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Abstract

During the 1980's, unemployed schoolleavers were encouraged to undertake a period of

government sponsored training as a potential stepping stone into work. One such pro-

gramme was the Youth Training Scheme (YTS), which operated from 1981 to 1994. The

effectiveness of such schemes has long been questioned. This work presents an inves-

tigation into YTS scheme effectiveness in which we compare estimated labour market

elasticities of people with YTS experience against those without. We acknowledge the

existence of inherent differences between the two groups which could act to bias our

conclusions, then attempt to account for these using matching methods.

In an experiment designed to assess a treatment effect, "independent" individuals who

do not receive the treatment are usually used as a control group. Econometricians seldom

have such experimental data due to the interference of self selection. One way to allow

for the bias introduced by self selection is to use a matching algorithm. The purpose of

the matching algorithms we employ is to produce a synthetic control group of individuals

who have not experienced training but who are similar to the YTS participants. Having

produced various matched datasets, we recalculate the elasticities of an optimal job search

model to ascertain whether there is still evidence of a treatment effect when comparing

like with like. In contrast to previous research, we also make allowance for the changing

nature (heterogeneity) of the YTS scheme over time.

We compare different matching methods and assess their relative performance. Obser-

vations lying beyond the region of overlapping support are shown to cause a degradation

in nearest neighbour matching performance. Kernel based procedures are employed using

the full range of the bandwidth parameter on which they rely.

In the final part of this work we widen our field of vision to include the unemployment

to work transition process. We present results which support the hypothesis of different

YTS treatment effects in each generation of YTS.
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Chapter 1

Introd uction

Up until the 1970s, UK employers made provision for training the many of their young

employees via the apprenticeship scheme. During this decade, the numbers of young

people undertaking a traditional apprenticeship began to fall as employment in manufac-

turing declined. At the same time UK participation rates in full-time further education

lagged well behind those of similarly developed nations. Governments acknowledged that

an increasingly skilled work force was needed, to compete on international markets. The

skill shortage, compounded by rising youth unemployment, could not be met without the

introduction of a systematic vocational education and training provision for the majority

of school leavers.

During the first term of Mrs Thatcher's Conservative Government plans were brought

forward to replace the active labour market policy known as the Youth Opportunities

Program (YOP) with a more ambitious scheme. In consequence, 1981 saw the announce-

ment of a new one year Youth Training Scheme (YTS). By 1983 the scheme was fully

operational. Since their introduction supporters and opponents of active labour market

policies (ALMP's) have argued about the effects of such schemes on those who participate.

This research attempts to address some of the difficulties which lie behind a study of

this question. At the same time some of the empirical methods which have been forwarded

as possible solutions to them are compared.

1



1.1. The Youth TrainingScheme

1.1 The Youth Training Scheme

Youth unemployment was a significant problem for the UK Government throughout the

1970s and 80s and the problem persists to the present day. The problem has prompted

direct active labour market policies designed to provide state funded training in an at-

tempt to alleviate the difficulties experienced by young people facing the transition from

school to work. In this thesis we examine the effect of state training schemes in changing

the labour market expectations of young people. We suggest that the different forms of

the government schemes, which have been implemented over the years, have had quite

different effects.

In the late 1970s and early 1980s the UK Government introduced the Youth Oppor-

tunities Program (YOP) in an attempt to address what was generally considered to be

a temporary excess supply of youth labour. It was suggested that school leavers were

receiving high relative wages and as a result were being priced out of the jobs market.

It was hoped that the low training allowances, which YOP offered, would act to depress

youth wage expectations and thereby increase their chances of finding employment post

scheme. The view that high youth unemployment was a temporary phenomenon led to

an emphasis on work experience, whilst the training component of YOP was neglected,

see Bradley (1995). In the early 80's, with the economy continuing to under perform and

the job prospects for the young in decline, the number of persons on the scheme grew

rapidly. At the same time the fraction of those who successfully made the transition to a

permanent job after the scheme dropped to around a quarter, this led to widespread con-

demnation of YOP by participants, parents and trade unions. In 1981 the New Training

Initiative addressed the perceived shortcomings of YOP with its proposals for the Youth

Training Scheme. Under the first version of this scheme (YTSI), all 16 and 17 year olds

were given the opportunity to either continue on to further education or proceed to a

YTS placement for a period of planned work experience and three months compulsory off

the job training at a college of further education. The young were encouraged to learn

general transferable skills that employers might find of use.

