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Abstract

In this work we explore compositional methods for design of digital circuits with

the aim of improving existing methodoligies for desigh reuse. We address composi-

tionality techniques looking from both structural and behavioural perspectives.

First we consider the existing method of handshake circuit optimisation via con-

trol path resynthesis using Petri nets, an approach using structural composition. In

that approach labelled Petri net parallel composition plays an important role and

we introduce an improvement to the parallel composition algorithm, reducing the

number of redundant places in the resulting Petri net representations. The proposed

algorithm applies to labelled Petri nets in general and can be applied outside of the

handshake circuit optimisation use case.

Next we look at the conditional partial order graph (CPOG) formalism, an ap-

proach that allows for a convenient representation of systems consisting of multiple

alternative system behaviours, a phenomenon we call behavioural composition. We

generalise the notion of CPOG and identify an algebraic structure on a more general

notion of parameterised graph. This allows us to do equivalence-preserving manipu-

lation of graphs in symbolic form, which simplifies specification and reasoning about

systems defined in this way, as displayed by two case studies.

As a third contribution we build upon the previous work of CPOG synthesis used

to generate binary encoding of microcontroller instruction sets and design the corres-

ponding instruction decoder logic. The proposed CPOG synthesis technique solves

the optimisation problem for the general case, reducing it to Boolean satisfiability

problem and uses existing SAT solving tools to obtain the result.
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Chapter 1

Introduction

One of the major challenges for the future of semiconductor industry is the problem

of overcoming the design productivity gap. This gap is caused by the exponential

complexity growth of electronic systems [46] while the capability of design tools

cannot cope with this pace, see Fig. 1.1. The only way to deal with the increasing

complexity of Integrated Circuits (ICs) is to improve the efficiency of the design

process, in particular, by heavily reusing system components and by advancing the

design automation methods.

It has been predicted by ITRS [2] that in order to address the productivity gap

challenge, by 2020 at least 90% of the complex circuits should be built of previously

designed components. This rises the need for compositional (or modular) design

principles where the timing of individual modules is independent of the rest of the

system and therefore requires delay insensitive communication between the mod-

ules. This communication discipline is natural for asynchronous circuits where the

data transfer is accompanied by request-acknowledgement handshaking between the
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Figure 1.1: Design productivity gap
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CHAPTER 1. INTRODUCTION

sending and the receiving counterparts. On this pathway the previously designed

Intellectual Property (IP) cores will need to be adapted to the new modular ar-

chitectures. The least intrusive is the Globally Asynchronous Locally Synchronous

(GALS) approach [10] where special wrappers [24,47] are built around synchronous

modules to convert their communication into asynchronous handshake style. Another

alternative is desynchronisation techniques [15] where the global clock is replaced by

a distributed control which determines when the computation is complete and the

output result is ready to be consumed. This control may take different forms, from

a delay line matching the critical path of the module [16] to explicitly introduced

completion detection logic [34].

The remaining 10% of the IC components, as well as the interface and control

logic to support the interconnect and communication flexibility, will still need to

be designed from scratch. One way is to design those components in traditional

synchronous way and then apply the previously discussed techniques to comply with

the delay insensitive interface requirements. This, however, may result in suboptimal

solutions in terms of circuit area, computation speed and energy consumption. Better

results can be achieved if the components are designed and implemented with their

asynchronous environment in mind [36]. However, the logic synthesis of asynchronous

circuits is computationally expensive and not applicable to large modules. This is

due to high level of concurrency in truly asynchronous systems which results in a

state space explosion. The computation complexity problem has been successfully

addressed in the syntax-driven translation [22] approach which is based on direct

mapping of a specification into hardware components without going through the state

space exploration (it is assumed that there is one-to-one correspondence between the

specification language constructs and the library of available components).

The major drawback of the circuits obtained by the syntax-driven translation is

the suboptimal performance of their control structures [53]. In order to resolve this

issue the control models of all the components need to be composed together and

resynthesised exploiting the benefits of their joint optimisation. Existing resynthesis

methods are based on parallel composition of component models expressed in form of

Petri nets [25]. However, the efficient parallel composition of the component models

is still an open question and is one of the primary goals of this thesis.

The composition of circuit components is of structural nature - they are combined

2



CHAPTER 1. INTRODUCTION
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scenario 2

scenario 3

scenario 1

mode

outin

common functionality

(c) Behavioural composition

Figure 1.2: Composition basics

via input-output interfaces according to the casual dependency between the operation

they perform, as shown in Fig. 1.2a. Another compositional aspect is a combination

of several mutually exclusive behaviours in the same circuit. A naive way to build

such a circuit is to implement the different behaviour scenarious in separate modules

and structurally compose them with the use of multiplexers and demultiplexers, as

shown in Fig. 1.2b. A mode selection code on the (de)multiplexors determines the

current scenario. While this is a valid implementation of multi-modal functionality,

it ignores the mutually exclusive feature of the implemented behaviours and ignores a

possibility of partial hardware reuse for common functionality, as shown in Fig. 1.2c.

A model which naturally captures the structural and behavioural aspects of com-

position in a single formalism is Conditional Partial Order Graphs (CPOGs) [39].

This graph-based model is capable of expressing the structural composition by means

of causality arcs (similar to Petri nets) and the behavioural composition by means of

Boolean ”visibility” conditions on its vertices. While CPOGs is a convenient tool for

reasoning on small benchmarks, it lacks the means for capturing and transformation

of large systems. The first goal of this thesis is to generalise the CPOGs model

and transition from the acyclic graphs representing partial orders into a universal

Parameterised Graphs (PGs). The second goal is to introduce a theory for PG ma-

nipulation in algebraic form, which enables equivalence-preserving manipulation of

graphs in symbolic form and simplifies specification and reasoning about complex

systems.

3



CHAPTER 1. INTRODUCTION

The Boolean conditions on graph vertices can be expressed in various forms tar-

geting different optimisation criteria. In the context of digital circuit design these

conditions are subsequently implemented as the hardware control logic, therefore

such optimisation targets as minimising the number of control variables and/or re-

ducing the complexity of logical expressions, is of paramount importance. The am-

bitious goal of this thesis is to solve the optimisation problem for the general case,

to express it in terms of Boolean satisfiability problem and to employ the existing

SAT solving tools for obtaining the best result.

1.1 Contributions

The main contributions of the thesis are as follows:

• Improved parallel composition: a novel method for composition of models

specified with labelled Petri Nets.

• PG theory: CPOG generalisation to Parametrised Graph formalism and

mechanised proof of its algebraic properties.

• PG Synthesis: a technique for synthesis of processor instruction decoder

using instruction sets specified with Parametrised Graphs.

• CAD tool support: automation for the above, including improved parallel

composition and encoding of TPG specifications using Workcraft framework.

1.2 Overview

Handshake circuits [7] are widely applied in the design and synthesis of real-life hard-

ware. One prominent problem is obtaining an efficient implementation from a struc-

tural compositional specification. Syntax-based synthesis tools such as Balsa [22] are

unable to take into account the compositional behaviour of STGs corresponding to

handshake circuit components. To address this issue we propose a technique that

selectively composes STGs of related components to obtain a smaller and more per-

formant circuit without suffering state space explosion commonly associated with

4



CHAPTER 1. INTRODUCTION

Petri net based techniques [60]. This transformation, which we refer to as resyn-

thesis [4, 11, 33, 52], is accomplished in three stages. First, we apply a heuristic to

identify the most promising candidates for STG-level composition. Second, we per-

form a parallel composition of the selected component STGs and as a result obtain

a new handshake circuit with custom components, functionally equivalent to a com-

bination of elementary components. Finally, a gate-level implementation is obtained

from the new handshake circuit via a component-wise synthesis of STGs.

Unfortunately, the standard definition of parallel composition almost always

yields a ‘messy’ Petri net, with many implicit places, causing performance deteri-

oration in techniques that are based on structural methods such as the resynthesis

approach. To counter this, we propose an improved algorithm for computing the par-

allel composition. The algorithm generally produces nets with fewer implicit places

that are better suited for subsequent application of structural methods [3].

In addition to purely structural composition of STGs, it is also beneficial to con-

sider a mixture of structural and behavioural composition. Conditional Partial Order

Graphs (CPOG) [39] is a graph-based notation supporting compact representation

and efficient manipulation of both structural and behavioural composition styles.

As one example, when developing complex circuit, it is often necessary to consider

several operational modes of a circuit [44,62]. For this, one needs methodologies and

tools to exploit similarities between the individual modes and hence lift the level of

discourse to behaviour families. This necessitates that behaviours are managed in

a compositional way: the specification of the system must be composed from spe-

cifications of its blocks. Furthermore, since the approach is intended to be a part

of a safety critical toolchain, it is essential that such a specification is amenable to

mechanised reasoning and transformation.

In Chapter 4 we propose an extension of the CPOG formalism, called Paramet-

erised Graph (PG). PGs deal with general graphs rather than just partial orders. We

introduce an algebra of Parameterised Graphs by specifying the equivalence relation

via a set of axioms, which we prove to be sound, minimal and complete [43]. This

result allows one to manipulate a PG model as an algebraic expression applying

the bi-directional rewrite rules of this algebra. This is in contrast to the CPOG

formalism that does not offer a unifying algebraic structure. We demonstrate the

usefulness of the developed formalism with two case studies coming from the area of

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Thesis structure

microelectronics design.

The CPOG formalism can be applied to merge several distinct behaviours into a

single compact CPOG [39]. As one example, this has been previously used to syn-

thesise control logic for instruction decoding. In this thesis (Chapter 5) we improve

upon this work by offering a powerful technique to automatically discover an optimal

encoding and synthesise a matching optimal decoding circuit. From the outset, we

consider a larger set of potential solutions which enables us to formulate the global

optimality criterion. We use an automated satisfiability solving techniques to find

an optimal solution [40].

To summarize the thesis structure,

• Chapter 2 covers the basics of handshake circuits, signal transition graphs

and conditional partial order graphs.

• Chapter 3 describes the proposed improved parallel composition algorithm.

The contents of this chapter is based on the results published previously in [3].

• Chapter 4 introduces Parametrised Graph (PG) theory, defining and study-

6
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ing an algebraic structure that generalises Conditional Partial Order Graph

formalism. This chapter is based on the results previously published in [43].

• Chapter 5 describes a technique for optimal encoding of processor instruction

sets defined using PG formalism. This chapter is based on the results previously

published in [40]. An earlier version of this paper has qualified for a Best Paper

Award at the ACSD conference.

• Chapter 6 summarises the achieved results and proposes ideas for future

research.

• Appendix contains formal proofs in form of Agda source code for the PG

Algebra properties discussed in Chapter 4.

The relationship between chapters is illustrated in Figure 1.3.

7



Chapter 2

Background

This chapter introduces a brief overview of the major techniques and models used

throughout the thesis. In particular, handshake circuits – a specification formalism

for synthesis of self-timed hardware; Petri nets – a graph-based notation for reasoning

about concurrent behaviour; conditional partial order graphs (CPOG) – a versatile

notation for describing a family of partial orders.

2.1 Handshake circuits

One of the approaches to design of asynchronous circuits is syntax-directed mapping

with handshake circuits as an intermediate format. The parse tree of a program

source code written in a CSP-style [26] language can be interpreted as a graph of

components, connected with communication links called handshake channels. The

components can then be individually mapped to gate-level implementations with

complete circuit derived by implementing the handshake channels with wires.

This approach has been first used by Philips in their Tangram [29] design tool

and later made publicly available when the similar free Balsa [22] system has been

released.

This thesis will be working with Balsa handshake components.

A handshake activation h is said to enclose a process p if p can only start after

h gets a request and h can get an acknowledgement only after p gets finished.

A handshake circuit consists of handshake components which interact by request/

acknowledgment handshaking over communication channels. Each handshake com-

8



CHAPTER 2. BACKGROUND

ponent is specified by a set of ports and a process communicating over those ports.

A protocol is assigned to each port, which specifies whether the process initiates the

handshakes over an active port or awaits for the other party over a passive port. It

also specifies the direction and size of data transferred during the handshakes. Each

channel connects two ports of the same data size with one port being active and

the other being passive. Active input ports and passive output ports are called pull

ports while the pasive input and active output ports are called push ports.

On diagrams used in this thesis we display handshake components with large

circles with a process symbol inside and handshake ports with small circles where

filled circle stands for active port and hollow circle stands for passive port. Channels

are displayed as lines between the corresponding ports with the direction of the arrow

corresponding to the direction of data flow.

The defining feature of a handshake component is the process associated with it.

In Balsa there are about fifty types of processes with each having its own behaviour.

An important notion used to describe behaviours is channel activation. Activ-

ation is a process starting with a request being sent from the active port to the

passive port and ending with an acknowledgement being sent back. The behaviour

of a channel can be described as activation repeated indefinitely. For data channels

activation additionally determines the period of time the values on the data wires

remain valid.

Processes, including activations, are subject to a notion of enclosure to describe

temporal relationship between them. It is said that a process p is enclosed into a

process q when the beginning of p comes after the beginning of q while the end of p

comes before the end end of q.

• Sequence (Fig. 2.1a) is a component with three control ports: a passive port s

and two active ports t1 and t2. The behaviour of the component is as follows:

each activation on s encloses the process consisting of sequential activation on

t1 followed by t2.

• Concur (Fig. 2.1b) is a component with a similar external interface: it has

a passive port s and two active ports t1 and t2. The behaviour is different

though: each activation on s for this component encloses activation of t1 and

t2 concurrently.

9



CHAPTER 2. BACKGROUND

• Sync (Fig. 2.1c) is a component with three control ports: two passive ports s1

and s2 and an active port t. This component ensures enclosure of t into both s1

and s2 by the means of synchronisation between s1 and s2. This component is

dual to Concur in the sense that they form a no-op when their corresponding

ports are connected.

• Call (Fig. 2.1d) is another component with three control ports: two passive

ports s1 and s2 and an active port t. It differs from Sync in that instead of

expecting concurrent activation of both s1 and s2 it only expects one of them

to be activated at a time and encloses t into the one which happens.

• BinaryFunc (Fig. 2.1e) is a component with three pull data ports: a passive

port o and two active ports i1 and i2. It is parametrised on width of those

ports and on a function it computes. Control-wise it is similar to Concur: it

encloses the concurrent activation of i1 and i2 into the activation on o.

• CallMux (Fig. 2.1f) is a component similar to Call with the difference that all

of its ports are further extended to w-bit pull ports. Its behaviour is identical

from the control point of view, with the additional data being received through

t and sent through the activated output port.

• V ariable (Fig. 2.1g) is a component with a single input data port w, called

the write port and a set of passive output data ports r, called read ports. The

component is parameterised on the bit width of the variable w, coinciding with

the width of the data ports. It is also parameterised on the number of read

ports n. The behaviour of V ariable is to remember the data written with the

latest activation of w and to output that data on any activation of a read port

ri. The behaviour is trivial from the control point of view: the only way the

ports interact is through the data. However, there is a requirement that the

write port activation does not overlap with any of the read port activations.

• While (Fig. 2.1h) is a component with a passive control port s, an active

control port t and an active one-bit input data port c. Its behaviour is to

enclose into the activation on s the following process: complete a handshake

over c to obtain the one-bit data indicating the process activity condition; if

this condition holds then activate t and repeat the operations.

10
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(a) Sequence (b) Concur

.

(c) Sync

|

(d) Call

(e) BinaryFunc (f) CallMux (g) Variable (h) While (i) Case

Figure 2.1: Handshake components

• Case (Fig. 2.1i) is a component with a passive input data port i and a set of

active control ports t. It is parameterised by a number of ports n, the size of

the data transferred by i and by a function f mapping 2|c| → n. The behaviour

is to enclose into activation on i with the input code word d an activation of

the port tf(d).

2.2 Petri nets

A Petri net is a 4-tuple N = (P, T,W,MN ) where P is a finite set of places and T

is a finite set of transitions with P ∩ T = ∅, W : P × T ∪ T × P → N0 is the weight

function, and MN is the initial marking, where a marking is a multiset of places,

i.e. a function P → N0 which assigns a number of tokens to each place. A Petri

net can be considered as a bipartite graph with weighted arcs between places and

transitions. If necessary, we write PN etc. for the components of N or P ′ (Pi) etc.

for the net N ′ (Ni) etc.

The preset of a place or transition x is denoted as •x and defined by •x
df
=

{y ∈ P ∪ T | W (y, x) > 0}, the postset of x is denoted as x• and defined by

x•
df
= {y ∈ P ∪ T | W (x, y) > 0}. These notions are extended to sets as usual. We

say that there is an arc from each y ∈ •x to x.

A transition t is enabled under a marking M if ∀p ∈ •t : M(p) > W (p, t), which

is denoted by M [t〉. An enabled transition t can fire yielding a new marking M ′,

written as M [t〉M ′, where M ′(p) = M(p) − W (p, t) + W (t, p), for all p ∈ P . A

transition sequence σ = t1 . . . tn is enabled under a marking M (yielding M ′) if

11
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M [t1〉M1[t2〉 . . .Mn−1[tn〉Mn = M ′, and we write M [σ〉, M [σ〉M ′ resp.; σ is called

execution of N if MN [σ〉. The empty transition sequence λ is enabled under every

marking. M is called reachable if a transition sequence σ with MN [σ〉M exists.

N is called bounded if, for every reachable markingM and every place p, M(p) 6

k for some constant k ∈ N; if k = 1, N is called safe. N is bounded if and only if

the set [MN〉 of reachable markings is finite. In this thesis, we are mostly concerned

with bounded Petri nets.

A place p is implicit if it can be deleted from the net without changing the set of

executions, and so an implicit place can be removed from the net without affecting

its behaviour.1 Unfortunately, detecting implicit places is expensive: the problem is

PSpace-complete for safe and ExpSpace-complete for general Petri nets. A place p

is duplicate if there is another place p′ with the same pre- and postsets whose initial

marking does not exceed that of p. Duplicate places are implicit, and are cheap to

detect.

An STG is a tuple N = (P, T,W,MN , In,Out, ℓ) where (P, T,W,MN ) is a Petri

net and In and Out are disjoint sets of input and output signals. For Sig = In∪Out

being the set of all signals, ℓ : T → Sig × {+,−} ∪ {λ} is the labelling function.

Sig × {+,−} or short Sig± is the set of signal transitions ; its elements are denoted

as s+, s− resp. instead of (s,+), (s,−) resp. A plus sign denotes that a signal value

changes from logical low (written as 0) to logical high (written as 1), and a minus

sign denotes the opposite direction. We write s± if it is not important or unknown

which direction takes place.

An STG can contain transitions labelled with λ, called dummy transitions, which

do not correspond to any signal change. Hiding a signal s means to change the label

of all transitions labelled with s± to λ. (The idea of re-synthesis approach is to hide

the signals used for communication between components, which results in an STG

with fewer signals that often has a simpler implementation as a circuit.) The labelling

of an STG is called injective if for each pair of distinct non-dummy transitions t and

t′, ℓ(t) 6= ℓ(t′).

Examples of STGs are shown in Figs. 3.1 and 3.2. Places are drawn as circles

containing a number of tokens corresponding to the initial marking. Unmarked

places which have only one transition in their presets and postsets are not drawn if

1Note that an implicit place can cease to be implicit if another implicit place is removed first.

12
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the corresponding arcs have the weight 1; they are implicitly given by an arc between

these two transitions (and if such a place contains tokens, they are drawn on the arc

itself). Transitions are drawn simply as their labels, and the weight function is

drawn as directed arcs (x, y) whenever W (x, y) 6= 0 (and labelled with W (x, y) if

W (x, y) > 1).

We lift the notion of enabledness to transition labels: we write M [ℓ(t)〉〉M ′ if

M [t〉M ′. This is extended to sequences as usual – deleting λ-labels automatically

since λ is the empty word; i.e. M [s±〉〉M ′ means that a sequence of transitions fires,

where one of them is labelled s± while the others (if any) are λ-labelled. A sequence

ν ∈ (Sig±)∗ is called a trace of a marking M if M [ν〉〉, and a trace of N if M =MN .

The language L(N) of N is the set of all traces of N .

The reachability graph RG(N) of an STG N is an arc-labelled directed graph on

the reachable markings of N with MN as the root; there is an arc from M to M ′

labelled ℓ(t) whenever M [t〉M ′. For bounded Petri nets and STGs, RG(N) can be

seen as a finite automaton (where all states are accepting), and L(N) is the language

of this automaton. Observe that automata with accepting states only can be regarded

as STGs (with the states as places, the initial state being the only marked place,

etc.); hence, all definitions for STGs also apply to automata.

N is deterministic if RG(N) is a deterministic automaton: it contains no λ-

labelled transitions and there are no dynamic auto-conflicts, i.e. for each reachable

marking M and each signal transition s± there is at most one M ′ with M [s±〉〉M ′.

(Note that a deterministic STG can have choices between different outputs, e.g. an

STG modelling the standard arbiter is deterministic).

An STG with a set of all markings S2 is said to simulate another STG with a set

of all markings S1 iff there exist an R ⊆ S1 × S2 such that (MN1,MN2) ∈ R and for

any pair of markings (M1,M2) ∈ R, a label l and a marking M ′
1, M1[l〉〉M

′
1 implies

M2[l〉〉M
′
2 for some M ′

2. We call R the witness of simulation. Now we can say that

STGs N1 and N2 are bisimilar iff N2 simulates N1 with witness R and N2 simulates

N1 with witness R−1.

For deterministic STGs, language equivalence and bisimulation coincide, and the

language can be taken as the semantics of such a specification. Unfortunately, the

class of deterministic STGs is too restrictive in practice [31], e.g.:

13
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• using dummy transitions is often convenient in manual design;

• modelling OR-causality [63] as a safe STG requires non-determinism;

• hiding internal communication (and thus introducing dummy transitions) is a

crucial step in re-synthesis.

Hence, one has to deal with non-deterministic STGs as well.

One might think that if RG(N) is non-deterministic, it can be determinised (us-

ing well-known automata-theoretic methods), i.e. turned into a language-equivalent

deterministic automaton with accepting states only; in particular, the resulting auto-

maton will have no λ-arcs. Unfortunately, this is a bad idea, as shown in [31], where

the semantics of non-deterministic STGs was developed. It is based on the concept

of output-determinacy, which is a relaxation of determinism: An STG N is output-

determinate (OD) if MN [ν〉〉M1 and MN [ν〉〉M2 implies for every x ∈ OutN that

M1[x
±〉〉 iff M2[x

±〉〉. It turns out that OD STGs are exactly the STGs which have

correct implementations according to the implementation relation introduced in [31].

Hence, non-OD STGs are ill-formed, and in particular cannot be correctly imple-

mented as circuits. This shows that in general, the language is not a satisfactory

semantics of non-deterministic STGs; in particular, synthesising the determinised

reachability graph of a non-OD STG will either fail or result in an incorrect circuit.

On the other hand, for the class of OD STGs [31] shows that their language is an

adequate semantics, and implementation relation can be formulated purely in terms

of the language. An important property of OD STGs is that in them the enabledness

of an output signal is a function of the trace, i.e. given a trace ν, the set of outputs

by which ν can be extended is uniquely determined, even though there could be

multiple executions corresponding to ν.

