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ABSTRACT 

Animals make many decisions throughout their lives and there is good reason to suggest 
that these decisions are related to their energetic state. However, there is a need for 
more experimental data linking animals' behavioural decisions directly with their 
energetic state. Using behavioural assays and measurements of energetic state, I 
conducted a number of experiments that investigated the relationship between an 
animal's foraging decision-making and their energy levels. In Chapter 2, I examined the 
effects of energetic state on the rationality of foraging decisions of European starlings 
(Sturnus vulgaris). I found that there were no breaches of rationality and that there were 
no relationships with energy reserves. In Chapter 3, I investigated risk-sensitive 
foraging behaviour and its relationship with temperature and behaviour in rufous 
hummingbirds (Selasphorus rufus). However, the birds were indifferent to risk and 
there was no relationship with any of the variables that were included in the analysis. 
The remaining four experimental chapters dealt with problems related to the state-based 
consumption of chemically defended prey in European starlings. The results from these 
experiments confirmed many long-held assumptions regarding the state-based 
consumption of chemically defended prey. They also confirmed some recent predictions 
of stochastic dynamic programming models, which were less obvious. Generalist 
predators, such as European starlings, can also adapt to new food sources quickly and 
develop sophisticated behaviours that may mediate their intakes of dangerous 
compounds. The results of this thesis show that a bird's state can play an important role 
in mediating the foraging decisions that they make, especially regarding chemically 
defended prey. More generally, these results have important implications for how the 
dynamic systems of foraging behaviour and energetic state are viewed, and demonstrate 
a path as to how these different areas can be integrated. 
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Chapter 1 

INTRODUCTION 

You can't always get what you want, but if you try sometimes you 
might find you get what you need 

M. Jagger, 1969 

You can't think rationally on an empty stomach, and a whole lot 
of people can't do it on a full one either 

Attributed to Lord Reith 

The belly rules the mind 
Spanish proverb 

I chose two lines from the song "You can't always get what you want" from the Rolling 

Stones record Let it Bleed of 1969, to illustrate the concept of the biological trade-off. 

Biological trade-offs occur when an organism has a conflicting set of demands to meet, 

but that they cannot satisfy all of them fully. However, they can satisfy each adequately 

in order to survive. Defined more technically, trade-offs are linkages between factors 

that constrain the evolution and expression of two or more traits (Stearns 1992). One of 

the most famous and well-studied trade-offs is that between somatic growth and 

reproduction (Williams 1957,1966a, b). For example, in red deer (Cervus elephus), the 

yearly survival has been shown to be age dependent with increasing mortality with 

increasing age (Clutton-Brock 1982; Clutton-Brock et al. 1988). However, the survival 

of calves was also dependent on their birth mass, with heavier calves having a greater 

rate of survival. Younger mothers tended to be in better condition and so, gave birth to 

heavier calves. As the hinds aged, they were less able to produce high quality offspring 

because their general condition declined through senescence. 

The second quote is attributed to the prominent public servant Sir John Reith and 

neatly encapsulates the other subjects of this thesis: energetic state, decision-making, 

and rationality. The final proverb was included because it also illustrates the fact 

behaviour can and energy are inextricably linked. The relationship between bodily 
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energy reserves and the variety and quality of behaviour has been widely demonstrated 

(e. g., Barnett & Briskie 2007). This study found that when birds were supplemented 

with extra food, the amount and quality of their dawn singing displays increased. 

What animals do with their time has been one of the primary concerns of 

ethologists and behavioural ecologists for the last half-century. One fact to come out of 

this research is that animals are constantly faced with choices: what to eat, with whom 

to mate, where to live, and whether to rest or search for food. Over the course of the 

day, a foraging animal is expected to make many foraging choices. The functional study 

of foraging has focussed on how an animal's foraging behaviour relates to fitness or 

some proxy that correlates highly with fitness. The currency of the fitness proxy is still 

a matter of some debate. Energetic state is a short-term proxy of fitness that is gaining 

favour because of its ecological realism and because of recent advances in modelling 

animal behaviour using dynamic programming models (see Houston & McNamara 

1999; Clark & Mangel 2000 for details of biological applications of SDP models). 

1.1 The importance of energetic state in animal behaviour 

McNamara and Houston (1999) have suggested that all behaviour should be dependent 

upon an animal's state. This may be a slight exaggeration, but we would know a lot 

more about behaviour if we could link changes in energetic state with changes in 

behaviour. Therefore, studies that integrate behavioural data with physiological data on 

energetic state are more powerful than studies that consider behaviour and physiology 

separately. This is because the behaviour of animals can be matched to the subject's 

energy levels simultaneously. This controls for a lot of the variation in behaviour that 

could be accounted for due to state and behaviour being measured at different times. It 

is difficult to study the behaviour of most large vertebrate species for the duration of 

their lives. It is also impractical to follow animals for their lifetimes in order to 

determine the effects that short-term changes in condition have on fitness. This is where 

the concept of energetic state becomes important as it can be used as a short-term 

surrogate for lifetime reproductive success (LRS). 

Energetic state is a set of variables that describes the condition of an animal at any 

given time and is an absolute measure of its energy reserves (Houston & McNamara 

1999). It is important to match the time horizon of interest with suitable state variables. 
For example, it would be impractical to measure daily changes in body size of a large 

ungulate, as it is unlikely to change significantly over the course of a day. A more 
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biologically meaningful measure of state throughout the day might be gut contents or 

body mass. Therefore, a number of different physical components-such as body fat, gut 

contents, blood sugar levels, and glycogen reserves in the liver-could be used as state 

variables in my experiments. All of these variables can change over short time-spans 

meaning that they can be correlated with short-term changes in behaviour. In most 

cases, one or two state variables are sufficient in order to represent the levels of energy 

reserves-and energetic state-for behavioural experiments (Blem 1990). Fat reserves are 

known to correlate directly with body mass in birds and are one of the most common 

variables used to represent energetic state (Blem 1976; Witter et al. 1994). 

The integration of energetic state with animal behaviour is an important 

development in the study of animal behaviour. However, there are a number of 

challenges in both measuring energetic state and relating it to the fitness of subjects. 

First, as the ungulate example in the previous paragraph demonstrates, finding the 

correct measure of energetic state is important. I chose to measure energetic state in this 

thesis by utilising measures that reflect changes in a bird's level of energy over a matter 

of hours to days. Therefore, I used bird mass and a visual scale of the furcular fat levels 

as measures of energetic state. These measures were used because they can reflect 

changes in an individual's level of energy reserves and they can change over the course 

of a day in response to food availability. Mass has been found to correlate with fat 

reserves in previous studies (Gosler 1994; Witter et al. 1995; Dall & Witter; Barnett & 

Briskie 2007). Therefore, if increases in mass are associated with increases in fat levels, 

then there should be highly significant relationships between mass and furcular fat 

scores in the experiments. These methods of measuring energetic state are a good 

compromise between invasiveness and reliability, but are not perfectly correlated. 

Second, energetic state is used in stated based models of behaviour as a proxy for 

fitness. Energetic state can be used in this manner because improved energetic state 

leads to improved general condition of females and males, which increases their quality 

and hence their ability to produce a larger number of offspring or offspring of high 

quality. Moreoever, many of the models of the strategic regulation of body mass in 

small birds in response to predation formulate the problem in a manner where animals 

must survive an arbitrary period before they can breed (McNamara & Houston 1990; 

Houston & McNamara 1993; McNamara et al. 1994). Therefore, the mass regulation 

strategy can directly influence a bird's reproductive success through influencing the 

probability of survival until breeding. 
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1.2 The link between foraging, energetic state, and fitness 

The link between foraging efficiency and fitness is a major cornerstone of behavioural 

ecology. Most models of optimal foraging are based on the fact that animals are striving 

to maximise fitness (or a currency that can be used as a proxy for fitness). There is 

evidence to suggest that there is an association between foraging efficiency and fitness. 

Schoener (1971) was one of the first authors to explicitly state that fitness increases 

with net rate of energy gain from foraging, although, confirmation of this assumption 

took longer. Lemon (1991), who was working on zebra finches (Teaniopygia guttata), 

found there was a negative relationship between the amount of time spent foraging and 

female reproductive output. This was despite females from all treatments obtaining 

similar amounts of food. The difference was thought to be due to the females having to 

expend more time obtaining their food in treatments where they were forced to work 

harder than less hard working females. This finding has subsequently been replicated in 

other studies (Lemon & Barth 1992; Lemon 1993; Williams 1996; Wiersma & Verhulst 

2005). Therefore, the net rate of energetic gain per unit of time is a valid currency for 

foraging experiments because it has been found to correlate with reproductive success. 

There is much literature that has shown in birds that there is a positive relationship 

between the condition of parents and their reproductive output (see Newton 1998, pp. 

145-189 for a review). Condition is related to energetic state insofar as it is a general 

term that is used to describe the physical state of an organism. Energetic state is a factor 

that contributes to the condition of an animal. However, energetic state and condition 

cannot be viewed as synonyms as an animal's condition can encompass a greater 

number of factors than energetic state. For example, measures of condition could also 

include measures of immune system challenge from infection or parasites. Therefore, 

measures of condition can incorporate many extrinsic factors (e. g., air temperature, 

population density, and food availability) and intrinsic factors (e. g., the state of the 

endocrine system, level of bodily energetic reserves, the level of immune challenge, and 

parasite or disease load). Energetic state is thus, only one factor that can affect an 

animal's condition. However, it is also the case that these factors all overlap and to 

some extent and may make simple interpretation of condition difficult. Although the 

concept of condition is often loosely defined, it is the most commonly used concept of 

relative animal well being that is used in field based studies of ecology, evolution, and 

conservation. 
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Generally, it has been found that increases in condition lead to increases in 

reproductive success. For example, it has been shown that bird populations increase in 

size because of food supplementation (see Newton 1998, pp. 145-189 for a review). 

These increases in reproductive success can be due to increasing the number of mates, 

increasing the amount of reproductive effort within a clutch (both directly through 

energy investment in eggs and indirectly through increased behavioural investment). 

Generally, the relationship between reproductive success and condition is well 

supported in most taxonomic groups although a full review of this subject is outside the 

scope of this thesis (see Clutton-Brock 1988; Newton 1989,1998 for reviews). 

1.3 Thesis aims 
The diet preferences of animals have been examined generally and it has been found 

that animals become less selective when food density declines (Stephens & Krebs 

1986). This is likely to be due to declines in the foraging animal's energetic state. As 

favoured food become less abundant, the amount of energy per unit of time will decline 

because the number of prey items encountered per unit time declines. Therefore, the 

amount of energy that can be extracted from the environment falls. In order to 

compensate for this, animals will consume food that they would not consider at other 

times (e. g., Beukema 1968; Kislaliogu & Gibson 1976; Williamson 1980; Ernsting & 

Van der Werf 1988). However, there is little direct evidence linking these changes in 

foraging behaviour with changes in animals' fat reserves. Therefore, it is the aim of my 

thesis to examine the effects of energetic and physiological state on the foraging 

decisions that animals make. 

I chose to examine three disparate areas of foraging behaviour and how they were 

affected by the birds' energetic and physiological state. The three areas where I 

focussed my attentions were: (1) rationality in relation to foraging context; (2) the 

energy budget rule of risk-sensitive foraging; and (3) the energy-toxin trade off and 

consumption of chemically defended prey. I examined the effects of energy on foraging 

decisions through negatively manipulating the birds' energetic state and correlating 
these changes in state with changes in decisions of the birds. Using these methods 

allowed me to examine the three topics in which I was interested: 

1) Do birds display breaches of rationality, and are these breaches in rationality related 
to energetic state? 
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2) Do birds display risk sensitive foraging behaviour that is consistent with the energy 

budget rule in natural situations? 

3) Do birds consume chemically defended prey when they are more energetically 

stressed? 

Through careful behavioural observation and measurement of environmental and 

state variables, I addressed these questions systematically in this thesis. All behaviour is 

dependent on energetic state to an extent, meaning that birds ought to pay attention to 

their energy levels when making foraging choices. Therefore, it is likely that the 

decisions that birds make when they are energetically stressed are likely to be different 

compared with when they have higher levels of energy reserves. 

1.4 Thesis outline 

This thesis can be broken into three sections dealing with three different areas of 

research. There are conceptual links between these sections insofar as they all examine 

some aspect of foraging behaviour and incorporate some aspect of physiological state. 

The first section consists of Chapter 2, which deals with rationality and how it interacts 

with energetic state of subjects. Recently, Schuck-Paim et al. (2004) proposed a model 

of apparent breaches in rationality based on the differences in marginal values in fitness 

that a reward has whilst the subject is in different energetic states. Their argument was 

that apparent breaches of rationality were based on differences in the marginal fitness 

payoffs of the rewards in different energetic states. Therefore, they argued that the 

maximal fitness payoffs switched between options at different energetic states. Hence, 

what are seen as breaches of rationality might be seen as rational decisions after all. 

They tested this prediction in European starlings (Sturnus vulgaris) and concluded the 

model was a good fit to the birds' behaviour. However, there are a number of problems 

with this study that can be broken into two areas: (1) flaws in the experimental design 

and (2) flaws in the analysis and interpretation of the results. Therefore, I aimed to 

replicate their results using the same species, but using a different experimental 

apparatus and method of state manipulation. 

The second section (Chapter 3) is devoted to a test of the energy budget rule 
(EBR), which is one of the hypotheses proposed to explain risk sensitive foraging 

behaviour (Stephens 1981). At this point, I wish to make a distinction between what I 

have termed energy reserves above and the energy budget rule of risk-sensitive foraging 

(see Chapter 3). Energy reserves, as stated above, are a set of physical characters, which 
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describe an individual's current energy levels at a specific point in time. The energy 

budget rule is a strategy for minimising the risk of starvation in a variable environment. 

It states that an animal should base its current foraging decisions on both its current 

energy levels and environmental factors that affect the its energy expenditure (e. g., 

ambient temperature) and the amount of energy available from a food item. An animal 

(such as a small diurnally active bird) living in a variable environment must accumulate 

a certain amount of food in order to guarantee survival during its night fast (when it 

cannot forage). Therefore, it will need to gain all of its energy to survive an entire 24- 

hour period during the daylight hours. The EBR states that animals might be selected to 

pay attention to the variability of a food source as well as the mean size of the food's 

payoff. The bird should pick reward options with low variance when its levels of energy 

are sufficient to meet the overnight energy demands. If its reserves are below what are 

normal for the time of day, then it might face the possibility of overnight starvation if it 

does not find food quickly. Therefore, it might be faced with finding larger than average 

rewards meaning it has. to adopt a risk-prone strategy and hope for a run of good luck in 

order to have a chance of survival. 

The EBR has limited empirical support, as there are studies that indicate that risk 

sensitive foraging behaviour is consistent with the EBR. Others find little support for 

EBR in determining the risk sensitive foraging behaviour of animals (see Kacelnik & 

Bateson 1996; Bateson & Kacelnik 1998 for reviews). The best demonstration of the 

EBR is the study of Caraco et al. (1990) who used differences in temperature to cause 

changes-in the energy budget in dark eyed juncos (Junco phaenotus). Therefore, I 

attempted to replicate this result in rufous hummingbirds (Selasphorus rufus) using 

natural variation in air temperatures. Accordingly, I investigated the risk-sensitive 

foraging behaviour of the birds at three times of day-early morning, mid-day, and the 

evening-where birds might have had different energy budgets due to differences in 

temperature. I also did this early and later in the breeding season as temperatures 

increased significantly throughout the breeding season. 

The final section (Chapters 4-8) examines the energy/toxin trade-off that has 

recently been formalised using stochastic dynamic programming (SDP) models (Kokko 

et al. 2003; Sherratt 2003, Sherratt et al. 2004). These models make many interesting 

predictions regarding the situations when animals should consume chemically defended 

prey. They are based on the premise that predators may consider defended food sources 

and utilise them at times of energetic need (e. g., Brower et al. 1968; Speed 1993b). 
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There is evidence to suggest that educated predators will attack chemically defended 

prey when they are energetically stressed (e. g., Sexton et al. 1966; Gelparin 1968; Chai 

1986; Hileman et al. 1995; Gillette et al. 2000). However, none of these studies directly 

measured energetic state of the predators. Therefore, in Chapter 5,1 examined the 

underlying assumption of the SDP models. This is that predators increase their 

consumption of chemically defended prey when their energy reserves decline. I also 

conducted a simultaneous binary presentation of both defended and undefended prey to 

determine: (1) if birds could differentiate between the prey based on the on the 

conditioned stimulus (i. e., background colour) and (2) if energetically stressed birds 

were able to make educated decisions regarding the prey. 

Chapter 5 is a demonstration of the energy-toxin trade-offs involved in the 

consumption of chemically defended prey. However, it could be criticised for being 

ecologically unrealistic. Therefore, in Chapter 6, I decided to replicate my results of 

Chapter 5, but with two differences: (1) the energy/toxin trade-off was examined in 

more detail as birds gradually lost and gained mass and (2) three prey types that differed 

in their levels of defence were used instead of two. Few studies have examined if birds 

can detect modest differences in the levels of toxin content of their prey. Therefore, I 

predicted that if birds were able to learn the differences among prey then they should 

prefer prey based on their toxin content. I also predicted that the order of these 

preferences should remain constant as birds lost and gained mass. 

Chapter 7 was similar to Chapter 6 in design, but instead of having three prey 

types containing different levels of quinine, the experiment provided the birds with two 

defended prey types that had the same mean levels of quinine. The difference came 

from the amount of variation around the mean that each prey type had (thus creating an 

experimental system similar to a risk-sensitive experiment). This created a case where 

the visual signal did not allow the bird to predict the quinine content of any one prey 

that had the variable quinine. If the birds were strategically managing their body 

burdens of quinine as predicted by the SDP models (Sherratt et al. 2004), then it would 

be predicted that the birds would prefer the prey with a constant level of defences. I also 

manipulated the mass of birds in manner similar to Chapter 6. Given that the previous 

two chapters have confirmed state-dependent consumption of chemically defended 

prey, I predict that the birds should increase consumption of both chemically defended 

prey. I also predict that the birds should maintain their preferences throughout the 

experiment. 
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The final experiment (Chapter 8) concentrated more on the strategic regulation of 

toxins, which is another focus of the model of Sherratt et al. (2004). This model 

predicted that under some circumstances that the addition of mimics to a mimicry 

system could decrease the rate of attack on the all prey types. This was as long as these 

mimics also increased the abundance of food available to the predator. I conducted an 

experiment to test this prediction by feeding the birds with prey of three types 

(alternative and visually indistinguishable model-mimics). In the low mimic frequency 

treatments, the birds encountered equal numbers of models and mimics. In the high 

mimic frequency treatment, models were encountered at the same rate but their number 

of encounters with mimics increased. The rate of encounter with the mimics increased 

as did the predators encounters with undefended prey. I predicted as with the SDP 

model that the overall rate of attack would decrease in the high mimic frequency 

treatment compared with the low mimic frequency treatment. 

1.5 Conclusions 

There has been much theoretical research into energetic state and how it affects mass 

regulation strategies and breeding behaviour in animals (Houston & McNamara 1999). 

However, there has been much less empirical research as to how energetic state affects 

the foraging decisions of animals. This might be because we are now only becoming 

aware of how to fully test state-based models of animal foraging decision-making in an 
integrated manner (Houston & McNamara 1999; Hutchinson & McNamara 2000). I aim 
to investigate how energetic state interacts with foraging decisions that animals make. 
Given that the level of energy reserves affect most animal decisions, it is probable that it 

also has an effect on the foraging decisions of birds. 
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Chapter 2 

THE ENERGETIC STATE AND RATIONALITY IN 
EUROPEAN STARLINGS 

2.1 Introduction 

The application of normative economic models to evolutionary biology has been an 

incredibly fruitful path of research within this field. One of the areas where economic 

models have been most applied is in the classical models of foraging behaviour (see 

Schoener 1971; Pyke et al. 1977; Krebs & McCleery 1984; Pyke 1984; Kamil & 

Roitblat 1985; Stephens & Krebs 1986; Morrison et al. 1990; and Ydenberg 1998 for 

reviews). Classical models of foraging assume that foraging animals also make rational 

decisions. From an economic perspective, rationality generally centres on the 

consistency of the decisions made and the maximisation of something (e. g., utility), 

although there are many interpretations of rationality. For example, Kacelnik (2006) 

outlined three ways that the concept of rationality had been used in in three distinct 

academic disciplines: economics, philosophy, and biology. 

It is becoming increasingly clear that rationality from a biological perspective 

may be different from an economic perspective (Gigerenzer & Todd 1999; Kacelnik 

2006). This is because from a biological perspective, animals may be selected to make 

fast and accurate decisions in the face of often great environmental complexity. 

Normative models of foraging are based on the economic conception of rationality. This 

means that animals are thought to base their foraging decisions on the utility of a 

foraging option. In the case of animals, utility is normally equated with fitness, or a 

short-term currency that equates directly with fitness, meaning that'animals' preferences 
for foraging options should be consistent irrespective of the other options that are 

concurrently available. 
One of the reasons that normative models have been criticised is because if an 

animal's foraging preferences can ultimately be related to fitness, then their preferences 

ought to be consistently related to the value of the payoff. This means that animals 

ought to form preferences that conform to the principles of rational decision-making. 
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Recently, it has been found that animals choose among foraging options in a manner 

that is inconsistent with these assumptions (Shafir 1994; Hurly & Oseen 1999; Waite 

2001a, b; Shafir et al. 2002; Bateson 2002; Bateson et al. 2002,2003; Schuck-Paim et 

al. 2004). These findings suggest that animals may use comparative evaluative 

mechanisms rather than absolute evaluative mechanisms when choosing among 

foraging options. Comparative evaluative mechanisms have been suggested in animals 

whereby choice options are evaluated relative to the other options available (starting 

with Shafir 1994). Comparative evaluative mechanisms are a subset of heuristics which 

state that the option with the most favourable combination of dimensions is chosen, 

meaning that choice is dependent on the other options available at the time (i. e., it is 

context dependent). In a natural environment, animals are often faced with more than 

one option available at any one time, it is probable that they utilise some form of 

comparative method to evaluate foraging options. However, it is important to note that 

comparative evaluative mechanisms in themselves are not irrational, but might result in 

preferences that seem irrational according to the economic conception of rationality (see 

section 2.1.1 for a discussion of ecological rationality). 

Absolute evaluative mechanisms in contrast, posit that animals should assign a 

fixed value to each option and select the option that yields the maximum payoff. 

Therfore, an absolute evaluative method is unlikely because a bird's memory of the 

absolute values will change over time. The accuracy of memory declines with 
increasing time since the memory was reinforced or used, and an animal's foraging 

environment is generally highly heterogeneous. Therefore, the number of absolute 

values for all dietary options might have to number into hundreds, if not thousands, for 

all items that might be incorporated into a diet over a year. Violations of rationality 

have been demonstrated in humans, lower vertebrates, and invertebrates have led some 

authors to suppose that there exists some universal cognitive mechanism (Shafir et al. 

2002; Bateson et al. 2002,2003; Bateson & Healy 2005). However, questions remain 

over the generality of their findings and whether these findings are significant within a 
biological context. 

There have been many demonstrations of irrationality in humans in context 

related problems (e. g., Tversky 1969; Huber et al. 1982; Huber & Puto 1983; Wedell 

1991). More recently, biologists have found analogous examples of violations of 

rationality in two taxa of animals: Insecta: Hymenotpera (Apis mellifera, Shafir 1994, 
Shafir et al. 1999,2002) and various bird species (Hurly & Oseen 1999; Waite 2001a, 
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b; Bateson 2002; Shafir et al. 2002; Bateson et al. 2002,2003; Schuck-Paim et al. 

2004). These violations were discovered after psychologists used methods derived from 

economics and decision theory to investigate if animals are rational decision-makers. 

These methods rely upon a form of economic rationality (Kacelnik 2006), which states 

that for an agent's decisions to be considered rational, they must conform to a number 

of principles. One of these principles is transitivity which can be defined as when an 

animal's preference-or-indifference relations (denoted as z) for x, y, and z are such that 

if xzy and yzz, then xzz (Luce & Riaffa 1957, p. 28; Tversky 1969). However, it is 

important to note that although cases of intransitivity may not fit within the economist's 
definition of rational decision-making, intransitive animals may still be following 

adaptive rules of decision-making (Houston 1997). 

There are also many other principles that need to be adhered to for the decisions 

to be considered rational (e. g., Luce & Riaffa 1957, pp. 25-30, Kacelnik 2006). The 

principle of, the independence of irrelevant alternatives (IIA) is another cornerstone of 

rational decision-making. The IIA states that the expectation of relative preference 
between options will be unaffected by the presence or absence of other options (Luce & 

Riaffa 1957; Luce 1977; Tversky & Simonson 1993). Two aspects of the IIA that I will 

consider in this chapter are the concepts of regularity and the constant ratio rule. 
Regularity is the principle that states that the addition of a third choice option to a pair 

of options should not increase the preference for either of the preexisting options. The 

constant ratio rule states that the relative proportion of choices made for each of two 

options should be unaffected by the addition of another less favoured option. 

The asymmetrically dominated decoy (ADD) method was developed to test for 

violations in IIA (Huber et al. 1982; Huber & Puto 1983). Normally, the ADD method 

consists of testing the relative preference for two options that differ along two 
dimensions (e. g., food amount and food handling time). Subjects compare different 

options along these dimensions and pick the option that offers the most profitable mix 

along these two dimensions. The option that has its relative rate of preference increased 

when a decoy added to the set is considered the target. The ADD method tests the 

constant ratio rule through adding a `decoy', which is equal or dominated by the target 
in one dimension, but inferior in the other dimension. The competitor also dominates 

the decoy in the dimension that the target dominates, but is inferior in the other (see 
Figure 2.1). This method has been used successfully to demonstrate that the addition of 
a decoy does significantly alter the rate of capture for one of the two pre-existing choice 
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options (Huber et al. 1982; Huber & Puto 1983). It has also been shown that animals 

violate the conditions of IIA (e. g., Hurly & Oseen 1999; Shafir et al. 2002; Bateson 

2002; Bateson et al. 2002,2003; Schuck-Paim et al. 2004). These results indicate that 

although animals' decision-making, at times, may approximate optimal decision- 

making, there are times when these conditions are violated. Therefore, this brings the 

supposed relation between foraging payoff and fitness into question, which we assume 

animals are acting to optimise (see Stephens & Krebs 1986 for a review). 

Table 2.1 summarises the results of studies that have investigated regularity and 

the constant-ratio rule, which are both predictions derived from IIA. Eight experiments 

have investigated regularity and three of them have shown a significant group effect. 

Four of these experiments also provided evidence of individual differences in 

Table 2.1. A summary of animal studies that have investigated breaches in the various 
predictions of IIA. The symbols + and - were used to indicate results showing a breach of 
rationality and no breach respectively. Numbers represent the number of individuals showing 
breaches of principle/total sample size (- indicates that individual data was not presented). Na 
= not applicable. 

Species 
Honeybees 
Grey jays 
European starlings 

Rufous hummingbirds 

' IIA 
Regularity Constant Ratio Rule 

-. 2/8 

-, on 
+, - 

-, 7/16* 

-, 8/11 * 

+, - 
+, - 
+, 617 

-, 017 
+, - 
na 

+, - 
+, - 

Source 
Shafir et al. (2002) 
Shafir et a!. (2002) 

Bateson (2002) 
Hutton (2003) 

Schuck-Paim et al. (2004) 
Hurly & Oseen (1999) 
Bateson et a!. (2002) 
Bateson et a!. (2003 

Indicates that although some of the birds displayed violations of regularity In their individual choices, 
there were differences in the directions of the effect meaning that the effect was not consistent among 
individuals. 

behaviour; two of them found that some individuals violated the principle of regularity. 
However, in neither of these studies, were these individual violations consistent 
between individuals. This means that increase in preference for a focal option was 
different between individuals (Table 2.1). The other aspect of the IIA which has been 

considered by previous studies is the constant-ratio rule. There have been seven 

experiments from six studies that have tested the constant-ratio rule in animals (Shafir 

et al. 2002; Bateson 2002; Bateson et al. 2002,2003; Hutton 2003; Schuck-Paim et al. 
2004; see Table 2.1 for a summary). Of these seven studies, six have found breaches of 

the constant-ratio rule for group results. Three of these studies provided individual 

results of which one (Bateson 2002) showed individual breaches of the constant-ratio 

rule. However, in the studies that did not provide individual data, the proportion of 



Energetic state and rationality 15 

individuals showing individual breaches of rationality must have been very high for the 

group results to be significant. The only negative results (i. e., Hutton 2003) failed to 

show a single individual breach of the constant-ratio rule. This result seems at odds with 

the other studies and the reasons for this result could indicate that birds do display 

absolute evaluative mechanisms in some circumstances. 

There are many explanations possible for contextually induced preference 

reversals of which, Wedell (1991) outlined three: (1) the dimensional weight model, (2) 

the value shift model, and (3) the dominance-valuing model. He presented results from 

three experiments which tested each of these hypotheses and found support for the third 

hypothesis, the dominance-valuing model. This model is based on the subject's 

perception and the heuristic strategies that they utilise to solve a problem and predicts 

the main reason that animals behave irrationally is to avoid the possibility of making a 

poor decision. The dominance-valuing model differs qualitatively from the dimension 

weight and the value shift models in that, although processing proceeds dimensionwise 

to detect dominance, the weighting of and values along the dimensions are assumed to 

remain fixed. Instead of a dimension-based approach, choice preference for the targeted 

alternative is assumed to be altered by the perception of the dominance relationship 

(Wedell 1991, p. 770). Therefore, this model is compatible with the heuristic based 

approaches of the heuristics and biases school (Tversky & Kahneman 1974; Tversky & 

Simonson 1993; Kahneman & Tversky 1996) and the later ecologically based heuristics 

approach typified by the Adaptive Behaviour and Cognition (ABC) group (Gigerenzer 

& Goldstein 1996; Gigerenzer & Selton 1999; Gigerenzer et al. 1999; Hutchinson & 

Gigerenzer 2005). However, there are many possible explanations for these 

observations and there is still much to be learned as to the cognitive mechanisms and 

the meanings of these observations (Huber et al. 1982; Wedell, 1991). We know very 

little about the direct neurological phenomena which accompany such behaviour. 

However, there is growing acceptance that the mechanism for evaluation must be 

comparative and that some heuristic or rule-of-thumb process is responsible for such 

violations of rationality. 

2.1.1 Normative methods versus heuristics, biases, and rules-of-thumb 
A critical review of the normative approach of foraging will yield many flaws in this 

way of thinking about animal foraging behaviour. Whilst it is true that the predictions of 

simple models can approximate the behaviour of animals (Schoener 1971, Pyke et al. 
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1977, Pyke 1984, Kamil & Roitblat 1985; Stephens & Krebs 1986), generally the 

classical approach will fail with increased behavioural, physiological, or ecological 

complexity. One of the reasons for this, are the assumptions that biologists make 

regarding the behaviour of foraging animals in these models. For example, foragers 

were thought to have complete knowledge of a system. This assumption simplifies 

foraging models, because continued forager learning could be excluded as a factor, 

making the models simpler to calculate. More recently, forager learning processes have 

been included in theoretical models of foraging behaviour which have improved their 

biological realism (see Valone 2006 for a review). Therefore, to make foraging models 

more realistic, we need to first utilise a more integrative approach that includes all 

aspects of the constraints and benefits that affect individuals. Second, we need to realise 

that animals might not be acting to optimise within a normative framework, but may be 

satisficing. 

Herbert Simon (1956) introduced the concept of satisfication into the economics 

literature. This idea was that individuals would choose the first choice option that 

satisfies a certain need or most of their needs, yet do not necessarily provide the optimal 

solution. Therefore, satisfication yields results that are good enough, but may not be the 

best solution. Indeed, there may be many other solutions to the problem, which yield 

equal or better results. However, in the appendix of Simon (1956), he stated that once 

this strategy had been picked, the subject could then act to optimise within the context 

of the satisficing rule. This effectively moved optimisation down a level, and introduced 

the possibility of optimisation with constraints. Tversky (1969) demonstrated 

intransitivities in humans and suggested that the assumption that subjects apply fixed 

utilities to options that they then compare in order to select the option that maximises 

utility may be flawed. He suggested that animals might actually use a comparative 

evaluative mechanism because it was a more efficient method of calculating differences 

between options. Amos Tversky and Daniel Kahnemann went on to publish many more 

studies in this field and their approach came to be known as the heuristics and biases 

school (e. g., Tversky & Kahnemann 1974; Kahnemann et al. 1982). This approach 

stated in the face of complex problems, animals might simplify problems by adopting 

strategies that they termed heuristics. These heuristics, which offered fast and frugal 

solutions, were often hampered by producing biases in the decision-making process. 

However, it is also possible that priming effects could have an influence on these biases 
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(Fantino & Fantino 2005). The effects of priming have not been adequately controlled 

for in animal experiments and remain a major problem in these studies. 

Later researchers criticised the heuristics school for their lack of ecological 

relevance and the maintenance of a normative core to human and animal decision- 

making processes (Gigerenzer & Goldstein 1996; Gigerenzer & Todd 1999; Todd & 

Gigerenzer 2000; Hutchinson & Gigerenzer 2005). Gerd Gigerenzer and colleagues at 

the Adaptive Behaviour and Cognition (ABC) Group at the Max Planck Institute for 

Human Development also maintain that decision-making should utilise simple 

algorithms based on simple psychological models. They argue that animals should 

utilise fast and frugal heuristics and bounded rationality to solve seemingly complex 

problems. They developed the idea of ecological rationality where animals are 

considered differently from how they were treated by the heuristics and biases school. 

The rationality that animals use-ecological rationality-where animals spend most of 

their time trying to make decisions in ever changing environments is different from the 

heuristics and biases school which used traditional definitions of rationality. The 

traditional definitions of rationality maintain that subjects are trying to maintain an 

internal order and consistency. Therefore, fast and frugal heuristics deliver solutions to 

problems that are accurate, quick, and low-cost in the face of ecological complexity 

(Gigerenzer & Todd 1999; Gigerenzer & Hutchinson 2005). Hence, the observation that 

animals' preferences fail to match predictions of rationality may be wide of the mark. 

This is because animals are using ecological rationality that may be different from the 

traditional views of rationality. Therefore, results may not be the results of biases as 

supposed by the heuristics and biases school. Rather, the biases may result from the 

trade-off involved in the need for free living animal to make accurate decisions quickly 

in an ecologically complex environment. The study of ecological rationality is still in its 

infancy, but it offers a new way to think about cognitive evolution and decision-making 

that is far more realistic in how animals deal with their environments. 

2.1.2 Alternative explanations for context-dependent results 
Within the animal and human literatures, there have been those who defended the 

normative approach in the face of these hostile criticisms (e. g., Maynard Smith 1977; 

Cohen 1981; Stephens & Krebs 1986, pp. 207-215). Their rebuttals have tended to 
focus on four arguments: (1) performance errors, (2) computational limitations, (3) the 

application of the wrong normative model, and (4) a different construal of the task by 
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the subject than was intended by the researcher (Stanovich & West 2000). 1 will 

consider each of these criticisms briefly below. 

The argument that animals are making performance errors is an argument when 

animals' behaviour has not conformed to model predictions. Because of its liberal use, 

it has become amorphous and almost meaningless although inherent error is a valid 

concern in any empirical enterprise. Performance errors have often been the first 

argument that biologists resort to in the face of results that did not match their 

predictions. For example, Rechten et al. (1983) stated that birds were unable to 

discriminate between large and small prey thus causing partial preferences in great tits 

(Parus major) diet for small prey. However, other factors such as energetic state were 

ignored in the experiment. Moreover, this issue could have been resolved with simple 

simultaneous presentations of both large and small prey. 

Computational limitation is another argument that has been used to explain the 

many results that are thought to breach the formal principles of rational decision- 

making. This argument is based on the fact that the problems posed by researchers may 

be too complex for animals to solve, or they do not have the cognitive machinery to 

reach the expected normative response. Little is known about the neurological bases of 

the cognition involved in evaluating between different foraging problems. Tversky 

(1969) supposed that evaluative comparisons might involve fewer calculations when 

comparing between two or more options. However, the current level of understanding 

of the cognitive and neurobiological bases of evaluation means that his hypothesis is 

still untested. This idea was one of the first examples, of what would later become 

known as the heuristics and biases school. Heuristics and later bounded rationality have 

become common explanations for breaches in rationality that has been found in humans 

and animals. 

If data were used to falsify an incorrect normative model, this would lead to an 

erroneous result. This argument has been used a lot more in the human literature than in 

the animal literature (Stanovich & West 2000). As mentioned above, few animal studies 
have attempted to validate few of their experimental parameters. Although it is possible 

that the wrong model is being applied a data set, without adequate validation this can 

neither be proved nor disproved. This brings me to the final criticism, difference in 

perception between the animal subject and the researcher. Such biases could lead to the 

subjects construing the problem in a different way than was intended by the 

experimenter. Therefore, failure to support the model's predictions, is not a true 
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negative, but a false negative or more correctly, it results in the hypothesis not being 

tested. Stanovich and West (2000) also pointed out that individual differences in 

responses could lead to results that lead to violations of rationality and could help 

explain the inconsistencies that exist in some of the animal data (e. g., Bateson et al. 

2002,2003). 

One problem with applying descriptive economic models to animal behaviour is 

that they fail to include the biological factors that may affect decision-making both 

within individuals over time and between individuals. One such factor is energetic state, 

which may affect decision-making in many ways that are only now becoming apparent. 

I will examine one recent hypothesis for state based violations of rationality in the next 

section. 

2.1.3 The role of energetic state in ADD effects 

Schuck-Paim et al. (2004) conducted an experiment in order to examine if the energetic 

state of birds' had any effect on the violations of rationality that had been observed in 

other studies. The authors manipulated the energetic state of starlings to assess their 

preferences for different foraging options that varied in two dimensions in accordance 

with the asymmetrically dominated decoy experimental design. One half of the birds 

had their energy intake controlled so that they received an amount of food that was 

sufficient to meet their energetic demands. The remaining six birds received insufficient 

food from the trials that should have caused the birds to have lower energetic states than 

the fed group. Each of these two groups was given two treatments of different choice 

options. Two of the choice options were the same in both treatments and these were the 

focal pair of options. They had the same `short-term' rate of intake of 0.5 units of food 

per second. Short-term rate of energetic gain has been suggested as a possible currency 

that birds utilise in decision-making processes (Bateson & Kacelnik 1996). One option 

delivered two pieces of food after a four second wait (focal option for delay [FD]) while 

the second option delivered five pieces of food after a ten second wait (focal option for 

amount [FA]). A third option (the decoy) differed between treatments in the payoffs and 

waiting times they offered birds, which were asymmetrically dominated by the focal 

options. In the high intake treatment, the decoy for amount (DA) had an equal payoff to 

the FA but had a longer delay of 20 seconds. The low intake treatment, the decoy for 

delay (DD) delivered one piece of food after a four second wait. Using this these options 

presented in binary and trinary arrays, Schuck-Paim et al. (2004) were able to test the 



Energetic state and rationality 20 

rationality of decision-making of birds depending on energetic state and the nature of 

the asymmetry between decoys and focal options. 

Schuck-Paim et al. (2004) argued that their data indicated that in situations where 

birds were energetically stressed (the group where intake was not controlled during the 

low intake treatment [Doll, they tended to display breaches in rationality. However, the 

birds' decisions were rational when they had higher levels of food intake (DA 

treatment). These apparent breaches in rationality at different energetic states were due 

to differences of the marginal fitness values of the rewards in different energetic states. 

This meant that the option that delivered the higheset fitness was dependent on the 

birds' energetic state, but the decisions were rational given that they were choosing the 

option that maximised fitness. Initially, this was a very interesting finding because it 

indicates that the birds' `irrationality' in other studies might have been caused by 

differences in energetic state and the birds may have been behaving in a rational 

manner. However, the study has problems that can be classified into two types: (1) 

experimental design and (2) analysis and interpretation of data. 

The design of the experiment has two main flaws. First, the authors stated that the 

short-term rate of return for a focal option was 0.5 food units per second and 0.25 food 

units per second for a decoy option. This was calculated as the number of food items 

received for choosing the option until the time the food was delivered. However, the 

effect of the inter trial interval of 60 seconds was not considered which given their 

model is state-based is surprising. Energetic state is a function of the food derived over 

the entire experimental period. Given that there was capacity for the times it took birds 

to complete the experimental session to differ between individuals and between bouts, 

the state changes of birds could also have been different. If the short-term rate is 

recalculated to take account of these factors then the birds received: 0.0712 food items 

per second for FA, 0.0312 food items per second for FD, 0.0625 items per second for DA, 

and 0.0156 food items per second for DD (calculated as experienced delays plus inter 

trial intervals). Second, there was no direct measurement of the energetic state of birds 

before, during, or after each experimental session. Therefore, there is no direct evidence 

to suggest that birds during low intake treatments had lost more reserves than they did 

on during the high intake treatments. 

There were also major flaws in the analysis and interpretation of the results. First, 

the breach in regularity and in the constant ratio rule was found when comparing the 
binary (low intake) with trinary (high intake) treatments. Their statistical treatment was 
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problematical because this comparison was not valid. They conducted independent 

statistical tests between treatment effects for the binary versus trinary presentations in 

low and high food intake treatments. However, these effects are interactions meaning 

that the data should have been analysed in a single model and an interaction term 

calculated. Given the choice preferences of birds that are made between trinary and 

binary options are known to be context dependent, context effects are important and so 

comparisons ought to maintain the contextual relationships that are inherent in the 

method. Therefore, the results that the authors claimed are invalid given the method 

used to obtain them. 

Second, the authors Schuck-Paim et al. (2004) also asserted that some of the 

context-dependent violations of rationality found in other studies could have been due 

to inadvertent effects of pre-experimental deprivation periods on the subject's energetic 

state. These periods are imposed upon bird in order to increase their hunger and so 

make them more likely to participate in the experiment. Although this is a valid concern 

in some experiments, it cannot explain the results that have been obtained from free- 

living subjects that were able to find their own food and so were not reliant upon the 

food provided in the experiment (Bateson et al. 2002,2003; Shafir et al. 2002). These 

experiments provided birds with supplements on top of their normal diets. Therefore, 

their fat reserves were probably greater compared with non-supplemented conspecifics 

of the same population. 

The Schuck-Paim et al. (2004) model is interesting in that it proposed a state- 

based explanation of the violations of rationality that have been recorded in previous 

studies. However, their experiments to test their hypothesis were poor tests of their 

model. There were many confounding effects that were uncontrolled for and their 

statistical analysis was incorrect. Therefore, in order to test their hypothesis a state 

manipulation that alters the levels of fat reserves of subjects may be a better way of 

testing this idea. 

2.1.4 Experiment introduction 

In the section above, I outlined some of the problems of the Schuck-Paim et al. (2004) 

experiment. I wanted to try to replicate the results of this experiment using the same 

experimental species, but in a different experimental design. Hutton's (2003) findings 

that European starlings did not violate the constant-ratio rule are also interesting 
because they support the use of absolute evaluative processes. I used the method used in 
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Hutton (2003), which was developed by Melissa Bateson. Therefore, my experiment 

had two aims which were: (1) to investigate if birds demonstrated violations of the 

constant-ratio rule and (2) if preferences between binary and trinary food presentations 

remained constant or changed with measurable changes in energetic state. If the 

Schuck-Paim et al. (2003) model is correct, I expect that the birds would violate the 

constant-ratio rule when birds were in poorer energetic states. 

2.2 Methods 

2.2.1 Subjects 

European starlings are large ground-foraging insectivorous passerines that are 

widespread throughout Europe. They are a semi-social species and are partially 

migratory with the proportion of birds migrating increasing with increasing latitude. 

Naturally, their masses can range between 75-90 g with males being heavier than 

females. When captured and taken into aviaries, birds can lose between 5-10 g in mass 

due to reduced body reserves of fat and atrophy of flight muscles. Starlings are 

considered generalist foragers due to their great geographic range and success as a 

naturalised species in other parts of the world (e. g., North America, Australia, Southern 

Africa, and New Zealand). Their diets consist of mainly invertebrates and insects, 

which are supplemented by fruit and nectar where available (Feare 1984). 

The subjects were eight wild-caught (European starlings [5 males, 3 females]) 

caught under licence from English Nature (Licence Nos. 19991381 and 20001512). 

Prior to the commencement of the experiment, birds had been kept communally in a 

large indoor free-flight room and used occasionally in operant box experiments, but 

none had been used previously for context experiments. Five days before the start of 

training, birds were moved into individual in wire cages (445 mm high x 750 mm wide 

x 450 mm deep), which were housed in an air-conditioned room maintained at ca. 17 °C 

with a 14: 10 hour light: dark cycle. Four birds were kept in each of two neighbouring 

rooms. This was because in order to observe birds during the experiment, I had to place 

the birds against the back wall of the room. The shelves were only able to accommodate 
four cages in any one room along the back wall. The birds were fed Purina wild game 

starter, mealworms (Tenebrio molitor), and fresh fruit pieces. They also had continuous 

access to water at all times of the day. Birds could see and hear other birds at all times. 
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2.2.2 Fat scores and weighing 

Birds were caught daily between 0900 hr and 1000 hr Greenwich Mean Time (GMT) to 

have their fat levels assessed and to be weighed. I assessed the bird's fat level using a 

modified visual scale of subcutaneous fat around the trachea (modified from Gosler 

[1996,2004], Table 2.2), which has been demonstrated as a good indicator of overall 

reserves (Blem 1990). To do this, I immobilised the bird by placing it on its back into 

the palm of one hand and straightening its neck so that its bill was pointing forward. 

With my other hand, I held the legs on the tarsi. The position of the birds is important 

because if the necks of different individuals are at different angles, it can influence the 

reading because the tissue bunches when the neck is at its normal angle. Once 

immobilised, I blew back the feathers around the base of the neck to ascertain its fat 

score. This method was also used in subsequent chapters when fat scores were taken. I 

then weighed the birds to the nearest 0.1 g using an electronic balance (Ohaus Scout 

Table 2.2. System developed to visually assess subcutaneous adipose tissue 
around the tracheal region of starlings. 

Fat Score Visible Characteristics 
0 No fat visible in tracheal cavity (T. C. ) 
1< half T. C. covered in fat 
2> half T. C. covered in fat 
3 Entire T. C. covered in fat 
4 Fat in T. C. level with keel 
5 Fat bulging above the level of keel 
6 Fat extending beyond T. C. and bulging 

SC6010). Birds were immobilised for weighing by placing them, head first, into a 

conical plastic bag until their body was tight against the walls of the bag. The bag had 

the apex of the cone removed to allow airflow into the bag. Birds were generally in the 

bag for between 10-20 seconds. Prior to the start of the experiment, I used the eight 

masses of birds that had been used during training to calculate the free-feeding masses 

of birds so that I could then calculate the birds 90 % free-feeding masses. 

2.2.3 Feeder design and construction 
Feeders were made from a ceramic tile with a short piece of polyvinyl chloride (PVC) 

glued to it. The tubing had an internal diameter of 38 mm cut at one end at a 90° angle 
to the longitudinal plane of the tube and the other end was cut at 45° to the longitudinal 

plane (Fig. 2.1). The tube was affixed to the tile at an equal distance from the left and 
right sides of the tile with araldite on the 45° cut to create an angled tube running at 45° 
from the horizontal tile. The short side of the tube was nearest the front face of the tile 
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and the angle of the tube took the opening away from the tile. The three feeders were all 

identical except for the length of the feeder from the bottom lip of the opening to where 

it met the ceramic tile (measured along the bottom side of the PVC tubing). The three 

lengths that were chosen were 20 mm, 50 mm, and 60 mm (Fig. 2.1). Birds had 

previously been shown to have preferences for shorter tubes when all other things were 

equal (Hutton 2003). I will henceforth, refer to the bottom length of the feeder as 

"length" throughout the rest of the chapter because this is the measure of length that 

was used to differentiate between feeders. The mealworms were placed on the tile at the 

base of the shortest part of the tube where it met with the tile. This method was inspired 

by Waite's (2001a) experiments on gray jays that were required to venture different 

distances into wire mesh tubes. The length of the tube was a negative dimension, 

because the longer tubes may have exposed the birds to higher risks of predation and 

may have had higher energetic costs of food retrieval associated with increasing length. 

Figure 2.1. A side elevation of a feeder that was used in this experiment. The tube lengths 
used were 20 mm, 50 mm, and 60 mm (figure modified from Hutton 2003). 

2.2.4 Training 

During the training phase of the experiment, birds were maintained on ad libitum food 

for soft-billed birds, with additional fruit and mealworms provided each morning. 

Water was available to birds at all times. Food was removed from their cages two hours 

prior to the commencement of the training. Training took place by habituating birds to 

the three feeder types in order of tube length from shortest to longest. Training was 

carried out by first habituating birds to 20 mm feeders containing one Tenebrio sp. 

larvae (henceforth, mealworms). I presented all the birds with a feeder at once and left 

the room for three minutes. I returned after three minutes to see if birds had consumed 

the mealworms. Once all birds were consuming mealworms without me present (this 

took a maximum of 17 presentations), I began presenting the feeders and then moving 
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away from birds until I stopped at a distance of about five metres. From there, I 

observed them while I was in their full view. This was so that I could observe the birds 

and time their latencies to feed. Birds were considered habituated when it took on 

average less than 20 seconds for them to consume the mealworms from the time I 

moved away from the cage. Once the birds were reliably feeding from the feeders, they 

were habituated in the same manner to 50 mm and 60 mm feeders which both contained 

five mealworms. Overall, the process of training lasted 9 days as it proceeded at the 

same pace for all birds as I only moved onto the next step once all birds were 

performing the behaviour without hesitation. This was so all birds experienced the same 

number of training feed presentations. I made one feeder presentation to all birds every 

12 minutes. Each feeder type was marked with coloured insulation tape in one of three 

colours (blue, yellow, or red), which corresponded with a feeder length for that 

individual. The colours for each feeder were different in order to facilitate association 

between colour and feeder type and colours were balanced between individuals as 

much as possible (in order to counteract colour biases). After 9 days of training, all 

birds were consuming the mealworms from all three-feeder types without signs of fear. 

