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Abstract 

 

Cellular senescence, the irreversible loss of proliferating capacity of somatic 

cells, is an important tumour suppressor mechanism but also driver of ageing. 

These somehow contradictory functions are dependent on the development 

of the so-called senescent phenotype, which involves over-production of pro-

inflammatory and pro-oxidant signals, however the exact mechanisms 

underlying its induction remain incompletely understood. In this thesis we 

aimed to understand how mitochondria and pro-inflammatory factors interact 

during senescence and how they contribute to the senescent phenotype.  

Firstly, we show that mitochondria are critical for the establishment and 

maintenance of cell senescence. Elimination of mitochondria rejuvenated 

senescent human fibroblasts, abrogating the pro-inflammatory phenotype, 

heterochromatin foci and expression of cyclin-dependent kinase inhibitors 

p21 and p16. Importantly, a considerable percentage of these cells were able 

to resume proliferation. Mechanistically, we show that mTORC1 integrates 

signals from the DNA damage response towards PGC-1β-dependent 

mitochondrial biogenesis, playing a causal role in the development of 

senescence. Secondly we show that inhibition of IL-8, a prominent pro-

inflammatory cytokine of the SASP, partially abrogated the senescent 

phenotype by reducing mTOR-dependent mitochondrial mass and ROS 

production during senescence. Finally, we demonstrate that inhibition of 

mitochondrial content in vivo by either rapamycin or PGC-1β deletion 

prevents age-dependent increase in senescence in mouse liver. Our results 

suggest mitochondria as an important target for interventions aiming to 

reduce the load of senescent cells in ageing tissues.  
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Chapter 1. Introduction 

 

 

1.1 Cellular Senescence 

 

In 1961, while performing experiments with cultures of human fibroblasts, 

Hayflick and Moorhead first described cellular senescence (Hayflick et al. 1961). 

Hayflick and Moorhead have observed that human fibroblasts irreversibly lose 

the ability to divide following a fixed number of cell divisions. They also found 

that these non-dividing cells remained viable for a long period of time (many 

weeks) but failed to proliferate, despite the presence of ample space, nutrients 

and growth factors in the culturing medium. This form of senescence triggered 

by an extended period of cell divisions became known as “replicative 

senescence”. Since Hayflick´s discovery of replicative senescence, various 

reports have demonstrated that cells can also enter senescence in response to 

a variety of external stresses (Lloyd 2002). This last form of senescence has 

been termed “stress-induced premature senescence” (SIPS). The fact that 

several different stressors can lead cells to entry a senescence state supports 

the idea that the senescent phenotype represents a general cellular response 

mechanism. Therefore, as a cellular mechanism/program, senescence is likely 

to play a role in the physiology of cells within living tissues (Ben-Porath et al. 

2004). The observation that cells would not proliferate indefinitely in culture 

spawned two hypotheses: i) senescence as a cellular mechanism that 

permanently locks cells in the cell cycle preventing the spread of damage to the 

next cell generation and therefore potential malignant transformation – 

senescence as a tumour-suppressive mechanism (Sager 1991) - and ii) 

senescence as a causal factor for tissue impairment and decreased tissue 

repair and regeneration ability with age – senescence as potential cause for 

tissue dysfunction observed during ageing (Campisi et al. 2007). How this 

response is coordinated within the body is still not clear, however it could occur 
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in a pleiotropic manner, as proposed in the Antagonistic Pleiotropy Theory of 

Ageing (Williams 1957). The Antagonistic Pleiotropy Theory claims that a 

process which is beneficial to young organisms (possibly providing a 

reproductive advantage) can be harmful to old organisms. In this sense cellular 

senescence would, at first, be beneficial as tumour suppressor, but an 

accumulation of senescent cells with age would entail deleterious 

consequences to the same organism. 

 

 

1.1.1 The Senescent Phenotype 

 

Although senescent cells cannot respond to mitogenic stimuli, they have the 

ability to remain viable in culture for an extended period of time. In this state of 

perpetual cell cycle arrest or senescence, cells develop certain characteristics 

collectively known as the senescent phenotype. The long-term culture of cells 

results in a dramatic change in cellular morphology characterised by an 

increase of the cellular volume, loss of the original cellular shape and 

acquisition of a flattened cytoplasm (Bayreuther et al. 1988) (Figure 1.1). 

However, the senescent phenotype comprises not only the cellular morphologic 

changes and growth arrest, but also results in changes in the nuclear structure, 

gene expression, protein processing and metabolism and resistance to 

apoptosis (Campisi 2000, Sitte et al. 2000, von Zglinicki et al. 2000, Narita et al. 

2003). 
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Figure 1.1 | Young and old human diploid cells (MRC5 

fibroblasts). (left) Young cells at a population doubling 20; 

(right) Old cell at population doubling 55 – Replicative 

senescent cell.  

 

Typically, senescent cells present a G1 phase DNA content (Dulić et al. 1993, 

Stein et al. 1995), resulting from the fact that cells usually arrest growth in this 

phase of the cell cycle. Although, in some cases the cell cycle phase in which 

cells become permanently arrested may differ depending on species and 

genetic background of the cell (Di Leonardo et al. 1994, Ogryzko et al. 1996, 

Herbig et al. 2004). The proliferating arrest observed in senescent cells occurs 

due to expression of dominant cell cycle inhibitors (discussed below). 

Similar to senescence, apoptosis is a cellular mechanism in response to cellular 

damage resulting from intrinsic and extrinsic stresses. However, whereas 

senescence prevents propagation of damaged or stressed cells, apoptosis 

responds by permanently eliminating them (Ellis et al. 1991). Many cells types 

show resistance to apoptosis when undergoing cellular senescence; this feature 

of senescence has been argued as a putative reason for the fact that the 

number of these cells increases with age (Hampel et al. 2004). Reports have 

described that the difference between apoptosis and senescence might be due 

to different responses to the p53 pathway (Seluanov et al. 2001, Campisi et al. 

2007). However, the mechanisms behind the “decision” between apoptosis or 

senescence are not yet fully elucidated. Reports have demonstrated that it may 
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depend on the nature and intensity of damage or stress (Seluanov et al. 2001, 

Rebbaa et al. 2003). It is thought that rapid DNA repair quickly terminates p53–

p21 signalling, whereas slow, incomplete or defective repair results in sustained 

signalling and senescence (Campisi et al. 2007). In vivo, it has recently been 

suggested that induction of senescence or apoptosis depends on the cellular 

level of telomere dysfunction and differentially on p53 gene function during 

senescence. Lechel et al. showed that telomere dysfunction induced in mouse 

livers led to p53 independent apoptosis but a p53 dependent induction of 

cellular senescence, depending on the level of telomere dysfunction (Lechel et 

al. 2005).  

Furthermore, senescent cells undergo gene expression changes of a variety of 

cellular pathways. Indeed some other traits of the senescent phenotype are a 

result of those changes (e.g., cell cycle arrest and apoptosis resistance). Cell-

cycle regulating genes (inhibitors and activators) are described to be altered in 

senescence (Shelton et al. 1999, Chang et al. 2002, Zhang et al. 2003, Mason 

et al. 2004, Jackson et al. 2006, Trougakos et al. 2006). Cyclin-dependent 

kinase inhibitors (CDKIs) are often described to show increased expression 

during senescence. The CDKIs proteins p21 and p16 are expressed in 

senescence under the control of the regulatory pathways p53 and 

retinoblastoma (pRb) proteins respectively (Campisi 2001, Braig et al. 2006). 

Additionally, senescent cells are also described to repress proteins involved in 

cell-cycle progression (e.g. replication-dependent histones, c-FOS, cyclin A, 

cyclin B and PCNA) (Seshadri et al. 1990, Stein et al. 1991, Pang et al. 1994). 

Alterations in gene expression are also accountable for the increased secretion 

of certain factors, namely inflammation mediating factors, growth factors and 

extracellular matrix components (see Role of inflammatory factors in cellular 

senescence), collectively known as the senescence-associated secretory 

phenotype (SASP), that may contribute to age-related impairment of tissue 

structure and function (Campisi 2003). 
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1.1.2 Senescence Markers 

For many years researchers have tried to find markers specific for senescent 

cells. So far several markers have been proposed to identify senescent cells but 

none is exclusive to the senescence state. Indeed, many commonly used 

cellular markers of senescence are not robust and might over-estimate 

senescent cells present at low frequencies when used individually (Lawless et 

al. 2010, Correia-Melo et al. 2013). 

Senescent cells are unable to express genes required for cellular proliferation 

and/or DNA replication, even in the presence of pro-mitogenic factors (Dimri et 

al. 1994, Dimri et al. 1996). These features distinguish senescence from 

quiescence, another cellular non-proliferative state that is readily rescued in 

response to mitogenic stimuli. DNA replication is often detected by incorporation 

of 5-bromodeoxyuridine (BrdU) or 3H-thymidine (Sidman et al. 1959), or by 

immunostaining for PCNA or Ki67 proteins. However, these markers do not 

allow distinction between senescent, quiescent or post-mitotic cells (Scholzen et 

al. 2000, Pan et al. 2011). 

Dimri and collegues (Dimri et al. 1994) described a marker that could allow a 

more specific identification of senescent cells. They showed that several human 

cells express β-galactosidase (β-Gal) histochemically detectable at pH 6.0 upon 

induction of senescence in culture (Sen-β-Gal). They reported that Sen-β-Gal is 

expressed by senescent, but not pre-senescent fibroblasts and keratinocytes. 

The specificity of β-Gal for senescence was also observed in human tissue 

samples of skin from donors of different age, providing in situ evidence that 

senescent cells may exist and accumulate with age in vivo. β-Gal is a 

lysossomal hydrolase enzyme with optimum activity at an acidic pH of 4.0-4.5 

reflecting the natural milieu of the lysosome (Kuo et al. 1978, Zhang et al. 1994). 

The specificity of β-Gal for senescent cells at pH 6.0  has been proposed to be 

a result of augmented lysossomal activity during senescence (Cristofalo et al. 

1975). In this context, Sen-β-Gal most likely reflects the changes in cell function 

that invariably accompanies senescence. The senescence specificity of this 

marker was then put into question by later reports describing that β-Gal could 
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also be induced by stresses such as prolonged confluence in culture (Lee et al. 

2006). 

Senescence is also accompanied by nuclear changes including an increase in 

nuclear size (Narita 2007), and an increase in the density of nuclear pore 

complexes (Maeshima et al. 2006), which function is to allow transport of 

macromolecules between the nucleus and cytoplasm. Further to that, senescent 

fibroblasts accumulate a distinct chromatin structure enriched with 

heterochromatin proteins, also designated as Senescence-associated 

Heterochromatin Foci (SAHF) (Narita et al. 2003). These heterochromatin 

structures have been correlated with the irreversibility of the cell cycle arrest in 

senescence (Beausejour et al. 2003, Narita et al. 2003). SAHFs can be 

detected by DNA dyes such as the 4’,6-diamidino-2-phenylindol (DAPI) and 

also by the presence of certain heterochromatin-associated histone 

modifications such as the H3Lys9 methylation. Heterochromatin protein-1 (HP1) 

is another protein associated with SAHFs (Narita et al. 2003). Alterations in 

nuclear envelop proteins, such as lamin A and B which connect the nuclear 

envelop to the chromatin, have been implicated in senescence. While, 

decreased expression of Lamin B1 in senescent cells has been correlated with 

SAHF formation (Sadaie et al. 2013, Shah et al. 2013), lamin A repression 

activates a DDR and induces 53BP1 and γ-H2AX foci (Liu et al. 2005). 

 

Several reports have described senescence-associated DNA foci (SDFs) as a 

marker of senescence (d'Adda di Fagagna et al. 2003, Takai et al. 2003, Herbig 

et al. 2004, von Zglinicki et al. 2005, Di Micco et al. 2006), which often display 

molecular markers for DNA double-strand breaks. These markers include 

nuclear foci of phosphorylated histone H2AX (γH2AX) and their co-localization 

with DNA repair and DNA damage checkpoint factors such as 53BP1 (d'Adda di 

Fagagna et al. 2003). Telomere-induced foci (TIF), as a result of shortened 

telomeres, were also shown to be a marker of senescent cells (d'Adda di 

Fagagna et al. 2003). Recently, it was demonstrated that damage at telomeres 

can occur independently of telomerase activity and telomere length, a 
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phenomena know as Telomere-associated foci (TAF) (Fumagalli et al. 2012, 

Hewitt et al. 2012). Following these lines, telomere-initiated senescence reflects 

a DNA damage checkpoint response that is activated with a direct contribution 

from dysfunctional telomeres and both telomere-induced or associated foci (TIF 

or TAF) have been indicated as markers of senescence. 

As mentioned previously, none of these markers per se identify specifically 

senescence cells. However, it was recently proposed, by Lawless and co-

workers (Lawless et al. 2010), that Ki67 negativity (proliferation marker) and 

γH2A.X positivity (DNA damaged marker) together is a good criteria for 

quantifying the senescent state of cells both in cultured fibroblasts and in tissue 

sections.  

 

1.1.3. Causes of Senescence 

 

Telomeres have played a central role in ageing research since the early 1970’s, 

when Alexei Olovnikov predicted that a progressive shortening of telomeres 

was responsible for the “Hayflick Limit” (Olovnikov 1971). Telomere shortening 

was therefore thought to be caused by what is known as the “end replication 

problem”, a phenomenon caused by the inability of the DNA replication 

machinery, specifically DNA polymerase, to synthesise in a 3’-5’ direction 

leading to the incomplete replication of the lagging strand. Telomeres are 

repetitive DNA sequences with associated proteins located at the end regions of 

linear chromosomes. In vertebrae, telomeres are tandem repeats of the 

sequence TTAGGG, which main function is to protect chromosomes erosion 

during each cell division (Muller 1938, Blackburn 1991, d'Adda di Fagagna et al. 

2004). The protection function of these end parts of chromosomes are 

reinforced by a group of telomere-associated proteins collectively termed as 

shelterin (de Lange 2005). The shelterin complex is constituted by six proteins: 

TRF1, TRF2 and POT1, which recognise the telomeric repeat sequence, and 

TIN2, TPP1 and Rap1 (de Lange 2005), which ultimately arrange telomere ends 

into a loop structure, known as the T-loop, to cover the exposed DNA ends 
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(Griffith et al. 1999). The “end-replication” problem has been referred to as one 

of the major reasons why normal cells do not proliferate indefinitely, since 

dysfunctional telomeres trigger a classical DNA damage response (DDR) 

(d'Adda di Fagagna et al. 2003, Takai et al. 2003, Herbig et al. 2004), which 

recognise unprotected telomeres similarly to double-strand breaks (DSBs). 

Interestingly, shelterin components have been demonstrated to inhibit DNA 

repair mechanisms. It has been shown that loss of shelterin components such 

as TRF2 contributes to activation of a DDR at telomeres (van Steensel et al. 

1998). Moreover, TRF2 and its binding partner RAP1 are required to prevent 

Non-Homologous End Joining (NHEJ)-dependent telomeric DNA fusions by 

inhibiting DNA-PK and ligase IV mediated end-joining (Bae et al. 2007). 

Consistent with these observations, Fumagalli and colleagues have shown in 

budding yeast that induction of DSBs adjacent to a telomeric sequence impairs 

the recruitment of ligase IV to the site of damage (Fumagalli et al. 2012), 

suggesting that damage at telomeres, occurring in the presence of sufficient 

shelterin components including TRF2, may elicit a persistent DDR due to 

inhibition of repair. Harley and colleagues provided the confirmation the 

telomeres do shorten with successive replication (Harley et al. 1990). 

Nevertheless, it was still unclear if telomere shortening played a functional role 

in the induction of senescence, as their shortening could merely be a 

consequence of cells reaching senescence. In the late 90’s, Bodnar and 

colleagues have provided the ultimate evidence that telomere erosion can 

induce senescence, by showing that ectopic expression of the catalytic subunit 

of telomerase, the enzyme able to elongate telomeres, leads to cell 

immortalisation (Bodnar et al. 1998). However, the shortening rate of telomeres 

is much greater than what was originally accounted by the “end-replication” 

problem alone, suggesting that other factors may contribute to telomere 

shortening (Levy et al. 1992). Furthermore, originally it was suggested that 

telomeres could serve as a counting mechanism within cells that would allow a 

finite number of replications, nevertheless a set time or threshold for telomere 

length to induce senescence has not been found (Von Zglinicki 2001). The large 

heterogeneity in telomere length between cells in the same culture (Lansdorp et 
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al. 1996) and the presence of senescent cells in cultures that have undergone a 

low number of divisions suggested that telomere length is not solely a result of a 

certain number of divisions a cell has undergone (Martin-Ruiz et al. 2004). As a 

matter of fact, Reactive oxygen species (ROS) have been described to 

contribute to accelerated telomere shortening, with telomeric DNA being 

especially sensitive to damage caused by ROS (Von Zglinicki 2001). It has 

been shown that telomeres accumulate more single-stranded breaks than the 

rest of the genome resulting from oxidative damage (Petersen et al. 1998), and 

this way may act as “sensors” to oxidative stress, preventing cells that have 

been exposed to high levels of potentially mutagenic factors from replicating 

(Martin-Ruiz et al. 2004). Consistent with a role of ROS in telomere dysfunction 

it has been suggested that guanine rich regions are more susceptible to 

oxidative modification  (Grollman et al. 1993) and that oxidative modifications of 

TRF1 and TRF2 affect its binding to telomeres (Opresko et al. 2005). 

Furthermore, interventions affecting both mitochondrial function and ROS 

generation have been shown to impact on telomere-dependent senescence in 

vitro. Treatment with free radical scavengers (von Zglinicki et al. 2000), low 

ambient oxygen concentrations (Forsyth et al. 2003, Richter et al. 2007), 

overexpression of antioxidant enzymes (Serra et al. 2003), and mild chronic 

uncoupling (Passos et al. 2007) have been shown to decelerate telomere 

shortening and to extend the lifespan of cells in culture. All together these data 

has driven the current hypothesis that both the “end-replication” problem as well 

as the ROS driven stochastic damage contributes to telomere shortening 

(Figure 1.2).  

Recently, work carried out in our group and Fabrizio d’Adda di Fagagna’s group 

have shown that oxidative-stress induced telomere damage is irreparable and 

can occur irrespectively of telomere length (Fumagalli et al. 2012, Hewitt et al. 

2012). In order to establish whether telomeric location was necessary for DNA 

damage foci persistence, using live-cell imaging our group has tracked DNA 

damage foci lifespan using a AcGFP-53BP1c fusion protein in combination with 

a fluorescently labelled PNA probe which specifically tags telomere repeats. 

Using this method it was found that majority of long-lived foci in stress-induced 
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senescence co-localise with telomeres (Hewitt et al. 2012), which suggests that 

they are major contributors to a persistent DDR. These persistent irreparable 

telomeric DNA damage foci, also known as Telomere-associated foci (TAF), 

occur independently of length or telomerase activity, indicating that not only 

telomere length but damage within telomeric regions is also an important 

contributor to cellular senescence (Figure 1.2).  

 

 

 

 

Figure 1.2 | Both telomeric and non-telomeric DNA damage contribute to the 

stabilisation of cellular senescence. DNA damage at telomeres is distinct from that 

throughout the genome; it is irreparable due to the repression of DNA repair pathways 

by telomere bound proteins, known as the “shelterin” complex. This contributes to a 

permanent DNA damage response (DDR). However, continuous generation of short-

lived DDR foci by elevated reactive oxygen species (ROS) may equally contribute to 

the maintenance of the phenotype, as long as a dynamic equilibrium between damage 

induction and repair can be maintained (adapted from Correia-Melo et al. 2014). 
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Oncogene activation has been causally implicated in cellular senescence; this 

form of senescence is termed Oncogene-Induced Senescence (OIS). The term 

oncogene, as the name may suggest, is often associated with oncogenesis or 

malignant transformation of cells, indeed they are mutant versions of normal 

genes that, together with additional mutations, have the potential to transform 

cells. Ras oncogenes were first reported by Harvey and colleagues when using 

a preparation of a murine leukaemia virus, taken from a leukaemic rat, induced 

sarcomas in new-born rodents (Harvey 1964, Malumbres et al. 2003). However, 

expression of oncogenes can lead normal cells to undergo senescence, mainly 

due to an exhaustive period of cell proliferation followed by a permanent arrest. 

It had been already known that oncogenic Ras could transform cells to a 

tumorigenic state. However, the first evidence of OIS was presented by Serrano 

and colleagues (Serrano et al. 1997), when expressing an activated mutant 

form of Ras (H-RasV12), in primary human or rodent cells, they observed that 

cells permanently arrested in G1 phase. These cells also presented an 

accumulation of p53 and p16 proteins and were phenotypically indistinguishable 

from senescent cells. These observations suggested that the onset of cellular 

senescence does not simply reflect the accumulation of cell divisions, but can 

be prematurely activated in response to an oncogenic stimulus (Serrano et al. 

1997). Since OIS was first reported, other members of the RAS signalling 

pathway (e.g. RAF, MEK, MOS and BRAF), as well as pro-proliferative nuclear 

proteins (e.g. E2F ‑ 1), have been shown to cause senescence when 

overexpressed or expressed as oncogenic versions (Lin et al. 1998, Zhu et al. 

1998, Dimri et al. 2000, Michaloglou et al. 2005). Accordingly, OIS is then a cell 

response to activated oncogenes in order to counteract excessive mitogenic 

stimulation, which puts cells at risk of oncogenic transformation.  

 

Two major mechanisms have been implicated in the initiation and stabilisation 

of cellular senescence: i) the activation of a DNA damage response upon a 

genotoxic stress or telomere shortening (discussed above) and ii) perturbations 

on chromatin organisation (Di Bernardo et al. 2012). Chromatin organisation 

determines the extent to which genes are active (euchromatin) or silent 
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(heterochromatin). Alterations of chromatin structure resulting in global 

induction of heterochromatin are believed to contribute to the irreversible nature 

of the senescent state (Howard 1996). These characteristic heterochromatin 

structures, also known as senescence-associated heterochromatic foci (SAHF), 

are facultative heterochromatin whose formation is dependent on the pRb 

tumour suppressor pathway and may repress the expression of proliferation 

promoting genes, namely E2F target genes, such as cyclin A, DHFR and Mcm3 

(Narita et al. 2003). Histones variations have also been implicated in the SAHF 

transcription silencing clout. SAHF are nuclear structures comprising the 

histone H2A variant, macro-H2A (Zhang et al. 2005). There is evidence that 

support a direct role for macro-H2A in gene silencing; macro-H2A has been 

described to be resistant to ATP-dependent remodeling proteins and binding of 

transcription factors (Angelov et al. 2003). Both the cell cycle regulator p16 

(Narita et al. 2003, Narita et al. 2006) and the chromatin structure regulators 

HIRA (histone cell cycle regulation defective homologue A) and ASF1 (anti-

silencing function 1) have been described to drive formation of SAHF (Zhang et 

al. 2005). Despite the fact that SAHF have been mainly associated with gene 

silencing, chemical inhibition of histone deacetylase, which promotes 

euchromatin formation, has been shown to induce senescence (Ogryzko et al. 

1996, Munro et al. 2004). These findings that both euchromatin and 

heterochromatin can trigger senescence may appear contradictory, but one 

possible explanation is that both manipulations can cause extensive but 

incomplete changes in chromatin organisation and therefore each may alter the 

expression of different critical genes (Campisi et al. 2007).  

 

 

1.1.4. Role of a DNA damage response (DDR) in cellular senescence 

 

Cellular senescence, as a result of a persistent DDR, can be triggered by DNA 

damage such DNA single strands breaks (SSBs) and/or DNA double strands 

breaks (DSBs). There are common and specific DDR factors involved in each 

situation (Helt et al. 2005). 
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DSBs are first sensed by the Poly (ADP-ribose) polymerase (PARP) which then 

recruits the MRE11–RAD50–NBS1 (MRN) complex. The PARP-MRN complex 

functions as a lesion-specific sensor, they are one of the first factors to be 

localised to the DNA lesion (D'Amours et al. 2002). When bound to DNA, the 

MRN complex enables assembly of large macromolecular complexes (known 

as foci) that facilitate efficient DSB repair responses (van den Bosch et al. 2003). 

NBS1 then recruits the protein kinase ataxia-telangiectasia mutated (ATM) 

(Uziel et al. 2003, Lee et al. 2005). ATM is a phosphoinositol 3-kinase-like 

kinase (PIKK) that plays a central role in orchestrating a network of cellular 

responses to DSBs, including cell cycle control, DNA repair and apoptosis 

(Shiloh 2003). ATM undergoes autophosphorylation events, which leads to 

dissociation of the inactive ATM dimer into single protein molecules with kinase 

activity (Bakkenist et al. 2003, Kozlov et al. 2011). Activated ATM 

phosphorylates the histone H2AX at the site of damage (DSBs) resulting in 

γH2AX (Rogakou et al. 1999, Burma et al. 2001), which is then recognised by a 

phospho-specific domain of the mediator of DNA damage checkpoint 1 (MDC1). 

Recruitment of MDC1 to γH2AX stimulates additional accumulation of the MRN 

complex (Stucki et al. 2006), this way amplifying local ATM activity and the 

spreading of γH2AX along the chromatin from the DSBs. This increase in the 

local concentration of several DDR factors at the site of DNA damage generates 

a positive feedback loop amplifying repair signals. The DNA-damage mediator 

53BP1 (p53 binding protein 1) accumulates at the site of DNA damage as a 

result of the exposure of modified histone residues (Huyen et al. 2004, Botuyan 

et al. 2006) and establishes binding to MDC1 to further boost a downstream 

DDR (Eliezer et al. 2009). Additionally, 53BP1 is an important DDR factor 

involved in DNA repair by NHEJ (Nakamura et al. 2006), through its inhibitory 

effect on homologous recombination (Bunting et al. 2010). 

 

Alternatively, generation of local regions of replication protein A (RPA) -coated 

single-stranded DNA, caused by replication stress or UV irradiation, recruits the 

heteromeric complex that contains the ATM and rad 3 related (ATR) protein and 
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its DNA-binding subunit ATRIP to the site of damage (Namiki et al. 2006), 

activating a less defined feedback loop through the activation of the RAD9-

HUS1-RAD1 (9-1-1) and RAD17-RFC complexes, as well as TOPBP1 (d'Adda 

di Fagagna 2008). Activated by this DNA-protein structure, ATR then 

phosphorylates its downstream substrates, including the checkpoint kinase 1 

(CHK1) and 2 (CHK2) (Helt et al. 2005). Subsequently, CHK1 and CHK2 

phosphorylate and inactivate the cell division cycle 25A and C (CDC25A and 

CDC25C) proteins, members of the CDC25 phosphatase family and key 

regulators of the cell cycle (Bartek et al. 2003, Kastan et al. 2004). ATR also 

stimulates phosphorylation of H2AX and the formation of DNA damage foci 

(Iwabuchi et al. 2003). Notably, during the end stages of repair, DSBs also 

generates RPA coated ssDNA which activates ATR (Zou et al. 2003). 

 

Ultimately, CDC25 phosphatases and p53 are the bottom elements of the DDR 

signalling cascade that connects the upstream DDR pathway with the core of 

the cell-cycle progression machinery. CDC25 phosphatases are important for 

normal cell proliferation, as they activate cyclin-dependent kinases (CDKs) and 

cause their DDR-mediated inactivation, by either proteolytic degradation or 

exclusion from the nucleus (Shen et al. 2012, Neelsen et al. 2013). On the other 

hand, p53 induces cell-cycle arrest by activating the transcription of p21, a CDK 

inhibitor that blocks cell-cycle progression (Rufini et al. 2013).  

 

 

During senescence, the permanent cell cycle relies on two main molecular 

pathways: p53–p21 and p16INK4A-Rb pathways.  

 

Double-strand breaks trigger the DNA damage response (DDR) by a repertoire 

of different stressors as discussed above (see Causes of Senescence). This 

signalling cascade centred around the ATM kinase induces senescence 

primarily through the p53 pathway (Campisi 2005, Lossaint et al. 2011, Wang et 

al. 2011). p53 is a stress-activated transcription factor that controls the 

expression of hundreds of genes implicated in a variety of physiological 
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responses including responses to genome instability and DNA damage (Toledo 

et al. 2006). p53 tumour suppression function relies on its ability to cease cell 

proliferation and induce two fundamental cell responses: apoptosis (cell death) 

or cellular senescence (permanent cell cycle arrest) (Di Micco et al. 2006, Gao 

et al. 2011, Gatta et al. 2011, Osawa et al. 2011, Rufini et al. 2013). The cyclin-

dependent kinase inhibitor 1 CDKN1A/p21, a well-established p53-target gene, 

has been proved to be up-regulated during senescence being an essential 

mediator of the p53-dependent cell cycle arrest (Brown et al. 1997, Herbig et al. 

2003, d'Adda di Fagagna 2008, Passos et al. 2010). p21 is a dual inhibitor of 

cyclin-dependent kinases (Harper 1993, Xiong et al. 1993) and proliferating-cell 

nuclear antigen (PCNA) (Waga et al. 1994), which are required for passage 

through the cell cycle. Accordingly, depletion of p21 in mouse embryonic 

(Brugarolas et al. 1995) and human fibroblasts (Brown et al. 1997) compromise 

its ability to undergo p53-dependent G1 arrest following DNA damage and 

abrogates several characteristics of the senescent phenotype. Notwithstanding 

that p21 is crucial to the p53-growth arrest of senescent cells (Chang et al. 

2000), it is unlikely to be exclusively responsible for the complex changes 

underpinning senescence. Indeed, p53 is a master transcription factor involved 

in the regulation of several physiological and metabolic pathways which have 

also been heavily implicated in regulation of cellular senescence and the ageing 

process (Vousden et al. 2009). In this context, E2F7 is another p53 target that 

has recently been described to be involved in cell-cycle arrest and senescence; 

it promotes repression of several E2F target genes, including E2F1, and many 

genes essential for mitosis, such as CCNA1 (encoding cyclin A), CCNB1 

(encoding cyclin B) and CDC2/CDK1 (Aksoy et al. 2012, Carvajal et al. 2012, 

Rufini et al. 2013).  

 

Stimuli that produce a DDR can also engage the p16–pRb pathway. pRb can be 

activated by p16INK4a, hereafter p16, independently of p53 (Alcorta et al. 1996). 

In certain cell types (e.g. fibroblasts) activation of the p16–pRB pathway often 

occurs secondarily to engagement of the p53 pathway (Stein et al. 1999, 
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Jacobs et al. 2004), while in others (e.g. epithelial cells) the inducing stimuli acts 

primarily through the p16–pRB pathway (Campisi et al. 2007). Additionally, in 

mouse cells telomere dysfunction seems to primarily activate the p53 pathway, 

whereas in human cells both the p53 and p16–pRB pathways are activated 

(Smogorzewska et al. 2002). p16 is a cyclin dependent kinase inhibitor that 

localises at the perinuclear cytoplasm, which following activation translocates to 

the nucleus (Serrano et al. 1993). As a cyclin dependent kinase inhibitor, p16 is 

able to prevent phosphorylation of pRb by cyclin/cdk complexes. p16-pRb axis 

is pivotal to the establishment of cell-cycle arrest: hypophosphorylated pRb 

halts cell proliferation by inhibitory binding to E2Fs transcription factors, thus 

preventing them from stimulating transcription of genes involved in cellular 

proliferation and DNA replication (Campisi et al. 2007). While p21 has its 

maximal expression at the initiation of senescence and declines after the cell 

become senescent, p16 expression increases gradually, with barely detectable 

levels at the early stages of senescence, and then persists for months after 

induction of senescence (Alcorta et al. 1996, Stein et al. 1999). p16 expression 

has been shown to increase as a result of oncogene activation (Serrano et al. 

1997). During OIS, suppression of pRb abolishes the establishment of 

senescent phenotype, but it is not sufficient to overcome cell-cycle arrest; this 

depends on the concomitant p53-dependent cell-cycle arrest (Aksoy et al. 2012). 

Additionally, p16 has also been shown to be upregulated following oxidative 

damage (Chen et al. 2004), radiation (Meng et al. 2003) and telomere 

dysfunction (Jacobs et al. 2004). The mechanisms by which senescence-

causing stimuli induce p16 expression are thought to occur due to reduced 

expression of Polycomb INK4a repressors such as BMI1 and CBX7 (Itahana et 

al. 2003, Gil et al. 2004, Bracken et al. 2007). Supporting this idea, it is reported 

that BMI1 or CBX7 overexpression extends the replicative lifespan of human 

and mouse fibroblasts (Jacobs et al. 1999, Itahana et al. 2003, Gil et al. 2004). 

The p16–pRB pathway is also involved in SAHFs generation (Narita et al. 2003), 

this may be due to pRB ability to complex with histone modifying enzymes that 

form repressive chromatin (Macaluso et al. 2006).  
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Another possibility is that DNA damage signals activate p38MAPK signalling 

which then activates p16 (Iwasa et al. 2003, Bulavin et al. 2004, Ito et al. 2006). 