In the following definition of parallel composition ‖, see e.g. [61], we will have

to consider the distinction between input and output signals. The idea of parallel

composition is that the composed systems run in parallel and synchronise on common

actions – corresponding to circuits that are connected on the wires corresponding

to the signals. Since a system controls its outputs, we cannot allow a signal to be

an output of more than one component; input signals, on the other hand, can be

shared. An output signal of a component may be an input of other components, and

in any case it is an output of the composition.
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The parallel composition of STGs N1 and N2 is defined if Out1∩Out2 = ∅. If we

drop this requirement, the definition gives the synchronous product N1×N2, which is

often useful. The place set of the composition is the disjoint union of the place sets of

the components; therefore, we can consider markings of the composition (regarded as

multisets) as the disjoint union of markings of the components, and we will also write

such a marking M1∪̇M2 of the composition as (M1,M2). To define the transitions,

let A = (In1∪Out1)∩(In2∪Out2) be the set of common signals. If e.g. s is an output

of N1 and an input of N2, then firing of s± in N1 is ‘seen’ by N2, i.e. it must be

accompanied by firing of s± in N2. Since we do not know a priori which s±-labelled

transition of N2 will fire together with some s±-labelled transition of N1, we have

to allow for each possible pairing. Thus, the parallel composition N = N1 ‖ N2 is

obtained from the disjoint union of N1 and N2 by fusing each s±-labelled transition

t1 of N1 with each s±-labelled transition t2 from N2 if s ∈ A. Such transitions

are pairs and the firing (M1,M2)[(t1, t2)〉(M
′
1,M

′
2) of N corresponds to the firings

Mi[ti〉M
′
i in Ni, i = 1, 2; for an example of a parallel composition, see Fig. 2.2. More

generally, we have (M1,M2)[ν〉〉(M
′
1,M

′
2) iff Mi[ν|Ni

〉〉M ′
i for i ∈ {1, 2}, where ν|Ni

denotes the projection of the trace ν onto the signals of the STG Ni. Hence, all

reachable markings of N have the form (M1,M2), where Mi is a reachable marking

of Ni, i = 1, 2.

Obviously, one can extend the notion of the parallel composition to a finite family

(or collection) (Ci)i∈I of STGs as ‖i∈I Ci, provided that no signal is an output

signal of more than one of the Ci. We will also denote the markings of such a

composition by (M1, . . . ,Mn) if Mi is a marking of Ci for i ∈ I = {1, ..., n}. As

above, (M1,M2, . . . ,Mn)[ν〉〉(M
′
1,M

′
2, . . . ,M

′
n) iff Mi[ν|Ci

〉〉M ′
i for all i ∈ {1, . . . , n}.

It is easy to see that C is deterministic if all Ci are. However, this is not true for a

composition of OD STGs, as the result, in general, can be non-OD in such a case.

A composition can also be ill-defined due to computation interference, see e.g. [20].

Let C
df
=‖i∈I Ci be a composition of STGs. It is free from computation interference

(FCI) if for every trace ν of C the following holds: if ν|Cj
x± is a trace of Cj for some

output x of Cj, then ν|Cx
± is a trace of C.

Transition contraction [61] is an important operation in circuit re-synthesis. It

removes a dummy transition from an STG and combines each place of its preset

with each place of its postset to ‘simulate’ the firing of the deleted transition, see
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Figure 2.2: Parallel composition example. In the net fragment on the left hand side,
signal a is an output, and in the fragment in the middle it is an input. Hence, in their
parallel composition (right) it is an output. In this example, there is computation
interference: the left component activates a+ but the middle one is not ready to
receive it.

p1 p2

q1 q2 q3

(p1,q1) (p1,q2) (p1,q3) (p2,q1) (p2,q2) (p2,q3)

λ ⇒

Figure 2.3: An example of a transition contraction.

Fig. 2.3. Unfortunately, transition contractions are sometimes undefined (e.g. in case

the transition has a self-loop, i.e. some place occurs in both its preset and postset);

moreover, even when a contraction is defined, it might change the semantics of the

STG. Hence, [61] uses the notion of secure contractions, that preserve the semantics.

Transition contractions preserve boundedness, but in general, can turn a safe

net into a non-safe one, as well as introduce weighted arcs. In practice, it is often

convenient to work with safe nets, and for this [32] introduced safeness-preserving

contractions, i.e. ones which guarantee that the transformed STG is safe if the initial

one was. (Note that the transitions with weighted arcs must be dead in a safe Petri

net, and so we can assume that the initial and all the intermediate STGs contain no
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such arcs.) Also, [32] developed a sufficient structural condition for a contraction to

be safeness-preserving.

From the point of view of this thesis, it is important to remark that implicit places

can adversely affect the (secure) contractibility of a transition, i.e. it is possible to

have a situation when a transition is not contractible (or not securely contractible),

but becomes securely contractible after some implicit place is removed from the STG.

As detecting implicit places is expensive, it is very desirable to reduce their number

by some other means, in particular the approach proposed in this thesis reduces the

number of such places in STGs obtained by parallel composition. This has a direct

effect on re-synthesis: if the composed STG has fewer implicit places, more dummy

transitions in it can be contracted, and so it will be easier to synthesise the result.

2.3 Conditional Partial Order Graphs

A Conditional Partial Order Graph (CPOG) [39][45] is a quintupleH = (V, E, X, ρ, φ),

where V is a finite set of vertices, E ⊆ V ×V is a set of arcs between them, and X is

a finite set of operationalvariables. An opcode is an assignment (x1, x2, . . . , x|X|) ∈

{0, 1}|X| of these variables; X can be assigned only those opcodes which satisfy the

restriction function ρ of the graph, i.e. ρ(x1, x2, . . . , x|X|) = 1. Function φ assigns

a Boolean condition φ(z) to every vertex and arc z ∈ V ∪ E of the graph.

Figure 2.4(a) shows an example of a CPOG containing |V | = 5 vertices and

|E| = 7 arcs. There is a single operational variable x; the restriction function is

ρ(x) = 1, hence both opcodes x = 0 and x = 1 are allowed. Vertices {a, b, d} have

constant φ = 1 conditions and are called unconditional, while vertices {c, e} are

conditional and have conditions φ(c) = x and φ(e) = x respectively. Arcs also fall

into two classes: unconditional (arc c→ d) and conditional (all the rest). As CPOGs

tend to have many unconditional vertices and arcs we use a simplified notation in

which conditions equal to 1 are not depicted in the graph. This is demonstrated in

Figure 2.4(b).

The purpose of conditions φ is to ‘switch off’ some vertices and/or arcs in the

graph according to the given opcode. This makes CPOGs capable of specifying

multiple partial orders or instructions (a partial order is a form of behavioural de-

scription of an instruction). Figure 2.4(c) shows a graph and its two projections. The
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Figure 2.4: Graphical representation of CPOGs and their projections

leftmost projection is obtained by keeping in the graph only those vertices and arcs

whose conditions evaluate to 1 after substitution of the operational variable x with 1.

Hence, vertex e disappears, because its condition evaluates to 0: φ(e) = x = 1 = 0.

Arcs {a → d, a → e, b → d, b → e} disappear for the same reason. The rightmost

projection is obtained in the same way with the only difference that variable x is set

to 0. Note also that although the condition of arc c → d evaluates to 1 (in fact it

is constant 1) the arc is still excluded from the resultant graph because one of the

vertices it connects (vertex c) is excluded and obviously an arc cannot appear in a

graph without one of its vertices. Each of the obtained projections can be treated as

a specification of a particular behavioural scenario of the modelled system. Poten-

tially, a CPOG H = (V, E, X, ρ, φ) can specify an exponential number of different
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partial orders of events in V according to one of 2|X| different possible opcodes.

A CPOG is well-defined if all its projections allowed by ρ are acyclic. We consider

only well-defined CPOGs in this thesis, because a cyclic projection has no natural

execution semantics, in particular it is not clear which event can be executed first

unless some form of a ‘token’ is introduced as in the Petri Net model [14].

To summarise, a CPOG is a structure to represent a set of encoded partial orders

in a compact form. Synthesis and optimisation methods presented in [45] provide a

way to obtain such a representation given a set of partial orders and their opcodes.

For example, the CPOG in Figure 2.4(c) can be synthesised automatically from the

two partial orders below it and the corresponding opcodes x = 1 and x = 0. The

next section shows that a particular assignment of opcodes to the partial orders has

a strong impact on the final CPOG, therefore in order to obtain the most compact

CPOG representation one has to search for the best opcode assignment.

Note that partial orders is not the only formalism for formal specification of in-

structions. In particular, there is an alternative approach [6] based on automata,

which treats every instruction as a burst-mode state machine and defines an opera-

tion of composition on them. While benefiting from a direct correspondence between

flowcharts of algorithms and automata, the approach cannot model true concurrency:

a set of causally independent events can only be executed as a ‘burst’ in the same

step/clock cycle. Also, it requires explicit memory to track the current state of the

automaton. We believe that partial orders are better suited for modelling instruc-

tion sets of processing units built on heterogeneous platforms, i.e. exhibiting both

asynchronous and synchronous interactions [41].

2.4 Agda

Agda [49] is a system serving both as a programming language and as a proof as-

sistant simultaneously. When viewed as a programming language, it is a purely

functional language with its syntax largely inspired by Haskell. Its main distinguish-

ing features are totality (the fact that every function is defined on every possible

input) and dependent typing system that allows for types to depend on the values.
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2.4.1 Function definitions and algebraic data types

A very common language construct in Agda is a function definition. Function defin-

ition must consist of type signature followed by its defining equations. As a simple

example, consider this Boolean exclusive OR function:

xor : Bool → Bool → Bool

xor x y = x ∧ (¬ y) ∨ y ∧ (¬ x )

Here we define a function called xor of type Bool → Bool → Bool with two

arguments x and y defined in terms of ∧ , ∨ and ¬ .

Functions can have more than one defining equation when each equation defines

the function for a particular shape, or pattern of arguments. This is called pattern

matching. For example, the Boolean negation function can be defined the following

way:

¬ : Bool → Bool

¬ false = true

¬ true = false

A more interesting example would be a Boolean AND:

∧ : Bool → Bool → Bool

true ∧ true = true

∧ = false

This example demonstrates an additional feature of pattern matching: equations

are ordered and the earlier ones take precedence.

In the above we used the Bool data type to represent Boolean values. This data

type is not a built-in language construct of Agda, but can be defined using the data

keyword:

data Bool : Set where

true : Bool

false : Bool

Here definition gives the name for the type and lists constructors of its values:

true and false. In this case constructors have no arguments, thus corresponding
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to individual values, but in general a single constructor can correspond to multiple

values, as will be shown later.

2.4.2 Inductive types and recursion

We often want to reason about data types with infinite number of values, such as

natural numbers. To represent them we use inductive type definitions:

data N : Set where

zero : N

suc : N → N

Here we define natural numbers as something that has two forms: it is either a

zero, or a successor suc x where x is another natural number. These two constructors

allow us to construct an arbitrary number of values of type N by successive applica-

tion of suc to zero: zero corresponds to 0, suc zero corresponds to 1, suc (suc zero)

to 2, etc.

To manipulate the values of inductive data types we use recursive functions:

+ : N → N → N

zero + y = y

suc x + y = suc (x + y)

Here we define natural number addition recursively by considering the cases for

the first argument: the base case of 0 + y must evaluate to y and for the recursive

case (1 + x) + y must evaluate to 1 + (x + y). The Agda compiler checks that the

arguments to the function become smaller on recursive calls, thus ensuring that only

well-behaved (terminating) definitions are admitted.

2.4.3 Indexed types and propositions

There is a close correspondence between types and logic, a phenomenon known as

Curry-Howard correspondence. Specifically, types can be thought of as propositions

where the type is inhabited if and only if the corresponding proposition holds true.

Similarly, well-typed terms can be thought of as proofs of the corresponding propos-

itions. Consequently, the type-checker can be used as a proof checker.
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With the language features described so far we can construct types ⊤ and ⊥

corresponding to true (logical tautology) and false (logical contradiction). These are

not to be confused with true and false values of type Bool that can not be used as

types.

data ⊤ : Set where

tt : ⊤

data ⊥ : Set where

Here the type ⊤ has a constructor tt , which makes it inhabited, thus corres-

ponding to the logic value of true. The type ⊥ has no constructors, which makes it

uninhabited, thus corresponding to false.

To construct more complex propositions Agda provides parameterised types, de-

pendent function types and indexed inductive data families.

Type parameters are a basic way to allow for generic data types or logic operators.

Consider the following example:

data Both (A : Set) (B : Set) : Set where

both : A → B → Both A B

data Either (A : Set) (B : Set) : Set where

left : A → Either A B

right : B → Either A B

Here, Both A B can be thought of as a type of tuples of the form both x y with

x : A and y : B . At the same time, for propositions P and Q , Both P Q can be

thought of as their conjunction so that the proof both p q can be constructed if and

only if both p and q (proofs of P and Q) can be constructed.

Similarly, Either is playing a dual role of taking the disjoint union of its type

parameters and the logical disjunction operator. Type Either P Q is inhabited if

and only if types P or Q or both are inhabited.

Another way to define parameterised types is to compute them as a result of a

function.

Consider some examples:

Not : Set → Set

Not P = P → ⊥
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IsTrue : Bool → Set

IsTrue true = ⊤

IsTrue false = ⊥

Not takes a type P and computes another type Not P , which is inhabited if and

only if contradiction is derivable from P . It is useful to think of Not P as being

inhabited if and only if P is not.

IsTrue x is a type that is inhabited if and only if a Boolean value x happens to

equal true.

Dependent function types have the form (x : X ) → Y where x can be free in

Y . This lets the type of the function result to depend on the value passed in as the

argument. In the case when Y is a logical proposition, the dependent type can be

thought of as universal quantification over x . Indeed, let us construct a value that

can serve as a proof that for any boolean value x one of x and ¬ x must be true:

lemma1 : (x : Bool) → Either (IsTrue x ) (IsTrue (¬ x ))

lemma1 true = left tt

lemma1 false = right tt

Finally, indexed inductive type families give you more flexibility by having the

constructor choose the values for type parameter instead of having to construct a

type for a given parameter value:

data IsEven : N → Set where

zero : IsEven 0

suc : (n : N) → IsEven n → IsEven (suc (suc n))

Here IsEven n is inhabited if and only if n is an even number.

With dependent functions it is often useful to omit some of the arguments because

their values are uniquely determined by the types of the arguments that follow. To

be able to do that you can mark the corresponding parameter as implicit by putting

it in curly braces:

lemma2 : {x : N} → IsEven x → Not (IsEven (suc x ))

lemma2 zero ()

lemma2 (suc e) (suc z ) = lemma2 e z
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3 −not − even : Not (IsEven (suc (suc (suc zero))))

3 −not − even = lemma2 (suc zero)

Here the special syntax of () is used to indicate that we are doing a pattern

matching on a given parameter with no cases to choose from. This situation allows

you to complete the definition without having to give a right-hand side.

Of special importance is the equality type, ≡ : {A : Set } → (x : A) → (y :

A) → Set . We have x ≡ y inhabited if and only if x and y are the same value. It is

useful for equational reasoning that is often more natural than inductive proofs.
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Chapter 3

Improved Parallel Composition

The contents of this chapter is based on the results published previously in [3]. The

chapter covers in detail the proposed modification to the labelled Petri nets parallel

composition algorithm allowing for simpler resulting nets while preserving result

equivalence up to bisimulation.

3.1 Introduction

Parallel composition (synchronous product) of labelled Petri nets is a fundamental

operation in modular hardware design. It is often used to combine models of subsys-

tems into a model of the whole system. In particular, there is a direct correspondence

between parallel composition of Signal Transition Graphs (STGs), a class of labelled

Petri nets used for modelling asynchronous circuits, and connecting circuits by wires.

Hence performing this operation efficiently is important in practice.

Unfortunately, the standard definition of parallel composition almost always

yields a ‘messy’ Petri net, with many implicit places even when the component

Petri nets did not have them. Some of these places are computationally cheap to

remove (e.g. duplicate places – places with identical pre- and postsets). In general,

however, for removing remaining implicit places one needs full-blown model check-

ing, something infeasible if the resulting composition is large [57]. Although implicit

places do not have noticeable effect on tools based on state space exploration, such

as Petrify [13], the performance of tools that are based on structural methods,

such as DesiJ [56], often deteriorates.
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(a) Toggle

(b) Call

(c) Environment (d) Composition

Figure 3.1: Example of standard STG composition.

Consider the example in Fig. 3.1. It depicts an STG specifications of two com-

ponents (a,b) and the specification of the environment (c). The used short-hand

drawing notation for STGs is explained in Sect. 2.2. The model of the behaviour

of the entire system can be obtained by constructing a parallel composition of these

three STGs, as shown in part (d) of the figure. It contains a few implicit places that

are not duplicate places; intuitively, they appear due to repeated causality specific-

ations for every signal: the one coming from the component where this signal is an

output, and others from the components where it is an input. Removing these places

yields a much ‘cleaner’ STG, as shown in Fig. 3.2(d).

One operation where implicit places matter is transition contraction [61] – a cru-

cial part of the resynthesis approach. The idea is to hide the internal communication

between the components by labelling the corresponding transitions as ‘dummy’ (they

correspond to signals a and b in our example), contract as many of these dummy

transitions as possible, thus reducing the size of the STG, and resynthesise the ob-
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(a) Toggle

(b) Call

(c) Environment (d) Composition

Figure 3.2: Example of improved STG composition: the components are obtained
from the corresponding ones in Fig. 3.1 by removing some places, and then the
standard parallel composition is applied to these modified components.

tained STG as a circuit. The result is often smaller than the original circuit due to

removal of some signals. Transition contraction is normally performed on very large

STGs, such as those corresponding to the whole control path of the circuit, and so,

for efficiency, it has to be a structural operation. However, such structural contrac-

tions are not always possible (see Sect. 2.2), and implicit places in the pre-set and/or

post-set of a transition can prevent contracting it, even if a contraction is possible

after removing these implicit places. In the example in Fig. 3.1(d), DesiJ [56] can-

not contract any of the dummy transitions, even though it performs some structural

tests for place redundancy. Yet, it is able to contract all the dummy transitions if

the implicit places are removed, i.e. when applied to the STG in Fig. 3.2(d).

In Chapter 3 we present a new method for computing the parallel composition

of labelled Petri nets that generates fewer implicit places. It uses the freeness from

computation interference (FCI) assumption [20] stating that it is impossible that
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when one component wants to produce an output it is prevented from doing so

by another component not ready to receive it. Violation of the FCI assumption

means that the behaviour of the composition does not correspond to that of an

implied physical system. For example, an output of a circuit component cannot be

physically disabled by another component that is not ready to receive this signal,

and so producing this output will lead to a malfunction. However, the composition

will be oblivious to the presence of the malfunction and behave as if such an output

could not be produced. Hence FCI is a basic correctness requirement – whenever

it is violated there is no point in computing a parallel composition since it would

not characterise an intended behaviour. In practice, FCI is often guaranteed by

construction, e.g. its satisaction is guaranteed for the control path of a Balsa [21]

or Haste/Tangram [8, 51] specification of an asynchronous circuit. The idea of

using the FCI condition is reminiscent of the method of input/output exposure in

the synthesis by direct mapping described in [59] and of the correct by construction

composition of Petri nets for circuit components and the environment used in the

DI2PN tool [28].

The essence of the proposed method is illustrated by the example in Fig. 3.2.

Before computing a parallel composition, one can remove some of the places in the

components (see (a–c) in Fig. 3.2) and then compose the modified STGs. The precise

conditions that allow us to remove a particular place will be stated in Sect. 3.2. At

this point we shall only mention that they are structural and thus can be efficiently

checked. The method guarantees that the number of places in the resulting Petri net

is not larger and often much smaller (as the number of places in the composition is

the total number of places in all the components), and, under the FCI assumption,

the resulting behaviour is the same up to bisimularity. In the example, composing the

modified components yields the STG in Fig. 3.2(d), containing no implicit places.

The modified components may include unconstrained transitions and unbounded

places and thus be non-implementable. Fortunately, this does not matter, as they

are never used on their own, but only in composition with other components, and

the resulting behaviour of the composition is guaranteed to correspond to that of

the standard composition.

Resynthesis (Section 3.6) of asynchronous circuits is the intended application

of the proposed method. However, we envisage that it may find a much wider
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applicability since composition of labelled Petri nets is a fundamental operation and

the FCI assumption is often known to hold for practically important examples.

3.2 Improved parallel composition

The improved parallel composition algorithm extends the conventional one by adding

a pre-processing step, where some places are removed from the components, as they

are guaranteed to be implicit in the result. To identify these places, one can note

that a place is required in the final composition only if under some reachable marking

it can be the place that disables some transition in its postset.

For simplicity, consider the parallel composition C = C1 ‖ C2, whose components

synchronise on a single signal s which is an output of C1 and an input of C2. Let

(M1,M2) be a reachable marking of C, where M1 and M2 are some reachable mark-

ings of C1 and C2, respectively. Furthermore, suppose that M1 enables, say, s+ in

C1, where s is an output. Now, if M2 does not enable s
+ in C2, where s is an input,

then there is computation interference. Therefore, if the FCI assumption holds, M2

has to enable s+ in C2, i.e. whenever s
+ is enabled in C1, it is also enabled in C2. In

other words, the firing of s+ in C is fully controlled by C1, and so the constraints on

firing of s that are present in C2 can be ignored. This means that the places in the

preset of an s+-labelled transition in C2 will be implicit in the composition (subject

to some technical conditions formulated below), and so can be removed before the

composition is performed.

The above is true for the simple case of STGs with injective labelling and no

dummies. However, the general picture is more complicated. In case of non-injective

labelling, there can be multiple transitions corresponding to the same input signal

transition, and the FCI assumption only guarantees the enabledness of one of them.

Hence, some ‘memory’ (in the form of places) is required to trace which of these

transitions has to be fired, which prohibits the removal of places from their presets.

Furthermore, if the STG contains dummies, removing places from their postsets

introduces some undesirable effects explained later. These considerations lead to the

following conditions of applicability of the proposed optimisation.

Proposition 1. 1 Let C
df
=‖i∈I Ci be a composition of STGs that satisfies the FCI

1Note that in our previous work [3] we claimed a stronger equivalence (viz. isomorphism of
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Figure 3.3: Equivalence preserved by place removal in improved parallel composi-
tion.

property and yields an output-determinate STG, and, for each i ∈ I, C ′
i be the STG

obtained from Ci by deleting all places p such that:

1. each transition t ∈ p• is labelled with a signal, say s, and:

a) s is an input;

b) there is an STG Cj for which s is an output;

c) there are at most one s+- and at most one s−-labelled transition in Ci;

2. •p does not contain dummy transitions.

Then C ′ df
=‖i∈I C

′
i and C are bisimilar.

The proposition can be depicted schematically by a diagram in Fig. 3.3. Here the

boxes named S1 and S2 represent the original STGs, S ′
1 and S ′

2 are represent STGs

obtained from S1 and S2 by removing places according to the rules detailed above,

and S1 ‖ S2 and S ′
1 ‖ S ′

2 represent S1 composed with S2 and S ′
1 composed with

S ′
2 respectively. We use a dashed line to signify the bisimulation relation between

S1 ‖ S2 and S ′
1 ‖ S

′
2.

The conditions 1a and 1b are intrinsic to the proposed method, and essentially

state that due to the FCI assumption, firing of an input signal in a component can

reachability graphs), but there was a subtle problem in the proof discovered by Walter Vogler from
University of Augsburg, who found a counter-example. Here an updated version of the theorem is
presented that avoids the discovered problem.
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λ λ

⇒

λ λ

Figure 3.4: Example of an STG where removal of places in the postset of dummy
transitions results in a wrong behaviour.

be controlled from the outside (viz. by the component controlling the corresponding

output — whose existence is ensured by 1b), and so the component itself can get rid

of the places controlling it.

The conditions 1c and 2 are technical restrictions on application of our method.

If condition 1c is violated, there are several transitions that have the same label,

say s+ (where s is an input) in the component. When the corresponding output s+

is produced by some other component, only one of these transitions should fire to

match it — but to know which one, the component needs to control their firing, and

so the places in their presets cannot be removed.

The necessity of condition 2 is illustrated by Fig. 3.4. Intuitively, the original

STG on the left either receives a+ followed by b+ without outputting anything, or

receives b+ and produces x+ in response. However, if the places in front of a+ and b+

are removed (which would be possible without condition 2), as shown on the right,

then it might produce the unexpected x+ after the trace a+ b+. Intuitively, in the

initial STG firing of a+ acts as an evidence that the dummy transition in the right

branch has fired, while in the modified one the postset of this dummy transition has

been removed, and so it is not possible anymore to guarantee that it has fired when

a+ fires.
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⇒

Figure 3.5: Example of enforcing injective labelling in an STG.