On the tenth and eleventh days, I conducted 30 forced trials (15 on each day) on each 

individual in which birds had one of the three feeders presented with its reward. Again, 

the feeders were presented once every 12 minutes in a random order for each 

individual. The presentations were staggered so that only one individual was worked at 

a time. The forced trials were completed to familiarise the birds with the three feeder 

types and their rewards. It also allowed birds to get used to having all feeders presented 

in one session. Once the forced trials were completed, I began the experimental trials. 

2.2.5 Experimental protocol and daily routine 

This experiment examined the effect of two factors: (1) the relative preferences of birds 

for targets and competitors in the absence of decoys (binary presentations) compared 

with when a third decoy option was present (trinary presentations) and (2) the effect 
that energetic state had on the relative preferences of birds in binary and trinary 

presentations. The experiment consisted of four phases where energetic state and 

context were manipulated in the manner of a2x2 experiment design. Hence, the birds 

experienced four phases during the experiment (a binary and trinary phase for each 

state treatment). Each phase consisted of 30 simultaneous presentations of either two 
feeders (binary phases) or three feeders (trinary phases) while the birds were in 
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different energetic states (90 % free-feeding mass and free-feeding mass) which were 

split between two days (15 on each day). Therefore, the entire experiment was made up 

of 120 presentations split between the two state treatments and the two context 

treatments. I conducted the experiment in a counterbalanced design for state and 

context treatments. This meant that half the birds were run first at 90 % of their free- 

feeding masses, and the other half were run at their free-feeding masses. The order in 

which the context treatments were run was then split between the two mass groups. 

The experiment was designed using the asymmetrically dominated decoy method 

(Huber et al. 1982; Huber & Puto 1983). The three feeder options varied along two 

dimensions (tube length and food reward, Fig. 2.2). The food reward (payoff) was the 

6 

5 

f0 4 

w 
03 
ý aý 
.0 

Z 

1 

0 

x 
Decoy 

Target 

X 
Competitor 1 

0 20 40 
Feeder length (mm) 

60 

Figure 2.2. The treatments used in this experiment conformed to the asymmetrically dominated 
decoy design. The number of larvae was a positive dimension while the feeder length was a 
negative dimension. 

positive dimension because birds always preferred greater numbers of mealworms 
(Hutton 2003). Tube length was a negative dimension because birds preferred shorter 
lengths (Hutton 2003; Melissa Bateson, personal communication). This preference for 

shorter feeders may have been related to the birds perception that they were exposing 
themselves to a higher probability of being captured by a predator. Therefore, the 50 

mm feeder containing the five mealworms was designated the "target", whereas the 
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"competitor" contained a single mealworm in the 20 mm feeder. The "decoy" contained 

five mealworms in the 60 mm feeder (Fig. 2.2). The mealworms measured 

approximately 8 mm long and were sourced from a pet food supplier. 

The daily routine started with fat scoring and weighing of the birds between 

0900-1000 hr GMT. The birds were then allowed at least two-hours access to food 

before the onset of food deprivation. This was done in order standardise the effects that 

the gut contents of the birds might have on the results. This was because in the 90 % 

free-feeding mass treatment, birds tended to consume their food before lights were 

switched off at the end of the day. This meant they might have had longer fasts 

compared with when they were free-fed. Thus, by allowing all birds at least two-hours 

access to food, it allowed them to have food in their stomachs prior to the 

commencement of the two-hour period of food deprivation. This standardised the 

differences in gut contents between treatments, but maintained the effects of other state 

variables. This meant that short-term state differences were standardised between state 

treatments, but the long-term differences in state were maintained. Following the 

completion of the two-hour food access period, the food was removed from the birds' 

cages. They were then food deprived for a further two-hours and the experiments 

started generally between 1300-1500 hrs. Daily sessions lasted up to three hours 

although they occationally exceeded this (up to 15 feeder presentations) with the birds' 

only access to food during the experiment sessions being the payoffs they received 
from the feeders. The birds had a choice trial every 12-minutes meaning that I was 

generally able to complete one presentation for the eight birds within the 12-minute 

cycle. The birds were presented with either a pair (in the binary phases) or three feeders 

(in the trinary phases). In binary presentations, the feeders were placed near the ends of 

the cage with the tubes facing towards the inside the cage. In trinary presentations, two 

feeders were placed near the end (- 50 mm from end) of the cage and one placed in the 

centre next to the door. Once I had placed the feeders in to the cage, I moved briskly 

away and activated a hand-held stopwatch. I used this to calculate the birds' latency to 

feed and total handling time. From these times, I was able to calculate the latency to 

feed and the average handling time per larva. I calculated preference as the birds' first 

choice in the trial. I terminated the trial once the bird had taken its head out of the 

feeder and began to move away from it. I did this by moving towards the bird's cage in 

order to prevent it from feeding from another feeder. At the end of the daily 

experimental session, the birds' food was placed back in their cages and they were left 
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until the next morning's state measurement. At the end of the experiment, all birds were 

kept in their cages to allow their masses to reach their pre-experiment level and then 

they were placed back into free flight for use in further experiments. 

2.2.6 Statistical Analyses . 
Analyses were performed using SPSS (version 11.0) for Macintosh computers and 

version 13.0 for PCs. I performed statistical tests using a linear mixed model (LMM) 

which included repeated measures tests on the data when all assumptions of the models 

were met. All proportionate data were arcsine square root transformed and converted to 

degrees. I did not conduct tests for individual birds, as subject was included as a factor 

in the model meaning the statistics were conducted in an integrated manner. I calculated 

the relative preference of targets to competitors below. 

(Proportion of targets - proportion of competitors) Relative preference = (2.1) 
(Proportion of targets + proportion of competitors) 

Means are presented ± SE, and all statistics are two-tailed with the significance level set 

at 0.05. I used the least significant difference (LSD) method to compare contrasts within 

fixed factors. I adjusted alpha levels were using a Bonferroni correction (a/n) when I 

made multiple comparisons. 

I also collected data on the effectiveness of birds at getting prey from feeders and 

the amount of handling time that birds spent on consuming each prey item. In order to 

calculate the proportion of larvae obtained from each feeder, I averaged the number of 
larvae consumed by the number of presentations. The data were pooled by bird, feeder 

type, state treatment, and trial context. In order to calculate the handling time per prey, I 

calculated this as the amount of time from when the bird put its head into the feeder 

until the bird either moved away or stopped feeding. I then divided this by the number 

of mealworms eaten to obtain the handling times per prey consumed. I analysed both 

sets of data that these calculations generated using LMMs. 

2.3 Results 

2.3.1 Side and colour biases 

Birds often have biases for a particular side of the cage on which they prefer to attack 
food. In order to exclude the possibility that birds were biasing their decisions for one 
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particular side, I conducted chi-squared tests for each individual for both the binary and 

trinary treatments. The results for the binary presentations of the target and competitors 

show that there were no significant biases for any of the birds (Table 2.3). In the trinary 

trials, there did seem to be more of a tendency for birds to choose the centrally placed 

feeder although none of the results were significant (Table 2.3). In six out of eight birds, 

the highest number of choices was for the centre option. Six out of the eight birds also 

had P-values of less than 0.1 (marked with an asterisk). Although this suggests that 

there might have been a slight bias, it was not deemed bad enough for the data to be 

corrected. 
Table 2.3. Tests for side biases using 2 tests for binary and trinary presentations of prey 
(x2(o 05 2): binary=3.841, df=1; trinary=5.991, df=2; * denotes P<0.1). 

Binary,, -Trinary ýýýý 
Bird Left Right Test Statistic. Left Centre Right Test Statistic 
4 30 30 0.00 18 28 14 5.2* 
15 27 33 0.60 12 21 27 5.7* 
21 30 30 0.00 12 25 23 4.9* 
30 29 31 0.07 22 26 12 5.2* 
34 33 27 0.60 21 25 14 3.1 
35 30 30 0.00 15 28 17 4.9* 
40 26 34 1.07 22 25 13 3.9 
44 33 27 0.60 21 12 27 5.7" 

2.3.2 Effect of food restriction on energetic state 

The aim of this experiment was to manipulate the energetic state of birds. In order to do 

this I compared the masses of birds when they were allowed ad libitum access to food 

with when theyds had limited food availability to maintain the masses at 90 % of their 

free feeding mass (FFM). It was not possible to maintain the birds' masses at exactly 90 

%' of their FFM. However, the birds masses were significantly lighter in the food- 

restricted treatments (X t S. E.: 100 % FFM=77.05 t 1.51 g; 90 % FFM=70.49; paired t- 

test: t=-15.085, df=7, P<0.0001) as were their levels of furcular fat reserves (9± S. E.: 

90 % FFM=1.0 ± 0.3; 100 % FFM=2.6 t 0.3; paired t-test: t=-8.844, df=7, P<0.0001). 

Individual regression analyses also revealed that the relation between mass and fat 

scores were highly significant (4 f: F,, 4, =48.274, P<0.001, r2=0.523; 15 f: F139=77.542, 

P<0.001, r2=0.671; 21 m: F1,40=62.301, P<0.001, r2=0.615; 30 m: F1228=5.966, P=0.021, 

r2=0.181; 34 m: F1,40=14.837, P<0.001, r2=0.276; 35 f: F1440=43.596, P<0.001, r2=0.528; 
40 m: F1.27=19.631, P<0.001, r2=0.430; 44 m: F1,44=29.508, P<0.001, r2=0.407). This 

indicates that mass losses were also associated with mass losses in birds. 



". 3.3 1)i. scrimilulfinn be/ween 0j)Iinns 

The birds displayed differences in the number of' times they chose each option (1: 1g. 

2.3). I constructed I MMs in order to examine il, energetic state was a significant factor 

affect birds' preferences. I included feeder type and context as fixed factors. Subjects 

were included as random subject variables and the dependent variable was the 

transformed proportion of times each feeder was chosen. There were no effects of the 

mass treatments for either the trinary or the binary presentations ineaning that the data 

could he pooled for this part of the experinºent (IAIM: binary, F, 1'=I; trinary, 

1', , _O. O()5,1'=(1.047). During hi nary trials, hinds chose to consuºne significantly greater 

numbers of targets compared with competitors (repeated measures ANOVA: 

1', -14-4.296,1'<O. OOI. Hg. 2.3). This pattern was also mirrored in the trinary trials 
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Figure 2.3. The mean (+SE) proportions of choices for each food option presented for both the 
binary and trinary phases of the experiment. The data was pooled for state treatment because 
there were no differences for state in both the binary and trinary presentations. 

With there being significant dif erences hetween the direr options that the hir(ls chose 

(/', I= 120.574, /'<O. OO 1, º/, =0.945,2.3). 'T'here are differences hetween the [ceders 

in the numher of' times the hirds chose to consume each option. ('onmparisons of the 

differences in the means indicated that hirds preferred the targets to the competitors 

(LSD: target -- competitors, /'<O. (H) l; targets -- decoys, /'=O. OO I, and decoys - 

competitors, Therefore, the target was consistently favoured over the decoy, 
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the decoy was favoured over the competitor, and the target was favoured over the 

competitor. 

2.3.4 Independence of irrelevant alternatives (11A) 

The addition of the decoy in the trinary trials did not increase the relative proportion of 

choices for either the target or the competitor meaning that the birds' decisions were 

regular (Section 2.3.3 and Fig. 2.3). Therefore, the principle of regularity was not 

violated in the experiment, which is one of the cornerstones of rational decision- 

making. Figure 2.4 shows that the relative preference of the target which was calculated 

using formula 2.1 (see section 2.2.6). The constant-ratio rule states that the addition of a 

decoy of lesser value in trinary trials should not affect the relative proportions of the 

preference for the initial two options when compared with the results in the binary trials 

(although the decoy in this experiment was not of lesser value). I constructed a LMM, 

which included energetic state and context as fixed factors. Subjects were included as 

subject variables meaning that the analysis controlled for differences between 

individuals. The arcsine square root transformed relative preferences of birds were the 

dependent variable. When I compared the relative preferences for the target and 

competitor, I found that there was no significant difference between choices made in the 

two mass classes (LMM: F1221=1.595, P=0.221, Fig. 2.4). Comparisons between the 

binary and trinary presentations indicated that the decoy did not affect the birds' 

preferences (F1.21 =0.918, P=0.349, Fig. 2.4). Therefore, there is no evidence to suggest 

that the birds' choices in the trinary trials were affected by the addition of the decoy. I 

tested for differences in behaviour between individuals and found that variance between 

individuals accounted for only 19 % of the total variance of 0.021 which was not 

statistically significant (Wald Z test: Z=0.867, P=0.386). The other 79 % of variation 

was accounted for by within individual variation and error. 
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Figure 2.4. The mean relative preferences (+SE) of birds' in relation to context and food 

availability. 

". 3.5 l'uv oll/; )r cur/, opt/oil 

It was assumed that birds' ability to obtain nnealworms from the three feeder types was 

similar anion", all three types. I conducted two analyses where I compared the 

proportion of niealwornfs consumed from each feeder type and the amount of handling 

time per niealworni extracted from each feeder type. For the first analysis, I constructed 

a FMM for the proportion of m ealworms eaten from each of the feeder type. I included 

context, state, and feeder type as fixed effects and subjects were included as a random 

subject variable. The aresine square root transformed proportions of the iuealworms 

eaten was the dependent variable. I found that there was a significant difference in the 

proportions of meal worms eaten for the three feeder types (. X ± SE: target=0.979 ± 

<0.00I, competitor=I. 000 ± 0.001, decoy=O. 939 ± 0. )01-, I, MM: 

P<0.0OI, 11g. 2.5). When I compared extraction rates between the three feeder types, I 

found that the extraction rates between all three feeder types were significantly 

different from one another (1 SI): target - competitor, /'<O. 00I target - decoy, 

/'=0.003; competitor - decoy, P<0.00 I). I also found that there was a significant mass 

effect becasue birds tended to extract a Iiigher proportion of mealwornms when they 

were in the food restricted phase of the experiment (F1 s-,,, =4.206, /'=0. ()45, I ig. 2.5). 
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I lowever, there was no difference in extraction rates between binary and trinary trials 

(F, , =0.374. P=0.543). 

I also conducted a similar analysis oil the handlinAT line per nºealworin taten as 

the dependent variable and all other factors identical to the above model. I found that 

there was ito effect of Feeder type (! i' ± SL: cot j)etilor=O. 8(, ± 0.118 sec, target=0.93 ± 

O. 105 sec, decoy=l. 1(6 ± 0.138 sec, /"', , =2.175, /=0.124), mass manipulation (. V ± SIB: 

resiricled=0.87 ± U. I03 sec. free-fed= 1.03 ± 0.105 sec: F, 1.706, /'=U. 194), or 

treatment (. A' ± SI:: binary=0. t)2 ± 0.1 12 , cc, trinary=O. ()64 ± 0. U91) , cc-, l', 0.221. 

/'=O. 64) in the handling time per larva. 
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Figure 2.5. The mean proportion (+ SE) of larvae that birds were able to extract for each 
feeder option and for each mass treatment. 

?. h l"ee /ircg luler! c"ic. c in relation to /i rcle lc ýcýýýlc 

Latencies to feed can give an indication of subjects' motivation to feed front a feeder. 

I'hereore, I constructed a IAIM of the latency to feed data which included energetic 

state, context, and the feeder type as fixed variables. I included subject as a random 

subject variable and the dependent variable was latency to feed. These data show clear 

differences for the availability of' food with the birds taking longer to make a choice 

when they had free access to food compared when they had restricted access to food (. C 

± SE: 90 cX 11"W5.12 ± L97I sec, 100 XII M=13 29 ± 1.902 sec: I. MM: /', ;,, =$. 925, 

P=0.004, Fig. 2.6). There were no other significant factor effects in the analysis: 
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treatment (X ± SE: 1)ina1-y=9.39) ± 2.217 sec, ttinary=8.92I ± I. 746 sec: l, ', O. OO2. 

1'=0.1)65), feeler type (. X" ± SE: larýýcl=6. x)3 ± 2. ()I3 sec, coiiii)clitur=12.22 ± 2.3 16 sec, 

(Iccoy=7.74 ± 2.77 sec, l, ', ,,, = 1.745, I'=O. 184). 
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Figure 2.6. The mean latencies (+SE) of the birds to chose a feeder in relation to feeder length, 
food availability, and treatment. 

2.4 Discussion 

The results front this experiment indicate that the birds did not violate the principle of 

regularity or the constant-ratio rule and there was no effect of slate on the birds' 

preferences. This result is consistent with the results of I tunas (2003) who also found 

that European starlings' preferences did not change between binary and Irinary 

presentations. "Therefore, these results suggest in starlings, at least, that they may utilise 

an absolute evaluative method. If` this were the case, this would provide support for the 

normative approach to modelling foraging behaviour. It would also raise doubts over 

the previous studies that have found that animals consistently violate the constant ratio 

rule (Bateson 2002; Bateson el a!. 2(1)2,2003; Shafir r! a!. 2002, however, this 

interpretation of the results may be incorrect. 

Through a detailed /los! -/! O( analysis of my data (Section 2.3.5), I found that birds 

ranked feeders more in line with the number of prey extracted from the feeders. This is 

because although the birds have been shown to prefer shorter feeders when it was the 

only dimension presented (I lutton 2003), this dimension was not weighted equally with 
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the number of mealworms that they were able to obtain from each feeder. Therefore, it 

is likely that the birds were construing the problem in a manner that was not intended. 

This means that the data cannot be interpreted as a test of the constant-ratio rule and so 

cannot be used to support for the normative approach. Hutton's (2003) study also 

utilised a similar method to this study, meaning that her data may also have suffered 

from similar biases. Hence, there cannot be said to be any studies that have conclusively 

supported the normative approach despite the results of Schuck-Paim et al. (2004). 

The tube feeder length was adopted as a negative dimension in these experiments 

because birds such as starlings may find it unpleasant to stick their heads into such a 

confined space. When a bird sticks its head into a confined space, its field of view 

becomes greatly reduced. This means that they may be exposed to a greater risk of 

capture if they were to be attacked by a predator. However, it is known that animals are 

able to facultatively adjust their behaviour to match their perceived risk of predation 

(Caro 2005). Therefore, birds in a laboratory may perceive a much lower risk of 

predation than a free-living animal. Moreover, training is a factor likely to lead to a 

negation of the birds natural aversion of foraging from highly restricted places. Other 

studies have used negative dimensions that have a measurable cost (Waite 2001a; Shafir 

et al. 2002). For example, the experiments of Shafir et al. (2002) gray jays and bees 

were required to enter tunnels in order to obtain the rewards. The length of the tubes 

varied and so the costs of entering the tunnels may have been much more obvious and 

possibly much more risky. Moreover, the gray jays used in Shafir et al. (2002) were 

free-living animals meaning that their actual and perceived risks of predation were 

potentially much greater than the laboratory housed birds used in this study and Hutton 

(2003). 

Given that the birds are likely to have valued the dimension of length as being 

much less important than payoff when making decisions about which feeder to choose, 

this study cannot be said to have adequately tested the Schuck-Paim et al. (2004) model. 

Their hypothesis is an interesting idea although it cannot be applied to all situations 

because the majority of studies that have utilised the ADD experimental design have 

been on free-living animals that have probably obtained greater reserves than con- 

specifics not participating in the experiment. It would be interesting to test this 

hypothesis in with a treatment that unequivocally manipulated state as I was able to do 

in this experiment. It is unlikely that free-living animals could be used in negative state 

manipulations. This is because it would be difficult to negatively manipulate a subject's 
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energetic state without it supplementing its diet with food obtained from the 

environment. 

In this experiment, there was no effect of energetic state on the preferences of 

birds although there was a significant effect of energetic reserves on the latencies to 

feed. Latencies can be used as a behavioural indication of the bird's energetic state. 

When the birds had fewer reserves, they were quicker to approach the feeders 

compared with when they had greater reserves. Hence, there were behavioural 

correlates that indicate that birds had fewer energy reserves. Schuck-Paim et al. (2004) 

also found that when birds were subject to low food intake, their latencies to first peck 

were significantly shorter than in the high intake treatment. In this experiment, there 

was also a lower rate of extraction from the two longer feeders when they were at their 

free feeding masses. This indicates that when the birds had greater levels of energetic 

reserves, they were less eager to feed from the feeders and less willing to persevere 

with continuing to feed from the feeders. This may indicate that overall, the birds were 

more motivated to feed from feeders when they were more energetically stressed. 

The aim of this experiment was to investigate whether breaches of regularity and 

the constant-ratio rule could be demonstrated and if the decisions of birds were different 

depending on their energetic states. The results demonstrate that the birds displayed no 

violations in rationality as have been demonstrated in invertebrates (Shafir 1994; Shafir 

et al. 2002), non-human vertebrates (Hurly & Oseen 1999; Shafir et al. 2002; Waite 

2002 a, b; Bateson et al. 2002,2003; Schuck-Paim et al. 2004), and humans (e. g., 

Simonson & Tversky 1992). This result is unlikely to be the result of a lack of statistical 

power because birds were forced to make . 120 decisions split between four treatments. 

Previous studies have found violations of rationality with similar numbers of replicates 

(e. g., Waite 2001a). Moreover, my results demonstrate the importance of validating the 

dimensions used in an experiment. This is something that has not been done in many of 

the previous experiments that have used similar methods in order to disprove normative 

models of foraging (Shafir 1994; Hurly & Oseen 1999; Bateson et al. 2002,2003). My 

results emphasise that supposed constraints imposed upon animals in an experiment 

may not be perceived in the manner envisaged by researchers. 

There have been a number of studies that have investigated rationality in animals 
by testing for intransitivity in the binary preference relationships of three choice 

options. These experiments have had mixed results because whilst they suggest that 

there may be comparative evaluative mechanisms, the data is less than convincing. For 
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example, in Shafir's (1994) study, only three out of fifteen bees showed breaches of 

rationality, which while interesting, is not enough to argue for a specific hypothesis. 

Indeed, the remaining twelve subjects displayed behaviour consistent with both absolute 

and comparative evaluative mechanisms. Therefore, this lack of ability to falsify either 

hypothesis when no violation of rationality was recorded was a major problem for this 

experiment. Waite's (2001a) results were far more important as he demonstrated that an 

entire sample of 12 birds showed consistently similar results. This suggests that the 

effect was a widespread property of the decisions made by the entire group. Hurly & 

Oseen (1999) and Bateson (2002) conducted risk-sensitive foraging experiments in 

rufous hummingbirds (Selasphorus rufous) and European starlings respectively, and 

found that some of the individuals violated aspects of rational decision-making. 

However, none of these experiments utilised the ADDs to investigate breaches in 

rationality. 

Although there is evidence animals have been shown to violate principles of 

rational decision-making, there are doubts as to if the observations are biologically 

meaningful. The biological relevance of the data is questionable, as not all studies have 

found consistent results between individuals (Bateson et al. 2002,2003). Consistency of 

preference is another important factor in rational decision-making (Simon 1959). 

However, this factor has rarely been addressed in biological studies. This tends to 

indicate that a common cognitive cause was not the underlying process leading to 

violations of rationality. If the violations were due to a common feature of the cognitive 

architecture, then it might be expected that animals would display preference orders and 

changes in preference that were consistent between individuals and in the same 

individuals over time. 

The differences in the cognitive architectures and central nervous systems 
between insects and higher vertebrates are unlikely to give rise to universal cognitive 
bases for these behaviours. This is despite the fact that insects might be capable of 

similar learning tasks as vertebrates (e. g., Giurfa et al. 2001) and the fact that 

superficially, similar data can be generated in these two taxa. It is more likely that these 

similarities are derived from convergence rather maintenance of some primordial 
feature of the cognitive architecture of all animals. Moreover, violations in rationality 
have only been investigated in five species, which makes the hypothesis of a universal 
cognitive mechanism extremely premature. Some of the analysis and data manipulation 
in previous studies has been questionable as some of the studies only used a small 
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sample of the total amount of data collected (e. g., Bateson et al. 2003) or excluded 

individuals that they deemed were not behaving in an appropriate manner (Bateson 

2002). Moreover, many of these authors have been willing to accept their alternative 

hypothesis without adequately excluding other possible explanations, which might 

confound interpretation. 

2.4.1 Conclusions 

Although it has been claimed that animals demonstrate the same violations of rationality 

as humans, there is sufficient doubt to remain cautious due to sufficient methodological 

and analytical problems. Moreover, as Kacelnik (2006) points out, it is questionable 

whether studying animal behaviour in the -context of economic rationality is a good 

thing. The results of this study revealed that the birds were probably construing the 

problem in a manner that was not consistent with my original intention. Reconstructing 

the problem to consider only the impact of the payoff dimension revealed that birds 

were behaving in manner that would have been consistent with normative models. 

However, this does not mean that the birds were using absolute methods of evaluation. 
Comparative methods of evaluation are theoretically much more likely because 

foraging decision-making is a Bayesian feedback process. This means an animal builds 

a subjective interpretation of the costs and benefits of options and combines which 

informs the animal's present choice. The cues that animals use to evaluate the 

differences between options are still unknown and remains one of the great problems of 

decision-making. Moreover, the neurobiological bases of foraging decision-making are 

almost unknown and in order to investigate the existence of universal cognitive 

mechanisms for violations of rationality there is great need for these mechanisms to be 

investigated fully. At present, the evidence is too scant and the differences between taxa 

are too great in order to infer any general principals. Therefore, further studies into this 

phenomenon are imperative, specifically experimental methodologies that can offer 

analogous problems to different species. 



EBR in hummingbirds 39 

Chapter 3 

THE ENERGY BUDGET RULE AND FORAGING 
BEHAVIOUR OF RUFOUS HUMMINGBIRDS 

(SELASPHORUS RUFUS). 

3.1 Introduction 

Risk-sensitive foraging was developed in order to introduce environmental stochasticity 

into foraging models (Caraco 1980,1981; Caraco et al. 1980; Real 1980,1981). This 

was because initial models of animal foraging assumed mean rate of intake was enough 

to describe animal foraging behaviour (Stephens & Krebs 1986). However, in a 

stochastic environment, the long-term rate of energy intake can be different from the 

short-term rate. Therefore, animals may have evolved to pay attention to variance 

around the mean energy intake in addition to the mean itself. Risk-sensitive foraging 

can be defined as when an animal displays a preference for one of the two options with 

equal long-term means, but with different variances. Risk-sensitive foraging has been 

demonstrated in many species of animals (see Stephens & Krebs 1986, pp. 134-137; 

Kacelnik & Bateson 1996; Bateson & Kacelnik 1998; Bateson 2002b for reviews). 

However, the reasons for risk-sensitive foraging behaviour remain elusive. 

Traditionally, risk-sensitive foraging behaviour of animals has been explained 

through relationships that exist between the reward size and fitness. Many formulations 

of risk sensitive foraging use Jensen's Inequality to relate the shape function of fitness 

and reward size to the animal's behaviour (see Smallwood (1996) for a wider discussion 

of Jensen's Inequality). Figure 3.1 indicates that the fitness benefits of choosing 

between two options: constant (indicated by solid vertical line and C the x-axis) and 

variable (indicated by dotted vertical lines and VL [low payoff I and VH [high payoffs on 

the x-axis). The variable option is theoretically meant to have the same long-term 

average as the constant option. That is, supposing that the forager is unable to 

differentiate between variable options prior to sampling them. Figure 3.1 

diagrammatically explains Jensen's Inequality and how it is applied to risk-sensitive 
foraging problems. Assume that the constant option delivers four food items and the 

variable option delivers either two or six food items for the low and high variable 
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options respectively with equal probability. On occasions where fitness is a decelerating 

function of reward size (Fig. 3.1a), then it would be predicted that animals should be 

risk-averse. This is because if an animal chooses the variable option (VL or VH), then 

the fitness costs of randomly picking VL are greater than the benefits of selecting VH. 

Therefore, the net fitness gain for choosing the constant option is greater than for 

choosing the variable options. Conversely, if fitness is an accelerating function of 

reward size then risk-proneness is predicted (Fig. 3b). This is because the fitness payoff 

obtained from VH is greater than the loss of fitness that accrues through picking VL. If 

the fitness function were linear, then there would be no difference fitness outcomes. 

Therefore, animals ought to be indifferent as predicted by classical normative models of 

foraging (Schoener 1971; Pyke et al. 1977; Pyke 1984; Kamil & Roitblatt 1985; 

Stephens & Krebs; Morrison et al. 1990). The supposed non-linear relationships 
between fitness and reward size is at the heart of most fitness-based risk-sensitive 

foraging models. One hypothesis that assumes a non-linear relationship between energy 

intake and fitness is the energy budget rule (EBR). 

Fitness 7 (a) 

(M 
(wH)... t.. ................... 

Figure 3.1. The dependence of risk-sensitive behaviour on the relationship between fitness and 
the reward size. (A) In situations where fitness (W) is a decelerating function of the reward size, 
Wv =E (WH) +E (WL)I N< We meaning that the constant option (C) ought to be chosen more 
often than the variable option in order to minimise losses associated with choosing V,. (risk- 
averse). (B) When W is an accelerating function of reward size, We < WW= E (WH) +I (WL)/ N 
meaning that the variable option ought to be favoured as this strategy maximises gains (risk- 
prone) (modified from Bateson & Kacelnik 1998, p. 303). 

The EBR was first formalised by Stephens (1981) after the verbal description of 
Caraco et al (1981). Stephens presented the problem from the perspective of a small 
bird trying to minimise the risk of starvation during a short winter day (Fig. 3.2). He 

argued that a bird had to reach a critical amount of energy reserves (R) by the end of its 

available foraging time. If the bird had N foraging periods before the end of the day, it 
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had to ensure its reserves at the end of the day were greater than or equal to R. If the 

bird had the choice of two foraging options, one being with a constant reward, the other 

with a mean equal to the constant, but with variation around the mean, it should choose 

the option that maximises the probability of reaching R by the end of the day. 

Therefore, if the bird made a choice at N as to which patch to feed from for the rest of 

Reserves 

Survival 

Death 

Dawn N Dusk 

Figure 3.2. Over the course of a day's foraging, an animal needs to find enough food in order to 
survive until the next morning (the point R). If by timeN, a bird has had an average amount of 
success, then it is likely to reach R if it continues to eschew risky behaviour (the thick dashed 
line scenario 1). However, if it had a run of bad luck resulting in a negative energy budget (point 
2 by timeN), then it will be unable to reach R through exploiting the constant option. Hence, the 
animal can only reach R by adopting a risk prone foraging strategy (the thick solid line in 
scenario 2) (Illustration modified from Bateson & Kacelnik 1998, p. 309). 

the day; it would use its reserves at time N, plus the sum of the rewards it would reap 
from each patch, minus the energetic costs of foraging from N until dusk. If the bird 

knows that its reserves at N are sufficient to reach R by the end of the day if it continues 
to forage in the constant patch, then it has a positive energy budget (scenario 1, Fig. 

3.2). On a positive energy budget, the bird does not need to take risks in order to reach 
R. Alternatively, if the constant reward is insufficient to allow the bird to reach R, the 
bird has negative energy budget (scenario 2, Fig. 3.2). This means, the bird needs to 

choose the risky option in the hope that it will experience a run of good luck, which will 
take its reserves onto a positive energy budget. There have been many studies of the 
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EBR and many have shown. behaviour consistent with the EBR. However, many other 

studies have failed to find any evidence of the EBR (see Kacelnik & Bateson 1996; 

Bateson & Kacelnik 1998; Bateson 2002b for reviews). 

Table 3.1 outlines the results from studies of the EBR in relation to changes in 

their energy budget and how it affects preferences for variance in amount. Generally, 

there is too much variability in results between studies for the EBR to be considered a 

general explanation for risk-sensitive foraging behaviour. The most convincing 

demonstration of the EBR remains the study of Caraco et al. (1990) who used 

temperature to manipulate the energy budgets of dark eyed juncos (Junco phaenotus). 

They demonstrated that the birds were risk-prone after being kept at 1°C whereas they 

Table 3.1. A summary of studies that have studied that have studied the changes in energy 
budget with regards to variability in amount. 
Species" 
Insects 

Type of study Result',, 

Bombus spp. ' Manipulated colony reserves of energy 
Bombus occidentalis' Manipulated colony reserves of energy 
Apis mellifera3 Manipulated colony reserves of honey 
Xylocopa micans4 Energetic values of rewards varied to alter EB 
Fish 
Rhoderus sericus 
Spinachia spinachiae 
Cichlasoma octofaciatum7 
Birds 
Junco phaenostus 

Junco hyemalisl ° 
Zonotrichia luecophrýys'1 
Dendroica coronatal 
Coereba flaveota13 
Columbia livia14 
Zonotrichia albicollis15 
Parus atricapillus78 
Cyanocitta cristatal ý 
Sturnus vulgaris18 
Mammals 

Prior deprivation altered to manipulate EB 
Prior deprivation altered to manipulate EB 
Prior deprivation altered to manipulate EB 

ý 
+ 

+ 
+ 

Laboratory manipulation of EB + 
Temperature used to alter EB + 
Laboratory manipulation of EB + 
Laboratory manipulation of EB + 

Two groups subjected to different treatments + 
Laboratory manipulation of EB + 

Laboratory manipulation of inter-trial interval 
Laboratory and on a probably negative budget 
Field study that manipulated the foraging costs 

Laboratory manipulation of EB 
Laboratory manipulation of energy budget + 

Rattus norvegicus Amounts of food delivered per unit of time 
20 II... YL_.. A-! _I_ L_r_ a..: _I 

21 

22 

23 

wumuer or rorceu tnais more expernnenRai malts 
Number of trials in a session altered in order to alter EB 

Mass manipulation in order to alter subjects EB 
The amount of work varied which might have altered EB 

Sorex araneus24 Length of inter-trial interval altered to manipulate EB + 
Macroscelides probiscideus1ö Many methods of manipulation of EB ý 
*References: 1. Carter & Dill, 1990,2. Carter 1991,3. Banschbach & Waddington 1954.4. Perez & Waddington 1996, 
5. Young et al. 1990,6. Croy & Hughes 1991,7. Roche et al. 1998,8. Caraco et al. 1980,9. Caraco at al. 1990,10. 
Caraco 1981,11. Caraco 1983,12. Moore & Simm 1986,13. Wunderle et al. 1987,14. Hamm & Shettlworth, 1987,15. 
Tuttle et al. 1990,16. Barkan 1990,17. Clements 1990,18. Reboreda & Kacelnik 1991,19. Leventhal et al. 1959,20. 
Battalio et al. 1985,21. Kagel et al. 1986,22. Ito et al. 2000,23. Kirshenbaum et al. 2003,24. Barnard & Brown 1985, 
25. Lawes & Perrin 1995. 
'Results: - Result not consistent with EBR predictions; - results partially consistent with EBR; + results fully consistent 
with EBR. 
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were risk-averse after being kept at 19°C. Table 3.1 summarises the results from 25 

studies that have experimentally attempted to alter the energy budgets of individuals in 

order to observe changes in risk-sensitive foraging behaviour. Of these 25 studies, 10 

studies have reported results consistent with the EBR and six studies have results that 

have partially supported the EBR. By partial support, I include studies where the 

behaviour fits with the predictions when in one state but not in another. For example, 

Kirshenbaum et al. (2003) found that rats (Rattus norvegicus) were risk-prone on 

negative energy budgets, but indifferent at other times meaning that the result when 

subjects were in negative energy budgets was consistent with the EBR. There are also 

differences in the results obtained from different taxonomic groups. For example, 

comparing the results of studies from birds and mammals indicate that data from birds 

tends to more strongly support the EBR. One reason for these differences may be 

differences in body size between the mammals and birds. 

Bateson and Kacelnik (1996,1998) have reviewed the risk-sensitive foraging 

literature and one factor that they found that did seem to be important was the 

relationship between body size and switches in the risk-sensitive behaviour of animals 
They found that smaller species might be more likely to show changes in risk-sensitive 
behaviour that are consistent with the EBR. Small species may be more susceptible to 

changes in food availability because they cannot store as much of their future energy 

needs as body fat compared with larger species. Therefore, the time horizon for 

regulating fluctuations in food availability is smaller for smaller animals (Houston & 

McNamara 1993). The body sizes of birds that have been used in studies of the EBR are 

generally smaller than mammals which could help explain these differences between 

taxa. 

There are a number of problems with the EBR, which were discussed by Bateson 

and Kacelnik (1998, pp. 311-314). One of the most important was the model of 
Stephens (1982), which assumed that animals could make only one decision at the 

beginning of a foraging period regarding which food option they chose. They were then 
bound to this option for the rest of the foraging period. Although Stephens (1982) was 

able to make his point clear using this method, animals are unlikely to behave in this 

manner. A more realistic scenario is likely to be closer to the SDP models of Houston & 

McNamara (1999, pp. 88-115). In these models, foraging periods are broken up into 

many shorter periods where an animal chooses among foraging options at the beginning 

of each foraging iteration. The decision at each foraging iteration is based on three 
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variables: (1) the amount of time that is left in the foraging period; (2) the animal's 

energy reserves that it has when making the decision; and (3) the amount of reserves 

that are required to guarantee survival into the next foraging period (Fig. 3.2). 

Risk-sensitive foraging theory provided new insights as to how animals might deal 

with variability in their foraging environment and provided the catalyst of a new state 

based approach to foraging (Houston & McNamara 1999). However, it generally 

neglects to integrate many other aspects of behaviour that may also impact on an 

animal's foraging behaviour. There have been* attempts by zoologists to apply ideas of 

risk-sensitive foraging to social foraging problems (e. g., Ekman & Hake 1988; Wu & 

Giraldeau 2005) and sex-based foraging differences (Wright & Radford, unpublished 

manuscript). Recently, Hurly (2003) published a twin threshold model in which he 

stated that animals might have two thresholds which indicate switch points for both 

starvation and reproduction. His model predicted that birds are likely to eschew risk 

when the mean intake was lower as variable options were more likely to lead to 

starvation. However, as, mean intake increased, birds were predicted to become more 

risk-prone as the probability of starvation decreases. This is because less variable 

options may be insufficient to provide enough energy to attain a second threshold (the 

reproductive threshold). This means accepting some risk is the only option which will 

prpvide the possibility of obtaining enough energy reserves to reproduce. He used this 

hypothesis to explain the risk intermediate choice behaviour that he observed in rufous 

hummingbirds (Selasphorus rufus). 

Hummingbirds are a good species in which to study the effects of climate on the 

foraging decisions as they are small (mean mass of males=3.22 g, range: 2.9-3.9 g, 

N=22 [Johnsgard 19971) and have among the highest mass specific metabolic rates for 

any vertebrate species (Suarez et al. 1990; Suarez 1992). It has also been found that the 

amount of time that different individuals spend foraging can vary greatly, with a range 

of between 5-23 percent (Wolf & Hainsworth 1971). These differences in foraging 

behaviour may be the result of differences in habitat quality, weather conditions, or the 

behaviour of subjects. Hummingbirds also exhibit a high degree of sexual dimorphism 

with males often appearing very different from females. The males also conduct 

species-specific courtship flights when they are visited on their territory by females. 

During these courtship flights, males climb to about 15 metres in the air and then go 
into a very steep dive and arcs out of the dive as he approaches the ground (Hurly et al. 
2001). At the bottom of this arc, he makes an auditory wing buzz or vocalisation before 
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making a series of wobbles associated with probable wing noise. He then stops near the 

female for up to 2 seconds before he begins his ascent for another flight which can be 

repeated as many as 5-8 times. These flights are likely to put a lot of stress on blood 

vessels in the body and it is thought that males almost lose consciousness at the bottom 

of the arc as the blood pressure increases in the brain (Johnsgard 1997). These flights 

are also likely to be energetically costly due to the speed the male reaches in the arc. 

Finally, there have been a number of studies that have previously examined the 

risk-sensitive foraging behaviour of rufous hummingbirds (Stephens & Paton 1986; 

Waser & McRoberts 1998; Hurly & Oseen 1999; Biernaskie et al. 2002; Hurly 2003). 

Generally, these studies have found that hummingbirds are risk-averse under most 

conditions (i. e., they prefer constant options) although indifference to volume variance 

has also been recorded (Bateson et al., unpublished manuscript). Finally, fiurly (2003) 

presented data that birds preferred intermediate levels of risk when they were choosing 

between three options. This he took to be evidence for his twin-threshold model. Rufous 

hummingbirds are thought to be a particularly suitable species in which to study risk- 

sensitive foraging because their physiological and ecological characters appear to 

correspond with the basic assumption of the EBR for a small homeotherm living in an 

energetically stressful environment (Caraco 1980; Stephens 1981; Stephens & Charnov 

1982; Stephens & Krebs 1986). 

3.1.2 Experiment introduction 

The EBR has only received limited empirical support (Caraco et al. 1980,1990) and 

there only been one field study that has found support for the EBR (Carter & Dill 1990; 

Table 3.1). Carter and Dill (1990) found that when the colonies of bumblebees (l3ombus 

occidentalis) were supplemented with nectar, that they became more risk averse. 
However, given the parthenogenic nature of hymenopteran reproduction, the 

mechanism for this behaviour is problematic. Barkan (1990) attempted a field-based 

study of the EBR in black-capped chickadees (Poecile atricapillus) and failed to find 

any evidence that birds were being risk-prone or that the birds were ever on a negative 

energy budget. Caraco et al. (1990) was able to alter the energy budgets of birds 

through keeping them at different temperatures. I attempted to recreate this finding in a 
field study using the natural temperature variation throughout the day. 

The aim of this experiment was to test predictions of the EBR in a field-based 

experiment. These predictions are that birds have different energetic demands brought 
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about by changes environmental conditions. These changes in environment can change 

the bird's metabolic rate and thus, the birds' energy budget. The volume of flowers has 

been shown to be an important factor in flower selection by hummingbirds (Gass & 

Sutherland 1985). Therefore, I compared the birds' preferences for artificial flowers 

with a constant volume of nectar (probability of a 25 µl reward=l) versus flowers with a 

variable volume of nectar, but with the same mean (probability of a 10 µl reward=0.5, 

probability of a 40 µl reward=0.5). These volumes are much larger than those that birds 

would normally encounter when foraging on natural flowers, but similar volumes have 

been used in previous studies of risk-sensitive foraging in hummingbirds (e. g., Hurly & 

Oseen 1999; Hurly 2003). 

In order to do this, I conducted choice trials on 5 males during three time periods 

throughout the day (early morning, mid-day, and the evening) and at different points in 

the season that were separated by about two weeks. I did this in order to establish if 

there were any differences in their preferences that might be due to some factor that 

correlates with the time of day or season (e. g., ambient temperature). By choosing times 

of the day with the most variation, I assumed that the natural variation in temperature 

would cause differences in the birds' metabolic rates. This could in turn, cause changes 

in the birds' preference for the variable and constant flowers. I also examined the 

relationship between flower preference and possible seasonal changes due to changes in 

breeding or migratory status. During these observation periods, data was collected on 

the number of courtship flights made by males so I could examine if was a relationship 

between the number of J-flights and their flower preferences and rates of energy 

consumption. This data was collected in an attempt to examine the interaction of 

potentially costly behaviours and the decisions made by individuals. 

I predicted that birds should become more risk prone when they should 

theoretically be most energetically stressed. These times are likely to be during the 

morning when the ambient temperature was at its lowest and because they may have 

been recovering from their nightly fast. I also predicted that the birds should be more 

energetically stressed earlier in the season compared with later in the season. This is 

because the ambient temperature increases in the late spring at the field site. Finally, I 

predicted that if behaviours are reliant upon the energy budget, then there should be a 

relationship between the expression of costly behaviour and the level of risk-prone 
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behaviour with the risk-proness increasing after J-flights and other expensive 

behaviours. 

3.2 Methods 

3.2.1 Study species and site 

The subjects were five wild male rufous hummingbirds observed between 5 June and 7 

July 2004 at Westcastle Valley in southwestern Alberta, Canada, in the eastern range of 

the Rocky Mountains (49 29 N; 114 25 W, elevation 1400 m). The habitat was mixed 

arboreal forest interspersed with clearings of grasses. Rufous hummingbirds are one of 

the widest ranging of the North American hummingbirds reaching southeastern Alaska 

in the summer. They over winter in Mexico south to Guerrero and northern Oaxaca. The 

adults feed on nectar from various flowers supplemented with small insects and fruits 

(Johnsgard 1997). 

3.2.2 Experimental apparatus 
The artificial flowers were 20 holes (10 mm deep x 3.5 mm diameter) that had been 

drilled into a Plexiglas plate (280 mm x 215 mm x 12 mm) at equal distances from one 

another (52 mm). The flowers could hold 125 µl of liquid and were marked with 

coloured paper reinforcement rings to indicate if flowers were constant or variable. The 

Plexiglass plates were attached to a metal spike that could be easily driven onto the 

ground. These spikes held the plates at about 700 mm from the ground surface and at a 

45° angle from the ground. 

3.2.3 Training 

During mid-May, commercial hummingbird feeders containing 14% sucrose solution 
(mass of solute/mass of solvent) were placed in potential territories to attract males. 
When males started defending feeders they were individually marked by spraying their 

breast feathers with a small amount of nontoxic coloured, waterproof ink (see Hurly & 

Oseen 1999 for details). These ink marks started fading after 4 weeks and were 

completely faded by the time males begin to migrate by the end of July. Between early 
June and early July 2004, I collected data during three periods of the day (morning, 

noon, and evening). 
Birds were trained to feed from Plexiglas sheets in a gradual process that started 
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with lowering the feeders to about 1.5 m above ground level, and introducing a small 

Plexiglas block covered in red tape with yellow flowers around the wells. The corolla of 

the flower was indicated by a yellow coloured paper reinforcement ring. The Plexiglass 

block matched the colours of the base of the feeder and it gradually was moved onto the 

feeder. With each feeding visit the bird made, more of the tape was removed until the 

no tape remained. Once birds were feeding from the small block, it was then attached to 

the large Plexiglas sheet that were used in the experiment as the birds continued to visit 

the feeder. The small block was kept on the larger sheet until the birds were 

successfully feeding from the large sheet without hesitation, whence the small block 

was removed. This training process normally took between three and six hours. Each 

step progressed when the bird fed without hesitation after a change. Three of the birds 

that I used were trained using this technique by other people for use in other 

experiments prior to their use in this experiment. 

3.2.4 Forced trials 
At the start of each cycle (early or late in season), the birds were presented with forced 

trials. They were presented with Plexiglass plates containing only single flower types 

(constant or variable). I used two plates simultaneous with different flower types which 

were alternated so that the birds had a bout with each flower type every second forced 

bout. This continued until the birds had sampled 30 flowers of each type. This allowed 

the birds to have prior knowledge of the flowers before the commencement of the 

experiment where both flower types were presented simultaneously on the same plate. 

Once the bird had experienced 30 of each flower type in forced trials, the experiment 

started. 

3.2.5 Experimental protocol 
Artificial flowers were presented to birds on single Plexiglas plates with 20 wells drilled 

into them and that had coloured paper reinforcement rings around the edge of the well 
to indicate the corolla of the flowers. Each colour (purple or orange) was randomly 

assigned into one of two reward types (constant or variable) with the 10 constant wells 

containing 25 µl of 20 % sucrose solution. The variable wells contained either 10 µl or 
40 µl of 20 % sucrose solution with equal probability. The association of flower type 

and colour varied between individuals, but was kept constant for each individual. I 
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checked the preferences for constant flowers in relation to the flower colour in order to 

check for colour biases. If there had been a bias for one colour over the other, it would 

have been selected at a disproportionately higher rate than the other would have been. 

There was no evidence to suggest a preference by birds for one colour over the other 

when choosing between flowers (constant flower colour, proportion of flowers chosen 

that were constant: bird 1=orange, 0.435; bird 2=purple, 0.572; bird 3=orange, 0.541; 

bird 4=purple, 0.459; bird 5=oran(ye, 0.552). The flowers were arranged in a random 

manner on the plate that was determined prior to the observation session. Each pattern 

was used for four foraging bouts and was rotated in a 90° clockwise direction after each 

foraging bout. This was to ensure individual birds did not learn where the more 

profitable flowers were situated. This was important because I assumed that individual's 

decisions were based on the amount of variation in each flower type. 

The plates were set up in clearings near where the male's feeder was situated in 

order to aid observation. I observed the birds with binoculars from a distance of 

approximately 5m from the plate and observed their behaviour while speaking onto a 

Dictaphone. I then transcribed the choice sequence of the bird and the temperature to 

the nearest 0.1° C later. After a foraging bout, I evacuated the remaining sugar water 

using a syringe and refilled each well using a micro-pipette with its corresponding 

volume and rotated the plate 90°. 

The birds' choices were observed over three periods throughout the day: the 

morning (0600-0900 hr Mountain Standard Time [MST]), the afternoon (1200-1500 hr 

MST), and in the evening (1800-2100 hr MST). These times were chosen to maximise 

the temperature differences throughout the day and to observe the birds close to the 

beginning and the end of the foraging day. There were significant differences in the 

temperatures at the three times that I chose (X t SE: morning=9.9 ± 0.76°C, 

afternoon=16.3 ± 0.38°C, evening=14.1 t 1.13°C; repeated-measures ANOVA: 

F2.8=30.18, P=0.0002). Pair wise comparisons revealed that the morning temperatures 

were significantly lower then both the afternoon (Tukey's HSD: P<0.01) and evening 

temperatures (P<0.01), but that there was no difference between the afternoon and 

evening temperatures (P>0.05). 

I aimed to observe 60 drinks per individual for each three hour period of 
observation; however, on some occasions this was not possible due to poor weather or 
inconsistent bird behaviour. Individuals were observed for about 4 days in total, which I 
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split into 2 cycles. Each cycle lasted about 2 days and were either early or late being 

separated by about 2 weeks from the end of the first choice cycle to the start of the 

second choice cycle (X ± SE=14.2 ± 0.23 days). The climate at this latitude and altitude 

meant that it was significantly warmer in the later cycle compared with the early cycle 

(X ± SE: early cycle=11 ± 1.25 °C, late cycle=16.1 ± 0.57 °C, paired t-test: t=-3.74, 

df=4, P=0.0201). At the beginning and end of each observation session, I recorded the 

weather conditions and temperature (to the nearest 0.1 °C). Immediately after each 

bird's foraging bout, I also recorded the temperature in order to incorporate this into the 

foraging analysis. 

