
Exploiting Dynamic Deployment in a Distributed Query
Processor for the Grid

Thesis by

Arijit Mukherjee

School of Computing Science

In Partial F\ilfilment of the Requirements

for the Degree of

Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY

206 53499 9

i Imes ýs ý, ý -7 ý3

FýW Newcastle
IWUniversity

Newcastle University

Newcastle upon Tyne, UK

2008

(Submitted 27th February 2008)

To my family

without whose constant encouragement
I'd have remained

just another "software guy"...

Acknowledgements

I remember the day I first came to Newcastle to attend the interview for an RA position in the

mrGrid project. Newcastle was in stark contrast with the town of Gaithersburg, Maryland, where
I used to live and work for Verizon Communications Inc. at Silver Spring. It was the middle of
January - cold and cloudy and dark, and the wind from the North Sea almost blew me away. It

was hard to make a decision about leaving the job in the US to join academia. Today, when I look

back, I know, I was right. I have now spent more than five years in Newcastle, the longest period

at one place since I left home in 1997 to join the software industry. And I can say that Newcastle

has been nothing less than a home to me. It is like my hometown Calcutta -a city, which slowly

grows around a person - Newcastle has grown all around me. And I owe it to Professor Paul Watson,

Professor Pete Lee and Dr. Anil Wipat - who extended the first welcome to me. I owe my gratitude

to the City of Newcastle, the university, all members of staff in the School of Computing Science,

my friends within and outside the university, for the warmest five years I have stayed here, despite

the chilling weather.

Professor Paul Watson was my supervisor and I could not have come this far without his constant

guidance and support. Apart from always managing to get some funds to keep me employed as an RA

without which I couldn't have continued with my PhD, he has provided me with valuable guidance

and insights throughout the course of research. On numerous occasions when I was struggling to

find the right approach, regardless of his busy schedule as the Director of the North East Regional

e-Science Centre, Paul has been tireless in his attempts to make me focus on the problem from the

correct angle. No word is sufficient to express my gratitude to Paul.

I would like to thank Professor Pete Lee and Dr. Aad van Moorsel, who were the two other members

of my thesis committee for their valuable suggestions during and after the thesis committee meetings

which acted as inputs to my work. Dr. Jim Smith is another person who has been a close friend

iv

in these five years and have always helped me when I faced any problem, be it regarding any

architectural aspect of my work, or any silly question about LaTeX. I am indebted to Jim for his

help and support whenever I asked for. Dr. Savas Parastatidis, who is now at Microsoft Research,

was a source of inspiration during the years I was able to work with him. All the long discussions I had

with him regarding the architecture of Web Services have contributed a lot towards my knowledge

and the research. I must not miss mentioning about the support I received from the Computing

Officers, especially Jim Wight and Gerry Tomlinson, who have always listened to my requests about

new softwares on the cluster and helped me in configuring my experimental setup, which sometimes

required Jim to bypass security rules of the Computing Cluster for the external computers I used
during my experiments.

A large section of the work presented here was the result of collaborative research between Newcastle

and Manchester Universities. I wish to thank my colleagues from Manchester, especially Professor

Norman W. Paton, Dr. Alvaro A. A. Fernandes, Dr. Tasos Gounaris, Steven Lynden and Dr.

M. Nedim Alpdemir, who unfortunately left for his country a couple of years ago, for all the active

collaboration and support I received from all of them. Another part of the research, the development

of the dynamic service oriented framework, was based on collaborative research as well, and I wish

to thank Dr. Chris Fowler, Charles Kubicek, John Colquhoun for their valuable contributions.

I can not forget the amount of support I received from my family during this entire journey. My

parents, Mrs. Binata Mukherjee and Mr. Prabhat Mukherjee have inspired me to dream since I was

a child. And I am extremely indebted to them, and I hope that these three letters, if I am able to

achieve them, will fulfil a part of their dreams. I can never express enough gratitude for the support

I received from my sister, Dr. Nandini Mukhopadhyay, who has constantly encouraged me, at times

pushed me - when I used to get frustrated. One person needs a special mention here, and that is my

wife, Sumana, who never fell short in supporting me in every step, and was not shy in sacrificing

her perfectly good job in the US, when I decided to join academia in the UK to pursue my dreams.

Our little boy, Rik, has been my source of joy at home and our newborn daughter, Riti, has been

another source of inspiration during the last few months of my work.

Finally, I would like to thank EPSRC, who have funded the major projects I have worked in, and

my colleagues at OGSA-DAI for their valuable support during the course of research.

Abstract

The adoption of the "Web Services" model for building a Grid framework created a considerable shift
from the original concept of Grid which was based on "distributed job scheduling". The requirement
for the access and integration of heterogeneous data resources over the Grid, and the advances in

service-oriented data access standards led to the development of a service-oriented distributed query

processor, which forms the basis of this thesis.

The adoption of service-orientation raised the need for a framework which would allow demand-

driven deployment of Web Services on available resources. Research into such concepts led to the

development of DynaSOAr, a framework which proposed an alternative approach to distributed job

scheduling by focussing entirely on the concept of services, rather than the more traditional jobs.

DynaSOAr allows services to be deployed on demand to meet changing performance requirements

and exploits the advances made in virtualization technologies to support the deployment of services

and databases.

The thesis describes a system designed to exploit dynamic deployment features within the context of

distributed query processing on the Grid, and argues that such features benefit query evaluation by

creating a loose coupling between the services and the available resources. The extended distributed

query processing system is able to collocate various entities, such as the evaluation and analysis

services with the data, to reduce data traffic over the network, and is also able to reconfigure
itself to improve performance by dynamically deploying database snapshots. The thesis evaluates
the dynamic distributed query processing framework through several experiments which explore its

behaviour in a variety of scenarios.

Contents

Acknowledgements

Abstract

List of Figures

Table of Listings

1 Introduction

1.1 Contribution
1.2 Structure of the Thesis

2 Background and Related Work

2.1 The Grid Problem
2.2 Service Orientation and The Grid

......
2.3 Databases and The Grid

........
2.3.1 Data Access and Integration Services

.....
2.3.1.1 OGSA-DAI

............................... .
2.3.2 Distributed Query Processing, The Grid and SOA

...
2.3.3 Requirements for Dynamism

.......................... .
2.4 Towards a Dynamic Service-Oriented Architecture

2.4.1 Use of Virtualization Technologies
2.5 Exploiting Dynamism in Distributed Query Processing
2.6 Discussion

3 Service Oriented Distributed Query Processing

3.1 OGSA-DQP as a Service Orchestration Mechanism

111

V

X

X1

i
s
7

10

10

12

17

19

20

22

26

27

34

37

38

40

41

CONTENTS vii

3.2 The Architecture
...................................... 41

3.3 Setting Up a Distributed Query Service
. 44

3.4 Distributed Query Plan Generation
............................ 47

3.5 The Query Evaluation Service
........................ 50

3.5.1 The Overview
.................................... 50

3.5.2 Evaluation Model 53

3.5.3 Data and Control Tuples 54

3.5.4 Encapsulation of parallelism by Exchange operators 54

3.5.4.1 Horizontal and Vertical Parallelism
.................. 55

3.5.4.2 Exchange operators in OGSA-DQP
..... 56

3.5.5 Encapsulating Service State
............................ 60

3.6 Discussion .. 63

4 Dynamic Service Deployment 65

4.1 Distributed Job Scheduling
................................ 65

4.2 The Evolution of DynaSOAr 66

4.2.1 Jobs and Service Orientation
.... 66

4.2.2 The Active Information Repository
...

68

4.2.3 The Consumer View of a Service
.........................

68

4.2.4 Formation of Dynamic Virtual Organisations
......

70

4.2.5 Principles of Dynamic Deployment
........................

71

4.2.6 Requirements for DynaSOAr
...........................

72

4.2.7 Design Considerations
.... 74

4.2.7.1 Using SOAP Message Headers
.....................

74

4.2.7.2 Using Message Orientation
......... 75

4.3 The design of DynaSOAr
.... 76

4.3.1 Service Provider
..... 76

4.3.1.1 Supporting conventional tools
78

4.3.2 Host Provider
.................................... 79

4.3.3 Service Repository
...............

82

4.3.4 Registry Service
.......

83

4.3.5 The Software Hypermarket
84

4.4 Using Virtualization
....................................

86

4.4.1 Virtualization Technology - An Overview
...

87

4.4.2 Case for Virtualization in DynaSOAr
89

4.4.3 Using Virtualization in DynaSOAr 90

CONTENTS viii

4.5 Discussion .. 93

5 Exploiting Dynamic Service Provisioning in DQP 96

5.1 Usage Scenarios 97

5.1.1 Collocating the Query Evaluation Engine with the data 97

5.1.2 Collocating the Analysis Service with the data 97

5.1.3 Increased degree of parallelism 98

5.1.4 Availability of the third-party maintained Analysis Services 98

5.1.5 Data caching by dynamic deployment of databases 100

5.1.6 Services requiring special environments 100

5.2 Towards a Dynamic Distributed Query Processor 101

5.2.1 Overview 101

5.2.2 Architecture
..... 104

5.2.3 Setting up the Distributed Query Processor 105

5.2.4 Proactive deployment of the Analysis Service 106

5.2.5 Distributed Query Plan Generation 107

5.2.6 Using Network-aware Cost Models 111

5.2.7 Virtualization in DQP 112

5.2.7.1 The Model 112

5.2.7.2 The Feedback Methodology 113

5.2.7.3 Reconfiguration of the DQP data resource 117

5.3 Discussion ..
119

6 Evaluation of the Dynamic DQP Framework 121

6.1 Implementation 121

6.1.1 OGSA-DQP
122

6.1.2 DynaSOAr
122

6.2 Evaluation 123

6.2.1 Evaluation Platform 123

6.2.2 Collocating the Data and Analysis Code
126

6.2.3 Parallelization of OperationCall using Proactive Deployment 129

6.2.4 Collocating the Evaluation Service with Data 131

6.2.5 Experiments on Virtualization 134

6.2.6 Deploying a Database Snapshot Locally 135

6.2.6.1 A simple select query 138

6.2.6.2 A select-project-join query 140

6.2.6.3 A select-project-join-operation-call query 140

CONTENTS ix

6.2.7 Evaluating Availability Issues
........................... 145

6.2.8 Services Requiring Special Environments
.... 145

6.3 Discussion
............. 146

7 Conclusions 147

7.1 Summary and Discussion 147
7.1.1 Service Oriented Distributed Query Processing - Chapter 3...... 147

7.1.2 Dynamic Service Deployment - Chapter 4.... 149

7.1.3 Exploiting Dynamic Service Provisioning in DQP - Chapter 5 151

7.1.4 Summary of Contributions 154

7.2 Further Work .. 155

7.2.1 Efficient Data Movement Between DQP Services 156

7.2.2 Support for Non-relational Data Formats 156

7.2.3 Effective Brokering in DynaSOAr 156

7.2.4 Robust and Efficient Transport for DynaSOAr Deployment 157

7.2.5 Remodelling the Query Compiler
. 157

Bibliography 159

List of Figures

2.1 Component roles in Service interaction 15

2.2 The potential data explosion 19

2.3 Basic Architecture of OGSA-DAI
.............................. 21

2.4 Basic Architecture of OGSA-DQP
............................. 25

2.5 Architecture of the dynamic version of OGSA-DQP
...................

38

3.1 Basic DQP Architecture
...................................

42

3.2 DQP Initialisation
......................................

46

3.3 DQP Interaction
47

3.4 DQP query plan
49

3.5 Query Execution on Component Services
. 52

3.6 Communication between distributed partitions
57

3.7 Architecture of the Query Evaluation Service
.... 62

4.1 The Active Information Repository Architecture 69

4.2 Invocation of a Web Service 69

4.3 Formation of a Virtual Organization between the Service Provider and the Host Provider 71

4.4 Routing of requests in DynaSOAr 73

4.5 Consumer interaction with DynaSOAr Service Provider 77

4.6 Request types supported by the Service Provider 78

4.7 Interaction between DynaSOAr Service Provider and Host Provider 81

4.8 Request types supported by the Host Provider 81

4.9 Request types supported by the Service Repository 82

4.10 The Software Hypermarket
.

85

4.11 Generic Architecture of DynaSOAr 86

LIST OF FIGURES xi

4.12 Before and after virtualization 87

4.13 XML Schema for describing a Virtual Machine
.......... 92

5.1 Various configurations of a dynamic DQP framework 99

5.2 Overview of the static DQP system 102

5.3 Overview of the Dynamic DQP system 103

5.4 Basic DQP Architecture
..... 105

5.5 Query Execution on Component Services in a Dynamic OGSA-DQP framework
. .. 111

5.6 XML Schema for collecting performance data 114

5.7 Reconfiguration in dynamic OGSA-DQP 118

6.1 The complete experimental setup 125

6.2 Two configurations used for experimenting with service collocation 127

6.3 Comparing query execution using a local and a remote service 128

6.4 Experimental setup for the proactive analysis service deployment 130

6.5 Comparing parallelised and non-parallelised operation calls 131

6.6 Experimental setup for the collocation of evaluation with data 132

6.7 Experimental results for the collocation of evaluation with data 133

6.8 Comparing the performance of a VM with other setups for a distributed query 134

6.9 Experimental setup for reconfiguration of DQP data resource 136

6.10 Experimental setup for reconfiguration of DQP data resource (contd.) 137

6.11 Comparing data transport cost and query execution cost using a remote setup and a

setup which allows switching of a data node 139

6.12 Comparing data transport cost for two data nodes for remote and switching setup .. 141

6.13 Comparing execution cost of a select-project-join query for a remote and switching setup142

6.14 Comparing data transport cost for two data nodes for a remote and switching setup . 143

6.15 Comparing execution cost of a select-project-join-operation call query for a remote and

switching setup 144

Table of Listings

2.1 An example perform document submitted to the OGSA-DAI framework 23

3.1 An Example Query 43

3.2 Configuration Document 46

3.3 XML Partition Document 51

3.4 Tuple Structures in XML
...... 55

3.5 Exchange Operator - Open() method 59

3.6 Exchange Operator - Next() method 59

3.7 Exchange Operator - Close() method 60

3.8 Description of the Query Evaluation Service interface 62

4.1 An example SOAP message requesting the EntropyAnalysis service
75

4.2 An example SOAP message with a modified header element at the Service Provider 77

4.3 An example SOAP message with a modified header element at the Host Provider .. 80

4.4 Description of entities registered within the DynaSOAr registry 84

4.5 Entries in the registry describing services packaged in a virtual machine 91

5.1 Configuration Document for Dynamic OGSA-DQP 106

5.2 Assigning degree of parallelism to operators 108

5.3 Assigning evaluators to partitions
110

5.4 Example of performance data from two remote nodes 116

6.1 Structure of the databases used for the experiments 124

6.2 Configuration Document for a Virtual Machine 126

6.3 A select-opcall query 127

6.4 A select query .. 131

6.5 A select-project-join query 140

6.6 A select-project-join-opcall query 142

F-- I
Chapter

Introduction

"e-Science aims to provide support for large-scale science by enabling distributed global

collaborations through the formation of virtual co-laboratories that allow scientists to work
together irrespective of location and permit universal access to scientific resources. "[1]

e-Science, as defined above by the European Bio-Informatics Institute (EBI) is considered as one of
the primary approaches to inter-disciplinary research where scientists from various streams collabo-

rate in order to achieve collective goals. It was felt from the inception of the e-Science Programme

while the use of the evolving Grid frameworks would benefit collective research, science would suffer
if the scientists such as bio-informaticians, biologists, astronomers were forced to adopt new lan-

guages, platforms and tools to perform the scientific work in such collaborative environments. It

would be unreasonable to assume that these scientists were experts in Grid computing or resource

sharing in collaborative environments. To make e-Science a reality in scientific researches, the e-
Science framework should provide scientists with a higher level abstraction layer with the freedom of

using their own standard languages, toolkits and databases leaving the complexity of collaborative

resource sharing to the underlying middleware.

Fortunately, this is the approach that was taken by the e-Science community in the UK and has

been supported around the globe. Adopting Web Service standards and technologies was a step
towards achieving the goal of creating the middleware which would serve the scientific community.

The adoption of service oriented technologies was a significant step for e-Science. There was a

considerable shift from the traditional Grid computing infrastructures based on distributed job-

scheduling systems, such as Condor [2,3] and Globus [4] where any computation is packaged by

CHAPTER 1. Introduction 2

the consumer as a job consisting of the computation code and in most cases the input data on

which the code should operate, and submitted to the framework for execution. The scheduling

system at the core of the framework decides on which resource the job should be executed based

on algorithms such as matchmaking, where the requirement of the computational job is matched

against the available hosts to select the best suited host for execution of the job. Once execution is

complete, the system discards the job. Compared to this, service orientation provided an alternative

paradigm for distributed computing where a clear separation is created between the interface and the

internals of the underlying system and a loose coupling between autonomous systems by exchanging
SOAP [5] messages is advocated. The emergence of this alternative approach was widely publicised
in the computing domain, and the Web Service implementation resulted in widespread adoption

of the technology as a means to create the Grid platform. A complex system or application may

now be modelled as a collection of finer autonomous systems, which are independent of each other

and may be distributed across the network, but are highly inter-operable using messages, compared
favourably to the earlier tightly coupled object-oriented monolithic systems.

Apart from the new architectural aspect, the service-based approach provided viable alternatives in

certain aspects related to the deployment scenarios. A job, in job-based systems, is deployed and

once the execution is complete, the job is discarded. In scientific domains where e-Science wanted

to contribute, frequent execution of similar analysis or queries is a common procedure, which, on a

job-based system, would mean submission of the job with the input data if any for each experiment

instance. Services, on the other hand, remain deployed unless explicitly removed, and can serve

multiple requests throughout their lifetime.

The concepts and ideas presented in this thesis gained momentum in one of the first e-Science

pilot projects, myGrid [6], which aimed to extend the Grid framework in order to provide a virtual
laboratory for the biologists and bio-informaticians to perform in-silico experiments. It was observed
during the initial stages of my Grid and from contemporary developments in other streams, such as

particle physics and astronomy, that a strong focus was growing on how to the use and analyse the

astronomical volume of raw data that would be generated by scientific experiments in the coming

years. Related to the volume of experimental data is the issue about the cost of moving this data

for analysis. Such issues regarding locality of the data and the analysis code were raised in the

Active Information Repository (AIR) proposal by Watson and Lee [7] and it became more and more

relevant as the size of the experimental dataset in various scientific domains started growing with

a remarkable speed. The AIR architecture proposed the collocation of analysis code with the data

by using mobile agent technologies [8] in an attempt to reduce the overhead of transferring large

amounts to data over the network for analysis.

CHAPTER 1. Introduction 3

A common experiment performed by biologists in mvGrid was accessing protein sequence data from

existing databases and performing analysis on them using well known sequence analysis services,

such as Blast [9]. Scientists in myGrid adopted the use of workflows such as Taverna [10] to replace

the traditional way of doing this analysis manually. At the same time, an approach based on
distributed query processing [11] was conceived as complimentary to such workflow-based systems,

as it was likely that the biologists may have a requirement of accessing data from different databases

that are distributed across the globe and perform the analysis on them. It was also noted that

this alternative distributed query processing system could use parallel database techniques from

earlier research [12,13] for better use of available resources by evaluating relevant sections of a

query in parallel. Almost at the same time, there were emerging standards for accessing data from

heterogenous databases in a homogeneous way, and the OGSA-DAI [14] project resulted in a set

of services which allowed consumers to access data from heterogeneous sources irrespective of the

platform, the underlying DBMS and the format in which data is stored. It was decided that the

new distributed query processing system should reap the benefits of such services.

Thus the challenge was to develop a distributed query processing system based on service-orientation,

which would use the emerging data access services, such as OGSA-DAI to access data from heteroge-

neous sources, and evaluate queries over them, with an option for including analysis services within

the query itself. The conceived system would be exposed as a service to consumers and encapsulate

the complexities of query compilation and execution within autonomous and inter-operating services.

With such a system in mind, the first objective presented in the thesis is:

to create a Distributed Query Processing framework which allows homogeneous access to

heterogeneous data resources by using existing infrastructures (such as OGSA-DAI) and

evaluate distributed queries by parallel evaluation of query fragments using techniques

from parallel databases on a Web Service based query processing engine created at run-

time.

A service oriented distributed query processing system was thus developed, which came to be known

as OGSA-DQP [11]. It allowed scientists such as bio-informaticians to submit queries over a set of

distributed bio-informatics databases to find useful data, such as protein sequences and invoke anal-

ysis services on them. OGSA-DQP compiled and optimised the query and partitioned it into several

fragments or partitions which were then evaluated in parallel on a distributed set of computational

nodes. A requirement for the dynamic deployment of services was realised during the development

of OGSA-DQP. The system was tightly coupled to the resources that were available in the sense that

the component services of DQP were required on all participating nodes. It was bound to existing

CHAPTER 1. Introduction 4

instances of analysis service, and there was no notion of collocation of the analysis code with the data

as proposed in the Active Information Repository architecture [7]. Further, third-party maintained

analysis services were likely to have availability issues due to sudden failure of hosts providing the

service which would result in unsuccessful experiments. At the same time, code mobility was an
integral part of the traditional job-based Grid frameworks, where jobs are queued up and scheduled

to run once resources become available. Systems such as Condor performed matchmaking to select

the best suited node for execution of a particular job. Although the architecture of OGSA-DQP

allowed the use of monitoring services to discover lightly loaded resources, the tight coupling of the

DQP services with the resources limited the scope for exploiting the dynamism within Grid systems,

and did not consider the volatile nature of the resources. A strategy based on demand-driven deploy-

ment would provide better performance by selecting lightly loaded resources for computation, better

reliability by using multiple copies of the service and late allocation of services to nodes allowing
loose coupling. The requirement of some form of demand-driven deployment within the context of

OGSA-DQP led to the research into dynamic deployment of services.

Investigation started regarding the possibilities of "dynamic service deployment" in a Grid environ-

ment where services can be deployed on remote nodes on demand rather than having them pre-

configured on the system. Within the OGSA-DQP context, this "on-demand" service deployment

allowed the movement of query execution and(or) analysis code towards the data thereby reducing

the amount of data traffic over the network. While exploring the possibilities of deploying services

on demand, the interest into virtualization technologies grew. Proposals for using virtualization

technologies such as VMWare [15] and Xen [16] for Grid frameworks were discussed by Keahey et.

al. [17]. Live migration of virtual machines was shown to be possible by Ruth et. al. [18]. It was

envisaged during the course of this research that the use of virtual machines would allow on-the-fly

demand-driven deployment of not only query execution service code or data analysis code, but also

on-the-fly replication and deployment of databases. Consider a situation, where a certain database

belonging to a remote organisation on another network, is accessed through several queries over a

considerably long period of time. It may be beneficial to deploy snapshots of the database on hosts

within the local organisation -a step which will reduce the amount of data being transferred over

the network.

Dynamic Service Oriented Architecture, or DynaSOAr [19], was developed as a Web Service based

framework that allowed dynamic demand-driven deployment of Web Services. It provided a logical

separation between service provisioning and resource provisioning by creating a distinct set of entities

with a clear division of responsibilities. DynaSOAr maintained the loose-coupling and execution

transparency of Web Service platforms by relying on the WS-I [20] recommended model based on the

Web Services Basic Profile [21] and advocated a message-oriented model of interaction. Support for

CHAPTER 1. Introduction 5

deploying virtual machines as means of deploying special environments or databases was provided in

DynaSOAr. Investigations into possible dynamic deployment options provided the second objective

of this thesis -

to explore the current status of dynamic deployment and code mobility in a service-

oriented setting, and to create a framework that will allow on-demand deployment of

services and database snapshots packaged within virtual machine images on available
resources.

With the framework for dynamic deployment in place, the next task was to exploit the dynamic de-

ployment concepts within the OGSA-DQP system. Several usage scenarios were identified featuring

different aspects in DQP, each exploiting the features of on-demand deployment in order to gain

some benefit. Based on the approach proposed in the Active Information Repository architecture

and contemporary ideas about moving the computation closer to the data, a potential use case for

dynamic deployment within DQP was the collocation of the query evaluation engine and the analysis

service with the data. A greater degree of parallelism within the operation-call operator responsible
for invoking analysis services within a query was another possible scenario for dynamic deployment

which could provide potential benefit to DQP. Moving the computation closer to the data is con-

sidered as the common approach in most data-oriented Grid systems [22]. In DQP, an alternative

approach is explored which allows the deployment of a snapshot of the database on a local node to

eliminate the cost involved in data movement over the network. In effect, this approach is similar

to database replication techniques, but is more dynamic and demand-driven in nature. Traditional

data replication techniques depend on a lengthy offline administrative process for creating the initial

copy which is later synchronised with the master copy. In DQP, the approach taken is dependent on

the performance of the queries that are being executed, and need not be an administrative process.
Snapshots of the databases are packaged within virtual machines with all necessary services. These

virtual machines are stored in the software repository and deployed when required resulting in the

database snapshot being available within the local network. It is assumed that the queries do not
depend on the latest data or that a background process is used to keep the snapshot synchronised

with the original copy. Several e-Science experiments rely on databases such as the SkyServer [23]

where regular updates are not essential for the experiments. Exploitation of possible dynamic de-

ployment features within the context of OGSA-DQP created the third objective presented in the

thesis -

to investigate how to add on-demand deployment features within OGSA-DQP for the

deployment of databases, analysis services and query processing operations.

CHAPTER 1. Introduction g

1.1 Contribution

The contribution of this thesis lies in the overall design and evaluation of a service-oriented dis-

tributed query processing system that exploits dynamic deployment. The work builds on two key

frameworks described in the thesis - OGSA-DQP and the dynamic service provisioning architecture,
DynaSOAr. These were the results of collaborative research, and hence the thesis does not make

any attempt to claim the sole credit for these two frameworks. Contribution to key aspects of both

these frameworks are considered as major contributions in this thesis, along with the design of the
DQP system with dynamic deployment capabilities that build on them.

This thesis investigates various architectural aspects of a service-oriented distributed query process-
ing framework, its design, construction, and analysis. This thesis argues that distributed query

processing (DQP) can provide effective declarative support for service orchestration, and builds a
framework that:

" supports queries over a standardised "Grid Data Service" (GDS) and other analysis services

made available over the grid thereby combining data access with data analysis;

" allows the framework to use the facility provided by Open Grid Services Architecture (OGSA)

to dynamically obtain resources required for efficient evaluation of a distributed query;

" adapts techniques from parallel databases to provide implicit parallelism for complex data,

intensive requests;

" uses emerging standards of GDSs to provide consistent access to database metadata and to

interact with the databases on the Grid.

The resulting OGSA-DQP enables distributed query processing within a service-oriented setting by

exposing itself as an extension of the popular OGSA-DAI service and creating an orchestration of

multiple instances of the evaluation service. This evaluation service encapsulates the complexities of
the physical algebra operators implemented following the iterator model of query evaluation and the

routing of data tuples between the services enabling pipelined and partitioned parallelism [24,25,26].

The evaluation service follows the philosophy of using the Web Services Basic Profile [21] standards

and toolkits and the proposals made by WS-GAF [27] regarding interaction between stateful services.
Such implementation of the evaluation service also contributes towards the adoption of dynamic

deployment features.

The thesis also investigates into the possibilities of "dynamic service provisioning" in a Grid envi-

CHAPTER 1. Introduction 7

ronment where services can be deployed on available nodes on demand rather than having them

pre-configured on the system. This research into dynamic service deployment was again collabora-
tive in nature and was carried out by several researchers, each pursuing a different aspect within the

broader concept. The thesis contributes towards the overall design and architecture of the dynamic

service oriented architecture, which came to be known as DynaSOAr, and more specifically to cer-

tain aspects within DynaSOAr, such as the use of software registries, the message oriented model

of communication between the entities, the support for standard toolkits for service invocation and

particularly, the use of virtualization technologies to complement the deployment of Web Services

with the demand driven deployment of special environments and databases. The thesis also investi-

gates the costs associated with the dynamic deployment of services and virtual machines. Dynamic

service deployment will have an associated "deployment cost" signifying the cost incurred while ini-

tialising the service within the container and a "routing cost" signifying the cost of downloading the

service code to the target host. Deployment of virtual machines incur much higher costs, although,

the thesis shows that the costs will eventually be outweighed by the performance benefits.

In summary, the thesis investigates the design of a service-oriented distributed query processing

system which supports dynamic service deployment. It describes several usage scenarios where on-

demand deployment will benefit distributed query processing and evaluates the extended system to

establish the claims. It analyses the results of various experiments performed to evaluate the system

and suggests that the usage scenarios and proposals made during the investigation should result into

the remodelling of the query compiler/optimizer and the development of new cost models which will

take into account dynamic deployment.

1.2 Structure of the Thesis

In Chapter 2a review of contemporary work on aspects related to the thesis is presented with a

discussion. The review takes into account the emergence of various technologies in order to tackle the

"Grid" problem including the proposals such as OGSI [28], WS-I Basic Profile [21], WS-GAF [27] and

WS-I+ [29] which are related to the work done during the course of research. There are discussions

about the requirement for data access and integration standards and the emergence of OGSA-

DAI before focusing on the requirement of distributed query processing and related works. The

need for dynamic service deployment is explained and contemporary work in this area is reviewed.

Contemporary work on the use of virtualization technologies are also reviewed within the context of

dynamic service deployment.

CHAPTER 1. Introduction 8

Chapter 3 describes in depth the design and architecture of a service oriented distributed query

processing system which forms the basis of the entire thesis. The different architectural issues

are discussed along with the constituent components. The various phases in executing distributed

queries, such as the initialisation, query compilation etc. are discussed in detail. Particular stress
is given to the description of the query execution process and the encapsulation of the iterator

model in the evaluation services, specially on the functioning of the exchange operator which encap-

sulates the entire communication and distribution mechanism. A discussion is provided regarding
the encapsulation of service state within the evaluation service using standardised Web Services

technologies.

The requirements for a dynamic service deployment framework and the concepts behind the evolu-

tion of DynaSOAr are described in Chapter 4 which forms another pillar for this thesis. This chap-

ter analyses the existing methods of job-based distributed computing such as Condor and Globus

and proposes a service-based approach that allows on-demand deployment of services on available

resources. The architecture makes a clear separation between service provisioning and resource pro-

visioning, and makes use of standard service registries to enable discovery. Each of the components

which build the DynaSOAr framework are described in the chapter leading to the vision of a software

hypermarket. The chapter also introduces the concept of virtualization and discusses on how such

technologies can be used in the context of dynamic deployment within the DynaSOAr framework.

Chapter 5 discusses about the requirements for dynamic service provisioning within OGSA-DQP

and puts forward a set of usage scenarios where on-demand deployment of analysis and evaluation

services and database snapshots may benefit query processing by enabling the collocation of various

entities. The chapter introduces the changes made within the DQP architecture to allow it to

take the advantage of DynaSOAr framework by using several DynaSOAr components, such as the

registry, the repository and the host provider. Although the thesis does not make any attempt to

remodel the existing query compiler, it makes certain extensions to the compiler and the DQP data

resource which allows DQP to take into consideration the dynamic deployment concepts during

query compilation and processing activities. The chapter also proposes a performance feedback

model for triggering the deployment of a database snapshot within the local network in certain

scenarios, thereby proposing a "moving the data closer to the computation" paradigm as opposed

to the commonly used "moving computation closer to the data. "

The evaluation of the extended OGSA-DQP system which exploits the dynamic deployment features

is performed in Chapter 6. The chapter provides a brief discussion about the implementation and

the experimental setup. Several experiments were performed in varying circumstances and the

results show that the distributed query processing system can benefit from the use of the dynamic

CHAPTER 1. Introduction g

deployment features for the usage scenarios mentioned in the thesis.

Chapter 7 provides a summary of the research carried out in the thesis together with a discussion

about the benefits of adopting dynamic service deployment features within the context of distributed

query processing using OGSA-DQP. The chapter also proposes some areas which can be explored
further in future research.

Chapter

Background and Related Work

This chapter discusses the background behind the thesis concentrating on the work relevant to

the development of the Service Oriented Distributed Query Processing framework and the Dynamic

Service Oriented Architecture framework. It looks into the Grid Problem, service-orientation and

available service-oriented technologies, databases and the grid, data access mechanisms using service-

oriented technologies, parallel database techniques and mobility within the Grid context.

2.1 The Grid Problem

"Grid is a type of parallel and distributed system that enables the sharing, selection, and

aggregation of geographically distributed `autonomous' resources dynamically at runtime

depending on their availability, capability, performance, cost, and users' quality-of-service

requirements. " [30]

In the mid-1990s, the concept of Grid was first laid out in front of the scientific community. It

was explained using the famous electric power grid metaphor where similarities were drawn between

the standard way in which electrical power is delivered to a consumer's premises such that any
device with the requirement of electrical power can be plugged into a distribution socket and the

requirement of a similar computing infrastructure needing standard interfaces that will be capable of

providing access to computational resources distributed over the network. In [31] this is explained

as "the current status of computation is analogous in some respects to that of electricity around
1910. At that time, electric power generation was possible, and new devices were being devised that

CHAPTER 2. Background and Related Work 11

depended on electric power, but the need for each user to build and operate a new generator hindered

use. The truly revolutionary development was not, in fact, electricity, but the electric power grid

and the associated transmission and distribution technologies. " The essence of this metaphor is

that the consumer uses electricity by simply plugging the device into a compatible socket with a

completely agnostic view about the place where it was produced or how it was delivered - in a similar

way, consumers who wish to utilise remote computational and storage resources that are distributed

over the network should remain agnostic about the physical location of those resources, or how the

actual request is processed, and this should be enabled by a set of standard interfaces similar to the

concept of a standard electrical power socket.

Within the decade, this concept gave rise to a new and important field of computing, which although

considered to be within the field of distributed computing, is distinguished from the conventional

methods due to its focus on collaborative resource sharing. It might be suitable to define the "Grid

problem" as flexible, secure, coordinated resource sharing among dynamic collections of individuals,

institutions, and organisations which are referred to as virtual organisations [32]. The challenges

offered by such a setting are related to issues such as authentication, authorisation, resource access,

resource discovery, etc. Grid technologies are suitable for addressing such challenges. In (31], Foster

and Kesselman defined the computational Grid as follows:

"A computational grid is a hardware and software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high-end computational capabilities. "

The concept of the Grid became well-known, and there were an increasing number of scientific

research projects where large scale data sets were offered as resources for sharing with the community.

The high energy physics experiments at European Organisation for Particle Physics (CERN) can

be cited as an example which started producing an astronomical magnitude of data (to the order of

petabytes, i. e. 1015 bytes). It became evident that the researchers in such scientific communities from

across the world will need to access data from these databases that are geographically distributed and

analyse them on computational resources that are spread across the world as well [33]. Chervenak

and Foster et. al recognised this need and proposed an architecture for the "Data Grid" in [34]

which had storage systems, data access and metadata services at its core.

This requirement for a "data grid" demanded the existence of an efficient, robust, and distributed

middleware, as the backbone of the system. This middleware should allow seamless access to all

the entities distributed throughout the network, implemented on different platforms and in different

languages. This middleware should offer an efficient resource management and scheduling mechanism

to deal with the shared usage of the resources. The implementation of such a grid middleware faces

CHAPTER 2. Background and Related Work 12

several challenges. In short, the principal requirements to be met by this grid infrastructure are:

" Information services: Information about the resources available on the Grid should be acces-

sible through information services. This information should be automatically maintained and

continuously updated over time.

. Resource Brokering: Grid users should submit their requests to a resource broker specifying

their high level requirements. The resource broker should be able to find and allocate suitable

resources by querying the information services. This leads to a dynamic environment where

resources can be acquired on demand and released after use.

" Uniform access to resources: All the resources of the same kind (computational entities, storage

elements, etc.) should be accessed in a uniform way, irrespective of the underlying standards

and technologies. This should be done through software modules installed on each single

system that hide heterogeneity and provide uniform access interfaces.

" Security: Grid technologies should be able to provide security mechanisms that enable sys-

tem administrators to enforce access rules for all the resources made available on the Grid.

The use of X. 509 certificates and proxy delegation allow systems to verify the identity of the

user without exposing their credentials on the Internet. The use of encryption ensures that

confidentiality is preserved.

9 Job scheduling: Jobs submitted by the users should be effectively scheduled on available re-

sources based on well-defined policies.

9 Data Access: Grid users should be able to access distributed data in a uniform fashion from

databases spread all over the world irrespective of the underlying database technology and

environment.

2.2 Service Orientation and The Grid

Traditionally, "grid systems" have been synonymous with "distributed job scheduling systems",

where systems responsible for the management of the resources were based on the job abstraction.

Grid infrastructures supported by Condor [35], GRAM [36], ICENI [37] all are examples of such

job-based systems. Almost at the same time, the concept of service orientation was embraced by

the e-business community to overcome the challenges offered by internet-scale distributed business

applications. With the advent of service oriented technologies, a contemporary view of the Grid

CHAPTER 2. Background and Related Work 13

based on service orientation started to evolve -a Grid framework which is based on existing service

oriented technologies.

Conceptually, the "Grid Problem" can be considered as a perfect playground for the concepts of
Service Orientation. The dependencies between various components of a software system can be

minimised resulting in a loosely-coupled architecture which is the main essence of a service oriented

architecture. A service can be defined as a unit of work done by a service provider to achieve desired

end results for a service consumer. Both provider and consumer are roles played by software agents

on behalf of their owners. In the context of virtual organisations, these loosely coupled software

components are some of the basic building blocks.

The concept of a service perhaps existed in the real world as long as time can go back. Almost every
interaction in a consumer market may be treated as buying or selling a service, such as making a
travel reservation through a travel agent. But it is a relatively new and still evolving concept in the

world of information technology. The idea of service-orientation complements object-orientation and

applies the lessons learnt from component software, message-oriented middleware, and distributed

object computing. The primary difference between service-orientation and object-orientation is how

the term "application" is defined by these two architectural models. In object-oriented development,

applications are built from interdependent class libraries, where objects are tightly coupled to each

other. In a service-oriented framework, applications are built from individual autonomous services.

"A service is simply a program that one interacts with via message exchanges. A set

of deployed services is a system. Individual services are built to last the availability and

stability of a given service is critical. The aggregate system of services is built to allow

for change the system must adapt to the presence of new services that appear a long

time after the original services and clients have been deployed, and these must not break

functionality. " - Don Box on Indigo [38]

Service-orientation is based on the following fundamental theories [38]:

" Explicit Boundaries: A complex service-oriented system may often be composed of several

atomic services that may actually be spread over large geographical distances, can belong to

multiple organisations which may or may not have the similar level of trust amongst themselves,

and can also have different execution environments. Crossing these various boundaries may

potentially be costly in terms of complexity and performance. Thus, service-oriented systems

rely on explicit message passing between cross-border entities rather than implicit method

CHAPTER 2. Background and Related Work 14

invocation. The details of a method call is hidden behind the implementation of the service

and is not visible outside the service boundary.

" Service Autonomy: Each service in a service-oriented system can be autonomous. There is no

single entity which assumes control over all parts of a running system. Departing from the

standard process of object-oriented system where an application is deployed in totality, the

component services in a service-oriented system may be atomically deployed; and in practice,

the atomic services may even be deployed much before they are consumed by a composite

service-oriented system.

" Sharing of contract and schema: Unlike object-oriented systems, which always interact between

themselves in terms of classes or objects, composite services in a service-oriented system should

almost always communicate by messages. These components do not share the classes or objects
between themselves. They interact based on the schema (for structures) and a contract (for

behaviour). The Web Service Description Language (WSDL) document describing a Web

Service is an example of such a contract/schema exposed by the service for others to interact

with it. This "almost legal" contract is machine-readable and verifiable, and hence allows each

incoming request to be verified at the receiving end. The machine-readability allows different

types of environments to host the service.

" Semantic compatibility based on policy: Structural and semantic compatibility in service-

oriented systems are two orthogonal issues as opposed to object-oriented systems. The struc-

tural compatibility is validated (and enforced) by the schema and contract; whereas the se-

mantic compatibility is based of the set of policies defined by the service. Each service should

publish its capabilities and requirements in machine-readable policy statements which express

the conditions and assertions that must hold true for normal operation of the service.

The concept of service-orientation is illustrated in Figure 2.1.

With the advent of Service Orientation, several different technologies started evolving. All of these

were intended to achieve the common goal - architecting complex systems using autonomous, inter-

operable, loosely-coupled distributed services. The architecture involving the services came to be

known as the Service Oriented Architecture or SOA. It departs from the traditional distributed

systems like CORBA, RMI etc in the sense that the architecture comprises of services that are

loosely coupled and highly inter-operable. They interact by sending and receiving messages on the

basis of a shared formalised contract which is independent of the platform and the development

environment on which the service is built, for example, the operating system, programming language,

web application server etc. It became possible to create complex services by combining more than

CHAPTER 2. Background and Related Work 15

1. Parties "become known" to each other

Requester Provider
Entity 1? ntity =Semantriles

2 Agree on Senianti s . 3. Inputs - Seinai tics & WSD
& WSD Requester Human Provider Human

Semantics Semantics

\%SU

4. Interact

Inputs - Semantics
& WSD

Requester Provider
Agent

L
Agent

Figure 2.1: Component roles in Service interaction

one autonomous services, where high-level languages such as BPEL [39] are used for orchestrating

the independent services.

The standardisation body OASIS [40] gives the following definitions for SOA:

A service oriented architecture is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains. It provides

a uniform means to offer, discover, interact with and use capabilities to produce
desired effects consistent with measurable preconditions and expectations.

The idea of Grid converged with the developments in service oriented architectures and gave birth

to the service-oriented view of the Grid middleware in form of the Open Grid Services Architecture

(OGSA) [41] which attempted to address the issues involving collaborative resource sharing amongst

virtual organisations [32]. A prototype design, known as the Open Grid Services Infrastructure

(OGSI) [28] was produced which was built on top of the original job-based Globus [4] and other

systems, but also incorporated the evolving service oriented technologies. OGSI introduced Grid

Services as the building block of this grid middleware which were built upon and extended the

service oriented technologies proposed for Web Services. Grid Services were Web Services with a set

of well-defined interfaces which addressed issues such as service discovery, dynamic service creation,

service lifecycle management and notification. The argument produced in favour of this extension

to web services was that the web services did not support dynamic creation and were stateless

CHAPTER 2. Background and Related Work 16

from the viewpoint of the consumer. OGSI introduced the concept of identifying each service by a

globally unique identifier which was known as the grid service handle or GSI!, which required to be

resolved into a grid service reference (GSR) containing all the binding information, such as SMTP,

SOAP etc., for binding to a particular instance of a service. Thus, it can be said that the GSRs

were pointers to each service instance, which seemed to be closer to an object oriented approach,

promoting a tight-coupling between the consumer and a service instance and in the process exposing

the underlying resource via the GSR, which violated one of the principal doctrines behind service

orientation.

OGSI was criticised for its complexity and its adherence to the object oriented model including

dynamic service instantiation. Further, in order to implement the dynamic service instantiation

feature and keeping the state within a service instance, OGSI was deviating from the emerging Web

Service standards by customising existing libraries and toolkits, thereby creating a certain degree of

incompatibility between the systems which defeated the very idea behind the emergence of service

orientation. It was argued by contemporary researchers that the requirements of a Grid service

can be successfully implemented by existing Web Service standards, technologies and toolkits. One

such proposal put forward as an alternative approach to OGSI was the Web Services - Grid

Application Framework (WS-GAF) [27] which challenged the concept of using references in

the form of GSHs and GSRs to identify service instances, and encapsulating service state in an

object-oriented fashion. WS-GAF proposed a framework which was built upon existing Web Service

standards and toolkits, and advocated loose-coupling between the service and the resource. It also

proposed that the service state, if any, is internal to the service, and an interaction state could be

associated to each message exchange to correlate the messages with its execution state. WS-GAF

ruled out the requirement for binding the consumer with a particular instance of a Web Service

and proposed that the only interaction from the consumer point of view with a Web Service should

happen by sending a message to the network address (endpoint) exposed by the Web Service and

any binding, if at all required, should happen behind the interface to which the consumer should

remain agnostic.