3.3 Discussion

In practice, when performing the parallel composition, one would like as few implicit

places as possible in the result, and so it would be desirable to weaken the conditions

in Prop. 1, so that as many places as possible are removed. As the conditions 1a

and 1b are intrinsic, it is unlikely that they can be relaxed. However, the technical

conditions 1c and 2 can be dealt with — by ensuring that the components always

satisfy them. Indeed, as mentioned in Sect. 2.2, for output-determinate STGs the

language is the semantics, and so one often can remove dummy transitions and

enforce injective labelling without changing the language, e.g. using the Petrify

tool [13]; this will ensure that conditions 1c and 2 hold. An example of such a

transformation for the Balsa standard component Call is shown in Fig. 3.5. This

operation is performed on (small) components rather than the (large) composition,

and so is usually cheap. Moreover, in some applications, in particular circuit re-

synthesis, the components are taken from a fixed library of component types, and

so the transformation can be performed only once for each component type, and

subsequently incur no runtime penalty at all.
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3.4 Proof of Proposition 1

We begin by defining a relation R between markings of C and C ′, which we will

show to be a bisimulation. We say that (M,M ′) ∈ R iff M is reachable in C and

M(p) = M ′(p) for each p ∈ P ′. Note that M(p) is well-defined, as P ′ ⊆ P because

C ′ was obtained from C by removing places. Also note that for any given reachable

marking M there is exactly one M ′ such that (M,M ′) ∈ R, obtained by restricting

the domain of M , so R is a function and we employ the notation M ′ = R(M) to use

it as such.

Now we need to prove that the introduced relation R is indeed bisimulation.

We start by proving that C ′ simulates C with R. For that, we first need to show

M ′
N = R(MN). That follows from both parallel composition and place removal

preserving initial markings of individual places. Now given a reachable marking

M1 with an enabled transition M1[l〉〉M2 we must show that R(M1)[l〉〉R(M2). To

prove that we note that any transition enabled inM1 must also be enabled in R(M1)

because the enabledness condition gets weakened with removal of places. Using that

fact we show that whichever transition t labelled l was enabled to allow M1[t〉M2

it is also enabled in R(M1). The marking after firing must coincide with R(M2)

because the arcs to existing places and their weights are preserved by place removal.

This shows R(M1)[l〉〉R(M2) and concludes the proof that C ′ simulates C.

In the second part of the proof we show that C simulates C ′ with R−1. Here,

given R(M1)[l〉〉M ′2 we need to show that there exists an M2 such that M1[l〉〉M2

and M ′2 = R(M2). Again, we note that there must be a transition t′ labelled l such

that R(M1)[t′〉M ′2. If the corresponding transition t is enabled M1[t〉M2 then the

proof is complete since we already showed that M ′2 must be equal to R(M2). For

the sake of contradiction, suppose t is not enabled in marking M1. Then there is

necessarily one of the deleted places p in •t in some of the component STGs Ci, and

the number of tokens in this place at marking M1 is smaller than the weight of the

arc (p, t) in Ci (*). Since by condition 1a p• can contain only input transitions, t

must be labelled by s±, where s is an input signal of Ci; wlog., we assume that the

label is s+. By condition 1b there is also a component STG Cj where s is an output

signal.

Let σ be an execution of C terminating at marking M1, and ν be the trace
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corresponding to σ (note that such a σ always exists as we restrict R to only include

reachable markings). We proceed by showing that (i) ν|Cj
s+ is a trace of Cj and (ii)

ν s+ is not a trace of C; these would mean that there is a violation of FCI in the

original composition, leading to a contradiction.

(i) Since s+-labelled transition t′ is enabled by R(M1) of C ′, its component tj

must also be enabled in C ′
j and labelled by the same signal s+. Since s is an output

in Cj, no places were removed from •tj when building C ′
j due to condition 1a, which

means that tj is also enabled by the marking M1
j , and so ν|Cj

s+ is a trace of Cj.

(ii) For the sake of contradiction, suppose ν s+ is a trace of C. Due to the

output-determinacy of C, the set of outputs by which ν can be extended is uniquely

determined, and so s+ must be enabled by M1 (perhaps, after firing several dummy

transitions). By condition 1c there is only one s+-labelled transition in Ci (viz. t),

and so each s+-labelled transition in C has p in its preset with the arc from p to

this transition having the same weight as the arc (p, t) in Ci. Consequently, each

s+-transition in C is blocked at marking M1 because by (*) the number of tokens in

p is smaller than the weight of the corresponding arc. Moreover, firing only dummy

transitions cannot increase the number of tokens in p and thus enable an s+-labelled

transition, as by condition 2 •p contains no dummy transitions, a contradiction.

Hence ν s+ is not a trace of C.

As explained above, (i) and (ii) imply a violation of FCI and so lead to a contra-

diction, which means that C and C ′ must be bisimilar.

3.5 Experiments

The proposed parallel composition algorithm has been evaluated on three series of

scalable benchmarks (available from [50]), see Fig. 3.6. They are built of a subset

of standard Balsa components [21]: Paralleliser (‖), Sequencer (; ), Call (|), Syn-

chroniser (·) and Arbiter (Arb). These controllers are considered to be of size 1; a

controller of size k > 1 is constructed by replacing the dotted lines with the control-

lers of size k − 1. Each basic component is described by an individual STG; then

these STGs are composed using four different techniques:

std the standard parallel composition;
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Figure 3.6: Scalable Balsa controllers used in experiments.

opt the optimised parallel composition presented here;

inj the standard parallel composition of the components with enforced injective

labelling;

opt+inj the optimised parallel composition of the components with enforced inject-

ive labelling.

Note that all the used Balsa components except Call initially had injective labelling,

so only the STG for Call was changed in the inj and opt+inj series. Both the standard

and optimised parallel composition algorithms have been implemented in PComp

tool [50]. The tool automatically deletes duplicate places in all compositions, so all

the experimental results are subject to this simplification. The runtimes of PComp

were negligible and so not reported.

For each composed STG, the internal signals of the composition were hidden

(i.e. turned into dummies), and the DesiJ tool [56] was used to structurally elimin-

ate as many dummies as possible, using either secure or safeness-preserving secure

contractions.

The results of our experiments are summarised by the charts in Fig. 3.7. There

are six charts altogether, for each of the three benchmark series and each of the
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(b) Safeness-preserving contractions

Figure 3.7: Number of non-contractible dummy transitions, normalized to the best
value achieved.
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contraction modes (secure or safeness-preserving secure). Each chart reports, for

each benchmark size within the corresponding series, the numbers of non-contrac-

tible dummy transitions (normalised w.r.t. the worst result) remaining in the STG

for each of the four composition methods described above.

The experiments demonstrate that the optimised parallel composition is never

worse than the standard one in terms of the STG structure that is used for removing

dummies (the opt bars are never longer than the std bars, and the opt+inj bars

are never longer than the inj bars), and is significantly better in some cases (e.g.

for the SeqCallParSync (4) benchmark there is a factor of five improvement).

Moreover, using the optimised technique in conjunction with injective labelling is

usually advantageous (the fourth bar is the shortest in almost all cases).

3.6 Balsa workflow optimisation through STG re-

synthesis

The main obstacle for the wider acceptance of asynchronous systems is the inherent

complexity of their design. Several solutions are accepted by the industry to help to

simplify the design process through abstraction of predesigned asynchronous circuit

parts as standardised high level components. A designer is able to use these com-

ponents as “building blocks”, and then obtain the final gate-level design through an

automated mapping process. Some of the well-known asynchronous design automa-

tion packages, such as Tangram [8], and Balsa [22], define a high-level programming

language that is used to describe systems. The language constructs are then directly

translated into a network of handshake components– blocks with predefined func-

tionality that use handshakes to interface with other components, which are in turn

mapped into a gate netlist [7].

Although this method greatly enhances the designer’s productivity, it has several

important drawbacks. Of these, the control-path overhead is the most decisive. The

controllers obtained by syntax-directed mapping are usually far from optimal because

the predesigned components are required to implement their declared protocols fully

and correctly in order to be reusable in all possible circuit configurations. However, it

is often the case that a significant part of their functionality becomes redundant due
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Figure 3.8: Balsa design workflow

to the peculiarities of the specific configuration, e.g. in many cases full handshaking

between the components can be avoided.

This redundancy may be eliminated by replacing a manually designed gate-level

implementation of the high level components with an equivalent STG (signal trans-

ition graph) specification [64]. The STGs of individual components are then com-

posed together to form a STG representation of the whole system STG [52] and is

optimised with petrify [13]. An optimal gate-level implementation is then auto-

matically produced from the STG using tools such as petrify [13], SIS [58] and

MPSat [30]. Automatic synthesis becomes problematic when the size of a STG

becomes large: modern synthesis tools can handle STGs of no more than 100 sig-

nals. The impact of this problem can be lessened by including STG decomposition

tools [56] into the workflow. They break a large, optimised STG down into several

smaller STGs that are synthesisable in reasonable time. Alternatively, the decom-

position step is carried out at the level of handshake circuits, dividing a circuit into

several smaller blocks of components.

The standard Balsa design workflow is comprised of several stages (Figure 3.8).

The designer writes the system specification in Balsa language. It is passed to
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Figure 3.9: Modified Balsa workflow

the Balsa compiler, which generates a handshake component netlist (produced in a

language called Breeze) using syntax-directed mapping on the source code. Syntax-

directed mapping in this context means that there is a predefined handshake com-

ponent construct for every syntactic structure. The Breeze netlist is then translated

into a gate-level netlist using direct mapping, this time from individual handshake

components to their gate-level implementation, which is defined beforehand.

The proposed modification of this workflow is shown in Figure 3.9. The transla-

tion from Balsa language into Breeze netlist is retained (and is still done by the Balsa

compiler), but the Breeze-netlist to gate-level-netlist mapping is replaced with the

STG resynthesis flow as introduced above. Instead of using Balsa tools to produce a

gate-level netlist, the Breeze netlist is read by a special interpreted graph model plug-

in to Workcraft tool [54], which replaces the handshake components with their

STG specifications and produces a composition of those STGs using PComp tool. If

the resulting STG is small enough, the gate-level implementation may immediately

be synthesised using any of the available synthesis tools.
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However, for many practical cases the composed STG will become quite large.

In this case, to synthesise the implementation it is necessary to insert an additional

decomposition step, which may be either STG decomposition (implemented using a

tool called DesiJ [56] that is automatically called from the plug-in), or handshake

circuit (HC) decomposition which is supported by the plug-in directly. Therefore,

the whole process is automated in the Workcraft framework.

The technique allows to synthesise more efficient control circuits while at the same

time preserving the benefit of rapid design methodology fundamental to Balsa. It

should be noted, however, that full modelling of all Breeze components with STGs is

not practical. The behaviour of most data components would be too complex to syn-

thesise from an STG. Circuit resynthesis for such components would take too much

time and would often be less effective than an already existing gate-level implement-

ation done by an experienced designer. Subsequently, all data-related functionality

in HCs is modelled outside of STG composition framework: the STG models include

only control signals for the data path elements. These control signals are to be con-

nected after the gate-level generation step to the data-path circuit that is assembled

separately (its components are specified by a structural Verilog netlist). The data

path is generated automatically side-by-side with the STG behaviour model.

3.6.1 Support of Breeze handshake circuits as interpreted

graph model in Workcraft

For the purpose of implementation of the design flow discussed in this section the

Workcraft framework was extended with a plug-in that introduces support for

Breeze HCs. The new HC model allows Workcraft’s convenient visual editing

tools to be applied for creation and editing of Breeze netlists. The same plug-in also

performs generation of the STG behaviour model for the specified HC. The STG

generation algorithm is designed to be highly customisable, with support of multiple

handshake protocols and various STG implementations for each type of component.

At the moment of writing, STG generation was implemented for a limited set of

components using early 4-phase handshake protocol. The library of components is

being expanded and will include all Breeze components with support for different

handshake protocols.
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(a) Sequence

(b) Concur

Figure 3.10: Pure control path handshake components and their respective STGs

3.6.2 STG specifications of individual handshake compon-

ents

Balsa components can be roughly divided in three groups: pure control components,

data path control components and data-control interface components. We will review

each group separately.

Pure control path components

Pure control components only control the behaviour of other components and do

not carry out any data operations. These components are expected to gain the most

from the new design workflow because all of their handshakes are inside the control

path and such handshaking does not have to always strictly correspond to the general

protocol.

The examples are Concur (Figure 3.10b) and SequenceOptimised (Figure 3.10a)

components. The STGs in those figures are highly parallel specifications of these

components. However, experimental results show that although such implementation

might look better on paper, in practise it is sometimes better to specify traditional,

more sequential behaviour. This significantly simplifies the task for synthesis tools,
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particularly those based on state space exploration techniques, because high paral-

lelism often leads to early state space explosion problem. Besides that, a parallel

specification suffers more from CSC (complete state coding) problems: a significant

number of auxiliary signals have to be introduced to achieve CSC.

Data path control components

This group of components is used to control the corresponding data path components

that execute predefined operations on data. These operations are far too complex

for automated synthesis, but the control path part can still be optimised using STG

resynthesis, which makes it reasonable to separate data and control signals. The

signals that control the data path are in this case specified as the input and output

signals of the component’s STG. Because the data path blocks are outside this spe-

cification, their handshake protocols must be implemented strictly and thus cannot

be optimised. This, however, does not prevent the optimisation of handshakes that

belong to the same component but interface with other control path components.

BinaryFunc (Figure 3.11a), CallMux (Figure 3.11b), Variable (Figure 3.11c) are

good examples of the data path control components.

Data-control interface components

Data-control interface components provide conversion of data to control signals or

vice versa. For example, the While component (Figure 3.12a) analyses the input data

to decide whether it should end its operation and conclude the activation handshake,

or to continue activating the output handshake. Case component (Figure 3.12b)

handles the data in a very similar way, however it has an arbitrary bus width, so

for bus widths of more than one bit a decoder that resides in the data path could

be used to reduce the STG complexity. These components STGs can become quite

complex and the strict behaviour of their data-path handshakes must be preserved.

3.6.3 An example: GCD controller

We have chosen the GCD controller (Figure 3.13) to demonstrate the proposed tech-

nique. The GCD controller is a good research example because it has components
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(a) BinaryFunc

(b) CallMux

(c) Variable

Figure 3.11: Data path control components and their respective STGs
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(a) While

(b) Case

Figure 3.12: Data-control interface components and their respective STGs
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Figure 3.13: Breeze Handshake Circuit model of a GCD block

from every group described in section 3.6.2 and its complexity does not allow omit-

ting of the STG decomposition step, which is an important part of the proposed

workflow. All available synthesis tools failed to synthesise a circuit from the fully

composed STG model of GCD controller. This proves that the decomposition is

a necessary step lacking which the synthesis of a practical circuit is not likely to

succeed.

Decomposition on the level of STG can be replaced with decomposition on the

level of handshake components. Such decomposition can be done simply by parti-

tioning the input handshake circuit into blocks, trying to minimise the number of

handshakes between blocks, and applying the synthesis process to each block separ-

ately. While working with the GCD example it was found that decomposition on the

level of handshake components can be done easier and is guaranteed to be successful,

whereas decomposition on the STG level is a complex task, which requires additional

third-party tools.

3.6.4 Experimental results

For the evaluation of the proposed method effectiveness, each individual handshake

component was synthesised separately and its cost (in logic equation literals) es-
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Component type Multiplicity MPSat cost Petrify cost Best

BinaryFunc 4 21 27 21
Case 1 13 13 13
Fetch 5 17 13 13
Concur 1 16 16 16
Variable 2 13 18 13
Sequence 1 13 13 13
CallMux 2 25 33 25
While 1 17 17 17

Total 304 334 284

Table 3.1: Costs of individual components

timated. Then, parts of the GCD handshake circuit were synthesised from the STG

composition, and the cost of this implementation was compared to the sum of costs of

individual components implementations. For synthesis, two tools were used: MPSat

and Petrify.

The process of circuit synthesis using this approach was completely automated.

In Table 3.1, the costs of each standalone handshake component, synthesised

from the STG specifications, are shown. The results are shown for both applied

synthesis tools. The total circuit cost, computed as a sum of individual component

costs taking their multiplicity into account.

In Table 3.2, the cost of fully sythesised GCD controller is shown. The cost was

derived for synthesis carried out by each tool individually, and for the best mix of

HC parts produced by both tools, selected on lowest total cost basis (in Figure 3.13,

two such parts are highlighted).

It can be seen from the tables that the cost improvement for the GCD circuit

was approximately 28%.

3.7 Summary

We have presented an improved algorithm for computing the parallel composition

of STGs or labelled Petri nets. Under the FCI assumptions, it allows to produce

nets with fewer implicit places, which aids the subsequent structural algorithms like

dummy contraction. It uses only simple structural checks and thus is very efficient
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MPSat

Synthesised block Cost

seq+concur+2xfetch 35
fetch+var+2xBF 49
fetch+var+2xBF 49

fetch+case 23
while 17

callmux 25
callmux 25

Total 223

Petrify

Synthesised block Cost

var+2xBF 52
var+2xBF 52

2xfetch+case 29
fetch+while 29

seq+concur+fetch 29
callmux 33
fetch 13

callmux 33

Total 270

Best choice

Synthesised block Cost

var+callmux+2xBF 63
fetch+while 29
fetch+case 21

seq+concur+2xfetch 35
callmux 25

fetch+var+2xBF 47

Total 220

Table 3.2: Cost of optimally split full GCD circuit

even for large compositions, so the improvement comes at negligible cost.

The algorithm was implemented in the PComp tool and evaluated on a set of

scalable benchmarks. The experiments proved its efficiency, which increases even

more when the components are pre-processed to remove dummies and ensure in-

jective labelling (this is usually cheap, as the components are small; moreover, if

the components come from a standard library of component types, this step can be

completely eliminated).

Another important advantage is that the improved algorithm places almost no

additional effort on the user: the only requirement is to pass an additional command-

line option to PComp so that it can assume the FCI property and apply the proposed

optimisation.

47



Chapter 4

Theory of Parametrised Graphs

This chapter is based on the results previously published in [43]. It introduces a new

formalism called Parametrised Graphs (PG) and tries to capture its most important

characteristics in an algebraic structure we call PG-algebra. We introduce some of

the theorems in the theory of PG-algebra and provide their proofs. Many of the

proofs are written in Agda [49], a formal proof language, so they can be machine-

checked instead of being manually inspected.

4.1 Introduction

We continue the work started in [45] where a formal model, called Conditional Partial

Order Graphs (CPOGs), was introduced. Using CPOGs as a foundation allowed us

to represent individual system configurations and operational modes as annotated

graphs and to efficiently overlay them by exploiting their similarities. However,

the CPOG formalism lacks the compositionality and the ability to compare and

transform specifications in a rigorous manner [43]. In particular, CPOGs always

represent a specification as a ‘flat’ structure, similar to the canonical form defined in

Section 4.2, hence a hierarchical representation of a system as a composition of its

components is not possible. We extend this formalism in several ways:

• We transition from the graphs representing partial orders to general graphs

and lift the assumption of graph acyclicity. Nevertheless, if a partial orders is

the most natural way to represent a certain aspect of system, this still can be
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handled.

• The new formalism is fully compositional – it adds algebraic operations for

combining existing specifications.

• We describe the equivalence relation between the specifications as a set of

axioms, obtaining an algebra of parametrised graphs. This set of axioms is

proved to be sound, minimal and complete [43].

• We have defined equivalence preserving transformations; this permits one to

use the algebra to safely manipulate PG specifications. This can be viewed as

adding a syntactic level to the semantic representation of specifications, and is

reminiscent of the relationship between digital circuits and Boolean algebra.

Since parametrised graphs are likely to be applied in a safety-critical toolchain, it

is imperative to attain a degree of confidence in the properties of the PG formalism.

Equally important is to convince prospective users that the technique is sound and

lives up to its promises. To fulfil this goal, it was decided to construct in a strict

and controlled manner a complete formalisation of the PG formalism. The Agda

system [49] was chosen for its expressive notation language and extensive support

for machine-checked formal inference. Agda has enjoyed a notable success as the

basis for the formalisation of wide range of problems in the domain of programming

language research [5, 27].

We will show that, in contrast to more expressive formalisms such as process al-

gebrae, many useful properties of PGs can be efficiently verified, for example equality

is decidable and, moreover, decidable in NP-time. It therefore lies in the complexity

class below Petri nets (whose interesting properties are PSPACE-hard) and Turing-

powerful process algebrae. Despite their lower expressive power, PGs are sufficient

for our purposes as demonstrated in case studies.

We demonstrate the usefulness of the developed formalism on the basis of two

case studies. The first one (Section 4.5.1) is concerned with development of a phase

encoding controller that represents information by the order of arrival of signals on

n wires. As there are n! possible arrival orders, it is a challenge to specify the set

of corresponding behavioural scenarios in a compact way. The proposed formalism

not only allows us to solve this problem but also does it in a compositional manner.
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The final specification is obtained through the composition of fixed-size fragments

describing the behaviours of a pair of wires (the latter is impossible with the CPOG

formalism).

4.2 Parametrised Graphs

A Parametrised Graph (PG) is a model which has evolved from Conditional Partial

Order Graphs (CPOG) [45]. We consider directed graphs G = (V,E) whose vertices

are picked from the fixed alphabet of actions A = {a, b, ...}. Hence the vertices of

G would usually model actions (or events) of the system being designed, while the

arcs would usually model the precedence or causality relation: if there is an arc going

from a to b then action a precedes action b. We will denote the empty graph (∅, ∅)

by ε and the singleton graphs ({a}, ∅) simply by a, for any a ∈ A.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, where V1 and V2 as well as

E1 and E2 are not necessarily disjoint. We define the following operations on graphs

(in the order of increasing precedence):

Overlay: G1 +G2
df
= (V1 ∪ V2, E1 ∪ E2).

Sequence: G1 → G2
df
= (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).

Condition: [1]G
df
= G and [0]G

df
= ε.

In other words, the overlay + and sequence → are binary operations on graphs with

the following semantics: G1+G2 is a graph obtained by overlaying graphs G1 and G2,

i.e. it contains the union of their vertices and arcs, while graph G1 → G2 contains

the union plus the arcs connecting every vertex from graph G1 to every vertex from

graph G2 (self-loops can be formed in this way if V1 and V2 are not disjoint). From

the behavioural point of view, if graphs G1 and G2 correspond to two systems then

G1+G2 corresponds to their parallel composition and G1 → G2 corresponds to their

sequential composition. One can observe that any non-empty graph can be obtained

by successively applying the operations + and → to the singleton graphs.

To make notation cleaner we are going to use the following operator precedence

rules: [0] and [1] bind more tightly than → and → binds more tightly than +.
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a cb

(a) Graph G1

d

(b)
Graph
G2

a

�

cb

(c) Graph G1 +G2

a

d

cb

(d) Graph G1 → G2

Figure 4.1: Overlay and sequence example (no common vertices)

d

ba

(a) Graph G1

d

cb

(b) Graph G2

a

d

cb

(c) Graph G1 +G2

a

d

c
b

(d) Graph G1 → G2

Figure 4.2: Overlay and sequence example (common vertices)

Fig. 4.1 shows an example of two graphs together with their overlay and sequence.

One can see that the overlay does not introduce any dependencies between the actions

coming from different graphs, therefore they can be executed concurrently. On the

other hand, the sequence operation imposes the order on the actions by introducing

new dependencies between actions a, b and c coming from graph G1 and action

d coming from graph G2. Hence, the resulting system behaviour is interpreted as

the behaviour specified by graph G1 followed by the behaviour specified by graph

G2. Another example of system composition is shown in Fig. 4.2. Since the graphs

have common vertices, their compositions are more complicated, in particular, their

sequence contains the self-dependencies (b, b) and (d, d) which lead to a deadlock in

the resulting system: action a can occur, but all the remaining actions are locked.

