OBR 

A 350mm length, 5.0mm internal diameter of the central baffled (hexagonal stainless 

steel solid discs approximately 4mm diameter) mesoscale OBR was previously 

extensively characterized over a wide range of net flow Reynolds numbers (Ren of 1-34) 
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at oscillatory Reynolds numbers of 10-500 (corresponding to amplitude xo of 0.5-4mm 

and frequency f of 0.5-10Hz) (Phan and Harvey, 2010; Phan et al., 2011a). However, 

due to the large IR probe size used in this study; the reactor was enlarged from 5mm to 

20mm at the outlet to accommodate the 16mm diameter IR probe. This requires the 

reactor system to be characterised to determine the effect of the modified section on the 

flow behaviour.  

Figure 4-14 shows the residence time distribution (RTD) profiles for the modified and 

unmodified mesoscale-OBR at an oscillation amplitude of 2.0mm and frequency of 

3.0Hz and net flows of Ren=6.4 and Ren=7.2 respectively. For the unmodified 

mesoscale-OBR, the data was collected using a 4mm diameter 2-pole E61014 

conductivity probe with water as the working fluid and KCl as a tracer (Phan and 

Harvey, 2010). As for the modified mesoscale-OBR, the IR probe with hexane as the 

working fluid and benzaldehyde as a tracer was used. The change with the tracer and 

working fluid system was to create and understand the similar reaction environment 

during the imine screening. It was found that the residence time distribution (RTD) 

curve of the modified mesoscale-OBR had a slightly right-tailed profile compared to the 

unmodified mesoscale-OBR (Figure 4-14). The variance and skewness of the RTD 

curve for the modified mesoscale-OBR RTD profile were 0.12 and 0.08 compared to 

0.04 and 0.003 for the unmodified mesoscale-OBR  

 
Figure 4-14: Residence time distribution (RTD) profiles for modified (Ren=6.4) and 

unmodified (Ren=7.2) mesoscale-OBR at amplitude, xo=2.0mm and frequency, f=3.0Hz. 

The difference in the RTD profiles in terms of the variance and skewness between the 

two reactors indicated that the broader area next to the probe had a substantial effect on 
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the flow behaviour. This could be due to the formation of stagnation zones at the 

corners of the modified section and/or backmixing (Figure 4-15). Therefore, the 

characterisation of the modified reactor was required to establish the effect of net flows 

(Ren) and oscillation conditions (Reo) on the flow behaviour. 

 
Figure 4-15: Diagram of possible stagnation zones at the outlet of the modified 

mesoscale-OBR 

4.3.1 Effects of Oscillation and Net Flow Reynolds Number on modified mesoscale-

OBR. 

As the aim was to screen the imine reaction at different residence times (different flow 

rates), the effects of the net and oscillatory flows had to be studied to ensure conditions 

that provide good plug flow were used. A series of net flows of 6.0 ≤ Ren ≤ 120 with 

oscillation condition (Reo) of 62, 185 and 246 were tested. Figure 4-16 shows the 

dependency of the number of tank-in-series (N) on Reo at different Ren.  
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Figure 4-16: Number of tank- in-series obtained at various net flow Reynolds numbers 

(Ren) at Reo of 246, 185 and 65 in the modified central baffled mesoscale-OBR 

Plug flow behaviour varied significantly over the range of the tested oscillatory 

conditions, e.g., N was below 10 at Reo of 185 and 246 but ≥10 at Reo of 62 in the range 

Ren of 6.0 to 120. Therefore, it is crucial to choose the right oscillation condition to 

maintain the plug flow behaviour during the continuous screening of imine synthesis. 

The N must be ≥10 to denote the plug flow behaviour (Levenspiel, 1999). 

Reo is a function of both the frequency and amplitude, so various combinations of these 

factors produce similar values of Reo. However, their effects on the flow behaviour 

differed. The oscillation amplitude directly relates to the lengths of vortices generated 

and the oscillation frequency relates to the intensity of mixing inside each of the baffle 

cavity (Roberts and Mackley, 1995). Therefore, the effects of individual factors on the 

flow behaviour were investigated to determine a suitable operating window for both 

factors (frequency and amplitude).  

The oscillation amplitudes tested ranged from 0.5 – 4.0 mm, corresponding to Strouhal 

numbers (St) of 0.8 – 0.1 and oscillation frequencies from 0.5-5Hz were applied at a 

fixed net flow of Ren=6.4. The Ren of 6.4, corresponding to a residence time of 

approximately 600s was sufficient for completion of the reaction of the imine synthesis 

of benzaldehyde with n-butylamine. As shown in Figure 4-17, the number of tank-in-

series, N, increases when increasing St (decreasing amplitude), which was similar to 

other studies at Ren=7.2 (Phan and Harvey, 2010).  
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Figure 4-17: Number of tank- in-series obtained at various Strouhal number (St) and 

oscillation frequency at net flow Reynolds number Ren of 6.4. 

Plug flow behaviour inside the modified mesoscale-OBR was not observed at St<0.2 

(amplitude ≥ 2.0m), as N was below 10. At this mixing condition, axial mixing 

dominated radial. According to Dickens et al. (1989), vortices formed at higher 

amplitudes travel too far toward the next baffle, thereby reducing the degree of plug 

flow as the baffle cavities behave less like individual units. At a given St of 0.40 

(xo=1.0mm), N was ≥10 for frequencies between 0.5 and 3.0Hz but decreased to 5 when 

the frequency increased to 4Hz. The plug flow deviation above 4Hz could be due to 

backmixing (Takriff and Masyithah, 2002), causing the tracer (benzaldehyde) from an 

upstream baffle of the flow to intermix with the feed from the downstream baffle of the 

flow.  

In summary, plug flow behaviour in the modified central baffled mesoscale-OBR is 

dependent on both the frequency and amplitude of oscillation. This is in agreement with 

other findings using conventional OBRs (Stonestreet and Van Der Veeken, 1999) and 

mesoscale-OBR with different baffle designs (Phan and Harvey, 2010). However, the 

flow behaviour was more strongly affected by the oscillatory amplitude than the 

oscillation frequency. In order to maintain the plug flow behaviour for the modified 

central baffle mesoscale-OBR, the operating window for amplitude and frequency needs 

to be in the range of 0.5mm ≤ xo ≤ 2.0mm and 1.0 ≤ f ≤ 3.0Hz. 
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4.4 Imine Synthesis 

4.4.1 Reaction mechanism 

Imine synthesis is an addition-elimination reaction, comprising a nucleophilic attack by 

the amine species, followed by an elimination process producing a C=N bond. The 

reaction mechanism of benzaldehyde and n-butylamine reaction shown in Figure 4-18 

starts with the attack of n-butylamine on the benzaldehyde carbonyl carbon. Due to the 

electronegativity of the oxygen atom in the carbonyl group, the electron is drawn away 

from the carbon centre thereby creating a polar bond for the C=O structure. This creates 

the environment for a nucleophilic addition to occur. The first step involves transferring 

the electron from the nitrogen nucleophile to the carbon electrophile (Step1), followed 

by proton transfer steps (steps 2 and 3) to form a tetrahedral intermediate known as a 

carbinolamine. Generally, steps 2 and 3 can be acid- or base-catalysed (Carey and 

Sundberg, 2007). However, in this study, no catalyst was used because n-butylamine is 

a strong nucleophile (Sayer et al. (1974)). The mechanism continues with the 

elimination process to complete the reaction (step 4) with the electron transfers to form 

a positively charged iminium ion. Then the iminium ion is de-protonated by the 

hydroxides and hydrogen to form the imine product, with the elimination of a water 

molecule (Anslyn and Dougherty, 2006).   

 
Figure 4-18: Reaction mechanisms of benzaldehyde and n-butylamine reaction. 

In this study the IR spectra collected showed no evidence of a tetrahedral carbinolamine 

intermediate. Figure 4-19(a) exhibits no peak in the C-O region (1120-1080cm-1) for 
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this intermediate. Similar findings were observed with the C-N-C stretching region 

(1190-1130cm-1) (Figure 4-19(b)), which exhibited constant peak intensity from 0s-

3600s indicating no formation of intermediate. The peak observed in the region 1190-

1130cm-1 was assigned to the C-C of the aliphatic and aromatic structures of the 

benzaldehyde (the blue line).  The lack of any absorption with this species was due to its 

unstable, reactive nature, resulting in negligible accumulation at any point in the 

reaction  (Evans et al., 2002; Iwasawa et al., 2007) to be monitored using IR 

spectroscopy.  

 

 
Figure 4-19: Peaks observed at (a) 1120-1180 cm-1 for the C-O stretching for alcohol 

and (b) 1190-1130cm-1 for the C-N-C of secondary amine in the formation of an 

intermediate in the synthesis of 1-butanamine, N-(phenylmethylene) from benzaldehyde 

and n-butylamine  

However, the mass balance calculation from the benzaldehyde reduction and imine 

formation data indicated that about 20 wt % intermediate was formed but disappeared 

after approximately 200s reaction time as shown in Figure 4-20.    
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Figure 4-20: Imine synthesis profiles in hexane at (a) 1:1 molar ratio of benzaldehyde to 

n-butylamine and (b) 1:4 molar ratio of benzaldehyde to n-butylamine.   

It was  reported (Carey and Sundberg, 2007) that the elimination process to form the 

product was the rate limiting step in neutral and basic solution, resulting in delayed  

product formation due to the accumulation of carbinolamine intermediate in the 

solution. However, no delay in product formation (imine) was observed as product 

formation occurs as the benzaldehyde reactant diminishes, as shown in Figure 4-20. 

This was resulted due to the used of aromatic aldehyde and reactive amine which stated 

by (Layer, 1963) produces stable and quantitative imine products. The formation of the 

product 1-butanamine, N-(phenylmethylene)-, monitored and followed using the IR at 

1652 cm-1(C=N) (Conley, 1972; Socrates, 1994), also correlated with the decrease in the 

strong C=O carbonyl stretching vibration from 0 to 3600s (Figure 4-21(a)). The findings 

from the IR spectroscopy were confirmed by 1H NMR analysis as shown in Figure 

4-21(b). The proton NMR was performed on a 500 MHz instrument in deuterated 

chloroform (CDCl3). The determination of the imine proton was achieved by integration 

of the peak at δ = 8.4 ppm, consistent with Habibi et al. (2006). Disappearance of the 

carbonyl proton was also observed at δ = 10.5 ppm indicating that the benzaldehyde 

completely reacted to form imine. As for the peaks in the ranges δ = 7.0-8.0 ppm and δ 

= 1.0-4.0 ppm, they were assigned to aromatic protons and the methyl/methylene 

protons of the hydrocarbon structure. 
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Figure 4-21: Evidence of the 1-butanamine,N-(phenylmethylene)- formation using (a) 

IR at the peak of 1652cm-1 (C=N) and (b) HNMR at 8.3ppm (H-C=N)  
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4.4.2 Batch screening 

Batch screening processes are typically used in laboratories for compound and/or drug 

development and/or synthesis in chemical and pharmaceutical industry (Jas and 

Kirschning, 2003; Wiles and Watts, 2007). At this stage, all the possibilities involved 

with the chemistry route are tested to maximise yield and purity and to minimise waste. 

The rapidity with which reliable outcomes are determined at this stage is very 

important, especially for pharmaceuticals, as “time-to-market” can be critical (Wheeler 

et al., 2007). With this general approach, batch screening was used as the benchmark to 

compare a continuous screening work conducted in this research.  

In this study, batch reaction screening was conducted using a conventional 100mL glass 

beaker and a mesoscale-OBR in batch mode. Figure 4-22 shows the benzaldehyde 

concentration profile at a molar ratio of 1:1 of benzaldehyde and n-butylamine.  

 
Figure 4-22: Batch reaction screening of benzaldehyde reduction profile at 

stoichiometric molar ratio of 1:1 using a batch beaker and a mesoscale-OBR  

Generally, there was no significant difference between the two methods with the 

completion of the reaction occurring at approximately 1000s. However two phenomena 

were observed in the batch beaker experiments: benzaldehyde reductions were faster at 

reaction times below 200s, but slower at higher reaction times than those obtained in the 

mesoscale-OBR system. This was due to the method of adding reagent in general 

laboratory apparatus system such as beakers and volumetric flasks (Issa et al., 2013; Jin 

et al., 2013) and the effect of mixing. Typically, in beakers, the reagents were added at 
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the same time or one after the other in their full amount. This made it difficult to 

achieve rapid homogenous mixing due to the greater volume to area ratio (Houson, 

2011). Moreover,  localised mixing in the beaker occurred due to the absence of baffles 

to break up the flow, leading to higher uncertainty between results in the initial stages of 

the reaction, e.g. the uncertainty at 15s reaction time was 6.73x10-2 mol dm-3 and 

7.49x10-3 mol dm-3 for beaker and mesoscale-OBR, respectively (Figure 4-23).  