 

The p38 mitogenic-activated protein kinase (p38MAPK) has also been 

described to be important for the senescence growth arrest, it can activate both 

the p53-p21 and p16-pRb growth arrest pathways (Iwasa et al. 2003). 

p38MAPK inhibition moderately delays replicative senescence and the rapid 

entry into senescence of cells from patients with Werner’s syndrome, a 

premature aging disorder caused by a defective DNA repair protein (Davis et al. 

2009). Additionally, p38MAPK activity is required for the senescence arrest 

caused by oncogenic RAS, and constitutive p38MAPK activity can induce a 

growth arrest in normal human cells (Wang et al. 2002, Deng et al. 2004). 

Recently, p38MAPK has also been described as a key factor for secretion of 

inflammatory factors by senescent cells (Freund et al. 2011). Passos et al. 

(2010) have shown that p38MAPK enhances mitochondrial ROS generation, 

thereby contributing to the stabilisation of a DDR during senescence (Passos et 

al. 2010).  

 

 

 

1.2 Role of Mitochondria and ROS in cellular senescence 

 

The first evidence of mitochondria as sub-cellular organelles occurred in the 

19th century, when Richard Altmann and Carl Benda argued for the existence of 

sub-cellular structures that sometimes appeared threadlike and at other times 

more granular. These features gave rise to the name “mitochondria” from the 

Greek words mitos (thread) and chondrion (granule) (Bechtel et al. 2007). From 

a structural perspective, the mitochondrion (the basic unit of mitochondria) 

contains two membranes that separate four distinct compartments: the outer 

membrane, the inner membrane, the inter-membrane space and the matrix. The 

inner membrane is highly folded into cristae and harbors the electron transport 
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chain and ATP synthase responsible for the cellular energy supply (McBride et 

al. 2006). Mitochondria are central organelles to cellular metabolism and have 

been shown to become altered during cellular senescence.  

In 1956, Denham Harman proposed the Free Radical Theory of Ageing 

(Harman 1956), in which reactive oxygen species (ROS) would form inside the 

cells, as a by-product of normal redox reactions, which could in turn cause 

damage to surrounding structures and or molecules, such as DNA, lipids and 

proteins. Many reports have since supported Harman’s theory, showing 

correlative evidence that oxidative damage increases during ageing (Oliver et al. 

1987, Fraga et al. 1990, Hamilton et al. 2001). In the 1970’s, Harman 

introduced a modification to the Free Radical Theory of Ageing, suggesting that 

mitochondria would play a central role on ageing (Harman 1972), since these 

organelles are the main producers of ROS in cells (Chance et al. 1979), in what 

was then termed as the Mitochondrial Theory of Ageing (MTA). In the past 

years, it has been shown that mitochondria are indeed the major source of ROS 

within the cell (confirming the modified proposal of Harman), but also that 

mitochondrial DNA (mtDNA) deletions and mutations can be a result of 

oxidative stress, and that mitochondrial oxidative damage can accumulate with 

age in organisms ranging from worms to humans (Golden et al. 2001, Yui et al. 

2003). It has been shown that mtDNA is more susceptible to ROS mediated 

damage than nuclear DNA; these subcellular structures, contrary to their 

nuclear counterpart, lack histones and instead form protein-DNA complexes 

(nucleoids) in the mitochondrial matrix, which can protect them against oxidative 

damage, but not in the same extent as histones (Gilkerson 2009). However, 

lately the MTA has been questioned, with several reports suggesting an inverse 

relationship between mitochondrial biogenesis and ageing (discussed below) 

and genetically manipulated animal models where mitochondrial function and 

oxidative stress were targeted showing conflicting results (Muller et al. 2007). 

For instance, studies in mice have shown that heterozygous deletion of the 

mitochondrial superoxide dismutase, an enzyme able to convert superoxide 

anion into hydrogen peroxide and water, showed that increased oxidative stress 

does not accelerate ageing in mice (Van Remmen et al. 2003). Furthermore, 
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interventions promoting longevity, namely CR and sirtuin activators, have been 

linked with increased mitochondrial biogenesis (Baur et al. 2006, Lopez-Lluch et 

al. 2006). A recent study has also shown that elevated mitochondrial ROS 

levels promote extension of lifespan in Caenorhabditis elegans (C. elegans) by 

protecting from the consequences of mitochondrial dysfunction via triggering of 

a unique pattern of gene expression that modulates stress sensitivity and 

promotes survival (Yee et al. 2014).  

Notwithstanding that the role of mitochondria and ROS during ageing is 

conflicting, in senescence mitochondrial dysfunction seems to be a general 

feature and has been reported to occur independent of the nature of the 

senescence stimuli (e.g. genotoxic stress, telomere dysfunction and oncogene 

activation) (Allen et al. 1999, Hutter et al. 2002, Zwerschke et al. 2003, Hutter et 

al. 2004, Passos et al. 2007, Moiseeva et al. 2009). Mitochondrial dysfunction 

during senescence has been characterised by an increase in mitochondrial 

mass and decreased mitochondrial membrane potential, leading to metabolic 

inefficiency and increased generation of ROS (Saretzki et al. 2003, Ramsey et 

al. 2006, Passos et al. 2007, Lu et al. 2008). The mechanisms by which 

mitochondrial homeostasis is maintained are complex and involve regulation of 

mitochondrial number and function in response to a variety of environmental 

cues. The Peroxisome Proliferator-Activated receptor (PPAR)-γ co-activator 

(PGC)-1 family of transcription co-activators are master regulators of 

mitochondrial homeostasis (Lin et al. 2005). These transcription co-activators 

regulate mitochondria numbers and function by interacting with a broad range of 

transcription factors that are involved in a wide variety of biological responses 

including adaptive thermogenesis, mitochondrial biogenesis and glucose/fatty 

acid metabolism (Wu et al. 1999). The PGC-1 family comprises three homologs: 

PGC-1α (Puigserver et al. 1998), PGC-1β (Kressler et al. 2002) and PGC-

related co-activator (PRC) (Andersson et al. 2001). It has been described that 

PGC-1 co-activators factors stimulate mitochondrial biogenesis via induction of 

the uncoupling protein 2 (UCP-2) and regulation of the nuclear respiratory 

factors (NRFs). PGC-1 co-factors also regulate mitochondrial DNA 

replication/transcription through binding and co-activation of the transcriptional 
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factor NRF-1 on the promoter of the mitochondrial transcription factor A (mtTFA) 

(Lin et al. 2005). The role of PGC-1 transcriptional co-activators on the ageing 

process seems to be controversial. Several reports have suggested an inverse 

relationship between mitochondrial biogenesis and ageing. Mitochondrial 

density in skeletal muscle gradually declines during age (Crane et al. 2010), 

suggesting a decrease in mitochondrial biogenesis possibly via an age-

dependent reduction in levels of PGC-1α (Wenz et al. 2009). Studies on 

mitochondrial-myopathy mouse models have suggested that a compensatory 

mitochondrial mass increase is beneficial by partly compensating for the 

reduced function of the respiratory chain and maintaining overall ATP 

production in skeletal muscle (Wredenberg et al. 2002). However, the same 

group has later reported that beneficial effects of mitochondrial mass increase 

seems to be tissue specific, since it contributes to aggravate heart failure 

progression in the same mouse model (Hansson et al. 2004). Furthermore, 

genetically induced mitochondrial biogenesis has been associated with age-

related diseases such as cardiomyopathy (Lehman et al. 2000), renal fibrosis 

(Hickey et al. 2011) and diabetes (Sawada et al. 2014), all of which have been 

associated with cellular senescence (Sussman et al. 2004, Testa et al. 2007, 

Yang et al. 2010). Increased mitochondrial content has also been associated 

with osteoarthritis, particularly Kashin-Beck Disease (KBD), where articular 

chondrocytes present increased mitochondrial mass (Liu et al. 2010). While 

there is some evidence for a role mitochondrial homeostasis deregulation 

during senescence, the mechanisms by which mitochondria become impaired is 

still not clear. 

ROS have been implicated in both the induction and stabilisation of cellular 

senescence, with several studies showing that ROS can accelerate telomere 

shortening (von Zglinicki 2002) and induce DNA damage and thus activate a 

DDR and senescence (Chen et al. 1995, Lu et al. 2008, Rai et al. 2009) (Figure 

1.3A). Evidence indicates that activation of major downstream effectors of the 

DDR in senescence result in elevated ROS. Activation of a DDR by genotoxic 

stress or telomere uncapping (Passos et al. 2010), over-expression of activated 

RAS (Lee et al. 1999), BRAFV600E (Kaplon et al. 2013), p53 (Macip et al. 2003), 
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p21 (Macip et al. 2002) and p16 (Takahashi et al. 2006) all resulted in elevated 

ROS generation. In most of the above reported cases treatment with 

antioxidants, such as N-acetyl cysteine (NAC), was able to prevent the cell-

cycle arrest supporting a causal role for ROS in the process (Figure 1.3B and 

1.3C). Together these observations indicate that elevated ROS are a 

consequence of the activation of the senescence programme. Indeed ROS has 

been proposed to act as signalling molecules during cellular senescence 

(Passos et al. 2006). Mechanistically, it is still unclear how these pathways 

contribute to mitochondrial dysfunction and ROS generation. Takahashi and 

colleagues, using human fibroblasts expressing a temperature-sensitive simian 

virus 40 large T antigen, connected p16 with ROS production via protein kinase 

C signalling (Takahashi et al. 2006). Protein kinase C has been shown to 

activate a non-mitochondrial source of ROS, generated by NADPH-oxidase 

through phosphorylation of p47phox, an essential component of NADPH oxidase 

(Talior et al. 2005). Consistent with this study, NADPH oxidases have been 

shown to limit the replicative lifespan of human endothelial cells in culture via 

ROS generation (Lener et al. 2009). 

Oncogene-induced senescence has been associated with mitochondrial 

dysfunction and ROS production, which is dependent on intact p53 and Rb 

tumour suppression pathways. Mitochondrial dysfunction resulted in the loss of 

ATP and activation of AMPK; in addition, mitochondrial-derived ROS were 

shown to contribute to the oxidation of DNA (Moiseeva et al. 2009). In a recent 

study, it was shown that BRAFV600E-induced senescence was accompanied by 

the activation of pyruvate dehydrogenase, which resulted in the enhanced use 

of pyruvate by the tricarboxylic acid (TCA) cycle followed by increased 

respiration and ROS generation (Kaplon et al. 2013).  

The role of p53 and p21 in ROS generation during senescence is still not well 

understood. An association between p53 and transcriptional activation of genes 

involved in mitochondrial apoptosis has been demonstrated (Polyak et al. 1997), 

as well as a stress-induced translocation of p53 to mitochondria resulting in 

increased outer membrane permeabilisation (Moll et al. 2006), however, a direct 

role of mitochondrial p53 in cellular senescence has not yet been demonstrated. 
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In contrast, transcriptional regulation of mitochondrial genes by p53 has been 

reported to impact on mitochondrial function and contribute to ageing. p53 

knock-out mice exhibited reduced expression of the Sco2 gene, which is 

required for the assembly of the mitochondrial DNA-encoded COX II subunit 

(Matoba et al. 2006). In late generation telomerase knock-out mice that have 

critically short telomeres, activation of p53 has been shown to repress the 

promoters of PGC-1α and PGC-1β genes, master regulators of mitochondrial 

biogenesis and function, thereby contributing to decreased mitochondrial 

function (Sahin et al. 2011). 

 

 

 

 

Figure 1.3 | Two different models by which reactive oxygen species can impact 

on cellular senescence. (A) Reactive oxygen species (ROS) produced via 

mitochondrial and non-mitochondrial sources can induce genomic DNA damage and 

accelerate telomere erosion/damage, both of which contribute to activation of a DNA 

damage response (DDR). (B) ROS can act as signalling molecules in senescence: 

activation of “senescence signals” has been shown to result in increased ROS 

generation (mitochondrial and non-mitochondrial). ROS has been shown to impact on a 

A B 

C 
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variety of pathways which may help stabilise the senescence growth arrest. (C) 

Simplified feedback loop model involving ROS and DNA damage. Telomere uncapping 

or general DNA damage triggers a DDR which culminates through yet unidentified 

processes to ROS generation. ROS generation leads to additional DNA damage to the 

genome, stabilising the DDR and leading to a stable senescence arrest (adapted from 

Correia-Melo et al. 2014). 

 

Knockdown of both p53 and p21 by RNA-mediated interference (RNAi) has 

been shown to reduce ROS generation in both telomere-dependent and -

independent senescence (Passos et al. 2010). Our group has found that ROS 

levels increase in senescent cells as a result of signalling through p21, and feed 

back into DNA damage induction and the DDR, generating a stable, self-

sustaining feedback loop (Figure 2c). This feedback loop persists even in 

irreversibly deep senescence. Moreover, p21 appears to be the critical mediator 

between the DDR and MAPK and TGF- stress-induced signalling cascades, 

which have been shown to contribute to ROS generation (Torres et al. 2003, 

Koli et al. 2008, Passos et al. 2010). Consistently, in vivo a p21 knockout 

rescued at least some accelerated ageing phenotypes in telomerase (mTERC) 

knockout mice (Choudhury et al. 2007), as well as markers of oxidative stress 

and DNA damage foci (Passos et al. 2010). ROS has also been shown to 

impact on the DDR and ultimately senescence in a non-cell-autonomous 

fashion. A recent study has shown that senescent cells can induce a DDR in 

neighbouring cells via a gap junction-mediated cell-cell contact and processes 

involving ROS (Nelson et al. 2012). 

ROS have also been implicated in organismal ageing, with countless reports of 

associations between oxidative damage and the ageing process (Oliver et al. 

1987, Fraga et al. 1990, Hamilton et al. 2001); however, genetically 

manipulated animal models where mitochondrial function and oxidative stress 

were targeted have generated conflicting results (Muller et al. 2007).  
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1.3. Role of Inflammatory factors in cellular senescence 

 

The senescence phenotype is not limited to an arrest of cell proliferation. 

Indeed, a senescence cell is metabolically active and encompass widespread 

changes in protein expression and secretion, ultimately developing a 

Senescence-associated Secretory Phenotype or SASP (Shelton et al. 1999, 

Krtolica et al. 2001, Krtolica et al. 2002, Campisi et al. 2007, Kuilman et al. 

2009). Current data suggests that one of the primary functions of the SASP is to 

allow communications both within and between cells. Because of this ability to 

establish intra- and inter- cellular connections, senescence-associated secreted 

factors have also been termed as “senescence-messaging secretome” (Kuilman 

et al. 2009). Cellular senescence has long been recognised as a potent tumour-

suppressive mechanism that arrests growth of cells in risk for malignant 

transformation (Braig et al. 2005, Collado et al. 2005, Michaloglou et al. 2005, 

Narita et al. 2005, Courtois-Cox et al. 2006, Ventura et al. 2007, Xue et al. 

2007). However, some studies have shown that senescent cells may also 

induce changes in the tissue microenvironment which encourages 

tumorigenesis (Krtolica et al. 2001, Coppe et al. 2008, Green 2008, Kuilman et 

al. 2008). Consistent with a pleiotropic role of senescence, the SASP has been 

shown to have a series of somehow contradictory roles with important 

consequences for ageing and cancer: i) It can contribute to the surveillance and 

elimination of senescent cells by the immune system as several studies indicate 

(Xue et al. 2007, Kang et al. 2011); ii) it can be pro-tumorigenic. Both cell 

culture experiments and studies involving co-transplantation of senescent and 

cancer cells in recipient mice, have shown that senescent fibroblasts stimulated 

hyperproliferation of cancer cells, neoplastic progression and tissue damage 

(Krtolica et al. 2001, Liu et al. 2007); iii) it can contribute to the reinforcement of 

oncogene-or stress induced senescence in a cell-autonomous fashion (Acosta 

et al. 2008, Kuilman et al. 2009) and iv) it can induce senescence in 

neighbouring cells via a bystander effect both in vitro and in vivo (Acosta et al. 

2013). In order to understand how the SASP harbours such diverse effects it is 

important to first comprehend what is the SASP. The SASP includes several 
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families of soluble and insoluble factors. While the soluble factors include 

signalling factors such as growth factors, chemokines and interleukins, and 

secreted proteases, the insoluble factors comprise insoluble secreted proteins 

and extracellular matrix (ECM) components (Coppé et al. 2010).  

 

1.3.1Senescence-associated inflammatory phenotype (SAIF) 

 

The senescence secretory phenotype involves the secretion of several 

inflammatory and cancer-related factors, including interleukins. The involvement 

of interleukins in senescence was first described by Maier et al., who reported a 

positive correlation between IL-1α transcript level and the control of cellular 

proliferation in human endothelial cells (Maier et al. 1990). Since then, many 

other interleukins have been shown to be secreted by senescent cells, being IL-

6 and IL-8 some of the most prominent interleukins of the SASP (Acosta et al. 

2008, Kuilman et al. 2008). The repertoire of inflammatory factors secreted by 

senescent cells will be here designated as the senescence-associated 

inflammatory phenotype (SAIF). 

Interleukin 6 (IL-6) was originally identified as a B-cell differentiation factor 

(Hirano et al. 1986). At the same time that IL-6 is produce by various cell types 

it can also induce a response in different cell types, through its unique receptor 

(IL-6R). This interleukin has multiple functions including regulation of the 

immune response and haemotopoiesis and more recently has been implicated 

with senescence and cancer (Davalos et al. , Hong et al. 2007, Kuilman et al. 

2008, Mihara et al. 2012). Using genetic and bioinformatic analysis, Kuilman et 

al. found that OIS is specifically linked to the activation of an inflammatory 

transcriptome (Kuilman et al. 2008). They found that senescence-associated 

cytokines, included the pleiotropic cytokine interleukin-6 (IL-6), can act in a pro-

mitogenic paracrine way. In this study, IL-6 was implicated in senescence entry 

and maintenance, via a pathway co-regulated by the transcription factor 

C/EBPβ to amplify the activation of the inflammatory network, including IL-8. 

Interestingly, in human colon adenomas IL-8 specifically co-localised with 
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arrested, p16INK4A-positive epithelium, suggesting that the context-dependent 

cytostatic and pro-mitogenic functions of specific interleukins contribute to 

connect senescence with an inflammatory phenotype and cancer (Kuilman et al. 

2008). 

Interleukin-8 (IL-8), alternatively known as CXCL8, belongs to the CXC (two N-

terminal cysteines are separated by one amino acid, represented with an "X”) 

amino acid motif family of pro-inflammatory chemokines (Thelen 2001), that are 

highly secreted by senescent cells (Coppé et al. 2010). This chemokine 

activates multiple intracellular signalling pathways downstream of two cell-

surface G protein-coupled receptors: CXCR1 (IL-8RA) and CXCR2 (IL-8RB) 

(Holmes et al. 1991, Murphy et al. 1991).  IL-8 is a chemotactic factor whose 

main functions are to stimulate cell proliferation, angiogenesis and migration 

(Waugh et al. 2008, Ning et al. 2011). This chemotactic factor was first 

described to promote the directional migration and activation of neutrophils in 

response to inflammatory and infectious diseases (Baggiolini et al. 1989, 

Baggiolini et al. 1997). Nevertheless, more recent studies have recognised IL-8 

as an important factor in cancer by promoting tumorigenesis (cell proliferation), 

tumour maintenance (angiogenesis) and progression/invasiveness (migration) 

(Waugh et al. 2008). Given the above mentioned functions of IL-8, this 

interleukin seems to play fundamental roles as a regulatory factor within the 

inflammatory, tumour and senescence milieus.  

CXCR2 is a promiscuous receptor that transmits signals from several CXC 

chemokine family members (CXCLs), including IL-8. Acosta et al. conducted a 

screen for small hairpin RNAs to identify genes controlling senescence in 

primary human fibroblasts. They reported that the knocking down of CXCR2 

alleviates both replicative and oncogene-induced senescence (OIS) and 

diminishes the DNA-damage response. Conversely, ectopic expression of 

CXCR2 resulted in premature senescence via a p53-dependent mechanism. 

They further found that cells undergoing OIS activate NF-B and C/EBPβ 

transcription factors to regulate expression of CXCR2 and multiple CXCR2-

binding chemokines. The authors concluded that senescent cells activate a self-
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amplifying secretory network in which CXCR2-binding chemokine reinforce the 

growth arrest (Acosta et al. 2008). 

 

1.3.2 Pathways controlling secretion of inflammatory factors in cellular 

senescence 

 

The pathways regulating the growth arrest and the SASP during senescence 

are often coordinately induced but do not completely overlap. For instance, both 

p16 and p53 expression are required to induce a senescence growth arrest, but 

do not induce or modify the SASP (Coppe et al. 2008, Coppe et al. 2011). The 

DDR is the most prominent initiator of senescence and persistence of a DDR 

during senescence has been shown to be essential for the development of a 

SASP, particularly for the induction of inflammatory cytokines such as IL-6 and 

IL-8 (Rodier et al. 2009). The p38 mitogen-activated protein kinase (p38MAPK) 

has been described to upregulate expression of specific cytokines such as IL-6, 

IL-8, and TNFα in some biological contexts (Ono et al. 2000, Zhang et al. 2007). 

In senescence, a study by Freund et al. showed that p38MAPK activity is 

necessary and sufficient for expression of SASP cytokines via NF-B 

transcriptional activity, in cells induced to senesce by direct DNA damage or 

oncogenic RAS (Freund et al. 2011).  

 

Cellular senescence is a complex mechanism, in which multiple stimuli can 

promote the development of a complex phenotype termed senescence 

phenotype. Although much is known about the pathways that regulate the 

senescence growth arrest, the pathways that regulate the SASP remain poorly 

understood. As described above ROS appears to add an extra layer of 

complexity to the intricate senescence phenotype. It is likely that ROS is the 

missing link between the secretory phenotype and its proposed role in the 

reinforcement of the senescent phenotype.  
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1.4. Synergistic interactions between inflammatory factors and ROS 

during senescence 

 

Mechanistically, it is still not entirely understood how the SASP contributes to 

the reinforcement of senescence, however several lines of evidence suggests 

the existence of synergistic interactions between the DDR, ROS and 

inflammatory signals (Figure 1.4). Kinetically, ROS has been observed to 

increase 2-3 days following activation of a DDR (Passos et al. 2010), while the 

SASP occurs 7-10 days later (Coppé et al. 2010). Some of the similarities 

between both pathways and potential interactions will be examined thereafter. 

Induction of both ROS and SASP in stress-induced senescence has been 

shown to be dependent on activation of the DDR (Rodier et al. 2009, Passos et 

al. 2010). Consistent with this, recent investigations have reported that 

progeroid mouse models driven by DNA damage are associated with activation 

of NF-B chronic inflammation and senescence (Osorio et al. 2012, Tilstra et al. 

2012). Interestingly, in a murine model of XFE progeroid syndrome, Ercc1–/Δ 

mice, inhibition of NF-B signalling not only reduced the onset of several age-

related pathologies, but also both DNA and proteins oxidation (Tilstra et al. 

2012), suggesting a potential link between inflammation and ROS pathways. 

Another link between ROS and the SASP during senescence involves 

p38MAPK pathways. p38MAPK has been shown to regulate the SASP in 

senescence mainly through NF-B transcriptional activity (Freund et al. 2011). 

Similarly, p38MAPK pathway has been shown to be important for ROS 

generation in both stress-induced and replicative senescence and for the 

stability of the DDR (Passos et al. 2010). 

Acosta and colleagues have shown that inhibition of CXCR2, a promiscuous 

receptor that transmits signals from several CXC chemokine family members 

(CXCLs), including IL-8, delayed the onset of both replicative and oncogene-

induced senescence and lead to decreased activation of a DDR (Acosta et al. 

2008). Mechanistically, the authors proposed that inhibition of CXCR2 reduced 

DDR potentially by impacting on ROS (Acosta et al. 2008).  



  Chapter 1. Introduction 
 

29 
 

Interpheron beta (β-IFN) has been shown to induce senescence through ROS 

activation and subsequent activation of a DNA damage response, which could 

be inhibited using the antioxidant NAC (Moiseeva et al. 2006).  

Transforming growth factor beta (TGF-β), another secreted protein, has also 

been implicated in senescence. Inactivation of TGF-β1 secretion in mouse 

keratinocytes was enough to prevent oncogene induced senescence (Tremain 

et al. 2000). In human fibroblasts, blocking TGF-β1 receptor II activity has been 

shown to prevent UVB and hydrogen peroxide induced senescence (Frippiat et 

al. 2001, Debacq-Chainiaux et al. 2005). Recently, it was demonstrated that the 

TGF-β pathway had a strong effect in paracrine induced senescence (Acosta et 

al. 2013). Interestingly, the TGF-β pathway has also been identified as an 

important link between telomere-dependent and –independent DDR and ROS 

production (Passos et al. 2010). 

Another potential link between the SASP and ROS is the fact that several 

studies indicate that NF-B (the main regulator of the SASP) is also a major 

player in the regulation of mitochondrial function and oxidative stress. Firstly, 

several reports associate NF-B with regulation of mitochondrial function. NF-

B is present in mitochondria of yeast (Bottero et al. 2001) and mammalian 

cells and is able to regulate expression of mitochondrial encoded genes in 

mammalian cells (Cogswell et al. 2003). Bakkar and colleagues reported that 

activation of the NF-B alternative pathway during myogenesis is important for 

mitochondrial biogenesis (Bakkar et al. 2008). More recently it was 

demonstrated that IKKα and alternative NF-B regulate the transcription co-

activator PGC-1β (a master regulator of mitochondrial biogenesis and function) 

to promote oxidative muscle metabolism (Bakkar et al. 2012). Secondly, it has 

also been reported that NF-B is involved in the transcriptional regulation of 

both anti-oxidant and pro-oxidant genes (Morgan et al. 2011). A recent study on 

a mouse model of type II diabetes-cardiac dysfunction has shown that 

enhanced NF-B activity is associated with increased oxidative stress. The 

authors demonstrate that chemical inhibition of NF-B alleviates oxidative 
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stress, improves mitochondrial structural integrity and ultimately restores 

cardiac function in type II diabetes (Mariappan et al. 2010). 

In contrast, numerous reports have implicated ROS in the activation of NF-B 

(Gloire et al. 2006). DNA binding and transactivation by NF-B have been 

shown to be strongly activated by ROS such as hydrogen peroxide (Meyer et al. 

1993). Overall, this suggests that NF-B and ROS pathways are tightly 

interconnected and may together impact on the stabilisation of senescence 

(Figure 1.4). 

 

 

 

Figure 1.4 | Senescence is a multi-layered process involving interactions 

between the DNA damage response, reactive oxygen species and the 

senescence-associated secretory phenotype. Initially, stressors such as telomeric 

and non-telomeric DNA damage can lead to activation of a DNA damage response 

(DDR) and cell cycle arrest. Following activation of the DDR, p53, p21 and p38MAPK 

pathways have been shown to enhance NF-B transcriptional activity. NF-B activation 
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is both responsible for the senescence-associated secretory phenotype (SASP) and 

can induce (and be activated) by reactive oxygen species (ROS). p16 has been shown 

to induce ROS generation via NADPH oxidases (Takahashi et al. 2006); however, it 

has been shown to be unrelated to the SASP (Coppe et al. 2011). Secretion of 

bioactive molecules such as ROS and SASP factors contribute not only to reinforce 

senescence in an autocrine fashion, but also to induce paracrine senescence. 

Components of the SASP, such as IL-8, β-IFN and transforming growth factor (TGF)-β, 

have been shown to reinforce the senescence arrest via ROS through yet unidentified 

mechanisms (Moiseeva et al. 2006, Acosta et al. 2008, Passos et al. 2010). NF-B 

transcriptional activity has been shown to be dependent on the DDR and ROS. 

However, NF-B activation has been shown to increase ROS generation via regulation 

of mitochondrial, antioxidant and pro-oxidant genes (Morgan et al. 2011, Bakkar et al. 

2012) (adapted from Correia-Melo et al. 2014). 

 

 

 

1.5. mTOR Signalling: Sensing nutrient availability and managing stress in 

senescence and ageing 

 

1.5.1 mTOR kinase and complexes 

 

The mechanistic target of rapamycin (mTOR) protein was first discovered by 

Heitman et al. when analysing yeast mutants resistant to the growth-inhibitory 

properties of rapamycin (Heitman et al. 1991). mTOR is a highly conserved 

serine/threonine kinase belonging to the PI3K-related family of protein kinases, 

which also includes ATM, ATR and DNA-dependent protein kinase. The mTOR 

kinase can be found in two structurally and functionally distinct multiprotein 

complexes: mTOR complex 1 (mTORC1) and 2 (mTORC2) (Laplante et al. 

2012). mTORC1 is a six protein complex formed by: the mTOR kinase, the 

mammalian lethal with sec-13 protein 8 (mLST8, also known as GβL), (Kim et al. 

2003, Jacinto et al. 2004) , the DEP domain containing mTOR-interacting 

protein (DEPTOR) (Peterson et al. 2009), the Tti1/Tel2 complex (Kaizuka et al. 

2010), the regulatory-associated protein of mammalian target of rapamycin 
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(raptor) (Hara et al. 2002, Kim et al. 2002) and  the proline-rich Akt substrate 40 

kDa (PRAS40) (Sancak et al. 2007, Vander Haar et al. 2007, Wang et al. 2007). 

The reported functions of the mTORC1 pathway involve integrating inputs from 

growth factors, stress, energy status, oxygen, and amino acids to control 

regulation of cell growth via protein (Averous et al. 2006, Ma et al. 2009), 

nucleotide (Ben-Sahra et al. 2013, Robitaille et al. 2013) and lipid synthesis, 

glycolysis (Laplante et al. 2009, Peterson et al. 2011) and autophagy (Ganley et 

al. 2009, Hosokawa et al. 2009). Whereas mTORC2 is composed by seven 

proteins including: the mTOR kinase, mLST8, DEPTOR, the Tti1/Tel2 complex, 

the rapamycin-insensitive companion of mTOR (rictor) (Jacinto et al. 2004, 

Sarbassov et al. 2004), the mammalian stress-activated map kinase-interacting 

protein 1 (mSin1) (Frias et al. 2006, Jacinto et al. 2006) and the protein 

observed with rictor 1 and 2 (protor1/2) (Pearce et al. 2007, Pearce et al. 2011). 

The role of mTORC2 is less well understood when compared to mTORC1, but it 

is known that this mTOR complex receives signals from growth factors to 

regulate glucose metabolism, lipogenesis (Garcia-Martinez et al. 2008, 

Hagiwara et al. 2012, Yuan et al. 2012), the actin cytoskeleton and apoptosis 

(Oh et al. 2011). Both mTORC complexes share common proteins but also 

include specific proteins that contribute to their distinct functions and sensitivity 

to chemical inhibitors/drugs. 

 

 

1.5.2 Signalling to and from mTORC1 

 

The mechanisms regulating the mTOR pathway are complex, owing this 

complexity to the numerous different signals that converge and diverge to and 

from this pathway. A brief summary will be described to highlight some of the 

most important and better known functions of mTORC1. Mechanistically, the 

tuberous sclerosis 1 and 2 (TSC1/TS2) complex functions as a GTPase-

activating protein (GAP) for the Ras homolog enriched in brain (Rheb) GTPase 

(Inoki et al. 2003) and negatively regulates mTORC1 activity by converting 

Rheb into its inactive form GDP bound sate (Inoki et al. 2003, Tee et al. 2003). 



  Chapter 1. Introduction 
 

33 
 

Conversely, the GTP-Rheb form is a positive regulator of mTORC1 and when 

bound to this complex strongly stimulates its activity. Growth factors signals (e.g. 

insulin and insulin-like growth factor 1 (IGF1)) induce inactivation of the 

TSC1/TSC2 complex via direct phosphorylation by the protein kinase B 

(Akt/PKB) and promote mTORC1 activation (Inoki et al. 2002, Manning et al. 

2002, Potter et al. 2002). However, Akt can also phosphorylate, PRAS40, 

another negative regulator of mTOR, and activate mTORC1 independently of 

the TSC1/TSC2 complex (Sancak et al. 2007, Vander Haar et al. 2007, Wang et 

al. 2007). Other kinases such as the extracellular-signal-regulated kinase 1/2 

(ERK1/2) and ribosomal S6 kinase (RSK1) can also phosphorylate the 

TSC1/TSC2 complex and activate mTORC1 downstream of growth factors 

stimulation (Roux et al. 2004, Ma et al. 2005). The TSC1/TSC2 complex can 

also be inhibited through phosphorylation by the inhibitor of NF-B (IB) kinase 

β (IKKβ) following pro-inflammatory cytokines stimuli (Lee et al. 2007). 

Conversely, the adenosine monophosphate - activated protein kinase (AMPK), 

following inhibitory signals downstream of Wnt, phosphorylates TSC2 and 

activates the TSC1/TSC2 complex promoting inhibition of mTOR and 

downstream pathways involved in the regulation of cell growth, proliferation, 

polarity, differentiation, and development (Inoki et al. 2006). The mechanisms 

by which mTOR senses intracellular aminoacids are not fully elucidated but it is 

described that the Ragulator-Rag complex is a master regulator in this process 

by promoting mTORC1 translocation to the lysosomal surface and allowing 

interaction with GTPases such as the Rheb GTPase (Sancak et al. 2010), in a 

process that seems to be independent of the TSC1/TSC2 complex (Smith et al. 