As a result of several such criticisms, OGSI was refactored [42] into a set of proposals, collectively

known as the WS-Resource Framework (WS-RF) [43,44]. According to Foster et. al. in [45], in the

WS-Resource approach, the goal is to "model state as stateful resources and codify the relationship

between Web services and stateful resources in terms of the implied resource pattern, a set of

conventions on Web services technologies, particularly XML, WSDL, and WS-Addressing [46]. " In

this approach, a stateful resource can (i) have a specific set of state data which can be expressed

in an XML document, (ii) have a well-defined lifecycle and (iii) may have a one-to-many mapping

with Web Services. WS-Resource is a collective description of a stateful resource and a Web Service

CHAPTER 2. Background and Related Work 17

together. There are provisions for accessing the resource properties and managing the resource
lifetime via the Web Service interface.

The WS-Addressing [46] specification was proposed to standardise the way of describing the network

endpoint by the endpoint reference construct. It allows the endpoint reference to contain apart from

the endpoint address of the Web Service, additional information such as metadata associated with

the Web Service and reference properties which may be used to qualify the Web Service address.
Such an endpoint reference is used to identify a WS-Resource and send an invocation to it. WS-

Resource Framework uses a WS-Resource Factory Pattern which is stateful in nature to instantiate

the correct resource for the consumer, and associates this new instance with an endpoint reference

which is returned to the consumer for further conversations. As a resource can be associated with

one or more Web Services, it is capable of processing multiple simultaneous messages.

Although the WS-Resource Framework invited similar type of criticisms because of its complexity

and resemblance with the earlier OGSI model in terms of instantiation of resources, exposing a

resource with an identifier and the handling of state, it was nevertheless accepted as a Web Service

standard by OASIS in April, 2006. At the same time, there was another set of specifications for-

warded by large industrial corporations such as IBM, Hewlett Packard, Intel and Microsoft [47] which

combined and built upon WS-Eventing [48], WS-MetadataExchange [49], WS-ResourceTransfer [50]

etc. It was thought that WS-ResourceFramework may be superceded by this new set of specifi-

cations. The alternative approach was the use of the WS-I standards and procedures. The Web

Service Interoperability Organization (WS-I) [20] released the WS-I Basic Profile [21] specifications

and based on the proposal of building Grid applications with Web Service standards in order to

support the e-Science projects in the UK, the Open Middleware Infrastructure Institute started to

build on WS-I to create WS-I+ [29].

2.3 Databases and The Grid

Research into Distributed Database technology started more than three decades ago with a main

focus of Distributed Data Management for organisations who had several sites for organisational

data. But due to instability in communication technologies, and lack of strong demand, the initial

systems did not have much success [51]. The situation has dramatically changed today, and the

advances in technology has made Distributed Query Processing feasible and growth in storable and

analysable data has made it a necessity. As was discussed earlier in Section 2.1, the Grid problem

opens up a plethora of situations where databases will be spread all over The Grid. Applications

CHAPTER 2. Background and Related Work 18

will need access to this distributed data from remote locations, and will need to analyse them. The

storage service provided by Amazon (Amazon S3 Storage [52]) is an example of the view of the

scientific community and service providers about distributed storage systems over the Internet. The

need for data access and integration over an internet-scale grid raises some interesting issues [53].

To address the requirements for databases over the grid, the basic issues evolve around:

" Different types of database: Different vendors provide different types of database access which

are specific to the database provider. Even accessing these databases over JDBC (Java

Database Connectivity) would require a different set of JDBC plug-ins for different databases.

Further, there can be semi-structural databases, such as XML; unstructured databases, such

as files; All these would have different means of access.

" Data Integration: The applications accessing the data from different types of database may

require integration of data, for example, some data from a relational database may need to be

integrated with some data from an XML database for a complete result. This requires some

mechanisms to integrate different types of data.

. Data Transport: Some applications may request for huge chunks of data and then perform some

computation on this dataset to retrieve a smaller result. In such cases, it might be beneficial

to do the computation at source, i. e. at the site of the database, rather than transporting the

large chunk of data over the wire.

" Resource Acquisition: The grid environment allows dynamic acquisition of computational re-

sources. This can be an important feature in Distributed Query Processing over the Grid

where availability of resources can govern the scheduling of the query execution plan.

All these make Distributed Query Processing a challenging issue within the "Grid Problem". Ini-

tially, the support for databases within the Grid middleware was limited. During early 2000s,

Globus [4] and the Storage Request Broker (SRB) [54] were considered as most important amongst

the emerging Grid infrastructures. Globus primarily focussed on file-based data [31], with a view

to access data using GridFTP [55], a high performance file transfer tool, which was designed with

the support for security using the Grid Security Infrastructure(GSI). The Storage Request Broker

(SRB) concentrated on file-based data too, with some additional features such as catalogues and

metadata server (MCAT), logical naming convention for datasets, support for GSI etc. SRB was also

capable of supporting BLOBs (Binary large Objects) in a traditional DBMS. But neither of the two

available middlewares had complete support for standard database features which underlined the

requirement of a new breed of middleware services that could provide seamless access to distributed

CHAPTER 2. Background and Related Work 19

data sources irrespective of the database structure, format, vendor and platform.

2.3.1 Data Access and Integration Services

The Grid needed the support for databases at the middleware level in order to be able to allow

users access data from Grid databases. Many research projects, such as the high energy physics

experiments at European Organization for Particle Physics (CERN) [56] or the SLOAN Digital Sky

Survey [23] were inherently data-centric. New research fields such as Bio-Informatics and Neuro-

Informatics were heavily dependent on data stored in various different formats within data storages

of different types. The following table in Figure 2.2 [57] shows the amount of data that are being or

will be generated by recent experiments and real life scenarios.

Computational Fluid Dynamics tur
BaBar particle physics experiment
CERN Large Hedron Collider
VLBA radio telescope
NCBI/EMBL database
Brain Imaging

generat

1TB/day
1GB/second or 10PB/year
1GB/second
0.5TB, doubles each year
4TB/brain (full colour, 10mm resolution)
100TB/movie

Figure 2.2: The potential data explosion

The complexity of the problem was two fold - firstly, there was a need for reconciling implementa-

tion difference between various database server products from different vendors, such as Microsoft,

IBM, Oracle into a single database paradigm, and secondly, there was the need for reconciling the

differences between several different database paradigms, such as object, relational and XML. No

out-of-the-box database products had features that would allow it to be integrated with the Grid

directly. Further, each database product was the result of a huge amount of effort over the years,

and consisted of several important features like security, scalability, performance etc. - and it would
have been extremely costly in terms of effort to develop a Grid-enabled database from the scratch.
Thus, the requirement for a data access and integration support for accessing databases distributed

over the grid grew and the required functionalities became obvious. These can be listed as follows:

" Type Independence - The data access mechanism must support querying over different type of
data resources, such as relational, XML, files which are exposed over the Grid.

" Uniform Approach - It must provide a uniform way of querying, updating, transforming and
delivering data in a consistent way independent of the underlying resource.

" Access to rnetadata - It must allow access to the metadata about the data and the resources

CHAPTER 2. Background and Related Work 20

where the data is stored.

Almost at the same time the concept of service orientation was being applied to the already available

grid middlewares, such as Globus, giving birth to the OGSA approach. Proposals for a standardised

approach to data access from Grid-enabled databases were created by the Database Access and
Integration Services (DAIS) [58] consortium which is a working group of the Open Grid Forum

(OGF) [59]. This gave rise to a set of standard Web Services for accessing data from distributed

databases in a uniform way, independent of the structure of the data and type of the storage, known

as OGSA-DAI [14]. This is described in the following section.

2.3.1.1 OGSA-DAI

The growing requirement for a middleware level support for accessing various types of data storage
in a manner that will be agnostic about the storage type, format, vendor and platform along with
the rise in Web Service standards and toolkits coupled with the development of OGSA were the vital

push for the development of OGSA-DAI. Initially built on top of OGSI, OGSA-DAI is a data access

component for the Grid middleware which allows access to distributed data sources irrespective of

their location, platform, format and type. In [60] OGSA-DAI has been described as complimentary

to other approaches adopted by database vendors which generally support invocation of Web Services

from SQL queries, or creation of Web Services from stored procedures, as discussed in [61]. OGSA-

DAI allows the organisations exposing the data to the Grid to reuse code in an efficient way, and

the consumer accessing data exposed in such manner to implement their client application in a

manner which is mostly independent of the specifics of the database, such as the database driver

technology, data formatting and delivery techniques. The aim of OGSA-DAI is to enable seamless

access to disparate, heterogeneous data sources which are factored out as services which build on and
integrate with the OGSA technologies for features like data transport and security. Other higher

level services such as distributed querying or federation offering more functionality are able to use
OGSA-DAI. The basic components of the OGSA-DAI framework are shown in Figure 2.3.

OGSA-DAI provides several architectural features, such as standardised interface, metadata, security

etc., which are considered essential for a Grid infrastructure. These features are outlined below.

" Standard Interfaces - One of the major benefits of OGSA-DAI is that it provides a uniform in-

terface over different types of databases irrespective of the underlying technology. The database

connectivity issues are hidden behind this consistent interface which allows the consumers to

access data from a relational or an XML database in the same way regardless of the specific

CHAPTER 2. Background and Related Work

OGSA-DAI ©aslc Sorv os

Delivery Fo, mat Drivers IVty
Engine

Database

Figure 2.3: Basic Architecture of OGSA-DAI

database paradigm.

21

" Access to metadata - OGSA-DAI provides metadata about the D13NIS system that, is exposed

to the Grid as well as their capabilities through the service interfaces. Metadata about in-

herent capabilities of the services themselves, such as different delivery options or available

transformation mechanisms which can be applied over the data, can also be accessed. Some

higher level services, such as a Distributed Query Processing Service may require access to the

database schema for relational database systems, which can be extracted from the OGSA-DAI

service interfaces. Further, OGSA-UAI provides an extensible metadata framework which can

be extended to satisfy the requirements of the applications that use OGSA-DAI.

" Sessions - OGSA-DAI has a notion of session which allows the framework to relate queries

submitted by a consumer to a particular transactional context. DBMSs supporting concurrent

accesses from multiple consumers provide an interface through which a new session is created

every time a client establishes a connection to the database. This allows multiple concurrent

transactions to be executed on the same DBMS. OGSA-DAI exposes this mechanism through

its service interface.

" Security - Security is an important aspect in Grid systems, but various security models are

still in the process of development. The current approach taken in OGSA-DAI is based on the

X. 509 certificates with a view that the universally agreed method will be adopted when there

is a consensus within the Grid community.

" Collective requests - OGSA-DAI allows the consumers to specify multiple related activities

within a single request document which is sent to the service. The activities may include an

update to the database, followed by a query and the delivery of the results to a third-party

with some transformation. The granularity of the interactions is thus increased, reducing the

number of messages to be exchanged between the parties to achieve the same result otherwise.

CHAPTER 2. Background and Related Work 22

" Delivery options - The synchronous model of a traditional client-server database interaction,

such as a JDBC connection, may not be sufficient for the extreme performance (as shown in

the table in Figure 2.2) and capacity requirements of some Grid applications. Other delivery

options, such as using FTP to transfer the results to another file system, or to store the results

of a query at the location of the service itself until it is requested for, are potentially useful for

data intensive applications.

The Grid Data Service (GDS) from OGSA-DAI provides a document-oriented interface for submit-

ting requests to a database with the option of including multiple related database activities within a

single request document. The perform operation provided by a GDS carries out all database access

and updates based on the request document passed as an input to it. The request document in

OGSA-DAI can include a collection of related activities where each activity represents an opera-

tion on the service, for example, an updation of a database table, followed by a query and then

transformation of the results based on some XSLT stylesheet and finally delivery to a remote file

system via FTP. At its core, the GDS has an enactment engine which supports various activities

such as querying, updates, delivery, transformation etc. OGSA-DAI also allows users to develop new

activities and incorporate them into the basic OGSA-DAI framework allowing it to be extended. It

is mentioned in [60] that the GDS activity model is not viewed as a complete Workflow Enactment

Engine but is designed to support "limited expressiveness" for common data access and transfor-

mation tasks. Listing 2.1 shows an example of a perform document as submitted to the OGSA-DAI

framework.

The emergence of OGSA-DAI as a standard interface to databases on the Grid prompted various re-

search projects to adopt this framework as a tool to access databases in a uniform way irrespective of

the database structural and functional differences. This gave rise to the requirement of a Distributed

Query Processing system which would be able to process distributed queries across databases that

are exposed as OGSA-DAI services.

2.3.2 Distributed Query Processing, The Grid and SOA

The argument in favour of a Distributed Query Processing system over the Grid was put forward

by Smith et. al. in [62]. Before OGSA-DAI, most work on data storage, access and transfer

within a Grid setting primarily focussed on files, which is one of the central requirements for many

applications [33]. But, as outlined in Section 2.3 and [53], facilities for the management of the

Grid metadata and support for storage and analysis of application data are provided by database

management systems, and these are considered to be important for a range of Grid applications

CHAPTER 2. Background and Related Work 23

Listing 2.1 An example perform document submitted to the OGSA-DAI framework
<perform xmins-"http: //ogsadai. org. uk/namespaces/2005/10/types">

<documentation>
This example demonstrates how to parameterise an SQL query statement using a deliverFrom
activity. A deliverFromGDT activity is used, but any other deliverFrom activity could be
used in the same way. The values from the delivery are inserted into the query, the query
performed and the results delivered in the response document.
</documentation

deseribina the delivery activity

<dallvorFromGDT aama. "paramat, rs">
<fromGDT straamId-"som. OutputStraam" mode-"block">
http: //path/URL
</lromGDT>
<toLocal name-"paramet. rsOutput"/>

</dslivarFromGDT>

describing the parameterized SQL query activity

<sglqueryStatement name-"statement">
<sglParameter position-"i" from-"parametersOutput"/>
<sglParameter position-"2" from-"parametersautput"/>
<expression>
select * from littleblackbook vhers id > T and id kit; - 4
</expression
<resultStream name-"statementOutputRS"/>

</sglpueryStatement>

describing the transformation activity

<sglResultsToXML name-"statementRSTo7GIL">
<resultSet from-"statementOutputRS"/>
<vebRovSet name-"statementOutput"/>

</sglResultsToXML>

</perform>

in streams such as Bio-informatics. Further, it is inevitable that such a distributed environment

will be composed of multiple data sources which are related, and applications will be accessing
data from several such data sources and performing analysis over them. In bio-informatics, for

example, different types of data, such as gene and protein sequences, gene ontologies are stored
in different specialist data repositories, and often these repositories need to be inter-related for

common analytical work. Smith et. al. in [62] discussed the role that can be played by DQP in

a Grid environment and proposed a prototype DQP framework, Polar*, running over the Globus

toolkit. Polar* was based on earlier work on parallel databases, Polar, an ODMG-compliant parallel

object database server [12,63], although the requirements of a Grid environment introduced several
key changes in Polar*. The key aspects of Polar* can be summarised as follows:

9 It provided integrated access to multiple data sources thus satisfying an important requirement

of Grid applications.

" By allowing operation calls within the data access and combination operations, it provided a

mechanism for integrating data and computational resources.

9 It provided a generic, declarative, high-level language interface for the Grid data resources.

CHAPTER 2. Background and Related Work 24

" It inherited technologies from parallel databases, and thus provided implicit parallelism within
DQP in a Grid setting.

The prototype proposed in Polar* was based on the Globus Toolkit (version 2), which was prior to

the advent of service orientation. In Polar*, the grid middleware was accessed using a Grid-enabled

version of MPI [64], and further, the absence of the service orientation context led to a relatively
less seamless access to data and compute resources distributed over the Grid. The growth of service-

orientation and the wide adoption of this paradigm in the e-Science community coupled with the

availability of generic interfaces for data access from disparate data sources (OGSA-DAI) led to the

research into a service-oriented distributed query processing system, which forms the base of this

thesis and is discussed in depth in Chapter 3. The mvGrid project [6], one of the first e-Science pilot

projects in the UK, concentrated on bio-informatics research, with a requirement for analysis of bio-

informatics data spread over disparate data sources. Research into a service-oriented DQP system

started as a collaboration between mvGrid and OGSA-DAI, and the result was the first public release

of OGSA-DQP [11] in September 2003 which enabled Distributed Query Processing over databases

spread over the "Grid". It provided effective declarative support for service orchestration, and was
built on the framework that:

" supported queries over standardised "Grid Data Service" (GDS) and other analysis services

made available over the grid thereby combining data access with data analysis;

9 used the facility provided by Open Grid Services Architecture (OGSA) to dynamically obtain

resources required for efficient evaluation of a distributed query;

" adapted techniques from parallel databases to provide implicit parallelism for complex data-

intensive requests;

" used emerging standards of GDSs to provide consistent access to database metadata and to

interact with the databases on the Grid.

This framework was built on the concept of Service Orientation where the query processing proce-

dures were architected as services available over the Grid infrastructure. Within this framework,

several "grid-enabled" databases were accessed using standardised Data Access Services and well-

understood query processing procedures made available as services were applied on the data collected

from distributed data sources, as shown in Figure 2.4. Effectively, DQP was service-based in two

orthogonal senses: firstly, it supported querying over data storage and analysis resources that were

made available as services and, secondly, its internal components related to the construction of a dis-

tributed query plan and their execution on nodes available on the Grid were architected as services.

CHAPTER 2. Background and Related Work 25

As a result, the framework provided a declarative approach to service orchestration over the Grid

and also demonstrated that query processing can benefit from the dynamic access to computational

and data resources on the Grid. Apart from incorporating the concept of Service Oricnla. tion, this

framework also adapted the techniques from parallel databases in order to parallelise the execution

of the distributed query on several computational nodes available on the Grid, and as a result,, it, es-

tablished significant improvements in the performance of queries containing complex data-intensive

operations.

OGSA" DQP

OGSA"DAI tiasIC Servlcos

Dd very Folmar Urivers Actw. ty
engmo

L
Database

Figure 2.4: Basic Architecture of OGSA-DQP

The popularity of the Web Services led to the development of commercial products that allow

integration of Web Services and data management systems [61]. However, the classical wrapper-

maediator approach proposed in OGSA-DQP where the DQP system acts as a mediator over data

sources wrapped by OGSA-DAI is unique in the service-oriented Grid context. One previous pro-

posal, namely Sky Query [65], applies the wrapper-mediator approach in a service-based setting, but,

it differs from OGSA-DQP in a number of key areas, such as, (i) the data sources are the only

services that can contribute in the query evaluation process thus disregarding the option of dy-

namically allocating the evaluators, (ii) the execution plan in SkyQuery does not incorporate any

pipelined parallelism which is provided by DQP by encapsulating the classic iterator model [66] and

(iii) the query language supported by SkyQuery is a specialised language adopted for astronomical

queries. SkyQuery, however, is considered as one of the important early proposals which established

the useability of Web Services for supporting distributed queries. Requirements for data-intensive

scientific applications motivated other projects such as GRIDDB-Lite [67] which may be mentioned

in relation to the work done in OGSA-DQP. GRIDDB-Lite is based on DataCutter [68] in which

the users could express the data retrieval tasks as SQL-like queries, although the evaluation proce-

dure was not based on database techniques. It benefited from the declarative manner of expressing

complex tasks, but the internal execution mechanism did not exploit the full potential of a DQP

CHAPTER 2. Background and Related Work 26

framework.

2.3.3 Requirements for Dynamism

The publicly available version of OGSA-DQP is however not free from issues which are important in

the Grid setting, especially in case of data-intensive applications such as the ones presented in the

table shown in Figure 2.2. In OGSA-DQP, a consumer can submit queries which may access data

sources that are geographically distributed. For long-running queries which retrieve large amounts

of data from the network, a relatively high transmission cost may be incurred as the data has to

travel over the network to the nodes where the evaluations and analyses take place. An approach to

minimise this cost of transporting the data is to deploy the analysis services closer to the data, which
has been proposed by the Active Information Repository architecture [7]. Even though OGSA-DQP

is able to dynamically discover the evaluators and schedule query evaluation on them, it requires the

query evaluation service to be pre-deployed on the participating nodes, either on the nodes hosting

the data source, or the computational nodes, or both. A demand-driven deployment feature, which

would allow the DQP system to dynamically deploy the evaluators on available nodes will greatly

enhance the options for selecting the best possible nodes to evaluate a query. In this case, the

evaluation services are not tightly coupled to the participating nodes, rather, the service can be

deployed at run-time on the nodes which are deemed best suited for evaluating a query, based on

their characteristics. Further, it is a common practice in various research streams, such as bio-

informatics, to use third party analysis services to analyse the data retrieve from a data source.

These services may be hosted on a remote node, which may again incur a heavy transport cost to

move the data to the analysis service -a problem which may be resolved if there are means to deploy

the analysis service closer to the data. The third party analysis services may be unavailable at the

time the query is submitted, resulting in a failure of the query, which can be avoided by deploying a

copy of the service locally, again underlining the requirement for a dynamic deployment mechanism.

These issues highlighted the requirement for a flexible and fluid architecture where the available

computation and data nodes are "prepared" for query evaluation process as and when required. The

Active Information Repository proposed a solution to avoid the network overhead incurred while

moving the data between the nodes. Development of a "Dynamic Service Oriented Framework"

which would allow demand-driven deployment of services thus emerged as a necessity.

CHAPTER 2. Background and Related Work 27

2.4 Towards a Dynamic Service-Oriented Architecture

OGSA-DQP was one of the many scenarios where a dynamic deployment framework could provide

substantial benefits. In general, all Grid applications which are data intensive in nature, and where
large amounts of data are normally retrieved from a remote data resource to the consumer site for

analysis are potential benefactors of the dynamic deployment, which in reality refers to demand-

driven installation of the analysis code at run-time in such a way that the host computational node

need not be restarted. This is in contrast with the code on demand paradigm, an example of which
is a Java applet, where the execution code is downloaded to the consumer's computer at runtime. In

essence, the dynamic deployment referred here is equivalent to remote evaluation available in mobile

agent frameworks or job scheduling systems, where the execution code from a consumer is sent to a

remote resource for execution. The dynamic deployment methodology adopted in the work discussed

in this thesis is otherwise given the name hot deployment in many contemporary literature[69]. In

this thesis, DynaSOAr or Dynamic Service Oriented Architecture [19] is proposed as a framework

for deploying Web Services on demand over computational resources available over a Grid or the

Internet within the context of Distributed Query Processing by OGSA-DQP. A consumer request for

a service is processed by a host most suited for the requirements specified by the consumer. If there

are no existing deployments, an automatic deployment of the service will be triggered within the

framework in a way that is transparent to the consumer. In essence, this is analogous to remote job

scheduling, with an offer for improved efficiency in the long run as the cost of moving and deploying

the service can be shared across the processing of many messages over the time. In this section, the

contemporary works in the related area are discussed and assessed against DynaSOAr.

For a certain time, mobile agents [8] were considered as one of the primary approaches to enable the

dynamism in a Grid environment. But as the Grid community started to move closer to a service-

oriented approach, the interest in agent-based systems for the Grid setting diminished as there

were concerns regarding the security aspects of such a system[70]. However, some works using the

mobile agent technology are noteworthy in this respect. One of them is JASE, a Java-based agent-

oriented and service-oriented environment [71]. JASE utilises service abstraction and the remote

programming paradigm offered by mobile agent systems. Services, in JASE, are modelled as agents.
A Service Interface Agent is used to encapsulate a local resource, and is composed of two parts -
service agent and service interface. The other agents in the system communicates with a service

agent through the encapsulating service interface. The access to the resources on the hosting server
is restricted to this service interface agent. The JASE server, which provides the agent environment,

and with which the service interface agents register to allow searching, is the core component in the

JASE architecture and is responsible for managing the security, mobility, persistence of the agents.

CHAPTER 2. Background and Related Work 28

This server is started as an individual process on each of the participating nodes. There are two

ways of communication between agents - (i) a Java-based asynchronous messaging system [72], and
(ii) communication with the help of shared objects such as a tuple space [73]. But the service hosting

environment in JASE is essentially static. Mobile agents are used to locate the services within the

network, and then moved to the node where the service is hosted. DynaSOAr on the other hand,

allows a demand-driven deployment of the services themselves on available nodes thereby allowing

performance enhancements (such as in the case of moving a data access service closer to the data)

and load-balancing for the services provided by the system.

Another approach is proposed by Liu and Lewis in [74] where an attempt is made to enable the

web service containers to accept new mobile code on the fly, so that the new execution code is

incorporated into the container dynamically, allowing it to execute within the same address space

as the server itself. Liu and Lewis claim three distinct advantages: (i) moving the code to data,

where a mobile code component which accesses a remote data source, can be moved to the server

where the data is stored, (ii) callbacks, where the consumers can send mobile code which accepts

notification messages from the new container allowing service developers to develop more fine-grained

notifications by using filters within the mobile code, and (iii) dynamic deployment of new components
in a web service. The proposal introduces new languages, such as C-- for the consumers to write

client-side codes, which can then be converted into an XML-based mobile code language, X#.

It is claimed that this approach will remove any platform dependence as within a "mobile code

enabled container", the X# mobile code will be translated into the native language supported by the

container. Clearly, the approach is different from what DynaSOAr wants to achieve by dynamically

deploying web services with a logical separation between service provider and resource provider.
Fluther, DynaSOAr is completely based on existing standards and toolkits for service orientation,

and does not require additional languages to be defined.

WSPeer [75] and F1exiNET [76] are two other proposals for hosting and invoking Web Services in

a dynamic way. Unlike other Web Service frameworks, WSPeer [75] is not built around the con-

tainer model, and its goal was to merge the strengths of Web Services, in particular that of the

XML technologies, such as WSDL and SOAP, with the strengths of Peer-to-Peer systems, which

allow decentralised resource sharing and discovery mechanisms. The WSPeer architecture allows

applications to expose themselves or part of themselves as Web Services by acting as an interface to

remote service providers and consumers, and this is referred to as dynamic deployment. During a

service deployment, a Java class which is a front-end to a process, is passed to the ServiceDeployer

component of the server interface which deploys this class as a service using Apache Axis [77] and

establishes an endpoint through which any interaction with the service will take place. A second
deployment method, called delegated deployment is also available, where a delegate or proxy compo-

CHAPTER 2. Background and Related Work 29

nent is generated and deployed at runtime. This delegated component passes all the invocations back

to an object in memory, which can be the application itself, or a component that allows initialisation

and driving of sub-processes within the application. Evidently, the dynamic deployment in WSPeer

is considerably different from the dynamic deployment paradigm proposed by DynaSOAr which

allows demand-driven deployment of complete Web Services within a container. Dynamic Service

Deployment in F1exiNET [76] aims to define and implement a scalable modular network architecture

that will incorporate adequate network elements offering various network functions such as roam-

ing connection control, switching/routing control and advanced service management. The proposal

depicts an architecture for dynamic service deployment where a Web Services Server is responsible

for registering a service with a UDDI repository, and is also capable for discovering other service

interfaces. A DSD Controller is responsible for receiving the service requests, download the service

code and requirements, check the availability of the resources and select a suitable resource using

a matchmaking algorithm, and finally deploying the service on the designated resource, although it

is not clear from the proposal how these objects are achieved. F1exiNET is based on the Globus

Toolkit 4 [43], and requires specialised network components such as distributed routers, thus ruling

itself out of the generic and inter-operable service oriented platforms.

Keidl et. al. examined the dynamic deployment scenarios in the ServiceGlobe system [78,79,80].

Services can be stored, published, discovered and deployed on the ServiceGlobe platform. Ser-

viceGlobe distinguish between external and internal services. External services are those that are

available on the Internet, provided by third party providers, and may have arbitrary interfaces for

invocation. ServiceGlobe uses a concept of adapters to transpose internal requests to external in-

terfaces and conversely, in order to integrate these services irrespective of their arbitrary interfaces.

Internal services are the services provided by ServiceGlobe and are native to the system. These are

further classified into static services that are location-dependent and dynamic services that may be

executed on arbitrary ServiceGlobe servers. The native services offered by ServiceGlobe, i. e. the

internal services, are mobile code, which are stored in a repository and can be transmitted over the

network to the servers running the ServiceGlobe runtime engine where the code can be deployed

using a runtime service loading service. ServiceGlobe uses UDDI [81] to search for the repository

which stores the mobile code for a particular service. The runtime service loading feature allows

a service to be distributed to arbitrary hosts within the ServiceGlobe domain, which provides a

platform for load-balancing and parallelization. ServiceGlobe uses a method called dynamic service

selection for invoking a particular implementation of a service. Each service is assigned to a tModel,

which in UDDI, is a means for creating any reference items. In ServiceGlobe, the tModel is used

to provide a template defining the semantics and service interfaces which implement the template.

In ServiceGlobe, therefore, "a service is an implementation or instance of its tModel" [78]. Service-

CHAPTER 2. Background and Related Work 30

Globe offers the creation of composite services where it is not necessary to invoke a concrete service

endpoint, but is sufficient to invoke a tModel, the implementation of which is decided in a lazy

fashion, during compilation or execution. In terms of functionality and scope ServiceGlobe perhaps

comes closest to DynaSOAr in that it uses UDDI, and allows hot deployment of services which can

also be stored in a repository. Similarities end at this point, as unlike DynaSOAr, ServiceGlobe

does not provide any logical separation between service provisioning and resource provisioning. Fur-

ther, DynaSOAr does not distinguish between internal and external services, and is based on WS-I

compliant Web Services paradigm, and message oriented approach of invocation, which simplifies
the development and deployment process considerably, along with making it easier to use for the

consumer. DynaSOAr also allows quality of service specifications from the consumer point of view,

which can be taken into considerations while performing dynamic deployment.

The Highly Available Dynamic Deployment Infrastructure (HAND) proposed by Qi et. al. in [82] is

another proposal which encompasses the requirements of dynamic deployment of services for Grid

applications. HAND acknowledges the need and importance of dynamic service deployment and

management in order to enable dynamic and extensible virtual organisations which are crucial for the

Grid. The proposal considers two approaches for dynamic deployment, (i) Service-level deployment

(HAND-S), where one or more services can be activated or deactivated and new services deployed

without the requirement of restarting the container, and (ii) Container-level deployment (HAND-C),

where deployment of a new service requires the reloading of the entire container. HAND is based

on the Globus Toolkit 4 [43], and refactors the kernel structure of the Java WS Core container

of Globus (as opposed to other approaches proposed in DynaGrid [83] or by Weissman et. al. in

[84,85] which are discussed later in this section). The approach requires low-level modification of

the container but it is claimed that a lightweight dynamic deployment implementation and a simpler

management mechanism can be achieved in this fashion. The service-level deployment in HAND

allows finer grained deployment of single services as Grid archive (GAR) onto the GT-4 container

and uses the ClassLoaders to activate or deactivate individual services. The experimental results

are encouraging showing a better performance for HAND compared to the Apache Tomcat and

Axis approach adopted elsewhere, including DynaSOAr. But the cost of deployment is outweighed

in DynaSOAr due to the one-to-many interaction semantics which allow multiple consumers to

interact with the same service endpoint, which is not addressed in HAND. Further, HAND is tightly

coupled to a particular container and lacks the generic nature of DynaSOAr. Unlike DynaSOAr,

HAND does not address the possibility of creating a marketplace by separating host provisioning

and service provisioning.

DynaGrid [83] is another platform based on the Globus Toolkit 4 [43] which allows dynamic de-

ployment of WS-RF services and migration of resources. SeruiceDoor and dynamic service launcher

CHAPTER 2. Background and Related Work 31

(DSL) are the two basic components of DynaGrid. A ServiceDoor is a service-specific front-end and

exists for each service supported in the framework, keeping track of a list of containers on which the

service is deployed and forwards the consumer request to an appropriate DSL on one of the available

containers. The ServiceDoor is responsible for the decisions about dynamic service deployment and

resource migration. The DSL is a passive service controlled by the ServiceDoor and is responsible

for the actual deployment of the service, creation of resources and the invocation of the service. In

a WS-RF-based system, a consumer first creates a service resource and gets an EndPointReference

(EPR) for this newly created resource. Future invocations use this EPR and are sent directly to the

resource. In DynaGrid, the request for creation of a service resource is sent to the ServiceDoor, which

uses its scheduling module to select an appropriate container from the list of available containers

who have the service already deployed. If no such container can be found, the deployment module

initiates the deployment of the service on one of the idle containers. An EPR is created within the

scheduling module which refers to the meta service resource (a new type of service resource defined in

the work which stores the information about the service, such as the service identifier, the interface

class, service options, and the class loader object) of the corresponding service within the selected

container and the createResource method on the target DSL is invoked. A new service resource is

created by the DSL using the information contained within the meta service resource, and the local

EPR is returned to the ServiceDoor. As DynaGrid allows migration of resources, this EPR is not

returned to the consumer, instead, an abstract key is returned and a mapping between the actual

EPR and the abstract key is stored within the ServiceDoor. The actual execution or invocation re-

quest identified by the abstract key returned to the consumer is also sent to the ServiceDoor which

retrieves the target EPR from the mapping information and the target DSL is invoked resulting in

the execution of the service leading to transparency in execution. Byun and Kim in [83] claim that

this approach does not require any changes in the standard containers as opposed to similar work by

Qi et. al. in [82]. DynaGrid also allows migration of service resources from one container to another

when certain constraints set by the service developers are met which as per [83] distinguishes it from

other WS-RF based platforms. DynaGrid is a relevant work in its own right and indeed presents

a view which has similarities with the DynaSOAr concept, but (i) it is restricted to a particular

category of services, viz. WS-ResourceFramework, thereby neglecting a large set of services based

on the standardised WS-I platform that are used in various e-Science and most commercial projects,

(ii) it does not seem to contain a repository allowing developers to upload newly developed services

for potential consumers to use and (iii) the separation of service provisioning and computational

resource provisioning as in DynaSOAr is not present and nor is the concept of a marketplace.

The idea of dynamic deployment of services is considered a vital step towards forming dynamic

virtual organisations by Weissman et. al. in [84,85]. Weissman in [84] acknowledges that the

CHAPTER 2. Background and Related Work 32

static infrastructures currently prevalent will not be adequate enough as the Grid applications are
increasingly becoming "multidisciplinary, collaborative, distributed and most importantly, dynamic"

and such applications may be "assembled on-the-fly to exist only for a transient period of time. " The

views expressed in this proposal coincides with the view and motivation behind DynaSOAr, which
focusses on using on-demand service deployment as a step for creating dynamic virtual organisations

and to deal with unpredictable demand for services. Weissman et. al. present an architecture for

dynamic grid services that is based on OGSA and implemented on OGSI [28] for supporting the

dynamic virtual organisation concepts. The proposal evolves around a concept of Adaptive Grid

Service (AGS) which is a fundamental abstraction for a Grid service, that is adaptable to changes

in demand and availability of resources. The AGS is composed of a front-end, a deployer and a
back-end. The front-end is responsible for handling the requests from consumers and making the

decisions about where to process the request. The AGS deployer takes the decision about the site(s)

which should host and deploy a service, and once a service is deployed, this information is stored

within the front-end. An AGS factory which contains the actual code for the service and serves a

request by creating an instate known as Adaptive Grid Service Instance (AGSI) resides in the back-

end. An Adaptive Resource Provider Service (ARP) provides a leased pool of resources on which

the back-end can be dynamically deployed, and the leasing model conforms to the concept of service
lifecycle of OGSI. Weissman et. al. have used the Apache Tomcat container to enable dynamic

deployment as the stand-alone container available in Globus Toolkit 3 is able to handle statically

deployed services only. A mechanism similar to the one used in DynaSOAr is used for packaging the

service as a WAR (web archive) file which contains the application code, the deployment descriptor

for the web application and other required libraries. Although the concept is similar to DynaSOAr,

this proposal is architecturally tied to a particular implementation of the Globus Toolkit and suffers

from the limitations pointed out earlier and in [27]. DynaSOAr, on the other hand adopted a more
loosely coupled architecture using widely accepted standards and toolkits for Web Services. An

approach similar to Weissman et. al. may be seen in Smith et. al. [86] which speaks about a Service-

oriented ad-hoc grid. In this proposal custom class loaders are used to enable hot deployment, and

no distinction is made between service provisioning and resource provisioning. Further, the proposal

is again tied to a particular platform, that is, Globus Toolkit 3.

An architecture for a next-generation Internet based on Web Services and Utility Computing is pre-

sented in [87] by Darlington et. al. Utility Computing allows the provision of execution environments

by third parties, such as the Amazon Elastic Compute Cloud [881, which provide computational re-

sources to consumers on a use-on-demand, pay-per-use basis. In addition to this, the architecture

proposed by the authors create the possibility of a services market where Web Services are equipped

with the ability to negotiate a price for their usage which has been evaluated within [89]. This

CHAPTER 2. Background and Related Work 33

proposal is relevant to DynaSOAr as the DynaSOAr architecture allows the possibility of a similar

market for resources and services.

In this section, several contemporary proposals about dynamic service deployment and formation of

dynamic virtual organisations have been assessed. The differences between DynaSOAr and all these

proposals can be summarised as:

1. DynaSOAr hides the actual deployment behind the service provider interface, so that the

transparency of execution is maintained. This is in some ways, analogous to the Amazon S3

Storage Service, where the consumer is allocated some storage space as per the requirements,

but the consumer is not required to know the exact location where the data is stored or the

format in which it is stored. The only interface the consumer is aware of is the interface to

the service provider.

2. DynaSOAr is responsible for making the decisions as to when a dynamic deployment will take

place. The decision depends on a number of factors, such as demand, usage statistics, host

availability etc.

3. DynaSOAr maintains a loose coupling between the service provider and the consumer. Because

the consumer is only aware of the service provider interface, there is no dependency on the

consumer's part on the platform on which the service is actually executed or the language in

which the service is implemented.

4. DynaSOAr makes a distinction between service provisioning and host provisioning by creating a

logical partition between the provider of a service and the provider of a computational resource

on which the service is hosted. In effect, a service provider may be different from a resource

provider, which creates a possibility of new virtual organisational structures, where several

distinct organisations collaborate for sharing the resources in order to achieve a common goal.

5. DynaSOAr creates the possibility of brokering between different available services all of which

may perform the same task thereby giving the consumers options to select from all the available

services based on the consumer preferences. There is also a possibility for the service provider

to choose from different available providers for computational resources. These two features

taken together, form a marketplace for all the participants, which in this thesis is termed

Software Hypermarket.

CHAPTER 2. Background and Related Work 34

2.4.1 Use of Virtualization Technologies

Virtualization technologies are considered as one of the key approaches in the dynamic deployment

framework covered in this thesis. VMWare [15] defines virtualization as "an abstraction layer that

decouples the physical hardware from the operating system to deliver greater IT resource utilisation

and flexibility". This leads to the opportunity to run multiple virtual machines (VMs) with different

operating systems, simultaneously on one physical machine where each of these VMs are completely
isolated from each other and from the host environment, removing the tight coupling between the

hardware and the software of computational resources which existed in the pre-virtualization era.
The traditional operating systems on modern computational resources allow sharing of the resources

such as CPU, memory, disk space via multiprocessing capabilities, file-systems and virtual memory.
The system resources are accessed by each individual processes indirectly through the abstraction

layer provided by the operating system itself. A parallel approach to resource sharing existed since

the IBM System/370 [90] where virtual machines present a duplicate view of the underlying hardware

to the software running within the machines allowing the co-existence of multiple operating systems

on the same physical hardware sharing the physical resources through multiplexing. An overview

of the virtual machine architectures can be found in [91] by Smith and Nair where the authors

categorise virtual machines in two broad categories - (i) those which virtualize a complete instruction

set architecture, including user and system instructions, and are known as ISA-VMs, and (ii) those

which support an application binary interface with virtualization of system calls, known as ABI-

VMs. Smith and Nair also speak about the classic VMs as an important class of virtual machines

consisting of ISA-VMs which support same-ISA execution of entire operating systems, such as the

IBM S/390 series and VMWare, which is used within DynaSOAr as a means for virtualization.

On the other hand, UML (User Mode Linux) [92] belongs to the category of ABI-VMs. In the

past few years, virtualization has become an attractive option for Grid applications. Figueiredo et.

al. in [93] outlines the advantages of using VMs for Grid computing because of the functionalities

such as security and isolation, customisation, legacy support, resource control etc. offered by the

virtualization technology. In this section, some contemporary work about how VMs are used in Grid

computing are assessed.

VMPlants [94] is a proposal by Krsul et. al. which attempts to incorporate the functionality to

manage dynamic creation and destruction of virtual machines within the Grid middleware. VM-

Plants provides support for flexible and automatic customisation of virtual machine environments

from a higher-level user perspective. It has the ability to clone and instantiate a VM environment

efficiently and monitor the states at execution time based on a service oriented architecture. The

goals as claimed by the authors are flexibility of configuration, support for multiple virtualization

CHAPTER 2. Background and Related Work 35

technologies and fast instantiation of the VMs, scalability, interoperability and fault-tolerance. Di-

rect Acyclic Graphs (DAG) are used for describing the actions to configure and customise a VM,

which together with a VM cloning process allows a flexible configuration process. The manage-

ment of the virtual machines is not tied to any particular middleware solution and follows a service

oriented model. The framework is composed of services such as the VMShop which is a front-end

to which consumers interact and VMPlant, which is responsible for the actual creation of a VM.

VMShop uses standard Web Service technologies such as UDDI and WSDL for discovery and service
binding. From the point of view of a user, the VMShop performs the tasks of a system administrator
to accommodate requests for additional computational resources within the network. The consumer

request to the VMShop will contain the desired configuration of the new resource to be created in

form of a DAG which are sent to the VMShop as a SOAP message. The VMShop selects a VMPlant

for the creation of the VM, and sends a service request to the designated VMPlant which implements

a Production Process Planner (PPP) to plan the process of VM instantiation based on the specified

configuration. It searches a VM Warehouse for a VM which matches the desired configuration and

clones it to instantiate a VM for the consumer. If the instantiation process is successful, a classad

containing the information for identifying the VM is returned to the consumer who can communicate

with the VM using this identifier.

Sundararaj and Dinda proposed a virtual network tool VNET [951 to deal with the networking

issues of virtual machines. In order to successfully use the virtual machines for large scale Grid

applications, the VMs should be reachable through the network. The virtualization technologies

typically create a virtual ethernet card for the guest virtual machine which is emulated by using the

physical network card of the host system. The virtualization layer typically "bridges" this virtual

ethernet card with the same network as the physical host, and the VM appears as a normal physical

machine on the network. The authors claim that this bridging process works seamlessly within a

single site, and new VMs are indistinguishable from real machines within the same network. But the

process is not as seamless across different sites, such as when there is a requirement to run a VM on a

remote site, in which case, the network presence will largely depend on the policies that are imposed

on the remote network. In effect, this may be equivalent to "visiting the site and connecting a new

machine" [95]. The issue becomes even more complex as the number of such remote sites increase

and if there are any possibilities of migrating the VMs between the sites. VNET is proposed by

the authors as a simple layer 2 network tool, using which the VMs will not have any direct network

presence at the remote site, rather it provides a mechanism to "project their virtual network cards

onto another network" such that all the VMs belonging to a particular user may appear to be

within the user's own network. As VNET sits on layer 2 of a network, a particular machine can be

migrated between different network without any change in its network presence, i. e. the IP address,

CHAPTER 2. Background and Related Work 36

routes etc. VNET uses the concept of Virtual Private Network which implements a virtual local

area network (VLAN) spread over a wide area network using layer 2 tunnelling. The work is unique

and is particularly relevant to the dynamic virtual organisation scenarios which DynaSOAr wants to

support. The current virtual networking method used in DynaSOAr is either the default "bridged"

or "host-only", but DynaSOAr could utilise tools such as VNET to allow migration of VMs and
thus dynamic VOs over a wide geographical area.