Given a graph G, the unary condition operations can either preserve it (true

condition [1]G) or nullify it (false condition [0]G). They should be considered as a

family {[b]}b∈B of operations parametrised by a Boolean value b.

Having defined the basic operations on the graphs, one can build graph expres-

sions using these operations, the empty graph ε, the singleton graphs a ∈ A, and
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the Boolean constants 0 and 1 (as the parameters of the conditional operations) —

much like the usual arithmetical expressions. We now consider replacing the Boolean

constants with Boolean variables or general predicates (this step is akin going from

arithmetic to algebraic expressions). The value of such an expression depends on the

values of its parameters, and so we call such an expression a parametrised graph (PG).

One can easily prove the following properties of the operations introduced above.

• Properties of overlay:

Identity: G+ ε = G

Commutativity: G1 +G2 = G2 +G1

Associativity: (G1 +G2) +G3 = G1 + (G2 +G3)

• Properties of sequence:

Left identity: ε→ G = G

Right identity: G→ ε = G

Associativity: (G1→G2)→G3 = G1→(G2→G3)

• Other properties:

Left/right distributivity:

G1 → (G2 +G3) = G1 → G2 +G1 → G3

(G1 +G2) → G3 = G1 → G3 +G2 → G3

Decomposition:

G1→G2→G3=G1→G2 +G1→G3 +G2→G3

• Properties involving conditions:

Conditional ε: [b]ε = ε

Conditional overlay: [b](G1 +G2) = [b]G1 + [b]G2

Conditional sequence: [b](G1→G2)=[b]G1→ [b]G2
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AND-condition: [b1 ∧ b2]G = [b1][b2]G

OR-condition: [b1 ∨ b2]G = [b1]G+ [b2]G

Condition regularisation:

[b1]G1→ [b2]G2=[b1]G1 + [b2]G2 + [b1 ∧ b2](G1→G2)

Now, due to the above properties of the operators, it is possible to define the following

canonical form of a PG. In the proof below, we call a singleton graph, possibly

prefixed with a condition, a literal.

Proposition 1 (Canonical form of a PG). Any PG can be rewritten in the following

canonical form:
(

∑

v∈V

[bv]v

)

+

(

∑

u,v∈V

[buv](u→ v)

)

, (4.1)

where:

• V is a subset of singleton graphs that appear in the original PG;

• for all v ∈ V , bv are canonical forms of Boolean expressions and are distinct

from 0;

• for all u, v ∈ V , buv are canonical forms of Boolean expressions such that

buv ⇒ bu ∧ bv.

Proof. (i) First we prove that any PG can be converted to the form (4.1).

All the occurrences of ε in the expression can be eliminated by the identity and

conditional ε properties (unless the whole PG equals to ε, in which case we take

V = ∅). To avoid unconditional subexpressions, we prefix the resulting expression

with ‘[1]’, and then by the conditional overlay/sequence properties we propagate all

the conditions that appear in the expression down to the singleton graphs (compound

conditions can be always reduced to a single one by the AND-condition property).

By the decomposition and distributivity properties, the expression can be rewritten

as an overlay of literals and subexpressions of the form l1 → l2, where l1 and l2 are
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literals. The latter subexpressions can be rewritten using the condition regularisation

rule:

[b1]u→ [b2]v = [b1]u+ [b2]v + [b1 ∧ b2](u→ v)

Now, literals corresponding to the same singleton graphs, as well as subexpressions

of the form [b](u → v) that correspond to the same pair of singleton graphs u

and v, are combined using the OR-condition property. Then the literals prefixed

with 0 conditions can be dropped. Now the set V consists of all the singleton graphs

occurring in the literals. To turn the overall expression into the required form it only

remains to add missing subexpressions of the form [0](u→ v) for every u, v ∈ V such

that the expression does not contain the subexpression of the form [b](u→ v). Note

that the property buv ⇒ bu ∧ bv is always enforced by this construction:

• condition regularisation ensures this property;

• combining literals using the OR-condition property can only strengthen the

right hand side of this implication, and so cannot violate it;

• adding [0](u → v) does not violate the property as it trivially holds when

buv = 0.

(ii) We now show that (4.1) is a canonical form, i.e. if L = R then their canonical

forms can(L) and can(R) coincide.

For the sake of contradiction, assume this is not the case. Then we consider two

cases (all possible cases are symmetric to one of these two):

1. can(L) contains a literal [bv]v whereas can(R) either contains a literal [b′v]v

with b′v 6≡ bv or does not contain any literal corresponding to v, in which case

we say that it contains a literal [b′v]v with b′v = 0. Then for some values of

parameters one of the graphs will contain vertex v while the other will not.

2. can(L) and can(R) have the same set V of vertices, but can(L) contains a

subexpression [buv](u→ v) whereas can(R) contains a subexpression [b′uv](u→

v) with b′uv 6≡ buv. Then for some values of parameters one of the graphs will

contain the arc (u, v) (note that due to buv ⇒ bu∧ bv and b
′
uv ⇒ bu∧ bv vertices

u and v are present), while the other will not.
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In both cases there is a contradiction with L = R.

This canonical form allows one to lift the notion of adjacency matrix of a graph to

PGs. Recall that the adjacency matrix (buv) of a graph (V,E) is a |V |× |V | Boolean

matrix such that buv = 1 if (u, v) ∈ E and buv = 0 otherwise. The adjacency matrix

of a PG is obtained from the canonical form (4.1) by gathering the predicates buv

into a matrix. The adjacency matrix of a PG is similar to that of a graph, but it

contains predicates rather than Boolean values. It does not uniquely determine a

PG, as the predicates of the vertices cannot be derived from it; to fully specify a PG

one also has to provide predicates bv from the canonical form (4.1).

Another advantage of this canonical form is that it provides a graphical notation

for PGs. The vertices occurring in the canonical form (set V ) can be represented

by circles, and the subexpressions of the form u → v by arcs. The label of a vertex

v consists of the vertex name, colon and the predicate bv, while every arc (u, v) is

labelled with the corresponding predicate buv. As adjacency matrices of PGs tend

to have many constant elements, we use a simplified notation in which the arcs

with constant 0 predicates are not drawn, and constant 1 predicates are dropped;

moreover, it is convenient to assume that the predicates on arcs are implicitly ANDed

with those on incident vertices (to enforce the invariant buv ⇒ bu ∧ bv), which often

allows one to simplify predicates on arcs. This can be justified by introducing the

ternary operator, called conditional sequence:

u
b

−→ v
df
= [b](u→ v) + u+ v

Intuitively, PG u
b

−→ v consists of two unconditional vertices connected by an arc

with the condition b. By case analysis on b1 and b2 one can easily prove the following

properties of the conditional sequence that allow simplifying the predicates on arcs:

[b1]u
b1∧b2−−−→ v = [b1]u

b2−→ v

u
b1∧b2−−−→ [b2]v = u

b1−→ [b2]v

Fig. 4.3(top) shows an example of a PG. The predicates depend on a Boolean

variable x. The predicates of vertices a, b and d are constants 1; such vertices are

called unconditional. Vertices c and e are conditional, and their predicates are x
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Figure 4.3: PG specialisations: H|x and H|x

and x, respectively. Arcs also fall into two classes: unconditional, i.e. those whose

predicate and the predicates of their incident vertices are constants 1, and conditional

(in this example, all the arcs are conditional).

A specialisation H|p of a PG H under predicate p is a PG, whose predicates

are simplified under the assumption that p holds. If H specifies the behaviour of

the whole system, H|p specifies the part of the behaviour that can be realised under

condition p. An example of a graph and its two specialisations is presented in Fig. 4.3.

The leftmost specialisationH|x is obtained by removing from the graph those vertices

and arcs whose predicates evaluate to 0 under condition x, and simplifying the other

predicates. Hence, vertex e and arcs (a, d), (a, e), (b, d) and (b, e) disappear, and

all the other vertices and arcs become unconditional. The rightmost specialisation

H|x is obtained analogously. Each of the obtained specialisations can be regarded as

a specification of a particular behavioural scenario of the modelled system, e.g. as

specification of a processor instruction.
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4.2.1 Specification and composition of instructions

Consider a processing unit that has two registers A and B, and can perform two

different instructions: addition and exchange of two variables stored in memory. The

processor contains five datapath components (denoted by a . . . e) that can perform

the following atomic actions:

a) Load register A from memory;

b) Load register B from memory;

c) Compute the sum of the numbers stored in registers A and B, and store it in

A;

d) Save register A into memory;

e) Save register B into memory.

Table 4.1 describes the addition and exchange instructions in terms of usage of these

atomic actions.

The addition instruction consists of loading the two operands from memory (caus-

ally independent actions a and b), their addition (action c), and saving the result

(action d). Let us assume for simplicity that in this example all causally independent

actions are always performed concurrently, see the corresponding scenario ADD in

the table.

The operation of exchange consists of loading the operands (causally independent

actions a and b), and saving them into swapped memory locations (causally inde-

pendent actions d and e), as captured by the XCHG scenario. Note that in order to

start saving one of the registers it is necessary to wait until both of them have been

loaded to avoid overwriting one of the values.

One can see that the two scenarios in Table 4.1 appear to be the two special-

isations of the PG shown in Fig. 4.3, thus this PG can be considered as a joint

specification of both instructions. Two important characteristics of such a specifica-

tion are that the common events {a, b, d} are overlaid, and the choice between the two

operations is modelled by the Boolean predicates associated with the vertices and

arcs of the PG. As a result, in our model there is no need for a ‘nodal point’ of choice,

which tend to appear in alternative specification models: a Petri Net (resp. Finite
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Instruction Addition Exchange
a) Load A a) Load A

Action b) Load B b) Load B
sequence c) Add B to A d) Save A

d) Save A e) Save B

Execution

a

d

b

�

a

d

b

e

scenario
with maximum
concurrency

ADD XCHG

Table 4.1: Two instructions specified as partial orders

State Machine) would have an explicit choice place (resp. state), and a specification

written in a Hardware Description Language would describe the two instructions by

two separate branches of a conditional statement if or case [19]).

The PG operations introduced above allow for a natural specification of the

system as a collection of its behavioural scenarios, which can share some common

parts. For example, in this case the overall system is composed as

H = [x]ADD + [x]XCHG =

=[x]((a+b)→c+c→d)+[x]((a+b)→(d+e)).
(4.2)

Such specifications can often be simplified using the properties of graph operations.

The next section describes the equivalence relation between the PGs with a set of

axioms, thus obtaining an algebraic structure.

4.3 Algebraic structure of Parametrised Graphs

A parametrised graph is a quintuple (V,E,C,D,X) where E ⊆ V ×V and C ∈ V →

FORMULA(X), D ∈ E → FORMULA(X) provide vertex and edge conditions; X
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is the set of identifiers occuring free in parametrisation conditions. Some ϕ from

FORMULA(X) is a Boolean predicate with free variables from X. We consider a

predicate equal to another predicate whenever they are extensionally equal. For any

x ∈ X, we say that the formula x ∈ FORMULA(X) is an atomic occurrence of x.

A PG-algebra is a tuple 〈G,+,→, [0], [1]〉, where G is a set of graphs whose vertices

are picked from the alphabet A and the operations match those defined for graphs

above. The equivalence relation is given by the following axioms.

• + is commutative and associative

• → is associative

• ε is a left and right identity of →

• → distributes over +:

p→ (q + r) = p→ q + p→ r

(p+ q) → r = p→ r + q → r

• Decomposition:
p→ q → r = p→ q + p→ r + q → r

• Condition: [0]p = ε and [1]p = p

The following derived equalities can be proved from PG-algebra axioms [42, Prop.

2, 3]:

• ε is an identity of +: p+ ε = p

• + is idempotent: p+ p = p

• Left and right absorption:

p+ p→ q = p→ q

q + p→ q = p→ q

• Conditional ε: [b]ε = ε

• Conditional overlay: [b](p+ q) = [b]p+ [b]q
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• Conditional sequence: [b](p→ q) = [b]p→ [b]q

• AND-condition: [b1 ∧ b2]p = [b1][b2]p

• OR-condition: [b1 ∨ b2]p = [b1]p+ [b2]p

• Choice propagation:

[b](p→ q) + [b](p→ r) = p→ ([b]q + [b]r)

[b](p→ r) + [b](q → r) = ([b]p+ [b]q) → r

• Condition regularisation:

[b1]p→ [b2]q = [b1]p+ [b2]q + [b1 ∧ b2](p→ q)

Note that as ε is a left and right identity of → and +, there can be no other identities

for these operations. Interestingly, unlike with many other algebraic structures, the

two main operations in the PG-algebra have the same identity.

It is easy to see that PGs are a model of PG-algebra, as all the axioms of PG-

algebra are satisfied by PGs; in particular, this means that PG-algebra is sound.

Moreover, any PG-algebra expression has the canonical form (4.1), as the proof of

Prop. 1 can be directly imported:

• It is always possible to translate a PG-algebra expression to this canonical form,

as part (i) of the proof relies only on the properties of PGs that correspond to

either PG-algebra axioms or equalities above.

• If L = R holds in PG-algebra then L = R holds also for PGs (as PGs are a

model of PG-algebra), and so the PGs can(L) and can(R) coincide, see part (ii)

of the proof. Since PGs can(L) and can(R) are in fact the same objects as the

expressions can(L) and can(R) of the PG-algebra, (4.1) is a canonical form of

a PG-algebra expression.

This also means that PG-algebra is complete w.r.t. PGs, i.e. any PG equality can

be either proved or disproved using the axioms of PG-algebra (by converting to the

canonical form).
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[x]((a+ b) → c+ c→ d) + [x]((a+ b) → (d+ e)) = (closure)

[x]((a+ b) → c+ (a+ b) → d+ c→ d) +

+[x]((a+ b) → (d+ e)) = (decomposition)

[x]((a+ b) → c→ d) + [x]((a+ b) → (d+ e)) = (choice propagation)

(a+ b) → ([x](c→ d) + [x](d+ e)) = (conditional overlay)

(a+ b) → ([x](c→ d) + [x]d+ [x]e) = (→ −identity)

(a+ b) → ([x](c→ d) + [x](ε→ d) + [x]e) = (choice propagation)

(a+ b) → (([x]c+ [x]ε) → d+ [x]e) = (conditional ε, +-identity)

(a+ b) → ([x]c→ d+ [x]e).

Figure 4.4: Simplifying expression (4.2) using the Closure axiom

The provided set of axioms of PG-algebra is minimal, i.e. no axiom from this

set can be derived from the others. The minimality was checked by enumerating the

fixed-size models of PG-algebra with the help of the Alg tool [9]: It turns out that

removing any of the axioms leads to a different number of non-isomorphic models of

a particular size, implying that all the axioms are necessary.

Hence, the following result holds:

Theorem 2 (Soundness, Minimality and Completeness). The set of axioms of PG-

algebra is sound, minimal and complete w.r.t. PGs.

4.4 Transitive Parametrised Graphs and their al-

gebra

In many cases the arcs of the graphs are interpreted as the causality relation, and so

the graph itself is a partial order. However, in practice it is convenient to drop some

or all of the transitive arcs, i.e. two graphs should be considered equal whenever their

transitive closures are equal. E.g. in this case the graphs specified by the expressions

a → b + b → c and a → b + a → c + b → c are considered as equal. PGs with this

equality relation are called Transitive Parametrised Graphs (TPG). To capture this
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algebraically, we augment the PG-algebra with the Closure axiom:

if q 6= ε then p→q + q→r = p→q + p→r + q→r.

One can see that by repeated application of this axiom one can obtain the transitive

closure of any graph, including those with cycles. The resulting algebraic structure

is called Transitive Parametrised Graphs Algebra (TPG-algebra).

Note that the condition q 6= ε in the Closure axiom is necessary, as otherwise

a+ b = a→ε+ ε→b = a→ε+ a→b+ ε→b = a→b,

and the operations + and → become identical, which is clearly undesirable.

The Closure axiom helps to simplify specifications by reducing the number of arcs

and/or simplifying their conditions. For example, consider the PG expression (4.2).

As the scenarios of this PG are interpreted as the orders of execution of actions, it

is natural to use the Closure axiom. Note that the expression cannot be simplified

in PG-algebra; however, in the TPG-algebra it can be considerably simplified, as

shown in Fig. 4.4.

The corresponding TPG is shown in Fig. 4.5. Note that it has fewer conditional

elements than the PG in Fig. 4.3; though the specialisations are now different, they

have the same transitive closures.

We now lift the canonical form (4.1) to TPGs and TPG-algebra. Note that the

only difference is the last requirement.

Proposition 3 (Canonical form of a TPG). Any TPG can be rewritten in the fol-

lowing canonical form:

(

∑

v∈V

[bv]v

)

+

(

∑

u,v∈V

[buv](u→ v)

)

, (4.3)

where:

1. V is a subset of singleton graphs that appear in the original TPG;

2. for all v ∈ V , bv are canonical forms of Boolean expressions and are distinct

from 0;
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3. for all u, v ∈ V , buv are canonical forms of Boolean expressions such that

buv ⇒ bu ∧ bv;

4. for all u, v, w ∈ V , buv ∧ bvw ⇒ buw.

Proof. (i) First we prove that any TPG can be converted to the form (4.3).

We can convert the expression into the canonical form (4.1), which satisfies the

requirements 1–3. Then we iteratively apply the following transformation, while

possible: If for some u, v, w ∈ V , buv ∧ bvw ⇒ buw does not hold (i.e. requirement

4 is violated), we replace the subexpression [buw](u → w) with [bnewuw ](u → w) where

bnewuw
df
= buw ∨ (buv ∧ bvw). Observe that after this the requirement 4 will hold for

u, v and w, and the requirement 3 remains satisfied, i.e. bnewuw ⇒ bu ∧ bw due to

buv ⇒ bu ∧ bv, bvw ⇒ bv ∧ bw and buw ⇒ bu ∧ bw. Moreover, the resulting expression

will be equivalent to the one before this transformation due to the following equality

(see [42] for the proof):

If v 6= ε then [buv](u→ v) + [bvw](v → w) =

= [buv](u→ v) + [bvw](v → w) + [buv ∧ bvw](u→ w).

This iterative process converges, as there can be only finitely many expressions

of the form (4.3) (recall that we assume that the predicates within the conditional

operators are always in some canonical form), and each iteration replaces some pre-

dicate buw with a greater one bnewuw , in the sense that buv strictly subsumes bnewuw (i.e.

buw ⇒ bnewuw and buw 6≡ bnewuw always hold), i.e. no predicate can be repeated during

these iterations.

(ii) We now show that (4.3) is a canonical form, i.e. if L = R then their canonical

forms can(L) and can(R) coincide.

For the sake of contradiction, assume this is not the case. Then we consider two

cases (all possible cases are symmetric to one of these two).

1. can(L) contains a literal [bv]v whereas can(R) either contains a literal [b′v]v

with b′v 6= bv or does not contain any literal corresponding to v, in which case

we say that it contains a literal [b′v]v with b′v = 0. Then for some values of

parameters one of the graphs will contain vertex v while the other will not.

2. can(L) and can(R) have the same set V of vertices, but can(L) contains a
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subexpression [buv](u→ v) and can(R) contains a subexpression [b′uv](u→ v)

with b′uv 6≡ buv. Then for some values of parameters one of the graphs will

contain the arc (u, v) while the other will not. Since the transitive closures

of the graphs must be the same due to can(L) = L = R = can(R), the other

graph must contain a path t1t2 . . . tn where u= t1, v= tn and n>3; w.l.o.g., we

assume that t1t2 . . . tn is a shortest such path. Hence, the canonical form (4.1)

would contain the subexpressions [btiti+1
](ti→ ti+1), i = 1 . . . n−1, and moreover

∧n−1
i=1 btiti+1

6= 0 for the chosen values of the parameters, and so
∧n−1

i=1 btiti+1
6≡ 0.

But then the iterative process above would have added to the canonical form

the missing subexpression [bt1t2 ∧bt2t3 ](t1→ t3), as the corresponding predicates

6≡ 0. Hence, for the chosen values of the parameters, there is an arc (t1, t3),

contradicting the assumption that t1t2 . . . tn is a shortest path between u and v.

In both cases there is a contradiction with L = R.

The process of constructing the canonical form (4.3) of a TPG from the canonical

form (4.1) of a PG corresponds to computing the transitive closure of the adjacency

matrix. As the entries of this matrix are predicates rather than Boolean values, this

has to be done symbolically. This is always possible, as each entry of the resulting

matrix can be represented as a finite Boolean expression depending on the entries of

the original matrix only.

By the same reasoning as in the previous section, we can conclude that the

following result holds.

Theorem 4 (Soundness, Minimality and Completeness). The set of axioms of TPG-

algebra is sound, minimal and complete w.r.t. TPGs.

4.5 Case study

In this section we consider a practical case study from the domain of hardware syn-

thesis. We apply PG-algebra for a formal and compositional approach to system

design. It also allows us to rigorously manipulate specifications, in particular, algeb-

raically simplify them.

In Chapter 5 we use the transitive version of PG-algebra – TPG-algebra – in

application to the problem of instruction set design and encoding.
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Figure 4.5: The PG from Fig. 4.3 simplified using the Closure axiom, together with
its specialisations

4.5.1 Phase encoders

This section demonstrates the application of PG-algebra to designing the multiple

rail phase encoding controllers [17]. They use several wires for communication, and

data is encoded by the order of occurrence of transitions in the communication lines.

Fig. 4.6(a) shows an example of a data packet transmission over a 4-wire phase

encoding communication channel. The order of rising signals on wires indicates that

permutation abdc is being transmitted. In total it is possible to transmit any of the

n! different permutations over an n-wire channel in one communication cycle. This

makes the multiple rail phase encoding protocol very attractive for its information

efficiency [45].

Phase encoding controllers contain an exponential number of behavioural scen-

arios w.r.t. the number of wires, and are very difficult for specification and synthesis

using conventional approaches. In this section we apply PG-algebra to specification

of an n-wire matrix phase encoder – a basic phase encoding controller that generates

a permutation of signal events given a matrix representing the order of the events in

the permutation.
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Figure 4.6: Multiple rail phase encoding

Fig. 4.6(b) shows the top-level view of the controller’s structure. Its inputs are
(

n
2

)

dual-rail ports that specify the order of signals to be produced at the controller’s

n output wires. The inputs of the controller can be viewed as an n × n Boolean

matrix (xij) with diagonal elements being 0. The outputs of the controller will be

modelled by n actions vi ∈ A. Whenever xij = 1, event vi must happen before

event vj. It is guaranteed that xij and xji cannot be 1 at the same time, however,

they can be simultaneously 0, meaning that the relative order of the events is not

known yet and the controller has to wait until xij = 1 or xji = 1 is satisfied (other

outputs for which the order is already known can be generated meanwhile).

The overall specification of the controller is obtained as the overlay
∑

1≤i<j≤n

Hij of

fixed-size expressions Hij, modelling the behaviour of each pair of outputs. In turn,

each Hij is an overlay of three possible scenarios:

1. If xij = 1 (and so xji = 0) then there is a causal dependency between vi and

vj, described using the PG-algebra sequence operator: vi → vj.

2. If xji = 1 (and so xij = 0) then there is a causal dependency between vj and

vi: vj → vi.

3. If xij = xji = 0 then neither vi nor vj can be produced yet; this is expressed

by a circular wait condition between vi and vj: vi → vj + vj → vi.
1

We prefix each of the scenarios with its precondition and overlay the results:

Hij = [xij ∧ xji](vi → vj) + [xji ∧ xij ](vj → vi)+

+[xij ∧ xji](vi → vj + vj → vi).

1There are other ways to describe this scenario, e.g. by creating self-loops vi → vi + vj → vj .
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Figure 4.7: PGs related to matrix phase encoder specification

Using the rules of PG-algebra, we can simplify this expression to

[xji](vi → vj) + [xij](vj → vi),

or, using the conditional sequence operator, to

[xij ∨ xji](vi
xji

−→ vj + vj
xij

−→ vi).