2005). 

One of the most well described signalling downstream of mTORC1 involves the 

70kD protein S6 kinase (p70-S6K) and the eukaryotic translation initiation factor 

4E (eIF4E) binding protein 1 (4EBP1) to regulate anabolic processes such as 

protein synthesis. mTORC1 phosphorylates the p70-S6K which upon 

phosphorylation can also phosphorylate the S6 ribosomal protein. In this 

process mTORC1 can also phosphorylate and inactivate the (4EBP1) with 

release of eIF4E promoting increased translation through the eIF4F complex 
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(Fingar et al. 2002) Alternatively, mTORC1 is also involved in the control of 

catabolic processes by negatively regulating autophagy via phosphorylation of 

ULK1 (Lee et al. 2010).  

 

1.5.3 Implications of mTOR on ageing and senescence 

mTOR has been shown to play a role on the onset of ageing and age-related 

diseases including cancer, possibly via its critical role on the regulation of cell 

growth and proliferation (Menon et al. 2008, Laplante et al. 2012). Dietary 

restriction (DR) is the most robust intervention able to prolong lifespan and slow 

down the progression of age-related diseases with reproducible results across a 

variety of species ranging from yeast to primates (Kapahi et al. 2010). During 

DR, a particular or total nutrient availability is reduced with a consequent impact 

on the activation of nutrient sensing signalling including the mTOR pathway. 

Consistent with a beneficial role for decreased mTOR activity on ageing, mTOR 

inhibition by genetic or pharmacological means led to lifespan extension of 

different organisms including yeast, worms, fruit flies and mice, similarly to DR 

(Fabrizio et al. 2001, Vellai et al. 2003, Jia et al. 2004, Kapahi et al. 2004, 

Kaeberlein et al. 2005, Harrison et al. 2009, Bjedov et al. 2010). Rapamycin, a 

compound found in the soil bacterium in the Rapa Nui Island (also known as 

Easter Island) (Vezina et al. 1975), is a chemical inhibitor of mTORC1 activity 

by forming a complex with the intracellular 12-kDa FK506-binding protein 

(FKBP12) (Brown et al. 1994, Sabatini et al. 1994). The exact mechanisms by 

which the binding of FKBP12-rapamycin to mTORC1 inhibits its activity is 

unknown, but it has been described that rapamycin may compromise the 

structural integrity of mTORC1 and the specific activity of its kinase domain (Yip 

et al. 2010). More recent studies have described that prolonged treatment with 

rapamycin may also disrupt mTORC2 assembly and function in some cells 

types (Sarbassov et al. 2006). An important study conducted in mice has 

demonstrated that mTOR inhibition via a rapamycin supplemented diet results 

in increased maximal and median lifespan even when the treatment was started 

later in life (Harrison et al. 2009). 
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Studies exploring a role for mTOR during senescence have been somewhat 

contradictory. During oncogene-induced senescence, spatial coupling of 

catabolic and anabolic processes via mTOR may facilitate the mass synthesis 

of secretory proteins (Young et al. 2009, Narita et al. 2011). Supporting a pro-

senescence role for autophagy, Kennedy et al. recently showed that rapamycin, 

a mTOR inhibitor and activator of autophagy, promotes oncogene-induced 

senescence in a mouse model of pancreatic cancer (Kennedy et al. 2011). In 

contrast, in other models of senescence, including replicative senescent rodent 

fibroblasts (Pospelova et al. 2012), mTOR activity promotes senescence and 

senescence is inhibited by rapamycin. Consistently, it has been described that 

inhibition of mTOR induces quiescence, while its hyper-activation promotes 

senescence in a p53-dependent manner (Demidenko et al. 2010, Korotchkina 

et al. 2010). Nevertheless, there is indirect evidence that suggest a role for 

mTOR during cellular senescence. Many stressors described to induce 

senescence, including DNA damage, can also activate the mTOR pathway in 

part via the TSC1/TSC2 complex. mTORC1 receives DNA damage signals 

through multiple mechanisms, all of which require p53-dependent transcription 

(Feng et al. 2005). Another important feature of senescence is the SASP with 

NF-B signalling being a master regulator of the senescence-associated 

inflammatory phenotype (Acosta et al. 2008, Kuilman et al. 2008). It has been 

shown that activation of mTOR downstream of Akt regulates NF-B activity 

(Dan et al. 2008). Such regulatory control of mTOR over inflammatory pathways 

may contribute to the understanding of the mechanisms regulating the SASP.  

 

 

1.6. Cellular Senescence and Ageing 
 

Despite being discovered over 50 years ago, cellular senescence remains an 

intriguing biological process and whether senescence exists to any significant 

extent in vivo has been the subject of a longstanding debate (Ben-Porath et al. 

2005). In the past decade, remarkable advances have been made 



  Chapter 1. Introduction 
 

36 
 

demonstrating that senescence plays an important role in vivo. Several studies 

suggest that senescence can act as a tumour suppressor mechanism (Braig et 

al. 2005, Chen et al. 2005, Collado et al. 2005, Michaloglou et al. 2005). On the 

other hand, numerous lines of evidence indicate that senescence can, in the 

long run, have adverse effects, by impairing organ regeneration and releasing a 

host of bioactive molecules, including ROS and a wide variety of pro-

inflammatory cytokines, chemokines and growth factors (collectively referred to 

as the SASP) that impact on the surrounding tissue. 

In 2006, Herbig et al. showed that the amount of cells containing telomere-

induced foci (TIF), a well-known marker of senescence, increase with age in the 

skin of baboons, primates with similar telomere length to humans and absence 

of telomerase activity (Herbig et al. 2006). In mice, cells bearing senescent 

markers have been reported to increase with age in a variety of tissues 

(Krishnamurthy et al. 2004, Wang et al. 2009, Hewitt et al. 2012), including 

post-mitotic neurons (Jurk et al. 2012). Moreover, senescent cells have been 

associated with several age-related diseases, such as diabetes (Sone et al. 

2005) and atherosclerosis (Minamino et al. 2007). While noteworthy, this data 

does not provide causality. A major challenge in the field has been to determine 

if and how senescent cells contribute to age-related tissue dysfunction, or if they 

merely correlate with it.  

Mounting evidence indicates that activation of pathways involved in cellular 

senescence impacts on mammalian lifespan (Rudolph et al. 1999, Tyner et al. 

2002, Choudhury et al. 2007). Recently, the van Deursen’s group has shown 

that inducible elimination of p16Ink4a-positive senescent cells from the eye, 

adipose and skeletal tissues in the BubR1 progeroid mouse model, delayed 

acquisition of age-related pathologies in these tissues. They showed that 

elimination of p16Ink4a-positive cells also attenuated the progression of already 

established age-related disorders, suggesting that cellular senescence may 

have a causal role in age-related tissue impairment (Baker et al. 2011). 
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1.7 Aims 

 

Although several mechanisms responsible for the activation of senescence 

have been identified, it is still unclear how a cell “commits” to becoming 

irreversibly arrested. Recent studies have revealed that the SASP, as well as 

mitochondrial/ROS may contribute to the reinforcement of the growth arrest via 

a series of positive feedback loops involving a persistent activation of the DDR 

(Acosta et al. 2008, Kuilman et al. 2008, Passos et al. 2010). The general aim 

of this thesis was to understand how mitochondria and inflammatory factors act 

together in cellular senescence and how these interactions may contribute to 

the stabilisation of the senescent phenotype. 

 

Specific Aims 

 

1. To investigate the role of mitochondrial density (mass) during the 

development of cellular senescence, both in vitro and in vivo; 

 

2. To understand the mechanisms downstream of a DNA damage response 

driving mitochondrial alterations during cellular senescence and potential 

links to the mTOR signalling pathway; 

 

3. To understand the mechanisms by which pro-inflammatory cytokine 

receptor CXCR2 helps maintain cellular senescence and investigate 

potential links to mitochondrial function. 
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Chapter 2. Material and Methods 
 

 

2.1 Chemicals and Reagents 

 

Unless otherwise stated, the chemicals used in these studies were obtained 

from Sigma-Aldrich Company Ltd (Poole, Dorset, UK). 

 

2.2 Cell Culture 

 

2.2.1 Cell lines  

 

 

Prokaryotic cell lines 

NEB 5-alpha Competent Escherichia coli, (Cat. Number C2987, New 

England Biolabs). 

 

Eukaryotic cell lines 

Human cell lines 

Human embryonic lung MRC5 fibroblasts (ECACC, Salisbury, UK), YFP-

Parkin-expressing MRC5 fibroblasts, human embryonic kidney HEK293, 

Phoenix amphotropic (human embryonic kidney HEK293 transformed with 

adenovirus E1a and carrying  a temperature sensitive T antigen), human 

breast cancer MCF7, human primary glioblastoma U87, Human colon 

carcinoma HCT116, human osteosarcoma 143B, rho 0 143B (mtDNA 

depleted human osteosarcoma 143B cells), Ataxia Telangiectasia (AT) 

patients human fibroblasts, T19 (TRF2BM) and HeLa cells were grown in 

Dulbecco’s modified Eagle’s medium (DMEM, Cat. Number D5796, Sigma, 

Dorset, UK) supplemented with 10% heat inactivated foetal bovine serum 
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(BioSera, Ringmer, UK), 100 units/ml penicillin, 100 μgml-1 streptomycin 

and 2 mM glutamine, at 37oC in a humidified atmosphere with 5% CO2. 

 

T19 cells containing a doxycycline inducible TRF2BM were a kind gift from 

T. de Lange, Rockefeller University, NY, USA (van Steensel et al. 1998). 

Osteosarcoma 143B and Rho 0 143B cell lines were kind gifts from Dr. 

Robert Lightowlers, Mitochondrial Research Group, Newcastle University, 

UK. AT patient fibroblasts were kind gifts from Dr Lisa Woodbine, 

University of Sussex, UK. Phoenix amphotropic cells were a kind gift from 

Dr. Stephen Tait, Institute of Cancer Sciences, University of Glasgow, UK. 

Human embryonic kidney HEK293 cells were a kind gift from Dr. Glyn 

Nelson, Institute for Ageing and Health, Newcastle University, UK. 

 

Human fibroblasts (MRC5 fibroblasts and YFP-Parkin expressing MRC5 

fibroblasts) were used for cellular and molecular biology analysis at a 

population doubling (PD) level of 20-30 for stress-induced senescence or 

after reaching replicative exhaustion (replicative senescence). 

 

Mouse cell lines 

Mouse embryonic fibroblasts (MEFs) were obtained from C57BL/6 wild-

type mice. MEFs from Atg5-/-, PGC-1β-/-, matched wild-type, Mouse 

hepatocyte cell-line MIH and 3T3 embryonic fibroblasts were cultured in 

Advanced DMEM/F-12 (Invitrogen, Cat. Number 12634) plus 10% heat 

inactivated foetal bovine serum (BioSera, Ringmer, UK), 100 units/ml 

penicillin, 100 μgml-1 streptomycin and 2 mM glutamine, at 37oC in a 

humidified atmosphere with 5% CO2 and 3% oxygen. 

 

Atg5-/- MEFs were kind gifts from Dr.Noboru Mizushima, Tokyo University, 

Japan (via Viktor Korolchuk, Institute for ageing and Health, Newcastle 

University, UK). PGC-1β-/- MEFs were kind gifts from Dr. Sergio 

Rodriguez-Cuenca, Metabolic Research Laboratories, University of 
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Cambridge, UK. 3T3 embryonic fibroblasts were a kind gift from Dr. 

Stephen Tait, Institute of Cancer Sciences, University of Glasgow, UK. 

 

 

2.2.2 Cryogenic storage 

 

Exponentially growing adherent cells were trypsinised with Trypsin-EDTA 

(Sigma, Cat.Number T3924) and centrifuged at 150g for 5 minutes at room 

temperature. The supernatant was removed and cells were re-suspended in 

foetal calf serum (FCS) containing 10% (v/v) dimethyl sulfoxide (DMSO) at a 

density of 1x106 cells/ml. One mL aliquots of cell suspension were immediately 

transferred to cryo-vials and placed in a NalgeneTM Cryo freezing container 

filled with isopropanol. Cells were kept for 24 hours in a -80°C freezer to allow 

slow freezing, before being stored in liquid nitrogen. 

 

2.2.3 Resuscitation of frozen cells 

 

Cryo-vials were removed from the liquid nitrogen bank and quickly thawed for 1-

2 min at 37°C. Thawed cells were immediately seeded into a 75 cm2 flask with 

20 mL pre-warmed medium. Medium was replaced with fresh media 24 hours 

after seeding to remove DMSO and cell debris.  

 

2.2.4 Calculating cell density and population doublings 

 

To determine the concentration of cells within the cell suspension, following 

trypsinisation 20 µL of cells suspension were placed on a Fuchs Rosenthal 

haemocytometer (VWR International, UK). Cells were counted on 8 smallest 

squares of the haemocytometer under a standard microscope (DMIL, Leica 

Microsystems, UK). The average of four counts of 8 squares is equivalent to the 

number of cells x104/mL. The total number of cells was calculated by multiplying 
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the volume of cell suspension (mL) with the cell concentration (cells/mL). On 

human primary cell lines the population doubling (PD) level was calculated by 

comparing the amount of cells seeded with the number of cells obtained, using 

the following equation: PD)=X+Ln( N1/N2)/Ln2 

 

where, PD = population doublings 

  X   = previous PD 

N1 = number of cells harvested 

N2 = number of cells seeded 

 

 

2.3 Creating stably expressing YFP-Parkin-MRC5 fibroblast cell lines 

 

2.3.1 Bacterial Transformation  

 

NEB5-alpha competent Escherichia Coli (NEB; Cat. Number C2987) were 

transformed with a LZRS-YFP-Parkin plasmid (kind gift from Dr. Stephen Tait, 

Institute of Cancer Sciences, University of Glasgow, UK): 

 

Plasmid DNA (50 ng) was added to a 50μL of NEB5-alpha highly 

competent E. coli and incubated on ice for 30 minutes. The mixture was 

then subjected to heat shocking at 42oC for 30 seconds, before five 

minutes incubation on ice. 250μL SOC medium (Invitrogen, Cat. Number 

15544-034) was then added and cells were incubated at 37oC for 1 hour 

with shaking vigorously at 250rpm. Cells were then spread on agar 

selection plates containing lysogeny broth (LB) medium plus ampicillin 

(15g agarose to 1L LB (10g bacto-tryptone, 5g bacto-yeast extract, 10g 

NaCl made up to 1L H2O) and autoclave. Once cool enough to hold, add 
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50μg/ml ampicillin selection agent, mix thoroughly and pour into plates), 

and incubated at 37oC overnight. Individual colonies were then grown 

overnight in 5mL selective LB (LB+ampicilin). DNA was purified using the 

QIAprep Spin Miniprep kit (Qiagen, Cat. Number 27104) as described in 

the provided protocol. 

 

Transformed bacteria stocks  

Glycerol stocks were made of transformed bacteria. 800μL LB containing 

transformed bacteria were mixed with 200μl 80% glycerol, then snap frozen in 

liquid nitrogen, and stored at -80oC.  

 

 

2.3.2 Plasmid Analysis  

 

Following DNA purification using QIAprep Spin Miniprep kit, the Plasmid DNA 

was digested with the HindIII restriction enzyme (NEB, Cat. Number R0104S) to 

confirm purity of the Plasmid DNA. Plasmid DNA fragments were the right size, 

with 10.48 Kb and 2.61 Kb fragments. Non digested Plasmid DNA showed no 

fragmentation with a band size of 13.09 Kb, indicating integrity and correct 

purification of the Plasmid DNA (Figure 3.1).  

 

 

 

 

 

 

 



 Chapter 2. Material and Methods 
 

43 
 

 

 

 

Figure 2.1 | LZRS-YFP-Parkin plasmid. (A) Purified LZRS-YFP-Parkin plasmid map; 

(B) Purified LZRS-YFP-Parkin plasmid was digested with HindIII restriction enzyme. 

M= DNA ladder, 1= digested LZRS-YFP-Parkin (fragment size: 10.48 Kb and 2.61 Kb) 

plasmid and 2=undigested ZRS-YFP-Parkin plasmid (fragment size: 13.09 Kb). 

 

 

2.3.3 Transfection and Transduction Protocols  

 

Retroviral plasmid transfection and viral production was performed following 

class II safety procedures. 5×106 Phoenix amphotropic cells were seeded in a 

10cm dish and incubated for 24 hours in antiobiotic free medium. Cells were at 

90% confluency before proceeding to Invitrogen Transfection using 

LipofectamineTM 2000 (Invitrogen, Cat. Number 11668-019) as described in the 

ViraPower Lentiviral Expression systems user manual (Invitrogen). The day 

after transfection medium was removed and replaced with 10mL fresh medium 

without antibiotics. Viral particles containing medium were collected 48 hours 

A B 
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after initial transfection, centrifuged at 4oC and filtered through a 0.45μm pore 

PVDF filter. The purified media with 10μg/ml polybrene was then added to 

MRC5 fibroblasts at 70-90% confluence. ZeocinTM (Invitrogen, Cat. Number 

R25001) was added to cells at a final concentration of 500µM for six days, 

concentration was then reduced to 200μM to maintain selection for another 10 

days. Transduction efficiency was confirmed by fluorescence microscopy: cells 

expressing Parkin were YFP positive. 

 

 

2.4 Induction of Senescence 

 

MRC5 fibroblasts (PD 20-30) were seeded in 6-well plates (100,000 cells) and 

allowed to grow for 24 hours. Cells were then induced to senesce. 

Stress-induced senescence was induced by: 

 X-ray irradiation (X-Rad 225, Precision X-Ray INC, N-BRANFORD, CT 

USA) with 10 or 20Gy (depending on cell-line); 

 80ng/ml neocarzinostatin (Sigma; Cat. Number N9162) for 1 hour; 

 400µM H2O2 (Sigma, Cat. Number H1009) in serum free media for 1 

hour; 

 50µM Etoposide (Sigma; Cat. Number E1383) containing medium was 

replenished every 3 days for 10 days. 

Following treatments, culture medium was refreshed (except for the Etoposide 

treatment. 

 

Replicative senescence was achieved through replication exhaustion and 

confirmed by >70% of cells being positive for Sen-β-Gal and less than 0.5 

Population doublings for at least 4 weeks. 
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2.5 Treatments: 

 

2.5.1 NAC treatment 

 

MRC5 fibroblasts at a confluency of 70-90% were irradiated with 20Gy X-ray 

and treated with 2.5mM of NAC (Sigma; Cat. Number A7250) for 3 days before 

being harvested for analysis. Control non-irradiated MRC5 fibroblasts were also 

treated with 2.5mM of NAC for 3 days before being harvested for analysis. 

 

2.5.2 CCCP treatment 

 

Stably expressing YFP-Parkin human MRC5 or 3T3 fibroblasts were irradiated 

with 20 Gy (MRC5) and 10Gy (3T3) X-ray and treated 2 days after with 12.5 µM 

CCCP (Sigma; Cat number C2759) for 48 hours (refreshed every 24 hours). 

Control non-irradiated fibroblasts were treated with 12.5 µM CCCP for 48 hours 

(refreshed every 24 hours). 

Replicative senescent YFP-Parkin-MRC5 fibroblasts were treated with12.5 µM 

CCCP for 48 hours (refreshed every 24 hours). Control proliferating fibroblasts 

(PD=20-25) were treated with 12.5 µM CCCP for 48 hours (refreshed every 24 

hours). 

Fresh media (no CCCP) was replaced 48h after treatment; cells were then 

collected at the indicated time points for analysis. 

 

2.6 Treatment with pathway inhibitors 

 

2.6.1 Inhibition of mTORC1 

 

MRC5 fibroblasts were induced to senesce by X-ray irradiation with 20Gy X-ray, 

neocarzinostatin (80ng/ml) for 1 hour and H2O2 (400µM) in serum free media for 

1 hour. Following treatment, culture medium was refreshed with 100nM 
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rapamycin (Sigma, Cat. Number R8781). Etoposide treatment (50µM) was 

performed continuously every 3 days for 10 days with simultaneous 100nM 

rapamycin treatment. Cells were collected at different time points after 

treatment to kinetically understand the effect of mTORC1 inhibition on the 

development of the senescence phenotype. Replicative senescent MRC5 

fibroblasts were treated with 100nM rapamycin for 10 days before being 

harvested for analysis. Rapamycin supplemented media was always refreshed 

24h prior cells collection to avoid starvation confounding effects on mTORC1 

activity. 

 

2.6.2. Inhibition of ATM 

 

MRC5 fibroblasts at a confluency of 70-90% were irradiated with 20Gy X-ray 

and treated with 10µM of the ATM chemical inhibitor KU55933 (R&D; Cat. 

Number 3544). Control non-irradiated fibroblasts were also treated with 10µM of 

the ATM chemical inhibitor KU55933. Cells were collected at different time 

points to kinetically understand the effect of ATM inhibition on the development 

of the senescence phenotype and respective activated pathways. The ATM 

chemical inhibitor KU55933 also inhibits other PIKK proteins when used in 

higher concentrations (as described in the MSDS of the product (R&D; Cat. 

Number 3544)). We have used Ataxia Telangiectasia (AT) patient human 

fibroblasts (mutated non-functional ATM protein kinase) to confirm the results 

observed with the ATM chemical inhibitor KU55933. 

 

2.6.3 Neutralisation of CXCR1 and CXCR2 

 

Control (0Gy) or irradiated (20Gy) MRC5 fibroblasts were treated with 10ug/mL 

of neutralising antibodies against CXCR1 (BD Biosciences, Cat. Number 

555937) and/or CXCR2 (BD Biosciences, Cat. Number 555932). Replicative 

senescent MRC5 fibroblasts were treated with 10ug/mL of neutralising 

antibodies against CXCR1 and/or CXCR2. Cells were collected at different time 
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points after treatment to kinetically understand the effect of IL-8 signalling 

inhibition on the development of the senescence phenotype and respective 

activated pathways. 

 

2.6.4 Inhibition of mTORC1 plus NAC treatment 

 

Control (0Gy) or irradiated (20Gy) MRC5 fibroblasts were treated with 100nM of 

rapamycin and 2.5mM of NAC. Cells were collected 3 days after irradiation for 

ROS and DDF analysis to understand the effect of mTORC1 inhibition with 

additional antioxidant treatment on ROS and DDR suppression. 

 

2.6.5 Inhibition of ATM and mTOR 

 

Control (0Gy) or irradiated (20Gy) MRC5 fibroblasts were treated with 10µM of 

the ATM chemical inhibitor KU55933 and 100nM of rapamycin. Cells were 

collected at different time points after treatment to kinetically understand the 

effect of simultaneous inhibition ATM and mTORC1 on the development of the 

senescence phenotype and respective activated pathways. 

 

 

2.7 Knock down by small interfering RNA 

 

MRC5 cells at a population doubling (PD) level of 20-25 were transiently 

transfected with siRNAs using the HiPerFect Transfection ReagentTM (Qiagen, 

Cat. Number 301707). Cells were transfected with 10nM siRNA following the 

HiPerFect Transfection Reagent Handbook instructions. Cells were transfected 

24 hours prior to 20Gy X-radiation and harvested for analysis 72 hours after 

transfection (2 days after IR). siRNA transfection efficiency was performed by 

qPCR and/or Western Blotting. 
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Table 2.1 FlexiTube siRNAs  

FlexiTube siRNAs from Qiagen 

     

Protein siRNA Reference/Manufacturer 

scramble Negative Control siRNA SI03650325 - Qiagen 

mTOR 
Hs_FRAP1_4 FlexiTube siRNA  

Hs_FRAP1_6 FlexiTube siRNA  

SI00070462 -  Qiagen 

SI02662009 - Qiagen 

IL-8 
Hs_IL-8_5 FlexiTube siRNA  

Hs_IL-8_6 FlexiTube siRNA 

SI02654827 - Qiagen 

SI02654834 - Qiagen 

CXCR1 
Hs_CXCR1_1 FlexiTube siRNA  

Hs_CXCR1_2 FlexiTube siRNA 

SI00013258 -  Qiagen 

SI00013265 - Qiagen 

CXCR2 
Hs_CXCR2_2 FlexiTube siRNA  

Hs_CXCR2_4 FlexiTube siRNA 

SI00447083 - Qiagen 

SI00447097 - Qiagen 

 

 

 

2.8 Flow cytometry 

 

The flow cytometer (Partec, http://www.partec.com) was first calibrated using 

fluorescent beads to ensure optimum performance and reproducibility. In each 

independent experiment measurements were performed in duplicate and 1x104 

cells were analysed per measurement. 

 

2.8.1 DHE staining 

 

Dihydroethidium (DHE) is a blue fluorescent dye that when oxidised through 

binding to superoxide anions forms a red fluorescent product which intercalates 

with DNA. MRC5 fibroblasts were stained with 10µM of DHE (Invitrogen, Cat. 

http://thesaurus.com/browse/manufacturer
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Number D1168) in serum free DMEM for 30 min at 37oC in the dark. Red (FL3 

channel) median fluorescence intensity was measured by flow cytometry. 

 

2.8.2 NAO staining 

 

The fluorescent dye 10-n-nonyl-acridine orange (NAO) binds specifically to the 

negatively charged cardiolipin (diphosphatidylglycerol) in the inner mitochondrial 

membrane independently of the membrane potential and can be used to 

monitor the mitochondrial mass. MRC5 fibroblasts were stained with 10 μM of 

NAO (Invitrogen, Cat. Number A1372) in serum-free DMEM and incubated for 

10 min at 37oC in the dark. NAO (Green - FL1 channel) mean fluorescence 

intensity was measured by flow cytometry.  

 

 

2.9 Mice 

 

2.9.1 Mice Groups, Treatments and Housing 

Mice Groups and Treatments 

C57/BL6 mice were split into 4 groups (n=10/group) according to age and diet: 

1) 3 months old young mice months fed with Control diet; 2) 9.5 months old 

mice fed with Rapamycin or Control diet for 6.6 months; 3) 15 months old mice 

fed with Rapamycin or Control diet for 12 months and 4) 16 months old mice fed 

with Rapamycin or Control diet for 4 months. The different mice groups were 

matched for age and randomly assigned for the treatments. Control and 

Rapamycin diets were purchase from TestDiet - Control diet: 5LG6/122 PPM 

EUDRAGIT 3/8 #1814831 (5AS0) and Encapsulated Rapamycin diet: 5LG6/122 

PPM ENCAP RAP 3/8 #1814830 (5ARZ). Mice were fed ad libitum and 

monitored weekly.  
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PGC-1β−/− mice were generated and provided by Transgenic RAD, Discovery 

Science, Astrazeneca. .Animals were fed ad libitum on a normal chow diet (10% 

of calories derived from fat; D12450B, Research Diets). Wild-type and PGC-1β-

/- C57/BL6 mice were sacrificed at 18 months of age. Mouse liver tissues were a 

kind gift from Dr Sergio Rodriguez-Cuenca, Institute of Metabolic Science, 

Cambridge University, UK. 

Liver tumours were induced in C57/BL6 mice by IP injection of 30mg/kg N-

Nitrosodiethylamine (den) in wild-type mice. Tumour and normal liver tissues 

were a kind gift from Dr Derek Mann, Institute of Cellular Medicine, Newcastle 

University, UK. 

Mice Housing 

Animal procedures were performed in accordance with the UK Home Office 

regulations and the UK Animal Scientific Procedures Act [A(sp)A 1986]. Animals 

were housed in a temperature-controlled room with a 12-h light/dark cycle. No 

statistical method was used to predetermine sample size. No animals or 

samples were excluded from the analysis. 

 

2.9.2 Mice tissues collection and preparation 

Tissues were collected during necrospsy and fixed with either 4% formaldehyde 

aqueous solution buffered (VWR; Cat. Number 9713.9010) and paraffin 

embedding for histochemical analysis or with glutaraldehyde (Sigma, Cat. 

Number G5882) for T.E.M. (morphometric analysis). Part of the tissues were 

also frozen in liquid nitrogen and stored at -80oC for biochemical analysis. 
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2.10 Mitochondrial Functional analysis 

 

2.10.1 Mitochondrial Isolation 

 

Liver mitochondria were isolated by the method described by (Chappell et al. 

1972) in medium comprising 0.25 M sucrose, 5 mM Tris/HCl and 2 mM EGTA 

(pH 7.4 at 4 °C) (STE buffer). The crude mitochondria were purified by adapting 

the method described in (Pagliarini et al. 2008). Essentially, 0.5mL of crude 

mitochondria (about 30-40mg/mL) were carefully layered on top of a stepwise 

density gradient of 2 mL 80%, 6 mL 52%, and 6 mL 26% Percoll in a 50 mL 

centrifuge tube. The gradient was centrifuged at 41,100 g for 45 minutes in a 

Beckman Coulter Avanti® J-E centrifuge, using JA-20 rotor. Mitochondria were 

collected from the interface of the 26%-52% interface, diluted to capacity in a 2 

mL microcentrifuge tube with STE buffer, and centrifuged at 12,000g in a 

refrigerated table top centrifuge for 10 minutes. The supernatant was carefully 

discarded, and the mitochondria were washed with an additional 2 mL of STE 

and centrifuged again. The resulting pellet was re-suspended in a small volume 

of STE for functional experiments. 

 

2.10.2 Mitochondrial Oxygen Consumption analysis 

 

Mitochondrial oxygen consumption rates were measured using the Seahorse 

XF analyser (Seahorse Biosciences) based on the method described in (Rogers 

et al. 2011), with adjustment explained in the Comments to the articles 

published in PLoS online (A source of data variation in mitochondrial respiration 

measurements). The mitochondria were energized with 5mM pyruvate (Sigma; 

Cat. Number S8636) and 5mM malate (Sigma; Cat. Number M6413), and state 

3 respiration was obtained by adding 4mM ADP (Sigma; Cat.Number A2754). 
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2.11 Fluorescence staining on life cells 

 

TMRM/ Mito Tracker Green 

Dyes stock solutions 

 1µg/µL Mitotracker green (Invitrogen, Cat. Number M7514);  

 50mM TMRM (Invitrogen, Cat. Number  T668); 

 100 µg/mL Hoechst 33342 (Invitrogen, Cat. Number H3570).  

 

Dyes working solutions 

 1:1000 Mitotracker green: 1 µL in 999 µL serum free DMEM 

 1:3000 TMRM: 1 µL in 3 mL serum free DMEM 

 MitoT/TMRM plus Hoechst solution: 1 µL of TMRM working 

solution, 200 µL of Mitotracker green working solution and 30 µL of 

Hoechst (1:100) in 3 mL serum free DMEM. 

 

Mitochondrial Membrane potential (MMP) was measured using the red-

orange fluorescent dye Tetramethylrhodamine methyl ester (TMRM), 

cationic and mitochondria selective probe that can be assessed by several 

fluorescence analysis methods (including fluorescence microscopy) 

(Floryk et al. 1999). Because TMRM changes the intensity but not the 

emission spectra in response to membrane potential it is a good marker of 

mitochondrial membrane potential in combination with Mito Tracker Green, 

a marker of mitochondrial mass (TMRM/MitoT Green). Hoechst is a blue 

fluorescence dye when bound to DNA commonly used for nuclear 

counterstain. Cells seeded in coverslips (2.5x104) were washed with PBS 

and incubated with MitoT/TMRM plus Hoechst solution at 37oC for 30 

minutes. Cells were then washed once with medium and mounted on 

glass slides with ~10 µl PBS. Cells were imaged immediately on a Leica 

DM5500B microscope using a DFC360FX camera and the LASAF 
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software (Leica). Coverslips were stained one at the time and imaged for 

not longer than 20 minutes after mounting, since MitoTracker green tends 

to leak out after a while. 

 

 

2.12 Immunostainings 

 

Cells 

 

2.12.1 Immunofluorescence staining on fixed cells 

 

Fixation 

Cells grown in coverslips were fixed in 1 mL of 2% Paraformaldehyde in 

PBS (500µL of 4% formaldehyde (VWR; Cat. Number 9713.9010) plus 

500µL of PBS) for 10 minutes at room temperature. Paraformaldehyde 

was removed and cells were washed twice with PBS. 

 

Permeabilisation 

Cells were incubated for 45 minutes at room temperature with 1mL PBG-

Triton (0.2% cold water fish gelatine, 0.5% BSA and 0.5% Triton in PBS). 

 

Immunofluorescence staining 

A primary antibody (diluted in PBG –Triton) was added to the cells for 1 

hour at room temperature with gentle agitation or overnight at 4oC without 

gentle agitation. Cells were washed twice with PBG-Triton for 5 minutes. 