3.2.6 Behaviour 

During the training and experimental trials, I recorded the occurrence of three 

behaviours that might be related to state: (1) courtship flights (J-flights), (2) shuttle 

flights where males hover in front of females before attempting to copulate with them, 

and (3) intraspecific and interspecific aggressive interactions. I recorded courtship 

flights as this behaviour may have been associated with significant risk and energetic 

cost and so might have been related to the birds' energetic state. I assumed, the other 

two behaviour types would be more dependent upon extrinsic factors such as the 

presence of potential mates or competitors. When I observed the presence of any of 

these behaviours I also noted the time and the temperature. 

3.2.7 Calculation of energy consumption 

I calculated the level of energy consumed per flower by using the equation from Hurly 

& Oseen (1999). This allowed me to calculate the amount of energy that the birds 

obtained from each flower type. I could then used these values to calculate the amount 

of energy obtained by birds in each foraging bout by multiplying the number of each 

flower type sampled with its energetic contents. I then standardised this amount to 

amount of energy consumed per experimental session or per hour depending on the 

analysis type. 

3.2.8 Statistical analysis 
I pooled the foraging, behavioural, and energy data by the time of day, day within 

observation cycle, and observation cycle. I calculated the proportion of the constant 
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flowers consumed by calculating the number of constant flowers consumed in a data 

collection period. I then arcsine square root transformed this data and performed a linear 

mixed model (LMM) analysis on the data. With LMMs, the observational units are 

assumed to be collected into clusters over which random effects (intercepts in all 

models presented here) vary. Fixed effects are those explanatory variables that are 

associated with the entire population or with certain repeatable experimental treatments. 

Therefore, I treated time of day, day within cycle, and cycle as factors. Random effects 

are associated with individual experimental units drawn at random from a population 
(Pinheiro & Bates 2000) and govern the variance-covariance structure of the response 

variable. Therefore, temperature and subject were included as random variables, which 

meant the model would control for differences in temperatures and individuals in the 

analysis. The significance of variance explained by between subject effects was 

calculated using Walds Z-test. 

For the behaviour and energy measures, I calculated the frequency that the 

different behaviours were expressed as a function of time in order to standardise time 

between data collection periods. I analysed the resulting values against the pooled data 

set I had used in the main analysis of the LMM with the behaviours and subjects as 

random variables. I pooled the data for these analyses as none of the fixed factors were 

significant in explaining the variance. 

I chose to use LMMs because they enable the use of unbalanced data sets and the 

incorporation of data collected from multiple individuals, but utilising a within subject 

approach. I used the least significant difference (LSD) technique to test for pair wise 
differences between means after being corrected for multiple comparisons using the 

Bonferroni method (a/n). 

Akaike's information criterion (AIC) was used to choose the best model when 

models had different sets of parameters. AIC was calculated for each model as: 

-2(log-likelihood) +2Xp 

where p is the number of parameters estimated in the model. AIC therefore, represents a 
measure of the explanatory power of the model discounted by the number of parameters 
that have gone into its construction; a lower value indicates the ̀ better' model. Finally, I 

calculated the variance components for the factors and their interactions using restricted 
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maximum likelihood, REML (for an intuitive overview of REML, see Lynch and Walsh 

1998). All calculations were made using SPSS (versions 12.0,14.0, and 15.0) for PCs 

and (version 11.1) for Mackintosh computers. 

3.3 Results 

3.3.1 Raw data 

I plotted the cumulative totals of, the variable and constant flowers sampled by each 

individual bird during the morning, afternoon, and evening trials in relation to foraging 

bout number. I also divided the data by observation cycle so data could be compared 

between the early and the late seasonal data. The data indicates that although there may 

be some trends at a specific time of day or season, that these trends are not consistent 

within individuals or between individuals (Fig. 3.3 a-e). However, given I was looking 

for changes in risk-sensitive foraging behaviour based on environmentally induced 

changes to the subjects' energy budgets, this is not a problem if these inconsistencies 

were related to changes in temperature and energy budget. The birds visited the boards 

a median of 126 times (range: 85-156) and sampled a median of 689 flowers (range: 

656-842). 
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Figure 3.3. The cumulative frequencies of the flower choices per foraging bout in relation to the 
time of day and time of season. The data are presented for each individual bird (a-e). 

3.3.2 Risk sensitivity of the group 

The birds did not display any consistent risk-sensitive foraging behaviour as there were 

no differences for the proportion of constant choices for cycle (LMM: cycle 
(F1447=0.027, P=0.87), day (F3447=2.102, P=0.113), time of day (F2447=0.210, P=0.811) 

or any interaction (cycle*day: F3447=0.332, P=0.802; cycle*time of day: F2,47=0.147, 

P=0.864; day*time of day: F6447=0.739, P=0.621; and cycle*day*time of day: 

F4447=0.132, P=0.970; Fig. 3.4). While there was no relationship between the number of 
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constant flowers consumed and diurnal or seasonal effects, there might have been 

significant effects between individuals. Ilowever, there was no evidence of between 

subject differences in the analysis. I tested for differences in behaviour between 

individuals and found that variance between individuals accounted for only 17.6 `y, of 

the total variance of about 44.5 which was not statistically significant (Wald/. test: 

/=I. O4.5, P=O. 2%). The other 82.4 `%c of variation was accounted for by within 

individual variation and error. 
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Figure 3.4. The mean proportions (+SE) of flowers chosen that were constant in relation to time 
of day and experimental cycle. The dotted line indicates 0.5, which is what would be expected if 
birds were choosing flowers at random. 

There were 10 of' each flower type offered to birds in each foraging bout and on some 

occasions, the birds did choose more than 10 flowers. Therefore, it is possible that as a 

foraging bout continued, that the birds choices may have been forced towards the less 

favoured option. One way of examining this effect, is to examine a sample of choices 

that the birds made which night have been less affected by this effect. One way of 

doing this is to compare the first-choice preference for a flower type with the overall 

preference for the same Flower. When I did this for the constant flowers, it was clear 

that there was little difference between the overall rate of attack and the preference for 

the first flower (X ± SE: first choice=). 510 ± 0.043, overall preference=0.5I2 ± 0.027, 

paired /-test: t=-0.0612, P=0.9534, df=4). Moreover, visual inspection of the birds' 
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preferences for constant flowers in the first six choices indicated that the each 

individual, had a range of about 0.1 (Fig. 3.5). There was also little change in slope 

which might be expected if birds were being forced to choose flowers of the other type. 

These data indicate that birds' preferences were relatively constant within bouts and so 

this did not become a problem until later in within each foraging bout. 
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Figure 3.5. The individual preferences of 
birds for the first six flowers sampled in a 
foraging bout. 

Finally, I conducted a correlation of the proportions of constant flowers out of the 

total number of flowers sampled against the proportion of variable flowers that were 

high. The relative number of high volume variable flowers compared to low volume 

flowers that birds' consumed was high, this could have had significant effects on birds' 

overall preferences. This is because if a bird consumed a relatively high number of high 

volume flowers compared to low volume variable flowers, this could positively distort 

the bird's subjective evaluation of the payoff obtained from variable flowers. Therefore, 

a bird consuming relatively more high volume variable flowers than the low volume 

flowers might lead to preferences for the variable option. I examined this possibility by 

comparing the proportion of the total number of flowers consumed that were constant 

volume with the total number of variable flowers that were high volume. If this 

relationship were a factor in birds' preferences then it would have been expected that 

the higher the proportion of variable flowers sampled that were high volume, then the 

higher the preference for variable would have been. The median proportion of variable 

volume flowers sampled that were high volume was 0.53 (range: 0.47-0.57). When I 

compared the mean proportion of the flowers chosen that were constant for each 

individual against the proportion of variable volume flowers that they sampled that were 

high volume, I found that there was no relationship between these two measures 

(Spearman's rho=-0.308, N=5, P=0.614). Therefore, there is little evidence to suggest 
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that birds could differentiate between high and low volume variable flowers. Moreover, 

there was no relationship between the proportion of total flowers sampled that were 

constant and the proportion of variable flowers that were high volume. 

3.3.3 Effect of temperature 

Throughout the experiment, there was a large range of temperatures recorded 

(minimum=-0.9 °C, maximum 30.4 °C). The results from the LMM above indicated 

that there was no effect of day, day within experimental period, or cycle on the birds' 

preferences. This meant that I could analyse the data set without including these factors 

in the analysis. Therefore, I constructed a LMM to test the effects of temperature on the 

arcsine square root transformed proportions of foraging choices that were constant. I 

also calculated the mean temperature during the observation session using all the 

temperatures collected at each foraging bout as well as the temperature at the beginning 

and the end of the observation session. I included subject and temperature as random 

variables. I found that the temperature had no effect on the proportion of constant 

flowers chosen (LMM: F4,64=0.518, P=0.723). I constructed a similar model with energy 

consumed per hour as the dependent variable and with temperature and subject as 

random variables (F4,67=1.603, P=0.184). I also found that there were no differences 

between individuals for both the proportion of constant flowers chosen (Wald Z test: 

Z=0.163, P=0.871) or for the hourly rate of energy consumption (Z=0.401, P=0.688) 

that could be explained by temperature. 

3.3.4 The relationship between behaviour and foraging choices 
Theoretically, an animal's behaviour should be linked with its energetic state because 

an animal needs energy in order to perform behaviour. Hence, it might be possible to 

detect changes in the proportion of constant flowers chosen and the amount of energy 
birds used per hour, based on the bird's activity. I constructed LMMs of the average 
hourly rates for each behaviour collected during of the different observation. sessions. I 

included the rate of behaviour as a random variable and subject as random subject 

variables. Table 3.2 summarises the results of these analyses and shows that there were 

no significant relationships between the behaviour of the birds and the proportion of 

constant flowers chosen or the amount of energy consumed. 
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Table 3.2. The test statistic results of the bird's behaviour on the proportion of constant flowers 
chosen and the amount of energy consumed per hour both within subjects (F) and between 
subjects (Z). All PaO. 3926. 

Proportion of flowers constant , Energy consumed/hr 
Behaviour df FZ df FZ 
Feeding bouts/hr 4,64 1.042 0.085 4,67 0.264 - 
J-flights 4,64 0.539 1.025 4,67 0.216 0.013 
Aggressive flights 4,64 1.021 1.160 4,67 0.156 -' 
Shuttle flights 4,64 0.643 1.204 4,67 0.19 -° 

a. The calculation of test statistic was not possible due to lack of variation. 

3.4 Discussion 

The results of this experiment found no evidence of switches in risk-sensitive foraging 

behaviour in relation to changes in behaviour or temperature. Moreover, none of the 

behavioural or environmental factors that I recorded, significantly explained the lack of 

variation in the data. The failure to find any risk-sensitive foraging behaviour of any 

kind was surprising given that hummingbirds are a seemingly ideal species in which to 

study this behaviour. This is because rufous hummingbirds are small homeothermic 

animals living in an energetically stressful environment (Stephens 1981; Stephens & 

Charnov 1982) and several studies have also found risk-aversion in this species given 

similar choices (Stephens & Paton 1986; Waser & McRobert 1998; Horley & Oseen 

1999; Biernaskie et at. 2002; Hurly 2003). 

There are a number of reasons why the hummingbirds might not have displayed a 

consistent risk-sensitive foraging patterns within and between individuals. First, it is 

possible that the birds had not learned the difference between flowers at the start of the 

experiment. There are differences in the way that birds were trained compared with 

other studies which might have contributed to them not learning the relative values of 

the flowers. For example, some authors did not give hummingbirds forced trials, instead 

starting the experimental trials, once birds were feeding from the Plexiglass boards 

(Hurly & Oseen 1999; Hurly 2003). Interestingly, the only other study that has used 

forced trials also found that the birds were risk indifferent for variance in nectar volume 

(Bateson et al., unpublished manuscript). However, the method of forced trials of single 

flower types ought to have increased the speed of learning if theories of associative 
learning are correct (e. g., Rescorla & Wagner 1972). Moreover, the number of flowers 

that birds sampled in this study were over double the number that were sampled in 

previous studies of hummingbird risk-sensitive foraging behaviour (e. g., Hurly & Oseen 

1999; Hurly 2003). Therefore, this result is definitely not the result of a lack of 

statistical power related to the number of replicates obtained from each individual. 
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Another experimental difference was that I collected my data in approximately three- 

hour blocks separated by three-hour breaks. This might have affected the learning of 

birds as interruptions might allow the bird to forget the colour-reward associations. 

Another explanation for the lack of preference might be due to the lack of costs 

for switching between flowers making it unprofitable for birds to discriminate between 

flowers. This is because with both flower types on the same board, if the bird got a poor 

flower, then it may have exploited the flower next to it and so on until it had met its 

energetic needs. Other authors have realised this problem and set different flower types 

apart with varying levels of success (e. g., Waser & McRobert 1998; Biernaskie et al. 

2002; Bateson et al., unpublished manuscript). However, having both flower types on 

the same Plexiglass board has also been used to successfully generate risk averse 

foraging preferences (e. g., Hurly & Oseen 1999; Hurly 2003). The data from this study 

supports the possibility that birds were not discriminating between the constant and the 

variable flowers. This risk-indifference was consistent irrespective of the behaviour of 

the bird or the climatic conditions at the study site. The birds' foraging behaviour 

indicated that they may have been choosing indiscriminately as there was no cost to 

feeding from as many flowers it took in order to fulfil their energetic needs. The 

average number of flowers that birds fed from in this study was 6.31 ± 0.46 flowers per 

visit as opposed to 5.1 ± 0.2 flowers (Hurly & Oseen 1999) and 4.8 ± 0.2 flowers 

(Hurly 2003) per visit in the two studies that utilised similar methods. 

Another aspect of this study that supports the possibility that the birds may have 

been indifferent rather than untrained was that there was no relationship between 

temperature and the amount of energy consumed per unit of time. This tends to indicate 

that despite the extreme differences in temperature experienced by birds, that their 

intake in energy from the experiment did not change. It is possible that this was because 

the birds were supplementing the diets from natural sources. It has also been noted in a 

study conducted on Norway rats (Rattus norvegiscus) that subjects were indifferent 

when there were few costs to switching between foraging options. In this study, the 

authors observed Norway rats under two conditions: (1) where they could choose only 

one foraging option and (2) where they could sample both options. It was found that the 

rats displayed risk-aversion when could only choose a single option in a trial, but were 
indifferent when they could sample both available options (Roche et al. 1997). 

In this experiment, birds visited the Plexiglass plate and sampled flowers without 

replacement meaning that as the number of flowers sampled increased, the bird's 
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'preference' was funnelled towards 0.5 (Fig. 3.6). 't'herefore, feeding from it large 

number of flowers may make indifference more likely. One way around this funnelling 

effect of the bird's preferences maybe to examine their first choices in order to see if 

they deviate significantly from their overall preference. When I conducted a simple 

analysis of the first choices, there was no evidence to suggest that the birds' preferences 

for the first choices were different front their overall preferences for constant flowers. 

Moreover, there was little evidence to suggest that there were any large deviations in 

the preferences of individuals for at least the first six choices. This indicates that 

preferences within individuals did not differ significantly front their overall preferences 

throughout a foraging bout. The method of including only the first choice an animal 

makes has been used by other authors who have identified this problem Bateson c/ 

i1.2003), but it is problematic because it may misrepresent the overall preferences of 

birds. 
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Figure 3.6. The tunnelling ettect of continued sampling within bouts as the birds continued to 
forage. As the number of flowers birds sampled within a bout increased, the probability that the 
birds' choices for each flower begin to approach 0.5 increases. This is because the birds were 
sampling flowers without replacement. Hence, it was possible for birds to exhaust all of a 
particular flower type if they sampled 10 or more flowers meaning all subsequent flowers 
sampled had to be sampled were the non-sampled flower type (marked with a dotted line). The 
points to the right of the dotted line (coloured grey) indicate the point where we see a dramatic 
decline in the ranges of proportions of variable and constant flowers sampled. 

There are a number of different ways in which hummingbirds may have been able 

to mediate their use of bodily energy stores: (I) torpor, (2) micro-habitat selection, and 
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(3) behaviour modification. Torpor is a form of regulated hypothermia and is an 

adaptive response in animals that face short day lengths, variable food supplies, low 

temperatures, and poor or scarce food supplies (Pravosudov & Lucas 2000; Welton et 

al. 2002). Nocturnal hypothermia may involve depressions in body temperature of up to 

10 °C resulting in an energy saving of as much as 33 percent in parids (Budd 1972; 

Haftorn 1972; Chaplin 1974,1976; Reinertsen & Haftorn 1983). In hummingbirds, the 

drop may be even more extreme with temperatures falling by as much as 20 °C and 

their metabolic rates falling to 5% of their normal value (Hainsworth & Wolf 1970; 

Wolf & Hainsworth 1972; Carpenter 1974; Withers 1977; Kruger et al. 1982; Hiebert 

1990). The amount of energy lost by a homeothermic animal is proportional to the 

difference between the body temperature and the ambient temperature. As the ambient 

temperature falls, the difference becomes greater meaning that more energy is lost to the 

environment. One way to minimise the energetic losses to the environment is to lower 

body temperature, which reduces the amount of energy lost through radiation of heat. 

There are costs associated with going into torpor and these costs may prevent the more 

widespread adoption of torpor as an energy saving mechanism. Those species that 

utilise torpor only tend to during times when energetic crisis seems inevitable (Hiebert 

1992; Pravosudov & Lucas 2000; Welton et al. 2002). In this experiment, it was 

unknown which nights birds went hypothermic. However, hummingbirds are known to 

regularly utilise torpor as an energy saving mechanism and so torpor may have acted to 

reduce the impact of low temperatures on the birds' energy budgets in this experiment. 

I measured temperature when the birds visited the feeders and it is highly probable 

that the temperature that was 'incorporated into the model was different from the 

temperatures experienced by the males. Birds are known to exploit favourable 

microclimates that may be subject to higher ambient temperatures than surrounding 

areas and to reduce wind chill in exposed areas. For example, mountain chickadees 

(Poecile gambeli) are known to select microclimates that ameliorate the effects of wind 

(e. g., Grubb 1975,1977,1978; Kessel 1976) or by selecting resting areas that have high 

temperatures or are exposed to direct sunlight (Wachob 1996). Rufous hummingbirds at 

the study site were seen often to perch at prominent points in their territories that had 

very high exposures to sunlight. These points may have had higher temperatures than 

the temperatures that I recorded in the shade, about 1.5 m off the ground. Hence, 

although the temperatures I included in the analysis were likely to be indicative of the 
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general environmental temperature, they may have borne little relation to those 

experienced by the hummingbirds. This could be another of the factors that contributed 

to the birds' indifference for flowers of either kind. 

The relationship between temperature and time of day is complicated by the fact 

that temperature has its daily peak in the afternoon period. The temperatures in the 

morning and evening were lower. Therefore, it is possible that if birds' strategies 

changed with time of day rather than temperature, this could have confounded the 

relationship between temperature and preference. However, I included analysis of time 

of day and temperature in the results and neither factor significantly explained the 

preference data of the birds. 

Finally, birds may have been able to reduce their levels of energy expenditure by 

reducing their investment in energetically expensive behaviours. It has been found in 

other hummingbird species that birds will reduce energy expenditure in environments 

where they have become stressed (Fernandez et al. 2002). I measured behaviours of 

birds in an attempt to correlate this with energy consumption and foraging preferences 

and found that there was no relationship. In hindsight, this is not surprising for two 

reasons. First, I was not able to watch birds continuously for long time-periods. This 

meant that the number of times each behaviour was observed may have been grossly 

under reported in my results. Second, the behaviours I recorded while costly, may be 

less common than other behavioural patterns and so might have been swamped with 

regards to the effects they may have had on the birds' energy budgets. For example, 

hummingbirds spend a lot of their time flying and hovering while feeding (Wolf & 

Hainsworth 1971; Pyke 1981) and so these behaviours may use a lot more energy than 

the occasional J-flight or aggressive interaction. Therefore, it is not surprising that the 

behaviours I recorded were not associated with changes in foraging behaviour because 

my method was probably too crude. 

There has been much effort in trying to demonstrate the energy budget rule and 

although there is some evidence to suggest that, it is possibly a factor in risk-sensitive 
foraging behaviour. One possible explanation for this is that animals in natural 

situations may rarely experience energy budgets which are so dangerously negative that 

the only way to survive would be to exploit a variable option and hope for a run of 

extremely good luck. Birds in a natural situation are likely to have food available and 
there is a generally a positive relationship between foraging effort and level of energy 
intake (Stephen & Krebs 1986). Moreover, the longer a run of luck is required to last, 
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the less likely a risk-prone strategy will be in increasing the level of intake above the 

constant foraging option. This is because the payoff from a risk-prone strategy and a 

risk averse strategy will approximate one another more closely with increasing time. 

Although I have not given much space to discussing ecological, behavioural, or 

life-history approaches to examining foraging behaviour, the study of foraging is now 

more integrative of these factors than older models of foraging behaviour (e. g., risk- 

sensitive foraging models). Foraging models now integrate a much greater number of 

constraints and factors to yield more realistic predictions (e. g., Mangel & Clark 1986). 

However, it is only comparatively recently that researchers have attempted to include 

other aspects of behaviour, ecology, or life-history which might be important into risk- 

sensitive foraging theory (e. g., McNamara et al. 1991; Merad & McNamara 1994; 

Hurly 2003). One aspect that has consistently been ignored in risk-sensitivity is the risk 

of predation. While the prospect of aerial predation may seem remote in the laboratory 

environment, animals may be adapted to handle variability in food sources under the 

threat of predation. It is has become clear, in birds at least, that predation pressure can 

play a significant role in the evolution of mass regulation strategies (Lima 1986; 

Houston & McNamara 1993; Bednekoff & Houston 1994; McNamara et al. 1994). 

Therefore, predation could significantly affect a bird's risk-sensitive foraging strategy. 
Given all of the possible confounding variables that could influence the results of 

tests of the EBR, it is surprising that so much evidence for the EBR has been 

accumulated. The majority of the studies listed in Table 3.1 have not controlled for 

many, if any, ecological, behavioural, or life-history factors that could potentially affect 

the results of experiments. Moreover, many of the studies have studied the EBR devoid 

of any direct approximation of the subjects' energetic state. This naivety in the approach 

to the study of the EBR, has hindered our understanding of how animals deal with 

variation in foraging options behaviourally. Many of the experiments listed in Table 3.1 

may have found more support for EBR if they had been conducted with a better 

understanding of how animals manage their energy reserves and the relationship 
between energy consumption and behavioural expenditure. 

3.4.1 Conclusions 

Clear doubts remain over the explanatory power of the EBR in explaining risk-sensitive 
foraging behaviour. However, the ideas of risk-sensitive foraging are being applied to 
different biological problems (e. g., Ekman & Hake 1988; Wu & Giraldeau 2005). This 
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observational study was based on the assumption that climatic differences could cause 

changes in birds' energy budgets, and these changes could then affect the birds 

preferences for the one or other of the flower types offered. The observed indifference 

of birds towards the two flower types illustrates some of the general problems 

associated with tests of the EBR. There were a number of possible reasons for the 

failure of birds to show any risk-sensitive foraging behaviour. The EBR is an intuitively 

elegant and attractive idea, but in order to make progress in testing this hypothesis we 

need to design experiments that incorporate measures of subjects energetic state along 

with behavioural assays of their foraging preferences that present problems of 

stochasticity to animals in biologically meaningful ways. Initially, this will probably 

mean a return of these kinds of studies to the laboratory. However, the increasing 

statistical and technical sophistication of ecological research means that tests of the 

EBR may be feasible in the field in the near future. 
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Chapter 4 

LITERATURE REVIEW OF APOSEMATISM AND 
MIMICRY 

Aposematism and mimicry comprise a body of work now considered amongst the 

classic examples of adaptation, mutualism, and evolutionary deceit. This makes 

aposematism and mimicry popular examples of the evolutionary process at work, 

although many aspects of aposematism and mimicry theory remain relatively poorly 

tested. Moreover, the field has relied upon ideas that have remained relatively 

unchanged for over a century. It is only recently, that theoreticians have revisited these 

original models and find that aposematism and mimicry may operate in vastly different 

ways than had been previously thought. It is the aim of this review to provide a brief 

overview of the theoretical and empirical research of aposematism and mimicry. 

Following this, I will consider the role that predators play in the predator-prey 

interactions in systems with defended prey. I conclude that educated predators could 

have a far greater role in the evolution of aposematic and mimicry than has previously 

been considered. 

4.1 Aposematism 

Aposematism is an evolutionary paradox because it provides an interesting example of 

an adaptive trait along with a theoretical problem of how it evolved. Therefore, 

aposematism has traditionally been, and continues to be, of great interest to 

evolutionary biologists. Aposematic species are unprofitable (e. g., chemically defended, 

protected by morphological traits, or difficult to capture) and advertise their 

unprofitability to predators through conspicuous warning signals (e. g., bright 

colouration, smells, sounds, or conspicuous behaviour [Poulton 1890]). Many predators 

show innate aversions to aposematic species whereas other species need to learn the 

prey's noxious properties (Schuler & Roper 1992; Mappes et al. 2005). 
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4.1.1 Early history of the study of aposematism 

Wallace (1867) was the first modern biologist to suggest that it might be beneficial for 

animals with chemical defences to advertise their unprofitability to predators. Charles 

Darwin had drawn his attention to the problem of bright insect larvae in a letter (Darwin 

1872). Darwin knew that larvae were not sexually mature and that there was no way of 

externally differentiating sexes apart. Therefore, sexual selection could not account for 

the bright colouration of some caterpillars. Wallace (1867) realised that it would be 

beneficial for animals with secondary defences to advertise this fact. Conspicuous 

colouration is one method of advertising prey unprofitability. He also predicted that 

brightly coloured larvae should always be rejected as food when encountered by 

predators, and that cryptic larvae should be devoured whenever encountered. 

Poulton (1890) first used the term aposematic, which he took from the Greek, 

"apo" meaning away and "sematic" meaning sign. He also reviewed the evidence for 

aposematism and found numerous examples of predators having aversions towards 

brightly coloured, chemically defended species of insect larvae and imagos which 

supported Wallace's prediction (Poulton 1887,1890). For example, he cited the magpie 

moth (Abraxas grossulariata) larvae as being a conspicuous example of Geometridae, 

which are generally cryptic. He noted that, "all observers agree that [predators] either 

refuse this species altogether, or exhibit signs of the most intense disgust after tasting it" 

(Poulton 1890, p. 169). He then outlined a number of other traits that were strongly 

linked with aposematism such as sluggishness (p. 175), conspicuous behaviour (such as 

absence of hiding or escape behaviours) (p. 169-170), and gregariousness (p. 170). 

However, Poulton also noted the inconsistency in behaviour of predators when faced 

with defended prey (1890, pp. 180-181). 

Beddard (1895) also noted inconsistencies finding that on one day a predator 

would not consume a defended prey only to consume it the next. However, early studies 

were generally poorly controlled observations. Hence, any number of factors could have 

accounted for these observations. For example, these observations were made on 

unmarked predators, meaning that the authors may have been basing their observations 

on multiple individuals ([Weir 1869, Butler 1869, both in Darwin 1872, pp. 498-501]; 

Poulton 1887,1890; Judd 1899; Marshall 1902; Pocock 1911; Carpenter 1921; Jones 

1932,1934; Carrick 1936). The lack of consistent predator behaviour led to scepticism 
by biologists and led them to question whether chemical defences were effective at 
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deterring predators. This led to two divergent schools of thought as to how effective 

aposematic signals were at deterring predation. 

The adherence of early biologists to the idea of complete avoidance was not 

compatible with many of the early observations of predator behaviour. In these studies, 

it was observed that aposematic signals were sometimes effective in reducing predation, 

although not always. For example, Marshall (1909) observed many cases of kestrels 

(Falco tinnunculus) and garden warblers (Sylvia borin) consuming chemically defended 

butterflies that they normally would not consume. Swynnerton (1915) noted that birds 

were more likely to consume chemically defended prey (such as butterflies of the 

Acraeinae and Danainae sub-families) earlier in the day when compared with their diets 

later in the day. Other biologists questioned how chemical defences could evolve at all. 

For example, McAtee (1932) proposed that predators were unselective and consumed 

prey in accordance with their abundance in the environment (the principle of 

proportionate predation). Cott (1940) published a voluminous tome in which he 

reviewed the evidence of the effectiveness of warning signals. He found that although 

there was ample evidence to suggest that predators sometimes consumed defended prey, 

this was likely to be due to increased hunger. These exchanges between McAtee and 

Cott made it clear that for aposematic signals to have a selective advantage, they only 

needed to reduce the rate of predation of the prey species rather than extinguish it 

completely. Now that this problem was sufficiently explained, biologists began thinking 

about the advantages of being aposematic. 

Ronald Fisher (1958, first published in 1930) published one of the great books in 

evolutionary biology, The Genetical Theory of Natural Selection. In it, he considered 

the evolution of chemical defences and made two important points. First, he reiterated 

that chemical defences evolve in order to increase the probability of the defended 

species surviving. Second, he realised that attacked individuals would stand a high 

chance of dying. This was a problem because if selection operates at the level of the 

individual, then how can aposematism be of benefit to an individual that has been 

attacked and killed. Fisher knew prey animals such as caterpillars often aggregated. For 

example, butterflies often lay their eggs in clumps meaning that aggregated prey might 

be related. Therefore, individuals that are consumed by predators may still have 

indirectly benefited from their own death by kin selection. They may be educating 

predators as to the noxious qualities of the prey species including their siblings. Hence, 

if the defence is noxious enough, the predator will then reject those visually similar (and 
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related) prey that are concentrated in the area, thus increasing the inclusive fitness of the 

depredated siblings (Hamilton 1964). 

With these problems supposedly solved, biologists began to focus more on other 

aspects of insect colouration such as industrial melanism and mimicry. However, there 

were some important studies in aposematism such as those of Brower (1958a) who 

showed that Florida scrub jays (Cyannocitta coerulescens coerulescens) quickly learned 

to avoid attacking chemically defended butterflies. By the start of the 1970s, predator 

avoidance learning of aposematically coloured prey had been demonstrated many times 

in birds, anurans, lizards, and cephalopods (squids, cuttlefishes, and octopi) (Edmunds 

1974, pp. 63-65). Since this time, the breadth of the diversity of aposematic signals 

unearthed is huge and although insects are the most well studied aposemes, there are 

numerous examples from other taxonomic groups (Edmunds 1974; Ruxton et al. 2004). 

Most of the research that has been outlined above, has concentrated on visual 

aposematic signals. This might have reflected a human bias in the taxa we choose to 

study or might be an actual trend among animals (Pough 1988). Other sensory 

modälities have been investigated such as sound (Dunning et al. 1991), odour (Eisner 

and Grant 1981), and behaviour (Srygley & Chai 1990). It has also been discovered that 

predators may have evolved multi-sensory aposematic signals that may act to increase 

the effectiveness of the signals (reviewed by Guilford & Rowe 2001). These multi- 

modal signals may be more effective because they are harder for mimics to fake. To 

fake one trait might be quite simple, as the many examples of mimicry suggest, but to 

fake two or more traits may be an evolutionary bridge too far. Alternatively, one 

aposematic signal may increase the attention that potential predators pay to other signals 

thus increasing the effectiveness of multi-modal signals (e. g., Lindström et al. 2001b; 

Rowe 2002). However, as Poulton (1890) pointed out, aposematism can be a suite of 

signals that are behavioural as well as morphological. Therefore, bright colouration 

along with slow flight can also be considered a multi-component signal. 

Aposematism is generally considered a trait associated with animals (e. g., Ruxton 

et al. 2004); however, it has recently been shown that trees might also signal their 

unpalatability to herbivorous insects through the brightness of their autumnal displays 

(Hamilton & Brown 2001). This fits with the definition of an aposematic signal, 

although it has not been discussed as such yet. For this to happen, research into whether 

plants with bright foliage colouration also produce high amounts of plant secondary 

metabolites (PSMs) and whether signals deter their herbivorous "predators" (Schaefer 
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& Rolhausen 2006). If this idea were to bear fruit, then it would reinvigorate the field of 

aposematism because it would force us to examine our preconceptions of what is 

aposematism. 

4.1.2 The evolution of aposematism 

4.1.2.1 Problems in the evolution of aposematism 
Fisher's (1930) kin based argument for the benefit of aposematic signals to individuals 

was an elegant hypothesis which was widely accepted by biologists. The adaptive 

significance of aposematism in reducing rates of predation in prey is obvious when it is 

fixed in the population, but the road to fixation may be far from smooth. This problem 

made biologists think about the initial evolution of aposematism and which trait evolved 

first; chemical defences or warning signals (Guilford 1988). If chemical defences 

evolved before warning signals, there is a problem in getting the signal to fixation in a 

population from a single mutant. One indication that this might be a problem is that 

there are many chemically defended cryptic species (Edmunds 1974). This is because if 

a single aposematic mutant were to appear in a population, it would most likely be eaten 

before its cryptic conspecifics. Therefore, it would perish before having the opportunity 

of contributing genes to the next generation (the problem of the lone mutant [Speed 

2000,2001]). However, this could also argue for the evolution of chemical defences 

before warning colouration. 

Brodie and Agrawal (2001) have suggested that it is possible that a mutation for 

aposematism could occur in the germ line of females, thus conferring the aposematic 

mutation to all of her offspring. A weaker form of the lone mutant argument applies to a 

group of aposematic individuals. A group of individuals that is small, would pay a high 

education cost because it is likely a large proportion of individuals would need to be 

consumed in order to educate the predator. Hence, the smaller the mutant population, 

the higher the cost of carrying the conspicuous mutation because the probability of 

educating the predator population before extinction of the colour mutation decreases 

with declining aposeme population size (Speed et al. 2000; Lindström et al. 2001a; 

Speed 2003). Speed (2003) called this the "problem of the advantaged minority. " Both 

the problem of the lone mutant and the problem of the advantaged minority are in effect 

the same problem. This is because as a population of mutants increases, there is a 

critical level of penetration at which the benefits of carrying the mutation outweigh its 

costs. 
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One suggestion that favours the maintenance of rare aposematic morphs for long 

enough for them to become established in a population is what Mappes et al. (2005) 

called wariness. They grouped the processes of neophobia and dietary conservatism into 

this more general term. Neophobia-as its name implies-is an aversion to novel food 

items whereas, dietary conservatism is the reluctance by members of a population to 

include new food items in their diet. These factors are thought to be important in 

promoting the fixation of aposematism in populations because predator wariness may 

allow aposematic mutants enough time to build up in numbers to avoid extinction in the 

course of predator education (e. g., Marples et al. 2005). 

Poulton (1890) realised that animals living in heterogeneous environments could 

be cryptic in one part of the environment, but aposematic in other parts of their 

environment. It is possible that phytophagous insects could have evolved aposematic 

signals in order to increase their crypsis. For example, Papageorgis (1975) suggested 

that Heliconius butterflies might be partially camouflaged in flight through a flicker 

effect (although this has been disputed by Benson 1982). An alternate view is that 

differently coloured plant parts could evolve in order to expose green "cryptic" 

herbivorous insects to insectivorous predators (Lev-Yadun et al. 2004). This means that 

bright leaf colouration could favour the evolution of brightly coloured herbivorous 

insects as an attempt to remain cryptic. Endler (1984) found that the more 

heterogeneous the background was, the more moths would match a random sample of 

background. This also can be interpreted to mean that the more heterogeneous an 

environment, the larger number of colour morphs it can support. Therefore, aposematic 

signals could have evolved because of an interaction with the environment in which the 

animal finds itself and the selection pressure exerted by predators (Speed & Ruxton 

2005). If bright colouration evolved before the acquisition of chemical defences for 

some other purpose, such as intra-specific communication (e. g., sexual selection, 
Jiggins et al. 2001), then the initial evolution of warning signals is less of a problem 
(Mallet & Singer 1987). The evolution of chemical defences will always be beneficial 

to animals possessing them if they are brightly coloured for some other purpose. 
Whatever the reason for how aposematic traits get their foothold in a population, once 

they are established, they will tend to become fixed in a population if they are 

advantageous. 

A final point to note is that there would also seem to be a problem in macro- 
mutations for massive changes in wing colouration. Many authors believe such 
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saltational jumps are improbable based on a probabilistic argument (e. g., Dawkins 

1976). However, it has been found that the genes for wing patterns in Lepidoptera may 

be highly linked and thus, behave in a manner similar to a single gene (Clarke et al. 

1968; Clarke & Sheppard 1971; Turner 1984). These `supergenes' may produce large 

changes in phenotypes allowing bridging of the valleys of adaptive landscapes to new 

adaptive peaks that would otherwise be non-adaptive to cross. Therefore, it is possible 

that large adaptive phenotypic shifts can take place in butterflies for wing patterns and 

colouration, which means that the evolution of warning colouration does not need to be 

a gradual process (but see also Lindström et al. 1996). 

4.1.2.2 Modern refinements of theories for the evolution of aposematism 

Two hypotheses have been proposed to explain the evolution of aposematism. The first 

is that the benefits of aggregation accrue to populations of individuals because of the 

reinforcement of the negative stimulus received when the initial aposematic prey item 

was attacked. Many later models incorporated Fisher's kin-based model which 

suggested that the death of one or more members of a population could enhance the 

survival of the remaining group to such an extent, that it could generate higher levels of 

fitness for aposematic individuals compared with the non-aposematic conspecifics 

(Turner 1975; Harvey et al. 1982). The model of Harvey et al. (1982) is important since 

they found that the survival of rare aposematic forms could be favoured under a number 

of conditions. First, evolution of aposematic morphs would be favoured if they were not 

too brightly coloured. Second, if aposematism accelerates the rate of learning, then it 

will evolve because fewer aposematic prey would be sacrificed to predator learning 

compared with non-aposematic prey. Finally, they predicted that if the number of prey 

families in each predator's territory were low, this would mean that in relative terms, 

that the occurrence of conspicuous mutants in one family would mean that the 

appearance of aposematic mutants might not be as rare as previously thought. This 

would be especially true if a mutation were to occur in the germ line of the parents thus 

conferring the mutation to all the offspring in a brood (Brodie & Agrawal 2001). 

Guilford (1985,1988) argued against the kin selection idea in favour of "green beard" 

effects. His argument was that as long as the phenotypic expression of aposematism and 
its genetic linkage were high, then aposematism did not need to be explicitly based on 
kin selection. While this is true, closely related individuals are most likely to have high 

rates of linkage between different alleles. 
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The second hypothesis is that there may be higher levels of survival accruing to 

defended individuals upon being attacked by predators. There have been some 

laboratory-based studies on the effectiveness of prey aggregations at reducing the levels 

of predation of aposemes. Alatalo and Mappes (1996) found that when prey were 

aggregated, great tits (Parus major) learned to avoid in aggregations of aposematic prey 

more quickly than when prey were solitary. However, Tullberg et al. (2000) criticised 

their analysis on two points. First, Alatalo and Mappes included the undefended prey in 

the analysis of the adaptive significance of aposematic colouration. When undefended 

prey were not included in the analysis, there was no significant difference in mortality 

of solitary and aggregated prey they (Tullberg et al. 2000) confirmed in an experiment. 

Second, the pattern observed in the Alatalo and Mappes data may have been the result 

of behavioural differences of birds towards cryptic defended and undefended prey. 

Birds may have been attacking the whole aggregation when prey were undefended, but 

attacking only one prey when they were in a defended aggregation before resuming the 

search for undefended prey. Again, Tullberg et al. (2000) confirmed this effect in a 

separate experiment. The results of Tullberg et al. (2000) therefore, raise valid doubts as 

to the increased efficacy of aposematic signals in promoting predator learning in 

aggregations. Riipi et al. (2001) tested the benefits of aggregation in association with 

the differences between defended and undefended prey. They found that when the 

visual distinctiveness between defended and undefended prey was low; there were few 

learning effects throughout successive trials and that there were few benefits in forming 

groups. However, when the visual distinctiveness between the defended and undefended 

prey increased, rates of learning resulting in lower rates of predation for the defended 

prey that were more distinct and aggregated. This suggests that there was a synergistic 

effect with distinctiveness and increased group size which enhanced predator learning 

and the prey survivorship in later trials. These studies provide evidence of the benefits 

of aggregations and suggest that the models need not be kin-based. A kin-based view is 

the most parsimonious, in the early evolution of aposematism, but is not essential. 

However, if the basis of aposematism is mutation based, then the mutation is likely to 

be restricted to kin early in its evolution. The analysis of Tullberg et al. (2000) is a good 

reminder of the need to be clear in analysing results. 

The second explanation for the evolution of aposematism is based on one of the 

assumptions that Fisher made in his initial kin-based model. This assumption was that 

aposematic prey were probably killed when they were attacked by a predator. This has 
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been challenged because it has been found that attacked individuals can often survive 

attacks from predators and so may accrue direct benefits of their aposematism (Järvi et 

al. 1981, Wiklund & Järvi 1982, Wiklund & Sillen-Tullberg 1985; Marples et al. 1994). 

For example, Järvi et al. (1981) compared the rates of attack by great tits (Parus major) 

and release of swallowtail caterpillars (Papilio machaon) and mealworms (Tenebrio 

sp. ). They found that aposematic prey that were attacked were released more regularly 

than mealworms and that they did not sustain fatal injuries. However, this experiment 

had some flaws which may have increased the difficulty of interpretation of results. For 

example, birds were wild caught meaning it was possible that the birds may have not 

been naive to swallowtails. This body of research shows that it is probable that 

aposematic prey can survive attacks from predators, but they still run a higher risk of 

injury or death compared with if they were not attacked. Another problem with this 

finding is that it does not solve the problem of the initial evolution of aposematism. 

A final point to consider is that there may be some form of abatement effect 

whereby aposemes have a higher rate of detection, but suffer a lower probability of 
being attacked when compared with non-defended aposemes (Krause & Ruxton 2001, 

pp. 13-16). Hence, the overall mortality of an aposeme may be lower than a cryptic 

counterpart. Overall, there is growing evidence for post-attack survival of aposematic 

prey, although this argument does not explain the evolution of aposematism. It is 

possible that individual survival models could hasten the spread of aposematic signals 
in a population by reducing the initial costs of possessing the aposematic signals. 
However, questions remain how predators might be able to detect chemical defences of 

prey without killing them (e. g., Kassarov 1999; 2003; but see also Skelhorn & Rowe 

2005). 

There are a number of other explanations for the evolution of aposematic 

colouration. For example, it has been suggested that aposematism may have evolved in 

order to accentuate the differences between defended and undefended species (Turner 

1975,1977; Beatty et al. 2004). This effect may elicit a neophobic response in predators 
towards novel colouration (Coppinger 1969; Shettleworth 1972; Greenberg 1990; 

Schuler & Roper 1992). However, it is also possible that novelty could make the prey 
look different from the search image that predators had evolved to attack meaning that 

the predators may attack imperfect mimics at greater rates (Dukas & Ellner 1993; 

Dukas & Clark 1995). It is also possible that the higher costs associated with searching 
for cryptic undefended palatable prey could make brightly coloured defended prey 
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attractive propositions under some circumstances (Dukas 1998 pp. 97-102). However, 

this trade-off is likely only to occur among species and does not explain the initial 

evolution and survival advantage of aposemes. 

Poulton (1890, pp. 170-175) also identified many behavioural traits in prey that 

may act as signs of unprofitability. Two of the traits he listed were prey aggregation and 

sluggishness. Prey aggregation also is consistent with Fisher's (1930) hypothesis of 

selective advantage through kin selection. However, aggregations may also cause 

predators to attack prey more forcefully than they would attack a similar prey when 

encountered singly (Gamberelle-Stille & Tullberg 1996; Skelhorn & Ruxton 2006). 

This effect may also increase the effectiveness of the aposematic signal because it may 

allow the predator to ingest sufficient prey so it gets sick (Mathews 1977; Guilford 

1991). It might be the case that optimal group size may also be related to the average 

level of defences delivered by prey with more potent prey requiring smaller aggregation 

sizes to withstand predator attention. The sluggishness of prey at escaping predators 

was also identified by Poulton (1890) as a possible aposematic cue. More recently, it 

has been found that in diurnal Lepidopterons can reduce their risk of predation by fast 

and evasive flight (protean defence, Humphries & Driver 1970). The development of 

protean defence is dependent upon increased investment in thoracic flight muscles. 

Therefore, species that adopt protean defence may be constrained in the size of their 

reproductive organs. In Neotropical butterflies, species that contain fewer defences have 

higher thoracic masses and lower abdominal masses than defended species (Srygley & 

Chai 1990; Marden & Chai 1991). Moreover, when these measurements were related to 

estimated flight speed, the thoracic width to body length ratio was the best predictor of 

flight speed (Chai & -Srygley 1990; Srygley & Dudley 1993). This is one of the first 

problems in the aposematism and mimicry literature that have been treated as an 

evolutionary trade-off. 

4.1.3 Automimicry/Browerian mimicry 

Traditionally, theoretic models of aposematism have not dealt with variations in the 
levels of chemical defences that might exist within a species. This changed when 
Brower et al. (1967a) reported a laboratory population of monarch butterflies (Danaus 

plexippus) raised on cabbage (Brassica oleraceae) were palatable to blue jays 

(Cyanocitta cristata bromia) at all stages of the butterflies' life cycle. Butterflies that 
had been raised on milkweeds (Asclepius curassavica) caused the same birds to vomit. 
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Given that oviposition sites are chosen by laying females, this research raised the 

possibility that the intra-specific levels of defence may vary (Brower et al. 1967a; 

1968). 

Automimicry (also termed Browerian mimicry after Brower et al. [19671 [e. g., 

Pasteur 19821) has been confirmed in chemically defended species both in laboratory- 

based studies (Brower et al. 1984; McLain & Shure 1985; Malcolm & Brower 1989; 

Ritland 1994; Tullberg et al. 2000) and in the field (Brower & Moffitt 1974; Brower et 

al. 1975; Cohen 1985; Eggenberger & Rowell-Rahier 1991; Bowers & Williams 1995; 

Pasteels et al. 1995; Moranz & Brower 1998). Most of the variation in the levels of 

defensive chemicals has been found to be due to geographic variation in the levels of 

defences that the prey species contain (Edmunds 1974). Therefore, these differences are 

possibly caused by micro- and macro-geographic differences in nursery plant 

abundance. The mechanisms for these geographic variations remain obscure, although 

there is some evidence that there is a genetic component to these differences. For 

example, it has been noted that con-specific monarch butterflies from different regions 

of Africa raised on the same nursery plants contained different levels of defensive 

compounds (Edmunds 1974). However, intra-specific variation in the levels of 

secondary metabolites produced by nursery plants might cause differences in the dietary 

intakes of secondary metabolites (e. g., Bowers & Stamp 1992). Some of the variance in 

diets of larvae may be under direct female control because females choose the plants on 

which they lay their eggs. 

These studies while important in documenting the possible existence of intra- 

specific mimicry, they do not unequivocally demonstrate the costs and benefits to the 

models and mimics in this system. The existence of automimics presents a problem for 

evolutionary models of aposematism because if mimics are fitter than models, then why 

does aposematism exist? This is an interesting problem and the answer may be related 

to sexual selection and the costs and benefits of models and mimics in relation to 

predation and fitness. 

4.2 Mimicry 

Species are known to resemble aspects of their environment and often attempt to 

resemble their backgrounds in what is known as background matching or crypsis. 
However, this is not the only form of deception in which animals engage (see Edmunds 

1974; Ruxton et al. 2004 for reviews). Often, animals evolve signals that mimic the 
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behaviour or form of unrelated species; a phenomenon called mimicry. Mimicry can 

take two forms with it being either aggressive or defensive. 

Aggressive mimicry occurs when a predator or parasitic species resembles a non- 

threatening form in order to remain undetected by potential victims of predation or 

parasitism (Ruxton et al. 2004, pp. 172-174). For example, bluestreak cleaner wrasse 

(Labriodes dimidiatus) face similar problems to their evolution as aposematic species. 

This is because this species performs a dangerous behavioural task where they are at 

high risk of being consumed by larger client fish. Initial evolution of this mutualism is 

problematical because large piscivorous fish would tend to consume a conspicuous 

small fish swimming in front of them (Trivers 1971). Another problem is how this 

behaviour can be maintained when cheating may be more profitable (Axelrod & 

Hamilton 1981; Dugutkin 1997). This system is parasitized by mimics (e. g., bluestriped 

fangblenny fish, Plagiotremus rhinorhynchos (Cote & Cheney 20051) that use the same 

visual and behavioural signals as cleaner fish in order to get close to client fish that they 

aggressively attack. Therefore, mimics of cleaner fish face similar evolutionary 

problems to defensive mimics because what do mimics do once they become too 

successful? As is often the case with defensive mimics, it appears that the fangblennies 

are polymorphic and the different polymorphisms use different behavioural strategies 

(Cote & Cheney 2005). Defensive mimicry is when mimics resemble models in order to 

gain protection from predators. Although there may be similarities between the 

evolution of aggressive and defensive forms of mimicry, this thesis deals with defensive 

mimicry. Therefore, I will concentrate the focus of my review to this area. 

Traditionally, there were only two forms of defensive mimicry considered by 

biologists: Batesian mimicry and Müllerian mimicry. Both theories were published in 

the nineteenth century (Bates 1862; Müller 1879) and have been influential in shaping 

how we think about aposematism. More recently, many of the assumptions of both 

forms of mimicry have been challenged by theoretical and empirical findings that 

indicate that there is more to mimicry than meets the eye. 

4.2.1 Batesian mimicry 

Batesian mimicry is the resemblance-visual or otherwise-between undefended mimics 

and a chemically defended model (Bates 1862). Species that share the same warning 

signal are said to comprise a mimicry system or complex (or a ring when the number of 

species is large). The relationship is parasitic with the mimic benefiting from defences 
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of model, but not contributing anything to the reduction of predation directly. The rate 

of predatory attacks on models is determined by three main factors: (1) the frequency of 

mimics in relation to models; (2) the strength of the models defences; and (3) the 

abundance of undefended prey. Each of these factors has been empirically verified 

(Ruxton et al 2004, pp. 147-152). 