Now, bearing in mind that condition [xij ∨ xji] is assumed to hold in the proper

controller environment (xij and xji cannot be 1 simultaneously), we can replace it

with [1] and drop it. The resulting expression can be graphically represented as

shown in Fig. 4.7(a). An example of an overall controller specification
∑

1≤i<j≤n

Hij for

the case when n = 3 is shown in Fig. 4.7(b). The synthesis of this specification to a

digital circuit can be performed in a way similar to [45].

4.6 Machine-assisted formalisation of Parametrised

Graph theory

While developing mathematical theories and proofs it is important to maintain logical

soundness. Even if the proof correctness may be obvious to its author, the peer

researchers are often unable (because the proof is not detailed enough) or not willing

(because the proof is too involved) to verify it rigorously. To avoid such problems we

have decided to encode the theory in a formal system so that only definitions would

require careful inspection, with proofs being checked automatically.

This section uses Agda [49] – a programming language and proof assistant based

on the Martin-Löf type theory – for formalization of Parametrised Graphs theory.

67



CHAPTER 4. THEORY OF PARAMETRISED GRAPHS

The section additionally describes the algorithm for conversion of PG formulae to

normal form and shows that the correctness of the algorithm has been verified.

The section extensively uses the syntax of Agda and references several definitions

from the Agda standard library [18].

4.6.1 Graph Algebra

We start with defining an algebraic structure of non-parametrised graphs, to extend

them with conditions later.

We define graph algebra as an algebraic structure over a set G with an equivalence

relation ≈ supporting the following operations:

• An empty graph, denoting no actions.

ε : G

• Graph overlay, denoting the parallel composition of actions from both graphs.

+ : G → G → G

• Graph sequencing, denoting the causal dependency between actions in the first

graph and in the second graph.

≫ : G → G → G

Additionally, the operations must satisfy the following properties:

• Overlay is commutative and associative.

+assoc : ∀ p q r → (p + q) + r ≈ p + (q + r)

+comm : ∀ p q → p + q ≈ q + p

• Sequencing is associative.

≫ assoc : ∀ p q r →

(p ≫ q) ≫ r ≈ p ≫ (q ≫ r)
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• Empty graph is a no-op in relation to sequencing.

≫ identityl : ∀ p → ε≫ p ≈ p

≫ identityr : ∀ p → p ≫ ε ≈ p

• Sequencing distributes over overlay.

distribl : ∀ p q r →

p ≫ (q + r) ≈ p ≫ q + p ≫ r

distribr : ∀ p q r →

(p + q) ≫ r ≈ p ≫ r + q ≫ r

• Sequence of more than two actions may be decomposed into shorter sequences,

forming the original sequence with overlay.

decomposition : ∀ p q r →

p ≫ q ≫ r ≈ p ≫ q + p ≫ r + q ≫ r

Derived theorems

The following theorems has been derived from the axioms:

• Empty graph is a no-op in relation to overlay.

+identity : ∀ p → p + ε ≈ p

• Overlay is idempotent.

+idempotence : ∀ p → p + p ≈ p

• Absorption.

absorptionl : ∀ p q → p ≫ q + p ≈ p ≫ q

absorptionr : ∀ p q → p ≫ q + q ≈ p ≫ q
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4.6.2 Parametrised Graphs

The graph algebra introduced in the previous subsection can only describe static

event dependencies. To describe complex dynamic systems one has to consider the

conditional behaviour as well. To do this, we have extended the graph algebra by

annotating the graphs with conditions. Given a set G of the parametrised graphs and

a set B of all the possible Boolean conditions, together with the following operations:

∨ : B → B → B

∧ : B → B → B

¬ : B → B

⊤ : B

⊥ : B

we require a new operation called condition:

[ ] : B → G → G

The condition operation must have the following properties:

true-condition : ∀ x → [⊤] x ≈ x

false-condition : ∀ x → [⊥] x ≈ ε

and-condition : ∀ f g x → [f ∧ g ] x ≈ [f ] [g ] x

or-condition : ∀ f g x → [f ∨ g ] x ≈ [f ] x + [g ] x

conditional+ : ∀ f x y → [f ] (x + y) ≈ [f ] x + [f ] y

conditional≫ : ∀ f x y → [f ] (x ≫ y) ≈ [f ] x ≫ [f ] y

We say that there is a parametrised graph algebra on a set G with a condition set

B if there is a graph algebra on G, a Boolean algebra on B and a condition operator

satisfying the requirements above.

Derived Theorems

The following theorems has been derived for the Parametrised Graph algebra.

Choice propagation. If we have a choice between similar subgraphs, we can factor

out the similarity and propagate choice onto the differing parts.
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choice-propagation1 : ∀ b p q r →

[b] (p ≫ q) + [¬ b] (p ≫ r) ≈ p ≫ ([b] q + [¬ b] r)

choice-propagation2 : ∀ b p q r →

[b] (p ≫ r) + [¬ b] (q ≫ r) ≈ ([b] p + [¬ b] q) ≫ r

Condition regularisation. A sequence of conditional events can be rewritten as

an overlay of simpler terms.

condition-regularisation : ∀ f g p q →

[f ] p ≫ [g ] q ≈ [f ] p + [g ] q + [f ∧ g ] (p ≫ q)

Strengthened condition regularisation. This generalizes the regularisation the-

orem by allowing any z containing all the edges between p and q to be used instead

of p ≫ q .

condition-regularisations : ∀ f g p q z

→ p ≫ q ≈ p + q + z

→ [f ] p ≫ [g ] q ≈ [f ] p + [g ] q + [f ∧ g ] z

4.6.3 Parametrised Graph formulae

To perform automated manipulations of PG algebra formulae, we describe the for-

mulae as an algebraic data type in the following way.

data PGFormula : Set where

+ : (x y : PGFormula) → PGFormula

≫ : (x y : PGFormula) → PGFormula

ε : PGFormula

var : (a : A) → PGFormula

[ ] : (c : B) → PGFormula → PGFormula

Here A is a set of graph variables and B is a set of condition variables. We also

have a constructor of PGFormula corresponding to each of the algebra operations and

an additional constructor to reference the free variables. This way we can construct

the formulae in a straightforward way:

71



CHAPTER 4. THEORY OF PARAMETRISED GRAPHS

var "x" + var "y" ≫ var "z"

Formula evaluation then is catamorphism of PGFormula, replacing constructor

applications with the corresponding algebra operations and var constructors with the

actual variable values.

pg-eval : {A B G : Set}

→ ( +s ≫s : G → G → G)

→ (εs : G)

→ ([ ]s : B → G → G)

→ (vars : A → G)

→ PGFormula A B

→ G

We use the same technique to define the BoolFormula data structure, with con-

structors ∧ , ∨ , ¬ , ⊤, ⊥ and var.

4.6.4 Formula equivalence

Naturally, it is possible to write the same mathematical function in many structurally

different, but logically equivalent ways. Here we define a notion of PG formula

equivalence. We say that two formula are equivalent iff they can be structurally

transformed one into the other by the set of rules corresponding to the equality rules

of PG algebra. We express this with an indexed inductive data family by explicitly

enumerating all the important constructors.

data ≈ : PGFormula (BoolFormula B) V

→ PGFormula (BoolFormula B) V → Set where

+assoc : ∀ p q r → (p + q) + r ≈ p + (q + r)

+comm : ∀ p q → p + q ≈ q + p

≫ assoc : ∀ p q r → (p ≫ q) ≫ r ≈ p ≫ (q ≫ r)

...

This definition allows for convenient formula manipulation, without mentioning

its semantics. However, the meaning of this definition is dubious because it was

constructed manually without any mention of PG Algebra. To connect the formulae
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equivalence with an algebra object equivalence, we have defined the proper equiv-

alence relation on formulae, in terms of their semantics. We say that equivalent

formulae must give equivalent results for any algebra they are evaluated in.

f1 ≈s f2 =

∀ G → (algebra : PGAlgebra G) → (f : V → G) →

eval algebra f f1 ≈ eval algebra f f2

Here we assume that eval algebra applies pg-eval to all of the algebra operations.

Now we can show that our easier to use equivalence relation is equivalent to the

semantics-based definition:

≈→≈s : ∀ f g → f ≈ g → f ≈s g

≈s→≈ : ∀ f g → f ≈s g → f ≈ g

4.6.5 Normal form

We say that a normal form (NF) of PG formula (PG) is an overlay of literals (Lit)

where each literal is a Node annotated with a condition and each node is either a

variable (V) or two variables connected with a sequence operator. We encode these

definitions assuming Boolean formulae (BF) as conditions.

Node = V ⊎ V × V

Lit = Node × BF

NF = List Lit

So far we have defined the structure of those types without formally saying any-

thing about their semantics. We define the semantics for them by providing a cor-

responding Parametrised Graph Formulae (PG).

A Node, depending on its constructor, corresponds to either a single variable or

two variables connected via the sequence operator.

fromNode : Node → PG

fromNode (inj1 x ) = var x

fromNode (inj2 (x ,y)) = var x ≫ var y
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A Lit of the form (node,condition) corresponds to the formula [condition] node.

fromLit : Lit → PG

fromLit (node,cond) = [cond ] fromNode node

NF corresponds to the overlay of all of its literals.

fromNF : NF → PG

fromNF = foldr + ε ◦ map fromLit

4.6.6 Normalisation algorithm

To automate the translation of formulae to normal form we have developed the

algorithm presented in this subsection.

The top-level normalisation function traverses the PG formula recursively, nor-

malising all of the subformulae and combining them with the appropriate functions

( +NF for +, ≫NF for ≫, etc.).

normalise : PG → NF

normalise = pg-eval

+NF

≫NF

[]

addCondition

fromVar

The individual functions manipulating normal forms are implemented in the fol-

lowing way.

• The normal form of ε is empty list.

• The normal form of a variable literal x is a singleton list containing [⊤] x .

fromVar : V → NF

fromVar x = (inj1 x ,⊤) :: []
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• Overlay of two normal forms is concatenation of their literals.

+NF : NF → NF → NF

a +NF b = a ++ b

• Sequence of two normal forms can be defined by applying the distributivity

rules as a sum of pairwise sequencing of their literals.

≫ r : Lit → NF → NF

lit ≫ r [] = lit :: []

lit ≫ r (x :: xs) = (lit ≫ 1 x ) + (lit ≫ r xs)

≫NF : NF → NF → NF

[] ≫NF b = b

(h :: t) ≫NF b = (h ≫ r b) + (t ≫NF b)

• Sequence of two literals [f ] p ≫ [g ] q then can be defined as [f ] p + [g ] q + [f ∧ g ] r

where r = newArrows p q is the set of new arc nodes formed by sequencing

the nodes p and q .

vertices : Node → List V

vertices (inj1 x ) = x :: []

vertices (inj2 (x ,y)) = x :: y :: []

newArrows : Node → Node → List Node

newArrows p q =

map inj2 (vertices p ⊗ vertices q)

≫ 1 : Lit → Lit → List Lit

(p,f ) ≫ 1 (q ,g) = (p,f ) :: (q ,g)

:: (map (flip , (f ∧ g)) (newArrows p q))

Here vertices n is the list of graph vertices contained in node n – one vertex

when n is a vertex node and two vertices when n is an arc node.

newArrows a b then is a set of arc nodes connecting each of the vertices in a to

each of the vertices in b.
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Algorithm Correctness

We define the correctness of normalisation by saying that the semantics of the res-

ulting normal form must be equivalent to the original formula.

normalise-correct : ∀ f → f ≈ fromNF (normalise f )

To prove this theorem we had to prove several simpler statements.

Normal form overlay is correct. That is, the semantics of concatenated normal

forms is the overlay of their individual semantics.

+correct : ∀ x y →

fromNF x + fromNF y ≈ fromNF (x +NF y)

This follows from the monoid structure of overlay.

The normal form sequencing functions are correct.

≫ correct : ∀ x y →

fromNF x ≫ fromNF y ≈ fromNF (x ≫NF y)

This relies on the right distributivity and the correctness of ≫ r.

≫r correct : ∀ x y →

fromLit x ≫ fromNF y ≈ fromNF (x ≫ r y)

This relies on the left distributivity and the correctness of ≫ 1.

≫1 correct : ∀ x y →

fromLit x ≫ fromLit y ≈ fromNF (x ≫ 1 y)

The correctness of ≫ 1 is proven by the following chain of reasoning.

fromLit (x ,f ) ≫ fromLit (y ,g)

≈ 〈 condition-regularisations; newArrows-correct 〉

fromLit (x ,f ) + fromLit (y ,g)

+ [f ∧ g ] sumNodes (newArrows x y)

≈ 〈 propagating the condition to the literals 〉

fromLit (x ,f ) + fromLit (y ,g)
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+ fromNF (map (flip , (f ∧ g)) (newArrows x y))

≈ 〈 by +assoc and definitions 〉

fromNF ((x ,f ) ≫ 1 (y ,g))

The desired properties of the newArrows function are not as obvious as the properties

of the other functions. We have formulated them as follows.

newArrows-correct : ∀ x y →

fromNode x ≫ fromNode y ≈

fromNode x + fromNode y

+ sumNodes (newArrows x y)

where sumNodes = foldr + ε ◦ map fromNode. Our proof of this property is

less than elegant. We manually enumerate all four cases (vertex and vertex, vertex

and arc, arc and vertex, arc and arc) and prove four theorems individually, using

the decomposition, commutativity and associativity axioms. It’s likely possible to

simplify the proof by treating the nodes as lists of sequenced vertices and prove by

induction on those lists, instead of enumerating all the possible cases.

4.7 Summary

This chapter has introduced the Parametrised Graphs (PG) formalism which extends

the CPOG notation in a number of ways. First, it allows one to consider general

directed graphs in place of simple partial orders. Second, PGs possesses an algeb-

raic structure (PG algebra), suited for formal and machine-assisted manipulation of

complex graphs.

We have identified a sub-algebra of PG algebra: transitive PG algebra. This

algebra has transitively closed PG graphs as a model and is an efficient basis for

defining and analysing causal dependencies.

The PG algebra is defined by a set of axioms. To establish the consistency of

the axioms we have made a formal juxtaposition of PG graphs and the axiom set

of the PG algebra showing that PG graphs is a valid model of PG algebra. To

demonstrate the minimality of the axiomatization we have shown, with the help of

the Alg tool [9] that removal of either axiom results in a differing set of models.
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We have devised a procedure to automatically construct a normal form of a

PG expression and proven it to be sound and terminating using the Agda proof

checker [49]. The normal form is used to simplify PG expressions and can be used

as a foundation for a wide range of graph manipulation techniques.

The next chapter presents an application of transitive parametrised graphs to

encoding and decoding of microcontroller instruction opcodes.
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Chapter 5

Processor instruction set encoding

Main contributions of this chapter are: firstly, it formulates several instruction set

encoding problems in terms of the TPG model; secondly, it establishes that the

problems can be reduced to the corresponding Boolean satisfiability (SAT) prob-

lem instances leading to their automated solution; thirdly, it demonstrates applica-

tion of the TPG methodology at different stages of a processor design flow — from

architectural-level specification, design and behavioural description of an instruction

set to its encoding and synthesis of the physical implementation of the microcontrol-

ler. The chapter is organised as follows. Section 5.2 introduces the TPG encoding

problem, overviews the existing encoding techniques and gives a brief introduction

to the new technique of globally optimal encoding. A method for automated trans-

lation of the problems into SAT instances is explained in Section 5.3. It is followed

by a processor design and synthesis example in Section 5.4 and conclusions.

The chapter is based on the results published in [40]. It shows how to represent

processor instruction sets using TPG formalism and provides a ground for a concise

formulation of several encoding problems, which are reducible to the well-known SAT

problem and can be efficiently solved by modern SAT solvers. Application of all the

presented techniques is demonstrated on a processor design example.

5.1 Introduction

Automated design and synthesis of both application-specific and general-purpose

instruction-set processors is an active area of research [38] with instruction set ar-
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chitecture (ISA) design seeing new techniques and improvements [65].

Synthesis of instruction sets is a particularly active research area. There are

methods of automated derivation of ISA for a given platform according to available

system components and for given software requirements. These methods eventually

produce a set of instructions satisfying certain properties (orthogonality, complete-

ness, regularity, etc.); instructions are grouped into categories and each category is

allocated a certain opcode range within the code space [48]. At this point auto-

mation is typically stopped or becomes trivial: the instructions are given arbitrary

codes within the allocated ranges. This limits performance due to instruction de-

coder circuitry overheads. The problem is usually approached by ad-hoc heuristics

or application-specific optimisation techniques (see, for example, [35]).

The TPG notation has an application in CPU design with a natural hardware

correspondence: it describes synchronous or asynchronous control logic over the units

defined by graph vertices. Such logic is commonly called a decoder – a circuit that

takes an instruction code word and produces control signals for CPU components.

Note that the graph we are interested in when studying asynchronous control

logic is the causality graph, the graph where the nodes correspond to events (CPU

component activations) and arcs correspond to causal dependencies. Causality rela-

tion is naturally transitive, and the causality graph is parameterised on code word,

exactly the kind of graphs you can describe with the TPG formalism.

We are going to address the problem of TPG encoding (related to CPOG encod-

ing [39]) – the process of identification of an efficient TPG from which a given set of

partial orders can be obtained via the TPG specialisation mechanism. An efficient

encoding makes it possible to describe systems in a compact functional form and

apply structural synthesis methods which significantly improve performance of the

whole design flow. These features make the model very efficient for representation

and management of processor instruction sets in hardware and EDA software.

We discuss the known TPG encoding techniques:

• binary encoding, synthesising a TPG with the minimal number of variables;

• matrix encoding, where each vertex and arc are assigned a unique control vari-

able;

• one hot enconding, attributing a variable to each unique original scenario;
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binary encoding

one-hot encoding

matrix encoding

weakly optimal encoding

m-of-n encoding

optimality frontier

Figure 5.1: The relationship between the optimality frontier, as found by our al-
gorithm, and the solutions proposed in [39]. On the axis g we plot the number of
logic gates needed to describe the instruction decoder and the axis v corresponds to
the number of variables used to encode the instructions.

• weakly optimal encoding1 finds a solution with the minimal total number of vari-

ables among the solutions with fewest literals (ground terms); like the matrix

encoding, it yields a TPG with single variable conditions; however, generally,

it uses fewer variables in total.

We proceed to discuss how we improve upon this work by introducing a new

algorithm. The algorithm is able to identify a globally optimal solution for a given

fixed set of optimality criteria. The techniques discussed above are only able to

identify various forms of local optimums. More precisely, the four existing techniques

define just four points in the solution space constructed by our algorithm. Only

one of these points is located on the Pareto optimality frontier, constructed by our

algorithm (see Fig. 5.1).

The gist of the approach lies in a combination of binary search and Boolean

satisfiability solving (SAT). Binary search travels through a binary tree of potential

solutions using a choice function of the form f ∈ D → B where D is domain limiting

the space of explored solutions. In our case, such D may define either a set of gate

counts of a decoder circuit or, alternatively, the set of number of variables used in

TPG conditions. In a general case, f takes the following form:

1In [39], this is referred to simply as optimal.
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f(x) =

{

1, when there exists a solution S such that its cost is x

0, otherwise

Such function f may be challenging to compute since the set from which solutions

are drawn is typically large. Let v and g signify the maximum number of variables

and gates; also let s be the number of scenarious encoded in the original TPG. Then

the size of the solutions space is in the order of

(2(v + g))2g (2v)s

For instance, for v = 5, g = 5 and s = 5 the formula above gives circa 1021 potential

solutions to consider. Clearly, computing f with a brute-force approach is infeasible.

Note, however, that f has a form of an existential quantifier binding indentifiers

to finite domains. This form of statement is perfectly suited for SAT solving. To

bridge to the SAT-level notation we have to do binary vector encoding of scenario

and variable indices, gate identifiers and cost indicators. The result is processed

by a SAT solver and the output is a binary representation of a decoding circuit. In

particular, we have used MiniSat [23] and clasp [12] SAT solvers. As one example,

we have been able to obtain an optimal solution for v = 8, s = 8 and g ∈ 3..12.

5.2 Problem statement

In microcontroller design, the encoding of an instruction set is a common reoccur-

ing problem. A form of encoding optimality is essential to achieve a more compact

instruction decoder logic, while, at the same time, offering higher decoding perform-

ance. The first step is to represent each instruction microcode as a TPG scenario.

Such scenario is a program each instruction of each is a reference to a microcon-

troller unit. The directed graph semantics underlaying PGs expresses the casual

dependendencies between events of unit firings; informally, this means that instruc-

tion execution steps may be ordered sequentially or concurrently.

An encoding scheme must ensure that every scenario is adeqautely represented

in the composed graph. This property, called the encoding correctness condition, is

formulated by the following statement
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Si = G |X=θi

here X is the set of free variables of PG G (Chapter 4), Si is a scenario from a

scenario set S and X = θi stands for
∧

x∈X x = θi(x). The condition states that

a scenario is properly decoded by applying an opcode-defined graph specialisation

θ. Every encoding schema may be characterised by a specific choice of set X and

encoding function θ. We refer to a tuple of (X, θ) as encoding of a scenario set S.

To uniquely determine, upto PG equivalence, and for encoding and scenario set

a compositional graph G one also needs to consider the property of composition

minimality :

G =
∑

i<n

[X = θi](G |X=θi)

Informally, the condition states that G does not contain anything in addition to the

encoding of scenarios S.

To give an intuition behind encoding we shall consider a simple case of encoding

for two scnearios S1, S2. This encoding is constructed by putting together, in a

certain manner, graphs S1 and S2. More precisely, we overlay the graphs of S1 and

S2 using the + operator:

G
df
= [X = θ1]S1 + [X = θ2]S2

The overlaid graphs are conditioned by their opcodes. In the above, θ1, θ2 is a unique

value of vector X identifying a given scenario.

In a general case, for n scenarios, this statement takes the following form:

G
df
=
∑

i<n

[X = θi]Si

Such encoding constructing preserves the property of composition mininimality provided

the correctness property also holds. Let us now briefly consider one particilar en-

coding scheme - the one hot encoding - to the composition of scenarios S1, S2:

G
df
= [x1 = 1 ∧ x2 = 0]S1 + [x1 = 0 ∧ x2 = 1]S2
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It is easy to check that one hot encoding satisfies the correctness condition. For

instance, for the case of scenario S1, we can prove that the scenario can be obtained

via graph G specialisation as follows:

S1 = ([x1 = 1 ∧ x2 = 0]S1 + [x1 = 0 ∧ x2 = 1]S2) |x1=1∧x2=0

which is obviously correct by the definition of the specialisation operator H|p.

A common measure of complexity of a Boolean formula f is denoted as C(f) and

is defined to be the total count of literals in it, e.g. C(x · z + y · z) = 4, C(1) = 0,

etc. This is the metric used in [39] to assess the produced encodings. Indeed, when

applied to a single formula this metric often works well: the more literals the formula

has, the larger the circuit to evaluate this formula. However, when used to assess

multiple similar formulae or a single formula with repeating sub-formulae, this metric

fails to account for the fact that the outputs of logic gates evaluating the subformulae

can be reused. To take advantage of this fact we use the new metric G(C), showing

the total number of gates in the circuit needed to compute all of the conditions found

in C. We use two versions of this metric, differing in type of gates allowed: one with

AND/OR gates with all possible input and output inversions and another one with

NAND-gates only.

5.2.1 Overview

In this section we briefly discuss the encoding approaches developed in [39]. We

implement as SAT-based solution for the pre-existing techniques (weakly optimal

encoding) and introduce a new, more powerful technique for identifying globally

optimal solutions.