Cells were incubated for 45 minutes to 1 hour with fluorescein-conjugated 

secondary antibody (1/4000) diluted in PBG–Triton and then washed three 
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times with PBS for 5 minutes. Cells were stained for 10 minutes with 400μl 

of DAPI (Partec; Cat. Number 05-5001) and washed 3 times in PBS 

before mounting cells on slides using an anti-fade Vectashield mounting 

medium (Vector Lab, Cat. Number H-1000). Slides were analysed using a 

Leica DM5500B microscope and fluorescence images were captured with 

a DFC360FX camera using LASAF software (Leica). 

 

 

2.12.2 ImmunoFISH on cells (H2AX-TeloFISH) 

 

Cells grown on coverslips were fixed and -H2A.X immunofluorescence 

staining was performed as described above. After application of the 

secondary antibody, cells were washed with PBS and FISH was 

performed. 

 

FISH 

Cells were fixed for 10 minutes with 4% PFA and then washed with dH2O 

for 5 minutes twice. Cells were dehydrated with 70%, 90%, 100% ethanol 

for 3 minutes each and air dried  before denaturation for 10 minutes at 

80°C in hybridisation buffer [70% deionised formamide (Sigma), 25 mM 

MgCl2, 1 M Tris pH 7.2, 5% blocking reagent (Roche,Welwyn, UK)] 

containing 4ng/µL Cy-3 labelled telomere specific (CCCTAA) peptide 

nuclei acid probe (Panagene, Cat. Number F1002-5), followed by 

hybridisation for 2 hours at room temperature in the dark. Cells were 

washed for 10 minutes with 70% formamide in 2xSSC (17.53g of NaCl 

and 8.82g of sodium citrate in 1L of H2O, adjust pH to 7.0), following by a 

10 minutes wash in 2xSSC and a final wash in PBS for 10 minutes. Nuclei 

were stained by DAPI for 10 minutes and washed 3 times in PBS for 5 

minutes, before being mounted and imaged in a Leica DM5500B 
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fluorescence microscope. In depth Z stacking was used (a minimum of 40 

optical slices with 100× objective) followed by Huygens (SVI) 

deconvolution. Telomere-associated foci were analysed blinded by several 

analysts. 

 

Table 2.2 Primary antibodies for Immunofluorescence on cells 

Primary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

Ki67 
Human 

Mouse 

Rabbit 

polyclonal 
1:250 ab15580 - Abcam 

γ-

H2A.X(Ser139) 
Human 

Mouse 

monoclonal 
1:2000 05-636 -  Millipore 

53BP1 Human 
Rabbit 

polyclonal 
1:500 4937 - Cell signalling 

53BP1 
Human 

Mouse 

Rabbit 

polyclonal 
1:200 NB100-305 - Novus Biologicals 

MT-CO1 
Human 

Mouse 

Mouse 

monoclonal 
1:500 ab45918 - Abcam 
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Table 2.3 Secondary antibodies for Immunofluorescence on cells 

Secondary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

Anti-mouse 

Fluorescein-

conjugated secondary 

antibody AlexaFluor 

488 

Mouse Goat 1:4000 A21042 -Invitrogen  

Anti-mouse 

Fluorescein-

conjugated secondary 

antibody AlexaFluor 

594 

Mouse Goat 1:4000 A21044 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated secondary 

antibody AlexaFluor 

488 

Rabbit Goat 1:4000 A21212 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated secondary 

antibody AlexaFluor 

594 

Rabbit Goat 1:4000 A21213 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated secondary 

antibody AlexaFluor 

637 

Rabbit Goat 1:2000 A21244 - Invitrogen 
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Tissues 

 

2.12.3 Immunostainings on paraffin embedded tissues 

 

Dewax and Hydration 

 

Paraffin tissue sections of 3µm thickness were deparaffinised in Histoclear 

(National Diagnostics; Cat. Number HS-200) for 10 minutes twice and 

hydrated in graded concentration of ethanol solutions: 100% (2x 5 

minutes), 90% (5 minutes), 70% (5 minutes) and H2O (10 minutes). 

 

Antigen Retrieval  

 

Antigens were retrieved by incubation tissues sections with 0.01M citrate 

buffer pH 6.0 (29.41g of trisodium citrate in 1L of distilled water, adjust pH 

to 6.0) in the microwave: high power (800W) for 5 minutes until boiling 

followed by 10 minutes at medium power (400W). Tissues sections were 

let to cool down for 20 minutes on an ice bath. Sections were then washed 

twice in H2O for 10 minutes. 

 

Immunohistochemistry staining 

 

Protocol for rabbit primary antibodies 

Slides were incubated in blocking buffer (1:60 Normal Goat Serum 

(NGS) (Vector Lab, Cat. Number PK-6101) and 0.1% BSA in PBS) 

for 30 minutes at room temperature. Primary antibodies were applied 

overnight at 4°C and then washed for 5 minutes three times with PBS. 

Tissues sections were incubated with biotinylated anti-rabbit antibody 

(Vector Lab, Cat. Number PK-6101) diluted in blocking buffer for 30 

minutes at room temperature. Sections were washed twice for 5 

minutes in PBS and blocked for endogenous peroxidase activity with 
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0.9% H2O2 in H2O (7.5 mL of 30% H2O2 in 250mL H2O). Tissues 

were then washed 3 times in H2O for 5 minutes. Secondary 

antibodies were detected using the rabbit peroxidase ABC kit (Vector 

Lab. Cat. Number PK-4001) according to the manufacturer’s 

instructions. Substrate was developed using the NovaRed kit (Vector 

Lab, Cat. Number SK-4800) following the manufacturer’s instructions. 

Sections were counterstained with haematoxylin [5g Haematoxylin 

(Sigma, Cat. Number H3136), 300mL Glycerin (Sigma, Cat. Number 

G2289), 50g Aluminium potassium sulphate (Sigma, Cat. Number 

7210), 0.5g Sodium iodate (Sigma, Cat. Number S4007), 40mL 

glacial acetic acid (Sigma, Cat. Number 537020) in 700mL H2O] and 

washed 3 times in H2O for 5 minutes. Tissue sections were then 

dehydrated and mounted with DPX mounting medium (Thermo 

Scientific; Cat. Number LAMB-DPX). Slides were analysed using a 

NIKON ECLIPSE-E800 microscope and images were captured with a 

Leica DFC420 camera using the LAS software (Leica). 

 

Protocol for mouse primary antibodies 

Immunohistochemistry stainings using mouse antibodies on mouse 

tissues were performed using the Mouse on Mouse (M.O.M) basic kit 

(Vector Lab, Cat. Number BMK-2202) according to the 

manufacturer’s instructions. Substrate was developed using the 

NovaRed kit (Vector Lab, Cat. Number SK-4800) following the 

manufacturer’s instructions. Sections were counterstained with 

haematoxylin and washed 3 times in H2O for 5 minutes. Tissue 

sections were then dehydrated and mounted with DPX mounting 

media. Slides were analysed using a NIKON ECLIPSE-E800 

microscope and images were captured with a Leica DFC420 camera 

using the LAS software (Leica). 
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Immunofluorescence staining 

 

Protocol for rabbit primary antibodies 

Slides were incubated in blocking buffer (1:60 NGS and 0.1% BSA in 

PBS) for 30 minutes at room temperature. Primary antibodies were 

applied overnight at 4 C and then washed three times with PBS for 5 

minutes. Tissues sections were: i) incubated for 30 minutes with 

fluorescein-conjugated anti-rabbit secondary antibody diluted in 

blocking buffer or ii) incubated 30 minutes with biotinylated anti-rabbit 

antibody (Vector Lab, Cat. Number PK-6101) diluted in blocking 

buffer at room temperature, before incubation with Fluorescein Avidin 

DCS (Vector Lab, Cat. Number A-2011) diluted in PBS for 30 

minutes at room temperature. Sections were washed three times with 

PBS for 5 minutes followed by DAPI staining (nuclear counterstain) 

for 10 minutes. Tissues sections were washed 3 times in PBS for 10 

minutes, before being mounted using an anti-fade VectaShield 

mounting medium (Vector Lab; Cat. Number H-1000). Slides were 

analysed using a Leica DM5500B microscope and fluorescence 

images were captured with a DFC360FX camera using LASAF 

software (Leica). 

 

Protocol for mouse primary antibodies 

Immunofluorescence stainings using mouse antibodies on mouse 

tissues were performed using the Mouse on Mouse (M.O.M) basic kit 

(Vector Lab, Cat. Number BMK-2202) according to the 

manufacturer’s instructions. After primary antibody incubation 

sections were washed 3 times in PBS for 5 minutes, before 

incubation with fluorescein-conjugated anti-mouse secondary 

antibody diluted in diluents buffer for 30 minutes at room temperature 

Sections were washed three times with PBS for 5 minutes followed 



 Chapter 2. Material and Methods 
 

60 
 

by DAPI staining (nuclear counterstain) for 10 minutes. Tissues 

sections were washed 3 times in PBS for 10 minutes, before being 

mounted using an anti-fade VectaShield mounting medium (Vector 

Lab, Cat. Number H-1000). Slides were analysed using a Leica 

DM5500B microscope and fluorescence images were captured with 

a DFC360FX camera using the LASAF software (Leica). 

 

 

2.12.4 ImmunoFISH on tissues (H2AX-TeloFISH) 

 

Immunofluorescence staining was performed as described above. 

Following incubation with avidin–DCS (diluted to 1:500; Vector Lab) for 30 

minutes, tissue sections were washed 3 times in PBS and fixed in 4% 

formaldehyde aqueous solution buffered for 20 minutes. Tissue sections 

were then dehydrated with 70%, 90%, 100% ethanol for 3 minutes each. 

Sections were air dried and then denatured for 10 minutes at 80°C in 

hybridisation buffer [70% deionised formamide, 25 mM MgCl2, 1 M Tris pH 

7.2, 5% blocking reagent (Roche,Welwyn, UK)] containing 4ng/µL Cy-3 

labelled telomere specific (CCCTAA) peptide nuclei acid probe (Panagene, 

Cat. Number F1002-5), followed by hybridisation for 2 hours at room 

temperature in the dark. The slides were washed for 10 minutes with 70% 

formamide in 2xSSC (17.53g of NaCl and 8.82g of sodium citrate in 1L of 

H2O, adjust pH to 7.0), following by a 10 minutes wash in 2xSSC and a 

final wash in PBS for 10 minutes. Nuclei were stained by DAPI for 10 

minutes and washed 3 times in PBS for 5 minutes, before being mounted 

and imaged in a Leica DM5500B fluorescence microscope. In depth Z 

stacking was used (a minimum of 40 optical slices with 100× objective) 

followed by Huygens (SVI) deconvolution. Telomere-associated foci were 

analysed blinded by several analysts. 
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Table 2.4 Primary antibodies for Immunostainings on Mouse Tissues 

Primary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

γ-H2A.X(Ser139) 
Human 

Mouse 

Mouse 

monoclonal 
1:2000 05-636 -  Millipore 

53BP1 
Human 

Mouse 

Rabbit 

polyclonal 
1:100 4937 – Cell signalling 

4-HNE 
Human 

Mouse 

Mouse 

polyclonal 
1:50 MHN-020P – Cosmo Bio Co 

MT-CO1 
Human 

Mouse 

Mouse 

monoclonal 
1:500 ab45918 - Abcam 
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Table 2.5 Secondary antibodies for Immunostainings on Mouse Tissues 

Secondary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

Anti-mouse Fluorescein-

conjugated secondary 

antibody AlexaFluor 594 

Mouse Goat 1:4000 A21044 - Invitrogen 

Anti-rabbit Fluorescein-

conjugated secondary 

antibody AlexaFluor 488 

Rabbit Goat 1:4000 A21212 - Invitrogen 

Anti-mouse IgG 

Biotinylated 

(M.O.M. basic kit) 

Mouse Goat 1:200 
BMK-2202 – Vector 

Laboratories 

Anti-rabbit IgG Biotinylated 

(VECTASTAIN Elite ABC 

Kit) 

Rabbit Goat 1:200 PK-6101 – Vector Laboratories 

Fluorescein Avidin DCS   1:500 A-2011 - Vector Laboratories 
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2.13 Transmission electron microscopy (T.E.M.) 

 

2.13.1 T.E.M. on cells  

 

Cells were trypsinised and centrifuged for 5 minutes at 150 g. Supernatant was 

discarded and cells were washed twice with PBS, before fixation in 2% 

glutaraldehyde (Sigma, Cat. Number G5882) in 0.1M Phosphate buffer (Sigma) 

for 1 hour at 4oC in a 15mL falcon. After fixation, the cell pellet was removed 

from the tube and placed in a glass vial. Fixation continued for 1 hour at room 

temperature, followed by washes with 0.1M Phosphate buffer for 2 hours (3 

changes). Cell pellets were then post-fixed with 1% osmium tetroxide (Sigma, 

Cat. Number O5500) in the same buffer for 1 hour at room temperature, mixing 

periodically. The osmium tetroxide solution was removed and pellets were 

washed for 1 hour with 0.1M Phosphate buffer (2 changes). Cell pellets were 

then dehydrated in graded ethanol 70%, 90% for 15 minutes and then in 100% 

ethanol for 15 minutes (2 changes) and then exposed to propylene oxide 

(Sigma, Cat. Number 471968) for 10 minutes (2 changes), extra careful was 

taken in order for the pellet not to dry. Cell pellets were then embedded in 50% 

epoxy resin in propylene oxide for 1 hour. Fresh epoxy resin from the Agar 100 

resin kit (Agar Scientific, Cat. Number R1031) was added and vials were placed 

in shaker overnight. The next day, the epoxy resin was substituted for fresh one 

and the cap of the vial was removed to allow any propylene oxide still present to 

evaporate. Embedment continued for 8 more hours, before placing cell pellets 

in BEEM® embedding capsules (Ted Pella, Cat. Number 130-SPC) containing 

fresh epoxy resin. Cell pellets were then incubated at 60oC for 48 hours. 

Sections were cut, stained with uranyl acetate and lead citrate and examined 

using a transmission electron microscope in the Newcastle University EM 

facility. Randomly, 12 fields were selected and morphometrically analysed for 

mitochondria volume fraction, number and area. 
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2.13.2 T.E.M. on tissues  

 

Mouse liver tissues were fixed in 3% glutaraldehyde in 0.1M Phosphate buffer 

overnight at 4oC. Tissues were washes with 0.2M Phosphate buffer (Sigma) for 

1 hour (2 changes), before being post-fixed with 1% osmium tetroxide in 0.1M 

Phosphate buffer for 1 hour at room temperature, in a shaker. The osmium 

tetroxide solution was removed and tissues were washed for 1 hour with 0.2M 

Phosphate buffer (4 changes) in a shaker. Tissues samples were then 

dehydrated in graded ethanol of 50%, 70%, 90% for 15 minutes in each solution 

and then in 100% ethanol for 30 minutes (2 changes) and then exposed to 

propylene oxide for 30 minutes (2 changes), extra careful was taken in order for 

the tissues not to dry. Tissues were then embedded in 50%, 75% and 100% 

epoxy resin in propylene oxide for 30 minutes in each solution in a shaker. for 8 

more hours, Tissue samples were placed in BEEM® embedding capsules 

containing fresh epoxy resin from the Agar 100 resin kit (Agar Scientific, Cat. 

Number R1031) and embedment continued overnight at 37oC (during this 

period tissues are also allowed to sink to the bottom of the capsule). Tissues 

were then incubated at 60oC for 48 hours. Sections were cut, stained with 

uranyl acetate and lead citrate and examined using a transmission electron 

microscope in the Newcastle University EM facility. Randomly, 30 fields were 

selected and morphometrically analysed for mitochondria volume fraction, 

number and area. 

 

 

2.14 Senescence Associated-β galactosidase (Sen-β-gal) staining 

 

After washing with PBS, cells in coverslips were fixed with 2% formaldehyde in 

PBS for 10 minutes. Cell were then stained in the Sen-β-Gal solution (150mM 

NaCl, 2mM MgCl2, 40mM Citric Acid, 12mM NaPO3, 400 µg/mL X-gal, 

2.1mg/mL Potassium hexacyanoferrat(II)trihydrate and 1.65mg/mL Potassium 

hexacyanoferrat(III) trihydrate), pH 6.0 (human cells) or pH 5.5 (mouse cells or 



 Chapter 2. Material and Methods 
 

65 
 

tissues) for 24 hours at 37oC. Coverslips were washed two times in PBS and 

then mounted on VectaShield mounting media with DAPI (Vector Lab, Cat. 

Number H1200). Cells showing Sen-β-Gal staining (dark blue staining) and total 

number of cells (evaluated through DAPI staining) were counted in 10 randomly 

chosen fields (20x objective) per experiment using a Leica DM5500B 

microscope and images were captured with a Leica DFC420 camera using 

LASAF software (Leica). 

Mouse tissues were fixed for 24 hours in 10% buffered neutral formalin and 

washed 3 times for 10 minutes in a shaker before incubation in the Sen-β-Gal 

solution. Tissues were washed for 10 minutes 3 times and then photographed 

using a conventional camera. 

 

 

2.15 SASP analysis 

 

2.15.1 Antibody Array 

 

A Quantibody Human Cytokine Array for 20 cytokines (RayBiotech, Cat. 

Number QAH-CYT-1) was performed. Conditional media was collected prior to 

irradiation (time 0) and 3 and 10 days after irradiation (20Gy X-ray) following 

24h serum deprivation. Conditional media was then sent to RayBiotech for 

analysis using the Quantibody Human Cytokine Array. Limit of detection for this 

assay was 10 g/ml-1. 

 

2.15.2 ELISAs 

 

Concentrations of IL-6 and IL-8 in cell culture media were determined using a 

sandwich ELISA system (R&D Systems; DY206/DY208) according to the 

manufacturer’s instructions. Conditional media was collected prior to irradiation 
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(0Gy) and 10 days after irradiation (20Gy) following 24h serum deprivation. 

Limit of detection for this assay was 10 g/ml-1. 

 

 

2.16 Protein expression analysis 

 

2.16.1 Protein Extraction 

 

Protein Extraction from cells 

 

Cells were washed with ice cold PBS before being lysed with ice cold RIPA 

buffer (150 mM NaCl, 1% NP40, 0.5% NaDoC, 0.1% SDS, 50 mM Tris pH 7.4 

and 1x phosphatase and protease inhibitors cocktail (Thermo Scientific; Cat. 

Number 78442) and scrapped using a rubber policemen. Samples were 

collected into 1.5 mL microcentrifuge tubes and immediately stored at -80oC 

(alternatively samples could be immediately used for protein quantification and 

further analysis). 

 

Protein Extraction from mouse tissues 

 

Liquid nitrogen frozen tissues were powdered and kept on dry ice before adding 

300µL of RIPA buffer to 20 mg of tissue powder (remaining tissue powder was 

stored at -80oC). Samples were then homogeneised and further lysed by 

vigorous vortexing. At this stage samples were either stored at -80oC or used 

immediately for protein quantification and further analysis. 
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2.16.2 Protein quantification 

 

Cell lysates were defrosted on ice before being centrifuged for 10 minutes at 

16100g at 4oC. Protein quantification was performed using a colorimetric Bio-

Rad DC Protein Assay (Bio-Rad; Reagent A Cat. Number 500-0113, Reagent B 

Cat. Number 500-0114, Reagent S Cat. Number 500-0115) according to the 

manufacturer’s instructions. Protein Absorbance was measured on the Fluostar 

Omega plate reader (BMG Labtech) Considering protein absorbance, protein 

concentration of each sample was calculated and normalised by mixing 

adjusted volumes of protein lysate and loading buffer [950 µL of 2xLaemmli 

buffer (Bio-Rad; Cat. Number 161-0737) plus 50 µL of mercaptoethanol (Sigma; 

Cat. Number M6250). Protein denaturation was achieved by incubating samples 

at 100°C for 5 minutes. Samples were immediately placed on ice after 

denaturation. At this stage samples were either stored at -80oC or used 

immediately for western blotting. 

 

2.16.3 Western blotting 

 

Electrophoresis 

 

Acrylamide gels were prepared as following:  

1. A running gel was prepared according to the protein size of the target 

proteins being analysed (lower protein size higher the percentage of 

the acrylamide gel and vice versa) and poured into a cassette 

(Invitrogen; Cat. Number NC2015 or NC2010) (see Table 3.6 for gel 

preparation); 

2. After the running gel has polymerised, a 5% acrylamide staking gel 

was prepared, poured into the cassette and allowed to polymerizse 

(see Table 3.6 for gel preparation). 
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Table 2.6 Acrylamide gels for Western Blotting analysis 

Acrylamide gels 

     

1 Gel 10ml 5% 10% 12% 15% 

Sterile H20 6.8mL 5.1mL 4mL 3.3mL 

30% Acrylamide 

(Severn Biotech; Cat. Number 20-

2100-10) 

1.7mL 2.6mL 3.3mL 4mL 

1.5M Tris pH 8.8 

(Sigma; Cat.Number T6066) 
2.5mL 2.5mL 2.5mL 2.5mL 

10% SDS 

(Sigma; Cat.NumberL4390) 
100 µL 100 µL 100 µL 100 µL 

10% Ammonium Persulphate 

(Sigma; Cat.Number 215589) 
100 µL 100 µL 100 µL 100 µL 

TEMED 

(Sigma; Cat.Number T9281) 
8µL 4µL 4µL 4µL 

 

 

Gels were placed in a XCell SureLockTM Mini-Cell Electrophoresis System 

(Invitrogen) covered by Tris-Glycine running buffer (250µM Tris, 1.92mM 

Glycine and 0.1% SDS). Samples were loaded side by side into wells alongside 

with a Protein standard (Bio-Rad; Cat. Number 161-0374) and electrophoresis 

was performed at 120V, 35mA for 90 minutes. 
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Protein transfer to membrane 

 

Proteins were transferred from the gel to a 0.45µm polyvinylidene difluoride 

(PVDF) membrane (Millipore; Cat. Number IPVH00010). Both the membrane 

and the gel were placed between transfer pads (VWR; Cat. Number 732-0594) 

soaked in transfer buffer (250µM Tris, 1.92mM Glycine). Transfer was 

performed using the Trans-Blot® SD Semi-Dry Transfer Cell (BioRad) at 20 

volts for 1 hour. The membrane was then stained with Ponceaux solution (0.5% 

Ponceaux and 5 % Acetic Acid in H2O) for detection of protein bands. 

 

Antibody Blotting 

 

The membrane was incubated for 1 hour in blocking buffer (5% Milk in 0.05% 

PBS-Tween) at room temperature in a shaker. The membrane was then 

incubated overnight at 4oC while shaking gently with the required concentration 

of primary antibody diluted in blocking buffer (antibodies against phosphorylated 

proteins were diluted in 5% BSA in 0.05% PBS-Tween). Membrane was 

washed 3 times in sterile H2O before incubation with the secondary antibody 

diluted in blocking buffer for 1 hour at room temperature while shaking gently. 

Membranes were washed 3 times with sterile H2O followed by a 5 minutes 

wash in 0.05% PBS-Tween at room temperature while shaking gently, before 

the final wash in sterile H2O (5 times). 
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Table 2.7 Primary antibodies for Western Blotting 

Primary antibodies for Western Blotting 

     

Protein Species Host Dilution Reference/Manufacturer 

γ-H2A.X(Ser139) 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 #9718 - Cell Signalling 

p21 Human 
Rabbit 

monoclonal 
1:1000 #2947 - Cell signalling 

PGC-1β 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 ab61249 - Abcam 

NDUFB8 
Human 

Mouse 

Mouse 

monoclonal 
1:1000 ab110242 - Abcam 

UQCRC2 
Human 

Mouse 

Mouse 

monoclonal 
1:1000 ab14745 - Abcam 

MT-CO1 
Human 

Mouse 

Rabbit 

monoclonal 
1:250 ab14705 - Abcam 

MT-CO2 Human 
Mouse 

monoclonal 
1:1000 ab110258 - Abcam 

SDHA 
Human 

Mouse 

Mouse 

monoclonal 
1:1000 ab14715 - Abcam 

TOMM20 
Human 

Mice 

Mouse 

monoclonal 
1:1000 ab56783- Abcam 

VDAC1/Porin 
Human 

Mouse 

Mouse 

monoclonal 
1:1000 ab14734 - Abcam 

S6 
Human 

Mouse 

Rabbit 

monoclonal 
1:1000 #2217- Cell signalling 

S6(Ser235/236) 
Human 

Mouse 

Rabbit 

monoclonal 
1:1000 #4858- Cell signalling 

p70S6K 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 #9202 - Cell signalling 

http://thesaurus.com/browse/manufacturer
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p70S6K(Thr389) 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 #9205 - Cell signalling 

TSC2 
Human 

Mouse 

Rabbit 

monoclonal 
1:1000 #4308 - Cell signalling 

Akt 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 #9272 - Cell signalling 

p-Akt(S473) 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 #9271 - Cell signalling 

β-tubulin 
Human 

Mouse 

Rabbit 

polyclonal 
1:2000 #2146 - Cell signalling 

α-tubulin 
Human 

Mouse 

Mouse 

monoclonal 
1:2000 T9026 Sigma Aldrich 

GAPDH 
Human 

Mouse 

Rabbit 

monoclonal 
1:5000 #5174 - Cell signalling 

FLAG - Mouse 1:1000 F316- Sigma Aldrich 

FLAG - Rabbit 1:1000 F7425-Sigma Aldrich 

Atg5 
Human 

Mouse 

Rabbit 

polyclonal 
1:1000 A0856-Sigma 
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Table 2.8 Secondary antibodies for Western Blotting 

Secondary antibodies for Western Blotting 

     

Protein Species Host Dilution Reference/Manufacturer 

Goat anti-rabbit 

IgG -HRP 

conjugated 

Rabbit Goat 1:5000 A0545 - Sigma-Aldrich 

Goat anti-mouse 

IgG -HRP 

conjugated 

Mouse Goat 1:5000 A2554 - Sigma-Aldrich 

 

 

Chemiluminescence and evaluation 

 

The blot was incubated with the chemiluminescence agent ClarityTM Western 

ECL substrate (Bio-Rad; Cat. Number 170-5060) for 5 minutes. The blot was 

visualised using Fuji film Intelligent Dark box II and Image Reader Las-1000 

Software. The protein of interest was confirmed by size comparison of the 

protein bands to the Protein standard loaded during electrophoresis. ImageJ 

analysis software was used to quantify the intensity of signal on the blot. 

Intensity quantification of the protein of interest of calculated after Background 

subtraction and normalisation to a loading control (GAPDH or β-tubulin). 
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2.17 Gene expression analysis 

 

2.17.1 RNA extraction 

 

Cells were trypsinised and centrifuged at 150g for 5 minutes at 4oC. Cells were 

washed in PBS and centrifuged at 150g for 5 minutes at 4oC. The supernatant 

was discarded and cell pellets were used for RNA extraction using the RNeasy 

Mini Kit (Qiagen, Cat. Number 74106) following the instructions described on 

the RNeasy® Mini Handbook – Qiagen. Assessment of RNA quality and 

quantification was performed using the Nanodrop® 1000 spectrophotometer 

(Thermo Scientific). 

 

2.17.2 Reverse trancriptase reaction (RT-PCR) 

 

Total RNA was reverse transcribed into cDNA using the Omniscript RT Kit 

(Qiagen, Cat. Number 205110) as described on the Omniscript® Reverse 

Transcription Handbook – Qiagen.  

 

2.17.3 Real-time PCR for gene expression analysis 

 

The real-time PCR was conducted using the Power Syber® Green PRC Master 

Mix (Invitrogen, Cat. Number 4367659). The real-time PCR reaction mix 

included: 4µL of cDNA (200-800ng) plus 6µL of PCR master mix (5µL of Power 

Syber® Green PRC Master Mix, 0.2µL of 10 µM Primers and 0.8µL H2O), 

performing a 10µL final reaction volume. Each sample was run in triplicate in a 

C1000TM Thermal Cycler, CFX96TM Real-Time System (Bio-Rad) and Bio-Rad 

CXF Manager software. 
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Table 2.9 Primer sequences for cDNA real-time PCR 

Primers sequences for cDNA real-time PCR  

    

Gene Species Sequence 

PGC-1β Human 
Forward 5’ AGTCAACGGCCTTGTGTTAAG 

Reverse 5’ ACAACTTCGGCTCTGAGACTG 

PGC-1α Human 
Forward 5’ TGAGAGGGCCAAGCAAAG 

Reverse 5’ ATAAATCACACGGCGCTCTT 

IL-6 Human 
Forward 5’CAGGAGCCCAGCTATGAACT 

Reverse 5’GAAGGCAGCAGGCAACAC 

IL-8 Human 
Forward 5’GAGTGGACCACACTGCGCCA 

Reverse 5’TCCACAACCCTCTGCACCCAGT 

COX5A Human 
Forward 5’CAAAGTGTAAACCGCATGGAT 

Reverse 5’TCCAGGTAACTGTTCACACTCAA 

NDUFS8 Human 
Forward 5’GTGCAGGACCTCCTGGTG 

Reverse 5’TCTCGGGATCCTGCATGT 

ATP5G1 Human 
Forward 5’ TGCAGGGTAGTAGGAGTGCAG 

Reverse 5’ TTAGACCCCTGGTACAACAGC 

GAPDH Human 
Forward 5’AAATCCCATCACCATCTTCC 

Reverse 5’ GACTCCACGACGTACTCAGC 

CXCL1 Mouse 
Forward 5’ GACTCCAGCCACACTCCAAC 

Reverse 5’ TGACAGCGCAGCTCATTG 

IL-6 Mouse 
Forward 5’ CTACCAAACTGGATATAATCAGGA 

Reverse 5’ CCAGGTAGCTATGGTACTCCAGAA 

p16 Mouse 
Forward 5’ TTGCCCATCATCATCACCT 

Reverse 5’GGGTTTTCTTGGTGAAGTTCG 

β-actin Mouse 
Forward 5’ TAAGGCCAACCGTGAAAAG 

Reverse 5’ ACCAGAGGCATACAGGGACA 
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Thermo cycler real-time PCR conditions were the following: 

 

1. 95oC  10 minutes 

2. 95oC  15 seconds 

3. 60oC  60 seconds 

4. Repeat 39X steps 2 and 3. 

 

Primer specificity was confirmed using a dissociation step with calculation of a 

melting curve. Relative quantification of mRNA expression was determined by 

relative comparison to the levels of an internal control mRNA, usually a 

housekeeping gene (e.g. GAPDH and β-actin). To calculate mRNA expression 

we used the ΔΔC(t) method. 

 

 

2.18 Mitochondrial DNA (mtDNA) copy number analysis 

 

2.18.1 DNA extraction 

 

Cells were trypsinised and centrifuged at 150g for 5 minutes at 4oC. Cells were 

washed in PBS and centrifuged at 150g for 5 minutes at 4oC. The supernatant 

was discarded and cell pellets were used for DNA extraction using the 

DNeasy® Blood and Tissie Kit (Qiagen, Cat. Number 69504) following the 

instructions described on the DNeasy® Blood and Tissie Kit Handbook – 

Qiagen. Assessment of DNA quality and quantification was performed using the 

Nanodrop® 1000 spectrophotometer (Thermo Scientific). 
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2.18.2 Real-time PCR for mtDNA copy number analysis 

 

The real-time PCR was performed as described above (3.17.3). Relative 

expression were calculated using the ΔΔC(t) method. 

 

 

Table 2.10 Primers for mtDNA real-time PCR 

Primers sequences mtDNA real-time PCR  

    

Gene Species Sequence 

B2M human 
Forward 5’ CCAGCAGAGAATGGAAAGTCAA 

Reverse 5’ TCTCTCTCCATTCTTCAGTAAGTCAACT 

ND1 human 
Forward 5’ CCCTAAAACCCGCCACATCT 

Reverse 5’ GAGCGATGGTGAGAGCTAAGGT 

ND1 Mouse 
Forward 5’ ACACTTATTACAACCCAAGAACACAT 

Reverse 5’ TCATATTATGGCTATGGGTCAGG 

ND5 Mouse 
Forward 5’ CCACGCATTCTTCAAAGCTA 

Reverse 5’ TCGGATGTCTTGTTCGTCTG 

 

 

 

2.19 Comet Assay 

 

The comet assay was conducted under alkalin conditions according to Singh et 

al. (Singh et al. 1988). For each sample, 100 randomly captured comets from 

slides (50 cells on each of 2 comet slides) were examined at ×400 magnification 

using an epifluorescence microscope connected through a black and white 

camera to an image analysis system (Comet Assay II; Perceptive Instruments 
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Ltd., Haverhill, Suffolk, United Kingdom). Images acquired by the computerised 

image analysis system were used to compute the integrated intensity profiles 

for each cell, estimate the comet cell components, and evaluate the range of 

derived parameters. To quantify DNA damage, the tail moment (TM) was 

calculated as the product of the tail length and the fraction of DNA in the comet 

tail. A single reader, who was blind to the status of subjects, scored all slides. 

 

2.20 Statistical analyses 

 

We conducted One-Way ANOVA, two-tailed t test, linear and non-linear 

regression analysis and Gehan-Breslow test using Sigma Plot vs11.0. 

Wilcoxon-Mann-Whitney tests were conducted using IBM SPSS Statistics 19. 