2



1.1. The Youth TrainingScheme

In the mid 1980s there was recognition of a continued skills shortfall in the labour

force, which was viewed as a hindrance to the Government's attempts to produce stable

economic growth. This led to YTSI being superseded in April 1986 by a new version of the

Youth Training Scheme (YTSII). The funding structure of which encouraged employers to

recruit trainees as first year apprentices with employed status and allowances topped up

to levels closer to the average for young workers. The scheme's duration was lengthened

to two years for 16 year olds. There was increased emphasis on the scheme's vocational

training elements (rising to 20 weeks) with the opportunity to gain qualifications. The

introduction of YTSII coincided with a fall in the numbers of young people leaving school

and an economic boom; these changing conditions would have enhanced the scheme's

prospects of being labelled a success.

The late 1980s and early 1990s saw the Government increasingly concerned by the

skills gap between the UK work force and that of it's international competitors. A need

for yet higher levels of meaningful training amongst the young was identified. In May 1990

Youth Training (YT) replaced YTSII. A main objective of the scheme was to help school

leavers attain qualifications of at least NVQ level2 (a vocational qualification). There was

an emphasis on scheme flexibility and with this in mind the length of YT placements and

the amount of off-the-job training was tailored to the needs of each placement. YT saw

the inception of the Training and Enterprise Councils (TECs) whose aim was to stimulate

employer led investment in training", As YT matured the economy experienced a cyclical

down turn, which affected the prospects for schoolleavers during this period, and so the

performance of YT may have suffered. Detailed surveys of the historical background of

these schemes can be found in a number of studies Chapman and Tooze (1987), Dolton

et al. (1993), Deakin (1996).

lThis was not the first time that this had been attempted. ITB's tried to do something similar in

1964.
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1.2. TraditionalApproaches

1.2 Traditional Approaches

Government sponsored training schemes have been introduced in a variety of countries

with the intention of improving the labour market prospects of young people. Four sep-

arate labour market effects of training schemes have been identified in recent research.

These include the 'wage effect' Ashenfelter (1978), Ashenfelter and Card (1985), and the

'employment effect' Card and Sullivan (1988) have been measured using data on individ-

ual workers. The 'deadweight loss' and the 'substitution effect' have been measured using

data on firms. Studies in the USA have used both experimental and non-experimental

data. UK studies have exclusively used non-experimental data since no alternative data is

available. One potential economic effect of these schemes, which has been systematically

ignored, is their impact on the wage expectations and search elasticities of the job seekers.

As stated, one political view around the time of inception of YTS held that young peo-

ple were pricing themselves out of jobs by holding unrealistic wage expectations. Hence,

successive schemes have had the objective of lowering young people's reservation wages

and make them more responsive, in their search behaviour, to changing labour market

conditions. The major aim of this thesis is to test this hypothesis and examine the extent

to which different forms of Youth Training Schemes may have had different effects.

If we consider that Government training participants receive a treatment effect as a

result of their time on a scheme, then the size of this effect is of considerable importance.

Most of the empirical work in the literature on evaluating active labour market training

programs focuses on average effects and in particular the mean of the direct effect of

treatment on the treated. This refers to the average effect of treatment to some outcome

measure (such as post scheme labour market state). In contrast to this approach we mea-

sure treatment effects as the differences between the outcomes on a number of elasticities

of unemployment for those who experience YTS and those who don't.
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1.3. Recent Developments

1.3 Recent Developments

Unfortunately differences are likely to exist between the YTS participants and those who

did not experience the scheme. Theory would suggest that those who undertake a period

of government training would, on average, have a lower skills base than the rest of the

labour market (because the more highly skilled will already be in jobs or higher education).

This skill shortage, as well as a number of other factors such as the placement of persons

that careers officers considered needed the assistance which YTS might deliver, could act

to bias any conclusions which we hope to draw from our analysis of the treatment effect.

We address this problem using various methods of matching. Datasets are recast in such

a way that members of the control group (non-participants) are deemed to be suitable

matches for YTS participants if they have "similar" observed characteristics as measured

by a propensity score computed using a probit model for YTS participation.

These methods, for which Rosenbaum and Rubin (1983) developed a theoretical frame-

work of assumptions, have in recent times grown in popularity amongst empirical re-

searchers wishing to correct for selection bias into a labour market state. The topicality

of the matching approach has highlighted the need for rigorous assessment of the perfor-

mance of these methods. Our analysis extends beyond simply applying these methods

and encompasses a full appraisal of their relative strengths and weaknesses. We go still

further in an attempt to uncover a procedure for identifying whether a given method

when employed with a certain dataset will produce a "good quality" matched dataset.