 
Figure 4-23: Uncertainty of batch reaction screening of benzaldehyde reduction profile 

at a stoichiometric molar ratio of 1:1 using a batch beaker and a mesoscale-OBR. 

For the mesoscale-OBR, the reactants were fed in simultaneously. The vortices formed 

due to the combination of oscillatory flow and baffles provided good mixing in each 

baffle cavity (Howes et al., 1991; Stephens and Mackley, 2002; Vilar et al., 2008), 

thereby eliminating concentration gradients within baffle cavities. This resulted in a 

substantially lower uncertainty in the OBR at the initial stage of the reaction as shown 

in Figure 4-23 (above) than that in the beaker. Here the uncertainty study was conducted 

to shows the differences at the initial states of the mixing which reflected to limitation 

of the macromixing in the beaker system(Al-hengari, 2011). With that, it resulted to 

lower overall uncertainty (7.36x10-4 mol dm-3) of the mesoscale-OBR. Apart from that, 

the mesoscale-OBR also was closer to a 100% conversion for the reaction of 1:1 ratio of 

benzaldehyde to n-butylamine which indicative of “better” (i.e. more uniform) mixing 

than the beaker system. However, the claims relate to the uncertainty measurements was 

only conducted based upon duplicates data.    
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4.4.2.1 Effect of mixing conditions on reduction rates of benzaldehyde for 1-

butanamine, N-(phenylmethylene)- reaction. 

Mixing conditions have significant effects on rates of reaction for competitive-

consecutive and competitive-parallel reactions (Shah et al., 2012). Figure 4-24 shows 

the benzaldehyde reduction profile for a batch beaker at different mixing speeds. In 

general, there was no significant difference between the benzaldehyde reduction 

profiles. However, the benzaldehyde reduction rate differed during the initial period of 

the reaction time ≤100s. At 15s reaction time (Figure 4-24), the concentration decreased 

with increasing mixing intensity, e.g., the concentration was 0.19 ± 0.03mol dm-3 for the 

speed of 229 rpm and 0.14± 0.02mol dm-3 for 1119 rpm. This was due to the molecular 

collisions occurring during mixing  related to stretching and folding of material surfaces 

(Ottino, 1990). At lower speeds, this interaction is reduced, resulting in higher 

concentrations. It shows a mass transfer limitation within the reactor systems. 

 
Figure 4-24: Effects of mixing intensity using a batch beaker for benzaldehyde 

reduction rate at reaction time below 200s.  

A similar reaction completion (approximately zero value in concentration) at 1000s was 

obtained using a batch mesoscale-OBR (Figure 4-25). However, there was no 

significant difference in the benzaldehyde reduction over the initial period of <100s at 

different mixing intensity (different Reo) (Figure 4-26) compared to the batch beaker 

reduction profile as shown previously.  
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Figure 4-25: Benzaldehyde reduction profile for batch mesoscale-OBR at different 

oscillatory Reynolds number (Reo) 

 
Figure 4-26: Effects of mixing intensity using batch mesoscale-OBR for benzaldehyde 

reduction rate at <100s reaction time.  

As mentioned in section 4.4.2 both reagents (benzaldehyde and n-butylamine) were 

dispensed simultaneously during oscillatory mixing within the reactor. This provides 

very rapid homogeneous mixing between the reagents. The benzaldehyde concentration 

profile also exhibited low uncertainty throughout the reaction, regardless of the 

oscillatory Reynolds number (Reo). The reaction kinetic parameters for the mesoscale-

OBR and beaker were calculated, based on their respective profiles. 
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The apparent rate constants calculated through integration method were studied at a 

molar ratio of benzaldehyde and n-butylamine of 1:1 over a range of mixing conditions, 

Reo of 30-350 for the mesoscale-OBR, and 200-1100 rpm for the 100mL beaker. As 

shown in Figure 4-27, the average rate constants determined were identical (k1= 2.1 x 

10-1mol-0.9L0.9s-1) for both reactor systems. This implied that mixing had no effect on the 

apparent rate constant in both systems at the tested conditions. However, the mesoscale-

OBR exhibited average error across all the data points at 3 times lower than for the 

beaker.  

  

 
Figure 4-27: Rate constant of imine synthesis using (a) 100 mL beaker (b) centrally 

baffled mesoscale-OBR.  

As presented in Table 4-2, an average uncertainty of the rate constant for the mesoscale 

OBR was 5.5 x 10-3 mol-0.9L0.9s-1 compared to 1.8 x 10-2 mol-0.9L0.9s-1for the beaker.  In 

addition, the total volume of chemicals used in this screening was 75% lower in the 
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mesoscale-OBR than in the beaker, due to the much smaller volume of the mesoscale 

OBR (6 mL) than the beaker (80 mL). Smaller beaker volumes could not be used due to 

impracticality with the large IR probe size. 

Table 4-2: Comparison of the uncertainty of rate constant using different reaction 

vessel. 

Beaker Mesoscale-OBR 

RPM Uncertainty level Reo Uncertainty level 

229 1.2 x 10-2 31 1.6 x 10-2 

337 2.5 x 10-3 62 3.9 x 10-3 

537 3.6 x 10-2 123 1.1 x 10-3 

684 3.1 x 10-2 185 0.0 

1119 7.1 x 10-3 246 9.5 x 10-3 

 369 2.9 x 10-3 

 

4.4.3 Continuous screening 

Continuous screening using the mesoscale-OBR has been conducted through “multi-

steady state” and “dynamic screening” modes. The former refers to a process in which a 

sequence of different residence times was imposed sequentially, each for a desired 

period of time including attainment of a steady state. In the latter, the residence time 

was continuously varied. 

4.4.3.1 Multi steady-state screening 

Multi steady-state screening was conducted at different molar ratios of, e.g. 1:1, 1:1.5 

and 1:2 over a range of residence times of 30s to 600s at an Reo of 62. The continuous 

steady-state is referred to plateau states of the screening conditions. This was resulted 

from maintaining the desired screening conditions at a prescribe period of time. Nine 

consecutive residence times were imposed for the screening with each residence time 

maintained at approximately of 240s. A clear step change between residences times, 

regardless of the different ratios of benzaldehyde to n-butylamine, can be observed in 

Figure 4-28, below:  
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Figure 4-28: Multi steady- state step change of residence time for imine synthesis at a 

molar ratio of 1:1, 1:1.5 and 1:2 for benzaldehyde:n-butylamine at Reo=62 using 

centrally baffled mesoscale-OBR. 

A change in concentration was observed immediately after completing the steady-state 

condition (approximately 4 min for each residence time), e.g. from 0.11 mol dm-3 at 30s 

residence time to 0.06mol dm-3 at 60s for the reaction at ratio 1:1 of benzaldehyde to n-

butylamine. The variability data at each plateau condition observed in these studies was 

at average uncertainty of 5x10-4 mol dm-3(≤ 4.0%). The variability was not only affected 

due to the plug flow mixing behaviour inside the mesoscale-OBR but also with the 

analytical instrument used. However in this study, the consistency and accuracy of the 

spectrum/data collected was assured through maintaining the signal to noise ratio of the 

IR system at a suitable range of 2500-3500 (Toledo, 2010). This behaviour has also 

been observed in a multiphase reaction screening, e.g., biodiesel production at various 

ratios of methanol to rapeseed oil (Phan et al., 2011). OBR results required a smaller 

volume of fluid (~20% less) per data point than in beaker batch screening. The average 

of a series of data points (σ = 1.2x10-3 mol dm-3) at each reaction time is more accurate 

than one data point conducted in batch. The consistency and the clear step change 

indicate that further processing advantages are possible, such as introducing additional 

or third reagent into the flow stream at precisely the time point to generate further 

reaction. This was a challenge when operating using a microreactor system on a 

segmented flow (Smith et al., 2011). The series of short reaction plugs conducted in a 

constant stream of solvent only allowed the microreactor to briefly reach a steady-state 
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condition at a point of time. This was overcome by using an excess volume of the third 

reagent which resulted in a greater downstream purification duty.   

As mentioned in section 4.4.2, there was no significant difference in the benzaldehyde 

concentration profile at 1:1 molar ratio between the batch beaker and the batch 

mesoscale-OBR reactor. On that note, examination of the multi steady-state 

concentration data was compared only to the data obtained from batch mesoscale-OBR. 

This eliminates differences due to reactor design and mixing pattern creates within the 

reactor system. Figure 4-29 shows the average results obtained from a continous multi 

steady-state and batch mode at different residence times for at different ratios of 

benzaldehyde to n-butylamine of 1:1, 1:1.5 and 1:2.  

 
Figure 4-29: Comparison of benzaldehyde reduction profile through multi steady-state 

and batch screening using mesoscale-OBR at (a) 1:1, (b) 1:1.5 and (c) 1:2 ratio of 

benzaldehyde and n-butylamine 

There was no significant difference in the benzaldehyde reduction profile between batch 

and multi steady-state method of screening regardless of the reaction ratio. This 

suggests that the mesoscale-OBR can be used as a tool for conducting continuous 

screening of chemical reactions. In the continuous mode the mesoscale-OBR provides 
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advantages in rapid, simple manipulation of the reaction parameters (e.g. different 

ratios). Apart from that, removal of the need for cleaning and refilling each time reduces 

the process development time by about 50% compared to the screening via batch using 

conventional glassware set-up. 

4.4.3.2 Dynamic screening 

Continuous dynamic screening refers to a process in which reactor inputs are 

continuously changed. This was conducted at different molar ratios of 1:1, 1:1.5 and 1:2 

of benzaldehyde to n-butylamine over a range of residence times of 30s to 240s at an 

oscillation condition Reo of 62. The screening started with similar condition as the multi 

steady-state to obtain the plateau profile at 30s residence time for 4 min (Figure 4-30). 

Next, the residence time was continuously increased at an interval of 5s until the plateau 

condition was again achieved at a 240s residence time. The plateaus were important as 

they acted as good markers of the initial and end points of the screening, and their 

agreement with the multi steady-state plateaus could be evaluated. Each residence time 

was only maintained for 15s residence time before it is changed to the other desired 

residence time.  

 
Figure 4-30: Comparison for dynamic and multi steady-state screening of benzaldehyde 

reduction profile at 1:1 ratio of benzaldehyde to n-butyalmine.  

The rapid changes (~every 15s) for each residence time generated benzaldehyde 

reduction profiles similar to those achieved by screening in batch mode, as can be 
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observed in Figure 4-31. However, the dynamic screening produces more data (smaller 

interval data) than conventional batch screening.   

 
Figure 4-31: Comparison of benzaldehyde reduction profile through dynamic and batch 

screening using mesoscale-OBR at 1:1 ratio of benzaldehyde and n-butylamine 

In dynamic screening, the data interval depends on the flow rate/residence time 

sequence (Table 4-3) which was varied accordingly to the desired residence times. 

However the frequency of the data collected still depends on the time resolution of the 

analytical instrument (IR).   

Table 4-3: Comparison of data obtained through dynamic and batch screening using a 

mesoscale-OBR at 1:1 ratio of benzaldehyde and n-butylamine  

Dynamic screening Batch screening 

Time (s) Concentration (mol dm-3) Time (s) Concentration (mol dm-3) 

30 0.10 30 0.09 

35 0.08 45 0.07 

40 0.07 60 0.05 

45 0.07 

 
50 0.07 

55 0.06 

60 0.06 
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Even though the IR data was collected at 15s interval, the continuous system gives 

flexibility in changing the conditions once the data was collected (i.e. from 30s to 35s 

residence time). However this was not possible with the conventional batch screening. 

Due to that, batch screening data interval was restricted to the time resolution of the 

instrument. The data collected at the holding period (15s) was taken to represent the 

residence time screened (yellow boxes in Figure 4-32). Example of this statement is 

shown in Figure 4-32.  

  

Figure 4-32: Comparison of the time interval for the IR system with the true interval 

time for data collected via batch and continuous dynamic screening. 

Here it shows that the continuous screening (i.e. dynamic screening) gives more interval 

data points (smaller interval) than the batch screening. The extra data points provide 

more advantages in understanding the rate of a chemical reaction at smaller time 

interval. When comparing to the continuous multi steady-state screening, dynamic 

screening reduces the total reagent volume by approximately 50% and the process 

development time by 30%. This reduction was due to the elimination of the constant 

conditions maintained for approximately 4 min at each residence time with the multi 

steady-state screening. It therefore allows rapid replication of experiments and larger 

experimental matrices to be conducted more quickly and more economically. 

