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Abstract 

The adoption of the "Web Services" model for building a Grid framework created a considerable shift 
from the original concept of Grid which was based on "distributed job scheduling". The requirement 
for the access and integration of heterogeneous data resources over the Grid, and the advances in 

service-oriented data access standards led to the development of a service-oriented distributed query 

processor, which forms the basis of this thesis. 

The adoption of service-orientation raised the need for a framework which would allow demand- 

driven deployment of Web Services on available resources. Research into such concepts led to the 

development of DynaSOAr, a framework which proposed an alternative approach to distributed job 

scheduling by focussing entirely on the concept of services, rather than the more traditional jobs. 

DynaSOAr allows services to be deployed on demand to meet changing performance requirements 

and exploits the advances made in virtualization technologies to support the deployment of services 

and databases. 

The thesis describes a system designed to exploit dynamic deployment features within the context of 

distributed query processing on the Grid, and argues that such features benefit query evaluation by 

creating a loose coupling between the services and the available resources. The extended distributed 

query processing system is able to collocate various entities, such as the evaluation and analysis 

services with the data, to reduce data traffic over the network, and is also able to reconfigure 
itself to improve performance by dynamically deploying database snapshots. The thesis evaluates 
the dynamic distributed query processing framework through several experiments which explore its 

behaviour in a variety of scenarios. 
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F-- I 
Chapter 

Introduction 

"e-Science aims to provide support for large-scale science by enabling distributed global 

collaborations through the formation of virtual co-laboratories that allow scientists to work 
together irrespective of location and permit universal access to scientific resources. "[1] 

e-Science, as defined above by the European Bio-Informatics Institute (EBI) is considered as one of 
the primary approaches to inter-disciplinary research where scientists from various streams collabo- 

rate in order to achieve collective goals. It was felt from the inception of the e-Science Programme 

while the use of the evolving Grid frameworks would benefit collective research, science would suffer 
if the scientists such as bio-informaticians, biologists, astronomers were forced to adopt new lan- 

guages, platforms and tools to perform the scientific work in such collaborative environments. It 

would be unreasonable to assume that these scientists were experts in Grid computing or resource 

sharing in collaborative environments. To make e-Science a reality in scientific researches, the e- 
Science framework should provide scientists with a higher level abstraction layer with the freedom of 

using their own standard languages, toolkits and databases leaving the complexity of collaborative 

resource sharing to the underlying middleware. 

Fortunately, this is the approach that was taken by the e-Science community in the UK and has 

been supported around the globe. Adopting Web Service standards and technologies was a step 
towards achieving the goal of creating the middleware which would serve the scientific community. 

The adoption of service oriented technologies was a significant step for e-Science. There was a 

considerable shift from the traditional Grid computing infrastructures based on distributed job- 

scheduling systems, such as Condor [2,3] and Globus [4] where any computation is packaged by 
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the consumer as a job consisting of the computation code and in most cases the input data on 

which the code should operate, and submitted to the framework for execution. The scheduling 

system at the core of the framework decides on which resource the job should be executed based 

on algorithms such as matchmaking, where the requirement of the computational job is matched 

against the available hosts to select the best suited host for execution of the job. Once execution is 

complete, the system discards the job. Compared to this, service orientation provided an alternative 

paradigm for distributed computing where a clear separation is created between the interface and the 

internals of the underlying system and a loose coupling between autonomous systems by exchanging 
SOAP [5] messages is advocated. The emergence of this alternative approach was widely publicised 
in the computing domain, and the Web Service implementation resulted in widespread adoption 

of the technology as a means to create the Grid platform. A complex system or application may 

now be modelled as a collection of finer autonomous systems, which are independent of each other 

and may be distributed across the network, but are highly inter-operable using messages, compared 
favourably to the earlier tightly coupled object-oriented monolithic systems. 

Apart from the new architectural aspect, the service-based approach provided viable alternatives in 

certain aspects related to the deployment scenarios. A job, in job-based systems, is deployed and 

once the execution is complete, the job is discarded. In scientific domains where e-Science wanted 

to contribute, frequent execution of similar analysis or queries is a common procedure, which, on a 

job-based system, would mean submission of the job with the input data if any for each experiment 

instance. Services, on the other hand, remain deployed unless explicitly removed, and can serve 

multiple requests throughout their lifetime. 

The concepts and ideas presented in this thesis gained momentum in one of the first e-Science 

pilot projects, myGrid [6], which aimed to extend the Grid framework in order to provide a virtual 
laboratory for the biologists and bio-informaticians to perform in-silico experiments. It was observed 
during the initial stages of my Grid and from contemporary developments in other streams, such as 

particle physics and astronomy, that a strong focus was growing on how to the use and analyse the 

astronomical volume of raw data that would be generated by scientific experiments in the coming 

years. Related to the volume of experimental data is the issue about the cost of moving this data 

for analysis. Such issues regarding locality of the data and the analysis code were raised in the 

Active Information Repository (AIR) proposal by Watson and Lee [7] and it became more and more 

relevant as the size of the experimental dataset in various scientific domains started growing with 

a remarkable speed. The AIR architecture proposed the collocation of analysis code with the data 

by using mobile agent technologies [8] in an attempt to reduce the overhead of transferring large 

amounts to data over the network for analysis. 
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A common experiment performed by biologists in mvGrid was accessing protein sequence data from 

existing databases and performing analysis on them using well known sequence analysis services, 

such as Blast [9]. Scientists in myGrid adopted the use of workflows such as Taverna [10] to replace 

the traditional way of doing this analysis manually. At the same time, an approach based on 
distributed query processing [11] was conceived as complimentary to such workflow-based systems, 

as it was likely that the biologists may have a requirement of accessing data from different databases 

that are distributed across the globe and perform the analysis on them. It was also noted that 

this alternative distributed query processing system could use parallel database techniques from 

earlier research [12,13] for better use of available resources by evaluating relevant sections of a 

query in parallel. Almost at the same time, there were emerging standards for accessing data from 

heterogenous databases in a homogeneous way, and the OGSA-DAI [14] project resulted in a set 

of services which allowed consumers to access data from heterogeneous sources irrespective of the 

platform, the underlying DBMS and the format in which data is stored. It was decided that the 

new distributed query processing system should reap the benefits of such services. 

Thus the challenge was to develop a distributed query processing system based on service-orientation, 

which would use the emerging data access services, such as OGSA-DAI to access data from heteroge- 

neous sources, and evaluate queries over them, with an option for including analysis services within 

the query itself. The conceived system would be exposed as a service to consumers and encapsulate 

the complexities of query compilation and execution within autonomous and inter-operating services. 

With such a system in mind, the first objective presented in the thesis is: 

to create a Distributed Query Processing framework which allows homogeneous access to 

heterogeneous data resources by using existing infrastructures (such as OGSA-DAI) and 

evaluate distributed queries by parallel evaluation of query fragments using techniques 

from parallel databases on a Web Service based query processing engine created at run- 

time. 

A service oriented distributed query processing system was thus developed, which came to be known 

as OGSA-DQP [11]. It allowed scientists such as bio-informaticians to submit queries over a set of 

distributed bio-informatics databases to find useful data, such as protein sequences and invoke anal- 

ysis services on them. OGSA-DQP compiled and optimised the query and partitioned it into several 

fragments or partitions which were then evaluated in parallel on a distributed set of computational 

nodes. A requirement for the dynamic deployment of services was realised during the development 

of OGSA-DQP. The system was tightly coupled to the resources that were available in the sense that 

the component services of DQP were required on all participating nodes. It was bound to existing 
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instances of analysis service, and there was no notion of collocation of the analysis code with the data 

as proposed in the Active Information Repository architecture [7]. Further, third-party maintained 

analysis services were likely to have availability issues due to sudden failure of hosts providing the 

service which would result in unsuccessful experiments. At the same time, code mobility was an 
integral part of the traditional job-based Grid frameworks, where jobs are queued up and scheduled 

to run once resources become available. Systems such as Condor performed matchmaking to select 

the best suited node for execution of a particular job. Although the architecture of OGSA-DQP 

allowed the use of monitoring services to discover lightly loaded resources, the tight coupling of the 

DQP services with the resources limited the scope for exploiting the dynamism within Grid systems, 

and did not consider the volatile nature of the resources. A strategy based on demand-driven deploy- 

ment would provide better performance by selecting lightly loaded resources for computation, better 

reliability by using multiple copies of the service and late allocation of services to nodes allowing 
loose coupling. The requirement of some form of demand-driven deployment within the context of 

OGSA-DQP led to the research into dynamic deployment of services. 

Investigation started regarding the possibilities of "dynamic service deployment" in a Grid environ- 

ment where services can be deployed on remote nodes on demand rather than having them pre- 

configured on the system. Within the OGSA-DQP context, this "on-demand" service deployment 

allowed the movement of query execution and(or) analysis code towards the data thereby reducing 

the amount of data traffic over the network. While exploring the possibilities of deploying services 

on demand, the interest into virtualization technologies grew. Proposals for using virtualization 

technologies such as VMWare [15] and Xen [16] for Grid frameworks were discussed by Keahey et. 

al. [17]. Live migration of virtual machines was shown to be possible by Ruth et. al. [18]. It was 

envisaged during the course of this research that the use of virtual machines would allow on-the-fly 

demand-driven deployment of not only query execution service code or data analysis code, but also 

on-the-fly replication and deployment of databases. Consider a situation, where a certain database 

belonging to a remote organisation on another network, is accessed through several queries over a 

considerably long period of time. It may be beneficial to deploy snapshots of the database on hosts 

within the local organisation -a step which will reduce the amount of data being transferred over 

the network. 

Dynamic Service Oriented Architecture, or DynaSOAr [19], was developed as a Web Service based 

framework that allowed dynamic demand-driven deployment of Web Services. It provided a logical 

separation between service provisioning and resource provisioning by creating a distinct set of entities 

with a clear division of responsibilities. DynaSOAr maintained the loose-coupling and execution 

transparency of Web Service platforms by relying on the WS-I [20] recommended model based on the 

Web Services Basic Profile [21] and advocated a message-oriented model of interaction. Support for 
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deploying virtual machines as means of deploying special environments or databases was provided in 

DynaSOAr. Investigations into possible dynamic deployment options provided the second objective 

of this thesis - 

to explore the current status of dynamic deployment and code mobility in a service- 

oriented setting, and to create a framework that will allow on-demand deployment of 

services and database snapshots packaged within virtual machine images on available 
resources. 

With the framework for dynamic deployment in place, the next task was to exploit the dynamic de- 

ployment concepts within the OGSA-DQP system. Several usage scenarios were identified featuring 

different aspects in DQP, each exploiting the features of on-demand deployment in order to gain 

some benefit. Based on the approach proposed in the Active Information Repository architecture 

and contemporary ideas about moving the computation closer to the data, a potential use case for 

dynamic deployment within DQP was the collocation of the query evaluation engine and the analysis 

service with the data. A greater degree of parallelism within the operation-call operator responsible 
for invoking analysis services within a query was another possible scenario for dynamic deployment 

which could provide potential benefit to DQP. Moving the computation closer to the data is con- 

sidered as the common approach in most data-oriented Grid systems [22]. In DQP, an alternative 

approach is explored which allows the deployment of a snapshot of the database on a local node to 

eliminate the cost involved in data movement over the network. In effect, this approach is similar 

to database replication techniques, but is more dynamic and demand-driven in nature. Traditional 

data replication techniques depend on a lengthy offline administrative process for creating the initial 

copy which is later synchronised with the master copy. In DQP, the approach taken is dependent on 

the performance of the queries that are being executed, and need not be an administrative process. 
Snapshots of the databases are packaged within virtual machines with all necessary services. These 

virtual machines are stored in the software repository and deployed when required resulting in the 

database snapshot being available within the local network. It is assumed that the queries do not 
depend on the latest data or that a background process is used to keep the snapshot synchronised 

with the original copy. Several e-Science experiments rely on databases such as the SkyServer [23] 

where regular updates are not essential for the experiments. Exploitation of possible dynamic de- 

ployment features within the context of OGSA-DQP created the third objective presented in the 

thesis - 

to investigate how to add on-demand deployment features within OGSA-DQP for the 

deployment of databases, analysis services and query processing operations. 
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1.1 Contribution 

The contribution of this thesis lies in the overall design and evaluation of a service-oriented dis- 

tributed query processing system that exploits dynamic deployment. The work builds on two key 

frameworks described in the thesis - OGSA-DQP and the dynamic service provisioning architecture, 
DynaSOAr. These were the results of collaborative research, and hence the thesis does not make 

any attempt to claim the sole credit for these two frameworks. Contribution to key aspects of both 

these frameworks are considered as major contributions in this thesis, along with the design of the 
DQP system with dynamic deployment capabilities that build on them. 

This thesis investigates various architectural aspects of a service-oriented distributed query process- 
ing framework, its design, construction, and analysis. This thesis argues that distributed query 

processing (DQP) can provide effective declarative support for service orchestration, and builds a 
framework that: 

" supports queries over a standardised "Grid Data Service" (GDS) and other analysis services 

made available over the grid thereby combining data access with data analysis; 

" allows the framework to use the facility provided by Open Grid Services Architecture (OGSA) 

to dynamically obtain resources required for efficient evaluation of a distributed query; 

" adapts techniques from parallel databases to provide implicit parallelism for complex data, 

intensive requests; 

" uses emerging standards of GDSs to provide consistent access to database metadata and to 

interact with the databases on the Grid. 

The resulting OGSA-DQP enables distributed query processing within a service-oriented setting by 

exposing itself as an extension of the popular OGSA-DAI service and creating an orchestration of 

multiple instances of the evaluation service. This evaluation service encapsulates the complexities of 
the physical algebra operators implemented following the iterator model of query evaluation and the 

routing of data tuples between the services enabling pipelined and partitioned parallelism [24,25,26]. 

The evaluation service follows the philosophy of using the Web Services Basic Profile [21] standards 

and toolkits and the proposals made by WS-GAF [27] regarding interaction between stateful services. 
Such implementation of the evaluation service also contributes towards the adoption of dynamic 

deployment features. 

The thesis also investigates into the possibilities of "dynamic service provisioning" in a Grid envi- 
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ronment where services can be deployed on available nodes on demand rather than having them 

pre-configured on the system. This research into dynamic service deployment was again collabora- 
tive in nature and was carried out by several researchers, each pursuing a different aspect within the 

broader concept. The thesis contributes towards the overall design and architecture of the dynamic 

service oriented architecture, which came to be known as DynaSOAr, and more specifically to cer- 

tain aspects within DynaSOAr, such as the use of software registries, the message oriented model 

of communication between the entities, the support for standard toolkits for service invocation and 

particularly, the use of virtualization technologies to complement the deployment of Web Services 

with the demand driven deployment of special environments and databases. The thesis also investi- 

gates the costs associated with the dynamic deployment of services and virtual machines. Dynamic 

service deployment will have an associated "deployment cost" signifying the cost incurred while ini- 

tialising the service within the container and a "routing cost" signifying the cost of downloading the 

service code to the target host. Deployment of virtual machines incur much higher costs, although, 

the thesis shows that the costs will eventually be outweighed by the performance benefits. 

In summary, the thesis investigates the design of a service-oriented distributed query processing 

system which supports dynamic service deployment. It describes several usage scenarios where on- 

demand deployment will benefit distributed query processing and evaluates the extended system to 

establish the claims. It analyses the results of various experiments performed to evaluate the system 

and suggests that the usage scenarios and proposals made during the investigation should result into 

the remodelling of the query compiler/optimizer and the development of new cost models which will 

take into account dynamic deployment. 

1.2 Structure of the Thesis 

In Chapter 2a review of contemporary work on aspects related to the thesis is presented with a 

discussion. The review takes into account the emergence of various technologies in order to tackle the 

"Grid" problem including the proposals such as OGSI [28], WS-I Basic Profile [21], WS-GAF [27] and 

WS-I+ [29] which are related to the work done during the course of research. There are discussions 

about the requirement for data access and integration standards and the emergence of OGSA- 

DAI before focusing on the requirement of distributed query processing and related works. The 

need for dynamic service deployment is explained and contemporary work in this area is reviewed. 

Contemporary work on the use of virtualization technologies are also reviewed within the context of 

dynamic service deployment. 
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Chapter 3 describes in depth the design and architecture of a service oriented distributed query 

processing system which forms the basis of the entire thesis. The different architectural issues 

are discussed along with the constituent components. The various phases in executing distributed 

queries, such as the initialisation, query compilation etc. are discussed in detail. Particular stress 
is given to the description of the query execution process and the encapsulation of the iterator 

model in the evaluation services, specially on the functioning of the exchange operator which encap- 

sulates the entire communication and distribution mechanism. A discussion is provided regarding 
the encapsulation of service state within the evaluation service using standardised Web Services 

technologies. 

The requirements for a dynamic service deployment framework and the concepts behind the evolu- 

tion of DynaSOAr are described in Chapter 4 which forms another pillar for this thesis. This chap- 

ter analyses the existing methods of job-based distributed computing such as Condor and Globus 

and proposes a service-based approach that allows on-demand deployment of services on available 

resources. The architecture makes a clear separation between service provisioning and resource pro- 

visioning, and makes use of standard service registries to enable discovery. Each of the components 

which build the DynaSOAr framework are described in the chapter leading to the vision of a software 

hypermarket. The chapter also introduces the concept of virtualization and discusses on how such 

technologies can be used in the context of dynamic deployment within the DynaSOAr framework. 

Chapter 5 discusses about the requirements for dynamic service provisioning within OGSA-DQP 

and puts forward a set of usage scenarios where on-demand deployment of analysis and evaluation 

services and database snapshots may benefit query processing by enabling the collocation of various 

entities. The chapter introduces the changes made within the DQP architecture to allow it to 

take the advantage of DynaSOAr framework by using several DynaSOAr components, such as the 

registry, the repository and the host provider. Although the thesis does not make any attempt to 

remodel the existing query compiler, it makes certain extensions to the compiler and the DQP data 

resource which allows DQP to take into consideration the dynamic deployment concepts during 

query compilation and processing activities. The chapter also proposes a performance feedback 

model for triggering the deployment of a database snapshot within the local network in certain 

scenarios, thereby proposing a "moving the data closer to the computation" paradigm as opposed 

to the commonly used "moving computation closer to the data. " 

The evaluation of the extended OGSA-DQP system which exploits the dynamic deployment features 

is performed in Chapter 6. The chapter provides a brief discussion about the implementation and 

the experimental setup. Several experiments were performed in varying circumstances and the 

results show that the distributed query processing system can benefit from the use of the dynamic 
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deployment features for the usage scenarios mentioned in the thesis. 

Chapter 7 provides a summary of the research carried out in the thesis together with a discussion 

about the benefits of adopting dynamic service deployment features within the context of distributed 

query processing using OGSA-DQP. The chapter also proposes some areas which can be explored 
further in future research. 



Chapter 

Background and Related Work 

This chapter discusses the background behind the thesis concentrating on the work relevant to 

the development of the Service Oriented Distributed Query Processing framework and the Dynamic 

Service Oriented Architecture framework. It looks into the Grid Problem, service-orientation and 

available service-oriented technologies, databases and the grid, data access mechanisms using service- 

oriented technologies, parallel database techniques and mobility within the Grid context. 

2.1 The Grid Problem 

"Grid is a type of parallel and distributed system that enables the sharing, selection, and 

aggregation of geographically distributed `autonomous' resources dynamically at runtime 

depending on their availability, capability, performance, cost, and users' quality-of-service 

requirements. " [30] 

In the mid-1990s, the concept of Grid was first laid out in front of the scientific community. It 

was explained using the famous electric power grid metaphor where similarities were drawn between 

the standard way in which electrical power is delivered to a consumer's premises such that any 
device with the requirement of electrical power can be plugged into a distribution socket and the 

requirement of a similar computing infrastructure needing standard interfaces that will be capable of 

providing access to computational resources distributed over the network. In [31] this is explained 

as "the current status of computation is analogous in some respects to that of electricity around 
1910. At that time, electric power generation was possible, and new devices were being devised that 
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depended on electric power, but the need for each user to build and operate a new generator hindered 

use. The truly revolutionary development was not, in fact, electricity, but the electric power grid 

and the associated transmission and distribution technologies. " The essence of this metaphor is 

that the consumer uses electricity by simply plugging the device into a compatible socket with a 

completely agnostic view about the place where it was produced or how it was delivered - in a similar 

way, consumers who wish to utilise remote computational and storage resources that are distributed 

over the network should remain agnostic about the physical location of those resources, or how the 

actual request is processed, and this should be enabled by a set of standard interfaces similar to the 

concept of a standard electrical power socket. 

Within the decade, this concept gave rise to a new and important field of computing, which although 

considered to be within the field of distributed computing, is distinguished from the conventional 

methods due to its focus on collaborative resource sharing. It might be suitable to define the "Grid 

problem" as flexible, secure, coordinated resource sharing among dynamic collections of individuals, 

institutions, and organisations which are referred to as virtual organisations [32]. The challenges 

offered by such a setting are related to issues such as authentication, authorisation, resource access, 

resource discovery, etc. Grid technologies are suitable for addressing such challenges. In (31], Foster 

and Kesselman defined the computational Grid as follows: 

"A computational grid is a hardware and software infrastructure that provides dependable, 

consistent, pervasive and inexpensive access to high-end computational capabilities. " 

The concept of the Grid became well-known, and there were an increasing number of scientific 

research projects where large scale data sets were offered as resources for sharing with the community. 

The high energy physics experiments at European Organisation for Particle Physics (CERN) can 

be cited as an example which started producing an astronomical magnitude of data (to the order of 

petabytes, i. e. 1015 bytes). It became evident that the researchers in such scientific communities from 

across the world will need to access data from these databases that are geographically distributed and 

analyse them on computational resources that are spread across the world as well [33]. Chervenak 

and Foster et. al recognised this need and proposed an architecture for the "Data Grid" in [34] 

which had storage systems, data access and metadata services at its core. 

This requirement for a "data grid" demanded the existence of an efficient, robust, and distributed 

middleware, as the backbone of the system. This middleware should allow seamless access to all 

the entities distributed throughout the network, implemented on different platforms and in different 

languages. This middleware should offer an efficient resource management and scheduling mechanism 

to deal with the shared usage of the resources. The implementation of such a grid middleware faces 
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several challenges. In short, the principal requirements to be met by this grid infrastructure are: 

" Information services: Information about the resources available on the Grid should be acces- 

sible through information services. This information should be automatically maintained and 

continuously updated over time. 

. Resource Brokering: Grid users should submit their requests to a resource broker specifying 

their high level requirements. The resource broker should be able to find and allocate suitable 

resources by querying the information services. This leads to a dynamic environment where 

resources can be acquired on demand and released after use. 

" Uniform access to resources: All the resources of the same kind (computational entities, storage 

elements, etc. ) should be accessed in a uniform way, irrespective of the underlying standards 

and technologies. This should be done through software modules installed on each single 

system that hide heterogeneity and provide uniform access interfaces. 

" Security: Grid technologies should be able to provide security mechanisms that enable sys- 

tem administrators to enforce access rules for all the resources made available on the Grid. 

The use of X. 509 certificates and proxy delegation allow systems to verify the identity of the 

user without exposing their credentials on the Internet. The use of encryption ensures that 

confidentiality is preserved. 

9 Job scheduling: Jobs submitted by the users should be effectively scheduled on available re- 

sources based on well-defined policies. 

9 Data Access: Grid users should be able to access distributed data in a uniform fashion from 

databases spread all over the world irrespective of the underlying database technology and 

environment. 

2.2 Service Orientation and The Grid 

Traditionally, "grid systems" have been synonymous with "distributed job scheduling systems", 

where systems responsible for the management of the resources were based on the job abstraction. 

Grid infrastructures supported by Condor [35], GRAM [36], ICENI [37] all are examples of such 

job-based systems. Almost at the same time, the concept of service orientation was embraced by 

the e-business community to overcome the challenges offered by internet-scale distributed business 

applications. With the advent of service oriented technologies, a contemporary view of the Grid 



CHAPTER 2. Background and Related Work 13 

based on service orientation started to evolve -a Grid framework which is based on existing service 

oriented technologies. 

Conceptually, the "Grid Problem" can be considered as a perfect playground for the concepts of 
Service Orientation. The dependencies between various components of a software system can be 

minimised resulting in a loosely-coupled architecture which is the main essence of a service oriented 

architecture. A service can be defined as a unit of work done by a service provider to achieve desired 

end results for a service consumer. Both provider and consumer are roles played by software agents 

on behalf of their owners. In the context of virtual organisations, these loosely coupled software 

components are some of the basic building blocks. 

The concept of a service perhaps existed in the real world as long as time can go back. Almost every 
interaction in a consumer market may be treated as buying or selling a service, such as making a 
travel reservation through a travel agent. But it is a relatively new and still evolving concept in the 

world of information technology. The idea of service-orientation complements object-orientation and 

applies the lessons learnt from component software, message-oriented middleware, and distributed 

object computing. The primary difference between service-orientation and object-orientation is how 

the term "application" is defined by these two architectural models. In object-oriented development, 

applications are built from interdependent class libraries, where objects are tightly coupled to each 

other. In a service-oriented framework, applications are built from individual autonomous services. 

"A service is simply a program that one interacts with via message exchanges. A set 

of deployed services is a system. Individual services are built to last the availability and 

stability of a given service is critical. The aggregate system of services is built to allow 

for change the system must adapt to the presence of new services that appear a long 

time after the original services and clients have been deployed, and these must not break 

functionality. " - Don Box on Indigo [38] 

Service-orientation is based on the following fundamental theories [38]: 

" Explicit Boundaries: A complex service-oriented system may often be composed of several 

atomic services that may actually be spread over large geographical distances, can belong to 

multiple organisations which may or may not have the similar level of trust amongst themselves, 

and can also have different execution environments. Crossing these various boundaries may 

potentially be costly in terms of complexity and performance. Thus, service-oriented systems 

rely on explicit message passing between cross-border entities rather than implicit method 
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invocation. The details of a method call is hidden behind the implementation of the service 

and is not visible outside the service boundary. 

" Service Autonomy: Each service in a service-oriented system can be autonomous. There is no 

single entity which assumes control over all parts of a running system. Departing from the 

standard process of object-oriented system where an application is deployed in totality, the 

component services in a service-oriented system may be atomically deployed; and in practice, 

the atomic services may even be deployed much before they are consumed by a composite 

service-oriented system. 

" Sharing of contract and schema: Unlike object-oriented systems, which always interact between 

themselves in terms of classes or objects, composite services in a service-oriented system should 

almost always communicate by messages. These components do not share the classes or objects 
between themselves. They interact based on the schema (for structures) and a contract (for 

behaviour). The Web Service Description Language (WSDL) document describing a Web 

Service is an example of such a contract/schema exposed by the service for others to interact 

with it. This "almost legal" contract is machine-readable and verifiable, and hence allows each 

incoming request to be verified at the receiving end. The machine-readability allows different 

types of environments to host the service. 

" Semantic compatibility based on policy: Structural and semantic compatibility in service- 

oriented systems are two orthogonal issues as opposed to object-oriented systems. The struc- 

tural compatibility is validated (and enforced) by the schema and contract; whereas the se- 

mantic compatibility is based of the set of policies defined by the service. Each service should 

publish its capabilities and requirements in machine-readable policy statements which express 

the conditions and assertions that must hold true for normal operation of the service. 

The concept of service-orientation is illustrated in Figure 2.1. 

With the advent of Service Orientation, several different technologies started evolving. All of these 

were intended to achieve the common goal - architecting complex systems using autonomous, inter- 

operable, loosely-coupled distributed services. The architecture involving the services came to be 

known as the Service Oriented Architecture or SOA. It departs from the traditional distributed 

systems like CORBA, RMI etc in the sense that the architecture comprises of services that are 

loosely coupled and highly inter-operable. They interact by sending and receiving messages on the 

basis of a shared formalised contract which is independent of the platform and the development 

environment on which the service is built, for example, the operating system, programming language, 

web application server etc. It became possible to create complex services by combining more than 
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Figure 2.1: Component roles in Service interaction 

one autonomous services, where high-level languages such as BPEL [39] are used for orchestrating 

the independent services. 

The standardisation body OASIS [40] gives the following definitions for SOA: 

A service oriented architecture is a paradigm for organizing and utilizing distributed 

capabilities that may be under the control of different ownership domains. It provides 

a uniform means to offer, discover, interact with and use capabilities to produce 
desired effects consistent with measurable preconditions and expectations. 

The idea of Grid converged with the developments in service oriented architectures and gave birth 

to the service-oriented view of the Grid middleware in form of the Open Grid Services Architecture 

(OGSA) [41] which attempted to address the issues involving collaborative resource sharing amongst 

virtual organisations [32]. A prototype design, known as the Open Grid Services Infrastructure 

(OGSI) [28] was produced which was built on top of the original job-based Globus [4] and other 

systems, but also incorporated the evolving service oriented technologies. OGSI introduced Grid 

Services as the building block of this grid middleware which were built upon and extended the 

service oriented technologies proposed for Web Services. Grid Services were Web Services with a set 

of well-defined interfaces which addressed issues such as service discovery, dynamic service creation, 

service lifecycle management and notification. The argument produced in favour of this extension 

to web services was that the web services did not support dynamic creation and were stateless 
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from the viewpoint of the consumer. OGSI introduced the concept of identifying each service by a 

globally unique identifier which was known as the grid service handle or GSI!, which required to be 

resolved into a grid service reference (GSR) containing all the binding information, such as SMTP, 

SOAP etc., for binding to a particular instance of a service. Thus, it can be said that the GSRs 

were pointers to each service instance, which seemed to be closer to an object oriented approach, 

promoting a tight-coupling between the consumer and a service instance and in the process exposing 

the underlying resource via the GSR, which violated one of the principal doctrines behind service 

orientation. 

OGSI was criticised for its complexity and its adherence to the object oriented model including 

dynamic service instantiation. Further, in order to implement the dynamic service instantiation 

feature and keeping the state within a service instance, OGSI was deviating from the emerging Web 

Service standards by customising existing libraries and toolkits, thereby creating a certain degree of 

incompatibility between the systems which defeated the very idea behind the emergence of service 

orientation. It was argued by contemporary researchers that the requirements of a Grid service 

can be successfully implemented by existing Web Service standards, technologies and toolkits. One 

such proposal put forward as an alternative approach to OGSI was the Web Services - Grid 

Application Framework (WS-GAF) [27] which challenged the concept of using references in 

the form of GSHs and GSRs to identify service instances, and encapsulating service state in an 

object-oriented fashion. WS-GAF proposed a framework which was built upon existing Web Service 

standards and toolkits, and advocated loose-coupling between the service and the resource. It also 

proposed that the service state, if any, is internal to the service, and an interaction state could be 

associated to each message exchange to correlate the messages with its execution state. WS-GAF 

ruled out the requirement for binding the consumer with a particular instance of a Web Service 

and proposed that the only interaction from the consumer point of view with a Web Service should 

happen by sending a message to the network address (endpoint) exposed by the Web Service and 

any binding, if at all required, should happen behind the interface to which the consumer should 

remain agnostic. 

As a result of several such criticisms, OGSI was refactored [42] into a set of proposals, collectively 

known as the WS-Resource Framework (WS-RF) [43,44]. According to Foster et. al. in [45], in the 

WS-Resource approach, the goal is to "model state as stateful resources and codify the relationship 

between Web services and stateful resources in terms of the implied resource pattern, a set of 

conventions on Web services technologies, particularly XML, WSDL, and WS-Addressing [46]. " In 

this approach, a stateful resource can (i) have a specific set of state data which can be expressed 

in an XML document, (ii) have a well-defined lifecycle and (iii) may have a one-to-many mapping 

with Web Services. WS-Resource is a collective description of a stateful resource and a Web Service 
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together. There are provisions for accessing the resource properties and managing the resource 
lifetime via the Web Service interface. 

The WS-Addressing [46] specification was proposed to standardise the way of describing the network 

endpoint by the endpoint reference construct. It allows the endpoint reference to contain apart from 

the endpoint address of the Web Service, additional information such as metadata associated with 

the Web Service and reference properties which may be used to qualify the Web Service address. 
Such an endpoint reference is used to identify a WS-Resource and send an invocation to it. WS- 

Resource Framework uses a WS-Resource Factory Pattern which is stateful in nature to instantiate 

the correct resource for the consumer, and associates this new instance with an endpoint reference 

which is returned to the consumer for further conversations. As a resource can be associated with 

one or more Web Services, it is capable of processing multiple simultaneous messages. 

Although the WS-Resource Framework invited similar type of criticisms because of its complexity 

and resemblance with the earlier OGSI model in terms of instantiation of resources, exposing a 

resource with an identifier and the handling of state, it was nevertheless accepted as a Web Service 

standard by OASIS in April, 2006. At the same time, there was another set of specifications for- 

warded by large industrial corporations such as IBM, Hewlett Packard, Intel and Microsoft [47] which 

combined and built upon WS-Eventing [48], WS-MetadataExchange [49], WS-ResourceTransfer [50] 

etc. It was thought that WS-ResourceFramework may be superceded by this new set of specifi- 

cations. The alternative approach was the use of the WS-I standards and procedures. The Web 

Service Interoperability Organization (WS-I) [20] released the WS-I Basic Profile [21] specifications 

and based on the proposal of building Grid applications with Web Service standards in order to 

support the e-Science projects in the UK, the Open Middleware Infrastructure Institute started to 

build on WS-I to create WS-I+ [29]. 

2.3 Databases and The Grid 

Research into Distributed Database technology started more than three decades ago with a main 

focus of Distributed Data Management for organisations who had several sites for organisational 

data. But due to instability in communication technologies, and lack of strong demand, the initial 

systems did not have much success [51]. The situation has dramatically changed today, and the 

advances in technology has made Distributed Query Processing feasible and growth in storable and 

analysable data has made it a necessity. As was discussed earlier in Section 2.1, the Grid problem 

opens up a plethora of situations where databases will be spread all over The Grid. Applications 
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will need access to this distributed data from remote locations, and will need to analyse them. The 

storage service provided by Amazon (Amazon S3 Storage [52]) is an example of the view of the 

scientific community and service providers about distributed storage systems over the Internet. The 

need for data access and integration over an internet-scale grid raises some interesting issues [53]. 

To address the requirements for databases over the grid, the basic issues evolve around: 

" Different types of database: Different vendors provide different types of database access which 

are specific to the database provider. Even accessing these databases over JDBC (Java 

Database Connectivity) would require a different set of JDBC plug-ins for different databases. 

Further, there can be semi-structural databases, such as XML; unstructured databases, such 

as files; All these would have different means of access. 

" Data Integration: The applications accessing the data from different types of database may 

require integration of data, for example, some data from a relational database may need to be 

integrated with some data from an XML database for a complete result. This requires some 

mechanisms to integrate different types of data. 

. Data Transport: Some applications may request for huge chunks of data and then perform some 

computation on this dataset to retrieve a smaller result. In such cases, it might be beneficial 

to do the computation at source, i. e. at the site of the database, rather than transporting the 

large chunk of data over the wire. 

" Resource Acquisition: The grid environment allows dynamic acquisition of computational re- 

sources. This can be an important feature in Distributed Query Processing over the Grid 

where availability of resources can govern the scheduling of the query execution plan. 

All these make Distributed Query Processing a challenging issue within the "Grid Problem". Ini- 

tially, the support for databases within the Grid middleware was limited. During early 2000s, 

Globus [4] and the Storage Request Broker (SRB) [54] were considered as most important amongst 

the emerging Grid infrastructures. Globus primarily focussed on file-based data [31], with a view 

to access data using GridFTP [55], a high performance file transfer tool, which was designed with 

the support for security using the Grid Security Infrastructure(GSI). The Storage Request Broker 

(SRB) concentrated on file-based data too, with some additional features such as catalogues and 

metadata server (MCAT), logical naming convention for datasets, support for GSI etc. SRB was also 

capable of supporting BLOBs (Binary large Objects) in a traditional DBMS. But neither of the two 

available middlewares had complete support for standard database features which underlined the 

requirement of a new breed of middleware services that could provide seamless access to distributed 
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data sources irrespective of the database structure, format, vendor and platform. 