The proposal on Virtual Workspaces from Keahey et. al. [17] is particularly relevant for the concept

of dynamic virtual organisations. The authors here recognise a potential problem in the conventional

approach of mapping jobs to resources, where often an assumption is made that the execution envi-

ronment will be provided independent of the available infrastructure. Situations are possible where

applications from different users with widely different requirements try to use the same available

resources. The authors propose the concept of virtual workspace which can be automatically de-

ployed on resources to provide the required execution environment, resulting in the mapping of jobs

to workspaces, which in turn are mapped to actual resources in the Grid. A virtual workspace as

characterised by the authors in [17] is "a definition of an execution environment in terms of its hard-

ware requirements, software configuration, isolation properties, and other salient characteristics",

which is described by an XML schema and can capture the requirements for the intended execution

environment and use automated tools to make it available for use. The prototype is implemented on

Globus Toolkit 4 [43] and can use both Xen [16] and the VMWare Workstation [96] for virtualization.

The consumers interact with a VW Factory with a description of a desired workspace. Negotiation

processes may apply predefined policies while creating the workspace, and the resulting workspace

is registered in a VW Repository, which provides a Grid service interface for management and ac-

counting of the workspaces. An EndpointReference is returned to the client identifying the newly

created workspace, which is presented to a VW Manager during deployment of a workspace on a

resource after which the consumer can perform all the required operations. The Globus Resource

Allocation Manager (GRAM) [36] can be used to execute jobs or applications on the workspace

once it is started. The proposal is relevant for dynamic virtual organisations as it enables dynamic

instantiation of virtual workspaces in form of VMs, but it is limited to the job paradigm, and the

fact that it is based on GT4 possibly ties it to a particular implementation.

All these works mentioned in this section underline the importance of virtual machines and the

virtualization technology as a whole within the premises of Grid computing. The same outlook is

adopted in DynaSOAr and an attempt is made to secure the advantages identified by Figueiredo et.

al. in [93]. However, DynaSOAr views virtual machines as a special packaging for services. In the

scientific domain, there are certain services, such as BLAST [9], which require a special environment

to execute, which may not be present on the available resources. Further, some applications, although

CHAPTER 2. Background and Related Work 37

they can be deployed dynamically on any available node, may not function to the best of their

ability as they require finer tuning with the underlying hardware. It is viewed in DynaSOAr that

such applications can be packaged in a VM and made available as services, which can be deployed

on-demand using the same DynaSOAr infrastructure. DynaSOAr adopts a principle of moving the

computation closer to the data as outlined in the AIR architecture (7], but, also recognises certain

situations where deployment of a snapshot of the data locally may prove to be beneficial. DynaSOAr

achieves this by deploying a VM containing a snapshot of the database within the local network.
Although deployment of a VM is costly in terms of the deployment time, for frequent long-running

requests, the cost is outweighed by the benefits obtained, which are discussed in later chapters of
the thesis.

2.5 Exploiting Dynamism in Distributed Query Processing

It was argued in Section 2.3.3 that a dynamic service deployment framework may benefit OGSA-

DQP. This has been the final goal of the thesis - to exploit how the dynamic deployment concepts
developed in DynaSOAr can be utilised in the service-oriented OGSA-DQP resulting in a dynamic

version of DQP which will be more efficient in coping with the inherent dynamism of the Grid. The

dynamic version of DQP developed by adapting to the dynamic deployment concepts is explained
in greater detail in Chapter 5. This version of DQP incorporates the components developed in

DynaSOAr (as shown in Figure 2.5) and is able to collocate the data access and analysis code

closer to the actual data source by deploying such services on the nodes which host the data or

are closest to it; the evaluation engine is not tightly coupled with the available resources and is

deployed as and when required on the nodes that are deemed best suited for evaluating the individual

query partitions. This version of DQP also allows a form of data-caching by dynamically deploying

snapshots of databases which are actually located on remote nodes on the local network which

reduces the cost of transmitting the data over the network to a great extent. This is done for

frequent and long running queries, for which a general trend of increasing transmission cost can be

observed by analysing the performance feedback from the participating nodes at execution time.

This is in contrast with other data replication techniques, such as replica management techniques

from Oracle [97] which require the existence of a database management system on the target nodes

and the intervention of a database administrator to copy the data as an off-line process. In this

thesis it is assumed that a database snapshot is available within a VM, and acknowledges that there

must be some means to keep the snapshot synchronised with the actual dataset, which is outside

the scope of the thesis.

CHAPTER 2. Background and Related Work 38

Figure 2.5: Architecture of the dynamic version of 0GSA-DQP

2.6 Discussion

The work presented in this thesis attempts to combine t he concepts of it service-oriented distributed

query processor with that of a dynamic service deployment framework. The service-oriented DQP,

or OGSA-DQP is a major development as a framework which is able to execute distributed queries

over distributed data resources that are factored out as services. DQP uses existing standards such

as OGSA-DAI [14] to access the data from these repositories, and in the process, the database

complexities are hidden from the consumer. The query processing engine itself is a collection of

services and can be viewed as a declarative service orchestration mechanism. It applies techniques

from parallel databases [12,62] to achieve better results while processing a query and is also able to

incorporate analysis services within the query which is deemed as an important requirement in the

scientific community.

During the development of OGSA-DQP, a need for a dynamic deployment framework was felt. It was

seen that for remote data resources, a high cost of data access was being incurred. Additionally there

was a cost for transmitting the data over the network when participating nodes were distributed

over a large geographical area. Further, the query processing engine was tightly coupled with the

data resources or the pre-configured nodes restricting the option of selecting the best possible nodes

for evaluation of a partition during the optimisation process. It was also seen that while invoking

a remote analysis service for each row of data retrieved, the cost of invocation was high, which

included the cost of transporting the data to the node where the analysis service resided, and this

cost was higher for larger row sizes. There were situations where even moving the evaluation engine

onto the data nodes were not the best option, for example in situations where all the data nodes

CHAPTER 2. Background and Related Work 39

were remote - even if the evaluation process is executed on the data nodes themselves, for queries

producing large data sets as results, the cost of transferring the result to the DQP system was costly.
Thus it was regarded that a data-caching mechanism may be suitable for such situations.

Motivated by the requirements and existing proposals such as the AIR architecture [7], DynaSOAr

started evolving as a dynamic deployment framework which would allow on-demand deployment

of services at runtime on available computational resources. DynaSOAr was developed based on

standardised Web Services tools and techniques as recommended in [27,29] and maintains a loose

coupling between the components. It creates a logical separation between service provisioning and

host provisioning, and the entire deployment mechanism happens in a way that was transparent to

the consumer. DynaSOAr also uses virtualization techniques as a means of creating dynamic virtual

organisations.

In order to address the requirements of dynamic deployment facilities in OGSA-DQP, the framework

developed in DynaSOAr was adopted resulting in a dynamic version of OGSA"DQP. This version of

DQP is able to collocate the data access and evaluation services closer to the actual data node based

on available network data. It is also able to create a dynamic query processing engine which is fluid in

nature as the evaluation services are not tightly coupled with the participating nodes, thus creating

the possibility for the optimiser to discover available nodes and accommodate them during the query

optimisation phase with a view to schedule a dynamic deployment of the evaluation service on those

nodes on which the service does not exist. The dynamic version of DQP also allows on-demand
deployment of the analysis service on the best suited nodes in order to reduce the cost of invocation.

A form of data caching using virtual machines is also adopted in the dynamic version of DQP. The

incorporation of the DynaSOAr framework within DQP also brought in some DynaSOAr features,

such as (i) scalability, which is achieved by deploying multiple copies of a service, for example, the

analysis service, so that the invocation to this service can be parallelised for better performance,
(ii) adaptability, which is provided by the loosely coupled architecture of the framework, where

changes in the resource availability and performance trigger reconfiguration of the run-time system,
(iii) dependability, which is provided by deploying a new copy of the service if one of the services

involved fails. The security of the DynaSOAr system has been researched by Fowler in his thesis [98]

and is outside the scope of the work presented in this thesis.

All the aspects of the work presented in the thesis will be discussed in greater depth and an evaluation

of the dynamic DQP system will be presented in the later chapters.

Chapter

Service Oriented Distributed Query

Processing

One of the objectives in this thesis was to create a Distributed Query Processing framework which

will allow homogeneous access to heterogeneous data resources by using existing infrastructures

(such as OGSA-DAI) and evaluate distributed queries by parallel evaluation of query fragments

using techniques from parallel databases on a Web Service based query processing engine created

at runtime. This chapter describes the architecture and design of a such a framework capable

of querying distributed data sources over the grid, publicly available as OGSA-DQP [99,11], in

which query compilation, optimisation and query evaluation are viewed as services. Both the query

compilation/optimization and the execution take place by exchanging SOAP [5] messages between

the component services. The data access mechanism from the data sources is also based on commonly

used service for data access and integration, OGSA-DAI [14]. The benefits of this architecture
include the following:

. Monitoring Services can be used to identify lightly loaded resources that are suitable for query

evaluation and to allocate query evaluators on these nodes;

" Grid security supports single sign-on for remote resources, simplifying authentication for dis-

tributed execution;

9 Consistent resource discovery and allocation mechanisms can be used for both data sources

and analysis tools accessed from a query.

CHAPTER 3. Service Oriented Distributed Query Processing 41

3.1 OGSA-DQP as a Service Orchestration Mechanism

OGSA-DQP supports the evaluation of queries expressed in a declarative fashion over one or more

services, including data access services and external analysis services. It can be seen as comple-

mentary to other service orchestration mechanisms, such as workflow languages. In the field of

bio-informatics research, an extremely common workflow is where the bioinformatician uses a data

access service to retrieve protein or gene sequence data from a database, and for each retrieved

sequence, which may satisfy a certain criteria, invokes a sequence analysis service, such as Blast [9].

OGSA-DQP allows accessing data from distributed data sources using standard data access mech-

anisms, performs query processing operations such as project and join, and also allows invocation

of external services using a special operation-call operator. The same results that were achieved

by using the earlier workflow could be obtained by using a query in the OGSA-DQP framework,

which will access data from the same database, perform query processing operations on the retrieved

data, and for each row that matched the criteria, invoke the same external service, and return the

results. This supports the claim that OGSA-DQP can be seen as as an approach alternative to

workflow systems as it effectively performs the same task as the workflow mentioned above in a

different manner. The creation of the query plan, submission of the partitions to evaluation services

who communicate between themselves and the invocation of the analysis service, that is, the entire

orchestration of the participating services is performed by DQP, and is transparent to the consumer.

3.2 The Architecture

The distributed query processing framework, OGSA-DQP [99,11] is a publicly available framework

for querying distributed data sources over the grid using a service oriented interface. OGSA-DQP

uses and extends the commonly used service for data access and integration, OGSA-DAI [14] and

is composed of two major services -

" Grid Distributed Query Service - The Grid Distributed Query Service (GDQS) is an extension

of the standard OGSA-DAI service, and is deployed as an OGSA-DAI data service with an

exposed data service resource'. This is the service which is exposed to the consumer and

all interactions from the consumer is directed to this service. When the GDQS is initialised,

it interacts with the data services exposing the actual data sources to obtain the metadata
1A data service resource implements the core OGSA-DAI functionality. It accepts perform documents from data

services, parses and validates them, executes the data-related activities specified within them and constructs response
documents. It can also cache data for retrieval by third-parties (if the data service resource is configured to support
asynchronous data delivery). Data service resources are accessed via data services [100]

CHAPTER 3. Service Oriented Distributed Query Processing 42

needed for compiling, optimising, partitioning and scheduling the distributed query execution

plans over a set of query evaluation nodes (hosting the Query Evaluation Service - the other

component service of OGSA-DQP). The GDQS internally uses the Polar* distributed query

processor for the Grid [13,63] by encapsulating its compilation and optimisation capabilities.

" Query Evaluation Service. The Query Evaluation Service (QES) on the other hand is a WS-

I compliant Web Service [21] which processes partitions of a query execution plan wr: gypped

inside SOAP messages and communicates with other QESs and third- party web services. Each

QES evaluates the partition assigned to it by the GDQS. The QESs implement a physical

algebra over the data access services encapsulating the actual data sources whose scliemas

were imported during the GDQS initialisation phase.

Analysis Servce

Query Evaluation
I Sefv ce

OGSA-DAI DSR

Figure 3.1: Basic DQP Architecture

Figure 3.1 shows the basic architecture of the OGSA-DQP framework. In general, the GDQS

must reside on one node on top of the basic OGSA-DAI framework while the actual data resources

exposing the data, evaluation and analysis services may reside on other nodes, from where the

schemas and metadata are obtained by the GDQS. Once the schemas from the data sources and

the WSDL [101] of the analysis service are imported, the OQL query along with the metadata

(schema and computational resource) is passed to the coin piler/optimiser. The query is compiled,

optimised and a set of partitions are generated, each containing a section of the parallel query plan.

Each partition, scheduled to execute on individual evaluation nodes, is sent to the corresponding

Query Evaluation Service on that node as a SOAP message, and the evaluation starts in each node.

U u_ory Evaluation
Service

OGSA-DAI DSR
_

Query Evaluation sek

CHAPTER 3. Service Oriented Distributed Query Processing 43

This allows an implicit, parallel evaluation of the individual partitions for a single query with the

complexity of the process hidden behind a simplified service interface. The evaluation services and
the actual data sources can be located anywhere in the Grid, thus creating an ad-hoc virtual query

execution engine based on communicating services. Some QESs interact with the data services to

obtain the data after which results start to propagate across the QE services to the CDQS, and

eventually to the client.

Listing 3.1 shows a characteristic query that is supported in the DQP framework. This query is

written in OQL and based on an ODMG (102] data model setting.

Listing 3.1 An Example Query
%print select p. ORF, g. id, calculateEntropy(p. sequence)
from p in protein-sequences, g in goterms, t in protein_goterms
where g. id-t. GOTermIdentifier and p. 0RF-t. ORF and
p. ORF like "YBL06%" and g. id like "G0: 0000%";

In this example, the query spans over three databases (protein sequence, goterm and protein goterm)

which can be distributed over a large geographical area, and an analysis service exposed as a Web

Service is also invoked on each sequence element. Based on the schema and WSDL imported from

the data and the analysis services and the resources available to it, the query compiler/optimizer

component, Polar*, generates a parallel query plan, which is partitioned into sub-plans. These

sub-plans are distributed to the participating evaluation services each of which is responsible for

evaluating the sub-plan assigned to it and conveying the result back either to the root partition or

other evaluation services. Finally, the result is collected at the node evaluating the root partition

and sent to the GDQS and hence to the consumer.

This query returns, for each protein annotated with the GO term prefixed with `GO: 0000', those

proteins that are similar to it along with their GO identifiers. The protein-sequence, goterm and

protein-goterm extents are retrieved from three databases, each running under separate MySQL

relational database management systems on different hosts, possibly distributed over a large geo-

graphical area. The query also invokes the Entropy Analysis Service, which calculates the entropy

of a protein sequence. It is to be noted that the query is essentially a select-project-join query but

the data is retrieved from three relational databases, and an external application (a web service) is

invoked on the results of the join operation. A service-oriented approach to processing this query

over a distributed environment allows the optimiser to choose from multiple providers, the concept

of service-orientation guaranteeing that most heterogeneities are encapsulated behind uniform inter-

faces. It also allows the optimiser to initialise multiple copies of an operator to exploit parallelism,

for example, multiple copies of the join operation in separate partitions that are to be evaluated

in parallel. In the example query, for instance, the optimiser can choose between different source

CHAPTER 3. Service Oriented Distributed Query Processing 44

databases, different EntropyAnalysis services, and different nodes for evaluating the partitions.

Apart from the distributed setting, a service-based DQP engine can offer better assurances of ef-
ficiency because dynamic service discovery and dynamic service creation and configuration allow

it to take advantage of a constantly changing resource pool which would be troublesome for other

approaches. Service registries based on UDDI [81] store details about the services and are also

capable of storing service metadata, as done in Grimoires [103]. The service-based architecture of

the DQP framework allows it to be extended to utilise the registry in order to discover instances of

similar services, and also match the consumer requirements with the available metadata as will be

described in Chapter 5. The Grid is composed of a dynamic pool of nodes which may be volatile

in nature. Service-orientation can be used as a mechanism to deal with this inherent dynamism of

the Grid by allowing loose-coupling with the resources, such as data and analysis services. Service

orientation also opens up the possibility of exploiting dynamic deployment features (as discussed in

Chapter 5) for better availability and performance by deploying services as and when required, on

the best suited resources.

3.3 Setting Up a Distributed Query Service

The Grid Distributed Query Service (the GDQS or the coordinator) is the entity exposed by the

OGSA-DQP framework to which the consumers interact. The coordinator encapsulates the query

compilation/optimisation functionalities, creates the partitioned query plans required for evaluating

a query and sends them to the evaluation nodes which are activated at run-time. This section

describes the activities within the coordinator which lead to the successful evaluation of a query

submitted by a consumer.

OGSA-DQP is implemented as an extension to the basic OGSA-DAI framework. The GDQS exposes

a GDQS Data Service, which is an extension of the OGSA-DAI Data Service but encapsulates

the DQP functionality. It exposes a GDQS Factory Data Resource which is accessed during the

initialisation phase to create a GDQS Data Resource. Both these data resources are extensions

of the OGSA-DAI data resource and in addition to the basic activities in OGSA-DAI, the GDQS

Factory Data Resource contains a DQP Factory Activity, and the GDQS Data Resource contains

an OQL Query Statement Activity, which are extensions of the core Activity2 framework of OGSA-

DAI. The DQP Factory Activity instantiates a GDQS Data Resource which then performs the initial

2An activity is a component within the OGSA-DAI software which provides a particular piece of functionality.
For example, an activity is provided to perform an SQL query. A data service resource supports a particular set of
activities. [100J

CHAPTER 3. Service Oriented Distributed Query Processing 45

configuration of the distributed query processor engine, by obtaining the metadata from the OGSA-

DAI data resources and the external web services. The resulting GDQS Data Resource is configured

with the schema and computational metadata attached to it, and the user can then submit queries
based on the database schemas.

The GDQS initialisation process is outlined in Figure 3.2. The client first interacts with the GDQS

Data Service with a set of data and analysis resources to be used in the query (step 1 in the fig-

ure). This configuration document is passed to the GDQS Factory Data Resource implementing the

DQP Factory Activity which then creates the GDQS Data Resource implementing the OQLQueryS-

tatement Activity (step 2). In step 3, The newly created GDQS Data Resource interacts with the

OGSA-DAI data resources and the analysis services, if any (specified in the initial configuration

document) and obtains the database schema (from the OGSA-DAI data resources) and the WSDL

documents (from the analysis services) (step 4). These are stored as the metadata for the GDQS

Data Resource and the GDQS Data Resource identifier is returned to the client, for future reference

during the actual querying stage (step 5). The GDQS Data Service supports creation of multiple

GDQS Data Resources with unique identifiers to enable multiple query sessions by multiple users at

the same time. These data resources can even be shared amongst multiple users and are capable of

processing multiple queries, although any changes to the configuration (like addition or deletion of

OGSA-DAI data resources or analysis services) would create a new GDQS Data Resource, ensuring

that the queries submitted by other users to that GDQS Data Resource are not lost, and it can still

be used with the original configuration.

The configuration document submitted by the client specifying the data and analysis resources to

be used for the distributed query is based on an XML schema [104,105] provided by the GDQS

Data Service. The XML fragment in Listing 3.2 shows the canonical form in which the data and

analysis resources are specified by the client and maintained by the GDQS.

After the related metadata are imported by the GDQS, the GDQS Data Resource is fully configured

and the data resource identifier is returned to the client, the client can then submit queries (in OQL)

over the set of databases and analysis services specified during the configuration stage. Figure 3.3

describes the steps involved in the query execution process. When a query is submitted to the

GDQS Data Resource (step 1), the internal OQLQueryStatement Activity starts processing the

query. The OQL query, along with the previously obtained metadata is passed to Polar* (step

2), the encapsulated query compiler/optimizer, which in the first pass, creates a logical query plan

and then based on the computational resource metadata and the database metadata, creates an

optimised partitioned query plan, scheduled to be executed in parallel on different nodes, which is

returned to the GDQS Data Resource (step 3). Each partition is the query plan is then sent to

CHAPTER 3. Service Oriented Distributed Query Processing 46

OGSA-DAI Engine

< ImportedServlcee>

41

GDQS Data Sarvlu
II -I GGSA-DAI DSR

o0
1ý GDDS DataRewuru ID

DOP Configuration Document

Client

Figure 3.2: 1QP Initialisation

Listing 3.2 Configuration Document
<DQPConfiguration xmins-"http: //uk. org. ogsadai/dqp/configuration">

<DQPEvaluatorList>
<EvaluatorURl>http: //giga01: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI>
<EvaluatorURl>http: //gigaO2: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI>
<EvaluatorURl>http: //gigaO3: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI>
<EvaluatorURl>http: //gigaO4: 8090/evaluator/services/QueryEvaluatlonService</EvaluatorURl>
<EvaluatorURl>http: //gigaO5: 8090/evaluator/services/QueryEvaluationService</EvaluatorURI>
<EvaluatorURI>http: //gigaO6: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl>
<EvaluatorURl>http: //gigaO7: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl>
<EvaluatorURl>http: //giga08: 8090/evaluator/services/QueryEvaluationService</EvaluatorURl>
<EvaluatorURl>http: //gigaO9: 8090/evaluator/services/QueryEvaluatlonService</EvaluatorURI>

</DQPEvaluatorList>
<DataResourceList>

<ImportedDataSource>
<URI>http: //giga01: 8090/warf/services/ogsadai/GoDataService</URI>
<ResourcelD>GoTermMySQLResource</ResourcelD>

</ImportedDataSource>
<ImportedDataSource>

<URI>http: //giga02: 8090/warf/services/ogsadai/InteractionDataService</URI>

<ResourceID>InteractionMySQLResource</ResourceID>
</ImportedDataSource>
<ImportedDataSource>

<URI>http: //giga03: 8090/wsrf/services/ogsadai/ProteinTermDataService</URI>

<ResourcelD>ProteinTermMySQLResource</ResourcelD>
</ImportedDataSource>
<ImportedDataSource>

<URI>http: //giga04: 8090/wsrf/services/ogsadai/ProteinPropertyDataService</URI>

<ResourcelD>ProteinPropertyMySQLResource</ResourcelD>
</ImportedDataSource>

<ImportedDataSource>
<URI>http: //giga05: 8090/wsrf/services/ogsadai/ProteinSequenceDataService</URI>
<ResourcelD>ProteinSequenceMySQLResource</ResourcelD>

</ImportedDataSource>
<ImportedService name-"EntropyAnalyserService"
wsdlURL-"http: //giga09: 8090/entropy-analyser/services/EntropyAnalyserService? wsdl"/>

</DataResourceLiat>
</DQPConfiguration>

CHAPTER 3. Service Oriented Distributed Query Processing 47

the designated query evaluation service, which exists on the designated computational resource, as

a SOAP message (step 4). The query evaluation services interact among themselves sending data

and control tuples. They access the data from the respective databases through the OGSA-DAI

data resources and also invoke the external analysis services over the obtained data (step 5). As the

evaluation of the query plans progress, results start flowing from the lower level evaluation services

to the GDQS Data Resource (step 6). In accordance with the OGSA-DAI delivery options, the

client while submitting the query may have requested a certain delivery method, based on which

the final query result will be sent to the client (step 7).

OGSA-DAI Engine

<DQPConriguratlon>

<ImportedDataSourcee>
mportedServices>

</DQPConfigura t lon>

Query Compli. rlOptiml: er

Schema/Resource Matadata © 0

Rh
n. /V,, SDI Qurry Plan

GDGS DSR

OQLQuery Sluemem ArdsIIy Query R. -It

GDQS Data Sarvlce

0 0 Perlo-Document> Query Result

-O QLQueryStatement>

</QQLQueryStatement>
k/Pert'ormDocumento ©

The resource mslmdatu is passed to compiler/opllmlier

GDQS Perform Document

Client

A
Oplimlzer eeneretrs u puruitionrd yurp plan

O
Each p. rntlon is passed to the destined cculuutlon senke

Evaluator, communicate with each other und other s-Ices

O
Quer result is returned

Figure 3.3: DQP Interaction

3.4 Distributed Query Plan Generation

The query compiler component inside the GDQS is responsible for generating efficient query exe-

cution plans for a declarative OQL query over a distributed set of services (both data and com-

putational, as OQL supports invocation of external functions within a query). Assuming that the

consumers are exempt of any charges on the usage of resources, it can be said that the most effi-

cient execution plan is the one which is also the fastest in producing results. The compiler, Polar*

163,13], developed prior to the OGSA-DQP related work, follows a popular two-phase approach

CHAPTER 3. Service Oriented Distributed Query Processing 48

for optimisation referred in [106] for parallel and distributed databases. Using the Fegaras-Maier

approach [107] based on a monoid calculus and algebra implemented in the OPTGEN optimiser

generator [108], the compiler in the first phase produces a single-node execution plan by parsing the

query and mapping it onto a logical and physical query algebra regardless of the number of execution

nodes available to the system. In the second phase of the query compilation process, a partitioner

subdivides the single-node execution plan into partitions which are assigned to the respective nodes

by a scheduler. The computational resource metadata and the service metadata obtained by the

GDQS Data Resource during the DQP initialisation process (described in Section 3.3) is used by

the query compiler during this partitioning phase.

With reference to the query mentioned in Listing 3.1, each phase of the query compilation and

query plan generation process is depicted in Figure 3.4. In the first phase of the query compila-

tion process, the query is mapped to a single-node execution plan (without any partitions). The

logical optimiser performs various transformations on the calculus expressions generated by the

parser, such as pushing the project operators (called reduce in this thesis) as close as possible to

the database scan operator (as in Figure 3.4(a)). The optimised logical expressions are transformed

into physical algebraic expressions by the physical optimiser by selecting a concrete physical al-

gorithm that implements the logical operator (Figure 3.4(b)). For example, the physical optimiser

will choose between the available join algorithms to select one, such as the hash join operator se-

lected in Figure 3.4b. Invocations to external services, such as EntropyAnalyser in the example,

are encapsulated within the operation-call operator. The single-node execution plan is then trans-

formed into a multi-node plan by partitioning it for a set of distributed computational resources.

Special operators intended for parallelization and communication between distributed instances are

introduced in the plan. These operators, known as exchange operators, described in details in Sec-

tion 3.5.4, encapsulate the control flow, data distribution and communication methods between the

participating services. The partitioner at first tries to identify the attribute-sensitive and location-

sensitive operators. The operators which require the input data to be partitioned by a specific

attribute during execution on multiple nodes are the attribute-sensitive operators, for example, a

join operator. Certain operators, known as the location-sensitive operators may only be executed

on specific nodes, for example an operation-call operator which encapsulates a function requiring

a special environment. As a rule of the thumb, exchange operators are placed directly above and

below the attribute-sensitive and location-sensitive operators as they require transmission of data

across the network. The multi-node execution plan in Figure 3.4(c) contains six partitions (shown

in dotted-line boxes). The exchange operator signifies the intersection of partitions and is often

immediately preceded by a reduce operator inserted in order to ensure that only the section of data

required by the consumers of the parent exchange are included in the data-packets going across the

CHAPTER 3. Service Oriented Distributed Query Processing 49

print
p. ORP. g i4 -W-E opy

reduce

AORF, g 14 cakwfareEmmpy

opentlom eNl
ealca/ateEnavpy(p. segaence)

Join

�_öWtTeniIknsfler

reduce join
s. ýd p. ORP-e. OR

+ redueu reduce au
a p. ORF. p. ýequencv LOAF, &GOTa Ideeiier

g idhke 'GO: OOIXJ%.

print
p. ORP, j. la4 rdcrdnnEnavpy

reduce
p ORF, g14 eahvlaxEnunpy

epentloo esU
calcr/weEdropy(p. tpwnce)

hsxhjolm Id-t GOTýIdrntoer

reduce huhJolu
gid p. ORF-t. ORF

Ken mduc. reduce

SOP-ORF p irgwnn I. ORF, £GOTm ldrnUJier

s. ld !W "60.0000W

" WAR " was " tee. was
proeü_equen pmretnjm proeln_ gwnc. protelnjunrnu
p. ORFMke "YBL06% p. ORFldn'YBL06%'

(a) Logical plan (b) Single-node physical plan
r--"-------""--"--------------------------, --............ -----------.........., ------------------------------ print , NO print p ORF, S. ld ealcu/areEntropy p. ORF, y. 1d cakulweEnvopy ý

..............
escbange

ae n. p
(Nl, Ni, N3) -> NO

........... .
reduce

.................
p. ORF. &U cakulareEntropy

"
reden
p. ORp, s id, cakulatEntrnpy

operation too opentiou enll calculateEntropy(p. tegeence) rnlcwlmeEnrropy(pxqusnro)

b
M" GOTerm/denrtJls bubJolu

Iffier i........
... _......

de

......

exchange
escheeee

reduce
huýJNe

B . ORF-f. ORF

was
e=cheo`e exchange

gofer
g.. ldhke 'GO: 0000%1

_
"" """"""""""""""""""_"_i

................
reduce reduce

"-, --�...... pORF, p. sequence , LORE, LGOTermldenr

NYn ICON
paeln-sequence pror6lnýo/ernur

p. ORFLb'YBLM%'

(c) Partitioned plan

'esAup e: Anee
N2 -> (NI, N2, Ni) Ni) -> M/, N7, Ni)

: ANS 1 NI. N3 ý

r.. rJd
reduce

. oRp«oRF
Sid

Kee
exchange "champ
N3 -> (N!, N3) NI -> (N/, N3)

g idlike VO. 0000%1

reduce ii reduce
""""""""""""_ p. ORP. p. tegw. c, LORM, LGOTe Idenfiier

Ne\ Ken
p^°eeü_req'«ýce ..

pmieinfannu
p. ORFNke'YBL06%'

LM ' ill......................

(d) Scheduled (executable) plan

Figure 3.4: DQP query plan

CHAPTER 3. Service Oriented Distributed Query Processing 50

network so that unnecessary network overheads can be avoided. In the final stage of query optimi-

sation, the scheduler assigns execution nodes to each of the partitions created by the partitioner.
The compiler supports parallelism between operators and hence a physical operator may be assigned

to more than one execution nodes. The scheduler aims to assign a scan operator to an execution

node hosting the relevant database extent (a database table is mapped to an extent), which reduces

the communication overheads by avoiding large chunks of data moving between distributed nodes
(for example nodes Ni, N2 and N3 in Figure 3.4(d)). Invocations to external Web Services which

are encapsulated within operators like operation-call tend to be expensive in nature. Such operators

are assigned to multiple execution nodes to distribute the invocation cost. The system memory is

taken into consideration for memory-intensive operators like hash_join. Considering all such schedul-

ing policies, the final execution plan is generated where all the partitions are assigned to specific

execution nodes (as in Figure 3.4(d)). It is to be noted that in this case, each execution node (NI,

N2 and N3) are assigned with multiple partitions, and the actual executable partition for each node

is created by combining together all the respective partitions assigned to that node.

The XML fragment in Listing 3.3 illustrates a partition containing a scan operator assigned to a

particular node during a distributed query evaluation.

3.5 The Query Evaluation Service

The Query Evaluation Service (QES or the evaluator) forms the basis of the query processing engine

which is created at run-time for the successful evaluation of a query submitted to OGSA-DQP. The

evaluators implement the physical operators required to process a query and encapsulates all the

complexities of query processing and distribution of tuples between nodes during the evaluation,

and is considered as a major contribution within this thesis. This section describes the design and

architecture of the evaluators.

3.5.1 The Overview

The Query Evaluation Service (QES) is implemented as a WS-I compliant Web Service [211, and

is deployed on each execution node, the endpoint of which is known to the GDQS. Once the query is

compiled and the partitions created, each partition is sent to the corresponding QES on the execution

node as a SOAP message. On receiving the partition, the query evaluation process starts in each

of the QES's. The QES supports multiple queries to be executed at the same time, and in order to

CHAPTER 3. Service Oriented Distributed Query Processing 51

Listing 3.3 XML Partition Document
<Partitions =lns-"http: //uk. org. ogsadai/dqp/partition">

(Partition>
<EvaluatorURI>http: //giga10: 8090/evaluator/services/QueryEvaluationServlce</EvaluatorURl>
<GDQSResource>

<CoordinatorURl>
http: //lovelace: 8090/axis/services/ogsadai/DynamicDQPService
</CoordinatorURl>
<ResourcelD>ogsadai-10f533dfa89</Resourc. ID>
<InputStreamID>session-ogsadai-10f533dfa8a</InputStreamlD>

</CDQSResource>
<QueryId>DynamicDQPServlce. ogsadai-SOf533dfa89</Queryld>
<Operator operatorFlagType-*TABLE_SCAN" operatorID-10">

<TABLE_SCAN>
<predicateExpr>

<simplaPredicate>
<comparativeOperator>LIKE</comparativeOperator>
<leftOperand name-" goterms_goterm. id" types"13"/>
<right0perand name-" 00: 0000%" type-"16"/>

</simplePredicate>
</predicat. Expr>
<dataResouresName>goterms_goterm</dataResourceName>
<dataResouresID>GoTermMySQLResource</dataPesouresID>
<GDSHandle>http: //giga10: 8090/axis/services/ogsadai/GoDataService</GDSHandls>
<tableName>goterm</tableName>

</TABLE_SCAN>
<tupleType>

<name>goterms_goterm. OID</name>
<typugoterms_goterm</type>
<nams>goterms_gotsrm. id</uame>
<type>string</type>
<name>goterms_goterm. type</name>
<type>string</type>
<name>goterms_goterm. name</name>
<type>string</type>

</tupl. Type>
</Operator>
<Operator operatorFlagType. "APPLY" operatorID-"1">

<APPLY>
<inputOperator>

<OperatorID>0</OpsratorID>
</inputOperator>
<apply0perationType>PROJECT</apply0perationType>
<parameters>

<attributeName>goterms_goterm. id</attributeName>
</Parameters>

</APPLY>
<tupleType>

<nama>goterms_goterm. id</name>
<type>string</type>

</tupleType>
</Operator>

</Partition

</Partitions>

CHAPTER 3. Service Oriented Distributed Query Processing 52

do this, on receiving each partition, the service spawns a new quern eaýcrrýlý. nýz, c°ngi, ýý. c as a separate

process which parses the query plan, instantiates the physical algebra operators that implement t he

corresponding algorithms, and starts processing the partition, as ilhistrated in Figure : 3.5.

NO

cxc'h g
Analysis Ssrvks

Ni «hnng<

Query Evaluation rcduic
8arvica

OGSA-DAI DSR I_ ium
h, ogc

Data Source
rcnucc

Data Nods "181

O

GDQS Data Resource W
ý rrrhhh

OQLQuaryStalement
Activity

0

Query Evaluation
Service

ýchenýc

______ rcJuce -

"p-call

OGSA-OAI OSR 2
uin
p

ezchnn

Data Souris rýýýýýý

Data Node "`ý"

Client

cKd ngc

red cc Qwry Evalustion
_. Sarvlca

,: P-

0- rut hangs

OGSA-DAI DSR 7 I'mn

Date Source

"

rcJucc

Data Node scan

Figure 3.5: Query Execution on Component Services

The figure depicts the way in which the query (from Listing 3.1) is evaluated. In step 1, the

consumer sends the query to the GDQS Data Resource (initialised earlier during the setup phase).

The query is then compiled and the partitions are sent to each participating nodes (step 2). Each

execution node (i. e. each QES) is shown in the figure with the partition it is supposed to evaluate.

Based on the compilation rules outlined in Section 3.4, each scan operator which accesses a database

is assigned to the nodes where the data exists, while the operation_call and hash-join operators

are parallelised over multiple nodes. The execution starts at the root partition and propagates

down through the child execution nodes (step 3). Each execution node evaluating the partitions

communicate among themselves by sending control and data tuples (step 4); the control tuples

responsible for sending/receiving signals and the data tuples contain the actual data. The analysis

service is invoked when needed by the corresponding operator on the designated execution node

(step 5), and results start flowing back to the root evaluator evaluating the root partition (step 6),

finally back to the GDQS (step 7) and to the consumer (step 8).

The Query Evaluation Service on an execution node receives the query partition it is supposed to

evaluate as an XML document embedded inside a SOAP message. Each partition document also

CHAPTER 3. Service Oriented Distributed Query Processing 53

identifies itself using a unique identifier corresponding to the original query to allow concurrent eval-

uation of multiple queries. On receiving a partition document, the service creates a separate Query

Execution Engine on a new execution thread, and starts it by passing the partition document. This

XML document is parsed based on a predefined schema, and each physical operator is instantiated

along with all the arguments necessary to initialise the operator. The internal representation of a

query partition is similar to a tree structure in algorithmic terms, with each operator connected to

its input operator, unless the operator is a leaf operator like a scan or exchange of the partition.

3.5.2 Evaluation Model

The query evaluation service in OGSA-DQP follows the classic iterative model of query evaluation
[66]. This model is an implementation of a data flow execution system, where each operator im-

plements a common {open(, next O, close O} interface. Each of these three methods serve a

definite purpose in the context of the operator. The open() method initialises each operator by

instantiating all the internal storage, data structures and variables, such that the operator becomes

ready to consume data from the input operator, and invokes open() on all the input operators. This

allows the open() call to propagate down the operator tree thereby initialising all the operators in-

volved in the partition. The next() method in each operator collects single tuples from the input

operators and processes them, and the close() method closes all connections, releases all memory

allocations and clears all temporary variables. The general sequence of invocations in the iterative

model is an open(), followed by a series of next() calls till the end of data is reached and then a

close() call to complete the operation.

The query evaluation process starts with an open() call on the topmost (root) operator in the root

partition, which propagates down the operator tree from parent to children until it reaches the leaf

operators. The leaf operator can either be an exchange or a scan operator. In case of an exchange

operator, the open() call is transmitted over the network to the remote producer which can be in

another partition being evaluated on another execution node. In case of scan, this call initiates

the database access via the OGSA-DAI Data Resource encapsulating the data source on that node.

Once all operators are initialised, a series of next() calls again propagate down the operator tree

from the topmost operator to the leaf operators. When the next() call reaches the scan operators,

the already initialised OGSA-DAI Data Resource starts returning results from the database. The

scan operators in OGSA-DQP use the getNBlocks() functionality of OGSA-DAI to return N blocks

of data to minimise the service invocation overhead. These blocks of data are buffered inside the

scan operator and one tuple at a time is returned to the parent of this scan operator during each

invocation of next() thereby creating the upward flow of data. Considering the example query (in

CHAPTER 3. Service Oriented Distributed Query Processing 54

Figure 3.1) and the corresponding multi-node execution plan (in Figure 3.4(d)), the evaluation starts

at the root operator of the partition assigned to node NO (print, in this example) with an open()

call on it. This call propagates down to the leaf operator of the partition and then to the partitions

at the next lower level until it reaches the final leaf operators at N1, N2 and N3, which are the scan

operators, from where the upward data flow starts.

3.5.3 Data and Control Tuples

The data accessed from the database by the OGSA-DAI service interface are formatted as XML.

This XML formatted data is translated into an internal tuple structure inside the scan operator.
The end-of-data is also represented by a special EOF tuple. This processing is done once during

the scan operation to avoid expensive XML parsing at each operator level. Throughout the entire

query evaluation phase, data is transmitted between the evaluation services on various nodes in this

intermediate tuple format. At each operator level, the structure of the outgoing tuple (that is, the

data type of each attribute in the tuple) is known as it is passed within the partition document.

The structure of the incoming tuple is also known from the input operator. Based on these struc-

tures, each individual attribute in the tuple can be accessed and processed. In order to signal the

execution nodes about the processing, for example, signalling a child node to invoke open() on its

root operator, or to signal the end of data, special tuples like control tuples and EOF tuples are also
introduced. The tuple, described in Listing 3.4 is structured in such a way that the serialisation and
de-serialisation facilities provided by the standard Apache Axis [77] web services framework can be

utilised while transmitting tuples between distributed nodes over the network. While transmitting

over the network, tuples are grouped together in a serializable structure with a query identifier added

to the structure in order to preserve the context of the message at the destination.

3.5.4 Encapsulation of parallelism by Exchange operators

In the multi-node execution plans (in Figure 3.4(c) and (d)) and the overview diagram of the

execution process (Figure 3.5), special exchange operators are introduced at the intersection of

the executable partitions and above and below the attribute and location sensitive operators. The

exchange operators, although implementing the same iterator interface, have different functionality in

that they encapsulate the communication and data transfer between distributed nodes and introduce

horizontal and vertical parallelism in the query execution plan.

CHAPTER 3. Service Oriented Distributed Query Processing 55

Listing 3.4 Thple Structures in XML
<xs: complexType name-"TransportTuple">

<xs: ssquence>
<xs: choice>

<xs: element name-"DATA" type-"msg: TransportDataTupls" minOccurs-"0"/>
<xs: element name-"EOF" type-"msg: TransportEOFTuple" minOccurs-"0"/>
<xs: elsment name-"STATUS" type-"msg: TraneportStatuiTuple" minOccurs-"0"/>
<xi: elemoat name-"CONTROL" type-"meg: TransportControlTuple" min0ccurs-"0"/>

</xs: choice>
</xs: sequence>
<zs: attribute name-"size" type-"xs: int" use-"required"/>
<xs: attributs name-"transport upl. Type" type-"msg: TransportTupl. Typs"/>

</xs: complexType>
<xs: complsxType name-"TraneportDataTuple">

<xs: sequence>
<xs: element name-"data" type-"apachesoap: Vector" nillable-"true"/>

</xs: sequence>
</xs: complexType>
<xs: complexType name-"TransportEOFTuple">

<xs: sequence>
<xs: element name-"EOF" type-"xs: boolean" nillable-"true"/>

</xs: sequence>
</xs: complexType>
<xs: complexType name-"TrsnsportStatu. Tuple">

<xs: sequence>
<xs: element name-"OPENED" type-"xs: booleaa" nillable-"true"/>
<xs: slemeat name-"CLOSED" type-"xs: boolean" nillable-"true"/>

</xs: sequence>
</xs: complexType>
<xs: complexType name-"TraneportControlTupls">

<xs: sequence>
<xs: element name-"OPEN" type-"xs: boolean" nillable-"true"/>
<xs: element name-"CLOSE" type-"xs: boolsaa" nillable-"true"/>
</xs: sequence>
</xs: complexTyps>

<xs: complexType name-"ArrayOiTransportTuples">
<xs: sequence>

<xs: element name-"context" type-"xs: string"/>
<xs: element name-"destination0perator" type-"xs: string"/>
<xs: element name-"fields" type-"meg: Traasportluple" nillable-"true" max0ccurs-"unbounded"/>

</xi: sequence>
</xs: complexType>
<xs: simpl. Type name-"TraneportTuplsType">

<xs: restriction base-"xs: NMTOKEN">
<xs: enumeration value-"DATA"/>
<xs: enumeration value-"EOF"/>
<xs: enumeration value-"STATUS"/>

</xs: restrictioa>
</xs: simpleType>

3.5.4.1 Horizontal and Vertical Parallelism

The Operator Model of Parallelism as explained in [24] are implemented by encapsulating both

vertical and horizontal parallelism in the exchange operator. Horizontal parallelism requires redis-
tribution of data between operators. Each exchange operator is parameterized with a distribution

policy (also known as arbitration policy), such as round-robin, hash-distribution based on the result

of a hash function applied on a specific attribute. The exchange operator distributes the data tuples
based on this arbitration policy. Thus, multiple instances of the same operator can be executed in

parallel on different subtrees on different hosts. This is typically done for expensive operators such

as join and operation-call which are assigned to multiple partitions, and exchange operators use

arbitration policies to distribute data to these instances.

CHAPTER 3. Service Oriented Distributed Query Processing 56

Vertical parallelism is supported in an exchange operator by encapsulating a context-switching be-

tween the execution threads and using a shared data-structure between the two processes to syn-

chronise and exchange data. The exchange operator implements the producer-consumer scenario by

spawning a new thread in its open() method, after which, the parent thread operates as a consumer

and the child thread operates as a producer. The producer thread then drives the subtree rooted in

it, and based on the list of consumers and the arbitration policy, it decides the destination of each
data tuple fetched by the next () call. The exchange operator in the consumer thread acts as a nor-

mal iterative operator, the only difference being in its next() implementation, where it receives the

tuple via inter-process communication mechanisms from the shared data-structure, such as message

queues, instead of the standard next() invocation on its input operator. The exchange operator on

the producer thread on the other hand invokes the next() method on its input operator to fetch

the next tuple. Figure 3.6(a) and Figure 3.6(b) (in the context of the example query) illustrate the

functionality of the exchange operator.