Evidence from field studies suggests that when Batesian mimics outnumber 

models, the advantages of mimicry decline and the mimicry system may begin to break 

down. Sheppard (1959) found that in species of African mimetic butterflies, their 

accuracy in matching the models pattern declined as the model became less common. 

Moreover, in cases where a mimic's range extends beyond that of the model's, the rate 

of predation increases for the mimic in parts of its range where models are not 

sympatric (Ritland 1998; Pfennig et al. 2001). Many Batesian mimics are also 

allochronous, emerging after the models, meaning that the models bear the entire cost of 

predator education (Waldbauer 1988 a, b). However, these lines of evidence for the 

negative effects of mimics are circumstantial and more direct observations of predator 

foraging behaviour are preferable to test this assumption. 

Brower (1960) tested the effectiveness of a Batesian mimicry system by varying 

the frequencies of mimics in the system that was being depredated by European 

starlings (Sturnus vulgaris). She found that the effectiveness of the models at deterring 

predation decreased concomitant with increasing mimic frequency. Similar results have 

been observed in amphibians (Huheey 1980), mammals (Nonacs 1985), and birds 

(Avery 1985) as predators. Another approach has been to use imperfect mimics to test 

the effectiveness of mimics at higher mimic frequencies. Imperfect mimics are those 

whose visual signals do not match those of the models' perfectly. Imperfect mimicry 

has been proposed to be a response to the breakdown of a mimicry system when the 

frequency of the mimics becomes too high (Sheppard 1959; Brower 1960). However, 

there are other explanations for imperfect mimicry such as prey species simultaneously 

resembling more than one model species (Edmunds 2000). 

Many studies have investigated the relationship between the effectiveness of a 

model's defence against different frequencies of imperfect mimics. In these studies, 

similar results to those obtained using perfect mimics have also been found (Duncan & 

Shappard 1965; Pilecki & O'Donald 1971; Lea & Turner 1972; Goodale & Sneddon 

1977; Avery 1985; Nonacs 1985; Lindström et al. 1997). For example, Lindström et al. 
(1997) studied the effectiveness of models' chemical defences at preventing predation 
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by great tits (Parus major) with changes in mimic frequencies. They found that the rate 

of mortality for both models and mimics increased as the frequency of models declined. 

This effect is likely to be due to the rate at which the mimics were encountered in 

relation to the model, which would reinforce the aposematic signal or the dilution effect 

of increasing the relative abundance of mimics. This is because predators are likely to 

exert a stronger predator pressure on models compared to mimics as they generally 

comprise a larger proportion of the population in model-mimics systems (Nur 1970; 

Huheey 1984; Turner 1987). Lindström et al. (1997) also tested the effectiveness of the 

mimicry system in relation to the potency of the level of chemical defences of the 

model. They found that the models and mimics generally sustained lower mortality 

rates with more potent models, which is consistent with many other studies (Duncan & 

Sheppard 1965; Alcock 1970; Pilecki & O'Donald 1971; Goodale & Sneddon 1977; 

Ritland 1994). Learning has also recently been shown to be faster in more potently 

defended prey compared with less well defended prey types (Darst et al. 2006; Skelhorn 

& Rowe 2006a) which could influence the rates of attacks on the mimicry system. 

Predation on a mimicry complex is also related to the abundance of alternative 

prey in the system (Nonacs 1985; Lindström et al. 2004). This is because visually 

distinct undefended prey will always be preferred to mimics since this reduces the 

chances of attacking a model. This assumption has a long history in the biological 

literature. For example, Carpenter and Ford (1933) noted that predators propensity to 

attack chemically defended prey depends on the availability of alternative prey, which 

has since , been supported in many theoretical treatments (Holling 1965; Emlen 1968; 

Dill 1975; Luedeman et al. 1981; Getty 1985; Kokko et al. 2003; Sherratt 2003; 

Sherratt et al. 2004). However, there is comparatively less empirical evidence of the 

effects that alternative prey have on the effectiveness of Batesian mimicry systems 

(Nonacs 1985; Hetz & Slobodchikoff 1988, Lindström et al. 2004). In a recent paper 

Lindström et al. (2004) demonstrated the rate of predation on model-mimics decreased 

when the alternative prey were at higher densities. This effect is because alternative 

prey will be exploited before prey from model-mimic systems. This effect is ultimately 

related to the predator's energetic state as at higher alternative prey densities, predators 

are able to find a larger proportion of their energetic needs from alternative prey, 

meaning they do not need to take unnecessary risks by attacking the mimicry complex. 
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4.2.2 Müllerian mimicry 

Müllerian mimicry is the resemblance of two or more chemically defended species in 

their warning signals (Müller 1879). The model is an arithmetic argument based on 

spreading the costs of predator education among more than one species. This argument 
is that if it takes a fixed number of prey items to educate a predator of prey species 

noxiousness, then this places a burden on the defended species. Consider two or more 

species that are both defended and that resemble one another. Each prey type will pay 

the costs of predator education in relation to their overall proportionate contribution to 

the prey population sharing the warning signal. So rather than the education cost being 

borne by a single species, the adoption of a common signal of unprofitability means that 

the cost will be borne by all species sharing the signal. 
Traditionally, it has been thought that the evolutionary process resulting in 

Müllerian mimicry was convergent. This raises the question of which species is the 

model and which species is the mimic? This question is not new, and was raised by 

Müller himself (Müller 1879). More recently, Mallet (2001) speculated that the 

relationship might be more one sided with one species being selected to resemble an 

aposematic sympatric species. Mallet (2001) called this an advergent process rather than 

convergent because convergence occurs when two species are selected to converge 

upon a single form-often allopatrically. The theory of Müllerian mimicry also assume 

that predators will attack a fixed number of defended prey before they will learn to 

completely avoid them (Müller 1879; Joron & Mallet 1998; Mallet & Joron 1999). 

Species of the mimicry system receive a benefit based on the dilution of the effects of 

predation that each species experiences (Turner 1987). Therefore, the selection 

pressures of each species due to predation will decrease, but as-is the case with the 

evolution of new aposematic species, selection for a rare novel morph may be anti- 

apostatic (i. e., predators will select against novel morphs). Therefore, the selection for 

the mimicry system is likely to be stabilising and it is predicted that all mimicry 
between Müllerian co-mimics be monomorphic (Turner 1984; Turner 1987; Endler 

1991). 

A number of studies have tested if rare defended forms suffer a selective 
disadvantage when compared with more common defended species when their 

appearance is similar to the model or when it is novel. Benson (1972) altered the wing 

colouration of a sample of Heliconius erato butterflies by staining a red patch on the 
forewing black. Another sample were sham controls that had an equal sized area of 
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black wing stained black, but leaving the overall pattern of the wing intact. The two 

groups were then released into an area that contained many other species that were 

known co-mimics and the numbers of manipulated butterflies seen at roosting sites were 

counted. Butterflies were released in two years and in the first year, the butterflies with 

novel patterns tended to be resighted less often. In the second year, there was no 

significant difference in resighting between the two groups. However, Benson (1972) 

found that the amount of wing damage suffered by altered individuals was higher in 

both years. Another study conducted on two allopatric races of H. erato in Peru found 

that when the morphs were translocated to new sites within the normal range of their " 

race, they suffered lower rates of predation than when they were translocated to sites 

where their race was uncommon (Mallet & Barton 1989). However, the areas of high 

predation tended to correspond with areas of high jacamar (Galbula spp. ) abundance 

and the highest disappearance of butterflies tended to occur early in the experiment. 

This indicates that the major cost paid by the new forms was paid early in the 

experiment and thus may have been associated with predator education. This indicates 

that predators might have been very quick to form aversions to the initially less familiar 

species (Mallet & Barton 1989). This observation helps explain the results of Benson 

(1972) in that predators were already educated for one species, but uneducated 

regarding the novel species. 

Although there was a disadvantage to the novel morph in the previous 

experiments (Benson 1972; Mallet & Barton 1989), a better test would be to release the 

two novel morphs to a predator that has not experienced either morph previously. 

Kapan (2001) did exactly this, releasing two novel morphs (one morph abundant and 

one rare) at two different densities. He found that the less common morph of butterfly 

was resighted less often than would have been expected, and that a smaller proportion 

of the population was resighted at low release densities. This indicates that the predators 

learn to avoid the novel forms quickly despite their initial selective disadvantage and 

that a smaller proportion of the population are sacrificed at higher release densities. 

Finally, Langham (2004) found that rufous-tailed jacamars (Galbula ruficauda) tended 

to attack novel Heliconius species butterflies more than they did with familiar morphs 

after have had previous experience with all butterfly morphs. The periods between 

presentations ranged from four to 429 days. This suggests that specialised butterfly 

predators may utilise specific pattern recognition to identify potential prey. Moreover, 
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these studies together indicate that the predators stabilise the selection of the colour 

morphs of mimicry systems. 

4.2.3 Recent developments in mimicry theory 

The traditional concept of Müllerian mimicry has survived remarkably well, but this is 

due mainly to a lack of empirical studies that have tested the models. The predictions 

that the relationship between co-mimics will be mutualistic and that a fixed number of 

prey will be required to educate a predator seem biologically unrealistic. The number of 

prey that is required to educate a predator will be dependent on a large number of 
factors. From the predators' perspective, there are the factors such as its energetic state, 

and the state of its mate and its offspring which all influence the bird's likelihood to 

attack defended prey. The intraspecific and interspecific differences in toxin 

concentration and type may have an important bearing on how the prey's defences are 

perceived. These factors are all confounding factors that have only begun to be 

addressed in an experimental manner. However, the increasing use of integrative 

experimental methods has the potential to reinvigorate the study of aposematism and 

mimicry. 

There have been a number of models devoted to Müllerian mimicry and these 
have been summarised by Ruxton et al. (2004, pp. 164-171, pp. 202-205). These 

models differ in their predictions based on the assumptions they make. The models all 

generally agree that when two species are equally well defended, that the two distasteful 

species will gain from using common signals. However, it has long been suggested that 

the levels of defence may not be equal in Müllerian mimicry complexes (Wallace 1871; 

Nicholson 1927). More recently, biochemical assays of different populations and 

species of co-mimics have catalogued the range of defences and show high degrees of 

natural variation among species (Blum 1981; Pasteels et al. 1983; Nishida 2002). 

As experimental investigations of mimicry have become more sophisticated, the 

models of Bates and Müller have look more unlikely in their pure forms. Brower et al. 
(1968) proposed the idea of a palatability spectrum, where for the first time, edibility 
was considered as a continuous variable. At one end, prey may be completely edible 

and consumed almost all of the time. At the other end, prey may be very noxious and 
almost never consumed. Brower et al. (1968) also raised the possibility that defended 

prey could be used as a food resource when undefended food items became rare. 
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Therefore, the palatability spectrum was important as it provided the possibility that 

birds might consume defended prey regularly as part of their diet. 

The palatability spectrum also has implications for how Müllerian mimics affect 

overall effectiveness of an aposematic signal. If Müllerian co-mimics were defended 

with different toxins, then predators may find one prey type more palatable than others. 

Speed (1993a) developed a model which considered this effect in Müllerian mimicry 

systems. He found that if a predator could detect differences in the defences between 

co-mimics, then predators ought to eat more weakly defended co-mimics. This could 

lead to more weakly defended co-mimics increasing the rates of attacks on the better 

defended co-mimics. Therefore, the relationship between the co-mimics could be 

parasitic making the relationship between co-mimics similar to the relationship of 

models and mimics in Batesian systems. Indeed, Speed (1993a) dubbed this effect 

quasi-Batesian mimicry although it remains a highly debated prediction. If quasi- 

Batesian effects do occur, then this questions the traditional treatments of Müllerian 

mimicry stating that co-mimics act as mutualists. For example, Turner et al. (1984) 

predicted that each attack on a defended prey must lower the likelihood of future attack 

toward zero regardless of its levels of defence. The rate at which a predator reduces the 

rate of attack is dependent on the defences of the prey meaning that highly defended 

prey will reduce the rate of predation more quickly than moderately defended prey. 

The prediction of the parasitic nature of quasi-Batesian mimics on the models, 

means that the effectiveness of the models' chemical defences are dependent on the 

abundance of mimics. Therefore, systems are thought suffer the lowest rate of predation 

when the frequency of the quasi-Batesian mimics are low. Quasi-Batesian relationships 

between prey of differing levels of defence and frequency have not been well studied to 

date. 

Speed et al. (2001) conducted an experiment where pastry baits were left outside 

for garden birds to attack them. They used five prey types in the experiment: edible 

controls, models, mimics, model controls, and mimic controls. The models and mimics 

were visually indistinguishable from one another, although the models had more 

quinine hydrochloride and mustard powder added compared with the mimics. The 

model controls had the same level of defence as the models and were also visually 
distinct from them. The mimic controls had the same defences as the mimics and again, 

were visually distinct. The experiment lasted for 40 days which was split into two 

phases (20 days each) that differed in how many mimics were put out each day. The 
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results suggest that: (1) that the mimics had a parasitic effect on the effectiveness of the 

models, (2) the predators displayed partial preferences for the defended prey, and (3) 

that the models were depredated more when the numbers of mimics was higher. These 

results indicated for the first time that supposed Müllerian mimics could behave in a 

Batesian manner. These effects have been supported-although not strongly-in two later 

studies (Lindström et al. 2006; Ihalainen & Mappes 2007). 

Quasi-Batesian mimicry is an exciting development in mimicry theory because it 

also offers a biologically more realistic way of thinking about Müllerian mimicry 

systems. Generally, Müllerian mutualisms will only occur when all co-mimics if co- 

mimics defences are perceived as being equal or if both co-mimics are so toxic that 

predators learn to avoid prey after one attack for each co-mimic species. While these 

systems occur (e. g., poison arrow frogs), they are likely to be the exception rather than 

the rule. Therefore, it is highly likely that relationships that were thought of as being 

mimetic, are more likely to be parasitic like Batesian systems at least under some 

conditions. 

4.3 The role of predators 
4.3.1. Predator learning 

Traditional models of predator learning through associative learning state that chemical 
defences should eventually extinguish predator attacks. The direct route by which 

animals are thought to learn the association between warning colouration and chemical 
defences is through associative learning. The most prevalent theory of associative 
learning is that of Rescorla and Wagner (1972), although there have been several other 
theories of associative learning proposed (see Pierce & Bouton 2001 for a review). The 

Rescorla-Wagner model predicts that a predator learns to associate the unconditioned 
stimuli (US)-the defence-with the conditioned response (CS)-the colour signal. The 

model predicts that the continued experience of negative stimuli (US) will lead to 

extinction preference for the source of the US. 

Associative learning is dependent on a number of factors for it to be effective. For 
example, the principle of contiguity states that the effectiveness of the association 
between the US and CS will be less effective if they are separated by long time-periods 
(Wasserman & Millar 1997; Mazur 2006). However, studies have found that rats can 
form aversions to food with a separation in the CS and the US by over 24 hours (Garcia 
et al. 1966; Etscorn & Stephens 1973). This seriously questioned the assumption that 
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the temporal gap between CS and US could be no more than a few seconds (e. g., 

Kimble 1961, p. 165). It is now considered that taste aversions in many animal species 

can occur when the CS-US interval is several hours long. It has also been established 

that this associative learning is not dependent on any aftertaste that might fill the lag 

between ingestion and illness (Mazur 2006, p. 103). For example, herbivorous browsers 

may have delays of many hours between ingestion of plant material and experience of 

illness caused by PSMs (e. g., Belovsky 1982; Provenza 1995; Alm et al. 2002; Bergvall 

& Leimar 2005; Marsh 2005; Bergvall et al. 2006). Yet, they are able to learn to avoid 

forage which are higher in PSMs. 

Recently, a new model (Yearsley et al. 2006) of diet selection based on post- 

ingestive feedback was proposed which was based on ideas such as Shannon-Weaver 

entropy (Shannon & Weaver 1949). In this model, they hypothesised that the time lag 

between ingestion of prey and post-ingestive consequence can affect the information 

that a forager can derive from its diets. Their model yielded a number of straightforward 

predictions: (1) decreasing time between ingestion of food and the onset of its post- 
ingestive consequences will increase the speed and accuracy of association; (2) the rate 

of learning is lower when the continuous foraging experience with a single food type is 

shortened; (3) decreasing the relative frequency of a food type decreases the probability 

of correctly associating the food with its post-ingestive effect and so, increases the 

probability of erroneous associations forming; and (4) increasing the number of food 

types available to a forager has a weak effect on the accuracy of association when food 

abundance in held constant (Yearsley 'et al. 2006). However, the use of Shannon- 

Weaver entropy in biological systems has been criticised by some authors because it 

supposes that reducing ambiguity is not valuable to animals in itself (e. g., Dall et al. 
2005). They argue that reducing ambiguity is only advantageous if it increases fitness. 

In the case of consuming chemically defended prey, being more certain about the level 

of a potential prey's defence could have definite fitness advantages. 

4.3.2 Psychological aspects of signal design 

Predator psychology has come to prominence more in the understanding of the 

effectiveness and evolution of aposematic signals. This means that prey might be 

selected to exploit properties of predator psychology that may enhance the formation 

and maintenance of memories. The psychology of the predator is likely to be very 
important in the evolution of aposematism and mimicry. This was noted early last 
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century by Von Uexküll (1909, quoted in Thorpe 1979) in his notion of the Umwelt-the 

sensory world in which each species lives. Von Uexküll's concept was that the 

anthropomorphic viewpoint precludes understanding of another species' behaviour. He 

taught that each species experiences the world in a unique way and the experience is 

determined by the animal's sensory abilities. For example, the discovery of avian UV 

vision in the early 1990s brought about a revolution in how we think about avian vision 

and questioned traditional approaches in testing prey and mate choice preferences in 

birds (Bennett & Cuthill 1994; Bennett et al. 1996). However, it is also important to 

realise that there may be relationships between species, which can lead to 

generalisations and increase our basic understanding. This approach is used by those 

seeking to understand the evolution of aposematism and mimicry from the perspective 

of predator psychology (e. g., Endler 1978,1988; Endler & Mappes 1994). 

It has been shown that birds have unlearnt aversions to specific colours and colour 

patterns of artificial prey (see Schuler & Roper 1992 for a review). Generally, black, 

red, and black-and-yellow striped prey items can generate avoidance in birds. 

Conversely, items coloured green, yellow, and half-black/half-yellow induce little or no 

avoidance in avian predators (Schuler & Roper 1992; Speed 2000). The strength of 

unlearnt avoidance can also vary with age as has been found in great tits (Lindström et 

al. 1999). Therefore, aposematic signals could be favoured because they exploit 

unlearnt biases in the predators psychology. However, it is clear that some colours are 

more effective at influencing the learning and memorability of prey defences. 

Shuler and Roper (1992) reviewed warning signals and how they increase predator 
learning in birds. They identified a number of factors that might aid in predator learning 

and retention of prey aversion. For example, the conspicuousness of signals against the 

background has been noted to aid learning of prey aversive qualities. Predators are 

quicker to learn the aversive qualities of prey that have colours that contrast with those 

of the background compared with cryptic prey (Gittleman & Harvey 1980; Gittleman et 

al. 1980; Roper & Wistow 1986; Riipi et al. 2001). A number of other properties have 

been identified which might lead to accelerated learning of prey defences: (1) novelty; 
(2) distinctiveness; and (3) contrasts with the background (reviewed extensively by 

Shuler & Roper 1992; Ruxton et al. 2004). The same effect of colour has also been 

noted with memorability of the prey properties. For example, Roper and Redston (1987) 

tested the memorability of red or white beads that were, or were not, coated in methyl 

anthranilate. The subjects (domestic chickens, Gallus gallus) were then tested after 
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different intervals to estimate how well they remembered the beads. The authors found 

that as the time between training and retesting increased, the number of pecks in the 

retest session increased. Red beads also suffered fewer pecks than white beads. This 

study has been critiqued because the birds might have been able to detect methyl 

anthranilate odours. This was later confirmed by Marples and Roper (1997), which was 

the first demonstration that odours can be aversive for birds. However, other factors 

might also have influenced the results. First, birds might associate the colour white with 

the colour of faecal matter. This might lead to a bias in the rate of pecking. Birds often 

are seen to peck at white leg bands more frequently they do at other colours and white is 

often eschewed as a band colour for this reason. Therefore, the use of this colour could 

have also interfered with learning. Second, figure 4 in the paper (Roper & Redston 

1987) indicates that there were differences in the rates of attack for the different bead 

colours during training due to the level of colour matching with the background. This 

means that there could have been differences in the level of attention that the chicks 

paid with each bead type. The white beads were pecked about 0.75 the rate of the red 

beads meaning that subjects might have been less motivated to remember this colour 

(given they were less motivated to attack it). Therefore, the retrials should have been 

corrected for this bias. If this were done, many of the differences in peck rates for the 

different coloured beads might have been extinguished. Although this was not a 

particularly convincing study, there is growing evidence that properties of visual 

aposematic signals do increase the rate of learning and retention of learned aversions at 

least in avian predators (Ruxton et al. 2004). Most of this research has concentrated on 

studying signals in one sensory modality. It may often be the case that aposematic 

signals are expressed as a suite of signals given in many sensory modalities. 

In the case of mimicry, the selective factor that has led to two or more prey 

species sharing the same warning signal is probably predation. Therefore, Müllerian 

mutualisms may be the result of selection driving one species to look like another by 

predator selection. Herrera (1985) suggested that frugivorous birds might have biases 

for aposematic prey given the similarity in colouration between aposematic fruits and 

also because frugivores have the metabolic machinery for dealing with greater amounts 

of secondary metabolites in their diets (see also Gamberale-Stille & Tullberg 2001). 

This is interesting because it suggests that rather than specific colours being aversive 

per se, the context in which the colour is seen is also important. This suggests that it is 
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possible that colour pre-dispositions will be much more pervasive than previously 

thought as many sexually selected traits are similar in colouration to aposematic signals. 

4.3.3 How does prey toxicity affect predator attack decisions 

Recently optimal toxicity of cane toads (Bufo marinus) was modelled to determine the 

conditions favouring the evolution of chemical defences (Longson & Joss 2006). The 

model predicted a number of patterns in the evolution of toxicity. First, the authors 

predicted that toxicity should decrease with production cost of toxins (both direct costs 

and indirect costs). Second, they predicted that toxicity should decrease with decreasing 

resource availability. Third, they predicted that increases in life-span would favour 

increases 
. 
in the level of toxicity of prey. Finally, they predicted that animals ought to 

adopt a strategy of being highly toxic in order to back-up the threat of defence. 

However, the interspecific and intraspecific differences in prey defences indicate that 

prey are often not as highly defended as is possible. 

The amount of protection gained from a chemical defence is still likely to be 

positively related to the potency of their defence (e. g., Turner et al. 1984; Leimar et al. 
1986; Speed 1993a). However, the effect that of the strength of chemical defence has at 
deterring predation is still poorly studied. Alcock (1970) found that the speed at which 
black-capped chickadees (Poecile atricapillus) learned to avoid food was related to 

absence of food, bad taste, or the addition of an emetic compound (quinine). The food 

that the birds learned to avoid first was the one with added quinine. Recently, Darst et 

al. (2006b) also found that domestic chickens were quicker to learn to avoid more 

potently defended species of poison dendrobatid frogs. Skelhorn and Rowe (2006a) had 

a similar result in naive domestic chickens which learned to avoid more potently 
defended artificial food quicker than less potently defended food. However, most 

research into the predation of chemically defended prey has focussed on the effect of 
defence potency on the rates of learning. 

Observational studies have also shown that birds are able to discriminate among 
different aposematic prey when multiple prey species were presented to predators 
(Jones 1932,1934; Brower et al. 1963; Chai 1986; Sargent 1995, Pinheiro 1996). 
However, these studies have a number of problems such as, the butterflies still had their 
wings attached meaning that the birds might have been influenced by the wing colours 
of the butterflies rather than the levels of chemical defence contained by the butterflies. 
It is also unknown if the birds learn the differences between each prey type or 
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generalise from one prey type to another. Therefore, although these studies indicate that 

birds are able to discriminate between prey, it was unknown if birds were basing their 

choices on the levels of defences contained in the prey. These preferences were also 

complicated by the fact that there might be a lot of intra- and inter-specific variation in 

the level of defensive compounds that an aposeme despite utilising the same visual 

signal. 

4.3.4 Do educated birds continue to consume chemically defended prey? 
In the 1940s, it came to be accepted that birds would sometimes consume chemically 

defended prey due to hunger (Cott 1940). The role of hunger was recognised earlier 

than this as a possible factor mediating predators' choices (Poulton 1890; Swynnerton 

1915). For example, Swynnerton (1915) suggested that diurnal birds might be more 

likely to consume chemically defended prey early in the morning because of their 

nightlong fast. 

However, this view changed with the development of new models. The Rescorla- 

Wagner model of associative learning predicts that the consumption of any chemically 
defended prey should eventually lead to an extinction of preference for chemically 
defended prey (Rescorla & Wagner 1972). However, it was noticed that predators 

continued to occasionally consume defended prey items. The continued consumption of 

chemically defended prey was thought to be due to predator errors such as the effects of 

imperfect memory (e. g., Turner et al. 1984; Servedio 2000). However, Skelhorn and 
Rowe (2005,2006b) recently demonstrated that predators can form consistent and 

repeatable partial preferences for chemically defended prey. Given that the education 

period for a predator is likely to be short in comparison to the entire lifespan of the 

predator, this raises the possibility that educated predators may be a more significant 
factor in the evolution of aposematic traits than naive predators. There are a number of 
hypotheses for the continued consumption of chemically defended prey: (1) birds may 
have been consuming chemically defended prey as they were energetically stressed; (2) 

birds consumed them as they had a specific dietary need; and (3) the birds were 

consuming chemically defended prey to self-medicate the effects of parasites or disease. 

In this thesis, I will primarily explore the potential relationship between numbers of 

prey consumed and manipulations of individual birds' energetic states. 
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4.3.5 Physiological state of the predator 
Other authors have suggested that predator behaviour could change over time and that 

they might attack Müllerian mimicry systems at times of nutritive need (Marshall 1908; 

Rolling 1965; Dill 1975; Sheppard 1975; Benson 1977). Recently, there have been a 

number of unconventional theories of Müllerian mimicry that also predict that predators 

might continue to consume moderately defended prey at times of energetic stress 

(Huheey 1976; Owen & Owen 1984; Speed 1993a, 1999; MacDougall & Dawkins 

1998; Speed & Turner 1999, Sherratt 2003; Sherratt et al. 2004). This is because 

although defended species might contain toxins, they also contain nutrients that are 

useful to the predator during times of need (Speed 1993b). 

The levels of toxins that predator has ingested will affect a predator's 

physiological state. This idea was suggested in a number of early studies stating that 

animals may attack and consume defended prey at times of energetic stress and that 

animals may strategically utilise these food items in times of nutritive need (Brower et 

al. 1968; Speed 1993b). This idea formed the basis of what came to be known as the 

palatability spectrum (Brower et al. 1968; Turner 1984,1987). Later, the saturation 

theory (Mallet & Joron 2000; Mallet 2001) stated that predators might consume 

moderately defended prey regularly in their diet. This hypothesis predicted that 

predators should consume prey until they reach a point where their system becomes 

saturated with toxins and the predator cannot risk consuming more defended prey. 

Most recently, stochastic dynamic programming (SDP) models of the state-based 

consumption of chemically defended prey have predicted that predators should have a 

critical value of toxins below which they can consume chemically defended prey 
(Kokko et al. 2003; Sherratt 2003; Sherratt et al. 2004). Above the critical value, the 
defended prey is prohibitively expensive to consume and so should be eschewed. There 

is growing evidence that predators are able to strategically manage their levels of body 

toxins (John Skelhorn, Pers. Comm.; unpublished data) and this offers an exciting new 
branch of research in the future. 

Many predatory species are adapted to the defences of their prey at a physiological 
level. These adaptations may indicate a long evolutionary history of predator-prey 
interactions. For example, black-headed grosbeaks (Pheucticus melanocephalus) have 

been shown to be able to consume large numbers of monarch butterflies in their 
Mexican wintering sites, which suggests that they may be physiologically adapted to 
detoxify cardiac glycosides (Fink & Brower 1981; Brower & Calvert 1985; Brower 
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1988). This provides evidence that predators can overcome the defences of prey and 

utilise them at times of nutritional need. 

A final consideration for predators attacking chemically defended prey may be 

that they use the defended prey as a way to self-medicate when they are ill. Various 

species of animal have been observed to consume unusual food items when they are 

sick that are capable of improving health (Garber & Kitron 1997; Engel 2002; Huffman 

2003) although the cause and effect have only been disentangled recently (e. g., Villalba 

et al. 2006). For example, avian geophagy has been recorded in many species in the 

tropical and sub-tropical regions by many species of frugivorous birds (Munn 1994; 

Pryce 1994; Gilardi & Munn 1998; Diamond et al. 1999; Cooper 2000; May 2001; 

Gilardi 2003; Low 2003; Symes & Marsden 2003; Brightsmith & Aramburu 2004; 

Symes et al. 2005). The reasons for geophagy are still debated, but one strong 

hypothesis is that clays are consumed in order to bind PSMs, which are often found in 

high concentrations in fruits (Gilardi et al. 1999). Therefore, it is possible birds are able 

to mediate the effects of distasteful and toxic plant compounds through the ingestion of 

clays. It is also known the starlings collect samples of green material that they place in 

their nests that may release volatile compounds, which may help control the numbers of 

sucking lice in their nests (Lozano 1998). 

These observations (that birds may be able to at some level self-medicate) raise 

the possibility that birds may consume chemically defended prey in order to mediate the 

effects of parasites or pathogens. For example, some insects contain quinones (e. g., 

tenebriod beetles [Palembus ocularis], contain hydroquinone [Wahrendorf & Wink 

20051) which are also effective agents against malaria (Fotie 2006). This means that 

birds could increase their ingestion of insects containing chemical defences as a method 

of reducing numbers of microorganisms in their 'systems. However, this strategy may 

entail risk on the birds part because if there are intra-specific differences in the 

concentrations of the defence chemicals, this might lead to poisoning if the birds were 

to consume too many of the defended prey. Therefore, birds may resort to consuming 

plants before insects in order to self-medicate. However, this is an interesting idea 

worthy of experimental and theoretical investigation. 

4.4 Conclusions 

Aposematism and mimicry have received much theoretical and empirical consideration 

recently (see Ruxton et al. 2004 for a review). This has led to many new hypotheses and 
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ideas regarding the evolution of aposematism and mimicry. One of these new 

hypotheses is the toxin-energy trade-off, which has recently been formalised using SDP 

models (Kokko et al. 2003; Sherratt 2003; Sherratt et al. 2004). This is one of the first 

trade-offs in the field of aposematism and mimicry to be explored theoretically and the 

models yield many seemingly straightforward predictions, but others that seem counter- 

intuitive. In the following chapters, I will test the energy-toxin trade-off and some of the 

less intuitive predictions of the models. In doing this, I hope to provide empirical data in 

support of the new SDP models which will hopefully lead to a re-evaluation of the way 

we view predators and their behaviour towards aposematic and mimetic prey. 
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Chapter 5 

EDUCATED PREDATORS STRATEGICALLY TRADE- 
OFF THE COSTS AND BENEFITS OF CONSUMING 

CHEMICALLY DEFENDED PREY 

5.1 Introduction 

The observation that animals can learn to avoid aposematic prey is supported by much 

data across a broad range of taxa (birds [Mostler 1935; Cott 1940; Brower 1958a, b, c; 

Brower & Brower 1962; Papageorgis 1975; Hensel & Brodie 1976; Schuler & Hesse 

1985; Bowers & Farley 19901, fish [Kruse & Stone 19841, reptiles [Sexton 1964; 

Boyden 1976; McLain 1984; Terrick et al. 1995], molluscs, [Darmaillacq et al. 20041, 

and insects [Berenbaum & Miliczky 1984; Bowdish & Bultman 1993; Kauppinen & 

Mappes 2003; but see Rashed et al. 2005]). However, recent experiments have found 

that animals may continue to attack chemically defended prey after learning is complete 
indicating that birds develop partial preferences for chemically defended prey (Skelhorn 

& Rowe 2005; Skelhorn & Rowe 2006b). These findings therefore, raise questions over 

the models of aposematism based on associative learning. 

Two recent stochastic dynamic programming (SDP) models that have attempted 

to capture predatory behaviour in order to predict evolutionary outcomes have assumed 

that attack rates on defended prey will increase as the energy reserves of a predator 

decrease (Sherratt 2003; Sherratt et al. 2004). Currently there are no data showing that 

manipulations of a predator's energetic reserves affect its foraging decisions on 

defended prey. Observational studies suggest that predators increase their attack on 

defended prey when palatable prey are rare (Swynnerton 1915; Cook et at., 1969). 

Other studies have found that food deprivation periods can increase a predator's 

motivation to attack defended prey (in birds [Chai 19861, lizards [Sexton et al. 1966], 

copepods [Williamson 1980], molluscs [Gillette et al. 2000], and insects [Gelparin 

1968; Hileman et al. 1995]). However, these studies fail to show whether this behaviour 

results from strategic decision-making caused by reductions in energetic reserves. 
Moreover, these studies have failed to directly measure the predator's energetic state 

and so strategic state-based consumption of chemically defended prey is yet to be 

demonstrated. This experiment specifically investigates the effects of a predator's 
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energetic reserves on its consumption of chemically defended prey which will aid in 

understanding the selective forces exerted by educated predators on defended prey. 

5.1.1 A note on stochastic dynamic programming (SDP) models 
Stochastic dynamic programming (SDP) modelling is a computational technique which 
has been used to model many behaviours that follow a periodic cycle. Its origins lie in 

operations research and economics (Bellman 1957; Nemhauser 1966; Mitchell 1972; 

Bunn 1982). It was first discussed in discussed as a tool for the calculation of optimal 

behaviour sequences in the early 1970s (McFarland 1971; Sibly & McFarland 1976). 

More recently, with the increasing computational powers of personal computers, these 

techniques have led to many behaviours being extensively modelled (see Mangel & 

Clark 1988; Houston and McNamara 1999; Clark and Mangel 2000 for reviews). 

However, empirical study of model predictions has lagged behind their formation 

(Houston & McNamara 1999; Hutchinson & McNamara 2000). 

Stochastic dynamic programming is a mathematical technique which is used to 

deliver optimal sequences of behaviour given the environmental constrains and the 

animal's energetic state. It works through dividing the period of time under 

consideration (e. g., a day), into a series of small time intervals. At the beginning of each 

of these time-intervals, the animal makes a decision on which behaviour it will adopt in 

the upcoming interval. This decision is based on the animal's body state at the end of 

the last interval and on a set of environmental constraints if the behaviour is time 

invariant (Nemhauser 1966). In most biological models, the animal's behaviour has to 

change with time because one behaviour is unlikely to be the best across all 

environmental conditions. Thus, the animal will choose from a set of behaviours in 

response to stochastic changes in the environment. The decision that an animal makes 

therefore will affect the probability of survival to the next time interval. The optimal 
behaviour is the one which maximises the probability of survival into the next interval 

whence, the animal makes its next decision. 

Dynamic programming works through backward iteration from the end time, at 

which the state of the animal is known, to earlier time-periods to calculate the optimal 
behavioural policy. This policy is a rule specifying the optimal behaviour given the state 
of the animal at each time. Given the strategy, it is possible to follow an individual 

through time and calculate what decision the animal makes given its state and its likely 

state in the next period concomitant with each possible behavioural choice using 
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conditional probability. This sequence of actions constitutes the behavioural routine 

(Hutchinson & McNamara 2000). 

Recently, three papers (Sherratt 2003; Kokko et al. 2003; Sherratt et al. 2004) 

were published that have addressed predator behaviour towards chemically defended 

and mimetic species. These models were state-based models that utilised SDP methods 

to calculate how a predator (generally assumed to be an avian predator) will attack 

chemically defended prey and how this predation can drive evolution in aposematism 

and mimicry systems. The model of Sherratt (2003) was the first and predicted that 

predators should consume chemically defended prey at times of nutritive need. Ile also 

found that the rate of attack upon chemically defended prey should decline with 

increases in undefended alternative prey. Kokko et al. (2003) also formulated a state 

based model which investigated the effects of predation on Müllerian mutualisms and 
found that both mutualistic and parasitic relationships between co-mimics. 'Their 

algorithm was quite simple but included state variables for toxin load and energy levels. 

They also found that the predators' tendancy to attack chemically defended prey should 

decline with increases in bodily energy reserves and increases in the undefended 

alternative food. Finally, the model of Sherratt et al. (2004) examined the state-based 
foraging behaviour of birds but with the added state variable of toxin loads. They 

modelled the behaviour of birds when attacking a prey system that had prey with one 

defence compound and found the state-based relationship that was described in the 

other two models. They found quasi-Batesian effects in Müllerian mimicry and they 

also indicated that there may be quasi-Müllerian effects when the frequency of Batesian 

mimics increases. They also modelled a situation where birds were exposed to two prey 

types with different defensive compounds. They found that the two prey species may 

act mutualistically because the predator may be unsure of the co-mimics chemical 
defence. For the rest of this thesis, I will consider predictions drawn mainly from the 

models of Sherratt (2003) and Sherratt et al. (2004). 

5.2 Methods 

5.2.1 Study species and housing 

Subjects were six male European starlings (Sturnus vulgaris) caught under licence from 

English Nature (Licence Nos. 19991381 and 20001512). Starlings are large ground- 
foraging insectivorous passerines. Males are larger than females with their masses 
ranging between 75-100 g in the wild (Feare 1984). Therefore, I used solely males to 
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reduce potential variance in behaviour arising from sex differences in mass. In the 

laboratory birds lose mass compared with free-living birds (due to muscular and 

visceral atrophy) and so the masses of the birds used in this experiment ranged between 

70-85 g when allowed access to food ad libitum. Prior to the experiment, birds were 

housed in a larger, mixed-sex group indoor aviary. All the birds had previously been 

used in operant foraging experiments; however, they had not experienced defended prey. 

in the laboratory, nor the stimuli or experimental protocol employed in this chapter. For 

the duration of the experiment, the birds were housed individually in wire mesh cages 

(450 x 750 x 450 mm, hxwx d) arranged in a single room such that they had visual 

and acoustic contact with each other. Cages were equipped with two dowel perches and 

two water bottles; birds had ad libitum access to water at all times. The birds were 

maintained under a 14: 10 hour light/dark cycle produced by daylight spectrum bulbs. At 

the end of the experiment, birds were returned to the aviary for future use. 

5.2.2 Mass manipulations 

The experiment relied upon comparing foraging choices of subjects at free-feeding 

mass (Free-fed) and at a reduced mass (Restricted). Throughout the experiment, birds 

were caught each morning, when their intestines were empty (approximately 0800 hr 

Greenwich Mean Time [GMT]), and weighed (to the nearest 0.1 g [Ohaus Scout 

SC6010]). In order to provide an additional measure of condition, birds' furcular fat 

levels were visually assessed using a scale modified from Gosler (1996; 2004� pp. 111- 

113, see section 2.2.2). Fat scores were established before they were weighed so that 

experimenter knowledge did not influence the assessment of fat in marginal cases. To 

establish the birds' free-feeding masses at the start of the experiment, they received 40 g 

. of pheasant breeder pellets a day, which was more than any bird had previously 

consumed in a 24 hr period. Once their weights had stabilised, I calculated each 

individual's mean mass over five days as its free fed mass, and from this I calculated 

the corresponding 95% free-feeding masses which birds were maintained at during the 

restricted phases of the experiment. To reduce the birds' masses to their restricted 

masses during the experiment (see below), I reduced their daily food intake, initially 

giving them 14 g, and then slowly reducing the daily ration according to each 
individual's mass loss. It took birds between 6-17 days to reach their restricted masses. 
Once a subject had reached its restricted mass, it was maintained at this mass for four 

days (Fig. 5.1), before again being given 40g of food per day in order to return it to its 
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free-feeding mass and so on, until the end of the experiment (Fig. 5.1). 1 repeated this 

process again allowing the birds' masses to return to their free-fed masses and then 

reducing them to 95% of their free-fed masses for the final experimental phase. At the 

end of the experimental phase, I maintained the birds at their restricted masses and 

presented them with three days' of simultaneous choice trials. The birds were then 

allowed to return to their free-fed masses which was accomplished through feeding 

birds 40g of food. 

Free-fed 1 
4 days 

Restricted 1 
4 days 

Frce-fed 2 
4 days 

14- 
Restricted 2 

4 days 0ý Simultaneous 

Time 

Figure 5.1. A schematic view of the experiment design. The experiment was split into four 
phases where their preferences for chemically defended prey were tested. Each phase 
consisted of four days where birds were fed 16 prey on each day (8 undefended and 8 
chemically defended prey). I manipulated the energetic state of individuals so that in the first 
and third phases, birds had ad libitum food access; in the second and fourth phases, birds were 
kept on restricted diets. In the final phase, birds were given three simultaneous choice trials to 
test which cues they were using to inform their foraging decisions. 

5.2.3 Prey 

The prey were live mealworm larvae (Tenebrio molitor) which are a favoured food of 
birds and they will persevere with training in order to obtain them. I used mealworms 

measuring approximately 20 mm in length and with an average mass of 0.114 g (SE t 

0.002 g, N=60). Therefore, a bird could hope to obtain about 1.8 g of mealworms if it 

consumed all 16 mealworms offered during the trial. The energetic composition of 1g 

of mealworms is approximately 8.3 Id (Hillstöm 1995). If it is assumed that starlings 

can assimilate from digestion about 0.85 of the total available energy from invertebrate 

food, which is about average for avian species (Harper et al. 2001), then the net 

energetic gain obtained from 1g of larvae is about 7.1 Id. This means that birds would 
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obtain about 12.8 kJ in energy if they chose to consume all 16 mealworms. Male 

starlings have been found to expend between 168 kJ to 272 kJ of energy daily (Feare 

1984; Rickliefs & Williams 1984, Nagy et al. 1999). Hence, the mealworms would 

represent a small supplement while the birds had ad libitum access to food. However, 

their importance would be greater when they were food restricted. 

Birds were initially trained to eat single mealworms presented on a 38 mm 

diameter clear plastic Petri dish placed on the bottom of the cage. During the 

experimental trials, I used undefended and chemically defended mealworms. Before the 

start of each experimental trial, the undefended mealworms were injected with 0.02 ml 

water intra-orally, whereas the defended mealworms were injected with 0.02 ml of 2% 

quinine sulphate suspension intra-orally. To allow birds to distinguish between the two 

prey types, I placed coloured disks of paper measuring 42 mm in diameter under the 

Petri dishes to signal the level of chemical defence. I used three colour pairings (either 

pink and blue, orange and purple, or yellow and green) to signal the two prey types, and 

by reversing the colour-prey type association for half the birds, I ensured that each bird 

had a unique colour discrimination task. 

5.2.4 Training 

Birds were trained at their free-fed conditions, but were food deprived for two hours 

before the start of each daily trial. During training, each cage was moved to a new 

position in the room that was behind a white curtain that visually isolated the bird from 

both the experimenter and the other birds. The bottom of the curtain was level with the 

bottom of the cage so that the Petri dishes could be inserted and removed, via the cage 

door, without disturbing the bird. In order to observe the bird, I used a video camera 

connected to a television monitor that was placed where the focal subject could not see 

it. 
As soon as the birds readily consumed the mealworms from the dishes, each bird 

was given a trial of 16 sequentially presented mealworms a day. At each presentation, a 

mealworm in a dish was placed in the middle of the front face of the cage next to the 

cage door. If a bird ate the mealworm, the dish was removed immediately, but if a bird 

failed to eat the mealworm, the dish containing the uneaten mealworm was removed 

after one minute. There was a three, minute interval between each successive 

presentation. Once a bird had consumed five consecutive mealworms in a day, I 
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introduced a disk of white cardboard underneath the dish. Once a bird had consumed 

five consecutive mealworms with white cardboard lids, I began the experiment. 

5.2.5 Experimental procedure 

Birds started the experiment subject to free-feeding conditions. After a two-hour 

deprivation period, they were each given a daily trial of 16 presentations as described 

above. Birds were given a series of eight undefended prey (signalled by a coloured disc 

of paper under the dish), and eight defended prey (signalled by a differently coloured 

paper disc). The sequence of prey was randomised within each block of four 

presentations so that there were two undefended and two defended prey every four 

presentations, ensuring that prey were equally distributed within the daily trial. As 

during training, birds had one minute to decide whether or not to eat a mealworm, and 

presentations were made every three minutes. I recorded if the mealworm was attacked 

and consumed and the latency to attack. The attack latency was the amount of time that 

elapsed from when I removed my hand from the cage until the bird's bill was seen to 

touch the prey item. Although the data was hand timed (and so subject to error), it was 

collected because it might indicate relative differences in times to attack, which could 

then be used to corroborate the preference data. I also recorded other behaviour such as 

bill wiping and head shaking to monitor any effects that the quinine had on the birds. 

All birds continued to eat the mealworms throughout the experiment. 

I gave the birds daily trials of 16 presentations until they had acquired the 

discrimination task and ate more undefended mealworms than defended mealworms 

which took between 6 and 14 days to achieve. I defined acquisition as being when a 
bird's previous three days' choices significantly departed from random using a chi- 

squared test (chi-squared tests: x2 range =3.84-16.04, P all <0.05). Once a bird had 

learned to discriminate between the two prey types, I continued to collect data for four 

more days to provide the initial free-fed measure of discriminatory performance (Fig. 

5.1). I then began to reduce the bird's mass for the restricted treatment. Once the birds 

had reached its restricted state, I collected data for another four days, before returning it 

to their free-fed state. I collected four more days of data with the bird at free-fed state 
before returning it for the final time to their restricted state and collecting four more 
days' data. This alternation of masses enabled me to rule out any order effects on an 
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individual's decisions. I continued to collect data during the periods of mass change in 

order to look for correlations between mass and prey choice. 

5.2.6 Simultaneous choice trials 

While the birds were still in the restricted phase of the experiment, I gave them three 

days of simultaneous choice trials. Since defended prey consumption increased at lower 

masses, I needed to test whether this change resulted from a strategic decision by the 

birds to eat defended prey or was simply a loss of discriminatory ability. I also needed 

to establish whether birds had learned the colour signals, or were using other visual cues 

to differentiate between undefended and defended mealworms. The trials followed the 

same basic procedure outlined above, except that instead of a single mealworin being 

presented on each iteration of the daily trial, two prey types were presented 

simultaneously, and the birds were required to choose between them. Birds had a single 

trial of 16 presentations on each of three consecutive days. On the first day, birds were 

given a choice between the two prey types that they had experienced in the 

experimental trial (colour-quinine treatment). This treatment enabled me to test whether 

birds could discriminate between the defended and undefended prey at low body mass. 

On the second day, birds were given a choice between mealworms presented on their 

coloured backgrounds, but now all mealworms were injected with water (colour only 

treatment). This treatment allowed me to test whether birds could use the colour signals 

to distinguish between the defended and undefended prey. On the final day, I gave birds 

a choice between defended and undefended mealworms without the colour cues present 

(quinine only treatment). This allowed me to test whether birds could distinguish 

between undefended and defended mealworms in the absence of colour cues. 

5.2.7 Statistical analysis 

Latency has been defined in previous studies in two ways: (1) the latency to attack the 

prey in trials in which an attack occurred and (2) attributing the maximum time the 

predator was exposed to the prey in trials both with and without an attack. I favour the 
first method although the second method has been used by Darst et al. (2006). 1 believe 

this method leads to possible differences in the between methods. Therefore, I present 

results from both analyses. The latency to attack data was analysed using a linear mixed 

model (LMM), which is a powerful method of statistical analysis. LMMs allow data to 
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be hierarchically arranged meaning that factors are nested within other factors. 

Moreover, it is a flexible method allowing the analysis of unbalanced experimental 

designs, (something not possible in a standard general linear model) and allows for 

repeated measures or inclusion of subjects as a variable in the analysis. In order to test 

the latencies, I used the same set of variables for each of the analyses. I included the 

factors time within trial, day of phase, phase, and prey type as factors. Individual birds 

were included as a random subject variable. I compared contrasts within a factor using 

the least significance method (henceforth LSD method) which had been corrected for 

multiple comparisons using Bonferroni method (a/n). I used the Mixed procedure in 

SPSS to fit LMMs to my data. 

Akaike's information criterion (AIC) was used to choose the best model when 

models had different sets of parameters. AIC was calculated for each model as: 

-2(log-likelihood) +2Xp 

where p is the number of parameters estimated in the model. AIC therefore represents a 

measure of the explanatory power of the model discounted by the number of parameters 

that have gone into its construction; a lower value indicates the `better' model. 

5.3 Results 

5.3.1 The effects of food restriction on body mass of starlings 
The manipulation of birds' body masses (Fig. 5.2a) and fat reserves (Fig. 5.2b) were 

successful. The average masses of the birds were significantly lower in the restricted 

phases than the free-fed phases of the experiment (X ± SE: free-fed=76.3 ± 0.96 g, 

restricted=71.4 ± 0.89 g; paired t-test: t=24.2, P<0.001, df=5; Fig. 5.2a). Birds also had 

lower furcular fat scores in the restricted phases compared to the free-fed phases (free- 

fed median=3, range (lowest-highest)=2-4; restricted median=l, range=1-1; Wilcoxon 

signed ranks test: Z=-2.23, N=6, P=0.026, Fig. 5.2b). I performed linear regressions on 

the daily masses and furcular fat scores for each bird and found that they were highly 

correlated (for all birds, all r'>0.78, all P<0.001). These data indicate that the mass 
losses, during the restricted phases of the experiment, were due in large part to a 

reduction in body fat reserves. 
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5.3.2 The effects of body state on foraging decisions 

There were no differences in the proportions of attacked prey that were then consumed 

with almost all prey that were attacked being eaten irrespective of the prey type (X t 

SE: undefended=0.999 ± 0.001; mild=0.996 ± 0.006; paired t-test: t=0.7084, df=5, 

P=0.5103). Therefore, the rates of consumption can be taken as a good indicator of the 

rates of attack for the rest of this chapter. By the end of the training period (the final 

three daily trials), birds learned to discriminate between the undefended and defended 

mealworms (X ± SE: undefended=21 ± 0.68, defended=7.5 ± 1.34; all x2 >3.84, all 

P<0.05). During the experimental phases, birds continued to consume a high proportion 

of the undefended mealworms that were presented to them (see Fig. 5.2c). In both the 

free-fed and restricted phases of the experiment, birds consumed almost all of the 

undefended prey offered, eating slightly more of the undefended prey in the restricted 

phases than in the free-fed phases (X ± SE: free-fed= 60.8 ± 0.91 mealworms, 

restricted=64.0 ± 0.0 mealworms; paired t-test: t=3.48, P=0.018, df=5). This difference 

occurred due to slightly lower scores in the first free-fed phase, which may be indicative 

of the birds not having fully learned the task in this first stage of the experiment. 