One hot

The one hot encoding scheme associates a unique indicator variable (a hot wire)

with each scenario. The set of free variables is exactly that of the scenarios being

encoded:

X = S
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where S is the scenario set. The encoding is very simple: one sets i-th bit to 1 to

select an i-th scenario and the rest must be reset to zero:

θi(s) = (Si = s), where s, Si ∈ S

Matrix encoding

The matrix encoding allocates a unique variable for each edge and vertex of scenario

graphs Si. Hence, the set of free variables is given as

X = {0} × V ∪ {1} × E

An encoding bit is set depending on whether a given edge or vertex are included in

a given scenario s:

θi(0, v) = Ci(v), where v ∈ Vi

θi(1, e) = Di(e), where e ∈ Ei

where scenario Si is defined by a PG of the form (Vi, Ei, Ci, Di, Xi).

Binary encoding

Binary encoding associates a scenario index with the value of binary number coded

by an instruction opcode. One specific form of X can be given as

X = 1..⌈log |S|⌉

where S is the scenario set.

The encoding function computes the k-th bit of i-th scenario opcode as a binary

encoding of a natural number representing the scenario index:

θi(k) =

⌊

i− 1

2k−1

⌋

mod 2, where k is the bit position

Weakly optimal

The optimal encoding with unconstrained code length, which we call weakly optimal

encoding, tries to minimize the size of set X within the universe of solutions with
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1-restricted conditions. We say that a graph is 1-restricted if all the edge and vertex

conditions contain at most one literal. It has been shown in [39] that the problem

of computing a weakly optimal encoding is NP-complete thus barring any attempts

at brute force solutions. It is challenging to give a compact characterisation of

optimal encoding in the terms of free variable set X and coding function θ. In

the continuation of the Chapter we shall give a SAT formulation of this encoding

approach.

5.2.2 Globally optimal encoding

The weakly optimal encoding method presented above generates the smallest PG

description of a set of partial orders but the number of used variables cannot be

controlled; in many practical cases it will use more variables than is affordable under

the design or technology constraints. In this section we briefly describe a method for

generating the smallest PG given a limit on the number of variables, i.e. given the

required length of the instruction codes.

Let L be the given limit on the number of variables. We generate all non-trivial

encoding constraints and try to satisfy them with opcode variables. Only L of them

are free variables X = {x1, x2, ..., xL}; other variables F = {f1, f2, ..., fm} are

not free — they are expressed in terms of variables from X ∪F using Boolean binary

functions, e.g. f1 = x1 + x3, f2 = f1 · x2, etc. As L is fixed all we have to do is to

minimise the number of non-free variables m. This minimisation problem requires

exploration of large search space; fortunately, it still belongs to the NP complexity

class and we can reduce it to the SAT problem: the solver has to ‘guess’ all the

opcodes, formulae of variables in F , and allocation of all variables X ∪ F to the

non-trivial encoding constraints.

5.3 SAT formulation

This section presents SAT formulations of the optimal encoding problems described

in the previous section.

The Boolean satisfiability problem (SAT) is to decide whether a given Boolean

formula F (x1, x2, . . . , xn) is satisfiable or not, i.e. if it is possible to find an assign-
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ment of Boolean values (α1, α2, . . . , αn) ∈ {0, 1}n to the variables (x1, x2, . . . , xn)

which makes the formula true: F (α1, α2, . . . , αn) = 1. As SAT is a decision (not

optimisation) problem, we define a cost function and use a binary search to minimise

its value by calling the SAT solver with different cost constraints.

We have implemented all the techniques presented in this section in an automated

software tool which uses MiniSat [23] and clasp [12] as SAT solver engines. They

operate on CNF (conjunctive normal form) representations of Boolean formulae.

Since our SAT-instances are not necessarily given in CNF, we implemented their

automated conversion to CNF formulae. This conversion introduces intermediate

variables but the overall size of the obtained formula is linear with respect to the

size of the given SAT-instance.

5.3.1 Weakly optimal encoding

To solve the weakly optimal encoding problem described in Subsection 5.2 we min-

imise the number of colours used for a conflict graph colouring. Minimisation is

performed by solving a series of instances of the following decision problem.

Let G = (V, E) be an extended conflict graph, where vertices V correspond to

encoding constraints and edges E ⊆ V × V to conflicts between them. V contains

both original Vo = {e1, e2, . . . , en} and inverted Vi = {e1, e2, . . . , en} constraints,

such that V = Vo ∪ Vi. The problem is to find a colouring of G which uses no more

than m colours.

For every pair of vertices (ek, ek) we introduce a Boolean variable pk and an

integer number ck whose values have to be found by the SAT solver: pk indicates

which of the two vertices is coloured – if pk = 1 (resp. pk = 0) then ek (resp. ek) is

coloured, while ck represents the colour of the chosen vertex.

The SAT problem ENCODE consists of four constraints:

ENCODE = NUM · COLoo · COLoi · COLii

where NUM restricts colours such that 0 ≤ ck < m. Encoding of numbers ck in

Boolean domain can be different, for example, if we use binary encoding we need

⌈log2m⌉ bits for each ck. Implementation of NUM depends on the chosen encoding;
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its general form is:

NUM =
∏

1≤k≤n

(0 ≤ ck) · (ck < m)

Constraints COL check that adjacent vertices are assigned different colours:

COLoo =
∏

(ej , ek)∈E∩(Vo×Vo)

(pj · pk) ⇒ (cj 6= ck)

COLoi =
∏

(ej , ek)∈E∩(Vo×Vi)

(pj · pk) ⇒ (cj 6= ck)

COLii =
∏

(ej , ek)∈E∩(Vi×Vi)

(pj · pk) ⇒ (cj 6= ck)

If we assume that complexity of comparison operations over numbers ck is C, then

the overall complexity of ENCODE is Θ((|V | + |E|) · C). In particular, in case of

binary encodings2 the complexity is Θ((|V |+ |E|) · logm). Depending on the chosen

number encodings, there are from Θ(|V | · logm) to Θ(|V | ·m) free variables.

If L is the minimum value of m for which formula ENCODE is satisfiable then

the optimal encoding uses L variables X = {x1, x2, ..., xL}. Values pk and ck which

satisfy the formula are used to resolve encoding constraints ek in the following way:

if pk = 1 then ek is resolved by xck , otherwise it is resolved by xck .

5.3.2 Globally optimal encoding

The version of the optimal encoding problem with constrained code length is signi-

ficantly more complicated and computationally intensive. It requires finding a set of

Boolean functions of L arguments (where L is the specified code length) and there

are 22
L

of them – it is impossible to explore search spaces of such magnitudes, e.g.

22
8

roughly equals to the number of atoms in the universe. To cope with this, we

reduce the search space to 2-argument Boolean functions only. From the practical

point of view this is justified by the fact that most modern technology libraries con-

tain only 2- or 3-input logic gates anyway. Importantly, every complex function can

2Formula (a < b) for binary numbers comparison is (a < b) = a0 · b0 + (a0 = b0) · (a
′ < b′)

where a′ and b′ are obtained from a and b by removal of their most significant digits (a0 and b0);
the formula is linear with respect to the lengths of a and b.
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be represented as a composition of simpler ones, therefore our approach can find

any function, albeit at the cost of introducing intermediate variables. This is similar

to what actually happens during technology mapping and logic decomposition of

functional components into hardware gates [14][19].

Formally, let (e1, e2, . . . , en) be a set of encoding constraints defined in Sub-

section 5.2, S be the number of scenarios, and L be the required code length. We

are looking for such a vector (ψ1, ψ2, . . . , ψS) of L-bit encodings and n functions

Fj, 1 ≤ j ≤ n such that Fj(ψk) = ej[k] for every scenario 1 ≤ k ≤ S (unless ej[k] is

a don’t care value).

We represent a set of functions F as a combinational circuit consisting of G 2-

input Boolean gates, where G is the value to be minimised. An output of the circuit

can be taken directly from one of its inputs or be produced by a gate. In addition,

any output can be inverted:

Fj(ψ) = select(Signals(ψ), oSelector j)⊕ Inv j

Here Signals(ψ) is a function computing all circuit signals including both circuit

inputs (given by parameter ψ) and gate outputs, oSelector j is the number indicating

which circuit signal is ‘connected’ to the j-th circuit output, function select(V , k)

selects k-th element from a given vector V , and Invj = 1 iff j-th circuit output

is inverted. Implementation of function select(V, k) depends on the encoding of k

(we used one-hot encoding in this case, which allows for simpler implementation).

Circuit signals are computed as follows:











































Signals(ψ) = WiresG(ψ)

Wiresk(ψ) =







ψ if k = 0

Wiresk−1(ψ) ◦Gatek(ψ) if 0 < k ≤ G

Gatek(ψ) = arg1,k(ψ) · arg2,k(ψ)

arg j,k(ψ) = select(Wiresk−1(ψ), aSelector j,k)⊕ InvArg j,k

In other words, a set of wires is initially equal to the set of circuit inputs (Wires0(ψ) =

ψ) and then is iteratively extended by appending Gatek to the previously computed

set of wires Wiresk−1. Eventually, after G iterations we obtain the set of all signals
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Signals(ψ) = WiresG(ψ). Every Gatek corresponds to an AND gate with possible

input inversions (indicated by InvArg0,k and InvArg1,k). Its arguments are selected by

aSelector 0,k and aSelector 1,k from the set of wires computed in the previous iteration.

This guarantees the absence of combinational loops.

As every signal in the circuit can be optionally inverted (by setting Inv j = 1 or

InvArg j,k = 1), the resultant gate basis includes 8 logic gates: AND, OR, NAND,

NOR, plus 4 other gates, obtained from these by inversion of exactly one of their

inputs (they do not have commonly adopted names, apart, perhaps, from Boolean

implication x ⇒ y which corresponds to OR(x, y)). We have also investigated a

simpler basis, consisting of only NAND gates with no optional input inversions. The

basis leads to smaller search space and works faster, but, as expected, produces larger

circuits (see Figure 5.6 for a comparison of two bases on a processor example). If the

NAND basis is used then free variables InvArg j,k can be dropped and the formulae

for Gatek(ψ) and arg j,k(ψ) should be modified as follows:







Gatek(ψ) = arg1,k(ψ) · arg2,k(ψ)

arg j,k(ψ) = select(Wiresk−1(ψ), aSelector j,k)

We tried to extend the 8-gate basis by addition of gates XOR and XNOR but on

practical examples it did not bring any benefit in terms of the number of used gates,

while significantly increasing the computation time (due to additional free variables

IsXork and more complex Gatek(ψ) functions).

In case of the standard 8-gate basis the SAT solver has to assign the following free

variables: ψj[k] (1 ≤ j ≤ S, 1 ≤ k ≤ L), Invj (1 ≤ j ≤ n), InvArg0,j and InvArg1,j

(1 ≤ j ≤ G). Also it has to find numbers oSelector j (1 ≤ j ≤ n), aSelector 0,j and

aSelector 1,j (1 ≤ j ≤ G). All other variables are derived.

The SAT problem ENCODE consists of two constraints:

ENCODE = NUM · EVAL
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Constraint NUM restricts all the selectors to their domains:

NUM =
∏

1≤j≤n

(1 ≤ oSelector j) · (oSelector j ≤ L+G)·

·
∏

1≤j≤2

1≤k≤G

(1 ≤ aSelector j,k) · (aSelector j,k < L+ k) (5.1)

Constraint EVAL checks that the circuit outputs satisfy the encoding constraints:

∏

1≤j≤n
1≤k≤S

(ej[k] 6= −) ⇒ (Fj(ψk) ⇔ ej[k])

If Gmin is the minimum value of G for which formula ENCODE is satisfiable then

the optimal encoding is obtained in vectors ψj (1 ≤ j ≤ S), an encoding constraint

ek is resolved by function Fj(ψ), and the circuit which produces these functions

contains Gmin gates.

We tried binary and one-hot number encodings in our implementation. In both

cases the complexity of the formula is Θ(S ·G ·(G+L)). The number of free variables

is Θ(S · L+ (G+ n) · C), where C is log(G+ L) and G+ L for binary and one-hot

encodings, respectively. In practice, one-hot encoding proved to be more efficient

despite significantly larger number of free variables. This can be explained by the

fact that one-hot encoding leads to simpler constraints.

5.3.3 Support for dynamic variables

A lot of practical applications require the use of dynamic variables, i.e. such variables

that can change their values during execution of a partial order and affect its further

execution flow [39]. An example of such application, a processor microcontroller, is

discussed in the next section.

Dynamic variables manifest themselves as encoding constraints with non-constant

elements, e.g. e = 110y1y, which means that in the fourth scenario the correspond-

ing condition has to evaluate to some dynamic variable y and in the sixth scenario it

has to evaluate to y. To compute the optimal encoding with such non-constant con-

straints we have to modify the method from the previous subsection in the following

way.
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Let y be a dynamic variable. We generate formula ENCODE0 (resp. ENCODE1)

using encoding constraints where y is replaced by 0 (resp. 1). Note that the free

variables in both formulae have to be the same and we have to add y into the set

of circuit inputs. Then we use the SAT solver to find an assignment that satisfies

ENCODE0 · ENCODE1. Interpretation of the resulting assignment is the same

apart from the added input signal y. In case of more than one dynamic variable, the

process should be repeated for each of them. Potentially this leads to an exponential

explosion of the formula. Fortunately, the number of dynamic variables is rather

small in practice, thus the explosion is not dramatic.

It is still possible to avoid the explosion of the formula by conversion of the

problem into an instance of 2-QBF problem (a quantified Boolean formula with two

quantifiers [55]):

∃X ∀Y ENCODE

where X represents the set of all free variables, and Y stands for the set of dynamic

variables. However, conversion of a formula into 2-QBF does not necessarily reduce

the computation time needed to find its satisfying assignment. Implementation of a

tool based on a 2-QBF solver is a subject of future work.

The next section demonstrates application of this technique in a processor mi-

crocontroller design.

5.4 Processor design example

This section demonstrates application of TPG-algebra to designing processor micro-

controllers. Specification of such a complex system as a processor has to start at

the architectural level, which helps to manage the system complexity by structural

abstraction [19].

Fig. 5.2 shows the architecture of an example processor. Separate Program

memory and Data memory blocks are accessed via the Instruction fetch (IFU) and

Memory access (MAU) units, respectively. The other two operational units are:

Arithmetic logic unit (ALU) and Program counter increment unit (PCIU). The units

are controlled using request-acknowledgement interfaces (depicted as bidirectional

arrows) by the Central microcontroller, which is our primary design objective.
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The processor has four registers: two general purpose registers A and B, Program

counter (PC) storing the address of the current instruction in the program memory,

and the Instruction register (IR) storing the opcode (operation code) of the current

instruction. For the purpose of this chapter, the actual width of the registers (the

number of bits they can store) is not important. ALU has access to all the registers

via the register bus; MAU has access to general purpose registers only; IFU, given

the address of the next instruction in PC, reads its opcode into IR; and PCIU is

responsible for incrementing PC (moving to the next instruction). The microcon-

troller has access to the IR and ALU flags (information about the current state of

ALU which is used in branching instructions).

Now we define the set of instructions of the processor. Rather than listing all the

instructions, we describe classes of instructions with the same addressing mode [1]

and the same execution scenario. As the scenarios here are partial orders of actions,

we use TPG-algebra, and the corresponding TPGs are shown in Fig. 5.3.

ALU operation Rn to Rn An instruction from this class takes two operands

stored in the general purpose registers (A and B), performs an operation, and writes

the result back into one of the registers (so called register direct addressing mode).

Examples: ADD A, B – addition A := A + B; MOV B , A – assignment B := A.

ALU works concurrently with PCIU and IFU, which is captured by the expression

ALU + PCIU → IFU ; the corresponding PG is shown in Fig. 5.3(a). As soon as

both concurrent branches are completed, the processor is ready to execute the next

instruction. Note that it is not important for the microcontroller which particular

ALU operation is being executed (ADD , MOV , or any other instruction from this

class) because the scenario is the same from its point of view (it is the responsibility

of ALU to detect which operation it has to perform according to the current opcode).

ALU operation #123 to Rn In this class of instructions one of the oper-

ands is a register and the other is a constant which is given immediately after the

instruction opcode (e.g. SUB A, #5 – subtraction A := A − 5), so called immedi-

ate addressing mode. At first, the constant has to be fetched into IR, modelled as

PCIU → IFU . Then ALU is executed concurrently with another increment of PC:

ALU + PCIU ′ (we use ′ to distinguish the different occurrences of actions of the

same unit). Finally, it is possible to fetch the next instruction into IR: IFU ′. The

overall scenario is then PCIU → IFU → (ALU + PCIU ′) → IFU ′.
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Figure 5.2: Architecture of an example processor
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Figure 5.3: TPG specifications of instruction classes
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ALU operation Rn to PC This class contains operations for unconditional

branching, in which PC register is modified. Branching can be absolute or relat-

ive: MOV PC , A – absolute branch to address stored in register A, PC := A;

ADD PC , B – relative branch to the address B instructions ahead of the current

address, PC := PC + B. The scenario is very simple in this case: ALU → IFU .

ALU operation #123 to PC Instructions in this class are similar to those

above, with the exception that the branch address or offset is specified explicitly

as a constant. The execution scenario is composed of : PCIU → IFU (to fetch

the constant), followed by an ALU operation, and finally by another IFU operation,

IFU ′. Hence, the overall scenario is PCIU → IFU → ALU → IFU ′.

Memory access There are two instructions in this class: MOV A, [B ] and

MOV [B ], A. They load/save register A from/to memory location with address

stored in register B. Due to the presence of separate program and data memory

access blocks, this memory access can be performed concurrently with the next

instruction fetch: PCIU → IFU +MAU .

Conditional instructions These three classes of instructions are similar to

their unconditional versions above with the difference that they are performed only

if the condition A < B holds. The first ALU action compares registers A and B,

setting the ALU flag lt (less than) according to the result of the comparison. This flag

is then checked by the microcontroller in order to decide on the further scheduling

of actions.

Rn to Rn This instruction conditionally performs an ALU operation with the

registers (if the condition does not hold, the instruction has no effect, except changing

the ALU flags). The operation starts with an ALU operation comparing A with B;

depending on the result of this comparison, i.e. the status of the flag lt, the second

ALU operation may be performed. This is captured by the expression ALU →

[lt]ALU ′. Concurrently with this, the next instruction is fetched: PCIU → IFU .

Hence, the overall scenario is PCIU → IFU + ALU → [lt]ALU ′.

#123 to Rn This instruction conditionally performs an ALU operation with

a register and a constant which is given immediately after the instruction opcode (if

the condition does not hold, the instruction has no effect, except changing the ALU

flags). We consider the two possible scenarios:

• A < B holds: First, ALU compares A and B concurrently with a PC incre-
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Instructions class Opcode: xyz

ALU Rn to Rn 000

ALU #123 to Rn 110

ALU Rn to PC 101

ALU #123 to PC 010

Memory access 100

C/ALU Rn to Rn 001

C/ALU #123 to Rn 111

C/ALU #123 to PC 011

MAU: d

PCIU: g

b

e

PCIU/2: (x+f) y

ALU: d

IFU/2: y

x

ALU/2: z c g
_

ρ = le+ge

IFU: f
_

y

_

_

z

. .

a = x+y

g = e+y
_

b = z a
_
.

c = b ge
_
.

d = y b
_.

e = a b
_

.

f = y c.

.

Figure 5.4: Optimal 3-bit instruction opcodes and the corresponding TPG specific-
ation of the microcontroller

ment; since A < B holds, the ALU sets flag lt and the constant is fetched to

the instruction register: (ALU + PCIU ) → IFU . After that PC has to be

incremented again, PCIU ′, and ALU performs the operation, ALU ′. Finally,

the next instruction is fetched (it cannot be fetched concurrently with ALU ′

as ALU is using the constant in IR): (ALU ′ + PCIU ′) → IFU ′.

• A < B does not hold: First, ALU compares A and B concurrently with a

PC increment; since A < B does not hold, the ALU resets flag lt and the

constant that follows the instruction opcode is skipped by incrementing the

PC: (ALU + PCIU ) → PCIU ′. Finally, the next instruction is fetched: IFU ′.

Hence, the overall scenario is the overlay of the two subscenarios above prefixed

with appropriate conditions (here we denote the predicate A < B by lt):

[lt]((ALU + PCIU )→IFU →(ALU ′ + PCIU ′)→IFU ′)+

+[lt]((ALU + PCIU )→PCIU ′→IFU ′).
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This expression can be simplified using the rules of TPG-algebra:3

(ALU + PCIU )→ [lt]IFU →(PCIU ′ + [lt]ALU ′)→IFU ′.

#123 to PC This instruction performs a conditional branching in which the

branch address or offset is specified explicitly as a constant. We consider the two

possible scenarios:

• A < B holds: First, ALU compares A and B concurrently with a PC increment;

since A < B holds, the ALU sets flag lt and the constant is fetched to the

instruction register: (ALU + PCIU ) → IFU . After that ALU performs the

branching operation by modifying PC, ALU ′. After PC is changed, the next

instruction is fetched, IFU ′.

• A < B does not hold: the scenario is exactly the same as in the #123 to Rn

case when A < B does not hold.

Hence, the overall scenario is the overlay of the two subscenarios above prefixed with

appropriate conditions (here we denote the predicate A < B by lt):

[lt]((ALU + PCIU )→IFU →ALU ′→IFU ′)+

+[lt]((ALU + PCIU )→PCIU ′→IFU ′).

This expression can be simplified using the rules of TPG-algebra:

(ALU + PCIU )→([lt]PCIU ′ + [lt](IFU →ALU ′))→IFU ′.

The overall specification of the microcontroller can now be obtained by prefixing

the scenarios with appropriate conditions and overlaying them. These conditions

can be naturally derived from the instruction opcodes. The opcodes can be either

imposed externally or chosen with the view to optimise the microcontroller. In the

3This case illustrates the advantage of using the new hierarchical approach that allows to specify
the system as a composition of scenarios and formally manipulate them in an algebraic fashion.
In our previous work [40], the CPOG for this class of instruction was designed monolithically, and
because of this the arc between ALU ′ and IFU ′ was missed. Adding this arc not only fixes the
dangerous race between these two blocks, but also leads to a smaller microcontroller due to the
additional similarity between TPGs for this class of instructions and for the one described below.

97



CHAPTER 5. PROCESSOR INSTRUCTION SET ENCODING

Instructions class Trivial encoding
Optimal encoding

L = 8 L = 3 L = 5

ALU Rn to Rn 000 00000000 000 00000
ALU #123 to Rn 001 01001010 110 01001
ALU Rn to PC 010 00010001 101 00010

ALU #123 to PC 011 01000010 010 01000
Memory access 100 01000100 100 00100

C/ALU Rn to Rn 101 00100000 001 10000
C/ALU #123 to Rn 110 10111010 111 11001
C/ALU #123 to PC 111 10110010 011 11000

Table 5.1: Synthesised instruction codes

latter case, TPG-algebra and TPGs allow for a formal statement of this optimisation

problem and aid in its solving; in particular, the sizes of the TPG-algebra expression

or TPG are useful measures of microcontroller complexity (there is a compositional

translation from a TPG-algebra expression into a linear-size circuit). Note that it

is natural to use three bits for opcodes as there are eight classes of instructions,

and give an example of optimal 3-bit encoding in the table in Fig. 5.4; the TPG

specification of the corresponding microcontroller is shown in the right part of this

figure (the TPG-algebra expression is not shown because of its size).

5.4.1 Instructions encoding

Now the instructions have to be encoded. The simplest way to do this is to use

the binary encoding scheme, i.e. assign opcodes {000, . . . , 111} to the instructions

in arbitrary order as shown in Table 5.1 (column ‘Trivial encoding’). This is not

optimal in terms of area and latency of the final microcontroller implementation.