2.3.1 Data Access and Integration Services 

The Grid needed the support for databases at the middleware level in order to be able to allow 

users access data from Grid databases. Many research projects, such as the high energy physics 

experiments at European Organization for Particle Physics (CERN) [56] or the SLOAN Digital Sky 

Survey [23] were inherently data-centric. New research fields such as Bio-Informatics and Neuro- 

Informatics were heavily dependent on data stored in various different formats within data storages 

of different types. The following table in Figure 2.2 [57] shows the amount of data that are being or 

will be generated by recent experiments and real life scenarios. 

Computational Fluid Dynamics tur 
BaBar particle physics experiment 
CERN Large Hedron Collider 
VLBA radio telescope 
NCBI/EMBL database 
Brain Imaging 

generat 

1TB/day 
1GB/second or 10PB/year 
1GB/second 
0.5TB, doubles each year 
4TB/brain (full colour, 10mm resolution) 
100TB/movie 

Figure 2.2: The potential data explosion 

The complexity of the problem was two fold - firstly, there was a need for reconciling implementa- 

tion difference between various database server products from different vendors, such as Microsoft, 

IBM, Oracle into a single database paradigm, and secondly, there was the need for reconciling the 

differences between several different database paradigms, such as object, relational and XML. No 

out-of-the-box database products had features that would allow it to be integrated with the Grid 

directly. Further, each database product was the result of a huge amount of effort over the years, 

and consisted of several important features like security, scalability, performance etc. - and it would 
have been extremely costly in terms of effort to develop a Grid-enabled database from the scratch. 
Thus, the requirement for a data access and integration support for accessing databases distributed 

over the grid grew and the required functionalities became obvious. These can be listed as follows: 

" Type Independence - The data access mechanism must support querying over different type of 
data resources, such as relational, XML, files which are exposed over the Grid. 

" Uniform Approach - It must provide a uniform way of querying, updating, transforming and 
delivering data in a consistent way independent of the underlying resource. 

" Access to rnetadata - It must allow access to the metadata about the data and the resources 
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where the data is stored. 

Almost at the same time the concept of service orientation was being applied to the already available 

grid middlewares, such as Globus, giving birth to the OGSA approach. Proposals for a standardised 

approach to data access from Grid-enabled databases were created by the Database Access and 
Integration Services (DAIS) [58] consortium which is a working group of the Open Grid Forum 

(OGF) [59]. This gave rise to a set of standard Web Services for accessing data from distributed 

databases in a uniform way, independent of the structure of the data and type of the storage, known 

as OGSA-DAI [14]. This is described in the following section. 

2.3.1.1 OGSA-DAI 

The growing requirement for a middleware level support for accessing various types of data storage 
in a manner that will be agnostic about the storage type, format, vendor and platform along with 
the rise in Web Service standards and toolkits coupled with the development of OGSA were the vital 

push for the development of OGSA-DAI. Initially built on top of OGSI, OGSA-DAI is a data access 

component for the Grid middleware which allows access to distributed data sources irrespective of 

their location, platform, format and type. In [60] OGSA-DAI has been described as complimentary 

to other approaches adopted by database vendors which generally support invocation of Web Services 

from SQL queries, or creation of Web Services from stored procedures, as discussed in [61]. OGSA- 

DAI allows the organisations exposing the data to the Grid to reuse code in an efficient way, and 

the consumer accessing data exposed in such manner to implement their client application in a 

manner which is mostly independent of the specifics of the database, such as the database driver 

technology, data formatting and delivery techniques. The aim of OGSA-DAI is to enable seamless 

access to disparate, heterogeneous data sources which are factored out as services which build on and 
integrate with the OGSA technologies for features like data transport and security. Other higher 

level services such as distributed querying or federation offering more functionality are able to use 
OGSA-DAI. The basic components of the OGSA-DAI framework are shown in Figure 2.3. 

OGSA-DAI provides several architectural features, such as standardised interface, metadata, security 

etc., which are considered essential for a Grid infrastructure. These features are outlined below. 

" Standard Interfaces - One of the major benefits of OGSA-DAI is that it provides a uniform in- 

terface over different types of databases irrespective of the underlying technology. The database 

connectivity issues are hidden behind this consistent interface which allows the consumers to 

access data from a relational or an XML database in the same way regardless of the specific 
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" Access to metadata - OGSA-DAI provides metadata about the D13NIS system that, is exposed 

to the Grid as well as their capabilities through the service interfaces. Metadata about in- 

herent capabilities of the services themselves, such as different delivery options or available 

transformation mechanisms which can be applied over the data, can also be accessed. Some 

higher level services, such as a Distributed Query Processing Service may require access to the 

database schema for relational database systems, which can be extracted from the OGSA-DAI 

service interfaces. Further, OGSA-UAI provides an extensible metadata framework which can 

be extended to satisfy the requirements of the applications that use OGSA-DAI. 

" Sessions - OGSA-DAI has a notion of session which allows the framework to relate queries 

submitted by a consumer to a particular transactional context. DBMSs supporting concurrent 

accesses from multiple consumers provide an interface through which a new session is created 

every time a client establishes a connection to the database. This allows multiple concurrent 

transactions to be executed on the same DBMS. OGSA-DAI exposes this mechanism through 

its service interface. 

" Security - Security is an important aspect in Grid systems, but various security models are 

still in the process of development. The current approach taken in OGSA-DAI is based on the 

X. 509 certificates with a view that the universally agreed method will be adopted when there 

is a consensus within the Grid community. 

" Collective requests - OGSA-DAI allows the consumers to specify multiple related activities 

within a single request document which is sent to the service. The activities may include an 

update to the database, followed by a query and the delivery of the results to a third-party 

with some transformation. The granularity of the interactions is thus increased, reducing the 

number of messages to be exchanged between the parties to achieve the same result otherwise. 
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" Delivery options - The synchronous model of a traditional client-server database interaction, 

such as a JDBC connection, may not be sufficient for the extreme performance (as shown in 

the table in Figure 2.2) and capacity requirements of some Grid applications. Other delivery 

options, such as using FTP to transfer the results to another file system, or to store the results 

of a query at the location of the service itself until it is requested for, are potentially useful for 

data intensive applications. 

The Grid Data Service (GDS) from OGSA-DAI provides a document-oriented interface for submit- 

ting requests to a database with the option of including multiple related database activities within a 

single request document. The perform operation provided by a GDS carries out all database access 

and updates based on the request document passed as an input to it. The request document in 

OGSA-DAI can include a collection of related activities where each activity represents an opera- 

tion on the service, for example, an updation of a database table, followed by a query and then 

transformation of the results based on some XSLT stylesheet and finally delivery to a remote file 

system via FTP. At its core, the GDS has an enactment engine which supports various activities 

such as querying, updates, delivery, transformation etc. OGSA-DAI also allows users to develop new 

activities and incorporate them into the basic OGSA-DAI framework allowing it to be extended. It 

is mentioned in [60] that the GDS activity model is not viewed as a complete Workflow Enactment 

Engine but is designed to support "limited expressiveness" for common data access and transfor- 

mation tasks. Listing 2.1 shows an example of a perform document as submitted to the OGSA-DAI 

framework. 

The emergence of OGSA-DAI as a standard interface to databases on the Grid prompted various re- 

search projects to adopt this framework as a tool to access databases in a uniform way irrespective of 

the database structural and functional differences. This gave rise to the requirement of a Distributed 

Query Processing system which would be able to process distributed queries across databases that 

are exposed as OGSA-DAI services. 

2.3.2 Distributed Query Processing, The Grid and SOA 

The argument in favour of a Distributed Query Processing system over the Grid was put forward 

by Smith et. al. in [62]. Before OGSA-DAI, most work on data storage, access and transfer 

within a Grid setting primarily focussed on files, which is one of the central requirements for many 

applications [33]. But, as outlined in Section 2.3 and [53], facilities for the management of the 

Grid metadata and support for storage and analysis of application data are provided by database 

management systems, and these are considered to be important for a range of Grid applications 
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Listing 2.1 An example perform document submitted to the OGSA-DAI framework 
<perform xmins-"http: //ogsadai. org. uk/namespaces/2005/10/types"> 

<documentation> 
This example demonstrates how to parameterise an SQL query statement using a deliverFrom 
activity. A deliverFromGDT activity is used, but any other deliverFrom activity could be 
used in the same way. The values from the delivery are inserted into the query, the query 
performed and the results delivered in the response document. 
</documentation 

deseribina the delivery activity 

<dallvorFromGDT aama. "paramat, rs"> 
<fromGDT straamId-"som. OutputStraam" mode-"block"> 
http: //path/URL 
</lromGDT> 
<toLocal name-"paramet. rsOutput"/> 

</dslivarFromGDT> 

describing the parameterized SQL query activity 

<sglqueryStatement name-"statement"> 
<sglParameter position-"i" from-"parametersOutput"/> 
<sglParameter position-"2" from-"parametersautput"/> 
<expression> 
select * from littleblackbook vhers id &gt; T and id kit; - 4 
</expression 
<resultStream name-"statementOutputRS"/> 

</sglpueryStatement> 

describing the transformation activity 

<sglResultsToXML name-"statementRSTo7GIL"> 
<resultSet from-"statementOutputRS"/> 
<vebRovSet name-"statementOutput"/> 

</sglResultsToXML> 

</perform> 

in streams such as Bio-informatics. Further, it is inevitable that such a distributed environment 

will be composed of multiple data sources which are related, and applications will be accessing 
data from several such data sources and performing analysis over them. In bio-informatics, for 

example, different types of data, such as gene and protein sequences, gene ontologies are stored 
in different specialist data repositories, and often these repositories need to be inter-related for 

common analytical work. Smith et. al. in [62] discussed the role that can be played by DQP in 

a Grid environment and proposed a prototype DQP framework, Polar*, running over the Globus 

toolkit. Polar* was based on earlier work on parallel databases, Polar, an ODMG-compliant parallel 

object database server [12,63], although the requirements of a Grid environment introduced several 
key changes in Polar*. The key aspects of Polar* can be summarised as follows: 

9 It provided integrated access to multiple data sources thus satisfying an important requirement 

of Grid applications. 

" By allowing operation calls within the data access and combination operations, it provided a 

mechanism for integrating data and computational resources. 

9 It provided a generic, declarative, high-level language interface for the Grid data resources. 
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" It inherited technologies from parallel databases, and thus provided implicit parallelism within 
DQP in a Grid setting. 

The prototype proposed in Polar* was based on the Globus Toolkit (version 2), which was prior to 

the advent of service orientation. In Polar*, the grid middleware was accessed using a Grid-enabled 

version of MPI [64], and further, the absence of the service orientation context led to a relatively 
less seamless access to data and compute resources distributed over the Grid. The growth of service- 

orientation and the wide adoption of this paradigm in the e-Science community coupled with the 

availability of generic interfaces for data access from disparate data sources (OGSA-DAI) led to the 

research into a service-oriented distributed query processing system, which forms the base of this 

thesis and is discussed in depth in Chapter 3. The mvGrid project [6], one of the first e-Science pilot 

projects in the UK, concentrated on bio-informatics research, with a requirement for analysis of bio- 

informatics data spread over disparate data sources. Research into a service-oriented DQP system 

started as a collaboration between mvGrid and OGSA-DAI, and the result was the first public release 

of OGSA-DQP [11] in September 2003 which enabled Distributed Query Processing over databases 

spread over the "Grid". It provided effective declarative support for service orchestration, and was 
built on the framework that: 

" supported queries over standardised "Grid Data Service" (GDS) and other analysis services 

made available over the grid thereby combining data access with data analysis; 

9 used the facility provided by Open Grid Services Architecture (OGSA) to dynamically obtain 

resources required for efficient evaluation of a distributed query; 

" adapted techniques from parallel databases to provide implicit parallelism for complex data- 

intensive requests; 

" used emerging standards of GDSs to provide consistent access to database metadata and to 

interact with the databases on the Grid. 

This framework was built on the concept of Service Orientation where the query processing proce- 

dures were architected as services available over the Grid infrastructure. Within this framework, 

several "grid-enabled" databases were accessed using standardised Data Access Services and well- 

understood query processing procedures made available as services were applied on the data collected 

from distributed data sources, as shown in Figure 2.4. Effectively, DQP was service-based in two 

orthogonal senses: firstly, it supported querying over data storage and analysis resources that were 

made available as services and, secondly, its internal components related to the construction of a dis- 

tributed query plan and their execution on nodes available on the Grid were architected as services. 
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As a result, the framework provided a declarative approach to service orchestration over the Grid 

and also demonstrated that query processing can benefit from the dynamic access to computational 

and data resources on the Grid. Apart from incorporating the concept of Service Oricnla. tion, this 

framework also adapted the techniques from parallel databases in order to parallelise the execution 

of the distributed query on several computational nodes available on the Grid, and as a result,, it, es- 

tablished significant improvements in the performance of queries containing complex data-intensive 

operations. 
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Figure 2.4: Basic Architecture of OGSA-DQP 

The popularity of the Web Services led to the development of commercial products that allow 

integration of Web Services and data management systems [61]. However, the classical wrapper- 

maediator approach proposed in OGSA-DQP where the DQP system acts as a mediator over data 

sources wrapped by OGSA-DAI is unique in the service-oriented Grid context. One previous pro- 

posal, namely Sky Query [65], applies the wrapper-mediator approach in a service-based setting, but, 

it differs from OGSA-DQP in a number of key areas, such as, (i) the data sources are the only 

services that can contribute in the query evaluation process thus disregarding the option of dy- 

namically allocating the evaluators, (ii) the execution plan in SkyQuery does not incorporate any 

pipelined parallelism which is provided by DQP by encapsulating the classic iterator model [66] and 

(iii) the query language supported by SkyQuery is a specialised language adopted for astronomical 

queries. SkyQuery, however, is considered as one of the important early proposals which established 

the useability of Web Services for supporting distributed queries. Requirements for data-intensive 

scientific applications motivated other projects such as GRIDDB-Lite [67] which may be mentioned 

in relation to the work done in OGSA-DQP. GRIDDB-Lite is based on DataCutter [68] in which 

the users could express the data retrieval tasks as SQL-like queries, although the evaluation proce- 

dure was not based on database techniques. It benefited from the declarative manner of expressing 

complex tasks, but the internal execution mechanism did not exploit the full potential of a DQP 
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framework. 

2.3.3 Requirements for Dynamism 

The publicly available version of OGSA-DQP is however not free from issues which are important in 

the Grid setting, especially in case of data-intensive applications such as the ones presented in the 

table shown in Figure 2.2. In OGSA-DQP, a consumer can submit queries which may access data 

sources that are geographically distributed. For long-running queries which retrieve large amounts 

of data from the network, a relatively high transmission cost may be incurred as the data has to 

travel over the network to the nodes where the evaluations and analyses take place. An approach to 

minimise this cost of transporting the data is to deploy the analysis services closer to the data, which 
has been proposed by the Active Information Repository architecture [7]. Even though OGSA-DQP 

is able to dynamically discover the evaluators and schedule query evaluation on them, it requires the 

query evaluation service to be pre-deployed on the participating nodes, either on the nodes hosting 

the data source, or the computational nodes, or both. A demand-driven deployment feature, which 

would allow the DQP system to dynamically deploy the evaluators on available nodes will greatly 

enhance the options for selecting the best possible nodes to evaluate a query. In this case, the 

evaluation services are not tightly coupled to the participating nodes, rather, the service can be 

deployed at run-time on the nodes which are deemed best suited for evaluating a query, based on 

their characteristics. Further, it is a common practice in various research streams, such as bio- 

informatics, to use third party analysis services to analyse the data retrieve from a data source. 

These services may be hosted on a remote node, which may again incur a heavy transport cost to 

move the data to the analysis service -a problem which may be resolved if there are means to deploy 

the analysis service closer to the data. The third party analysis services may be unavailable at the 

time the query is submitted, resulting in a failure of the query, which can be avoided by deploying a 

copy of the service locally, again underlining the requirement for a dynamic deployment mechanism. 

These issues highlighted the requirement for a flexible and fluid architecture where the available 

computation and data nodes are "prepared" for query evaluation process as and when required. The 

Active Information Repository proposed a solution to avoid the network overhead incurred while 

moving the data between the nodes. Development of a "Dynamic Service Oriented Framework" 

which would allow demand-driven deployment of services thus emerged as a necessity. 
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2.4 Towards a Dynamic Service-Oriented Architecture 

OGSA-DQP was one of the many scenarios where a dynamic deployment framework could provide 

substantial benefits. In general, all Grid applications which are data intensive in nature, and where 
large amounts of data are normally retrieved from a remote data resource to the consumer site for 

analysis are potential benefactors of the dynamic deployment, which in reality refers to demand- 

driven installation of the analysis code at run-time in such a way that the host computational node 

need not be restarted. This is in contrast with the code on demand paradigm, an example of which 
is a Java applet, where the execution code is downloaded to the consumer's computer at runtime. In 

essence, the dynamic deployment referred here is equivalent to remote evaluation available in mobile 

agent frameworks or job scheduling systems, where the execution code from a consumer is sent to a 

remote resource for execution. The dynamic deployment methodology adopted in the work discussed 

in this thesis is otherwise given the name hot deployment in many contemporary literature[69]. In 

this thesis, DynaSOAr or Dynamic Service Oriented Architecture [19] is proposed as a framework 

for deploying Web Services on demand over computational resources available over a Grid or the 

Internet within the context of Distributed Query Processing by OGSA-DQP. A consumer request for 

a service is processed by a host most suited for the requirements specified by the consumer. If there 

are no existing deployments, an automatic deployment of the service will be triggered within the 

framework in a way that is transparent to the consumer. In essence, this is analogous to remote job 

scheduling, with an offer for improved efficiency in the long run as the cost of moving and deploying 

the service can be shared across the processing of many messages over the time. In this section, the 

contemporary works in the related area are discussed and assessed against DynaSOAr. 

For a certain time, mobile agents [8] were considered as one of the primary approaches to enable the 

dynamism in a Grid environment. But as the Grid community started to move closer to a service- 

oriented approach, the interest in agent-based systems for the Grid setting diminished as there 

were concerns regarding the security aspects of such a system[70]. However, some works using the 

mobile agent technology are noteworthy in this respect. One of them is JASE, a Java-based agent- 

oriented and service-oriented environment [71]. JASE utilises service abstraction and the remote 

programming paradigm offered by mobile agent systems. Services, in JASE, are modelled as agents. 
A Service Interface Agent is used to encapsulate a local resource, and is composed of two parts - 
service agent and service interface. The other agents in the system communicates with a service 

agent through the encapsulating service interface. The access to the resources on the hosting server 
is restricted to this service interface agent. The JASE server, which provides the agent environment, 

and with which the service interface agents register to allow searching, is the core component in the 

JASE architecture and is responsible for managing the security, mobility, persistence of the agents. 
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This server is started as an individual process on each of the participating nodes. There are two 

ways of communication between agents - (i) a Java-based asynchronous messaging system [72], and 
(ii) communication with the help of shared objects such as a tuple space [73]. But the service hosting 

environment in JASE is essentially static. Mobile agents are used to locate the services within the 

network, and then moved to the node where the service is hosted. DynaSOAr on the other hand, 

allows a demand-driven deployment of the services themselves on available nodes thereby allowing 

performance enhancements (such as in the case of moving a data access service closer to the data) 

and load-balancing for the services provided by the system. 

Another approach is proposed by Liu and Lewis in [74] where an attempt is made to enable the 

web service containers to accept new mobile code on the fly, so that the new execution code is 

incorporated into the container dynamically, allowing it to execute within the same address space 

as the server itself. Liu and Lewis claim three distinct advantages: (i) moving the code to data, 

where a mobile code component which accesses a remote data source, can be moved to the server 

where the data is stored, (ii) callbacks, where the consumers can send mobile code which accepts 

notification messages from the new container allowing service developers to develop more fine-grained 

notifications by using filters within the mobile code, and (iii) dynamic deployment of new components 
in a web service. The proposal introduces new languages, such as C-- for the consumers to write 

client-side codes, which can then be converted into an XML-based mobile code language, X#. 

It is claimed that this approach will remove any platform dependence as within a "mobile code 

enabled container", the X# mobile code will be translated into the native language supported by the 

container. Clearly, the approach is different from what DynaSOAr wants to achieve by dynamically 

deploying web services with a logical separation between service provider and resource provider. 
Fluther, DynaSOAr is completely based on existing standards and toolkits for service orientation, 

and does not require additional languages to be defined. 

WSPeer [75] and F1exiNET [76] are two other proposals for hosting and invoking Web Services in 

a dynamic way. Unlike other Web Service frameworks, WSPeer [75] is not built around the con- 

tainer model, and its goal was to merge the strengths of Web Services, in particular that of the 

XML technologies, such as WSDL and SOAP, with the strengths of Peer-to-Peer systems, which 

allow decentralised resource sharing and discovery mechanisms. The WSPeer architecture allows 

applications to expose themselves or part of themselves as Web Services by acting as an interface to 

remote service providers and consumers, and this is referred to as dynamic deployment. During a 

service deployment, a Java class which is a front-end to a process, is passed to the ServiceDeployer 

component of the server interface which deploys this class as a service using Apache Axis [77] and 

establishes an endpoint through which any interaction with the service will take place. A second 
deployment method, called delegated deployment is also available, where a delegate or proxy compo- 
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nent is generated and deployed at runtime. This delegated component passes all the invocations back 

to an object in memory, which can be the application itself, or a component that allows initialisation 

and driving of sub-processes within the application. Evidently, the dynamic deployment in WSPeer 

is considerably different from the dynamic deployment paradigm proposed by DynaSOAr which 

allows demand-driven deployment of complete Web Services within a container. Dynamic Service 

Deployment in F1exiNET [76] aims to define and implement a scalable modular network architecture 

that will incorporate adequate network elements offering various network functions such as roam- 

ing connection control, switching/routing control and advanced service management. The proposal 

depicts an architecture for dynamic service deployment where a Web Services Server is responsible 

for registering a service with a UDDI repository, and is also capable for discovering other service 

interfaces. A DSD Controller is responsible for receiving the service requests, download the service 

code and requirements, check the availability of the resources and select a suitable resource using 

a matchmaking algorithm, and finally deploying the service on the designated resource, although it 

is not clear from the proposal how these objects are achieved. F1exiNET is based on the Globus 

Toolkit 4 [43], and requires specialised network components such as distributed routers, thus ruling 

itself out of the generic and inter-operable service oriented platforms. 

Keidl et. al. examined the dynamic deployment scenarios in the ServiceGlobe system [78,79,80]. 

Services can be stored, published, discovered and deployed on the ServiceGlobe platform. Ser- 

viceGlobe distinguish between external and internal services. External services are those that are 

available on the Internet, provided by third party providers, and may have arbitrary interfaces for 

invocation. ServiceGlobe uses a concept of adapters to transpose internal requests to external in- 

terfaces and conversely, in order to integrate these services irrespective of their arbitrary interfaces. 

Internal services are the services provided by ServiceGlobe and are native to the system. These are 

further classified into static services that are location-dependent and dynamic services that may be 

executed on arbitrary ServiceGlobe servers. The native services offered by ServiceGlobe, i. e. the 

internal services, are mobile code, which are stored in a repository and can be transmitted over the 

network to the servers running the ServiceGlobe runtime engine where the code can be deployed 

using a runtime service loading service. ServiceGlobe uses UDDI [81] to search for the repository 

which stores the mobile code for a particular service. The runtime service loading feature allows 

a service to be distributed to arbitrary hosts within the ServiceGlobe domain, which provides a 

platform for load-balancing and parallelization. ServiceGlobe uses a method called dynamic service 

selection for invoking a particular implementation of a service. Each service is assigned to a tModel, 

which in UDDI, is a means for creating any reference items. In ServiceGlobe, the tModel is used 

to provide a template defining the semantics and service interfaces which implement the template. 

In ServiceGlobe, therefore, "a service is an implementation or instance of its tModel" [78]. Service- 
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Globe offers the creation of composite services where it is not necessary to invoke a concrete service 

endpoint, but is sufficient to invoke a tModel, the implementation of which is decided in a lazy 

fashion, during compilation or execution. In terms of functionality and scope ServiceGlobe perhaps 

comes closest to DynaSOAr in that it uses UDDI, and allows hot deployment of services which can 

also be stored in a repository. Similarities end at this point, as unlike DynaSOAr, ServiceGlobe 

does not provide any logical separation between service provisioning and resource provisioning. Fur- 

ther, DynaSOAr does not distinguish between internal and external services, and is based on WS-I 

compliant Web Services paradigm, and message oriented approach of invocation, which simplifies 
the development and deployment process considerably, along with making it easier to use for the 

consumer. DynaSOAr also allows quality of service specifications from the consumer point of view, 

which can be taken into considerations while performing dynamic deployment. 

The Highly Available Dynamic Deployment Infrastructure (HAND) proposed by Qi et. al. in [82] is 

another proposal which encompasses the requirements of dynamic deployment of services for Grid 

applications. HAND acknowledges the need and importance of dynamic service deployment and 

management in order to enable dynamic and extensible virtual organisations which are crucial for the 

Grid. The proposal considers two approaches for dynamic deployment, (i) Service-level deployment 

(HAND-S), where one or more services can be activated or deactivated and new services deployed 

without the requirement of restarting the container, and (ii) Container-level deployment (HAND-C), 

where deployment of a new service requires the reloading of the entire container. HAND is based 

on the Globus Toolkit 4 [43], and refactors the kernel structure of the Java WS Core container 

of Globus (as opposed to other approaches proposed in DynaGrid [83] or by Weissman et. al. in 

[84,85] which are discussed later in this section). The approach requires low-level modification of 

the container but it is claimed that a lightweight dynamic deployment implementation and a simpler 

management mechanism can be achieved in this fashion. The service-level deployment in HAND 

allows finer grained deployment of single services as Grid archive (GAR) onto the GT-4 container 

and uses the ClassLoaders to activate or deactivate individual services. The experimental results 

are encouraging showing a better performance for HAND compared to the Apache Tomcat and 

Axis approach adopted elsewhere, including DynaSOAr. But the cost of deployment is outweighed 

in DynaSOAr due to the one-to-many interaction semantics which allow multiple consumers to 

interact with the same service endpoint, which is not addressed in HAND. Further, HAND is tightly 

coupled to a particular container and lacks the generic nature of DynaSOAr. Unlike DynaSOAr, 

HAND does not address the possibility of creating a marketplace by separating host provisioning 

and service provisioning. 

DynaGrid [83] is another platform based on the Globus Toolkit 4 [43] which allows dynamic de- 

ployment of WS-RF services and migration of resources. SeruiceDoor and dynamic service launcher 
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(DSL) are the two basic components of DynaGrid. A ServiceDoor is a service-specific front-end and 

exists for each service supported in the framework, keeping track of a list of containers on which the 

service is deployed and forwards the consumer request to an appropriate DSL on one of the available 

containers. The ServiceDoor is responsible for the decisions about dynamic service deployment and 

resource migration. The DSL is a passive service controlled by the ServiceDoor and is responsible 

for the actual deployment of the service, creation of resources and the invocation of the service. In 

a WS-RF-based system, a consumer first creates a service resource and gets an EndPointReference 

(EPR) for this newly created resource. Future invocations use this EPR and are sent directly to the 

resource. In DynaGrid, the request for creation of a service resource is sent to the ServiceDoor, which 

uses its scheduling module to select an appropriate container from the list of available containers 

who have the service already deployed. If no such container can be found, the deployment module 

initiates the deployment of the service on one of the idle containers. An EPR is created within the 

scheduling module which refers to the meta service resource (a new type of service resource defined in 

the work which stores the information about the service, such as the service identifier, the interface 

class, service options, and the class loader object) of the corresponding service within the selected 

container and the createResource method on the target DSL is invoked. A new service resource is 

created by the DSL using the information contained within the meta service resource, and the local 

EPR is returned to the ServiceDoor. As DynaGrid allows migration of resources, this EPR is not 

returned to the consumer, instead, an abstract key is returned and a mapping between the actual 

EPR and the abstract key is stored within the ServiceDoor. The actual execution or invocation re- 

quest identified by the abstract key returned to the consumer is also sent to the ServiceDoor which 

retrieves the target EPR from the mapping information and the target DSL is invoked resulting in 

the execution of the service leading to transparency in execution. Byun and Kim in [83] claim that 

this approach does not require any changes in the standard containers as opposed to similar work by 

Qi et. al. in [82]. DynaGrid also allows migration of service resources from one container to another 

when certain constraints set by the service developers are met which as per [83] distinguishes it from 

other WS-RF based platforms. DynaGrid is a relevant work in its own right and indeed presents 

a view which has similarities with the DynaSOAr concept, but (i) it is restricted to a particular 

category of services, viz. WS-ResourceFramework, thereby neglecting a large set of services based 

on the standardised WS-I platform that are used in various e-Science and most commercial projects, 

(ii) it does not seem to contain a repository allowing developers to upload newly developed services 

for potential consumers to use and (iii) the separation of service provisioning and computational 

resource provisioning as in DynaSOAr is not present and nor is the concept of a marketplace. 

The idea of dynamic deployment of services is considered a vital step towards forming dynamic 

virtual organisations by Weissman et. al. in [84,85]. Weissman in [84] acknowledges that the 
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static infrastructures currently prevalent will not be adequate enough as the Grid applications are 
increasingly becoming "multidisciplinary, collaborative, distributed and most importantly, dynamic" 

and such applications may be "assembled on-the-fly to exist only for a transient period of time. " The 

views expressed in this proposal coincides with the view and motivation behind DynaSOAr, which 
focusses on using on-demand service deployment as a step for creating dynamic virtual organisations 

and to deal with unpredictable demand for services. Weissman et. al. present an architecture for 

dynamic grid services that is based on OGSA and implemented on OGSI [28] for supporting the 

dynamic virtual organisation concepts. The proposal evolves around a concept of Adaptive Grid 

Service (AGS) which is a fundamental abstraction for a Grid service, that is adaptable to changes 

in demand and availability of resources. The AGS is composed of a front-end, a deployer and a 
back-end. The front-end is responsible for handling the requests from consumers and making the 

decisions about where to process the request. The AGS deployer takes the decision about the site(s) 

which should host and deploy a service, and once a service is deployed, this information is stored 

within the front-end. An AGS factory which contains the actual code for the service and serves a 

request by creating an instate known as Adaptive Grid Service Instance (AGSI) resides in the back- 

end. An Adaptive Resource Provider Service (ARP) provides a leased pool of resources on which 

the back-end can be dynamically deployed, and the leasing model conforms to the concept of service 
lifecycle of OGSI. Weissman et. al. have used the Apache Tomcat container to enable dynamic 

deployment as the stand-alone container available in Globus Toolkit 3 is able to handle statically 

deployed services only. A mechanism similar to the one used in DynaSOAr is used for packaging the 

service as a WAR (web archive) file which contains the application code, the deployment descriptor 

for the web application and other required libraries. Although the concept is similar to DynaSOAr, 

this proposal is architecturally tied to a particular implementation of the Globus Toolkit and suffers 

from the limitations pointed out earlier and in [27]. DynaSOAr, on the other hand adopted a more 
loosely coupled architecture using widely accepted standards and toolkits for Web Services. An 

approach similar to Weissman et. al. may be seen in Smith et. al. [86] which speaks about a Service- 

oriented ad-hoc grid. In this proposal custom class loaders are used to enable hot deployment, and 

no distinction is made between service provisioning and resource provisioning. Further, the proposal 

is again tied to a particular platform, that is, Globus Toolkit 3. 

An architecture for a next-generation Internet based on Web Services and Utility Computing is pre- 

sented in [87] by Darlington et. al. Utility Computing allows the provision of execution environments 

by third parties, such as the Amazon Elastic Compute Cloud [881, which provide computational re- 

sources to consumers on a use-on-demand, pay-per-use basis. In addition to this, the architecture 

proposed by the authors create the possibility of a services market where Web Services are equipped 

with the ability to negotiate a price for their usage which has been evaluated within [89]. This 
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proposal is relevant to DynaSOAr as the DynaSOAr architecture allows the possibility of a similar 

market for resources and services. 

In this section, several contemporary proposals about dynamic service deployment and formation of 

dynamic virtual organisations have been assessed. The differences between DynaSOAr and all these 

proposals can be summarised as: 

1. DynaSOAr hides the actual deployment behind the service provider interface, so that the 

transparency of execution is maintained. This is in some ways, analogous to the Amazon S3 

Storage Service, where the consumer is allocated some storage space as per the requirements, 

but the consumer is not required to know the exact location where the data is stored or the 

format in which it is stored. The only interface the consumer is aware of is the interface to 

the service provider. 

2. DynaSOAr is responsible for making the decisions as to when a dynamic deployment will take 

place. The decision depends on a number of factors, such as demand, usage statistics, host 

availability etc. 

3. DynaSOAr maintains a loose coupling between the service provider and the consumer. Because 

the consumer is only aware of the service provider interface, there is no dependency on the 

consumer's part on the platform on which the service is actually executed or the language in 

which the service is implemented. 

4. DynaSOAr makes a distinction between service provisioning and host provisioning by creating a 

logical partition between the provider of a service and the provider of a computational resource 

on which the service is hosted. In effect, a service provider may be different from a resource 

provider, which creates a possibility of new virtual organisational structures, where several 

distinct organisations collaborate for sharing the resources in order to achieve a common goal. 

5. DynaSOAr creates the possibility of brokering between different available services all of which 

may perform the same task thereby giving the consumers options to select from all the available 

services based on the consumer preferences. There is also a possibility for the service provider 

to choose from different available providers for computational resources. These two features 

taken together, form a marketplace for all the participants, which in this thesis is termed 

Software Hypermarket. 
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2.4.1 Use of Virtualization Technologies 

Virtualization technologies are considered as one of the key approaches in the dynamic deployment 

framework covered in this thesis. VMWare [15] defines virtualization as "an abstraction layer that 

decouples the physical hardware from the operating system to deliver greater IT resource utilisation 

and flexibility". This leads to the opportunity to run multiple virtual machines (VMs) with different 

operating systems, simultaneously on one physical machine where each of these VMs are completely 
isolated from each other and from the host environment, removing the tight coupling between the 

hardware and the software of computational resources which existed in the pre-virtualization era. 
The traditional operating systems on modern computational resources allow sharing of the resources 

such as CPU, memory, disk space via multiprocessing capabilities, file-systems and virtual memory. 
The system resources are accessed by each individual processes indirectly through the abstraction 

layer provided by the operating system itself. A parallel approach to resource sharing existed since 

the IBM System/370 [90] where virtual machines present a duplicate view of the underlying hardware 

to the software running within the machines allowing the co-existence of multiple operating systems 

on the same physical hardware sharing the physical resources through multiplexing. An overview 

of the virtual machine architectures can be found in [91] by Smith and Nair where the authors 

categorise virtual machines in two broad categories - (i) those which virtualize a complete instruction 

set architecture, including user and system instructions, and are known as ISA-VMs, and (ii) those 

which support an application binary interface with virtualization of system calls, known as ABI- 

VMs. Smith and Nair also speak about the classic VMs as an important class of virtual machines 

consisting of ISA-VMs which support same-ISA execution of entire operating systems, such as the 

IBM S/390 series and VMWare, which is used within DynaSOAr as a means for virtualization. 

On the other hand, UML (User Mode Linux) [92] belongs to the category of ABI-VMs. In the 

past few years, virtualization has become an attractive option for Grid applications. Figueiredo et. 

al. in [93] outlines the advantages of using VMs for Grid computing because of the functionalities 

such as security and isolation, customisation, legacy support, resource control etc. offered by the 

virtualization technology. In this section, some contemporary work about how VMs are used in Grid 

computing are assessed. 