 

2.21 Ethics statement 

 

All work complied with the guiding principles for the care and use of laboratory 

animals. The project was approved by the Faculty of Medical Sciences Ethical 

Review Committee, Newcastle University. Project license number 60/3864. 
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Chapter 3. Mitochondria are essential for the establishment and 

maintenance of senescence 

 

 

Previous studies have associated mitochondrial dysfunction and concomitant 

ROS production with cellular senescence (Passos et al. 2007, Passos et al. 

2010). While mitochondrial ROS have been causally implicated in the 

stabilisation of the permanent cell growth arrest, the role of mitochondria in 

cellular senescence is still largely unknown: How do mitochondria change 

following senescence stimuli? Do mitochondria themselves integrate 

senescence-inducing stimulus? Are mitochondria required to the establishment 

and maintenance of cellular senescence? 

The work performed in this chapter aimed to understand mitochondria dynamics 

in cellular senescence. Firstly, we kinetically analysed mitochondrial mass and 

ROS production following senescence stimuli. Secondly, we eliminated 

mitochondria from cells and assessed for its impact on the establishment and 

maintenance of the senescent phenotype. 

 

 

3.1. Mitochondrial content increases during senescence 

 

Persistent DNA lesions are a major trigger of cellular senescence by 

continuously signalling and activation of cyclin-dependent kinase inhibitors 

(responsible for the cycle arrest) through response pathways, together known 

as DNA damage response (DDR). In order to understand how mitochondria 

change during senescence, we kinetically analysed mitochondrial mass 

following activation of a DDR by genotoxic stress (generated by X-ray irradiation, 

Etoposide, Neocarcinostatin (NCS) and H2O2) or telomere dysfunction 
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(TRF2BM) in a variety of cells lines. In collaboration with Rhys Anderson and 

Francisco Marques in our lab, we observed that regardless of the DNA 

damaging agent, activation of a DDR invariably results in mitochondrial mass 

increase 2-4 days following genotoxic stress (Figure 3.1A). Protein expression 

analysis shows that kinetically mitochondrial proteins expression increase and 

reach a maximum between 2 and 3 days following a DDR (Figure 3.1B). These 

changes occurred in parallel with ROS generation and basal oxygen 

consumption rates (OCR). Nevertheless, when ROS (or basal OCR) are 

normalised per unit of mitochondrial mass no changes are observed upon 

induction of senescence, indicating that ROS increase during senescence is a 

result of mitochondrial mass increase (Figure 3.1C). The OCR analysis was 

performed in collaboration with Satomi Miwa in the von Zglinicki lab. Previous 

results in the lab have shown that addition of the free radical scavenger N-tert.-

butyl-alpha-phenylnitrone (PBN) and the antioxidant N-acetyl cysteine (NAC) 

significantly reduce ROS per cell but do not affect mitochondrial mass. Together, 

these observations suggest that changes in mitochondrial mass are not an 

adaptive process driven by ROS, but potentially the drivers of ROS generation 

in senescence. To further confirm that mitochondrial content increases 

downstream of a DDR we performed morphometric analysis by transmission 

electron microscopy (T.E.M) on MRC5 fibroblasts and found that mitochondrial 

volume fraction and numbers increased upon irradiation (Figure 3.1D). T.E.M 

analysis on MRC5 fibroblasts was performed by Michelle Charles in our lab. 
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Figure 3.1 | Mitochondrial content increases downstream of a DDR. (A) 

Mitochondrial mass increases 2-4 days following genotoxic stress (generated by X-ray 

irradiation, Etoposide, Neocarcinostatin (NCS), H2O2 or telomere dysfunction 

(TRF2BM) in a variety of cell lines (data are from 3 independent experiments per cell 

line or treatment); (B) (top) Representative western blots showing expression of 

mitochondrial proteins until 10 days after 20Gy (data are representative of 3 

independent experiments; (bottom) Expression of mitochondrial proteins (NDUFB8, 

SDHA, UQCRC2, TOMM20) following activation of a DDR using 20Gy in MRC5 

fibroblasts (data are representative of 3 independent experiments); (C) (top) Kinetic 

analysis of mitochondrial mass (NAO fluorescence); ROS (DHR fluorescence) and 

ROS per unit of mitochondria after activation of a DDR in MRC5 fibroblasts using 

A B C 

D 
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20Gy. Data were obtained by flow cytometry and are mean±S.E.M n=3-4 independent 

experiments; (bottom) Oxygen Consumption Rate (OCR) in moles/min per cell was 

conducted in parallel with mitochondrial mass measurements using NAO by flow 

cytometry. Data are mean±S.E.M, n=3 independent experiments; (D) (left) 

Representative electron micrographs of human young proliferating MRC5 fibroblasts 

(0Gy) and 3 days after 20Gy (senescent), mitochondria are labelled in pink; (right) 

Quantification of mitochondrial volume fraction %Vv and mitochondrial number per 

cross section (T.E.M mitochondrial analyses are mean±S.E.M of 24 electron 

micrographs per condition); Scale bar = 2µm Asterisk denotes statistical significant 

P<0.05 using two-tailed t-test.     

 

 

 

High doses of X-ray irradiation have been reported to completely abolish cell 

proliferation and induce both Sen-β-Gal activity (Passos et al. 2010) and the 

SASP (Rodier et al. 2009). In order to test the dependency of mitochondrial 

mass on the DDR, we treated MRC5 human fibroblasts with increasing doses of 

X-ray irradiation. Work done, in collaboration with Rhys Anderson in our lab, 

has shown that mitochondrial mass increases proportionally to the irradiation 

dose (Figure 3.2A) and directly correlates with DNA damage foci, induction of 

Sen-β-Gal and activation of the cyclin-dependent kinase inhibitor p21 and 

inversely correlates with the proliferation marker Ki67 (Figure 3.2B). 
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Figure 3.2 | DDR-dependent mitochondrial mass increase correlates with 

senescence markers. (A) Mitochondrial mass increases proportionally to irradiation 

dose (representative histograms of NAO fluorescence measured by flow cytometry); (B) 

Graphs showing correlation between mitochondrial mass, Senescence-associated β-

Galactosidase (Sen-β-Gal), Ki67, p21 expression (measured by western blot) and 

number of H2A.X foci. Data are mean±S.E.M of n=3 independent experiments. 
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The peroxisome proliferator-activated receptor co-activator 1 (PGC-1) family 

includes PGC-1α, PGC-1β and the PGC-1-related co-activator (PRC) 

(Puigserver et al. 1998, Andersson et al. 2001, Lin et al. 2002), well known co-

activators in the regulation of metabolic pathways. These proteins are strong 

activators of mitochondrial function including regulation of mitochondrial 

biogenesis and oxidative metabolism in a variety of tissues (Handschin et al. 

2006). We questioned if PGC-1 co-activators were increased downstream of a 

DDR activating mitochondrial biogenesis in senescence. In collaboration with 

Michelle Charles in our group, we found that an increase in the mRNA levels of 

PGC-1α and PGC-1β in irradiation-induced senescent fibroblasts (Figure 3.3), 

corroborating the observed increase in mitochondrial mass following a DDR. 

 

 

 

 

Figure 3.3 | Mitochondrial regulators PGC-1α and PGC-1β expression increases 

following a DDR. (A) mRNA expression of PGC-1α and (B) PGC-1β after 20Gy X-

radiation in MRC5 human fibroblasts; Expression was normalised to mRNA levels of 

GAPDH. Data are mean±S.E.M of n=3 independent experiments. Asterisk denotes 

statistical significant P<0.05 One-way ANOVA. 
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3.2. Mitochondria are essential for the establishment and 

maintenance of cellular senescence 

 

To definitely determine the importance of mitochondria as potential effectors in 

senescence, we sought to generate mitochondria-deficient cells. Parkin is an 

E3-ubiquitin ligase encoded by the PARK2 gene, that mediates proteasomal 

degradation of proteins (Shimura et al. 2000). When mitochondrial membrane 

potential is lost in mammalian cells, Parkin translocates to mitochondria and 

induces removal of these organelles by autophagy, in a process known as 

mitophagy. Parkin translocation from the cytosol to mitochondria is dependent 

on the PTEN-induced putative kinase 1 (PINK1) (Narendra et al. 2010). The 

exact mechanism through which Parkin interacts with PINK1 to clear 

dysfunctional mitochondria from cells is still not determined. However, it has 

been reported that Parkin mediates polyubiquitination of a subset of 

mitochondrial substrates, which may be part of the mechanism through which it 

triggers mitophagy (Chen et al. 2010, Gegg et al. 2010, Geisler et al. 2010, 

Wang et al. 2011). Moreover, Parkin has been shown to translocate and 

contribute to degradation of depolarised mitochondria following treatment with 

the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) 

(Narendra et al. 2008). In order to test the role of mitochondria in senescence, 

we generated human MRC5 fibroblasts stably transfected with YFP-Parkin. We 

induced senescence by X-ray irradiation (20Gy) in controls and YFP-expressing 

Parkin cells, treated them at day 2 with CCCP for 48h and analysed them at 

different time points after irradiation (Figure 3.4). 
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Figure 3.4 | Parkin-mediated clearance of mitochondria in irradiation-induced 

senescent fibroblasts. Scheme illustrating the experimental design: Parkin-

expressing and control MRC5 fibroblasts were irradiated with 20Gy and 2 days later 

were treated with CCCP/DMSO for 48h. Cells were harvested for senescence marker 

analysis 4, 10 and 20 days after irradiation.  

 

 

 

3.2.1. Depletion of mitochondria severely abrogates the senescent phenotype in 

human fibroblasts  

 

Elimination of mitochondria post-induction of senescence led to a remarkable 

rejuvenation of human fibroblasts. These mitochondrial-deficient cells failed to 

develop multiple senescent traits such as increased cell size, Sen-β-Gal activity 

and formation of heterochromatin foci (Figure 3.5). 
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Figure 3.5 | Mitochondrial clearance induces rejuvenation of human senescent 

fibroblast. (A) (top) Histograms illustrating cell size distributions in control and Parkin-

expressing cells 10 and 20 days after X-ray irradiation with or without CCCP pre-

B 

C 
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treatment. Dashed red line represents median cell size. At least 100 cells were 

quantified per condition; (bottom) Representative images of Parkin-expressing cells 20 

days after X-ray irradiation with or without CCCP pre-treatment; Scale bar = 50µm (B) 

(top) Representative images of Senescence associated β-Galactosidase activity (Sen-

β-Gal) 10 days after 20Gy in control and Parkin-expressing fibroblasts with or without 

CCCP treatment; Scale bar = 50µm; (bottom) Quantification of Sen-β-Gal in senescent 

control and Parkin-expressing fibroblasts with or without CCCP treatment. Data are 

mean±S.E.M of 3 independent experiments; (C) (left) Representative images of 

heterochromatin foci observed by DAPI (grey); Scale bar = 20µm; (right) Quantification 

of Senescent-associated heterochromatin foci (SAHF) in senescent control and Parkin 

expressing fibroblasts with or without CCCP treatment. Data are mean±S.E.M of 3 

independent experiments. Asterisk denotes statistical significant P<0.05 One-way 

ANOVA. 

 

The increased ROS and pro-inflammatory mediating factors secretion by 

senescent cells are traits of the senescent phenotype responsible for the 

detrimental effects of these cells on the surrounding tissues (Nelson et al. 2012, 

Acosta et al. 2013). Next, we aimed to understand how mitochondria can 

modulate these two features of senescence. 

 

 

Mitochondria depletion blocks ROS generation in senescence 

 

Mitochondria are the main source of intracellular ROS and have been correlated 

with several markers of senescence as shown previously in this chapter. Parkin-

mediated mitochondrial depletion by treatment with CCCP for 48h in human 

fibroblasts led to a dose- dependent decrease in mitochondrial mass, as well as 

ROS generation (Figure 3.6A). When using a concentration of 12.5µM of CCCP 

we could not detect any mitochondrial proteins from OXPHOS complexes I, II, 

III and IV by western blotting 10 days after irradiation (Figure 3.6B). 
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Immunostaining against the mitochondrial protein SDHA further revealed total 

absence of mitochondria in CCCP treated Parkin-expressing cells (Figure 3.6C). 

 

 

 

 

 

Figure 3.6 | Parkin-mediated mitochondrial clearance reduces ROS levels in 

human senescent fibroblasts. (A) Effect of 2 day treatment with increasing doses of 

CCCP on Mitochondrial mass (measured by NAO fluorescence) and ROS (measured 

by DHE fluorescence) 4 days after irradiation with 20Gy of Parkin-expressing and 

control MRC5 fibroblasts. Data are mean±S.E.M of 3 independent experiments; (B) 

Representative westerns blots confirming absence of proteins from different 

mitochondrial complexes: NDUFB8 (complex I), SDHA (complex II), UQCRC2 

(complex III) and MT-CO1 (complex IV) 10 days after irradiation and 6 days after 

12.5µM CCCP treatment (data are representative of 2 independent experiments); (C) 

Representative image of SDHA fluorescence of Parkin-expressing MRC5 fibroblasts 

with or without CCCP treatment (data are representative of 2 independent 

experiments); Scale bar = 20µm. Asterisk denotes statistical significant P<0.05 One-

way ANOVA. 
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Mitochondria are essential for the development of the senescence-associated 

pro-inflammatory phenotype 

 

The SASP, particularly the pro-inflammatory phenotype, has been associated 

with the deleterious effects of senescent cells on the surrounding tissue (Acosta 

et al. 2013). Elimination of mitochondria in Parkin-expressing human fibroblasts 

with CCCP treatment decreased mRNA expression and severely abrogated 

secretion of the SASP components IL-6 and IL-8 (Figure 3.7). ELISAs were 

performed in collaboration with Jodie Birch in our lab. These findings place 

mitochondria as a putative therapeutic target on strategies aiming to reduce the 

senescence-associated pro-inflammatory phenotype. 

 

 

 

 

Figure 3.7 | Depletion of mitochondria abrogates the senescence-associated 

inflammatory phenotype. (A) Levels of secreted IL-6 and IL-8 proteins (Data are 

representative of 2 independent experiments); (B) Expression of IL-6 and IL-8 mRNA in 

senescent control and Parkin-expressing fibroblasts with or without CCCP treatment 

(Data are mean±S.E.M of 3 independent experiments). Asterisk denotes statistical 

significant P<0.05 One-way ANOVA. 
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3.2.2. Absence of mitochondria in senescence rescues cell proliferation 

 

Despite the cells’ inability to rely on oxidative phosphorylation, a considerable 

percentage of them were able to resume proliferation as demonstrated by 

increased population doublings and expression of the proliferation marker Ki67 

(Figure 3.8A and 3.8B). In fact, we were able to culture human fibroblasts 

without any signs of cell death and no detectable mitochondrial proteins for at 

least a month (not shown). We also observed that depletion of mitochondria 

results in decreased expression of the cyclin-kinase inhibitors p21 and p16 in 

MRC5 fibroblasts induced to senescence with 20Gy X-radiation (Figure 3.8C).  

 

 

 

 

 

Figure 3.8 | Clearance of mitochondria rescues cell proliferation in irradiation-

induced senescent human fibroblast. (A) Representative images of Ki67 (red) with 

DAPI (blue) as a nuclear counterstain in senescent control and Parkin-expressing 

fibroblasts with or without CCCP treatment; Scale bar = 20µm; (B) (top) Quantification 
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of Ki67 in senescent control and Parkin expressing fibroblasts with or without CCCP 

treatment, (bottom) Population doublings in senescent control and Parkin-expressing 

fibroblasts with or without CCCP treatment. Data are mean±S.E.M of 3 independent 

experiments; (C) Representative western blot showing p21 and p16 expression in 

senescent control and Parkin-expressing fibroblasts with or without CCCP treatment 

(data are representative of n=2 independent experiments). Asterisk denotes statistical 

significant P<0.05 One-way ANOVA. 

 

 

3.2.3. Mitochondria depletion ameliorates the senescent phenotype in replicative 

senescence 

 

In order to test the role of mitochondria in cells where senescence had already 

been established, we cultured Parkin-expressing human fibroblasts until 

replicative senescence (evidenced by around 70% Sen-β-Gal positive cells and 

less than 0.5 Population doublings for at least 4 weeks). Replicative YFP-Parkin 

senescent MRC5 fibroblasts were treated with 12.5 µM CCCP for 48 hours 

(figure 3.9A) resulting in significantly reduced mitochondrial mass and ROS 

generation and absence of mitochondrial proteins (Figure 3.9B and 3.9C). 

Moreover, markers of senescence such as Sen-β-Gal activity, increased cell 

size and expression of p16 and p21 were significantly reduced (Figure 3.9C and 

3.9D). Contrary to X-ray induced senescence, we did not observe increased 

proliferation following mitochondrial depletion (data not shown). 
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Figure 3.9 | Mitochondria elimination ameliorates the senescent phenotype in 

replicative senescent human fibroblasts. (A) Scheme illustrating experimental 

design: Parkin-expressing MRC5 fibroblasts were cultured until replicative senescence 

and then treated with CCCP for 48h; (B) Mitochondrial mass (NAO fluorescence) and 

ROS (DHE fluorescence) with and without CCCP treatment in replicative senescent 

(RS) Parkin-expressing MRC5 fibroblasts. Data are mean±S.D. of n=2 independent 

experiments; (C) Western blots displaying expression of mitochondrial proteins from 

the different mitochondrial electron transport chain complexes, p21 and p16 with and 
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without CCCP pre-treatment in replicative senescent (RS) Parkin-expressing MRC5 

fibroblasts (data from n=1 experiment; (D) (top) Representative images of Sen-β-Gal 

and (bottom) quantification of Sen-β-Gal in replicatively senescent (RS) Parkin-

expressing cells with or without CCCP pre-treatment; Scale bar = 50µm; (E) 

Histograms illustrating cell size distributions in replicatively senescent Parkin-

expressing cells 10 days after treatment with or without CCCP pre-treatment. Dashed 

red line represents median size. At least 100 cells were quantified per condition. 

Asterisk denotes statistical significant P<0.05 One-way ANOVA. 

 

 

3.3. Depletion of mitochondria severely compromises the senescent 

phenotype in mouse fibroblasts  

 

To further extend the significance of our observations on human fibroblasts to 

other mammalian cells, we used 3T3 mouse fibroblasts expressing Parkin 

induced to senesce with 10Gy X-radiation. Similarly to MRC5 human fibroblasts, 

Parkin-expressing mouse fibroblasts (3T3) pre-treated with CCCP had reduced 

mitochondrial mass (Figure 3.10A) and virtually no detectable mitochondrial 

proteins (Figure 3.10B).The western blots showing mitochondrial proteins 

expression on Parkin-expressing 3T3 fibroblasts following CCCP treatment 

were a kind gift of Dr Stephen Tait (Institute of Cancer Sciences, Glasgow 

University, UK). Following X-ray irradiation-induced senescence these cells 

showed no ROS induction, as well as no mRNA expression of p16 and the 

SASP factors IL-6 and CXCL1 (Figure 3.10C-E). These results confirm the 

hypothesis that mitochondria are essential for development of senescence not 

only in human cells but also in other mammalian cells.  
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Figure 3.10 | Mitochondria clearance abrogates the senescent phenotype in 

senescent mouse fibroblasts. (A) Representative flow cytometry histogram of 

mitochondrial mass (NAO staining) in control and Parkin-expressing 3T3 mouse 

fibroblasts with or without treatment with the uncoupler CCCP; (B) Representative 

western blots showing expression of mitochondrial proteins CYTC and HSP60 in 

control and Parkin-expressing 3T3 mouse fibroblasts with or without 2 day treatment 

with CCCP (2 independent experiments); (C) Quantification of ROS levels (DHE 

staining) in 3T3 controls and Parkin-expressing mouse fibroblasts 4 days following 

10Gy irradiation and CCCP; (D) and (E) p16, IL-6 and CXCL1 mRNA abundance in 

3T3 controls and Parkin-expressing 3T3 mouse fibroblasts 10 days following 10Gy 

irradiation and 6 days after CCCP pre-treatment. Data are mean±S.E.M of n=3 

independent experiments. Asterisk denotes statistical significant P<0.05 One-way 

ANOVA. 

A B 

C D 

E 



 Chapter 3. Mitochondria are essential for the establishment and maintenance of senescence 
 

95 
 

3.4. Mitochondrial DNA depleted cells have diminished expression 

of senescence markers 

 

Cells depleted of mitochondrial DNA (mtDNA), or Rho 0 (0) cells, lack critical 

electron transport chain components (mitochondrial encoded) but still have few 

petit mitochondria. Rho 0 cells by presenting significantly reduced mitochondrial 

mass have largely compromised oxidative phosphorylation and rely solely on 

glycolysis for survival and replication (Chandel et al. 1999). In order to 

understand if low mitochondrial mass content would still impact on senescence, 

we irradiated Rho 0 cells and analysed for senescence markers. When 

compared to parental cells, ROS as well as DNA damage foci only increased 

marginally in Rho 0 cells 3 days after 10Gy Irradiation (Figure 3.11A). 

Furthermore, mRNA levels of the SASP factor IL-6 was significantly reduced in 

Rho 0 cells upon irradiation (Figure 3.11B). Together, these results confirm that 

reduction of mitochondrial content (not only complete elimination of 

mitochondria) impacts on senescent markers. 
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Figure 3.11 | Depletion of mtDNA alleviates the senescent phenotype in human 

cells. (A) (left) Representative flow cytometry histogram of mitochondrial mass staining 

(NAO) in parental and Rho 0 143B osteosarcoma cells and (right) quantification of 

ROS generation in parental and Rho 0 cells 3 days following 10Gy irradiation; (B) (left) 

Quantification of 53BP1 foci in parental and Rho 0 cells 3 days after 10Gy irradiation. 

Data are mean±S.E.M of n=3 independent experiments. (right) mRNA abundance of 

the SASP factor IL-6 in parental and Rho 0 cells following 10Gy irradiation. Asterisk 

denotes statistical significant P<0.05 One-way ANOVA. 
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3.5. Discussion 

 

Despite numerous studies on the impact of mitochondria and the ageing 

process none have really tested directly the necessity of mitochondria for the 

induction of senescence and development of the senescent phenotype. Several 

studies have shown that cellular senescence is characterised by mitochondrial 

dysfunction contributing to metabolic inefficiency and elevated ROS (Allen et al. 

1999, Hutter et al. 2002, Zwerschke et al. 2003, Hutter et al. 2004, Passos et al. 

2007). Increased ROS levels have been associated with replicative, stress- and 

oncogene-induced senescence (Saretzki et al. 2003, Ramsey et al. 2006, 

Passos et al. 2007, Lu et al. 2008). Furthermore, activation of the DDR, a major 

effector of senescence, by genotoxic stress or telomere uncapping (Passos et 

al. 2010), over-expression of activated RAS (Lee et al. 1999), BRAFV600E 

(Kaplon et al. 2013), p53  (Macip et al. 2003), p21 (Macip et al. 2002) and p16 

(Takahashi et al. 2006) all resulted in elevated ROS generation. In most of the 

above reported cases treatment with antioxidants, such as N-acetyl cysteine, 

was able to prevent the cell-cycle arrest supporting a causal role for ROS in the 

process. Nevertheless, non-mitochondrial sources of ROS have also been 

implicated in cellular senescence. Takahashi and colleagues, using human 

fibroblasts, connected p16 with ROS production via protein kinase Cδ signalling 

(Takahashi et al. 2006). Protein kinase Cδ has been shown to activate a non-

mitochondrial source of ROS, generated by NADPH-oxidase through 

phosphorylation of p47phox, an essential component of NADPH oxidase (Talior 

et al. 2005). Consistent with this study, NADPH oxidases have been shown to 

limit the replicative lifespan of human endothelial cells in culture via ROS 

generation (Lener et al. 2009). These observations have placed ROS as 

signalling molecules during cellular senescence (Passos et al. 2006). While 

ROS have been shown to stabilise cellular senescence, the necessity of 

mitochondria in cellular senescence remains to be determined. Here we show 

that mitochondria are required for senescence to occur and for the development 

of the senescence phenotype. 
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First, we showed that there is an increase in mitochondrial mass following DDR 

stimuli and that it correlates with markers of senescence such as increased 

Sen-β-Gal activity, number of DDF and expression of the cyclin-dependent 

kinase inhibitor p21 and absence of proliferation ability, further confirming 

previous reports in our lab (Passos et al. 2007, Passos et al. 2010). We have 

also shown that changes in mitochondrial mass are not an adaptive process 

driven by ROS, but potentially the drivers of ROS generation in senescence as 

demonstrated by: i) unaltered ROS levels following normalisation per unit of 

mitochondria and ii) treatment with the free radical scavenger PBN and the 

antioxidant NAC, where ROS were reduced but mitochondrial mass remained 

unchanged. However, we are aware of the limitations of these dyes in the 

assessment of mitochondrial ROS and mass. DHE measures cellular 

superoxide levels, but it is not mitochondrial specific (Peshavariya et al. 2007). 

Other dyes like MitoSOX, which detects superoxide directly in the mitochondrial 

matrix could have been employed (Mukhopadhyay et al. 2007). However, most 

dyes used to measure ROS are not highly specific and a combination of several 

dyes may be a better approach.  

Our data shows that mitochondrial depletion results in decreased ROS levels 

and SASP factor secretion, both of which have been implicated in the 

stabilisation and reinforcement of senescence via autocrine effects (Acosta et al. 

2008, Passos et al. 2010). We cannot yet exclude that clearance of 

mitochondria rescues senescence via its effect on ROS generation. Our group 

has previously shown that elevated ROS levels in senescent cells as a result of 

signalling through p21 feed back into DNA damage induction and further 

activate the DDR, generating a stable, self-sustaining feedback loop. (Passos et 

al. 2010). In addition, ROS scavengers or antioxidants treatments have been 

shown to rescue the senescent phenotype and in some cases facilitate re-entry 

into the cell cycle (Lee et al. 1999, Macip et al. 2002, Macip et al. 2003, Passos 

et al. 2010). In order to discriminate if ROS is a mediator of the mitochondrial-

dependent cell cycle arrest, cells lacking mitochondria should be treated with 

ROS and assessed for senescence markers. Despite the fact that mitochondrial 

ROS generation increase during senescence could still explain the 



 Chapter 3. Mitochondria are essential for the establishment and maintenance of senescence 
 

99 
 

mitochondrial impact on the induction and maintenance of senescence, it does 

not explain how mitochondrial mass increase in the first place. Another possible 

explanation why mitochondria impact in the induction and maintenance of 

senescence may be related to its effect on the SASP, particularly on the 

inflammatory phenotype. Mitochondria have been described to play a key role 

as mediators of inflammation with ROS playing a major role in host defence 

mechanisms (Tschopp 2011). Elevated ROS levels have been shown to 

activate redox-sensitive transcription factors, such as the nuclear factor-κB (NF-

κB) resulting in increased expression of pro-inflammatory factors (Gloire et al. 

2006). However, ROS-independent mechanisms have also causally implicated 

mitochondria in the induction of inflammatory responses. Mitochondria have 

been identified as key sources of Damage-associated molecular pattern 

molecules (DAMPs) (Krysko et al. 2011). Mito-DAMPs play a role in DAMP-

modulated inflammation in different disorders, such as systemic inflammatory 

response syndrome (SIRS), rheumatoid arthritis (RA), cirrhosis, cancer, and 

heart diseases as well as the aging process (Lopez-Armada et al. 2013). 

Mechanistically, Mito-DAMPs can activate Toll-like membrane receptors (TLRs) 

and cytoplasmic nucleotide-binding oligomerisation domain (NOD)-like 

receptors (NLRs) resulting in the activation of the NF-κB pro-inflammatory 

signalling (Kawai et al. 2009, Krysko et al. 2011). Nevertheless, besides being 

able to induce an inflammatory response, mitochondria can also receive signals 

from inflammatory factors. Evidence has demonstrated that NF-B is present in 

mitochondria of mammalian cells and is able to regulate expression of 

mitochondrial encoded genes (Cogswell et al. 2003). Moreover, the NF-B 

alternative pathway during myogenesis has been shown to be important for 

mitochondrial biogenesis (Bakkar et al. 2008) and to regulate expression of the 

transcription co-activator PGC-1β (a master regulator of mitochondrial 

biogenesis and function) to promote oxidative muscle metabolism (Bakkar et al. 

2012). These last observations could explain why mitochondrial mass increase 

during cellular senescence resulting in elevated ROS generation. Cellular 

energy levels are one other explanation, independent of ROS and SASP levels, 

for the impact of mitochondria in the induction of senescence. It has been 
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shown that the AMP:ATP ratio, a measure of cellular energy charge, increases 

when human fibroblasts reach replicative senescence (Wang et al. 2003, 

Zwerschke et al. 2003), and addition of exogenous AMP to the cell culture 

medium triggers premature senescence in young human fibroblasts (Zwerschke 

et al. 2003). Interestingly, it has been shown that energy failure (reduced levels 

of ATP) resulting from partial mitochondrial uncoupling may contribute to 

cellular senescence in conditions where reducing the rate of oxidative 

phosphorylation induces premature senescence without substantially increasing 

oxidative stress (Stockl et al. 2007). It might be that the reason why we observe 

a decrease in the induction of senescence using the Parkin mediated 

mitochondrial clearance system is due to loss of ATP and is not ROS 

dependent. Although, loss of ATP would impair cells’ proliferating capacity and 

would not explain our observations showing that mitochondrial clearance 

rescues cell proliferation. We hypothesise that the increase proliferation in cells 

depleted of mitochondrial following induction of senescence may be due to an 

energetic replacement from increased glycolysis. We will need to test this 

hypothesis by i) assessing ATP levels in Parkin-expressing MRC5 fibroblasts 

treated with CCCP and ii) by adding ATP or ROS to the Parkin-expressing cells 

and determine if senescence can be restored. 

We have also shown that artificial depletion of mitochondria abrogated the 

development of senescent traits such as increased cell size, Sen-β-Gal activity 

and formation of heterochromatin foci. Emerging studies have demonstrated 

that Krebs cycle intermediates can regulate the level of DNA and histone 

methylation and acetylation. The DNA demethylases and histone lysines 

include members of 2-oxoglutarate-dependent dioxygenases (2-OGDO). These 

enzymes are activated by oxygen, iron and the major Krebs cycle intermediate, 

2-oxoglutarate, whereas they are inhibited by succinate and fumarate. 

(Salminen et al. 2014). Indeed, it is not surprising that mitochondria, an 

organelle with endosymbiotic origin, can regulate gene expression in the host 

cell by modifying the epigenetic landscape of chromatin. This way, changes in 

mitochondrial metabolism during ageing could promote the epigenetic 
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reprogramming underlying the appearance of the senescent phenotype and 

degenerative diseases. 

Elimination of mitochondria rescued proliferation in fibroblasts following 

induction of senescence despite of their inability to rely on oxidative 

phosphorylation. A possible explanation relies on the fact that these cells were 

phenotypically similar to cancer cells presenting high nucleus/cytoplasm ratio 

and being able to grow in low density. Many cancer cells exhibit increased 

glycolysis rather than oxidative phosphorylation as the energy supplier. Majority 

of the pyruvate is converted to lactate, in contrast to entry into the mitochondria 

and conversion to acetyl CoA. (Warburg 1956, Moreno-Sanchez et al. 2009). 

These results suggest mitochondria are required for senescence to occur and 

their absence may contribute to a shift from an irreversible cell cycle arrest 

(senescence) to abnormal proliferation (cancer) in the presence of DNA 

damage. Supporting this hypothesis are reports describing a central role for 

mitochondria in cell proliferation and apoptosis (Antico Arciuch et al. 2012) in 

which levels of hydrogen peroxide are key regulators of the cell cycle fate: lower 

mitochondrial oxidative rates resulting in lower hydrogen peroxide release into 

the cytosol promotes cell proliferation; whereas, stress signals and traffic of pro- 

and antiapoptotic mitochondrial proteins in the intermembrane space, 

modulated by the redox condition determined by mitochondrial O₂ consumption 

and mitochondrial nitric oxide metabolism regulates apoptosis (Antico Arciuch et 

al. 2012). We have also shown that mitochondria are essential for the 

development of the senescent phenotype in fibroblasts that reached 

senescence through replicative exhaustion. Nevertheless, no rescue in cell 

proliferation was observed in replicative senescent fibroblast depleted of 

mitochondria, suggesting that mitochondria are important to restrain cells 

proliferative capacity in the very first states of the development of senescence 

as observed in irradiation-induced senescence (7-10 to develop a senescent 

phenotype) but not when senescence is fully established. Following these 

observations, the extent of mitochondrial elimination should be considered 

when placing mitochondria as a putative therapeutic target in senescence; the 

impact of mitochondrial content on the tumour-suppressive/promoting ability in a 
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cell is dependent on the “state” of cellular senescence (whilst developing or in 

the presence of a full developed senescent phenotype). 

The impact on the senescent phenotype observed as a consequence of 

mitochondrial clearance in humans cells is extended to mouse cells and cells 

harbouring petit mitochondrial (unable to perform oxidative phosphorylation) 

resulting from mtDNA depletion, indicating that mitochondrial content impact on 

cellular senescence is a broader process existing (at least) in mammalian 

organisms. 