3.5.4.2 Exchange operators in OGSA-DQP

In OGSA-DQP, a slightly different implementation of the exchange operator is used to cater to

service-orientation and the possibility of a geographically distributed environment where partitions

may be evaluated by services on physically different hosts. Thus, the initialisation process of these

operators requires a different methodology. They can broadly be classified into three variants -

1. Leaf Exchange - exchange operators that are the leaf operators in a partition, for example

xO in partition NO. These do not have any input operator, but may have remote producers

assigned to other partitions.

2. Root Exchange - exchange operators that are the root operators in a partition, for example x10

in partition Ni. These have one input operator and possibly one or more remote consumers

assigned to other partitions.

3. Intermediate Exchange - exchange operators that exist between other operators, for example

x2 in partition N2. These operators have one input operator and can have multiple remote

and local producer and consumers3.

The leaf and root exchange operators behave with minor variations from the intermediate exchange

operators as far as the initialisation and the invocation of next() operation are concerned. When

3The producers and consumers mentioned in this context are essentially other exchange operators which can receive
data from these exchange operators or send data to them.

CHAPTER 3. Service Oriented Distributed Query Processing 57

4

Consumer

nproduccrs

. _ý , nconsumcrs

Producer

(a) The Exchange Operator

NO
Pl
grin!

x0

NI
x

N2
x7

N3
\

x10
exchange exchange acchunge

r9 r9 9
re reduce reduce

duce

08 o8
operation_call operation call aperalion_'all

h7 W h7 haeh join
erchangr

hush join ash join

x0 _ x6 x2 __ exchange

cachange czrhangc"
cu hunge I xJ x0 x6

hn-' - hrnh join 5
exche A

rrJure nc ange, - ___ esrhan
xl s3; x4

30 scan
goler n

r2
ucxI

ran n
protein_sequenee

(b) Communication between exchange operators on distributed partitions

Figure 3.6: Communication between distributed partitions

CHAPTER 3. Service Oriented Distributed Query Processing 58

the open() call propagates down to the leaf exchange in a partition, an open tuple is sent to each

of the remote producers of this exchange. Each exchange operator initialises itself (and spawns the

consumer thread if required) once all possible open() calls are received by it. Each root exchange

operator should receive as many open() calls as it has remote consumers. On the other hand, the

number of open() calls received by each non-root exchange operator should be one more than the

number of remote consumers (as these operators will always have a parent operator). Thus, during

the initialisation phase, the exchange operators invoke open() on its input operator and all the

remote producers (if any) by transmitting open tuples to the remote evaluation service, and wait

until all the open() calls meant for it are received. Once all such calls are received, the operator

progresses itself either by spawning the new execution thread (in case of intermediate exchange

operators) or by invoking the next() method. The next() operation in turn either continually

invokes the next () method of the input operator or fetches the next tuple from a message queue

where incoming tuples are deposited. In this way, the exchange operator drives the operator subtree

rooted at itself.

The reverse happens when an EOF tuple is received. An EOF tuple signals the end of data from the

corresponding stream. The close() procedure is initialised, but the exchange operator will disable

itself, and release all the resources once it receives the expected number of close() calls from the

input operator and the remote consumers (if any). Thus, on receiving the first close () request, the

operator will transmit close tuples to all its remote producers (if there are any), invoke the close()

operation on its input, and wait for all the close() invocations on itself. Once the required number

of requests are received, the operator will disable itself by releasing all the resources, resetting the

variables and terminating the child thread. The exchange operation is described algorithmically in

the listings 3.5,3.6 and 3.7.

As the next() calls at the leaf operator start producing the data, tuples flow upwards from the leaf

operators to the root, being processed at each operator level by the corresponding operator algorithm.
From the root operator at the root partition, which is normally a deliver or print operator, the result

propagates back to the GDQS using the GDQS-provided data transport mechanism. The end of

the data stream is signalled by the EOF tuple at which stage, the root operator (print) invokes the

close() method, which propagates down the operator tree to the leaf operators thereby releasing

all resources that were being consumed during the computation. The result is finally packed in the

predefined delivery format and delivered back to the client using the data delivery activity (provided

by OGSA-DAI) specified by the client.

CHAPTER 3. Service Oriented Distributed Query Processing 59

Listing 3.5 Exchange Operator - Open() method

1 public void open() {
2 open calls received = 1;
3 If (exchange has remote producers) {
4 for (1=0; I< number of remote producers; i++) {
5 invoke open on remote producer;
6}
7}
8 If (inputO perator 1= null) {
9 /s invoke open on the input operator s/

10 inputO perator. open();
11 }
12 /* wait for all open invocations on this operator "/
13 waitForOpen () ;
14 }
15
16 public synchronized void waitForOpen () {
17 while (open calls received < expected open calls) {
18 /s wait at the message queue */
19 Tuple tuple = tupleQueue. get();
20 if (tuple = OPEN) {
21 Increment number of open calls received;
22 }
23 }
24 set status to opened;
25 enableExachange();
26 }
27
28 private synchronized void enableExchange() {
29 /* in case of intermediate exchange operators s/
30 if (input operator 1= null) {
31 producerExchange = new Thread();
32 producerExchange. start();
33 } else {
34 Tuple result = inputO perator. next();
35 If (tuple = EOF) {
36 close();
37 }
38 }
39 }

Listing 3.6 Exchange Operator - Next() method

1 public Tuple next() {
2 If (producerExchange or root operator) {
3 Tuple tuple = inputOperatornext();
4 if (tuple = EOF) {
5 send EOF to all consumers;
6}
7 while (tuple 1= EOF) {
8 send tuple to consumer identified by arbitration;
9 tuple = inputO perator. next();

10 If (tuple = EOF) {
11 send EOF to all consumers;
12 }
13 }
14 } else if (consumer thread or leaf exchange) {
15 /* wait for tupfe in the queue */
16 Tuple tuple = exchangeQueue. get();
17 if (tuple = EOF) {
18 wait for all EOF;
19 number of EOF = number of producers;
20 }
21 return tuple;
22 }
23 }

CHAPTER 3. Service Oriented Distributed Query Processing 60

Listing 3.7 Exchange Operator - Close() method

public void close() {
close calls received = 1;
if (exchange has remote producers) {

for (1=0; I< number of remote producers; i++) {
invoke close on remote producer;

}
}
If (inputOperator 1= null) {

/* invoke close on the input operator ./
inputOperator. close

}
/* wait for all close invocations on this operator
waitForClose ();

}

public synchronized void waitForClose() {

while (close calls received < expected close calls) {
/w wait at the message queue */
Tupfe tuple = tupleQueue. get();
if (tuple - CLOSE) {

Increment number of close calls received;
}

}

set status to closed;
disableExachange();

}

private synchronised void disableExchange() {
/* in case of intermediate exchange operators */
if (producerExchange 1= null) {

terminate thread;
}

reset variables;
release resources;

35 }

3.5.5 Encapsulating Service State

Web Services are autonomous entities with explicit boundaries and the execution state of a service
(or its child processes) should be encapsulated within the service. The services communicate by

exchanging messages and often the requests and responses must be correlated with each other for

meaningful operation. While processing a request, a service may receive a series of messages, each

related to the same request, in which case, each message received by the service must be correlated

to the original request and processed accordingly. Further, multiple services may be participating in

processing a particular request, in which case, messages exchanged between all these services must
be correlated in the same manner, which can otherwise be described as "associating a message with

a specific conversational context" [109]. The Web Service Architecture document [109] describes

this form of message correlation as:

"Message correlation allows a message to be associated with a particular purpose or con-

text. In a conversation, it is important to be able to determine that an actual message

CHAPTER 3. Service Oriented Distributed Query Processing 61

that has been received is the expected message. Often this is implicit when conversa-

tions are relayed over stream-oriented message transports; but not all transports allow

correlation to be established so implicitly. "

This has been the design choice for the Query Evaluation Service.

Each Query Evaluation Service is capable of processing several queries simultaneously by evaluating

multiple partitions in separate instances of the evaluation engines running in separate threads. Each

evaluation process is dependent on receiving data from other participating services. As each instance

of the evaluation service might be processing several queries at the same time, it may receive data

for each of the evaluation processes from other services. Thus, the evaluation service is stateful in

the sense that there is a "state" internal to the service, and there is an "interaction state" associated

to each message exchange, where the service is responsible for identifying the destination thread

for each packet of data received, and each recipient thread has to correlate the packets received

with its execution state. In OGSA-DQP, the state is encapsulated within the service itself and a

context is embedded within the messages that are transmitted. The service itself is implemented

on the basis of the WS-I Basic Profile [21] as opposed to other statefut web service architectures

such as the use of WS-Resource Framework [43,110]. The service state (state of each evaluation

process) is maintained using various data structures4, and the context of each communication is

passed within the message in form of an identifier. Each service receiving a set of data uses this

identifier to locate the destination process for the data received. This implementation is similar to

the proposals on using existing Web Services standards and technologies for Grid applications, such

as in WS-GAF [27]. In this section, the architecture of the query evaluation service is discussed in

details with particular focus on issues regarding the query execution states in order to underline the

innovations and novelties. Figure 3.7 shows the components of the query evaluation service.

The Query Evaluation Service adheres to the principles of document-oriented services, and exposes

a rich interface which is capable of receiving XML-structured query partitions from the GDQS and

partial results in XML format from other evaluation services. The XML fragment in Listing 3.8

is a section from the WSDL description of the evaluation service which describes the evaluation

service interface with the operations that are exposed and the data types that are expected for these

operations. Three operations, namely evaluate, sendData and sendMessage form the evaluator

service interface, each responsible for different activities. The coordinator sends a query partition to

the evaluation service using the evaluate operation, which triggers the entire evaluate operation. The

other two operations, such as sendData and sendMessage are used by the evaluators to communicate

between themselves by exchanging tuples containing data and control messages.
4Note that the state can also be stored in databases, which is the primary approach in 7Yansactional Grids.

CHAPTER 3. Service Oriented Distributed Query Processing 62

8ggkt

Dah Tran iatur

1Yanspul Hanikr

Pa iI laa
Tree

Figure 3.7: Architecture of the Query Evaluation Service

Listing 3.8 Description of the Query Evaluation Service interface
<portType name-"QueryEvaluationportType">

<operation name-"evaluate">
<input message-"tns: evaluateRequestMessage"/>
<output message-"tna: evaluateReaponseMessage"/>
<fault name-"evaluationException" message-"tns: evaluationExceptionMeseage"/>

</operation>
<operation name-"sendData">

<input message-"tna: sendDataRequestMessage"/>
<output message-"tns: sendDataResponseMessage"/>
<fault name-"sendDataException" message-"tns: sendDataExceptionMessage"/>

</operation>
<operation name-"sendMessage">

<input message-"tns: sendMessageRequestMessage"/>
<output message-"tns: aendMessageResponaeMessage"/>
<fault name-"sendMessageException" message-"tns: sendMessageExceptionMessage"/>

</operation>
</portType>

The service is capable of handling multiple query partitions at the same time. Each time an XML-

formatted query partition is sent to the evaluation service, a new evaluation engine is initialised with

various components such as Data Translators which are responsible for translating semi-structured

partial results received from other evaluation services participating in the same query into internal

tuple format and Transport Handlers which are used by the exchange operators while sending data

to remote evaluation services and the print operator while returning the results back to the GDQS.

A shared Object Builder component internally translates the XML-formatted partition into a tree

of physical operators that are responsible for processing each tuple. Each of these operators are ob-

jects implementing the iterator interface, and encapsulate the physical algebra within their open 0,

next O and close O operations. Each operator tree is associated with the evaluation engine respon-

sible for the actual processing of the partition. Each engine maintains a collection of data structures

for internal operation such as storing the process states and receiving messages from remote services.

CHAPTER 3. Service Oriented Distributed Query Processing 63

Each query that is submitted at the GDQS is assigned an unique identifier which is propagated

within the query partition sent to each evaluation service. This identifier is used to keep track

of the states of each processing engine. Every data or control message that are exchanged in the

system contains this unique identifier which enables the recipient service interface to correlate the

request being processed with the messages received and to identify the actual destination process

and forward the message to the proper destination queue.

Once the evaluation of a partition is finished, the corresponding evaluation engine would wait for its

termination, which is triggered by the invocation of the close() operation on the root operator of

the associated operator tree. The print operator in the root partition invokes the close() operation

which propagates down the operator tree closing each operator. At the leaf exchange operator on a

partition boundary, a control message is sent to the evaluation service upstream, where the close 0

method on the root operator is triggered. This chain of events continues until all operators are closed

and all resources consumed by the operators are released. Finally, each query execution engine is

terminated along with the associated objects such as the Data Translator and Transport Handler.

3.6 Discussion

This chapter introduced the OGSA-DQP framework which is based on the concepts of service ori-

ented architectures and is capable of processing queries over distributed databases. The research was

carried out as a collaboration between Manchester and Newcastle Universities and thus this thesis

does not claim the sole credit for the research. The work done in defining the overall architecture

of the system is considered as one contribution towards this thesis. The major contribution lies in

the design, implementation and evaluation of the run time query evaluation engine, which imple-

ments the physical query algebra and encapsulates all the complexities of routing and distribution

of messages containing tuples for effective processing of a query.

The OGSA-DQP framework described in this chapter is service-based in two orthogonal senses -

" OGSA-DQP allows virtualization of resources in the sense that it supports queries over dis-

tributed data storage and analysis services which are factored out as services.

" The process of generating the distributed query plan, as well as evaluating the query over

resources available on the Grid, are factored out as services.

OGSA-DQP uses the existing OGSA-DAI services for accessing data thereby allowing distributed

CHAPTER 3. Service Oriented Distributed Query Processing 64

querying in a homogeneous way over heterogeneous data sources. In essence, OGSA-DQP follows a

wrapper-mediator approach where the DQP framework acts as a mediator over OGSA-DAI wrappers

over the data sources. Previous work on Polar* has been successfully incorporated within the GDQS

component of DQP which allows the parallel execution of the query partitions on multiple hosts.

The GDQS has been implemented as an extension to the existing OGSA-DAI services.

However, the evaluation service has been designed and implemented with a different approach to

the OGSA-DAI based architecture of the coordinator. It is designed as a WS-I Web Service using

already existing standards and toolkits thereby making it completely inter-operable. The service

state is encapsulated within the service, and messages are correlated using a context embedded

within each message, which follows the approach recommended by the Web Services Architecture

document [109]. The evaluation service creates the infrastructure for evaluating a query partition by

implementing the physical query algebra based on the classic iterator model of query evaluation. It

also encapsulates the data distribution between operators evaluating different partitions of the same

query within a special exchange operator. The query evaluation service is also capable of evaluating

multiple partitions simultaneously within separate processes that are isolated from one another, and

special attention is given to message correlation within such a setting where a service is likely to

receive multiple messages from several remote sites for each query being processed. The evaluation

services are thus scalable in terms of the number of queries that can be processed simultaneously.

One concern, however, exists regarding the transmission of data packets between participating nodes.
The data tuples are serialised using the Apache Axis libraries and are transmitted across the network

as SOAP messages. This is not an efficient way of transmitting packets of large size because the

cost of serialisation and de-serialisation tends to increase for larger sized packets and such packets

also incur a higher transmission cost. Recently, there has been advancements in sending binary data

within a SOAP message using new specifications and standards, and it is possible to adopt these

mechanisms within OGSA-DQP, which should reduce the transmission overhead dramatically.

Chapter

Dynamic Service Deployment

This chapter will introduce a framework which allows dynamic demand-driven deployment of services

on available computational resources. The traditional grid computing concept has a distributed job

scheduling system at its core where jobs can be scheduled dynamically, and conventionally, a grid
has been synonymous to a computing infrastructure supporting systems such as Condor [3,2],

Globus [4] etc. The DynaSOAr (Dynamic Service Oriented Architecture) framework introduced in

this chapter proposes an alternative approach to Grid computing where the distributed applications

are built around services.

4.1 Distributed Job Scheduling

Most Grid computing infrastructures like Condor [3,2], Globus [4] or Sun Grid Engine [111] utilise

some form of Distributed Job Scheduling for routing consumer jobs to remote computational re-

sources. A job, which is a combination of the executable code and in most cases the data on which
the code will operate, is created by the consumer, and submitted to the job scheduling system. The

scheduler routes the job to an available host suitable for executing it, and once the job is completed

on that host, the consumer is notified of the result. Condor uses a matchmaking approach to match
the requirements of the consumer request with the characteristics of the available resources in order

to find out a suitable target for executing the job. In Condor, the consumer submits a job to an

agent. The agent stores the job'in persistent storage and searches for resources that are suitable
for executing the job. Agents and the resources advertise their characteristics and policies to a

matchmaker, which introduces potentially compatible agents and resources. After this matchmak-

CHAPTER 4. Dynamic Service Deployment 66

ing phase, the agent establishes contact with the resource and verifies the compatibility. Separate

processes are started on both sites (the agent and the matching resource) for executing the job. A

shadow process on the agent side provides all the relevant details required to execute the job, and

a sandbox process on the resource creates a safe environment for execution for the job protecting

the resource from any malicious interference. The job with the execution code and input data is

passed to the sandbox at the resource for execution. Although an agent and a resource are logically

separate entities, they can reside on a single physical host.

It is to be noted that the common approach for executing a job in Condor is to provide the execution

code and the inputs (if required) as well. A consumer request may involve retrieving large amounts

of data from a database. Unless the host which stores the data is explicitly specified as the target

machine within the job, it might require the data to travel over the network, and as Condor does

not have the knowledge about this data access, it will not make any attempt to schedule the job at a

host closer to the data. Further, this approach of using jobs, is an one-time affair, as the execution

code for the job is not stored at the execution site. For each request for the same job, with different

data as input, the execution code and data would have to be transferred to the execution site for

redeployment and execution. The redeployment of the execution code for each execution request

may become costlier when the execution code itself is large, such as virtual machine images. Hence,

for requests which process large amounts of data, and are frequent in nature, or for large analysis

code, an alternative approach with a "deploy once, use many times" characteristics may be more

suited. It may be possible to retain the execution code at the execution site by extending Condor.

But, for meaningful use, additional capabilities such as the ability to discover an execution code

for future use, or the possibility of multiple deployments to share the invocations, or the standard

interface for invocation etc. will be required.

4.2 The Evolution of DynaSOAr

This section discusses the motivation behind the development of DynaSOAr, the conceptual back-

ground, the requirements to be satisfied by DynaSOAr and the design issues encountered.

4.2.1 Jobs and Service Orientation

In recent years, there has been a considerable shift towards the use of the Service Oriented Archi-

tecture and technologies for building Grid and other distributed applications. In a service-oriented

CHAPTER 4. Dynamic Service Deployment 67

framework, an application can be a combined set of autonomous services which communicate be-

tween themselves by exchanging SOAP [5] messages. The service interfaces are described by a

standardised language, WSDL [101]. When the computational requirement of these services can not
be satisfied by the environments in which these are hosted, the current strategy is to create a job

and send it to a distributed scheduling system (like Condor) for execution on a suitable host. This

forces the application developers to deal with two different types of computational entities - services

and jobs.

This chapter describes an alternative approach which builds on the concept of services only. Dy-

namic Service Oriented Architecture (DynaSOAr) [19] is a framework for deploying Web Services

on demand over computational resources available over a Grid or the Internet. DynaSOAr advo-

cates an approach to Grid Computing where distributed applications revolve around the concept of

services rather than jobs. When a consumer makes a request for a service to the Service Provider,

the request is serviced by a host most suited for the requirements specified by the consumer. If no

existing deployment exists or if performance requirements cannot be met by existing deployments,

this framework automatically deploys the service on an available host. In essence, this is analogous
to remote job scheduling, but offers the opportunity for improved efficiency in the long run as the

cost of moving and deploying the service can be shared across the processing of many messages over

the time. Further, the philosophy behind DynaSOAr is "deploy once, use many times", which is

contrary to the conventional job-oriented systems, where the execution of a job is an one-time affair.

The key architectural feature in DynaSOAr is the logical separation between service provisioning

and resource provisioning and clear distinction of the responsibilities of the components. The Web

Service Provider makes services available to the consumers by exposing an endpoint to the service,

and Host Providers offer computational resources on which the services can be deployed and messages

processed. These components are supported by others such as the Service Repository which stores

the deployable versions of the services, Brokers, who decide to which set of Host Providers a message

should be routed, and Registry, which stores description of the services and the associated metadata.

All these components taken together create a framework built over loosely-coupled interactive Web

Services. The approach provides three potential benefits over existing approaches that utilise both

jobs and services -

1. The development process is simplified as it is confined to the service-oriented architecture

alone;

2. There is a possibility of improved performance as the deployed service is retained on the

host. This allows the service to be used for as long as required, thereby spreading the cost of

CHAPTER 4. Dynamic Service Deployment 68

deployment over many invocations of the service;

3. The clear distinction between Service Provider and Host Providers allow new organization-

al/business models.

4.2.2 The Active Information Repository

The Active Information Repository architecture proposed in [7] is aimed at collocating the data

processing and analysis code with the data by providing a cluster of computational resources closer

to the data. The proposal envisages that information repositories will be made available for the Grid

in order to cope with the astronomical volumes of data produced by current research projects such

as the high energy physics experiments at European Organization for Particle Physics (CERN) [56]

or the SLOAN Digital Sky Survey [23] project. The repositories will be even more valuable if along

with the data storage, some computational power is provided for the users to perform analysis on

the data retrieved from these data repositories on the same site. This is to avoid transmitting large

amounts of data over long distances, potentially reducing the cost of data transmission and thereby

increasing the efficiency. The major components of this Active Information Repository are a scalable

object database server with a scalable agent-execution server connected to it via a high-bandwidth

network. The object database server will hold persistent data on a cluster of nodes, each of which

will contribute to the storage and computational capacity of the complete system. Computations to

be performed on the data will be sent, in the form of mobile agents for execution on the agent-server,

which again can use a set of nodes to increase scalability.

The work on DynaSOAr, although not using agent systems, was inspired by the concept of moving

the computation closer to the data to increase performance as proposed in the Active Information

Repository architecture. A service-oriented version of the Active Information Repository is shown
in Figure 4.1 where the system (a cluster of one or more computational nodes) that hosts the data

and metadata also hosts services operating on that dataset, and also allows the consumers to deploy

and share their own services for analysing the data [112].

4.2.3 The Consumer View of a Service

From the point of view of the consumer, depicted in Figure 4.2, a Web Service invocation is neces-

sarily an interaction with the service instigated by sending a SOAP message. Various libraries (such

as Apache Axis [77]) convert an application level invocation into a correct SOAP message format

which is then delivered to the service via a transport mechanism (such as HTTP) specified within

CHAPTER 4. Dynamic Service Deployment 69

Core Services

Consumer -----_ service- I

Service"2
Workflow

Consumer -o
Enactment

Engine

Serve-t
Registry

Consumer Service"2

Servicen

Consumer deployed
Services

Mclac ea

Figure 4.1: The Active Information Repository Architecture

the service interface. For successful processing, the message must conform to the types defined in

the service interface description (WSIL [101]), which is checked at the service provider endpoint.

The message may then be transformed into objects and structures that are internal to the service

and processed by the encapsulated service logic. Any generated response is sent back using the same

transport mechanism. The business logic and the implementation of the service remains transparent

to the consumer who is never aware of the internal processing that is performed behind the service

interface.

Registry

discover

request

Consumer 4

response

register

kice

0

Figure 4.2: Invocation of a Web Service

CHAPTER 4. Dynamic Service Deployment 70

One of the key aspects in this architecture is the logical separation of the service interface and the

actual implementation and location of the business logic. One relevant example is the Amazon S3

Storage Service [52] which provides storage facilities for the consumers over the internet. Consumers

who use this facility are never aware of the actual location or the type of the data storage device,

or the way in which the data is stored. Thus, two key properties that come out of this separation

and are of major relevance to the concept of DynaSOAr are -

" Execution transparency - The consumer of a service is only aware of the exposed service
interface which is published as a WSDL document, and the endpoint (the address specified

within the service description) to which the request must be sent. Beyond this, the consumer
is not aware about the implementation details of the service logic, or the actual host where the

logic is executed, or any other associated entities, which leads to the "execution transparency".

" Loose Coupling - As the consumer is only aware of the interface exposed by the service there

is minimal coupling between the consumer and the service. There is no dependency at the

consumer side on the platform on which the service is executed or the language in which the

service has been implemented. The current toolkits also allow the implementation of a service

to be completely replaced without changing the interface.

The concept of dynamic service deployment in DynaSOAr is based on these two properties of service

oriented architectures.

4.2.4 Formation of Dynamic Virtual Organisations

From the discussion so far, the straightforward conclusion may be drawn that the service provider is

responsible for hosting the service(s), which may be little restrictive and premature in nature. Virtual

Organisations are an important aspect in grid computing where separate organisations collaborate for

sharing their resources in order to achieve a common goal. It is possible to envisage an organisation

whose area of expertise is the development of analytical services in a certain domain who might want

to outsource the hosting of the services to another organisation who expertise in providing compute

resources. In such a scenario, the two organisations form a highly dynamic Virtual Organization

and collaborate amongst themselves for sharing the resources. The Amazon Elastic Compute Cloud

(Amazon EC2 [88]) may be sited as a relevant example of hosting services.

DynaSOAr creates the possibility of forming such dynamic Virtual Organisations by differentiating

between service provisioning and resource provisioning. To support such on-demand resource pro-

CHAPTER 4. Dynamic Service Deployment 71

visioning DynaSOAr introduces the concept of a Ilost, Provider which is responsible for providing

the computational resources, such as the Amazon Elastic Compute Cloud mentioned before. I)yna-

SOAr does not impose any coupling between the service provider and the host, provider other tlian

a mutually agreeable contract in form of message patterns which cause a "handshake" between botli

the parties. The interface to the service (as seen by the consumer) does not change, neither does

the assumption of the consumer about the existence of the service at, the service provider's site.

The existence of the Host Provider is hidden behind the Service Provider maintaining the two key

aspects discussed above, viz., execution transparency and loose coupling. The introduction of this

new level is shown in Figure 4.3.

Registry
ID

discover
\register

request I

M
Service

Consumer Provider

response

tapst st
Rrc, er ro er

Figure 4.3: Formation of a Virtual Organization between the Service Provider and the Host Provider

4.2.5 Principles of Dynamic Deployment

llynaSOAr conceives the idea of deploying a service when there is a demand for it. All services

registered in a registry are advertised by the service provider as services that can be provided,

whether or not they are deployed. A consumer is able to request for any of those services, and the

decision for deployment is made when a request is received for a particular service. This policy

allows the framework to host only the services that are being used, which effectively is a cleaner

approach, and secondly, once a service is deployed, it remains available for all the consumers to use,

CHAPTER 4. Dynamic Service Deployment 72

unless explicitly undeployed. On receipt of a request for a service, the service provider forwards the

request to a suitable host provider, and there may be two different interaction patters depending

upon whether or not the requested service is already deployed on the node -

1. If the service is already deployed on the computational node where the request has been sent for

processing, then the SOAP message is routed to the destination service by the Host Provider.

In Figure 4.4(a), the consumer makes a request for service S2, which is already deployed on

nodes Nl and N2. Based on the current information about the system load, the Host Provider

routes the requested to the lightly-loaded N2 where the request is processed and the response

sent back.

2. In the second case, the consumer makes a request which is not already deployed on any of the

available nodes, such as the request for service S8 sent by the consumer in Figure 4.4(b). In

this case, a decision is made about the target node where the service is to be deployed and the

message is forwarded to that node. The target node downloads the deployable service code
from the service repository (identified in the message header), deploys the service dynamically,

and process the request.

In both the situations described above, the consumer is not aware of the resources behind the

Service Provider or the fact that the service might have been deployed dynamically. They interact

only with the Service Provider by sending SOAP messages which is the standard way of interacting

with services. Once a service is deployed on a host, it is retained there ready to process messages
for all future invocations of the service, until it needs to be reclaimed which is likely when the

demand for other services increase. This retention of the service on the node can potentially generate
large efficiency gains because the one-time cost of deployment is spread over many invocations of

the service. GridSHED [113,114], a related project has developed heuristics-based algorithms for

determining the optimal policies which decide when an existing deployment should be used compared
to a new deployment on a new node.

4.2.6 Requirements for DynaSOAr

To satisfy the scenarios presented in Section 4.2.5, certain requirements must be supported within

the DynaSOAr framework. The requirements that are satisfied by the prototype system are listed

below:

9 Ability to route service requests - The DynaSOAr Service Provider should be able to

CHAPTER 4. Dynamic Service Deployment 73

NI

S1, S2

request(S2)

C

/ýi

_
WSP i

-_ý
S2

response

Consumer %% e1 Service i'ro%iter

Nn
Si, SJ

[lost Prodder

(a) Routing request to existing deployment

Service Repository SR
' f- 2: Fetch and Deploy

S8

rl`/(UCSt(tiM)

------------------- wsr
onse res p

Consumer Web Sen ice I'ro%Wer

Host Provider

(b) Request for a service not already deployed

Figure 4.4: Routing of requests in DynaSOAr

route the requests sent by a consumer for a certain service to an appropriate Host Provider

instance in a manner which will be transparent to the consumer.

" Mobile service implementations - The services must be implemented and packaged in a

way which will allow them to be downloaded from the repository and deployed on any host

with a web service container.

. Resource Allocation - DynaSOAr should be able to allocate resources on-demand from a

pool of available resources for the deployment of a service. It should also be capable of dealing

with a volatile environment such as the Grid, where resources may come and go.

" Un-interrupting deployment of a service - DynaSOAr must be able to deploy new ser-

CHAPTER 4. Dynamic Service Deployment 74

vices on a designated host without interrupting the execution of the services that are already
deployed on it.

" Ability to store the services - As opposed to the "one-time" affair of the job-scheduling

systems, DynaSOAr should be able to store the service code in a persistent storage that will
be accessible to the hosts needing to download the package.

" Resource Handshake - In order to perform better scheduling, DynaSOAr must know about
the nodes available to it. This is possible by registering each node when it becomes available

with the parent in the hierarchy of components. This may also be treated as an approach for

establishing trust between the components.

4.2.7 Design Considerations

In this section, a set of design issues that affected the design of the DynaSOAr component services

are discussed.

4.2.7.1 Using SOAP Message Headers

The standard way of invoking a Web Service from the consumer point of view is to send a SOAP

message to the service. Even when using programmatic approach (such as Apache Axis) of binding

to the service, and generating stubs and skeletons before actually invoking the service, all that the

consumer is effectively doing is sending a SOAP message. A SOAP message contained in a SOAP

envelope is composed of two distinct components with different purposes. The optional SOAP

header element may be used to attach special instructions or transmit authentication or session

management information. The actual processing instructions compose the SOAP body section. An

example SOAP message sent by the consumer requesting for the EntropyAnalyserService is shown
in Listing 4.1 below. It is to be noted that the address to which the message is sent does not appear

within the message header or body, but is attached to the envelope when the message is sent across
the network. The WS-Addressing [46] standard however specifies the use of explicit addressing fields

in the message header. The use of message header to convey special information in DynaSOAr are
discussed in the later sections.

CHAPTER 4. Dynamic Service Deployment 75

Listing 4.1 An example SOAP message requesting the EntropyAnalysis service
<soapenv: Envelope xmins: soapenv-"http: //schemas. amisoap. org/soap/envelope/"

xmins: xsd="http: //www. w3. org/2001/XMLSchema"
xmins: xsi-"http: //www. w3. org/2001/XMLSchema-instance">
<soapenv: Header>

<! -- Header information -->
</soapenv: Header>
<soapenv: Body>

<I-- request to the service -->
<m: calculateEntropy xmlns: m-"http: //entropy. neresc. ncl. ac. uk">

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence>
</m: calculateEntropy>

</soapenv: Body>
</soapenv: Envelope>

4.2.7.2 Using Message Orientation

Apache Axis [77] provides four styles for designing Web services, namely, (i) RPC, (ii) Document-

oriented, (iii) wrapped and (iv) Message-oriented. These styles offer different options while designing

the services, the RPC (Remote Procedure Call) being the default style. There have been several
debates about the style of a Web Service and the document-oriented style is regarded as the most

widely accepted and used format because of its richness and ability to describe a service and its

operations. In DynaSOAr, each component makes use of the SOAP message header, and hence

the services should be able to process the XML-formatted SOAP messages directly. Further, there

are good arguments behind this message-oriented style, because this allows the consumers to be

completely unaffected by the implementation at the server. This style proposes the use of a single
interface at the service level, and the service implementation performs different operations based on

the type of the incoming message. The primary requirement of this style is a detailed description

of all the messages that can be processed by the service. In DynaSOAr, the participating compo-

nents exchange messages which are defined in an XML schema. Consumers invoke the intended

service using the standard procedures which result in a SOAP message being sent to the service.
These messages sent by the consumers conform to the messages expected by the target service and

can be generated using existing toolkits. The DynaSOAr service provider is able to distinguish

these messages from any other message from another DynaSOAr component, and can process them

accordingly, that is, forward them to the appropriate host provider for processing.

CHAPTER 4. Dynamic Service Deployment 76

4.3 The design of DynaSOAr

The two major components of the DynaSOAr framework which allow the dynamic provisioning of

services by processing the incoming consumer requests at different levels are namely a Web Service

Provider and a Host Provider'. Two other components which perform roles that are not directly

related to a consumer request, but are of utmost importance for on-demand provisioning of services

are the Service Repository and the Registry. Each component in DynaSOAr is itself implemented as

a service which opens up a wide range of deployment scenarios. For example, the Service Repository

may be owned by the Service Provider, and access to it can be restricted to the Host Providers it

trusts. The repository can also be a public repository, independent of any one Service Provider. It is

even possible for the framework to be domain-specific, so that researchers collaborating in a specific

area can share the repository. This section provides a description of each of these components.

4.3.1 Service Provider

The Service Provider is the entity with which consumers interact. It advertises the services it can

provide, and accepts SOAP messages from consumers requesting a service from a particular endpoint

associated with the message. The Service Provider is responsible for arranging the processing of the

request. To achieve this, the Service Provider chooses an appropriate Host Provider and forwards

the request to it with any associated Quality of Service (QoS) parameters and an added element in

the message header identifying one or more software repositories from where a deployable version

of the service can be acquired in case dynamic deployment is necessary. The Service Provider itself

is designed as a Web Service, and conforms to the message-oriented style of Web Services. From a

consumer point of view, a service is always exposed at the Service Provider end, and the consumer

sends a message to the Service Provider, requesting the intended service. The DynaSOAr Service

Provider extends the handler-chain concept used in Apache Axis [77], and the message is intercepted

before it reaches the Service Provider. This is essential as the service endpoint within the message

sent by the consumer will be that of the requested service, which may be either deployed on a

different resource or may not even be deployed at that point of time. The intercepted message is

modified in order to route it to the actual Service Provider web service, with a newly added element

in the header denoting the abstract name of the service which is requested - an example of which is

shown in Listing 4.2.

Once this message reaches the Service Provider, it can process the message accordingly, by either

1From this point onwards, the terms DynaSOAr Web Service Provider and Service Provider will be used inter-

changeably. Similarly, the terms Service and Web Service will be interchangeable as well.

CHAPTER 4. Dynamic Service Deployment 77

Listing 4.2 An example SOA P message with it modified header element at the Service Provider

<soapenv: Envelope xmins: soapenv="http: //schemas. xmisoap. org/soap/envelope/"
xmins: xsd="http: //www. w3. org/2001/XMLSchema"
xmins: xsi="http: //www. w3. org/2001/XMLSchema-instance">
<soapenv: Header>

<! -- Header information -->
<soapenv: dynasoar soapenv: actor="http: //schemas. xmisoap. org/soap/actor/next">

<soapenv: targetService value="EntropyAnalyserService"/>
</soapenv: dynasoar>

</soapenv: Header>

<soapenv: Body>

<! -- request to the service -->
<m: calculateEntropy xmins: m="http: //entropy. neresc. ncl. ac. uk">

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence>
</m: calculateEntropy>

</soapenv: Body>

</soapenv: Envelope>

forwarding it to a deployed instance of the service or by requesting a new deployment on a new node

and forwarding the message to this newly deployed instance for processing. While forwarding the

message to a designated [lost Provider, the Service Provider adds two new elements in the message

header - one is a message identifier to establish a context between the request the response which

will arrive at a later stage, and the other is the location of the software repository from where the

code for the requested service may be obtained. The interaction of the consumer with the Service

Provider, and the addition of new elements in the message header is depicted in Figure 4.5.

a rttp: /Isomewnere. ncl. ac. uk: 8080/dynasoariservices Eit, opy

0 ^ttp JIsomewnere. nd. ac. uk: 80801cyn asoarlservices1DynasoarService
da getService>Ent, opy</targetSerwce>

Q http: //so newhere. ncl. ac. uk: 8080rdynasoa, iservices/DynasoarService
aargetSe rvice>Entropy<ttargetServ: ce>
<repository>htlp: //repos. ncl. ac. uK: 8080lg ri moires/serv, ceslGr, moiresnegistryvrepos: tory>

Figure 4.5: Consumer interaction with DynaSOAr Service Provider

Based on the requirements for DynaSOAr outlined in Section 4.2.6, the Service Provider must be

able to fulfil the following criteria:

CHAPTER 4. Dynamic Service Deployment 78

" It should advertise a set of services it can provide irrespective of whether the service is deployed

or not.

. It must be able to receive service requests from consumers and arrange for their processing at

a designated Host Provider.

. It must maintain a list of Ilost Providers to whom the request from the consumer can be

forwarded for processing. For which the Host Providers should be able to register or deregister

with the Service Provider.

As all the DynaSOAr components are designed based on the message-oriented approach, the service

interface consists of one operation, which performs different functions based on the type of message

it has received. The requests supported by the Service Provider are shown in Figure 4.6.

rA. - ":. Iq, Iv, e

consume, Request -i-> aretny

nc.. lal.. ". tl'ýýývidrý{'. ýP . ti. Jn. nP.. pn. t

'hos1URI

ie{IisteuHostPtovidei --
'h. sVMHost

SeiviceProvideiRequest

removeHostPronclet -- 'hostURl

ni . ý{: '.,. i vir. f ndeF eyicu aUonFr, Pre, t

servicellame

retJisteiService --
"r epositotytRl

Figure 4.6: Request types supported by the Service Provider

4.3.1.1 Supporting conventional tools

Most common tools, such as XMLSpy (which although being an XML editor has advanced features

like sending SOAP messages to a service) [115] or workflow enactment engines such as Taverna [10],

used by a large number of consumers, require the endpoint of the service description (WSDL)

before binding to the service. Apache Axis [77] provides a standard way of returning the WSDL by

appending a "? wsdl" construct to the service endpoint, which is a common approach adopted by the

CHAPTER 4. Dynamic Service Deployment 79

Web Service community. During the bind process, these tools are able to generate message formats

conforming to the service interface which are then sent to the actual service. In the DynaSOAr

framework, when a request from a consumer arrives at the service provider, the service may not

have been deployed yet, and thus, the standard way of generating a WSDL (that is by adding a

"? wsdl" construct after the service endpoint) using tools like Axis will not work. Thus, the consumers

would have to know the format of the message that the service expects before invoking the service,

which might have been a restrictive feature because many tools which are used to build applications

assume that the WSDL can be accessed in the way mentioned above. This is handled in DynaSOAr

using another extension of the Axis handler-chain feature, where the extended handler on receipt of

any such request for the WSDL description will retrieve the WSDL file that was uploaded during

the service upload phase, and return it back to the consumer from which the message formats can

be generated by the standard tools. Thus, DynaSOAr, in effect deploys the WSDL description of

the service when the consumer first sends the bind-request to the WSDL-endpoint assuming that

the service has been deployed behind the DynaSOAr Service Provider. Based on this WSDL, once

the message is generated and sent to DynaSOAr, the second phase is triggered, which deploys the

service package on a designated compute resource.

4.3.2 Host Provider

The Host Provider is responsible for controlling the computational resources, such as a cluster or a
Grid, on which services can be deployed, and requests for those services can be processed. The Host

Provider accepts SOAP messages forwarded by the Service Provider on behalf of the services hosted

by it, and sends back any response generated after processing the request. An example of a message

received by the Host Provider is shown in Listing 4.3. The Host Providers are implemented as Web

Services and conform to the message-oriented interface. Further, they are classified as manager and

managed nodes, where the manager node possesses the knowledge about the managed nodes under
its domain and is capable of scheduling the processing of a request on any of them. The manager

or ROOT node periodically monitors each of the child nodes and uses this monitoring information

to make decisions about the best suited node to process a request. It is also capable of routing a

request to a specific instance of a service if multiple copies of the same service exist on different

nodes in order to perform some load-balancing. Various scheduling algorithms such as least recently

used, least recently allocated, best average response time are utilised within the host provider to

make decisions about routing a request to a specific instance of the service. The Host Provider is

implemented in such a way that new algorithms can be plugged into the framework. Further, the

Host Provider uses resource allocation algorithms proposed in related works such as GridSHED [113]

CHAPTER 4. Dynamic Service Deployment 80

which are based on heuristics and knowledge of network bandwidth data.

Listing 4.3 An example SOAP message with a modified header element at the Host Provider

<soapenv: Envelope xmins: soapeav-"http: //schemas. xmisoap. org/soap/envelope/"
xmins: xsd-"http: //www. w3. org/2001/XMLSchema"
xmins: xsi-"http: //www. w3. org/2001/XMLSchema-instance">
<soapenv: Header>

<I-- Header information -->
<soapenv: dynasoar soapenv: actor-"http: //schemas. xmisoap. org/soap/actor/next">

<soapenv: messageId value-"8580358022-012-0129090"/>
<soapenv: targetService value&"EntropyAnalyserService"/>
<soapenv: repositoryuRl value-"http: //repos. ncl. ac. uk/RepositoryService"/>

</soapenv: dynasoar>
</soapenv: Header>
<soapenv: Body>

<I-- request to the service -->
<m: calculateEntropy xmins: m-"http: //entropy. neresc. ncl. ac. uk">

<stSequence>AGTCMMMMTGCATMGTCATMMGGCCTACCTT</stSequence>
</m: calculateEntropy>

</soapenv: Body>
</soapenv: Envelope>

The Host Provider, on receiving a message from the Service Provider, checks whether the requested

service has already been deployed as a result of a previous request. If the service has been deployed

previously, which can be discovered from the registry, the best suited instance is selected and the

request is forwarded to that instance for processing. If the service has not been deployed before, or

the existing instances are heavily loaded, the request is forwarded to a host which is lightly loaded

at that point of time. The destination host, which is a Host Provider as well, extracts the location of

the repository where the deployable code for the requested service can be obtained from the message
header, downloads the package and deploys it on itself. The request is then processed and a response
is sent back. The interactions between the Service Provider and the Host Provider are depicted in

Figure 4.7.

The Host Provider is required to support the following requirements -

" It must be able to receive service requests forwarded by the Service Provider and process them

accordingly.

. It must maintain a list of child Host Providers under its domain to whom the service request

can be routed to. In order to achieve this it must allow other hosts to register and deregister

with it.

" It must have the knowledge of the services supported by it.

As explained in Section 4.2.7.2, the Host Provider implements the message-oriented interface and

CHAPTER 4. Dynamic Service Deployment 81

Q http: '/somewhere. ncl. ac. u*: 8080/dynasoar/serv. ces/Entropy

Q hitp l/somewhere-ese nci. ac. uK: 8080/dynasoarlservicesMosiProvider
QargetService>Entropy<ltarge1Sorv, ce>
<re pository>http: //repos. ncl. ac u k: 80801grimolreslserv-ces/GnmoiresRegistry<Jrepos, tory>

http. 1/larget-node. r. cl. ac. u k: 8080/dynasoa, /serv, ces/HosiProv, der
`Q <largetService>EntropydtargetServ ce>

<repository>http: //repos. ncl, ac. uk: 8080/grimoires/serv, ces/Gr, moiresRegistry</reposýtory>

Figure 4.7: Interaction between DynaSOAr Service Provider and Host Provider

exposes one operation which is capable of supporting the requests depicted in Figure 4.8.