Screening data shows that there is approximately 98% agreement between the different 

methods (batch, multi steady-state and dynamic screening). This can be observed in 

Figure 4-33 below, for data generated at different molar ratios of 1:1, 1:1.5 and 1:2 for 

benzaldehyde to n-butylamine. These results demonstrate that the mesoscale-OBR can 
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be used as a tool to obtain reaction data in a batch or continuous manner, and it 

generates data in a more rapid and economical manner for any reaction screening study.   

 
Figure 4-33: Comparison of different screening methods using mesoscale-OBR  for (a) 

1:1, (b) 1:1.5 and (c) 1:2 ratio of benzaldehyde to n-butylamine 

4.4.3.3 Dynamic Multiple Variable Screening  

The manipulation of variables, e.g. molar ratio, residence time and temperature, in 

organic synthesis or reaction kinetics studies is limited when screening in batch mode 

(Baxendale, 2013b). Changing experiment conditions and/or variables can only be done 

once the reaction is complete. Therefore, it is time-consuming and costly, especially 

when dealing with expensive reagents. However, through continuous screening, 

manipulation of the experimental variables can be conducted in situ. As mentioned 

previously, (multi steady-state in section 4.4.3.1 and dynamic screening in section 

4.4.3.2) only one variable (residence time) was varied (Figure 4-34(a)). In multivariable 

dynamic screening, the aim was to manipulate two or more variables in situ 

simultaneously for each experiment (Figure 4-34(b)).  



101 

 

Chapter 4: Results and Discussions 

 

 
Figure 4-34: Manipulation of (a) single variable (residence time) and (b) multivariable 

(residence time and chemical ratio) for continuous screening using central baffled 

mesoscale-OBR. 

Figure 4-35 shows the multivariable dynamic screening data and various steady-state 

experiments for residence time ranging from 30s to 240s and molar ratio of 

benzaldehyde to n-butylamine increasing gradually from 1:1 to 1:2. The multivariable 

data screened started with 0.10 mol dm-3 at 30s for 1:1 to 0.01mol dm-3 at 150s for 1:1.1 

and ended at 0.00 mol dm-3 at 240s for 1:2 of benzaldehyde to n-butylamine ratio as 

shown in Table 4-4.  

 
Figure 4-35: Comparison of multivariable dynamic screening with single variable data 

obtains from multi steady-state manner. 
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Table 4-4: Experimental conditions for dynamic multivariable screening  

Residence 

time (s) 

N-

butylamine 

ratio 

Concentration 

(mol dm-3) 

 
Residence 

time (s) 

N-

butylamine 

ratio 

Concentration 

(mol dm-3) 

30 1.0 0.10  135 1.1 0.02 

35 1.0 0.09  140 1.1 0.01 

40 1.0 0.07  145 1.1 0.01 

45 1.0 0.07  150 1.1 0.01 

50 1.0 0.08  155 1.1 0.01 

55 1.0 0.07  160 1.1 0.01 

60 1.0 0.07  165 1.1 0.01 

65 1.0 0.06  170 1.1 0.01 

70 1.0 0.06  175 1.2 0.01 

75 1.0 0.05  180 1.2 0.01 

80 1.0 0.04  185 1.2 0.01 

85 1.0 0.04  190 1.2 0.01 

90 1.0 0.03  195 1.2 0.01 

95 1.0 0.03  200 1.3 0.01 

100 1.0 0.03  205 1.3 0.00 

105 1.0 0.03  210 1.3 0.00 

110 1.0 0.02  215 1.4 0.00 

115 1.1 0.03  220 1.5 0.00 

120 1.1 0.02  225 1.6 0.00 

125 1.1 0.02  230 1.7 0.00 

130 1.1 0.02  235 1.9 0.00 

135 1.1 0.02  240 1.9 0.00 
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The concentration data obtained from the multivariable screening was compared 

individually to the corresponding residence time and molar ratio obtained through 

dynamic screening of each individual molar ratio of 1:1, 1:1.1, 1:1.5 and 1:2. The 

dynamic screening of molar ratio 1:1.1 was only conducted and discussed in this section 

for comparison with the multivariable screening process.  

In Figure 4-36, the benzaldehyde concentration profile obtained was similar for both 

methods (multivariable and dynamic screening) with minor differences (~8%) for each 

individual concentration data at the first 75s of the reaction. For example, at a 1:1 molar 

ratio of benzaldehyde to n-butylamine, the data obtained at residence time 35s was 0.09 

and 0.08 mol dm-3 for multivariable and dynamic screening respectively.   

 
Figure 4-36: Comparison of concentration data obtained from multivariable screening 

molar ratios from 1:1 to 1:2 with one variable dynamic screening at molar ratios of 1:1, 

1:1.1, 1:1.5 and 1:2 of.  

Screening for residence times of 30s to 240s from ratios of 1:2 to 1:1 of benzaldehyde 

to n-butylamine was also conducted. This reverse manipulation of the chemical ratio 

from 1:2 to 1:1 was conducted to show the sensitivity of the screening in changes 

between different molar ratios. As illustrated in Figure 4-37, the benzaldehyde 

concentration increased from 0.00mol.dm-3 at a residence time of 195s to 0.01mol.dm-3 
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at 220s. This corresponds to the molar ratio from 1:1.5 to 1:1.1 of benzaldehyde to n-

butylamine. This was expected due to the different ratio of n-butylamine to react with 

the benzaldehyde. At higher ratios of n-butylamine, the reaction rate was higher, 

resulting in lower concentrations of benzaldehyde.  

     
Figure 4-37: Comparison of concentration data obtained from multivariable screening 

from molar ratios of 1:2 to 1:1 with one variable dynamic screening at molar ratios of 

1:1, 1:1.1, 1:1.5 and 1:2 . 

A comparison of the dynamic screening for one variable (residence time at molar ratio 

of 1:1, 1:1.1, 1:1.5 and 1:2 for benzaldehyde to n-butylamine) and multivariable (1:1 to 

1:2 and 1:2 to 1:1) exhibited good agreement (~90%). It also allows reactions to be 

evaluated at any condition rapidly and logically (Figure 4-38). However, the usefulness 

of this flexibility of the method will depend upon the aims and objectives of the study. 

Within chemical reaction screening, manipulation of the experimental space as shown in 

Figure 4-38(a) is useful. This allows rapid and easy parameter manipulations. However, 

if the aim is to study the reaction kinetics, the route in Figure 4-38(b) is more suitable. 

Even though only a single variable is changing in this method, the data collected can be 

applied to calculate various reaction kinetics parameters, such as the rate constant and 

reaction order.  For example, data at different molar ratios can be used in calculating the 

reaction order via the initial rate method.     
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Figure 4-38: Manipulation of continuous screening, using central baffled mesoscale-

OBR for (a) chemical reaction screening and (b) reaction kinetic study.  

4.4.3.4 Dynamic screening of different imine synthesis 

In this section, continuous screening of a series of imine synthesis reactions was 

investigated. N-butylamine was reacted with o-tolualdehyde, m-tolualdehyde and p-

tolualdehyde. Batch screening of these reactions was also carried out for comparison. 

The concentration profiles obtained from the batch screening of different aldehydes 

with n-butylamine are shown in Figure 4-39.  

        

Figure 4-39: Aldehyde reduction profile from batch screening using a batch beaker for 

imine sysnthesis of benzaldehyde, o-, m-, and p-tolualdehyde with n-butylamine. 

The reaction rate was significantly slower for o-, m- and p-tolualdehyde than that for 

benzaldehyde with n-butylamine. The differences in structure of the aldehyde (Figure 

4-40) strongly affect the reaction rate. The presence of the methyl group on the o-, m- 

and p- position of the benzaldehyde increases the electron density of the benzene ring 

through resonance donating effects. This process stabilises the partial positive charge on 
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the carbon of the carbonyl group (Figure 4-41), thereby reducing the reactivity of this 

site with respect to amine attack.  

 
Figure 4-40: Different aldehyde structure of (a) benzaldehyde, (b) o-tolualdehyde, (c) 

m-tolualdehyde and (d) p-tolualdehyde 

 

 
Figure 4-41: Methyl electron donating effects on benzene structure for p-tolualdehyde. 

 

The reaction reached its equilibrium at approximately 4500s at a concentration of 

0.05mol dm-3 (80% conversion). This was not observed with the reaction of 

benzaldehyde with n-butylamine, which exhibited 100% conversion at 1000s.  

The concentration profile for a continuous screening of a set of aldehydes (o-

tolualdehyde, m-tolualdehyde, p-tolualdehyde and benzaldehyde) with n-butylamine to 

form imine is shown in Figure 4-42.               
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Figure 4-42: Aldehyde reduction profile obtained from multiple dynamic screening of 

different aldehydes (benzaldehyde, o-, m-, and p-tolualdehyde) with n-butylamine using 

a mesoscale-OBR.  

The screening was conducted from residence times of 30s to 480s. The total processing 

time for the screening was approximately 2 hours to screen 4 different reactions, 

including repetitions. This multiple screening process is a good example of the 

advantages of conducting screening via a continuous method. Procedures that would 

interrupt the process; e.g. cleaning, refilling and measuring reagent volume were not 

involved, allowing data to be obtained faster than via batch methods, a ~50% reduction 

in process development time. Furthermore, with continuous screening using the 

mesoscale-OBR more data was collected than in the batch method.  

Aldehyde reduction profiles of o-, m- and p-tolualdehyde comparison between batch 

and dynamic screening are presented in Figure 4-43. Good agreement (~98%) was 

observed between single variable and multiple variable screening methods.  
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Figure 4-43: Aldehyde reduction profiles in a batch beaker and the mesoscale-OBR 

dynamic screening for (a) o-tolualdehyde, (b) m-tolualdehyde, (c) p-tolualdehyde and 

(d) benzaldehyde.   

4.4.3.5 Summary of continuous screening 

The mesoscale-OBR can be used as a tool for continuous screening of chemical 

reactions via multi steady-state or dynamic screening. Both methods have their own 

advantages depending on the objective and the aim of the research. The steady-state 

screening could be applied to multistep syntheses in which the desired concentration 

can easily be maintained, while different reagents are introduced into the reactor system. 

For example, as in Figure 4-44 below, if the best condition for reagent D to react with C 

is at y mol dm-3 equivalent to z residence time, this condition can easily be maintained at 

steady-state method to achieve high yields of E.    

 
Figure 4-44: Multistep synthesis concepts using mesoscale-OBR steady-state screening  

Dynamic screening can be used to optimise reaction conditions and screen catalysts etc, 

using significantly reduced amounts of reagents and waste generated and time (50% and 
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25% reduction in process development time compared to batch and multi steady-state 

method, respectively). Furthermore, the greater number of data points obtained, 

compared to the batch method, is advantageous for reaction kinetics studies, as they 

allow a higher degree of accuracy. Such studies can be conducted either in single or 

multiple variable screening (e.g. different ratios, residence time). 

Continuous mesoscale-OBR screening has several advantages over a beaker. Firstly, the 

amount of reagents can be reduced to approximately 30%, and this increases the overall 

safety of the process when dealing with hazardous material, as it reduces the inventory 

used at any given point in time. Secondly, continuous screening provides flexibility for 

choosing the conditions of interest. It is difficult to change different screening 

conditions during batch methods i.e. the experiment must be completed or terminated 

before changing to other sets of screening condition. However with continuous 

screening this can be conducted in situ once the targeted result is achieved. Ideally, the 

mesoscale-OBR system can also be attached to a feedback controller system which will 

enhance the screening operation in finding the optimum condition in real time. Lastly, 

continuous screening also eliminates procedures that interrupt the screening process that 

necessarily occur in batch screening, e.g. measuring reagent volume and refilling the 

reactor for each different set of experiments.  

The OBR system has also been shown to overcome some of the disadvantages of batch 

scale-up by easily maintaining the geometric parameter (baffle spacing and baffle open 

area) and dynamic factors (Reo, Ren, St and ψ) of the system. It was reported that scale-

up of OBR reactor was linear from  24mm diameter laboratory scale to 150mm diameter 

pilot plant scale (Ni et al., 2001b; Smith and Mackley, 2006). However, the method of 

scale-up from mesoscale upwards is as yet unproven, but scale-up must only be 

demonstrated from the meso to the 24mm diameter scale, as it is understood from this 

scale upwards. 