The matching methods studied include a nearest neighbour matching estimator similar to

that used by Lechner (1999) as well as the kernel based methods described in Heckman

et al. (1997).

1.4 Thesis Structure

Before describing the research proper, it is necessary to outline some preliminaries. The

next Chapter facilitates this analysis by considering much of the background to our study.
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1.4. Thesis Structure

It begins by outlining the various datasets, which we will use. Emphasis is placed on the

power which panel data gives us when considering such things as duration within a specific

labour market state. Section 2.1.1 describes the Youth Cohort Survey (YCS) cohort data

from the 1984-94 period, which we use in our estimations. The data contains information

on key variables such as unemployment duration, reservation wages and expected wages

that enable us to provide estimates of the effect of all YTS variants over the period of

survey. Later we examine the National Online Manpower Information System (NOMIS)

dataset and discuss its value when linked to the YCS data. Section 2.2 introduces the

optimal search model. The structural parameters derived from this model are the focus

of our empirical estimations. We demonstrate the ways in which Lancaster and Chesher

(1983) derive various elasticities from this model in section 2.3.

Section 2.4 outlines a method for modelling outcomes with and without training

scheme experience. This discussion moves on to highlight the problems of self-selection

into YTS. A brief demonstration of the power of randomised experiments and the ways

in which they allow us to identify counterfactual outcomes is given. It is suggested that

methods of matching might allow us to recast our dataset so that it more closely mirrors

that which a randomised experiment would have produced. The underlying assumptions

of traditional matching methods are introduced. The work of Rosenbaum and Rubin

(1983) is shown to be crucial. They were able to show that, when attempting to match

treatment and control individuals to one another, a propensity score for treatment (in this

case a spell on YTS) may substitute for the group of variables used to model it. We then

move on from matching in general to three specific examples of matching algorithms, the

nearest neighbour, kernel and local linear matching methods. The penultimate section of

Chapter 2 concludes by defining stochastic dominance and examining its use to assess the

suitability of a given dataset for nearest neighbour matching. We conclude by considering

the statistical procedure of bootstrap sampling.

The analysis within Chapter 3 attempts to assess the overall employment effects of

various YTS incarnations. In turn we consider: models of the potential effect on the
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1.4. Thesis Structure

elasticities of unemployment following any spell on any form of YTS scheme; the effect

when we allow for YTS scheme heterogeneity; the effect of any YTS scheme having nearest

neighbour matched individuals with YTS experience to non-YTS persons in an attempt to

create a synthetic control group of non-participants to account for the inherent differences

between those people who participate in YTS training and those who don't; the effect of

each form of YTS scheme having again used nearest neighbour matching to account for

the inherent differences. Section 3.2 compares the estimates of the structural parameters

obtained using the non-parametric approach developed by Lancaster and Chesher (1983)

for both "all men" and "all women" 2 to those obtained in previous studies. Section 3.3

presents estimates of the search elasticities for men and women and by whether they expe-

rienced any form of YTS training. Subsection 3.3.1 makes allowance for the evolution of

YTS over the sample period and estimates the structural parameters for each incarnation

of the scheme. Section 3.5 contains an appraisal of the economic climate in which each

incarnation of the YTS scheme operated. Knowledge of which allows us to interpret our

findings. In Section 3.6 we consider our findings on the effectiveness of YTS in assisting

young people to make the transition from school to work.

Chapter 4 begins with reference to the assumptions of matching methods, as defined

in Chapter 2. We note that these methods may only produce "high quality" matches if

these assumptions remain valid. We then propose to investigate the relative performance

of the nearest neighbour method against the, kernel and local linear methods. We suggest

that versions of the nearest neighbour algorithm with exclusions when matches are found

to be poor are flawed. Elasticities as calculated using datasets generated with the kernel

and local linear methods are presented. We identify the need to develop a method for

selecting the bandwidth parameter, which these algorithms require. Our solution is to use

a bootstrap iterative procedure to generate a value for the bandwidth. Results are then

interpreted using synthetic control group elasticities and wage rates, generated using our
2Without regard to the differences between the three YTS types, those who participate in YTS and

those who don't.
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estimated bandwidths. We suggest, without the introduction of new bias, that a series

of random exclusions from the treatment group could allow us to adjust for common

support.