VMPlants [94] is a proposal by Krsul et. al. which attempts to incorporate the functionality to 

manage dynamic creation and destruction of virtual machines within the Grid middleware. VM- 

Plants provides support for flexible and automatic customisation of virtual machine environments 

from a higher-level user perspective. It has the ability to clone and instantiate a VM environment 

efficiently and monitor the states at execution time based on a service oriented architecture. The 

goals as claimed by the authors are flexibility of configuration, support for multiple virtualization 
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technologies and fast instantiation of the VMs, scalability, interoperability and fault-tolerance. Di- 

rect Acyclic Graphs (DAG) are used for describing the actions to configure and customise a VM, 

which together with a VM cloning process allows a flexible configuration process. The manage- 

ment of the virtual machines is not tied to any particular middleware solution and follows a service 

oriented model. The framework is composed of services such as the VMShop which is a front-end 

to which consumers interact and VMPlant, which is responsible for the actual creation of a VM. 

VMShop uses standard Web Service technologies such as UDDI and WSDL for discovery and service 
binding. From the point of view of a user, the VMShop performs the tasks of a system administrator 
to accommodate requests for additional computational resources within the network. The consumer 

request to the VMShop will contain the desired configuration of the new resource to be created in 

form of a DAG which are sent to the VMShop as a SOAP message. The VMShop selects a VMPlant 

for the creation of the VM, and sends a service request to the designated VMPlant which implements 

a Production Process Planner (PPP) to plan the process of VM instantiation based on the specified 

configuration. It searches a VM Warehouse for a VM which matches the desired configuration and 

clones it to instantiate a VM for the consumer. If the instantiation process is successful, a classad 

containing the information for identifying the VM is returned to the consumer who can communicate 

with the VM using this identifier. 

Sundararaj and Dinda proposed a virtual network tool VNET [951 to deal with the networking 

issues of virtual machines. In order to successfully use the virtual machines for large scale Grid 

applications, the VMs should be reachable through the network. The virtualization technologies 

typically create a virtual ethernet card for the guest virtual machine which is emulated by using the 

physical network card of the host system. The virtualization layer typically "bridges" this virtual 

ethernet card with the same network as the physical host, and the VM appears as a normal physical 

machine on the network. The authors claim that this bridging process works seamlessly within a 

single site, and new VMs are indistinguishable from real machines within the same network. But the 

process is not as seamless across different sites, such as when there is a requirement to run a VM on a 

remote site, in which case, the network presence will largely depend on the policies that are imposed 

on the remote network. In effect, this may be equivalent to "visiting the site and connecting a new 

machine" [95]. The issue becomes even more complex as the number of such remote sites increase 

and if there are any possibilities of migrating the VMs between the sites. VNET is proposed by 

the authors as a simple layer 2 network tool, using which the VMs will not have any direct network 

presence at the remote site, rather it provides a mechanism to "project their virtual network cards 

onto another network" such that all the VMs belonging to a particular user may appear to be 

within the user's own network. As VNET sits on layer 2 of a network, a particular machine can be 

migrated between different network without any change in its network presence, i. e. the IP address, 
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routes etc. VNET uses the concept of Virtual Private Network which implements a virtual local 

area network (VLAN) spread over a wide area network using layer 2 tunnelling. The work is unique 

and is particularly relevant to the dynamic virtual organisation scenarios which DynaSOAr wants to 

support. The current virtual networking method used in DynaSOAr is either the default "bridged" 

or "host-only", but DynaSOAr could utilise tools such as VNET to allow migration of VMs and 
thus dynamic VOs over a wide geographical area. 

The proposal on Virtual Workspaces from Keahey et. al. [17] is particularly relevant for the concept 

of dynamic virtual organisations. The authors here recognise a potential problem in the conventional 

approach of mapping jobs to resources, where often an assumption is made that the execution envi- 

ronment will be provided independent of the available infrastructure. Situations are possible where 

applications from different users with widely different requirements try to use the same available 

resources. The authors propose the concept of virtual workspace which can be automatically de- 

ployed on resources to provide the required execution environment, resulting in the mapping of jobs 

to workspaces, which in turn are mapped to actual resources in the Grid. A virtual workspace as 

characterised by the authors in [17] is "a definition of an execution environment in terms of its hard- 

ware requirements, software configuration, isolation properties, and other salient characteristics", 

which is described by an XML schema and can capture the requirements for the intended execution 

environment and use automated tools to make it available for use. The prototype is implemented on 

Globus Toolkit 4 [43] and can use both Xen [16] and the VMWare Workstation [96] for virtualization. 

The consumers interact with a VW Factory with a description of a desired workspace. Negotiation 

processes may apply predefined policies while creating the workspace, and the resulting workspace 

is registered in a VW Repository, which provides a Grid service interface for management and ac- 

counting of the workspaces. An EndpointReference is returned to the client identifying the newly 

created workspace, which is presented to a VW Manager during deployment of a workspace on a 

resource after which the consumer can perform all the required operations. The Globus Resource 

Allocation Manager (GRAM) [36] can be used to execute jobs or applications on the workspace 

once it is started. The proposal is relevant for dynamic virtual organisations as it enables dynamic 

instantiation of virtual workspaces in form of VMs, but it is limited to the job paradigm, and the 

fact that it is based on GT4 possibly ties it to a particular implementation. 

All these works mentioned in this section underline the importance of virtual machines and the 

virtualization technology as a whole within the premises of Grid computing. The same outlook is 

adopted in DynaSOAr and an attempt is made to secure the advantages identified by Figueiredo et. 

al. in [93]. However, DynaSOAr views virtual machines as a special packaging for services. In the 

scientific domain, there are certain services, such as BLAST [9], which require a special environment 

to execute, which may not be present on the available resources. Further, some applications, although 
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they can be deployed dynamically on any available node, may not function to the best of their 

ability as they require finer tuning with the underlying hardware. It is viewed in DynaSOAr that 

such applications can be packaged in a VM and made available as services, which can be deployed 

on-demand using the same DynaSOAr infrastructure. DynaSOAr adopts a principle of moving the 

computation closer to the data as outlined in the AIR architecture (7], but, also recognises certain 

situations where deployment of a snapshot of the data locally may prove to be beneficial. DynaSOAr 

achieves this by deploying a VM containing a snapshot of the database within the local network. 
Although deployment of a VM is costly in terms of the deployment time, for frequent long-running 

requests, the cost is outweighed by the benefits obtained, which are discussed in later chapters of 
the thesis. 

2.5 Exploiting Dynamism in Distributed Query Processing 

It was argued in Section 2.3.3 that a dynamic service deployment framework may benefit OGSA- 

DQP. This has been the final goal of the thesis - to exploit how the dynamic deployment concepts 
developed in DynaSOAr can be utilised in the service-oriented OGSA-DQP resulting in a dynamic 

version of DQP which will be more efficient in coping with the inherent dynamism of the Grid. The 

dynamic version of DQP developed by adapting to the dynamic deployment concepts is explained 
in greater detail in Chapter 5. This version of DQP incorporates the components developed in 

DynaSOAr (as shown in Figure 2.5) and is able to collocate the data access and analysis code 

closer to the actual data source by deploying such services on the nodes which host the data or 

are closest to it; the evaluation engine is not tightly coupled with the available resources and is 

deployed as and when required on the nodes that are deemed best suited for evaluating the individual 

query partitions. This version of DQP also allows a form of data-caching by dynamically deploying 

snapshots of databases which are actually located on remote nodes on the local network which 

reduces the cost of transmitting the data over the network to a great extent. This is done for 

frequent and long running queries, for which a general trend of increasing transmission cost can be 

observed by analysing the performance feedback from the participating nodes at execution time. 

This is in contrast with other data replication techniques, such as replica management techniques 

from Oracle [97] which require the existence of a database management system on the target nodes 

and the intervention of a database administrator to copy the data as an off-line process. In this 

thesis it is assumed that a database snapshot is available within a VM, and acknowledges that there 

must be some means to keep the snapshot synchronised with the actual dataset, which is outside 

the scope of the thesis. 
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Figure 2.5: Architecture of the dynamic version of 0GSA-DQP 

2.6 Discussion 

The work presented in this thesis attempts to combine t he concepts of it service-oriented distributed 

query processor with that of a dynamic service deployment framework. The service-oriented DQP, 

or OGSA-DQP is a major development as a framework which is able to execute distributed queries 

over distributed data resources that are factored out as services. DQP uses existing standards such 

as OGSA-DAI [14] to access the data from these repositories, and in the process, the database 

complexities are hidden from the consumer. The query processing engine itself is a collection of 

services and can be viewed as a declarative service orchestration mechanism. It applies techniques 

from parallel databases [12,62] to achieve better results while processing a query and is also able to 

incorporate analysis services within the query which is deemed as an important requirement in the 

scientific community. 

During the development of OGSA-DQP, a need for a dynamic deployment framework was felt. It was 

seen that for remote data resources, a high cost of data access was being incurred. Additionally there 

was a cost for transmitting the data over the network when participating nodes were distributed 

over a large geographical area. Further, the query processing engine was tightly coupled with the 

data resources or the pre-configured nodes restricting the option of selecting the best possible nodes 

for evaluation of a partition during the optimisation process. It was also seen that while invoking 

a remote analysis service for each row of data retrieved, the cost of invocation was high, which 

included the cost of transporting the data to the node where the analysis service resided, and this 

cost was higher for larger row sizes. There were situations where even moving the evaluation engine 

onto the data nodes were not the best option, for example in situations where all the data nodes 
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were remote - even if the evaluation process is executed on the data nodes themselves, for queries 

producing large data sets as results, the cost of transferring the result to the DQP system was costly. 
Thus it was regarded that a data-caching mechanism may be suitable for such situations. 

Motivated by the requirements and existing proposals such as the AIR architecture [7], DynaSOAr 

started evolving as a dynamic deployment framework which would allow on-demand deployment 

of services at runtime on available computational resources. DynaSOAr was developed based on 

standardised Web Services tools and techniques as recommended in [27,29] and maintains a loose 

coupling between the components. It creates a logical separation between service provisioning and 

host provisioning, and the entire deployment mechanism happens in a way that was transparent to 

the consumer. DynaSOAr also uses virtualization techniques as a means of creating dynamic virtual 

organisations. 

In order to address the requirements of dynamic deployment facilities in OGSA-DQP, the framework 

developed in DynaSOAr was adopted resulting in a dynamic version of OGSA"DQP. This version of 

DQP is able to collocate the data access and evaluation services closer to the actual data node based 

on available network data. It is also able to create a dynamic query processing engine which is fluid in 

nature as the evaluation services are not tightly coupled with the participating nodes, thus creating 

the possibility for the optimiser to discover available nodes and accommodate them during the query 

optimisation phase with a view to schedule a dynamic deployment of the evaluation service on those 

nodes on which the service does not exist. The dynamic version of DQP also allows on-demand 
deployment of the analysis service on the best suited nodes in order to reduce the cost of invocation. 

A form of data caching using virtual machines is also adopted in the dynamic version of DQP. The 

incorporation of the DynaSOAr framework within DQP also brought in some DynaSOAr features, 

such as (i) scalability, which is achieved by deploying multiple copies of a service, for example, the 

analysis service, so that the invocation to this service can be parallelised for better performance, 
(ii) adaptability, which is provided by the loosely coupled architecture of the framework, where 

changes in the resource availability and performance trigger reconfiguration of the run-time system, 
(iii) dependability, which is provided by deploying a new copy of the service if one of the services 

involved fails. The security of the DynaSOAr system has been researched by Fowler in his thesis [98] 

and is outside the scope of the work presented in this thesis. 

All the aspects of the work presented in the thesis will be discussed in greater depth and an evaluation 

of the dynamic DQP system will be presented in the later chapters. 



Chapter 

Service Oriented Distributed Query 

Processing 

One of the objectives in this thesis was to create a Distributed Query Processing framework which 

will allow homogeneous access to heterogeneous data resources by using existing infrastructures 

(such as OGSA-DAI) and evaluate distributed queries by parallel evaluation of query fragments 

using techniques from parallel databases on a Web Service based query processing engine created 

at runtime. This chapter describes the architecture and design of a such a framework capable 

of querying distributed data sources over the grid, publicly available as OGSA-DQP [99,11], in 

which query compilation, optimisation and query evaluation are viewed as services. Both the query 

compilation/optimization and the execution take place by exchanging SOAP [5] messages between 

the component services. The data access mechanism from the data sources is also based on commonly 

used service for data access and integration, OGSA-DAI [14]. The benefits of this architecture 
include the following: 

. Monitoring Services can be used to identify lightly loaded resources that are suitable for query 

evaluation and to allocate query evaluators on these nodes; 

" Grid security supports single sign-on for remote resources, simplifying authentication for dis- 

tributed execution; 

9 Consistent resource discovery and allocation mechanisms can be used for both data sources 

and analysis tools accessed from a query. 
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3.1 OGSA-DQP as a Service Orchestration Mechanism 

OGSA-DQP supports the evaluation of queries expressed in a declarative fashion over one or more 

services, including data access services and external analysis services. It can be seen as comple- 

mentary to other service orchestration mechanisms, such as workflow languages. In the field of 

bio-informatics research, an extremely common workflow is where the bioinformatician uses a data 

access service to retrieve protein or gene sequence data from a database, and for each retrieved 

sequence, which may satisfy a certain criteria, invokes a sequence analysis service, such as Blast [9]. 

OGSA-DQP allows accessing data from distributed data sources using standard data access mech- 

anisms, performs query processing operations such as project and join, and also allows invocation 

of external services using a special operation-call operator. The same results that were achieved 

by using the earlier workflow could be obtained by using a query in the OGSA-DQP framework, 

which will access data from the same database, perform query processing operations on the retrieved 

data, and for each row that matched the criteria, invoke the same external service, and return the 

results. This supports the claim that OGSA-DQP can be seen as as an approach alternative to 

workflow systems as it effectively performs the same task as the workflow mentioned above in a 

different manner. The creation of the query plan, submission of the partitions to evaluation services 

who communicate between themselves and the invocation of the analysis service, that is, the entire 

orchestration of the participating services is performed by DQP, and is transparent to the consumer. 

3.2 The Architecture 

The distributed query processing framework, OGSA-DQP [99,11] is a publicly available framework 

for querying distributed data sources over the grid using a service oriented interface. OGSA-DQP 

uses and extends the commonly used service for data access and integration, OGSA-DAI [14] and 

is composed of two major services - 

" Grid Distributed Query Service - The Grid Distributed Query Service (GDQS) is an extension 

of the standard OGSA-DAI service, and is deployed as an OGSA-DAI data service with an 

exposed data service resource'. This is the service which is exposed to the consumer and 

all interactions from the consumer is directed to this service. When the GDQS is initialised, 

it interacts with the data services exposing the actual data sources to obtain the metadata 
1A data service resource implements the core OGSA-DAI functionality. It accepts perform documents from data 

services, parses and validates them, executes the data-related activities specified within them and constructs response 
documents. It can also cache data for retrieval by third-parties (if the data service resource is configured to support 
asynchronous data delivery). Data service resources are accessed via data services [100] 
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needed for compiling, optimising, partitioning and scheduling the distributed query execution 

plans over a set of query evaluation nodes (hosting the Query Evaluation Service - the other 

component service of OGSA-DQP). The GDQS internally uses the Polar* distributed query 

processor for the Grid [13,63] by encapsulating its compilation and optimisation capabilities. 

" Query Evaluation Service. The Query Evaluation Service (QES) on the other hand is a WS- 

I compliant Web Service [21] which processes partitions of a query execution plan wr: gypped 

inside SOAP messages and communicates with other QESs and third- party web services. Each 

QES evaluates the partition assigned to it by the GDQS. The QESs implement a physical 

algebra over the data access services encapsulating the actual data sources whose scliemas 

were imported during the GDQS initialisation phase. 

Analysis Servce 
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Figure 3.1: Basic DQP Architecture 

Figure 3.1 shows the basic architecture of the OGSA-DQP framework. In general, the GDQS 

must reside on one node on top of the basic OGSA-DAI framework while the actual data resources 

exposing the data, evaluation and analysis services may reside on other nodes, from where the 

schemas and metadata are obtained by the GDQS. Once the schemas from the data sources and 

the WSDL [101] of the analysis service are imported, the OQL query along with the metadata 

(schema and computational resource) is passed to the coin piler/optimiser. The query is compiled, 

optimised and a set of partitions are generated, each containing a section of the parallel query plan. 

Each partition, scheduled to execute on individual evaluation nodes, is sent to the corresponding 

Query Evaluation Service on that node as a SOAP message, and the evaluation starts in each node. 
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This allows an implicit, parallel evaluation of the individual partitions for a single query with the 

complexity of the process hidden behind a simplified service interface. The evaluation services and 
the actual data sources can be located anywhere in the Grid, thus creating an ad-hoc virtual query 

execution engine based on communicating services. Some QESs interact with the data services to 

obtain the data after which results start to propagate across the QE services to the CDQS, and 

eventually to the client. 

Listing 3.1 shows a characteristic query that is supported in the DQP framework. This query is 

written in OQL and based on an ODMG (102] data model setting. 

Listing 3.1 An Example Query 
%print select p. ORF, g. id, calculateEntropy(p. sequence) 
from p in protein-sequences, g in goterms, t in protein_goterms 
where g. id-t. GOTermIdentifier and p. 0RF-t. ORF and 
p. ORF like "YBL06%" and g. id like "G0: 0000%"; 

In this example, the query spans over three databases (protein sequence, goterm and protein goterm) 

which can be distributed over a large geographical area, and an analysis service exposed as a Web 

Service is also invoked on each sequence element. Based on the schema and WSDL imported from 

the data and the analysis services and the resources available to it, the query compiler/optimizer 

component, Polar*, generates a parallel query plan, which is partitioned into sub-plans. These 

sub-plans are distributed to the participating evaluation services each of which is responsible for 

evaluating the sub-plan assigned to it and conveying the result back either to the root partition or 

other evaluation services. Finally, the result is collected at the node evaluating the root partition 

and sent to the GDQS and hence to the consumer. 

This query returns, for each protein annotated with the GO term prefixed with `GO: 0000', those 

proteins that are similar to it along with their GO identifiers. The protein-sequence, goterm and 

protein-goterm extents are retrieved from three databases, each running under separate MySQL 

relational database management systems on different hosts, possibly distributed over a large geo- 

graphical area. The query also invokes the Entropy Analysis Service, which calculates the entropy 

of a protein sequence. It is to be noted that the query is essentially a select-project-join query but 

the data is retrieved from three relational databases, and an external application (a web service) is 

invoked on the results of the join operation. A service-oriented approach to processing this query 

over a distributed environment allows the optimiser to choose from multiple providers, the concept 

of service-orientation guaranteeing that most heterogeneities are encapsulated behind uniform inter- 

faces. It also allows the optimiser to initialise multiple copies of an operator to exploit parallelism, 

for example, multiple copies of the join operation in separate partitions that are to be evaluated 

in parallel. In the example query, for instance, the optimiser can choose between different source 
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databases, different EntropyAnalysis services, and different nodes for evaluating the partitions. 

Apart from the distributed setting, a service-based DQP engine can offer better assurances of ef- 
ficiency because dynamic service discovery and dynamic service creation and configuration allow 

it to take advantage of a constantly changing resource pool which would be troublesome for other 

approaches. Service registries based on UDDI [81] store details about the services and are also 

capable of storing service metadata, as done in Grimoires [103]. The service-based architecture of 

the DQP framework allows it to be extended to utilise the registry in order to discover instances of 

similar services, and also match the consumer requirements with the available metadata as will be 

described in Chapter 5. The Grid is composed of a dynamic pool of nodes which may be volatile 

in nature. Service-orientation can be used as a mechanism to deal with this inherent dynamism of 

the Grid by allowing loose-coupling with the resources, such as data and analysis services. Service 

orientation also opens up the possibility of exploiting dynamic deployment features (as discussed in 

Chapter 5) for better availability and performance by deploying services as and when required, on 

the best suited resources. 

3.3 Setting Up a Distributed Query Service 

The Grid Distributed Query Service (the GDQS or the coordinator) is the entity exposed by the 

OGSA-DQP framework to which the consumers interact. The coordinator encapsulates the query 

compilation/optimisation functionalities, creates the partitioned query plans required for evaluating 

a query and sends them to the evaluation nodes which are activated at run-time. This section 

describes the activities within the coordinator which lead to the successful evaluation of a query 

submitted by a consumer. 

OGSA-DQP is implemented as an extension to the basic OGSA-DAI framework. The GDQS exposes 

a GDQS Data Service, which is an extension of the OGSA-DAI Data Service but encapsulates 

the DQP functionality. It exposes a GDQS Factory Data Resource which is accessed during the 

initialisation phase to create a GDQS Data Resource. Both these data resources are extensions 

of the OGSA-DAI data resource and in addition to the basic activities in OGSA-DAI, the GDQS 

Factory Data Resource contains a DQP Factory Activity, and the GDQS Data Resource contains 

an OQL Query Statement Activity, which are extensions of the core Activity2 framework of OGSA- 

DAI. The DQP Factory Activity instantiates a GDQS Data Resource which then performs the initial 

2An activity is a component within the OGSA-DAI software which provides a particular piece of functionality. 
For example, an activity is provided to perform an SQL query. A data service resource supports a particular set of 
activities. [100J 
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configuration of the distributed query processor engine, by obtaining the metadata from the OGSA- 

DAI data resources and the external web services. The resulting GDQS Data Resource is configured 

with the schema and computational metadata attached to it, and the user can then submit queries 
based on the database schemas. 

The GDQS initialisation process is outlined in Figure 3.2. The client first interacts with the GDQS 

Data Service with a set of data and analysis resources to be used in the query (step 1 in the fig- 

ure). This configuration document is passed to the GDQS Factory Data Resource implementing the 

DQP Factory Activity which then creates the GDQS Data Resource implementing the OQLQueryS- 

tatement Activity (step 2). In step 3, The newly created GDQS Data Resource interacts with the 

OGSA-DAI data resources and the analysis services, if any (specified in the initial configuration 

document) and obtains the database schema (from the OGSA-DAI data resources) and the WSDL 

documents (from the analysis services) (step 4). These are stored as the metadata for the GDQS 

Data Resource and the GDQS Data Resource identifier is returned to the client, for future reference 

during the actual querying stage (step 5). The GDQS Data Service supports creation of multiple 

GDQS Data Resources with unique identifiers to enable multiple query sessions by multiple users at 

the same time. These data resources can even be shared amongst multiple users and are capable of 

processing multiple queries, although any changes to the configuration (like addition or deletion of 

OGSA-DAI data resources or analysis services) would create a new GDQS Data Resource, ensuring 

that the queries submitted by other users to that GDQS Data Resource are not lost, and it can still 

be used with the original configuration. 

The configuration document submitted by the client specifying the data and analysis resources to 

be used for the distributed query is based on an XML schema [104,105] provided by the GDQS 

Data Service. The XML fragment in Listing 3.2 shows the canonical form in which the data and 

analysis resources are specified by the client and maintained by the GDQS. 

After the related metadata are imported by the GDQS, the GDQS Data Resource is fully configured 

and the data resource identifier is returned to the client, the client can then submit queries (in OQL) 

over the set of databases and analysis services specified during the configuration stage. Figure 3.3 

describes the steps involved in the query execution process. When a query is submitted to the 

GDQS Data Resource (step 1), the internal OQLQueryStatement Activity starts processing the 

query. The OQL query, along with the previously obtained metadata is passed to Polar* (step 

2), the encapsulated query compiler/optimizer, which in the first pass, creates a logical query plan 

and then based on the computational resource metadata and the database metadata, creates an 

optimised partitioned query plan, scheduled to be executed in parallel on different nodes, which is 

returned to the GDQS Data Resource (step 3). Each partition is the query plan is then sent to 
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Figure 3.2: 1QP Initialisation 

Listing 3.2 Configuration Document 
<DQPConfiguration xmins-"http: //uk. org. ogsadai/dqp/configuration"> 

<DQPEvaluatorList> 
<EvaluatorURl>http: //giga01: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI> 
<EvaluatorURl>http: //gigaO2: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI> 
<EvaluatorURl>http: //gigaO3: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI> 
<EvaluatorURl>http: //gigaO4: 8090/evaluator/services/QueryEvaluatlonService</EvaluatorURl> 
<EvaluatorURl>http: //gigaO5: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI> 
<EvaluatorURI>http: //gigaO6: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl> 
<EvaluatorURl>http: //gigaO7: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl> 
<EvaluatorURl>http: //giga08: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl> 
<EvaluatorURl>http: //gigaO9: 8090/evaluator/services/QueryEvaluatlonService</EvaluatorURI> 

</DQPEvaluatorList> 
<DataResourceList> 

<ImportedDataSource> 
<URI>http: //giga01: 8090/warf/services/ogsadai/GoDataService</URI> 
<ResourcelD>GoTermMySQLResource</ResourcelD> 

</ImportedDataSource> 
<ImportedDataSource> 

<URI>http: //giga02: 8090/warf/services/ogsadai/InteractionDataService</URI> 

<ResourceID>InteractionMySQLResource</ResourceID> 
</ImportedDataSource> 
<ImportedDataSource> 

<URI>http: //giga03: 8090/wsrf/services/ogsadai/ProteinTermDataService</URI> 

<ResourcelD>ProteinTermMySQLResource</ResourcelD> 
</ImportedDataSource> 
<ImportedDataSource> 

<URI>http: //giga04: 8090/wsrf/services/ogsadai/ProteinPropertyDataService</URI> 

<ResourcelD>ProteinPropertyMySQLResource</ResourcelD> 
</ImportedDataSource> 

<ImportedDataSource> 
<URI>http: //giga05: 8090/wsrf/services/ogsadai/ProteinSequenceDataService</URI> 
<ResourcelD>ProteinSequenceMySQLResource</ResourcelD> 

</ImportedDataSource> 
<ImportedService name-"EntropyAnalyserService" 
wsdlURL-"http: //giga09: 8090/entropy-analyser/services/EntropyAnalyserService? wsdl"/> 

</DataResourceLiat> 
</DQPConfiguration> 
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the designated query evaluation service, which exists on the designated computational resource, as 

a SOAP message (step 4). The query evaluation services interact among themselves sending data 

and control tuples. They access the data from the respective databases through the OGSA-DAI 

data resources and also invoke the external analysis services over the obtained data (step 5). As the 

evaluation of the query plans progress, results start flowing from the lower level evaluation services 

to the GDQS Data Resource (step 6). In accordance with the OGSA-DAI delivery options, the 

client while submitting the query may have requested a certain delivery method, based on which 

the final query result will be sent to the client (step 7). 
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Figure 3.3: DQP Interaction 

3.4 Distributed Query Plan Generation 

The query compiler component inside the GDQS is responsible for generating efficient query exe- 

cution plans for a declarative OQL query over a distributed set of services (both data and com- 

putational, as OQL supports invocation of external functions within a query). Assuming that the 

consumers are exempt of any charges on the usage of resources, it can be said that the most effi- 

cient execution plan is the one which is also the fastest in producing results. The compiler, Polar* 

163,13], developed prior to the OGSA-DQP related work, follows a popular two-phase approach 
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for optimisation referred in [106] for parallel and distributed databases. Using the Fegaras-Maier 

approach [107] based on a monoid calculus and algebra implemented in the OPTGEN optimiser 

generator [108], the compiler in the first phase produces a single-node execution plan by parsing the 

query and mapping it onto a logical and physical query algebra regardless of the number of execution 

nodes available to the system. In the second phase of the query compilation process, a partitioner 

subdivides the single-node execution plan into partitions which are assigned to the respective nodes 

by a scheduler. The computational resource metadata and the service metadata obtained by the 

GDQS Data Resource during the DQP initialisation process (described in Section 3.3) is used by 

the query compiler during this partitioning phase. 

With reference to the query mentioned in Listing 3.1, each phase of the query compilation and 

query plan generation process is depicted in Figure 3.4. In the first phase of the query compila- 

tion process, the query is mapped to a single-node execution plan (without any partitions). The 

logical optimiser performs various transformations on the calculus expressions generated by the 

parser, such as pushing the project operators (called reduce in this thesis) as close as possible to 

the database scan operator (as in Figure 3.4(a)). The optimised logical expressions are transformed 

into physical algebraic expressions by the physical optimiser by selecting a concrete physical al- 

gorithm that implements the logical operator (Figure 3.4(b)). For example, the physical optimiser 

will choose between the available join algorithms to select one, such as the hash join operator se- 

lected in Figure 3.4b. Invocations to external services, such as EntropyAnalyser in the example, 

are encapsulated within the operation-call operator. The single-node execution plan is then trans- 

formed into a multi-node plan by partitioning it for a set of distributed computational resources. 

Special operators intended for parallelization and communication between distributed instances are 

introduced in the plan. These operators, known as exchange operators, described in details in Sec- 

tion 3.5.4, encapsulate the control flow, data distribution and communication methods between the 

participating services. The partitioner at first tries to identify the attribute-sensitive and location- 

sensitive operators. The operators which require the input data to be partitioned by a specific 

attribute during execution on multiple nodes are the attribute-sensitive operators, for example, a 

join operator. Certain operators, known as the location-sensitive operators may only be executed 

on specific nodes, for example an operation-call operator which encapsulates a function requiring 

a special environment. As a rule of the thumb, exchange operators are placed directly above and 

below the attribute-sensitive and location-sensitive operators as they require transmission of data 

across the network. The multi-node execution plan in Figure 3.4(c) contains six partitions (shown 

in dotted-line boxes). The exchange operator signifies the intersection of partitions and is often 

immediately preceded by a reduce operator inserted in order to ensure that only the section of data 

required by the consumers of the parent exchange are included in the data-packets going across the 
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network so that unnecessary network overheads can be avoided. In the final stage of query optimi- 

sation, the scheduler assigns execution nodes to each of the partitions created by the partitioner. 
The compiler supports parallelism between operators and hence a physical operator may be assigned 

to more than one execution nodes. The scheduler aims to assign a scan operator to an execution 

node hosting the relevant database extent (a database table is mapped to an extent), which reduces 

the communication overheads by avoiding large chunks of data moving between distributed nodes 
(for example nodes Ni, N2 and N3 in Figure 3.4(d)). Invocations to external Web Services which 

are encapsulated within operators like operation-call tend to be expensive in nature. Such operators 

are assigned to multiple execution nodes to distribute the invocation cost. The system memory is 

taken into consideration for memory-intensive operators like hash_join. Considering all such schedul- 

ing policies, the final execution plan is generated where all the partitions are assigned to specific 

execution nodes (as in Figure 3.4(d)). It is to be noted that in this case, each execution node (NI, 

N2 and N3) are assigned with multiple partitions, and the actual executable partition for each node 

is created by combining together all the respective partitions assigned to that node. 

The XML fragment in Listing 3.3 illustrates a partition containing a scan operator assigned to a 

particular node during a distributed query evaluation. 

3.5 The Query Evaluation Service 

The Query Evaluation Service (QES or the evaluator) forms the basis of the query processing engine 

which is created at run-time for the successful evaluation of a query submitted to OGSA-DQP. The 

evaluators implement the physical operators required to process a query and encapsulates all the 

complexities of query processing and distribution of tuples between nodes during the evaluation, 

and is considered as a major contribution within this thesis. This section describes the design and 

architecture of the evaluators. 

3.5.1 The Overview 

The Query Evaluation Service (QES) is implemented as a WS-I compliant Web Service [211, and 

is deployed on each execution node, the endpoint of which is known to the GDQS. Once the query is 

compiled and the partitions created, each partition is sent to the corresponding QES on the execution 

node as a SOAP message. On receiving the partition, the query evaluation process starts in each 

of the QES's. The QES supports multiple queries to be executed at the same time, and in order to 
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Listing 3.3 XML Partition Document 
<Partitions =lns-"http: //uk. org. ogsadai/dqp/partition"> 

(Partition> 
<EvaluatorURI>http: //giga10: 8090/evaluator/services/QueryEvaluationServlce</EvaluatorURl> 
<GDQSResource> 

<CoordinatorURl> 
http: //lovelace: 8090/axis/services/ogsadai/DynamicDQPService 
</CoordinatorURl> 
<ResourcelD>ogsadai-10f533dfa89</Resourc. ID> 
<InputStreamID>session-ogsadai-10f533dfa8a</InputStreamlD> 

</CDQSResource> 
<QueryId>DynamicDQPServlce. ogsadai-SOf533dfa89</Queryld> 
<Operator operatorFlagType-*TABLE_SCAN" operatorID-10"> 

<TABLE_SCAN> 
<predicateExpr> 

<simplaPredicate> 
<comparativeOperator>LIKE</comparativeOperator> 
<leftOperand name-" goterms_goterm. id" types"13"/> 
<right0perand name-" 00: 0000%" type-"16"/> 

</simplePredicate> 
</predicat. Expr> 
<dataResouresName>goterms_goterm</dataResourceName> 
<dataResouresID>GoTermMySQLResource</dataPesouresID> 
<GDSHandle>http: //giga10: 8090/axis/services/ogsadai/GoDataService</GDSHandls> 
<tableName>goterm</tableName> 

</TABLE_SCAN> 
<tupleType> 

<name>goterms_goterm. OID</name> 
<typugoterms_goterm</type> 
<nams>goterms_gotsrm. id</uame> 
<type>string</type> 
<name>goterms_goterm. type</name> 
<type>string</type> 
<name>goterms_goterm. name</name> 
<type>string</type> 

</tupl. Type> 
</Operator> 
<Operator operatorFlagType. "APPLY" operatorID-"1"> 

<APPLY> 
<inputOperator> 

<OperatorID>0</OpsratorID> 
</inputOperator> 
<apply0perationType>PROJECT</apply0perationType> 
<parameters> 

<attributeName>goterms_goterm. id</attributeName> 
</Parameters> 

</APPLY> 
<tupleType> 

<nama>goterms_goterm. id</name> 
<type>string</type> 

</tupleType> 
</Operator> 

</Partition 

</Partitions> 
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do this, on receiving each partition, the service spawns a new quern eaýcrrýlý. nýz, c°ngi, ýý. c as a separate 

process which parses the query plan, instantiates the physical algebra operators that implement t he 

corresponding algorithms, and starts processing the partition, as ilhistrated in Figure : 3.5. 
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Figure 3.5: Query Execution on Component Services 

The figure depicts the way in which the query (from Listing 3.1) is evaluated. In step 1, the 

consumer sends the query to the GDQS Data Resource (initialised earlier during the setup phase). 

The query is then compiled and the partitions are sent to each participating nodes (step 2). Each 

execution node (i. e. each QES) is shown in the figure with the partition it is supposed to evaluate. 

Based on the compilation rules outlined in Section 3.4, each scan operator which accesses a database 

is assigned to the nodes where the data exists, while the operation_call and hash-join operators 

are parallelised over multiple nodes. The execution starts at the root partition and propagates 

down through the child execution nodes (step 3). Each execution node evaluating the partitions 

communicate among themselves by sending control and data tuples (step 4); the control tuples 

responsible for sending/receiving signals and the data tuples contain the actual data. The analysis 

service is invoked when needed by the corresponding operator on the designated execution node 

(step 5), and results start flowing back to the root evaluator evaluating the root partition (step 6), 

finally back to the GDQS (step 7) and to the consumer (step 8). 

The Query Evaluation Service on an execution node receives the query partition it is supposed to 

evaluate as an XML document embedded inside a SOAP message. Each partition document also 
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identifies itself using a unique identifier corresponding to the original query to allow concurrent eval- 

uation of multiple queries. On receiving a partition document, the service creates a separate Query 

Execution Engine on a new execution thread, and starts it by passing the partition document. This 

XML document is parsed based on a predefined schema, and each physical operator is instantiated 

along with all the arguments necessary to initialise the operator. The internal representation of a 

query partition is similar to a tree structure in algorithmic terms, with each operator connected to 

its input operator, unless the operator is a leaf operator like a scan or exchange of the partition. 

3.5.2 Evaluation Model 

The query evaluation service in OGSA-DQP follows the classic iterative model of query evaluation 
[66]. This model is an implementation of a data flow execution system, where each operator im- 

plements a common {open(, next O, close O} interface. Each of these three methods serve a 

definite purpose in the context of the operator. The open() method initialises each operator by 

instantiating all the internal storage, data structures and variables, such that the operator becomes 

ready to consume data from the input operator, and invokes open() on all the input operators. This 

allows the open() call to propagate down the operator tree thereby initialising all the operators in- 

volved in the partition. The next() method in each operator collects single tuples from the input 

operators and processes them, and the close() method closes all connections, releases all memory 

allocations and clears all temporary variables. The general sequence of invocations in the iterative 

model is an open(), followed by a series of next() calls till the end of data is reached and then a 

close() call to complete the operation. 