However, the difference in the numbers of defended mealworms eaten between 

restricted and free-fed phases were far more striking (Fig. 5.2c). Birds ate significantly 

fewer defended mealworms in the free-fed phases than the restricted phases (X ± SE: 

free-fed=23.0 ± 4.94 mealworms, restricted mean=62.3 ± 0.84 mealworms; paired t- 

test: t=9.36, P<0.001, df=5). 



Energy-toxin trade-off: two prey 102 

80-1 

ý 76 
.. 

Z 72 

(a) 

F±H 
68 

4 

L 
ü 3- 
(n 
u. 2 
L 
f0 
7 
u 
L 

U. 
0 

9 
8 

E- 7 
06 a =5 0 04 
a) M 3- 

m 2- 
i1 

0 

(b) 

04*ýý 
I 

(c) 

T-1 NM Ci 
ý >. 

N ý0 f0 (0 

0000 

ri 
>. 
(0 
0 

NM 
>. >º 
(0 (0 
ýý 

ý 
>. 

Co 
0 

Free-fed 1 Restricted 1 

--a-Undefended 
--*--Defended 

f 

.1NM .1NM Ch 

f0 ý0 ý0 ýU f0 fp f0 ý0 
ýýý0 

Free-fed 2 Restricted 2 Free-fed 21 Restricted 2 

Figure 5.2. The daily means (: SE) of (a) mass, (b) furcular fat scores, and (c) numbers of 
defended and undefended prey eaten throughout the four phases of the experiment. 

To control for relative changes in the numbers of undefended and defended prey 

consumed, I also compared the proportion of undefended prey eaten by dividing the 

number of chemically defended prey consumed by the number of undefended prey 

ýIý 
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consumed. I aresinc square rout transformed the resulting proportion to restore 

normality. I found that the proportion of defended prey consumed was significantly 

lower in the free-fed treatment than in the restricted treatment (paired t test: t=2(. 5, 

/'<O. OOI, df=5; fig. 5.3). 
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Figure 5.3. The mean proportion (+SE) of defended 

mealworms divided by the number of undefended 
mealworms eaten in each treatment. 

During the free-fed phases of the experiment, the mean number of defended prey 

consumed by birds increased on successive clays during free fed phase I and decreased 

on successive clays during free --fed phase 2 (I ig. 5.2c). 'I'o test whether these changes 

were related to small scale differences in daily masses, I plotted linear regressions to the 

number of, defended prey consumed against their standardised mass for each bird during, 

each free-fed phase and drew linear regression lines through the points. The 

standardised mass was the daily mass divided by the free feeding mass calculated fur 

each hind. In free-fed phase I, four out of the six hinds consumed fewer defended prey 

when they were heavier (signs test: P=0,34,5.4a) whereas in free fed phase 2, all 

six birds ate fewer defended prey when they were heavier (/'=(1. (11(1.5.4h). 

"Therefore, the changes in the nunlher of' chemically defended larvae consumed in the 

free-fed phases could have resulted from daily changes in the hinds' masses. 

I plotted within-trial consumption of defended prey relative to the consumption of' 

undefended prey (Fig. 5.5). By dividing the daily trial into four blocks, it allowed inc to 

observe if there were any changes in the nunlher of defended prey throughout the daily 

free-fed trials. I only used the free-fed trials as the relative consumptions of the 

defended and undefended prey types were approximately equal which would act to 

decrease the observable differences that were obvious during the free fed trials. The 

number 
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Figure 5.4. Regressions of the number of defended prey eaten on each day plotted against the 
standardised mass for each bird on that day during (a) the first free-fed phase, and (b) the 
second free-fed phase. 

of undefended prey consumed throughout the trial did not differ between blocks (mean 

number of undefended prey consume in each quarter (±SE): first block=15.0 ± 0.52, 

second block=15.3 ± 0.33, third block=14.7 ± 0.42, fourth block=15.0 ± 0.44; repeated 

measures ANOVA: F3515=0.548, P=0.657, Fig. 5.5. ). This meant, that I could use the 

arcsine square root transformed sum of the number of defended prey consumed divided 

by the number of undefended prey consumed. There was a significant decrease in the 

number of defended prey consumed relative to the number of undefended prey 

.` 
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cunstill ted as the trial progressed (Repeated measures ANOVA: /"', ,, =2I. ); h);, /'<U. OOI ). 

Pair-wise comparisons revealed that the proportion of' the I'irst hlock was significantly 

greater than the proportions from the third block (I. SI): /'=(1.0OO and the fourth block 

(/1=(I. UO6). 
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Figure 5.5. The mean (+SE) totals of each prey type consumed during daily trials during the 
free-fed phases of the experiment. The within trial blocks represent the totals of the numbers of 
each prey type eaten totalled for all eight free-fed days for each quarter of the daily trials. 

5.3. 
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'throughout the experimental trials, I collected hand tinted latency data, which I 

analysed using, two methods. These methods differed in how they treated occasions 

where birds slid not attack chemically defended prey. First, I included non attacks as a 

gap and performed statistics on this raw data (pig,. 5. (t). lasing, this method reflects the 

bird's behaviour and shows that althounh there is some overlap in the latencies between 

prey types, that the birds tended to be quicker to attack undefended prey. I constructed a 

LMM for the raw data (i. e., without hO sec added for non attacks) and including, prey 

type, experimental phase, day within phase, and time within daily trial as fixed 

variables. Subjects were included at the highest level as a random subject variable and 

the latencies to attack were the dependent variables. I also included terms for all two- 

way interactions. The results indicated that there were significant differences between 

the two prey types ([MM: I''1 ý ,. =21993, l'<O. OO I, Fig. 5.6a). Comparisons of the 

differences between means indicated that the latencies for the undefended prey were 

significantly lower than those for the defended prey (I. SI): undefended defended= 
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1.456, P<0.001). There were also significant differences in the latencies between the 

different experimental phases of the experiment (F3.1247=62.909, P<0.001, Fig. 5.6a). 

Table 5.1 presents the results from the multiple comparisons of the contrasts that were 

computed using the LSD method. Generally, the results indicate that the latencies 

between restricted and free-fed phases are significantly different. However, there is also 

a significant difference in the latencies between the first and second food restricted 

phase of the experiment. Finally, there were no significant results for either day within 

phase (F31,247=1.503, P=0.212) or within trial prey order (F7,1247=0.519, P=0.821). None 

of the two-way interactions included in the model were significant (all P-values greater 

than 0.1). 

Table 5.1. Pair-wise comparisons for the differences in the estimated marginal means of the 
raw latencies to attack of the birds using the least significant difference (LSD) method, P-values 
were corrected using a Bonferroni adjustment ((Y/n). 
77 Mean, Standard 
Treatment (i) Treatment (j) Difference (i-j) Error df P 
Free-fed 1 Free-fed 2 0.706 0.411 1247 0.086 

Restricted 1 3.319* 0.387 1247 <0.001 
Restricted 2 4.554* 0.386 1247 <0.001 

Free-fed 2 Restricted 1 2.612* 0.374 1247 <0.001 
Restricted 2 3.848* 0.373 1247 <0.001 

Restricted 1 Restricted 2 1.235 0.335 1247 <0.001 

For the second method, I attributed a value 60 seconds where prey were not 

attacked (Fig. 5.6b). I utilised this method because it has been used recently in a study 

to indicate the rate of learning (Darst et al. 2006). Another way of interpreting latency 

to attack would be to assume that the birds would eventually attack the prey, but enough 

time had not elapsed for the bird attack the prey. Hence, attributing 60 seconds could be 

interpreted as providing a conservative estimate of the actual latency to attack had the 

bird and the prey been left in the cage for longer (Fig 5.6b). This treatment of data 

yielded a different result. I constructed an identical LMM to the one above in order to 

analyse the data to which I had attributed 60 seconds to each non-attack. 
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Figure 5.7. The daily means (iSE) of the latencies to attack in relation to day within treatment, 
treatment, and prey type when gaps when (a) non-attacks did not count and (b) when 60 seconds 
was used when prey not attacked. 
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Table 5.2. Pair-wise comparisons of the differences of the estimated marginal means of latency 
for the within trial order calculated using the LSD method (Bonferroni corrected). 

,,. Mean Difference 'Standard , 
Order (i) 'Order (j) (i-j) Error df P 
Prey 1 Prey 2 -0.549 1.532 1280 1 

Prey 3 -1.577 1.532 1280 1 
Prey 4 -4.003 1.532 . 1280 0.257 
Prey 5 -6.929" 1.532 1280 <0.001 
Prey 6 -4.274 1.532 1280 0.15 
Prey 7 -6.298* 1.532 1280 0.001 
Prey 8 -7.392" 1.532 1280 <0.001 

Prey 2 Prey 3 -1.027 1.532 1280 1 
Prey 4 -3.454 1.532 1280 0.688 
Prey 5 -6.379* 1.532 1280 0.001 
Prey 6 -3.724 1.532 1280 0.425 
Prey 7 -5.748" 1.532 1280 0.005 
Prey 8 -6.843" 1.532 1280 <0.001 

Prey 3 Prey 4 -2.427 1.532 1280 1 
Prey 5 -5.352 1.532 1280 0.014 
Prey 6 -2.697 1.532 1280 1 
Prey 7 -4.721 1.532 1280 0.059 
Prey 8 -5.816 1.532 1280 0.004 

Prey 4 Prey 5 -2.925 1.532 1280 1 
Prey 6 -0.271 1.532 1280 1 
Prey 7 -2.295 1.532 1280 1 
Prey 8 -3.389 1.532 1280 0.767 

Prey 5 Prey 6 2.655 1.532 1280 1 
Prey 7 0.631 1.532 1280 1 
Prey 8 -0.464 1.532 1280 1 

Prey 6 Prey 7 -2.024 1.532 1280 1 
Prey 8 -3.118 1.532 1280 1 

Prey 7 Prey 8 -1.094 1.532 1280 1 

Table 5.3. The effects of prey type, experimental treatment, within treatment day, and within trial 
prey order on the latencies of birds (a=0.05). 
Source df -FP. 
Prey 1,1280 446.035* <0.001 
Treatment 3,1280 248.912* <0.001 
Day 3,1280 1.16 0.324 
Order 7,1280 7.194* <0.001 
Prey*Treatment 3,1280 111.606* <0.001 
Prey*Day 3,1280 0.304 0.822 
Prey*Order 7,1280 6.796* <0.001 
Treatment*Day 9,1280 7.102* <0.001 
Treatment*Order 21,1280 2.068* 0.003 
Day*Order 21,1280 0.294 0.999 

Visually comparing the results between figure 5.6a and figure 5.6b it is clear that the 

two methods yield differing patterns of the effect of prey type and energetic state on the 

latencies to attack. It is likely that this practice would accentuate the differences between 

prey types because defended prey were left untouched more often than undefended prey. 
The results confirm this suspicion with the F-scores for the prey effect and the between 

phase effect being much greater (Table 5.3). Moreover, there was also a significant 
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within-trial effect with the latencies decreasing as the trial continued (Table 5.2, Table 

5.4). Table 5.4 lists the results of the LSD tests for differences between the mean latencies 

for each treatment. They show that the latencies between all four phases were 

significantly different from one another except for the two restricted phases (Table 5.2). 

Comparing the two methods, I believe that the first method which excludes the non- 

attacks gives a better indication of the actual latencies to attack despite the problem of 

unequal numbers of data points contributing to unbalanced data sets. This problem is 

overcome by using LMMs which are capable of handling unbalanced data sets. 

Table 5.4. Pair-wise comparisons for the differences in the estimated marginal means of the 
latencies of the data using the least significant difference method, P-values were corrected using 
a Bonferroni adjustment (aln). 

Treatment (i) Treatment (j) 
Free-fed 1 Free-fed 2 

Restricted 1 
Restricted 2 

Free-fed 2 Restricted 1 
Restricted 2 

Restricted 1 Restricted 2 

Mean Standard 
Difference (1-j)- Error' ' df 

4.199* 1.083 1280 
21.499* 1.083 1280 
24.003* 1.083 1280 

17.3* 1.083 1280 
19.804' 1.083 1280 
2.504 1.083 1280 

0.001 
<0.001 
<0.001 
<0.001 
<0.001 
0.126 

, ,, { 

I also conducted a regression analysis of the number of chemically defended prey 

consumed during the two free-fed phases of the experiment using the subjects's average 

latency as the independent variable. In order to calculate the daily mean latency, I 

calculated the mean of the median daily latency for each day of the free-fed phases. There 

was a significant relationship between the total number of defended prey consumed 

during free-fed trials and the latency to attack (r, =-0.8857, P=0.05, r, 2=0.6521, Fig. 5.7). 

This is an interesting finding as it indicates that a bird's tendency to consume chemically 

defended prey is related to the latency. If latency to attack prey was related to the levels of 

energetic reserves, it might be expected that the latency to attack would have been related 

to standardised mass. However, this was not the case and latencies were not correlated 

with the standardised mass (r, =0.285, P=0.5836, r, 2=0.081). 
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Figure 5.7. The mean number of 
chemically defended prey consumed 
on each of the daily trials during the 
free-fed phase of the experiment 
plotted against the mean of the daily 
median latencies. 
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5.3.4 Simultaneous choice trials 

In order to confirm that colour was being used as the cue for decision-making, I 

conducted a series of three simultaneous choice trials. In the first trial, birds were given 

a choice between the two prey types that they had previously experienced in the 

experimental phase (colour-quinine trial). Birds were able to discriminate between the 

two prey types when they were presented simultaneously. Birds consumed significantly 

greater numbers of the undefended prey than the defended prey during these trials 

(paired t-test: t=7.79, P=0.001, df=5, Fig. 5.8). In the second trial, all mealworms were 

injected with water and presented with colour cues (colour only trial). Birds still 

preferred to attack prey with the undefended colour, confirming that they could use 

colour cues in the absence of any potential differences between quinine-injected and 

water-injected mealworms (t=3.83, P=0.012, df=5; Fig. 5.8). In the third trial, birds 

were given a choice between quinine-injected and water-injected mealworms in the 

absence of colour cues (the quinine only trial). However, birds were unable to 

discriminate between defended and undefended prey (t=0.19, P=0.86, df=5; Fig. 5.8). 

These results show that despite the birds having low levels of food availability and 

consequently low energetic states, they were able to select food according to its level of 
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quinine contents by using the associated colour cues. Moreover, there were no other 

visual or olfactory cues that birds were able to use from the mealwornºs. 
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Figure 5.8. The daily mean number (+SE) of defended and undefended prey consumed during 
the three simultaneous choice trials. 

5.4 Discussion 

The results of this experiment demonstrate that energy reserves affect the proportion of 

chemically defended prey that birds consume. When foud was restricted and birds' fat 

reserves and masses were reduced, they ate more of the defended prey compared with 

when they were free-fed. Small daily fluctuations in individual masses during the two 

free-fed phases also explained some of the variation in the numbers of defended prey 

attacked on each clay. These results are consistent with previous observations and 

studies on a variety of predators (Swynnerton 1915: Sexton el of. I966; Gelparin I96i; 

(hai I986; Ilileman el of. I995; Gillette ei of. 2000), and support the assumptions of 

recent SDP models of the state-based consumption of chemically defended prey 

(Sherratt 2003, Kokko et if. 2003; Sherratt ci (l. 2004). 

My data also suggest that the birds may be able to strategically manage their 

intakes of quinine because the risks associated with over-consumption of toxins may be 

severe. The data indicate that as the daily trials progressed, the birds, consumption of 

defended prey declined. The SDP models of the state-based consumption of chemically 

defended prey indicate that animals ought to have a maximum body burden of toxins 
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that they can ingest before they become prohibitively expensive (e. g., causing emesis or 

death) (Sherratt 2003; Sherratt et al. 2004). However, this assumption is supported by 

little empirical evidence in predatory vertebrates. The best evidence for vertebrate 

animals foraging to strategically manage body levels of toxins comes from herbivores 

foraging on plants containing secondary plant metabolites (PSMs). It has been found 

that herbivores do not forage at random and that they will consume plants containing 

PSMs, as long as they do exceed their metabolic capabilities to detoxify the toxins (the 

detoxification limitation hypothesis [Freeland & Janzen 1974; Marsh 2006]). 

The results of this experiment can also be considered in the context of optimal 

diet theory. The problem I addressed could be thought of as being similar to animals 

increasing their diet breadth in response to energetic stress. For example, shore crabs 

(Carcinus maenas) will consume less profitable prey once they have exploited the 

favoured high profitability prey (Einer & Hughes 1978). Bluegill sunfish (Lepoinis 

macrochirus) also become less discriminating in the size of prey they consume when 

prey becomes less abundant (Werner & Hall 1974). Many authors have also found that 

changes in the frequency of undefended prey changes the rates of consumption of 

chemically defended prey (e. g., Nonacs 1985). These results are due to a decrease in 

the capture rate of favoured prey and so that predators needed to increase their diet 

breadth to maintain their energetic reserves. However, state was not considered as a 

factor in these experiments. Some experiments have also included hunger as a factor 

that influences prey choice. For example, three-spined sticklebacks (Gasterosteus 

aculeatus) consume more of an unprofitable prey type when they are hungrier 

(Beukema 1968) as do toads (Bufo fowleri, Heatwole & Heatwole [ 1968]), carabid 

beetles (Notiophilus bigattatus, Ernsting [1977]), 15-spined sticklebacks (Spinachia 

spinachia, Kislaliogu & Gibson [19761), and copepods (Mesocyclops edax, Williamson 

[1980]). Increases in the perceived risk of predation can also change the optimal food 

choices of animals so that they decrease their direct risk of predation (Sih 1993; 

Ydenberg 1998, Pp. 363-368; Caro 2005, Pp. 107-108). Therefore, the results from this 

experiment support previous foraging research into optimal diet theory. 

The starlings also had significant differences in their attack latencies between the 
free-fed and food-restricted treatments. These differences in attack latency may have 

indicated the differences in the birds' energetic states and thus their increased 

motivation to attack when at lower states. Data from previous studies show that 

animals' latencies to attack prey are related to energetic state with latencies becoming 
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shorter with increasing time from when they were last fed (Godin & Sproul 1988; 

Godin & Crossman 1994; Horat & Semlitcsh 1994; Moore 1994; Whitham & Mathis 

2000). However, as is often the case with earlier studies of this kind, no direct 

measurement of predator energetic state was made. Hence, the data collected in this 

study show the distinct decrease in latencies associated decreases in energy reserves 

and perhaps, provides another behavioural measure of the birds' energetic state. An 

alternative explanation is that increases in attack times can reduce the probability of 

making recognition errors (Guilford 1985). However, the results from the simultaneous 

presentations would tend to argue against that interpretation since birds were able to 

reliably differentiate between prey types when they were energetically stressed. 

I analysed the latency data in two ways: (1) I used the raw data that had missing 

values where birds did not attack the prey and (2) I attributed a value of 60 seconds to 

when a prey was not attacked. I would tend to favour the first method of analysis, but a 

recent paper by Darst et al. (2006) used the second method of attributing the maximum 

trial time (120 secs) on occasions where subjects did not attack the prey. When I treated 

my latency data in a similar manner, I found that this method accentuated the 

differences that existed between the different prey types. As the number of defended 

prey consumed declines, the latency to attack increases meaning that the latencies to 

attack in Darst et al. (2006) are not true latencies, but an index of prey consumption and 

latency combined. Therefore, it might have been disingenuous for Darst et al. (2006) to 

suggest these data reflect the actual subjects latencies to attack because the subjects 

may have never attacked these prey for good reason. This reason is that ingestion of 

Dendrobatid frogs comes with significant risk of death meaning that the birds should 

have never attacked these frogs. Indeed, the one subject that did consume a poison frog 

(Epipedobates bilinuis) died three days after ingestion. 

One explanation for birds eating more defended prey in the restricted phases of 

the experiment was that it resulted from a reduction in their motivation to discriminate 

or an impairment in their cognitive ability to do so. However, the simultaneous choice 

trials at the end of the experiment when birds' food was still restricted confirmed that 

birds were able to discriminate between the defended and undefended prey based on 

their colour signals. Therefore, they had retained the association between the colour 

cues and the defence level of each prey type, and could use it to avoid defended 

mealworms when prey were presented simultaneously. Therefore, birds can have 

information about the chemical content of prey, but trade off that information against 
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the nutritional benefits of consuming the prey. When birds have low fat reserves, the 

nutritional benefits of consuming the defended prey increased relative to the costs of 

ingesting the chemicals, which remained constant across the treatments. However, 

comparing simultaneous trials with sequential trials might be problematic because these 

methods might differ in how birds perceived and processed the information presented 

to them. Therefore, it is possible that these differences could account for one task being 

simpler than another task. 

The costs to predators of ingesting defence chemicals can occur through 

increased handling, malaise, or additional costs of processing toxins (e. g. Möstler 1935; 

Fink & Brower 1981; Gilardi et al. 1999). This experiment cannot quantify the cost of 

quinine to starlings, but given that it is potentially toxic to birds at very high doses 

(Alcock 1970), it seems likely that the chemical was having some post-ingestive 

effects. It is possible that birds are able to taste test the mealworms and evidence from 

later chapters indicates that birds can learn to taste the quinine in less than 10 seconds. 

This taste perception is likely to be a gustatory or trigeminal nervous response (Werner 

& Clark 2003). However, it is unknown how this information is integrated with 

nutritional information to inform decision-making, which is a complex problem in a 

varied diet (Yearsley et al. 2006). This experiment shows that birds can make these 

associations in sequentially presented prey, which is an implicit key assumption in 

many theoretical models of aposematism and mimicry (e. g. Speed 1993; Turner & 

Speed 1999; Sherratt 2003; Kokko et al. 2004; Sherratt et al. 2004). 

One potential criticism of this study is that the manipulations of energetic state in 

starlings were not realistic, and may not lead to selection on defended prey in the wild. 

However, the mass manipulation of birds was biologically realistic as starlings' masses 

fluctuate by up to 15 grams throughout the year (Feare 1984). Although some of this 

mass change may be due to other morphological changes rather than simply just 

changes in fat deposits (Feare 1984), body mass has been shown to be a reliable 

indicator of fat levels in birds and a good indicator of an individual's energetic state 

(Blem 1990; Witter et al. 1995). Energetic state can be used as a short-term surrogate 

of reproductive success due to the difficulties involved in determining lifetime 

reproductive success in free-living iterparous species. Therefore, a manipulation where 

birds lost about five percent of their mass is ecologically realistic. This study is the first 

that has directly investigated the state based consumption of chemically defended prey 

within the context of SDP models. It is important to study how energy reserves affect 
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behaviour by measuring both concurrently in the same individual (Mangel & Clark 

1986, Hutchinson & McNamara 2000). This integrated approach, effectively allows 

researchers to partial out inter-individual variation and intra-individual variation that 

can be due to changes over time. This has previously been overlooked in other studies 

investigating how energy interacts with behaviour (e. g., Ekman & Flake 1990; Witter 

1995; Thomas 1999). 

When birds had free access to food, the number of defended prey that they 

consumed had a negative correlation with latency to attack. As the latency to attack 

increased, the birds decreased the number of chemically defended prey consumed. 

However, this was not related to the standardised masses of individuals. Therefore, this 

could mean that some birds could have higher tolerances to quinine or that some birds 

were more cautious than others were. Both hypotheses are possible as I did not obtain 

any physiological data from birds. If there are differences in personality, this could be 

an important possibility promoting the evolution of aposematism and mimicry and may 

help explain some of the variation in results from studies in dietary conservatism 

(Thomas et al. 2003,2004; Marples et al. 2005). 

The data in this experiment demonstrate that educated predators can change their 

rates of attack on chemically defended prey based on their energy reserves. This is 

consistent with other recent studies that have demonstrated that birds can form partial 

preferences for chemically defended prey (e. g., Skelhorn & Rowe 2005; Skelhorn & 

Rowe 2006b). The exact level of avoidance may depend on whether the birds can taste 

the defences and potentially the level of the chemical defence of prey (Skelhorn & 

Rowe 2006b), but as this study also shows, it is subject to change according to a 

predator's energy levels. This has implications for the evolution of warning patterns 

and chemical defences in both aposematic and mimicry systems. 
First, warning signals may not just be designed to be easily associated with 

chemical defences (e. g. Gittleman & Harvey 1980; Guilford 1992), but may need to be 

effective for recognition by educated predators. This idea is not new; for example, it 

has previously suggested that warning signals could be designed to facilitate 

recognition or cautious sampling by experienced predators (Guilford 1985; Guilford 

1994), or be more memorable (Speed 2000). However, the results of this experiment 

emphasise this by demonstrating that birds develop partial preferences for defended 

prey, meaning that there could be strong selection from educated predators. In addition, 

since partial preferences may change with changes in energetic state, selection on 
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warning signals may vary across the year according to food availability or the birds' 

energetic needs. For example, migrating species may eat more defended prey in their 

pre-migration period, meaning chemical defences might be less effective at such times. 

Changes in the perceived trade-off between nutritional benefits and defensive costs 

may also explain seasonal changes in prey behaviour. For example, defended seven- 

spot ladybirds (Coccinella septempunctata) are solitary in the warm summer months 

but are often found in aggregations in the winter months (Majerus & Kearns 1989). An 

increase in attacks from avian predators when food is scarce and more valuable in the 

winter, could lead to individuals enhancing their survival chances from dilution or 

saturation effects of being in an aggregation (Lindström et al. 2001; Turner & Speed 

2001). 

Second, these findings indicate that the models of aposematism based on predator 

learning may be flawed (Rothschild et al. 1984; Guilford & Dawkins 1993; Speed 

1993a; Speed & Turner 1999; Servedio 2000. This is because these models tend to be 

based on theories of associative learning (Rescorla & Wagner 1974; Pierce & Bouton 

2001). Theories of associative learning predict that the continued experience of a 

negative stimulus (e. g., an electric shock or an objectionable taste) will lead to a 

cessation in attacks. Therefore, partial preferences for aposematic prey are inconsistent 

with these models. 

Finally, many models of Müllerian mimicry are also built on the similar 

assumption of associative learning (e. g., Turner et al. 1984). This means that in cases of 

Müllerian mimicry it is expected that the rate of attack of Müllerian co-mimic will 

decline to negligible levels with increasing predator knowledge in a similar manner to 

aposematism. However, if predators can display consistent partial preferences for 

moderately defended prey over long time-periods, then this questions the basis of the 

mimicry models. Whether prey can be moderately distasteful and attacked at 
intermediate rates is important for recent debate concerned with the evolution of 

mimicry (Speed 2001; Joron & Mallet 1998). If the data reflect how birds deal with 

prey under natural foraging conditions, moderately defended prey may be 

commonplace, allowing for the evolution of quasi-Batesian mimicry, where a 

moderately defended co-mimic is parasitic on a more defended co-mimic (Speed 

1993a). Moreover, given that prey acceptability changes according to the energy 

reserves of the birds, I-also suggest caution interpreting partial preferences unless they 

can be married with subjects' energetic state. 
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Overall, the data from this chapter suggest a re-evaluation of our current approach 

to studying aposematism and mimicry in many ways. First, we need to consider more 

fully the role of educated predators in the evolutionary dynamics of aposematism. 

Second, it is perhaps time to develop a new approach to the study of aposematism in 

the wider context of optimal diet theory, and the potential benefits and trade-offs faced 

by foraging animals (Stephen & Krebs 1986; Yearsley et al. 2006). Finally, it will be 

interesting to further investigate how predators perceive defence chemicals, and 

whether they are able to make foraging decisions according to what they have learned 

about a prey's nutritional content and defence chemistry. The methods that predators 

use to assess the nutritional and toxic properties of prey are likely to be complex, but 

this study provides the first insight into the decision-making strategies that predators 

might employ in this process. 

5.4.1 Conclusions 

This study has for the first-time, established the relationship between a predator's 

energetic state and its propensity to consume chemically defended prey. These results 

are important because this is a previously untested assumption underpins the recent 
SDP models' reliance upon energetic state as a basis for decision-making. The results 

are also important because they demonstrate the role that educated predators might 
have in the evolution and maintenance of chemical defences in prey species. However, 

the importance of energetic state in the role in the consumption needs further 

investigation. Moreover, other aspects of the SDP models warrant further investigation 

(e. g., is there a critical burden of toxins that birds will stop consuming chemically 
defended prey). Food resources are important in determining carrying capacities of 

animals. However, the effects of food limitation are often difficult to determine 

especially in populations where demographic variables may take years to respond to 

changes in resource availability. 
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Chapter 6 

THE RELATIONSHIP BETWEEN ENERGETIC STATE 
AND FORAGING PREFERENCES FOR THREE PREY 

TYPES WITH VARYING LEVELS OF CHEMICAL 
DEFENCES 

6.1 Introduction 

Laboratory studies of aposematism tend to be conducted on simple model systems, in 

particular having only a single undefended and defended species (e. g., Sexton et al. 

1966; Williamson 1980; Gelparin 1968; Hileman et al. 1995; Gillette et al. 2000). 

These systems have provided valuable insights into the dynamics of the consumption of 

chemically defended prey. However, these models may be too simplistic with regards 

to the choices an animal may face in a natural environment. Free-living animals rarely 
have the choice between two food items that differ in a single attribute, and are likely to 

be faced with many different types of prey in the field. However, little is known about 

how animals choose among prey choices that differ in their levels of chemical defences, 

nor how changing energetic state affects these choices. 

The speed with which a forager learns the association between a food item and its 

noxious properties is thought to be dependent upon three factors: (1) the strength of the 

chemical defence, (2) the latency from the time of ingestion of the prey until perception 

of the prey's associated defences, and (3) the number of food types ingested per unit of 

time (Leimar et al. 1986; Yearsley 2006). Leimar et al. (1986) suggested that the rate of 
learning could be related to the levels of defensive secondary chemicals contained in a 

prey item. Alcock (1970a) fed black-capped chickadees (Poecile atricapillus) three 
food types that differed in their energetic contents, taste, and inclusion of an emetic. 
There were three groups of birds which were presented with identical seed shells that 

covered nothing, half a salted mealworm, or half a mealworm with added quinine (an 

emetic). The birds pecked at the shells covering the quinine treated mealworms 

significantly less often and learned to avoid the shells when the mealworms on offer 

were quinine treated. This indicates that birds may learn the avoid more potently 
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defended prey faster than if they were less well defended. However, Alcock's (1970a) 

study did not address how rates of pecking may have equated with actual prey 

consumption. Recently, Skelhorn and Rowe (2006a) demonstrated that naive domestic 

chickens (Gallus gallus) learned to avoid food with more potent defences more quickly 

than weakly defended food. 

Studying food preferences is complex when using multiple food types in free- 

living animals although this has not stopped some biologists from trying. For example, 

Chai (1986) fed two rufous-tailed jacamars (Galbula ruficauda) over 1,000 butterflies 

of 114 morphs. He found that birds were able to discriminate between defended and 

undefended butterflies. However, this study was poorly controlled and the results are 

hard to interpret since it was difficult to distinguish what cues the birds were using to 

distinguish between prey. Moreover, the birds were kept in different sized cages and 

the author even wrote that at times he hit cages with a stick when butterflies settled in 

order to get them to fly. This could have startled birds and stopped them feeding. 

Bowers and Farley (1990) fed seven different species of butterflies to four wild caught 

grey jays (Perisoreus canadensis) and found that birds learned the differences between 

undefended and defended species. However, the individuals were fed between three 

and six larvae of the seven species and the results were pooled making interpretation 

difficult. The number of presentations Bower and Farley (1990) used may not have 

been enough to ascertain the natural rates of attack. Moreover, often studies of these 

types did not measure the levels of defensive compounds in the prey offered and so it 

was unknown if the level of prey toxicity was the main factor influencing the predators' 

foraging choices. 

Recently, it has been found that European starlings will form partial preferences 
for moderately defended prey that persist after the birds have been fed large numbers of 
defended and undefended prey over long time periods (e. g., Skelhorn & Rowe 2006b, 

Chapter 5). These studies have found that birds may attack and consume chemically 
defended prey about twenty percent of the time at free feeding mass. Finally, it was 

unknown if the rates of learning and the rates of consumption corresponded with the 

actual levels of defence. Therefore, it is unknown if the birds were basing their attack 
decisions on the levels of toxin each prey consumed. 

In this study, I was interested in whether or not birds were able to learn to 
differentiate between different prey with varying levels of chemical defences. I also 

manipulated the energy state of individuals in order to ascertain the pattern of 
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consumption of chemically defended prey as birds lost energy reserves and regained 

them again. However, unlike the 'previous chapter, the consumption of chemically 

defended prey was assayed daily so I could examine the trend of state-based 

consumption of chemically defended prey more precisely. This is a more ecologically 

realistic way to investigate the how birds' preferences change with energetic state in 

since predators rarely lose 5 percent of their body mass suddenly (except during times 

of high energy use and low food intake such as during migration). Finally, this study is 
. 

one of the few experiments where the protective properties of different levels of 

defence have been examined in distinct and identifiable prey. Moreover, it is the first 

time a study has attempted, in an integrated manner, to investigate how birds' foraging 

preferences for different defended prey may change in response changes in energetic 

state. 

6.1.2 Experiment introduction 

Recent models have formalised the defensive costs and economic benefits of 

consuming chemically defended prey (Kokko et al. 2003; Sherratt 2003; Sherratt et al. 
2004). From these models, I made two predictions: (1) birds should consume prey 

according to their chemical defences, and (2) birds should include less well defended 

prey into their diets as they lose mass before they include more highly defended prey, 

and that this trend should be reversed as birds gained mass. 

6.2 Methods 

6.2.1 Study species and housing 

The subjects were six wild-caught male European starlings (Sturnis vulgaris) caught 

under licence from English Nature (Licence Nos. 19991381 and 20001512). The birds 

were taken from their free-flight aviary and housed individually in wire mesh cages 

measuring 450 x 750 x 450 mm (h xwx d) with a metal drawer at the bottom, which 

could be removed for cleaning. The birds were subjected to a 14: 10 hour light/dark 

cycle. The light was full spectrum light that simulates natural daylight. During the 

experiment, birds were fed pheasant breeder pellets and water ad libitum. When food 

was changed the remaining food was weighed and the amount of food consumed per 24 

hr was calculated. At the end of the experiment, birds' masses and fat scores were 

monitored until they had stabilised and then they were put back into free-flight for 

future experiments. 
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6.2.2 Energetic state 

The objective of this experiment was to examine the order of preference that birds 

display when offered three prey types with different levels of defence as they lost and 

gained mass throughout the experiment (Fig. 6.1). Birds were caught each morning 

(around 0900 hr British Summer Time [BST]) and their furcular fat levels were visually 

assessed using scale modified from Gosler (1996,2004, pp. 111-113) before being 

weighed (to the nearest 0.1 g [Ohaus Scout SC6010]). This was done so my knowledge 

of the mass did not influence the assessment of fat in marginal cases. The birds were 

fed after weighing (between 0915-0930 hr (BST) either 40 g of food during training or 

a restricted amount of food which allowed the birds to gradually lose and gain fat 

throughout the experiment at about 0.5 g per day (mass change: Xt SE: losing mass=- 

0.48 ± 0.128 g, gaining mass=0.30 ± 0.037 g). 

In order to make mass comparisons within the same individual, I first calculated 

an average mass of the individual birds whilst under experimental conditions. I 

calculated the mean mass of the birds on the last five days of training phase of the 

experiment which was then used to calculate a standardised mass- that could be 

compared among individuals. The masses did not need to be standardised using tarsus 

or wing length as each bird was acting as its own standard for making comparisons. 

My method of mass manipulation allowed birds to gain and lose mass in 

accordance to small changes in their levels of food availability. Figure 6.1 indicates the 

different phases in the experiment: a mass loss phase and a mass gain phase where 

birds had the amount of food restricted to allow them to slowly lose or gain mass. On 

the first day of the mass loss phase of the experiment, I fed birds their average amount 

of food that they consumed in each 24-hour period during the five days that I collected 

mass data, which was used to calculate the birds' free-feeding masses. I calculated the 

birds' average 24 hour food consumption by weighing how much food was left in the 

birds' cage (in the bowl and on the floor) to which I added a sixth of the mass of the 

food that was swept off the floor. For the rest of the mass loss phase of the experiment I 

calculated food as stated in the left hand column of Table 6.1. When I switched birds to 

the mass gain phase of the experiment, I switched to the right column to calculate the 

birds' food allocation. For example, during the mass loss phase, if a bird lost 1.2 g of 

mass in a 24-hour period in which it was fed 15 grams of food, the bird was fed 15.5 g 

of food [i. e., (15 - 0.5) - (-1.2)=15.7 g, which is rounded down to 15.5gß). 
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State 

Mass lass phase Mass gaij phase 

Point where (FFI) Point (FE) Point Point where 
all mild prey where all where first first mild prey 

were included moderate moderate prey was excluded 
prey were was excluded 
included 

Time 

Figure 6.1. A schematic diagram of the experimental period. The experiment is split into two 
phases: a mass loss phase (left hand side) and a mass gain phase (right-hand side). The 
middle period of the figure where there is no change in state. This is a period of adjustment 
where birds' food amounts were adjusted in order to allow them to begin gaining mass again. 
FFI=first full inclusion of prey, FE=first exclusion of any prey item. 

Once the mass manipulation stage of the experiment began, I continued to allow 

the birds to slowly lose mass until either (i) they were including all prey presented or 

(ii) their mass declined to 90 percent of their free-feeding mass. Once the birds reached 

this stage, I fed the bird its previous 24 hrs food ration plus the weight of its previous 

24 hrs mass loss plus another gram of food. I then used the right column (mass gain 

column) of Table 6.1 to calculate the birds' food allocation on subsequent days so that 

birds begin gaining mass at about 0.5g of mass a day. 

Table 6.1. The reactive adjustment method used calculating birds 24-hour food ration during 
the mass manipulation phase of the experiment. Changes in mass are also substituted with 
changes in food at a 1: 1 ratio, but rounded to the nearest 0.5 gram of food. 

Experimental Period 
24 hr Mass Trend Losing Mass Gaining Mass 
Start Average bird's food intake Previous days food + 0.5 g 
All other days (Previous day's food - 0.5 g) - mass (Previous day's food + 0.5 g) - mass 

change change 
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6.2.3 Prey-preparation and training 

The objective of the experiment was to examine the responses of birds to three prey 

types. Prey were Tenebrio sp. larvae (henceforth, mealworms) of approximately 20 mm 

in length (see section 5.2.3 for details). The three prey types were undefended larvae, 

mildly defended larvae, and moderately defended larvae (see Table 6.2 for details of 

amounts and concentration of defences). The birds were trained to associate a different 

colour with each prey type and colours were balanced among individuals to spread the 

effects of possible colour biases throughout all prey types. The mealworms were 

injected with quinine or water in the same manner as in Chapter 5. 

Table 6.2. The treatments of the three prey types used in this experiment. 
Prey Type ý, iý ,, a,,,.. ,, Treatment l 
Undefended 0.2 mL water 
Mildly Defended 0.2 mL 1% quinine sulphate suspension 
Moderately Defended 0.2 mL 3% quinine sulphate suspension 

On each day of training, birds were food deprived for two hours before the start of 

a training trial. Five minutes before the trial started, birds were moved in their cages to 

a new position within the room and left to habituate. They were positioned behind a 

curtain so that the other birds in the room could not see the subject and vice versa. The 

bottom of the curtain was level with the bottom of the cage so it could be removed 

without disturbing the bird. In order to observe the bird during each trial I used a video 

camera connected to a television monitor. 
Mealworms were presented in small (38 mm diameter) Petri dishes, which were 

placed on the floor of the bird's cage. I used my hand to place the Petri dish in the cage 

using the door cut into the from of the cage. The trial started once I had taken my hand 

from the cage. The birds had 1 min in which they could attack and consume the prey. If 

a bird consumed the mealworm, the dish was removed immediately. If the bird failed to 

consume the prey after one minute,, the Petri dish was removed. This three minute cycle 

was repeated 18 times on each day. Once birds consumed five mealworms in 

succession, I introduced a disk of white cardboard placed under the dish to act as a 
background. Again, each bird was required to consume five larvae in succession before 

proceeding to the next step in training. It generally took the birds between one and two 

weeks before they would approach and consume prey without hesitation. 

The next step in training was to introduce coloured paper disks underneath the 
Petri dishes to signal the different prey types. However, before this could be done, birds 
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had to be habituated to the different colours. This was done by introducing the coloured 

paper disks under Petri dishes with undefended prey. I did this six times for each prey 

type and the order of colours was randomised in order to prevent possible learning 

effects forming in relation to the order of colour encounter. Once the birds consumed 

all 18 larvae I began using mealworms injected with quinine or water in a session so the 

birds could learn the colour associations between colour and defended prey. At the start 

of the first trial, I presented five undefended prey with their colour underneath so that 

birds would not cease attacking mealworms as might be the case if they consumed 

defended larvae during initial presentations. During the training trials, the birds were 

presented with 18 prey of the different prey types (six of each type). They were 

presented in a random order, but with the rule that two of each prey type had to be in 

each third of the presentation sequence. This was to ensure that each part of the daily 

trial had relatively equal probabilities of encountering each prey type. This 

randomisation rule was also used in the experimental phase of the experiment. The 

training sessions continued until the birds had displayed significant and consistent 

preferences for the three prey types during the proceeding three days (see section 6.3.1 

for details). It took the birds an average of 21.0 ± 1.81 days (X ± SE) to learn the 

difference between the three prey types. 

6.2.4 Experimental trials: mass manipulation and prey choice 

The mass manipulation phase of the experiment had two periods: a mass loss and a 

mass gain period (Fig. 6.1). During the mass loss period, the birds' levels of 

consumption of different prey types were noted until all of the moderately defended 

prey were being consumed. The next two days after all the prey offered were consumed 

for the first time, I stabilised the birds' mass and observed if the bird continued to 

consume all the prey offered. If the bird consumed all prey on each of the three days, I 

called the first of the three days; the point of first full inclusion (FFI) because it was the 

first time the bird included all the prey in its diet (Fig. 6.1). Once birds reached FFI, 

their daily food ration switched to the mass gain period of the experiment (Table 6.2). 

Again, I aimed to allow birds to consistently gain mass at about 0.5 g per day (see 

section 6.2.2). As the birds continued to gain mass, the first day of any three 

consecutive days where any prey item was not consumed was called the point of first 

exclusion (FE) (Fig. 6.1). The FE was the considered the first day of the mass gain 
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phase of the experiment. I used only these data because I was interested only in the 

pattern and consistency of the data as birds lost and gained mass and if their 

behavioural trends would be similar in both phases of the experiment. The period 

between FFI and FE was not considered in the foraging prey consumption analyses 

because including this data it would add unnecessary noise to the result. In order get the 

birds' consumption of all prey starting at full consumption in the mass gain period; I 

also included the two days prior to FE. I continued to monitor the birds' daily 

consumption of prey and state until they were either at their free-feeding mass (FFM 

[i. e., their mass at the beginning of the experimental phase]) or they were no longer 

consuming any defended larvae. 

On each day of the mass manipulation phase, 18 larvae were presented to the bird 

as a sequence, six of each prey type (see Table 6.2 for the treatments of each prey type). 
In order to prevent the sequence of prey biasing behaviour for any one type of larvae, I 

ensured that two of each prey type was present in each third of the daily trial sequence. 
This meant that there were hundreds of different combinations of prey sequences 

available to be used for each individual of which only a small sample was. 
All individuals had the same schedule on each day as they had during training 

(section 6.2.3) meaning that they were all weighed and fed between 0900-0930 lirs 

(BST). It was important to standardise the deprivation period in order to ensure that 

their energy levels were responsible for state-based effects. Therefore, all birds had 

access to food for at least 2 hr prior to the beginning of the food deprivation period. 
Only two birds could be run simultaneously so I staggered the times at which food was 

taken from their cages and thus the start times for each pair. Therefore, food was 

removed at 1100 hr from the first pair of birds, 1215 hr from the second pair, and 1330 

hr from the last pair. Once the food was removed from birds' cages, the trial began 2 hr 

later. Food was put back into the cage at the end of the trial. 

The presentation of prey was on a three minute cycle, which began with the 

placing of a new prey item at the bottom of the cage. I recorded if the bird attacked and 

consumed the prey, the latency to attack (time from the start of the presentation until a 
bird's bill touched the prey item), as well as other behaviours such as the rejection of 

prey, bill wiping (feeking), and head shaking. There were no occasions where trials had 

to be halted because of concerns for the bird's welfare. 
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6.2.5 Simultaneous choice trials 

In order to test the relative preferences for each prey type, I conducted nine days of 

simultaneous choice trials at the end of the experimental phase. It was important to 

conduct these tests to ascertain if: (1) birds were basing their decisions on whether to 

consume prey on the colour cues provided and (2) that no cues other than colour were 

being used to make decisions. The trials followed the same basic procedure outlined 

above, except that instead of a single mealworm being presented, two prey'types were 

presented simultaneously, and the birds were required to choose between them. Birds 

had a single session of 18 presentations on each of nine consecutive days. At each 

presentation, birds were allowed to attack one mealworm and the second mealworm 

was removed once the first was attacked. Over the nine days of the simultaneous choice 

trials, birds were given a choice between one of three prey dyads (undefended versus 

mildly defended, undefended versus moderately defended, or mildly defended versus 

moderately defended). On each day, the prey could be presented either, having both the 

colour cue present and the quinine injected (colour-quinine treatment), the colour cue 

present but no quinine (colour-only treatment), or the quinine injected but no associated 

colour cue (quinine-only treatment). Each treatment was presented on three of the nine 

days. The aim of the colour-quinine treatment was to get a baseline measure of 

preference, and was important to prevent birds learning that mealworms presented with 

colour were undefended during the colour-only treatment. The colour-only treatment 

allowed me to test whether or not birds were using the colours as the primary cue for 

decision-making purposes. Finally, the quinine only treatment allowed me to establish 

that there were no unintended visual or olfactory cues associated with the quinine. This 

is because quinine sulphate might have a visual cue associated with it that humans are 

unable to perceive (e. g., reflecting U. V. light). The order of the daily treatments was 

randomised to prevent the birds refusing to eat prey when they had no colour cues 

which might have occurred if the birds were given three consecutive days of the 

quinine-only treatment. 

6.2.6 Statistical analysis 

To test that birds had learned the discrimination by the end of the training trial, I used a 
Chi-squared test. For data where I was examining the effect for different prey types 

(e. g., the number of prey consumed in each prey trial), I utilised repeated-measures 
GLM models. I compared differences between fixed factors using the least significant 
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difference (LSD) method to calculate the levels of significance between the estimated 

marginal means that had been corrected for multiple comparisons (Bonferroni method, 

(x/n). These methods allowed for the comparisons of main fixed effects in the model. 

I used regression analysis to test for relationships between morning mass readings 

and the visual fat scores of the birds taken before weighing. An analysis was completed 

for each individual to confirm this relationship. This enabled me to check the 

relationship between body mass and levels of furcular fat so that the link between fat 

levels and mass could be confirmed. 

In order to analyse the preferences of birds in relation to mass changes, I 

calculated standardised masses for each bird by dividing the daily mass by the free- 

feeding mass that I calculated at the start of the experiment. I then calculated the daily 

proportions of each prey type that individual birds consumed and entered these into 

bins based on 0.01 graduations of standardised mass. The mass bins ranged from 1.05 

to 0.9 and it was these values I used to construct separate linear mixed models (LMM) 

for the mass loss and mass gain phases of the experimental trial. I used Akaike 

Information Criterion (AIC) in order to choose the best model. The lower the AIC 

score, the better the model is a general rule of thumb. For analyses on proportionate 
data, I used arcsine square-rooted to restore normality and homoscedasticity and 

allowed me to performed parametric tests. I used LMMs extensively in this chapter 

because I believe that they have a number of advantages over general linear models 

(GLMs). For example, the data that I gained from the mass manipulation phase of the 

experiment was only able to be analysed using LMMs, because there were many gaps 

in the data. Indeed, not one subject had standardised masses that encompassed the 

entire range of the readings which would precluded the use of GLMs. I used a variance 

components covariance matrix in these models. In cases, where all factors are fixed, 

LMMs can be considered analogous to GLMs. I compared differences between means 

using the least significant difference (LSD) method that had been corrected for multiple 

comparisons (Bonferroni method). All tests were two-tailed and had critical values of 

0.05. I used the Mixed command in SPSS for PCs (versions 12.0,14.0, and 15.0) and 
Mackintosh computers (version 11.1) to calculate all LMM statistics. 
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6.3 Results 

6.3.1 Prey preference 

By the end of the training period (the final three daily trials), birds learned to 

discriminate between the undefended and defended mealworms (X ± SE: 

undefended=15.2 ± 0.65, mild=7.8 ± 1.05, moderate=3 ± 0.26; all X2>7.462, all P<0.05, 

df=2). In order to see if birds maintained this learned preference throughout the mass 

manipulation phase of the experiment I conducted two crude analyses on the data that I 

generated. First, I compared the number of each prey type consumed on each day of the 

mass manipulation phase. Second, I compared the number of days that the birds 

included all of a particular prey type throughout the mass manipulation. 