4.4.4 Determination of reaction kinetic parameters  

The data collected through continuous screening experiments of the imine synthesis 

produced from various aldehydes (benzaldehyde, o-tolueladehyde, m-tolualdehyde and 

p-tolualdehyde) with n-butylamine using the mesoscale-OBR was used to determine 

reaction kinetic parameters, i.e., reaction orders and rate constant. MATLAB modelling 
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was applied to predict reaction mechanisms and to obtain kinetic parameters and 

validated using experimental data.  

4.4.4.1 Conventional experimental kinetics parameter determination  

The initial rates and integration rate law methods were used to determine the reaction 

orders of individual reactants and rate constant of 1-butanamine, N-(phenylmethylene)- 

from benzaldehyde and n-butylamine experimentally. The proposed reaction 

mechanism for this reaction is shown in eq. 4-1 based on the benzaldehyde reduction 

profile obtained in Figure 4-20 (section 4.4.1). The reaction was completed 

(benzaldehyde profile reached zero) at reaction times above 600s and 300s for ratios of 

aldehyde to n-butylamine of 1:1 and 1:4. Therefore, the reverse rate constants (k-1 and k-

2) were assumed to be zero. The differential equations for the anticipated reaction 

mechanism are listed in eqs.4-2 to 4-6. 

 eq. 4-1 

  eq. 4-2 

 eq. 4-3 

 eq. 4-4 

 eq. 4-5 

 eq. 4-6 

…where A, B, C, D and E represent benzaldehyde, n-butylamine, intermediate, imine 

and water, respectively. m, n and o are reaction orders for benzaldehyde, n-butylamine 

and  intermediate respectively. 
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The calculated initial rates at various molar ratios of benzaldehyde to n-butylamine (1:1 

to 1:4) are shown in Table 4-5. From these, the reaction order (n) for n-butylamine was 

calculated at an average of 0.22 (refer to Appendix D). At an equal initial concentration 

of benzaldehyde (Ao) and n-butylamine (Bo), the rate expression of benzaldehyde (eq.4-

2) can be simplified as below (eq.4-7). 

Table 4-5: Initial reaction rate of at various molar ratios of benzaldehyde to n-

butylamine 

 Benzaldehyde 

concentration 

(mol dm-3) 

N-butylamine concentration 

(mol dm-3) 

Initial rate 

(mol dm-3/ s) 

0.25 0.25 7.00 x 10-3 

0.25 0.5 8.10 x 10-3 

0.25 1.00 9.10 x 10-3 

0.25 1.50 1.03 x 10-2 

 

  eq. 4-7 

Integrating results from eq.4-7 displays a relationship between benzaldehyde 

concentration and reaction rate constant (k1) as shown in eq.4-8:- 

 

 eq. 4-8  

 

 

Graphical plots of eq.4-8 (refer to Appendix E) were used to determine the rate constant 

and reaction order through the slope and linearity value respectively. At various m 

values (1.0-2.0 with 0.1 interval), the highest coefficient R2 value obtained was at 

m=1.7 (Table 4-6).  
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Table 4-6: Comparison of rate constant and benzaldehyde order according to the best fit 

of regression at equal molar ratio of benzaldehyde and n-butylamine. 

Benzaldehyde order (m) 
Rate constant 

(mol 1-(m+n). L (m+n)-1. s-1) 
R2 

1.00 2.7 x 10-2 0.9226 

1.10 3.6 x 10-2 0.9337 

1.20 4.8 x 10-2 0.9427 

1.30 6.4 x 10-2 0.9498 

1.40 8.6 x 10-2 0.9551 

1.50 1.2 x 10-1 0.9586 

1.60 1.6 x 10-1 0.9606 

1.70 2.1 x 10-1 0.9610 

1.80 2.9 x 10-1 0.9600 

1.90 3.9 x 10-1 0.9578 

2.00 5.3 x 10-1 0.9545 

 

This resulted in a rate constant (k1) of 2.1x10-1 mol-0.9L0.9s-1 with the total reaction order 

of 1.9 (1.7 for benzaldehyde (m) and 0.22 for n-butylamine (n)). The total reaction order 

of 1.9 obtained for the reaction between benzaldehyde and n-butylamine in hexane 

agrees well with other researchers’ findings (Crowell and Peck, 1953; Hill and Crowell, 

1956; Santerre et al., 1958). Their findings exhibited a reaction order of 2.0 which used 

the Schiff base reaction from an aromatic aldehydes or ketone with primary amines in 

polar solvents either with or without the present of acid catalyst. This reaction order 

determination was conducted through integration of pseudo first order rate law. 

However, their findings did not state the reaction order for each of the components 

(aldehyde and amine).  

The integration method to determine the kinetic parameters becomes complex at 

unequal molar ratios. Therefore, numerical modelling method was used to determine the 

reaction kinetics parameter at unequal concentrations for comparison purposes to the 

results obtained from the equal concentration ratio condition of the benzaldehyde and n-

butylamine. Furthermore, the modelling helps to understand and validate the propose 

reaction mechanisms of the chemical reaction studied.  
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4.4.4.2 Numerical method analysis through mathematical modelling  

The benzaldehyde and n-butylamine imination reaction was modelled using the reaction 

mechanisms shown in eq.4-1 (above in section 4.4.4.1) using Matlab software (version 

R2011a). The reaction orders for individual reagents (m: benzaldehyde and n: n-

butylamine) and rate constant (k1) obtained from experiment using the integration 

method was used as the initial value for the model (Table 4-7). As for the rate constant 

(k2) and reaction order of the intermediate (o), the value were listed in a range of 0.04-

0.06 and 1-1.5 with 0.005 and 0.5 interval respectively (Table 4-7). These intervals were 

chosen to provide more intermediate value to increase the modelling data looping in 

determine the kinetic parameters data. Smaller intervals values can also be used, such as 

0.01 for the intermediate (o) interval, but require longer simulation times (~1-2 hours). 

The model was run until a best fit (sum square of error (SSE) ≤1.0%) between 

experimental and modelling results was achieved. This process was applied to the 

different ratios of benzaldehyde to n-butylamine conditions (1:1 to 1:4) at various 

screening methods (batch, continuous steady-state and continuous dynamic).  

Table 4-7: Kinetic parameters for benzaldehyde and n-butylamine imination used in 

modelling. 

k1 0.21 

k2 0.04-0.06 (at 0.005 interval) 

m 1.7 

n 0.22 

o 1-1.5 (at 0.5 interval) 

    

Table 4-8 shows the modelling kinetics parameters obtained at various molar ratios of 

benzaldehyde and n-butylamine. At k2=0.045 and o=1, the best fit was observed in 

Figure 4-45. The results show that the rate constant (k1) and reaction order (m and n) 

obtained from the experimental calculation are valid to fit the propose reaction 

mechanism (eq.4-1 in section 4.4.4.1) with benzaldehyde and imine SSE < 1%. Apart 

from that, through this modelling method it was possible to obtained the value for the 

rate constant (k2) and reaction order of intermediate (o), which was impossible with the 

experimental integration method due to the intermediate (carbinolamine) not being 

detected (Evans et al., 2002; Iwasawa et al., 2007).     
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Table 4-8: Kinetic parameter obtained from modelling for batch screening using 

mesoscale-OBR at different ratio of benzaldehyde and n-butylamine. 

Ratio 1:1 1:2 1:4 

Benzaldehyde concentration (mol dm-3) 0.25 0.25 0.25 

N-butylamine concentration (mol dm-3) 0.25 0.50 1.00 

Rate constant (k1) (mol-0.9L0.9s-1) 0.21 0.21 0.21 

Rate constant (k2) (mol-0.9L0.9s-1) 0.045 0.045 0.045 

Benzaldehyde order (m) 1.7 1.7 1.7 

N-butylamine order (n) 0.22 0.22 0.22 

Intermediate order (o) 1 1 1 

SSE error (%) 

Benzaldehyde concentration fit 0.02 0.02 0.01 

Imine concentration fit 0.30 0.12 0.01 

  

 
Figure 4-45: Concentration profiles obtained from modelling (solid lines) and 

experimental results (dotted lines) using the mesoscale OBR reactor for benzaldehyde 

reduction and imine formation at molar ratios of benzaldehyde: n-butylamine of (a) 1:1 

(b) 1:2 (c) 1:4 screened via batch manner. 

A good fit (SSE < 1%) between experimental data collected via a continuous method 

and modelling results was also observed regardless the ratio of the benzaldehyde to n-
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butylamine (1:1 and 1:2) or screening manner (steady-state and dynamic as shown in 

Figure 4-46 and Figure 4-47 respectively). Similar reaction mechanisms (eq.4-1) shown 

in section 4.4.4.1 were used to obtain concentration profiles. Summary of the reaction 

kinetics parameter for these fits was illustrated in Table 4-9 (following).   

 
Figure 4-46: Concentration profiles obtained from Matlab modelling (solid lines) and 

experimental results (dotted lines) using continuous steady-state screening of the 

mesoscale reactor for benzaldehyde reduction and imine formation at molar ratios (a) 

1:1 (b) 1:1.5 (c) 1:2 of benzaldehyde: n-butylamine.  
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Figure 4-47: Concentration profiles obtained from Matlab modelling (solid lines) and 

experimental results (dotted line) using continuous dynamic screening of the mesoscale 

reactor for benzaldehyde reduction and imine formation at molar ratios (a) 1:1 (b) 1:1.5 

(c) 1:2 of benzaldehyde: n-butylamine. 

Table 4-9: Kinetic parameters obtained from modelling for continous screening (steady-

state and dynamic manner) using mesoscale-OBR at different ratio of benzaldehyde and 

n-butylamine. 

 Steady-state screening Dynamic screening 

Ratio 1:1 1:1.5 1:2 1:1 1:1.5 1:2 

Benzaldehyde concentration  

(mol dm-3) 
0.25 0.25 0.25 0.25 0.25 0.25 

N-butylamine concentration  

(mol dm-3) 
0.25 0.38 0.50 0.25 0.38 0.50 

Rate constant (k1) (mol-0.9L0.9s-1) 0.21 0.21 0.21 0.23 0.23 0.23 

Rate constant (k2) (mol-0.9L0.9s-1) 0.045 0.045 0.045 0.055 0.055 0.055 

Benzaldehyde order (m) 1.7 1.7 1.7 1.7 1.7 1.7 

N-butylamine order (n) 0.22 0.22 0.22 0.22 0.22 0.22 

Intermediate order (o) 1 1 1 1 1 1 

SSE error (%) 

Benzaldehyde concentration fit 0.37 0.05 0.19 0.21 0.10 0.66 

Imine concentration fit 0.11 0.38 0.70 0.13 0.00 0.33 
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The kinetic parameters (k1, k2, m, n, and o value) for the steady-state continuous 

screening as shown in Table 4-9 were similar to those obtained via batch screening  

which fits between the experimental and modelling data at SSE <1%. In order to 

achieve good fits (SSE < 1.0%) between the experimental and modelling data for the 

dynamic screening, adjustment on the k1 and k2 value were conducted to 2.3x10-1 mol-

0.9L0.9s-1 and 5.5x10-2 mol-0.9L0.9s-1  with differences of 7% and 15%  respectively than 

the value used for the data collected via batch screening data. This was resulted due to 

the frequency of the data interval at 5s compared to the 15s via the dynamic and batch 

screening respectively. However, the differences were not significant.  

For other aldehyde reactions (o-tolualdehyde, m-tolualdehyde and p–tolualdehyde) with 

n-butylamine, the initial rates and integration rate law used with the benzaldehyde 

reaction could not be implemented due to the limitation of the screening data collected 

(experiments was only conducted at the ratio of 1:1 of aldehyde to n-butylamine). This 

is because the aim was only to demonstrate the flexibility of the mesoscale-OBR in 

conducting multiple screening of different reactions continuously. However, the 

reaction kinetics was determined using the modelling method. Different reaction 

mechanisms from benzaldehyde and n-butylamine reaction were proposed according to 

the aldehydes (o-tolualdehyde, m-tolualdehyde and p–tolualdehyde) concentration 

profiles shown in Figure 4-39 (section 4.4.3.4). The profiles show a limiting equilibrium 

concentration value greater than zero. This resulted with a significant opposing reaction 

(k-1 and k-2)  which was not present with the benzaldehyde and n-butylamine reaction 

(E.S.Swinbourne, 1971). With that, the reaction mechanism in eq.4-9 was proposed 

which includes the reversible rate constants (k-1 and k-2). The initial reaction parameters 

were shown in Table 4-10.  