The query evaluation process starts with an open() call on the topmost (root) operator in the root 

partition, which propagates down the operator tree from parent to children until it reaches the leaf 

operators. The leaf operator can either be an exchange or a scan operator. In case of an exchange 

operator, the open() call is transmitted over the network to the remote producer which can be in 

another partition being evaluated on another execution node. In case of scan, this call initiates 

the database access via the OGSA-DAI Data Resource encapsulating the data source on that node. 

Once all operators are initialised, a series of next() calls again propagate down the operator tree 

from the topmost operator to the leaf operators. When the next() call reaches the scan operators, 

the already initialised OGSA-DAI Data Resource starts returning results from the database. The 

scan operators in OGSA-DQP use the getNBlocks() functionality of OGSA-DAI to return N blocks 

of data to minimise the service invocation overhead. These blocks of data are buffered inside the 

scan operator and one tuple at a time is returned to the parent of this scan operator during each 

invocation of next() thereby creating the upward flow of data. Considering the example query (in 
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Figure 3.1) and the corresponding multi-node execution plan (in Figure 3.4(d)), the evaluation starts 

at the root operator of the partition assigned to node NO (print, in this example) with an open() 

call on it. This call propagates down to the leaf operator of the partition and then to the partitions 

at the next lower level until it reaches the final leaf operators at N1, N2 and N3, which are the scan 

operators, from where the upward data flow starts. 

3.5.3 Data and Control Tuples 

The data accessed from the database by the OGSA-DAI service interface are formatted as XML. 

This XML formatted data is translated into an internal tuple structure inside the scan operator. 
The end-of-data is also represented by a special EOF tuple. This processing is done once during 

the scan operation to avoid expensive XML parsing at each operator level. Throughout the entire 

query evaluation phase, data is transmitted between the evaluation services on various nodes in this 

intermediate tuple format. At each operator level, the structure of the outgoing tuple (that is, the 

data type of each attribute in the tuple) is known as it is passed within the partition document. 

The structure of the incoming tuple is also known from the input operator. Based on these struc- 

tures, each individual attribute in the tuple can be accessed and processed. In order to signal the 

execution nodes about the processing, for example, signalling a child node to invoke open() on its 

root operator, or to signal the end of data, special tuples like control tuples and EOF tuples are also 
introduced. The tuple, described in Listing 3.4 is structured in such a way that the serialisation and 
de-serialisation facilities provided by the standard Apache Axis [77] web services framework can be 

utilised while transmitting tuples between distributed nodes over the network. While transmitting 

over the network, tuples are grouped together in a serializable structure with a query identifier added 

to the structure in order to preserve the context of the message at the destination. 

3.5.4 Encapsulation of parallelism by Exchange operators 

In the multi-node execution plans (in Figure 3.4(c) and (d)) and the overview diagram of the 

execution process (Figure 3.5), special exchange operators are introduced at the intersection of 

the executable partitions and above and below the attribute and location sensitive operators. The 

exchange operators, although implementing the same iterator interface, have different functionality in 

that they encapsulate the communication and data transfer between distributed nodes and introduce 

horizontal and vertical parallelism in the query execution plan. 
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Listing 3.4 Thple Structures in XML 
<xs: complexType name-"TransportTuple"> 

<xs: ssquence> 
<xs: choice> 

<xs: element name-"DATA" type-"msg: TransportDataTupls" minOccurs-"0"/> 
<xs: element name-"EOF" type-"msg: TransportEOFTuple" minOccurs-"0"/> 
<xs: elsment name-"STATUS" type-"msg: TraneportStatuiTuple" minOccurs-"0"/> 
<xi: elemoat name-"CONTROL" type-"meg: TransportControlTuple" min0ccurs-"0"/> 

</xs: choice> 
</xs: sequence> 
<zs: attribute name-"size" type-"xs: int" use-"required"/> 
<xs: attributs name-"transport upl. Type" type-"msg: TransportTupl. Typs"/> 

</xs: complexType> 
<xs: complsxType name-"TraneportDataTuple"> 

<xs: sequence> 
<xs: element name-"data" type-"apachesoap: Vector" nillable-"true"/> 

</xs: sequence> 
</xs: complexType> 
<xs: complexType name-"TransportEOFTuple"> 

<xs: sequence> 
<xs: element name-"EOF" type-"xs: boolean" nillable-"true"/> 

</xs: sequence> 
</xs: complexType> 
<xs: complexType name-"TrsnsportStatu. Tuple"> 

<xs: sequence> 
<xs: element name-"OPENED" type-"xs: booleaa" nillable-"true"/> 
<xs: slemeat name-"CLOSED" type-"xs: boolean" nillable-"true"/> 

</xs: sequence> 
</xs: complexType> 
<xs: complexType name-"TraneportControlTupls"> 

<xs: sequence> 
<xs: element name-"OPEN" type-"xs: boolean" nillable-"true"/> 
<xs: element name-"CLOSE" type-"xs: boolsaa" nillable-"true"/> 
</xs: sequence> 
</xs: complexTyps> 

<xs: complexType name-"ArrayOiTransportTuples"> 
<xs: sequence> 

<xs: element name-"context" type-"xs: string"/> 
<xs: element name-"destination0perator" type-"xs: string"/> 
<xs: element name-"fields" type-"meg: Traasportluple" nillable-"true" max0ccurs-"unbounded"/> 

</xi: sequence> 
</xs: complexType> 
<xs: simpl. Type name-"TraneportTuplsType"> 

<xs: restriction base-"xs: NMTOKEN"> 
<xs: enumeration value-"DATA"/> 
<xs: enumeration value-"EOF"/> 
<xs: enumeration value-"STATUS"/> 

</xs: restrictioa> 
</xs: simpleType> 

3.5.4.1 Horizontal and Vertical Parallelism 

The Operator Model of Parallelism as explained in [24] are implemented by encapsulating both 

vertical and horizontal parallelism in the exchange operator. Horizontal parallelism requires redis- 
tribution of data between operators. Each exchange operator is parameterized with a distribution 

policy (also known as arbitration policy), such as round-robin, hash-distribution based on the result 

of a hash function applied on a specific attribute. The exchange operator distributes the data tuples 
based on this arbitration policy. Thus, multiple instances of the same operator can be executed in 

parallel on different subtrees on different hosts. This is typically done for expensive operators such 

as join and operation-call which are assigned to multiple partitions, and exchange operators use 

arbitration policies to distribute data to these instances. 
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Vertical parallelism is supported in an exchange operator by encapsulating a context-switching be- 

tween the execution threads and using a shared data-structure between the two processes to syn- 

chronise and exchange data. The exchange operator implements the producer-consumer scenario by 

spawning a new thread in its open() method, after which, the parent thread operates as a consumer 

and the child thread operates as a producer. The producer thread then drives the subtree rooted in 

it, and based on the list of consumers and the arbitration policy, it decides the destination of each 
data tuple fetched by the next () call. The exchange operator in the consumer thread acts as a nor- 

mal iterative operator, the only difference being in its next() implementation, where it receives the 

tuple via inter-process communication mechanisms from the shared data-structure, such as message 

queues, instead of the standard next() invocation on its input operator. The exchange operator on 

the producer thread on the other hand invokes the next() method on its input operator to fetch 

the next tuple. Figure 3.6(a) and Figure 3.6(b) (in the context of the example query) illustrate the 

functionality of the exchange operator. 

3.5.4.2 Exchange operators in OGSA-DQP 

In OGSA-DQP, a slightly different implementation of the exchange operator is used to cater to 

service-orientation and the possibility of a geographically distributed environment where partitions 

may be evaluated by services on physically different hosts. Thus, the initialisation process of these 

operators requires a different methodology. They can broadly be classified into three variants - 

1. Leaf Exchange - exchange operators that are the leaf operators in a partition, for example 

xO in partition NO. These do not have any input operator, but may have remote producers 

assigned to other partitions. 

2. Root Exchange - exchange operators that are the root operators in a partition, for example x10 

in partition Ni. These have one input operator and possibly one or more remote consumers 

assigned to other partitions. 

3. Intermediate Exchange - exchange operators that exist between other operators, for example 

x2 in partition N2. These operators have one input operator and can have multiple remote 

and local producer and consumers3. 

The leaf and root exchange operators behave with minor variations from the intermediate exchange 

operators as far as the initialisation and the invocation of next() operation are concerned. When 

3The producers and consumers mentioned in this context are essentially other exchange operators which can receive 
data from these exchange operators or send data to them. 
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the open() call propagates down to the leaf exchange in a partition, an open tuple is sent to each 

of the remote producers of this exchange. Each exchange operator initialises itself (and spawns the 

consumer thread if required) once all possible open() calls are received by it. Each root exchange 

operator should receive as many open() calls as it has remote consumers. On the other hand, the 

number of open() calls received by each non-root exchange operator should be one more than the 

number of remote consumers (as these operators will always have a parent operator). Thus, during 

the initialisation phase, the exchange operators invoke open() on its input operator and all the 

remote producers (if any) by transmitting open tuples to the remote evaluation service, and wait 

until all the open() calls meant for it are received. Once all such calls are received, the operator 

progresses itself either by spawning the new execution thread (in case of intermediate exchange 

operators) or by invoking the next() method. The next() operation in turn either continually 

invokes the next () method of the input operator or fetches the next tuple from a message queue 

where incoming tuples are deposited. In this way, the exchange operator drives the operator subtree 

rooted at itself. 

The reverse happens when an EOF tuple is received. An EOF tuple signals the end of data from the 

corresponding stream. The close() procedure is initialised, but the exchange operator will disable 

itself, and release all the resources once it receives the expected number of close() calls from the 

input operator and the remote consumers (if any). Thus, on receiving the first close () request, the 

operator will transmit close tuples to all its remote producers (if there are any), invoke the close() 

operation on its input, and wait for all the close() invocations on itself. Once the required number 

of requests are received, the operator will disable itself by releasing all the resources, resetting the 

variables and terminating the child thread. The exchange operation is described algorithmically in 

the listings 3.5,3.6 and 3.7. 

As the next() calls at the leaf operator start producing the data, tuples flow upwards from the leaf 

operators to the root, being processed at each operator level by the corresponding operator algorithm. 
From the root operator at the root partition, which is normally a deliver or print operator, the result 

propagates back to the GDQS using the GDQS-provided data transport mechanism. The end of 

the data stream is signalled by the EOF tuple at which stage, the root operator (print) invokes the 

close() method, which propagates down the operator tree to the leaf operators thereby releasing 

all resources that were being consumed during the computation. The result is finally packed in the 

predefined delivery format and delivered back to the client using the data delivery activity (provided 

by OGSA-DAI) specified by the client. 
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Listing 3.5 Exchange Operator - Open() method 

1 public void open() { 
2 open calls received = 1; 
3 If (exchange has remote producers) { 
4 for (1=0; I< number of remote producers; i++) { 
5 invoke open on remote producer; 
6} 
7} 
8 If (inputO perator 1= null) { 
9 /s invoke open on the input operator s/ 

10 inputO perator. open(); 
11 } 
12 /* wait for all open invocations on this operator "/ 
13 waitForOpen () ; 
14 } 
15 
16 public synchronized void waitForOpen () { 
17 while (open calls received < expected open calls) { 
18 /s wait at the message queue */ 
19 Tuple tuple = tupleQueue. get(); 
20 if (tuple = OPEN) { 
21 Increment number of open calls received; 
22 } 
23 } 
24 set status to opened; 
25 enableExachange(); 
26 } 
27 
28 private synchronized void enableExchange() { 
29 /* in case of intermediate exchange operators s/ 
30 if (input operator 1= null) { 
31 producerExchange = new Thread(); 
32 producerExchange. start(); 
33 } else { 
34 Tuple result = inputO perator. next(); 
35 If (tuple = EOF) { 
36 close(); 
37 } 
38 } 
39 } 

Listing 3.6 Exchange Operator - Next() method 

1 public Tuple next() { 
2 If (producerExchange or root operator) { 
3 Tuple tuple = inputOperatornext(); 
4 if (tuple = EOF) { 
5 send EOF to all consumers; 
6} 
7 while (tuple 1= EOF) { 
8 send tuple to consumer identified by arbitration; 
9 tuple = inputO perator. next(); 

10 If (tuple = EOF) { 
11 send EOF to all consumers; 
12 } 
13 } 
14 } else if (consumer thread or leaf exchange) { 
15 /* wait for tupfe in the queue */ 
16 Tuple tuple = exchangeQueue. get(); 
17 if (tuple = EOF) { 
18 wait for all EOF; 
19 number of EOF = number of producers; 
20 } 
21 return tuple; 
22 } 
23 } 
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Listing 3.7 Exchange Operator - Close() method 

public void close() { 
close calls received = 1; 
if (exchange has remote producers) { 

for (1=0; I< number of remote producers; i++) { 
invoke close on remote producer; 

} 
} 
If (inputOperator 1= null) { 

/* invoke close on the input operator ./ 
inputOperator. close 

} 
/* wait for all close invocations on this operator 
waitForClose (); 

} 

public synchronized void waitForClose() { 

while (close calls received < expected close calls) { 
/w wait at the message queue */ 
Tupfe tuple = tupleQueue. get(); 
if (tuple - CLOSE) { 

Increment number of close calls received; 
} 

} 

set status to closed; 
disableExachange(); 

} 

private synchronised void disableExchange() { 
/* in case of intermediate exchange operators */ 
if (producerExchange 1= null) { 

terminate thread; 
} 

reset variables; 
release resources; 

35 } 

3.5.5 Encapsulating Service State 

Web Services are autonomous entities with explicit boundaries and the execution state of a service 
(or its child processes) should be encapsulated within the service. The services communicate by 

exchanging messages and often the requests and responses must be correlated with each other for 

meaningful operation. While processing a request, a service may receive a series of messages, each 

related to the same request, in which case, each message received by the service must be correlated 

to the original request and processed accordingly. Further, multiple services may be participating in 

processing a particular request, in which case, messages exchanged between all these services must 
be correlated in the same manner, which can otherwise be described as "associating a message with 

a specific conversational context" [109]. The Web Service Architecture document [109] describes 

this form of message correlation as: 

"Message correlation allows a message to be associated with a particular purpose or con- 

text. In a conversation, it is important to be able to determine that an actual message 
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that has been received is the expected message. Often this is implicit when conversa- 

tions are relayed over stream-oriented message transports; but not all transports allow 

correlation to be established so implicitly. " 

This has been the design choice for the Query Evaluation Service. 

Each Query Evaluation Service is capable of processing several queries simultaneously by evaluating 

multiple partitions in separate instances of the evaluation engines running in separate threads. Each 

evaluation process is dependent on receiving data from other participating services. As each instance 

of the evaluation service might be processing several queries at the same time, it may receive data 

for each of the evaluation processes from other services. Thus, the evaluation service is stateful in 

the sense that there is a "state" internal to the service, and there is an "interaction state" associated 

to each message exchange, where the service is responsible for identifying the destination thread 

for each packet of data received, and each recipient thread has to correlate the packets received 

with its execution state. In OGSA-DQP, the state is encapsulated within the service itself and a 

context is embedded within the messages that are transmitted. The service itself is implemented 

on the basis of the WS-I Basic Profile [21] as opposed to other statefut web service architectures 

such as the use of WS-Resource Framework [43,110]. The service state (state of each evaluation 

process) is maintained using various data structures4, and the context of each communication is 

passed within the message in form of an identifier. Each service receiving a set of data uses this 

identifier to locate the destination process for the data received. This implementation is similar to 

the proposals on using existing Web Services standards and technologies for Grid applications, such 

as in WS-GAF [27]. In this section, the architecture of the query evaluation service is discussed in 

details with particular focus on issues regarding the query execution states in order to underline the 

innovations and novelties. Figure 3.7 shows the components of the query evaluation service. 

The Query Evaluation Service adheres to the principles of document-oriented services, and exposes 

a rich interface which is capable of receiving XML-structured query partitions from the GDQS and 

partial results in XML format from other evaluation services. The XML fragment in Listing 3.8 

is a section from the WSDL description of the evaluation service which describes the evaluation 

service interface with the operations that are exposed and the data types that are expected for these 

operations. Three operations, namely evaluate, sendData and sendMessage form the evaluator 

service interface, each responsible for different activities. The coordinator sends a query partition to 

the evaluation service using the evaluate operation, which triggers the entire evaluate operation. The 

other two operations, such as sendData and sendMessage are used by the evaluators to communicate 

between themselves by exchanging tuples containing data and control messages. 
4Note that the state can also be stored in databases, which is the primary approach in 7Yansactional Grids. 
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Figure 3.7: Architecture of the Query Evaluation Service 

Listing 3.8 Description of the Query Evaluation Service interface 
<portType name-"QueryEvaluationportType"> 

<operation name-"evaluate"> 
<input message-"tns: evaluateRequestMessage"/> 
<output message-"tna: evaluateReaponseMessage"/> 
<fault name-"evaluationException" message-"tns: evaluationExceptionMeseage"/> 

</operation> 
<operation name-"sendData"> 

<input message-"tna: sendDataRequestMessage"/> 
<output message-"tns: sendDataResponseMessage"/> 
<fault name-"sendDataException" message-"tns: sendDataExceptionMessage"/> 

</operation> 
<operation name-"sendMessage"> 

<input message-"tns: sendMessageRequestMessage"/> 
<output message-"tns: aendMessageResponaeMessage"/> 
<fault name-"sendMessageException" message-"tns: sendMessageExceptionMessage"/> 

</operation> 
</portType> 

The service is capable of handling multiple query partitions at the same time. Each time an XML- 

formatted query partition is sent to the evaluation service, a new evaluation engine is initialised with 

various components such as Data Translators which are responsible for translating semi-structured 

partial results received from other evaluation services participating in the same query into internal 

tuple format and Transport Handlers which are used by the exchange operators while sending data 

to remote evaluation services and the print operator while returning the results back to the GDQS. 

A shared Object Builder component internally translates the XML-formatted partition into a tree 

of physical operators that are responsible for processing each tuple. Each of these operators are ob- 

jects implementing the iterator interface, and encapsulate the physical algebra within their open 0, 

next O and close O operations. Each operator tree is associated with the evaluation engine respon- 

sible for the actual processing of the partition. Each engine maintains a collection of data structures 

for internal operation such as storing the process states and receiving messages from remote services. 
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Each query that is submitted at the GDQS is assigned an unique identifier which is propagated 

within the query partition sent to each evaluation service. This identifier is used to keep track 

of the states of each processing engine. Every data or control message that are exchanged in the 

system contains this unique identifier which enables the recipient service interface to correlate the 

request being processed with the messages received and to identify the actual destination process 

and forward the message to the proper destination queue. 

Once the evaluation of a partition is finished, the corresponding evaluation engine would wait for its 

termination, which is triggered by the invocation of the close() operation on the root operator of 

the associated operator tree. The print operator in the root partition invokes the close() operation 

which propagates down the operator tree closing each operator. At the leaf exchange operator on a 

partition boundary, a control message is sent to the evaluation service upstream, where the close 0 

method on the root operator is triggered. This chain of events continues until all operators are closed 

and all resources consumed by the operators are released. Finally, each query execution engine is 

terminated along with the associated objects such as the Data Translator and Transport Handler. 

3.6 Discussion 

This chapter introduced the OGSA-DQP framework which is based on the concepts of service ori- 

ented architectures and is capable of processing queries over distributed databases. The research was 

carried out as a collaboration between Manchester and Newcastle Universities and thus this thesis 

does not claim the sole credit for the research. The work done in defining the overall architecture 

of the system is considered as one contribution towards this thesis. The major contribution lies in 

the design, implementation and evaluation of the run time query evaluation engine, which imple- 

ments the physical query algebra and encapsulates all the complexities of routing and distribution 

of messages containing tuples for effective processing of a query. 

The OGSA-DQP framework described in this chapter is service-based in two orthogonal senses - 

" OGSA-DQP allows virtualization of resources in the sense that it supports queries over dis- 

tributed data storage and analysis services which are factored out as services. 

" The process of generating the distributed query plan, as well as evaluating the query over 

resources available on the Grid, are factored out as services. 

OGSA-DQP uses the existing OGSA-DAI services for accessing data thereby allowing distributed 
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querying in a homogeneous way over heterogeneous data sources. In essence, OGSA-DQP follows a 

wrapper-mediator approach where the DQP framework acts as a mediator over OGSA-DAI wrappers 

over the data sources. Previous work on Polar* has been successfully incorporated within the GDQS 

component of DQP which allows the parallel execution of the query partitions on multiple hosts. 

The GDQS has been implemented as an extension to the existing OGSA-DAI services. 

However, the evaluation service has been designed and implemented with a different approach to 

the OGSA-DAI based architecture of the coordinator. It is designed as a WS-I Web Service using 

already existing standards and toolkits thereby making it completely inter-operable. The service 

state is encapsulated within the service, and messages are correlated using a context embedded 

within each message, which follows the approach recommended by the Web Services Architecture 

document [109]. The evaluation service creates the infrastructure for evaluating a query partition by 

implementing the physical query algebra based on the classic iterator model of query evaluation. It 

also encapsulates the data distribution between operators evaluating different partitions of the same 

query within a special exchange operator. The query evaluation service is also capable of evaluating 

multiple partitions simultaneously within separate processes that are isolated from one another, and 

special attention is given to message correlation within such a setting where a service is likely to 

receive multiple messages from several remote sites for each query being processed. The evaluation 

services are thus scalable in terms of the number of queries that can be processed simultaneously. 

One concern, however, exists regarding the transmission of data packets between participating nodes. 
The data tuples are serialised using the Apache Axis libraries and are transmitted across the network 

as SOAP messages. This is not an efficient way of transmitting packets of large size because the 

cost of serialisation and de-serialisation tends to increase for larger sized packets and such packets 

also incur a higher transmission cost. Recently, there has been advancements in sending binary data 

within a SOAP message using new specifications and standards, and it is possible to adopt these 

mechanisms within OGSA-DQP, which should reduce the transmission overhead dramatically. 



Chapter 

Dynamic Service Deployment 

This chapter will introduce a framework which allows dynamic demand-driven deployment of services 

on available computational resources. The traditional grid computing concept has a distributed job 

scheduling system at its core where jobs can be scheduled dynamically, and conventionally, a grid 
has been synonymous to a computing infrastructure supporting systems such as Condor [3,2], 

Globus [4] etc. The DynaSOAr (Dynamic Service Oriented Architecture) framework introduced in 

this chapter proposes an alternative approach to Grid computing where the distributed applications 

are built around services. 

4.1 Distributed Job Scheduling 

Most Grid computing infrastructures like Condor [3,2], Globus [4] or Sun Grid Engine [111] utilise 

some form of Distributed Job Scheduling for routing consumer jobs to remote computational re- 

sources. A job, which is a combination of the executable code and in most cases the data on which 
the code will operate, is created by the consumer, and submitted to the job scheduling system. The 

scheduler routes the job to an available host suitable for executing it, and once the job is completed 

on that host, the consumer is notified of the result. Condor uses a matchmaking approach to match 
the requirements of the consumer request with the characteristics of the available resources in order 

to find out a suitable target for executing the job. In Condor, the consumer submits a job to an 

agent. The agent stores the job'in persistent storage and searches for resources that are suitable 
for executing the job. Agents and the resources advertise their characteristics and policies to a 

matchmaker, which introduces potentially compatible agents and resources. After this matchmak- 
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ing phase, the agent establishes contact with the resource and verifies the compatibility. Separate 

processes are started on both sites (the agent and the matching resource) for executing the job. A 

shadow process on the agent side provides all the relevant details required to execute the job, and 

a sandbox process on the resource creates a safe environment for execution for the job protecting 

the resource from any malicious interference. The job with the execution code and input data is 

passed to the sandbox at the resource for execution. Although an agent and a resource are logically 

separate entities, they can reside on a single physical host. 

It is to be noted that the common approach for executing a job in Condor is to provide the execution 

code and the inputs (if required) as well. A consumer request may involve retrieving large amounts 

of data from a database. Unless the host which stores the data is explicitly specified as the target 

machine within the job, it might require the data to travel over the network, and as Condor does 

not have the knowledge about this data access, it will not make any attempt to schedule the job at a 

host closer to the data. Further, this approach of using jobs, is an one-time affair, as the execution 

code for the job is not stored at the execution site. For each request for the same job, with different 

data as input, the execution code and data would have to be transferred to the execution site for 

redeployment and execution. The redeployment of the execution code for each execution request 

may become costlier when the execution code itself is large, such as virtual machine images. Hence, 

for requests which process large amounts of data, and are frequent in nature, or for large analysis 

code, an alternative approach with a "deploy once, use many times" characteristics may be more 

suited. It may be possible to retain the execution code at the execution site by extending Condor. 

But, for meaningful use, additional capabilities such as the ability to discover an execution code 

for future use, or the possibility of multiple deployments to share the invocations, or the standard 

interface for invocation etc. will be required. 

4.2 The Evolution of DynaSOAr 

This section discusses the motivation behind the development of DynaSOAr, the conceptual back- 

ground, the requirements to be satisfied by DynaSOAr and the design issues encountered. 

4.2.1 Jobs and Service Orientation 

In recent years, there has been a considerable shift towards the use of the Service Oriented Archi- 

tecture and technologies for building Grid and other distributed applications. In a service-oriented 
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framework, an application can be a combined set of autonomous services which communicate be- 

tween themselves by exchanging SOAP [5] messages. The service interfaces are described by a 

standardised language, WSDL [101]. When the computational requirement of these services can not 
be satisfied by the environments in which these are hosted, the current strategy is to create a job 

and send it to a distributed scheduling system (like Condor) for execution on a suitable host. This 

forces the application developers to deal with two different types of computational entities - services 

and jobs. 

This chapter describes an alternative approach which builds on the concept of services only. Dy- 

namic Service Oriented Architecture (DynaSOAr) [19] is a framework for deploying Web Services 

on demand over computational resources available over a Grid or the Internet. DynaSOAr advo- 

cates an approach to Grid Computing where distributed applications revolve around the concept of 

services rather than jobs. When a consumer makes a request for a service to the Service Provider, 

the request is serviced by a host most suited for the requirements specified by the consumer. If no 

existing deployment exists or if performance requirements cannot be met by existing deployments, 

this framework automatically deploys the service on an available host. In essence, this is analogous 
to remote job scheduling, but offers the opportunity for improved efficiency in the long run as the 

cost of moving and deploying the service can be shared across the processing of many messages over 

the time. Further, the philosophy behind DynaSOAr is "deploy once, use many times", which is 

contrary to the conventional job-oriented systems, where the execution of a job is an one-time affair. 

The key architectural feature in DynaSOAr is the logical separation between service provisioning 

and resource provisioning and clear distinction of the responsibilities of the components. The Web 

Service Provider makes services available to the consumers by exposing an endpoint to the service, 

and Host Providers offer computational resources on which the services can be deployed and messages 

processed. These components are supported by others such as the Service Repository which stores 

the deployable versions of the services, Brokers, who decide to which set of Host Providers a message 

should be routed, and Registry, which stores description of the services and the associated metadata. 

All these components taken together create a framework built over loosely-coupled interactive Web 

Services. The approach provides three potential benefits over existing approaches that utilise both 

jobs and services - 

1. The development process is simplified as it is confined to the service-oriented architecture 

alone; 

2. There is a possibility of improved performance as the deployed service is retained on the 

host. This allows the service to be used for as long as required, thereby spreading the cost of 
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deployment over many invocations of the service; 

3. The clear distinction between Service Provider and Host Providers allow new organization- 

al/business models. 

4.2.2 The Active Information Repository 

The Active Information Repository architecture proposed in [7] is aimed at collocating the data 

processing and analysis code with the data by providing a cluster of computational resources closer 

to the data. The proposal envisages that information repositories will be made available for the Grid 

in order to cope with the astronomical volumes of data produced by current research projects such 

as the high energy physics experiments at European Organization for Particle Physics (CERN) [56] 

or the SLOAN Digital Sky Survey [23] project. The repositories will be even more valuable if along 

with the data storage, some computational power is provided for the users to perform analysis on 

the data retrieved from these data repositories on the same site. This is to avoid transmitting large 

amounts of data over long distances, potentially reducing the cost of data transmission and thereby 

increasing the efficiency. The major components of this Active Information Repository are a scalable 

object database server with a scalable agent-execution server connected to it via a high-bandwidth 

network. The object database server will hold persistent data on a cluster of nodes, each of which 

will contribute to the storage and computational capacity of the complete system. Computations to 

be performed on the data will be sent, in the form of mobile agents for execution on the agent-server, 

which again can use a set of nodes to increase scalability. 

The work on DynaSOAr, although not using agent systems, was inspired by the concept of moving 

the computation closer to the data to increase performance as proposed in the Active Information 

Repository architecture. A service-oriented version of the Active Information Repository is shown 
in Figure 4.1 where the system (a cluster of one or more computational nodes) that hosts the data 

and metadata also hosts services operating on that dataset, and also allows the consumers to deploy 

and share their own services for analysing the data [112]. 

4.2.3 The Consumer View of a Service 

From the point of view of the consumer, depicted in Figure 4.2, a Web Service invocation is neces- 

sarily an interaction with the service instigated by sending a SOAP message. Various libraries (such 

as Apache Axis [77]) convert an application level invocation into a correct SOAP message format 

which is then delivered to the service via a transport mechanism (such as HTTP) specified within 
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Figure 4.1: The Active Information Repository Architecture 

the service interface. For successful processing, the message must conform to the types defined in 

the service interface description (WSIL [101]), which is checked at the service provider endpoint. 

The message may then be transformed into objects and structures that are internal to the service 

and processed by the encapsulated service logic. Any generated response is sent back using the same 

transport mechanism. The business logic and the implementation of the service remains transparent 

to the consumer who is never aware of the internal processing that is performed behind the service 

interface. 
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Figure 4.2: Invocation of a Web Service 
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One of the key aspects in this architecture is the logical separation of the service interface and the 

actual implementation and location of the business logic. One relevant example is the Amazon S3 

Storage Service [52] which provides storage facilities for the consumers over the internet. Consumers 

who use this facility are never aware of the actual location or the type of the data storage device, 

or the way in which the data is stored. Thus, two key properties that come out of this separation 

and are of major relevance to the concept of DynaSOAr are - 

" Execution transparency - The consumer of a service is only aware of the exposed service 
interface which is published as a WSDL document, and the endpoint (the address specified 

within the service description) to which the request must be sent. Beyond this, the consumer 
is not aware about the implementation details of the service logic, or the actual host where the 

logic is executed, or any other associated entities, which leads to the "execution transparency". 

" Loose Coupling - As the consumer is only aware of the interface exposed by the service there 

is minimal coupling between the consumer and the service. There is no dependency at the 

consumer side on the platform on which the service is executed or the language in which the 

service has been implemented. The current toolkits also allow the implementation of a service 

to be completely replaced without changing the interface. 

The concept of dynamic service deployment in DynaSOAr is based on these two properties of service 

oriented architectures. 

4.2.4 Formation of Dynamic Virtual Organisations 

From the discussion so far, the straightforward conclusion may be drawn that the service provider is 

responsible for hosting the service(s), which may be little restrictive and premature in nature. Virtual 

Organisations are an important aspect in grid computing where separate organisations collaborate for 

sharing their resources in order to achieve a common goal. It is possible to envisage an organisation 

whose area of expertise is the development of analytical services in a certain domain who might want 

to outsource the hosting of the services to another organisation who expertise in providing compute 

resources. In such a scenario, the two organisations form a highly dynamic Virtual Organization 

and collaborate amongst themselves for sharing the resources. The Amazon Elastic Compute Cloud 

(Amazon EC2 [88]) may be sited as a relevant example of hosting services. 

DynaSOAr creates the possibility of forming such dynamic Virtual Organisations by differentiating 

between service provisioning and resource provisioning. To support such on-demand resource pro- 
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visioning DynaSOAr introduces the concept of a Ilost, Provider which is responsible for providing 

the computational resources, such as the Amazon Elastic Compute Cloud mentioned before. I)yna- 

SOAr does not impose any coupling between the service provider and the host, provider other tlian 

a mutually agreeable contract in form of message patterns which cause a "handshake" between botli 

the parties. The interface to the service (as seen by the consumer) does not change, neither does 

the assumption of the consumer about the existence of the service at, the service provider's site. 

The existence of the Host Provider is hidden behind the Service Provider maintaining the two key 

aspects discussed above, viz., execution transparency and loose coupling. The introduction of this 

new level is shown in Figure 4.3. 
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Figure 4.3: Formation of a Virtual Organization between the Service Provider and the Host Provider 

4.2.5 Principles of Dynamic Deployment 

llynaSOAr conceives the idea of deploying a service when there is a demand for it. All services 

registered in a registry are advertised by the service provider as services that can be provided, 

whether or not they are deployed. A consumer is able to request for any of those services, and the 

decision for deployment is made when a request is received for a particular service. This policy 

allows the framework to host only the services that are being used, which effectively is a cleaner 

approach, and secondly, once a service is deployed, it remains available for all the consumers to use, 
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unless explicitly undeployed. On receipt of a request for a service, the service provider forwards the 

request to a suitable host provider, and there may be two different interaction patters depending 

upon whether or not the requested service is already deployed on the node - 

1. If the service is already deployed on the computational node where the request has been sent for 

processing, then the SOAP message is routed to the destination service by the Host Provider. 

In Figure 4.4(a), the consumer makes a request for service S2, which is already deployed on 

nodes Nl and N2. Based on the current information about the system load, the Host Provider 

routes the requested to the lightly-loaded N2 where the request is processed and the response 

sent back. 

2. In the second case, the consumer makes a request which is not already deployed on any of the 

available nodes, such as the request for service S8 sent by the consumer in Figure 4.4(b). In 

this case, a decision is made about the target node where the service is to be deployed and the 

message is forwarded to that node. The target node downloads the deployable service code 
from the service repository (identified in the message header), deploys the service dynamically, 

and process the request. 

In both the situations described above, the consumer is not aware of the resources behind the 

Service Provider or the fact that the service might have been deployed dynamically. They interact 

only with the Service Provider by sending SOAP messages which is the standard way of interacting 

with services. Once a service is deployed on a host, it is retained there ready to process messages 
for all future invocations of the service, until it needs to be reclaimed which is likely when the 

demand for other services increase. This retention of the service on the node can potentially generate 
large efficiency gains because the one-time cost of deployment is spread over many invocations of 

the service. GridSHED [113,114], a related project has developed heuristics-based algorithms for 

determining the optimal policies which decide when an existing deployment should be used compared 
to a new deployment on a new node. 

4.2.6 Requirements for DynaSOAr 

To satisfy the scenarios presented in Section 4.2.5, certain requirements must be supported within 

the DynaSOAr framework. The requirements that are satisfied by the prototype system are listed 

below: 

9 Ability to route service requests - The DynaSOAr Service Provider should be able to 
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Figure 4.4: Routing of requests in DynaSOAr 

route the requests sent by a consumer for a certain service to an appropriate Host Provider 

instance in a manner which will be transparent to the consumer. 

" Mobile service implementations - The services must be implemented and packaged in a 

way which will allow them to be downloaded from the repository and deployed on any host 

with a web service container. 

. Resource Allocation - DynaSOAr should be able to allocate resources on-demand from a 

pool of available resources for the deployment of a service. It should also be capable of dealing 

with a volatile environment such as the Grid, where resources may come and go. 

" Un-interrupting deployment of a service - DynaSOAr must be able to deploy new ser- 
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vices on a designated host without interrupting the execution of the services that are already 
deployed on it. 

" Ability to store the services - As opposed to the "one-time" affair of the job-scheduling 

systems, DynaSOAr should be able to store the service code in a persistent storage that will 
be accessible to the hosts needing to download the package. 