I r: qa irtl; ei vicRegti, .t
ti .. ` Iist&etvice s

..
et... vicel.....

.
farne

O- co

n. e.. t: H oaPi", videi P, -. 1, ti N n. i. P-

ýhostURl

Ie(JistelHostPtovidel --
hasVMHost

ovidel Request

mcy: No-; Fu , vl, l, -i Del -11sU ationPequest

temoveHostPiovidei -I hostURi

msy: xMLlrlr s-.. ýycTVpý

process - -ýý - &i, mtuny

Figure 4.8: Request types supported by the Host Provider

The first prototype is based on the assumption that the requests are synchronous in nature. Hence,

the response from the Host Provider retraces the arrival route of the request. Specifications for

CHAPTER 4. Dynamic Service Deployment 82

addressing asynchronous requests, such as WS-Addressing [46] are being standardised, and it is

possible to use these features to support asynchronous requests where the consumer will not have to

block for the response, and the response can be sent to the consumer directly from the I lost Provider

using the addressing fields of the incoming request.

4.3.3 Service Repository

The Service Repository is not directly accessible by the consumers, but, it plays an important role

within the DynaSOAr framework by managing the upload and download of the deployable service

code and retaining them for future use. It is implemented as a service based on the message-oriented

model supporting the request types outlined in Figure 4.9. A service developer "uploads" the service

package along with the description of the service as a WSDL document. Following a successful

upload, the service is registered in the registry and stored in a file store, and a unique URL is used

to refer to it. The Host Providers communicate with this service by sending and receiving SOAP

messages requesting the download of the actual service code for a service to be deployed. When

such a download request is received, the repository service allows the host provider to download the

software from the URL. The prototype system uses the standard Java file ISO libraries, but other

options such as GridFTP [55], SRB [54] (for storage and transport) are likely to make the system

robust and more efficient.

ý.........

sl vk H1Ym

1. m

I'
ýý - ea Vkslbnw

i

eel N<sD

1- esl N<eUPo

.. dIL -4 lo"

IIIIIYý

mPwt

IYeq«cesURl j
HH

1. m

selVkellalne I

meaVM1IVA aIpedSel rlceeLlH -

m
-keURl

Figure 4.9: Request types supported by the Service Repository

CHAPTER 4. Dynamic Service Deployment 83

In order to satisfy the requirements in DynaSOAr, the Service Repository must support the following

criteria -

9 It must allow service developers to "upload" a service package to the repository.

" When a service is uploaded, the repository must register the service with the service registry

whereby the availability of the service is made known to the consumers.

" It must be able to respond to requests from the Host Providers to download the code.

4.3.4 Registry Service

The DynaSOAr Registry Service is provided by GRIMOIRES [103], which is an UDDI-based registry,

with added support for metadata as RDF [116] triplets. When a service developer decides to make

a service available via the DynaSOAr Web Service Provider, the deployable service code is uploaded

to the service repository as a result of which, the registry is updated with this information. A

businessService2 entity is created within the registry corresponding to this new service as a child of

the single "DynaSOAr" businessEntity3. Several TModel4 entries are also attached to the new service

entry, each describing certain aspects of the service, such as its type, location of the code and the

WSDL description, each having a definite use during the service download and deployment process.

This newly uploaded service will be advertised by the Service Provider as one for which requests from

consumers will be accepted. Initially, in the registry entry for this service, there will be no access

points as the service has not been deployed yet. Every time a service is deployed, the registry entry

will be updated to reflect the recent deployment at the corresponding Host Provider. Listing 4.4

shows how each service is described within the registry. In this example, two services are shown as

registered with the registry, namely - the EntropyAnalyserService and the SJEMEA_Service. Both

these services are Web Services, packaged as WAR files, which is described as the TModel entry

named ServiceType. The location of the actual service code is defined by the CodeStoreURL TModel,

and the location of the service WSDL is defined by the WSDLLocation TModel. It can be seen from

the XML fragment that the EntropyAnalyserService is an undeployed service as it does not have

2The businessService structure represents a logical service and contains descriptive information in business terms.
A businessService is the logical child of a single businessEntity, the provider of this businessService. Technical
information about the businessService is found in the contained bindingTemplate entities [81].

3Each businessEntity entity contains descriptive information about a business or organisation and, through its
contained businessService entities, information about the services that it offers. From an XML standpoint, the
businessEntity is the top-level data structure that holds descriptive information about the business or organisation it
describes [81].

4Technical Models(TModels) are used in UDDI to represent unique concepts or constructs. They provide a structure
that allows re-use and, thus, standardisation within a software framework. The UDDI information model is based
on this notion of shared specifications and uses tModels to engender this behaviour. For this reason, tModels exist
outside the parent-child containment relationships between the businessEntity, businessService and bindingTemplate
structures [81].

CHAPTER 4. Dynamic Service Deployment 84

any AccessPoints attached to it, whereas, the SJEMA_Seruice is deployed on one of the available

nodes, and the endpoint is attached to the service entity as an AccessPoint entry.

Listing 4.4 Description of entities registered within the DynaSOAr registry
<busineseDetailExt =Ins-"urn: uddi-org: api_v2">

<businessEntityExt>
<bustuessEntity businassKeyy"87a248s1-38a8">

<name>Dynaeoar</name>
<buslnesaServicas>

<buslnassService businessKsy. "87a248a1-38a8" servlc. Key-"13f3afbc-. 614">
<name>EntropyAnalysarService</nams>
<bindingTsmplates/>
<categoryBag>

<keyedReforence keyName-"CodeStoreURL"
keyValue-"http: //giga01: 8199/codastoro/services/RepositorySsrvica"
tMode1X. y-"88Oce26a-6aba"/>
<ksy. 4Pefarenc" keyNams-"WSDLLoeation"
keyValus-"http: //giga0l: 8199/ServiceCoda/EntropyknalyserServico. wedl"
tMode1Ke r"659060a9-642d"/>
<kaysdReZsrenc" keyNama. "Ssrvic. Type"
keyValue. "WAR" tModelKay-"6bae7c06-d9f1"/>

</categoryBag>
</businessService>
<businessSe vice businessKay-"87a248e1-38a8" ssrvie. Kay-1a4aa15a8-a383">

<name>SJEMEA_Servica</name)
<bindingTemplatos>

<bindingTemplate bindingKayr"bdf2ca61-8s86" s9rviceKsy. "s4aai5a8-a383">
<accessPoint URLTypo-"http">
http: //giga02 : 8199/hostprovider/services/HostProvidsrServies
</accsssPoint>
<tModsllnstanceDetails>

<tModelIastanc. Info tModelKey-"2fa4f68f-7662"/>
</tModellnstanc. Details>

</bindingTomplats>
</bindingTs plates>
<categoryBag>

<koyedRefsreuce keyNams-"CodeStoreURL"
keyValue-"http: //giga01: 8199/codastore/services/RepositoryServics"
tModelKsyr"880ce26e-Saba"/>
<ksyedReforence ksyName="WSDLLocation"
keyValue-"http: //giga01: 8199/Servic*Code/SJEMEA_Service. vsdl"
tModalKe r"659050a3-642d"/>
<keyodReisrence keyNama. "Servic. Type"
ksyValue-"WAR" tModelKay-"6bas7c06-d9f1"/>

</catsgoryBag>
</busineasService>

</busSaassServitas>
</buslnessEntity>

</businsssEntityExt>
</businessDrtailExt>

4.3.5 The Software Hypermarket

The description so far about DynaSOAr took into consideration the existence of a single Host

Provider. In reality, though, one Web Service Provider may have several Host Providers at its dis-

posal. At certain times, it may be advantageous to consider the characteristics of the available Host

Providers, such as cost, dependability, QoS, security, etc. to select the most suited candidate. As

an example, it may be logical to refer to the Amazon Elastic Compute Cloud [88], where consumers

are allowed access to computational resources at a certain cost. If there are other providers offer-

ing resources to consumers, the consumers will have the option of choosing between the available

resources based on certain criteria, cost being one of them. A similar scenario can be considered for

CHAPTER 4. Dynamic Service Deployment 85

computational services, for example, tourism reservation systems, where the consumers may want

to make selections based on the quality of service.

These scenarios converge to the possibility of a Softwarr Alarketpla, ce or a Software hypermarket' (as

shown in Figure 4.10) where similar services are provided by different providers and the consumers
have the option of selecting one or more of them, just like a consumer does in a normal slopping

mall. The option of choosing between multiple Host Providers also exists from the point, of view of

the Service Provider.

Software Hypermarket

WSP"1 ý Hp-ý
I

eq. osr ; OE

tI Vendor Markel
rosponso

ý VYSP-n HP"n

1

Figure 4.10: The Software Hypermarket

To facilitate this requirements matching (similar to the matchmaking process of Condor), another

component, the Broker, with the same interface as the Host Provider, has been introduced in the

architecture, which is responsible for making such decisions. The broker has the knowledge about

one or more Host Providers, and is thus able to snake the decisions based on the characteristics of

the available Host Providers and the QoS and security requirements requested by the consumer.

The generic architecture of DynaSOAr follows from the concept of this Software Hypermarket which

can allow interactions between multiple service providers, brokers and host providers. DynaSOAr

allows the hierarchy of Service Provider, Broker and Host Provider to grow dynamically to any

level or depth, as illustrated in Figure 4.11. There is no limitation in the number of brokers or

Host Providers that can take part in the formation of this ad-hoc Virtual Organization, creating the

Software Hypermarket where the brokers can choose between available Host Providers meeting the

consumer requirements to process the requests.

51n commerce, a hypermarket or multi-department store is a superstore which combines a supermarket and a
department store. The result is a very large retail facility which carries an enormous range of products under one
roof, including full lines of groceries and general merchandise. When they are planned, constructed, and executed
correctly, a consumer can ideally satisfy all of his or her routine weekly shopping needs in one trip 1117].

CHAPTER 4. Dynamic Service Deployment 86

i Kegýctry
,/s

nrokrrýN

-------j--

5orvlcc''rovico" woaoraty r

r. ýassa a.
Abst"act Na^Ie
Zistiy U91 \YI1\

tfNkc, qýF' \ yA^ý i

ý_-_rýirrýmriýiýi+r"+wliýi. r __-c

Pnvale
Reg st'y

Figure 4.11: Generic Architecture of DynaSOAr

The generic architecture of DynaSOAr does not, restrict the dynamic deployment functionality to

web services alone. It is capable of allowing dynamic deployment of Virtual Machines such as

VMWare [15] as will be described in the following sections.

4.4 Using Virtualization

In recent times, virtualization technologies have become a popular choice in the Grid world. Vir-

tualization, as defined by VMWare is: "an abstraction layer that decouples the physical hardware

from the operating system to deliver greater IT resource utilisation and flexibility" [15]. One specific

virtualization technique is virtual machines, which goes back to the IBM System/370 [90]. Using

such techniques, it is possible to run several virtual machines (VM) simultaneously, with different

operating systems, on the same physical host by isolating each one from the physical environment.

The advantages provided by VMs regarding partitioning, isolation and encapsulation make them

useful in the Grid infrastructure as proposed in [17]. DynaSOAr utilises this concept and provides

an extensive service-oriented framework which allows on-demand deployment of virtual machines

which can encapsulate databases, services, any special environment that may be required for the

services in a flexible way creating an ad-hoc virtual grid.

CHAPTER 4. Dynamic Service Deployment 87

4.4.1 Virtualization Technology - An Overview

Prior to "virtualization", in most cases, the software and hardware of the computational resources

were tightly coupled. Most common computers without any support for virtualization have one op-

erating system which is tightly coupled with the processor architecture, running applications most

of which are again dependent on the operating system and often the hardware architecture. For

a large IT infrastructure, such individual resources may lead to under-utilisation and inflexibility.

Virtualization technologies can be applied to all aspects of a computational resource, such as net,

works, storage, primary memory etc. The combination of all such virtual infrastructure leads to

the introduction of an additional "virtualization layer" on top of the hardware architecture with

creates the separation of the operating system with the physical hardware allowing multiple "guest"

operating system to execute on the same physical host as shown in Figure 4.12 [118].

Applications

Operating System

Processor Architecture

Hardware elements (network, memory, cpu) Dis
I

Hardware elements (network, memory, cpu)

(a) Non-virtualized Computational Node (b) Virtualized Computational Node

Figure 4.12: Before and after virtualization

The possibility of using Virtual Machines(VM) for Grid computing is explored in [93,17,1191. The

traditional grid middleware solutions implement the abstraction layer at the level of the individual

nodes which makes it difficult to provide the adequate level of security necessary to protect the

resources against untrusted legacy codes submitted as jobs by untrusted users. By raising the level

of abstraction to the operating system virtual machine, three fundamental advantages are obtained,

namely, support for legacy applications, security against untrusted code, and a computation process

independent of site administration which are described in more details later in this section. Each

virtual machine appears to be an individual self-sufficient machine for a user, which de-couples it

from the underlying physical resources, and other virtual machines running on the same physical

host. From the administrative point of view, the entire operating system of the VM becomes

independent of the computational resources, and the VM, including its state, can he described in

CHAPTER 4. Dynamic Service Deployment 88

a set of conventional files. Further, migration of live virtual machines along with its state from

one host to another, as described in [18], increases the their useability manifolds within the Grid

application frameworks. The advantages of using VMs in Grid computing are outlined in [93] as

follows:

. Security and isolation - Resource sharing is a primary requirement for the Grid environ-

ment thereby creating the requirement of the integrity and security of the shared resources.
A security model based on trust between the user and the provider may still give rise to situ-

ations where the integrity and security of the shared resources are compromised by a piece of

malicious code, and conversely, the integrity of a computation may be compromised by a ma-

licious resource. Virtual Machines allow completely isolated environments for each user, each

sharing the same physical resource but independent of each other, thus creating a more secured

environment where a malicious user must break two levels of security in order to compromise

the resources.

. Customisation - Certain configurations of a virtual machine can be modified without requir-

ing a system restart which gives the essence of flexibility and customisation. Further, multiple

virtual machines running different guest operating systems can co-exist within a single host

machine, satisfying individual requirements from a pool of physical machines.

" Legacy support - Applications requiring special environments, such as legacy applications,

can be packaged in virtual machines. The support for legacy systems in not restricted at the

application level, but encompasses all the other aspects such as virtual hardware and operating

systems.

" Administrator privileges - Access restrictions are imposed on traditional multi-programmed

systems where most sensitive operations can only be performed by the privileged user, such as

the system administrator, which may be limiting in certain cases. In case of virtual machines

such regulations can be relaxed because each VM is isolated from the others and the physical

resources.

" Resource control - Resources can be controlled at a coarser granularity in case of virtual

machines as opposed to traditional multi-programmed where resource allocation is normally

done for each application or process. In case of virtual machines, resources, such as memory,

virtual disk size etc can be allocated during the initialisation phase, and is done per virtual

machine from the virtual machine management layer, or the Virtual Machine Monitor. Dy-

namic allocation of resources is also possible for virtual machines which may be considered a

key aspect for Grid applications.

CHAPTER 4. Dynamic Service Deployment 89

" Site independence - The virtual machines themselves are independent of the host operating

system on the physical resource. This allows cross-domain migration of an entire computation
by moving the VM from one host to another irrespective of the physical resources, such as
CPU architecture, memory etc. Live migration of running virtual machines is also possible (as

shown in [18]), which is another feature that can be exploited within the Grid framework.

The approach to virtualization can broadly be categorised into two different categories, namely
hosted and hypervisor. In the hosted approach, several virtual machines with different operating

systems can co-exist sharing the underlying physical resources, which is also known as partitioning.

The VMWare Server [120] and Microsoft Virtual PC [121] offer virtualization based on this approach

where the virtualization layer, often known as the Virtual Machine Monitor (VMM), relies on the

host operating system for device support and management of the physical resources, such as memory,

processor, network etc. On the other hand, in case of the hypervisor approach, the hypervisor itself

is the first layer of software installed on a clean processor hardware layer, because of which it is

often known as the bare metal approach. In this case, the virtualization layer has direct access to the

hardware resources and may provide more efficiency compared to the hosted architecture in terms

of robustness, scalability and performance. Recent investigations in virtualization technologies have

given rise to several enhancements, one of them being para-virtualization, supported in the Xen

hypervisor [16]. Paravirtualization aims at improving the performance and scalability of the virtual

machines and proposes a new virtual machine interface where the guest VMs are `aware' of their

virtualized state as the guest operating systems are modified to exploit this feature.

A comprehensive survey of the existing virtualization technologies and approaches is available in

[122].

4.4.2 Case for Virtualization in DynaSOAr

Apart from the advantages of virtualization such as security, isolation, resource control etc. men-

tioned in Section 4.4.1, there are more usage scenarios which can benefit from using virtualization.

DynaSOAr can exploit these scenarios as explained below:

" Data Caching - One of the major motivations behind DynaSOAr was the Active Information

Repository architecture [7) which proposes to deploy the data analysis services closer to the

data. An alternative approach may be suitable in some cases where it is not important that

the latest version of the data is used for analysis. A bio-informatician may be executing

a particular workflow which accesses data from a database located at a large geographical

CHAPTER 4. Dynamic Service Deployment 90

distance, where it may not be possible to deploy the analysis application closer to the data,

or even transferring the results to the consumer may be costly. In such cases a partial copy

or a snapshot of the database deployed on a node closer to the analysis code may prove to be

beneficial. This, in effect is analogous to data caching. In DynaSOAr, such a snapshot of the

database, wrapped with data access services, such as OGSA-DAI can be packaged in a virtual

machine and deployed on demand.

" Special Environments - Many workflows in bio-informatics use specialised services, such as
Blast [9] which analyses a given protein or gene sequence and returns similarity scores with

already existing sequences in a database. This service requires a special set of libraries and a
database to perform the similarity analysis, all of which can be packaged in a virtual machine.
Many scientific analysis services require considerable amount of tuning to the underlying host

for optimal performance, which varies between the type of host on which it is deployed. Such

services, if deployed on a host using the approach taken so far in DynaSOAr, will not provide

any benefits, as the tuning is generally an offline process. The virtualization approach can

provide an alternative solution where such services can be deployed on virtual hosts and tuned

before the entire package is stored in the repository, which when deployed will make the

optimally configured service available to the consumers.

4.4.3 Using Virtualization in DynaSOAr

In DynaSOAr, the VMWare Server [120] has been used as the primary virtualization infrastructure.

DynaSOAr itself is agnostic about the type of virtualization, hence, it should be able to incorporate

any other virtualization approach. Virtual Machines are used in DynaSOAr to provide support for

services requiring special environments, and a means to allow a form of data caching for certain

situations. Instances of VMs are pre-built, and services are deployed on them on an Apache Tomcat

(or any other) Web service container. Special environments, such as third-party libraries, databases,

required by the service are included in the VM. These instances of virtual machines are uploaded
to the Software Repository like any other DynaSOAr service, and relevant entries are stored in the

registry. For the benefit of registering the services, each virtual machine is described as an XML

document based on the schema shown in Figure 4.13. This document is uploaded along with the

files relevant to the VM (such as the virtual hard disk and the VM configuration file), and each

service, including the data access services, is registered in the registry, with several TModel objects

used to describe each entry as shown in Listing 4.5.

As opposed to [17], the DynaSOAr method of deployment is transparent to the consumer, and is

CHAPTER 4. Dynamic Service Deployment 91

Listing 4.5 Entries in the registry describing services packaged in a virtual machine
inassDstailExt xmina-"urn: uddi-org: api_v2">
<buainsasEntttyExt>

<businassEntity businss. Ksy-"d15.. 878-8b12">
<nams>Dynasoar</nams>

A service deployed on a VM and a normal host

<businessServlces>
<busineesService businassXsy-"dS5. e878-8b12" serviceKey-"d6efa37a-4606">

<name>HostProviderServics</name>
<bindingTemplates>

<bindingTemplate bindingKey. '"0b0c4747-689b"
servicsKsy-"d6efa37a-4506">

<accessPoint IIRLType. "http">
http: //giga10: 8090/hostprovider/serviess/HostProviderServite
</accessPoint>
<tModellnstancsDetails>

<tModelInstanceInfo tModelKey. "6e5i2ad6-f2ed"/>
</tModelInstanciDetails>

</bindingTemplate>
<bindingTemplate bindingKey-"a3763c91-9dab"
ssrviceKeyr"d6efa37a-4506">

<accessPoint UHLType-"http">
http: //vm-1: 8090/hostprovider/services/HostProviderServies
</accessPoint>
<tModelInstanceDetails>

<tModelInstancelnfo tModelKey. "6e612ad6-f2ed"/>
</tMods21nmtancoD*tails>

</bindingTemplste>
</bindingTemplates>

</businessService>

Description of a service packaged in a VM

<businessService businessKey-"df5ee878-8b12" serviceKey-"4f84545*-d7Oa">
<name>QueryEvaluationService</name>
<categoryBag>

<keyedIeference keyName-"CodeStoreTRL"
keyValue-"http: //giga01: 8090/codestore/services/RepositoryService"
tModelKey-"c67e2622-e5b1"/>
<kayedReference keyName. "ServiceType" keyValue-"VMWARE"
tModelKey-"58e48324-764b"/>
<keyadReference keyNamo-"VM-NAME" keyValue-"CenericLinuxVM"
tModelKey. "516acd6O-fa8b"/>
<keyedReference keyName-"Servic. IIRI"
keyValue-"dqp-evaluator/services/QueryEvaluationService"
tModelKey-"41t5a363-0alb"/>
<keyedRefereace keyName-"VM-PORT"
keyValue-"8090" tModelKeyr"ad35cb4d-3aOa"/>
<keyedReferenee keyName&"Servicerag"
keyValue. "VEB-SERVICE" tModalKey. "ad9e3aO2-6232"/>

</categoryBag>
</businessService>

Description of a data service packaged in a VM

<busineesService businessKey-"df5ee878-8b12" serviceKeyr"5a081adc-6004">
<name>ProteinSequenceMySQLResource</name>
<categoryBag>

<keyedReference keyNeme. "CodeStoreURL"
keyValue. "http: //giga01: 8090/codestore/services/RepositoryService"
tModslKey-"c6792622-e5b1"/>
<keyedReference keyName. "ServiceType" keyValue-"VMWARE"
tModelKey. "58e48324-764b"/>
<keyedkeference keyName. "VM-NAME" keyValue. "CensricLinuxVM"
tModelKey&"516acd60-fa8b"/>
<keyedReference keyName-"ServiceURI"
keyValue. "axis/services/ogeadai/ProteinSequenceDataService"
tModelKey-"41f5e363-0a1b"/>
<keyedReference keyName-"VM-PORT"
keyValue=18090" tModelKey-"ad35cb4d-3aOa"/>
<keyedPeferance kayName-"ServiceTag"
keyValue. "DATA-SERVICE" tModalKeyr"ed9e3a02-6232"/>

</categoryBag>
</busineasService>

</busineasServiees>
</businessEntity>

</businessEntityExt>
</busineasDetailExt>

CHAPTER 4. Dynamic Service Deployment 92

VIvlConfiywationType

VlllhI. lllle

------------------------ DiskOutpIIRateKBpSec
........................
------------------------- ConnectionSpeedKBpSec

------------ -- -- databaseCoMiq _- -URI

-Resow celD

tomcatlnstancePath

vm: VIVISelviceList1VP.,

seivicellame
wnSeiviceList

0. ao

Figure 4.13: XAML Schema for describing it Virtual Machine

uniform for all the supported components. When a request is received from a consumer for a service

that is either not yet deployed, or for which the existing deployments are overloaded or unavailable,

the VNi image is downloaded to an appropriate host and started. The request is then forwarded

to the hosted service. Starting up a VNI also ensures that all the other hosted services in it are

available, and any requests for these services can be forwarded to the service without the need for

redeployment. It should be noted however, that downloading and starting up a virtual machine is

costly, and DynaSOAr ensures that this is done only when necessary to reduce the overhead.

Each available node in DynaSOAr hosts a HostProvider service, exposing the underlying resource.

This service is responsible for downloading and deploying the service or VNI image from the repos-

itory when a dynamic deployment is called for. Otherwise, it forwards the request to the already

deployed service and sends the response back to the consumer via the DynaSOAr Service Provider.

CHAPTER 4. Dynamic Service Deployment 93

When deploying a VM, the service invokes a VirtualMachinelnstaller component, which uses the

VMWare Server commands to start up the virtual machine, fetch the IP address of the newly

started VM, and the consumer request is then forwarded to the corresponding service on the VM.

The service containers and databases are configured to start as system processes during the VM

boot, thus nullifying the requirement of any user input. VMWare Server also provides an extensive

set of command line APIs and Perl scripts which can be used to communicate with the server to

control to VM.

The VMWare virtualization layer offers different types of networking procedures for the virtual

machines, which are outlined below:

1. Host-only, where the IP address assigned by the network adapter is only known to the host

and thus the guest virtual machine can only communicate with the host.

2. NAT, where the virtual machine network adapter is configured to work with the network

address translation approach, and is able to communicate with other systems on the network

through the host system.

3. Bridged, where the virtual machine network adapter is configured in such a way that it becomes

known to all the systems on the corresponding network.

In DynaSOAr, the host-only approach has been used in most cases because this approach allows

the isolation of the VMs from the external world, thus increasing the security of the system, and

secondly, this approach rules out the possibility of any IP address collision issue that can arise when

a suspended VM becomes active but its IP address has been re-issued by the DHCP server of the

network. This approach is also suitable for organisations who do not want to expose the details of

their computational resources. However, in some cases, such as the Distributed Query Processors

discussed in Chapter 3 and 5, the "bridged" configuration is necessary, because the participating

services communicate directly by sending messages to each other. In such cases the IP addresses
have been selected from a pre-reserved pool.

4.5 Discussion

This chapter introduced an alternative approach to Grid computing which revolves round services

rather than jobs. Traditionally most Grid middlewares use a distributed job scheduling system which

submits the job execution code from the consumer along with all inputs to a target host where the

CHAPTER 4. Dynamic Service Deployment 94

job is executed. This execution is however an "one-off" execution because the execution code is not

retained at the host where it is executed. If the consumer wants to run several experiments using
different input data, the execution code must be submitted for each execution. In service-oriented

systems, a service once deployed is available for a longer period until it is explicitly undeployed.

In DynaSOAr, this feature is exploited to spread the cost of deployment amongst multiple possible

invocations from the consumers.

Further, DynaSOAr proposes a demand-driven deployment approach. Services are only deployed

when there is a requirement for it. All services registered in the DynaSOAr registry are advertised

by the Service Provider as available services, whether or not they are deployed at any particular

point of time. DynaSOAr also makes a logical separation between the provider of a service and

the provider of a resource on which the service is deployed and requests processed. To a consumer,

the services appear to be provided by the DynaSOAr Service Provider, although, the services may

be deployed on a host different from the actual Service Provider, or may not be deployed at all.

Consumers can send a request to any such service, and based on the state of the current deployed

instances of the requested service (if any), the request is forwarded to a designated host, which either

processes the request or deploys the service in order to process the request. The logical separation

of the service provider and resource/host provider by DynaSOAr creates a possibility of different

organisational models, and also provides the consumers freedom to choose between available service

providers who provide a similar service. This is viewed as the Software Hypermarket in DynaSOAr.

In DynaSOAr, a message-oriented approach is taken while designing the service interfaces. This

allows the consumers to be completely agnostic about the internal data structures and objects

that are used within DynaSOAr, and even the Service Providers and Host Providers are not tightly

coupled except for a mutually agreeable contract in a form of allowed messages that can be exchanged

between them. DynaSOAr extensively uses the UDDI specifications to store the description of the

services it can provide along with other characteristics of the services, such as the type of the service

and the location of the actual service code, in a the UDDI-compatible GRIMOIRES registry.

Virtualization is an important aspect in DynaSOAr and is viewed as an approach to create ad-hoc

virtual organisations on demand. An alternative approach to the Active Information Repository

proposal of moving the analysis code to the data is advocated in DynaSOAr by the use of virtual

machines where in certain cases a snapshot of the database is moved closer to the computation,

which can be used as a way of data caching. Virtualization in DynaSOAr is completely transparent

to the consumer, and the services appear to be normal Web Services hosted on real hosts.

The prototype uses standard Java File I/O to manage the upload and download of the service

CHAPTER 4. Dynamic Service Deployment 95

code, including virtual machines, which is one of the concerns in DynaSOAr. This approach works

without any problems for small packages, but is costly for larger files, such as virtual hard-disks,

which makes the deployment of a virtual machine extremely costly. For such files, the SFTP utility

was used with more success. But the use of a more robust mechanism such as GridFTP and/or
SRB for managing the storage and transport should reduce the cost and improve the performance.
Other approaches, such as Peer-To-Peer (P2P) systems may also be efficient, especially, when there

is the need of distributing the same executable code (services or virtual machines) to multiple hosts

at the same time.

DynaSOAr evolved from the research of several researchers pursuing similar interests. The involve-

ment in the architectural aspects of the framework is considered as one contribution towards this

thesis. Conceptual design, implementation and evaluation of key aspects of the dynamic deploy-

ment framework such as the extensive use of registries to describe services and resources, adoption

of the message oriented model and the handshaking between resources to announce their availability,

introduction of the virtualization approach and the use of virtualization technologies, and several

approaches to scheduling within the host provider are the other the major contributions towards the

thesis.

F-
Chapter5

Exploiting Dynamic Service Provisioning in

DQP

The concepts of Dynamic Service Provisioning as discussed in Chapter 4 could be exploited within

the context of a Service-oriented Distributed Query Processor and in this section, the attempt to

combine the concepts of DynaSOAr with OGSA-DQP is discussed. In the publicly available version

of OGSA-DQP, a consumer can submit queries that access data from data sources which may be

geographically distributed and also invoke a remote analysis service on the data within the queries.
Experiments, which will be analysed in later sections, show that frequent long running queries suffer
from a heavy data access cost over the network when the data sources are remote. During the

invocation of a remote analysis service, the invocation cost increases rapidly as the number of tuples

retrieved from the database increases or the size of each tuple increases, because of the additional cost

of data transportation over the network. It is also a common practice in certain scientific domains to

use external services managed by third parties within the distributed query processing framework,

which does not guarantee the availability of the service at the time of the query submission and as

a result of which the queries may fail. The concept proposed in the Active Information Repository

architecture [7] can provide a potential solution to these issues by allowing the evaluation and analysis

services to be provisioned closer to the data sources. The combined Distributed Query Processing

system builds on the DynaSOAr architecture [19] and allows the on-demand deployment of various

services needed for the DQP system.

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 97

5.1 Usage Scenarios

Because OGSA-DQP is exposed as a service, and the query evaluation engine created at run-time is a

composition of several services, it seemed worthwhile to exploit dynamic deployment features within
the context of query evaluation. There can be several scenarios where the concepts of dynamic

service provisioning as seen in DynaSOAr could be used to benefit the OGSA-DQP framework.

These scenarios are described in the following sections.

5.1.1 Collocating the Query Evaluation Engine with the data

In the original OGSA-DQP, the databases can be located on nodes that are remote from the evalu-

ation nodes where the actual query evaluation processes take place. The scan operators within each

partition being evaluated on the evaluator nodes access' the data from the databases using OGSA-

DAI. Accessing data from remote data sources over the network incurs a data access cost which

increases as the number of retrieved rows increases or the size of the tuples increases. Provisioning

the query evaluation service on the fly on suitable nodes may be used as a solution to this issue.

The DQP system would first try to schedule the scan operator on the same node as the data set,

if possible, which would completely eliminate the cost of transporting the data over the network.

Alternatively, scheduling the scan operator on a node closest to the data source may reduce the data

access cost. In order to do this, the DQP system must be able to deploy the query evaluation service

on the node which is deemed suitable for this based on the network latency with the node on which

the data resides.

5.1.2 Collocating the Analysis Service with the data

Many researchers in fields such as Bio-Informatics and Neuro-Informatics execute workflows that

retrieve data from a publicly available database, such as the Gene Ontology (GO) database [123]

or SwissProt [124], and perform analysis on them. These workflows may involve invocation of a
data retrieval service returning a set of tuples, after which the analysis service is invoked on each

resulting tuple. In most cases, these analysis services are remote from the actual data sources, and

each invocation incurs an additional cost in transporting the data over the network to the resource

where the analysis service is deployed. As in case of service-oriented systems, the data propagates

over the network as SOAP messages and the overhead increases for larger amounts of data resulting

in larger service invocation cost as have been established in [125], [126] and [127]. The data elements

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 98

within the message are serialised by the underlying infrastructure which leads to a certain degree of

expansion, and in [127], it is claimed that the SOAP data representation is about 10 times the size of
the equivalent binary representation. This substantially large size leads to an additional cost during

the data transmission, which is also evident from the experiments analysed in [128]. For frequent

long running queries that invoke such a remote analysis service, the cost of transporting the data

over the network can be eliminated or reduced if a copy of the analysis service can be deployed closer
to the data source.

5.1.3 Increased degree of parallelism

It is also possible to deploy multiple copies of the analysis service and parallelise the operation-call

operator (the physical algebra operator which encapsulates the invocation of the analysis service) by

scheduling it on multiple partitions to share the load between several instances. After this, tuples

can be routed to different instances of the service by the parallelised operation. call operator creating

an execution framework similar to the one shown in Figure 5.1(c). In this figure, the analysis service

is deployed on each of the available nodes, and thus it is possible to parallelise the operation-call

operator on partitions running on each of these nodes, and make them invoke different instances of

the same service. The redistribution of tuples in such a fashion for queries involving large number

of tuples from a database will share the load on each instance thereby increasing the performance.

It is to be noted that such a step can be taken for Web Service invocations which are not stateful

in nature.

The concepts proposed in Section 5.1.1,5.1.2 and 5.1.3 are shown in Figure 5.1. Figure 5.1(a) shows

a DQP framework where all the data access, analysis and evaluation services are distributed on

separate nodes, as in the case of the DQP system described in Chapter 3. An extended framework

with the analysis service collocated with the data is shown in Figure 5.1(b). A further extension

of the framework with multiple copies of the service deployed on all available nodes is shown in

Figure 5.1(c). Finally, Figure 5.1(d) shows the complete dynamic DQP framework where the entire

query processing engine is dynamically deployed by collocating both the analysis and evaluation

services with the data.

5.1.4 Availability of the third-party maintained Analysis Services

Often, the analysis services invoked during the data analysis are deployed at remote sites and

maintained by third parties. This does not guarantee the availability of the service when the query

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 99

(a) A DQP system with distributed services

(c) A DQP system with multiple dynamically-
deployed analysis services

oes
ý

oosaoN

no e2 node 3
DOP Framework

(b) A DQI' system with analysis service collo-
cated with data

Malysis
Sorvico OCS -_ $

OCS OGyý, DM

node-2 note-5
DOP Framowork

OES

C, gI Malys ý_
ý Sorvito

notle-1 somvaýa

11

(d) A DQP system with the query evaluation service
and analysis service collocated with data

Figure 5.1: Various configurations of a dynamic DQP framework

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 100

is submitted, and as a result of which queries may fail. Apart from the cost of invoking a remote

service, the possibility that the service may be unavailable during the actual query execution may

often be a cause for concern. It may be possible to avoid such a situation where a query suddenly
fails because of a sudden unavailability of the analysis service by deploying a copy of the service

on a suitable computation entity available at that point. Investigations into automating in-silico

experiments using semantic data [129] state that this tight coupling of workflows with particular

service instances should be avoided using service classes rather than particular instances. In such

cases, the workflow would bind to available instances during execution time. The equivalent scenario
in DQP would be to deploy copies of the analysis service as and when required on available resources.

5.1.5 Data caching by dynamic deployment of databases

Often, e-Science experiments such as analysing the data from the SkyServer database [23] or bio-

informatics databases such as EMBL [130] are not particularly reliant on the most updated data.

In such cases, a snapshot of the database wrapped by an OGSA-DAI Data Service, packaged in a

virtual machine can be deployed to enable the DQP system to process queries involving the new

database. This also provides a functionality similar to the caching of data where this snapshot can

be used to serve frequent queries over the same set of data. Contrary to the concept of moving

the computation closer to the data, which has been the focus in all recent proposals on dynamic

deployment, in this case a snapshot of the data is deployed closer to the computation, which makes

it comparable with data caching. In traditional data replication processes, there is a requirement

of a database management system on each of the hosts on which data must be replicated, and

the process requires the intervention of a database administrator who would replicate the data as

an offline process. The replicated database will need to be synchronized in some fashion. In the

approach explored in this thesis, the requirement of a database management system on the target

host and the intervention of a database administrator are not required for deploying the database

packaged within a VM within the local network. It is however to be noted that a separate background

process would be required to periodically synchronise the snapshot with the actual data set that was

important for the application.

5.1.6 Services requiring special environments

A lot of workflows in the field of Bio-informatics involve specialised services such as Blast (Basic

Local Alignment Search Tool) [9], which is a very common gene and protein sequence analysis service.

Given a protein or a gene sequence, this service can identify similarities of the sequence with those

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 101

stored in a database. This service requires a special environment such as a set of libraries and a
database, all of which together can be encapsulated within a virtual machine, and can be deployed as

and when required. Further, scientific applications often are tuned with the host on which they are

installed. The tuning process is manual and the performance depends heavily on a proper tuning,

which in turn depends on the processor architecture, available memory, disk space etc. It may take

a considerable amount of time to perform this tuning on the hosts on which the application are
installed, and it is impossible to automate this process. In such cases, a flexible alternative approach

may be to install the application or service on a virtual machine and tune it beforehand. This

virtual machine can then be stored within the repository, and when it is deployed and started, the

application, which has already been tuned will perform normally.

The current query compiler/optimiser in OGSA-DQP performs some basic optimisation based on

the information available to it. But this optimisation can be enhanced by considering the dynamic

deployment scenario, as outlined in the use-cases mentioned above, where the scheduler would be

able to schedule the deployment of new evaluation and/or analysis services on new computational

resources thereby allowing the query processing framework to capitalise on advantages offered by a
dynamic deployment framework.

5.2 Towards a Dynamic Distributed Query Processor

In this section, the functional architecture of the dynamic distributed query processor is discussed.

5.2.1 Overview

The extended version of the Distributed Query Processing system incorporates the dynamic ser-

vice provisioning concepts from DynaSOAr, and in the process, uses certain components from the

DynaSOAr framework, although there are certain deviations from the concepts proposed in Dyna-

SOAr. For example, in DynaSOAr, the request from the consumer for invocation of a service is

forwarded without any modification to the message body to the service via the HostProvider once

the service is deployed on an available host, and the endpoint of the actual service is only known at

the corresponding HostProvider. The forwarding of the message normally happens in a way that is

transparent from the user, although, there are options where the consumer is able to provide pref-

erences about the provider, which is a semi-transparent approach. In DQP, the evaluation services

need to interact among themselves for evaluating the corresponding partitions and hence the end-

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 102

points of the dynamically deployed evaluators are known at the GUQS or the coordinator which is

comparable to the DynaSOAr Web Service Provider, although for a consumer, this stays completely

transparent. Other components, such as the Software Repository, the Registry Service and the Ilost

Provider service are incorporated into the extended DQP architecture.

The resulting architecture described in detail later in this section, adds a completely new dimension

to the OGSA-DQP system. In the earlier DQP system, the data, evaluation and analysis services

were tightly coupled with the available computational nodes. It required a pre-configured set of

resources with all the necessary components, such as the data services, evaluat ion and analysis

services deployed on those resources (as shown in Figure 5.2), thereby limiting the scope for exploiting

the inherent dynamism of a Grid-like environment.

I
GDQSI Analysis

$aMCB

Computational Node -1 Node-x

Ouery
Evaluation

Service
Nodap

OGSADAI
Data Service

Node-m

015k

-
Ouery

Evaluation
Service

rII
OGSADAI Node-q

Data SeMee

Node"n

DNIt

Figure 5.2: Overview of the static DQP system

The modified version of DQP decouples the software components from the available computational

and data resources. The system may have a set of pre-defined data resources, but apart from

that, all that it requires is a set of hosts which support the DynaSOAr framework. It can be

assumed that as the dynamic deployment features are incorporated within the standard containers,

the requirement of this additional framework will be eliminated, thereby allowing DQP to take

the full advantage of these features embedded inside the containers. In this extended version of

DQP, there are pools of services, virtual machines and resources (Figure 5.3). The software pool

consists of services such as the evaluation and analysis services, the virtual machine pool may contain

virtual machine instances containing a database snapshot and/or specialised analysis services which

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 103

require a special environment, and the pool of resources contain a set of computational nodes which

can be utilised during query processing. Conceptually, the DQP system in this case "creates"

each node by combining a number of components from the pools. This feature also opens up

the possibility of using the Software Marketplace as mentioned in Section 1.3.5 and [87] where,

based on the preferences (such as preference to a particular provider, for example the Blast, Service

from the European Bioinformatics Institute (E13I), instead of the one from the National Center for

Biotechnology Information (NCBI)) or quality of service specifications (such is cost, throughput,,

reliability etc) from the consumer, the DQP system would select a certain version of the analysis or

evaluation service from a list of all the available services.

Virtual Machine Poo!

Data Source -t Data Source -n

Software Pool

Evaluator ,,,
Analysis Service

--

GOoS

° Services
Deployment
Framework ; Data Source

Deployment Node n Policies

Resource Pool

Node-1 ,,,

Node-n

Figure 5.3: Overview of the Dynamic DQP system

In Section 3.1, OGSA-DQP has been considered as an approach that is coinplimentary to other

service orchestration mechanisms, such as workflow execution systems. Most traditional workflow

engines, for example Taverna [10], work with a centralised coordinator system which is better known

as "centralised enactment" and can be compared with the hub-and-spoke concept where the coordi-

nator is responsible for all communication between the services. OGSA-DQP, in the original form,

is in some ways comparable to this, where the query evaluation processes are initiated only on the

available evaluation nodes. The dynamic version of OGSA-DQP is more closely related to the dis-

tributed workflow concept, such as DECS [131]. DECS allows "decentralised enactment" where the

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 104

coordination is distributed amongst multiple enactors who communicate as peers during the enact-

ment process, thereby creating a fluid workflow enactment system which is not tightly coupled with

a centralised enactment engine. In the dynamic version of OGSA-DQP, the query evaluation engine
is not tightly coupled with the already available evaluation nodes, but is fluid in nature, where new

nodes can be allocated to the process of query evaluation based on the run-time situations.

5.2.2 Architecture

Architecturally, the dynamic version of OGSA-DQP does not differ very much from the earlier

version, except that it utilises some additional components that are part of DynaSOAr, such as

the Software Repository, Host Provider and the Registry Service. The GDQS has knowledge of the

registry where it tries to look up the query evaluation and analysis services. These new services again

are loosely coupled with the DQP framework, and can be shared with other services or frameworks

that require a software repository or a UDDI registry. Figure 5.4 shows an overview of the extended
OGSA-DQP architecture. To allow dynamic deployment of services, the HostProvider service is

made available on the participating nodes which register themselves with the Registry Service. The

query evaluation service or the analysis service can optionally be deployed on computational resources

and the data nodes - but if they are not deployed, it will be up to the DQP framework to decide when

and where to deploy the services. The services, rather, are uploaded to the Software Repository and
during this process, each available service is also registered at the registry as a deployable service.
The URL of the Software Repository is also stored in the registry as a TechnicalModel or tModell

reference within the BusinessService2 entity.