  

 eq. 4-9 

…where A, B, C, D and E represent benzaldehyde, n-butylamine, intermediate, imine 

and water, respectively. m.n,o,p and q are reaction orders for benzaldehyde, n-

butylamine, intermediate, imine and water, respectively. 
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Table 4-10: Kinetic parameters used in modelling for different aldehyde (o-

tolualdehyde, m-tolualdehyde and p–tolualdehyde) with n-butylamine at molar ratio of 

1:1. 

k1 0.001-0.09 

k2 0.001-0.09 

k-1 0.0001-0.01 

k-2 0.0001-0.01 

m 1.0-3.0 

n 0.1-1.0 

o 1.0-2.0 

p 1-1.5 

q 1-1.5 

 

The proposed mechanism delivered good agreement (SSE <1.0%) between the 

experimental and modelling data as shown in Figure 4-48 for the different aldehydes (o-

tolualdehyde, m-tolualdehyde and p–tolualdehyde) with n-butylamine. Detailed kinetic 

parameter results are shown in Table 4-11.    

 
Figure 4-48: (a) o-tolualdehyde (b) m-tolualdehyde and (c) p-tolualdehyde reduction 

concentration profiles obtained from Matlab modelling (solid lines) and experimental 

results (dotted square) using mesoscale-OBR via batch screening.  
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Table 4-11: Reaction kinetics data obtained for reaction of o-tolualdehyde, m-

tolualdehyde and p-tolualdehyde with n-butylamine at molar ratio 1:1. 

 
o-

tolualdehyde 

m-

tolualdehyde 

p-

tolualdehyde 

Aldehyde and N-butylamine ratio  1:1 1:1 1:1 

Rate constant (k1) (mol-1.5L1.5s-1) 0.018 0.015 0.013 

Rate constant (k-1) (mol-1.5L1.5s-1) 0.0004 0.0004 0.0004 

Rate constant (k2) (mol-1.5L1.5s-1) 0.04 0.04 0.04 

Rate constant (k-2) (mol-1.5L1.5s-1) 0.0004 0.0004 0.0004 

aldehyde order (m) 2.2 2.2 2.2 

N-butylamine order (n) 0.28 0.28 0.28 

Intermediate order (o) 2 2 2 

Imine order (p) 1 1 1 

Water order (q) 1 1 1 

SSE error (%) 

Benzaldehyde concentration fit 0.79 0.06 0.35 

 

Regardless of the aldehydes, the reaction order for each of the reagent and product was 

similar at 2.2, 0.28, 2, 1 and 1 for aldehyde, n-butylamine, intermediate, imine and 

water respectively. Similar findings were also observed for rate constant value of k-1, k2 

and k-2. Differences were only observed with the rate constant (k1) value. It shows value 

increased from 1.3x10-2 to 1.5x10-2 followed with 1.8x10-2 mol-1.5L1.5s-1 for p-

tolualdehyde, m-tolualdehyde and o-tolualdehyde respectively. The presence of the 

methyl group increases the electron density of the benzene ring, but the effects of 

stabilising the partial positive charge on the carbon of the carbonyl group decreases with 

the following trend: ortho- < meta- < para-. 

4.4.5 Solvent-free imine synthesis in mesoscale-OBR reactors 

Solvents are commonly used in chemical reactions both in laboratory and industry. The 

role of a solvent varies depending on the nature of the chemical reactions. Its role can be 

to dissolve solid substances to remove mass transfer limitations or to reduce the effect 

of exothermic reactions.  
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The reaction between benzaldehyde and n-butyalmine is exothermic. By using hexane 

as solvent, the increase in temperature at the initial stage of the reaction (~100s) was 

only 2oC difference, as shown in Figure 4-49, below.  

 
Figure 4-49: Temperature profile for 1:1 ratio of benzaldehyde to n-butylamine in 

hexane using a beaker via batch screening. 

However, without solvent, the temperature of the reaction mixture increased rapidly to 

90oC, which is above the boiling point of n-butylamine (77-79oC), at 50s reaction time 

and slowly decreased to 30oC and 20oC for the non-jacketed and for jacketed beaker 

system (water as the cooling fluid) respectively (Figure 4-50). This would lead to 

significant difficulties in performing this reaction in a conventional batch reactor, 

predominantly safety issues. 
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Figure 4-50: Temperature profile for 1:1 ratio of benzaldehyde to n-butylamine with 

solvent-free system using non-jacketed and jacketed beaker via batch screening. 

However, by conducting the solvent-free reaction in the mesoscale-OBR (either batch or 

continuous mode), the hazard is reduced due to the small volume of reagents in the 

system and the higher surface area to volume ratio, which allows more effective heat 

transfer.  

 
Figure 4-51: Temperature profiles for solvent-free reaction of benzaldehyde with n-

butylamine at a molar ratio of 1:1 using (a) non-jacketed and (b) jacketed batch 

mesoscale-OBR. 

As shown in Figure 4-51, the temperature was measured along the length of the 

mesoscale-OBR at 10cm (top) and 28cm (bottom) from the outlet. With the non-

jacketed mesoscale-OBR (Figure 4-51(a)), the highest temperature was 80oC at 10s after 

which it slowly decreased to 20oC at ~500s. This was much shorter than the time 

required (2000s) for a non-jacketed beaker to reach the same minimum temperature 

(~20oC) (Figure 4-50). One reason for this was the higher surface area to volume ratio 
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for the mesoscale-OBR than the beaker system (10:1), allowing the heat generated to be 

more easily distributed to the surroundings. However, isothermal operation along the 

non-jacketed mesoscale-OBR was not achieved at the beginning of the reaction (<400s). 

The temperature difference was significant, at an average of 40oC, and decreased with 

time. By using water as cooling fluid, the initial temperature along the jacketed 

mesoscale-OBR became much more uniform, with around 5oC difference between the 

two points (Figure 4-51(b)) after ~20s reaction time. The isothermal temperature (20oC) 

was reached at 50s. This decreased further to ~15oC at 100s. This resulted in a lower 

temperature during the screening, thereby reducing the hazards of the solvent-free 

reaction. 

To examine the effect of temperature on the reaction rate of a chemical reaction, the 

concentration profiles of benzaldehyde obtained from the batch non-jacketed and 

jacketed beaker and mesoscale-OBR are shown in Figure 4-52.  

 
Figure 4-52: Benzaldehyde concentration profiles at 1:1 molar ratio of benzaldehyde to 

n-butylamine in batch using non-jacketed and jacketed beaker and mesoscale-OBR.  

As observed in Figure 4-52, the benzaldehyde reduction rate obtained in the non-

jacketed beaker was higher than that in the non-jacketed mesoscale-OBR 

(approximately 4%). The same trend was also observed for the jacketed reactors. For 

example, the benzaldehyde reduction rate at 30s was 0.12 M s-1 and 0.06 M s-1 for 
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jacketed beaker and jacketed mesoscale-OBR respectively. This was expected due to the 

higher temperatures in the beaker system than in the mesoscale OBR during the initial 

period of the reaction.  

With the temperature established and concentration profile for solvent-free batch 

screening using the mesoscale-OBR, the system was used for continuous multi-steady 

screening method. This allowed temperature profiles to be determined at different 

conditions to assess the uniformity of temperature along the reactor. The screening was 

conducted at residence times of 30s, 60s, 90s, 120s and 600s. Temperature profiles for 

continuous screening for the non-jacketed mesoscale-OBR system and jacketed 

mesoscale-OBR are illustrated in Figure 4-53 and in Figure 4-54 respectively. 

 
Figure 4-53: Temperature profiles for solvent-free reaction of benzaldehyde with n-

butylamine at 1:1 molar ratio using the non-jacketed mesoscale-OBR  at (a) 30s, (b) 

60s, (c) 90s, (d) 120s and (e) 600s. 
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Figure 4-54: Temperature profiles for solvent-free reaction of benzaldehyde with n-

butylamine at 1:1 molar ratio using the jacketed mesoscale-OBR  at (a) 30s, (b) 60s, (c) 

90s, (d) 120s and (e) 600s. 

Regardless of the position (top or bottom), the temperature reached its steady state at 

approximately 100s for the non-jacketed mesoscale-OBR and 50s for the jacketed 

mesoscale-OBR at all tested residence times. Isothermality was not established in either 

case. The temperature difference between the top and the bottom varied between 17oC 

and 27oC for residence times of 60-600s for the non-jacketed mesoscale-OBR (Table 

4-12).  

Table 4-12: Temperature differences between top and bottom positions inside the non-

jacketed and jacketed mesoscale-OBR  

Residence time 

(s) 

Non-jacketed mesoscale-OBR 

(oC) 

Jacketed mesoscale-OBR 

(oC) 

30 6.0 ± 0.52 7.0 ± 0.62 

60 17.0 ± 0.80 7.0 ± 0.30 

90 27.0 ± 1.20 6.0 ± 0.63 

120 18.0 ± 1.30 6.0 ± 0.60 

600 26.0 ± 0.87 0.8 ± 0.52 
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The temperature difference in the non-jacketed mesoscale-OBR was higher than that in 

the jacketed mesoscale-OBR. For example, at 60s, the temperature difference between 

the top and the bottom was 17.0 ± 0.80oC for the non-jacketed mesoscale-OBR but only 

7.0 ± 0.30oC for the jacketed mesoscale-OBR. The large difference in the non-jacketed 

system was due to the heat generated at the initial mixing point of reactor (bottom 

temperature). With the jacketed system, this heat was more effectively removed by the 

cooling fluid (water).  

Benzaldehyde concentration profiles obtained from the continuous screenings using the 

jacketed and non-jacketed mesoscale-OBR are shown in Figure 4-55 Figure 4-56, 

below:  

 
Figure 4-55: Benzaldehyde concentration profiles obtained in solvent-free reaction of 

benzaldehyde with n-butylamine at 1:1 molar ratio using the non-jacketed mesoscale-

OBR screened at (a) 30s, (b) 60s, (c) 90s, (d) 120s and (e) 600s. 



126 

 

Chapter 4: Results and Discussions 

 

  

 
Figure 4-56: Benzaldehyde concentration profiles obtained in  solvent-free reaction of 

benzaldehyde with n-butylamine at 1:1 molar ratio using the jacketed mesoscale-OBR 

screened at (a) 30s, (b) 60s, (c) 90s, (d) 120s and (e) 600s. 

As mentioned in Figure 4-53 (above), the temperature profile for the non-jacketed 

system took ~100s to reach it steady-state condition. Due to this, the benzaldehyde went 

through a peak before diminishing as shown in Figure 4-55 (a), (b) & (c). Steady-state 

readings were only observed in the jacketed mesoscale-OBR as shown in Figure 4-56. 

Higher temperatures (~80oC), above the boiling point of n-butylamine, obtained during 

screening using the non-jacketed mesoscale-OBR caused the formation of bubbles 

which disturbed the IR measurement and the plug flow condition. For example, the 

temperature at the bottom location reached 80oC for screening at 30s and 90s residence 

times. Entrapment of bubbles under the IR sensor reduces the accuracy of data 

collection during the screening process. The effects of bubble entrapment can be 

observed in the concentration profiles using the jacketed mesoscale-OBR shown in 

Figure 4-56(a), (c) and (e). Once the bubbles were removed, the concentration profile 

returned to its appropriate value corresponding to the screening condition. Bubble 

formation using the jacketed mesoscale-OBR was due to the area at the inlet of the 

reactor system (Figure 4-57) that was not jacketed. Clearly at this point the heat 

generated at the mixing point reached the boiling point of n-butylamine.  
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Figure 4-57: The non-jacketed area on the jacketed mesoscale-OBR system. 

The benzaldehyde concentrations obtained using the jacketed mesoscale-OBR in the 

continuous screening was comparable to those in the batch mode due to the similarity in 

the temperature profile in both methods. There was good agreement (~95%) as shown in 

Figure 4-58.  

 
Figure 4-58: Benzaldehyde concentrations obtained in batch and continuous screening 

for solvent-free reaction at 1:1 molar ratio of benzaldehyde to n-butylamine conducted 

using the jacketed mesoscale-OBR. 
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In summary, the mesoscale-OBR is a better platform in terms of safety, temperature 

control and heat transfer in conducting screening for exothermic reactions, e.g. a 

solvent-free reaction of benzaldehyde with n-butylamine, than the batch beaker. Due to 

its small volume, the inventory of material in a hazardous state is reduced when using 

the mesoscale-OBR. Furthermore, the mesoscale OBR also had better heat transfer 

performance than the beaker system. The reaction temperature was reduced to 40oC 

when using the batch jacketed mesoscale-OBR, compared to 90oC using the batch 

jacketed beaker. Although isothermality was not obtained along the length of the 

jacketed mesoscale-OBR, the temperature difference was small, around 6-7oC.  