To obtain the smallest possible TPG specification one has to apply the optimal

encoding procedure from Subsection 5.2.1. Generated opcodes have 8 bits instead of

3 (shown in column ‘Optimal encoding’ of the same table). Whether 8 bit opcodes

are affordable or not depends on the chosen width of instruction register IR and other

design parameters. If it is not possible to use 8 bit opcodes one can try to apply the

constrained synthesis problem from Subsection 5.2.2 and generate instruction codes

of required length 3 ≤ L < 8 (it is not possible to use less than 3 bits, and there

is no sense in setting L ≥ 8 because the optimal encoding uses 8 bits). We show
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_
MAU: xyz

_

PCIU: x+y+z
_
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_
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y
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(a) Trivial encoding (35 literals)

MAU: w

PCIU: t

y

u

PCIU/2: a+v

y

ALU: w

s

IFU/2: s

v

ALU/2: z ge
_

a = x ge

ρ = le+ge

IFU: a
_

__

_

_

.

.

(b) Optimal encoding (16 literals)
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(c) Optimal encoding L = 3 (31 literals)

MAU: z

PCIU: u
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_

_
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(d) Optimal encoding L = 5 (21 literals)

Figure 5.5: Synthesised CPOGs

the generated opcodes for cases L = 3 and L = 5 – see the corresponding columns

of Table 5.1. Note that the optimal 3-bit opcodes are very different from the trivial

000− 111 sequential encoding.

99



CHAPTER 5. PROCESSOR INSTRUCTION SET ENCODING

3 8

5

10

Figure 5.6: Comparison of different gate bases

5.4.2 Microcontroller synthesis

Figure 5.5 shows four CPOGs obtained using instruction encodings shown in Table 5.1.

The trivial encoding results in the most complex CPOG shown in Figure 5.5(a); it

uses three variables X = {x, y, z} and contains 35 literals. The optimal encoding

produces the CPOG with only 16 literals in its conditions, Figure 5.5(b), but it uses

8 opcode variables X = {x, y, z, u, v, w, s, t}. Figures 5.5(c, d) show the optimal

CPOGs encoded with 3 and 5 (X = {x, y, z, u, v}) variables, respectively; derived

variables (denoted by names starting from a) are shown in boxes.

Figure 5.6 illustrates dependency of the number of non-free variables on the

number of free variables. As expected, the more free variables we have, the less

non-free variables are needed to satisfy all the encoding constraints. It is interesting

to note that if we restrict our functional basis to NAND gates only (i.e. if we allow

only functions fk = fi · fj to be used), the number of non-free variables does not

increase dramatically.

Choice of a particular scenario within every CPOG in Figure 5.5 is highly distrib-

uted: every condition is responsible for rendering only a little portion of the global

picture and has a large don’t care set which leads to efficient Boolean minimisation.

Note that flag le turned out to be redundant and was removed from all the condi-

tions, because original condition le · ge is equivalent to ge if the restriction function

of ALU (ρALU = le + ge) is satisfied: ge · (le + ge) ⇔ le · ge. Thus it is enough to
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test only one ALU flag ge to correctly schedule all the instructions.

The optimal CPOG (Figure 5.5(b)) contains only 16 literals which leads to a twice

smaller and faster microcontroller than the one obtained using the trivial encoding.

Note that in this case it is not possible to reduce the final result to pure 1-restricted

form: the graph contains conditions depending on flag ge which cannot be mixed

with other variables for optimisation purposes as it is provided by ALU and can be

changed during execution of an ALU operation. Three non 1-restricted conditions

are: φ(IFU) = a = x · ge, φ(ALU/2) = z · ge, and φ(PCIU/2) = a+ v = x · ge+ v.

It is impossible to use fewer literals for these conditions; this is clarified in Table 5.2:

depending on the instruction φ(IFU) has to evaluate either to 1 or to ge and this

choice is delegated to operational variable x such that φ(IFU) = x · ge. Condition

φ(ALU/2) is similar: it must evaluate either to 0 or to ge, hence φ(ALU/2) = z · ge.

The most complicated case is presented with condition φ(PCIU/2) which has three

possible evaluations: 0, 1, and ge. Two variables are needed to handle this leading

to φ(PCIU/2) = x · ge + v. Optimal encoding of conditions depending on ALU

flags is performed automatically together with all other conditions as explained in

Subsection 5.3.3, thus the optimal result (in terms of the number of used literals) is

guaranteed.

Finally, the chosen CPOG can be mapped into equations to produce the physical

implementation of the microcontroller using the mapping algorithms from [39][45].

Instructions class x z v φIFU φALU/2 φPCIU/2

ALU Rn to Rn 0 0 0 1 0 0
ALU #123 to Rn 0 0 1 1 0 1
ALU Rn to PC 0 0 0 1 0 0

ALU #123 to PC 0 0 0 1 0 0
Memory access 0 0 0 1 0 0

Cond. ALU Rn to Rn 0 1 0 1 ge 0
Cond. ALU #123 to Rn 1 1 1 ge ge 1
Cond. ALU #123 to PC 1 1 0 ge ge ge

Optimal condition x · ge z · ge x · ge+ v

Table 5.2: Encoding of conditions with dynamic variable ge
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5.5 Summary

In this Chapter we have considered the problem of microcontroller instruction design

and encoding. We have shown how the application of Parametrised Graphs helps to

semi- or completely automatically derive the specification of entire controller from the

specification of individual instruction microcode. Crucially, the result is amenable

to further transformations possibly with automated rewriting tools.

We have developed a new technique for Parametrised Graph encoding that per-

mits the computation of the globally optimal solution to the PG encoding problem.

We do translation into a SAT instance to harness the power of SAT solving tools.

The proposal has important practical applications in microelectronics industry and

we plan to further pursue the fruitul direction.
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Conclusions

In this thesis we have presented a number of solutions to the problem of composi-

tional design of large scale digital circuits. These solutions help to synthesise efficient

asynchronous control circuits, transform and analyse compositional structures suit-

able for subsequent generation of hardware control logic and compute an efficient

encoding of micro-controller instruction set.

6.1 Improved parallel composition

In Chapter 3 we discussed an improved algorithm for computing the parallel compos-

ition of STGs or labelled Petri nets. The algorithm makes use of the FCI assumption

to produce nets with fewer implicit places. This aids in the synthesis of subsequent

structural algorithms like dummy contraction. It uses only simple structural checks

and thus is very efficient even for large compositions, so the improvement comes at

negligible cost.

The algorithm was implemented in the PComp tool and evaluated on a set of

scalable benchmarks. The experiments proved its efficiency, which increases even

more when the components are pre-processed to remove dummies and ensure in-

jective labelling (this is usually cheap, as the components are small; moreover, if

the components come from a standard library of component types, this step can be

completely eliminated).

Another important advantage is that the improved algorithm places almost no

additional effort on the user: the only requirement is to pass an additional command-
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line option to PComp so that it can assume the FCI property and apply the proposed

optimisation.

6.2 Parametrised Graphs theory

We introduced a new formalism called Parametrised Graphs and the corresponding

algebra. The formalism allows to manage a large number of system configurations

and execution modes, exploit similarities between them to simplify the specification,

and to work with groups of configurations and modes rather than with individual

ones. The modes and groups of modes can be managed in a compositional way, and

the specifications can be manipulated (transformed and/or optimised) algebraically

in a fully formal and natural way.

We develop two variants of the algebra of parametrised graphs, corresponding to

the two natural graph equivalences: graph isomorphism and isomorphism of trans-

itive closures. Both cases are specified axiomatically, and the soundness, minimality

and completeness of the resulting sets of axioms are formally proved. Moreover, the

canonical forms of algebraic terms are developed in each case.

We have formalised the definitions of algebra of parametrised graph in Agda, and

developed the machine-checked proofs of several properties of that algebra.

The formula representation data structure was designed together with the custom

structural equivalence relation on formula representations for convenient formula ma-

nipulations. The equivalence relation has been proved equivalent to the one defined

using formula semantics, thus showing its adequacy.

The normal form representation data structure for PG formulae was designed

with its semantics defined as translation to the corresponding general formula rep-

resentations. The algorithm of finding the normal form of general formulae was

developed and was proved to be correct.

The usefulness of the developed formalism has been demonstrated on two case

studies, a phase encoding controller and a processor micro-controller. Both have a

large number of execution scenarios, and the developed formalism allows to capture

them algebraically, by composing individual scenarios and groups of scenarios. The

possibility of algebraical manipulation was essential to obtain the optimised final

specification in each case.
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The developed formalism is also convenient for implementation in a tool, as ma-

nipulating algebraic terms is much easier than general graph manipulation; in par-

ticular, the theory of term rewriting can be naturally applied to derive the canonical

forms.

6.3 Processor instruction set encoding

The Chapter 5 presented the PG model based methodology for micro architecture

design and studied its application for specification and synthesis of a central pro-

cessor micro-controller. The key contribution is the method for synthesis of optimal

instruction op-codes; the corresponding optimisation problem is formulated in terms

of PGs and reduced to the well-known Boolean satisfiability problem. The method

is implemented in a software tool and can be used within the conventional micro

architecture design flow.

The studied processor example is purely academic. Nonetheless, it captures many

important features of real processors. It has been demonstrated that the PG model

is capable of modelling concurrency between different subsystems and handling mul-

tiple choice during instruction execution. Future work focuses on specification and

synthesis of a real processor and optimisation of the encoding algorithms.

Both have a large number of execution scenarios, and the developed formalism

allows to capture them algebraically, by composing individual scenarios and groups

of scenarios. The possibility of algebraical manipulation was essential to obtain the

optimised final specification in each case.

The developed formalism is also convenient for implementation in a tool, as ma-

nipulating algebraic terms is much easier than general graph manipulation; in par-

ticular, the theory of term rewriting can be naturally applied to derive the canonical

forms.

6.4 Future work

The improved parallel composition from Chapter 3 can be generalised by weakening

the test used in implicit place elimination and thus taking into the consideration

the non-trivial relationships between inputs and outputs. At the moment, we only
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remove placed directly connected to input and output transitions; a stronger version

of Proposition 1 would reason not at the level of individual places, immediately

connected to input/output transitions, but rather whole paths going from an output

transition to an input transition.

For Parametrised Graphs, we plan to automate the algebraic manipulation of

PGs, and implement automatic synthesis of PGs into digital circuits. For the latter,

much of the code developed for the precursor formalism of Conditional Partial Order

Graphs (CPOGs) can be re-used. One of the important problems that needs to be

automated is that of simplification of (T)PG expressions, in the sense of deriving an

equivalent expression with the minimum possible number of operators. Our prelimin-

ary research suggests that this problem is strongly related to modular decomposition

of graphs [37].

We also plan to formalise the proof of CPOG being a model of PG Algebra and

modification of the normalisation algorithm from Chapter 4 computing the canonical

form (where each graph node is mentioned no more than once) instead of just a

normal form. Canonical form is much more useful because its size is at most quadratic

while the size of a normal form is exponential in general. The canonical form is also

a way to quickly compare graphs and solve equational relations.
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Formal proof of PG Algebra

properties

What follows is the full Agda source code of formal proofs used in Chapter 4.

module PG .Eq where

record Eq (G : Set) : Set1 where

constructor equality

infix 3 ≈

field

≈ : G → G → Set

module PG .FormulaEq where

open import PG .Formulae

open import PG .GraphAlgebra

open import PG .PGAlgebra

open import Function

pgeval ′ : ∀ {B V G : Set } → (V → G) → PGOps B G → PGFormula B V → G

pgeval ′ f ops = pgeval Ops . + Ops . ≫ Ops .ε f Ops . [ ] where

module Ops = PGOps ops

≈s : ∀ {B V : Set } → PGFormula B V → PGFormula B V → Set1

≈s {B } {V } f1 f2 = ∀ {G : Set } → (pgalgebra : PG B G) → (f : V → G)

→ let open PG pgalgebra in pgeval ′ f pgops f1 ≈ pgeval ′ f pgops f2

module EQC where

data EquivClosure {X : Set } ( ˜ : X → X → Set) : X → X → Set where

refl : ∀ {f } → EquivClosure ˜ f f

trans : ∀ {a b c} → a ∼ b → b ∼ c → EquivClosure ˜ a c
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sym : ∀ {a b} → a ∼ b → EquivClosure ˜ b a

open EQC

open EQC public using (EquivClosure;module EquivClosure)

formulagraphops : ∀ {B V : Set } → GraphOps (PGFormula B V )

formulagraphops = record

{ + = +

; ≫ = ≫

; ε = ε}

formulaops : {B V : Set } → PGOps B (PGFormula B V )

formulaops = record

{graphops = formulagraphops

; [ ] = [ ] }

module WithBV {B : Set } {V : Set } where

infix 3 ≈

infix 3 B ≈

data B ≈ : BoolFormula B → BoolFormula B → Set where

isEquivalence : ∀ {a b} → EquivClosure B ≈ a b → a B ≈ b

∧cong : ∀ {p q r s } → p B ≈ r → q B ≈ s → p ∧ q B ≈ r ∧ s

∨cong : ∀ {p q r s } → p B ≈ r → q B ≈ s → p ∨ q B ≈ r ∨ s

¬cong : ∀ {p q } → p B ≈ q → ¬ p B ≈ ¬ q

∨complement r : ∀ {x } → x ∨ ¬ x B ≈ ⊤

∧complement r : ∀ {x } → x ∧ ¬ x B ≈ ⊥

∨comm : ∀ {x y } → x ∨ y B ≈ y ∨ x

∨assoc : ∀ {x y z } → (x ∨ y) ∨ z B ≈ x ∨ (y ∨ z )

∧comm : ∀ {x y } → x ∧ y B ≈ y ∧ x

∧assoc : ∀ {x y z } → (x ∧ y) ∧ z B ≈ x ∧ (y ∧ z )

∨absorbs∧ : ∀ {x y } → x ∨ (x ∧ y) B ≈ x

∧absorbs∨ : ∀ {x y } → x ∧ (x ∨ y) B ≈ x

∨distributes : ∀ {x y z } → (y ∧ z ) ∨ x B ≈ (y ∨ x ) ∧ (z ∨ x )

data ≈ : PGFormula (BoolFormula B) V → PGFormula (BoolFormula B) V → Set where

isEquivalence : ∀ {a b} → EquivClosure ≈ a b → a ≈ b

+cong : ∀ {p q r s } → p ≈ r → q ≈ s → p + q ≈ r + s

≫ cong : ∀ {p q r s } → p ≈ r → q ≈ s → p ≫ q ≈ r ≫ s

+assoc : ∀ {p q r } → (p + q) + r ≈ p + (q + r)

+comm : ∀ {p q } → p + q ≈ q + p

≫ assoc : ∀ {p q r } → (p ≫ q) ≫ r ≈ p ≫ (q ≫ r)

≫ identity l : ∀ {p} → ε ≫ p ≈ p
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≫ identityr : ∀ {p} → p ≫ ε ≈ p

distribl : ∀ {p q r } → p ≫ (q + r) ≈ p ≫ q + p ≫ r

distribr : ∀ {p q r } → (p + q) ≫ r ≈ p ≫ r + q ≫ r

decomposition : ∀ {p q r } → p ≫ q ≫ r ≈ p ≫ q + p ≫ r + q ≫ r

condcong : ∀ {f g p q } → f B ≈ g → p ≈ q → [f ] p ≈ [g ] q

truecondition : ∀ {x } → [⊤ ] x ≈ x

falsecondition : ∀ {x } → [⊥ ] x ≈ ε

orcondition : ∀ {f g x } → [f ∨ g ] x ≈ [f ] x + [g ] x

andcondition : ∀ {f g x } → [f ∧ g ] x ≈ [f ] [g ] x

conditional+ : ∀ {f x y } → [f ] (x + y) ≈ [f ] x + [f ] y

conditional ≫ : ∀ {f x y } → [f ] (x ≫ y) ≈ [f ] x ≫ [f ] y

conditionalε : ∀ {f } → [f ] ε ≈ ε

open import Relation.Binary

iseqbyclosure : ∀ {X : Set } { ˜ : X → X → Set }

→ (∀ {a b} → EquivClosure ˜ a b → a ∼ b) → IsEquivalence ˜

iseqbyclosure fromClosure = record

{refl = fromClosure refl

; sym = λ eq → fromClosure (sym eq)

; trans = λ l r → fromClosure (trans l r)

}

≈ isequivalence : IsEquivalence ≈

≈ isequivalence = iseqbyclosure isEquivalence

B ≈ isequivalence : IsEquivalence B ≈

B ≈ isequivalence = iseqbyclosure isEquivalence

boolformulaops : ∀ {B : Set } → BoolOps (BoolFormula B)

boolformulaops = record

{ ∨ = ∨

; ∧ = ∧

;¬ = ¬

;⊤ = ⊤

;⊥ = ⊥}

open import PG .Eq

open import Data.Product

boolformulaisboolalg : IsBoolAlg (equality B ≈ ) boolformulaops

boolformulaisboolalg = record

{isDistributiveLattice = record {

isLattice = record {

isEquivalence = B ≈ isequivalence;
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∨comm = λ x y → ∨comm;

∨assoc = λ x y z → ∨assoc;

∨cong = ∨cong ;

∧comm = λ x y → ∧comm;

∧assoc = λ x y z → ∧assoc;

∧cong = ∧cong ;

absorptive = (λ x y → ∨absorbs∧), (λ x y → ∧absorbs∨)};

∨ ∧ distribr = λ x y z → ∨distributes }

;∨complement r = λ x → ∨complement r

;∧complement r = λ x → ∧complement r

;¬cong = ¬cong

}

pgformulaisgraph : IsGraph (equality ≈ ) formulagraphops

pgformulaisgraph = record {

+cong = +cong ;

≫ cong = ≫ cong ;

≈ iseq = ≈ isequivalence;

+assoc = +assoc;

+comm = +comm;

≫ assoc = ≫ assoc;

≫ identity l = ≫ identity l ;

≫ identityr = ≫ identityr;

distribl = distribl ;

distribr = distribr;

decomposition = decomposition }

pgformulaispg : IsPG (equality B ≈ ) (equality ≈ ) formulaops boolformulaops

pgformulaispg = record {

isgraph = pgformulaisgraph;

isbool = boolformulaisboolalg ;

condcong = λ l r → condcong l r ;

truecondition = λ x → truecondition;

falsecondition = λ x → falsecondition;

andcondition = λ f g x → andcondition;

orcondition = λ f g x → orcondition;

conditional+ = λ f x y → conditional+;

conditional ≫ = λ f x y → conditional ≫}

module PG .Formulae where

module PGF (B V : Set) where

infixl 13 +
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infixl 18 ≫

data PGFormula : Set where

+ : (x y : PGFormula) → PGFormula

≫ : (x y : PGFormula) → PGFormula

ε : PGFormula

var : (a : V ) → PGFormula

[ ] : (c : B) → PGFormula → PGFormula

open PGF public

infixl 5 ∨

infixl 6 ∧

data BoolFormula X : Set where

var : X → BoolFormula X

∨ ∧ : BoolFormula X → BoolFormula X → BoolFormula X

¬ : BoolFormula X → BoolFormula X

⊤ ⊥ : BoolFormula X

pgeval : {A B G : Set }

→ ( +s ≫s : G → G → G)

→ (εs : G)

→ (var s : A → G)

→ (cond s : B → G → G)

→ PGFormula B A → G

pgeval {A} {B } {G } +s ≫s εs var s cond s = go where

go : PGFormula B A → G

go (x + y) = go x +s go y

go (x ≫ y) = go x ≫s go y

go ε = εs

go (var a) = var s a

go ([c ] y) = cond s c (go y)

module PG .GraphAlgebra where

open import Algebra

import Algebra.FunctionProperties

open import Algebra.Structures

open import Relation.Binary

open import Data.Product

open import PG .Eq

record GraphOps (G : Set) : Set where

infixl 13 +

infixl 18 ≫
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field

+ : (p q : G) → G

≫ : (p q : G) → G

ε : G

record IsGraph {G : Set } (Eq : Eq G) (Ops : GraphOps G) : Set where

open GraphOps Ops

open Eq Eq renaming ( ≈ to ≈ )

field

+cong : ∀ {p q r s } → p ≈ r → q ≈ s → p + q ≈ r + s

≫ cong : ∀ {p q r s } → p ≈ r → q ≈ s → p ≫ q ≈ r ≫ s

≈ iseq : IsEquivalence ≈

+assoc : ∀ {p q r } → (p + q) + r ≈ p + (q + r)

+comm : ∀ {p q } → p + q ≈ q + p

≫ assoc : ∀ {p q r } → (p ≫ q) ≫ r ≈ p ≫ (q ≫ r)

≫ identity l : ∀ {p} → ε ≫ p ≈ p

≫ identityr : ∀ {p} → p ≫ ε ≈ p

distribl : {p q r : G } → p ≫ (q + r) ≈ p ≫ q + p ≫ r

distribr : {p q r : G } → (p + q) ≫ r ≈ p ≫ r + q ≫ r

decomposition : {p q r : G } → p ≫ q ≫ r ≈ p ≫ q + p ≫ r + q ≫ r

open IsEquivalence ≈ iseq public

record Graph (G : Set) : Set1 where

field

eq : Eq G

ops : GraphOps G

isGraph : IsGraph eq ops

open IsGraph isGraph public

open Eq eq public

open GraphOps ops public

import Level

open Level using () renaming (zero to 0 )

import Relation.Binary .EqReasoning

open import Function

open import Data.List hiding ([ ])

import Relation.Binary .PropositionalEquality

module GraphTheory {P : Set } (graph : Graph P) where

open Graph graph

open Relation.Binary .EqReasoning record {isEquivalence = ≈ iseq }

open import Relation.Binary
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≈≈≈ : {p q r : P } → p ≈ q → q ≈ r → p ≈ r

x ≈≈≈ y = trans x y

infixl 8 ≈≈≈

+cong1 : {p q r : P } → p ≈ r → p + q ≈ r + q

+cong1 p ≈ r = p ≈ r 〈 +cong 〉 refl

+cong2 : {p q r : P } → q ≈ r → p + q ≈ p + r

+cong2 q ≈ r = refl 〈 +cong 〉 q ≈ r

≫ cong2 : {p q r : P } → q ≈ r → p ≫ q ≈ p ≫ r

≫ cong2 q ≈ r = refl 〈 ≫ cong 〉 q ≈ r

≫ cong1 : {p q r : P } → p ≈ r → p ≫ q ≈ r ≫ q

≫ cong1 p ≈ r = p ≈ r 〈 ≫ cong 〉 refl

rdeco : ∀ {a } → a + a + ε ≈ a

rdeco {a } =

begin

a + a + ε

≈ 〈 sym (≫ identityr 〈 +cong 〉 ≫ identityr 〈 +cong 〉 ≫ identityr) 〉

a ≫ ε + a ≫ ε + ε ≫ ε

≈ 〈 sym decomposition 〉

a ≫ ε ≫ ε

≈ 〈 ≫ identityr ≈≈≈ ≫ identityr 〉

a

�

+identityr : ∀ {a } → a + ε ≈ a

+identityr {a } =

begin

a + ε

≈ 〈 sym rdeco 〉

(a + ε) + (a + ε) + ε

≈ 〈 +cong1

(+assoc ≈≈≈ (+cong2 (+comm ≈≈≈ +assoc) ≈≈≈ sym +assoc))

≈≈≈ +assoc 〉

a + a + (ε + ε + ε)

≈ 〈 +cong2 rdeco 〉

a + a + ε

≈ 〈 rdeco 〉

a

�

+identity l : {p : P } → ε + p ≈ p
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+identity l = +comm ≈≈≈ +identityr

idempotence : ∀ {p} → p + p ≈ p

idempotence {p} = sym +identityr ≈≈≈ rdeco

absorption : ∀ {a b} → a ≫ b + a + b ≈ a ≫ b

absorption {a } {b} =

begin

a ≫ b + a + b

≈ 〈 sym (refl 〈 +cong 〉 ≫ identityr 〈 +cong 〉 ≫ identityr) 〉

(a ≫ b) + (a ≫ ε) + (b ≫ ε)