" Resource Handshake - In order to perform better scheduling, DynaSOAr must know about 
the nodes available to it. This is possible by registering each node when it becomes available 

with the parent in the hierarchy of components. This may also be treated as an approach for 

establishing trust between the components. 

4.2.7 Design Considerations 

In this section, a set of design issues that affected the design of the DynaSOAr component services 

are discussed. 

4.2.7.1 Using SOAP Message Headers 

The standard way of invoking a Web Service from the consumer point of view is to send a SOAP 

message to the service. Even when using programmatic approach (such as Apache Axis) of binding 

to the service, and generating stubs and skeletons before actually invoking the service, all that the 

consumer is effectively doing is sending a SOAP message. A SOAP message contained in a SOAP 

envelope is composed of two distinct components with different purposes. The optional SOAP 

header element may be used to attach special instructions or transmit authentication or session 

management information. The actual processing instructions compose the SOAP body section. An 

example SOAP message sent by the consumer requesting for the EntropyAnalyserService is shown 
in Listing 4.1 below. It is to be noted that the address to which the message is sent does not appear 

within the message header or body, but is attached to the envelope when the message is sent across 
the network. The WS-Addressing [46] standard however specifies the use of explicit addressing fields 

in the message header. The use of message header to convey special information in DynaSOAr are 
discussed in the later sections. 
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Listing 4.1 An example SOAP message requesting the EntropyAnalysis service 
<soapenv: Envelope xmins: soapenv-"http: //schemas. amisoap. org/soap/envelope/" 

xmins: xsd="http: //www. w3. org/2001/XMLSchema" 
xmins: xsi-"http: //www. w3. org/2001/XMLSchema-instance"> 
<soapenv: Header> 

<! -- Header information --> 
</soapenv: Header> 
<soapenv: Body> 

<I-- request to the service --> 
<m: calculateEntropy xmlns: m-"http: //entropy. neresc. ncl. ac. uk"> 

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence> 
</m: calculateEntropy> 

</soapenv: Body> 
</soapenv: Envelope> 

4.2.7.2 Using Message Orientation 

Apache Axis [77] provides four styles for designing Web services, namely, (i) RPC, (ii) Document- 

oriented, (iii) wrapped and (iv) Message-oriented. These styles offer different options while designing 

the services, the RPC (Remote Procedure Call) being the default style. There have been several 
debates about the style of a Web Service and the document-oriented style is regarded as the most 

widely accepted and used format because of its richness and ability to describe a service and its 

operations. In DynaSOAr, each component makes use of the SOAP message header, and hence 

the services should be able to process the XML-formatted SOAP messages directly. Further, there 

are good arguments behind this message-oriented style, because this allows the consumers to be 

completely unaffected by the implementation at the server. This style proposes the use of a single 
interface at the service level, and the service implementation performs different operations based on 

the type of the incoming message. The primary requirement of this style is a detailed description 

of all the messages that can be processed by the service. In DynaSOAr, the participating compo- 

nents exchange messages which are defined in an XML schema. Consumers invoke the intended 

service using the standard procedures which result in a SOAP message being sent to the service. 
These messages sent by the consumers conform to the messages expected by the target service and 

can be generated using existing toolkits. The DynaSOAr service provider is able to distinguish 

these messages from any other message from another DynaSOAr component, and can process them 

accordingly, that is, forward them to the appropriate host provider for processing. 
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4.3 The design of DynaSOAr 

The two major components of the DynaSOAr framework which allow the dynamic provisioning of 

services by processing the incoming consumer requests at different levels are namely a Web Service 

Provider and a Host Provider'. Two other components which perform roles that are not directly 

related to a consumer request, but are of utmost importance for on-demand provisioning of services 

are the Service Repository and the Registry. Each component in DynaSOAr is itself implemented as 

a service which opens up a wide range of deployment scenarios. For example, the Service Repository 

may be owned by the Service Provider, and access to it can be restricted to the Host Providers it 

trusts. The repository can also be a public repository, independent of any one Service Provider. It is 

even possible for the framework to be domain-specific, so that researchers collaborating in a specific 

area can share the repository. This section provides a description of each of these components. 

4.3.1 Service Provider 

The Service Provider is the entity with which consumers interact. It advertises the services it can 

provide, and accepts SOAP messages from consumers requesting a service from a particular endpoint 

associated with the message. The Service Provider is responsible for arranging the processing of the 

request. To achieve this, the Service Provider chooses an appropriate Host Provider and forwards 

the request to it with any associated Quality of Service (QoS) parameters and an added element in 

the message header identifying one or more software repositories from where a deployable version 

of the service can be acquired in case dynamic deployment is necessary. The Service Provider itself 

is designed as a Web Service, and conforms to the message-oriented style of Web Services. From a 

consumer point of view, a service is always exposed at the Service Provider end, and the consumer 

sends a message to the Service Provider, requesting the intended service. The DynaSOAr Service 

Provider extends the handler-chain concept used in Apache Axis [77], and the message is intercepted 

before it reaches the Service Provider. This is essential as the service endpoint within the message 

sent by the consumer will be that of the requested service, which may be either deployed on a 

different resource or may not even be deployed at that point of time. The intercepted message is 

modified in order to route it to the actual Service Provider web service, with a newly added element 

in the header denoting the abstract name of the service which is requested - an example of which is 

shown in Listing 4.2. 

Once this message reaches the Service Provider, it can process the message accordingly, by either 

1From this point onwards, the terms DynaSOAr Web Service Provider and Service Provider will be used inter- 

changeably. Similarly, the terms Service and Web Service will be interchangeable as well. 
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Listing 4.2 An example SOA P message with it modified header element at the Service Provider 

<soapenv: Envelope xmins: soapenv="http: //schemas. xmisoap. org/soap/envelope/" 
xmins: xsd="http: //www. w3. org/2001/XMLSchema" 
xmins: xsi="http: //www. w3. org/2001/XMLSchema-instance"> 
<soapenv: Header> 

<! -- Header information --> 
<soapenv: dynasoar soapenv: actor="http: //schemas. xmisoap. org/soap/actor/next"> 

<soapenv: targetService value="EntropyAnalyserService"/> 
</soapenv: dynasoar> 

</soapenv: Header> 

<soapenv: Body> 

<! -- request to the service --> 
<m: calculateEntropy xmins: m="http: //entropy. neresc. ncl. ac. uk"> 

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence> 
</m: calculateEntropy> 

</soapenv: Body> 

</soapenv: Envelope> 

forwarding it to a deployed instance of the service or by requesting a new deployment on a new node 

and forwarding the message to this newly deployed instance for processing. While forwarding the 

message to a designated [lost Provider, the Service Provider adds two new elements in the message 

header - one is a message identifier to establish a context between the request the response which 

will arrive at a later stage, and the other is the location of the software repository from where the 

code for the requested service may be obtained. The interaction of the consumer with the Service 

Provider, and the addition of new elements in the message header is depicted in Figure 4.5. 
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Figure 4.5: Consumer interaction with DynaSOAr Service Provider 

Based on the requirements for DynaSOAr outlined in Section 4.2.6, the Service Provider must be 

able to fulfil the following criteria: 
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" It should advertise a set of services it can provide irrespective of whether the service is deployed 

or not. 

. It must be able to receive service requests from consumers and arrange for their processing at 

a designated Host Provider. 

. It must maintain a list of Ilost Providers to whom the request from the consumer can be 

forwarded for processing. For which the Host Providers should be able to register or deregister 

with the Service Provider. 

As all the DynaSOAr components are designed based on the message-oriented approach, the service 

interface consists of one operation, which performs different functions based on the type of message 

it has received. The requests supported by the Service Provider are shown in Figure 4.6. 
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Figure 4.6: Request types supported by the Service Provider 

4.3.1.1 Supporting conventional tools 

Most common tools, such as XMLSpy (which although being an XML editor has advanced features 

like sending SOAP messages to a service) [115] or workflow enactment engines such as Taverna [10], 

used by a large number of consumers, require the endpoint of the service description (WSDL) 

before binding to the service. Apache Axis [77] provides a standard way of returning the WSDL by 

appending a "? wsdl" construct to the service endpoint, which is a common approach adopted by the 
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Web Service community. During the bind process, these tools are able to generate message formats 

conforming to the service interface which are then sent to the actual service. In the DynaSOAr 

framework, when a request from a consumer arrives at the service provider, the service may not 

have been deployed yet, and thus, the standard way of generating a WSDL (that is by adding a 

"? wsdl" construct after the service endpoint) using tools like Axis will not work. Thus, the consumers 

would have to know the format of the message that the service expects before invoking the service, 

which might have been a restrictive feature because many tools which are used to build applications 

assume that the WSDL can be accessed in the way mentioned above. This is handled in DynaSOAr 

using another extension of the Axis handler-chain feature, where the extended handler on receipt of 

any such request for the WSDL description will retrieve the WSDL file that was uploaded during 

the service upload phase, and return it back to the consumer from which the message formats can 

be generated by the standard tools. Thus, DynaSOAr, in effect deploys the WSDL description of 

the service when the consumer first sends the bind-request to the WSDL-endpoint assuming that 

the service has been deployed behind the DynaSOAr Service Provider. Based on this WSDL, once 

the message is generated and sent to DynaSOAr, the second phase is triggered, which deploys the 

service package on a designated compute resource. 

4.3.2 Host Provider 

The Host Provider is responsible for controlling the computational resources, such as a cluster or a 
Grid, on which services can be deployed, and requests for those services can be processed. The Host 

Provider accepts SOAP messages forwarded by the Service Provider on behalf of the services hosted 

by it, and sends back any response generated after processing the request. An example of a message 

received by the Host Provider is shown in Listing 4.3. The Host Providers are implemented as Web 

Services and conform to the message-oriented interface. Further, they are classified as manager and 

managed nodes, where the manager node possesses the knowledge about the managed nodes under 
its domain and is capable of scheduling the processing of a request on any of them. The manager 

or ROOT node periodically monitors each of the child nodes and uses this monitoring information 

to make decisions about the best suited node to process a request. It is also capable of routing a 

request to a specific instance of a service if multiple copies of the same service exist on different 

nodes in order to perform some load-balancing. Various scheduling algorithms such as least recently 

used, least recently allocated, best average response time are utilised within the host provider to 

make decisions about routing a request to a specific instance of the service. The Host Provider is 

implemented in such a way that new algorithms can be plugged into the framework. Further, the 

Host Provider uses resource allocation algorithms proposed in related works such as GridSHED [113] 
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which are based on heuristics and knowledge of network bandwidth data. 

Listing 4.3 An example SOAP message with a modified header element at the Host Provider 

<soapenv: Envelope xmins: soapeav-"http: //schemas. xmisoap. org/soap/envelope/" 
xmins: xsd-"http: //www. w3. org/2001/XMLSchema" 
xmins: xsi-"http: //www. w3. org/2001/XMLSchema-instance"> 
<soapenv: Header> 

<I-- Header information --> 
<soapenv: dynasoar soapenv: actor-"http: //schemas. xmisoap. org/soap/actor/next"> 

<soapenv: messageId value-"8580358022-012-0129090"/> 
<soapenv: targetService value&"EntropyAnalyserService"/> 
<soapenv: repositoryuRl value-"http: //repos. ncl. ac. uk/RepositoryService"/> 

</soapenv: dynasoar> 
</soapenv: Header> 
<soapenv: Body> 

<I-- request to the service --> 
<m: calculateEntropy xmins: m-"http: //entropy. neresc. ncl. ac. uk"> 

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence> 
</m: calculateEntropy> 

</soapenv: Body> 
</soapenv: Envelope> 

The Host Provider, on receiving a message from the Service Provider, checks whether the requested 

service has already been deployed as a result of a previous request. If the service has been deployed 

previously, which can be discovered from the registry, the best suited instance is selected and the 

request is forwarded to that instance for processing. If the service has not been deployed before, or 

the existing instances are heavily loaded, the request is forwarded to a host which is lightly loaded 

at that point of time. The destination host, which is a Host Provider as well, extracts the location of 

the repository where the deployable code for the requested service can be obtained from the message 
header, downloads the package and deploys it on itself. The request is then processed and a response 
is sent back. The interactions between the Service Provider and the Host Provider are depicted in 

Figure 4.7. 

The Host Provider is required to support the following requirements - 

" It must be able to receive service requests forwarded by the Service Provider and process them 

accordingly. 

. It must maintain a list of child Host Providers under its domain to whom the service request 

can be routed to. In order to achieve this it must allow other hosts to register and deregister 

with it. 

" It must have the knowledge of the services supported by it. 

As explained in Section 4.2.7.2, the Host Provider implements the message-oriented interface and 
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Figure 4.7: Interaction between DynaSOAr Service Provider and Host Provider 

exposes one operation which is capable of supporting the requests depicted in Figure 4.8. 
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Figure 4.8: Request types supported by the Host Provider 

The first prototype is based on the assumption that the requests are synchronous in nature. Hence, 

the response from the Host Provider retraces the arrival route of the request. Specifications for 
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addressing asynchronous requests, such as WS-Addressing [46] are being standardised, and it is 

possible to use these features to support asynchronous requests where the consumer will not have to 

block for the response, and the response can be sent to the consumer directly from the I lost Provider 

using the addressing fields of the incoming request. 

4.3.3 Service Repository 

The Service Repository is not directly accessible by the consumers, but, it plays an important role 

within the DynaSOAr framework by managing the upload and download of the deployable service 

code and retaining them for future use. It is implemented as a service based on the message-oriented 

model supporting the request types outlined in Figure 4.9. A service developer "uploads" the service 

package along with the description of the service as a WSDL document. Following a successful 

upload, the service is registered in the registry and stored in a file store, and a unique URL is used 

to refer to it. The Host Providers communicate with this service by sending and receiving SOAP 

messages requesting the download of the actual service code for a service to be deployed. When 

such a download request is received, the repository service allows the host provider to download the 

software from the URL. The prototype system uses the standard Java file ISO libraries, but other 

options such as GridFTP [55], SRB [54] (for storage and transport) are likely to make the system 

robust and more efficient. 
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Figure 4.9: Request types supported by the Service Repository 
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In order to satisfy the requirements in DynaSOAr, the Service Repository must support the following 

criteria - 

9 It must allow service developers to "upload" a service package to the repository. 

" When a service is uploaded, the repository must register the service with the service registry 

whereby the availability of the service is made known to the consumers. 

" It must be able to respond to requests from the Host Providers to download the code. 

4.3.4 Registry Service 

The DynaSOAr Registry Service is provided by GRIMOIRES [103], which is an UDDI-based registry, 

with added support for metadata as RDF [116] triplets. When a service developer decides to make 

a service available via the DynaSOAr Web Service Provider, the deployable service code is uploaded 

to the service repository as a result of which, the registry is updated with this information. A 

businessService2 entity is created within the registry corresponding to this new service as a child of 

the single "DynaSOAr" businessEntity3. Several TModel4 entries are also attached to the new service 

entry, each describing certain aspects of the service, such as its type, location of the code and the 

WSDL description, each having a definite use during the service download and deployment process. 

This newly uploaded service will be advertised by the Service Provider as one for which requests from 

consumers will be accepted. Initially, in the registry entry for this service, there will be no access 

points as the service has not been deployed yet. Every time a service is deployed, the registry entry 

will be updated to reflect the recent deployment at the corresponding Host Provider. Listing 4.4 

shows how each service is described within the registry. In this example, two services are shown as 

registered with the registry, namely - the EntropyAnalyserService and the SJEMEA_Service. Both 

these services are Web Services, packaged as WAR files, which is described as the TModel entry 

named ServiceType. The location of the actual service code is defined by the CodeStoreURL TModel, 

and the location of the service WSDL is defined by the WSDLLocation TModel. It can be seen from 

the XML fragment that the EntropyAnalyserService is an undeployed service as it does not have 

2The businessService structure represents a logical service and contains descriptive information in business terms. 
A businessService is the logical child of a single businessEntity, the provider of this businessService. Technical 
information about the businessService is found in the contained bindingTemplate entities [81]. 

3Each businessEntity entity contains descriptive information about a business or organisation and, through its 
contained businessService entities, information about the services that it offers. From an XML standpoint, the 
businessEntity is the top-level data structure that holds descriptive information about the business or organisation it 
describes [81]. 

4Technical Models(TModels) are used in UDDI to represent unique concepts or constructs. They provide a structure 
that allows re-use and, thus, standardisation within a software framework. The UDDI information model is based 
on this notion of shared specifications and uses tModels to engender this behaviour. For this reason, tModels exist 
outside the parent-child containment relationships between the businessEntity, businessService and bindingTemplate 
structures [81]. 
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any AccessPoints attached to it, whereas, the SJEMA_Seruice is deployed on one of the available 

nodes, and the endpoint is attached to the service entity as an AccessPoint entry. 

Listing 4.4 Description of entities registered within the DynaSOAr registry 
<busineseDetailExt =Ins-"urn: uddi-org: api_v2"> 

<businessEntityExt> 
<bustuessEntity businassKeyy"87a248s1-38a8"> 

<name>Dynaeoar</name> 
<buslnesaServicas> 

<buslnassService businessKsy. "87a248a1-38a8" servlc. Key-"13f3afbc-. 614"> 
<name>EntropyAnalysarService</nams> 
<bindingTsmplates/> 
<categoryBag> 

<keyedReforence keyName-"CodeStoreURL" 
keyValue-"http: //giga01: 8199/codastoro/services/RepositorySsrvica" 
tMode1X. y-"88Oce26a-6aba"/> 
<ksy. 4Pefarenc" keyNams-"WSDLLoeation" 
keyValus-"http: //giga0l: 8199/ServiceCoda/EntropyknalyserServico. wedl" 
tMode1Ke r"659060a9-642d"/> 
<kaysdReZsrenc" keyNama. "Ssrvic. Type" 
keyValue. "WAR" tModelKay-"6bae7c06-d9f1"/> 

</categoryBag> 
</businessService> 
<businessSe vice businessKay-"87a248e1-38a8" ssrvie. Kay-1a4aa15a8-a383"> 

<name>SJEMEA_Servica</name) 
<bindingTemplatos> 

<bindingTemplate bindingKayr"bdf2ca61-8s86" s9rviceKsy. "s4aai5a8-a383"> 
<accessPoint URLTypo-"http"> 
http: //giga02 : 8199/hostprovider/services/HostProvidsrServies 
</accsssPoint> 
<tModsllnstanceDetails> 

<tModelIastanc. Info tModelKey-"2fa4f68f-7662"/> 
</tModellnstanc. Details> 

</bindingTomplats> 
</bindingTs plates> 
<categoryBag> 

<koyedRefsreuce keyNams-"CodeStoreURL" 
keyValue-"http: //giga01: 8199/codastore/services/RepositoryServics" 
tModelKsyr"880ce26e-Saba"/> 
<ksyedReforence ksyName="WSDLLocation" 
keyValue-"http: //giga01: 8199/Servic*Code/SJEMEA_Service. vsdl" 
tModalKe r"659050a3-642d"/> 
<keyodReisrence keyNama. "Servic. Type" 
ksyValue-"WAR" tModelKay-"6bas7c06-d9f1"/> 

</catsgoryBag> 
</busineasService> 

</busSaassServitas> 
</buslnessEntity> 

</businsssEntityExt> 
</businessDrtailExt> 

4.3.5 The Software Hypermarket 

The description so far about DynaSOAr took into consideration the existence of a single Host 

Provider. In reality, though, one Web Service Provider may have several Host Providers at its dis- 

posal. At certain times, it may be advantageous to consider the characteristics of the available Host 

Providers, such as cost, dependability, QoS, security, etc. to select the most suited candidate. As 

an example, it may be logical to refer to the Amazon Elastic Compute Cloud [88], where consumers 

are allowed access to computational resources at a certain cost. If there are other providers offer- 

ing resources to consumers, the consumers will have the option of choosing between the available 

resources based on certain criteria, cost being one of them. A similar scenario can be considered for 
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computational services, for example, tourism reservation systems, where the consumers may want 

to make selections based on the quality of service. 

These scenarios converge to the possibility of a Softwarr Alarketpla, ce or a Software hypermarket' (as 

shown in Figure 4.10) where similar services are provided by different providers and the consumers 
have the option of selecting one or more of them, just like a consumer does in a normal slopping 

mall. The option of choosing between multiple Host Providers also exists from the point, of view of 

the Service Provider. 

Software Hypermarket 

WSP"1 ý Hp-ý 
I 

eq. osr ; OE 

tI Vendor Markel 
rosponso 

ý VYSP-n HP"n 

1 

Figure 4.10: The Software Hypermarket 

To facilitate this requirements matching (similar to the matchmaking process of Condor), another 

component, the Broker, with the same interface as the Host Provider, has been introduced in the 

architecture, which is responsible for making such decisions. The broker has the knowledge about 

one or more Host Providers, and is thus able to snake the decisions based on the characteristics of 

the available Host Providers and the QoS and security requirements requested by the consumer. 

The generic architecture of DynaSOAr follows from the concept of this Software Hypermarket which 

can allow interactions between multiple service providers, brokers and host providers. DynaSOAr 

allows the hierarchy of Service Provider, Broker and Host Provider to grow dynamically to any 

level or depth, as illustrated in Figure 4.11. There is no limitation in the number of brokers or 

Host Providers that can take part in the formation of this ad-hoc Virtual Organization, creating the 

Software Hypermarket where the brokers can choose between available Host Providers meeting the 

consumer requirements to process the requests. 

51n commerce, a hypermarket or multi-department store is a superstore which combines a supermarket and a 
department store. The result is a very large retail facility which carries an enormous range of products under one 
roof, including full lines of groceries and general merchandise. When they are planned, constructed, and executed 
correctly, a consumer can ideally satisfy all of his or her routine weekly shopping needs in one trip 1117]. 
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Figure 4.11: Generic Architecture of DynaSOAr 

The generic architecture of DynaSOAr does not, restrict the dynamic deployment functionality to 

web services alone. It is capable of allowing dynamic deployment of Virtual Machines such as 

VMWare [15] as will be described in the following sections. 

4.4 Using Virtualization 

In recent times, virtualization technologies have become a popular choice in the Grid world. Vir- 

tualization, as defined by VMWare is: "an abstraction layer that decouples the physical hardware 

from the operating system to deliver greater IT resource utilisation and flexibility" [15]. One specific 

virtualization technique is virtual machines, which goes back to the IBM System/370 [90]. Using 

such techniques, it is possible to run several virtual machines (VM) simultaneously, with different 

operating systems, on the same physical host by isolating each one from the physical environment. 

The advantages provided by VMs regarding partitioning, isolation and encapsulation make them 

useful in the Grid infrastructure as proposed in [17]. DynaSOAr utilises this concept and provides 

an extensive service-oriented framework which allows on-demand deployment of virtual machines 

which can encapsulate databases, services, any special environment that may be required for the 

services in a flexible way creating an ad-hoc virtual grid. 
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4.4.1 Virtualization Technology - An Overview 

Prior to "virtualization", in most cases, the software and hardware of the computational resources 

were tightly coupled. Most common computers without any support for virtualization have one op- 

erating system which is tightly coupled with the processor architecture, running applications most 

of which are again dependent on the operating system and often the hardware architecture. For 

a large IT infrastructure, such individual resources may lead to under-utilisation and inflexibility. 

Virtualization technologies can be applied to all aspects of a computational resource, such as net, 

works, storage, primary memory etc. The combination of all such virtual infrastructure leads to 

the introduction of an additional "virtualization layer" on top of the hardware architecture with 

creates the separation of the operating system with the physical hardware allowing multiple "guest" 

operating system to execute on the same physical host as shown in Figure 4.12 [118]. 

Applications 

Operating System 

Processor Architecture 

Hardware elements (network, memory, cpu) Dis 
I 

Hardware elements (network, memory, cpu) 

(a) Non-virtualized Computational Node (b) Virtualized Computational Node 

Figure 4.12: Before and after virtualization 

The possibility of using Virtual Machines(VM) for Grid computing is explored in [93,17,1191. The 

traditional grid middleware solutions implement the abstraction layer at the level of the individual 

nodes which makes it difficult to provide the adequate level of security necessary to protect the 

resources against untrusted legacy codes submitted as jobs by untrusted users. By raising the level 

of abstraction to the operating system virtual machine, three fundamental advantages are obtained, 

namely, support for legacy applications, security against untrusted code, and a computation process 

independent of site administration which are described in more details later in this section. Each 

virtual machine appears to be an individual self-sufficient machine for a user, which de-couples it 

from the underlying physical resources, and other virtual machines running on the same physical 

host. From the administrative point of view, the entire operating system of the VM becomes 

independent of the computational resources, and the VM, including its state, can he described in 



CHAPTER 4. Dynamic Service Deployment 88 

a set of conventional files. Further, migration of live virtual machines along with its state from 

one host to another, as described in [18], increases the their useability manifolds within the Grid 

application frameworks. The advantages of using VMs in Grid computing are outlined in [93] as 

follows: 

. Security and isolation - Resource sharing is a primary requirement for the Grid environ- 

ment thereby creating the requirement of the integrity and security of the shared resources. 
A security model based on trust between the user and the provider may still give rise to situ- 

ations where the integrity and security of the shared resources are compromised by a piece of 

malicious code, and conversely, the integrity of a computation may be compromised by a ma- 

licious resource. Virtual Machines allow completely isolated environments for each user, each 

sharing the same physical resource but independent of each other, thus creating a more secured 

environment where a malicious user must break two levels of security in order to compromise 

the resources. 

. Customisation - Certain configurations of a virtual machine can be modified without requir- 

ing a system restart which gives the essence of flexibility and customisation. Further, multiple 

virtual machines running different guest operating systems can co-exist within a single host 

machine, satisfying individual requirements from a pool of physical machines. 

" Legacy support - Applications requiring special environments, such as legacy applications, 

can be packaged in virtual machines. The support for legacy systems in not restricted at the 

application level, but encompasses all the other aspects such as virtual hardware and operating 

systems. 

" Administrator privileges - Access restrictions are imposed on traditional multi-programmed 

systems where most sensitive operations can only be performed by the privileged user, such as 

the system administrator, which may be limiting in certain cases. In case of virtual machines 

such regulations can be relaxed because each VM is isolated from the others and the physical 

resources. 

" Resource control - Resources can be controlled at a coarser granularity in case of virtual 

machines as opposed to traditional multi-programmed where resource allocation is normally 

done for each application or process. In case of virtual machines, resources, such as memory, 

virtual disk size etc can be allocated during the initialisation phase, and is done per virtual 

machine from the virtual machine management layer, or the Virtual Machine Monitor. Dy- 

namic allocation of resources is also possible for virtual machines which may be considered a 

key aspect for Grid applications. 
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" Site independence - The virtual machines themselves are independent of the host operating 

system on the physical resource. This allows cross-domain migration of an entire computation 
by moving the VM from one host to another irrespective of the physical resources, such as 
CPU architecture, memory etc. Live migration of running virtual machines is also possible (as 

shown in [18]), which is another feature that can be exploited within the Grid framework. 

The approach to virtualization can broadly be categorised into two different categories, namely 
hosted and hypervisor. In the hosted approach, several virtual machines with different operating 

systems can co-exist sharing the underlying physical resources, which is also known as partitioning. 

The VMWare Server [120] and Microsoft Virtual PC [121] offer virtualization based on this approach 

where the virtualization layer, often known as the Virtual Machine Monitor (VMM), relies on the 

host operating system for device support and management of the physical resources, such as memory, 

processor, network etc. On the other hand, in case of the hypervisor approach, the hypervisor itself 

is the first layer of software installed on a clean processor hardware layer, because of which it is 

often known as the bare metal approach. In this case, the virtualization layer has direct access to the 

hardware resources and may provide more efficiency compared to the hosted architecture in terms 

of robustness, scalability and performance. Recent investigations in virtualization technologies have 

given rise to several enhancements, one of them being para-virtualization, supported in the Xen 

hypervisor [16]. Paravirtualization aims at improving the performance and scalability of the virtual 

machines and proposes a new virtual machine interface where the guest VMs are `aware' of their 

virtualized state as the guest operating systems are modified to exploit this feature. 

A comprehensive survey of the existing virtualization technologies and approaches is available in 

[122]. 

4.4.2 Case for Virtualization in DynaSOAr 

Apart from the advantages of virtualization such as security, isolation, resource control etc. men- 

tioned in Section 4.4.1, there are more usage scenarios which can benefit from using virtualization. 

DynaSOAr can exploit these scenarios as explained below: 

" Data Caching - One of the major motivations behind DynaSOAr was the Active Information 

Repository architecture [7) which proposes to deploy the data analysis services closer to the 

data. An alternative approach may be suitable in some cases where it is not important that 

the latest version of the data is used for analysis. A bio-informatician may be executing 

a particular workflow which accesses data from a database located at a large geographical 
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distance, where it may not be possible to deploy the analysis application closer to the data, 

or even transferring the results to the consumer may be costly. In such cases a partial copy 

or a snapshot of the database deployed on a node closer to the analysis code may prove to be 

beneficial. This, in effect is analogous to data caching. In DynaSOAr, such a snapshot of the 

database, wrapped with data access services, such as OGSA-DAI can be packaged in a virtual 

machine and deployed on demand. 

" Special Environments - Many workflows in bio-informatics use specialised services, such as 
Blast [9] which analyses a given protein or gene sequence and returns similarity scores with 

already existing sequences in a database. This service requires a special set of libraries and a 
database to perform the similarity analysis, all of which can be packaged in a virtual machine. 
Many scientific analysis services require considerable amount of tuning to the underlying host 

for optimal performance, which varies between the type of host on which it is deployed. Such 

services, if deployed on a host using the approach taken so far in DynaSOAr, will not provide 

any benefits, as the tuning is generally an offline process. The virtualization approach can 

provide an alternative solution where such services can be deployed on virtual hosts and tuned 

before the entire package is stored in the repository, which when deployed will make the 

optimally configured service available to the consumers. 

4.4.3 Using Virtualization in DynaSOAr 

In DynaSOAr, the VMWare Server [120] has been used as the primary virtualization infrastructure. 

DynaSOAr itself is agnostic about the type of virtualization, hence, it should be able to incorporate 

any other virtualization approach. Virtual Machines are used in DynaSOAr to provide support for 

services requiring special environments, and a means to allow a form of data caching for certain 

situations. Instances of VMs are pre-built, and services are deployed on them on an Apache Tomcat 

(or any other) Web service container. Special environments, such as third-party libraries, databases, 

required by the service are included in the VM. These instances of virtual machines are uploaded 
to the Software Repository like any other DynaSOAr service, and relevant entries are stored in the 

registry. For the benefit of registering the services, each virtual machine is described as an XML 

document based on the schema shown in Figure 4.13. This document is uploaded along with the 

files relevant to the VM (such as the virtual hard disk and the VM configuration file), and each 

service, including the data access services, is registered in the registry, with several TModel objects 

used to describe each entry as shown in Listing 4.5. 

As opposed to [17], the DynaSOAr method of deployment is transparent to the consumer, and is 
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Listing 4.5 Entries in the registry describing services packaged in a virtual machine 
inassDstailExt xmina-"urn: uddi-org: api_v2"> 
<buainsasEntttyExt> 

<businassEntity businss. Ksy-"d15.. 878-8b12"> 
<nams>Dynasoar</nams> 

A service deployed on a VM and a normal host 

<businessServlces> 
<busineesService businassXsy-"dS5. e878-8b12" serviceKey-"d6efa37a-4606"> 

<name>HostProviderServics</name> 
<bindingTemplates> 

<bindingTemplate bindingKey. '"0b0c4747-689b" 
servicsKsy-"d6efa37a-4506"> 

<accessPoint IIRLType. "http"> 
http: //giga10: 8090/hostprovider/serviess/HostProviderServite 
</accessPoint> 
<tModellnstancsDetails> 

<tModelInstanceInfo tModelKey. "6e5i2ad6-f2ed"/> 
</tModelInstanciDetails> 

</bindingTemplate> 
<bindingTemplate bindingKey-"a3763c91-9dab" 
ssrviceKeyr"d6efa37a-4506"> 

<accessPoint UHLType-"http"> 
http: //vm-1: 8090/hostprovider/services/HostProviderServies 
</accessPoint> 
<tModelInstanceDetails> 

<tModelInstancelnfo tModelKey. "6e612ad6-f2ed"/> 
</tMods21nmtancoD*tails> 

</bindingTemplste> 
</bindingTemplates> 

</businessService> 

Description of a service packaged in a VM 

<businessService businessKey-"df5ee878-8b12" serviceKey-"4f84545*-d7Oa"> 
<name>QueryEvaluationService</name> 
<categoryBag> 

<keyedIeference keyName-"CodeStoreTRL" 
keyValue-"http: //giga01: 8090/codestore/services/RepositoryService" 
tModelKey-"c67e2622-e5b1"/> 
<kayedReference keyName. "ServiceType" keyValue-"VMWARE" 
tModelKey-"58e48324-764b"/> 
<keyadReference keyNamo-"VM-NAME" keyValue-"CenericLinuxVM" 
tModelKey. "516acd6O-fa8b"/> 
<keyedReference keyName-"Servic. IIRI" 
keyValue-"dqp-evaluator/services/QueryEvaluationService" 
tModelKey-"41t5a363-0alb"/> 
<keyedRefereace keyName-"VM-PORT" 
keyValue-"8090" tModelKeyr"ad35cb4d-3aOa"/> 
<keyedReferenee keyName&"Servicerag" 
keyValue. "VEB-SERVICE" tModalKey. "ad9e3aO2-6232"/> 

</categoryBag> 
</businessService> 

Description of a data service packaged in a VM 

<busineesService businessKey-"df5ee878-8b12" serviceKeyr"5a081adc-6004"> 
<name>ProteinSequenceMySQLResource</name> 
<categoryBag> 

<keyedReference keyNeme. "CodeStoreURL" 
keyValue. "http: //giga01: 8090/codestore/services/RepositoryService" 
tModslKey-"c6792622-e5b1"/> 
<keyedReference keyName. "ServiceType" keyValue-"VMWARE" 
tModelKey. "58e48324-764b"/> 
<keyedkeference keyName. "VM-NAME" keyValue. "CensricLinuxVM" 
tModelKey&"516acd60-fa8b"/> 
<keyedReference keyName-"ServiceURI" 
keyValue. "axis/services/ogeadai/ProteinSequenceDataService" 
tModelKey-"41f5e363-0a1b"/> 
<keyedReference keyName-"VM-PORT" 
keyValue=18090" tModelKey-"ad35cb4d-3aOa"/> 
<keyedPeferance kayName-"ServiceTag" 
keyValue. "DATA-SERVICE" tModalKeyr"ed9e3a02-6232"/> 

</categoryBag> 
</busineasService> 

</busineasServiees> 
</businessEntity> 

</businessEntityExt> 
</busineasDetailExt> 
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Figure 4.13: XAML Schema for describing it Virtual Machine 

uniform for all the supported components. When a request is received from a consumer for a service 

that is either not yet deployed, or for which the existing deployments are overloaded or unavailable, 

the VNi image is downloaded to an appropriate host and started. The request is then forwarded 

to the hosted service. Starting up a VNI also ensures that all the other hosted services in it are 

available, and any requests for these services can be forwarded to the service without the need for 

redeployment. It should be noted however, that downloading and starting up a virtual machine is 

costly, and DynaSOAr ensures that this is done only when necessary to reduce the overhead. 

Each available node in DynaSOAr hosts a HostProvider service, exposing the underlying resource. 

This service is responsible for downloading and deploying the service or VNI image from the repos- 

itory when a dynamic deployment is called for. Otherwise, it forwards the request to the already 

deployed service and sends the response back to the consumer via the DynaSOAr Service Provider. 
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When deploying a VM, the service invokes a VirtualMachinelnstaller component, which uses the 

VMWare Server commands to start up the virtual machine, fetch the IP address of the newly 

started VM, and the consumer request is then forwarded to the corresponding service on the VM. 

The service containers and databases are configured to start as system processes during the VM 

boot, thus nullifying the requirement of any user input. VMWare Server also provides an extensive 

set of command line APIs and Perl scripts which can be used to communicate with the server to 

control to VM. 