We move on to consider the YTS treatment effect for labour market state transition

rates. Chapter 5 introduces the 3-state labour market model. We estimate a series of Cox

proportional hazard models for the unemployment to work transition using unmatched

and matched datasets of various types. The specification includes indicators for whether

individuals experienced a spell on YTSI, YTSII or YT. Results complement those of

previous chapters, revealing the implications of the various movements in reservation

wages and the job search elasticities for those with YTS experience. Chapter 6 concludes

the work by considering our attempts to answer the twin questions of matching algorithm

performance and YTS performance. Conclusions are drawn and suggestions for future

work are considered.
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Chapter 2

Preliminaries

Before we present the results our research has uncovered, it is necessary to review some

of the theory behind the analysis of active labour market policies, which we shall make

use of throughout this work. Those wishing to draw a series of conclusions from what will

follow must first have an understanding of the data. As such we begin this chapter by

outlining the initial design of the Youth Cohort Survey and its evolution over the period

we chose to investigate. Later we will introduce the search theory framework for exit from

unemployment, which Lancaster and Chesher (1983) used to derive a series of elasticities.

The values of these elasticities cast light on the job search process and which we rely on

during the early part of our analyses.

Next we introduce the concept of matching and its use as a solution to government

training scheme evaluation problems. Motivation for the procedure is given by way of a

model for labour market state outcomes. Having demonstrated how the use of randomised

training scheme exclusions can facilitate the evaluation of such schemes, we then outline

the theory of matching methods. We then explain how they can allow us to uncover the

effects of training schemes from panel data in the absence of a randomised control group.

We then introduce three matching methods of increasing complexity and propose

to employ them in an analysis of the YCS datasets. Starting with nearest neighbour

matching, we describe a complex variant of the group of such methods. Much as Lechner
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2.1. Data

(1999) did, we employ a variable width calliper whilst matching actual non-participants

to persons with any form of government training scheme experience. Next we illustrate

the kernel density and local linear regression methods of matching, which make use of all

non-participants to create a single synthetic non-participant for each scheme participant.

We move on to present a brief outline of the probit model specification, which led to

our propensity scores for YTS participation. The ways in which the various matching

methods make use of these score predictions when creating matched datasets are crucial

to our interpretation of the results from any analyses of them.

The penultimate section of this Chapter deals with the concepts of first and second

order stochastic dominance and their use when attempting to gauge the suitability of any

dataset for the application of a matching method. We conclude the Chapter with a brief

outline of the method and statistical basis behind bootstrap sampling.

2.1 Data

The main body of data used in this study consists of sweeps one to three of cohorts one to

six of the Youth Cohort Study (YCS). We were also able to make use of extra exgonenous

local labour market information from the NOMIS (National Online Manpower Information

Service) database. The subsections, which follow, outline these two datasets and include

some discussion of their sampling framework and final survey samples.

2.1.1 The vcs Dataset

The Youth Cohort Survey (YCS) is a Department for Education and Skills (DfES)1 funded

longitudinal programme of surveys and was originally designed to facilitate an exploration

into the behaviour, decisions and routes of transition from school into a labour market

state of a representative sample of young people aged 16 to 17 at the time of initial postal

contact in England and Wales. The survey was intended to be the government's main
1Formally the Department for Education and Employment (DfEE).
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source of information on the school to work transition process. It is a national survey of

the experiences of 16 to 19 year olds on YTS, in and out of work, at school and further

education, and in other forms of training. Cohorts 1-6 were re-surveyed on each of the

first three years after individuals reached their year of minimum school leaving age.

The structure of the YCS is presented in Table 2.2. Only a random sample of those

eligible for survey was selected for each new cohort. Not all persons who where selected to

be surveyed were contacted or returned their questionnaires. The sample size was therefore

affected by survey non-response. When interpreting the results of Table 2.2 numbers in

parenthesis relate to the percentage of respondents to a given sweep as a proportion of

those who responded to the previous sweep. The subsequent sweeps are hence a subset

of the respondents to sweep 1. Final response rates are recorded in the last column. This

was the sample design for cohorts 1-4. For cohorts 5 and 6 an attempt was made to

contact the whole target sample of sweep 1 at both subsequent sweeps. For the purpose

of this investigation information used during the course of our study from cohorts 5 and

6 has been made comparable to that of cohorts 1-4 since information obtained at sweeps

subsequent to an individual's non-response are removed from the dataset. An example of

this structure can be seen using cohort 3. With reference to the YCS design of Table 2.2,

Cohort 3 (YCS III) began with a postal survey dated March 1987 of young people who

completed their compulsory education during the school year 1985-6. Respondents were

sampled again in March 1988 and March 1989.