Here we showed that the mitochondrial mass increase was accompanied by 

increased expression of the mitochondrial regulators PGC-1α and β in 

senescent cells. Experimental evidence supporting a role for these co-

transcriptional factors regulating mitochondrial biogenesis in senescence was 

performed by Francisco Marques in our lab. PGC-1-/- mouse embryonic 

fibroblasts (MEFs) presented lower mitochondrial mass, mtDNA copy number 

and mitochondrial protein expression than wild-type MEFs. Similarly to 

mitochondrial depleted human fibroblasts, mouse fibroblasts with compromised 

mitochondrial biogenesis (lower mitochondrial content) have also reduced 

expression senescence markers (DDF, p21, p16, ROS and SASP factors). 

Furthermore, when cultured at normal atmospheric (21% O2) oxygen MEFs 

acquire a senescent phenotype after a small number of passages, while when 

grown at low oxygen (3%O2) MEFs show negligible expression of senescent 

markers and divide at faster rates (Parrinello et al. 2003). We found that at 21% 

oxygen, absence of PGC-1 delayed senescence and at 3% O2 PGC-1-/- had 

higher proliferative rates when compared to wild-types. In contrast, 

overexpression of PGC-1 led to an increase in mitochondrial mass and loss of 

cell proliferation, increased Sen--Gal activity and frequencies of 53BP1 foci 

both in non-irradiated and irradiated fibroblasts. MEFs senescence has been 

associated with oxidative damage (Parrinello et al. 2003). One possibility to 

explain our observations is that PGC-1 mediated mitochondrial biogenesis 

increases oxidative stress, thereby activating a DDR and p21 and p16 mediated 

cell-cycle arrest. 



 Chapter 3. Mitochondria are essential for the establishment and maintenance of senescence 
 

103 
 

 

Further to the autocrine role of ROS and the SASP in cellular senescence, 

these two features of the senescent phenotype also impact on surrounding 

tissues by induction of paracrine senescence (Nelson et al. 2012, Acosta et al. 

2013) and stimulation of tumour progression when in a tumour context (Davalos 

et al. 2010, Costa et al. 2014). Our observations showing that decreased 

content (PGC-1-/- MEFs) or depletion of mitochondria (Parkin-expressing cell) 

in cells decreases both ROS and the SASP are of great therapeutic interest, 

since manipulation of mitochondrial content would diminish/abrogated the 

deleterious effects of senescence cells in organism. 
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Chapter 4. mTORC1 integrates DDR signalling towards 

mitochondrial biogenesis during senescence 

 

The mechanistic (previously the mammalian) target of rapamycin (mTOR) 

pathway is involved in central cellular functions including cell growth and has 

been widely implicated in the control of pathways regulating mitochondrial 

turnover such as biogenesis and mitophagy. mTOR complex 1 (mTORC1) has 

been shown to integrate inputs from growth factors, stress, energy status and 

amino-acid availability to regulate protein and lipid synthesis and autophagy all 

of which are involved in the complex pathways mediating mitochondrial 

homeostasis (Laplante et al. 2012). Regulation of cell growth (mass), 

proliferation and stress management by mTOR is tightly controlled and requires 

co-integration of this kinase in other major cellular pathways, including the DNA 

damage response to ensure that no damage is transmitted to other cells during 

proliferation (Reiling et al. 2006). DNA damaging stressors such as UV light, 

ROS (e.g. H2O2) and some carcinogens (eg. arsenide) have been reported to 

activate mTORC1. UV light stimulates S6K activity shortly after exposure (<7 

hours), being this effect of UV light over mTORC1 activity sensitive to 

rapamycin (Brenneisen et al. 2000, Ding et al. 2002, Huang et al. 2002). 

Factors involved in DDR pathways such as p38MAPK, ERK1/2, JNK and PI3K 

may also affect S6K phosphorylation via mTORC1 activation (Zhang et al. 2001) 

downstream of exposure to UV light. ROS generation in response to UV 

exposure is one possible explanation, since pre-treatment with ROS 

scavengers or antioxidants prevents S6K activation (Ding et al. 2002, Huang et 

al. 2002). Arsenide, a human carcinogen, has also been found to promote S6K1 

activation via increased H2O2 production (Jung et al. 2003). Given that mTOR is 

activated upon DNA damage and that it is a key regulator of mitochondrial 

homeostasis, we questioned whether mTOR was a mechanistic factor in the 

pathways that lead to mitochondrial mass increase following a persistent DDR 

in senescence. 



 Chapter 4. mTORC1 integrates DDR signals towards mito biogenesis during senescence 
 

105 
 

4.1. mTOR drives mitochondrial mass increase during senescence 

 

Following induction of a DDR using X-ray irradiation, we observed a progressive 

increase in phosphorylation of the mTORC1 target p70S6K starting at 6 hours 

in both human (Figure 4.1) and mouse fibroblasts (not shown).  

 

 

 

Figure 4.1 | mTOR activity increases following activation of a 

DDR. Representative western blot of mTORC1 activity measured 

by phosphorylated p70S6K (T389) from 6 to 72 hours after 20Gy 

(data are representative of 3 independent experiments).  

 

In order to understand mechanistically how mitochondrial mass content 

increases in senescence we inhibited mTORC1 with rapamycin in irradiated 

MRC5 fibroblasts. Consistent with a role for mTORC1 in DDR-dependent 

mitochondrial protein expression, expression of mitochondrial proteins 

belonging to OXPHOS complexes I, II, III and IV (NDUFB8, SDHA, UQCRC2, 

and MT-CO1) and the mitochondrial import receptor subunit TOMM20 

(Translocase of outer mitochondrial membrane 20) were significantly reduced 

by rapamycin treatment (Figure 4.2A). In collaboration with Michele Charles and 

Alina Merz in our lab, we further confirmed by morphometric analysis using 

T.E.M that mTOR inhibition by rapamycin decreases mitochondrial volume 

fraction and number in irradiated human fibroblasts (Figure 4.2B). Furthermore, 

Mitotracker Green fluorescence (marker of mitochondria) was also reduced in 

human (Figure 4.2C) and mouse (not shown) irradiated fibroblasts treated with 
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rapamycin. Rhys Anderson in our lab, have also shown that rapamycin 

treatment decreases mtDNA copy number in human (Figure 4.2D) and mouse 

fibroblasts (not shown) following induction of senescence by X-radiation. 

Similarly, in replicatively senescent cells we observed that rapamycin treatment 

greatly reduced mtDNA copy number and mass (not shown). In collaboration 

with Rhys Anderson and Francisco Marques in our lab, we aimed to test the 

robustness of our findings and screened mitochondrial mass as before (see 

Figure 3.1A) following induction of senescence with different known DDR 

activators in a variety of human and mouse cell types treated with rapamycin. In 

all cases, the increased mitochondrial mass could be partially rescued by 

rapamycin (Figure 4.1E). Together these results show that mTOR is an 

essential factor in the pathway(s) leading to mitochondrial mass increase in 

senescence.  
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Figure 4.2 | mTOR inhibition by rapamycin rescues mitochondrial mass content 

in senescence. (A) (top left) Representative western blots of mitochondrial proteins 

TOMM20, NDUFB8 (complex I), SDHA (complex II), UQCR2 (complex III) and MT-

CO1 (complex IV) following 20Gy irradiation with or without rapamycin treatment (data 

are representative of 3 independent experiments); (top right and bottom) Quantification 

of mitochondrial proteins 1 and 3 days after 20Gy in the presence or absence of 

rapamycin. Data are mean±S.E.M. of n=3 independent experiments; (B) (top) 

Representative electron micrographs of human young proliferating MRC5 fibroblasts 

(0Gy) and 3 days after 20Gy with or without rapamycin (Rap) treatment; mitochondria 

are labelled in pink; (bottom) Quantification of mitochondrial volume fraction %Vv and 

mitochondrial number per cross section (T.E.M mitochondrial analyses are 

mean±S.E.M of 24 electron micrographs per condition); Scale bar = 2µm (C) 

Representative images of human fibroblasts stained with Mitotracker green 

(mitochondrial marker) 3 days after 20Gy X-ray irradiation with and without rapamycin; 

Scale bar = 10µm; (D) mtDNA copy number analysis, by Real-Time PCR, of human 

MRC5 fibroblasts 3 days after 20Gy with or without rapamycin treatment. Data are 

mean±S.E.M of 3 independent experiments; (E) Effect of Rapamycin on mitochondrial 

mass (NAO fluorescence) 2-4 days following genotoxic stress (generated by X-ray 

irradiation, Etoposide, Neocarcinostatin (NCS), H2O2 or telomere dysfunction 

(TRF2BM) in a variety of cell lines (data are from 3 independent experiments per cell 

line or treatment). Asterisk denotes statistical significant P<0.05 One-way ANOVA. 

 

 

In collaboration with Berni Carroll in the Korolchuk lab and Francisco Marques 

in our lab, we have overexpressed a constitutively active mutated form of Rheb 

(N153T) (Urano et al. 2007). Rheb overexpression resulted in both increased 

mTORC1 activity (Figure 4.3A) and mitochondrial mass (Figure 4.3B and 4.3C)  
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Figure 4.3 | mTOR hyperactivation stimulates mitochondrial mass increase. (A) 

Representative western blot showing the effect of activated Rheb N153T on 

phosphorylation of p70S6K; (B) Overexpression of activated Rheb (pcDNA3-flag-Rheb-

N153T) increases mitochondrial mass measured by NAO fluorescence in HeLa cells. 

Data are mean±S.E.M of n=3 independent experiments; (C) (left) Representative 

western blot of the effect of activated Rheb on mitochondrial proteins TOMM20 and 

VDAC in MEFs following 10Gy irradiation, (right) Quantification of western blots 

showing expression of mitochondrial proteins TOMM20 and VDAC in controls and 

RhebN153T expressing mouse fibroblasts (2 days following 0 or 10Gy irradiation). 

Data are mean±S.E.M. of n=3 independent western blots. Asterisk denotes statistical 

significant P<0.05 One-way ANOVA. 
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4.2. mTOR-dependent mitochondrial biogenesis in senescence 

 

Experimentally, it is complex to dissect the intricate pathways by which mTOR 

regulates mitochondrial mass. Mitochondrial biogenesis is a multi-factorial 

process which involves the integration of tightly regulated transcriptional events, 

lipid membrane, protein biogenesis and assembly as well as replication of 

mtDNA (Zhu et al. 2013). Several studies indicate that mTORC1 can exert 

regulatory effects on mRNA expression of PGC-1α and β master regulators of 

mitochondrial biogenesis and function, by complex interactions with the 

transcription factors YY1 and NF-κB (Cunningham et al. 2007, Bakkar et al. 

2012). In accordance with a transcriptional regulated process, we found that 

activation of a DDR resulted in a rapamycin sensitive increase in PGC-1α and β 

mRNA abundance (Figure 4.4A) as well as downstream OXPHOS genes 

ATP5G1, COX5A and NDUFS8 (Figure 4.4B).  

 

 

 

 

Figure 4.4 | mTOR-dependent mitochondrial biogenesis in cellular senscence. (A) 

mRNA abundance of PGC-1α (right) and PGC-1β (left) and (B) mitochondrial genes 

ATP5G1, COX5A and NDUFS8 after 20Gy with or without rapamycin treatment. 

Expression was normalised to mRNA levels of GAPDH. Data are mean±S.E.M of n=3 

independent experiments. Asterisk denotes statistical significant P<0.05 One-way 

ANOVA. 
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Another mTORC1–dependent mitochondrial homeostatic regulatory mechanism 

is mitophagy, a selective type of autophagy, known to be negatively regulated 

by mTORC1 (Zhu et al. 2013). In order to investigate the impact of mitophagy 

following a DDR, we used autophagy-deficient MEFs from ATG5-/- mice (kind 

gift from Dr Viktor Korolchuk from the IAH, Newcastle University, UK). The 

autophagy-related protein 5 (Atg5) when in conjugation complex with Atg12 acts 

as an ubiquitin-protein ligase (E3)-like enzyme necessary for the formation of 

autophagic vesicles, hence ATG5-/- mice have impaired autophagy (Ohsumi 

2001). Work done by Francisco Marques and Graeme Hewitt in our lab have 

shown that while ATG5-/- MEFs experienced increased mitochondrial mass, 

ROS and DDR foci when compared to wild-type, they were still responsive to 

the effects of rapamycin supplementation (Figure 4.5). This suggested that 

mTORC1 mediated effects on mitochondrial mass after a DDR are autophagy-

independent. 
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Figure 4.5 | Autophagy-independent mTOR mediated mitochondrial mass 

increase in senescent MEFs. (A) (left) Representative images of LC3 expression 

(red) in ATG5+/+ and ATG5-/- MEFs; Scale bar = 10µm; (right) Representative western 

blot showing absence of expression of ATG5-12 in ATG5-/- MEFs; (B) Effect of 10Gy 

irradiation and rapamycin treatment on 53BP1 foci number, mitochondrial mass and 

ROS generation in ATG5+/+ and ATG5-/- MEFs. Data are mean±S.E.M. of n=3-4 

independent experiments. Asterisks denote statistical significant P<0.05 using one-way 

ANOVA. 

 

 

Together the results suggest that the mTOR-dependent mitochondrial mass 

increase in senescence occurs as a result of mitochondrial biogenesis 

programme activation via PGC1-α and β rather than impaired mitophagy. 
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4.3. mTOR-inhibition alleviates the senescent phenotype without 

rescuing cell proliferation 

 

Corroborating our previous results showing that mitochondrial clearance 

alleviates the senescent phenotype (Chapter 3), in collaboration with Rhys 

Anderson in our lab, we found that mTOR inhibition-dependent mitochondrial 

mass decrease by rapamycin was accompanied by reduced Sen-β-Gal activity 

in various models of stress-induced and replicative senescence (Figure 4.6A). 

Consistent with reports affirming a central role for a persistent DDR in the 

development of senescence and the emergence of the SASP (Rodier et al. 

2009), we found that rapamycin suppressed the senescence-associated 

secretion of several pro-inflammatory cytokines and mRNA expression of IL-6 

(Figure 4.6B) following induction of a DDR. However, despite decreasing Sen-β-

Gal and the SASP, rapamycin treatment did not rescue cell-cycle arrest in 

senescent fibroblasts (work done in collaboration with Alina Merz in our lab), 

owing these results to the potent anti-proliferative effect of mTOR inhibition 

already shown in not irradiated fibroblasts (Figure 4.6C). Consistent with our 

previous data that mTORC1 acts on mitochondrial biogenesis via PGC-1β, data 

from Francisco Marques in our lab shows that rapamycin decreases Sen-β-Gal 

in wild-type MEFs but has no effect in PGC-1β-/- MEFs (not shown). 
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Figure 4.6 | mTORC1 inhibition decreases Sen-β-Gal activity and SASP 

expression without rescuing cell proliferation in senescence. (A) (left) 

Representative images of Sen-β-Gal activity (Sen-β-Gal – cytoplasmic blue; nucleus – 

pink) with or without rapamycin treatment in MRC5 fibroblast induced senescence 

using X-ray irradiation, Etoposide, Neocarcinostatin (NCS), H2O2 and replicative 

exhaustion (RS); Scale bar = 50µm; (right) Quantification of Sen-β-Gal positive cells. 

Data are mean±S.E.M, n=10 randomly analysed fields (at least 150 cells were 
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analysed per condition); (B) (top) Secreted protein array of a variety of inflammatory 

proteins following X-ray induced senescence in MRC5 fibroblasts treated with 

rapamycin (3 and 10 days after 20Gy); Data are mean of 3 independent experiments; 

(bottom) mRNA abundance of IL-6 up to 10 days after 20Gy with or without rapamycin. 

Data are mean±S.E.M of n=3 independent experiments; (C) (left) Representative 

images of Ki67 immunostaining 3 days following X-ray irradiation with or without 

rapamycin; Scale bar = 40µm; (right) Quantification of Ki67 positive cells at 3 and 10 

days following 20Gy. Data are mean±S.E.M of n=4 independent experiments. Asterisk 

denotes statistical significant P<0.05 by two-tailed t-test or One-way ANOVA. 

 

 

4.4. mTOR-dependent mitochondrial biogenesis maintains ROS-

driven DNA damage foci (DDF) and cellular senescence 

 

A DNA damage response (DDR) is a prominent initiator of senescence and 

persistence of a DDR during senescence has been shown to be essential for 

the stability of stress-induced (Passos et al. 2010), replicative (d'Adda di 

Fagagna et al. 2003) and oncogene-induced senescence (Suram et al. 2012) 

and the development of a SASP (Rodier et al. 2009). Initially we observed that 

rapamycin supplementation immediately following X-ray irradiation had no 

impact on DNA damage repair capability up to 24 hours. However, we found a 

significant reduction of DNA breaks from 24 hours onwards in human fibroblasts 

assessed by alkaline comet assay (Figure 4.7A), and confirmed by frequencies 

of γH2AX foci (immunofluorescence staining) in human (Figure 4.7B) and 

mouse fibroblasts (not shown). γH2AX Immunofluorescence staining was 

performed by Francisco Marques in our lab. 
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Figure 4.7 | mTOR inhibition reduces DNA breaks during senescence. (A) Alkaline 

comet assay on proliferating (0Gy) or 20Gy irradiated MRC5 fibroblasts treated with or 

without rapamycin. To quantify DNA damage, the tail moment (TM) was calculated as 

the product of the tail length and the fraction of DNA in the comet tail. Data are 

Mean±S.E.M of n=3 independent experiments. (B) Kinetics of DDF (H2AX repair in 

MRC5 fibroblasts after 20Gy in the presence or absence of rapamycin. Asterisk 

denotes statistical significant P<0.05 One-way ANOVA. 

 

 

To test whether foci were driven by elevated ROS, we first knocked-down 

mTOR using siRNA (Figure 4.8A) and found that it reduced both DDF and ROS 

2 days after 20Gy (Figure 4.8B). The reduction of DDF was accompanied by 

decreased abundance of p21 protein and mRNA levels (Figure 4.8C). 

Furthermore, we supplemented cells after irradiation with both rapamycin and 

the antioxidant NAC. In collaboration with Graeme Hewitt in our lab, we found 

that NAC, rapamycin or both compounds resulted in a non-cumulative reduction 

of both DDF and ROS (Figure 4.8D). To investigate the role of mitochondrial 

biogenesis in mTORC1-dependent activation of a DDR, Francisco Marques in 
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our lab together with Berni Carrol in the Korolchuk lab, increased or decreased 

mTORC1 activity in wild-type and PGC-1-/- MEFs by overexpression of 

activated Rheb or rapamycin supplementation respectively. We observed that 

following a DDR, Rheb-dependent increase in number of DDF was suppressed 

in PGC-1-/- MEFs. Furthermore, rapamycin was unable to further decrease 

DDF in PGC-1-/- MEFs (Figure 4.8E), suggesting that mTORC1 and PGC-1 

are in the same pathway that regulate ROS-dependent DDF formation and 

activation of a DDR. 

 

Further supporting the idea that mTOR is activated downstream of a DDR 

(Reiling et al. 2006) and that ROS are major inducers of DNA damage, hence 

contributors of a persistent DDR that stabilises senescence (Passos et al. 2010), 

we found that mitochondrial deficient cells, possibly via lower ROS levels, have 

decrease mTOR activity (Figure 4.8F). Based on previous data showing 

dependence between DDR and the SASP (Rodier et al. 2009) and our own 

observations, we hypothesize that maintenance of DDR via mTOR driven 

mitochondrial biogenesis impacts on the development of cellular senescence 

and the SASP (Figure 4.8F). 
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Figure 4.8 | mTOR-dependent mitochondrial biogenesis maintains ROS-driven 

DNA damage foci (DDF) and cellular senescence. (A) Western blot showing the 

knockdown efficiency of 2 different siRNA against mTOR and its effects on p70S6K 

phosphorylation (T389) 2 days after 20Gy (data are representative of 2 independent 

experiments); (B) (left) Quantification of H2A.X and (right) ROS levels (measured by 

DHE) after mTOR knockdown 2 days after 20Gy. Data are Mean±S.E.M of n=3 
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independent experiments; (C) (top) Representative western blot showing inhibition of 

p21 protein expression with rapamycin at different time points (days) after 20Gy (data 

are representative of 3 independent experiments); (bottom) p21 mRNA levels 3 days 

after 20Gy with or without rapamycin treatment. Data are Mean±S.E.M of n=3 

independent experiments; (D) (left) Quantification of H2A.X foci and (right) ROS 

generation (measured by DHE) with or without rapamycin and the antioxidant NAC 3 

days after 20Gy. Data are Mean±S.E.M of n=3 independent experiments; (E) (top) 

Effect of overexpression of mutated Rheb (N153T) on the number of 53BP1 foci in 

wild-type and PGC-1-/- MEFs, 3 days after 0Gy or 10Gy; (bottom) Effect of Rapamycin 

on the number of 53BP1 foci in in wild-type and PGC-1-/- MEFs, 3 days after 0Gy or 

10Gy. Data are Mean±S.E.M of n=3 (at least 125 cells were analysed per condition); (F) 

(top) Representative western blots of mTOR activity in mitochondrial-depleted MRC5 

fibroblasts 10 days after 20Gy and in replicative senescence (RS). C= control and P= 

Parkin expressing cells (data are representative of 2 independent experiments); 

(bottom) Scheme representing the hypothesis that maintenance of DDR via mTOR 

driven ROS is dependent on mitochondria and contributes to the development of the 

senescent phenotype (including the SASP). Asterisk denotes statistical significant 

P<0.05 One-way ANOVA. 

 

 

4.5 The DDR induces mitochondrial biogenesis by activating ATM, 

AKT and mTORC1 phosphorylation cascades 

 

Two lines of evidence suggested that DDR could converge into the mTOR 

signalling pathway via protein kinase B (Akt/PKB) phosphorylation: Firstly, Akt 

has been shown to activate mTORC1 by directly phosphorylating the 

TSC1/TSC2 complex (Inoki et al. 2002) or by dissociation of PRAS40 from the 

essential mTORC1 component RAPTOR (Thedieck et al. 2007). Secondly, Akt 

has been shown be a direct phosphorylation target of ATM (Viniegra et al. 

2005). The serine/threonine kinase ATM is a primary sensor and transducer of 

DNA double strands breaks (DSBs). Following a DSB, ATM is activated and 

phosphorylates numerous key players of the DDR (Derheimer et al. 2010). To 
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test the relation between ATM, Akt and mTOR, we induced a DDR in human 

fibroblasts derived from mutated Ataxia Telangiectasis (AT) patients or treated 

with an ATM inhibitor. In both cases we were able to significantly reduce Akt 

(S473) and p70S6K (T389) phosphorylation induced by DDR when compared to 

controls (Figure 4.9A-C). Moreover, we observed that increased expression of 

the mitochondrial protein NDUFB8 following activation of DDR was significantly 

suppressed in both AT patient fibroblasts and in fibroblasts treated with an ATM 

inhibitor (Figure 4.9A and 4.9B). 
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Figure 4.9 | mTORC1 integrates DDR signalling towards mitochondrial 

biogenesis during cellular senescence. Representative western blots showing 

expression of phosphorylated p70S6K (T389) and AKT (S473), mitochondrial protein 

NDUFB8 and the DDR downstream target p21 in (A) normal fibroblasts and from a 

patient with AT and (B) in MRC5 human fibroblasts treated with or without the ATM 

inhibitor KU55933 at different time points after 20Gy irradiation (data are representative 

of 2 independent experiemnts); (C) Western blot showing effect of ATM inhibitor 

KU55933 on H2A.X and AKT phosphorylation and p21 expression in MRC5 human 

fibroblasts after 20Gy irradiation (1 independent experiment). 

 

Having established that ATM, AKT and mTOR are activated following a DDR, 

we aimed to test whether they would be part of the same pathway regulating 

mitochondrial content during senescence. For this purpose we treated irradiated 

fibroblasts with an ATM inhibitor and/or rapamycin and assessed for 

mitochondrial mass and its correlation with senescence markers (Figure 4.10A). 

In support of a role for ATM, AKT and mTORC1 in the same pathway that 

regulates mitochondrial mass in senescence, we observed that chemical 

inhibition of ATM and mTORC1 activity: i) reduced mitochondrial mass with no 

additive effect when both inhibitors were applied simultaneously (Figure 4.10B), 

ii) had non-synergistic effects on DDF and p21 expression (Figure 4.10C and 

4.10D) and iii) decreased Sen-β-Gal activity with no cumulative effect compared 

to single inhibitions (Figure 4.10E) (work performed in collaboration with Rhys 

Anderson in our lab). 
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Figure 4.10 | Epistatic pathway involving ATM and mTOR in mitochondrial mass 

regulation during senescence. (A) Scheme illustrating experimental design: human 

MRC5 fibroblasts were irradiated with 20Gy and treated with the ATM inhibitor 

KU55933 (ATMi) and/or Rapamycin (Rap); (B) Effect of Rapamycin and/or ATM 

inhibitor KU55933 on mitochondrial mass in human MRC5 fibroblasts 3 days after 

20Gy. Data are mean±S.E.M of n=3 independent experiments; (C) Combined inhibition 

of ATM and mTORC1 effects on p21 expression at day 10 after 20Gy X-radiation 

(western blot is representative of 3 experiments); (D) Combined inhibition of ATM and 

mTORC1 effect on H2A.X (left) and Sen-β-Gal (right) at day 10 after irradiation in 

MRC5 fibroblasts. Data are mean±S.E.M of 3 independent experiments. Asterisk 

denotes statistical significant P<0.05 One-way ANOVA. 
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4.6 Discussion 

 

Mitochondria have been widely associated with cellular senescence and ageing. 

In the previous chapter we have demonstrated that more than associated with, 

mitochondria are necessary for senescence to occur. However the exact 

mechanisms regulating mitochondrial homeostasis in senescence are still 

unclear. Uncovering the pathways that lead to mitochondrial deregulation (e.g. 

mass increase) during senescence are important for the development of 

interventions targeting mitochondria and aiming to decrease senescence “side 

effects” in the located tissues. In this chapter we have demonstrated that 

interventions that reduce the load of mitochondria in cells such as inhibition of 

mTORC1 (and ablation of PGC-1β, in collaboration with Francisco Marques in 

our lab) have a beneficial impact on the senescent phenotype by decreasing 

ROS and SASP factor secretion. Firstly, we showed that mTOR activation 

progressively increases following induction of a DDR using X-ray irradiation in 

human and mouse fibroblasts. This observation is supported by previous 

reports showing that DNA damage stressors such as UV light, ROS and some 

carcinogens can indeed activate mTORC1. (Bae et al. 1999, Brenneisen et al. 

2000, Zhang et al. 2001, Ding et al. 2002, Huang et al. 2002). Consistent with a 

role for mTORC1 in DDR-dependent mitochondrial protein expression, we 

observed that expression of mitochondrial proteins belonging to OXPHOS 

complexes and the mitochondrial import receptor subunit TOMM20 is 

significantly reduced when mTOR is inhibited by rapamycin in irradiated 

fibroblasts. In addition to mitochondrial protein expression analysis, mtDNA 

copy number and mitochondrial mass assessed by flow cytometry (NAO 

intensity), fluorescence microscopy (MitoTracker Green) and T.E.M were also 

reduced upon mTORC1 inhibition in senescent cells. On the other hand, mTOR 

hyperactivation resulting from Rheb overexpression induced an increase in 

mitochondrial content in senescence. Together these results show that mTOR 

is an essential factor in the pathway(s) leading to mitochondrial mass increase 

in senescence and are supported by the idea that mTOR plays a role in the 

complex pathways mediating mitochondrial homeostasis (Laplante et al. 2012).  
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Corroborating our previous results showing that mitochondrial clearance 

alleviates the senescent phenotype, we found that mTORC1 inhibition-

dependent mitochondrial mass decrease by rapamycin was accompanied by 

reduced Sen-β-Gal activity and SASP factor secretion (particularly inflammation 

mediating factors) in senescence, consistent with the reported 

immunossupressive effects of rapamycin (Abraham et al. 1996). There are 

several possible explanations our observations. Sen-β-gal is thought to be a 

result of increased β-galactosidase activity coming from higher lysosomal 

activity demands during senescence (Kurz et al. 2000). It was suggested that 

senescence is accompanied by lysosomal changes including increased size 

and number (Robbins et al. 1970, Lee et al. 2006) which attempt to deal with 

increased molecular damage. Increased molecular damage in senescence has 

been associated with elevated levels of ROS and oxidative damage (Sitte et al. 

2001, Passos et al. 2007, Ahmed et al. 2010), which stimulate degradation 

mechanisms, namely lysosomal degradation. This way mTOR inhibition, by 

decreasing mitochondrial content and subsequent ROS formation, may 

decrease oxidative damage and reduce demands for lysosomal degradation 

during senescence. Alternatively, it has been shown that expression of the 

GLB1 gene, which encodes β-galactosidase, is increased in senescent cells 

(Kurz et al. 2000), thus it might be that by downregulating protein translation, 

mTORC1 inhibition also decreases expression of β-galactosidase. Regarding 

the effect of mTORC1 inhibition on the SASP, it could be that an mTORC1 

inhibition-dependent mitochondrial mass decrease would result in lower ATP 

levels compromising mTORC1 activity with decreased SASP translation. 

However, our results show that inhibition of mTORC1 activity also impacts on 

the mRNA levels of SASP factors. Consistent with our results are reports 

showing that rapamycin affects transcriptional programs controlling proliferative 

and inflammatory properties in smooth muscle cells (Zohlnhofer et al. 2004). 

Nevertheless, reduced transcriptional activity could still be a consequence of 

the loss of S6K mediated protein translation (downstream of mTORC1 inhibition) 

resulting in translation downregulation of major transcriptional regulators. 

Mechanisms independent of mitochondria have also been implicated in the 
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activation of inflammatory pathways. It has been shown that activation of mTOR 

downstream of Akt regulates NF-B activity in PTEN-null/inactive prostate 

cancer cells via interaction with and stimulation of IKK (Dan et al. 2008), which 

may also explain the control of mTOR over the SASP, particularly the pro-

inflammatory phenotype. 

 A DNA damage response (DDR) is the most prominent initiator of senescence 

and persistence of a DDR during senescence has been shown to be essential 

for the stability of stress-induced (Passos et al. 2010), replicative (d'Adda di 

Fagagna et al. 2003) and oncogene-induced senescence (Suram et al. 2012) 

and the development of a SASP (Rodier et al. 2009). mTOR downregulation 

impacted on ROS-driven DDF, while overexpression of mutated Rheb resulted 

in increased number of DDF in senescent cells, further supporting the role of 

mTOR in ROS generation following a DDR. In this context we have shown that: 

i) mTOR regulates mitochondrial content in senescence and concomitant 

mitochondrial-ROS production; ii) mitochondrial-ROS are an important 

generator of DNA damage during senescence; iii) both mitochondrial (Chapter 3) 

and mTOR (possibly via mitochondria) regulate the SASP and iv) mitochondria, 

possibly via ROS levels and consequent impact on the DDR, regulate mTOR 

activity. Our findings are consistent with a model by which mTOR signalling 

impacts on mitochondria content and by doing so, affects the persistence of a 

DDR and the development of the SASP. We have assumed that mitochondrial 

ROS induces DNA damage and activates a DDR that stabilises senescence. 

However, ROS has been shown to impact on mechanisms leading to 

senescence independently of the DDR. Several studies have reported that ROS 

can activate directly p53, p38MAPK and NF-B activity (Gloire et al. 2006, Liu 

et al. 2008, Wang et al. 2011). Additionally, ROS can activate ATM 

independently of DNA damage (Ditch et al. 2012). It may be that ROS impact 

on the stabilisation of cellular senescence involves regulation of pathways other 

than the positive feedback loop that we have previously reported (Passos et al. 

2010), and that integration of not one but several pathways ensure stabilisation 

of the permanent cell cycle arrest. We can also not exclude direct modes of 

interaction between mTORC1 and targets of the DDR such as p53, 
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independently of mitochondria (Lee et al. 2007, Lai et al. 2010). However, while 

these studies report dynamic interactions between the mTOR and p53 

pathways very shortly after a DDR, they do not explain how the cell-cycle arrest 

is maintained and contributes to the development of senescence which is a 

lengthier process usually taking between 7-10 days post-DDR (Coppé et al. 

2008). Regarding the inhibitory effect of mitochondrial depletion on mTORC1 

activity it could also be that a possible loss of ATP (we still don’t know if 

mitochondrial depleted cells have lower ATP levels) compromises mTORC1 

activity. To exclude ROS-independent effects of mitochondria on mTOR via 

energy levels (ATP) or other direct interaction we would need to perform further 

experiments including supplementation of ATP to mitochondria depleted cells 

and assess for mTORC1 activity and senescence markers. 

mTOR is a master regulator of pathways controlling mitochondrial turnover such 

as biogenesis and mitophagy (Laplante et al. 2012). Mitochondrial biogenesis is 

a multi-factorial process which involves the integration of tightly regulated 

transcriptional events, including lipid membrane and protein biogenesis and 

assembly as well as replication of mtDNA (Zhu et al. 2013). mTORC1 has been 

shown to exert regulatory effects on the mRNA expression of PGC-1α and β 

master regulators of mitochondrial biogenesis and function, by complex 

interactions with the transcription factors YY1 and NF-κB (Cunningham et al. 