To improve the temperature control and to obtain highly isothermal condition along the 

mesoscale-OBR, a heat pipe-based design was developed. Heat pipe designs are used in 

many applications, such as spacecraft (Swanson and Birur, 2003), solar cells (Armijo 

and Carey, 2013), chemical reactors (Parent et al., 1983; Richardson et al., 1988), heat 

exchangers (Vasiliev, 2005) and electronics cooling activities (Reay and Kew, 2006). 

The concept was to design a passive heat pipe jacketed system to isothermalise the 

reactor, by “spreading out” the heat generated along the reactor.   

4.4.6 Thermosyphon mesoscale-OBR reactor 

A mesoscale-OBR system was incorporated within a thermosyphon. A thermosyphon 

system was chosen due to the simplicity of its structure and because it could easily be 

coupled to the existing vertical orientation of the mesoscale-OBR. The aim was to 

design and fabricate the first OBR longitudinally isothermalised using a heat pipe.  

4.4.6.1 Operation mechanism of the thermosyphon mesoscale-OBR 

The thermosyphon reactor system was a copper tube of 360mm length, consisting of 

two main units: a 20mm outer diameter thermosyphon tube and a 5mm inner diameter 

mesoscale-OBR reactor as shown in Figure 4-59.  
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Figure 4-59: Diagram of the thermosyphon mesoscale-OBR with the evaporation-

condensation cycle. 

The mode of operation of the thermosyphon mesoscale-OBR is evaporation and 

condensation outside the wall of the mesoscale-OBR, and oscillatory mixing within 

(Figure 4-59). The evaporation-condensation cycles begin when the liquid at the 

evaporator side is heated (bottom end) due to the exothermic reaction. This causes the 

liquid to vaporize and move to the cold end of the thermosyphon (top end). The 

condensate then returns to the hot end (evaporator side) by flowing down the walls by 

gravity. Repeating this cycle created an isothermal condition along the length of the 

mesoscale-OBR. The high thermal conductivity of copper also enhanced the heat 

transfer from the mesoscale-OBR to the thermosyphon side. Prior to the evaporation-

condensation cycles, oscillatory mixing was imposed on the net flow of reagents inside 

the reactor. To obtain a sufficient length for the evaporator, adiabatic and condenser 

region, the diameter of the thermosyphon must be correct. In this preliminary study, a 

20mm diameter tube with 360mm in length was chosen, providing 100mL volume for 

the evaporation-condensation cycles to occur. However, further investigations need to 

be performed to determine an optimum diameter for the system: this was the very first 

example of this type of reactor. 
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4.4.6.2 Evaluation of the thermosyphon mesoscale-OBR reactor system 

The isothermality achieved using an aluminium heat pipe system obtained from 

Thermacore (Europe) was tested for comparison to the thermosyphon mesoscale-OBR 

system. The heat pipe tube was 15cm in length and 0.5cm in diameter. It was tested by 

immersing in hot water (~80oC) and the temperature was measured at 2 locations: 1cm 

and 10cm from the top. The temperature profiles showed that the isothermal condition 

was reached within 20s with a temperature difference between the top and bottom of 

approximately 1oC (Figure 4-60). The temperature measured in the tube was 5oC 

different to that of the heat source. This showed that good temperature control and rapid 

isothermal conductance was obtained along the length of the system. The thermosyphon 

mesoscale-OBR was evaluated, with a view to achieving similar levels of 

isothermalisation.    

 
Figure 4-60 : Tested isothermal temperature profiles of heat pipe obtained from 

Thermacore (Europe) Ltd (top: 1cm from the top; bottom: 10cm from the top of the 

tube).   

It is essential that all connections between the thermosyphon and the mesoscale-OBR 

are leak-free. Several joining methods were tested such as (i) using adhesive material, 

(ii) welding and (iii) brazing.  

For the first method, the end caps of the thermosyphon mesoscale-OBR tube were glued 

together using an adhesive material (Loctite) that could withstand high temperatures 

(>150oC) and high pressures (25MPa). Once both systems were joined, outgassing was 

carried out to release trapped gas inside the vapour space of the thermosyphon tube 
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system (Reay and Kew, 2006). This is to avoid any gas disturbance during the 

circulation of evaporate-condensate inside the thermosyphon chamber. Two methods of 

the outgassing were used as listed in section 3.2.3.2.1.1.  

As shown in Figure 4-61, an isothermal condition was not obtained using outgassing 

method A.  

 
Figure 4-61: Temperature profiles obtained from thermosyphon mesoscale-OBR system 

with 70% filling ratio. 

The lack of isothermality could be due to a high initial filling ratio of the working fluid. 

The 30mL water left inside the themosyphon system after the outgassing was equivalent 

to approximately 70% of the evaporator volume. As the system was heated, the liquid 

pool expanded from the evaporator towards the condenser region (El-Genk and Saber, 

1999). This resulted in surface blockage and limited the condensation process (Reay and 

Kew, 2006).  There are several suggestions related to an optimum filling ratio of the 

thermosyphon system. Bezrodnyi and Alekssenko (1977) proposed that a filling ratio 

should be at a maximum of 50% of the evaporator volume while Feldman and 

Srinivasan (1984) proposed the range of 18-20%. Due to this, the process was repeated 

at approximately 50% filling ratio (20ml water left inside the thermosyphon system) but 

the non-isothermal profile persisted, as shown in Figure 4-62.  



132 

 

Chapter 4: Results and Discussions 

 

 
Figure 4-62: Temperature profiles obtained from the thermosyphon mesoscale-OBR 

system with 50% filling ratio. 

Therefore, it can be concluded that the outgassing process using method A could not 

remove completely gas trapped inside the system. For the outgassing method B, the 

system could be guaranteed to release the air trapped due to high pressure built up 

inside the close system by heating water to its boiling temperature. However, water 

leakages were observed at the bottom fittings during the outgassing process. It indicated 

that the system was not fitted tightly, leading to a poor performance of the system, e.g. 

non-isothermal condition. It was concluded that the adhesive method was not suitable 

for fitting the thermosyphon mesoscale-OBR system. 

A welding process was required, but copper cannot withstand high temperatures of the 

welding process. The brazing method, which involves melting and then cooling down 

metal filler between two fittings parts, was used. The system was outgassed using the 

methods mentioned in section 3.2.3.2.1.1 with a filling ratio of 70%. A non-isothermal 

profile was observed using outgassing method A (Figure 4-63(a)), whilst a good 

isothermal condition was obtained using outgassing method B (Figure 4-63(b))  
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Figure 4-63: Outside wall temperature profiles at the top (5cm) and bottom (28cm) of 

the thermosyphon mesoscale-OBR reactor system using the outgassing procedure (a) 

method A and (b) method B with 70% filling ratio of the evaporator volume 

The difference in temperature between the top and bottom with the outgassing method 

B was small, approximately 3oC, which was similar to that in a heat pipe system 

obtained and tested from Thermacore (Europe) Ltd. (Figure 4-60). This suggests that 

the outgassing method B can release completely the gas/air trapped inside the system, 

allowing evaporation and condensation circulation to occur effectively. 

4.4.6.3 Solvent-free imine synthesis using the thermosyphon mesoscale-OBR 

When the achievement of isothermality was demonstrated to be achievable in the 

thermosyphon mesoscale-OBR, the system was used to screen a solvent-free imine 

synthesis. This was conducted continuously via a steady-state method at residence times 

of 30s, 60s, 90s, 120s and 600s. The temperature inside the mesoscale-OBR was 

measured at 10 cm (top) and 28 cm from the reactor outlet (bottom). The temperature 

profiles obtained in the system are shown in Figure 4-64.  
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Figure 4-64: Temperature profiles for solvent-free reaction of benzaldehyde with n-

butylamine at 1:1 molar ratio using the thermosyphon mesoscale-OBR system screened 

at (a) 30s, (b) 60s, (c) 90s, (d) 120s and (e) 600s  residence time via continuous multi 

steady-state manner . 

The difference in temperature between the top and bottom positions was below 5oC for 

residence times from 60s to 600s. It suggested that 70% filling ratio of the evaporator 

volume was a viable level to obtain a good temperature control along the reactor during 

the imine synthesis reaction. The highest exotherm occurs during the initial reaction 

time (i.e. when the reagents initially come into contact). Here, the temperature measured 

at the bottom position was always higher than that at the top position, as expected at 

residence time 60s (Figure 4-64(b)) ,90s (Figure 4-64(c)) ,120s (Figure 4-64(d)) and 

600s (Figure 4-64(e)). However, this behaviour was not observed at the 30s residence 

time temperature profile (Figure 4-64(a)). This indicates that at the highest flow rate (at 

the shortest residence time of 30s), the exotherm is moved away from the evaporator 

section (inlet). This results in high heat input at the condensation side, which reduces 

the rate of liquid returning from the condenser section (El-Genk and Saber, 1999). Due 

to this “dry-out” phenomenon, the performance of the thermosyphon mesoscale-OBR 

was reduced. Hence, the top temperature was higher than the bottom temperature and 

resulted in no isothermal profile observed at this screening condition (τ=30s). The 
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isothermal condition along the reactor was only observed at residence times of 60s and 

90s after 250s and 400s respectively. This isothermality was not observed with the 

jacketed mesoscale-OBR at any tested residence time conditions. The isothermality 

achieved with the thermosyphon mesoscale-OBR system was due to the fixed heating 

duty along the length of the reactor. This shows that the 70% filling ratio was suitable to 

absorb and circulate the heat generated from the exothermic reaction during these 

screening conditions (60s and 90s residence times), resulting in a high degree of 

isothermalisation along the reactor. Isothermality clearly depends upon screening time. 

The isothermal condition might occur if the screening time were increased (>500s). The 

difference for the temperature profiles between the top and bottom decreased with time; 

e.g. the difference was 10oC at 200s, decreasing to 4oC at 500s. With screening at 600s 

residence time, constant temperature profiles at the top and bottom positions were 

observed with temperature of 25oC and 30oC respectively.   

A non-steady state condition was observed for the benzaldehyde concentration profiles 

as shown in Figure 4-65.  

 
Figure 4-65: Benzaldehyde concentration profiles for solvent-free reaction of 

benzaldehyde with n-butylamine at 1:1 molar ratio using the thermosyphon mesoscale-

OBR screened at residence times of (a) 30s, (b) 60s, (c) 90s, (d) 120s and (e) 600s. 
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This non steady-state benzaldehyde profile was similar to the data collected via 

continuous screening for the solvent-free reaction using the non-jacketed mesoscale-

OBR. The steady-state was not observed due to the reaction temperature reaching the 

boiling temperature for n-butylamine, causing the formation of bubbles that disturbed 

the plug flow behaviour. Moreover, the copper material reacted with n-butylamine 

(Figure 4-66) which was evident in the blue colour of the outflowing reaction mixture. 

This indicates that the n-butylamine reacts with the copper to form copper hydroxide 

(Cu (OH) 2). 

 
Figure 4-66: Pale blue precipitation observed from the outflow of the solvent-free 

reaction of benzaldehyde and n-butylamine conducted using the thermosyphon 

mesoscale-OBR  

The effects of copper reduce the rate of loss of benzaldehyde by approximately 60% as 

shown in Figure 4-67.  
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Figure 4-67: Comparison of benzaldehyde reduction profile via batch manner using 

stainless steel and copper helical baffled mesoscale-OBR. 

Clearly the use of copper will have to be changed in future designs. The reactor will be 

constructed from a material that does not react with the reagents. However, the aim of 

this investigation was to obtain good temperature control and an isothermal condition 

along the length of a reactor by inserting a reactor inside a heat pipe, and copper was 

chosen because of its thermal conductivity. This was proven with the summary 

temperature differences between the top and bottom positions for various designs as 

shown in Figure 4-68. The average temperature for the thermosyphon mesoscale-OBR 

was as low as ~4oC.  