≈ 〈 sym decomposition 〉

a ≫ b ≫ ε

≈ 〈 ≫ identityr 〉

a ≫ b

�

absorption l : {p q : P } → p ≫ q + p ≈ p ≫ q

absorption l {p} {q } =

begin

p ≫ q + p

≈ 〈 +cong1 (sym absorption) 〉

p ≫ q + p + q + p

≈ 〈 +assoc ≈≈≈ +cong2 +comm ≈≈≈ (sym +assoc ≈≈≈ +cong1 +assoc) 〉

p ≫ q + (p + p) + q

≈ 〈 +cong1 (+cong2 idempotence) 〉

p ≫ q + p + q

≈ 〈 absorption 〉

p ≫ q

�

absorptionr : ∀ {p} {q } → p ≫ q + q ≈ p ≫ q

absorptionr {p} {q } =

begin

p ≫ q + q

≈ 〈 +cong1 (sym absorption) 〉

p ≫ q + p + q + q

≈ 〈 +assoc 〉

p ≫ q + p + (q + q)

≈ 〈 +cong2 idempotence 〉

p ≫ q + p + q

≈ 〈 absorption 〉

p ≫ q
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�

⊆ : (p q : P) → Set

p ⊆ q = p + q ≈ q

infix 10 ⊆

leastElement : {p : P } → ε ⊆ p

leastElement = +identity l

p + q ⊆ p ≫ q : {p q : P } → p + q ⊆ p ≫ q

p + q ⊆ p ≫ q = +comm ≈≈≈ sym +assoc ≈≈≈ absorption

⊆ refl0 : {p : P } → p ⊆ p

⊆ refl0 = idempotence

⊆ refl : {p q : P } → p ≈ q → p ⊆ q

⊆ refl p ≈ q = +cong1 p ≈ q ≈≈≈ idempotence

⊆ antisym : {p q : P } → p ⊆ q → q ⊆ p → p ≈ q

⊆ antisym p + q ≈ q q + p ≈ p = sym (+comm ≈≈≈ q + p ≈ p) ≈≈≈ p + q ≈ q

⊆ trans : {p q r : P } → p ⊆ q → q ⊆ r → p ⊆ r

⊆ trans {p} {q } {r } p + q ≈ q q + r ≈ r =

begin

p + r

≈ 〈 sym (+assoc ≈≈≈ +cong2 q + r ≈ r) 〉

p + q + r

≈ 〈 +cong1 p + q ≈ q ≈≈≈ q + r ≈ r 〉

r

�

⊆ isPartialOrder : IsPartialOrder ≈ ⊆

⊆ isPartialOrder = record

{isPreorder = record

{isEquivalence = ≈ iseq

; trans = ⊆ trans

; reflexive = ⊆ refl

}

; antisym = ⊆ antisym

}

+isSemigroup : IsSemigroup ≈ +

+isSemigroup = record

{isEquivalence = ≈ iseq

; assoc = λ x y z → +assoc {x } {y } {z }

; •cong = +cong
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}

+isCommutativeMonoid : IsCommutativeMonoid ≈ + ε

+isCommutativeMonoid = record

{isSemigroup = +isSemigroup

; identity l = λ x → +identity l {x }

; comm = λ x y → +comm {x } {y }

}

≫ isSemigroup : IsSemigroup ≈ ≫

≫ isSemigroup = record

{isEquivalence = ≈ iseq

; assoc = λ x y z → ≫ assoc {x } {y } {z }

; •cong = ≫ cong

}

≫ isMonoid : IsMonoid ≈ ≫ ε

≫ isMonoid = record

{isSemigroup = ≫ isSemigroup

; identity = (λ x → ≫ identity l {x }), (λ x → ≫ identityr {x })

}

cpogIsSemiringWithoutAnnihilatingZero

: IsSemiringWithoutAnnihilatingZero ≈ + ≫ ε ε

cpogIsSemiringWithoutAnnihilatingZero = record

{+isCommutativeMonoid = +isCommutativeMonoid

; ∗isMonoid = ≫ isMonoid

; distrib = (λ → distribl), (λ → distribr)

}

+monotony : {p q r s : P } → p ⊆ q → r ⊆ s → p + r ⊆ q + s

+monotony {p} {q } {r } {s } p + q ≈ q r + s ≈ s =

begin

(p + r) + (q + s)

≈ 〈 sym +assoc ≈≈≈

+cong1 (+assoc ≈≈≈ +cong2 +comm ≈≈≈ sym +assoc)

≈≈≈ +assoc 〉

(p + q) + (r + s)

≈ 〈 p + q ≈ q 〈 +cong 〉 r + s ≈ s 〉

q + s

�

+preserves ⊆ : + Preserves2 ⊆ −→ ⊆ −→ ⊆

+preserves ⊆ = +monotony
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≫ arg1Monotony : {p q r : P } → p ⊆ q → p ≫ r ⊆ q ≫ r

≫ arg1Monotony p + q ≈ q = sym distribr ≈≈≈ ≫ cong1 p + q ≈ q

≫ arg2Monotony : {p r s : P } → r ⊆ s → p ≫ r ⊆ p ≫ s

≫ arg2Monotony r + s ≈ s = sym distribl ≈≈≈ ≫ cong2 r + s ≈ s

≫ monotony : {p q r s : P } → p ⊆ q → r ⊆ s → p ≫ r ⊆ q ≫ s

≫ monotony p + q ≈ q r + s ≈ s = ⊆ trans (≫ arg1Monotony p + q ≈ q) (≫ arg2Monotony r + s ≈ s)

≫ preserves ⊆ : ≫ Preserves2 ⊆ −→ ⊆ −→ ⊆

≫ preserves ⊆ = ≫ monotony

module PG .Normalizercorrect (A B : Set) where

open import Relation.Binary

import Relation.Binary .PropositionalEquality as PropEq

open PropEq using ( ≡ )

open import PG .Formulae

module WithOrder { < : A → A → Set } (ASTO : IsStrictTotalOrder ≡ < ) where

open import PG .FormulaEq

import PG .Normalizer

open PG .Normalizer .WithOrder A B ASTO renaming ( + to +′ ; ≫ to ≫′ )

open PG .Normalizer A B

import Data.List as List

open List using ([ ]; : : ; foldr ;map)

open import Function

open WithBV {B } {A}

import PG .GraphAlgebra as Alg

module GT = Alg .GraphTheory (record {isGraph = pgformulaisgraph })

module BEq = IsEquivalence B ≈ isequivalence

open IsEquivalence ≈ isequivalence

import Relation.Binary .EqReasoning as EqR

open EqR record {isEquivalence = ≈ isequivalence }

open EqR record {isEquivalence = B ≈ isequivalence } renaming

(begin to Bbegin ; ≈ 〈 〉 to B ≈ 〈 〉 ; � to B�)

open import Algebra.Structures

open IsBooleanAlgebra boolformulaisboolalg using

()

open import Algebra.Props .BooleanAlgebra

(record {isBooleanAlgebra = boolformulaisboolalg }) using

(∧ ∨ distrib;∧complement ;∨complement ;

∨ ∧ isCommutativeSemiring ;∧idempotent ;∨idempotent)

open IsCommutativeSemiring ∨ ∧ isCommutativeSemiring
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using () renaming (∗identity to ∧identity ; zero to ∧zero)

open import Data.Product using ( , ; proj1 ; proj2 )

open import Data.Sum using (inj1 ; inj2 )

absorption : ∀ {x y } → x + y + x ≫ y ≈ x ≫ y

absorption = +comm 〈 trans 〉 (sym +assoc 〈 trans 〉 GT .absorption)

lem : ∀ f p → p ≈ [f ] p + [¬ f ] p

lem f p =

begin

p

≈ 〈 sym truecondition 〉

[⊤ ] p

≈ 〈 condcong (isEquivalence (EQC .sym ∨complement r)) refl 〉

[f ∨ ¬ f ] p

≈ 〈 orcondition 〉

[f ] p + [¬ f ] p

�

caseanalyse : ∀ {f p q } → [f ] p ≈ [f ] q → [¬ f ] p ≈ [¬ f ] q → p ≈ q

caseanalyse {f } {p} {q } fcase ¬fcase =

begin

p

≈ 〈 lem 〉

[f ] p + [¬ f ] p

≈ 〈 +cong fcase ¬fcase 〉

[f ] q + [¬ f ] q

≈ 〈 sym (lem ) 〉

q

�

elim+ : ∀ {f a b c d }

→ [f ] a ≈ [f ] c → [f ] b ≈ [f ] d

→ [f ] (a + b) ≈ [f ] (c + d)

elim+ a ≈ c b ≈ d =

trans (trans conditional+ (+cong a ≈ c b ≈ d)) (sym conditional+)

elim ≫ : ∀ {f a b c d } →

[f ] a ≈ [f ] c → [f ] b ≈ [f ] d →

[f ] (a ≫ b) ≈ [f ] (c ≫ d)

elim ≫ a ≈ c b ≈ d =

trans (trans conditional ≫ (≫ cong a ≈ c b ≈ d)) (sym conditional ≫)

dupcond : ∀ {f x } → [f ] [f ] x ≈ [f ] x
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dupcond = trans (sym andcondition) (condcong (∧idempotent ) refl)

falsecond : ∀ {f x } → [¬ f ] [f ] x ≈ [¬ f ] ε

falsecond = trans (sym dupcond) (condcong BEq .refl (trans

(trans (sym andcondition)

(condcong (proj1 ∧complement ) refl))

falsecondition

)

)

condswap : ∀ {f g x } → [f ] [g ] x ≈ [g ] [f ] x

condswap = trans (sym andcondition) (trans (condcong ∧comm refl) andcondition)

side1 : ∀ {f g p q }

→ [f ] ([f ] p ≫ [g ] q)

≈ [f ] ([f ] p + [g ] q + [f ∧ g ] (p ≫ q))

side1 {f } {g } {p} {q } =

begin

[f ] ([f ] p ≫ [g ] q)

≈ 〈 elim ≫ dupcond refl 〉

[f ] (p ≫ [g ] q)

≈ 〈 condcong BEq .refl (caseanalyse {g }

(

begin

[g ] (p ≫ [g ] q)

≈ 〈 elim ≫ refl dupcond 〉

[g ] (p ≫ q)

≈ 〈 sym (condcong BEq .refl absorption) 〉

[g ] (p + q + p ≫ q)

≈ 〈 sym (elim+ (elim+ refl dupcond) dupcond) 〉

[g ] (p + [g ] q + [g ] (p ≫ q))

�

)

(trans (elim ≫ refl falsecond) (trans

(condcong BEq .refl

(trans ≫ identityr (sym (trans GT .+ identityr GT .+ identityr))))

(sym (elim+ (elim+ refl falsecond) falsecond))))) 〉

[f ] (p + [g ] q + [g ] (p ≫ q))

≈ 〈 sym (elim+ (elim+ dupcond refl)

(trans (condcong BEq .refl andcondition) dupcond)) 〉

[f ] ([f ] p + [g ] q + [f ∧ g ] (p ≫ q))

�
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side2 : ∀ {f g p q }

→ [¬ f ] ([f ] p ≫ [g ] q)

≈ [¬ f ] ([f ] p + [g ] q + [f ∧ g ] (p ≫ q))

side2 {f } {g } {p} {q } =

begin

[¬ f ] ([f ] p ≫ [g ] q)

≈ 〈 elim ≫ falsecond refl 〉

[¬ f ] (ε ≫ [g ] q)

≈ 〈 condcong BEq .refl ≫ identity l 〉

[¬ f ] [g ] q

≈ 〈 condcong BEq .refl (sym (trans (GT .+ identityr) (GT .+ identity l))) 〉

[¬ f ] (ε + [g ] q + ε)

≈ 〈 sym (elim+ (elim+ falsecond refl) (trans (sym dupcond)

(condcong BEq .refl (trans (sym andcondition)

(trans (condcong (BEq .trans (BEq .sym ∧assoc)

(BEq .trans (∧cong (proj1 ∧complement ) BEq .refl) (proj1 ∧zero )))

refl) falsecondition))))) 〉

[¬ f ] ([f ] p + [g ] q + [f ∧ g ] (p ≫ q))

�

conditionregularisation : ∀ {f g } → {p q : PG }

→ [f ] p ≫ [g ] q ≈ [f ] p + [g ] q + [f ∧ g ] (p ≫ q)

conditionregularisation {f } {g } {p} {q } = caseanalyse {f }

side1 side2

absorbbycondition : ∀ {f g p} → [f ] p + [f ∧ g ] p ≈ [f ] p

absorbbycondition {f } {g } {p} =

sym orcondition 〈 trans 〉 condcong ∨absorbs∧ refl

conditionregularisation ′ : ∀ f g p q z

→ p ≫ q ≈ p + q + z

→ [f ] p ≫ [g ] q

≈ [f ] p + [g ] q + [f ∧ g ] z

conditionregularisation ′ f g p q z eq =

begin

[f ] p ≫ [g ] q

≈ 〈 conditionregularisation 〉

[f ] p + [g ] q + [f ∧ g ] (p ≫ q)

≈ 〈 +cong refl (condcong (isEquivalence EQC .refl) eq) 〉

[f ] p + [g ] q + [f ∧ g ] (p + q + z )

≈ 〈 +cong refl (conditional+ 〈 trans 〉 +cong conditional+ refl) 〉

[f ] p + [g ] q + ([f ∧ g ] p + [f ∧ g ] q + [f ∧ g ] z )
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≈ 〈 sym +assoc 〈 trans 〉 +cong (+assoc 〈 trans 〉

(+cong refl (sym +assoc 〈 trans 〉 +cong +comm refl 〈 trans 〉 +assoc)

〈 trans 〉 sym +assoc)) refl 〉

([f ] p + [f ∧ g ] p) + ([g ] q + [f ∧ g ] q) + [f ∧ g ] z

≈ 〈 +cong (+cong absorbbycondition (+cong refl (condcong ∧comm refl)

〈 trans 〉 absorbbycondition)) refl 〉

[f ] p + [g ] q + [f ∧ g ] z

�

+correct ′ : ∀ x y → fromNF x + fromNF y ≈ fromNF (x +′ y)

+correct ′ [ ] y = GT .+ identity l (fromNF y)

+correct ′ (x : : xs) y = +assoc 〈 trans 〉 +cong refl (+correct ′ xs y)

sumNodes = foldr + ε ◦ map fromNode

absorption l : ∀ {x y } → x + x ≫ y ≈ x ≫ y

absorption l = +comm 〈 trans 〉 GT .absorption l

absorptionr : ∀ {x y } → y + x ≫ y ≈ x ≫ y

absorptionr = +comm 〈 trans 〉 GT .absorptionr

newArrowsgood : ∀ x y → fromNode x ≫ fromNode y

≈ fromNode x + fromNode y + sumNodes (newArrows x y)

newArrowsgood (inj1 x ) (inj1 y) =

sym (+cong refl GT .+ identityr 〈 trans 〉 absorption)

newArrowsgood (inj1 x ) (inj2 (y1 , y2 )) =

sym (+cong +comm (+cong refl GT .+ identityr)

〈 trans 〉 (+assoc 〈 trans 〉 +comm 〈 trans 〉

+cong (sym +assoc 〈 trans 〉 +cong absorption l refl) refl)

〈 trans 〉 sym decomposition

〈 trans 〉 ≫ assoc)

newArrowsgood (inj2 (x1 , x2 )) (inj1 y) =

sym (+assoc 〈 trans 〉

+cong refl (sym +assoc 〈 trans 〉 +cong absorptionr GT .+ identityr)

〈 trans 〉 sym +assoc 〈 trans 〉

sym decomposition)

newArrowsgood (inj2 (x1 , x2 )) (inj2 (y1 , y2 )) =

sym (+assoc 〈 trans 〉 +cong refl

(+cong (sym GT .idempotence) (+cong refl (+cong refl

(+cong refl GT .+ identityr)) 〈 trans 〉 sym +assoc 〈 trans 〉 +comm)

〈 trans 〉 sym +assoc

〈 trans 〉 +cong (+assoc 〈 trans 〉 +cong refl +comm) refl

〈 trans 〉 +comm

〈 trans 〉 sym +assoc
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〈 trans 〉 +cong (sym decomposition) (sym decomposition)

〈 trans 〉 +cong ≫ assoc ≫ assoc

)

〈 trans 〉 sym +assoc

〈 trans 〉 sym decomposition)

allmult : ∀ l c → fromNF (List .map (flip , c) l) ≈ [c ] sumNodes l

allmult [ ] c = sym conditionalε

allmult (x : : xs) c = +cong refl (allmult xs c) 〈 trans 〉 sym conditional+

≫1 preserves : ∀ x y → fromLit x ≫ fromLit y ≈ fromNF (x ≫1 y)

≫1 preserves (x , f ) (y , g) =

begin

fromLit (x , f ) ≫ fromLit (y , g)

≈ 〈 conditionregularisation ′ f g (newArrowsgood x y) 〉

fromLit (x , f ) + fromLit (y , g) + [f ∧ g ] sumNodes (newArrows x y)

≈ 〈 +assoc 〈 trans 〉 +cong refl

(+cong refl (sym (allmult (newArrows x y) (f ∧ g)))) 〉

fromNF ((x , f ) : : (y , g) : : (map (flip , (f ∧ g)) (newArrows x y)))

≈ 〈 refl 〉

fromNF ((x , f ) ≫1 (y , g))

�

≫ rpreserves : ∀ x y → fromLit x ≫ fromNF y ≈ fromNF (x ≫ r y)

≫ rpreserves x [ ] = ≫ identityr 〈 trans 〉 sym GT .+ identityr

≫ rpreserves x (y : : ys) =

distribl 〈 trans 〉 +cong (≫1 preserves x y) (≫ rpreserves x ys)

〈 trans 〉 +correct ′ (x ≫1 y) (x ≫ r ys)

≫ correct ′ : ∀ x y → fromNF x ≫ fromNF y ≈ fromNF (x ≫′ y)

≫ correct ′ [ ] y = ≫ identity l

≫ correct ′ (x : : xs) y =

distribr 〈 trans 〉 (+cong (≫ rpreserves x y) (≫ correct ′ xs y)

〈 trans 〉 +correct ′ (x ≫ r y) (xs ≫′ y))

+correct : ∀ x y → x + y ≈ fromNF (normalize x +′ normalize y)

≫ correct : ∀ x y → x ≫ y ≈ fromNF (normalize x ≫′ normalize y)

normalisecorrect : ∀ f → f ≈ fromNF (normalize f )

+correct x y =

+cong (normalisecorrect x ) (normalisecorrect y) 〈 trans 〉

+correct ′ (normalize x ) (normalize y)

≫ correct x y =

≫ cong (normalisecorrect x ) (normalisecorrect y) 〈 trans 〉
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≫ correct ′ (normalize x ) (normalize y)

mapConditionscorrect : ∀ c x → [c ] fromNF x ≈ fromNF (mapConditions ( ∧ c) x )

mapConditionscorrect c [ ] = conditionalε

mapConditionscorrect c (x : : xs) =

conditional+ 〈 trans 〉 +cong (sym andcondition) (mapConditionscorrect c xs)

normalisecorrect (x + y) = +correct x y

normalisecorrect (x ≫ y) = ≫ correct x y

normalisecorrect ε = refl

normalisecorrect (var a) = sym truecondition 〈 trans 〉 sym GT .+ identityr

normalisecorrect ([c ] y) = condcong BEq .refl (normalisecorrect y) 〈 trans 〉

mapConditionscorrect c (normalize y)

module PG .Normalizer (V : Set) (B : Set) where

open import Data.Empty

open import Data.Sum using ( ⊎ ; inj1 ; inj2 )

open import Function using (id ;flip; ◦ )

import Data.Product as Product

open Product using ( , ; × )

open import Level using () renaming (zero to 0 )

open import PG .Formulae using

(BoolFormula; ∧ ; ∨ ;⊤; var ;PGFormula;module PGFormula; pgeval)

open import Relation.Binary

open import Relation.Binary .PropositionalEquality using ( ≡ )

import Data.List as List

open List using (foldr ;List ; concat ; + + ; : : ; [ ];map)

BF = BoolFormula B

PG = PGFormula BF V

Node = V ⊎ (V × V )

Lit = Node × BF

NF = List Lit

module WithOrder { < : V → V → Set } (ASTO : IsStrictTotalOrder ≡ < ) where

module Semantics where

open PGFormula

fromNode : Node → PG

fromNode (inj1 x ) = var x

fromNode (inj2 (x , y)) = var x ≫ var y

fromLit : Lit → PG

fromLit (node, cond) = [cond ] fromNode node
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fromNF : NF → PG

fromNF = foldr + ε ◦ map fromLit

open Semantics public

open import Category .Monad

open RawMonad (List .monad {0 })

+ : NF → NF → NF

a + b = a ++ b

vertices : Node → List V

vertices (inj1 x ) = x : : [ ]

vertices (inj2 (x , y)) = x : : y : : [ ]

newArrows : Node → Node → List Node

newArrows p q = map inj2 (vertices p ⊗ vertices q)

≫1 : Lit → Lit → List Lit

(p, f ) ≫1 (q , g) =

(p, f ) : : (q , g) : : (map (flip , (f ∧ g)) (newArrows p q))

≫ r : Lit → NF → NF

lit ≫ r [ ] = lit : : [ ]

lit ≫ r (x : : xs) = (lit ≫1 x ) + (lit ≫ r xs)

≫ : NF → NF → NF

[ ] ≫ b = b

(h : : t) ≫ b = (h ≫ r b) + (t ≫ b)

mapConditions : (BF → BF ) → NF → NF

mapConditions f = map (Product .map id f )

fromVar : V → NF

fromVar x = (inj1 x ,⊤) : : [ ]

addCondition : BF → NF → NF

addCondition = mapConditions ◦ ∧

normalize : PG → NF

normalize = pgeval

+

≫

[ ]

fromVar

addCondition

open import PG .PGAlgebra using (BoolOps)

module PG .PGAlgebra where
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open import PG .GraphAlgebra

open import PG .Eq

open import Algebra.Structures

record BoolOps (B : Set) : Set where

infix 8 ¬

infixr 7 ∧

infixr 6 ∨

field

∨ : B → B → B

∧ : B → B → B

¬ : B → B

⊤ : B

⊥ : B

record PGOps (B G : Set) : Set where

infix 20 [ ]

field

graphops : GraphOps G

[ ] : B → G → G

open GraphOps graphops public

IsBoolAlg : {B : Set } → (Beq : Eq B) → (boolops : BoolOps B) → Set

IsBoolAlg (equality eq) ops = let open BoolOps ops in

IsBooleanAlgebra eq ∨ ∧ ¬ ⊤ ⊥

record IsPG {B G : Set }

(Beq : Eq B) (Geq : Eq G)

(PGops : PGOps B G) (Bops : BoolOps B) : Set where

open PGOps PGops

open Eq Geq

open Eq Beq renaming ( ≈ to B ≈ )

open BoolOps Bops

field

isgraph : IsGraph Geq graphops

isbool : IsBoolAlg Beq Bops

condcong : ∀ {f g x y } → f B ≈ g → x ≈ y → [f ] x ≈ [g ] y

truecondition : ∀ x → [⊤ ] x ≈ x

falsecondition : ∀ x → [⊥ ] x ≈ ε

andcondition : ∀ f g x → [f ∧ g ] x ≈ [f ] [g ] x

orcondition : ∀ f g x → [f ∨ g ] x ≈ [f ] x + [g ] x

conditional+ : ∀ f x y → [f ] (x + y) ≈ [f ] x + [f ] y

125



APPENDIX A. FORMAL PROOF OF PG ALGEBRA PROPERTIES

conditional ≫ : ∀ f x y → [f ] (x ≫ y) ≈ [f ] x ≫ [f ] y

open PGOps PGops public

open Eq Geq public

open IsGraph isgraph public

open IsBooleanAlgebra isbool public using ()

open BoolOps Bops public

record PG (B G : Set) : Set1 where

field

Beq : Eq B

Geq : Eq G

pgops : PGOps B G

Bops : BoolOps B

isPg : IsPG Beq Geq pgops Bops

open IsPG isPg public
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