2007, Bakkar et al. 2012). In accordance with a transcriptionally regulated 

process, we found that mTORC1 regulates PGC-1α and β mRNA expression 

following activation of a DDR as well as downstream OXPHOS genes. 

mTORC1 has also been implicated in mitochondria homeostasis via mitophagy, 

a selective type of autophagy, known to be negatively regulated by mTORC1 

(Zhu et al. 2013). However, contrary to what was expected, mTORC1 mediated 

effects on mitochondrial mass after a DDR seem to be autophagy-independent, 

at least in the early time points of the development of the senescent phenotype. 

However, we do not discard the hypothesis that autophagy may be impaired 

later on when senescence is fully established and may contribute to its 

maintenance. The impact of autophagy in cellular senescence remains poorly 

defined. A number of reports have provided indirect or circumstantial evidence 
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for the induction of autophagy and senescence (Gewirtz 2013). Young et al. 

have shown that induction of autophagy promotes fibroblast entry into 

senescence (Young et al. 2009). While, Kang et al. has reported that autophagy 

impairment induces premature senescence through a ROS- and p53-dependent 

manner, possibly via mitochondrial dysfunction in primary human fibroblasts 

(Kang et al. 2011). The studies on autophagy and senescence are contradictory 

and further studies are necessary to clarify the role of autophagy and mitophagy 

during senescence. 

Regulation of cell growth (mass), proliferation and stress management by 

mTOR is tightly controlled and requires co-integration of this kinase in other 

major cellular pathways, including the DNA damage response (Reiling et al. 

2006). Here, we report that mechanistically, the mTOR-dependent 

mitochondrial mass increase in senescence follows activation of the DDR 

proteins ATM and AKT. ATM is involved in a wide spectrum of biological 

processes including cell cycle control, genome stability, apoptosis and response 

to genotoxic stress (Shiloh 2003). Beside phosphorylating numerous key 

players of the DDR (Derheimer et al. 2010), ATM has also been shown to 

directly phosphorylate Akt (Viniegra et al. 2005) a serine/threonine kinase that 

has been implicated in pathways related to survival by inhibition of apoptotic 

signals and promotion of cell cycle progression (Nicholson et al. 2002). Despite 

not having chemically or genetically interfered with Akt to assess mTORC1 

activity, we have indirect evidence via ATM inhibition that lower Akt 

phosphorylation correlates with reduced phosphorylation of p70-S6K. Further 

supporting our results, Akt has been shown to activate mTORC1 by directly 

phosphorylating the TSC1/TSC2 complex (Inoki et al. 2002) or by dissociation 

of PRAS40 from the essential mTORC1 component RAPTOR (Thedieck et al. 

2007). Performing double chemical inhibition of ATM and mTORC1 we found 

that these two kinases are part of an epistatic pathway regulating mitochondrial 

mass in senescence. 

In summary, our data suggest that ATM, Akt and mTOR phosphorylation 

cascades downstream of a DDR promote mitochondrial biogenesis and 
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mitochondrial-ROS production that contributes to a persistent DDR that keeps 

cells locked in the cell cycle.  
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Chapter 5. mTORC1-PGC-1β regulate mitochondrial content 

and contribute to senescence in vivo 

 

 

In the previous chapters we have demonstrated that mitochondrial mass 

increase is necessary to senescence to occur in a process co-regulated by 

mTORC1 and the mitochondrial regulator PGC-1β. In this chapter, we 

hypothesised that the mitochondrial mass increased observed during cellular 

senescence in vitro is also a feature of cellular ageing in vivo.  

 

5.1 Mitochondrial mass increase with age in vivo 

 

In order to understand if in vivo cellular ageing is accompanied by an mTORC1-

PGC-1β dependent mitochondria mass increase, we analysed mouse liver 

samples from young (3 months) and old (12 months) animals. Similarly to our 

observations in vitro, in collaboration with Dr Viktor Korolchuk (IAH-Newcastle 

University), we found an age-dependent increase in mTORC1 activity 

(measured by p-S6/S6 ratio) associated with increased p21, PGC-1β and 

OXPHOS components in wild-type mice (Figure 5.1A). Furthermore, we also 

found that a mouse hepatocyte cell line (MIH) cultured in vitro also experienced 

increased mitochondrial mass and ROS generation after activation of a DDR 

and that this increase could be partially suppressed by the mTORC1 inhibitor 

rapamycin (Figure 5.1B). 
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Figure 5.1 | Mitochondrial mass increase with age in mouse liver tissues. (A) (left) 

Representative westerns of pS6, S6, p21, PGC-1β, MT-CO1 and NDUFB8 proteins in 

mouse livers at 3 and 12 months of age (n=3 mice per group); (top right and bottom) 

Quantification of pS6/S6, p21, PGC-1β, MT-CO1, and NDUFB8 protein expression in 

liver tissue from wild-type C57BL/6 mice at 3 and 12 months of age. Data are 

mean±S.E.M n=3 mice per group; (B) Mitochondrial mass and ROS (measured by 

NAO and DHE fluorescence respectively) quantifications of in vitro cultured mouse 

hepatocytes (MIH) 3 days after 10Gy irradiation treated with or without rapamycin. Data 

are mean±S.E.M n=3 independent experiments. Asterisks denote statistical 

significance P<0.05 using two-tailed t-test and one-way ANOVA. 
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5.2 Mitochondrial mass increase with age positively correlates with 

DNA damage in vivo 

 

Following the observation that expression of the DDR effector p21 and 

mitochondrial proteins are simultaneously increased with age in mouse livers, 

we aimed to understand the correlation between mitochondrial content and 

DNA damage in vivo. For this purpose, we performed dual immunofluorescence 

staining against the mitochondrial protein MT-CO1 (a marker of mitochondrial 

content) and H2A.X (a marker of DNA damage) in livers from 12 month old 

mice. We found that hepatocytes containing more MT-CO1 intensity had in 

general higher number of H2A.X foci (Figure 5.2A and 5.2B), indicating a 

positive correlation between mitochondrial mass increase and DNA damage in 

vivo. 

 

 

 

 

Figure 5.2 | Mitochondrial content correlates with DNA damage foci in vivo. (A) 

Representative image of double staining for the mitochondrial protein MT-CO1 and 

H2A.X; Scale bar = 10µm; (B) Quantification of MT-CO1 intensity vs number of 

H2A.X foci in hepatocytes from 12 months old mice (n=3 mice were analysed). 

Asterisks denote statistical significance P<0.05 using one-way ANOVA. 
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5.3 Age-dependent mTORC1 upregulation promotes mitochondrial 

biogenesis in vivo 

 

In order to test the impact of mTORC1 inhibition on mitochondrial mass in vivo, 

mice were fed with rapamycin using the same conditions as Harrison et al. 2009 

(Harrison et al. 2009) and sacrificed at different ages (Figure 5.3).  

 

 

 

 

Figure 5.3 | Rapamycin diet study: experimental design. (A) Scheme 

representative of mice experiments invoving rapamycin diet supplementation; (B) 

Representative western blot of the expression of pS6 and S6 in 16 months old mice 

liver with or without 4 months rapamycin supplementation. 

 

Further investigating the impact of rapamycin on mitochondrial content, Rhys 

Anderson in our lab found that rapamycin prevented the age-dependent 

increase in mtDNA (Figure 5.4A). We also found, through mitochondrial 

morphometric analysis using T.E.M, lower mitochondrial volume fraction and 

mitochondrial numbers per cross-section in rapamycin-supplemented animals 

when compared to controls (Figure 5.4B). In order to investigate the role of 
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mTORC1 on mitochondrial activity in vivo, in collaboration with Satomi Miwa in 

the von Zglinicki lab, we performed Seahorse XF24 analysis of mitochondrial 

function in liver tissues from control and rapamycin supplemented animals. We 

found no significant changes in mitochondrial function. State III (ADP-

stimulated), state IV and respiration uncoupled from ATP synthesis (using 

uncoupler FCCP) remained unchanged using pyruvate/malate as substrates 

(Figure 5.4C). Supporting a role for mTORC1 in the regulation of mitochondrial 

biogenesis in vivo, in collaboration with Dr Viktor Korolchuk (IAH-Newcastle 

University), we observed that rapamycin treated animals have decreased 

expression of PGC-1β (Figure 5.4D). Together these observations suggest that 

increased mTORC1 activity with age promotes mitochondrial mass increase via 

the mitochondrial regulator PGC-1β. 
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Figure 5.4 | mTORC1 regulate mitochondrial content in vivo. (A) mtDNA copy 

number by qPCR at 3, 12, 16 months and at 16 months after 4 months rapamycin 

treatment. Data are mean±S.E.M of n=3-4 mice per group; (B) (top) Representative 

electron micrographs of hepatocytes from 16 months old mice with or without 4 months 

rapamycin diet, mitochondria are labelled in pink; Scale bar = 5µm; (bottom) 

Quantification of mitochondrial volume fraction %Vv and mitochondrial number per 

cross section (T.E.M mitochondrial analyses are mean±S.E.M of n=3 mice per group; > 

16 electron micrographs (cells) were analysed per mouse); (C) Oxygen consumption 

rates (OCR) in liver mitochondria, from 16 months old mice with or without 4 months 

rapamycin diet, in the presence of pyruvate/malate. Data are mean ± S.E.M of n = 5 

mice per group). State III was induced by injection of ADP. State IV was induced by 

inhibition of the ATP synthase with oligomycin and uncoupled respiration rates were 
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determined by injection of CCCP. Antimycin A (AA) was used to determine background, 

non-mitochondrial OXPHOS, OCR; (D) (left) PGC-1β expression in 16 months old mice 

fed with of rapamycin supplemented diet  for 4 months (n=3 mice per group); (right) 

Quantification of PGC-1β expression in 16 months old mice fed with of rapamycin 

supplemented diet  for 4 months. Data are mean±S.E.M n=3 mice per group. Asterisks 

denote statistical significance P<0.05 using two-tailed t-test and one-way ANOVA.

  

 

 

5.4 mTORC1 inhibition reduces senescence markers in vivo 

 

5.4.1 mTORC1 inhibition prevents Telomere-associated foci (TAF) in vivo 

 

A recent report in our lab has shown that Telomere-associated foci (TAF), one 

of the important effectors of cellular senescence, increase in mice tissues with 

age (Hewitt et al. 2012). In order to test if mTORC1 inhibition impact on 

Telomeres-associated senescence in vivo we analysed mouse liver tissues of 

rapamycin treated mice as described previously (see Figure 5.3), and found that 

rapamycin was able to prevent the age-dependent increase in TAF. 

Interestingly, the 4 months rapamycin supplemented diet was as effective in 

preventing TAF formation as 12 months treatment (Figures 5.5A). TAF could 

not be attributed to changes in telomere length (Figures 5.5B) or telomerase 

activity (not shown). These results together with the fact that mitochondria 

increase with age positively correlates with DDF and p21 expression, suggests 

that mitochondrial mass increase (via mTORC1 upregulation) is a promoter of 

senescence associated DNA damage in vivo. 
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Figure 5.5 | mTORC1 inhibition prevents TAF formation in liver mouse tissues 

during ageing. (A) (top) Representative immunoFISH images of hepatocytes from 3 

and 15 old mice with or without rapamycin diet. Co-localising foci are amplified in the 

right panel (amplified images are from single Z-planes where co-localisation was found); 

(bottom) Dot plot of Telomere-associated foci in 3, 9.5, 15 and 16 months old control 

mice. 9.5, 15 and 16 months old mice were fed with rapamycin for 6.5, 12 and 4 

months respectively. Quantification of TAF was done in collaboration with other lab 

colleagues (Rhys Anderson, Graeme Hewitt and Francisco Marques) to ensure 

unbiased analysis; at least 50 cells were analysed per mice. Data are mean ± S.E.M of 

n=3-9 mice per group. Asterisks denote statistical significance P<0.05 using one-way 

ANOVA. (B) (left) Representative image of mouse hepatocyte stained for H2A.X and 

telomere-FISH. Two telomeres of equal intensity are shown (a and b), one co-localising 

with H2A.X and the other not; (right) Histograms showing telomere intensity for 

telomeres co-localising (TAF) or not co-localising (non-TAF) with DNA damage foci in 

liver from 16 months old mice with or without 4 months rapamycin treatment (n=4); red 

dotted line represents median intensity. Mann-Whitney test shows no significant 

difference in the telomere intensities distribution between TAF and non-TAF. Intensity 

of 1000 telomeres was analysed per condition. 

 

 

5.4.2 mTORC1 inhibition reduces Sen-β-Gal activity, p21 and SASP factors 

expression in vivo 

 

Consistent with a role for mTORC1 in senescence, we found decreased Sen-β-

Gal (Figure 5.6A) and mRNA expression of components of the SASP (Figure 

5.6B) in the liver of rapamycin fed animals. In collaboration with Rhys Anderson 

in our lab also, we found that Sen-β-Gal positive hepatocytes were generally 

positive for TAF (Figure 5.6C). Further supporting a role for mTORC1 in 

suppressing the DDR in senescence, we found decreased expression of p21 in 

rapamycin fed mice (Figure 5.6D). 
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Figure 5.6 | mTORC1 inhibition reduces senescence markers in vivo. (A) 4 months 

old and 15 months old mice livers [control (-) or rapamycin (+)] stained with Sen-β-Gal 

solution (n=3 mice per group), (B) Dot plots of mRNA expression of the SASP 

components CXCL1, CXCL5 and Inhibin A (normalised to 18S) in livers of 15 months 

old mice fed with rapamycin for 12 months (n=5 mice per group). Data are mean of n=5 

mice per group. Asterisks denote statistical significance P<0.05 using two-tailed t-test; 

(C) Representative image showing Sen-β-Gal staining in hepatocytes (scale bar=10µm) 

and corresponding ImmunoFISH (arrows represent co-localising foci - TAF); (D) 

Representative western blot showing effect of 4 months rapamycin feeding on p21 

expression in 16 months old mice (data are representative of n=3 mice per group). 
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5.5 PGC-1β deficiency diminishes senescence markers in vivo 

 

In order to test in vivo if expression of PGC-1β would have an impact on 

telomere-associated DNA damage, we analysed liver samples from aged PGC-

1β-/- mice. These mice have decreased expression of mitochondrial proteins and 

decreased mtDNA copy number in liver tissues (Figure 5.7A). Consistent with 

our hypothesis that mitochondrial content impact on the DDR and our data 

revealing a role for PGC-1β in senescence in vitro, PGC-1β-/- mice show 

decreased numbers of TAF (Figure 5.7B). Antonio Vidal-Puig in the Rodriguez-

Cuenca Lab (University of Cambridge) has observed (and kindly shared with us) 

that PGC-1β-/- mice show lower energy expenditure than wild-type litter-mates 

and absence of PGC-1β ameliorates age-dependent decline in glucose and 

insulin tolerance (unpublished). Altogether, these results support a causal link 

between the DDR, mTOR and mitochondria in the development of senescence 

in vivo. 

 

 

 

Figure 5.7 | PGC-1β deficiency reduces senescence markers in vivo. (A) (left) 

Quantification of the mitochondrial protein SDHA in wild-type and PGC-1β-/- mice. Data 

are mean ± S.E.M of n = 5 per group; (right) mtDNA copy number comparison between 

wild-type and PGC-1β-/- mice at 7 months of age. Data are mean±S.E.M n=4 mice per 

group; (B) Mean number of Telomere-associated foci (TAF) at 18 months of age in 

PGC-1β-/- when compared to age-matched wild–type mice. Data are mean ± S.E.M of n 

= 4 per group. Asterisks denote statistical significance P<0.05 using two-tailed t-test. 

A B 
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5.6 Mitochondrial mass increase may be a tumour-suppressor factor 

and promoter of senescence in vivo 

 

To test the hypothesis that mitochondrial mass increase stabilises the 

senescent arrest and helps maintain tumour suppression, in collaboration with 

Derek Mann’s lab (Institute of Cellular Medicine-Newcastle University), we 

induced liver cancer in mice by intraperitoneal (IP) injection of N-

Nitrosodiethylamine (den) in wild-type mice. Dissection of tumour vs. adjacent 

non-tumour tissue revealed that liver tumours had significantly lower mtDNA 

copy number (Figure 5.8A), reduced expression of PGC-1β and mitochondrial 

proteins SDHA and MT-CO1 (Figure 5.8B and 5.8C). Strikingly, we found that 

the lipid peroxidation marker 4-HNE intensity was markedly reduced in tumour 

regions as were H2A.X foci (Figure 5.8D and 5.8E). These observations 

suggest that mitochondria might be a tumour-suppressor factor and promoter of 

senescence in vivo. 
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Figure 5.8 | Mitochondrial mass is decreased in mouse liver tumours. 

Diethylnitrosamine (den) induced liver tumours were dissected and analysed for: (A) 

mtDNA copy number by qPRC. Data are mean±S.E.M n=3 mice (tumour and non-

tumour) per group and (B) Expression of mitochondrial protein SDHA and PGC-1β 

measured in tumour and adjacent non-tumour tissue (n=5 mice per group); C) 

Histograms show MT-CO1 fluorescence intensity (by immunofluorescence staining) 

comparison between tumour and adjacent non-tumour tissue (n=2 mice were analysed; 

50 cells per area); D) Quantification of number of H2A.X per hepatocyte in tumour and 

adjacent non-tumour regions. Data are mean ± S.E.M of n=3 mice per group; (E) 

Representative image of the lipid peroxidation marker 4-HNE staining in tumour and 

non-tumour regions (data is representative of n=3 mice); Scale bar = 50µm. Asterisks 

denote statistical significance P<0.05 using two-tailed t-test. 
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5.7 Discussion 

 

The role of mitochondria in animal physiology has been the subject of extensive 

investigation with mitochondrial dysfunction being considered a major hallmark 

of ageing, underlining the significance of appropriate mitochondrial activity for 

survival (López-Otín et al. 2013). A rigorous regulation of mitochondrial mass, 

distribution and activity is fundamental for cellular homeostasis and 

maintenance. Mitochondrial dynamics during ageing are subject of controversy. 

What was initially proposed in the MTA has been later questioned, with several 

reports suggesting an inverse relationship between mitochondrial biogenesis 

and ageing. It has been shown that mitochondrial density in skeletal muscle 

gradually declines during age (Crane et al. 2010), suggesting a decrease in 

mitochondrial biogenesis possibly via an age-dependent reduction in levels of 

PGC-1α (Wenz et al. 2009). Additionally, studies on mitochondrial-myopathy 

mouse models have suggested that a compensatory mitochondrial mass 

increase is beneficial by partly compensating for the reduced function of the 

respiratory chain and maintaining overall ATP production in skeletal muscle 

(Wredenberg et al. 2002) However, what seems to be beneficial in skeletal 

muscle may be detrimental in other tissues. The same group has later reported 

that mitochondrial mass increase in heart muscle of the same mouse model 

may contribute to aggravate heart failure progression (Hansson et al. 2004). 

Furthermore, mice studies addressing the role of oxidative damage on ageing 

have proven to be inconclusive. While heterozygous deletion of the 

mitochondrial superoxide dismutase, an enzyme able to convert superoxide 

anion into hydrogen peroxide and water, showed that increased oxidative stress 

does not accelerate ageing in mice (Van Remmen et al. 2003), another study 

showed that overexpression of catalase targeted to mitochondria increased 

lifespan in mice (Schriner et al. 2005). Additionally, interventions promoting 

longevity, namely CR and sirtuin activators, have been linked with increased 

mitochondrial biogenesis (Baur et al. 2006, Lopez-Lluch et al. 2006). 
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In previous chapters we have demonstrated that mitochondrial mass increases 

in senescence via a process co-regulated by mTORC1 and the mitochondrial 

regulator PGC-1β. Therefore we hypothesised that the mitochondrial mass 

increase observed during cellular senescence in vitro could also be a feature of 

cellular ageing in vivo. Here we show that in vivo cellular ageing is 

accompanied by an mTORC1-PGC-1β dependent mitochondrial mass increase. 

Our results demonstrate that there is an age-dependent increase in mTORC1 

activity associated with increased expression of p21, PGC-1β and OXPHOS 

components in wild-type mice. We have shown that age-dependent mTORC1 

hyperactivation promotes mitochondrial biogenesis in vivo. Mice fed with a 

rapamycin supplemented diet (Harrison et al. 2009) have lower mitochondrial 

content shown by decreased mtDNA copy number, mitochondrial volume 

fraction and numbers per cross section (T.E.M), but showed no significant 

changes in mitochondrial function. Further supporting a role for mTORC1 in the 

regulation of mitochondrial biogenesis in vivo, mTORC1 inhibition by rapamycin 

partially supressed expression of PGC-1β. Together these observations 

suggest that increased mTORC1 activity with age promotes mitochondrial mass 

increase via the mitochondrial regulator PGC-1β. Supporting our results 

showing increased mTORC1 activity with age are numerous studies 

demonstrating that mTOR is a key modulator of ageing and age-related 

diseases (Johnson et al. 2013), with mTOR inhibition being the major 

contributor to extension of lifespan in several organisms (Fabrizio et al. 2001, 

Vellai et al. 2003, Jia et al. 2004, Kapahi et al. 2004, Kaeberlein et al. 2005, 

Harrison et al. 2009, Bjedov et al. 2010). Furthermore, we have also shown that 

mTORC1-dependent mitochondrial mass increase positively correlates with 

DNA damage in vivo with age. Our observations are in accordance with 

previous reports showing that mitochondrial oxidative damage is a conserved 

process, accumulating with age in organisms ranging from worms to humans 

(Golden et al. 2001, Yui et al. 2003), resulting in macromolecule oxidation, 

particularly DNA oxidation (Harman 1972, Oliver et al. 1987, Fraga et al. 1990, 

Hamilton et al. 2001). 
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Our in vivo data is consistent with reports in hematopoietic stem cells in which 

mTORC1 activity increases mitochondrial biogenesis, contributing to ROS-

dependent decreased stemness and hematopoiesis (Chen et al. 2008) and that 

mTOR inhibition can alleviate mitochondrial disease (Johnson et al. 2013). The 

reduced mitochondrial content in liver following mTOR inhibition is in 

accordance with various reports of reduced protein synthesis and mitochondrial 

transcriptional regulation observed in mice with impaired mTORC1 activity 

(Cunningham et al. 2007, Romanino et al. 2011). Moreover, it has been recently 

shown by whole-genome expression profiling and large-scale proteomic 

analysis, that mice under CR have less mitochondrial protein synthesis (Lanza 

et al. 2012). This latter study, together with other more recent reports (Hancock 

et al. 2011, Lanza et al. 2012, Price et al. 2012) have questioned early 

associations between DR and enhanced mitochondrial content (Nisoli et al. 

2005). In addition, despite evidence suggesting that increased mitochondrial 

abundance can be an advantageous adaptive response to energy deficit, 

genetically induced mitochondrial biogenesis has been associated with age-

related diseases such as cardiomyopathy (Lehman et al. 2000), renal fibrosis 

(Hickey et al. 2011) and diabetes (Sawada et al. 2014), all of which have been 

associated with cellular senescence (Sussman et al. 2004, Testa et al. 2007, 

Yang et al. 2010). Increased mitochondrial content has also been associated 

with osteoarthritis, particularly Kashin-Beck Disease (KBD), where articular 

chondrocytes present increased mitochondrial mass, but reduced activity of 

complexes II, III, IV and V in patients samples when compared to controls (Liu 

et al. 2010). Alternatively, our results showing increased mTOR activity with age 

could also impact on mitochondrial content via a decrease in autophagy. 

Several reports have suggested that autophagy is down-regulated during 

ageing (Pyo et al. 2013). It has been shown that protein turnover slows down 

with accumulation of protein aggregates with age (Levine et al. 2008). 

Autophagy related proteins, including ATG5, ATG7, and BECN-1, expression 

was shown to be down-regulated in aged human brains (Lipinski et al. 2010). 

Increased autophagy via mTOR inhibition by rapamycin has been shown to 

boost the clearance of mutant huntingtin fragments and attenuates toxicity in 
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cells (Ravikumar et al. 2006), and to reduce tau toxicity and the appearance of 

protein aggregates in D. melanogaster and mammals (Ravikumar et al. 2002, 

Ravikumar et al. 2004, Berger et al. 2006). Additionally, chaperon-mediated 

autophagy has been shown to decline with age in rat liver tissues (Cuervo et al. 

2000). An alternative explanation for our observation is that increased mTORC1 

activity in mouse livers with age could result in decreased autophagic activity, 

namely mitophagy, and explain why we observe an increase in mitochondrial 

mass in this organ during mice ageing, which is partially rescued by treatment 

with rapamycin. Increased PGC-1β expression could be a compensatory 

mechanism in response to accumulation of dysfunctional mitochondria with age 

(possibly resulting from impaired mitophagy). 

Recently, our lab has shown that Telomere-associated foci (TAF), an important 

effector of cellular senescence, increase in mice tissues with age (Hewitt et al. 

2012). Consistent with a role for mTORC1 in senescence in vivo, we found that 

rapamycin treatment prevents the age-dependent increase in TAF. We have 

further shown that mitochondria increase with age positively correlates with 

DDF and p21 expression. The observation of a key role for mTORC1 in the 

maintenance of a DDR in vivo is supported by reports that calorie restriction 

(CR) reduces DDR positive cells in vivo in several tissues (Wang et al. 2010, 

Jurk et al. 2012) as well as ROS (Lanza et al. 2012). Further supporting a role 

for mTORC1 in senescence, we also found decreased Sen-β-Gal activity, p21 

and SASP factor expression in rapamycin fed mice. Together these data 

suggests that mitochondrial mass increase, via mTORC1 hyperactivation, is a 

promoter of senescence associated DNA damage in vivo and contributes to 

secretion of major deleterious senescence factors (ROS and the SASP). 

In order to understand the role of the mitochondrial biogenesis regulator PGC-

1β in vivo we analysed liver samples from PGC-1β-/- mice. We found that PGC-

1β deficiency diminishes senescence markers in vivo. PGC-1β-/- mice present 

lower mitochondrial content (mtDNA copy number and expression of 

mitochondrial proteins) and decreased telomere-associated foci. Moreover, 

absence of PGC-1β ameliorates age-dependent decline in glucose and insulin 
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tolerance. Altogether, our results support a causal link between PGC-1β-

dependent mitochondrial mass increase and the DDR in the development of 

senescence in vivo. To test the physiological relevance of these observations, it 

would be important to perform lifespan experiments in mice lacking PGC-1β 

with an assessment of further senescence and age-related parameters. 

Consistent with the hypothesis that mitochondrial mass increase stabilises the 

senescent arrest and helps maintain tumour suppression in vivo, we found that 

mouse liver tumours have significantly lower mtDNA copy number and reduced 

expression of PGC-1β and mitochondrial proteins. We also found that the lipid 

peroxidation marker 4-HNE intensity was markedly reduced in tumour regions 

as were DDF. Similarly, a persistent DDR at telomeres has been recently 

associated with the tumour suppressor properties of cellular senescence in nevi 

melanocytes but absent in malignant melanoma (Suram et al. 2012). These 

observations suggest that mitochondria might be a tumour-suppressor factor by 

promoting senescence in vivo. Indeed, it is long known that many cancer cells 

present enhanced glycolysis and diminished oxidative phosphorylation capacity 

when compared to their normal counterparts (Warburg 1956, Zheng 2012). This 

shift from mitochondrial oxidative phosphorylation to glycolysis is known as the 

Warburg effect (Warburg 1956). Our results are suggestive of mitochondria as a 

putative tumour suppressor factor by inducing senescence in vivo (Figure 5.9). 

Nonetheless, despite being promising, these observations require further 

experiments to prove tumour suppressor qualities of mitochondria, for instance 

longitudinal studies on PGC-1β-/- mice aiming to assess tumour formation with 

age. 
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Figure 5.9 | Mitochondria as a key promoter of senescence in vivo. Scheme 

represents overall hypothesis: feedback loop between DDR, mTOR and mitochondrial 

biogenesis are involved in the tumour suppressor properties of senescence 

(stabilisation of the arrest), but they also impact on ROS and the SASP which can lead 

to tissue impairment via paracrine effects. 

 

 

The exact mechanisms by which mitochondria contribute to the lengthier 

process of ageing are complex. Our results suggest that there is a mTORC1 

upregulation-dependent mitochondrial mass increase with age via PGC-1β. We 

consider that mitochondrial density is an important factor on cellular ageing, 

however we do not exclude that other mitochondrial changes occur during 

ageing namely a decline in mitochondrial function.  
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Chapter 6. Pro-inflammatory cytokines impact on cellular 

senescence via mitochondrial dysfunction 

 

Considering the multiple factors secreted by senescent cells, pro-inflammatory 

cytokines are amongst the most prominent SASP factors. At the same time that 

they are necessary to restrain tumour progression by stabilising cellular 

senescence both in vitro (Acosta et al. 2008, Kuilman et al. 2008) and in vivo 

(Xue et al. 2007), they also influence the neighbouring environment in a pro-

tumorigenic manner by promoting cell growth, angiogenesis and metastasis 

(Coppé et al. 2006, Campisi et al. 2007). Interleukin-8 (IL-8), also known as 

CXCL8, belongs to the CXC amino acid motif family of pro-inflammatory 

chemokines that are highly secreted by senescent cells (Coppé et al. 2010). IL-

8 is a chemotactic factor whose main functions are to stimulate cell proliferation, 

angiogenesis and migration (Waugh et al. 2008, Ning et al. 2011). This 

chemotactic factor was first described to promote the directional migration and 

activation of neutrophils in response to inflammatory and infectious diseases 

(Baggiolini et al. 1989, Baggiolini et al. 1997). More recent studies have 

recognised IL-8 as an important factor in cancer by promoting tumorigenesis 

(cell proliferation), its maintenance (angiogenesis) and 

progression/invasiveness (migration) (Waugh et al. 2008). IL-8 expression is 

mainly regulated by the nuclear factor-B (NF-B); its promoter contains a NF-

B element that is required for its transcriptional activation in all cell types. 

Although, IL-8 promoter can also be recognised by the activator protein (AP)-1 

and the CAAT/enhancer-binding protein (C/EBP), these sites have been 

described to participate in the transcriptional activation of IL-8 only in some cells 

types (Hoffmann et al. 2002). Once IL-8 expression is inducted by these 

transcription factors, it can activate a variety of signalling pathways through 

binding to two membrane receptors, CXCR1 (IL-8RA) and CXRC2 (IL-8RB). 

(Holmes et al. 1991, Murphy et al. 1991, Holmes et al. 2009). CXCR1 and 2 are 

promiscuous G-protein coupled receptors with affinity for several CXC 
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chemokines. Besides binding to IL-8, CXCR1 can also bind to GCP-2 (CXCL6) 

and to the neutrophil-activating protein (NAP)-2 (CXCL7), whereas CXCR2 can 

additionally bind to CXCL1, 2 and 3 (GRO α, β and γ), CXCL5 (ENA-78), GCP-

2 and NAP-2 (Brat et al. 2005). Both IL-8 and CXCR2 have been shown to 

reinforce cellular senescence (Acosta et al. 2008, Kuilman et al. 2008) but the 

mechanisms through which this cytokine and its receptor contribute to a 

permanent cell cycle arrest are still not clear. 

Previous and my own work have shown (Passos et al. 2010; see Chapters 3 

and 4) that mitochondria and resulting ROS production are key factors in the 

establishment and maintenance of cellular senescence. It is also known that 

pro-inflammatory cytokines, namely IL-8, can reinforce senescence (Acosta et 

al. 2008, Kuilman et al. 2008). However, how these two main features of 

senescence act together to induce and preserve a permanent cell cycle arrest is 

still not clear. In this chapter we examined the links between IL-8 and its 

receptors and mitochondrial dysfunction and ROS generation. Moreover, we 

tested the involvement of the mTOR pathway in the process. 

 

 

6.1 IL-8 expression increases during cellular senescence 
 

Consistent with previous reports (Coppe et al. 2008, Davalos et al. 2010), we 

have observed increased secretion of several pro-inflammatory cytokines in 

senescent (10 days after 20Gy) MRC5 fibroblasts (Figure 6.1A). Performing an 

independent ELISA, in collaboration with Jodie Bitch in our lab, we confirmed 

that IL-8 secretion gradually increases with the development of the senescent 

phenotype in irradiation-induced senescent fibroblasts. 
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Figure 6.1 | IL-8 highly expressed by senescent cells. (A) Secreted protein array of 

a variety of inflammatory proteins following X-ray induced senescence in MRC5 

fibroblasts (3 and 10 days after 20Gy); Data are mean of 3 independent experiments; 

(B) Levels of secreted IL-8 detected by ELISA on proliferating and irradiated MRC5 

fibroblasts at the indicated time-points. (n=1 experiment). 