 
Figure 4-68: Temperature difference between top and bottom positions  
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4.4.6.4 Summary of themosyphon mesoscale-OBR reactor 

Generally, the thermosyphon mesoscale-OBR system behaviour is comparable to the 

jacketed mesoscale-OBR. However, further studies need to be conducted to determine 

the optimum filling ratio and diameter of the thermosyphon system. Otherwise, 

understanding the efficiency of the evaporator and condenser section is important, as the 

heat input into the system for screening a chemical reaction is generated along the 

reactor length. The thermosyphon mesoscale-OBR is a compact design because it acts 

as a passive jacketed reactor, which eliminates the need for additional pumps to 

circulate cooling fluids inside the jacketed system. This reduces the footprint of the 

device. 
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Chapter 5 Conclusions and Future works 

5.1 Conclusions 

The reaction of several aldehydes (benzaldehyde, o-tolualdehyde, m-tolualdehyde and 

p-tolualdehyde) with n-butylamine to form imine was chosen as a case study to 

demonstrate the ability of the continuous “mesoscale” Oscillatory Baffled Reactor 

(“OBR”) to rapidly screen process conditions. The reactor was coupled to online FTIR, 

to determine kinetic data (rate constants and reaction orders). The mesoscale-OBR was 

operated in 3 different modes: 

 Batch operation. 

 “Multi-steady state” mode, in which a sequence of different residence times was  

imposed, each for a prescribed period of time.   

 “Dynamic” mode in which the residence time was continuously varied. 

 

5.1.1 Comparison of batch screening between mesoscale-OBR and conventional 

beaker system 

The comparison was conducted only with the reaction of benzaldehyde with n-

butylamine at the ratio of 1:1 respectively to forms 1-butanamine, N-

(phenylmethylene)-. The results show that:- 

 A batch beaker exhibited a higher uncertainty (6.73x10-2 mol dm-3) than the 

batch mesoscale-OBR (7.49x10-3 mol dm-3) at the initial stages (~<200s) of the 

benzaldehyde reduction profile.  

 Regardless of the mixing intensity (31<Reo<369), a similar reaction rate value 

(~0.007M/s at 15s reaction time) was observed in the mesoscale-OBR. This 

indicates that over this range of conditions there were no mass transfer 

limitations within the reactor system.  

 The mesoscale OBR exhibited a higher degree of consistency in experimental 

results: the uncertainty in the rate constant for benzaldehyde and n-butylamine 

imination, at 5.5 x 10-3 mol-0.9L0.9s-1, was approximately three times lower than 
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that (1.8 x 10-2 mol-0.9L0.9s-1) determined using a conventional batch beaker 

method. 

 The amount of reagents required for reaction screening was reduced by 75% 

using the mesoscale-OBR compared to standard laboratory glassware (beaker).  

5.1.2 Advantages of the continous screening in “multi-steady state” and “dynamic 

screening” modes 

Continuous screening using the mesoscale-OBR has been proven in the “multi steady-

state” and “dynamic” modes of operation. Both methods have their own advantages. It 

was demonstrated that:- 

 A clear step change between residences times regardless the different ratios 

of benzaldehyde to n-butylamine (1:1, 1:1.5 and 1:2) was observed through 

“multi steady-state” screening. This indicates that further processing 

advantages, such as the use of staged addition generate further 

reactions/products, are possible.  

 More data is produced per volume of reactants than in batch mode 

(mesoscale-OBR or beaker). 

 At “multi steady-state” each data point at a given steady state was equivalent 

to one batch reaction. This equates to a much smaller (~20% less) volume of 

fluid per data point than in batch screening. Furthermore it produced a series 

of data (average = 1.2x10-3 mol dm-3) at each reaction time rather than one 

data point per batch screening experiment.  

 In dynamic screening, it gives flexibility in rapidly changing the conditions 

(e.g. flow rate) as the data was collected. Hence the frequency of the data 

collection was increased.    
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 The process development time when using continuous dynamic screening 

was 50% lower than that required for batch screening using a batch reactor, 

and 25% lower than that required when using “multi steady-state” method. 

 The single variable and multivariable dynamic screening agree well (~8% 

difference), implying that this method, multivariable screening, can reliably 

be used to screen rapidly experimental space or parameter. The method also 

shows good sensitivity to concentration changes between different molar 

ratios  

 The continuous screening mode allows in situ manipulation of the reaction 

parameter (e.g. chemical ratio, residence time and temperature) which was 

not possible with the batch screening mode, which only allows changes once 

the reaction was completed. 

Despite the differences between the three different screening methods (batch, multi 

steady-state and dynamic screening), screening data shows approximately ~98% degree 

of agreement between the methods. These results indicate that the mesoscale OBR can 

be used as a tool to obtain reaction data rapidly and reproducibly either in batch or 

continuous manner. 

5.1.3  Non-solvent reaction using jacketed, non-jacketed and thermosyphon 

mesoscale-OBR 

The higher area to volume ratio of the mesoscale-OBR than the beaker system allows 

the exothermic solvent free 1-butanamine, N-(phenylmethylene)- reaction to be 

screened more safely: 

 A lower initial temperature of ~40oC in the jacketed mesoscale-OBR, compared 

to ~90oC with the jacketed beaker. This indicates that the mesoscale-OBR had 

better heat transfer performance than the beaker.  

 The high temperature within the beaker increased the reduction rate of the 

benzaldehyde by ~50%.        
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 Better temperature control was observed when using the jacketed (~7oC 

temperature different) rather than the non-jacketed (~20oC) mesoscale-OBR 

along the reactor system at residence time of 30-600s. However, isothermality 

was not obtained in either system. 

 An improvement in the temperature control was demonstrated using 

thermosyphon mesoscale-OBR. The temperature difference between the top and 

bottom of the reactor was below 5oC, at residence times in the range 60-600s.  

 The thermosyphon mesoscale-OBR can act as a passive jacketed reactor system, 

eliminating the need for additional pumps to circulate cooling fluids inside the 

jacketed system. This reduces the footprint, surrounding infrastructure required 

and energy consumption of the laboratory device. 

5.1.4 Determination of reaction kinetics parameter (rate constants and reaction 

order) 

The reaction kinetic parameters (reaction order and rate constant) were calculated and 

determined through the conventional experimental analysis (method of initial rates and 

integration rate law). This resulted in the following data for the 1-butanamine, N-

(phenylmethylene) reaction:  

 Rate constant (k1) at 2.1x10-1 mol-0.9L0.9s-1. 

 Total reaction order of 1.9 with benzaldehyde order and n-butylamine at 1.7 and 

0.22 respectively.  

These results were modelled using MATLAB, resulting in:- 

 Good fits (SSE ≤ 1.0%) between the experimental and modelling concentration 

profile for benzaldehyde and imine. These were observed at different molar ratio 

of benzaldehyde to n-butylamine condition (1:1 to 1:4) at various screening 

method (batch, continuous steady-state and continuous dynamic). 
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 A reaction mechanism of  for benzaldehyde and n-

butylamine reaction was consistent with the experimental data. 

 The rate constant (k2) and reaction order (o=intermediate) at 4.5x10-2 mol-

0.9L0.9s-1 and 1.0 respectively were found.  

The results for different aldehydes (o-tolualdehyde, m-tolualdehyde and p–tolualdehyde) 

with n-butylamine based on the MATLAB modelling shows:- 

 The reaction mechanism of was proposed based on the 

aldehyde’s reduction profile, including the back rate constants (k-1 and k-2)The 

proposed mechanism led to good agreement (SSE <1.0%) between the 

experimental and modelling data for all the aldehydes (o-tolualdehyde, m-

tolualdehyde and p–tolualdehyde) with n-butylamine.  

 The rate constant (k1) increased from 1.3x10-2 to 1.5x10-2 to 1.8x10-2 mol-1.5L1.5s-

1 for p-tolualdehyde, m-tolualdehyde and o-tolualdehyde respectively. This order 

was as expected due to the various methyl group positions’ effects on the 

electron density of the benzene ring. 

 Regardless of the aldehydes, the reaction order for each of the reagents and 

products was similar at 2.2, 0.28, 2, 1 and 1 for aldehyde, n-butylamine, 

intermediate, imine and water respectively.  
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5.2 Future Work 

Continuous screening using the mesoscale-OBR has been shown to reduce the process 

development time and reagent usage. However, it is recommended that further work be 

conducted in the following areas: 

i. Improvement to the mesoscale-OBR system. The current procedure only 

allows 2 thermocouples (0.5mm OD probe each) to be inserted inside the reactor 

(ID=5mm) due to the size of the baffle (4mm OD).  The thermocouple channel 

port should be design along the reactor system for easier monitoring of the 

temperature along the system. This provides more data at different positions 

along the reactor length for better temperature determination.  This will also 

reduce difficulties during the insertion of the thermocouples from the outlet of 

reactor.    

ii. Improvement to the thermosyphon mesoscale-OBR system. The system has 

been proven to provide a high level of isothermality during the continuous 

screening of an imine reaction. However, further studies need to be performed to 

understand the effects of filling ratios and different diameters of the 

thermosyphon system.  This relates to the understanding of the efficiency of the 

evaporator and condenser sections as the heat input into the system for screening 

a chemical reaction is generated along the reactor. The reactor material also 

needs to be changed in order to avoid any interference between reactor materials 

and reagents, but the good heat transfer between the mesoscale-OBR reactor and 

thermosyphon system must be maintained. 

iii. Improvement to the modelling.  This can be achieved by incorporating 

determination of initial rate constant values through modelling with the assistant 

from the curve fitting MatLab toolbox. This allows rates (i.e. dA/dt) value to be 

obtained and combining the concentration value leads to the initial rate constant 

determination.         

iv. Reduce the size of the infrared probe. The 16mm IR probe used in this study 

causes bubble entrapment under the IR sensor that reduces the accuracy in data 

collection during the screening process. Release of the bubbles was possible for 
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the glass reactor, but is more difficult if different reactor materials are used 

(stainless steel or copper). A smaller probe diameter (<6mm) should be used to 

avoid any difficulties in data collection during the screening.  
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APPENDIX   

Appendix A MATLAB coding 

global k1 k2 m n o 

  
C =[]; 
K1 =[]; 
K2 =[]; 
M=[]; 
N=[]; 
J =[]; 
X=[]; 

  
for k1 =0.21;%initial value for rate constant. 
    for k2 =0.001;%initial value for rate constant.  
        for m =1.7;%initial value for reaction order 
            for n = 0.22;%initial value for reaction order 

                                     
    tspan =[0:15:300];%time range 
    c0=[0.25 0.25 0 0];%initial concentration of the reaction 
    [t,c] = ode45(@firstequ,tspan,c0); 
    C =[C,c]; 
    K1 =[K1,k1]; 
    K2 =[K2,k2]; 
    M=[M,m]; 
    N=[N,n]; 
    O=[O,o]; 
    P=[P,p]; 

     
    end 
    end 
    end 
    end      
    end 
    end 

    
num_cols=size(C,2); 
for i=1:4:num_cols; %aldehyde concentration data 
j=C(:,i); 
J=[J,j]; 
end 
for w=3:4:num_cols; %imine concentration data 
    x=C(:,w); 
    X=[X,x]; 
end 
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function cp=firstequ(t,c) 

  
global k1 k2 m n o  

  

  
%differential equations of the propose reaction mechanism 

  
c1=-k1*(c(1)^m)*(c(2)^n);  

  
c2= -k1*(c(1)^m)*(c(2)^n);  

  
c3=(k1*(c(1)^m)*(c(2)^n))-(k2*(c(3)^o));  

  
c4=k2*(c(3)^o);  

  
c5=k2*(c(3)^o); 

  

  
cp=[c1;c2;c3;c4;c5]; 

 

 

 

 

 

 

 

 

 

 

 



161 

 

Appendix 

 

Appendix B Amplitude and frequency command for the Eurodyne Ltd pump 

system 

a) Frequency command 

 
Amplitude, xo (mm) 

 Frequency f 

(Hz) 
0.25 0.5 1.0 1.5 2.0 3.0 4.0 

 0.5 
  

140 202 266 390 520 

 1 161 292 /170 290 430 570 830 232 

 
2 363 672/370 670 1000 1315 

365 / 

2030 
467 

 
3 642 1192/650 1300 1850 

410 / 

3000 
563 723 

 4 1033 2845/1100 2800 450 565 785 1017 

 5 950 530/2300 325 586 738 1050 1373 

 6 
 

860 450 750 950 1350 1902 

 7 
 

239 870 934 1170 1820 
 

 8 230 328 999 1121 1500 
  

 9 242 410 747 
  

Key Syringe 

10 334 520 950 
  

  0.5ml 

 11 420 671 
   

  1.0ml 

 12 550 870 
   

  5.0ml 

 13 700 
    

  5.0ml                
 

14 915 
    

  
(alternative 

pump) 

 

b) Amplitude command 

Computer command 

(A) 
Syringe volume 

amplitude (xo) 0.5ml 1.0ml 5.0ml 

0.25 A30A A15A A3A 

0.5 A60A A30A A6A 

1.0 A120A A60A A12A 

1.5 A180A A90A A18A 

2.0 A240A A120A A24A 

3.0 A360A A180A A36A 

4.0 A480A A240A A48A 
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Appendix C List of command for Eurodyne Ltd. Synringe pump 

List of common commands used for a syringe pump in dynamic screening of imine 

synthesis  

Function Command 

Pump initialize /1ZR 

Oscillation  /1ZS1L2Ov1000V738c2700gOA24A0GR 

Batch flow /1IV5800A3000OA0G3R 

Steady state / dynamic flow /gIV5800A3000OV370A0G2gIV5800A3000OV37A0GR 

Stop /1T 

Tracer flow /1IV5800A1500OA0G3R 

 

Each of the letters and numbers has its own function. For example, command: 

[/1IV5800A3000OV370A0G2R] moves a valve of pump 1 to the input position with a 

maximum speed of 5800 and a piston position at 3000 (the bottom of the syringe). The 

outflow from the syringe was at the rate of 370 (corresponding to a flow rate of 222 

mL/hr) and this process repeats 2 cycles before stopping.  