The VMWare virtualization layer offers different types of networking procedures for the virtual 

machines, which are outlined below: 

1. Host-only, where the IP address assigned by the network adapter is only known to the host 

and thus the guest virtual machine can only communicate with the host. 

2. NAT, where the virtual machine network adapter is configured to work with the network 

address translation approach, and is able to communicate with other systems on the network 

through the host system. 

3. Bridged, where the virtual machine network adapter is configured in such a way that it becomes 

known to all the systems on the corresponding network. 

In DynaSOAr, the host-only approach has been used in most cases because this approach allows 

the isolation of the VMs from the external world, thus increasing the security of the system, and 

secondly, this approach rules out the possibility of any IP address collision issue that can arise when 

a suspended VM becomes active but its IP address has been re-issued by the DHCP server of the 

network. This approach is also suitable for organisations who do not want to expose the details of 

their computational resources. However, in some cases, such as the Distributed Query Processors 

discussed in Chapter 3 and 5, the "bridged" configuration is necessary, because the participating 

services communicate directly by sending messages to each other. In such cases the IP addresses 
have been selected from a pre-reserved pool. 

4.5 Discussion 

This chapter introduced an alternative approach to Grid computing which revolves round services 

rather than jobs. Traditionally most Grid middlewares use a distributed job scheduling system which 

submits the job execution code from the consumer along with all inputs to a target host where the 
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job is executed. This execution is however an "one-off" execution because the execution code is not 

retained at the host where it is executed. If the consumer wants to run several experiments using 
different input data, the execution code must be submitted for each execution. In service-oriented 

systems, a service once deployed is available for a longer period until it is explicitly undeployed. 

In DynaSOAr, this feature is exploited to spread the cost of deployment amongst multiple possible 

invocations from the consumers. 

Further, DynaSOAr proposes a demand-driven deployment approach. Services are only deployed 

when there is a requirement for it. All services registered in the DynaSOAr registry are advertised 

by the Service Provider as available services, whether or not they are deployed at any particular 

point of time. DynaSOAr also makes a logical separation between the provider of a service and 

the provider of a resource on which the service is deployed and requests processed. To a consumer, 

the services appear to be provided by the DynaSOAr Service Provider, although, the services may 

be deployed on a host different from the actual Service Provider, or may not be deployed at all. 

Consumers can send a request to any such service, and based on the state of the current deployed 

instances of the requested service (if any), the request is forwarded to a designated host, which either 

processes the request or deploys the service in order to process the request. The logical separation 

of the service provider and resource/host provider by DynaSOAr creates a possibility of different 

organisational models, and also provides the consumers freedom to choose between available service 

providers who provide a similar service. This is viewed as the Software Hypermarket in DynaSOAr. 

In DynaSOAr, a message-oriented approach is taken while designing the service interfaces. This 

allows the consumers to be completely agnostic about the internal data structures and objects 

that are used within DynaSOAr, and even the Service Providers and Host Providers are not tightly 

coupled except for a mutually agreeable contract in a form of allowed messages that can be exchanged 

between them. DynaSOAr extensively uses the UDDI specifications to store the description of the 

services it can provide along with other characteristics of the services, such as the type of the service 

and the location of the actual service code, in a the UDDI-compatible GRIMOIRES registry. 

Virtualization is an important aspect in DynaSOAr and is viewed as an approach to create ad-hoc 

virtual organisations on demand. An alternative approach to the Active Information Repository 

proposal of moving the analysis code to the data is advocated in DynaSOAr by the use of virtual 

machines where in certain cases a snapshot of the database is moved closer to the computation, 

which can be used as a way of data caching. Virtualization in DynaSOAr is completely transparent 

to the consumer, and the services appear to be normal Web Services hosted on real hosts. 

The prototype uses standard Java File I/O to manage the upload and download of the service 
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code, including virtual machines, which is one of the concerns in DynaSOAr. This approach works 

without any problems for small packages, but is costly for larger files, such as virtual hard-disks, 

which makes the deployment of a virtual machine extremely costly. For such files, the SFTP utility 

was used with more success. But the use of a more robust mechanism such as GridFTP and/or 
SRB for managing the storage and transport should reduce the cost and improve the performance. 
Other approaches, such as Peer-To-Peer (P2P) systems may also be efficient, especially, when there 

is the need of distributing the same executable code (services or virtual machines) to multiple hosts 

at the same time. 

DynaSOAr evolved from the research of several researchers pursuing similar interests. The involve- 

ment in the architectural aspects of the framework is considered as one contribution towards this 

thesis. Conceptual design, implementation and evaluation of key aspects of the dynamic deploy- 

ment framework such as the extensive use of registries to describe services and resources, adoption 

of the message oriented model and the handshaking between resources to announce their availability, 

introduction of the virtualization approach and the use of virtualization technologies, and several 

approaches to scheduling within the host provider are the other the major contributions towards the 

thesis. 
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Chapter5 

Exploiting Dynamic Service Provisioning in 

DQP 

The concepts of Dynamic Service Provisioning as discussed in Chapter 4 could be exploited within 

the context of a Service-oriented Distributed Query Processor and in this section, the attempt to 

combine the concepts of DynaSOAr with OGSA-DQP is discussed. In the publicly available version 

of OGSA-DQP, a consumer can submit queries that access data from data sources which may be 

geographically distributed and also invoke a remote analysis service on the data within the queries. 
Experiments, which will be analysed in later sections, show that frequent long running queries suffer 
from a heavy data access cost over the network when the data sources are remote. During the 

invocation of a remote analysis service, the invocation cost increases rapidly as the number of tuples 

retrieved from the database increases or the size of each tuple increases, because of the additional cost 

of data transportation over the network. It is also a common practice in certain scientific domains to 

use external services managed by third parties within the distributed query processing framework, 

which does not guarantee the availability of the service at the time of the query submission and as 

a result of which the queries may fail. The concept proposed in the Active Information Repository 

architecture [7] can provide a potential solution to these issues by allowing the evaluation and analysis 

services to be provisioned closer to the data sources. The combined Distributed Query Processing 

system builds on the DynaSOAr architecture [19] and allows the on-demand deployment of various 

services needed for the DQP system. 
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5.1 Usage Scenarios 

Because OGSA-DQP is exposed as a service, and the query evaluation engine created at run-time is a 

composition of several services, it seemed worthwhile to exploit dynamic deployment features within 
the context of query evaluation. There can be several scenarios where the concepts of dynamic 

service provisioning as seen in DynaSOAr could be used to benefit the OGSA-DQP framework. 

These scenarios are described in the following sections. 

5.1.1 Collocating the Query Evaluation Engine with the data 

In the original OGSA-DQP, the databases can be located on nodes that are remote from the evalu- 

ation nodes where the actual query evaluation processes take place. The scan operators within each 

partition being evaluated on the evaluator nodes access' the data from the databases using OGSA- 

DAI. Accessing data from remote data sources over the network incurs a data access cost which 

increases as the number of retrieved rows increases or the size of the tuples increases. Provisioning 

the query evaluation service on the fly on suitable nodes may be used as a solution to this issue. 

The DQP system would first try to schedule the scan operator on the same node as the data set, 

if possible, which would completely eliminate the cost of transporting the data over the network. 

Alternatively, scheduling the scan operator on a node closest to the data source may reduce the data 

access cost. In order to do this, the DQP system must be able to deploy the query evaluation service 

on the node which is deemed suitable for this based on the network latency with the node on which 

the data resides. 

5.1.2 Collocating the Analysis Service with the data 

Many researchers in fields such as Bio-Informatics and Neuro-Informatics execute workflows that 

retrieve data from a publicly available database, such as the Gene Ontology (GO) database [123] 

or SwissProt [124], and perform analysis on them. These workflows may involve invocation of a 
data retrieval service returning a set of tuples, after which the analysis service is invoked on each 

resulting tuple. In most cases, these analysis services are remote from the actual data sources, and 

each invocation incurs an additional cost in transporting the data over the network to the resource 

where the analysis service is deployed. As in case of service-oriented systems, the data propagates 

over the network as SOAP messages and the overhead increases for larger amounts of data resulting 

in larger service invocation cost as have been established in [125], [126] and [127]. The data elements 
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within the message are serialised by the underlying infrastructure which leads to a certain degree of 

expansion, and in [127], it is claimed that the SOAP data representation is about 10 times the size of 
the equivalent binary representation. This substantially large size leads to an additional cost during 

the data transmission, which is also evident from the experiments analysed in [128]. For frequent 

long running queries that invoke such a remote analysis service, the cost of transporting the data 

over the network can be eliminated or reduced if a copy of the analysis service can be deployed closer 
to the data source. 

5.1.3 Increased degree of parallelism 

It is also possible to deploy multiple copies of the analysis service and parallelise the operation-call 

operator (the physical algebra operator which encapsulates the invocation of the analysis service) by 

scheduling it on multiple partitions to share the load between several instances. After this, tuples 

can be routed to different instances of the service by the parallelised operation. call operator creating 

an execution framework similar to the one shown in Figure 5.1(c). In this figure, the analysis service 

is deployed on each of the available nodes, and thus it is possible to parallelise the operation-call 

operator on partitions running on each of these nodes, and make them invoke different instances of 

the same service. The redistribution of tuples in such a fashion for queries involving large number 

of tuples from a database will share the load on each instance thereby increasing the performance. 

It is to be noted that such a step can be taken for Web Service invocations which are not stateful 

in nature. 

The concepts proposed in Section 5.1.1,5.1.2 and 5.1.3 are shown in Figure 5.1. Figure 5.1(a) shows 

a DQP framework where all the data access, analysis and evaluation services are distributed on 

separate nodes, as in the case of the DQP system described in Chapter 3. An extended framework 

with the analysis service collocated with the data is shown in Figure 5.1(b). A further extension 

of the framework with multiple copies of the service deployed on all available nodes is shown in 

Figure 5.1(c). Finally, Figure 5.1(d) shows the complete dynamic DQP framework where the entire 

query processing engine is dynamically deployed by collocating both the analysis and evaluation 

services with the data. 

5.1.4 Availability of the third-party maintained Analysis Services 

Often, the analysis services invoked during the data analysis are deployed at remote sites and 

maintained by third parties. This does not guarantee the availability of the service when the query 
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is submitted, and as a result of which queries may fail. Apart from the cost of invoking a remote 

service, the possibility that the service may be unavailable during the actual query execution may 

often be a cause for concern. It may be possible to avoid such a situation where a query suddenly 
fails because of a sudden unavailability of the analysis service by deploying a copy of the service 

on a suitable computation entity available at that point. Investigations into automating in-silico 

experiments using semantic data [129] state that this tight coupling of workflows with particular 

service instances should be avoided using service classes rather than particular instances. In such 

cases, the workflow would bind to available instances during execution time. The equivalent scenario 
in DQP would be to deploy copies of the analysis service as and when required on available resources. 

5.1.5 Data caching by dynamic deployment of databases 

Often, e-Science experiments such as analysing the data from the SkyServer database [23] or bio- 

informatics databases such as EMBL [130] are not particularly reliant on the most updated data. 

In such cases, a snapshot of the database wrapped by an OGSA-DAI Data Service, packaged in a 

virtual machine can be deployed to enable the DQP system to process queries involving the new 

database. This also provides a functionality similar to the caching of data where this snapshot can 

be used to serve frequent queries over the same set of data. Contrary to the concept of moving 

the computation closer to the data, which has been the focus in all recent proposals on dynamic 

deployment, in this case a snapshot of the data is deployed closer to the computation, which makes 

it comparable with data caching. In traditional data replication processes, there is a requirement 

of a database management system on each of the hosts on which data must be replicated, and 

the process requires the intervention of a database administrator who would replicate the data as 

an offline process. The replicated database will need to be synchronized in some fashion. In the 

approach explored in this thesis, the requirement of a database management system on the target 

host and the intervention of a database administrator are not required for deploying the database 

packaged within a VM within the local network. It is however to be noted that a separate background 

process would be required to periodically synchronise the snapshot with the actual data set that was 

important for the application. 

5.1.6 Services requiring special environments 

A lot of workflows in the field of Bio-informatics involve specialised services such as Blast (Basic 

Local Alignment Search Tool) [9], which is a very common gene and protein sequence analysis service. 

Given a protein or a gene sequence, this service can identify similarities of the sequence with those 
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stored in a database. This service requires a special environment such as a set of libraries and a 
database, all of which together can be encapsulated within a virtual machine, and can be deployed as 

and when required. Further, scientific applications often are tuned with the host on which they are 

installed. The tuning process is manual and the performance depends heavily on a proper tuning, 

which in turn depends on the processor architecture, available memory, disk space etc. It may take 

a considerable amount of time to perform this tuning on the hosts on which the application are 
installed, and it is impossible to automate this process. In such cases, a flexible alternative approach 

may be to install the application or service on a virtual machine and tune it beforehand. This 

virtual machine can then be stored within the repository, and when it is deployed and started, the 

application, which has already been tuned will perform normally. 

The current query compiler/optimiser in OGSA-DQP performs some basic optimisation based on 

the information available to it. But this optimisation can be enhanced by considering the dynamic 

deployment scenario, as outlined in the use-cases mentioned above, where the scheduler would be 

able to schedule the deployment of new evaluation and/or analysis services on new computational 

resources thereby allowing the query processing framework to capitalise on advantages offered by a 
dynamic deployment framework. 

5.2 Towards a Dynamic Distributed Query Processor 

In this section, the functional architecture of the dynamic distributed query processor is discussed. 

5.2.1 Overview 

The extended version of the Distributed Query Processing system incorporates the dynamic ser- 

vice provisioning concepts from DynaSOAr, and in the process, uses certain components from the 

DynaSOAr framework, although there are certain deviations from the concepts proposed in Dyna- 

SOAr. For example, in DynaSOAr, the request from the consumer for invocation of a service is 

forwarded without any modification to the message body to the service via the HostProvider once 

the service is deployed on an available host, and the endpoint of the actual service is only known at 

the corresponding HostProvider. The forwarding of the message normally happens in a way that is 

transparent from the user, although, there are options where the consumer is able to provide pref- 

erences about the provider, which is a semi-transparent approach. In DQP, the evaluation services 

need to interact among themselves for evaluating the corresponding partitions and hence the end- 
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points of the dynamically deployed evaluators are known at the GUQS or the coordinator which is 

comparable to the DynaSOAr Web Service Provider, although for a consumer, this stays completely 

transparent. Other components, such as the Software Repository, the Registry Service and the Ilost 

Provider service are incorporated into the extended DQP architecture. 

The resulting architecture described in detail later in this section, adds a completely new dimension 

to the OGSA-DQP system. In the earlier DQP system, the data, evaluation and analysis services 

were tightly coupled with the available computational nodes. It required a pre-configured set of 

resources with all the necessary components, such as the data services, evaluat ion and analysis 

services deployed on those resources (as shown in Figure 5.2), thereby limiting the scope for exploiting 

the inherent dynamism of a Grid-like environment. 
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Figure 5.2: Overview of the static DQP system 

The modified version of DQP decouples the software components from the available computational 

and data resources. The system may have a set of pre-defined data resources, but apart from 

that, all that it requires is a set of hosts which support the DynaSOAr framework. It can be 

assumed that as the dynamic deployment features are incorporated within the standard containers, 

the requirement of this additional framework will be eliminated, thereby allowing DQP to take 

the full advantage of these features embedded inside the containers. In this extended version of 

DQP, there are pools of services, virtual machines and resources (Figure 5.3). The software pool 

consists of services such as the evaluation and analysis services, the virtual machine pool may contain 

virtual machine instances containing a database snapshot and/or specialised analysis services which 
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require a special environment, and the pool of resources contain a set of computational nodes which 

can be utilised during query processing. Conceptually, the DQP system in this case "creates" 

each node by combining a number of components from the pools. This feature also opens up 

the possibility of using the Software Marketplace as mentioned in Section 1.3.5 and [87] where, 

based on the preferences (such as preference to a particular provider, for example the Blast, Service 

from the European Bioinformatics Institute (E13I), instead of the one from the National Center for 

Biotechnology Information (NCBI)) or quality of service specifications (such is cost, throughput,, 

reliability etc) from the consumer, the DQP system would select a certain version of the analysis or 

evaluation service from a list of all the available services. 
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Figure 5.3: Overview of the Dynamic DQP system 

In Section 3.1, OGSA-DQP has been considered as an approach that is coinplimentary to other 

service orchestration mechanisms, such as workflow execution systems. Most traditional workflow 

engines, for example Taverna [10], work with a centralised coordinator system which is better known 

as "centralised enactment" and can be compared with the hub-and-spoke concept where the coordi- 

nator is responsible for all communication between the services. OGSA-DQP, in the original form, 

is in some ways comparable to this, where the query evaluation processes are initiated only on the 

available evaluation nodes. The dynamic version of OGSA-DQP is more closely related to the dis- 

tributed workflow concept, such as DECS [131]. DECS allows "decentralised enactment" where the 
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coordination is distributed amongst multiple enactors who communicate as peers during the enact- 

ment process, thereby creating a fluid workflow enactment system which is not tightly coupled with 

a centralised enactment engine. In the dynamic version of OGSA-DQP, the query evaluation engine 
is not tightly coupled with the already available evaluation nodes, but is fluid in nature, where new 

nodes can be allocated to the process of query evaluation based on the run-time situations. 

5.2.2 Architecture 

Architecturally, the dynamic version of OGSA-DQP does not differ very much from the earlier 

version, except that it utilises some additional components that are part of DynaSOAr, such as 

the Software Repository, Host Provider and the Registry Service. The GDQS has knowledge of the 

registry where it tries to look up the query evaluation and analysis services. These new services again 

are loosely coupled with the DQP framework, and can be shared with other services or frameworks 

that require a software repository or a UDDI registry. Figure 5.4 shows an overview of the extended 
OGSA-DQP architecture. To allow dynamic deployment of services, the HostProvider service is 

made available on the participating nodes which register themselves with the Registry Service. The 

query evaluation service or the analysis service can optionally be deployed on computational resources 

and the data nodes - but if they are not deployed, it will be up to the DQP framework to decide when 

and where to deploy the services. The services, rather, are uploaded to the Software Repository and 
during this process, each available service is also registered at the registry as a deployable service. 
The URL of the Software Repository is also stored in the registry as a TechnicalModel or tModell 

reference within the BusinessService2 entity. 

Thus unlike the original OGSA-DQP where a tightly coupled set of resources are used with the data 

access, evaluation and analysis services pre-deployed on them, the extended version tries to exploit 

the dynamic deployment features by using only a collection of data hosts, and host providers which 

allow services to be deployed on them dynamically. In the latter case, the distributed query pro- 

cessing system will have the option of making a choice between the services to deploy, either based 

on the user preferences, or the quality of service parameters, or even predefined service level agree- 

ments. What this dynamic version of DQP provides is an additional framework within the existing 
DQP system which is capable of exploiting the dynamic deployment features thereby incorporating 

'Technical Models, or tModels for short, are used in UDDI to represent unique concepts or constructs. They 
provide a structure that allows re-use and, thus, standardisation within a software framework. The UDDI information 
model is based on this notion of shared specifications and uses tModels to engender this behaviour. For this reason, 
tModels exist outside the parent-child containment relationships between the businessEntity, businessService and 
bindingTemplate structures. [811 

2Each businessService is the logical child of a single businessEntity. Each businessService contains descriptive 
information again, names, descriptions and classification information - outlining the purpose of the individual Web 
services found within it. [811 



CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 105 

a flexibility to the system which was absent in the earlier versions. 
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Figure 5.4: Basic I)QP Architecture 

5.2.3 Setting up the Distributed Query Processor 

In this dynamic version of OGSA-DQP, the configuration document submitted by the client speci- 

fying the data and analysis resources to be used for the distributed query does not mandate the list 

of evaluation services to be used. The only requirement is a list of data sources on which the query 

will be executed and optional registry information identifying the registry which will be looked up 

for the availability of computational resources and services. The XML fragment in Listing 5.1 is 

similar to the one shown in Listing 3.2 and shows the canonical form in which the data and analysis 

resources are specified by the client, the difference being in the additional registry information, and 

the fact that the list of evaluation services are not explicitly provided, and only the name of the 

analysis service is provided, giving the GDQS the freedom to deploy these services as and when 

necessary on available computational resources, thereby creating an ad-hoc grid-like environment. If 

there are available resources with the query evaluation service already deployed on them, then those 

can also be included in the configuration file as before, in which case the coinpiler/optimiser will 

consider these nodes along with the other available resources which are looked up from the registry. 

Once the configuration document is received by the GDQS Factory Data Service, the usual steps of 

importing the schema and rnetadata from the data services (as outlined in Section 3.3) are performed. 
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Listing 5.1 Configuration Document for Dynamic OGSA-DQP 
<DQPConfiguration =lns-"http: //uk. org. ogoadai/dqp/configuration"> 

<DataPasourceList> 
<ImportsdDataSourca> 

<URI>http: //plOl. ca. washington. odu: 8199/axis/services/ogsadai/GoDataSsrvico</URI> 
<ResoureslD>GoT. rmMySQLResourc. </Resourc. ID> 

</ImportedDataSoures> 
<ImportedDataSourca> 

<URI>http: //plO2. ca. tcd. ie: 8199/axis/services/ogsadai/ProtoinTeraDataS*rvics</URI> 
<ResourceID>ProtsinTarmMySQLR. source</Rasourc. ID> 

</ImportedDataSoures> 
<ImportedDataSourcI> 

<URI>http: //plOt. iii. u-tokyo. ac. jp: 8199/axis/services/ogeadai/ProtainPropertyDataServlcs</URI> 
<RssourcaID>ProtsinProp. rtyMySQLResourca</Rssourc. ID> 

</ImportedDataSoures> 
<ImportedDataSoures> 

<URI>http: //p102. csl. utoronto. ca: 8199/axis/sarvic. s/ogoadai/ProteinS*qusnceDataService</URI> 
<RssourcalD>ProtsinSequenceMySQLRssourc. </ResoureslD> 

</ImportedDataSource> 

No specific endpoint for the service Is provided 

F <ImportodSarvics name-"EntropyAnalysarService"/> 
</DataResourc. List> 

1dA44-4nn. 1 

<AagistryConfiq> 
<r. gistryURL>http: //budls: 8090/grimoir. s/</r. gistryuRL3- 
<publishURL>http: //budle: 8090/grimoiras/services/publish</publlshURL> 
<inquiryuRL>http: //budla: 8090/grimoiras/ssrvicus/inquirs</inquiryuRL> 
<transportClasaNams>ApachsAxisTransport</transportClassNama> 

</RsgistryConliq> 

</DQPCoafiguratioa> 

Additionally, the GDQS also collects an estimate of the network latency time between the available 

resources (which it looks up from the registry) and the actual data sources by sending and receiving 

a pre-calculated packet. It should be noted that this process of gathering the network data is not the 

most perfect way, but it can nevertheless produce an estimate. It would definitely be more accurate if 

other standard network monitoring tools are used, and the DQP system does not disallow such tools 

to be used. This estimation of the network latency can later be used during the query optimisation 

phase to schedule data access and operation call operators to specific hosts which are closest to the 

data source. 

5.2.4 Proactive deployment of the Analysis Service 

The configuration document provided by the consumer may optionally include the name of an 

analysis service that will be used in the queries. The GDQS takes a proactive decision to deploy 

that service on all available resources during the schema import phase if that service is registered in 

the registry and can be found in the Software Repository. This allows the GDQS to consider multiple 

instances of the analysis service while optimising the query thereby parallelising the operation call 
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operator with a view to maximise the performance. GDQS uses multiple threads to process the 

deployment on each available host, and hence the cost of deploying the analysis service on multiple 

nodes is almost equivalent to that of the maximum cost amongst all these. Once the analysis service 

has been deployed on multiple nodes, the GDQS keeps a record of all the endpoints as replicated 

operations and considers them together with the network latency data to determine which of the 

deployed instances should be used during the query processing. Thus a costly operation call invoking 

the analysis service may be included in multiple partitions, each with the analysis service hosted on 

the corresponding node, so that the tuples on which the service will be invoked can be distributed 

to all these partitions thereby executing it in parallel. DQP uses a heuristical approach to decide on 

the degree of parallelism of expensive operators. For an operation-call operator this is equivalent to 

the number of deployments of the service. Thus, DQP is able to incorporate all the endpoints of the 

analysis service that has been dynamically deployed to generate query plans where the operation-call 

operator is fully parallelised. 

5.2.5 Distributed Query Plan Generation 

Unlike the previous OGSA-DQP where evaluation services were required to be already deployed 

on the participating nodes, there is no such requirement except that the participating nodes must 

allow the deployment of new services, which is achieved via the HostProvider. After the schema is 

imported, a query is submitted by the consumer. During the compilation phase of the query, the 

GDQS collects the list of available computational resources from the configuration file (if it contains 

such a list) and the registry, where all the HostProviders are registered, as well as all previously 

deployed evaluation services. It is also possible to add certain characteristics of the participating 

nodes, such as the CPU speed, amount of available memory etc. within the configuration document 

as Computational Metadata. These can also be stored as the metadata for each HostProvider service 

within the registry. The GDQS keeps a record of the available computational metadata with the list 

of available resources. After the query compilation and optimisation phase, a physical query plan is 

produced which is then partitioned by the scheduler component. This component is responsible for 

parallelising the physical plan into several partitions and assigning operators to the available compu- 

tational resources which can perform the query evaluation. The scheduler uses certain heuristics for 

introducing intra-operator parallelism to some physical operators such as join and operation call. As 

a first step, exchange operators are introduced in the query plan before any attribute-sensitive (such 

as join) and location-sensitive (such as operation-call) operators which is described in Section 3.4. 

Thereafter, the first phase of the scheduling process follows the algorithm shown in Listing 5.2 for 

assigning the degree of parallelism to each operator [132]. 
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Listing 5.2 Assigning degree of parallelism to operators 
1 repeat 
2 get costliest parallellsable operator; 
3 If more parallelism I. beneficial 
4 repeat 
5 increase degree of parallelism for operator 
6 check If more parallelism Is beneficial 
7 until no changes in parallelism OR no more available resources 
8 until no changes in costliest operator 

The second phase of the algorithm assigns the operators to specific computational resources. The 

complete physical plan is subdivided into partitions bounded by the exchange operators. If a parti- 
tion does not contain any parallelised operators, the scheduler will attempt to assign it to a specific 

computational node. On the other hand, if any operator within a partition is parallelised, the other 

operators in that partition (such as the reduce operator) are also parallelised to the same degree 

and a number of partitions equivalent to the degree of parallelism will be created, each containing 
the identical query plan fragment. Assignment of partitions to computational resources consider the 

computational metadata that describes the characteristics of each node, and the most recent net- 

work latency information for each available node. The scheduler uses some heuristics while assigning 

operators to resources, which are as follows: 

" If a partition contains a data access operator, such as a scan operator, the scheduler assigns 

them first, and makes an attempt to place it on the same node as the OGSA-DAI data source 
being accessed. If that node has an evaluation service already deployed, then the endpoint 

of that service is used, otherwise, the node is assigned only if it allows dynamic deployment 

of an evaluation service. If it is not possible to assign that node to a partition, because 

no evaluation service has been deployed on it and dynamic deployment is not possible, the 

scheduler assigns the partition to the node closest to the data source and hosting a HostProvider 

service, irrespective of whether an evaluation service is already deployed or not. 3. 

" The partitions which contain a join operator that is not parallelised, are placed on the same 

node as the larger input (the scan operator), the assignment of which would have already 

marked the node as requiring dynamic deployment of an evaluation service. 

" The partitions which contain parallelised hash join operators are placed as the first option on 

the node which has the larger input, followed by the node containing the second input, followed 

by other nodes with a preference given to powerful machines (higher CPU speed) with larger 

memory, in each case checking whether an evaluation service has already been deployed on 
3The term "node closest to the data source" denotes the node which has the least network latency with the one 

on which data is located 
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the nodes, and if not, using a node which hosts the IiostProvider service thereby designating 

them for a dynamic deployment. 

" For the partitions which contain parallelised hash loop join operators, first preference is given 
to the node which contain the larger input, followed by the node containing the OGSA-DAI 

data source being accessed or the node closest to it, followed by other nodes with a preference 

given to machines with large memory. The CPU speed is not considered as the primary factor 

as the join operator spends a large proportion of its time waiting for responses from the data 

service. During each assignment, the availability of the evaluation service or feasibility of a 
dynamic deployment of the evaluator is verified. 

. The partitions containing parallelised operation call operators are assigned on the basis of least 

network latency followed fastest machine first. Thus, if there are nodes on which the analysis 

service was dynamically deployed, the scheduler will choose to assign the operators on them 

to reduce the network latency, and thus the invocation cost. 

Based on these criteria and the algorithm in Listing 5.3, the scheduler assigns the operators to specific 

computational resources and generates a set of sub-plans, each designated for a computational 

resource. As all available resources are considered in this dynamic version of OGSA"DQP during the 

query compilation/optimisation phase, the selected resources may not have the services required to 

evaluate the partition scheduled for the node. In such cases, the dynamic deployment framework will 

send a deployment request to the corresponding node, which will download and deploy the required 

service, and also update the registry about this new deployment, so that the GDQS can consider 
these new service instances for subsequent queries without any need for a dynamic deployment. Once 

the deployment is successful, the query partitions are submitted to each of the evaluation nodes, 

and query evaluation proceeds as explained in Section 3.5. Figure 5.5 shows the query processing 

activity in a DQP framework where the concepts proposed in Sections 5.1.1,5.1.2 and 5.1.3 are 
brought together. 

The figure follows the same sequence as the earlier Figure 3.5. In step 1, the client submits a query 
to the DQP coordinator service, which compiles and optimises the query and generates a set of 

query partitions which can be evaluated in parallel. During the compilation/optmisation phase, the 

coordinator service takes into account all available hosts rather than the hosts which already have 

the evaluation service deployed on them. The query plan thus generated may contain a number of 
hosts which are best suited for the evaluation, but do not have the evaluation service pre-deployed, 

in which case, the GDQS dynamically deploys the evaluation service on these nodes (step 2). Once 

the deployment phase completes, the query partitions are sent to each participating node (step 

3), following which the query execution process starts on each of the nodes as described before in 
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Listing 5.3 Assigning evaluators to partitions 

discover the set of available evaluators E= {el, e2 ... en) 
discover the set of available host providers H= {hl, h2, ... hn} 
Set deployment-required D 
for each operator 
do 

{ If (operator = scan) 
ip = get data source IP(operator) 
ComputeNode node = find nearest node(ip, E, H) 
If (node is in H) { 

D=DU (node) 
} 

} else if (operator = hashjoin) { 
1= get left input(operator) 
r= get right input(operator) 
ComputeNode node = find join node(l, r, E, H) 
If (node is in H) { 

D=DU {node} 
} 

} else If (operator = hashloop) { 
I= get left input(operator) 
ip = get data source IP(operator) 
ComputeNode node = find join node(I, ip, E, H) 
If (node is in H) { 

D=DU {node} 
} 

} else If (operator = opcall) { 
d= get degree of parallelism(operator) 
Collection nodes = find opcall nodes(d, E, H) 
for each n in nodes { 

if (n is in H) { 
D=DU {n} 

} 

} 
end 
If (D not empty) { 

for each d in D 
do 

deploy evaluation service on d 
E=EU {d} 
update registry with evaluator instance d 

42 end 
43 } 

Section 3.5. Each node communicate with each other by sending and receiving partial results in 

form of tuples and once the execution is completed, the final result is returned in step 8 to the 

coordinator service and hence the client. 

The services that are dynamically deployed remain in place unless specifically undeployed. Thus, 

queries submitted to the same DQP data resource will be able to use all the available service instances 

as the configuration of the data resource itself is updated as and when dynamic deployments take 

place. On the other hand, as the newly deployed service instances are reflected in the service registry, 

new resources created from the DQP factory data resource for the same set of data sources will also 

be able to utilise all the available services, and may not need to deploy new services. 
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Figure 5.5: Query Execution on Component Services in a Dynamic OGSA-DQP framework 

5.2.6 Using Network-aware Cost Models 

There is some existing work on cost models for a distributed query processing system considering 

the network characteristics, such as [133] and [134]. In [133], the authors discuss a concept which 

utilises a "network graph" for distributed query processing, where the transmission cost between 

the participating nodes on which data are hosted are used to create the network graph from which 

least costly routes can be derived using well-known algorithms such as the shortest path algorithm. 

In [134] new algorithms such as Edge and Edge+ are discussed which can be used for placement 

of the operators on arbitrary network locations given the availability of the framework which allow 

such placement. The concepts of DynaSOAr allows the query evaluation engine to be flexible in 

nature. The network aware cost models are capable of taking better decisions as to where the 

operators should be placed based on the network data. It can also be envisaged that the real 

network data would be collected using network monitoring tools, such as CoNlon [135] which is a 

scalable monitoring tool for the PlanetLab system [136]. Bringing all these together, we can envisage 

a distributed query processing framework which will be fully dynamic, network-aware and flexible, 

where the query compiler/optimiser would use adaptations of network-aware cost models for making 

decisions about the assignment of the operators to computational resources after which the dynamic 

deployment framework will allow it to deploy necessary components on the selected nodes thereby 

creating an ad-hoc runtime evaluation engine able to exploit computational and data resources across 
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organisational boundaries. 

5.2.7 Virtualization in DQP 

The concept of virtualization and how it has been used in DynaSOAr is outlined in Section 4.4. A 

similar approach is taken in this dynamic OGSA-DQP, particularly for two of the usage scenarios out- 
lined in Section 5.1, viz. to perform data caching by dynamic deployment of databases(Section 5.1.5) 

and for services requiring special environments(Section 5.1.6). 

5.2.7.1 The Model 

Virtualization plays a major role in this dynamic OGSA-DQP framework as a means of bringing 

the data closer to the analysis service as opposed to the concept proposed in the Active Informa- 

tion Repository of moving the analysis code closer to the data. The primary scenario where this 

alternative approach may be useful is where a consumer, for example a bio-informatician, submits 
frequent queries over the same dataset, where each query extracts a large number of tuples from one 

or more databases, performs certain operations, such as join on them, and for each matching tuple, 

invokes an analysis service. The DQP query compiler initially attempts to assign the join operator 

on the node which has the largest input as the first preference, followed by the node with the second 
input, and then other available nodes. But this approach may still give rise to a situation where a 
large number of tuples have to be transferred from a distant node to the root evaluator (which is 

collocated with the co-ordinator). As DQP relies on SOAP messages for transferring the tuples, the 

transport cost incurred in such situations may become extremely high. If it can be established that 

the consumer is submitting the queries over the same data set, and if the data set does not need 
to be the most up to date copy, it may be possible to take the alternative approach of deploying a 

snapshot of the database closer to the computation to avoid the large transport costs. 

Database Replication is often considered as a solution to manage distributed databases and bringing 

the data closer to the computation. But the technology requires a long offline administrative process 

of setting up the master and slave databases after which the slave databases can synchronise them- 

selves with the master copy. Thus it is evident that database replication alone can not be used to 

deal with the problems as mentioned above. In the dynamic version of OGSA-DQP, virtualization 
is viewed as one of the potential solutions. As it has been assumed that the requirement does not 

mandate the use of the most recent data set, in this extended DQP, a snapshot of the database is 

deployed in a pre-built virtual machine, along with the necessary data access services to access the 
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data. This pre-built VM is stored in the software repository and the DQP system is able to deploy 

it when required. 

Virtual Servers from VMWare [120] have been used in DynaSOAr, and hence in this dynamic version 

of DQP. As in the case of DynaSOAr, the available HostProviders are registered so that the service 

provider, in this case the DQP coordinator can discover them from one or more registries. In order to 

be able to use the virtualization features, some hosts with an installed version of the VMWare Server 

are registered as HostProviders which are stored in the registry as individual entities. The registry 

contains the information about the VMWare Server, such as the location of the executables and the 

perl scripts which wrap the VMWare Server commands. When required, the service provider would 
be able to search the registry for hosts with the VMWare Server, and request the HostProvider 

service on that host to download a particular virtual machine and start it, which, in effect will 

make all the services deployed within that VM available. A "bridged" networking model is followed 

within DQP for such cases, as the services deployed on the VM, such as the evaluation service must 

communicate with external services, such as remote evaluators on other participating hosts, thus 

highlighting the requirement of the "network presence" of the VM to be known. For this reason, a 

pool of IP addresses is used to assign each new VM a unique IP address when the VM is booted, 

so that they can communicate with external systems. Each service deployed on the VM will be 

accessible using this assigned IP address within the service endpoint. 