Thus unlike the original OGSA-DQP where a tightly coupled set of resources are used with the data

access, evaluation and analysis services pre-deployed on them, the extended version tries to exploit

the dynamic deployment features by using only a collection of data hosts, and host providers which

allow services to be deployed on them dynamically. In the latter case, the distributed query pro-

cessing system will have the option of making a choice between the services to deploy, either based

on the user preferences, or the quality of service parameters, or even predefined service level agree-

ments. What this dynamic version of DQP provides is an additional framework within the existing
DQP system which is capable of exploiting the dynamic deployment features thereby incorporating

'Technical Models, or tModels for short, are used in UDDI to represent unique concepts or constructs. They
provide a structure that allows re-use and, thus, standardisation within a software framework. The UDDI information
model is based on this notion of shared specifications and uses tModels to engender this behaviour. For this reason,
tModels exist outside the parent-child containment relationships between the businessEntity, businessService and
bindingTemplate structures. [811

2Each businessService is the logical child of a single businessEntity. Each businessService contains descriptive
information again, names, descriptions and classification information - outlining the purpose of the individual Web
services found within it. [811

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 105

a flexibility to the system which was absent in the earlier versions.

Registry Service

" Lai of HostProvk$ers

-W of Services

Repository

S, a

Mos, Provider

//

C,

Host Provider

®

Most Provider

OßSA-DAI DSR

i c)st Prov der

OGSA-DAIOSR
__

1µ
Figure 5.4: Basic I)QP Architecture

5.2.3 Setting up the Distributed Query Processor

In this dynamic version of OGSA-DQP, the configuration document submitted by the client speci-

fying the data and analysis resources to be used for the distributed query does not mandate the list

of evaluation services to be used. The only requirement is a list of data sources on which the query

will be executed and optional registry information identifying the registry which will be looked up

for the availability of computational resources and services. The XML fragment in Listing 5.1 is

similar to the one shown in Listing 3.2 and shows the canonical form in which the data and analysis

resources are specified by the client, the difference being in the additional registry information, and

the fact that the list of evaluation services are not explicitly provided, and only the name of the

analysis service is provided, giving the GDQS the freedom to deploy these services as and when

necessary on available computational resources, thereby creating an ad-hoc grid-like environment. If

there are available resources with the query evaluation service already deployed on them, then those

can also be included in the configuration file as before, in which case the coinpiler/optimiser will

consider these nodes along with the other available resources which are looked up from the registry.

Once the configuration document is received by the GDQS Factory Data Service, the usual steps of

importing the schema and rnetadata from the data services (as outlined in Section 3.3) are performed.

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 106

Listing 5.1 Configuration Document for Dynamic OGSA-DQP
<DQPConfiguration =lns-"http: //uk. org. ogoadai/dqp/configuration">

<DataPasourceList>
<ImportsdDataSourca>

<URI>http: //plOl. ca. washington. odu: 8199/axis/services/ogsadai/GoDataSsrvico</URI>
<ResoureslD>GoT. rmMySQLResourc. </Resourc. ID>

</ImportedDataSoures>
<ImportedDataSourca>

<URI>http: //plO2. ca. tcd. ie: 8199/axis/services/ogsadai/ProtoinTeraDataS*rvics</URI>
<ResourceID>ProtsinTarmMySQLR. source</Rasourc. ID>

</ImportedDataSoures>
<ImportedDataSourcI>

<URI>http: //plOt. iii. u-tokyo. ac. jp: 8199/axis/services/ogeadai/ProtainPropertyDataServlcs</URI>
<RssourcaID>ProtsinProp. rtyMySQLResourca</Rssourc. ID>

</ImportedDataSoures>
<ImportedDataSoures>

<URI>http: //p102. csl. utoronto. ca: 8199/axis/sarvic. s/ogoadai/ProteinS*qusnceDataService</URI>
<RssourcalD>ProtsinSequenceMySQLRssourc. </ResoureslD>

</ImportedDataSource>

No specific endpoint for the service Is provided

F <ImportodSarvics name-"EntropyAnalysarService"/>
</DataResourc. List>

1dA44-4nn. 1

<AagistryConfiq>
<r. gistryURL>http: //budls: 8090/grimoir. s/</r. gistryuRL3-
<publishURL>http: //budle: 8090/grimoiras/services/publish</publlshURL>
<inquiryuRL>http: //budla: 8090/grimoiras/ssrvicus/inquirs</inquiryuRL>
<transportClasaNams>ApachsAxisTransport</transportClassNama>

</RsgistryConliq>

</DQPCoafiguratioa>

Additionally, the GDQS also collects an estimate of the network latency time between the available

resources (which it looks up from the registry) and the actual data sources by sending and receiving

a pre-calculated packet. It should be noted that this process of gathering the network data is not the

most perfect way, but it can nevertheless produce an estimate. It would definitely be more accurate if

other standard network monitoring tools are used, and the DQP system does not disallow such tools

to be used. This estimation of the network latency can later be used during the query optimisation

phase to schedule data access and operation call operators to specific hosts which are closest to the

data source.

5.2.4 Proactive deployment of the Analysis Service

The configuration document provided by the consumer may optionally include the name of an

analysis service that will be used in the queries. The GDQS takes a proactive decision to deploy

that service on all available resources during the schema import phase if that service is registered in

the registry and can be found in the Software Repository. This allows the GDQS to consider multiple

instances of the analysis service while optimising the query thereby parallelising the operation call

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 107

operator with a view to maximise the performance. GDQS uses multiple threads to process the

deployment on each available host, and hence the cost of deploying the analysis service on multiple

nodes is almost equivalent to that of the maximum cost amongst all these. Once the analysis service

has been deployed on multiple nodes, the GDQS keeps a record of all the endpoints as replicated

operations and considers them together with the network latency data to determine which of the

deployed instances should be used during the query processing. Thus a costly operation call invoking

the analysis service may be included in multiple partitions, each with the analysis service hosted on

the corresponding node, so that the tuples on which the service will be invoked can be distributed

to all these partitions thereby executing it in parallel. DQP uses a heuristical approach to decide on

the degree of parallelism of expensive operators. For an operation-call operator this is equivalent to

the number of deployments of the service. Thus, DQP is able to incorporate all the endpoints of the

analysis service that has been dynamically deployed to generate query plans where the operation-call

operator is fully parallelised.

5.2.5 Distributed Query Plan Generation

Unlike the previous OGSA-DQP where evaluation services were required to be already deployed

on the participating nodes, there is no such requirement except that the participating nodes must

allow the deployment of new services, which is achieved via the HostProvider. After the schema is

imported, a query is submitted by the consumer. During the compilation phase of the query, the

GDQS collects the list of available computational resources from the configuration file (if it contains

such a list) and the registry, where all the HostProviders are registered, as well as all previously

deployed evaluation services. It is also possible to add certain characteristics of the participating

nodes, such as the CPU speed, amount of available memory etc. within the configuration document

as Computational Metadata. These can also be stored as the metadata for each HostProvider service

within the registry. The GDQS keeps a record of the available computational metadata with the list

of available resources. After the query compilation and optimisation phase, a physical query plan is

produced which is then partitioned by the scheduler component. This component is responsible for

parallelising the physical plan into several partitions and assigning operators to the available compu-

tational resources which can perform the query evaluation. The scheduler uses certain heuristics for

introducing intra-operator parallelism to some physical operators such as join and operation call. As

a first step, exchange operators are introduced in the query plan before any attribute-sensitive (such

as join) and location-sensitive (such as operation-call) operators which is described in Section 3.4.

Thereafter, the first phase of the scheduling process follows the algorithm shown in Listing 5.2 for

assigning the degree of parallelism to each operator [132].

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 108

Listing 5.2 Assigning degree of parallelism to operators
1 repeat
2 get costliest parallellsable operator;
3 If more parallelism I. beneficial
4 repeat
5 increase degree of parallelism for operator
6 check If more parallelism Is beneficial
7 until no changes in parallelism OR no more available resources
8 until no changes in costliest operator

The second phase of the algorithm assigns the operators to specific computational resources. The

complete physical plan is subdivided into partitions bounded by the exchange operators. If a parti-
tion does not contain any parallelised operators, the scheduler will attempt to assign it to a specific

computational node. On the other hand, if any operator within a partition is parallelised, the other

operators in that partition (such as the reduce operator) are also parallelised to the same degree

and a number of partitions equivalent to the degree of parallelism will be created, each containing
the identical query plan fragment. Assignment of partitions to computational resources consider the

computational metadata that describes the characteristics of each node, and the most recent net-

work latency information for each available node. The scheduler uses some heuristics while assigning

operators to resources, which are as follows:

" If a partition contains a data access operator, such as a scan operator, the scheduler assigns

them first, and makes an attempt to place it on the same node as the OGSA-DAI data source
being accessed. If that node has an evaluation service already deployed, then the endpoint

of that service is used, otherwise, the node is assigned only if it allows dynamic deployment

of an evaluation service. If it is not possible to assign that node to a partition, because

no evaluation service has been deployed on it and dynamic deployment is not possible, the

scheduler assigns the partition to the node closest to the data source and hosting a HostProvider

service, irrespective of whether an evaluation service is already deployed or not. 3.

" The partitions which contain a join operator that is not parallelised, are placed on the same

node as the larger input (the scan operator), the assignment of which would have already

marked the node as requiring dynamic deployment of an evaluation service.

" The partitions which contain parallelised hash join operators are placed as the first option on

the node which has the larger input, followed by the node containing the second input, followed

by other nodes with a preference given to powerful machines (higher CPU speed) with larger

memory, in each case checking whether an evaluation service has already been deployed on
3The term "node closest to the data source" denotes the node which has the least network latency with the one

on which data is located

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 109

the nodes, and if not, using a node which hosts the IiostProvider service thereby designating

them for a dynamic deployment.

" For the partitions which contain parallelised hash loop join operators, first preference is given
to the node which contain the larger input, followed by the node containing the OGSA-DAI

data source being accessed or the node closest to it, followed by other nodes with a preference

given to machines with large memory. The CPU speed is not considered as the primary factor

as the join operator spends a large proportion of its time waiting for responses from the data

service. During each assignment, the availability of the evaluation service or feasibility of a
dynamic deployment of the evaluator is verified.

. The partitions containing parallelised operation call operators are assigned on the basis of least

network latency followed fastest machine first. Thus, if there are nodes on which the analysis

service was dynamically deployed, the scheduler will choose to assign the operators on them

to reduce the network latency, and thus the invocation cost.

Based on these criteria and the algorithm in Listing 5.3, the scheduler assigns the operators to specific

computational resources and generates a set of sub-plans, each designated for a computational

resource. As all available resources are considered in this dynamic version of OGSA"DQP during the

query compilation/optimisation phase, the selected resources may not have the services required to

evaluate the partition scheduled for the node. In such cases, the dynamic deployment framework will

send a deployment request to the corresponding node, which will download and deploy the required

service, and also update the registry about this new deployment, so that the GDQS can consider
these new service instances for subsequent queries without any need for a dynamic deployment. Once

the deployment is successful, the query partitions are submitted to each of the evaluation nodes,

and query evaluation proceeds as explained in Section 3.5. Figure 5.5 shows the query processing

activity in a DQP framework where the concepts proposed in Sections 5.1.1,5.1.2 and 5.1.3 are
brought together.

The figure follows the same sequence as the earlier Figure 3.5. In step 1, the client submits a query
to the DQP coordinator service, which compiles and optimises the query and generates a set of

query partitions which can be evaluated in parallel. During the compilation/optmisation phase, the

coordinator service takes into account all available hosts rather than the hosts which already have

the evaluation service deployed on them. The query plan thus generated may contain a number of
hosts which are best suited for the evaluation, but do not have the evaluation service pre-deployed,

in which case, the GDQS dynamically deploys the evaluation service on these nodes (step 2). Once

the deployment phase completes, the query partitions are sent to each participating node (step

3), following which the query execution process starts on each of the nodes as described before in

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 110

Listing 5.3 Assigning evaluators to partitions

discover the set of available evaluators E= {el, e2 ... en)
discover the set of available host providers H= {hl, h2, ... hn}
Set deployment-required D
for each operator
do

{ If (operator = scan)
ip = get data source IP(operator)
ComputeNode node = find nearest node(ip, E, H)
If (node is in H) {

D=DU (node)
}

} else if (operator = hashjoin) {
1= get left input(operator)
r= get right input(operator)
ComputeNode node = find join node(l, r, E, H)
If (node is in H) {

D=DU {node}
}

} else If (operator = hashloop) {
I= get left input(operator)
ip = get data source IP(operator)
ComputeNode node = find join node(I, ip, E, H)
If (node is in H) {

D=DU {node}
}

} else If (operator = opcall) {
d= get degree of parallelism(operator)
Collection nodes = find opcall nodes(d, E, H)
for each n in nodes {

if (n is in H) {
D=DU {n}

}

}
end
If (D not empty) {

for each d in D
do

deploy evaluation service on d
E=EU {d}
update registry with evaluator instance d

42 end
43 }

Section 3.5. Each node communicate with each other by sending and receiving partial results in

form of tuples and once the execution is completed, the final result is returned in step 8 to the

coordinator service and hence the client.

The services that are dynamically deployed remain in place unless specifically undeployed. Thus,

queries submitted to the same DQP data resource will be able to use all the available service instances

as the configuration of the data resource itself is updated as and when dynamic deployments take

place. On the other hand, as the newly deployed service instances are reflected in the service registry,

new resources created from the DQP factory data resource for the same set of data sources will also

be able to utilise all the available services, and may not need to deploy new services.

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 11]

NO
Mint

cxclwngc O

GDOS Data R esource -hanac
r- rJJ7ýi

OQLOuaryStatammt _ _ Query Evaluation

nvluce
Activity o - Service --º

_
.. p call A

T
Analysis Service

zclwnge
I ©
i- --- -- - -- - ------- -I - a OGSA-DAI DSR 1 _

jrnn

<zchuylc

ý Dala Source rrJme

czchanye
Ni uun

Query Evaluation
- Service ------- rducc O

O
~ ný call Analysts Sarvlcs

zchnnpc
OGSA-DAI DSR 2

rrJucc
reduce Query Evaluation

N2

Data Source wan
Service

Analysis Sarvlc.

"Pjall

OGSA-DAI DSR
limn

czch. 'W

Client DMa Source Kr lnoc

N3

Figure 5.5: Query Execution on Component Services in a Dynamic OGSA-DQP framework

5.2.6 Using Network-aware Cost Models

There is some existing work on cost models for a distributed query processing system considering

the network characteristics, such as [133] and [134]. In [133], the authors discuss a concept which

utilises a "network graph" for distributed query processing, where the transmission cost between

the participating nodes on which data are hosted are used to create the network graph from which

least costly routes can be derived using well-known algorithms such as the shortest path algorithm.

In [134] new algorithms such as Edge and Edge+ are discussed which can be used for placement

of the operators on arbitrary network locations given the availability of the framework which allow

such placement. The concepts of DynaSOAr allows the query evaluation engine to be flexible in

nature. The network aware cost models are capable of taking better decisions as to where the

operators should be placed based on the network data. It can also be envisaged that the real

network data would be collected using network monitoring tools, such as CoNlon [135] which is a

scalable monitoring tool for the PlanetLab system [136]. Bringing all these together, we can envisage

a distributed query processing framework which will be fully dynamic, network-aware and flexible,

where the query compiler/optimiser would use adaptations of network-aware cost models for making

decisions about the assignment of the operators to computational resources after which the dynamic

deployment framework will allow it to deploy necessary components on the selected nodes thereby

creating an ad-hoc runtime evaluation engine able to exploit computational and data resources across

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 112

organisational boundaries.

5.2.7 Virtualization in DQP

The concept of virtualization and how it has been used in DynaSOAr is outlined in Section 4.4. A

similar approach is taken in this dynamic OGSA-DQP, particularly for two of the usage scenarios out-
lined in Section 5.1, viz. to perform data caching by dynamic deployment of databases(Section 5.1.5)

and for services requiring special environments(Section 5.1.6).

5.2.7.1 The Model

Virtualization plays a major role in this dynamic OGSA-DQP framework as a means of bringing

the data closer to the analysis service as opposed to the concept proposed in the Active Informa-

tion Repository of moving the analysis code closer to the data. The primary scenario where this

alternative approach may be useful is where a consumer, for example a bio-informatician, submits
frequent queries over the same dataset, where each query extracts a large number of tuples from one

or more databases, performs certain operations, such as join on them, and for each matching tuple,

invokes an analysis service. The DQP query compiler initially attempts to assign the join operator

on the node which has the largest input as the first preference, followed by the node with the second
input, and then other available nodes. But this approach may still give rise to a situation where a
large number of tuples have to be transferred from a distant node to the root evaluator (which is

collocated with the co-ordinator). As DQP relies on SOAP messages for transferring the tuples, the

transport cost incurred in such situations may become extremely high. If it can be established that

the consumer is submitting the queries over the same data set, and if the data set does not need
to be the most up to date copy, it may be possible to take the alternative approach of deploying a

snapshot of the database closer to the computation to avoid the large transport costs.

Database Replication is often considered as a solution to manage distributed databases and bringing

the data closer to the computation. But the technology requires a long offline administrative process

of setting up the master and slave databases after which the slave databases can synchronise them-

selves with the master copy. Thus it is evident that database replication alone can not be used to

deal with the problems as mentioned above. In the dynamic version of OGSA-DQP, virtualization
is viewed as one of the potential solutions. As it has been assumed that the requirement does not

mandate the use of the most recent data set, in this extended DQP, a snapshot of the database is

deployed in a pre-built virtual machine, along with the necessary data access services to access the

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 113

data. This pre-built VM is stored in the software repository and the DQP system is able to deploy

it when required.

Virtual Servers from VMWare [120] have been used in DynaSOAr, and hence in this dynamic version

of DQP. As in the case of DynaSOAr, the available HostProviders are registered so that the service

provider, in this case the DQP coordinator can discover them from one or more registries. In order to

be able to use the virtualization features, some hosts with an installed version of the VMWare Server

are registered as HostProviders which are stored in the registry as individual entities. The registry

contains the information about the VMWare Server, such as the location of the executables and the

perl scripts which wrap the VMWare Server commands. When required, the service provider would
be able to search the registry for hosts with the VMWare Server, and request the HostProvider

service on that host to download a particular virtual machine and start it, which, in effect will

make all the services deployed within that VM available. A "bridged" networking model is followed

within DQP for such cases, as the services deployed on the VM, such as the evaluation service must

communicate with external services, such as remote evaluators on other participating hosts, thus

highlighting the requirement of the "network presence" of the VM to be known. For this reason, a

pool of IP addresses is used to assign each new VM a unique IP address when the VM is booted,

so that they can communicate with external systems. Each service deployed on the VM will be

accessible using this assigned IP address within the service endpoint.

5.2.7.2 The Feedback Methodology

In DQP, all services are deployed when required, and the same philosophy is followed for the deploy-

ment of a database snapshot. The other dynamic deployment options, such as moving the analysis

code closer to the data and collocating the query evaluation engine with the data are exploited
during the query compilation/optimisation phase, but for caching the data or deploying the data

closer to the computation, a different methodology of feedback is used. This is because deploying a
database wrapped in a VM is costly, and is done only when it is a necessity. Several performance

measurements, such as number of tuples transferred, total cost of transferring the data, the total

cost of the actual evaluation process etc. are collected from each of the participating evaluation ser-

vices and are sent back to the central DQP coordinator (GDQS) after the completion of each query

evaluation process. An XML schema as shown in Figure 5.6 is used for collecting the performance
data from each node.

The performance monitoring schema is used to collect three distinct types of measurements - (i)

measurements related to the data access process, such as the total cost of accessing the data, the

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 114

pr ngn, on: onervt. I t ur ernenn olhcawn

ntpleComMeý ý

...

- -------------
erecýrtioncost .

i

i
1.

I

I
I

I
I
I

I

pIogIiiOll: Ev. 111111 .I I't-1114t-. v: III. `nlrllt I. 1.

--

IV i(I

... _.. "

mlelyln

,. I O, Rnon: Sc al al 11 of l n. lnon

dalaSel vfcs ý

nulnbm lNBlocFt

_
munbel OlTuPlet

; 9Callllit0 -
IOlal$C A11C 061

ý, ý, tlNaAccetaRNw

' aveuUeRow Size

______________ ____ __ Pl ngmalrýyýl a11h N.. l ul. un. n ý
IelyMeasulemelKS - - .

I
opm alionllame ý

opcAlllnfo - - rnlmllel OlTuples

IotAllnvoc NlonCott

avy111vot atfonfost

111 (. 1J111M 1: 1................ Itl ßl111111.1111.111011

ý. dettinationfvaluNa

nwnbel Miuplet

'. blMsl Size

"- comminlo -
- ------------

_- avuTuPleSize

1otalCOmmulticationCOtt
ý ý

avUCostPel Send
ý

I

nU11111e101I11voc Allollt

Figure 5.6: XNIL Schema for collecting performance data

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 115

data access rate, number of tuples, and average row size for each tuple, all of which are collected

within the scan operator, (ii) measurements related to the data transfer process, such as the average

row size of the tuples which are sent across the network, the total number of tuples that are sent,
the cost of each transport operation and the total cost of transferring all the tuples, and (iii) similar
information regarding the invocation of a Web Service for analysis of the retrieved data, such as the

total and average invocation cost, all of which are collected within the Transporth andler component

and the relevant operators, the components of the evaluation service as explained in Section 3.5.5.

During the DQP initialisation phase, a background thread for analysing the performance data is

started, which remains inactive during the query evaluation phase. After each query is evaluated,

the GDQS sends a request to each participating node requesting for the performance results which

are sent back in form of SOAP messages conforming to the schema outlined in Figure 5.6, an example

of which is shown in Listing 5.4. In this example, two remote nodes, salt and planetlab4 participate
in a distributed query evaluation by accessing data from two databases located on these two nodes

and exchanging tuples while performing a join, and the final results are sent to the DQP coordinator

node, which is designated as root. These results are passed to the monitoring thread which analyses

the results it has received, such as calculating the cost of the data access per tuple and the cost

of data transport per tuple. It also tries to correlate the total execution cost for the query with

the cost of transporting the data from remote nodes and calculates the trend incorporating all the

previous data received. Based on this analysis, if it is found that the cost of transporting the data

is the major contributor to the total query execution cost following an increasing trend, and is more

than the cost of deploying the database locally and a snapshot of the database is available within

a pre-built virtual machine, the process of reconfiguring the DQP data resource by deploying the

VM on a local node is initiated. It is also possible to configure the process in such a way that the

consumer specifies the maximum cost (in terms of the maximum amount of time required to invoke

a service, or the maximum amount of time required to transfer partial results from the evaluators)
he or she is willing to pay during the evaluation of a query. In a scenario where a remote provider

charges the consumer based on the amount of data being transmitted, the reconfiguration may be

triggered when this cost at the provider site surpasses the maximum allowable cost specified by

the consumer. In the prototype system described in the thesis, such a simple model is used. It is

possible to use more complex analysis model based on data access costs, network monitoring tools

for available bandwidth and real transport cost to decide the stage when the reconfiguration process

should be triggered.

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 116

Listing 5.4 Example of performance data from two remote nodes
<progmon: QuaryMoasuramentCollaction quaryID-"dgpogsadai-11492ds1f5O. Thu-Aug-23-14: 21: 44-BST-2007">

data railacting the total axacution Cost

<progmon: tupl. Counter>4000</progmon: tupleCountar>
<progmon: axacutionCost>51249</progmon: ax. cutionCost>
<progmon: delivoryCost>812</progmon: dalivaryCost>

Cost from an individual evaluator on SALT

<progmon: queryMeasurements sourceID""http: //salt: 8199/EvaluationService">
<progmon: queryID>dgpogeadai-11492deif60. Thu-Aug-23-14: 21144-BST-2007</progmon: querylD>
<progmon: scanlnfo>

<progmon: dataService>ProteinSequenceMySQLResource</progmon: dataService>
<progmon: numberOfBlocka>9</progmon: numberOfBlocks>
<progmon: numberOfTuples>8000</progmon: numberDfTuples>
<progmon: totalScanCost>17893</progmon: totalScanCost>
<progmon: dataAccessRate>121.0</progmon: dataAccessRate>
<progmon: averageRovSlze>271</progmon: averageRovSize>

</progmon: scanlnfo>
<progmon: comminfo>

<progmon: destinationEvaluator>root</progmon: destinationEvaluator>
<progmon: numberOf uples>7911</progmon: numberOfTuples>
<progmon: bufferSize>30000</progmon: bufferSize>
<progmon: totalCommunicationCost>76839</progmon: totalCommunicationCost>
<progmon: avgCostPerSend>644.0</progmon: avgCostPerSend>
<progmon: numberOfInvocations>141</progmon: numberOflnvocations>

</progmon: comminfo>
<progmon: comminfo>

<progmon: destinationEvaluator>http: //planetlab4: 8199/EvaluatlonService</progmon: destinatlonEvaluator>
<progmon: numberOfTuples>7953</progmon: numberOftuples>
<progmon: bufferSize>30000</progmon: bufferStze>

<progmon: totalCommunicationCost>77164</progmon: totalCommunicationCost>
<progmon: avgCostPerSend>635.0</progmon: avgCostPerSand>
<progmon: numberOfInvocations>144</progmon: numberOfInvocations>

</progmon: eomminfo>
</progmon: queryMeasurements>

Cost from an individual evaluator on PLANETLAB4

<progmon: queryMeasurements sourceID-"http: //planetlab4: 8199/EvaluationService">
<progmon: queryID>dqpogsadai-11492de1f50. Thu-Aug-23-14: 21: 44-BST-2007</progmon: queryID>
<progmon: scanInfo>

<progmon: dataServico>ProteinPropertyMySQLResource</progmon: datsService>
<progmon: numberOiBlocks>9</progmon: numberOfBlocks>
<progmon: numberOfTuples>8000</progmon: numborOfTuples>
<progmon: totalScanCost>4911</progmon: totalScanCost>
<progmon: dateAcceesRate>50.0</progmon: dataAccessRate>
<progmon: averageRovSize>31</progmon: averageRovSize>

</progmon: scanlnfo>
<progmon: comminfo>

<progmon: destinatlonEvaluator>root</progmon: destinationEvaluator>
<progmon: numberOfTuples>8006</progmon: number0f1uples>
<progmon: bufferSize>30000</progmon: bufferSize>
<progmon: totalCommunicationCost>65893</progmon: totalCommunicationCost>
<progmon: avgCostPerSend>1054.0</progmon: avgCostPerSend>
<progmon: numberOfInvocations>53</progmon: numberOfInvocations>

</progmon: comminfo>
<progmon: comminfo>

<progmon: destinationEvaluator>http: //salt: 8199/EvaluationService</progmon: destinationEvaluator>
<progmon: numberOfTuples>8009</progmon: numberOfTuples>
<progmon: bufferSize>30000</progmon: buiferSize>
<progmon: totalCommunicationCost>57214</progmon: totalCommunicationCost>
<progmon: avgCoatPerSend>1021.0</progmon: avgCostPerSend>
<progmon: numberOfInvocations>66</progmon: numberOfInvocations>

</progmon: comminfo>
</progmon: queryMeasurements>

</progmon: QuaryMeasurementColleCtion>

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 117

5.2.7.3 Reconfiguration of the DQP data resource

The reconfiguration of the DQP data resource happens as a background process. During this phase,
the existing resource which was processing the earlier queries remains alive, and a new data resource is

created, which after the configuration is completed, replaces the former. Once the VM is instantiated

properly, the schema from the newly deployed data resource and other services must be imported by

the DQP data resource. The endpoint of the data service which was pointing to the actual remote
database is overwritten with the endpoint of the new data service on the VM. Any instance of the

evaluation service or the HostProvider service on that remote node are excluded as well, as all these

services are locally available after the VM initialisation. Once this is done successfully, the former

DQP data resource is replaced with the new one, and all further queries submitted to this particular
instance or session of DQP are processed within this new DQP data resource. A new consumer

can however initiate a new DQP session, with the same configuration as the original, in which

case the original resources will be used, unless a reconfiguration is called for. The cost of the second

reconfiguration may be minimal as it may be possible to reuse the previous deployment of the virtual

machine. The process of collecting performance feedback and reconfiguring the corresponding data

resource is explained in Figure 5.7.

Figure 5.7(a) shows the process of query evaluation and feedback in the extended version of DQP

which collocates various participating services, and collects the performance data from the par-

ticipating evaluation services once the query is completed. As described before in the context of

Figure 5.5, the coordinator service after receiving the query from the client (in step 1) performs

the compilation/optimisation of the query and dynamically deploys necessary services on participat-

ing nodes. The query execution process follows a similar sequence of sending the query partitions

to respective evaluation services (step 3), evaluating each partition by communicating with other

evaluation and analysis services (step 4,5,6 and 7) and finally sending the complete result to the

coordinator and hence the client (step 8). Once the query execution is complete, the coordinator

service sends a request to all participating nodes requesting for the performance data as described

in Figure 5.6(step 9). Once the feedback from all the nodes are collected, the data is analysed

and based on the analysis as explained in Section 5.2.7.2, a virtual machine which encapsulates the

data source, data access and analysis services, is deployed within the local network (Figure 5.7(b))

which creates a new configuration for the DQP data resource. For all subsequent queries directed to

this particular instance of the DQP data resource, this new configuration is used, thereby utilising

the newly deployed resources. However a new consumer may create a new instances of DQP data

resource with the original configuration, and submit queries to it until a reconfiguration is required,

in which case, it may be possible to avoid the redeployment of services or virtual machines, as that

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 118

dur

ý xch: uyt<

___ý wunce

0

ý`ý
cxchnngc

rnhmc

N3

(a) Query eva7uation and feedback collection
I---ý-

NO
M,

rt
.
1. ' lti. ' I Local Network

cxchxngc ©.

GDQS Data Resource wL -hungc

OQLQuery Statement Query 81 atlon

rcJuce
Activity rv

_"-"

O I- op_aell

['
,O

Analysis Service
exdýMge

I. ___. ___ nom OGSA-OAIDSR 'i-Se

'educe

Query Evaluation
_

",
'... :.

I.. hinge VMW-7 scan

U, duce

O
Analysis Service

anOGSA-DAI
DSR 2

educe

p cull A

N2 Analysis Service
" cxchangc

on
OGSA-DAI DSR 3

exchange

Client Data Source neducc

N3
un

(b) Reconfiguring the data resource by deplovlueuit of it V\1

Figure 5.7: Reconfiguration in dynamic OGSA-DQP

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 119

has already been done during the earlier scenario.

5.3 Discussion

This chapter discussed a prototype implementation of a dynamic distributed query processing frame-

work based on OGSA-DQP which was discussed earlier in Chapter 3 and the dynamic deployment

framework, DynaSOAr, discussed in Chapter 4. It was argued that DQP could benefit from the

dynamic deployment features by being able to deploy the query evaluation and analysis services
dynamically on best suited nodes. This would allow the deployment of the evaluation and analysis

services closer to the data, thereby minimising the cost of transmitting the data over the network.
Further, this framework utilises the virtualization methods proposed in DynaSOAr to exploit alter-

native paradigms for distributed data access, such as caching the data locally, or instead of moving
the computation closer to the data, an attempt is made to move the data closer to the computation
in situations where the data transmission costs increase rapidly and exceeds the cost that can be

tolerated by the consumer. It is however assumed that in such cases a snapshot of the actual data

would cause no hindrance to the analysis and there should be some offline method for keeping the

snapshot synchronized with the actual data source. The virtualization approach also allows the

deployment of specialist analysis services which require a special environment, or depend heavily

upon the hardware architecture of the target node. Such services can be packaged in a VM where
the special environment can be provided, and if the service needs to be tuned to the system, this

can also be achieved, so that when the service is deployed along with its container VM, it is already
tuned to the environment.

The proactive deployment of the analysis service on multiple nodes allows the compiler/optimiser
to be able to parallelise any costly operation-call operator, thereby increasing the efficiency. The

compiler applies a very basic technique to decide upon the degree of parallelism for each operator,

and for the operation-call operator, this is equivalent to the number of available instances of the

service, which is a very simple assumption. This thesis extended the existing compiler/optimiser to

enable it with the dynamic deployment features, and used the existing cost model wherever possible.
A simple method of calculating the network latency between the nodes is used in which each node

sends a network packet to every other node in order to calculate the round-trip time between them.

A more sophisticated cost model such as the network-aware optimisation methods proposed in [134]

and a sophisticated network monitoring tool or framework such as [135] would develop the framework

further.

CHAPTER 5. Exploiting Dynamic Service Provisioning in DQP 120

As mentioned before, the compiler/optimiser uses a very simple cost model, which has been extended

to incorporate the dynamic deployment features. An adaptive DQP, which adapts to the changing
dynamics of a Grid system is still a long way away. The effects of changes in resources at runtime
have been considered in the investigations into adaptive distributed query processing [137,138]. It

would be an effective solution to combine the findings of GridSIIED [113], DynaSOAr and the

adaptive DQP investigation. There have been some work on fault-tolerance in distributed query

processing [139,140]. The concepts of the dynamic DQP are also relevant to fault-tolerant query

processing systems where a failure of an evaluation node can be handled through the deployment of
the same service on another node or a virtual machine as a replacement of the failed node, and by

replaying certain sections of the query evaluation to regain the state where the processing stopped
due to the failure.

In summary, the dynamic version of DQP creates a loose coupling between the services and the

computational resources, and adopts the dynamic deployment techniques to "create" each node as

and when required by deploying services on the available resources. A dynamic and fluid query

processing engine is created at runtime which is able to reconfigure itself based on the changes in the

environment and the feedback from the query processing activities. The evaluation of the prototype,

the experimental set-up and the results are discussed in later chapters.

Chapter

Evaluation of the Dynamic DQP

Framework

The evaluation of the research work described in Chapters 3,4 and 5 is presented in this chapter.
The goal of this research has been to define a service oriented distributed query processing (DQP)

framework capable of evaluating distributed queries over disparate data sources using emerging

standards for data access and integration, and exploit the advantages of dynamic service deployment

to enhance the performance. The purpose of this chapter is to verify the validity of the claims made

while presenting the research work by executing several experiments within an experimental set-

up. Several scenarios involving the static DQP (presented in Chapter 3) and the dynamic extension
(presented in Chapter 5) are presented and both frameworks are evaluated. The results are analysed

thereafter to establish the earlier claims.

6.1 Implementation

Both OGSA-DQP and DynaSOAr frameworks have evolved through a series of implementations

since they were first conceived. This section takes a brief look at these different implementations.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 122

6.1.1 OGSA-DQP

OGSA-DQP started as a part of rvGrid and OGSA-DAI and was a collaboration between Newcastle

and Manchester universities. The first release of OGSA-DQP in September 2003 was based on the

Globus Toolkit 3.0 (OGSI). Since the refactoring of OGSI into WS-ResourceFramework, the imple-

mentation of OGSA-DQP has changed considerably. The central coordinator component (GDQS)

was developed to support both WS-RF and WS-I, and the query evaluation component, which is

considered as a major contribution towards this thesis was based on WS-I in order to benefit from

the findings from ongoing research on dynamic deployment. The earlier releases of OGSA-DQP

treated the Polar* compiler/optimiser component as black box, thus making it extremely difficult

to incorporate the dynamic deployment features within the compiler/optimiser component. Later

on, a new version of OGSA-DQP was created which contained a new Java-based compiler/optimiser

component which supported SQL queries instead of the earlier OQL, but the concepts behind the

compilation process, such as using parallel database techniques remained the same. This is the

version of OGSA-DQP that has been used to extend the framework and incorporate the dynamic

deployment features.

6.1.2 DynaSOAr

Research on DynaSOAr progressed in different strands and received contributions from many re-

searchers since its inception presented in [19]. The first version of DynaSOAr benefited from the work

done in GridSHED [113] and used the Condor scheduling system and Class Ads in order to schedule

jobs on a set of nodes each offering the HostProvider service. The jobs invoked the HostProvider

Web Service for retrieving the code for the service requested by the consumer, deployed and pro-

cessed the request. The basic components of DynaSOAr, such as the Service Provider, Host Provider

and Software Repository were developed during this phase. The initial version of DynaSOAr was

restructured to incorporate the concepts of message orientation and each of the components were

redesigned to support this model. The new architecture introduced the Service Registry compo-

nent based on GRIMOIRES, a basic broker component for brokering service requests, refactored the

HostProvider to support a highly dynamic structure such as clusters at different institutions coming

together to form a dynamic virtual organisation. More developments into DynaSOAr resulted in a

framework which allowed dynamic deployment of databases, specialised services wrapped in a virtual

machine allowing the creation of an on-demand ad-hoc Grid, and this is the version of DynaSOAr

which has been presented in this thesis, and these are the concepts that are incorporated within the

DQP framework leading to a dynamic version of OGSA-DQP.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 123

6.2 Evaluation

This section describes in detail all the experiments carried out in order to validate the claims made
in earlier chapters.

6.2.1 Evaluation Platform

An extensive experimental setup was created for evaluating the dynamic DQP framework. This

consisted of local computational resources within the same university network and remote computa.

tional resources distributed across the world to simulate a real-world like situation when consumers

request services that are distributed globally. PlanetLab [136] was used to acquire remote nodes for

this purpose.

A dynamic DQP framework consisting of five test data resources, the structure of which are shown in

Listing 6.1, and the HostProvider service was setup on a set of Linux machines within the Newcastle

University GIGA cluster - each of them being a four-processor Intel® XeonTM CPU 2.80GHz system,

with 2GB memory and hosting the VMWare Server software. The GDQS was deployed on a desktop

running on Windows XP (Service Pack 2) machine -a four-processor Intel® Pentium(R)TM CPU

3.0GHz with 2GB memory. The same machine which hosted the GDQS also hosted the Software

Repository and the Service Registry. A copy of the analysis service was deployed on a Linux (one-

processor Intel(D XeonTM CPU 2.40GHz system with 1GB memory) system at the Edinburgh

Parallel Computing Centre (EPCC). To compare the results with a real-world situation, an exactly

similar DQP framework with databases, data access, and HostProvider services was set up on a set

of Planetlab[136] nodes, with compute resources located at geographically remote locations, such as

in Toronto, Tokyo, Berkeley, and several European cities. Each database was replicated on five nodes

to avoid experimental problems due to node failures. The local network was a high speed 100Mbps

ethernet, and the connection with the PlanetLab network being through the JANET [141], a high

speed gigabit ethernet between the universities in the UK and GREN [142], the Global Research and

Educational Network. Apache Tomcat version 5.0.28 and MySQL version 5.24 were used as the web

service container and DBMS respectively. The complete experimental setup is shown in Figure 6.1.

One of the databases used for the test queries was loaded with several tables, each with 100,000

records, and fixed record sizes of 128 bytes, 256 bytes, 512 bytes, 1 Kbytes, 2 Kbytes, 4 Kbytes,

8 Kbytes and 10 Kbytes. Experiments were designed to fetch data out of each table with varying

cardinalities, optionally perform a join with data from another remote database and perform the

analysis on each tuple using the analysis service. Results were collected in order to compare the

CHAPTER 6. Evaluation of the Dynamic DQP Framework 124

Listing 6.1 Structure of the databases used for the experiments
/* Description of the goterm database "/
table goterm {

'id' varchar(32) NOT NULL default
'type ' varchar(55) NOT NULL default '',
'name' varchar(255) NOTNULL default '',

PRIMARY KEY ('id ')

/r Description of the interaction database r/
table gene-sequence {

'Sequence_ID' varchar(50) NOTNULL default '',
'Sequence_Type' varchar(100) default ",
'Sequence_Source' varchar(100) default ' ',
'Sequence_Description' varchar(255) default '',
'Sequence' text NOT NULL,

PRIMARY KEY ('Sequenee_ID ')
}

/* Description of the proteinproperty database
table protein-property (

'ORF' varchar(55) NOTNULL default '',
'molecular Weight ' float NOTNULL default '0',
'hydrophobicity ' float NOTNULL default '0',

PRIMARY KEY ('ORF')
}
table random-property

'id' bigint (20) NOT NULL,
'ORF' varchar(55) NOTNULL default '0',
'molecular Weight ' float NOT NULL default '0',
'hydrophobicity ' float NOTNULL default '0',

PRIMARY KEY ('id ')

/* Description of the proteinsequence database r/
table protein_sequence {

'ORF' varchar(50) NOTNULL default '',
'sequence ' text NOT NULL,

PRIMARY KEY ('ORF')
}
/* average row size 128 bytes s/
table random-sequence-128 {

'id' bigint (20) NOT NULL,
'sequence ' text NOT NULL,

PRIMARY KEY (lid')

/* average row size 10 Kbytes
table random-sequence-IOK {

lid' bigint (20) NOT NULL,
'sequence ' text NOT NULL,

PRIMARY KEY (`id ')

/* Description of the proteinterm database "/
table protein_goterm {

'ORF' varchar(55) NOTNULL default ",
'GOTermldentifier' varchar(32) NOTNULL default '',

PRIMARY KEY ('ORF', ' GOTermldentifier')

CHAPTER 6. Evaluation of the Dynamic DQP Framework

-------------- --------------------------------
-- ____ _- _- __

ncl. ec. uk

- Senlu
Rep It

RsPoiItory

Coordlneto
e consumer ý hudle Servic

budle. ncl. ac. uk

-------------------- ---

! -- Host Host Hosl Hoel -_ Hoºt
Provider Provider Provider ý- Provider Provider

Data Data Date Data
Bea"i rvita Service Smervi ce Servlu Servln ,

GO InUr PTerm PPro P9e

plpat0. ncl. ac. uk glpal l. ncl. ac. uk plgs12. ncl. ac. uk p1pa13. ncl. ec. uk plpa U. ncl. ac. uk ý

____---_-_-----_-
i Host ý_ Host ý Hosl ý Host Host
i Provider Provider ý Provider Provldsr Provider

Date Dala Data Dala Data
Sarvlu Service Service ý_ Service =_ Smlu

GO Inter Pierm PProp PSeq

PL1 PL2 PL] PL4 PLS

Figure 6.1: The complete experimental setup

125

performance of the various setups, such as (i) a PlanetLab setup with remote analysis service, (ii)

a PlanetLab setup where the evaluation and analysis services are collocated on a Planet Lab node

using the dynamic deployment framework, (iii) a setup with multiple copies of the analvsis services

dynamically deployed on multiple nodes and (iv) a setup where a reconfiguration of the l)QI' data

resource takes place by deploying one or more data sources (wrapped in V. %Is) within the local

network.

There are issues regarding the usage of PlanetLab infrastructure for experiments, but it was chosen

as one of the primary components within the evaluation platform as it is "designed to subject network

services to real-world conditions" [143]. The concerns about the reliability of PlanetLab nodes due

to their heavy load have been addressed by selecting lightly loaded nodes with higher virtual memory

and CPU speed that are known not to have any problems. Such a selection can be made through

the PlanetLab monitoring platform, CoM4on [135]. PlanetLab also offers a "reservation" mechanism

by which the nodes can be reserved for a certain duration guaranteeing a majority share of the CPU

during that period.

Two virtual machines were used to investigate the deployment of a database snapshot. The protein-

sequence and proteinproperty databases were wrapped in two separate VNIWare virtual machines,

CHAPTER 6. Evaluation of the Dynamic DQP Framework 126

each with 4GB hard disk capacity and 512MB RAM and Fedora Core version 4 as the guest oper-

ating system. Apache Tomcat version 5.0.28 and MySQL version 5.24 were installed on the virtual

machines and were configured to start up during the VM boot process. The data access services from

OGSA-DAI were pre-deployed and configured to access data from the respective databases. The

evaluation and analysis services were also pre-deployed to complete the virtual machine packaging.

The XML document in Listing 6.2 shows the configuration of one of the virtual machines which

contained a snapshot of the proteinproperty database and other associated services.