For the first analysis, I expected the birds to maintain the preference they learned 

during training throughout the mass manipulation phase. Therefore, I calculated the 

mean number of each prey type consumed per daily trial throughout the entire mass 

manipulation phase as a conservative test of whether birds maintained their learned 

preferences. The mean number of prey consumed on each day throughout the 

experiment corresponded with the order of preference displayed in the last three days of 

training (X ± SE: undefended=5.81 ± 0.16, mildly defended=5.16 ± 0.18, moderately 

defended=4.33 ± 0.21; repeated-measures ANOVA: F2110=158.5, P<0.001, r)2=0.982, 

Fig. 5.2a). Comparisons between contrasts revealed that the daily consumption of all 

three prey types were significantly different from one another (LSD: undefended - 

mildly defended, P=0.001, undefended - moderately defended, P<0.001, mildly 
defended - moderately defended, P=0.001). 

For the second analysis, I calculated'the number of days where each bird 

consumed all of a particular prey type. If birds included mildly defended prey more 

readily than moderately defended prey, it is expected that the number of days where all 

moderately defended prey were consumed would be fewer than the number of days 

where all mildly defended prey were consumed. When birds consumed all of a 

particular prey type, I called this a day of full prey inclusion (or full inclusion for short) 

of that particular prey type. The analysis yielded a very significant result indicating that 
despite this conservative statistical method, the order of preference was highly robust 
(X ± SE: undefended=26.7 ± 2.32 days, mildly defended=18.2 ± 1.82 days, moderately 
defended=12 ± 1.46 days; F2110=75.152, P<0.001,7)2=0.938, Fig. 6.2b). Post-hoc 

comparisons between variables indicated that the birds' preferences for the three prey 
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Figure 6.2. The measures of preference for each prey type measured by: (a) the mean number 
(+ SE) of each prey type consumed daily throughout the experiment and (b) the mean number 
of days (+ SE) when every prey of a given prey type was consumed. These results indicate that 
the prey were favoured in accordance with their toxin loads and hence, their profitability. 

types were significantly different from one another (1, SD: undefended -- mildly 

defended, I'=O. OOI, undefended - moderately defended, I'=O. OOI, nnildly defended 

moderately defended, I'=0. OO6). 'Taken together, these data confirm that hints were able 

to discriminate between the three prey types and that the order of' learned preference 

corresponded with the level of chemical defences of' the prey. 
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6.3.2 Experimental phase: mass manipulation and prey choice 

In order to examine the relationship between body mass and furcular fat scores, I 

conducted regression analyses on each individuals daily masses and fat scores. There 

was a significant relationship between body mass and the furcular fat scores of birds. I 

performed a regression on the masses and furcular fat scores of individual birds during 

the experimental phase (linear regression: 19M, F1.31=7.82, P=0.009, r2=0.201; 20M, 

F1,28=13.128, P=0.001, r2=0.319; 21M; F1131=8.357, P=0.007, r2=0.212; 39M, 

F1,20=25.588, P<0.001, r2=0.561; 48M, F1.27=22.410, P<0.001, r2=0.454). These data 

indicate that the mass changes during the restricted phases of the experiment, were due 

in large part to a changes in body fat reserves. Therefore, I use mass as a surrogate for 

energetic state for the rest of the chapter because the mass has been shown to be 

significantly related to fat reserves. 

In order to test if attacked prey were then always consumed, I calculated the 

proportion of attacked prey that was subsequently consumed. I found that there were no 

differences in the proportions of attacked prey that were then consumed with almost all 

prey that were attacked being eaten irrespective of the prey type (X ± SE: 

undefended=l ± 0; mild=1 ± 0; moderate=0.999 ± 0.001, repeated-measures ANOVA: 

F2.10=1, P=0.402). Therefore, the rates of consumption can be taken as a good indicator 

of the rates of attack for the rest of this chapter. 

The main aim of this chapter was to test the preferences of birds in relation to the 

levels of chemical defences of the prey and how the birds' preferences responded to 

changes in their energetic state. In order to test this, I constructed a LMM which 
included prey type and mass as fixed factors and an interaction term between mass and 

prey type for both the mass loss and mass gain phases of the experiment. Subjects were 
included in the analysis as a random subject variable. I defined the mass loss phase of 

the experiment as being all of the days where birds were losing mass until they 

consumed all prey offered to them in three consecutive days. If the bird consumed all of 

the prey during a daily session, I attempted to maintain the bird's mass at the level it 

was on the morning of the day when it consumed all prey offered. 
In the mass loss phase of the experiment, birds increased the proportion of prey 

consumed with increasing mass loss (LMM: F12.72=5.531, P<0.001, Fig. 6.3a). There 

were many significant differences in the contrasts when the masses were compared 

against other masses (Table 6.3). There were also significant differences in the numbers 
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of each prey type consumed throughout the mass loss phase of the experiment 

(F2,72=32.082, P<0.001, Fig. 6.3a).. Pair-wise comparisons of contrasts for the 
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Figure 6.3. The mean proportion of larvae consumed by birds as they (a) lost mass and (b) 
gained mass. Standardised mass is the birds' mass as a proportion of their free-feeding mass that 
was calculated at the beginning of the experiment. 

proportion of each prey type consumed revealed significant differences between all three 

prey types (LSD: undefended - mild=15.557, P<0.001; undefended - moderate=30.221, 

P<0.001; mild - moderate=14.664, P=0.001). I was also interested to see if between- 

individual variation was a significant factor in the proportion of prey consumed. I found 

that variance between individuals accounted for only 17.8 % of the total variance of about 

234 which was not statistically significant (Wald Z test: Z=1.145, P=0.252). The other 

82.2 % of variation was accounted for by within-individual variation and error. 

Y, 
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Once the birds had consumed all of the prey items offered for three consecutive 
days, I began incrementally feeding the bird more food in order to allow them to begin 

gaining mass. I defined the start of the mass gain phase of the experiment as first of the 

three consecutive days where birds did not consume at least one prey offered. Throughout 

the mass gain period, birds to slowly gained mass until they had reached their free- 

feeding masses. As with the mass loss data, I constructed a LMM, which included the 

factors mass and prey type, with individual birds nested in the analysis as a random 

subject variable. The results were similar to those from the mass loss phase of the 

experiment (compare Fig. 6.3a and Fig. 6.3b). The proportion of prey consumed was 

Table 6.3. Significant pair-wise differences in the proportion of prey eaten at different 
standardised masses calculated using the LSD method as birds lost mass. All other pair-wise 
differences are non-significant. 

Mean Standard 
Order (i) Order (j) Difference (i-i) Error, df P 
0.90 0.97 36.0 9.12 72 0.014 

0.99 39.5 9.39 72 0.006 
1.00 37.8 9.64 73 0.015 

0.91 0.97 30.9 6.80 71 0.002 
0.98 28.0 7.08 73 0.014 
0.99 34.4 7.33 73 0.001 
1.00 32.7 7.33 73 0.002 
1.01 32.5 8.64 74 0.027 
1.02 38.3 10.65 74 0.046 

0.93 0.97 25.2 5.84 72 0.004 
0.98 22.2 6.11 72 0.040 
0.99 28.7 6.51 73 0.003 
1.00 27.0 6.51 73 0.007 

0.94 0.97 27.1 6.45 71 0.006 
0.98 24.2 6.73 72 0.046 
0.99 30.7 6.68 71 0.002 
1.00 29.0 7.02 73 0.008 

dependent on the mass of the birds as they gained mass (LMM: F12,36=2.858, P=0.007, 

Fig. 6.3b). Unlike the mass loss phase of the experiment, none of the differences between 

the means for masses were significantly different from one another. This is most likely 

due to the alpha level of the test statistic being corrected using the Bonferroni method 
(i. e., a/n). There were also significant differences in the numbers of each prey type 

consumed throughout the mass gain phase of the experiment (F2336=34.631, P<0.001, Fig. 

6.3b). Pair wise comparisons of the means for the proportion of each prey type consumed 

revealed significant differences between all three prey types in the mass gain phase of the 

experiment (undefended - mild=15.731, P<0.001; undefended - moderate=25.478, 
P<0.001; mild - moderate=9.747, P=0.010). Individual variation was not a significant 
factor in relation to the fixed variables. I found that variance between individuals 
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accounted for only 4.6 % of the total variance of about 64.5 which was not statistically 

significant (Wald Z test: Z=0.342, P=0.732). The other 95.4 % of the variation was 

accounted for by within individual variation and error. 

When the birds began gaining mass, I noticed some resistance for the birds to begin 

excluding the moderately defended prey. I had expected that the birds would start to 

exclude defended prey from the diet at about the same mass as when they had fully 

included them when they were losing mass. Therefore, I decided to compare the masses 

of birds FF1 and FE for both the moderately and mildly defended prey in the mass loss 

phase and in the mass gain phase of the experiment. I found that the mass at FFI for 

moderately defended prey was significantly higher compared with the mass at FE (X t 

SE: standardised mass at FFI=0.949 ± 0.014, standardised mass at FE=0.977 ± 0.019, 

paired t-test: t=-3.366, P=0.02, df=5, Fig. 6.4a). However, this was not the case for the 

masses when birds fully included and began to exclude the mildly defended prey (9± SE: 

standardised mass at FFI=0.965 ± 0.012; standardised mass at FE=0.973 ± 0.013; paired 

t-test: t=-2.319, P=0.068, df=5 Fig. 6.4b). I decided to repeat this using the amount of 

food that they were receiving in order to see if the birds were also obtaining more energy 

at FE compared with FF1 for the moderately defended prey. This pattern was confirmed 

when I compared the amounts of food being consumed in the preceding 24 hours at FFI 

and FE of moderately defended prey (Y± SE: food eaten at FFI=13.8 ± 0.69 g, food eaten 

at FE=16.5 ± 0.66 g, paired t-test: t=-7.291, P=0.001, df=5, Fig. 6.4c). Again, for the 

mildly defended prey, there was no significant difference in the amount of food consumed 

on the first day of FFI compared with the amount eaten on the day of the FE (9± SE food 

eaten at FFI=14.1 ± 0.62 g; food eaten at FE=14.3 ± 0.64 g, paired t-test: t=-0.672, 

P=0.530, df=5, Fig. 6.4d). While the birds had their lowest levels of bodily energy 

reserves, the birds invested much less in singing behaviour, which is also likely to 

generally correlate with other non-maintenance behaviours (personal observation). It is 

possible that a prolonged period of reduced food availability will have meant that the 

birds were less reluctant to give up the nutritional advantages that these moderately 

defended prey offered to them. The other possibility is that birds built up a physiological 

tolerance to quinine. However, this would not explain why this trend was only evident in 

the moderately defended prey and not the mildly defended prey. 
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Figure 6.4. A comparison of the mean mass of individual birds when they either first fully 
included (FFI) each prey type as they lost mass and first excluded (FE) a prey when they were 
gaining mass for moderately defended (a) or weakly defended (b) prey. A similar pattern was 
evident in the amounts of food being consumed when the birds were considering either 
moderately defended prey (c) or weakly defended prey (d). 

6.3.3 Within trial effects 

I noticed that birds seemed to be consuming fewer defended prey as each daily trial 

progressed which might suggest that birds were strategically managing their levels of 

toxins ingested. In order to ascertain if there was a within-trial decrease in the number 

of defended prey consumed, I compared the numbers of each prey consumed in the first 

half of the daily trial with those consumed in the second half of the trial. Included data 

from throughout the entire mass manipulation phase of the experiment making it a 

conservative as it includes data from days where all prey were consumed. I found, as in 



l: nergy-io. rin trade-oll.. three prev HS 

the previous chapter, there was a sWnificant decline of both defended prey types in the 

second half of' the trials when compared with the numbers consumed in the first half of' 

the experiment (X ± SI: Iwildl, first half=0.043 ± 0.014, second half=0.823 ± 0.023, 

=15.32 I, P<0.001, (1f'=5; X± SE: Iin dcritcl, first half=0.843 ± 0.027, second half=0.623 

± 0.42,1=13.032, P<(). 0()I, (If'=5: I ig. 6.5). However, the number of undefended prey 

consumed remained constant throughout the daily trials (X ± SI:: first half=0. t)91 ± 

0.004, second half=0.92 ± 0.012, paired i test: 1=0.434, P=0.682, df'=5: I ig. 6.5), 

which might suggest that the birds were not decreasing the nunthers due to satiation. 
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Figure 6.5. The number of each prey type consumed in the first half of a trial versus the second 
half of a trial. The birds showed a reduced tendency to consume the chemically defended prey 
in the second half of the experiment but the rates of consumption were similar in both halves for 
undefended prey. 

h. 3.4 ('trm/ýtrri. von t, /'1/tt' ingr. viinn of t/uirrinr lyre// Ii'iti en ('ho/)! er 5 oral ('hu/pier h 

One of the predictions of the SDI' models of state-based consumption of chemically 

defended prey is that birds should have a critical level of' toxins above which it is 

prohibitive for the birds to continue consuming chemically defended prey. "Therefore, if 

we compare the differences in the levels of quinine ingested in the two experiments, 

there should be no significant difference between the levels of quinine ingested 

standardised for mass. I compared the average amount of quinine Ingested corrected for 

body mass during the three days of training that were used to show that the birds had 
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Icarncd the prey differences in both experiments. There was no significant difference in 

the amounts of quinine ingested by birds in the two experiment (A ± SI-1': Chapter 

5=11.5 ± 2.98 lag/o of' body mass. Chapter 6= 14.3 ± 0.64 lid, /fig of body mass: l test: l=- 

0.963, P=0.358, di'=10: I io. 6.6). 
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Figure 6.6. The mean (+SE) levels of 
quinine per gram of body mass that birds 
ingested while at comparable states in 
Chapter 5 and Chapter 6 

h. -'. 
Sl )i[/crc iu'e. v in /(lh'lrrv' irr accm"dr/ice wish prey type 

I examined the hinds' latencies to attack the different prey types in order to test il' these 

were affected by quinine level and to see if' the reductions in enerýCetic state increased 

attack speeds. Differences in the latency data by prey type would indicate that the birds 

are educated about each prey type and that they may he more reluctant to attack 

chemically defended prey. Additionally, when birds lose mass, they might be quicker to 

attack prey in order to nmxrnuse the probability ol' capturing a prey item. I conducted 

two analyses of' the attack latency data: (I) to test latencies accordiný2 to prey type and 

(2) to compare differences in latencies in relation to changes in state. 

The results of the first analysis indicated that the birds were quickest to attack 

undefended prey, followed by mildly defended prey, and the moderately defended prey 
having the longest latencies (X ± S1-.: undefended=3.4 ± 0.72 sec, mild=4.5 ± 0.87 sec, 

moderate=5.5 ± 1.17 sec, repeated-measures ANOV A: I"', = 15.3O I, /'=O. 00 1, 

º)=0.78);, Fig. 6.7). Birds were significantly quicker to attack undefended prey 

compared with mildly defended prey (I. S1): undefended mildly defended, /'=0.028) 

and moderately defended prey (undefended - moderately defended. /'_O. O27 ). 
however, there was no significant difference between mildly defended and moderately 
defended prey (mildly defended -- moderately defended, l'=0.080). 
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Figure 6.7. The mean (+SE) latencies to attack for each prey type for the experimental period 

In the second analysis, I was interested in how the latency to attack chaný2ed in 

response to changes in state. 'Therefore, I compared the latencies of birds for each prey 

type at two times within the experiment: (I) the three day period used to demonstrate 

birds had been trained and (2) the day of I'I'I and the two days after this day. There 

were significant differences in the latencies between different tunes for undefended 

prey and moderately defended prey (. V ± Si:: undefended, early=4.1 ± 0.80 sec, full 

inclusion=2.2 ± 0.30 sec, paired i test: t=3.0()7, P=0.027, d1'=5; moderate, early=7.3 ± 

1.45, full inclusion=3.4 ± 0.33 sec, t=2.73, /'=0.04I, (11*=5; I'ig. (,.; {). However, there 

was no significant difference for the mildly defended prey despite the difference in the 

means (early=5.4 ± 1.15 sec, full inclusion=3.2 ± 0.33, i=2.15$, P=0.083, (11'=5; I'ig. 

0. $). 
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Figure 6.8. The mean (+SE) latencies to attacks of birds at the beginning of the experiment 
compared with the latencies at FFI for moderately defended prey. Generally, the latencies are 
significantly greater at the beginning of the experiment compared with the middle of the 
experiment. 

6.3 
.6 , 

Sirrl! I/Ia/lcoII. c rhoirc tr-ialLs. 

Simultaneous choice trials were conducted for Iwo reasons: (I) to ensure that birds were 

making their choices of which prey to coiºsnm>>e based on the learned colour cues and (2) 

to eliminate to possibility that birds were usin", other cues derived from the prey to 

make decisions. I totalled the number of prey consumed for cacti prev dyad and 

treatment and found that (1enerally the birds favoured undefended over the two defended 

prey types and the mildly defended over the moderately defended prey in both the 

colour-quinine (Fig. 6.9a, fable 6.4) and the colour only treatments (I"iv. 0. I Ih, fable 

6.4). When the colour cues were not present, the birds did not discriminate 

Table 6.4. The results of paired t-tests for comparisons of prey types presented in simultaneous 
choice trials 

Undef v. Mild 
t-score P-value 

Colour-Quinine 6.779 0.001 
Colour only 8.318 <0.001 
Quinine only 0 653 0.542 

Undef v. Mod 
t-score P-value 

7.68 0.001 
7.787 0 001 
0 696 0.518 

Mild v. Mod 
t-scor P-value 

3.53 0.017 
1.714 0 147 

-2 39 0 062 

lwt"een the defended and undefended Inc) Mg. 6.9c, Table 0.4). Therefore, hints were 

making, their attack decisions based upon the colour cues of the paper discs as opposed 

to any ether cues that were associated with the defended nºealworms. 

I 
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Figure 6.9. The mean numbers (+SE) of prey consumed over the simultaneous presentation 
trials. These results indicate that the generally chose prey in accordance with their expected 
quinine contents (a & b), but could not discriminate when the colour cues were removed (c). 

6.4 Discussion 

Together, these data support my two (predictions: (I) hinds were ahlc to discriminate 

anºun`1 We prey types and consumed them hased on their levels of chemical defences 

and (2) as hirds energetic reserves changed, they included defended prey in accordance 
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with their levels of defence. This is one of the first studies that have shown that birds 

can form stable preferences over long time periods based on the levels of defence of 

their prey. Although there have been many studies that have fed numerous prey to 

predators and they have shown that these preferences may be related to levels of 

chemical defence (e. g., Jones 1932,1934; Brower et al. 1963; Sargent 1995, Pinheiro 

1996) and on their levels of energy reserves (e. g., Chai 1986), these studies have been 

hampered by a number of factors. First, as I have already mentioned, few of these 

studies have measured the energetic states of predators or demonstrated the effect of a 

supposed manipulation on the state of predators. Second, although the birds were being 

tested with actual aposematic prey, the levels of the preys' defences were often not 

validated meaning that there is no way of knowing if the predators were using the levels 

of prey defence to form their preferences. Finally, the prey in these other studies were 

aposematic and so it is unknown if the colouration was having an effect on the 

preferences that were being observed. My study effectively controlled for all three 

effects by careful measurement of energetic state of birds, careful control of the amount 

of quinine contained in each prey, and by offering the birds prey were non-aposematic. 

Therefore, the preferences of the birds were most likely the result of differences in the 

levels of chemical defences the prey contained and the bird's energetic state. 

Another interesting result was that birds decreased the number of chemically 

defended prey in the second-half of the daily trials compared with the first-half. This 

suggests that the birds might have a critical level of toxins and they are able to 

strategically regulate their levels of toxins. These results are not due to satiation as birds 

are likely to have been losing mass during the course of the daily experimental session 

(further discussion in section 7.4). Therefore, these results support the SDP model of 

Sherratt et al. (2004) where they predict that birds may be able to strategically manage 

their intakes of toxins which they are able to ingest before the defended prey become 

prohibitively costly to consume. These results also add to the growing evidence that 

avian predators may be able to strategically manage their intakes of body toxins as has 

been shown in plant browsers (Belovsky 1982, Alm et al. 2002, Bergvall & Leimar 

2005, Bergvall et al. 2006; Marsh et al. 2006). 

These data support the idea that predators were making informed decisions for 

two reasons. First, the latency data suggest that the birds were quicker to attack the 

undefended prey compared with the other prey types. However, this trend decreased 

with decreasing energetic reserves although the overall trend remained significant. The 
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latency data suggest that the birds were more hesitant to attack chemically defended 

prey and this may work in the favour of aposematic species as this fact may give them 

more time to escape compared with non-aposemes. Second, the results from the 

simultaneous presentations also suggest that birds were using only colour signals as a 

cue for their decision-making and that there were no other cues the birds used to make 

their decisions. 

The fact that the birds' had attained greater energy reserves when they began 

excluding moderately defended prey in the mass gain period (FE) compared with their 

masses at FFI is an interesting finding. This is because it indicates that birds might have 

been using different mass regulation or behavioural strategies in the mass loss and mass 

gain periods of the mass manipulation phase (Godfrey & Bryant 2000). This is because 

in addition to being significantly heavier at the first exclusion for moderately defended 

prey, they were also consuming a greater amount of food. Although it is possible that 

birds could have built up a physiological tolerance to quinine, this would not explain 

why this trend also was not seen for the mildly defended prey. It is more probable that 

birds were utilising different mass regulation strategies. It has been demonstrated that 

birds are able to manipulate their mass strategically in accordance with SDP models 

(Thomas 2000; Barnett, unpublished data). Moreover, after periods of low energetic 

state, birds may gain greater amounts of mass as insurance against similar future events 

and so might continue to eat moderately defended prey until they attain a greater mass 

(Lima 1986; McNamara & Houston 1990; Houston & McNamara 1993; McNamara et 

al. 1994). 

Birds have been shown to have unlearned aversions to aposematic prey (see 

Ruxton et al. Pp. 90-94). However, they can also learn to reject prey on sight, after 

capture and tasting (e. g., Järvi et al. 1981, Wiklund & Järvi 1982), or after the 

consumption and post-ingestive consequences such as emesis (e. g., Brower et al. 1967). 

These results indicate that birds learned the differences among the three prey types by 

associating the positive (energetic reward) and negative (quinine) stimuli with the 

appropriate colour cues through a feedback mechanism. The rate of learning of a food's 

aversive qualities is thought to be related to the lag between ingestion and the onset of 
the negative post-ingestive consequences and the size of the negative effect (Leimar et 

al. 1986; Yearsley et al. 2001,2006). Little is known of the post-ingestive feedback 

mechanism that causes rejection of quinine-injected prey in birds. Birds have relatively 
few taste buds, in the order of 100, whereas humans have about 9000 (Kare & Mason 
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1986). This has led to some authors (e. g., Kassarov 1999,2003; but see Skelhorn & 

Rowe 2005) to speculate that chemoreception via gustatory nerves is likely to be much 

less important in birds than in mammals. However, in subsequent experiments 

(Chapters 6 and 7), birds were seen to gag and cast defended mealworms almost 

immediately after ingesting them (i. e., <5 seconds), which indicated that birds' 

reactions may have been mediated by gustatory or trigeminal pathways (Werner & 

Clark 2003). Matson et al. (2004) found that cockatiels (Nymphicus hollandicus) were 

able to perceive quinine at levels that were similar to those of humans. However, this 

experiment compared the differences in rates of consumption of water laced with 

different substances and so were not testing tasting ability per se. Therefore, all that can 

be stated with any certainty is that while quinine sulphate was a negative stimulus for 

the birds, its effects were probably not perceived immediately and could have been 

accompanied by a 5-20 second lag until a gustatory or general trigeminal response was 

registered (personal observation, Chapter 7, Chapter 8). Hence, although the negative 

stimuli were not immediate, their lags were experienced quickly enough for birds to 

learn the association between the stimulus, the prey, and the coloured paper disk. 

However, caution is advisable in interpreting the chemoreceptive abilities of birds, as it 

is likely that animals are adapted to taste compounds that are ecologically relevant to 

them (Werner & Clark 2003). 

Interestingly, when ruminants that were injected with PSMs every 60 minutes in 

accordance with their foraging behaviour, they were unable to learn the association 
between unpalatable food sources and their post-ingestive consequences because the lag 

was too great (Duncan & Young 2002). Therefore, these results would suggest that if 

the lag between ingestion and stimulus infusion were decreased, the animal may have 

more chance of learning the correct association and post-ingestive consequence. This is 

despite the fact that herbivorous animals are known to balance the intake of dietary 

intakes of PSMs in mammals (e. g., cattle, Bos taurus [Pfister et al. 19971, common 

brushtail possums, Trichosorus vulpecula [Stapley et al. 20001, red deer, Cervus 

elephus [Alm 2002; Bergvall-Alm 2005; 2006 and moose, Alces alces [Belovsky 19821 

and birds (e. g., bullfinches, Pyrrhula pyrrhula [Greig-Smith 19851 and ruffled grouse, 
Bonasa umbellus [Jakubus & Gullion 1990; Jakubus & Mason 19911). This indicates 

that animals are capable of forming associations of food quality in relation to forage and 

that Duncan & Young's method might have been at fault (e. g., the experiment might not 
have been run for long enough). 
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The results of this chapter emphasise the role of energetic state in the decision- 

making processes of birds. Birds that remain in the same location throughout the year 

are known to fluctuate wildly in mass throughout the year and throughout the day. 

Small- to medium-sized passerines (s 50 g) are known to gain as much as ten percent of 

their morning body mass by the end of the day (Clark 1978, Haftorn 1989,1992, Blem 

1990, Meijer et al. 1994, Barnett & Briskie 2007). This mass gain is rarely constant 

throughout the day with the peak times of mass gain confined to a few hours after 

sunrise and a few hours before sunset (Thomas 2000, Barnett, unpublished data). The 

seasonal and diurnal effects of mass change are rarely considered in studies of 

aposematic prey choice. These results indicate that the energetic states of birds need to 

be considered in the design and interpretation of experiments on aposematic prey 

selection. Indeed, observations of insect behaviour indicate that aposematic species will 

become less behaviourally conspicuous during times of the annual cycle with low food 

availability (Hassell 1978; Majerus & Kearnes 1989). 

These results demonstrate that as the birds lose energetic reserves, they increase 

the numbers of chemically defended prey in their diets which is consistent with 

previous research (Swynnerton, 1915; Sexton et al., 1966; Gelparin, 1968; Chai, 1986; 

Hileman et al., 1995; Gillette et al., 2000). However, they also suggest that the birds do 

this in a strategic manner by increasing the numbers of mildly defended prey before 

increasing the numbers of moderately defended prey. This pattern is also repeated as 

birds gain mass when they continue to include greater numbers of mildly defended prey 

over moderately defended prey. Previous studies have exposed birds to prey of differing 

levels of chemical defence. Wiklund and Jirvi (1982) fed young birds various 

aposematic prey and found that the rates of attack were very low and once attacked, the 

prey had a higher chance of survival compared with undefended prey. However, birds 

were presented with only one example of a particular aposematic species and so the data 

do not provide any further information as to the long-term dietary choices of educated 

predators Also, both altricial and precocial bird species were used and they may have 

had different developmental rates meaning results should not have been compared 
between species. Bowers and Farley (1990) fed grey jays seven different butterfly 

species and found that a group of four birds tended to prefer the more palatable 
butterflies. Birds were fed between three and six of each butterfly type. Therefore, 

although these studies provide evidence that birds are able to discriminate between 

prey, they provide no information of the long-term foraging behaviour of birds. 
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Moreover, there was no validation of the levels of toxins that prey contained, and the 

mechanisms that the birds were utilising to form their preferences was unknown. 

The only study that has attempted to manipulate the energetic state of birds while 

feeding bird multiple aposernatic prey was that of Chai (1986). Ile fed two rufous tailed 

jacamers various different species of butterflies. The first bird was fed 218 butterflies of 

62 morphs and the second was fed 938 butterflies of 103 morphs. Generally, he found 

that birds were selective in taking only butterflies that were known to be palatable. 

However, there were differences in the numbers of prey taken which he also attributed 

to differences in hunger. Chai's study also provides a valuable insight into the 

discrimination abilities of birds and their powers of memory. However, the birds' 

energetic state was not measured and the number of subjects was too small for 

meaningful interpretations of the state-based consumption of defended prey to be 

derived. Other studies have also shown that birds are able to discriminate among 

different aposematic prey (Jones 1932,1934; Brower et al. 1963; Sargeant 1995, 

Pinheiro 1996). However, one problem with these studies is that they are all confounded 

by the fact that butterfly imagos were used and so the effect of their warning signal 

cannot be disassociated from the decision to not consume the prey. Moreover, birds 

were fed insects at irregular intervals in many of these studies and so intake of food per 

unit of time was not standardised. This study controlled for both factors by carefully 

integrating energetic state into the design and by untilising non-aposernatic signals to 

advertise the prey properties. 
One problem of any study that negatively manipulates the energetic state of an 

animal is that the animal's cognitive abilities may become progressively impaired as its 

state deteriorates. There is some evidence to counter this argument both from this 

experiment and from the results of Chapter 5. First, the latencies to attack are related to 

the amount of quinine the mealworm contains meaning that generally as the quinine 

content increases, so does the latency to attack. Although the differences in latency 

between prey types decreased when the birds had lower fat reserves, they did not 

disappear meaning that birds were still making informed decisions. Second, if cognitive 

abilities were impaired at lower states, it would have been improbable that they would 

have chosen to exclude and include the two defended prey in accordance with their 

quinine contents. Moreover, In Chapter 5,1 demonstrated that birds displayed a 

preference for the undefended prey type when they were presented simultaneously 
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while on a restricted dietary intake that was designed to maintain their masses at 95 

percent of their free-fed mass. 
One common aspect of experiments that have fed birds large numbers of prey over 

long periods of time is that birds do not completely exclude the defended prey at free- 

fed masses (see also Chapters 4,6,7; Skelhorn & Rowe 2006b). Previous authors have 

interpreted these inclusions as being inconsistent with previous accounts of predator 

learning of aposematic prey and have come tip with various models to explain 

inclusions of defended prey. For example, it has been suggested that partial preferences 

can be maintained as a result of the predators forgetting the defensive properties of the 

defended prey (e. g., Turner et al. 1984; Guildford 1990; Servedio 2000). However, in 

this experiment, birds were unlikely to have forgotten prey association as individuals 

were subjected to multiple prey presentations over many days (see also Skelhorn & 

Rowe 2006b). The implications of this research go beyond the boundaries of pure 

aposematism research. They also have implications for the recent debate regarding 

quasi-Batesian mimicry. If predators do strategically consume chemically defended 

prey this suggests that the preferences of prey may be maleable and so question 

traditional approaches to the aposematism and Miillerian mimicry which state that the 

continued consumption of chemically defended prey extinguish the future tendency to 

attack (e. g., Turner et al. 1984; Guildford 1990; Servedio 2000). However, these models 
ignore the benefits that accrue to predators by attacking defended prey at times of 

energetic need. Therefore, models that consider the costs and the benefits of consuming 

chemically defended prey are likely to produce more realistic predictions (e. g., Sherratt 

2003; Sherratt et al. 2004) 

This experiment emphasises the importance of incorporating energetic state as a 
factor in both mimicry and aposematism studies. Although most researchers 

acknowledge that energetic state is an important factor in determining a predator's 
decision to attack chemically defended prey, energetic state has become a forgotten 

factor in empirical research of mimicry and aposematism. For example, it now a 

standard procedure to food deprive birds before starting experiments. However, this is 

done with little consideration of how this treatment affects a bird's energetic state other 

than to increase the subject's `motivation' to attack (motivation is generally a catch-all 

term that has become amorphous through loose application and poor definition). 

Therefore, by better incorporating and controlling for possible state based effects in 
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experiments and between experiments might significantly aid researchers in generating 

less ambiguous data. 

I have investigated the rates of attack upon three prey types of varying levels of 

chemical defence in response to changes in daily energetic state. This is'the first time 

that it has been demonstrated in an integrated manner that birds choose whether to eat 

chemically defended prey is based on both their energy reserves and the levels of toxins 

that the prey contain. This study also shows that birds were able to discriminate 

between three prey types and rank them according to their quinine contents. These 

results reinforce the assumptions that have been made by recent SDP models on the 

consumption of chemically defended prey and evolution of mimicry (Sherratt 2003; 

Sherratt et al. 2004). There also needs to be a wider appreciation of the effects that 

energetic state can have on the predation of aposematic animals both in experiments and 

in nature. 

6.4.1 Conclusions 

In this study, I have shown unequivocally, that birds can also form preferences for prey 
based on their levels of chemical defence without bright warning colours. The problem 

with many of the previous experiments that have fed birds multiple types of chemically 
defended prey is that the reason for the birds' preferences have remained unknown. For 

example, in Chai's (1986) study, birds were fed many different types of butterfly 

although, the actual chemical composition of these prey were unknown. This meant it 

was unknown which cues the birds used to make basing their decisions. Darst et at. 
(2006) have demonstrated that colour is also an important factor in determining predator 

choices with brighter colours also acting to deter predators despite no correlation 
between brightness and level of defence (although see Bezzerides et al. 2007). 

Moreover, I have demonstrated that these preferences are consistent as birds lose or 

gain mass. One possible criticism with the mass manipulation in Chapter 5 was that the 

mass manipulation of the birds might have ecologically unrealistic. Therefore, 

demonstrating that even small changes in mass can cause changes in the number of 

chemically defended prey consumed indicates that energy reserves are an important 

consideration in determining predators' probability of attack. These are also important 

findings because they support the assumptions of the SDP models that birds can choose 

prey based on the levels of chemical defences that the prey contain and their own levels 

of energetic reserves. The interactions between energetic state, prey defence, and 
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predator toxin burden are complex. Therefore, the results of this study need to be 

replicated both in European starlings in different physiological states and in different 

species with different mass regulation strategies and physiological capacities for toxins. 

Only then, will we be able to gain a comprehensive understanding of how these factors 

all interact in real predator-prey systems. 
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Chapter 7 

THE RELATIONSHIP BETWEEN ENERGETIC STATE, 
SIGNAL RELIABILITY, AND PREY CHOICE IN A 

BATESIAN MIMICRY SYSTEM 

7.1 Introduction 

7.1.1 Signals and their reliability 

The bright warning colouration of chemically defended animals such as butterflies are 

examples of visual signals. Otte (1974, p. 385) defined "signals" as "behavioural, 

physiological, or morphological characteristics fashioned or maintained by natural 

selection because they convey information to other organisms". Therefore, signals are 

traits that have evolved specifically to alter the behaviour of recievers. Cues on the 

other hand, are features of an organism that are not related to communication per se, but 

are used by receiving organism as information to guide future decisions (Maynard 

Smith & Harper 2003, pp. 3-6). This definition of a cue differs from that of Hauser 

(1996) who wrote that cues and signals both evolved but differ in the fact that cues are 

continuously expressed whereas signals are expressed discontinuously. I prefer the 

distinction of Maynard Smith and Harper (2003) in using a functional explanation to 

distinguish between cues and signals. Hence, my differentiation between cues and 

signals focuses on the intention of the signal. If the intention of the signal is to alter the 

behaviour of the receiver, then the conveyed information is a signal. Alternatively, if the 

information conveyed is incidental or a latent property of the signaller, then it is a cue. 

Generally, signals are thought to be costly to produce. This is because of the 

assumption that, for a signal to convey reliable information, it ought to incur some form 

of cost to the signaller (Guilford & Dawkins 1993b; Hauser 1996; Maynard Smith & 

Harper 2003). If signals incur no cost, then the communication system will break down 

because cheats can corrupt and devalue the meaning of the signal. This is because 

receivers should respond to a signal only when it benefits the receiver to act on the 
information conveyed by the signaller. If a signal can be used by too many cheats; it 
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will no longer convey the information that was intended, and receivers should no longer 

respond to the signal. The costs of signals and their reliability are still contentious issues 

within the field of animal signalling. For example, bird song is thought to function as a 

signal for males to attract mates, but the costs of singing are still debated keenly with 

many researchers arguing that song is no more costly than other behaviours (e. g., Horn 

et at. 1995, Ward et at. 2003a, b), whilst others have argued that the costs of singing 

may be significant (e. g., Thomas 2002; Barnett & Briskie 2007). Therefore, signal 

honesty and reliability are major issues in the study of animal communication. 

If signals are reliable, then the receiver can have confidence in the veracity or 

truthfulness of the signal. Searcy and Nowicki (2005 p. 3) formalised a definition of a 

reliable signal where a signal was reliable if: (1) some characteristic of the signal ... is 

consistently correlated with some attribute of the signaller or environment; and (2) 

receivers benefit from having information about this attribute. Although there are 

problems with this definition (e. g., how to define the term "consistently correlated"), it 

is a useful starting point within a biological context. 
Theoretically, aposematism may be an example of an honest signal as the 

possessor of such a signal has a quality that makes it unprofitable to attack (e. g., 
Sherratt 2002; Sherratt & Beatty 2003; Speed 2003; Broom et al. 2006; Speed & 

Ruxton et at. 2007). Aposematic signals are conspicuous and may increase the 

detectability of individuals and initially evolve as honest signals of prey unprofitability. 
However, this view is complicated by the fact that even within an aposematic species, 
the levels of defences can vary between individuals (Brower & Moffitt 1974; Brower et 

at. 1975; Brower et at. 1984; Cohen 1985; McLain & Shure 1985; Malcolm & Brower 

1989; Eggenberger & Rowell-Rahier 1991; Bowers & Williams 1995; Pasteels et at. 
1995; Moranz & Brower 1998; Ritland 1994; Tullberg et al. 2000). Automimicry is a 
form of intra-specific mimicry where an aposematic species has variation in the level of 
defences that individuals contain. Automimicry is similar in principle to Batesian 

mimicry because in both forms of mimicry, the mimic gains the protective advantage of 
the model's defences, but does not pay the costs of sequestering of producing defensive 

compounds (see Sherratt et al. 2004, pp. 55-64 for a discussion of the costs of chemical 
defences). The model (the defended species) gains nothing from the relationship 

meaning that it is a parasitic relationship. 
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7.1.2 Experiment introduction 

In Chapters 5 and 6, I presented some data that suggest that predators may be able to 

strategically manage their body levels of a specific toxin that is contained within 

chemically defended prey. If this is the case, then the reliability of an aposematic 

signal's association with its chemical defence could be an important factor in 

determining a predator's decision on whether or not to attack a defended prey item. This 

is because, as a predator ingests greater quantities of a toxin during a foraging bout, its 

body burden of toxins may approach some point where further ingestion of defended 

prey items becomes prohibitively costly. Sherratt et al. (2004) called this point the 

'critical toxin burden'. This means that if a predator is strategically managing its toxin 

burden, the reliability of an aposematic signal may become more important the closer it 

gets to the critical toxin burden. In a situation where a predator could encounter two 

prey types each with the same average level of defence, but one with a reliable signal 

and the other with an unreliable signal, it might be expected that predators prefer the 

prey with reliable signals as the predator began to approach its critical burden of toxins. 

In this way, a predator can manage its toxin burden more precisely. Therefore, the 

variation in defence may confer an advantage to a mimicry complex by reducing attacks 
(all other things being equal). 

Aposematic signals are made up of two or more sensory components and it is 

possible for each component of the signal to vary. For example, visual signals may vary 

as in the case of imperfect Miillerian mimicry and chemical defences may vary both 

within a species (automimicry) or between species (Batesian and Miillerian mimicry) 
(Ruxton et al. 2004). Recent studies have investigated how differences in visual signals 

and chemical defences can interact with one another (Lindström et al. 2006, Ihalainen et 

al. 2007). However, these studies have not been concerned with how signal reliability 

may influence predators' prey choices. 
I aimed to investigate how signal reliability might affect the prey choices of birds 

in relation to mass loss by offering birds sequential presentations of three prey types 

that had distinct visual signals: (1) an undefended prey type; (2) a "constant" prey that 

contained a constant amount of quinine per prey (i. e., it had reliable colour signal of 

underlying quinine content); and (3) a "model-mimic" prey that had variable defences, 

but the same average level of defences as the constant prey (i. e., it had unreliable colour 

signals of underlying quinine content). The two defended prey had the same average 
levels of quinine, but they differed in the variance in the amount of quinine around the 
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mean. By, comparing the rates of prey consumption between these two defended prey 

types, I was able to examine the effects that signal reliability might have on the foraging 

choices of European starlings. 

Recent SDP models on the state-based consumption of chemically defended prey 

have predicted that predators should consume chemically defended prey when they 

become energetically stressed (Sherratt 2003; Sherratt et al. 2004). Sherratt et al. (2004) 

also predict that predators should regulate their intake of chemically defended prey so 

that they do not exceed their intake above a critical burden. Therefore, if average toxic 

effect of the two prey types are equal then, then it would be predicted that birds should 

display no difference in preference for either of the defended prey types. However, from 

a signal reliability perspective, the birds ought to favour the signal that is more reliable 

(i. e., the constant prey). This is because as birds approach their critical body burdens of 

toxins, they should pick an option that allows them to be able manage their levels of 

toxins with more certainty. The constant prey has the more certain outcome and so 

should be favoured despite the birds knowledge of each prey type being the same. This 

is the first study that has presented this sort of foraging problem to predators and 

examined the strategies that they develop when they are exposed to these prey over long 

periods of time and hundreds of prey presentations. This experiment aimed to examine 

additional benefits to prey with variable defences based on the uncertainty that 

predators might experience when attacking these prey types compared to non-mimetic 
defended prey. 

7.2 Methods 

7.2.1 Study species and housing 

The subjects were seven wild caught male European starlings (Sturnus vulgarus) caught 

under licence from English Nature (Licence Nos. 20040489). The birds were 
individually identifiable throughout the experiment through use of numbered white 

celluloid split leg-bands.. The birds were taken from the free-flight aviary and housed 

individually in wire mesh cages measuring 450 x 750 x 450 mm (h xwx d) with a 

metal drawer at the bottom, which could be removed for cleaning. The birds were 

subjected to a 14: 10 hour light/dark cycle (lights on at 0900 hr; lights off at 2300). 

During the experiment, birds were fed pheasant breeder pellets in accordance to their 

previous days mass change (see section 6.2.2 for details). During training, birds were 
fed ad libitum pheasant breeder pellets and were given a piece of fruit daily. Water was 
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available to birds continuously at all times. When food was changed each day, the 

remaining food was weighed so I could calculate the amount of food consumed per 24 

hr. At the end of the experiment, birds' masses and fat scores were monitored until they 

had stabilised, when they were returned to the free-flight aviary. 

7.2.2 Prey-preparation and training 

The objective of the experiment was to examine the responses of birds to three prey 

types: undefended prey, model-mimics (with unreliable colour signals), and constant 

prey (with reliable colour signals) (Table 7.1). Prey were Tcnebrio sp. larvae 

(henceforth, mealworms) of approximately 20 mm in length. Prey of this length was 

used in order to standardise the nutritional value of mealworms. The masses of 

mealworms and their nutritional value would be similar to those used in other chapters 
(see section 5.2.3 for details). Mealworms were injected intra-orally into the body 

cavity with quinine or water. This method allowed liquids to be introduced into the 

mealworm while maintaining its body shape and minimising the seepage of bodily 

fluids from the exoskeleton. 
Table 7.1. The treatments of the four prey types used in this experiment. 

Prey Type Treatment I 
Undefended 0.2 mL water 
Constant prey 0.2 mL 2% quinine sulphate suspension 
Mimics 0.2 mL water 
Models 0.2 mL 4% quinine sulphate suspension 

This experiment differed from those in Chapters 5 and 6 in that birds were trained 

to flip lids that had been placed over a Petri dish containing a mealworm. The 

mealworms in this experiment were covered by a coloured cardboard lid meaning that 

the birds were unable to see the mealworms directly until they flipped the lid off the 

dish. The lid flipping technique is preferable because means that only the colour cues 

are available to birds before deciding whether to attack the prey or not. 
Birds were trained to flip the lids (42 mm diameter) that were initially uncoloured 

(white) off the tops of Petri dishes (38 mm diameter). All birds learned this within three 
days of training. I initially food deprived birds for two hours prior to starting the 

training, but quickly realised that the birds would participate in training and 

experimental sessions without pre-trial food deprivation. Therefore, I eschewed food 

deprivation for the rest of the experiment. Birds were not moved in their cages or 
hidden behind curtains for this first part of training meaning birds could see one 
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another. I habituated birds initially to eat undefended mealworms that had not been 

injected with any liquid substance from uncovered Petri dishes that had been left in the 

centre of its cage for one minute after which I removed the dish. There was then an 

interval of two minutes before the next mealworm was presented. Once a bird had 

consumed a mealworm five times in succession, I placed a circle of white card next to 

the Petri dish with the next mealworm. Again, the birds were required to consume five 

of the mealworms before the disk was propped against one side of the Petri dish. With 

each presentation, I continued to leave the Petri dish containing a mealworm in the 

bird's cage for one minute before it was removed and another two minutes allowed to 

elapse before presenting the next mealworm. If the bird attacked a mealworm on five 

occasions within 10 seconds of each pressentation, I moved the disk to cover a slightly 

greater part of the Petri dish. This was done in quarters whereby at first the disk covered 

a quarter of the dish. Once a bird had consumed the mealworm five times within the 

first 10 seconds of a presentation, the disk was moved to cover a half of the Petri dish. 

This process was repeated until the cardboard disk completely covered the Petri dish 

and the bird had completed five successful lid flips and consumed the mealworms in 

under 10 seconds. At this point, I began using coloured lids in the training of birds and 

conducting the trials in visual isolation. 

Five minutes prior to the start of the trial, birds were moved in their cages to a 

new position within the room and left to habituate. They were positioned behind a 

curtain in order to ensure that the other birds in the room could not see the subject and 

vice versa. The bottom of the curtain was level with the bottom of the cage. In order to 

observe the bird, I used a video camera connected to a television monitor. 
Birds were first habituated to the coloured paper lids (pink, blue, green, and 

yellow), which were balanced between the subjects as much as possible to minimise the 

possible effects of colour biases. Birds were presented with 18 undefended mealworms 
in small Petri dishes concealed under coloured card disks. The order in which I 

presented the different coloured lids was randomised within a daily training trial, but 

with the rule that two of each colour were presented in each third of the daily training 

trial. For each prey presentation, the birds had one minute in which they could attack 

and consume the prey. If a bird consumed the mealworm, the dish was removed 
immediately and the bird was left until three minutes had elapsed before another prey 

was presented. If the bird failed to consume the prey after one minute, the Petri dish was 

removed and another two minutes elapsed before the next prey was presented. 
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Once the birds consumed all 18 larvae in a trial using undefended prey, the birds 

could be trained to learn the colour associations between colour and prey type. A 

different colour was used exclusively to indicate each prey type and there were six 

presentations of each prey type in each daily trial. Prior to the first training trial, I 

presented five undefended prey covered with the coloured paper lids so that birds would 

not stop eating mealworms as they might if they consumed defended larvae during 

initial presentations. I then presented a further 18 larvae, with two of each prey type 

presented in each third of the session. I assumed that birds had learned the differences in 

prey properties when the total number of prey eaten in the previous three days of the 

trials were significantly different using a chi-square test from what would have been 

expected if the birds were feeding without preference (see section 7.3.1 for results). 

Generally, the mean number of trials it took birds to learn the colour associations was 

12.7 trials (SE: ± 1.85 sessions; range=8-20 sessions). I did this over three days to avoid 

the possible that the significant result was not due to chance. This is is because if you 

test birds enough, eventually they will display behaviour that will yield a significant 

result on one day. However, this is much less likely over a three-day period. 

On two training days, I weighed each bird (to the nearest 0.1 g) at the beginning 

and end of the daily training trial. I chose the day I weighed each bird at random within 
the period where birds were learning the colour prey associations, but I allowed at least 

four days between the first and second day's readings. I weighed birds so I could 

ascertain the mass change of birds throughout an experimental trial. I did this during 

training, to avoid any additional handling of birds interfering with the data collection 
during the experimental trials. Although it is possible that this procedure could have 

interfered with the birds' learning of the colour/prey associations (as they grow agitated 
during handling), I did not notice any elevated level of restlessness or reluctance to 

participate in training on days when I weighed birds (personal observation). For 

example, they settled down in their cage quickly after being placed back in there and 
they did not seem reluctant to attack mealworms when they were presented (i. e., their 
latencies did not seem longer and they approached mealworms in a manner similar to 
how they did on other days). 

On each day during the training period, I weighed and visually assessed fat levels 

as set out in the next section. I calculated the birds free-feeding masses from this data 

using the five days data up to and including the day where the birds had been shown to 
have learned differences among the three prey type. I also collected the food remaining 
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at the bottom of the bird's cage in order to calculate the amount of food consumed 

within a 24-hour period. I compared the mean amount eaten on the five days that were 

used to calculate the bird's average food consumption. Although this did not take 

account of the food spilled from the cage, it positively correlated with the masses of the 

individual birds with heavier individuals consuming more food in a 24-hour period than 

lighter individuals (F1,6=6.632, P=0.050, r2 = 0.5701, Fig. 7.1). 
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Figure 7.1. The mean amount of food 
consumed by individuals in a 24-hour 
period correlated with their mean body 
masses during training. 

7.2.3 Experimental trials: mass manipulation and prey choice 

As in Chapter 6, I made visual inspections of the furcular fat levels and weighed the 

birds each day (see section 6.2.2 for details). I also manipulated the birds' energetic 

state through food restriction using the reactive adjustment method (see section 6.2.2 for 

details) and calculated the bird's free-feeding mass (FFM). I measured the 

circumference of the birds around their chest, wings, and back at the point where the 

sternum was deepest at the beginning of the experiment and on the day after the bird 

consumed all of the prey for the first time (FFI). I did this in order to measure if the 

birds lost muscle throughout the mass manipulation. If the birds were severely 

energetically stressed, then the birds would be expected to metabolise muscle as well as 
fat tissue, which would cause muscle atrophy. 