5.2.7.2 The Feedback Methodology 

In DQP, all services are deployed when required, and the same philosophy is followed for the deploy- 

ment of a database snapshot. The other dynamic deployment options, such as moving the analysis 

code closer to the data and collocating the query evaluation engine with the data are exploited 
during the query compilation/optimisation phase, but for caching the data or deploying the data 

closer to the computation, a different methodology of feedback is used. This is because deploying a 
database wrapped in a VM is costly, and is done only when it is a necessity. Several performance 

measurements, such as number of tuples transferred, total cost of transferring the data, the total 

cost of the actual evaluation process etc. are collected from each of the participating evaluation ser- 

vices and are sent back to the central DQP coordinator (GDQS) after the completion of each query 

evaluation process. An XML schema as shown in Figure 5.6 is used for collecting the performance 
data from each node. 

The performance monitoring schema is used to collect three distinct types of measurements - (i) 

measurements related to the data access process, such as the total cost of accessing the data, the 
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data access rate, number of tuples, and average row size for each tuple, all of which are collected 

within the scan operator, (ii) measurements related to the data transfer process, such as the average 

row size of the tuples which are sent across the network, the total number of tuples that are sent, 
the cost of each transport operation and the total cost of transferring all the tuples, and (iii) similar 
information regarding the invocation of a Web Service for analysis of the retrieved data, such as the 

total and average invocation cost, all of which are collected within the Transporth andler component 

and the relevant operators, the components of the evaluation service as explained in Section 3.5.5. 

During the DQP initialisation phase, a background thread for analysing the performance data is 

started, which remains inactive during the query evaluation phase. After each query is evaluated, 

the GDQS sends a request to each participating node requesting for the performance results which 

are sent back in form of SOAP messages conforming to the schema outlined in Figure 5.6, an example 

of which is shown in Listing 5.4. In this example, two remote nodes, salt and planetlab4 participate 
in a distributed query evaluation by accessing data from two databases located on these two nodes 

and exchanging tuples while performing a join, and the final results are sent to the DQP coordinator 

node, which is designated as root. These results are passed to the monitoring thread which analyses 

the results it has received, such as calculating the cost of the data access per tuple and the cost 

of data transport per tuple. It also tries to correlate the total execution cost for the query with 

the cost of transporting the data from remote nodes and calculates the trend incorporating all the 

previous data received. Based on this analysis, if it is found that the cost of transporting the data 

is the major contributor to the total query execution cost following an increasing trend, and is more 

than the cost of deploying the database locally and a snapshot of the database is available within 

a pre-built virtual machine, the process of reconfiguring the DQP data resource by deploying the 

VM on a local node is initiated. It is also possible to configure the process in such a way that the 

consumer specifies the maximum cost (in terms of the maximum amount of time required to invoke 

a service, or the maximum amount of time required to transfer partial results from the evaluators) 
he or she is willing to pay during the evaluation of a query. In a scenario where a remote provider 

charges the consumer based on the amount of data being transmitted, the reconfiguration may be 

triggered when this cost at the provider site surpasses the maximum allowable cost specified by 

the consumer. In the prototype system described in the thesis, such a simple model is used. It is 

possible to use more complex analysis model based on data access costs, network monitoring tools 

for available bandwidth and real transport cost to decide the stage when the reconfiguration process 

should be triggered. 
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Listing 5.4 Example of performance data from two remote nodes 
<progmon: QuaryMoasuramentCollaction quaryID-"dgpogsadai-11492ds1f5O. Thu-Aug-23-14: 21: 44-BST-2007"> 

data railacting the total axacution Cost 

<progmon: tupl. Counter>4000</progmon: tupleCountar> 
<progmon: axacutionCost>51249</progmon: ax. cutionCost> 
<progmon: delivoryCost>812</progmon: dalivaryCost> 

Cost from an individual evaluator on SALT 

<progmon: queryMeasurements sourceID""http: //salt: 8199/EvaluationService"> 
<progmon: queryID>dgpogeadai-11492deif60. Thu-Aug-23-14: 21144-BST-2007</progmon: querylD> 
<progmon: scanlnfo> 

<progmon: dataService>ProteinSequenceMySQLResource</progmon: dataService> 
<progmon: numberOfBlocka>9</progmon: numberOfBlocks> 
<progmon: numberOfTuples>8000</progmon: numberDfTuples> 
<progmon: totalScanCost>17893</progmon: totalScanCost> 
<progmon: dataAccessRate>121.0</progmon: dataAccessRate> 
<progmon: averageRovSlze>271</progmon: averageRovSize> 

</progmon: scanlnfo> 
<progmon: comminfo> 

<progmon: destinationEvaluator>root</progmon: destinationEvaluator> 
<progmon: numberOf uples>7911</progmon: numberOfTuples> 
<progmon: bufferSize>30000</progmon: bufferSize> 
<progmon: totalCommunicationCost>76839</progmon: totalCommunicationCost> 
<progmon: avgCostPerSend>644.0</progmon: avgCostPerSend> 
<progmon: numberOfInvocations>141</progmon: numberOflnvocations> 

</progmon: comminfo> 
<progmon: comminfo> 

<progmon: destinationEvaluator>http: //planetlab4: 8199/EvaluatlonService</progmon: destinatlonEvaluator> 
<progmon: numberOfTuples>7953</progmon: numberOftuples> 
<progmon: bufferSize>30000</progmon: bufferStze> 

<progmon: totalCommunicationCost>77164</progmon: totalCommunicationCost> 
<progmon: avgCostPerSend>635.0</progmon: avgCostPerSand> 
<progmon: numberOfInvocations>144</progmon: numberOfInvocations> 

</progmon: eomminfo> 
</progmon: queryMeasurements> 

Cost from an individual evaluator on PLANETLAB4 

<progmon: queryMeasurements sourceID-"http: //planetlab4: 8199/EvaluationService"> 
<progmon: queryID>dqpogsadai-11492de1f50. Thu-Aug-23-14: 21: 44-BST-2007</progmon: queryID> 
<progmon: scanInfo> 

<progmon: dataServico>ProteinPropertyMySQLResource</progmon: datsService> 
<progmon: numberOiBlocks>9</progmon: numberOfBlocks> 
<progmon: numberOfTuples>8000</progmon: numborOfTuples> 
<progmon: totalScanCost>4911</progmon: totalScanCost> 
<progmon: dateAcceesRate>50.0</progmon: dataAccessRate> 
<progmon: averageRovSize>31</progmon: averageRovSize> 

</progmon: scanlnfo> 
<progmon: comminfo> 

<progmon: destinatlonEvaluator>root</progmon: destinationEvaluator> 
<progmon: numberOfTuples>8006</progmon: number0f1uples> 
<progmon: bufferSize>30000</progmon: bufferSize> 
<progmon: totalCommunicationCost>65893</progmon: totalCommunicationCost> 
<progmon: avgCostPerSend>1054.0</progmon: avgCostPerSend> 
<progmon: numberOfInvocations>53</progmon: numberOfInvocations> 

</progmon: comminfo> 
<progmon: comminfo> 

<progmon: destinationEvaluator>http: //salt: 8199/EvaluationService</progmon: destinationEvaluator> 
<progmon: numberOfTuples>8009</progmon: numberOfTuples> 
<progmon: bufferSize>30000</progmon: buiferSize> 
<progmon: totalCommunicationCost>57214</progmon: totalCommunicationCost> 
<progmon: avgCoatPerSend>1021.0</progmon: avgCostPerSend> 
<progmon: numberOfInvocations>66</progmon: numberOfInvocations> 

</progmon: comminfo> 
</progmon: queryMeasurements> 

</progmon: QuaryMeasurementColleCtion> 
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5.2.7.3 Reconfiguration of the DQP data resource 

The reconfiguration of the DQP data resource happens as a background process. During this phase, 
the existing resource which was processing the earlier queries remains alive, and a new data resource is 

created, which after the configuration is completed, replaces the former. Once the VM is instantiated 

properly, the schema from the newly deployed data resource and other services must be imported by 

the DQP data resource. The endpoint of the data service which was pointing to the actual remote 
database is overwritten with the endpoint of the new data service on the VM. Any instance of the 

evaluation service or the HostProvider service on that remote node are excluded as well, as all these 

services are locally available after the VM initialisation. Once this is done successfully, the former 

DQP data resource is replaced with the new one, and all further queries submitted to this particular 
instance or session of DQP are processed within this new DQP data resource. A new consumer 

can however initiate a new DQP session, with the same configuration as the original, in which 

case the original resources will be used, unless a reconfiguration is called for. The cost of the second 

reconfiguration may be minimal as it may be possible to reuse the previous deployment of the virtual 

machine. The process of collecting performance feedback and reconfiguring the corresponding data 

resource is explained in Figure 5.7. 

Figure 5.7(a) shows the process of query evaluation and feedback in the extended version of DQP 

which collocates various participating services, and collects the performance data from the par- 

ticipating evaluation services once the query is completed. As described before in the context of 

Figure 5.5, the coordinator service after receiving the query from the client (in step 1) performs 

the compilation/optimisation of the query and dynamically deploys necessary services on participat- 

ing nodes. The query execution process follows a similar sequence of sending the query partitions 

to respective evaluation services (step 3), evaluating each partition by communicating with other 

evaluation and analysis services (step 4,5,6 and 7) and finally sending the complete result to the 

coordinator and hence the client (step 8). Once the query execution is complete, the coordinator 

service sends a request to all participating nodes requesting for the performance data as described 

in Figure 5.6(step 9). Once the feedback from all the nodes are collected, the data is analysed 

and based on the analysis as explained in Section 5.2.7.2, a virtual machine which encapsulates the 

data source, data access and analysis services, is deployed within the local network (Figure 5.7(b)) 

which creates a new configuration for the DQP data resource. For all subsequent queries directed to 

this particular instance of the DQP data resource, this new configuration is used, thereby utilising 

the newly deployed resources. However a new consumer may create a new instances of DQP data 

resource with the original configuration, and submit queries to it until a reconfiguration is required, 

in which case, it may be possible to avoid the redeployment of services or virtual machines, as that 
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has already been done during the earlier scenario. 

5.3 Discussion 

This chapter discussed a prototype implementation of a dynamic distributed query processing frame- 

work based on OGSA-DQP which was discussed earlier in Chapter 3 and the dynamic deployment 

framework, DynaSOAr, discussed in Chapter 4. It was argued that DQP could benefit from the 

dynamic deployment features by being able to deploy the query evaluation and analysis services 
dynamically on best suited nodes. This would allow the deployment of the evaluation and analysis 

services closer to the data, thereby minimising the cost of transmitting the data over the network. 
Further, this framework utilises the virtualization methods proposed in DynaSOAr to exploit alter- 

native paradigms for distributed data access, such as caching the data locally, or instead of moving 
the computation closer to the data, an attempt is made to move the data closer to the computation 
in situations where the data transmission costs increase rapidly and exceeds the cost that can be 

tolerated by the consumer. It is however assumed that in such cases a snapshot of the actual data 

would cause no hindrance to the analysis and there should be some offline method for keeping the 

snapshot synchronized with the actual data source. The virtualization approach also allows the 

deployment of specialist analysis services which require a special environment, or depend heavily 

upon the hardware architecture of the target node. Such services can be packaged in a VM where 
the special environment can be provided, and if the service needs to be tuned to the system, this 

can also be achieved, so that when the service is deployed along with its container VM, it is already 
tuned to the environment. 

The proactive deployment of the analysis service on multiple nodes allows the compiler/optimiser 
to be able to parallelise any costly operation-call operator, thereby increasing the efficiency. The 

compiler applies a very basic technique to decide upon the degree of parallelism for each operator, 

and for the operation-call operator, this is equivalent to the number of available instances of the 

service, which is a very simple assumption. This thesis extended the existing compiler/optimiser to 

enable it with the dynamic deployment features, and used the existing cost model wherever possible. 
A simple method of calculating the network latency between the nodes is used in which each node 

sends a network packet to every other node in order to calculate the round-trip time between them. 

A more sophisticated cost model such as the network-aware optimisation methods proposed in [134] 

and a sophisticated network monitoring tool or framework such as [135] would develop the framework 

further. 
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As mentioned before, the compiler/optimiser uses a very simple cost model, which has been extended 

to incorporate the dynamic deployment features. An adaptive DQP, which adapts to the changing 
dynamics of a Grid system is still a long way away. The effects of changes in resources at runtime 
have been considered in the investigations into adaptive distributed query processing [137,138]. It 

would be an effective solution to combine the findings of GridSIIED [113], DynaSOAr and the 

adaptive DQP investigation. There have been some work on fault-tolerance in distributed query 

processing [139,140]. The concepts of the dynamic DQP are also relevant to fault-tolerant query 

processing systems where a failure of an evaluation node can be handled through the deployment of 
the same service on another node or a virtual machine as a replacement of the failed node, and by 

replaying certain sections of the query evaluation to regain the state where the processing stopped 
due to the failure. 

In summary, the dynamic version of DQP creates a loose coupling between the services and the 

computational resources, and adopts the dynamic deployment techniques to "create" each node as 

and when required by deploying services on the available resources. A dynamic and fluid query 

processing engine is created at runtime which is able to reconfigure itself based on the changes in the 

environment and the feedback from the query processing activities. The evaluation of the prototype, 

the experimental set-up and the results are discussed in later chapters. 



Chapter 

Evaluation of the Dynamic DQP 

Framework 

The evaluation of the research work described in Chapters 3,4 and 5 is presented in this chapter. 
The goal of this research has been to define a service oriented distributed query processing (DQP) 

framework capable of evaluating distributed queries over disparate data sources using emerging 

standards for data access and integration, and exploit the advantages of dynamic service deployment 

to enhance the performance. The purpose of this chapter is to verify the validity of the claims made 

while presenting the research work by executing several experiments within an experimental set- 

up. Several scenarios involving the static DQP (presented in Chapter 3) and the dynamic extension 
(presented in Chapter 5) are presented and both frameworks are evaluated. The results are analysed 

thereafter to establish the earlier claims. 

6.1 Implementation 

Both OGSA-DQP and DynaSOAr frameworks have evolved through a series of implementations 

since they were first conceived. This section takes a brief look at these different implementations. 
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6.1.1 OGSA-DQP 

OGSA-DQP started as a part of rvGrid and OGSA-DAI and was a collaboration between Newcastle 

and Manchester universities. The first release of OGSA-DQP in September 2003 was based on the 

Globus Toolkit 3.0 (OGSI). Since the refactoring of OGSI into WS-ResourceFramework, the imple- 

mentation of OGSA-DQP has changed considerably. The central coordinator component (GDQS) 

was developed to support both WS-RF and WS-I, and the query evaluation component, which is 

considered as a major contribution towards this thesis was based on WS-I in order to benefit from 

the findings from ongoing research on dynamic deployment. The earlier releases of OGSA-DQP 

treated the Polar* compiler/optimiser component as black box, thus making it extremely difficult 

to incorporate the dynamic deployment features within the compiler/optimiser component. Later 

on, a new version of OGSA-DQP was created which contained a new Java-based compiler/optimiser 

component which supported SQL queries instead of the earlier OQL, but the concepts behind the 

compilation process, such as using parallel database techniques remained the same. This is the 

version of OGSA-DQP that has been used to extend the framework and incorporate the dynamic 

deployment features. 

6.1.2 DynaSOAr 

Research on DynaSOAr progressed in different strands and received contributions from many re- 

searchers since its inception presented in [19]. The first version of DynaSOAr benefited from the work 

done in GridSHED [113] and used the Condor scheduling system and Class Ads in order to schedule 

jobs on a set of nodes each offering the HostProvider service. The jobs invoked the HostProvider 

Web Service for retrieving the code for the service requested by the consumer, deployed and pro- 

cessed the request. The basic components of DynaSOAr, such as the Service Provider, Host Provider 

and Software Repository were developed during this phase. The initial version of DynaSOAr was 

restructured to incorporate the concepts of message orientation and each of the components were 

redesigned to support this model. The new architecture introduced the Service Registry compo- 

nent based on GRIMOIRES, a basic broker component for brokering service requests, refactored the 

HostProvider to support a highly dynamic structure such as clusters at different institutions coming 

together to form a dynamic virtual organisation. More developments into DynaSOAr resulted in a 

framework which allowed dynamic deployment of databases, specialised services wrapped in a virtual 

machine allowing the creation of an on-demand ad-hoc Grid, and this is the version of DynaSOAr 

which has been presented in this thesis, and these are the concepts that are incorporated within the 

DQP framework leading to a dynamic version of OGSA-DQP. 
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6.2 Evaluation 

This section describes in detail all the experiments carried out in order to validate the claims made 
in earlier chapters. 

6.2.1 Evaluation Platform 

An extensive experimental setup was created for evaluating the dynamic DQP framework. This 

consisted of local computational resources within the same university network and remote computa. 

tional resources distributed across the world to simulate a real-world like situation when consumers 

request services that are distributed globally. PlanetLab [136] was used to acquire remote nodes for 

this purpose. 

A dynamic DQP framework consisting of five test data resources, the structure of which are shown in 

Listing 6.1, and the HostProvider service was setup on a set of Linux machines within the Newcastle 

University GIGA cluster - each of them being a four-processor Intel® XeonTM CPU 2.80GHz system, 

with 2GB memory and hosting the VMWare Server software. The GDQS was deployed on a desktop 

running on Windows XP (Service Pack 2) machine -a four-processor Intel® Pentium(R)TM CPU 

3.0GHz with 2GB memory. The same machine which hosted the GDQS also hosted the Software 

Repository and the Service Registry. A copy of the analysis service was deployed on a Linux (one- 

processor Intel(D XeonTM CPU 2.40GHz system with 1GB memory) system at the Edinburgh 

Parallel Computing Centre (EPCC). To compare the results with a real-world situation, an exactly 

similar DQP framework with databases, data access, and HostProvider services was set up on a set 

of Planetlab[136] nodes, with compute resources located at geographically remote locations, such as 

in Toronto, Tokyo, Berkeley, and several European cities. Each database was replicated on five nodes 

to avoid experimental problems due to node failures. The local network was a high speed 100Mbps 

ethernet, and the connection with the PlanetLab network being through the JANET [141], a high 

speed gigabit ethernet between the universities in the UK and GREN [142], the Global Research and 

Educational Network. Apache Tomcat version 5.0.28 and MySQL version 5.24 were used as the web 

service container and DBMS respectively. The complete experimental setup is shown in Figure 6.1. 

One of the databases used for the test queries was loaded with several tables, each with 100,000 

records, and fixed record sizes of 128 bytes, 256 bytes, 512 bytes, 1 Kbytes, 2 Kbytes, 4 Kbytes, 

8 Kbytes and 10 Kbytes. Experiments were designed to fetch data out of each table with varying 

cardinalities, optionally perform a join with data from another remote database and perform the 

analysis on each tuple using the analysis service. Results were collected in order to compare the 



CHAPTER 6. Evaluation of the Dynamic DQP Framework 124 

Listing 6.1 Structure of the databases used for the experiments 
/* Description of the goterm database "/ 
table goterm { 

'id' varchar(32) NOT NULL default 
'type ' varchar(55) NOT NULL default '', 
'name' varchar(255) NOTNULL default '', 

PRIMARY KEY ('id ') 

/r Description of the interaction database r/ 
table gene-sequence { 

'Sequence_ID' varchar(50) NOTNULL default '', 
'Sequence_Type' varchar(100) default ", 
'Sequence_Source' varchar(100) default ' ', 
'Sequence_Description' varchar(255) default '', 
'Sequence' text NOT NULL, 

PRIMARY KEY ('Sequenee_ID ') 
} 

/* Description of the proteinproperty database 
table protein-property ( 

'ORF' varchar(55) NOTNULL default '', 
'molecular Weight ' float NOTNULL default '0', 
'hydrophobicity ' float NOTNULL default '0', 

PRIMARY KEY ('ORF') 
} 
table random-property 

'id' bigint (20) NOT NULL, 
'ORF' varchar(55) NOTNULL default '0', 
'molecular Weight ' float NOT NULL default '0', 
'hydrophobicity ' float NOTNULL default '0', 

PRIMARY KEY ('id ') 

/* Description of the proteinsequence database r/ 
table protein_sequence { 

'ORF' varchar(50) NOTNULL default '', 
'sequence ' text NOT NULL, 

PRIMARY KEY ('ORF') 
} 
/* average row size 128 bytes s/ 
table random-sequence-128 { 

'id' bigint (20) NOT NULL, 
'sequence ' text NOT NULL, 

PRIMARY KEY (lid') 

/* average row size 10 Kbytes 
table random-sequence-IOK { 

lid' bigint (20) NOT NULL, 
'sequence ' text NOT NULL, 

PRIMARY KEY (`id ') 

/* Description of the proteinterm database "/ 
table protein_goterm { 

'ORF' varchar(55) NOTNULL default ", 
'GOTermldentifier' varchar(32) NOTNULL default '', 

PRIMARY KEY ('ORF', ' GOTermldentifier') 
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Figure 6.1: The complete experimental setup 
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performance of the various setups, such as (i) a PlanetLab setup with remote analysis service, (ii) 

a PlanetLab setup where the evaluation and analysis services are collocated on a Planet Lab node 

using the dynamic deployment framework, (iii) a setup with multiple copies of the analvsis services 

dynamically deployed on multiple nodes and (iv) a setup where a reconfiguration of the l)QI' data 

resource takes place by deploying one or more data sources (wrapped in V. %Is) within the local 

network. 

There are issues regarding the usage of PlanetLab infrastructure for experiments, but it was chosen 

as one of the primary components within the evaluation platform as it is "designed to subject network 

services to real-world conditions" [143]. The concerns about the reliability of PlanetLab nodes due 

to their heavy load have been addressed by selecting lightly loaded nodes with higher virtual memory 

and CPU speed that are known not to have any problems. Such a selection can be made through 

the PlanetLab monitoring platform, CoM4on [135]. PlanetLab also offers a "reservation" mechanism 

by which the nodes can be reserved for a certain duration guaranteeing a majority share of the CPU 

during that period. 

Two virtual machines were used to investigate the deployment of a database snapshot. The protein- 

sequence and proteinproperty databases were wrapped in two separate VNIWare virtual machines, 
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each with 4GB hard disk capacity and 512MB RAM and Fedora Core version 4 as the guest oper- 

ating system. Apache Tomcat version 5.0.28 and MySQL version 5.24 were installed on the virtual 

machines and were configured to start up during the VM boot process. The data access services from 

OGSA-DAI were pre-deployed and configured to access data from the respective databases. The 

evaluation and analysis services were also pre-deployed to complete the virtual machine packaging. 

The XML document in Listing 6.2 shows the configuration of one of the virtual machines which 

contained a snapshot of the proteinproperty database and other associated services. 

Listing 6.2 Configuration Document for a Virtual Machine 
<VirtualMachiasDescriptton> 

General description s iau vnl 

<vmName>vmv-nam48-tc4-2</vmNamo> 

<viTypa>VMWARE</vmTypo> 
<guoatOS>LINUX</guestOS> 
<contigFilt>vmv-nam48-tc4-2. vmx</contigFili> 
<hardDickCapacityGB>4294967296</bardDiskCapacityGB> 
<primaryMomoryMB>536870912</primaryMamoryMB> 

The database and data service configuration) 

<databas. Config> 
<dbName>protainproparty</dbNamo> 
<URI>axis/services/ogsadai/ProtsinPropartyDataSsrvics</URI> 
<Rosourc. ID>ProtsinPropsrtyMySQLRssourca</RasourcSID> 

</databassConfig> 

Information about web service containers 

<tomcatInstanc. Path>/root/addon/tomcat/5.0.28</tomcatInstanclPath> 
<tomcatPort>8090</tomcatPort> 

.......... -`--- ----- --r- -- -------- I- 

<vmS. rvic. List> 

<s. rvic. Nam. >pu. ryEvaluationS. rvic. </s. rvic. Nam. > 
<s. rvic. URI>dqp-. valuator/s. rvic. s/QuaryEvaluationSsVico</s. rvic. URI> 

</vmS. rvic. List> 
<vmS. rvic. List> 

<s. rvic. Nam. >EntropyAnalys. rS. rvic. </s. rvic. Nam. > 
<s. rvicaTRl>. ntropy-analys. r/s. rvic. s/EntropyAnalys. rS. rvic. </s. rvic. URI> 

</vmS. rvic. List> 

</VirtualMachinaDaacription> 

The virtual machines and all other deployable services, such as the evaluation service and the analysis 

services were uploaded to the Software Repository which in turn created entries of these in the Service 

Registry so that the DQP system is able to search for required entities within the registry. 

6.2.2 Collocating the Data and Analysis Code 

The purpose of this experiment was to establish the effect of the cost of invoking an analysis service 

on the query execution cost, and to investigate the benefits of collocating the analysis service with the 

data. The usage scenario is explained in Section 5.1.2 where a query which accesses a large volume 

of data from a database and performs an analysis on each of the retrieved tuples is submitted by an 
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e-scientist. The rationale behind the scenario is to minimise the vohinie of data being transferred 

over the network, and thus reduce the cost of overall query execution by deploving a copy of the 

service closer to the data source to avoid the cost of a remote Web Service invocation which increases 

with the volume of data. 

The select-operation_call query as shown in Listing 6.3 was used to investigate the etfect, s of collar 

cating the analysis service with the data. 

Listing 6.3 A select-opcall query 
select proteinsequence_random_sequence_256. id, 
calculateEntropy(proteinsequence_random_sequence_256. sequence) 
from proteinsequence_random_sequence_256 where 
proteinsequence_random_sequence_256. id <= n; 

The experiment was conducted with two different configurations, (i) where the analysis service is 

deployed on a remote PlanetLab node at the University of California, Berkeley, United States and 

the data is located on one of the nodes within the giga cluster of Newcastle University, and (ii) where 

the DQP system is not bound to any particular instance of the analysis service and the dynamic 

deployment framework selects a node closest to the node hosting the database and the data access 

service. The two configurations are described in Figure 6.2. 
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(b) Configuration using the dynamic deployment framework 

Figure 6.2: Two configurations used for experimenting with service collocation 

The dynamic deployment takes place during the schema import phase of DQP initialisation and does 

not affect the query execution costs. The query retrieves data from the "random-sequence" table in 

the "proteinsequence" database with various granularity from 100 to 20000 tuples depending on the 

value of "n" and for each retrieved tuple the analysis service is invoked and the result is returned to 
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the consumer. In the first scenario, a remote Web Service is invoked for each tuple, whereas in the 

second scenario, the analysis service is local to the data source. 

It was expected that queries for which the configuration with a remote analysis service is used would 
have higher execution cost because of the greater cost in invoking the remote service compared to 

the configuration where the analysis service is deployed locally which can be seen in Figure 6.3. 
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(b) Comparison of the query execution cost 

Figure 6.3: Comparing query execution using a local and a remote service 

It can be ecru in Figure 6.3(a), that, as the number of tuples retrieved by the query increased, the 

cost of invoking the remote Web Service increased and had a direct effect on the overall execution 

cost of the query which is plotted in the graph in Figure 6.3(b). The graphs also show the amount of 
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performance gain that can be achieved by deploying a copy of the service closer to the data source 

which results in lower invocation cost, and as a result lower overall execution cost. 

6.2.3 Parallelization of OperationCall using Proactive Deployment 

The effect of an increased degree of parallelism was investigated in this experiment. The dynamic 

version of OGSA-DQP performs a proactive deployment of the analysis service on the available 

hosts during the initial schema import phase, which was described in Section 5.1.3 and 5.2.4. The 

approach is based on experimental results observed in (1441. Using this approach, OGSA-DQP is 

able to distribute the invocations to the Web Service to several service instances and parallelise 

the operution. coll operator. It is envisaged that the distribution of the service invocation among 

multiple instances by parallelising the operator should improve the overall performance of query 

execution. 

The query as mentioned in Listing 6.3 was used to investigate the effects of the proactive deploy- 

ment of the analysis service. Two DQP configurations with a similar set of data sources and Host 

Provider services deployed on a group of PlanetLab nodes were used with slight variations - (i) 

where the endpoint of the analysis service is mentioned in the DQP configuration script and (ii) 

where no specific endpoint is mentioned and DQP is allowed to deploy the service pro-actively on 

suitable nodes. The different configurations are explained diagrammatically in Figure 6.4. As in 

the experiment described in Section 6.2.2, the query retrieves data of various cardinality from the 

pmleinsequence database and invokes the analysis service on each "sequence" attribute of the tuples. 

In the first configuration, one remote instance of the analysis service is invoked for each tuple, and 

in the second configuration, the analysis service is dynamically deployed over five PlanetLab nodes 

and the operation-call operator is parallelised over five evaluation services. 

The expected result in this experiment was an improved performance of the overall query execution 

by reducing the query execution time for the configuration where the operation call operator is 

parallelised. This can be seen in Figure 6.5 which compares the total query execution cost for 

(1) a configuration with one remote analysis service (Figure 6.4(a)), (ii) a configuration with one 

instance of the analysis service close to the data source (Figure 6.4(b)) and (iii) a setup where the 

operution_call operator is parallelised over five nodes (Figure 6.4(c)). The cost of query execution 

In a parallelised setup Is lower than the setup which uses one copy of the analysis service close to 

the data, and It should prove even more beneficial for a analysis service which is expensive in nature 

because of Increased partitioned parallelism. 
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Figure 6.5: Comparing parallelised and non-parallelised operation calls 

6.2.4 Collocating the Evaluation Service with Data 

The rationale behind collocation of the evaluation service with the data was discussed in 51.1.1. The 

purpose of this experiment was to investigate into the effects of deploying an evaluation service on 

or closer to a data node. When an evaluator participating in a DQP query accesses data from a 

database, it does so using OGSA-DAI, and the cost of data access should be higher in cases where 

the data is hosted on a remote node. 't'hus, the concept behind this strategy of collocating the 

evaluation service with the data is to minimise the cost of data access by deploying the evaluation 

service on the node hosting the data or a node close to it. 

A simple select query as shown in Listing 6.4 was used in this experiment 

Listing 6.4 A select query 
select proteinsequence_random_sequence_256. id, 

proteinsequence_random_sequence_256. sequence 
from proteinsequence_random_sequence_256 where 

proteinsequence_random_sequence_256. id <= n; 

Figure 6.6 shows the two configurations of the DQP system that were considered - (i) where the 

data was hosted on one of the PlanetLab nodes and the evaluation services on the local Giga 

cluster within the Newcastle University campus, and (ii) where the data was hosted on the same 

PlanetLab node and the DQP system was allowed to assign the best possible node for the scan 

operator irrespective of whether the node hosted an evaluator or not. In the second configuration, 

the compiler/optimiser selected the node which hosted the data and the data service for the scan 
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operator and an evaluation service was dynamically deployed on it. The query retrieved data with 

various cardinalities depending on the value of "n" and the results were returned to the consumer. 
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(b) Collocating the evaluation service with the data 

Figure 6.6: Experimental setup for the collocation of evaluation with data 

'I'lse results of the experiment are shown in Figure 6.7. In the charts, the results for the setup where 

the data is hosted on PlanetLab and the evaluation service on a giga cluster node are labelled as 

"PL-taiga" and the setup where the evaluation service is collocated with the data on PlanetLab 

is denoted with "PL-PL". The expected result was an improved overall query execution cost when 

the evaluation service was moved on the node which contained the data because of the lower data 

access cost. This was true up to a certain number of tuples beyond which, the overall execution 

cost was almost similar for both the configurations. The reason behind this was the increased 

cost in transporting the results as the number of tuples, i. e. the amount of data travelling over 

the network increased. It can be seen from Figure 6.7(a) that the cost of accessing the data is 

lower when the evaluation service is collocated with the data on the PlanetLab node than when the 

evaluation service is hosted on a local node within the giga cluster, but the cost of transporting the 

results from PlanetLab to the consumer increases rapidly (Figure 6.7(b), as a result of which the 

improvement achieved by lowering the data access cost is nullified. This highlights the requirement of 

a better transport mechanism for DQP, which currently relies on the serialisation and de-serialisation 

mechanisms of Apache Axis [771 for transporting the data as SOAP. OGSA-DAI, on the other hand 

uses a streaming mechanism, which still relying on SOAP produces a better performance because of 

the streaming functionality. 
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Figure 6.7: Experimental results for the collocation of evaluation with data 
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6.2.5 Experiments on Virtualization 

In order to investigate the performance of virtual machines, a set of experiments were perfOrmed 

which compared the results by executing a distributed query on various setups, such gis - (i) a 

PlanetLab only setup, where the data was located on a node at Berkeley (USA) and the analysis 

service was hosted on a PlanetLab node at Tokyo (Japan), (ii) a Planet Lab only setup, where the 

analysis service was collocated with the data at Berkeley, (iii) a setup where the data was hosted on 

the Giga cluster at Newcastle and the analysis service was hosted on the node at EPCC, I: dinlnirgh, 

(iv) a local setup where the analysis service was hosted along with the data on the Giga c"hister 

nodes and (v) a setup where the analysis service and the data were hosted on a virtual machine 

deployed on a node within the Giga cluster. A select-project-opera tion_cal1 query as in Listing 6.3 

was used which retrieved the data from the database with different cardinalities and invoked the 

analysis service on each of the retrieved tuples and sent the result back to the consumer. The results 

for each of the DQP setups are compared in the graphs Figure 6.8. 
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Figure 6.8: Comparing the performance of a VM with other setups for a distributed query 

It can be seen from the results that the performance of the query when executed within a virtual 

machine is comparable to the performance of the same query when executed on nodes within the 

local network. The cost of invoking the analysis service, even when the service was hosted at EPCC, 
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Edinburgh, was extremely high compared to the cost when the service was local (either on a VM or 

a real host). The costs were even higher when the participating nodes were remote, such as in the 

case of the PlanetLab nodes. 

6.2.6 Deploying a Database Snapshot Locally 

All the experiments described in this section use the concept of deploying a snapshot of the data 

locally described in Section 5.1.5 which was enabled by allowing DQP to reconfigure itself based 

on the performance feedback from all the participating nodes (as described in Sections 5.2.7.1 and 
5.2.7.2). The virtual machines mentioned in Section 6.2.1 containing snapshots of the ProteinSe- 

quence and ProteinProperty databases were uploaded to the Software Registry. For each experiment 

mentioned later in this section, four separate configurations as shown in Figures 6.9 and 6.10 were 

used for comparing the results, namely: 

1. A setup where only the databases and data services were hosted on PlanetLab nodes and the 

HostProvider services were deployed on five giga cluster nodes within the Newcastle University 

Campus, allowing them to be registered in the registry (Figure 6.9(a)). In this case, DQP 

scheduled deployment of new evaluators on the nodes available to it, i. e., the nodes within the 

giga cluster resulting in remote data access from the PlanetLab nodes. 

2. A PlanetLab-only setup where the databases, data services and HostProvider services were 
deployed on PlanetLab nodes (Figure 6.9(b)). In this case, DQP scheduled deployment of the 

evaluators on the available PlanetLab nodes as a result of which final results were transported 

from the remote nodes to the local co-ordinator. 

3. A local setup where the databases, data services and HostProvider services were deployed on 
the local giga cluster nodes (Figure 6.10(a)). In this case, the entire query execution setup 

was within the same local network. 

4. A setup where the performance feedback model mentioned in Section 5.2.7.2 was enabled and 

the DQP system was allowed to deploy a database snapshot by deploying the corresponding 

virtual machine within the local network (Figure 6.10(b)). 