Listing 6.2 Configuration Document for a Virtual Machine
<VirtualMachiasDescriptton>

General description s iau vnl

<vmName>vmv-nam48-tc4-2</vmNamo>

<viTypa>VMWARE</vmTypo>
<guoatOS>LINUX</guestOS>
<contigFilt>vmv-nam48-tc4-2. vmx</contigFili>
<hardDickCapacityGB>4294967296</bardDiskCapacityGB>
<primaryMomoryMB>536870912</primaryMamoryMB>

The database and data service configuration)

<databas. Config>
<dbName>protainproparty</dbNamo>
<URI>axis/services/ogsadai/ProtsinPropartyDataSsrvics</URI>
<Rosourc. ID>ProtsinPropsrtyMySQLRssourca</RasourcSID>

</databassConfig>

Information about web service containers

<tomcatInstanc. Path>/root/addon/tomcat/5.0.28</tomcatInstanclPath>
<tomcatPort>8090</tomcatPort>

.......... -`--- ----- --r- -- -------- I-

<vmS. rvic. List>

<s. rvic. Nam. >pu. ryEvaluationS. rvic. </s. rvic. Nam. >
<s. rvic. URI>dqp-. valuator/s. rvic. s/QuaryEvaluationSsVico</s. rvic. URI>

</vmS. rvic. List>
<vmS. rvic. List>

<s. rvic. Nam. >EntropyAnalys. rS. rvic. </s. rvic. Nam. >
<s. rvicaTRl>. ntropy-analys. r/s. rvic. s/EntropyAnalys. rS. rvic. </s. rvic. URI>

</vmS. rvic. List>

</VirtualMachinaDaacription>

The virtual machines and all other deployable services, such as the evaluation service and the analysis

services were uploaded to the Software Repository which in turn created entries of these in the Service

Registry so that the DQP system is able to search for required entities within the registry.

6.2.2 Collocating the Data and Analysis Code

The purpose of this experiment was to establish the effect of the cost of invoking an analysis service

on the query execution cost, and to investigate the benefits of collocating the analysis service with the

data. The usage scenario is explained in Section 5.1.2 where a query which accesses a large volume

of data from a database and performs an analysis on each of the retrieved tuples is submitted by an

CHAPTER 6. Evaluation of the Dynamic DQP Framework 127

e-scientist. The rationale behind the scenario is to minimise the vohinie of data being transferred

over the network, and thus reduce the cost of overall query execution by deploving a copy of the

service closer to the data source to avoid the cost of a remote Web Service invocation which increases

with the volume of data.

The select-operation_call query as shown in Listing 6.3 was used to investigate the etfect, s of collar

cating the analysis service with the data.

Listing 6.3 A select-opcall query
select proteinsequence_random_sequence_256. id,
calculateEntropy(proteinsequence_random_sequence_256. sequence)
from proteinsequence_random_sequence_256 where
proteinsequence_random_sequence_256. id <= n;

The experiment was conducted with two different configurations, (i) where the analysis service is

deployed on a remote PlanetLab node at the University of California, Berkeley, United States and

the data is located on one of the nodes within the giga cluster of Newcastle University, and (ii) where

the DQP system is not bound to any particular instance of the analysis service and the dynamic

deployment framework selects a node closest to the node hosting the database and the data access

service. The two configurations are described in Figure 6.2.

-- -'- '........... ----------- -------- ---'-'-'- - ------ -'-'I

! Evaluation -_
! Sarvlce

= Coordlnato Deta Analysis

consumer hudle Service Servlca Senrlo"

budle. ncl. ac. uk glgal4. ncl. ac. uk Pll. berkeleY'edu

ncl. ac. uk
--- --------------------------

(a) Configuration involving a remote analysis service

-- -I
dynamic

I

deploYmenr -
ý-

--
Analysis
Ssrvlu

! -- SW Evslwtlon
! Repaailory Smlce

ý Coordinato Dela
consumer hudle Sendce Se^'Ica

budlenclacuk g, . 14 ncl. ack
I ncl. ac. uk

'-'-. -'-'-'-'-. ---------------- -- - -- ------- ---- ---------

(b) Configuration using the dynamic deployment framework

Figure 6.2: Two configurations used for experimenting with service collocation

The dynamic deployment takes place during the schema import phase of DQP initialisation and does

not affect the query execution costs. The query retrieves data from the "random-sequence" table in

the "proteinsequence" database with various granularity from 100 to 20000 tuples depending on the

value of "n" and for each retrieved tuple the analysis service is invoked and the result is returned to

CHAPTER 6. Evaluation of the Dynamic DQP Framework 128

the consumer. In the first scenario, a remote Web Service is invoked for each tuple, whereas in the

second scenario, the analysis service is local to the data source.

It was expected that queries for which the configuration with a remote analysis service is used would
have higher execution cost because of the greater cost in invoking the remote service compared to

the configuration where the analysis service is deployed locally which can be seen in Figure 6.3.

Iooooo

GODOW

60000.

ftmmw

IODOOO

.

800000

4mm

I

SODWO

w ooo

e

Co mwom of rrocom cm br a mu Ana I=W WM410 wvico
ILwa iwweaboe Cow -+-

Pamm iww~ cod ý

(a) Comparison of the service invocation cost

Ewc S oI co "M beat wow'-
Eno~ Coot mot rw" M OWOW -ýw-

MW 4000 0000 0000 to= 12000 14000 16000 11000 20000
Nwnbw of k*WO

(b) Comparison of the query execution cost

Figure 6.3: Comparing query execution using a local and a remote service

It can be ecru in Figure 6.3(a), that, as the number of tuples retrieved by the query increased, the

cost of invoking the remote Web Service increased and had a direct effect on the overall execution

cost of the query which is plotted in the graph in Figure 6.3(b). The graphs also show the amount of

CHAPTER 6. Evaluation of the Dynamic DQP Framework 129

performance gain that can be achieved by deploying a copy of the service closer to the data source

which results in lower invocation cost, and as a result lower overall execution cost.

6.2.3 Parallelization of OperationCall using Proactive Deployment

The effect of an increased degree of parallelism was investigated in this experiment. The dynamic

version of OGSA-DQP performs a proactive deployment of the analysis service on the available

hosts during the initial schema import phase, which was described in Section 5.1.3 and 5.2.4. The

approach is based on experimental results observed in (1441. Using this approach, OGSA-DQP is

able to distribute the invocations to the Web Service to several service instances and parallelise

the operution. coll operator. It is envisaged that the distribution of the service invocation among

multiple instances by parallelising the operator should improve the overall performance of query

execution.

The query as mentioned in Listing 6.3 was used to investigate the effects of the proactive deploy-

ment of the analysis service. Two DQP configurations with a similar set of data sources and Host

Provider services deployed on a group of PlanetLab nodes were used with slight variations - (i)

where the endpoint of the analysis service is mentioned in the DQP configuration script and (ii)

where no specific endpoint is mentioned and DQP is allowed to deploy the service pro-actively on

suitable nodes. The different configurations are explained diagrammatically in Figure 6.4. As in

the experiment described in Section 6.2.2, the query retrieves data of various cardinality from the

pmleinsequence database and invokes the analysis service on each "sequence" attribute of the tuples.

In the first configuration, one remote instance of the analysis service is invoked for each tuple, and

in the second configuration, the analysis service is dynamically deployed over five PlanetLab nodes

and the operation-call operator is parallelised over five evaluation services.

The expected result in this experiment was an improved performance of the overall query execution

by reducing the query execution time for the configuration where the operation call operator is

parallelised. This can be seen in Figure 6.5 which compares the total query execution cost for

(1) a configuration with one remote analysis service (Figure 6.4(a)), (ii) a configuration with one

instance of the analysis service close to the data source (Figure 6.4(b)) and (iii) a setup where the

operution_call operator is parallelised over five nodes (Figure 6.4(c)). The cost of query execution

In a parallelised setup Is lower than the setup which uses one copy of the analysis service close to

the data, and It should prove even more beneficial for a analysis service which is expensive in nature

because of Increased partitioned parallelism.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 130

-------------- -----------------
Bella
Registry

SW
Repodto

Coordlnato

consumer @ budle S. Mce

budle. ncl. ac. uk
i

Hol -
Provldýr

Diu

PSeq
Mdydt
Sýrvlu

PL5 PLn

(a) Using a remote analysis service

_
Service
Reglstr

SW
Repoalto

Coordina

consumer @ budle Service

budle. ncl. ac. uk

Analysis
Sarvka

Host
Provldar

(b) Single instance of analysis service collocated with data

consum. r C bud[*

ncl. sc. uk

----------------- ------------

Analysis
SarvIca_

Nost
+

-- Provldar Anatyala ýý ý_

Sarvico
Oats "-

Host -_ Service ý'
Provider

PSaq

PL5 PL1

dynamic

-. -. -. - deplo ment

Analysis
Service

ý Mosl
ý Provider

ry Data

to Servlu

PSp

PI-5

Service
- Registry

gW
= Rspo story

= Coordinalo
Service

budle. ncl. aauk

---- ------- -

dynamic
deployment

-------------- -----------

Analysis Anatya7a `ý
-- Service S"rvlu

l Hoat Noat
J Provider Provldýr

PLJ PL4
PLZ

(c) OperationCall parallelised over 5 instances of the analysis service

Figure 6.4: Experimental setup for the proactive analysis service deployment

CHAPTER 6. Evaluation of the Dynamic DQP Framework 131

Comparing execution cost for select-opcall query

1600000

1400000

1200000
a OpCall parallelized on 5 PL

1000000 nodes
Y to OpCall non-parallellzed, single
ö8 evaluator
ij 600000 n Remote OpCall, single evaluator

400000

200000

0

Number of tuples

Figure 6.5: Comparing parallelised and non-parallelised operation calls

6.2.4 Collocating the Evaluation Service with Data

The rationale behind collocation of the evaluation service with the data was discussed in 51.1.1. The

purpose of this experiment was to investigate into the effects of deploying an evaluation service on

or closer to a data node. When an evaluator participating in a DQP query accesses data from a

database, it does so using OGSA-DAI, and the cost of data access should be higher in cases where

the data is hosted on a remote node. 't'hus, the concept behind this strategy of collocating the

evaluation service with the data is to minimise the cost of data access by deploying the evaluation

service on the node hosting the data or a node close to it.

A simple select query as shown in Listing 6.4 was used in this experiment

Listing 6.4 A select query
select proteinsequence_random_sequence_256. id,

proteinsequence_random_sequence_256. sequence
from proteinsequence_random_sequence_256 where

proteinsequence_random_sequence_256. id <= n;

Figure 6.6 shows the two configurations of the DQP system that were considered - (i) where the

data was hosted on one of the PlanetLab nodes and the evaluation services on the local Giga

cluster within the Newcastle University campus, and (ii) where the data was hosted on the same

PlanetLab node and the DQP system was allowed to assign the best possible node for the scan

operator irrespective of whether the node hosted an evaluator or not. In the second configuration,

the compiler/optimiser selected the node which hosted the data and the data service for the scan

CHAPTER 6. Evaluation of the Dynamic DQP Framework 132

operator and an evaluation service was dynamically deployed on it. The query retrieved data with

various cardinalities depending on the value of "n" and the results were returned to the consumer.

3W
= R. PUNt

6NNC.

C-. N- ýEvMwtlon,
ýýp

con. umo Q budN 6«Nc.

Eudl.. nd.. c. uk plp.. ncL. c. W
ºl5

` ncl,. c. uk

(a) Using a remote database and data access service

-dynamic -

deployment

Sarvka -_ Evalual bn
ka - Registry

SW la
__

- RepoaRo ,

i-1I

1c.
Coordlnal

Service PSp
consumer hudle

budls. ncl. ac. uk PLS

--- ----- -------

(b) Collocating the evaluation service with the data

Figure 6.6: Experimental setup for the collocation of evaluation with data

'I'lse results of the experiment are shown in Figure 6.7. In the charts, the results for the setup where

the data is hosted on PlanetLab and the evaluation service on a giga cluster node are labelled as

"PL-taiga" and the setup where the evaluation service is collocated with the data on PlanetLab

is denoted with "PL-PL". The expected result was an improved overall query execution cost when

the evaluation service was moved on the node which contained the data because of the lower data

access cost. This was true up to a certain number of tuples beyond which, the overall execution

cost was almost similar for both the configurations. The reason behind this was the increased

cost in transporting the results as the number of tuples, i. e. the amount of data travelling over

the network increased. It can be seen from Figure 6.7(a) that the cost of accessing the data is

lower when the evaluation service is collocated with the data on the PlanetLab node than when the

evaluation service is hosted on a local node within the giga cluster, but the cost of transporting the

results from PlanetLab to the consumer increases rapidly (Figure 6.7(b), as a result of which the

improvement achieved by lowering the data access cost is nullified. This highlights the requirement of

a better transport mechanism for DQP, which currently relies on the serialisation and de-serialisation

mechanisms of Apache Axis [771 for transporting the data as SOAP. OGSA-DAI, on the other hand

uses a streaming mechanism, which still relying on SOAP produces a better performance because of

the streaming functionality.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 133

Comparing cost of data access

100000
90000

80000

M 70000
ü

60000
PL-PL 50000 -

40000 n PL-Gigs

30000

20000

10000

0
El I

Number of tuplss

(a) Comparing data access cost

Comparing data transport cost

700000

600000

500000 V

ä 400000
13 PL-PL

900000 o PL-Giga

200000

100000

0

ýP op lie Number of tuplee

(b) Comparing data transport cost

Comparing total exxcutlon cost

900000

800000

700000

600000
c

600000 o PL-PL

400000 Q PL-Gigs

300000
e

200000 -
100000

0

Number of tuples

(c) Comparing total execution cost

Figure 6.7: Experimental results for the collocation of evaluation with data

CHAPTER 6. Evaluation of the Dynamic DQP Framework 134

6.2.5 Experiments on Virtualization

In order to investigate the performance of virtual machines, a set of experiments were perfOrmed

which compared the results by executing a distributed query on various setups, such gis - (i) a

PlanetLab only setup, where the data was located on a node at Berkeley (USA) and the analysis

service was hosted on a PlanetLab node at Tokyo (Japan), (ii) a Planet Lab only setup, where the

analysis service was collocated with the data at Berkeley, (iii) a setup where the data was hosted on

the Giga cluster at Newcastle and the analysis service was hosted on the node at EPCC, I: dinlnirgh,

(iv) a local setup where the analysis service was hosted along with the data on the Giga c"hister

nodes and (v) a setup where the analysis service and the data were hosted on a virtual machine

deployed on a node within the Giga cluster. A select-project-opera tion_cal1 query as in Listing 6.3

was used which retrieved the data from the database with different cardinalities and invoked the

analysis service on each of the retrieved tuples and sent the result back to the consumer. The results

for each of the DQP setups are compared in the graphs Figure 6.8.

Comparing average operation call cost per tuple

500 ----- ----
450

" 400

350 +NCL-Berkeley-Tokyo
300 NCL-Berkeley. Berkeley
250 NCL NCL EPCC

_q
200 NCL. NCL-NCL

E 150 -ýNCL-VM-VM
F 100

50
0

4: 1 6, ý'A ýp°P 04L' oyrý

om aze in cyt..

(a) Average operation call invocation cost
Scd. E graph comparing xacufon cost

160000 -- - ----

140000

120WO

100000 NCL-NCL-EPCC
 NCLNCL-NCL

f 00000 NCL. --

60000

aoooo

20000

0
50 100 200 400 Boo IWO 2000 4000

Mumbo of roil

Comparing total ixscutlon cost

1800000

16oc00O ----------- - -- -- c ° 1400000

1: 00000 ONCL-BwkaNy-Tdryo

.6
1000000

O

®NCL

NCLCL. E, NCL-E PCC

4-Y

000000
 NCL NCL NCL

600000 NCL . VM. VM

400000
iw

700000

0t.. .I IL IdLt
50 100 200 400 600 1000 2000 4000

(b) Execution cost for data size=256 bytes

Comprlnp . aocutIon coot In plvleofio clop

iffinooc

IWOCOC

Iaoooao
FY

owoB
iw 00 on[L-Beheýey. *owya

5 BOoc ! NCL-Berke Btt

600000

b0000

700000

0
50 100 200 400 OW I" 20T 1000

.f n>w W. ".,

(c) Scaled graph comparing the a local physical (d) Scaled graph comparing two PL nodes
node and a VM with EPCC

Figure 6.8: Comparing the performance of a VM with other setups for a distributed query

It can be seen from the results that the performance of the query when executed within a virtual

machine is comparable to the performance of the same query when executed on nodes within the

local network. The cost of invoking the analysis service, even when the service was hosted at EPCC,

CHAPTER 6. Evaluation of the Dynamic DQP Framework 135

Edinburgh, was extremely high compared to the cost when the service was local (either on a VM or

a real host). The costs were even higher when the participating nodes were remote, such as in the

case of the PlanetLab nodes.

6.2.6 Deploying a Database Snapshot Locally

All the experiments described in this section use the concept of deploying a snapshot of the data

locally described in Section 5.1.5 which was enabled by allowing DQP to reconfigure itself based

on the performance feedback from all the participating nodes (as described in Sections 5.2.7.1 and
5.2.7.2). The virtual machines mentioned in Section 6.2.1 containing snapshots of the ProteinSe-

quence and ProteinProperty databases were uploaded to the Software Registry. For each experiment

mentioned later in this section, four separate configurations as shown in Figures 6.9 and 6.10 were

used for comparing the results, namely:

1. A setup where only the databases and data services were hosted on PlanetLab nodes and the

HostProvider services were deployed on five giga cluster nodes within the Newcastle University

Campus, allowing them to be registered in the registry (Figure 6.9(a)). In this case, DQP

scheduled deployment of new evaluators on the nodes available to it, i. e., the nodes within the

giga cluster resulting in remote data access from the PlanetLab nodes.

2. A PlanetLab-only setup where the databases, data services and HostProvider services were
deployed on PlanetLab nodes (Figure 6.9(b)). In this case, DQP scheduled deployment of the

evaluators on the available PlanetLab nodes as a result of which final results were transported

from the remote nodes to the local co-ordinator.

3. A local setup where the databases, data services and HostProvider services were deployed on
the local giga cluster nodes (Figure 6.10(a)). In this case, the entire query execution setup

was within the same local network.

4. A setup where the performance feedback model mentioned in Section 5.2.7.2 was enabled and

the DQP system was allowed to deploy a database snapshot by deploying the corresponding

virtual machine within the local network (Figure 6.10(b)).

In each of the above mentioned configurations, a series of queries are submitted, each retrieving
data of different cardinalities, and the results were collected. After the completion of each query,

a request for performance data was sent to all the participating nodes by the DQP system, which

were returned as XML documents. In the setup where the reconfiguration of the DQP data resource

CHAPTER 6. Evaluation of the Dynamic DQP Framework

--- ý ncl. acuk
i service

Registry

=
SW

[Repository '

Coordlnao

consumar@ budla Service

i 6udle. ncl. acuk

EvaluationEvaluation Evaluation Evaluation) Evaluation
Sarvlce Service Servic. Service Service

Hosl -Host Hosl Host Host
r --I

Provider Provider Provider Provider Provider

9Ipa10. ncl. ac. uk gipall. ncl. ac. uk plyal2. ncl. ac. uk pipal7. ncl.. c. uk pipat4. ncl.. c. uk ý

--- ' ----------------------

Repository

Coordlnat

consumer (g3 budls San 'Ica

budle. ncl. ac. uk

ncl. ac. uk

---------------------------- ----- - --- -------

1Evaluation Evaluation Eveluatlon Evaluation

-

Evaluation
Service Sarvlca Sarvlcs Sarvlcs Ssrvlca

Host -- Host Host Host Host
Provider Provider Provider Provider Provider

Data Data Data Data Data
Servln Service Service Service Sarvlca

Inbr PTarm PPro PS-

0o DD
PL1 PL2 PL3 PL4 PL5

________________ ----- ---------- ______
PlanalLab.

_. _. _. _. _. _. _. _. _--------------- ------- ----- ----------- _,

(b) Complete PlanetLab (remote) setup

136

Figure 6.9: Experimental setup for reconfiguration of DQP data resource

CHAPTER 6. Evaluation of the Dynamic DQP Framework 137

--- ----- --- --- -- -------
Service
Registry

Rspoaltory !

coordlna
-

consumer @ budls Service

budls. ncl. ac. uk

--
Evaluation Evalustlon Evaluation Evaluation Evaluallon

! -- Ssrvlcs Servlcs J Service

Host Host Host Host Host
Provider Provider Provider Provider ProvIdsr

Data Data Data Dala Dala
ý Service Ssrvlu Ssrvlu Ssrvlu Sarvlcs

ß0 Intar PTarm PPro pSa
i

glga10. ncl. ac. uk glgall. ncl. ac. uk gigal2. ncl. ac. uk gigal1ncl. ac uk glga14. ncl. &c. uk
------------ -------- ---------------------- ------------

(a) Complete local setup on the giga cluster

--- i

r

II Reylsd

SW
Reposllo

- Coordlnr

consumer © budle Se, Ic.

= viWar.
Sarver

= Most
Provider

g ga13. ncl. ac. uk

budla. ncl. ac. uk

Analyala
dynamic

daploymant

vmw-1
Servlca

vmw-2
Evaluation
Barvita

= Data =
Sarvica

- ------

PProp

------- - --- ----- -----

CD

ncl. ac. uk

ý

Analyals
; Srrvlu ý

Evaluation
Barvita

Data
Smica

PSaq

Host Host HOSI ! Host Host
Provider Provider Provider J! Provider Provider

- Data Data Data Data Dsla
Service Service Servlee Service Service

GO Inter PTsnn PPro PSe OMEN
PLI PL2 PL3 PL4 PL5

L.
_. _. _. _. ----------- ----------------------- ----- ----- _

PianetLab_.
_----- I

(b) Setup where reconfiguration is cuabled

Figure 6.10: Experimental setup for reconfiguration of DQP data resource (contd.)

CHAPTER 6. Evaluation of the Dynamic DQP Framework 138

is enabled, the performance results were analysed and based on the analysis, if it was found that

the cost of transporting the data from a particular database and evaluation service was following an

increasing trend, and the cost was higher than the cost of deploying a snapshot of the database or

exceeded the cost that was previously agreed with the consumer, the reconfiguration was triggered

which leads to a local deployment of the database snapshot. From this point, further queries were
directed to the newly configured DQP data resource which utilised the new configuration in order

to benefit from the ad-hoc virtual organisation created by the new resource deployment.

6.2.6.1 A simple select query

The first query used to investigate into the deployment of a database snapshot was a simple select

query similar to the one mentioned in Listing 6.4. A set of queries each retrieving data of varying

cardinalities were executed in different experimental setups as mentioned before and the results

were collected. The graphs in Figure 6.11 show the results of this evaluation by plotting the cost of

transport of the data for the different setups and the overall cost of query execution.

It can be seen from the graphs, that for the setup where the databases, data services and evaluation

services all reside on remote PlanetLab nodes (as shown in Figure 6.9(b)), the cost of transporting

the data increases based on the number of tuples retrieved. The same cost is lower in all the other

setups as the data in these cases are transported within a local network. In case of the setup where

the reconfiguration module is enabled, DQP analyses the performance data from each node after

each query is completed. If it is seen that the cost of transporting the data for a particular database

is following an increasing trend, and has exceeded a previously agreed threshold, a snapshot of the

corresponding database wrapped in a VM, if available, is deployed on a local node containing the

VMWare server. All subsequent queries use the newly configured DQP data resource, and as the new

service instances reside within the same network, the transport cost is reduced and starts following

the normal trend which is observed in the local configurations, which can be seen from the graph in

Figure 6.11(a).

The overall execution costs are plotted in Figure 6.11(b). The overall execution cost for a complete

PlanetLab setup(Figure 6.9(b)) and the setup where the query evaluation takes place on the local

giga cluster, but the data is accessed from the remote data services on PlanetLab (Figure 6.9(a))

follow the similar increasing trend. This is because in the latter setup, the cost of data access nullifies

the reduced cost of data transport. It is also seen from the plot that after the reconfiguration of the

DQP data resource is complete, the overall execution cost is almost identical to the execution cost

which is seen for a completely local setup.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 139

700000

600000

500000

400000

300000

t4

200000

100000

0
0

900000

800000

700000

600000 N

500000

E
S 400000

300000

200000

100000

0'
0

5000 10000 15000 20000 25000 30000 35000 40000
Number of tuples

(a) Comparison of the data transport cost from a data node

Comparing total execution cost In different setups for a select query

PLPL-Budle -+-
PL-Giga-Budle ---x---

Giga-Giga-Budle -""+ý "-
switching mode -o-

5000 10000 15000 20000 25000 30000 35000 40000
Number of tuples

(b) Comparison of the total query execution cost

Figure 6.11: Comparing data transport cost and query execution cost using a remote setup and a
setup which allows switching of a data node

Comparing transport cost In different setups for a select query

CHAPTER 6. Evaluation of the Dynamic DQP Framework 140

6.2.6.2 A select-project-join query

In order to validate the rationale behind the concept of reconfiguring the DQP data resource, more

complex queries were used which involved joining data from two databases. An example of such a

query is shown in Listing 6.5.

Listing 6.5
select proteinsequence_random_sequence_256. id,
proteinsequence_random_sequence_256. sequence,
proteinproperty_random_property. hydrophobicity from

proteinsequence_random_sequence_256, proteinproperty_random_property where
proteinsequence_random_sequence_256. id - proteinproperty_random_property. id and
proteinsequence_random_sequence_256. id <- n and proteinproperty_random_property. id <- n;

This query returns the sequence identifier, the sequence string and the hydrophobicity attribute

after performing an equijoin on the identifier attribute from the two different databases. Results are

of varying cardinalities depending on the value of "n". As in the case of the previous experiment,
DQP performs a reconfiguration of the data resource when the cost of transporting data from a

particular database exceeds the threshold, thereby creating a new instance of the data service which

is used in the subsequent queries.

The results of this experiment are shown in the graphs in Figures 6.12 and 6.13. Figures 6.12(a)

and 6.12(b) plot the cost of transporting the data from the ProteinSequence and ProteinProperty

databases respectively and the values for a PlanetLab setup is compared with the setup where the

reconfiguration module is enabled. The plot of the overall execution cost is shown in Figure 6.13.

The expected result in the experiment was to observe a lower data transport cost and overall ex-

ecution cost after the reconfiguration is completed by the DQP co-ordinator. This is observed in

Figures 6.12(a) and 6.12(b) where, once the increasing trend in the cost of data transport is detected

for both nodes hosting the ProteinSequence and ProteinProperty databases respectively, DQP de-

ploys a snapshot for both of them on the local network. After the reconfiguration, the transport cost

for both nodes reduces dramatically, as a result of which the overall execution cost is also reduced

(shown in Figure 6.13).

6.2.6.3 A select-project-join-operation_call query

The final experiment to establish the rationale behind the deployment of a database snapshot in-

volved a select-project join-operation call query as shown in Listing 6.6 using two databases, namely

ProteinSequence and ProteinProperty. The query retrieved data of varying cardinalities depending

CHAPTER 6. Evaluation of the Dynamic DQP Framework 141

400000

350000

300000

250000

E 200000

A
;

150000

100000

50000

Comparing transport cost In different setups (ProteinSequence data source)

PL-Setup
switching mode ---x---

0- 11I11
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of tuples

(a) Comparison of the data transport cost from the node hosting ProteinSequence DB

Comparing transport cost In different setups (ProteinProperty data source)
300000

250000

200000
N

150000

100000

50000

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of tuples

(b) Comparison of the data transport cost from the node hosting ProteinProperty DB

OL-Setup 'I
switching mode ---x---

Figure 6.12: Comparing data transport cost for two data nodes for remote and switching setup

CHAPTER 6. Evaluation of the Dynamic DQP Framework 142

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of tuples

Figure 6.13: Comparing execution cost of a select-project-join query for a remote and switching
setup

on the predicate of the select clause. The retrieved data consisted of the identifier, the sequence

attribute and the hydrophobicity attribute. An equijoin was performed on the tuples based on the

identifier attribute and an analysis service was invoked with the sequence attribute as input.

Listing 6.6 A select-project-join-opcall query
select proteinsequence_random_sequence_256. id,
calculateEntropy(proteinsequence_random_sequence_256. sequence),
proteinproperty_random_property. hydrophobicity from
proteinsequence_random_sequence_256, proteinproperty_random_property where
proteinsequence_random_sequence_256. id - proteinproperty_random_property. id and
proteinsequence_random_sequence_256. id <- n and proteinproperty_random_property. id <- n;

As in the case of all previous experiments, DQP collected the performance data from each of the

participating nodes and analysed them after the completion of each query. When the analysis

showed an increasing trend for the data transport cost from a particular database, a snapshot of

that database was deployed locally. The results of this experiment are plotted in the graphs shown

in Figures 6.14 and 6.15. Figure 6.14(a) plots the cost of data transport for the ProteinSequence

database and Figure 6.14(b) plots the same cost for the ProteinProperty database. The plot for the

overall execution cost is shown in Figure 6.15.

The expected result was a reduced transport cost after the data resource reconfiguration takes place.

Comparing total execution cost in different setups fora select-project-join query

---x---

However, Figure 6.14(a) has an interesting feature. The cost of data transport for the node hosting

CHAPTER 6. Evaluation of the Dynamic DQP Framework 143

300000
Comparing transport cost In different setups (ProteinSequence data source)

---ý --
250000

200000
N

150000

100000

50000

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of tuples

(a) Comparison of the data transport cost from the node hosting ProteinSequence DB

Comparing transport cost in different setups (ProteinProperty data source)
200000

180000

160000

140000

120000
2NS

100000

T5 80000

60000

40000

20000

n

PL-Setup -+-
switching mode ---x--

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of tuples

(b) Comparison of the data transport cost from the node hosting ProteinProperty DB

Figure 6.14: Comparing data transport cost for two data nodes for a remote and switching setup

CHAPTER 6. Evaluation of the Dynamic DQP Framework 144

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of tuples

Figure 6.15: Comparing execution cost of a select-project-join-operation call query for a remote and
switching setup

the ProteinSequence database momentarily increases after the ProteinProperty database is deployed

locally. The reason behind this can be explained by considering the location of the participating

nodes and the evaluation process in DQP. All the participating nodes in DQP exchange data between

themselves during evaluation. The join operation in this query is parallelised on two nodes hosting

the two relevant databases. Initially, both the nodes are from the PlanetLab domain, and both

are located in the United States of America, which means they were closer in terms of network
latency than when the ProteinProperty database was deployed locally. When the first reconfiguration

takes place, the network latency between the new node on the local network and the PlanetLab

node hosting the ProteinSequence database increases as they are farther apart in terms of network

connectivity than before. Hence, the cost of transport as seen from the PlanetLab node hosting the

ProteinSequence database showed an increase, thereby affecting the overall query execution cost,

shown in Figure 6.15. DQP subsequently reconfigures the ProteinSequence database by deploying

the snapshot on a local node, and the transport cost as well as the overall query execution cost

reduces to what is normally observed within the local network.

Comparing total execution cost In different setups for a select-project-Joln-opcall query

--ý-- °-x---

CHAPTER 6. Evaluation of the Dynamic DQP Framework 145

6.2.7 Evaluating Availability Issues

The analysis services used in DQP, or for that matter, in any service oriented framework, are often

maintained by third parties. It has been noted in Section 5.1.4 that such services may be unavail-

able during the query execution which may result in execution failure. The dynamic deployment

features of DynaSOAr have been used within the dynamic version to DQP to partially deal with

such situations. If during DQP initialisation phase, a particular instance of an analysis service is

provided within the configuration script, the GDQS imports the WSDL from that endpoint. If the

endpoint is not valid during the schema import phase, i. e., the WSDL can not be obtained using
the standard WSDL import process, the GDQS will search the registry for the availability of the

deployment package of that particular service. If the service is available in the repository, the GDQS

will be able to find an entry within the registry which would point to the endpoint of the service

code, which will then be dynamically deployed on the nodes selected by DQP.

A service failure may also occur when a query is being processed which will result in the execution
failure. In such situations, even if the service is deployed dynamically, there might be loss of valuable
data which flows into each evaluator from other evaluation services. This is a challenging issue which

was not a focus for this thesis. However, it may be resolved by using the dynamic deployment features

along with the checkpointing approach proposed in [139].

6.2.8 Services Requiring Special Environments

Another major rationale behind the use of virtualization technologies within DQP is the possibility of

using service that require special environment, such as a special set of libraries or databases or even

platform, which was noted in Section 5.1.6. Such services can be packaged with all the dependencies

within a virtual machine, which can then be uploaded to the software registry. This results in the

packaged services being entered in the service registry to allow discovery. If such a service is named

within the initial configuration script submitted to the GDQS, the virtual machine is downloaded

to an appropriate node which contains the VMWare server and started, which results in the service

being made available. Subsequent queries containing an invocation to the service will be using this

newly deployed endpoint. This has been validated by wrapping a version of the analysis service that

has been used in the experiments within a virtual machine and deploying it dynamically on one of

the local nodes within the giga cluster and by submitting queries which resulted in this service being

invoked. It has been observed in all the experiments that the response time of a service deployed on

a virtual machine is almost equivalent to the response time of the service when deployed on a local

physical node.

CHAPTER 6. Evaluation of the Dynamic DQP Framework 146

6.3 Discussion

In this chapter, a brief discussion on the implementation of OGSA-DQP and DynaSOAr was provided

preceding the explanation about the experimental setup used for the evaluation. The evaluation of
DynaSOAr itself has been presented in other works, such as [19] and [98] and thus has been excluded
in this thesis. This chapter presented the evaluation of the concepts proposed regarding dynamic

OGSA-DQP in Chapter 5.

Several experimental scenarios have been considered for the evaluation purpose, each making an

attempt to validate the conceptual proposals made in Section 5.1, such as the collocation of an

analysis service closer to the data, or the proactive deployment of multiple copies of the analysis

service to balance to load between the instances, or the deployment of a database snapshot within

the local network. For each experiment, different configurations were used to prove the efficiency

of the dynamic deployment features incorporated in DQP. The observed results validate the claims

made in Chapter 5 and show an overall improvement in the query execution process. An interesting

observation was made in Section 6.2.6.3 where the local deployment of the snapshot of one database

temporarily increased the data transport cost as seen at the node hosting the other database involved

in the query.

Few experiments were performed in order to investigate into the issues regarding the availability of

third party maintained web services and for services requiring special environments. The dynamic

version of OGSA-DQP resolves the issues regarding the failure of a third party web service partially
by deploying a copy of the service, if available, during the schema import phase. Failure of a

service during the query execution phase however requires a more sophisticated approach such as

the checkpointing approach proposed in [139] apart from the dynamic deployment framework. The

dynamic deployment features along with the virtualization model allows the deployment of services

requiring special environments by packaging them within a virtual machine and making the entire

virtual machine available via the Software Repository.

In the final chapter, the thesis will discuss the overall findings of the research and possible further

work.

Chapter

Conclusions

In this concluding chapter of the thesis a summary of the research and its contributions is presented.

A discussion about the opportunities for further work and possible improvements to the concept of

dynamic service provisioning in distributed query processing is also presented.

7.1 Summary and Discussion

Arthur D. Little, the founder of the world's first management consulting firm, once said

"Research serves to make building stones out of stumbling blocks. " [145

The foundation that is built with these building stones allow further research to continue. But this

progression requires a knowledge about the foundation just as in case of buildings. This section

summarises and discusses the foundation, that is, the main work and contributions presented in

Chapters 3,4 and 5. The claims made in the introductory chapters are scrutinised with respect to

the results obtained during the evaluation to verify their validity.

7.1.1 Service Oriented Distributed Query Processing - Chapter 3

This chapter introduces the concept of service orientation to distributed query processing and pro-

vides an architectural description of a service oriented distributed query processor. This new service-

CHAPTER 7. Conclusions 148

oriented DQP system, commonly known as OGSA-DQP, was the result of collaborative research
between Manchester and Newcastle Universities, and has made a positive impact on the e-Science

community, amongst researchers who want to perform distributed query processing over disjoint

databases and perform analysis on the results. Since its first release in September 2003, it has been

downloaded over 800 times from all over the world.

The architecture of OGSA-DQP (Section 3.2) is based on service-orientation where each component

is factored out as a service. The query compilation/optimisation process takes place within a Grid

Distributed Query Service (GDQS), commonly known as the coordinator. The coordinator creates

an optimised query plan which is then partitioned and submitted to one or more Query Evaluation

Services (QES), commonly known as the evaluators. The evaluators access data from databases

exposed using OGSA-DAI services. Thus it will be reasonable to say that OGSA-DQP is service-

based in two orthogonal senses - (i) it allows resource virtualization by supporting queries over

distributed data sources and analysis services that are factored out as services, and (ii) the process

of query compilation, optimisation and evaluation takes place within a set of interacting services. It

was also claimed in Section 3.1 that OGSA-DQP can be considered as an approach complimentary

to other service orchestration mechanisms, such as workflows as typical workflows executed by

researchers in bio-informatics have similarities with a section of queries possible in OGSA-DQP.

OGSA-DQP requires initialisation before it is able to process queries. During the initialisation phase,

the schemas from the databases and the analysis service(s) are imported which are used during the

query compilation process. The query compilation/optmisation process applies parallel database

techniques as proposed in [13], [63] and [62]. Initially, the GDQS re-used the Polar* component

implemented earlier ([62]) as a black-box component, and later on, a Java-based compiler was

introduced which was able to compile SQL queries. The approach to query compilation remained

similar as in case of Polar* regarding the use of parallel database techniques.

Apart from the contribution in defining the broad architecture of OGSA-DQP and the underlying

concepts, the other major contribution towards this thesis has been the work on the runtime query

evaluation system, or the evaluators. The QESs or the evaluators have been exposed as services

based on standard WS-I [20] guidelines and principles. Each evaluator receives a query partition

structured as an XML document and the evaluation process follows the classical iterator model,

originally proposed by Graefe et. al. in [24] and (66]. It was a challenge encapsulating the iterator

model within a service, as in such a model, the state of the query evaluation process is extremely

important. Each of the participating evaluators exchange messages between them while evaluating

a query, and the process of distributing the messages is encapsulated within a special exchange

operator. Thus, it is very important that the evaluators are able to correlate the messages they

CHAPTER 7. Conclusions 149

receive with the queries that are being evaluated as each evaluation service may be processing

multiple queries simultaneously. In essence, the principles followed in the design and implementation

of the evaluators are similar to the proposals made in WS-GAF [27] about using the standard Web

Service technologies to achieve the stateful interactions. The motivation behind the use of the

standard WS-I technologies was the requirement for mobility so that the evaluation services can be

deployed at run time on nodes that are deemed best suited for the evaluation of a particular query

which would create a loosely coupled and fluid run time architecture.

One primary objective of the thesis was to propose the architecture of a DQP framework which

allows homogeneous access to heterogeneous data resources by using existing infrastructures, such

as OGSA-DAI and standard Web Service technologies. This objective has been fulfilled considering
the involvement in the broad architectural design of OGSA-DQP and the work on the run-time

evaluation system which follows the WS-I standards.

7.1.2 Dynamic Service Deployment - Chapter 4

The need for a more dynamic framework where services could be deployed on demand on available
hosts was felt when the core OGSA-DQP was being developed. The original OGSA-DQP was
tightly coupled with a set of resources, both computational and data in a sense that only the hosts

which already had the evaluation or analysis service deployed were used. There was no notion of on-
demand deployment which would allow new potential resources to be considered for query evaluation

or make an attempt to optimise the evaluation process by collocating different entities involved in

the evaluation process.

At the same time, a considerable shift in the focus was observed in the e-Science domain, where more

and more research projects started adopting the emerging service oriented technologies with a view
to benefit from the Grid. Traditionally, Grid computing was based on distributed job-schedulers

which form the core of Grid frameworks like Condor [3,2], Globus [4] or Sun Grid Engine [111]. But

with the advances in the service-oriented technologies and emergence of new standards and toolkits

supporting Web Services, a need was felt for a Grid computing infrastructure supporting on-demand

resource allocation such as the traditional frameworks, but based on service-orientation. Further,

the execution of a job in a job-based environment is an "one-time" affair, whereas, in many e-Science

researches, there are requirements for executing the same workflow or service multiple times with
different inputs. In a job-oriented paradigm, this would mean submitting the executable code along

with the input data each time, whereas, a service, once deployed, would remain so, unless specifically

undeployed by an administrator, thus allowing a "deploy once, use multiple times" philosophy, which

CHAPTER 7. Conclusions 150

fits with the requirement for e-Science research.

Thus with a similar motivation, both for advancing the research into OGSA-DQP and the other

e-Science projects adopting the service-orientation paradigm, a concept of a framework allowing
the dynamic deployment of Web Services was conceived, which came to be known as DynaSOAr,

or, Dynamic Service Oriented Architecture, which was introduced in Chapter 4. The arguments in

favour of DynaSOAr were - (i) a simplified development process concentrated only on services, (ii)

a possibility of improved performance as the service is retained on the host unless specifically un-
deployed thereby distributing the deployment cost over multiple invocations to the service and (iii)

the logical separation of service provisioning and host provisioning which would allow new organiza-

tional/business models. The evolution of the concepts behind DynaSOAr, such as the motivations
from the Active Information Repository architecture [7], the requirement for "loose-coupling" and
"execution transparency" and formation dynamic virtual organisations were outlined in Section 4.2

- all of which contributed to the requirements for the DynaSOAr architecture. Two deployment

patterns were described in Section 4.2.5 and the DynaSOAr architecture ensures that the service in-

vocation procedure from the consumer point of view does not change and the consumer is able to use

conventional tools and procedures for invoking a Web Service. The design of DynaSOAr including

each component was described in Section 4.3. DynaSOAr was developed as a collaborative work by

several researchers and apart from the contribution towards the overall architecture of DynaSOAr,

the development of a message-oriented framework and the incorporation of a registry service are

particularly important for this thesis. These, along with the introduction of a broker, the use of one

or more registries and the handshaking between available resources were the contributions towards

knowledge during the course of the thesis. Collectively, they contribute towards the formation of a
Software Hypermarket where consumers will have the option of choosing between multiple service

providers and host providers based on certain parameters such as trust, cost and quality of service.

The version of DynaSOAr described in this thesis relies on "virtualization" technologies such as

VMWare in order to create ad-hoc "virtual organisations" which enables new organisational models

for collaboration in the scientific domains. An overview of the available virtualization technologies

is provided in Section 4.4.1 which outlines the advantages that can be obtained from their use.

Section 4.4.2 provides a couple of scenarios, such as data caching and support for services requiring

special environments which are considered to be important in the context of this thesis. The question

about how these technologies are used within DynaSOAr is answered in Section 4.4.3. The most

important aspect in DynaSOAr is that, it considers the virtual environments with an approach

similar to the approach taken in case of Web Services, and from a consumer point of view, this

happens in a completely transparent manner, thus keeping the perception of execution transparency

intact.

CHAPTER 7. Conclusions 151

DynaSOAr has been evaluated in previous publications, such as [19] and by Fowler in his thesis [98].

Initial experiments with DynaSOAr showed promising results regarding the performance of the sys-

tem when services were deployed dynamically. This laid the foundation for the use of these concepts

within other frameworks where a requirement of such dynamic deployment was felt. Preliminary

work started in order to exploit the concepts within the OGSA-DQP framework [128] where the

effects of collocating an analysis service with the data was observed and the initial results were

encouraging. The possibility of adopting the virtualization technologies within the OGSA-DQP

context was explored in [146], and showed encouraging results during the evaluation (Section 6.2.5).

The exploitation of the DynaSOAr concepts within the DQP framework thus gained considerable

momentum and led to the research into a dynamic version of OGSA-DQP. The concepts of Dy-

naSOAr, including the virtualization approach have been adopted in the OGSA-DQP framework

in order to exploit the possibilities of dynamic deployment within the context of distributed query

processing, which is considered as the main contribution towards the thesis.

7.1.3 Exploiting Dynamic Service Provisioning in DQP - Chapter 5

The aim of the entire research was

"to create a dynamic distributed query processing framework for a Grid environment

allowing co-ordinated resource sharing and on-demand deployment of data-sources, eval-

uation and analysis services on available computational resources. "

This was achieved in Chapter 5 where the thesis attempted to investigate the possibilities of exploit-

ing the features of DynaSOAr into the distributed query processing system, OGSA-DQP, which was

discussed earlier. Certain scenarios are outlined in Section 5.1 where the on-demand deployment

features of DynaSOAr can be useful. These include the collocation of the analysis and evaluation

service with the data, increased degree of parallelism by a pro-active deployment of the analysis

service and the deployment of a database snapshot in case of frequent similar queries over the same

dataset. The DQP system can benefit from the use of virtualization technologies in case of such

deployment of database snapshots or for services which require a special environment or considerable

tuning with the underlying system. Figure 5.1 shows the ad-hoc virtual organisation that may be

created by DQP with the dynamic deployment features during the query evaluation process.