The letters/numbers functions list used for Eurodyne syringe pump command. 

Command List Functions 

A Defines the piston position. It can varies from 0 to 3000 

c Defines the final speed in Hz. The value can range between 50 to 2700 

G To repeat a command sequence 

g Marks the beginning of a repetition sequence 

I It move the valve into the input position 

L Defines the speed ramp of the pump movement 

O It move the valve into the output position 

R Executes a command 

S Defines the pump speed 

T Termination of the pump command 

V Defines the maximum pump speed. It can be in the range of 5 to 5800. 

v Defines the initial speed in Hz. The value can range between 50 to 1000 
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The number used in the command such as the maximum speed (V), piston position (A) 

and number of repeated sequence (G) can be changed to the desired value, from a flow 

rate and the volume of the syringe (eq.AC-1 and AC-2).   

V = (3000 x Q x 106) x 2  eq. AC-1 

G = Q x 106 x ts x 60  eq. AC-2 

…where Q (m3/s) is the flow rate; ts (s) is the time required to maintain the flow rate 

condition.   
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Appendix D Reaction order calculation using initial rate method 

Initial reaction rate of at various molar ratios of benzaldehyde to n-butylamine 

Remarks 

 Benzaldehyde 

concentration 

(mol dm-3) 

N-butylamine 

concentration 

(mol dm-3) 

Initial rate 

(mol dm-3/ s) 

A 0.25 0.25 (A) 7.00 x 10-3 

B 0.25 0.50 (B) 8.10 x 10-3 

C 0.25 1.00 (C) 9.10 x 10-3 

D 0.25 1.50 (D) 1.03 x 10-2 

 

Example of calculation:- 

8.1x10−3

7.0x10−3 
=  

0.25𝑚0.50𝑛

0.25𝑚0.25𝑛
 

𝟏. 𝟏𝟓𝟕 =  𝟐. 𝟎𝒏 

log 1.157 = 𝑛 log 2.0 

𝑛 =  
log 1.157

log 2.0
 

𝑛 = 0.21 

Average 𝑛 =  
0.21 + 0.19 + 0.22 + 0.17 + 0.22 + 0.30

6
  

Average 𝑛 = 0.22 

*The 6 reaction order data were obtained through the calculation of all possible pairs of 

the concentration (i.e. B/A, C/A, D/A, C/B, D/B and D/C) from the initial reaction rate 

data. 
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Appendix E Graphical plots for rate constant determination  
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Appendix F Calibration curves for 1-butanamine, N-(phenylmethylene) from 

benzaldehyde and n-butylamine 
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Appendix G Characterisation of a multi-tube meso-OBR 

A multi-pass OBR (length of 1.4m) was characterised at low flow rates (Ren≤5.0) to 

demonstrate its operational flexibility and to determine its mixing behaviour during long 

reactions (residence times up to hours). Three different baffled designs, namely the 

integral, central and helically baffled designs, were tested to determine the operating 

windows for high degrees of plug flow.  

Effect of net flow (Ren) for different baffle designs 

The effects of Ren on residence time distribution (E(θ)) curve for different baffled 

designs are shown in Figure . Ren was varied from 1.56 to 4.39 at a fixed oscillation 

condition Reo of 126 (xo=1mm, f=4 Hz) for the central and integral baffled designs  and 

at Reo=314 (xo=2mm, f=5 Hz) for the helical baffled designs. It showed that the fluid 

mixing behavior for these three baffled designs were similar. The E(θ) curve became 

narrower and less skewed when increasing net flows. For example, the variance was 

0.047 at Ren=1.56 but decreased to 0.036 at Ren=3.11 (Table ) for the integral baffled 

design. The narrower E(θ) curve was obtained when increasing the net flows due to 

reduced back mixing at high net flows. The trend of these findings was similar to those 

obtained in a 23mm internal diameter (id.) baffled tube and 0.7m long conventional 

OBR conducted by Stonestreet and Van Der Veeken (1999).   

 
Figure AF-1: Effect of Ren at a fixed Reo of 126 for (a) central baffles, (b) integral 

baffles) and (c) helical baffles at Reo=314. 
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Table AF-1: Effect of Ren on variance and skewness at a oscillatory condition Reo of 

126 

Design Net-flow (Ren) Variance Skewness 

Integral Baffle 
1.56 0.047 0.003 

3.11 0.036 -0.006 

 

Mean residence time, which is calculated using the exiting tracer concentration was 

higher than the hydraulic residence time (a ratio of  the volume of the reactor and flow 

rate (τ = V/Q)), for all tested designs as shown in Table . The prolonged mean residence 

time could be due to the formation of the vortices within the baffles cavities (Reis et al., 

2005) and was reported in literature (Reis et al., 2004; Phan and Harvey, 2010). 

Table AF-2: Mean residence time and hydraulic residence time obtained in three baffled 

designs over various Ren  

Baffle Designs 

Net flow 

Reynolds 

number (Ren) 

Oscillatory 

Reynolds 

number (Reo) 

Mean 

residence 

time (min) 

Hydraulic 

residence time 

(min) 

Integral 

(volume=22ml) 

1.56 126 79 60 

3.11 126 41 30 

Central 

(volume=24ml) 

1.56 126 86 84 

3.11 126 45 42 

4.39 126 32 30 

Helical  

(volume=24 ml) 

1.56 314 68 65 

3.11 314 34 33 

 

Effect of oscillation conditions (Reo) on different baffle designs 

a) Central baffled design 

Figure  shows the dependency of the number of tanks-in-series on the oscillation 

condition (Reo) over a range of Ren (1.5 ≤ Ren ≤ 4.7). The number of tank-in-series (N) 

was above 10 for all tested Ren. At Ren=4.39, the highest N (44) was obtained at an Reo 

of 190. At Ren=2.19, N=50 was achieved at Reo=120 and decreased to 25 at Reo=190. 

This suggests that at Ren<3, the optimum region for the Reo is in the range Reo=100-
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130. At Ren>4, the Reo needed to be above 150 to obtain the highest N≈40. The trend in 

this study was similar to a single pass system (Phan and Harvey; Phan et al., 2011a).  

 
Figure AF-2: Dependence of RTD performances on oscillatory Reynolds number (Reo) 

for the central baffled design 

The multi-pass system had 4 times more tanks-in-series (N) (Figure (a)) than a single 

pass system (Figure (b)) at the same operating conditions, e.g. velocity ratio (ψ) of 40 

and Ren=4.3. This suggests that connecting more series of “CSTRs” together i.e. 

increasing the length of a mesoscale-OBR, increased the degree of plug flow. 

 
Figure AF-3: Dependence of RTD performance on velocity ratio for the central baffled 

design at (a) multi-tube system and (b) single tube system (Phan and Harvey, 2010) 

Another advantage of increasing the length of the mesoscale system was observed at 

different Strouhal numbers (St) (Table ).   
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Table AF-3: Effect of oscillation on the variance of the RTD profile for the multi-tube 

and single-tube configuration of central baffles design 

Strouhal 

Number (St) 

Oscillatory Reynolds 

Number (Reo) 

Multi-tube Single-tube 

Net flow 

(Ren) 
Variance 

Net flow 

(Ren) 
Variance 

0.2 188.4 

4.39 

0.05 

4.30 

0.14 

0.4 125.6 0.08 0.08 

0.8 78.5 0.02 0.08 

 

An approximately 60% higher degree of plug flow (higher N) was obtained for the 

multi-pass configuration than for a single-pass in terms of variance. The limitation of 

applying oscillation amplitudes at St=0.2 (xo=2.0mm) as reported with single-pass 

system (Phan and Harvey, 2010) was not observed in the multi-pass system. Its 

behavious was always close to ideal plug flow condition in the multi-system, with a 

variance of 0.05. Although large eddies radius were generated at these conditions 

(xo=2.0mm)(Phan and Harvey, 2010), the greater length provided more space for 

uniform mixing to occur.  

 

b) Integral baffled design 

The trend in the number of tanks in series with various Reo conditions with Ren from 1.5 

to 4.7 for the integral baffled design was different to that in the central baffled design. 

As shown in Figure , the number of tank-in-series, N, decreased with an increase in 

oscillation condition regardless of the net flow. For example, at Ren=1.56, N decreased 

from 20 at Reo=125 to 10 at Reo of 180. The Strouhal number (St) also had an effect on 

the degree of plug flow.  N decreased with decreasing St. For example, at Ren=3.11, N 

was 27 for St=0.8 (xo=0.5mm) and decreased to 15 for St=0.2 (xo=2mm).  
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Figure AF-4: Dependence of number of tanks-in-series at various Strouhal number 

(St=0.2-0.8) for multi-tube integral baffled design 

This trend was not observed in a single-tube system, where N remained between 5 and 

10 at 1.59≤St≤0.4 and St≤0.2 for Ren≤5 (Figure ) (Phan et al., 2011a).  

 
Figure AF-5: Dependence of N on oscillation conditions with (a) Ren = 2.55 and (b) Ren 

= 4.30 for single-tube pass of integral baffled design. (Phan et al., 2011a) 

The different trend observed between the two configurations (single and multi-tube) 

could be due to the length of the system. As mentioned in section a), increasing the 

length increased the number of baffle cavities, enhancing the degree of plug flow. This 

can be observed in the variance achieved in the RTDs in both systems, as shown in 

Table . Ren=3.13 for the multi-tube system was the closest value to the Ren of 2.55 used 

in the single-tube system, hence these two are compared. The variance obtained at 

similar Reo was lower with the multi-tube compared to the single-tube; i.e. at Reo=126, 

the variance obtained was 0.04 and 0.17 for the multi-tube and single-tube respectively. 



172 

 

Appendix 

 

The effect of different amplitudes was clearly observed in the multi-tube system (Figure 

(above)). A St of 0.2 (xo=2mm) gave the lowest N (~N=15) for all tested Ren. However 

the the N was still maintained above 10 at all conditions, indicating that a high degree of 

plug flow behaviour was achieved.  

Table AF-4: Effect of oscillation on the variance of the RTD profile for the multi-tube 

and single-tube configuration of integral baffles design 

Strouhal 

Number (St) 

Oscillatory Reynolds 

Number (Reo) 

Multi-tube Single-tube 

Net-flow 

(Ren) 
Variance 

Net-flow 

(Ren) 
Variance 

0.2 188.4 

3.11 

0.07 

2.55 

0.10 

0.4 125.6 0.04 0.17 

0.8 78.5 0.04 0.13 

 

c) Helical Baffled design 

The mixing behaviour in the helical baffled design was substantially different to the 

central and integral designs, as a high degree of plug flow behaviour was achieved at 

oscillation amplitudes of 2-4mm for Ren=7.2 (Phan and Harvey, 2010). Simulation 

work by Solano et al. (2012) proposed that the interaction between helical baffles and 

oscillation flow produced a swirling motion and vortex formation. Also, the helical 

pitch had a strong influence on the flow behaviour (Phan and Harvey, 2011b). However 

this study focused on one helical baffled design of pitch/tube diameter ratio of 1.5.   

In this study only mixing conditions for Ren at 1.56 and 3.11 were evaluated , 

corresponding to residence time of 2hrs at Reo= 350-700 (to demonstrate that plug flow 

behaviour can be achieved at these low net flows). At Ren=1.56 (Figure ),  the number 

of tanks-in-series, N, in the multi-pass system remained constant at an average of 45 

regardless of the values of St and Reo. However, at Ren=3.11, N reached a maximum 

(N=60) at Reo=300 and decreased to 30 at Reo=650.  
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Figure AF-6: Dependence of number of tanks-in-series (N) on oscillation Reynolds 

number (Reo) for the helical baffled design 
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