 

To understand the impact of IL-8 in senescence, we reduced IL-8 signalling by 

either knocking down IL-8 and its receptors (CXCR1 and CXCR2) or using 

neutralising antibodies against IL-8 receptors in irradiated-induced or replicative 

senescent MRC5 fibroblasts (Figure 6.2). 
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Figure 6.2 | Inhibition of IL-8 signalling in irradiation-induced and replicative 

senescent fibroblasts. Scheme illustrating the experimental design: 1. MRC5 

fibroblasts were irradiated (20Gy X-ray) and immediately treated with neutralising 

antibodies against CXCR1 and CXCR2 for 3, 6 or 9 days; 2. MRC5 fibroblasts were 

treated with siRNA against IL-8, CXCR1 and CXCR2 24 hours before irradiation (20Gy 

X-ray), cells were harvested 2 days after irradiation (72 hours of siRNA); 3. Replicative 

senescent MRC5 fibroblasts were treated with neutralising against CXCR1 and CXCR2 

for 3 days. 
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6.2. IL-8Rs Inhibition alleviates the senescent phenotype 
 

Senescent cells can be distinguished from their young proliferating counterparts 

by their cellular morphology characterised by increased cellular volume, loss of 

the original cellular shape and a flattened cytoplasm. To analyse whether 

inhibition of IL-8 receptors would abrogate cell size increase we treated both 

irradiation-induced and replicative senescent MRC5 fibroblasts with CXCR1 

and/or CXCR2 neutralising antibodies. Treatment with IL-8Rs neutralising 

antibodies significantly decreased cell size in both irradiation-induced and 

replicative senescent MRC5 fibroblasts when using a combination of the two 

(CXCR1/2) antibodies (Figure 6.3). The results support the idea that IL-8 

receptors signalling inhibition can reduce cell size increase during induction of 

cellular senescence. 
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Figure 6.3 | IL-8Rs inhibition rescues cell size in senescent cells. (A) Phase 

contrast images of senescent MRC5 fibroblasts showing a rejuvenated phenotype 

upon IL-8Rs neutralisation in both irradiation-induced (3 and 6d IR) and replicative 

senescence (RS); (B) Quantitative analysis of cellular size upon IL-8Rs neutralisation 

both in irradiation-induced and replicative senescence (left and right respectively). Data 

are median cell size at the indicated time points after irradiation or duration of antibody 

incubation in replicative senescent cells. Statistical analysis were performed using 

Mann-Whitney Test, n=100 cells/treatment.  

A 

B 
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To further characterise the impact of IL-8Rs inhibition on cellular senescence, 

we assessed for Sen β-Gal activity. We found that treatment with IL-8Rs 

neutralising antibodies significantly decreased Sen-β-Gal activity in irradiation 

induced senescent fibroblasts (Figure 6.4).  

 

 

  

 

Figure 6.4 | IL-8Rs inhibition decreases Sen-β-Gal activity in senescence. (A) 

Representative images of Sen-β-Gal cytochemistry staining in irradiated MRC5 

fibroblasts upon IL-8Rs neutralisation. Sen-β-Gal positive cells are stained dark blue, 

whereas light blue fluorescence (DAPI) indicates DNA content; Scale bar = 20µm; (B) 

Quantitative analysis of Sen-β Gal activity in MRC5 fibroblasts at 9 days after 

irradiation following IL-8Rs neutralisation. Data are Mean ± SEM, n=3 independent 

experiments (200 cells were analysed per treatment per experiment). Statistical 

analysis was performed using One Way ANOVA Test. 
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6.3 Inhibition of IL-8 activity ameliorates the senescent phenotype 

by improving mitochondrial function in cellular senescence 

 

Mitochondria are central players in oxidative energy metabolism. As a 

consequence of mitochondrial dysfunction, senescent cells have been 

described to generate higher levels of ROS when compared to their young 

proliferating counterparts (Passos et al. 2007). Mitochondrial dysfunction in 

senescence has been characterised by an increase in mitochondrial mass (as 

described on Chapters 3 and 4) and a decrease in the mitochondrial membrane 

potential (depolarization of the membrane potential) with subsequent increased 

ROS formation (Passos et al. 2007). To evaluate the role of IL-8Rs in 

mitochondrial function in senescence, irradiated MRC5 fibroblasts were treated 

with CXCR1 or 2 neutralising antibodies for 3 and 6 days after irradiation. To 

assess for mitochondrial mass cells were stained with NAO and fluorescence 

intensity was measured by flow cytometry. Induction of senescence by 

irradiation led to an increase in mitochondrial mass which was reduced 

following IL-8Rs inhibition (Figure 6.5A). 
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Figure 6.5 | IL-8Rs inhibition improves mitochondrial function in cellular 

senescence. (A) Mitochondrial Mass (Mito Mass) in irradiation-induced senescence. 

NAO intensity in non-irradiated (Prol) and irradiated (3d after 20 Gy) MRC5 fibroblasts 

treated with neutralising antibodies as indicated. Data are Mean ± SEM, n=3 

independent experiments. Statistical analysis was performed using One way ANOVA. 

(B) Mitochondrial Membrane Potential (MMP) in irradiation-induced senescent MRC5 

fibroblasts. Quantification of TMRM/Mito Tracker Green ratios. Box plots represent 

median, upper and lower quartiles, percentiles and outliers; n=3 independent 

experiments (100 cells were analysed per treatment per independent experiment). 

Statistical analysis was performed using ANOVA on Ranks Test. (C) Representative 

TMRM (red) and Mito Tracker Green (green) fluorescence images of irradiated MRC5 

fibroblasts following CXCR1 and CXCR2 neutralisation; Scale bar = 10µm .  
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Mitochondrial Membrane potential (MMP) was measured using the fluorescent 

dye Tetramethylrhodamine methyl ester (TMRM), a cationic and mitochondria 

selective probe that can be assessed by several fluorescence analysis methods 

(including fluorescence microscopy) (Floryk et al. 1999). Because TMRM 

changes the intensity but not the emission spectra in response to membrane 

potential it is a good marker of mitochondrial membrane potential in 

combination with Mito Tracker Green, a marker of mitochondrial mass 

(TMRM/MT Green). Mitochondrial membrane potential (MMP) was significantly 

decreased following induction of senescence and rescued upon neutralisation 

of CXCR1 or 2 in senescent MRC5 fibroblasts 6 days after irradiation (Figure 

6.5B and 6.5C). Following the observation that neutralisation of CXCR1 or 2 

improved mitochondrial function, we questioned whether compromised IL-8 

signalling would affect ROS generation in senescence. For this purpose, we 

decreased IL-8 activity either by small interference RNA (siRNA) knockdown of 

IL-8 and its receptors or using neutralising antibodies against IL-8Rs in both 

irradiation-induced and replicative senescent cells (see Figure 6.2). To measure 

ROS levels (superoxide levels), cells were stained with Dihydroethidium (DHE) 

and fluorescence intensity was measured by flow cytometry. In all cases 

(knockdown of IL-8 and IL-8Rs or neutralisation of IL-8Rs), decreased IL-8 

activity resulted in significantly reduced ROS generation in senescent cells 

(Figure 6.6).  
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Figure 6.6 | Reduced IL-8 signalling decreases ROS generation in senescent cells. 

(A) Inhibition of IL-8Rs decreases ROS levels in irradiated (20Gy X-radiation) MRC5 

human fibroblasts upon short term (3 days) and long term (6 and 9 days) incubation 

with IL-8Rs neutralising antibodies (left and right graphs respectively). Data are Mean ± 

SEM n=3 on the left and Mean ± SD, n=2 on the right. (B) ROS levels in replicative 

senescent MRC5 fibroblasts following inhibition of CXCR1 and CXCR2 with 

neutralising antibodies (3 days antibody incubation). Data are from one experiment 

(n=1). (C) IL-8 and IL-8Rs knockdown using siRNA (72h) in MRC5 fibroblast 2 days 

after Irradiation (20Gy X-radiation). Data are Mean ± SEM n=3 independent 

experiments. Statistical analysis was performed using One Way ANOVA Test. 
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6.4 IL-8 signalling inhibition reduces ROS-dependent DNA damage 

foci in senescence 

 

Our group has previously shown that elevated ROS levels during senescence 

contribute to DNA damage and are responsible for the stability for the 

permanent cell cycle arrest in senescent cells (Passos et al. 2010). Having 

observed that decreased IL-8 signalling reduced ROS generation during 

senescence, we question whether decreased IL-8 activity would also impact on 

DNA damage. For this purpose, irradiated fibroblasts treated for 72 hours with 

siRNA against IL-8 and its receptors were immunostained for γH2AX, a marker 

of DNA double strands breaks. Knockdown of IL-8 and IL-8Rs significantly 

decreased the number of DNA damage foci per cell compared to that of the 

scrambled control (Figure 6.7A and 6.7B). Additionally, an alkaline comet assay 

was performed as an independent method to assess DNA damage (single and 

double strand breaks). Data shows that CXCR1 and 2 neutralisation 

significantly decrease DNA breaks at 3 days after 20Gy in MRC5 fibroblasts 

(Figure 6.7C). Interestingly, CXCR1 and 2 neutralisation had no impact on DNA 

damage repair capability immediately following X-ray irradiation (up to 6 hours). 

We have previously shown that ROS levels in senescence increase 2-3 days 

following a DDR and can induce more DNA damage in a positive feedback loop 

that stabilises cellular senescence (Passos et al. 2010), supporting the idea that 

the later (3 days after X-radiation) increase in DNA is ROS driven and the 

decrease on DDF following IL-8Rs neutralisation may result from ROS 

generation repression. Together our results show that decreased IL-8 signalling, 

by either neutralisation or knockdown of IL-8 and its receptors, reduces DNA 

damage in senescence possibly as a result of decreased ROS levels. 
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Figure 6.7 | IL-8 and IL-8Rs inhibition decreases DNA damage in cellular 

senescence. (A) Representative γH2AX foci immunofluorescence images of irradiated 

MRC5 fibroblasts following siRNA knockdown of IL-8 and IL-8Rs, 2 days after 

irradiation. γH2AX is indicated by red fluorescent foci whereas blue fluorescence (DAPI) 

indicates DNA content; Scale bar = 10µm;  (B) Quantitative analysis of numbers of 

γH2AX foci per nucleus by immunofluorescence staining in irradiated MRC5 following 

knockdown of IL-8 and IL-8Rs. Data are Mean ± SEM, n=3 independent experiments. 

(C) Alkaline comet assay showing DNA breaks fold change (FC) following IL-8Rs 

inhibition using neutralising antibodies in irradiated MRC5 fibroblasts. Data are Mean ± 

SEM, n=3 independent. Statistical analysis was performed using One Way ANOVA 

Test. 
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6.5 IL-8 and IL-8Rs inhibition does not rescue cell proliferation in 

Irradiation-induced senescence 

 

Consistent with a function for IL-8 as a pro-proliferation cytokine (Waugh et al. 

2008), we found that IL-8 signalling inhibition significantly decreased cell 

proliferation in non-irradiated cells (Figure 6.8A) and did not rescue cell 

proliferation upon induction of senescence with 20Gy X-radiation in MRC5 

fibroblasts (Figure 6.8B). Lawless et al. proposed that absence of a proliferation 

marker (e.g. Ki-67) and the presence of more than 5 DDF (e.g. γH2A.X) is a 

robust marker of senescence (Lawless et al.). We have performed Ki-

67/γH2A.X double immunostaining on MRC5 fibroblasts following IL-8 and IL-

8R knockdown in irradiation-induced senescent fibroblast. We found that a 

small percentage of non-irradiated cells (0Gy) were positive for γH2A.X >5 foci 

and Ki-67, possibly as a result of replication stress (DNA replication). 

Nevertheless, knockdown of IL-8 and IL-8Rs significantly reduced the 

proportion of cells negative for Ki67 with more than 5 γH2A.X foci (Figure 6.8C), 

indicating that despite still being locked in the cell cycle, these cells harbour less 

DNA damage. 
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Figure 6.8 | Inhibition of IL-8 signalling does not rescue cell proliferation in 

irradiation-induced senescence (A) Representative Ki-67 immunofluorescence 

images of non-irradiated (0Gy) MRC5 fibroblasts upon 6 and 9 days of CXCR1 

neutralising antibody incubation; Scale bar = 20µm; (B) Quantitative analysis of Ki-67 

positive cells at the indicated times points after 0Gy or 20Gy X-radiation following (top) 

neutralisation of IL-8Rs and (bottom) knockdown of IL-8 and its receptors in MRC5 

fibroblasts. Data are Mean ± SEM of n=3 independent experiments; (C) Quantitative 

analysis of percentage of Ki-67 (positive and negative), and number of γH2A.X foci (<5 

foci or >5 foci) upon IL-8 and IL-8Rs knockdown in 0Gy or 20 Gy X-radiation treated 

MRC5 fibroblasts. Data are mean ± SEM of n=3 independent irradiation. Statistical 

analysis was performed using One way ANOVA Test. 
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6.6 IL-8 stabilises cellular senescence via mitochondrial dysfunction 

and ROS generation through mTOR  

 

In previous chapters we have shown that mTOR is a central mediator of 

mitochondrial biogenesis in cellular senescence by regulating PGC-1β co-

transcription factor. We have also shown that repression of mTOR abrogates 

the senescent phenotype in a similar fashion to that observed following IL-8 

signalling inhibition. In addition, it is well-established that mTOR can be 

activated downstream of G protein-coupled receptors (O'Hayre et al. 2014). 

This way we hypothesised that IL-8/IL-8Rs and mTOR may be involved in the 

same pathway that regulates mitochondrial function in senescence. To explore 

our hypothesis, we started by neutralising both CXCR1 and CXCR2 and assess 

for mTOR activity upon induction of senescence. We found that treatment with 

neutralising antibodies against CXCR1/2 decreased phospho-p70S6K in 

senescent MRC5 fibroblasts (Figure 6.9A), indicating that mTOR activity is 

reduced when IL-8Rs are repressed. Following these observations, we double 

knocked down IL-8/IL-8Rs and mTOR in MRC5 fibroblasts and assessed for 

ROS production in senescence. Individual knockdowns of IL-8, IL-8Rs and 

mTOR significantly decrease ROS generation in MRC5 fibroblasts 2 days after 

20Gy as previously shown. Double knockdown of IL-8/IL-8Rs and mTOR also 

significantly decreased ROS generation in irradiated fibroblasts but with no 

cumulative effect (Figure 6.9B), suggesting that IL-8 and mTOR may act 

together in the same pathway that regulates mitochondrial function to stabilise 

cellular senescence. A similar non-cumulative effect was observed when 

assessing DNA damage foci following double knockdown of IL-8 and mTOR 

(Figure 6.9C). 
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Figure 6.9 | IL-8 impacts on mitochondrial function via mTOR during senescence. 

(A) Representative western blots of mTOR activity measured by phosphorylation levels 

of p70S6K (T389) 3 days after 20 Gy X-radiation (data are representative of 2 

independent experiments); (B) ROS (DHE intensity) levels following double knockdown 

of IL-8/IL-8Rs and mTOR in irradiated MRC5 fibroblasts (2 days after 20Gy X-ray). 

Data shows Mean ± SEM, n=3 independent experiments; (C) Quantitative analysis of 

γH2AX immunofluorescence staining in irradiated MRC5 following double knockdown 

of IL-8 and mTOR. Data are Mean ± SEM, n=3 independent experiments. Statistical 

analysis was performed using One way ANOVA statistical test.  
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6.7 Discussion 

 

Reports have shown that SASP factors can trigger and reinforce senescence in 

a paracrine and autocrine fashion, among these factors interleukins encompass 

some of the most prominent SASP factors. A recent report showed that the IL-8 

receptor CXCR2 and its ligands are upregulated during senescence forming a 

chemokine network reinforcing senescence in a p53-dependent manner (Acosta 

et al. 2008). It has also been reported that mitochondria become dysfunctional 

during senescence, with increased mitochondrial mass and decreased 

mitochondrial membrane potential being the source of higher ROS in this 

cellular state (Passos et al. 2010). There is some evidence on ROS and SASP 

regulation in senescence, but little is known about how ROS and SASP interact 

during senescence. To explore the impact of pro-inflammatory cytokines on 

mitochondrial function in senescence, IL-8 (a pro-inflammatory cytokine highly 

secreted by senescent cells) signalling was inhibited in senescent fibroblasts. 

The results shown in this chapter are preliminary and require further 

experimental confirmation, which will be highlighted during this discussion. 

Our results show that neutralisation of IL-8Rs significantly decreased 

mitochondrial mass and improved mitochondrial membrane potential (MMP) in 

irradiation-induced senescent MRC5 fibroblasts. Despite being promising, our 

results on MMP using TMRM should be further confirmed with analysis of 

oxygen consumption rates in whole cells and isolated mitochondria using the 

Seahorse technology, and the IL-8 impact on mitochondrial mass should also 

be confirmed by mtDNA copy number, electron microscopy and mitochondrial 

protein expression analysis. The improvement in mitochondrial function 

following IL-8 signalling inhibition was accompanied by decreased ROS 

generation. Consistent with our results are previous observations that CXCR2 

downregulation decreases ROS levels in senescence (Acosta et al. 2008). 

Furthermore, previous reports have shown that generation of superoxide in 

response to IL-8 is selectively mediated by CXCR1 in neutrophils (Jones et al. 

1996, Jones et al. 1997). However, the CXCR1-dependent ROS generation in 
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neutrophils has been attributed to non-mitochondrial sources such as NADPH 

oxidases (Jones et al. 1996). To discriminate the source of ROS generation 

downstream of CXCR1 and CXCR2 activation we would need to: 1. analyse 

expression of mitochondrial regulatory proteins such as PGC-1α and β following 

inhibition of IL-8 signalling; 2. analyse expression of NADPH oxidases and other 

non-mitochondrial enzymes capable of producing ROS during senescence and 

assess whether IL-8 signalling inhibition downregulates expression of these 

enzymes; 3. treat mitochondrial depleted cell (e.g. Parkin-expressing MRC5 

fibroblasts) with IL-8 and assess for ROS production and expression of non-

mitochondrial enzymes capable of ROS production following induction of 

senescence. 

Senescent cells have been described to contain increased numbers of DNA 

damage foci which seem to remain constant overtime (Passos et al. 2010, 

Hewitt et al. 2012). A persistent DNA damage response is a central mediator of 

cellular senescence and has been shown to play a role in the maintenance of 

the cell cycle arrest (d'Adda di Fagagna et al. 2003, Passos et al. 2010). Our 

data showing that Inhibition of IL-8 signalling simultaneously decreases DDF 

and ROS levels in senescent MRC5 fibroblasts are consistent with previous 

reports (Acosta et al. 2008) and further supports the positive feedback loop 

described by Passos et al. (2010). We have observed that after X-radiation 

induced DNA damage cells quickly repair the majority of the damage (within 6 

hours as shown in the comet assay Figure 6.6C), new DNA damage is then 

generated most probably due to increased ROS production resulting from 

mitochondrial mass increase during senescence (shown in the previous 

chapters and Figure 6.6C). In this context, we hypothesise that IL-8 signalling 

inhibition prevents DNA damage formation by reducing mitochondrial mass and 

ROS generation. To support our hypothesis we would need to perform 

experiments where downregulation of IL-8 signalling is combined with 

antioxidant treatments and assess for DNA damage during senescence. We 

should also analyse expression of other DDR markers such as phosphorylated 

p53, p21 and p16 to support a role for IL-8 in the induction of a DDR during 

senescence. Furthermore, interpretation of experiments involving knockdown of 
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IL-8 and its receptors is limited. Despite several attempts, determination of the 

knockdown efficiency of siRNA against IL-8 and IL-8Rs was not possible by 

western blotting or qPCR (we could not see a signal by western blotting and 

values by qPCR were close to undetectable). We believe that at 2 days after 

irradiation, expression of these proteins are still too low, yet able to produce an 

effect. We will need to repeat and confirm these experiments by improving our 

methodology regarding siRNA efficiency analysis (e.g. increasing protein 

loading for western blotting; increasing cDNA amount for qPCR or performing 

another method of protein visualisation  such as immunofluorescence). 

Further characterising the role of IL-8 inhibition in the senescence process, we 

found that neutralisation of IL-8Rs decreases Sen-β-Gal activity and cell size in 

senescent fibroblasts with no rescue in cell proliferation in irradiated fibroblasts 

following neutralisation or knockdown of IL-8 and its receptors. Consistent with 

our results is the fact that IL-8 is a potent pro-proliferating chemokine (Waugh et 

al. 2008). Although absence of cell proliferation is not an intrinsic marker of 

senescence but in combination with other markers of senescence it is a reliable 

marker of senescence. Consistent with our results showing a role for IL-8 in 

senescence, particularly on DNA damage, knockdown of IL- 8 and IL-8Rs 

significantly reduced the proportion of cells negative for Ki-67 with more than 5 

γH2A.X foci (senescent cells). Once more, siRNA efficiency needs to be 

confirmed in these experiments. 

In order to mechanistically understand how IL-8 regulates mitochondrial function 

in senescence, we correlated our previous data showing that mitochondrial 

mass increase in senescence is mTOR dependent and assessed for mTOR 

activity following IL-8 signalling inhibition. Consistent with previous reports 

showing that G-protein coupled receptors, such as CXCR1 and CXCR2 (IL-

8Rs), can activate mTOR (O'Hayre et al. 2014), we found that IL-8Rs 

neutralisation results in reduced p70S6K phosphorylation, hence reduced 

mTOR activity, following induction of senescence. Further supporting our 

observations, IL-8 has been shown to induce changes in protein expression 

through regulation of translation associated proteins: IL-8 signalling promotes 
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multisite phosphorylation of the ribosomal S6 kinase as a consequence of 

mTOR activation (MacManus et al. 2007). Consistent with a role in the same 

pathway regulating mitochondrial function on senescence, we found that double 

knockdown of IL-8/IL-8Rs and mTOR significantly decrease ROS generation 

and DDF in senescent fibroblasts in a non-cumulative fashion. We have indirect 

evidence that IL-8 impacts on mitochondrial mass via mTOR during senescence, 

however we would need to perform double inhibition of IL-8 and mTOR 

signalling to analyse the effect of downregulation of these pathways on 

mitochondrial content during senescence (e.g using fluorescence dyes and/or 

EM). 

We have shown that IL-8 impacts on ROS, bioactive molecules involved in 

autocrine and paracrine induction of senescence (Passos et al. 2010, Nelson et 

al. 2012), via a pathway that seems to be dependent on mTOR. Nevertheless, 

we still need to understand the impact of reduced pro-inflammatory stimuli via 

downregulation of IL-8 signalling on SASP activation, also known to promote 

autocrine and paracrine effects during senescence (Acosta et al. 2008, Acosta 

et al. 2013). Previously in this thesis (Chapter 4) we show that mTOR inhibition 

alleviates the senescence-associated inflammatory phenotype. It may be that 

inhibition of IL-8 signalling through its regulatory control over mTOR activity, 

results in downregulation of the SASP. However, these speculations need 

experimental confirmation. 

To summarise, we had previously shown that mTOR stimulates mitochondrial 

biogenesis and ROS generation leading to DNA damage and the stabilisation of 

cellular senescence. Furthermore, at the same time that mTOR is activated 

downstream of IL-8 and its receptors, it is also a key factor in the pathways 

regulating protein translation and inhibition of mTORC1 by rapamycin represses 

the SASP. These observations, together with the fact that IL-8 may affect 

mTOR-dependent mitochondrial function during senescence suggest that IL-8 is 

part of the positive feedback loop that reinforces the growth arrest. In this 

context our preliminary results are suggestive of a model where inflammatory 

cytokines promote mTOR-dependent mitochondrial biogenesis leading to 
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increased ROS production and SASP factor secretion (e.g. pro-inflammatory 

cytokines), which continuously contribute to DNA damage and induce a 

persistent DDR able to activate mTOR (Figure 6.10). 

 

 

 

 

Figure 6.10 | IL-8 stabilises cellular senescence via mTOR-dependent 

mitochondrial dysfunction. IL-8 activates mTOR-dependent mitochondrial biogenesis. 

Higher mitochondrial content results in increased ROS production and ROS-driven 

DNA damage, which is in turn able to activate mTOR closing this way a positive 

feedback loop (Correia-Melo and Marques et al. unpublished). Persistent DNA 

signalling can also trigger the senescence-associated secretory phenotype (SASP) 

including secretion of IL-8 (Rodier et al. 2009). IL-8 and its receptors can reinforce 

senescence in an autocrine fashion (Acosta et al. 2008), closing this way another 

positive feedback loop that stabilises cellular senescence. 
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Chapter 7. Conclusions 

 

 

The implications of senescence in physiological and pathological settings, such 

as ageing and cancer, have gained firm ground. It is therefore important to learn 

more about the mechanisms underpinning the establishment and maintenance 

of senescence. Autocrine and paracrine effects of senescence are dependent 

on the development of the so-called senescent phenotype, which involves over-

production of pro-inflammatory and pro-oxidant signals. However the exact 

mechanisms underlying induction of such a phenotype remain incompletely 

understood. In this thesis we aimed to comprehend how mitochondria and pro-

inflammatory factors interact during senescence and how they contribute to the 

severity of the senescent phenotype.   

Despite being numerous, the studies on the impact of mitochondria on the 

ageing process have so far failed to establish the fundamental importance of 

these organelles on cellular senescence. The work done in this PhD thesis has 

first shown that there is an increase in mitochondrial mass following DDR stimuli 

and this correlates with markers of senescence, including increased Sen-β-Gal 

activity, number of DDF and expression of the cyclin-dependent kinase inhibitor 

p21 and absence of proliferation ability. It was also demonstrated that changes 

in mitochondrial mass are not an adaptive process driven by ROS, but 

potentially the driver of ROS generation in senescence. Secondly, by artificially 

depletion of mitochondria, we demonstrate that these organelles are necessary 

for the development of the aging-promoting characteristics of the senescent 

phenotype (including ROS and the SASP). Our observations are of great 

therapeutic interest, since manipulation of mitochondrial content would 

diminish/abrogate the deleterious effects of senescent cells in an organism. 

However, elimination of mitochondria rescued proliferation in fibroblasts 

following induction of senescence despite their inability to rely on oxidative 

phosphorylation. A possible explanation relies on the fact that these cells 
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shared phenotypic traits of cancer cells. Interestingly, no recue in cell 

proliferation was observed in replicative senescent fibroblasts depleted of 

mitochondria, suggesting that mitochondria is important to restrain cells 

proliferative capacity in the very first states of the development of senescence 

as observed in irradiation-induced senescence (7-10 to develop a senescent 

phenotype), but not when senescence is fully established. Furthermore, our 

work showed that interventions which reduce the load of mitochondria in cells, 

such as inhibition of mTOR and depletion of PGC-1, have similar impact on 

the senescent phenotype. Considering these observations, the extent of 

mitochondrial elimination should be taken into account when placing 

mitochondria as a putative therapeutic target in senescence; the impact of 

mitochondrial content on the tumour-suppressive/promoting ability in a cell is 

dependent on the “state” of cellular senescence (whilst developing or in the 

presence of a fully developed senescent phenotype). Mechanistically, we 

showed that ATM, Akt and mTOR phosphorylation cascades, downstream of a 

DDR, promote mitochondrial biogenesis and mitochondrial-ROS production 

which contributes to a persistent DDR that keeps cells locked in the cell cycle. 

The role of mitochondria in animal physiology has been the subject of extensive 

investigation with mitochondrial dysfunction being considered as a major 

hallmark of ageing, underlining the significance of mitochondrial homeostasis 

for survival (López-Otín et al. 2013). A rigorous regulation of mitochondrial 

mass, distribution and activity is fundamental for cellular homeostasis and 

maintenance. Despite evidence proposing a role for mitochondria in ageing and 

age-associated diseases (Vafai et al. 2012, Malpass 2013), mitochondrial 

dynamics during ageing is still controversial, owing to the fact that interventions 

promoting longevity, namely DR and sirtuin activators, have been linked with 

increased mitochondrial biogenesis (Baur et al. 2006, Lopez-Lluch et al. 2006). 

Here we showed that in vivo cellular ageing is accompanied by an mTORC1-

PGC-1β dependent mitochondrial mass increase. First we showed that there is 

an age-dependent increase in mTORC1 activity associated with increased p21, 

PGC-1β and OXPHOS components in wild-type mice. Secondly, we have 

demonstrated that the age-dependent mTORC1 hyperactivation promotes 
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mitochondrial biogenesis via the mitochondrial regulator PGC-1β in vivo. 

Consistent with the hypothesis that mitochondrial mass increase stabilises the 

senescent arrest and helps maintain tumour suppression in vivo, we found that 

mouse liver tumours have significantly reduced mitochondrial content, 

suggesting that mitochondria might be a strong tumour-suppressor factor by 

promoting senescence in vivo. Corroborating this hypothesis are reports 

showing that many cancer cells present enhanced glycolysis and diminished 

oxidative phosphorylation capacity when compared to their normal counterparts 

(Warburg 1956, Zheng 2012).  

SASP factors can trigger and reinforce senescence in a paracrine and autocrine 

fashion, among these factors interleukins encompass some of the most 

prominent SASP factors (Acosta et al. 2008, Acosta et al. 2013). A recent report 

showed that the IL-8 receptor CXCR2 and many of its ligands are upregulated 

during senescence and that they form part of a chemokine network reinforcing 

cellular growth arrest in a p53-dependent manner (Acosta et al. 2008). 

Considering these observations, we aimed to understand how SASP factors 

interact with mitochondria during senescence. We showed that inhibition of IL-8 

decreases ROS generation possibly by improving mitochondrial function in 

cellular senescence via the intermediate action of mTOR. Owing to IL-8 pro-

proliferating signalling, inhibition of this pro-inflammatory cytokine did not rescue 

cell proliferation upon induction of senescence, placing IL-8 as putative 

therapeutic target in senescence as it eases the senescent phenotype without 

rescuing proliferation of cells harbouring DNA damage.  

Bringing together our findings, young proliferating cells are continuously 

exposed to a plethora of stressors eventually causing irreparable DNA damage. 

Cells containing irreparable DNA damage undergo a permanent cell cycle arrest 

(senescence), as a result of a persistent DDR. The DDR induces mTOR-

dependent mitochondrial biogenesis resulting in higher ROS production and 

additional induction of DNA damage (feedback loop 1). The DDR also triggers 

the senescence-associated secretory phenotype (SASP), particularly the 

inflammatory phenotype (Rodier et al. 2009). The inflammatory phenotype, 
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particularly IL-8 and its receptors reinforce senescence in an autocrine fashion 

(Acosta et al. 2008) (feedback loop 2). Activation of mTOR via IL-8 - CXCR1/2 

is the linking factor between the two main circle pathways (feedback loop 1 and 

2) that stabilise cellular senescence (Correia-Melo et al. unpublished). Both 

ROS and the SASP contribute to tissue impairment by inducing paracrine 

senescence (Nelson et al. 2012, Acosta et al. 2013) and cancer progression 

when in a tumour context (Wu 2006, Davalos et al. 2010). Inhibition of IL-8 

signalling reduces activation of the pathways maintaining and stabilising cellular 

senescence, resulting in decreased ROS- and SASP factors-dependent tissue 

impairment (Figure 7.1). 

 

 

 

Figure 7.1 | Interactions between mitochondria and inflammatory factors during 

cellular senescence.. Young proliferating cells are continuously exposed to a myriad 

of stressors eventually causing irreparable DNA damage. Cells containing irreparable 
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DNA damage undergo a permanent cell cycle arrest, senescence, as a result of a 

persistent DNA damage response (DDR). The DDR induces mTOR-dependent 

mitochondrial biogenesis with higher ROS production and additional induction of DNA 

damage (feedback loop 1). The DDR also triggers the senescence-associated 

secretory phenotype (SASP), particularly the inflammatory phenotype (Rodier et al. 

2009). The inflammatory phenotype, particularly IL-8 and its receptors reinforce 

senescence in an autocrine fashion (Acosta et al. 2008) (feedback loop 2). Activation of 

mTOR via IL-8 - CXCR1/2 is the linking factor between the two main circle pathways 

(feedback loop 1 and 2) that stabilise cellular senescence (Correia-Melo et al. 

unpublished). Both ROS and the SASP contribute to tissue impairment by inducing 

paracrine senescence (Nelson et al. 2012, Acosta et al. 2013) and cancer progression 

when in a tumour context (Wu 2006, Davalos et al. 2010). Inhibition of IL-8 signalling 

reduces activation of the pathways maintaining and stabilising cellular senescence, 

resulting in decreased ROS- and SASP factors-dependent tissue impairment. 

 

 

The work developed on this thesis may be of potential interest in therapeutically 

combating the pro-oxidant and pro-inflammatory effects of cellular senescence, 

given their suggested role as drivers of age-related disease (Tchkonia et al. 

2013, Correia-Melo et al. 2014). Our data demonstrating that mitochondria are 

required for these features of senescence has very important implications for 

our understanding of the origins and mechanisms underlying the senescence 

phenotype and suggests mitochondria as major putative therapeutic targets for 

interventions impacting on the senescent phenotype. 
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