The overview of the dynamic OGSA-DQP system which incorporates the on-demand deployment

features of DynaSOAr is given in Section 5.2.1. A comparison is made with the static OGSA-

DQP system where the evaluation and analysis services are bound to certain hosts resulting in a

CHAPTER 7. Conclusions 152

tightly coupled system. This limits the scope of exploiting the dynamism of a Grid environment

where resources are often volatile in nature. On the other hand, the dynamic DQP system offers

a collection of resources grouped as pools, such as a Software pool or a Virtual Machine pool, and

nodes are effectively created on-demand. It is however assumed that the DynaSOAr framework

exists on the available nodes which would allow dynamic deployment to take place, and that certain
features may be incorporated within the standard Web Service containers to allow such deployment,

at which point, the requirement for DynaSOAr components such as the HostProvider may not be

necessary.

The detailed architecture of the dynamic DQP system is described in Section 5.2.2 where the use

of the DynaSOAr components, such as the Software Repository, Service Registry and Host Provider

are outlined. The interactions in DQP differ from DynaSOAr in that the participating services

must interact with each other directly. Hence the DQP coordinator, which is the entity equivalent

to the DynaSOAr Service Provider, needs to know the actual endpoints of the newly deployed

services which are used within the query plan produced by the compiler. Later sections elaborate

on the initialisation and query compilation activities of the DQP system, where the new features for

dynamic deployment are considered. The DQP data resource is able to collect the set of available

resources from the registry and all resources are considered during the generation of the query plan
irrespective of whether the evaluation service exists on the resource or not. A plan is generated which

uses the resources that are best suited for evaluating the particular query, and if required, services are
deployed on these nodes. Once a service is deployed on a resource, it stays there, and can be used by

the DQP system without any further need to redeploy the service on it. DQP uses a simple method

of sending a fixed sized network packet to the computing nodes for collecting the network latency

between the available nodes, and it is possible to replace this with a sophisticated network monitoring

tool which will lead to more accurate results. As shown in Figure 5.5, DQP makes an attempt to

collocate the data, analysis and evaluation service in order to gain an improvement in performance.
The use of virtualization technologies in DQP is described in Section 5.2.7 where a performance
feedback model was developed in order to collect performance data from all participating nodes.
Based on the performance, and a previously agreed threshold limit on the cost of transporting data

from a particular node, a reconfiguration may take place within the DQP system. If it is observed

that for a similar set of queries on a particular DQP resource, the cost of transporting the data from

a particular node hosting a data is following an increasing trend, and the cost exceeds the previously

agreed cost that was acceptable by the consumer, a snapshot of that database if available, is deployed

as a virtual machine on a local node, and subsequent queries use this newly deployed snapshot. It

is assumed that some offline process will be used to keep the snapshot synchronized with the actual
dataset.

CHAPTER 7. Conclusions 153

The dynamic deployment features are evaluated in Chapter 6 to challenge the claims made in the

thesis about the benefits of dynamic deployment. Several different DQP setups were used in order to

show the benefits of collocation of various services, the advantages of virtualization technologies etc
in comparison with the earlier static OGSA-DQP system. It is possible to break down the objective

of exploiting dynamic service provisioning within distributed query processing into finer objectives,

which, along with whether they were validated during the evaluation are discussed:

" Collocation of the analysis service with the data - One of the claims made in Chapter 5 was

about a possible improvement in the performance of DQP if the analysis service could be

collocated with the data. The rationale behind the claim was that this collocation would

reduce the cost of invoking the analysis service, which is normally high when the service is

remote, which in turn would reduce the overall cost of query execution. The experiments

described in Section 6.2.2 clearly show that such collocation of the analysis service with the

data was able to reduce the overall cost of query execution quite dramatically.

" Collocation of the query evaluation engine with the data - It was thought that collocating the

query evaluation engine with the data would reduce the cost of accessing the data from the

database thereby reducing the overall cost of query execution. The evaluation of this claim in

Section 6.2.4 however had a mixed outcome. The cost of accessing the data was reduced, but

when the evaluation engine itself is remote, the cost of transferring the processed data becomes

higher for queries returning a large resultset. This highlighted the requirement of using a more

robust method of transferring tuples between the DQP services.

" Increased degree of parallelism for analysis service invocation - It was envisaged that the pro-

active deployment of the analysis service on multiple hosts would allow the query optimiser

in DQP to parallelise the operation-call operator, which would actually distribute the tuples

across multiple endpoints of the analysis service. This distribution would result in a better

performance because of the inherent partitioned parallelism within the DQP evaluation process.

This claim was validated by the experimental results analysed in Section 6.2.3.

" Deployment of a database snapshot - The performance of DQP using virtualization technologies

was analysed in Section 6.2.5 which showed that the performance of virtual machines within

the local network are equivalent to real physical hosts and does not affect the performance of

the query evaluation system in any adverse way. The objective of bringing the data closer to

the analysis code by deploying a snapshot of the database locally in situations where frequent

queries are submitted against the same dataset, and the use of a snapshot does not affect the

queries adversely, is realised by the deployment of virtual machine instances. The experiments

in Section 6.2.6 successfully defend the claim made in the thesis.

CHAPTER 7. Conclusions 154

" Services requiring special environments - One of the objectives was to enable deployment

of services which require special environments, such as a special database or a special set

of libraries. This was realised by encapsulating such services within a virtual machine and
deploying the VM on demand. This procedure also created the possibility of deploying services

which require considerable tuning with the underlying system. Such services can be deployed

on a VM and tuned properly before storing the VM in the repository. Deployment of the VM

would deploy the service, which would already be tuned with the underlying system. These

claims have been validated by the experiments described in Section 6.2.8.

The incorporation of dynamic service provisioning features within OGSA-DQP enables the possibility

of the software marketplace. A consumer may want to use a certain analysis service within the

queries, and the service may be hosted by different host providers, or may be provided by different

service providers. The consumer may have a set of quality of service requirements or provider

preference, using which it may be possible for the DQP system to select the best suited host or

service provider. It may also be possible to establish Service Level Agreements (SLAs) during the

initialisation phase where the consumer submits the set of databases and services required for the

queries, based on which the DQP data resource is created.

7.1.4 Summary of Contributions

Some of the research mentioned in the thesis was the result of collaboration between several re-

searchers in different projects. For example, OGSA-DQP was the result of collaborative research
between Manchester and Newcastle Universities. DynaSOAr was the result of the research into

dynamic deployment by several researchers at Newcastle University. Thus, this thesis does not and

should not claim the complete credit for such collaborative research. The following list summarises

the contribution towards knowledge made by this thesis.

1. Service-oriented Distributed Query Processing System was a result of a collabora-

tive work between Manchester and Newcastle Universities, supported by other researchers in

OGSA-DAI [14] and the myGrid [6] project. The contribution made by this thesis lies in the

overall architecture and design of the DQP system and the philosophies behind it and the cre-

ation of the run-time query evaluation engine which encapsulates the iterator model of query

evaluation within a service which evaluates a query partition by processing the plan submitted

to it as an XML document.

2. Identifying the case for dynamic deployment where the scenarios within OGSA-DQP

CHAPTER 7. Conclusions 155

where the dynamic deployment features would benefit both the consumers and the query

execution process.

3. Dynamic Service Oriented Architecture framework was another collaborative work

where several researchers made their contribution. The contribution towards the overall design

and architecture of the system, and more specifically the incorporation of the concepts behind

the use of registries, brokers, the message-oriented model and the generic hierarchy leading

to the convergence of multiple organisations into logical virtual organisation account for the

contribution towards this thesis.

4. Evolution of a Software Hypermarket is a conceptual feature within the DynaSOAr

framework which allows consumers to choose between available service and resource providers

based on parameters such as trust, security, quality of service, cost etc.

5. Virtualization in DynaSOAr is a major contribution in which virtualization technologies

are used to deploy services that require special environments or considerable tuning to the

underlying system, and also to deploy database snapshots for situations where similar queries

are executed over the same remote dataset.

6. Improved service performance is a result obtained by dynamically deploying analysis

services closer to the data or by pro-active multiple deployment of computationally expensive

services over a set of hosts in order to distribute the number of invocations between all the

instances.

7. Dynamic Service-Oriented Distributed Query Processing framework is the final con-

tribution where the original OGSA-DQP system was extended in terms of architecture, design

and implementation to incorporate the features from DynaSOAr to enable dynamic deploy-

ment. The extended system was evaluated to establish the claims of improved performance

while processing distributed queries.

7.2 Further Work

Referring back to Arthur D. Little's statement about research, the stumbling blocks of research

into OGSA-DQP, DynaSOAr and the dynamic version of OGSA-DQP, resulted into building stones

for future research and development. In this section, the opportunities of further work that were

identified during the course of the research are presented. There is scope for making considerable

improvements to the existing work which are listed along with the new ideas that can be explored.

CHAPTER 7. Conclusions 156

7.2.1 Efficient Data Movement Between DQP Services

The OGSA-DQP system was the pioneer in distributed query processing based on service-orientation

which adopted technologies from parallel databases and supported queries over a heterogeneous set

of databases using existing services such as OGSA-DAI. There is, however, once concern related to

the communication between the component services of OGSA-DQP. The data packets or tuples are

sent as SOAP messages, and are serialised and de-serialised using Apache Axis [77] libraries, which
is not the most efficient way of communication. It was observed by Alpdemir et. al. in [144] that

the cost of communication between DQP components contributes largely to the overall execution of

a query, and within this communication cost, the serialisation/de-serialisation is the most expensive

operation. Further, the concerns expressed in [125], [126] and [127] and the very reason why the

need for dynamism was felt, are present in OGSA-DQP itself, and affects the performance. Adopting

the emerging standards and techniques regarding binary data communication over SOAP, such as
MTOM [147], would provide significant improvement over the current Axis-based transfer used

within OGSA-DQP.

7.2.2 Support for Non-relational Data Formats

The existing OGSA-DQP caters to relational database systems that are wrapped as OGSA-DAI

services. OGSA-DAI however supports other data formats such as CSV, XML etc. This is a void

within OGSA-DQP which needs to be filled so that the ultimate goal of a middleware that is able

to seamlessly integrate data from various data sources irrespective of the format and platform, can
be achieved.

7.2.3 Effective Brokering in DynaSOAr

The current version of DynaSOAr incorporates a very simple brokering approach. But the complete

vision of a Software Hypermarket is the one where on one hand the consumers will be able to

submit their requirements, such as cost, reliability, provider preference etc., using which one or

more broker entities would be able to provide the consumer with the optimal service, and on the

other hand, the service providers should be able to choose between available host providers based

on parameters such as cost and reliability. To achieve this, the characteristics of each service and

host, in terms of the cost of using it, the reliability must be considered while making scheduling

or routing decisions regarding hosting a service on a certain resource or forwarding the consumer

request to a certain host. The consumers also should be allowed to specify their preferences while

CHAPTER 7. Conclusions 157

submitting the requests, possibly using predefined Service Level Agreements (SLAB). Some research
is going on in this respect in the CRISP project [148] and GRIA [149] where an identifier for the

SLA is added to the header of the SOAP message sent by the consumer. Policies can be defined

at the service provider end and/or the host provider end, against which the SLA of the consumer

can be validated in order to provide the desired quality of service. The GridSHED project [113]

looked into heuristical algorithms for resource allocation based on usage characteristics, which can

also contribute towards the development of the vision of a Software Hypermarket.

7.2.4 Robust and Efficient Transport for DynaSOAr Deployment

DynaSOAr normally uses Java-based network 10 libraries for transferring files required for deploying

a service over the network. This performance of this system declines rapidly as the size of the files

being transported increases. The system is largely ineffective for the movement of large virtual

machine images which are normally few gigabytes in size. To deal with this, the SFTP utility has

been used for transferring the virtual machine images, which performs in a considerably robust and

efficient way when compared to the previous system. But, the system still requires a more efficient

method of transporting large files. GridFTP [55] is one possible option which has been used in

DEBUT [150], but this would create a tight coupling of DynaSOAr with the Globus system [43].

Alternative methods such as SRB [54], which provides an efficient way of storing and transferring

large binary files may be explored. Another attractive option is the peer-to-peer systems, which

may be particularly suitable for situations where the same software image must be downloaded to

multiple hosts.

7.2.5 Remodelling the Query Compiler

All the points mentioned in the previous sections are likely to cause a positive effect to the dynamic

OGSA-DQP system by improving the performance. The research carried out in the thesis is not

about rewriting the query compiler or the cost model that is used within the compiler, but is to

exploit the possibilities of using dynamic service provisioning inside OGSA-DQP. The claims made
in the thesis are established by the experimental results, which may form the basis for re-engineering

the query compiler and the cost model in the lights of dynamic service provisioning. The approach

taken in this thesis was to extend the existing compiler with dynamic service provisioning features,

but, it may lead to a better and more robust system if the query compiler is remodelled considering

the ideas developed during this thesis.

CHAPTER 7. Conclusions 158

One such requirement is a network-aware cost model. Dynamic service provisioning must consider

the connectivity of the available resources. The original cost model used in the DQP query compiler
had no notion of considering the network bandwidth or latency between two nodes while optimising

the query plan. In the extended version presented in this thesis, a simple method of estimating the

network latency is used and some intelligence is added to the compiler for deciding on the "closeness"

between nodes based on the network latency. There are existing work on network-aware cost models

such as the ones proposed in [133] and [134]. Adopting such an algorithm or re-engineering the

current cost model to consider network latency for DQP is likely to provide a huge boost towards

the realisation of a Grid middleware system that is able to process queries distributed over remote
heterogeneous databases.

A casual look at the prospects may seem to suggest that Arthur D. Little's comment about research

may be too far-fetched in this case. The convergence of DynaSOAr and OGSA-DQP may have

resulted in some performance benefits, but will it really contribute to the middleware that was

envisaged during the start of the e-Science programme? These prototypes should really be considered

as small steps towards the greater goal. Already considerable developments into various related areas

such as Utility Computing has resulted into remarkable systems such as 3Tera [151] which provides

intuitive interfaces to provision complex networked applications. Virtualization technologies are

developing and have proved to be remarkably efficient within Grid application domains. OGSA-DQP

transformed into using the more popular SQL from the earlier OQL. It may not be unreasonable

to imagine sophisticated human-computer interfaces allowing scientists the freedom of using their

own languages and procedures to build the queries or workflows in an intuitive way. A simple

submit button will enable the DQP system to perform an optimisation of the query based on the

available resources and create for the scientist the most optimal virtual laboratory for executing

the experiments, storing the results in an electronic form of labbook and sharing it with research

colleagues pursuing similar interests. Imagination is the first step in research, the stumbling blocks

of which may result into building stones paving the path for future research.

"Imagination is the beginning of creation. You imagine what you desire, you will what

you imagine and at last you create what you will. " - George Bernard Shaw

Bibliography

[1] eScience (0 EBI. http: //www. ebi. ac. uk/escience/.

(2] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Computing in Practice:

The Condor Experience. Concurrency - Practice and Experience, 17(2-4): 323-356,2005.

[3] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor -A Distributed

Job Scheduler. In Thomas Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press,

October 2001.

[4] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The

International Journal of Supercomputer Applications and High Performance Computing, 11

(2): 115-128, Summer 1997.

[5] SOAP Version 1.2 Part 1: Messaging Framework. http: //wwv. w3. org/TR/soapl2-parti/.

[6] myGrid. http: //www. mygrid. org. uk/.

[7] Paul Watson and Pete Lee. The NU-Grid Persistent Object Computation Server. In Ist

European Grid Workshop, Poznan, Poland, 2000.

[8] Alfonso F uggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code Mobility.

IEEE Transactions on Software Engineering, 24(5): 342-361,1998.

[9] Basic Local Alignment Search Tool. http: //www. ncbi. nlm. nih. gov/BLAST.

[10] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R. Pocock, Peter Li,

and Tom Oinn. Taverna: a tool for building and running workflows of services. Nucleic Acids

Research, 34: 729-732,2006.

[11] What is OGSA-DQP? http: //www. ogsadai. org. uk/about/ogsa-dqp/.

A

BIBLIOGRAPHY 160

[12] Jim Smith, Sandra Sampaio, Paul Watson, and Norman W. Paton. The Design, Implemen-

tation and Evaluation of an ODMG Compliant, Parallel Object Database Server. Distributed

and Parallel Databases, 16(3): 275-319,2004.

[131 Sandra de F. Mendes Sampaio, Norman W. Paton, Paul Watson, and Jim Smith. A Par-

allel Algebra for Object Databases. In Workshop on Parallel and Distributed Databases, in

conjunction with DEXA'99, Florence, Italy, August 1999.

[14] OGSA-DAI. http: //www. ogsadai. org. uk/.

[15] VMWare - Virtualization Overview. http: //wv. vmware. com/virtualization/.

[16] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-

bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP '03.

Proceedings of the nineteenth ACM symposium on Operating systems principles, pages 164-

177, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-757-5.

[17] Katarzyna Keahey, Ian T. Foster, Timothy Freeman, Xuehai Zhang, and Daniel Galron. Vir-

tual Workspaces in the Grid. In Euro-Par 2005, Parallel Processing, 11th International Euro-

Par Conference, volume 3648 of Lecture Notes in Computer Science, pages 421-431. Springer,

2005.

[18] Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick Kennell, and Sebastien Goasguen. Autonomic

Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure.

In Autonomic Computing, 2006. ICAC 2006. IEEE International Conference on, pages 5-14,

2006.

[19] Paul Watson, Chris Fowler, Charles Kubicek, Arijit Mukherjee, John Colquhoun, Mark He-

witt, and Savas Parastatidis. Dynamically deploying Web services on a grid using Dynasoar.

In Ninth IEEE International Symposium on Object and Component-Oriented Real- Time Dis-

tributed Computing, ISORC. IEEE, 2006.

[20] WS-I - Web Services Interoperability Organization. http: //www. ws-i. org/.

[21] WS-I Basic Profile Version 1.0. http: //www. ws-i. org/Profiles/BasicProfile-1.0-2004-04-16.

html.

[22] Jim Gray. Distributed computing economics. http: //research. microsoft. com/research/pubs/

view. aspx? tr_id=655.

[23] Alexander S. Szalay, Peter Z. Kunszt, Ani Thakar, Jim Gray, Don Slutz, and Robert J.

Brunner. Designing and mining multi-terabyte astronomy archives: the Sloan Digital Sky

Survey. SIGMOD Rec., 29(2): 451-462,2000.

BIBLIOGRAPHY 161

[24] Goetz Graefe. Encapsulation of parallelism in the Volcano query processing system. In SIG-

MOD '90: Proceedings of the 1990 ACM SIGMOD international conference on Management

of data, pages 102-111, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-365-5.

[251 Goetz Graefe. Iterators, Schedulers, and Distributed Memory Parallelism. Software practice

and Experience, 26(4), April 1996.

[26] Goetz Graefe, Richard L. Cole, Diane L. Davison, William McKenna, and Richard H. Wol-

niewicz. Extensible Query Optimization and Parallel Execution in Volcano. In Johann Chris-

tiph Freytag, David Maier, and Gottfried Vossen, editors, Query Processing for Advanced

Database Applications, pages 336-335. Morgan Kaufmann, San Francisco, CA, 1994.

[27] Savas Parastatidis, Jim Webber, Paul Watson, and Thomas Rischbeck. WS-GAF: a frame-

work for building Grid applications using Web Services: Research Articles. Concurrency and

Computation : Practice and Experience, 17(2-4): 391-417,2005.

[28] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sand-

holm, P. Vanderbilt, and D. Snelling. Open Grid Services Infrastructure (OGSI) Version 1.0.,

2003. Open Grid Services Infrastructure(OGSI)Version 1.0.

[29] Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter Henderson, Tony

Hey, Norman Paton, Steven Newhouse, Savas Parastatidis, Anne Trefethen, Paul Watson, and

Jim Webber. Web Service Grids: an evolutionary approach: Research Articles. Concurrency

and Computation: Practice 8 Experience, 17(2-4): 377-389,2005.

[30] Grid Computing Information Centre. http: //www. gridcomputing. com/gridfaq. html.

[31] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infras-

tructure. San Francisco, Morgan Kaufmann Publishers Inc, 1999. ISBN 1558604758.

(32] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. Int. J. High Perform. Comput. Appl., 15(3): 200-222,2001.

[33] Reagan W. Moore, Chaitanya Baru, Richard Marciano, Arcot Rajasekar, and Michael Wan.

Data-intensive computing. In Ian Foster and Carl Kesselman, editors, The grid: blueprint

for a new computing infrastructure, pages 105-129. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1999. ISBN 1-55860-475-8.

[34] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The Data

Grid: Towards an architecture for the distributed management and analysis of large scientific

datasets. Journal of Network and Computer Applications, 23: 187-200,2001.

BIBLIOGRAPHY 162

[35] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid. In Fran Berman,

Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., December 2002.

[36] GT Execution Management: GRAM. http: //www. globus. org/toolkit/gram/.

[37] Nathalie Furmento, Anthony Mayer, Stephen McGough, Steven Newhouse, A. J. Field, and
John Darlington. ICENI: Optimisation of component applications within a Grid environment.
Parallel Computing, 28(12): 1753-1772, December 2002.

[38] Don Box. Code Name Indigo -A Guide to Developing and Running Connected Systems with
Indigo. MSDN Magazine - The Microsoft Journal for Developers, 19(1), January 2004.

[39] OASIS Web Services Business Process Execution Language (WSBPEL) TC. http: //www.

oasis-open. org/committees/tc_home. php? wg_abbrev-wsbpel.

[40] OASIS - Organization for the Advancement of Structured Information Standards. http: //ww.

oasis-open. org.

[41] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration, 2002.

[42] Karl Czajkowski, Don Ferguson, Ian Foster, Jeffrey Frey, Steven Graham, Tim Maguire, David

Snelling, and Steve Tuecke. From Open Grid Services Infrastructure to WS-Resource Frame-

work: Refactoring & Evolution. 2004.

[43] The WS-Resource Framework. http: //vvw. globus. org/wsri/.

(44] Karl Czajkowski, Don Ferguson, Ian Foster, Jeffrey Frey, Steven Graham, Igor Sedukhin,

David Snelling, Steve Tuecke, and William Vambenepe. The WS-Resource Framework. 2004.

[45] Ian Foster, Jeffrey Frey, Steve Graham, Steve Tuecke, Karl Czajkowski, Don Ferguson, Frank

Leymann, Martin Nally, Igor Sedukhin, David Snelling, Tony Storey, William Vambenepe, and
Sanjiva Weerawarana. Modeling Stateful Resources with Web Services v. 1.1.2004.

[46] W3C Web Services Addressing (WS-Addressing). http: //ww. w3. org/Submission/

ws-addressing/.

(47] Kevin Cline, Josh Cohen, Doug Davis, Donald F Ferguson, Heather Kreger, Raymond Mc-

Collum, Bryan Murray, Ian Robinson, Jeffrey Schlimmer, John Shewchuk, Vijay Tewari, and

William Vambenepe. Toward converging web service standards for resources, events, and man-

agement. version 1.0. Technical report, A joint white paper from Hewlett Packard Corporation,

IBM Corporation, Intel Corporation, and Microsoft Corporation, 2006.

BIBLIOGRAPHY 163

[48] Web Services Eventing (WS-Eventing). http: //www. w3. org/Submission/WS-Eventing/.

[49] Web Services Metadata Exchange (WS-MetadataExchange). http: //schemas. xmisoap. org/ws/

2004/09/mex/.

[50] Web Services Resource Transfer (WS-ResourceTransfer). http: //schemas. xmisoap. org/ws/
2006/08/resourcetranster/.

[51] Michael Stonebraker. Readings in Database Systems (2nd ed.). San Mateo, Morgan Kaufmann

Publishers Inc, 1994.

[52] Amazon Simple Storage Service (Amazon S3). http: //www. amazon. com/gp/browse. html? node-
16427261.

[53] Paul Watson. Databases and the Grid. Computing Science Technical Report Series, (CS-TR-

755).

[54) Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC storage re-

source broker. In CASCON '98: Proceedings of the 1998 conference of the Centre for Advanced

Studies on Collaborative research, page 5. IBM Press, 1998.

[55] Bill Allcock, Joe Bester, John Bresnahan, John Bresnahan, Ann L. Chervenak, Ian Foster,

Carl Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Data

management and transfer in high-performance computational grid environments. Parallel

Computing, 28(5): 749-771,2002.

[56] Martin Schaller. Reclustering of high energy physics data. In Statistical and Scientific Database

Management, pages 194-203,1999.

[57] Mark Hayes. Grids: A Reality Check. www. escience. cam. ac. uk/mark/GEFD-2. ppt.

[58] Database Access and Integration Services WG (DAIS-WG). http: //forge. gridforum. org/

projects/dais-wg.

[59] Open Grid Forum. http: //www. ogf. org/.

[60] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil P. Chue Hong, Brian

Collins, Neil Hardman, Alastair C. Hume, Alan Knox, Mike Jackson, Amy Krause, Simon

Laws, James Magowan, Norman W. Paton, Dave Pearson, Tom Sugden, Paul Watson, and

Martin Westhead. The design and implementation of Grid database services in OGSA-DAI:

Research Articles. Concurrency and Computation: Practice F1 Experience, 17(2-4): 357-376,

2005.

BIBLIOGRAPHY 164

[61] S. Malaika, C. J. Nelin, R. Qu, B. Reinwald, and D. C. Wolfson. DB2 and Web services. IBM

Systems Journal, 41(4): 666-685,2002.

[62] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A. A. Fernandes,

and Rizos Sakellariou. Distributed Query Processing on the Grid. In GRID '02: Proceedings of
the Third International Workshop on Grid Computing, pages 279-290. Springer-Verlag, 2002.

ISBN 3-540-00133-6.

[63] Paul Watson. The Design of an ODMG Compatible Parallel Object Database Server. In

International Meeting on Vector and Parallel Processing (VECPAR), LNCS 1573. Springer,

June 1998.

[64] Ian Foster and Nicholas T. Karonis. A grid-enabled MPI: message passing in heterogeneous

distributed computing systems. In Supercomputing '98: Proceedings of the 1998 ACM/IEEE

conference on Supercomputing (CDROM), pages 1-11, Washington, DC, USA, 1998. IEEE

Computer Society. ISBN 0-89791-984-X.

[65] Tanu Malik, Alexander S. Szalay, Tamas Budavari, and Ani Thakar. SkyQuery: A Web Service

Approach to Federate Databases. In CIDR, 2003.

[66] Goetz Graefe and Diane L. Davison. Encapsulation of Parallelism and Architecture-

Independence in Extensible Database Query Execution. IEEE Transactions of Software En-

gineering, 19(8): 749-780, August 1993.

[67] Sivaramakrishnan Narayanan, Umit Catalyurek, Tahsin Kurc, Xi Zhang, and Joel Saltz. Ap-

plying database support for large scale data driven science in distributed environments. In

GRID '03: Proceedings of the Fourth International Workshop on Grid Computing, page 141,

Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2026-X.

[68] Michael Beynon, Renato Ferreira, Tahsin M. Kurc, Alan Sussman, and Joel H. Saltz. Data,

Cutter: Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems.

In IEEE Symposium on Mass Storage Systems, pages 119-134,2000.

[69] Thomas Friese, Matthew Smith, and Bernd Freisleben. Hot service deployment in an ad hoc

grid environment. In ICSOC '04: Proceedings of the 2nd international conference on Service

oriented computing, pages 75-83, New York, NY, USA, 2004. ACM. ISBN 1-58113-871-7.

[70] Giovanni Vigna, editor. Mobile Agents and Security, volume 1419 of Lecture Notes in Computer

Science. Springer, 1998. ISBN 3-540-64792-9.

[71] Li Chunlin and Li Layuan. An agent-oriented and service-oriented environment for deploying

dynamic distributed systems. Computer Standards &4 Interfaces, 24(4): 323-336,2002.

BIBLIOGRAPHY 165

[72] Daniel Wu, Divyakant Agrawal, and Amr El Abbadi. StratOSphere: mobile processing of
distributed objects in Java. In MobiCom '98: Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking, pages 121-132, New York, NY,

USA, 1998. ACM Press. ISBN 1-58113-035-X.

[73] Andrea Omicini and Franco Zambonelli. Coordination for Internet Application Development.

Autonomous Agents and Multi-Agent Systems, 2(3): 251-269,1999.

[74] Pu Liu and Michael J. Lewis. Mobile Code Enabled Web Services. In ICWS '05: Proceedings of

the IEEE International Conference on Web Services (ICWS'05), pages 167-174, Washington,

DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2409-5.

[75] Andrew Harrison and Ian J. Taylor. Dynamic Web Service Deployment Using WSPeer. In

Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid Applications and Tech-

nologies, pages 11-16. Louisiana State University, February 2005.

[761 Christos Chrysoulas, Evangelos Haleplidis, Robert Haas, Spyros Denazis, and Odysseas

Koufopavlou. A Web-Services Based Architecture for Dynamic Service Deployment, 2005.

[77] Apache Axis Project. http: //ws. apache. org/axis/.

[78] Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Flexible and Reliable Web Service Execu-

tion. In 1st Workshop on Entwicklung von Anwendungen auf der Basis der XML Web-Service

Technologie, pages pages 17-30,2002.

[79] Markus Keidl and Alfons Kemper. Towards context-aware adaptable web services. In WWW

Alt. '04: Proceedings of the 13th international World Wide Web conference on Alternate track

papers &4 posters, pages 55-65, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-912-8.

[80] Markus Keidl, Stefan Seltzsam, Konrad Stocker, and Alfons Kemper. Serviceglobe: distribut-

ing e-services across the internet. In VLDB '02: Proceedings of the 28th international confer-

ence on Very Large Data Bases, pages 1047-1050. VLDB Endowment, 2002.

[81] UDDI Version 3.0.2. http: //uddi. org/pubs/uddi_v3. htm#_Toc85907988.

[82] Li Qi, Hai Jin, Ian T. Foster, and Jarek Gawor. HAND: Highly Available Dynamic Deployment

Infrastructure for Globus Toolkit 4. In 15th Euromicro International Conference on Paral-

lel, Distributed and Network-Based Processing (PDP 2007), pages 155-162. IEEE Computer

Society, 2007.

[83] Eun-Kyu Byun and Jin-Soo Kim. DynaGrid: A dynamic service deployment and resource

migration framework for WSRF-compliant applications. Parallel Computing, 33(4-5): 328-338,

2007.

BIBLIOGRAPHY 166

[84] Jon B. Weissman, Seonho Kim, and Darin England. Supporting the dynamic grid service
lifecycle. In CCGRID '05: Proceedings of the Fifth IEEE International Symposium on Cluster

Computing and the Grid (CCGrid'05) - Volume 2, pages 808-815, Washington, DC, USA,

2005. IEEE Computer Society. ISBN 0-7803-9074-1.

[85] Jon B. Weissman, Seonho Kim, and Darin England. A Framework for Dynamic Service Adap-

tation in the Grid: Next Generation Software Program Progress Report. In IPDPS '05:

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS'05) - Workshop 10, page 221.2, Washington, DC, USA, 2005. IEEE Computer Soci-

ety. ISBN 0-7695-2312-9.

[86] Matthew Smith, Thomas Friese, and Bernd Freisleben. Towards a Service-Oriented Ad Hoc

Grid. In ISPDC '04: Proceedings of the Third International Symposium on Parallel and Dis-

tributed Computing/Third International Workshop on Algorithms, Models and Tools for Par-

allel Computing on Heterogeneous Networks (ISPDC/HeteroPar'04), pages 201-208, Wash-

ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2210-6.

[87] John Darlington, Jeremy Cohen, and William Lee. An Architecture for a Next-Generation

Internet Based on Web Services and Utility Computing. In WETICE '06: Proceedings of the

15th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, pages 169-174, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-

7695-2623-3.

[88] Amazon Elastic Compute Cloud (Amazon EC2). http: //www. amazon. com/gp/browse. html?

node=201590011.

[89] A Market for Computational Services Project. http: //www. lesc. ic. ac. uk/markets.

[90] Richard A. Meyer and Love H. Seawright. A Virtual Machine Time-Sharing System. IBM

Systems Journal, 9(3): 199-218,1970.

[91] J. E. Smith and Ravi Nair. An overview of virtual machine architectures. In Virtual Machines:

Architectures, Implementations and Applications. Morgan-Kaufmann, 2004.

[92] Jeff Dike. A user-mode port of the linux kernel. In ALS'00: Proceedings of the 4th conference

on 4th Annual Linux Showcase P9 Conference, Atlanta, pages 7-7, Berkeley, CA, USA, 2000.

USENIX Association.

[93] Renato J. Figueiredo, Peter A. Dinda, and Jose A. B. Fortes. A Case For Grid Computing

On Virtual Machines. Irk ICDCS '03: Proceedings of the 23rd International Conference on

Distributed Computing Systems, page 550, Washington, DC, USA, 2003. IEEE Computer

Society. ISBN 0-7695-1920-2.

BIBLIOGRAPHY 167

(94] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortes, and Renato J. Figueiredo. VM-

Plants: Providing and Managing Virtual Machine Execution Environments for Grid Comput-

ing. In SC '04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 7,

Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2153-3.

[95] Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid

computing. In VM'04: Proceedings of the 3rd conference on Virtual Machine Research And

Technology Symposium, pages 14-14, Berkeley, CA, USA, 2004. USENIX Association.

[96] VMWare - VMWare Workstation. http: //www. vmware. com/products/ws/.

[97] Oracle9i Advanced Replication, Release 2 (9.2). http: //www. 1c. leidenuniv. nl/awcourse/

oracle/server. 920/a96567/toc. htm.

[98] Chris Fowler. Dynamic Deployment of Web Services on the Internet or Grid. PhD thesis,

Newcastle University, UK, 2007.

[99] M. Nedim Alpdemir, Arijit Mukherjee, Norman W. Paton, Paul Watson, Alvaro A. A. Fernan-

des, Anastasios Gounaris, and Jim Smith. Service-based Distributed Querying on the Grid. In

First International Conference on Service Oriented Computing (ICSOC 2003), LNCS 2910,

pages 467-482. Springer-Verlag, 2003.

[100] OGSA-DAI Glossary of Terms. http: //www. ogsadai. org. uk/documentation/ogsadai-wsrf-2.

2/doc/reference/glossary. html.

[101] W3C Web Services Description Language (WSDL) 1.1. http: //www. w3. org/TR/wsd1.

[102) R. G. G. Cattell and Douglas K. Barry. The Object Database Standard: ODMG 3.0. Morgan

Kaufmann, 2000.

[103] GRIMOIRES. http: //www. grimoires. org.

[104] W3C Extensible Markup Language (XML). http: //www. w3. org/XML/.

[105] W3C XML Schema. http: //www. w3. org/XML/Schema.

[106] Donald Kossmann. The State of the Art in Distributed Query Processing. ACM Computing

Surveys, 32(4): 422-469,2000.

[107] Leonidas Fegaras and David Maier. Optimizing Object Queries Using an Effective Calculus.

ACM TODS, 24(4): 457-516,2000.

[108] Leonidas Fegaras. Query Unnesting in Object-Oriented Databases. In SIGMOD, pages 49-60,

1998.

BIBLIOGRAPHY 168

[109] W3C Web Services Architecture. http: //www. w3. org/TR/ws-arch/.

[110] Laura Sebu and Horia Ciocarlie. The design of stateful web services based on web service

resource framework implemented in globus toolkit 4. In SYNASC '06: Proceedings of the Eighth

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages

309-316, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2740-X.

[111 Sun Grid Engine. http: //www. sun. com/software/gridware/.

[112] Paul Watson, Tom Jackson, Georgios Pitsilis, Frank Gibson, Jim Austin, Martyn Fletcher,

Bojian Liang, and Phillip Lord. The CARMEN Neuroscience Server. In UK eScience All

Hands Meeting 2007,2007.

[113] Jenny Palmer and Isi Mitrani. Optimal Server Allocation in Reconfigurable Clusters with
Multiple Job Types. In Computational Science and its Applications (ICCSA 2004), Assisi,

Italy, 2004.

[114] Charles Kubicek, Mike Fisher, Paul McKee, and Rob Smith. Dynamic Allocation of Servers

to Jobs in a Grid Hosting Environment. BT Technology Journal, 22: 251-260,2004.

[115] XMLSpy: XML editor for modeling, editing, transforming, and debugging XML technologies.

http: //www. altova. com/products/smispy/xml_editor. html.

[116] Resource Description Framework. http: //wvw. w3. org/RDF.

[117] Hypermarket From Wikipedia. http: //en. vikipedia. org/wiki/Hypermarket.

[118] VMWare. www. vmware. com/pdf/virtualization. pdf.

[119] Sriya Santhanam, Pradheep Elango, Andrea Arpaci-Dusseau, and Miron Livny. Deploying

virtual machines as sandboxes for the grid. In WORLDS'05: Proceedings of the 2nd conference

on Real, Large Distributed Systems, pages 2-2, Berkeley, CA, USA, 2005. USENIX Association.

[120 VMWare - VMWare Server. http: //www. vmware. com/products/server/.

[121] Microsoft Virtual PC. http: //www. microsoft. com/windovs/virtualpc/default. mspx.

[122] Susanta Nanda and Tzi-Cker Chiueh. A Survey on Virtualization Technologies. Technical

Report ECSL-TR-179, Department of Computer Science, SUNY at Stony Brook, February

2005.

[123] The Gene Ontology Database. http: //www. geneontology. org/index. shtml.

[124] SwissProt Protein Knowledgebase. http: //expasy. org/sprot/.

BIBLIOGRAPHY 169

[125] Madhusudhan Govindaraju, Aleksander Slominski, Venkatesh Choppella, Randall Bramley,

and Dennis Gannon. Requirements for and evaluation of RMI protocols for scientific com-

puting. In Supercomputing '00: Proceedings of the 2000 ACM/IEEE conference on Super-

computing (CDROM), page 61, Washington, DC, USA, 2000. IEEE Computer Society. ISBN

0-7803-9802-5.

[1261 Fabian E. Bustamante, Greg Eisenhauer, Karsten Schwan, and Patrick Widener. Efficient

wire formats for high performance computing. In Supercomputing '00: Proceedings of the 2000

ACM/IEEE conference on Supercomputing (CDROM), page 39, Washington, DC, USA, 2000.

IEEE Computer Society. ISBN 0-7803-9802-5.

[127] Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. Investigating the Limits of

SOAP Performance for Scientific Computing. In HPDC '02: Proceedings of the 11th IEEE

International Symposium on High Performance Distributed Computing, page 246, Washington,

DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1686-6.

[128] Arijit Mukherjee and Paul Watson. Adding Dynamism To OGSA-DQP: Incorporating The

DynaSOAr Framework In Distributed Query Processing. In Euro-Par 2006 Workshops: Par-

allel Processing, EuroPar 2006, volume LNCS 4375, pages 22-33. Sringer Verlag, 2006.

[129] Chris Wroe, Carole Goble, Mark Greenwood, Phillip Lord, Simon Miles, Juri Papay, Terry

Payne, and Luc Moreau. Automating experiments using semantic data in a bioinformatics

grid. Intelligent Systems, 19(1): 48-55,2004.

[130] EMBL Nucleotide Sequence Database. http: //www. ebi. ac. uk/embl/.

[131] Simon J. Woodman, Douglas J. Palmer, Santosh Shrivastava, and Stuart Wheater. DECS:

A System for Decentralised Coordination of Web Services. In V. Tosic, A. Van Moorsel, and
R. Wong, editors, Middleware for Web Services (MWS) 2005 Workshop, EDOC 2005, pages
24-31,2005.

[132] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A. Fernandes. A

novel approach to resource scheduling for parallel query processing on computational grids.

Distributed and Parallel Databases, 19(2-3): 87-106,2006.

[133] Chang-Hung Lee and Ming-Syan Chen. Distributed Query Processing in the Internet: Explor-

ing Relation Replication and Network Characteristics. In ICDCS '01: Proceedings of the The

21st International Conference on Distributed Computing Systems, page 439, Washington, DC,

USA, 2001. IEEE Computer Society.

[134] Yanif Ahmad and Ugur Cetintemel. Network-Aware Query Processing for Distributed Stream-

Based Applications. In VLDB, pages 456-467,2004.

BIBLIOGRAPHY 170

[135] KyoungSoo Park and Vivek S. Pai. CoMon: a mostly-scalable monitoring system for Planet-

Lab. SIGOPS Operating Systems Review, 40(1): 65-74,2006.

[136] PlanetLab - An Open Platform for developing, deploying, and accessing planetary-scale ser-
vices. http: //ww. planet-lab. org.

[1371 Anastasios Gounaris, Jim Smith, Norman W. Paton, Rizos Sakellariou, Alvaro A. A. Fernan-

des, and Paul Watson. Adapting to Changing Resource Performance in Grid Query Processing.

In Data Management in Grids, First VLDB Workshop, DMG 2005, Revised Selected Papers,

volume 3836 of Lecture Notes in Computer Science, pages 30-44. Springer, 2005.

[138] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, Alvaro A. A. Fernandes, Jim

Smith, and Paul Watson. Practical Adaptation to Changing Resources in Grid Query Pro-

cessing. In ICDE '06: Proceedings of the 22nd International Conference on Data Engineering

(ICDE'06), page 165, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-

2570-9.

[139] Jim Smith and Paul Watson. Fault-Tolerance in Distributed Query Processing. In IDEAS

'05: Proceedings of the 9th International Database Engineering f9 Application Symposium

(IDEAS'05), pages 329-338, Washington, DC, USA, 2005. IEEE Computer Society. ISBN

0-7695-2404-4.

[140] Jim Smith and Paul Watson. Failure Recovery Alternatives In Grid Based Distributed Query

Processing: A Case Study. In Domenico Talia, Angelos Bilas, and Marios D. Dikaiakos, editors,
Knowledge and Data Management in Grids, pages 51-63. Springer US, 2007.

[141] I. L. Smith. Joint academic network (JANET). Computer Networks and ISDN Systems, 16

(1-2): 101-105,1988.

[142] Suman Banerjee, Timothy Griffin, and Marcelo Pias. The interdomain connectivity of plan-

etlab nodes. In Passive and Active Network Measurement, 5th International Workshop, PAM

2004, volume 3015 of Lecture Notes in Computer Science, pages 73-82. Springer, 2004.

[143] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using planetlab for network research:

myths, realities, and best practices. ACM SIGOPS Operating Systems Review, 40(1): 17-24,

2006.

[144] M. Nedim Alpdemir, Anastasios Gounaris, Arijit Mukherjee, Desmond Fitzgerald, Norman W.

Paton, Paul Watson, Rizos Sakellariou, Alvaro A. A. Fernandes, and Jim Smith. Experience

on performance evaluation with OGSA-DQP. In Fourth UK e-Science All Hands Meeting,

2005.

BIBLIOGRAPHY 171

[145] "Arthur D. Little. " Quotations. Quotations Book, 2005. Answers. com 20 Nov. 2007. http:
//www. answers. com/topic/arthur-d-little.

[146] Arijit Mukherjee and Paul Watson. Virtual Machines in DynaSOAr: Creating an on-demand

ad-hoc Virtual Grid. Technical report, School of Computing Science, Newcastle University,

CS-TR 1002.

[147] SOAP Message Transmission Optimization Mechanism. http: //www. w3. org/TR/soapl2-mtom/.

[148] CRISP: Commercial R3 IEC Service Provision. http: //crisp-project. org/index. html.

[149] GRIA - Service Oriented Collaborations for Industry and Commerce. http: //www. gria. org/.

[150] Sachin Wasnik, Terence J. Harmer, Paul Donachy, Andrew Carson, Peter Wright, John

Hawkins, Christina Cunningham, and Ronald H. Perrott. Self Managing Middleware for Dy-

namic Grids. In Advances in Grid and Pervasive Computing, Second International Conference,

GPC 2007, volume 4459 of Lecture Notes in Computer Science, pages 286-297. Springer, 2007.

[151] Utility Computing - 3Tera - Utility Computing for Web Applications. http: //www. 3tera. com/.