In each of the above mentioned configurations, a series of queries are submitted, each retrieving 
data of different cardinalities, and the results were collected. After the completion of each query, 

a request for performance data was sent to all the participating nodes by the DQP system, which 

were returned as XML documents. In the setup where the reconfiguration of the DQP data resource 
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Figure 6.9: Experimental setup for reconfiguration of DQP data resource 
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is enabled, the performance results were analysed and based on the analysis, if it was found that 

the cost of transporting the data from a particular database and evaluation service was following an 

increasing trend, and the cost was higher than the cost of deploying a snapshot of the database or 

exceeded the cost that was previously agreed with the consumer, the reconfiguration was triggered 

which leads to a local deployment of the database snapshot. From this point, further queries were 
directed to the newly configured DQP data resource which utilised the new configuration in order 

to benefit from the ad-hoc virtual organisation created by the new resource deployment. 

6.2.6.1 A simple select query 

The first query used to investigate into the deployment of a database snapshot was a simple select 

query similar to the one mentioned in Listing 6.4. A set of queries each retrieving data of varying 

cardinalities were executed in different experimental setups as mentioned before and the results 

were collected. The graphs in Figure 6.11 show the results of this evaluation by plotting the cost of 

transport of the data for the different setups and the overall cost of query execution. 

It can be seen from the graphs, that for the setup where the databases, data services and evaluation 

services all reside on remote PlanetLab nodes (as shown in Figure 6.9(b)), the cost of transporting 

the data increases based on the number of tuples retrieved. The same cost is lower in all the other 

setups as the data in these cases are transported within a local network. In case of the setup where 

the reconfiguration module is enabled, DQP analyses the performance data from each node after 

each query is completed. If it is seen that the cost of transporting the data for a particular database 

is following an increasing trend, and has exceeded a previously agreed threshold, a snapshot of the 

corresponding database wrapped in a VM, if available, is deployed on a local node containing the 

VMWare server. All subsequent queries use the newly configured DQP data resource, and as the new 

service instances reside within the same network, the transport cost is reduced and starts following 

the normal trend which is observed in the local configurations, which can be seen from the graph in 

Figure 6.11(a). 

The overall execution costs are plotted in Figure 6.11(b). The overall execution cost for a complete 

PlanetLab setup(Figure 6.9(b)) and the setup where the query evaluation takes place on the local 

giga cluster, but the data is accessed from the remote data services on PlanetLab (Figure 6.9(a)) 

follow the similar increasing trend. This is because in the latter setup, the cost of data access nullifies 

the reduced cost of data transport. It is also seen from the plot that after the reconfiguration of the 

DQP data resource is complete, the overall execution cost is almost identical to the execution cost 

which is seen for a completely local setup. 
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6.2.6.2 A select-project-join query 

In order to validate the rationale behind the concept of reconfiguring the DQP data resource, more 

complex queries were used which involved joining data from two databases. An example of such a 

query is shown in Listing 6.5. 

Listing 6.5 
select proteinsequence_random_sequence_256. id, 
proteinsequence_random_sequence_256. sequence, 
proteinproperty_random_property. hydrophobicity from 

proteinsequence_random_sequence_256, proteinproperty_random_property where 
proteinsequence_random_sequence_256. id - proteinproperty_random_property. id and 
proteinsequence_random_sequence_256. id <- n and proteinproperty_random_property. id <- n; 

This query returns the sequence identifier, the sequence string and the hydrophobicity attribute 

after performing an equijoin on the identifier attribute from the two different databases. Results are 

of varying cardinalities depending on the value of "n". As in the case of the previous experiment, 
DQP performs a reconfiguration of the data resource when the cost of transporting data from a 

particular database exceeds the threshold, thereby creating a new instance of the data service which 

is used in the subsequent queries. 

The results of this experiment are shown in the graphs in Figures 6.12 and 6.13. Figures 6.12(a) 

and 6.12(b) plot the cost of transporting the data from the ProteinSequence and ProteinProperty 

databases respectively and the values for a PlanetLab setup is compared with the setup where the 

reconfiguration module is enabled. The plot of the overall execution cost is shown in Figure 6.13. 

The expected result in the experiment was to observe a lower data transport cost and overall ex- 

ecution cost after the reconfiguration is completed by the DQP co-ordinator. This is observed in 

Figures 6.12(a) and 6.12(b) where, once the increasing trend in the cost of data transport is detected 

for both nodes hosting the ProteinSequence and ProteinProperty databases respectively, DQP de- 

ploys a snapshot for both of them on the local network. After the reconfiguration, the transport cost 

for both nodes reduces dramatically, as a result of which the overall execution cost is also reduced 

(shown in Figure 6.13). 

6.2.6.3 A select-project-join-operation_call query 

The final experiment to establish the rationale behind the deployment of a database snapshot in- 

volved a select-project join-operation call query as shown in Listing 6.6 using two databases, namely 

ProteinSequence and ProteinProperty. The query retrieved data of varying cardinalities depending 
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on the predicate of the select clause. The retrieved data consisted of the identifier, the sequence 

attribute and the hydrophobicity attribute. An equijoin was performed on the tuples based on the 

identifier attribute and an analysis service was invoked with the sequence attribute as input. 

Listing 6.6 A select-project-join-opcall query 
select proteinsequence_random_sequence_256. id, 
calculateEntropy(proteinsequence_random_sequence_256. sequence), 
proteinproperty_random_property. hydrophobicity from 
proteinsequence_random_sequence_256, proteinproperty_random_property where 
proteinsequence_random_sequence_256. id - proteinproperty_random_property. id and 
proteinsequence_random_sequence_256. id <- n and proteinproperty_random_property. id <- n; 

As in the case of all previous experiments, DQP collected the performance data from each of the 

participating nodes and analysed them after the completion of each query. When the analysis 

showed an increasing trend for the data transport cost from a particular database, a snapshot of 

that database was deployed locally. The results of this experiment are plotted in the graphs shown 

in Figures 6.14 and 6.15. Figure 6.14(a) plots the cost of data transport for the ProteinSequence 

database and Figure 6.14(b) plots the same cost for the ProteinProperty database. The plot for the 

overall execution cost is shown in Figure 6.15. 

The expected result was a reduced transport cost after the data resource reconfiguration takes place. 

Comparing total execution cost in different setups fora select-project-join query 

---x--- 

However, Figure 6.14(a) has an interesting feature. The cost of data transport for the node hosting 
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the ProteinSequence database momentarily increases after the ProteinProperty database is deployed 

locally. The reason behind this can be explained by considering the location of the participating 

nodes and the evaluation process in DQP. All the participating nodes in DQP exchange data between 

themselves during evaluation. The join operation in this query is parallelised on two nodes hosting 

the two relevant databases. Initially, both the nodes are from the PlanetLab domain, and both 

are located in the United States of America, which means they were closer in terms of network 
latency than when the ProteinProperty database was deployed locally. When the first reconfiguration 

takes place, the network latency between the new node on the local network and the PlanetLab 

node hosting the ProteinSequence database increases as they are farther apart in terms of network 

connectivity than before. Hence, the cost of transport as seen from the PlanetLab node hosting the 

ProteinSequence database showed an increase, thereby affecting the overall query execution cost, 

shown in Figure 6.15. DQP subsequently reconfigures the ProteinSequence database by deploying 

the snapshot on a local node, and the transport cost as well as the overall query execution cost 

reduces to what is normally observed within the local network. 

Comparing total execution cost In different setups for a select-project-Joln-opcall query 

--ý-- °-x--- 
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6.2.7 Evaluating Availability Issues 

The analysis services used in DQP, or for that matter, in any service oriented framework, are often 

maintained by third parties. It has been noted in Section 5.1.4 that such services may be unavail- 

able during the query execution which may result in execution failure. The dynamic deployment 

features of DynaSOAr have been used within the dynamic version to DQP to partially deal with 

such situations. If during DQP initialisation phase, a particular instance of an analysis service is 

provided within the configuration script, the GDQS imports the WSDL from that endpoint. If the 

endpoint is not valid during the schema import phase, i. e., the WSDL can not be obtained using 
the standard WSDL import process, the GDQS will search the registry for the availability of the 

deployment package of that particular service. If the service is available in the repository, the GDQS 

will be able to find an entry within the registry which would point to the endpoint of the service 

code, which will then be dynamically deployed on the nodes selected by DQP. 

A service failure may also occur when a query is being processed which will result in the execution 
failure. In such situations, even if the service is deployed dynamically, there might be loss of valuable 
data which flows into each evaluator from other evaluation services. This is a challenging issue which 

was not a focus for this thesis. However, it may be resolved by using the dynamic deployment features 

along with the checkpointing approach proposed in [139]. 

6.2.8 Services Requiring Special Environments 

Another major rationale behind the use of virtualization technologies within DQP is the possibility of 

using service that require special environment, such as a special set of libraries or databases or even 

platform, which was noted in Section 5.1.6. Such services can be packaged with all the dependencies 

within a virtual machine, which can then be uploaded to the software registry. This results in the 

packaged services being entered in the service registry to allow discovery. If such a service is named 

within the initial configuration script submitted to the GDQS, the virtual machine is downloaded 

to an appropriate node which contains the VMWare server and started, which results in the service 

being made available. Subsequent queries containing an invocation to the service will be using this 

newly deployed endpoint. This has been validated by wrapping a version of the analysis service that 

has been used in the experiments within a virtual machine and deploying it dynamically on one of 

the local nodes within the giga cluster and by submitting queries which resulted in this service being 

invoked. It has been observed in all the experiments that the response time of a service deployed on 

a virtual machine is almost equivalent to the response time of the service when deployed on a local 

physical node. 
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6.3 Discussion 

In this chapter, a brief discussion on the implementation of OGSA-DQP and DynaSOAr was provided 

preceding the explanation about the experimental setup used for the evaluation. The evaluation of 
DynaSOAr itself has been presented in other works, such as [19] and [98] and thus has been excluded 
in this thesis. This chapter presented the evaluation of the concepts proposed regarding dynamic 

OGSA-DQP in Chapter 5. 

Several experimental scenarios have been considered for the evaluation purpose, each making an 

attempt to validate the conceptual proposals made in Section 5.1, such as the collocation of an 

analysis service closer to the data, or the proactive deployment of multiple copies of the analysis 

service to balance to load between the instances, or the deployment of a database snapshot within 

the local network. For each experiment, different configurations were used to prove the efficiency 

of the dynamic deployment features incorporated in DQP. The observed results validate the claims 

made in Chapter 5 and show an overall improvement in the query execution process. An interesting 

observation was made in Section 6.2.6.3 where the local deployment of the snapshot of one database 

temporarily increased the data transport cost as seen at the node hosting the other database involved 

in the query. 

Few experiments were performed in order to investigate into the issues regarding the availability of 

third party maintained web services and for services requiring special environments. The dynamic 

version of OGSA-DQP resolves the issues regarding the failure of a third party web service partially 
by deploying a copy of the service, if available, during the schema import phase. Failure of a 

service during the query execution phase however requires a more sophisticated approach such as 

the checkpointing approach proposed in [139] apart from the dynamic deployment framework. The 

dynamic deployment features along with the virtualization model allows the deployment of services 

requiring special environments by packaging them within a virtual machine and making the entire 

virtual machine available via the Software Repository. 

In the final chapter, the thesis will discuss the overall findings of the research and possible further 

work. 



Chapter 

Conclusions 

In this concluding chapter of the thesis a summary of the research and its contributions is presented. 

A discussion about the opportunities for further work and possible improvements to the concept of 

dynamic service provisioning in distributed query processing is also presented. 

7.1 Summary and Discussion 

Arthur D. Little, the founder of the world's first management consulting firm, once said 

"Research serves to make building stones out of stumbling blocks. " [145 

The foundation that is built with these building stones allow further research to continue. But this 

progression requires a knowledge about the foundation just as in case of buildings. This section 

summarises and discusses the foundation, that is, the main work and contributions presented in 

Chapters 3,4 and 5. The claims made in the introductory chapters are scrutinised with respect to 

the results obtained during the evaluation to verify their validity. 

7.1.1 Service Oriented Distributed Query Processing - Chapter 3 

This chapter introduces the concept of service orientation to distributed query processing and pro- 

vides an architectural description of a service oriented distributed query processor. This new service- 
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oriented DQP system, commonly known as OGSA-DQP, was the result of collaborative research 
between Manchester and Newcastle Universities, and has made a positive impact on the e-Science 

community, amongst researchers who want to perform distributed query processing over disjoint 

databases and perform analysis on the results. Since its first release in September 2003, it has been 

downloaded over 800 times from all over the world. 

The architecture of OGSA-DQP (Section 3.2) is based on service-orientation where each component 

is factored out as a service. The query compilation/optimisation process takes place within a Grid 

Distributed Query Service (GDQS), commonly known as the coordinator. The coordinator creates 

an optimised query plan which is then partitioned and submitted to one or more Query Evaluation 

Services (QES), commonly known as the evaluators. The evaluators access data from databases 

exposed using OGSA-DAI services. Thus it will be reasonable to say that OGSA-DQP is service- 

based in two orthogonal senses - (i) it allows resource virtualization by supporting queries over 

distributed data sources and analysis services that are factored out as services, and (ii) the process 

of query compilation, optimisation and evaluation takes place within a set of interacting services. It 

was also claimed in Section 3.1 that OGSA-DQP can be considered as an approach complimentary 

to other service orchestration mechanisms, such as workflows as typical workflows executed by 

researchers in bio-informatics have similarities with a section of queries possible in OGSA-DQP. 

OGSA-DQP requires initialisation before it is able to process queries. During the initialisation phase, 

the schemas from the databases and the analysis service(s) are imported which are used during the 

query compilation process. The query compilation/optmisation process applies parallel database 

techniques as proposed in [13], [63] and [62]. Initially, the GDQS re-used the Polar* component 

implemented earlier ([62]) as a black-box component, and later on, a Java-based compiler was 

introduced which was able to compile SQL queries. The approach to query compilation remained 

similar as in case of Polar* regarding the use of parallel database techniques. 

Apart from the contribution in defining the broad architecture of OGSA-DQP and the underlying 

concepts, the other major contribution towards this thesis has been the work on the runtime query 

evaluation system, or the evaluators. The QESs or the evaluators have been exposed as services 

based on standard WS-I [20] guidelines and principles. Each evaluator receives a query partition 

structured as an XML document and the evaluation process follows the classical iterator model, 

originally proposed by Graefe et. al. in [24] and (66]. It was a challenge encapsulating the iterator 

model within a service, as in such a model, the state of the query evaluation process is extremely 

important. Each of the participating evaluators exchange messages between them while evaluating 

a query, and the process of distributing the messages is encapsulated within a special exchange 

operator. Thus, it is very important that the evaluators are able to correlate the messages they 
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receive with the queries that are being evaluated as each evaluation service may be processing 

multiple queries simultaneously. In essence, the principles followed in the design and implementation 

of the evaluators are similar to the proposals made in WS-GAF [27] about using the standard Web 

Service technologies to achieve the stateful interactions. The motivation behind the use of the 

standard WS-I technologies was the requirement for mobility so that the evaluation services can be 

deployed at run time on nodes that are deemed best suited for the evaluation of a particular query 

which would create a loosely coupled and fluid run time architecture. 

One primary objective of the thesis was to propose the architecture of a DQP framework which 

allows homogeneous access to heterogeneous data resources by using existing infrastructures, such 

as OGSA-DAI and standard Web Service technologies. This objective has been fulfilled considering 
the involvement in the broad architectural design of OGSA-DQP and the work on the run-time 

evaluation system which follows the WS-I standards. 

7.1.2 Dynamic Service Deployment - Chapter 4 

The need for a more dynamic framework where services could be deployed on demand on available 
hosts was felt when the core OGSA-DQP was being developed. The original OGSA-DQP was 
tightly coupled with a set of resources, both computational and data in a sense that only the hosts 

which already had the evaluation or analysis service deployed were used. There was no notion of on- 
demand deployment which would allow new potential resources to be considered for query evaluation 

or make an attempt to optimise the evaluation process by collocating different entities involved in 

the evaluation process. 

At the same time, a considerable shift in the focus was observed in the e-Science domain, where more 

and more research projects started adopting the emerging service oriented technologies with a view 
to benefit from the Grid. Traditionally, Grid computing was based on distributed job-schedulers 

which form the core of Grid frameworks like Condor [3,2], Globus [4] or Sun Grid Engine [111]. But 

with the advances in the service-oriented technologies and emergence of new standards and toolkits 

supporting Web Services, a need was felt for a Grid computing infrastructure supporting on-demand 

resource allocation such as the traditional frameworks, but based on service-orientation. Further, 

the execution of a job in a job-based environment is an "one-time" affair, whereas, in many e-Science 

researches, there are requirements for executing the same workflow or service multiple times with 
different inputs. In a job-oriented paradigm, this would mean submitting the executable code along 

with the input data each time, whereas, a service, once deployed, would remain so, unless specifically 

undeployed by an administrator, thus allowing a "deploy once, use multiple times" philosophy, which 
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fits with the requirement for e-Science research. 

Thus with a similar motivation, both for advancing the research into OGSA-DQP and the other 

e-Science projects adopting the service-orientation paradigm, a concept of a framework allowing 
the dynamic deployment of Web Services was conceived, which came to be known as DynaSOAr, 

or, Dynamic Service Oriented Architecture, which was introduced in Chapter 4. The arguments in 

favour of DynaSOAr were - (i) a simplified development process concentrated only on services, (ii) 

a possibility of improved performance as the service is retained on the host unless specifically un- 
deployed thereby distributing the deployment cost over multiple invocations to the service and (iii) 

the logical separation of service provisioning and host provisioning which would allow new organiza- 

tional/business models. The evolution of the concepts behind DynaSOAr, such as the motivations 
from the Active Information Repository architecture [7], the requirement for "loose-coupling" and 
"execution transparency" and formation dynamic virtual organisations were outlined in Section 4.2 

- all of which contributed to the requirements for the DynaSOAr architecture. Two deployment 

patterns were described in Section 4.2.5 and the DynaSOAr architecture ensures that the service in- 

vocation procedure from the consumer point of view does not change and the consumer is able to use 

conventional tools and procedures for invoking a Web Service. The design of DynaSOAr including 

each component was described in Section 4.3. DynaSOAr was developed as a collaborative work by 

several researchers and apart from the contribution towards the overall architecture of DynaSOAr, 

the development of a message-oriented framework and the incorporation of a registry service are 

particularly important for this thesis. These, along with the introduction of a broker, the use of one 

or more registries and the handshaking between available resources were the contributions towards 

knowledge during the course of the thesis. Collectively, they contribute towards the formation of a 
Software Hypermarket where consumers will have the option of choosing between multiple service 

providers and host providers based on certain parameters such as trust, cost and quality of service. 

The version of DynaSOAr described in this thesis relies on "virtualization" technologies such as 

VMWare in order to create ad-hoc "virtual organisations" which enables new organisational models 

for collaboration in the scientific domains. An overview of the available virtualization technologies 

is provided in Section 4.4.1 which outlines the advantages that can be obtained from their use. 

Section 4.4.2 provides a couple of scenarios, such as data caching and support for services requiring 

special environments which are considered to be important in the context of this thesis. The question 

about how these technologies are used within DynaSOAr is answered in Section 4.4.3. The most 

important aspect in DynaSOAr is that, it considers the virtual environments with an approach 

similar to the approach taken in case of Web Services, and from a consumer point of view, this 

happens in a completely transparent manner, thus keeping the perception of execution transparency 

intact. 
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DynaSOAr has been evaluated in previous publications, such as [19] and by Fowler in his thesis [98]. 

Initial experiments with DynaSOAr showed promising results regarding the performance of the sys- 

tem when services were deployed dynamically. This laid the foundation for the use of these concepts 

within other frameworks where a requirement of such dynamic deployment was felt. Preliminary 

work started in order to exploit the concepts within the OGSA-DQP framework [128] where the 

effects of collocating an analysis service with the data was observed and the initial results were 

encouraging. The possibility of adopting the virtualization technologies within the OGSA-DQP 

context was explored in [146], and showed encouraging results during the evaluation (Section 6.2.5). 

The exploitation of the DynaSOAr concepts within the DQP framework thus gained considerable 

momentum and led to the research into a dynamic version of OGSA-DQP. The concepts of Dy- 

naSOAr, including the virtualization approach have been adopted in the OGSA-DQP framework 

in order to exploit the possibilities of dynamic deployment within the context of distributed query 

processing, which is considered as the main contribution towards the thesis. 

7.1.3 Exploiting Dynamic Service Provisioning in DQP - Chapter 5 

The aim of the entire research was 

"to create a dynamic distributed query processing framework for a Grid environment 

allowing co-ordinated resource sharing and on-demand deployment of data-sources, eval- 

uation and analysis services on available computational resources. " 

This was achieved in Chapter 5 where the thesis attempted to investigate the possibilities of exploit- 

ing the features of DynaSOAr into the distributed query processing system, OGSA-DQP, which was 

discussed earlier. Certain scenarios are outlined in Section 5.1 where the on-demand deployment 

features of DynaSOAr can be useful. These include the collocation of the analysis and evaluation 

service with the data, increased degree of parallelism by a pro-active deployment of the analysis 

service and the deployment of a database snapshot in case of frequent similar queries over the same 

dataset. The DQP system can benefit from the use of virtualization technologies in case of such 

deployment of database snapshots or for services which require a special environment or considerable 

tuning with the underlying system. Figure 5.1 shows the ad-hoc virtual organisation that may be 

created by DQP with the dynamic deployment features during the query evaluation process. 

The overview of the dynamic OGSA-DQP system which incorporates the on-demand deployment 

features of DynaSOAr is given in Section 5.2.1. A comparison is made with the static OGSA- 

DQP system where the evaluation and analysis services are bound to certain hosts resulting in a 
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tightly coupled system. This limits the scope of exploiting the dynamism of a Grid environment 

where resources are often volatile in nature. On the other hand, the dynamic DQP system offers 

a collection of resources grouped as pools, such as a Software pool or a Virtual Machine pool, and 

nodes are effectively created on-demand. It is however assumed that the DynaSOAr framework 

exists on the available nodes which would allow dynamic deployment to take place, and that certain 
features may be incorporated within the standard Web Service containers to allow such deployment, 

at which point, the requirement for DynaSOAr components such as the HostProvider may not be 

necessary. 

The detailed architecture of the dynamic DQP system is described in Section 5.2.2 where the use 

of the DynaSOAr components, such as the Software Repository, Service Registry and Host Provider 

are outlined. The interactions in DQP differ from DynaSOAr in that the participating services 

must interact with each other directly. Hence the DQP coordinator, which is the entity equivalent 

to the DynaSOAr Service Provider, needs to know the actual endpoints of the newly deployed 

services which are used within the query plan produced by the compiler. Later sections elaborate 

on the initialisation and query compilation activities of the DQP system, where the new features for 

dynamic deployment are considered. The DQP data resource is able to collect the set of available 

resources from the registry and all resources are considered during the generation of the query plan 
irrespective of whether the evaluation service exists on the resource or not. A plan is generated which 

uses the resources that are best suited for evaluating the particular query, and if required, services are 
deployed on these nodes. Once a service is deployed on a resource, it stays there, and can be used by 

the DQP system without any further need to redeploy the service on it. DQP uses a simple method 

of sending a fixed sized network packet to the computing nodes for collecting the network latency 

between the available nodes, and it is possible to replace this with a sophisticated network monitoring 

tool which will lead to more accurate results. As shown in Figure 5.5, DQP makes an attempt to 

collocate the data, analysis and evaluation service in order to gain an improvement in performance. 
The use of virtualization technologies in DQP is described in Section 5.2.7 where a performance 
feedback model was developed in order to collect performance data from all participating nodes. 
Based on the performance, and a previously agreed threshold limit on the cost of transporting data 

from a particular node, a reconfiguration may take place within the DQP system. If it is observed 

that for a similar set of queries on a particular DQP resource, the cost of transporting the data from 

a particular node hosting a data is following an increasing trend, and the cost exceeds the previously 

agreed cost that was acceptable by the consumer, a snapshot of that database if available, is deployed 

as a virtual machine on a local node, and subsequent queries use this newly deployed snapshot. It 

is assumed that some offline process will be used to keep the snapshot synchronized with the actual 
dataset. 
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The dynamic deployment features are evaluated in Chapter 6 to challenge the claims made in the 

thesis about the benefits of dynamic deployment. Several different DQP setups were used in order to 

show the benefits of collocation of various services, the advantages of virtualization technologies etc 
in comparison with the earlier static OGSA-DQP system. It is possible to break down the objective 

of exploiting dynamic service provisioning within distributed query processing into finer objectives, 

which, along with whether they were validated during the evaluation are discussed: 

" Collocation of the analysis service with the data - One of the claims made in Chapter 5 was 

about a possible improvement in the performance of DQP if the analysis service could be 

collocated with the data. The rationale behind the claim was that this collocation would 

reduce the cost of invoking the analysis service, which is normally high when the service is 

remote, which in turn would reduce the overall cost of query execution. The experiments 

described in Section 6.2.2 clearly show that such collocation of the analysis service with the 

data was able to reduce the overall cost of query execution quite dramatically. 

" Collocation of the query evaluation engine with the data - It was thought that collocating the 

query evaluation engine with the data would reduce the cost of accessing the data from the 

database thereby reducing the overall cost of query execution. The evaluation of this claim in 

Section 6.2.4 however had a mixed outcome. The cost of accessing the data was reduced, but 

when the evaluation engine itself is remote, the cost of transferring the processed data becomes 

higher for queries returning a large resultset. This highlighted the requirement of using a more 

robust method of transferring tuples between the DQP services. 

" Increased degree of parallelism for analysis service invocation - It was envisaged that the pro- 

active deployment of the analysis service on multiple hosts would allow the query optimiser 

in DQP to parallelise the operation-call operator, which would actually distribute the tuples 

across multiple endpoints of the analysis service. This distribution would result in a better 

performance because of the inherent partitioned parallelism within the DQP evaluation process. 

This claim was validated by the experimental results analysed in Section 6.2.3. 

" Deployment of a database snapshot - The performance of DQP using virtualization technologies 

was analysed in Section 6.2.5 which showed that the performance of virtual machines within 

the local network are equivalent to real physical hosts and does not affect the performance of 

the query evaluation system in any adverse way. The objective of bringing the data closer to 

the analysis code by deploying a snapshot of the database locally in situations where frequent 

queries are submitted against the same dataset, and the use of a snapshot does not affect the 

queries adversely, is realised by the deployment of virtual machine instances. The experiments 

in Section 6.2.6 successfully defend the claim made in the thesis. 
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" Services requiring special environments - One of the objectives was to enable deployment 

of services which require special environments, such as a special database or a special set 

of libraries. This was realised by encapsulating such services within a virtual machine and 
deploying the VM on demand. This procedure also created the possibility of deploying services 

which require considerable tuning with the underlying system. Such services can be deployed 

on a VM and tuned properly before storing the VM in the repository. Deployment of the VM 

would deploy the service, which would already be tuned with the underlying system. These 

claims have been validated by the experiments described in Section 6.2.8. 

The incorporation of dynamic service provisioning features within OGSA-DQP enables the possibility 

of the software marketplace. A consumer may want to use a certain analysis service within the 

queries, and the service may be hosted by different host providers, or may be provided by different 

service providers. The consumer may have a set of quality of service requirements or provider 

preference, using which it may be possible for the DQP system to select the best suited host or 

service provider. It may also be possible to establish Service Level Agreements (SLAs) during the 

initialisation phase where the consumer submits the set of databases and services required for the 

queries, based on which the DQP data resource is created. 

7.1.4 Summary of Contributions 

Some of the research mentioned in the thesis was the result of collaboration between several re- 

searchers in different projects. For example, OGSA-DQP was the result of collaborative research 
between Manchester and Newcastle Universities. DynaSOAr was the result of the research into 

dynamic deployment by several researchers at Newcastle University. Thus, this thesis does not and 

should not claim the complete credit for such collaborative research. The following list summarises 

the contribution towards knowledge made by this thesis. 

1. Service-oriented Distributed Query Processing System was a result of a collabora- 

tive work between Manchester and Newcastle Universities, supported by other researchers in 

OGSA-DAI [14] and the myGrid [6] project. The contribution made by this thesis lies in the 

overall architecture and design of the DQP system and the philosophies behind it and the cre- 

ation of the run-time query evaluation engine which encapsulates the iterator model of query 

evaluation within a service which evaluates a query partition by processing the plan submitted 

to it as an XML document. 

2. Identifying the case for dynamic deployment where the scenarios within OGSA-DQP 
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where the dynamic deployment features would benefit both the consumers and the query 

execution process. 

3. Dynamic Service Oriented Architecture framework was another collaborative work 

where several researchers made their contribution. The contribution towards the overall design 

and architecture of the system, and more specifically the incorporation of the concepts behind 

the use of registries, brokers, the message-oriented model and the generic hierarchy leading 

to the convergence of multiple organisations into logical virtual organisation account for the 

contribution towards this thesis. 

4. Evolution of a Software Hypermarket is a conceptual feature within the DynaSOAr 

framework which allows consumers to choose between available service and resource providers 

based on parameters such as trust, security, quality of service, cost etc. 

5. Virtualization in DynaSOAr is a major contribution in which virtualization technologies 

are used to deploy services that require special environments or considerable tuning to the 

underlying system, and also to deploy database snapshots for situations where similar queries 

are executed over the same remote dataset. 

6. Improved service performance is a result obtained by dynamically deploying analysis 

services closer to the data or by pro-active multiple deployment of computationally expensive 

services over a set of hosts in order to distribute the number of invocations between all the 

instances. 

7. Dynamic Service-Oriented Distributed Query Processing framework is the final con- 

tribution where the original OGSA-DQP system was extended in terms of architecture, design 

and implementation to incorporate the features from DynaSOAr to enable dynamic deploy- 

ment. The extended system was evaluated to establish the claims of improved performance 

while processing distributed queries. 

7.2 Further Work 

Referring back to Arthur D. Little's statement about research, the stumbling blocks of research 

into OGSA-DQP, DynaSOAr and the dynamic version of OGSA-DQP, resulted into building stones 

for future research and development. In this section, the opportunities of further work that were 

identified during the course of the research are presented. There is scope for making considerable 

improvements to the existing work which are listed along with the new ideas that can be explored. 
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7.2.1 Efficient Data Movement Between DQP Services 

The OGSA-DQP system was the pioneer in distributed query processing based on service-orientation 

which adopted technologies from parallel databases and supported queries over a heterogeneous set 

of databases using existing services such as OGSA-DAI. There is, however, once concern related to 

the communication between the component services of OGSA-DQP. The data packets or tuples are 

sent as SOAP messages, and are serialised and de-serialised using Apache Axis [77] libraries, which 
is not the most efficient way of communication. It was observed by Alpdemir et. al. in [144] that 

the cost of communication between DQP components contributes largely to the overall execution of 

a query, and within this communication cost, the serialisation/de-serialisation is the most expensive 

operation. Further, the concerns expressed in [125], [126] and [127] and the very reason why the 

need for dynamism was felt, are present in OGSA-DQP itself, and affects the performance. Adopting 

the emerging standards and techniques regarding binary data communication over SOAP, such as 
MTOM [147], would provide significant improvement over the current Axis-based transfer used 

within OGSA-DQP. 

7.2.2 Support for Non-relational Data Formats 

The existing OGSA-DQP caters to relational database systems that are wrapped as OGSA-DAI 

services. OGSA-DAI however supports other data formats such as CSV, XML etc. This is a void 

within OGSA-DQP which needs to be filled so that the ultimate goal of a middleware that is able 

to seamlessly integrate data from various data sources irrespective of the format and platform, can 
be achieved. 

7.2.3 Effective Brokering in DynaSOAr 

The current version of DynaSOAr incorporates a very simple brokering approach. But the complete 

vision of a Software Hypermarket is the one where on one hand the consumers will be able to 

submit their requirements, such as cost, reliability, provider preference etc., using which one or 

more broker entities would be able to provide the consumer with the optimal service, and on the 

other hand, the service providers should be able to choose between available host providers based 

on parameters such as cost and reliability. To achieve this, the characteristics of each service and 

host, in terms of the cost of using it, the reliability must be considered while making scheduling 

or routing decisions regarding hosting a service on a certain resource or forwarding the consumer 

request to a certain host. The consumers also should be allowed to specify their preferences while 
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submitting the requests, possibly using predefined Service Level Agreements (SLAB). Some research 
is going on in this respect in the CRISP project [148] and GRIA [149] where an identifier for the 

SLA is added to the header of the SOAP message sent by the consumer. Policies can be defined 

at the service provider end and/or the host provider end, against which the SLA of the consumer 

can be validated in order to provide the desired quality of service. The GridSHED project [113] 

looked into heuristical algorithms for resource allocation based on usage characteristics, which can 

also contribute towards the development of the vision of a Software Hypermarket. 

7.2.4 Robust and Efficient Transport for DynaSOAr Deployment 

DynaSOAr normally uses Java-based network 10 libraries for transferring files required for deploying 

a service over the network. This performance of this system declines rapidly as the size of the files 

being transported increases. The system is largely ineffective for the movement of large virtual 

machine images which are normally few gigabytes in size. To deal with this, the SFTP utility has 

been used for transferring the virtual machine images, which performs in a considerably robust and 

efficient way when compared to the previous system. But, the system still requires a more efficient 

method of transporting large files. GridFTP [55] is one possible option which has been used in 

DEBUT [150], but this would create a tight coupling of DynaSOAr with the Globus system [43]. 

Alternative methods such as SRB [54], which provides an efficient way of storing and transferring 

large binary files may be explored. Another attractive option is the peer-to-peer systems, which 

may be particularly suitable for situations where the same software image must be downloaded to 

multiple hosts. 

7.2.5 Remodelling the Query Compiler 

All the points mentioned in the previous sections are likely to cause a positive effect to the dynamic 

OGSA-DQP system by improving the performance. The research carried out in the thesis is not 

about rewriting the query compiler or the cost model that is used within the compiler, but is to 

exploit the possibilities of using dynamic service provisioning inside OGSA-DQP. The claims made 
in the thesis are established by the experimental results, which may form the basis for re-engineering 

the query compiler and the cost model in the lights of dynamic service provisioning. The approach 

taken in this thesis was to extend the existing compiler with dynamic service provisioning features, 

but, it may lead to a better and more robust system if the query compiler is remodelled considering 

the ideas developed during this thesis. 
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One such requirement is a network-aware cost model. Dynamic service provisioning must consider 

the connectivity of the available resources. The original cost model used in the DQP query compiler 
had no notion of considering the network bandwidth or latency between two nodes while optimising 

the query plan. In the extended version presented in this thesis, a simple method of estimating the 

network latency is used and some intelligence is added to the compiler for deciding on the "closeness" 

between nodes based on the network latency. There are existing work on network-aware cost models 

such as the ones proposed in [133] and [134]. Adopting such an algorithm or re-engineering the 

current cost model to consider network latency for DQP is likely to provide a huge boost towards 

the realisation of a Grid middleware system that is able to process queries distributed over remote 
heterogeneous databases. 

A casual look at the prospects may seem to suggest that Arthur D. Little's comment about research 

may be too far-fetched in this case. The convergence of DynaSOAr and OGSA-DQP may have 

resulted in some performance benefits, but will it really contribute to the middleware that was 

envisaged during the start of the e-Science programme? These prototypes should really be considered 

as small steps towards the greater goal. Already considerable developments into various related areas 

such as Utility Computing has resulted into remarkable systems such as 3Tera [151] which provides 

intuitive interfaces to provision complex networked applications. Virtualization technologies are 

developing and have proved to be remarkably efficient within Grid application domains. OGSA-DQP 

transformed into using the more popular SQL from the earlier OQL. It may not be unreasonable 

to imagine sophisticated human-computer interfaces allowing scientists the freedom of using their 

own languages and procedures to build the queries or workflows in an intuitive way. A simple 

submit button will enable the DQP system to perform an optimisation of the query based on the 

available resources and create for the scientist the most optimal virtual laboratory for executing 

the experiments, storing the results in an electronic form of labbook and sharing it with research 

colleagues pursuing similar interests. Imagination is the first step in research, the stumbling blocks 

of which may result into building stones paving the path for future research. 

"Imagination is the beginning of creation. You imagine what you desire, you will what 

you imagine and at last you create what you will. " - George Bernard Shaw 
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