The mass manipulation phase of the experiment had two periods: a mass loss and 

a mass gain period. The birds were fed after weighing (between 0915-930 GMT) either 
50 g of food during training or a restricted amount that was calculated according to the 

reactive adjustment method (outlined in section 6.2.2). This method allowed birds to 

gradually gain and lose mass the rate of about half a gram or less of mass each day (9: t 



Prey choice, energetic state, and the effects of variation 156 

SE: mass loss phase=-0.33 ± 0.058 g, mass gain phase=0.50 ± 0.079 g). During the 

mass loss period, the birds' levels of consumption of the different prey types were 

recorded until all of the prey were being consumed. At the point where a bird consumed 

all of a particular prey type, I noted this and called it the day of first full inclusion (FFI) 

for that particular prey type. Eventually, the birds' energetic state declined to the point 

where they consumed all of the prey that were offered to them. On FFi, I fed the bird its 

previous days food minus the mass change in order to stop its mass from changing. 
Once all the prey were consumed for three consecutive days, I allowed the birds to 

begin gaining mass. I included the criterion to avoid the possibility that the day on 

which all prey were consumed was not an isolated occasion. All birds reached this point 

whilst above 90 % of their FFM. I continued the daily trials as I switched birds from the 

mass loss period of the experiment to the mass gain period. The prey types that were 

consumed were recorded until a bird either reached its 100 % free feeding masses or 

when it was no longer consuming any defended prey. 
In order to make mass comparisons within the same individual, I first calculated 

an average mass of the individual birds whilst under experimental conditions. I 

calculated the mean mass of the birds on the last five days of training phase of the 

experiment which was then used to calculate a standardised mass that could be 

compared among individuals. The masses did not need to be standardised using tarsus 

or wing length as each bird was acting as its own standard for making comparisons. 
Individual birds followed the same schedule on each day. However, I could run 

only two experimental trials simultaneously, which meant that I had to stagger the start 

and begin a new pair of birds every 90 minutes. The first pair of birds was started at 
1300 hr and it took about six hours to fully complete trials for all seven birds. Prey 

presentation was identical to that during training. On each day of the mass manipulation 

phase, 18 larvae were presented to birds in a sequence which constituted a daily trial. I 

recorded if the bird flipped the lid and whether the prey was attacked and consumed. I 

also recorded the latency to attack (from when the prey was placed in the cage until the 
bird's bill touches the prey item) and the birds' behaviour. 

7.2.4 Behaviour while attacking and consuming prey 
During the course of the experiment, it became evident that birds' behaviour towards 

the different prey types was changing. Initially, birds did not handle prey and quickly 
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consumed the prey after flipping the lids off the Petri dishes. As the experiment 

progressed, I noticed that the birds' prey handling times began to increase and that they 

were increasing the types of behaviours displayed. I identified a number of different 

behaviours that the birds displayed before attacking the prey, while handling the prey, 

or after eating or rejecting the prey (see Table 7.2 for descriptions). I also hand-timed 

the handling times all prey presentations. 

Table 7.2. Classification of different behaviours observed during the daily experimental trials. 
R Behaviour Description 

Pre-attack 
Jumping Jack Bird approaches prey and then jumps back quickly and flaps 

wings. 
Bill wiping Wiping bill on cage, perch, or floor. 
Bill gaping Bill open for an extended period of time. 
Feather ruffling Feathers ruffled quickly or for protracted period. 
Casting A food item brought up from crop. 
Handling 
Jumping Jack Bird approaches prey and then jumps back quickly and flaps 

wings. 
Head biting Biting the cephalic region of mealworm 
Body crushing Biting the body of mealworm up and down its length 
Wiping Wiping the mealworm in the floor of the cage 
Whacking Hitting the mealworm against cage floor 
Post-ingestive 
Bill wiping Wiping bill on cage, perch, or floor. 
Bill gaping Bill open for an extended period of time. 
Feather ruffling Feathers ruffled quickly or for protracted period. 
Casting A food item brought up from crop. 
Head shaking Head shaken vigorously for short time (-1 sec). 

7.2.5 Statistical procedures 

On each day of the mass manipulation phase of the experiment, I calculated the birds' 

standardised masses. Throughout the mass manipulation experiment, the bird's 

standardised masses ranged between 0.9 and 1.04 (although no individual bird's masses 

encompassed the entire range of variation). Therefore, I constructed a scale of 0.01 

graduations of standardised masses. This allowed the data to be pooled for each 
individual bird during the mass loss and mass gain periods of the experiment. This 

allowed me to compare the relationships between changes in birds' masses and their 

changes in prey preference. This also allowed me to remove time as a factor, as often 

the birds' mass changes were not consistent in their downward or upward trends. This 

allowed me to remove these differences and concentrate on the relationship between 

energetic state and consumption of the different prey types. 

I used the data obtained from the above method to construct separate linear mixed 

models (LMMs) for the mass loss and mass gain phases of the experiment. I used 
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Akaike Information Criterion (AIC) in order to choose the best model. The lower the 

AIC, the better the model is a general rule of thumb. All analyses that were on 

proportionate data, I arcsine square-rooted the data and performed parametric tests on 

the resultant transformed value. I compared differences between means using the least 

significant difference (LSD) method that had been corrected for multiple comparisons 

(Bonferroni method). 

The analyses in section 7.3.2 were calculated by hand and checked three times for 

accuracy. I used Tukey's HSD (honestly significant difference) test, which is a post-hoc 

method of comparing differences between means. This method is one of several 

methods that ensure that the chance of finding a significant difference in any 

comparison is maintained at the alpha level of the test. Therefore, the alpha-level does 

not need to be corrected. 

I also conducted an analysis on the number of behaviours that were expressed in 

relation to prey type and time throughout the mass manipulation phase of the 

experiment in order to examine if handling behaviour increased as the experiment 

progressed. In order to do this, I standardised the length of the experiment between 

individuals since the number of experimental days experienced by each bird varied 
between individuals (Range=43-56 days). Therefore, I converted the day number into a 

proportion by dividing it by the total number of days that bird was subjected to 

experimental trials. I then put each time into one of twenty time bins which were split 
into 0.05 graduations beginning at 0 and ranging to 1. I transformed the resulting value 

using the square root transformation (V[x + 0.5]) and analysed the resulting values using 

a LMM. 

I conducted all statistical analyses using SPSS for PCs (Versions 14.0,15.0) and 
for Macintosh computers (Version 11.1). I checked all data for normality and 

transformed the data with appropriate transformations if they were not normal. 

7.3 Results 

7.3.1 Training 

I considered the birds to be trained to the defence-colour association when a chi-square 
test was significant for the totals of the previous three days' consumptions of each prey 
type. The number of trials that it took for birds to learn the prey associations ranged 
from 8 to 20. The birds favoured undefended prey over constant prey, which were in 
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turn favoured over model-mimics (X ± SE; undefended=17.7 ± 0.18, constant=10.1 ± 

0.94, model-mimics=6.9 ± 0.46). 1 conducted a chi-squared test of the each bird's total 

number of each prey type consumed over the three trials of training against the 

assumption that the number of prey consumed would be randomly distributed between 

the three prey types. I found that the number of prey consumed differed significantly 

from the expectation of random prey preference (all x2>7.462, all P<0.05, df=2). 

In order to ascertain the change in mass during an experimental trial, I had 

measured the average mass change between the mass at the beginning and. at the end of 

the two daily training trials. Using the mean mass change during these two trials, I 

found that the birds lost mass during the trials and that they were significantly lighter at 

the weighings at the end of the trials (X ± SE: start mass - end mass=0.6 ± 0.19 g, 

paired t-test: t=3.175, df=6, P<0.02). This suggests that the birds lost mass during a 

training trial, although it is possible that some of this mass loss was due to defecation 

(since they were not food deprived). Moreover, the method of weighing was likely to 

have been stressful for birds meaning that a corticosterone response could have been 

triggered, which would increase the metabolic rates (and thus, mass loss) of birds. 

Therefore, it would have been better to have remotely weighed the birds rather than 

handle them twice within an hour. However, the birds seemed behaviourally unaffected 

by the weighing by the start of the trial and participated without in the training trial 

without obvious differences to days when they were not weighed. 

7.3.2 Rates of attack 

In the last two chapters, the rates of attack have matched the rates of consumption. In 

this chapter, I changed the method of prey presentation. Therefore, I conducted two 

crude analyses to investigate how the rates of attack corresponded with the consumption 

of prey. First, I calculated the rate of attack for each individual bird and prey type 

throughout the mass manipulation phase of the experiment. I pooled the average 

proportion of prey attacked by individual and prey type and conducted a repeated- 

measures ANOVA on the arcsine square root transformed data. I found that the 

proportion of prey attacked varied significantly between prey types (repeated-measures 

ANOVA: F2,12=84.97, P<0.001, Fig. 7.2a). Post-hoc tests of the differences between the 

means revealed the undefended prey were attacked at significantly higher rates than 
both the constant prey and undefended prey (Tukey's HSD: undefended - 
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Figure 7.2. The mean (+SE) proportions of prey attacked in relation to prey type (a) and the 
mean proportion of attacked prey then consumed (b) 

constant=22.17, P<O. ()I) and model mimics (undefended model Illimics, =20.67. 

/'<O. OI ). I lowever, this was not the case Ior the difference between constant prey and 

model-nIinHics (constant model-mimics= 1.50, /'. 0.05). 

The second analysis I completed was and cxanuinatloll of the proportion of prey 

that were attacked which were suhseduently consumed. This is not analogous to the rate 

of prey consumption (see Fig. 7.3) hecause the prey consumption is the product of these 

two factors. I analysed the data collected on the rates of attacked prey that were then 

consumed that had been pooled by prey type and individual. I found that the proportion 

of attacked prey that were subsequently consumed differed sionificanlly between prey 
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types (repeated measures ANOVA: F2112=50.32, P<0.001, Fig. 7.2b). There were 

significant differences between the mean proportions of attacked prey that were 

consumed by prey type (Tukey's HHSD: undefended-constant=17.29, P<0.01; 

undefended-model-mimics=24.60, P<0.01; constant-model-mimics=7.31, P<0.05; Fig. 

7.2b). 

7.3.3 Changes in energetic state during the mass manipulation phase 
In order to examine the relationship between body mass and furcular fat scores, I 

conducted regression analyses on each individual's daily masses and fat scores. These 

analyses revealed a significant relationship between bird mass and their levels of 
furcular fat scores (linear regression: 51M: F1885 = 122.61, P<0.001, r2 = 0.591; 54M: 

F1,83 = 108.63, P<0.001, r2 = 0.562,61 M: F1.85 = 44.32, P<0.001, r2 = 0.335; 63 M: F1, B4 
= 62.79, P<0.001, r2 = 0.428; 64M: F1885 = 46.30, P<0.001 r2 = 0.353; 78M: F1885 = 
113.98, P<0.001, r2 = 0.573,81M: F1,85= 227.94, P<0.001, r2 = 0.728). These data 

indicate that the mass changes during the mass manipulation phase of the experiment, 

were due in large part to a reduction in body fat reserves. Therefore, I use mass as a 

surrogate for energetic state for the rest of the chapter because the mass has been shown 

to be significantly related to fat reserves. 
It is also possible that there was also muscle atrophy during the mass manipulation 

phase of the experiment which I tested by measuring the pectoral circumference of birds 

at the beginning of the experiment and at FFI when the birds should have been 

theoretically most energetically stressed. I found that the diameter of the birds around 

the deepest part of their sternum was significantly smaller on FF1 (T t SE: diameter at 

beginning - diameter at FFI=-8.4 t 2.00 mm, paired t-test: t=-4.218, P<0.01, df=6). 

This is likely to be due to atrophy of the pectoral muscle since there is little 

subcutaneous fat around any part of the bird at this point. Moreover, the pectoral 

muscles are the largest muscle group on a flighted bird's body and so may indicate an 

overall reduction of body muscle. 

7.3.4 Gross indicators of prey preference 

In order to see if birds maintained this learned preference throughout the mass 

manipulation phase of the experiment I conducted two crude analyses on the data that I 

generated. First, I compared the number of each prey type consumed on each day of the 
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mass manipulation phase of' the experiment. Second, I compared the number of' days 

that the birds included all of a particular prey type throughout the mass manipulation 

phase of' the experiment. 

For the first analysis. I calculated the mean nurllbei of* each prey type consumed 

per daily trial throughout the entire mass manipulation phase of' the experiment. I found 

that the daily consumption of' prey during the mass nuuliprºIation phase of the 

experiment differed by prey type (repeated measures ANOV A: F, , =40.134, 

q2=O. 870,7.3). Comparisons between contrasts revealed that the daily consumption 

of the undefended prey was significantly higher than the other two prey types (I. SI): 

undefended - constant=l. 1, l'=O. OO?, undefended model nlinlic=1.47, /'=(1. (1(111. The 

numbers of, constant prey consumed tended to be higher compared to the rlnxlrl iuiiuics, 

although, the trend was not quite significant (constant model nlinlic=0.37, l'=0.072). 

This result indicates that the bird's preferences that they Iorrlled ill training were partly 

maintained throughout the mass manipulation phase of the experiment. 

When I compared the difference in the number of models and illinlics consumed 

throughout the mass manipulation phase, I found that nlinlics were consumed at 

significantly higher rates than models (X ± tit.: Difference model mimic= 2.43 ± 

0.369: paired 1-test: t=-6.58, (if=6, /'=O. 0006). 'I his difference over the mass 

manipulation phase meant that approximately 2.4 extra mimics were consumed over the 

entire experimental phase of' the experiment (range=43-5(, days). Therefore, this result 

is not biologically meaningful because it is the result of a small standard error of the 

differences between the two means which generated a high I statistic. 

For the second analysis, I calculated the number of days where each bird 

consumed all of a particular prey type. Although, this was a crude pleasure of 

preference, it yielded it very significant result indicating that despite this conservative 
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Figure 7.3. The mean number of each prey type (+SE) 
consumed on each day of the mass manipulation phase 
of the experiment 
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statistical method, the order of' preference was highly robust (N ± SI.: 

undefended=50.57 ± 1314 constant= I K17 ± 1111 model mimic= 12 ±I 461 

repeated-measures ANOVA: Q, =51621 /'<(l. (IOI, q2=0. o)O3,7.4). Pair wise 

comparisons by prey type indicated that all undefended prey presented in a daily trial 

were consumed on a significantly greater number of days when compared with constant 

prey and model-I11im ics (LSD: undefended constant, /'=(1. O(11 ; undefended model 

mimic, /'=O. OOI ). I lowever, there was no significant difference between the number of 

days where all nlealwornls were consumed for the two defended prey types (constant 

model-mimics, P=O. 176). 

Figure 7.4. The mean number of days (+SE) on 
which birds consumed all of a particular prey type. 
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7.3.5 /'rc fi'renre. v o/ birds with rh(nr, t, 'r. v ire nru. c. c 

As with the previous experiment (C hapter 6), one oI' the aims of this experiment was to 

ascertain the effects that short term changes in energetic state have can the consumption 

of chemically defended prey. I predicted that if' signal reliahility and defence variability 

are is important for birds attempting to strategically Homage bodily toxin burdens, birds 

may prefer prey with colour cues that reliably indicate their level of chemical defence 

(constant prey) over prey with cues that are not good predictors their levels of defence 

(model-mimics). 

I constructed a linear mixed model (I MM) oI' the proportion of each prey type 

consumed in association with the birds standardised mass (split into O. OI graduations) 

during the mass loss and mass gain periods of the experiment. The mass loss phase of 

the experiment was defined as being all of the days where birds were losing mass until 

they started eating all the prey offered to them (Ill). I also included the next two days 

after Ill in order to ensure that the consumption of all the prey on the First day was not 

a chance event. This also aided in standardising the endpoint of each bird's mass loss 
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phase. I included standardised mass and prey type as main factors and individual birds 

included as a random subject variable. The arcsine square root transformed mean 

proportion of prey consumed was the dependent variable. The model for the mass loss 

phase of the experiment shows that as birds lost mass, they increased the number of 

chemically defended prey in their diets (LMM: F143135=4.534, P<0.001, Fig. 7.5a). There 

were many significant differences in the pair-wise comparisons between different 

masses, which have been included in Table 7.3. There was also a significant difference 

in the numbers of prey consumed by prey type (F21133=74.654, P<0.001, Fig 7.5a). Pair 

wise comparisons between the means revealed that there were significant differences in 

the proportions of prey consumed among all three prey (LSD: undefended - model- 

mimics=32.9, P<0.001; undefended - constant=23.6, P<0.001; model-mimics - 

constant=-9.2, P<0.001). The interaction term for mass by prey type was not significant 

(FFS. 135=0.913, P=0.596). The estimated total variance of the model was approximately 

212 of which 42.5 (20.11%) was attributable to variation between individuals. This 

meant that between, subjects variance was not a significant source of variation for the 

model as a whole (Wald Z: Z=1.467, P=0.142). 

Once the birds had consumed all of the prey items offered for three consecutive 
days, I began incrementally feeding the bird more food in order to allow them to begin 

gaining mass. The first day when a subject did not eat all of the prey offered was the 

day of first exclusion (FE). I continued to allow birds to slowly gain mass until the birds 

had reached the free-feeding masses that had been calculated for them at the beginning 

of the experiment. From the first day, that the bird did not include all of the prey items I 

included the three days prior to first exclusion in the LMM. This was to ensure all the 

birds' foraging choices were being started at the same point. As with the mass loss data, 

I constructed a LMM, with standardised mass and prey type as main factors and 
individual birds as a random subject variable. The arcsine square root transformed 

proportion of prey consumed was the dependent variable. The proportion of prey 

consumed was dependent on the standardised mass with fewer defended mealworms 
being eaten as the birds gained mass (LMM: F14.120=3.698, P<0.001, Fig. 7.5b). 

Comparisons of the means between different masses revealed that the differences were 

among 0.9 and six other mass classes (LSD: 0.9 - 0.96=21.1, P=0.019; 0.9 - 0.97=22.2, 
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Figure 7.5. The mean proportions of each prey type consumed in each mass class as birds lost 
mass (a) and gained mass (b). Standard error bars omitted for clarity. 
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Table 7.3. Significant pair-wise differences in the proportion of prey eaten at different 
standardised masses calculated using the LSD method as birds lost mass. All other pair-wise 
differences are non-significant. 

Mean Standard 
Mass (i) Mass Difference (i-j) Error df P 
0.90 0.95 29.5 6.46 132 0.001 

0.96 24.1 6.46 132 0.031 
0.97 27.6 6.25 132 0.002 
0.98 27.6 6.46 132 0.004 
0.99 32.5 6.25 132 <0.001 
1.00 28.7 6.45 133 0.002 

0.91 0.95 27.4 6.46 132 0.004 
0.97 25.6 6.25 132 0.008 
0.98 25.5 6.46 132 0.013 
0.99 30.5 6.25 132 <0.001 
1.00 26.7 6.45 133 0.007 

0.92 0.95 24.5 6.46 132 0.024 
0.97 22.6 6.25 132 0.045 
0.99 27.5 6.25 132 0.002 
1.00 23.7 6.45 133 0.036 

P=0.004; 0.9 - 0.99=21.3, P=0.017; 0.9 - 1.00=23.1, P=0.046; 0.9 - 1.01=26.5, 

P=0.002; 0.9 - 1.02=31.8, P=0.009). All other comparisons among different masses 

were non-significant. The proportions of prey consumed also varied between prey types 

(F2.120=56.075, P<0.001, Fig. 7.5b). The birds preferred to consume undefended prey as 

opposed to the other two prey defended prey types (LSD: undefended - constant=30.9, 

P<0.001; undefended - model-mimic=27.3, P<0.001; Fig. 7.5b), but there was no 

significant difference in the proportions of constant prey and model-mimics consumed 

(constant - model-mimics=3.6, P=0.776). The interaction between mass and prey was 

not significant as birds gained mass (F28120=0.964, P=0.524). The estimated total 

variance of the model was approximately 285 of which 67 (23.5%) was attributable to 

variation between individuals. This meant that between subjects variance was not a 

significant source of variation for the model as a whole (Wald Z: Z=1.011, P=0.312). 

Taken together, these analyses of the two phases of mass loss and mass gain 

indicate: (1) that the proportion of chemically defended prey consumed was dependent 

on mass (Fig. 7.5), and (2) that as birds lost mass there was a preference for constant 

prey over the model-mimics which was not evident as birds began gaining mass again. 

7.3.6 Behaviour of birds while attacking and consuming prey 

Throughout the mass manipulation trials, I had been collecting the types of behaviours 

that birds had been displaying towards to prey while handling them. This allowed me to 

conduct three analyses on the data that I collected: (1) 1 compared the amount of 
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handling Ollie birds displayed towards each prey type; (2) I examined the nunºber oI 

behaviours that birds exhibited towards the different prey types as the mass 

manipulation phase of the experiment continued: and (3) I analysed the frequency each 

behavioural type was exhibited in relation to prey type. 

I hand timed the latencies to attack for each prey presented throughout the mass 

manipulation phase of' the experiment. These data allowed nie to compare the amount oI 

time that birds spent handling cacti prey type by pooling data for the three prey types 

used throughout the entire mass manipulation phase of the experinºrnt. I found that the 

birds handled the different prey types for significantly different Iengtlºs of tine 

(repeated measures ANOVA: F.,,: =17.200, I'<(1. (1(11, ij O. 7.4I, Fig. 7.6). Pair wise 

comparisons revealed that there were signilicanl differences between the undefended 

prey Compared with both the constant prey and nºodel nºintics (I. Si): undefended 

constant=-5.7, P=0.020, undefended nºodel nºinºic= 5.3, /'=0. (114). Ilowever, there 

was no difference between constant prey and model nºinºics (constant Model 

mimic=0.4, /'=0.81°)). When I compared at the models and nºintics separately. I found 

that models were handled for significantly longer than for nºinºics (A ± tit:: nºinºics=5.0 

±(1. °)2 sec, models=`(.? ± 1.65 sec, paired i test: I=4.288, (11 =(), P=0.0052). 
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Figure 7.6. The mean handling times (+SE) of each prey type throughout the experimental 
phase. 

I analysed the mean nun1her of I)ehaviours that I)irds expressed towards prey as 

the experiment pro-ressed using a I. NIN1 Oll the square R)ut iransturnled data iii whiCIi 
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prey type and standardised time were factors. Subjects were included in the model as a 

random subject variable and the number of behaviours expressed per trial was the 

dependent variable. The model revealed that as the mass manipulation phase progressed 

birds exhibited greater numbers of behaviours towards all prey (LMM: F19.933=4.368, 

P<0.001, Fig. 7.8). Pair-wise comparisons between means for the numbers of 

behaviours expressed indicated that there were many significant differences in the 

means (Table 7.3). There was also a significant effect of prey type (F23.4=167.285, 

P<0.001, Fig. 7.7) with the birds expressing far fewer behaviours when handling 
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Figure 7.7. The mean number (±SE) of handling behaviours plotted against standardised time 
throughout the course of the mass manipulation phase of the experiment. 

Table 7.3. Significant differences in the pair wise comparisons between the means in the 
number of behaviours displayed in a presentation at different times throughout the mass 
manipulation period of the experiment calculated using the LSD method. 

Mean Standard 
Time (i) Time (j) Difference (i-j) Error df P 
1 16 -0.35 0.077 354 0.001 

17 -0.41 0.077 354 <0.001 
18 -0.29 0.077 354 0.047 

2 16 -0.34 0.077 354 0.013 
17 -0.37 0.077 354 0.001 

3 16 -0.34 0.077 354 0.003 
17 -0.40 0.077 354 <0.001 

4 17 -0.34 0.077 354 0.003 

undefended prey (LSD: undefended - constant=-0.477, P<0.001; undefended - model- 

mimics=-0.468, P<0.001). However, there was no significant difference in the number 

of behaviours expressed in each trial when constant prey were compared with model- 
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mimics (constant - model-mimic=0.009, P=1). The interaction between time and prey 

type was not significant (F38.354=1.008, P=0.461). The estimated total variance of the 

model was approximately 0.0937 of which 0.0313 (33.4%) was attributable to variation 

between individuals. This meant that between subjects variance was not a significant 

source of variation for the model as a whole (Wald Z: Z=1.676, P=0.094). Interestingly, 

I also found that the birds expressed a greater number of handling behaviours when they 

attacked the models compared to the mimics (X ± SE: mimics=0.989 ± 0.229, 

models=1.383 ± 0.275, paired t-test: t=6.401, P<0.001, df=6). 

In order to examine if there were differences in the way birds handled the three 

prey types, I examined the proportion of all trials where eight different behaviours that 

had been listed in Table 7.2 were exhibited. I also constructed a LMM for the arcsine 

square root transformed proportion of trials in which the behaviours were expressed. 
Prey type and type of handling behaviour were included as fixed variables and subjects 

were included as a random subject variable. The eight behaviours (biting, crushing, 

wiping, hitting/shaking, head shaking, pecking, gaping/casting, bill wiping) that were 

chosen were the eight most common as judged by the proportion of trials in which they 

were expressed. All other behaviours were negligible or very rare. The model indicated 

that there were significant differences in the proportion of trials in which any of these 

eight behaviours were expressed by prey type (LMM: F2,1 =34.875, P<0.001, Fig. 7.8). 

Pair wise comparisons of the birds' handling behaviour indicated there were differences 

between the undefended prey and the two defended prey types, but there was no 

significant difference between constant prey and model-mimics (LSD: undefended - 
constant=- 14.505, P<0.001; undefended - model-mimic=-18.076, P<0.00I; constant - 

model-mimics=-3.571, P=0.365; Fig. 7.8). There was no significant effect for the 

proportion of times that each behavioural type was exhibited (F,, 1 =1.802, P=0.091). 

However, given that there was a lot of noise in the data due to increased prey handling 

as the experiment progressed (Fig. 7.8) and the P-value being less than 0.1, this might 
be indicative of a developing trend (see section 8.3.4 for further evidence of differences 

between treatment of models and mimics). There was also no significant difference in 

the interaction between prey type and behaviour (F14,, 44=0.21 1, P=0.999). 



l'reýchoice, elieI-Melic sluic, u1111 the cr//('c'I. 1uf variation 

.. 

Q4 ý 

ö 
C 
0 
ö 
au. ' 
0 
L 

U: ' 

iý II Fiq"li. w iii III 

I ,U 

lll'd, Iii,. 1". I 

I ,I . 1. i il 

  14 , v, , n1Unu 

I 
Figure 7.8. The mean proportion (+SE) of trials in which the most commonly expressed 
handling behaviours and post-ingestive reactions were expressed when attacking each prey 
type 

7.3.7 Amick latencies Ilurnºc, t, 'lu'ºº! ! /U e. '/) iinºcni 

Attack latencies may he an indicator of energetic stress of the birds throughout Illy m ms 

manipulation phase of' the experiment. In order to examine this. I constructed a linear 

mixed model on the s(luare-root transformed means of the latencies of the birds at three 

points during the data collection phase of the experirllenl: (I) the last three day s of 

training where there were significant dilferences in the nrlnlher oI prey consumed 

among prey types (as reported in section 7.3. IA (2) the three days NN hen the birds 

consumed all the prey in the mass manipulation phase: and (3) the last three days of the 

experiment. I included the prey type and tittle within experimental phase as factors and 

subjects were included as random subject variables. There was it significant effect of the 

experimental phase (I, MM: I 
.,, =4.034, P=0.014. Fig,. 7,9). Pair Wise coillparisons of 

the means indicate that the latencies at the beginning of* the experiment were 

significantly longer than those recorded during the middle of the experiment (I. SI): 

0.241 P=0.017). Neither of the other pair wise comparisons were significant (start 

finish=0.052. P=I. mid-experiment - finish= 0.103, /'=0. Oti3). The model also 

indicated that there were significant differences between the attack latencies for each 

prey type in the experiment (F2,,,; =6.7()5, P=0.003, Fig. 7.9), although the differences 

were between the undefended and the two defended prey types (I. SI): undefended 

constant=-0.206, /'=0.003, undefended - model nlirllics= 1.23. /'=0.028). There was no 

significant difference between the constant prey and model nliillics (constant model 

1 
iý 
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mimics=0.67, /'=I). The interaction between time and prey type wax not siýýnilicant 

(/, 'a.,., =0.365, /'=0.832). The estinmated total variance of the nuulel was aplnoxinwtely 

0.226 of which 0.151 (66.577 ) was attributable to variation between imnlivicluals. This 

amount seems high but the standard error in was also vary high relative to the muui 

which meant that between subjects variance was not a significant source of variation for 

the model as a whole (Wald %: /=1.64, /'=0.101 ). 
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Figure 7.9. The mean latencies to attack (+SE) in relation to prey type and at different times 
throughout the experimental phase of the experiment 

7.4 Discussion 

The aint of this experiment was to assess the elfect of signal reliability and defence 

unpredictability on the foraging choices made by birds ft)ra"2inr (in two) types of 

chemically defended prey and how these choices were affected by changes in mass. The 

results indicate that the prey with the unreliable signals and variable defences (model 

mimics) tended to have an advantage over the prey with reliable sigiials and constant 

defence (constant prey). As the mass manipulation phase of the experiment progressed, 

this advantage declined. This suggests that the reliability of signals and variability ol, 

chemical defences could also May a role in how educated predators choose anumg 

different types of chemically defended prey. This indicates that not only, the level of 

defence is important, but also the reliability of the signal nay be important in the 

decision making process. Signal reliability is an area of intense debate in other areas of 

animal signalling research. The debates centres around whether signals need to entail a 

cost in order to be reliable. The debate has been resolved to a degree as there is growing 
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evidence that reliable signals can evolve that do not entail costs (Maynard Smith & 

Harper 2003). 

Aposematic signals have recently been discussed as reliable indicators of prey 

defence because aposematic species can afford to pay the cost of being detected 

(Sherratt 2002; Sherratt & Beatty 2003; Speed 2003). However, these discussions 

focussed on explanations favouring the evolution of distasteful models away from less 

well-defended mimics in order to create easily identifiable signals to aid predator 

recognition. The problem presented in this chapter was different because birds were 

presented with two defended prey that differed in not in their average level of quinine, 
but in their level of variation around this mean. This meant that the colour cue was an 

unreliable signal of defence level in the model-mimics. To my knowledge this is the 

only study that has attempted to present this problem to predators feeding on chemically 
defended prey. However, there is another field in foraging theory that deals with 

different rewards with identical means but differing amounts of variance about the 

mean. 
Risk sensitive foraging is an area which has studied similar problems (i. e., where 

prey types have different distributions of variance of nutrient reward [see Chapter 31). 

Surprisingly, most studies of risk-sensitive foraging fail to acknowledge the importance 

of uncertainty as a possible factor promoting risk-aversion (but see Real & Caraco 

1986; Real 1992). Risk sensitive foraging studies also show that animals are more likely 

to show risk aversion for amount of rewards (see Kacelnik & Bateson 1996; Bateson & 

Kacelnik 1998 for reviews), which could be partly explained by the birds being certain 

of the reward when selecting a constant food option. Bateson and Kacelnik (1998) 

discuss the possible explanations for risk-sensitive foraging. However, it is difficult to 

see how many of these explanations would apply to the problem as presented. For 

example, the energy budget rule cannot predict the results of this chapter as it only deals 

with variation in the amount in food. Although the different defended prey used in this 

experiment had variations in their levels of quinine that could have made caused 

variation in their net profitabilities there are sufficient differences in the design between 

this experiment and traditional risk-sensitive foraging approaches to suggest that the 

two approaches are not analogous. For example, most risk sensitive foraging 

experiments for amount present the prey options simultaneously. In this experiment, 

prey were presented sequentially meaning that the preferences for one prey over another 
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could not be tested in the same method as in a risk-sensitive foraging experiment. 

Therefore, there is little that risk sensitive foraging can tell us about these results. 

The results also indicate that birds were also able to perceive the difference in the 

levels of variance between the constant prey and the model-mimics which lead to the 

initial preference for constant prey over mimics. Therefore, it is likely that birds may 

have been able to perceive quinine via the gustatory or trigeminal nervous pathways 

(Werner & Clark 2003). However, the post-ingestive pathway that leads to predators 

learning the association between ingestion of a food type and its consequences are still 

poorly understood. Recently, Yearsley et al. (2006) published a model of learning based 

on ideas from information theory. Their general finding was that the rate of learning and 

memory retention will be dependent on a number of factors including the temporal 

disassociation between the ingestion of food and the onset of the post-ingestive 

consequences. This finding may lead to a preference for the constant prey as the 

reliability of information that the bird experiences with the model-mimics may lead to 

difficulties in forming associations between the ingestion of the prey and its post- 

ingestive consequence. 

As I slowly reduced the amount of food to which birds had access, this reduced 

the levels of energetic reserves of the birds and caused the number of chemically 
defended prey (both constant and model-mimics) eaten during daily trials to increase. 

There was a significant difference between the two defended prey types consumed with 

the constant prey being preferred to the model-mimics. In the mass gain phase of the 

experiment, the difference in the proportion of constant prey and model-mimics was no 
longer significant. This meant that there was an initial benefit for the model-mimics, but 

this benefit declined as the experimental mass manipulation continued. The likely cause 

was increases in handling behaviour. This might have been due to birds learning to taste 

the model-mimics given that the visual cue provided for the model-mimics was 

unreliable. However, it is also possible that the birds were attempting to reduce the 

amount of quinine contained by the mealworms (see section 8.4 for a more detailed 

discussion of this matter). 

There are three possible reasons for the early preference of the constant prey over 
the model-mimics. First, birds might have been utilising only visual cues associated 

with the mealworms early in the experiment. Therefore, the birds might have favoured 

the constant prey over model-mimics because of their higher signal reliability 

associated with the prey item. As the experiment proceeded, the birds learned that they 
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could also taste the mealworms in order to distinguish between model-mimics. Second, 

a variable defence as in the model-mimics is predicted to slow the rate of learning 

(Yearsley et al. 2006). This is the opposite of what I found as birds excluded the 

variable prey in greater numbers earlier in the experiment. However, it is also possible 

that the birds preferred to eat prey about which they have learned more. Third, it is 

possible that the birds' perceptions of the levels of quinine in the models and constant 

prey were non-linear. For example, a model may have been perceived as being more 

than twice as distasteful as the constant prey. If this were the case, then this could lead 

to preference for the constant prey types over the model-mimics. 

The experiment manipulated the energetic state of birds in a manner similar to 

Chapter 6. This was a further test that birds will increase their intake of chemically 

defended prey as their energy reserves decline. Again, the results of this chapter provide 

evidence of the energy/toxin trade-off that animals will consume greater numbers 

chemically defended prey at times of energetic stress, which is not a new idea (e. g., 

Poulton 1890; Swynnerton 1915; Brower et al. 1968; Speed 1993b). The saturation 

hypothesis (Mallet & Joron 1999; Mallet 2001) stipulated that predators might readily 

consume defended prey until their body levels of toxins reach a saturation point. More 

recently, this idea was formalised in a SDP model that examined the relationship 

between the consumption of chemically defended prey and physiological state (Sherratt 

et al. 2004). This model had two state variables, which were the levels of energy 

reserves and the level of body toxins. The model predicted that the birds should attack 

chemically defended prey depending on the amount of constant food available and the 

levels of energy reserves of the bird. The results from this study indicate that animals 

increase the number of chemically defended prey in their diet with decreasing energy 

reserves. Therefore, these results indicate that partial prey preferences (asymptotic rate 

of attack [Speed 1993a]) are dependent on the levels of energy reserves. However, the 

data also indicate that the birds accept higher body burdens of quinine as their energetic 

reserves decline. This indicates either that the critical value of quinine that birds accept 

changes with energetic state or that the birds are strategically trading-off the costs of 

ingesting toxins against the energetic benefits derived from the mealworms at a level 

below the upper limit of their possible quinine intake. It is unlikely that the increase in 

consumption of defended mealworms is wholly due to an increasing tolerance of 

quinine as the birds decreased the consumption of chemically defended prey when they 

began gaining mass again. Therefore, it is likely that the birds were increasing the 
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number of chemically defended prey that was below the critical toxin burden, but were 

prohibitively costly to ingest at times of lower nutritive need. This indicates that the 

birds are able to facultatively manage their levels of quinine intake in accordance with 

their levels of energy reserves. 

Birds have been shown to be able to strategically manage their levels of body 

mass in the field (Thomas - 2000; Barnett, unpublished data). However, there is 

comparatively little previous evidence that animals are able to manage their levels of 

body toxins (Skelhorn & Rowe, unpublished data). Recently, Skelhorn and Rowe 

(unpublished data) conducted an experiment where European starlings were fed with 

three undefended mealworms or three mealworms containing quinine before the start of 

an experimental trial where birds were presented sequentially with eight defended 

(quinine injected) and eight undefended (water injected) prey. They found that when 

birds were pre-fed with mealworms containing quinine, birds consumed fewer defended 

mealworms during the experimental trials. In earlier chapters, it was shown that birds 

started excluding defended prey earlier in the daily trials. Chapter 5 also indicated that 

this trend was more extreme for the more heavily defended mealworms. In earlier 

chapters, it has been found that if the daily consumption data are plotted for the birds, 

that they consumed fewer defended prey later in daily trials (section 5.3.2, Fig. 5.5, and 

Fig. 5.6) and that this effect is more extreme for more heavily defended prey (section 

6.3.3 and Fig. 6.4). Therefore, these data together indicate that birds are able to control 

the intake of quinine. 

It is unknown how the birds might be able to strategically manage their levels 

quinine as the perceptual pathway that links the perception of the colour signal with the 

distasteful compound is still poorly understood. One possibility is that the birds 

continue to consume the prey containing quinine until they begin to experience 

physiological effects of quinine. However, the fact the birds continue to consume 

undefended prey indicates that the birds were not suffering from nausea or other side 

effects, which might be expected if quinine was making birds sick. How birds perceive 

quinine and other toxins and strategic regulate their body toxin loads is an interesting 

research area in need of further research. Despite our lack of knowledge regarding the 

probable mechanism, these data add further support for birds having the ability to 

strategically manage their body loads of toxins. 

Another possibility is that birds might learn to taste the prey rather than rely on 

colour cues associated with the prey. Signal detection theory indicates that when the 



Prey choice, energetic state, and the effects of variation 176 

discriminability between two signals becomes low then other means should be used in 

order to differentiate between options (see Wiley 2006 for a review). This is especially 

the case in order to discriminate between two almost visually indistinguishable prey 

types as may be the case in perfect Batesian mimicry and automimicry (Oaten 1975; 

Getty 1985). For example, if the visual signal of a prey is unreliable as in the case of a 

Batesian mimic, then the predator should begin tasting the prey for chemical defences. 

An example of this has been observed in the black-backed oriole (Icterus galbula 

abeillei) which seems able to taste reject monarchs that contain higher levels of 

cardenolides (Fink & Brower 1981, Brower & Calvert 1985, Brower 1988). Moreover, 

birds select the parts of the butterfly that contain the least cardenolides (Brower 1988). 

This behaviour suggests that animals are able to mediate their levels of toxin through 

behavioural means in what Brower (1988) called an exapation (the modification of a 

pre-existing trait for a new function [Gould & Vbra 19821) of foraging behaviour. 

However, it is unknown if the behaviour is a foraging innovation that occurred de novo 

or if the behaviour was an exapation. 

Animals have been known to mediate the chemical defences of their prey for a 
long time. However, the majority of examples come from specialised predators. Perhaps 

the most famous example of handling behaviour is that of bee eaters (family 

Meropidae). Bee-eaters are known to consume a large proportion (20-96 % of all insects 

of all insects caught) of hymenoptera in their diets, which they catch on the wing by 

hawking (Fry et al. 1992). Before eating a hornet, the bee-eater kills the prey by striking 
it on the head in order to kill it. Then they apply pressure to the insects' abdomen 
forcing the venom and sting from it before consumption. This is highly specialised 
behaviour and extremely effective. Most studies of mimicry and aposematism have 

been primarily concerned with the rates of predation of prey or the rate of survival by 

prey. Moreover, most of these studies have only investigated birds' rates of attack rather 

than handling behaviour. For example, Marples et al. (1994) showed that birds 

displayed more head-shakes towards prey that were more potently defended compared 

with other prey which suggests that predators' handling behaviour does have the 

potential to indicate prey differences. However, no previous study has presented the 
development of prey handling behaviour in a generalist foraging species. 

The results from the last three chapters build a compelling case for the strategic 

consumption of chemically defended prey in relation to energetic need. In all three state 
based experiments I have carried out, I have found a very strong state effect where birds 
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increase the number of chemically defended prey they consume with decreasing state. 

They suggest that energetic state is an important factor in determining the level of 

predation on aposematic prey. The data also suggest that the birds may strategically 

manage their body burdens of toxins throughout the daily trials by reducing the number 

of defended prey that they consume. However, the data cannot be taken as conclusive 

experimental evidence for this occurrence. This chapter extends this work by indicating 

that increasing risk and signal unreliability can affect the preference over the short-term, 

but over the long term, animals adopt behavioural strategies to help mediate the fact that 

a visual signal may have little value for one prey. It would be interesting to attempt 

replicating this result without the mass manipulation. I predict that if this were done, the 

preference of the birds for the constant prey over model mimics would take much 

longer to extinguish or may even persist indefinitely. This is because my mass 

manipulation made birds much more likely to attack prey than they would otherwise 

have been. Through their increased rates of attacks and consumption, the birds learned 

that they may have been able to taste the differences in quinine between models and 

mimics. They may have also learned that they could mediate the levels of quinine 

through squeezing it out of the prey. 

7.4.1 Conclusions 

This study has tested the value of defence variation and signal reliability to birds in a 
long term feeding experiment that also manipulated the subject's energetic states. The 

results indicated that the model-mimics had an advantage over the constant prey in the 

mass gain period of the experiment, but this advantage declined as the experiment 

progressed. This early advantage for the model mimics over the constant prey was 

probably due to the ambiguity of the colour signal associated with the model-mimics. 
As the experiment progressed, the birds began exploiting other sensory cues associated 

with the prey (e. g., taste). The results of this experiment also suggest that the birds were 

able to manage their intakes of toxins strategically in line with predictions of the recent 
SDP model that indicated that birds may have a critical value for the levels of toxic 

defences ingested. Finally, the behavioural data indicated that the birds treated the three 

prey types differently and that the birds may have learned to reduce the levels of 

quinine contained in the mealworm through prey manipulation. 
The results of this experiment are important as they suggest new factors that might 

be significant in promoting the evolution of mimicry. First, the uncertainty that may be 
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associated with model-mimic systems has not been considered an important factor in 

the study of mimicry. The data show that prey belonging to mimicry systems may gain 

at least some initial protection from the uncertainty of prey type that would be 

encountered in addition to the protection from chemical defences. Signal uncertainty 

and defence variation has not often been thought to directly influence predator decisions 

of whether to consume chemically defended prey. For predators strategically managing 

their levels of chemical defences they may favour prey with reliable signals and 

predictable levels of chemical defences. These results also indicate the potentially 

important role that behaviour can have in regulating the intake of distasteful or toxic 

substances. Finally, these results add to the growing amount of evidence that indicates 

that the birds physiological state in the form of energy reserves and levels of toxins play 

an important and interrelated role in birds' decisions to consume chemically defended 

prey. 
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Chapter 8 

THE EFFECT OF MIMIC ENCOUNTER RATE ON 
PREDATION AND SURVIVAL IN A BATESIAN MIMICRY 

SYSTEM 

8.1 Introduction 

Batesian mimicry is the resemblance between two warningly coloured species, one of 

which is defended (the model) and the other is not (mimic). Generally, Batesian mimics 

gain a protective advantage from resembling the model meaning the relationship 

between models and mimics is considered parasitic. Mimics reduce the effectiveness of 

the model's chemical defences at deterring predation, leaving models to pay the costs of 

producing and storing chemical defences. Many factors can affect the rates of predation 

on species in a Batesian mimicry system. 

The rate of predation on aposematic models and undefended Batesian mimics is 

dependent on three main factors: (1) the proportion of models to mimics, (2) the 

potency of the models defences, and (3) the availability of alternative undefended prey 

(see section 4.2.1 for a review of each of these points). Bates (1862) stated that 

undefended mimetic species were likely to be rare in relation to models because the 

efficacy of a signal as a deterrent is thought to be directly related to the level of defence 

that is associated with the signal (Yearsley et al. 2006). As palatable mimic frequency 

increases the average level of defence experienced or the frequency a model 

encountered by the predator is diluted. Increases in the abundance of mimics within a 

Batesian mimicry system have a negative effect on the efficacy of aposematic signals. 

This has been confirmed in many empirical studies where experimental increase in the 

number of Batesian mimics increased the rates of predation (Brower 1960; Duncan & 

Shappard 1965; Lea & Turner 1972; Pilecki & O'Donald 1971, Goodale & Sneddon 

1977, Huheey 1980; Avery 1985, Nonacs 1985, Lindström et al. 1997). 

8.1.1 Experiment introduction 

A recent SDP model (Sherratt et al. 2004) analysed the state-based consumption of 

chemically defended species and their mimics. In this model, the authors analysed how 

a predator's energetic state can play a role in determining the attack rates on the 
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mimicry system when models and mimics are considered separately. I have tested 

various predictions of this and other related SDP models in earlier chapters, and have 

found that my data generally support the SDP models of the state-based consumption of 

moderately defended prey. However, these models also predict other behaviours that are 

not considered by the traditional models of aposematism and mimicry. 

One counter-intuitive prediction of the Sherratt et a!. (2004) model was that under 

some conditions, increasing the probability of encountering a mimic would decrease the 

probability of attack for both models and mimics (the SDP models talk only of attack 

although I equate this with predation). This prediction seems contrary to previous 

findings that have increased the frequency of Batesian mimics and have found that 

attack rates were higher with greater frequencies of mimics (Brower 1960; Duncan & 

Shappard 1965; Lea & Turner 1972; Pilecki & O'Donald 1971, Goodale & Sneddon 

1977, Huheey 1980; Avery 1985, Nonacs 1985, Lindström et al. 1997). If increasing the 

frequency of mimics were to decrease the rate of attack or ingestion of models and 

mimics, this would be termed a quasi-Miillerian effect because a normally parasitic 

Batesian mimic would reduce predation in a manner similar to that of a defended 

Miillerian co-mimic. Consider a situation where a predator's foraging bout is split into a 

number of discrete foraging periods. If the predator's probability of searching and 
finding food per foraging period is x, then the probability of not finding food is I-x. If 

the amount of food found per unit of time is increased, then we can affect the overall 

density of food in the system. If this increase in food availability comes from mimics 

that are indistinguishable from models, then rather than dilute the protection of the 

model, this may actually increase the overall level of avoidance of the mimicry 

complex. This is because at high mimic density there is more food available, but 

because there is still a risk associated with the mimicry system, it may allow the 

predator to be more conservative in its diet unless it becomes critically low in energy 

reserves (Sherratt et al. 2004). 

In this experiment, I specifically tested this prediction. All birds received two 

treatments where they were sequentially offered prey of three types. Sequential trials 

were used because simultaneous presentation of prey has been criticised by some 

authors (e. g., Hetz & Slobodchikoff 1988; Lindström et al. 1997) because predators 

might rarely encounter prey simultaneously in the field. Moreover, simultaneous 

presentations generally restrict the predator to attacking one prey item. In reality, a 
predator encountering two prey items at once, might attempt attacking both prey upon 
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encounter. Hence, simultaneous presentations of defended and undefended prey may 

overestimate the survival advantage of the species in the mimicry system. The three 

prey types used in this experiment were alternative (undefended) prey, models (injected 

with quinine sulphate), and perfect Batesian mimics (resembled the models but were 

undefended) (Table 8.1). The alternative prey types also had a different colour signal 

from the model-mimics making them visually distinctive from them. In addition to 

presentations of these three prey types, the birds also had unsuccessful searching 

periods where no prey were encountered. By altering the number of unsuccessful 

searches and mimics between treatments, it was possible to test this novel prediction 

from the SDP models that the increase in mimics would increase the effectiveness of the 

mimicry system. This study is the first study to attempt investigating if quasi-Miillerian 

effects occur in a Batesian mimicry system. If the birds display quasi-Miillerian 

behaviour to potentially defended prey, this will change the way that Batesian mimics 

are thought to affect the predation of prey in Batesian mimicry systems. 

8.2 Methods 

8.2.1 Birds and Housing 

I used six European starlings that had been used in Chapter 7 because they had been 

trained to the colour prey associations for the different types of defended prey which 

were maintained in this experiment. One bird was not used because it was getting 

stressed by being in the cage and was returned to the free flight. There were no state 

manipulations in this experiment and so the birds were fed ad libitum water and 

pheasant breeder pellets. Fruit was given to the birds with their daily food ration (see 

sections 2.2.1 and 7.2.1 for further details of bird husbandry). 

8.2.2 Lid flipping 

The birds had already been taught to flip lids for the previous experiment (see section 
7.2.3 for details). Therefore, there was no initial training. 

8.2.3 Training and prey preparation 

In this experiment, I had alternative prey signalled by one colour, and a model-mimic 

complex signalled by another colour. Since all birds had already experienced these 

types of prey in the previous experiment (see section 7.2.3), 1 used the same colours that 

I used for these prey in the previous chapter. The alternative prey in this chapter were 
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the same as undefended prey iu the last experiment. The nºodel mimics in this 

experiment were also identical to those in the last chapter. The colour associatIOIIs that 

the birds learned in the last chapter were also nºaintained. All other nºethods of bird 

training and prey preparation were the saute as ill the previous chapter (see 6.2.4 for 

further details). 

N. 2.4 /;. rl>rrimc'! rful /)rofocol 1117cl cluil\, ct'/lCClIrlc" 

The experiment ainºed to simulate ,º period of torag'ino hy ;º(, ir, l. 't'his period w, ºý split 

into discrete time units (in the case of this experinºcnt '1 tlºree minute Iinºe uni(s). 

ýlurinýý which a bird would encounter a prr> Hem or not (see h". X. I ). \1'hrn tilt' bind 

encountered a prey item, it had the option 01 choosing to tlip, attack, and constttite the 

nºealwornº. The prey were of three types: (I) alternative prey Which had no chemical 

Low mimic frequency treatment 
I ýIýIAIA 

A 

High mimic frequency treatment IPip, H 
i 

H 6- 
Figure 8.1. An example of the prey presentation sequence in the daily trials rrr the two 
experimental treatments. Each square represents a three minute time block in which birds were 
presented with a prey item. Squares with an A, indicate the presentation of an alternative prey, 
squares with grey shading indicate a mimic, and squares shaded black indicate models F nipty 
squares without full borders indicate an occasion where no prey was presented 

defences, (2) models that Nvere moderately defended with quinine sulphate, and (3) 

min)ics that contained no chemical defences but weir visually identical to the nnulels. 

In some of the foraging periods, no prey was offered to the birds, which was intended to 

simulate a period where searching was unsuccessful. The birds were given two 

treatments that differed in the number of niiniics presented and the niiinhel of tinges that 

no prey were presented O AV H. I ). Roth treatments had eight , alternative prey and four 

defended models (I ig. 8. I). In the low mimic Irequency treatment, four mimics \\ere 

presented and there were eight occasions where no prey were presented. In the high 

mimic frequency treatment, the mimic frequency Increased so that It) nminlics were 

presented to birds, but that there were only two occasions where birds received no food 

(Table 8. I, Fig,. K. I). All prey were all prepared in accordance with the methods that 

were described in Chapter 7 (see section 7.2.5 and I'ahle 7.1 for details). 

"There were 24 three minute intervals in each daily trial, compared to IS in the 

previous two chapters (see sections 5.2.5,6.2.4, and 7.2.. E for details). This increase in 
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Table 8.1. The presentations on each daily trial for the two experimental treatments (proportion 
of all trials in treatment represented in brackets). 
Search outcome Low mimic frequency, High mimic frequency 
Alternative 8 (0.333) 8 (0.333) 
Models 4 (0.167) 4 (0.167) 
Mimics 4 (0.167) 10 (0.417) 
No prey B (O. 333) 2 (0.083) 

the number presentations was required to ensure that I could increase the number of 

mimics and still have presentations containing no prey. The presentation order was 
different each day, and was random except for these following two conditions: (1) the 

first and last presentations had contain prey and (2) the proportions of each prey type 

encountered in the first and second halves of the daily trial were equal (Fig 8.1). Prior to 

the start of the experiment, I fed the birds 22 mealworms at three minute intervals in 

order to ensure that birds were able to consume all mealworms that might be offered 
during a daily session. Out of the six birds, five consumed all 22 mealworms and the 

other bird consumed 21. This bird's single rejection occurred because of noises 

emanating from other areas of the laboratory, and was unlikely to be due satiation or 

some other internal factor. 

8.2.5 Analysis of prey survival 

If the mealworm was attacked but then rejected, I retrieved it and examined it for signs 

of outward body damage that would indicate the bird inflicting a fatal injury. Such signs 
included removal of cephalic region, puncturing of the exoskeleton, absence of legs, 

and obvious bill marks. If such signs were found, I defined the injuries as fatal. Absence 

of outward signs of damage meant that I recorded the prey as having survived. 
However, this method obviously discounts possible fatal internal injuries which were 

not ascertainable. This is due to the insertion of the syringe needle during prey 

preparation which would have ruptured the alimentary canal and the coelomic cavity 

and caused the obliteration of many internal structures. Using this crude measure, I was 

able to calculate rates of survival for prey which allowed me to conduct a basic survival 

analysis for each prey type by treatment. 

In cases where I was unsure of the damage, I scored the prey as killed. This 

happened on 5 occasions out of 160 recorded instances of attacked prey not being 

consumed. Overall, I believe the system I used was a fair reflection of the probability of 

survival of this species. Rates of mortality and survivorship have been used by other 
authors studying mimicry. However, although they differ in their definitions of how 
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much damage was likely to cause mortality. For example, Lindström et al. (1997,2001) 

considered the prey to be `killed' if the bird ate, took bites from, tested, or were seen 

hammering the prey. However, the classifications in other studies have stated that prey 

were considered to have been survived if the legs remained intact and the cuticle was 

not ruptured (Järvi et al. 1981; Sillen-Tullberg et al. 1982; Wiklund & Järvi 1982). My 

classification was closer to those of the studies of Järvi and colleagues (Järvi et al. 

1981; Sillen-Tullberg et al. 1982; Wiklund & Järvi 1982). 

8.2.6 Handling times and behaviours 

I collected of behavioural data in order to determine if the birds were behaving in a 
different manner towards the different prey types. The behaviours that I recorded are 
described in Table 7.2. I also hand-timed the latencies of the birds and the total handling 

time of birds for each prey type using a hand-held stop watch to the nearest 0.1 sec. 

8.2.7 Statistical procedures 

In most cases, I used linear mixed models (LMM), which are a versatile set of statistical 

methods to calculate the statistics. On occasions where LMMs where not used, the 

statistical method is stated in the results. In order to complete post-hoc comparisons of 

contrasts, I used the least significant difference (LSD) method after the alpha values had 

been corrected using the Bonferroni method (i. e., a/N), I used the Mixed procedure in 

SPSS to fit linear mixed models to my data. This procedure is more general than the 

general linear model (GLM) procedure. For example, it is possible to complete an 

analysis of unbalanced repeated measures data. This is something that is not possible 

using GLMs. 

The experiment was a repeated-measures design, which is preferable for a number 

of reasons. First, fewer animals are used in the experiment. Second, differences between 

individuals are eliminated as a source of variance meaning that any effects are much 

more likely to be a result of the factor which is being manipulated. Finally, SDP models 

often specify optimal behavioural strategies for individuals meaning that the best way to 

test these models are through repeated measures of the same individuals under the same 

experimental conditions. 

I converted data to proportions and ran statistical tests including the variables 
treatment, day, and prey type. Overall, the day of the experiment was not. a significant 



Quasi-Müllerian effects 185 

factor and was excluded unless otherwise stated. I arcsine square root transformed 

proportions in order to restore normality and homoscedasticity and analysed the 

resulting data using parametric methods. The data on the number of handling 

behaviours exhibited towards the prey was square root transformed using the formula: 

X'=J(x+0.5). 

This treatment of the data resulted in the lowest score for the Akaike's information 

criterion. Akaike's information criterion (AIC) was used to choose the best model when 

models had different sets of parameters. AIC was calculated for each model as: 

-2(log-likelihood) +2Xp 

where p is the number of parameters estimated in the model. AIC therefore represents a 

measure of the explanatory power of the model discounted by the number of parameters 

that have gone into its construction; a lower value indicates the 'better' model. 
I completed all statistical analyses using SPSS for PCs (version 15.0) and 

Mackintosh computers (version 11.1). 

8.3 Results 

8.3.1 The rates of attack and the relationship between attack and consumption 
I defined an attack as when a bird's bill was seen to touch a prey after the bird had 

flipped the lid off the Petri dish. I ran a LMM on the proportion of prey attacked with 

prey type and treatment as fixed factors. Subjects were included in the models as a 

random subject variable and the proportion of prey attacked was the dependent variable. 
The model indicated that there were significant differences in the proportions of 

mealworms attacked by prey type (LMM: F, 2,25=34.28, P<0.001, Fig. 8.2). Comparisons 

of the differences in the estimated marginal means revealed that the alternative 

mealworms were attacked significantly more frequently than both the mimics (LSD: 

difference= 19-34, P<0.001) and models (difference= 14,50, P<0.001). However, there 

was no significant difference in the difference between the proportions of mimics and 

models attacked (difference=-4.84, P=0.172) which indicated that birds were not able to 
discriminate between them prior to attacking. 
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My prediction was that by increasing the density ut nºinºics, at the expense 0 

unsuccessful searches, the attack rate on the mimicry complex as a whole would 

decrease. Despite the trend of the data indicating that the levels of attack night have 

declined with increased mimic abundance (Hg. K2), the model revealed that the effect 

was not significant (I-', ,; =3. )3(,, I'=O. O()4). The interaction between treatinenl and prey 

type was also not significant (I', 2; =(). 6O4, /=0.554). The estimated total variance (if the 

model was approximately 46.14 of which 10.6(1 (? 3.12"% ) was alitibutable to variation 

between individuals. This meant that between subjects variance was not a significant 

source of variation for the model as a whole (Wald %: /=I. OO5, P013 15). 
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Figure 8.2. The mean proportions of prey (+ SE) that were attacked, 

I also constructed a IJ\IM to test if there were differences in the proportions of 

prey attacked that were suhscqucntl_y consumed. The proportion ()I attacked prey that 

were subsequently consumed is not an analogue to the proportion of prey consuiiied. 

The rate of prey consumption is the product of the rate of attack and the proportion of 

attacked prey consumed. I included treatment and prey type as factors and suhjecl as a 

random subject variable. I found there was a si, nificant ellect oI prey type 

/',, ()=W. 
I48, /'<(1OOI, 11g. 8.3), with the proportion of alternative prey attacked and 

then consumed being significantly greater than the proportions of consumption for both 

the nUiniics and the models (LSI): alternative mimic=14.04, /'<0.001; alternative 
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Models=35.273, I <O. OOI ). Notably, the proportion of attacked aniinics that were 

consumed was also significantly greater than that of the int)(Icls (nniinic 

model=21.231 /'<O. 001). There were no other signilicaut Main effects or interaction` 

(treatment: F, 
_,,, 

=O. 34I, /'=OS(64: treatment `'prey: 1', , =1.0(,, /': ). 3. S')). 'I he estimated 

total variance of' the model was approximately 8.27 x IO ` of which 8.72 _ 1(I' ( 10.54 

`%) was attributable to variation between individuals. This meant that between subjects 

variance was not a significant sourc of variation f0)1 

L=0.634, /'=0.526). 
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Figure 8.3. The mean proportions (+SE) of the attacked prey that were subsequently eaten 

S. 3.2 At, /prey /arc'/c'r'c ný cs /oi the rlr//eTOlt prey 

Although the attack rates of were not significantly different het een treatnºents, the 

proportion of prey consumption nii"hl he another tarter for IhC surýiýa! ýý1 pies I iýeure 

8.4 illustrates the proportion of prey consunn"d from the total nunºIºer of prey offered on 

each day during the experiment. The data for the mimicry Cu1ººplex 

shows that the rate of consumption was lower for nadel nºinºics in 

frequency treatment compared with low Illimic frequency treatment. 

data with the model-mimics conihined in order to give an inºpressioýn 

is combined. It 

the Iii"'li iiiiniic 

I illuslritCd the 

ut tlic Ir, ittel n (it 

prey Consumption from the hir(Is' perspective 0r bawd on the visu, il &Ii, lilictiveneSs ut 
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Although there were differences in attack rate that were not significant between 

treatments, there might have been post-attack differences in birds behaviour that could 

cause differences in survival of different prey types. For example, there may have been 

differences in the rates of prey consumption between the three prey types. In order to 

test for differences in the proportions of prey consumed between treatments, I set up a 

full factorial LMM that included treatment, day within the treatment, and prey type 

(alternative, models, and mimics) as fixed factors. Individual subjects were included as 

a random subject variable and the proportion of prey consumed was the dependent 

variable. The model indicated that there were significant differences in the proportion of 

prey consumed between the two treatments (LMM: F, 205=13.023, P<0.001). The 

difference in the estimated marginal mean indicated that the proportion of prey 

consumed was lower in the high mimic frequency treatment when compared with the 

low frequency treatment (LSD: treatment 1- treatment 2=6.964, P<0.001, Fig. 8.5). 

There were also significant differences among the proportions of each of the three prey 

types that were consumed (F2.205=157.387, P<0.001, Fig. 8.5). Post-hoc comparisons of 

contrasts revealed that there were significant differences in the proportion of prey 

consumed between the different prey types (alternative - mimics=24.366,1'<0.001; 

alternative - model=41.734, P<0.001; mimic - model=17.369, P<0.001). Over the 

seven days of each experimental treatment, there were no differences in the proportion 

of prey consumed between days within a treatment (F62205=1.815, P=0.098). There was a 

significant interaction between treatment and prey type (F20205=7.959, P<0.001). This 

was because the slopes for the proportion of prey broken down by prey type and 

treatment type had significantly different slopes from one another. There were no other 

significant two-way interactions (treatment*day: F6, zos=1.037, P=0.402, day*prey: 

F12.205=1.103, P=0.360) or three-way interactions (treatment*day*prey: F12,203=1.520, 

P=0.119). The estimated total variance of the model was approximately 267 of which 

32.5 (12.18%) was attributable to variation between individuals. This meant that 

between subjects variance was not a significant source of variation for the model as a 

whole (Wald Z: Z=1.349, P=0.177). 
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Figure 8.4. The daily mean proportions (± SE) of the alternative and model-mimics consumed 
in (a) the low mimic frequency treatment and in (b) the high mimic frequency treatment. 



ý)uusi Müllc riun el%ecrs I 91º 

Low f recIuCnc y 
f ligh frequency 

aý 
ý 0.8 

0 U 

ý 0.6 
ý 
ý a 
w 0 
C 0.4 

0 0.2 
L 

a 

T 

Alternative Mimic Model 

Figure 8.5. The total mean (+SE) proportion of each prey type consumed in each treatment 

Finally. I compared the number of prey consumed in each treatment in order to 

ascertain if an increase in food availability meant that this would increase the nrlnlber oI 

prey consumed. The addition of the nlintics in m inlic trrºIuenc\ treatment nleanl 

that the overall number of prey in a trial was gmreatei coºnpared to the low nºiºnic 

treatment. This ºnight have meant that the birds were able to consume i-, featcl lºlllnlels 

of prey in the second treatment. 'I'bis was indeed the case when I compared the 

differences in the mean number of prey consumed per day for each Ireatnlent (paired I 

test: 1= 2.583, P=0.0493, df=5: Fig. 8. (, ). 
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X5'. 3.3 A simple unulvsis o/ prey siu-)'i) nl 

Since I had estimated the probability of survival for n)ealwornns Iroiii dan)ag e tliev 

incurred during attacks, I used this in an additional analysis of survival. I added the 

number of prey that had not been attacked with the number of individuals that I dern)ed 

to have survived attack and divided this sun) by the total number of prey offered for that 

prey type in order to calculate a proportion of individuals that survived for each trial. I 

analysed the results in a [MM, which include prey type and treatn)ent as Ii'ted factors. 

Subjects were included in the n)odel as random subject variables and the dependent 

variable was the transformed proportion of prey surviving, attacks. I found that there was 

a significant difference in the proportion of prey surviving' between the treatments of 

different mimics frequencies (I. MM: /' ,, -i. 9O1, /'_O. O'. l, 1'1. ". 8.7). ('oIt11YUiuills ol II1k' 

contrasts in the estimated marginal means revealed that prey survivmrshilp "m 

significantly lower in the low mimic fre(Iuency treatment when compared With the othcr 

treatment (LSD: difference=-6.14. /'=0.023, '. 7). The proportion (, I prey siirvivino 

also differed according to prey type (F,,,, =42. ti92, /'<O. OOI, Fig, X. 7) which was because 

the alternative prey had lower levels of survivorship compared With iiiinMcs and models 

(alternative - mimics=-23.063, /'<O. OOI: alternative models::. 26.307, /'ýal. O(ºI; 1'w, 

8.7). However, there was no significant difference between the proportion of niinfics (0r 

models surviving (mimics - models=-3.243. /'=09I5; Fig,. 8.7). 1 he interaction 

0.5 , 

0.4 

ý ö 0.3 
> 
ý 

ý 0.2 

L 

CL 

0.1 

I 

Alternative Mimic 

Low frequency 

High frequ(enry 

T 

Model 
-ý 

Figure 8.7. The mean proportion (+SE) of prey types surviving in both treatments 
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between treatment and prey was not significant (1''2.23=1.493, P=0.244). The estimated 

total variance of the model was approximately 87 of which about 28 (33.07 %) was tlue 

to between subject differences. This level of variance was not significant meaning that 

between subject variance was not a significant factor in the overall model (Wald Z: 

Z=1.183, P=0.237). 

I examined the handling times of the prey that sustained external injuries that I 

considered would have been fatal and it became clear that there was some relationship 

between the handling time and the probability of subsequent mortality. Those larvae 

that sustained fatal injuries were handled for significantly longer periods than survivors 

(X ± SE: survivors=7.21 ± 1.13 sec, non-survivors=28.96 ± 2.72 sec; paired t-test: t(2), a=" 
7.922, P=0.001). 

8.3.4 Handling times and behaviours 

The SDP models predictions are based on predators using the visual signals of prey In 

order to make decisions. However, the birds might learn to tell the difference between 

prey using taste, olfactory or tactile cues of the prey. In order to examine this possibility, 
I conducted an analysis of the post attack handling behaviour of birds. I conducted three 

analyses to examine this possibility. First, I examined the handling times of birds in 

relation to treatment and prey type. Second, I examined the proportion of trials each of 

the most eight frequently expressed post-attack behaviours were expressed in relation to 

prey type. Finally, I examined the number of different behaviours that birds expressed 

per trial in relation to treatment and prey type. 

Data for handling times were log10 transformed in order to restore normality and 
homoscedasticity thus permitting the use of parametric statistical methods. I constructed 

an LMM and incorporating the fixed factors of treatment and prey type. Subjects were 
included in the model as random subject variables. The model revealed that there was a 

significant effect of prey type (LMM: F2.25=54.79, P<0.001, Fig. 8.8) with alternative 

prey having significantly shorter handling times than both the models and mimics and 
the mimics having shorter handling times than models (LSD: alternative - mimics=- 
0.434, P<0.001; alternative - model=-0.868, P<0.001; mimics - model=-0.435, 
P<0.001). There were no other significant main effects or interactions (treatment: 
F1,25=1.954, P=0.174; prey*treatment: F2,23=0.229, P=0.797). The estimated total 

variance of the model was approximately 0.066 of which about 0.025 (31.81 %) was 
caused by between subject differences. This level of variance between subjects was not 
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Figure 8.8. The mean handling times (+ SF) of the three prey types if) (.: 1(711 Pr, rinurnt 

In the second analysis, I ý"\antinrd the h; itdhngg hchavloil oI the blld. In mote 

detail. It was clear that the birds treated the three prey I\ pes kIIIIrlrntl\ Mont one anothrl 

(l igurc 8. t); "I'al)lc 8.2). In order to analyse the prey handlln" brlt; týloul, I u. rd .1I \I\1. 

which included the eight must common hehaviuil. that I rcroldrd dilln1 the tlr. tl. ("r(. 

'fable 7.2. for operational definitions). I inclided brhavlout I\pe and ptcý I\pc a. Il\rdl 

factor", and included bird II) as a random subject variable. I Ilk. tl; tn. Io, Inlctl plopottlon of 

trials in which a behaviour was recorded wa\ the drprndrnt vallahle I hr model 

indicated that the hirds expressed \ontc behaviours Iltolr hte(lurntl\ than other 

hehavioirs (1111-ing2 Frey pre\entations (I. \l\1: /. I(Iti.. tSo ! '. (º tºtºI ºI his 11 wall" that 

the hehavioir\ were not expressed indiscriminately or randonll\ hetýýcrn tll; tl\ and \%eic 

related to the type of prey heing handled Mg. g. 8»). Another oh\et \ anon That I. e oletit 

from Figure 8.9 is that there appeared to he three clu\Iels of hcha'Ioil Mhlrh torte 

expressed at different rates between cIi\tcr\ hit slntllal late, t\ Itill n tllr rlustrl I hrsr 

were based oil the differences between the pair wise colnpali\oll,, of the conlI, u't\ fable 

8.2). The first cluster of behaviour consisted of httinn. whtrh ''a\ cleark the nlo\t 

corlunonly expressed behaviour and exl)res ed sILItIhir; tnce ntorr open than other 
behaviours 8.9). The second cluster ul behaviours consisted of clushlno. \\Iping2. 
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and hitting behaviours which were expressed in about a third of all trials. The remaining 

cluster of behaviours consisted of the remaining four behaviours (head shaking, pecking, 

gaping/casting, and bill wiping) and were expressed in less than 10 % of trials (Fig. 8.9; 

Table 8.2). 

Table 8.2. Comparison of the differences in the estimated marginal means of the proportion of 
times that each behaviour was expressed during the trials. * Significant at a=0.05 (ßonferronl 

corrected). 

Behaviour Behaviour (j) 
Biting Crushing 

Wiping 
Hitting/shaking 
Head shaking 

Pecking 
Gaping/casting 

Bill wiping 
Crushing Wiping 

Hitting/shaking 
Head shaking 

Pecking 
Gaping/casting 

Bill wiping 
Wiping Hitting/shaking 

Head shaking 
Pecking 

Gaping/casting 
Bill wiping 

Hitting/shaking Head shaking 
Pecking 

Gaping/casting 
Bill wiping 

Head shaking Pecking 
Gaping/casting 

Bill wiping 
Pecking Gaping/casting 

Bill wiping 
Gaping/casting Bill wiping 

Mean Standard 
difference (I-J) error df p 

16.679* 2.050 115 <0.001 
19.087* 2.050 115 <0.001 
23.473" 2.050 115 <0.001 
40.499* 2.050 115 <0.001 
39.863* 2.050 115 <0.001 
41.505* 2.050 115 " <0.001 
38.235` 2.050 115 <0.001 
2.408 2.050 115 1 
6.794* 2.050 115 0.034 
23.820' 2.050 115 <0.001 
23.184* 2.050 115 <0.001 
24.826* 2.050 115 <0.001 
21.556* 2.050 115 <0.001 
4.385 2.050 115 0.066 

21.412* 2.050 115 <0.001 
20.775" 2.050 115 <0.001 
22.418' 2.050 115 <0.001 
19.148* 2.050 115 <0.001 
17.026* 2.050 115 <0.001 
16.390* 2.050 115 <0.001 
18.033* 2.050 115 <0.001 
14.763* 2.050 115 <0.001 
-0.636 2.050 115 1 
1.006 2.050 115 1 
-2.263 2.050 115 1 
1.643 2.050 115 1 
-1.627 2.050 115 1 

-3.270 2.050 115 1 

There were significant differences in the proportion of times that behaviours were 

expressed depending on prey type (F21115=218.248, P<0.001, Fig. 8.10). The differences 

between all the prey types were significant (LSD: alternative - mimic=-9.691,11<0.00 I; 

alternative - model=-25.950, P<0.001; mimic - model=-16.258, P<0.001). This clearly 

demonstrates that the birds were in some way able to taste the prey. However, there is 

also likely to be some reliance on the colour of the lid when the signal is expected to be 

reliable (i. e., for the alternative prey). There was a significant behaviour by prey 

interaction meaning that the trends of behaviour expression differed significantly 
between prey types and the type of behaviour that was being expressed (F, 4, iis=7.199, 
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P<0.001). The estimated total variance of' the model was approximately 55 of which 

about 18 (3 1.8 1 "l ) was caused by between subject differences. This level of variance 

between subjects was not significant meaning that between subject variance was not a 

significant factor in the overall model (Wald /: %=1.452. /'=(. 147). 
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H. tnJliny behaviour 

Figure 8.9 The mean proportion (+SE) of trials in which each behaviour was exhibited by birds 
All behaviours increased in frequency of expression from the undefended alternative prey to the 
moderately defended models. 

For the final behaviour analysis, in addition to the proportion of trials where 

certain behaviours were observed I was able to conduct a I. NINI analysis on the nunºbel 

of, behaviours birds exhibited in each trial. The , M(' indicated that the square root 

transformed motel was better as it had the lowest ; M(' number 

(untransformed=5O7. OO8, transfornºed=150.811). I constructed a I. NINI on the 

transfornºed number of behaviours Cxf)resse(l per PICY plCS'lltalloll. I Included prey 

type and treatment as fixed factors. Subjects were included as random subject variables 

and the number of behaviours per presentation was the dependent v; u"iable. The model 

revealed that the numbers of' behaviours exhibited varied swnificantly by prey type 

(LMM: /'",,,, =187.257, /'<0.001, Fig. 8.10). Pair wise comparisons oI the differences 

between the means revealed there were significant differences in the number of 

behaviors birds exhibited between all prey types (I. S1): alternative nºinºic: 0.307, 

/'<O. OOI; alternative -- model=-0.844, /'<0.001, mimic model: 0.477, /'<ll. ()Ol ). No 

other factors or interactions were significant (treatment: /', ; =1.914, P=O. 108., day: 

F,, =1.953, /'=0.074: treatment prey: /', ,,,; =0.402, /'=0.670; treatment*day: 

F,, , =0.617, /'=0.717, prey' day: F1,2, =0.955, /'=0.403; treatment I prey' day: 
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/'�,,, =I. 467, /'=O. I3o)4 The estimated total variance of the nude) was approximately 

(). II of which approxinwtely O. O3 (27.2W/) was causal by between subject differences. 

This level of variance between subjects was not significant meaning that it was not a 

significant factor in the overall nuulel (Wal(l %: /. =1.47, P=O. 137). 
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Fig 8.10. The mean number of behaviours (+SE) expressed per trial in relation to prey type and 
treatment 
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Latencies to attack can indicate the birds Motivation to allack the prey and declined with 

energetic state in the previous Chapters (e. ýg.. Chapters 5, (,, and 7). I transformed 

the raw data to restore normality and huntoscedaslicity which allowed me to conduct 

parametric statistics ()It the data. I constructed a fully factorial I. nlnt, which included 

prey type and treatment as fixed factors and subjects included as random subject 

variables. The model was not sigoniticanl Ior any oI the factors (IAINI: treatment 

/ý,, = I J9 X /'=(I. IS I: prey type I. 702. /'=("203; trealntentI prey /"', 
, =0.237, 

/'=0.79I ). The estimated total variance ut the model was approximately 0.0487 of 

which approximately 0.0374 (70. $I`4' ) was caused by between subject dillerences. 

Iluwever. this level of variance between subjects was not significant meaning that 

between subject variance was not a significant factor in the overall model (Wald 

/=I. SOS. /'=0. I32). This analysis shows that the latencies provide any evidence that 

there were ditterences in the birds' motivation to attack prey in either of the 

e\peiinteittal treatrttenls. 
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8.4. Discussion 

In this experiment, I tested a prediction arising from the SDP model on the state-based 

consumption of chemically defended prey by Sherratt et al. (2004). This model 

predicted that the increased frequency of Batesian mimics may decrease the rate of 

attack on all prey types in a mimicry system as the increase in the number of mimics 

will make the predators more conservative in their consumption of the species in the 

mimicry system. The data from this chapter show unequivocally that increases in mimic 

frequency, increased the effectiveness of the mimicry system through decreasing 

consumption and increasing survivorship of both models and mimics in the mimicry 

complex. Moreover, birds developed sophisticated behavioural methods of mediating 

the levels of chemical defences in the models. Something that had been associated with 

more specialised predators (e. g., Fry et al. 1993). 

The survivorship of models and mimics increased in the high mimic frequency 

treatment, with the increase disproportionately favouring the mimics. The reason for 

this is unknown although it could be further evidence that birds may be in some way 

managing their body burdens of toxins so that once they have ingested a certain number 

of prey they stop further ingestion of potentially defended prey. The SDP models of the 

state-based consumption of chemically defended prey predict that birds ought to 

manage their intakes of secondary metabolites and perhaps birds stopped consuming 

prey once their body levels of quinine had reached a critical point. 

These results contradict the classical conditioning models of learning, which have 

dominated in the literature of Batesian mimicry (Huheey 1976; Owen & Owen 1984; 

Speed 1993a; 1999,2001; Turner & Speed 1996, Speed & Turner 1999 although see 
Darst 2006). These models generally assume that experience with brightly coloured 

chemically defended prey will lower the probability of future attacks, whereas 

consumption of an undefended mimic will increase the probability of a future attack. 
This was found in earlier empirical studies that investigated the attack probability on a 
Batesian mimicry complex when the frequency of mimics increased (Brower 1960; 

Duncan & Shappard 1965; Lea & Turner 1972; Pilecki & O'Donald 1971, Goodale & 
Sneddon 1977, Huheey 1980; Avery 1985, Nonacs 1985, Lindström et al. 1997). 
However, these studies considered the relative model-mimic frequency in isolation from 

the rest of the system (with the exception of Nonacs [1985]). 
The high frequency mimic treatment in this experiment provided more food 

meaning that the mimicry complex potentially gained protection from being in a system 
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that had more prey. This protection came from the perceived risk that the additional 
food could possibly be models, meaning the birds could become more cautious in their 

consumption of the mimicry complex. This increase in food availability paralleled the 

result of other studies that have increased the amount of alternative prey in the system. 

These studies suggest that predators decrease their rate of predation on the model- 

mimics even when mimicry is imperfect (Nonacs 1985; Lindström et al. 2004). Nonacs 

(1985) found that long-eared chipmunks (Eutamais quadrimaculatas) decreased 

predation on model-mimics when alternative undefended food sources were more 

abundant. Lindström et al. (2004) also found that increases in alternative food 

abundance decreased the rate of relative predation on the models and the mimics (albeit 

using imperfect mimics). The results from these two studies are likely to be related the 

predator's preference for alternative prey above prey from the mimicry system. The two 

experiments were run for a set period of time within which, predators were allowed to 

forage freely until they had attacked a certain number of prey (Lindström et al. 2004) or 

a set time had elapsed (Nonacs 1985). 

If Nonacs (1985) had allowed his subjects to forage for longer, they would have 

become more likely to attack defended prey from the mimicry system because the 

patches would have become depleted of the more favoured food choice. My experiment 

was differed from that of Nonacs (1985) and Lindström et al. (2004) insofar that the 

birds never encountered the prey simultaneously and the maximum rate of food delivery 

was controlled within the daily trials. Presenting birds with food simultaneously may 
induce attacks on prey and may be unrealistic in that birds might rarely be faced with 

situations where they are required to make multiple decisions (Hetz & Slobodchikoff 

1988; Lindström et al. 1997). Moreover, when state is a factor of interest, detailed 

knowledge of the food intake per unit time is an important factor that could influence 

rates of attack on chemically defended prey. 
The results of this chapter are important and have far reaching implications for 

how we view Batesian mimics in a mimicry system. Until now, there has been massive 
theoretical and empirical evidence gathered which indicates that Batesian mimics have 

a parasitic effect on their models (see Ruxton et al. 2004, pp. 139-163 for a review). 
This is the first study that has shown that under some circumstances, increasing 
frequencies of Batesian mimics may actually enhance the effectiveness of the Batesian 
mimicry system. One possible mechanism for this effect might be that more frequent 
reinforcement of the warning signal may force the birds' to remember the unpleasant 



Quasi-Mullerian, effects 199 

defence associated with the model-mimics more often (Guilford 1991). The increased 

rate at which the association between the warning signal and its post-ingestive 

consequence are encountered in the high mimic frequency treatment may cause the bird 

to remember these negative post-ingestive consequences of the prey more readily. 

In this experiment, the probability of encountering a mimic increased in the high 

mimic frequency treatment along with the probability of prey encounter. This led to the 

birds consuming more mealworms in the high frequency treatment than in the other 

treatment (Fig. 8.6). Although the number of mealworms eaten in the high frequency 

treatment was significantly greater than in the low mimic frequency treatment. The 

extra mealworms probably would not have significantly affected a bird's energetic state. 

This difference equated to 2.9 more mealworms being eaten each day in the high 

frequency treatment compared with the low frequency treatment, providing birds with 

an extra 2.4 kJ in energy in the high frequency treatment. This would account for about 

one percent of their daily energetic needs (=270 kJ [Nagy et al. 1999]). The absolute 

increases in consumption of prey did not translate into significant increase in mortality 

on a per capita basis in the high mimic frequency treatment. This might have been 

expected had the mimics diluted the perception of chemical defences in the system. This 

also demonstrates that the birds were more cautious towards the model-mimics in the 

high mimic frequency treatment than they would have been if the extra food had come 

from alternative prey. 

The risk of ingesting quinine may have provided a significant deterrent to birds 

fully exploiting the extra food available in the high mimic frequency treatment. I 

calculated that given that birds daily energy requirements, they needed to gain about 
0.33 kJ of energy every minute throughout the foraging day (i. e., 14 hours) to provide 
their 24 hr energy requirements. In this experiment, the most they could gain in the low 

mimic frequency treatment was 0.19 kJ per minute whereas the high frequency 

treatment provided the birds with a maximum of 0.26 kJ per minute. These calculations 

are supported by the fact that in Chapter 7, birds lost mass over a 54-minute trial period 
where birds had access to up to 0.28 kJ per minute. Therefore, even if birds were 
maximally consuming prey, they would have still been consuming an insufficient 

amount of food to provide their energetic needs even during the experiment. The birds 
in this experiment were not food deprived prior to starting this experiment meaning that 
they were probably more cautious than in earlier chapters (e. g., chapter 2,5, and 6). 
However, this potentially makes the results more realistic as free-living birds are 
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unlikely to have extended periods without food access throughout the day except at 

dawn. 

The rates of survival show a survival advantage for the models and mimics in the 

high mimic frequency treatment. This survival advantage came from the lower number 

of prey being consumed in this treatment and a propensity for the birds to abandon 

attacks in greater numbers in these trials. However, I believe that the experimental 

method may have encouraged attacks by birds as the birds seemed to often flip the lid 

and then make an attack decision. This may have been an artefact from the last 

experiment or may indicate that the birds were basing their decisions on a conditioned 

response. This is because when birds became energetically stressed, they tended to 

consume all prey and so may have learned to flip the lids very quickly and before the 

bird had made its decision about attack and handling. Interestingly, the rates of 

consumption after attacks upon prey in this chapter and in Chapter 7 were lower than 

the rate of consumption after attack in Chapters 5 and 6. This may have been a result of 

differences in the method, or due to differences between individuals used in this 

experiment. This was not the only behaviour of the birds that was interesting. I collected 

data on the post attack handling and subjugation behaviour of the birds and analysed the 

results closely. 

Generally, the predatory sequence of animals can be split into three phases: the 

recognition phase, the pursuit/attack phase, and the subjugation/handling phase (Caro 

2005). In this experiment, the recognition and pursuit/attack phases could not be 

differentiated from one another and so must be considered together. There was little 

evidence to suggest that the birds were able to discriminate between models and mimics 

prior to prey handling. Either this is because there were no differences in the latencies to 

attack, or the proportion of prey attacked between these two prey types. The alternative 

prey type were attacked significantly more frequently than the model-mimics although 

the differences in the latencies were not significantly different. This indicates that the 

colour cue was important in discouraging attacks on the model-mimics compared with 
the alternative prey. 

During the handling phase of the predatory sequence, the handling times increased 

for the model-mimics. It is likely, that the first five to ten seconds of the handling period 
the birds were manipulating the prey in order to taste for quinine. Birds may have been 

able to taste quinine as sometimes prey would have residual quinine around the cephalic 

region from the intra-oral injection, although sometimes the head was removed in order 
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to sample the viscera. It is clear that for the models, the birds handled prey for longer 

and displayed a greater number of behaviours per handling period. Therefore, it is likely 

that birds were able differentiate between models and mimics through a gustatory or 

general trigeminal nervous response. The majority of mimics that were rejected post 

attack were not handled for long periods and sometimes came after the consumption of 

a model. This raises the possibility that these rejections of mimics could have been 

caused through confusion of prey type due to residual taste effects of the quinine into 

subsequent trials following model ingestion. When I tasted quinine, the flavour was 

evident for a period longer than three minutes although it cannot be assumed avian taste 

perception is in any way similar to human taste perception (despite the claims of 

Royama 1970, p. 339). Once the bird had identified a model, the bird either abandoned 

the attack (= 35 % of the time) or continued to handle the prey item (= 65 % of the 

time). On a few occasions individuals continued to handle the models until the end of 

the 60 seconds, when the prey was removed. Therefore, it is likely that the rates of 

consumption and handling time were underestimated. However, the prey had in all 

cases sustained what would have been fatal injuries meaning that the survivorship levels 

were not influenced by this occurrence. 

The starlings may have been attempting to mediate the levels of quinine that the 

mealworm contained through prey manipulation. For example, a common method (five 

out of the six birds demonstrated this behaviour) employed by birds was to remove the 

head and then hold the mealworm from the posterior end and hit it against the bottom of 
the cage. After 5-10 seconds of hitting, the bird would then retaste the mealworm and 

consume if satisfactory or continue hitting and tasting. This method could allow the 
birds to reduce the mealworms level of quinine to an acceptable level for consumption. 
It would have been useful to keep some of the rejected mealworms and compared their 

levels of quinine with those of non-handled mealworms that had been injected with 

quinine. However, time was not available for these analyses. 
The behavioural sequence that I described above is very sophisticated behaviour 

for a species that is considered a generalist predator. The majority of studies that have 

investigated the ways in which predators mediate chemical defences of prey have 

concentrated on specialised predators. For example, grasshopper mice (Onychomys 

spp. ) have demonstrated prey specific specialisations that neutralise the threats posed by 

various defended prey. They have been observed biting the heads off stink beetles 
(Eleodes longicollis) while pushing their quinone producing tails into the ground 
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(Eisner & Meinwald 1966; Langley 1981). When attacking lubber grasshoppers 
(Brachystola magna) which have spine-tipped legs that are used like saw blades, they 

immobilise the grasshopper and bite these appendages until they break before then 

consuming the rest of the body (Whitman 1986). Other well known examples of 

animals mediating the dangerous prey defences behaviourally are found in black-headed 

orioles (Icterus galbula) feeding on hibernating monarchs butterflies (Fink & Brower 

1981, Brower & Calvert 1985, Brower 1988), bee-eaters consuming hymenoptera (Fry 

et al. 1992), the loggerhead shrikes (Lanais ludovicianus) impaling the lubber 

grasshoppers and other noxious prey (Yosef & Whitman 1992; Yosef et al. 1996), and 

finally the different predatory strategies employed by Portia labiata (a spider-eating 

jumping spider [Salticid]) when hunting Scytodes pallidus (a spider that hunts jumping 

spiders). Normally Portia stalk Scytodes stealthily from behind because Scytodes spits 

sticky gum to ensnare their prey. However, when females are carrying egg sacs, and so 

cannot spit effectively, Portia will attack Scytodes without hesitation from the front 

(Jackson et al. 2002). Quite a feat for an animal with a cephalic ganglion smaller than 

the size of a pinhead! 

The documentation of behavioural characters that can mediate the ingestion of 
toxic compounds has lagged behind the similar documentation of physiological traits 

that mediate the effects of defence chemicals. While physiological adaptation may 
indicate a long evolutionary relationship between predator and prey, behavioural 

mechanisms may also have a similarly long evolutionary history. Behavioural 

mediation of chemical defences may also be more common than physiological 

adaptations as they might be less costly and there may be less inertia to their selection. 
This is because behaviour may develop from a general tendency for behavioural 

plasticity animals which helps them take advantage of changeable environments 
(Barnett 2004). However, because there are still few well-documented cases of these 
behavioural mechanism in different species of predators, it is far too early to make any 

meaningful comparisons between physiological and behavioural mechanisms or the 

selective pressures that favour their respective selection. However, the demonstration in 

this study that even generalised predators can utilise sophisticated behavioural 

sequences that may decrease the levels of defensive compounds of prey is interesting in 
itself and worthy of further investigation. 

There is a suggestion that generalist species may be more likely to innovate and 
there is a growing literature which examines the ecological and morphological 
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relationships in feeding innovations (see Lefebvre & Bolhuis [2003] and Sol [2004] for 

reviews). However, it is unknown weather this behaviour was a true innovation or 

merely a behavioural exapation. I have seen free-living birds using similar behaviour 

when handling prey that are too vigorous to eat or too large to swallow (personal 

observation). Therefore, it is reasonable to expect the birds to have used these 

behaviours in other contexts given that they are wild caught. However, the birds did not 

utilise these behaviours when they were first encountered models and mimics in 

Chapter 6. Moreover, the behaviour was not universally used. However, the birds that 

did use this behaviour would use it often repeatedly within a daily trial and it was 

predominantly associated with the models. 

8.4.1 Conclusions 

Traditional treatments of Batesian mimicry theory stipulate that the levels at which 

predators avoid a mimicry system is dependent on the three factors of the relative 

frequency of mimics to models the strength of the models chemical defence, and the 

availability of undefended alternative prey in the system. This experiment tested a 

recent SDP model that predicted that increasing mimic frequency would reduce the 

attack rate on the mimicry complex. This is the first study to confirm this prediction in a 

Batesian mimicry system, thus challenging the long-held view that increases in mimic 

frequency would also increase the predation costs to models. These data also indicate 

that the birds became more cautious (i. e., the proportion of prey consumed declined) at 

times of higher mimic density. The implications of the results of this chapter are far 

reaching as they challenge a number of assumptions that are held about Batesian 

mimicry and the mechanisms that might be responsible for predators preferences of 

prey. 
The handling behaviours that birds developed are also interesting as they suggest 

that behavioural mediation in prey chemical defences may be easily learnt and used by 

predators in response to changes in prey density. Behavioural modification is also a 

mechanism that has not been often considered as a method of reducing the cost of 

consuming chemically defended prey in a generalist predator. Most of the previous 

examples of behavioural mediation of prey chemical defences have come from 

predators that are more specialised in their hunting strategies. Therefore, these results 
have implications for how we view the costs and benefits of developing sophisticated 
prey handling behaviours. This might mean that the costs for consuming chemically 



Quasi-Müllerian effects 204 

defended prey may have been over estimated in studies that expose predators to prey for 

only short periods of time. 

The results of this study are of interest to all evolutionary biologists because they 

indicate that the relationship between mimic frequency and survival may be more 

complex than had been previously thought. The results of this study also question the 
basis of how animals decide to consume chemically defended prey and demonstrate the 

need for further investigation in this area in order to document further cases of this 

phenomenon. 
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Chapter 9 

GENERAL DISCUSSION 

The link between physiological state and reproductive success is well founded through 

an abundance of empirical research (see Clutton-Brock 1988; Newton 1989 for 

reviews). However, the links between short-term feeding behaviour, physiological state, 

and fitness have proven more elusive to quantify. The aim of this thesis was to generate 

data that would elucidate the relationship between short-term behavioural strategies and 

animals' energetic and physiological state. This would strengthen the link between 

energetic state and behaviour which are known to influence fitness. The results of this 

thesis provide evidence that the foraging decisions of birds can at times be related to 

energetic state. However, I also found that it is important to validate the assumptions of 

experiments in order to avoid problems as to the interpretation of results. 

9.1 Rationality and energetic state in European starlings (Sturttus vulgaris) 
I attempted to test the model of Schuck-Paim et al. (2004) that hypothesised that 

apparent breaches of rationality could be due to differences in the marginal fitness 

values at different energetic states. If this were the case, then it is possible that breaches 

in rationality could in fact be rational from their model's perspective. The results of 
Chapter 2 indicated that the birds did not breach rationality and that the decisions of the 

birds were not affected by their energy reserves. However, this result cannot be taken as 

a definitive refutation of the Schuck-Paim et al. (2004) model. This is because the birds 

were probably weighting their decisions in favour of the dimension of the payoff that 

they received. Therefore, the birds were probably construing the problem that I 

presented to them in a manner that was not intended. Therefore, there are doubts 

whether the experiment in Chapter 2 adequately tested the Schuck-Paim et al. (2004) 

hypothesis. 

9.2 The energy budget rule in rufous hummingbirds (Sclasphorus rufius) 
The second topic I chose to examine was the energy budget rule (EBR) of risk-sensitive 
foraging behaviour. I attempted to replicate the result of Caraco et al. (1990) at a field 
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site subject to large daily and seasonal temperature changes. I found that the birds as a 

group displayed little indication of risk-sensitive foraging behaviour. In addition, the 

birds' preferences did not change with the temperature or their behaviour. There are 

many possible explanations for this result such as: (1) lack of costs to switch between 

flower type, (2) birds utilising torpor on days when the temperature was extremely cold, 

and (3) the birds utilising micro-climates that were warmer than the average ambient 

temperature when it was cold. Therefore, there is no way to conclusively attribute the 

birds' behaviour to any factor as the study either presented the problem in a manner that 

was not interpreted in the manner I had intended, or the result was confounded by a 

behavioural or environmental factor that I did not consider. 

The implications of Chapters 2 and 3 are that more care needs to be taken in the 

design, analysis, and interpretation of foraging experiments. Care also needs to be taken 

that the experiment is construed in a manner that is intended by the subject so that the 

results are not misinterpreted. 

9.3 The energy-toxin trade-off in European starlings 
Finally, I was interested in the energy-toxin trade-off that birds might make at times of 

energetic stress which has recently been formalised in three SDP models (Kokko et al. 
2003; Sherratt 2003; Sherratt et al. 2003). I found unequivocal evidence that birds do 

increase the number of chemically defended prey they consume when their energetic 

states fall. The results support the notion that birds may utilise mildly and moderately 
defended prey at times of nutritive need. My novel findings indicate that the processes 
involved in the predation of chemically defended prey may be much more complex than 

has previously been thought. First, I found that predators are able to learn prey 

associations between more than two prey types and that they can consistently rank prey 

in accordance with the levels of chemical defence that they contain. Second, I found 

that if the levels of a toxin vary in a mimicry complex, then this might give the co- 

mimics an advantage over another prey of similar average toxicity. Third, I found 

evidence suggesting that birds might be able to strategically control their intakes of 

chemically defended prey. Fourth, I found that even generalist predators, such as 
European starlings, can develop sophisticated prey handling behaviour that could help 

mediate their intakes of toxins. Fifth, I found that birds may be able to taste the quinine 

with a general gustatory or trigeminal nervous response. Finally, and perhaps most 
interestingly, I found that the increasing the frequency of Batesian mimics in a mimicry 
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system can increase the rate of survivorship of both mimics and models in a Batesian 

mimicry system. This is the first time that the this effect has been empirically 

demonstrated although it has been predicted in stochastic dynamic programming models 

of the evolution of mimicry (Sherratt et al. 2004). 

9.4 Implications and future research in aposematism and mimicry 

Energetic state needs to be considered more in the design and analysis of experiments 

that examine the consumption of chemically defended prey in the laboratory. Care also 

needs to be taken that the energy levels of subjects are controlled between individuals. 

Also, care needs to be taken in pre-experimental food deprivation as even a two-hour 

fast could represent a significant amount of time to a small passerine and may have 

different impacts for different species. For example, a two-hour fast has far greater 

implications for a small species such as a great tit (Parus major) than a larger species 

such as a European starling because smaller species use up their fat reserves relatively 

more quickly than larger species (Newton 1998). 

The confirmation of energy toxin trade-off has implications for the wider debate 

on mimicry because if moderately defended prey can be consumed, then this makes the 

quasi-Batesian effects more likely. The palatability spectrum stipulates that prey can 

vary between being completely unpalatable to completely palatable (Brower et al. 1968; 

Turner 1984). This means that rather than a defence reducing the level of attack to zero 

as predicted by models of associative learning (e. g., Rescorla & Wagner 1972), 

predators can form partial preferences for prey and utilise them at times of nutritive 

need. These partial preferences can lead to quasi-Batesian effects in prey systems that 

are thought to be Müllerian. If my data reflect how birds deal with prey under natural 
foraging conditions, moderately defended prey may be commonplace, allowing for the 

evolution of quasi-Batesian mimicry, where a moderately defended co-mimic is 

parasitic on a more potently defended co-mimic (Speed 1993a). 

The data from Chapters 5 to 7 suggest that predators might strategically manage 
their intakes of quinine. If birds are able to strategically trade-off their intakes of toxins 
in relation to their physiological state, then this also indicates that educated predators 
could be a much more important factor in the evolution and maintenance of 
aposematism. The possibility that birds strategically manage their levels of toxin intake 

is an important development in the field of aposematism. However, in order to 
demonstrate that the birds' levels of toxin intake are strategically managed rather than 
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an effect of an increased feeling of sickness, we need to address various aspects of 

predator physiology such as demonstrating that predators have mass specific levels of 

ingestion of toxins that are consistent both within individuals at different times and 

between different individuals. 

Although learning the properties of chemically defended prey is important, a 

predator's experience with chemically defended prey might not stop once it has become 

educated to the chemical properties of a chemically defended prey. Therefore, educated 

predators may represent a significant selective pressure to aposematic prey because the 

learning period is likely to be much shorter than the educated period. Hence, more 

thought needs to be given to the role of educated predators in the predation of 

aposematic prey species. 

The result of Chapter 8 is important because it suggests that an increase in the 

frequency of undefended mimics does not lead to an increase in predation on the models 

and mimics in the system. This finding challenges the view that increases in undefended 

mimics are always parasitic on their models. I think it will be important for others to 

replicate the results of Chapter 8. This is because these results are important and 

challenge the our ideas as to the interactions between models and their Batesian mimics. 

Signal reliability may play a role in the in deterring predators. This is because if 

predators are able to strategically manage their intakes of chemically defended prey, 

then as they approach their critical body burdens of body toxins, birds might need to be 

more careful about which prey they consume. Therefore, they may choose prey with 

constant levels of chemical defence so that they can better manage their toxin intakes. 

Signal reliability could be an extremely important consideration for a predator 

attempting to strategically manage their body burdens of toxins. More unreliable signals 

such as the case in mimicry systems may interfere with predators abilities to manage 

their body burdens of toxins. This could lead to predators becoming more cautious of 

prey with variable levels of defence compared with prey with constant defences. 

Therefore, it would be important to conduct further research on the effects that 

unreliable signals may have on birds as they attempt to strategically manage their levels 

of body burdens of chemical defences. Moreover, it might be interesting to note if 

predators utilise other sensory modalities (such as taste) when a visual signal conveys 
less information as to the chemical defences of a prey animal. 

Trade-offs have not been examined in much detail in aposematism and mimicry 

systems. However, they are likely to widespread and pervasive in these systems as any 
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other biological system (e. g., Bennett & Owen 2002). Further theoretical and empirical 

research should be encouraged because this is an interesting field which could greatly 

enrich our understanding of the costs and benefits involved in aposematic traits and 

especially intra- and inter-specific mimicry. 

To pursue these issues, an integrative approach is needed. A wealth of 

physiological techniques are becoming available for use in the field and the laboratory 

and combined with behavioural assays, these techniques offer new ways to approach the 

study of animal behaviour. Therefore, we can look forward to a future of research into 

aposematism and mimicry with increasing ecological and physiological complexity. 
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