Usually, the levels of response for postal surveys of this kind are low. However this is

not the case for the YCS dataset. Those who oversaw the surveying procedure undertook

a number of actions in an attempt to minimise the levels of non-response. As well as the

questionnaire, persons also received four separate reminders as certain dates elapsed. The

middle two reminders included replacement questionnaires and succeeded in capturing

most late respondents, whilst the final one involved a telephone call (where a person's

phone number was available) which only managed to increase the final response rate by

1%- 2%.
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Since YCS cohorts 1-6 cover such a large passage of time it is not unsurprising to

discover that the questionnaires used underwent a number of revisions. The resulting

differences between cohort datasets mean that only a limited number of variables can

be used when appending all six cohort datasets together. Differences in the sampling

techniques between cohorts may also introduce bias into our analyses. Although the main

sampling features on which the original cohort was founded remained in place over the

course of the subsequent cohort samples, some variations were inevitable. Sample size

is one area, which was allowed to develop within later cohort samples. Cohorts 1 and 2

sampled 10% of the individuals from a selected set of representative schools whereas later

cohorts took a sample of 20%. The sample size variations should not in themselves reduce

the representative nature of all cohorts to their respective populations; yet the larger

samples of cohorts 3 to 6 may lead to smaller variations in the variables of interest which

may in themselves then lead to the discovery of significant results within the analyses of

such samples or a domination by these larger populations within YCS 1-6 when taken as

a whole.

To summarise the YCS underwent two major changes over the period covered by

cohorts 1-6. We saw that the sample size as a percentage of the population of interest

increased from 10% to 20% after cohorts 1 and 2. Hence we would expect that those

individuals within cohorts 1 and 2 would resemble each other most, as would those of

cohorts 3, 4, 5 and 6. It will be interesting to see whether this prior belief about the

structure of the data manifests itself in our analyses.

A publication from the Government Statistical Service (GSS) (1996) covers the data

within YCS cohorts 1 to 6. Several of the findings in that work are relevant when in-

terpreting the results, which we present. The GSS work suggests that YCS reflects a

number of trends highlighted in official Government figures for areas such as educational

attainment. Estimates during the period covered by cohorts 1 to 6 show a growth in

the proportion of young people participating in education, training and achievement of

qualifications. Asian youths were particularly likely to remain in full-time education for
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Un-Mtchd Un-Mtchd Matched Matched
Males Females Males Females

Regressors Description Mean Mean Mean Mean

Reservation Wage Responses to the question: 'What is the 96.16908 88.6961 98.75319 88.61614
lowest weekly take home pay you would (0.49596) (0.42353) (0.65870) (0.52228)
consider for a full time job?'

Expected Wage Responses to the question: 'How much 126.1087 115.8429 126.8414 114.2719
weekly take home pay do you expect to (0.66737) (0.54831) (0.90866) (0.69372)
earn in your next job?

Ethnic Origin White: Respondent is white, 0.081128 0.073842 0.066863 0.069749
Other: Respondent belongs to another (0.27306) (0.26154) (0.24985) (0.25477)
ethnic group.

Education Score at 16 These are education scores calculated from 8.084804 8.861285 4.265487 5.339342
a persons GCSE (or equivalent) results. (9.72350) (9.66383) (5.51636) (6.40732)
The scores are computed as A=5 points,
8=4 points, C=3 points, 0=2 points and
E=1 point.

Maths GCSE 1 Respondent held a GCSE (or equivalent) 0.215931 0.188986 0.086529 0.107367
in Maths at grade C or above, (0.41152) (0.39154) (0.28121) (0.30964)
o Otherwise.

English GCSE 1 Respondent held a GCSE (or equivalent) 0.256618 0.325824 0.139626 0.206505
in English at grade C or above, (0.43682) (0.46873) (0.34668) (0.40488)
o Otherwise.

No. of Siblings The total number of siblings (not a dummy). 1.807843 1.858156 2.073255 2.023119
(1.559901 (1.628531 (1.69402 (1.72236

Career Service Interview 1 Respondent attended a career service 0.141667 0.111181 0.174041 0.142633
interview, (0.34875) (0.31439) (0.37924) (0.34977
o Otherwise.

Live With Parents Respondent lived with parentis). 0.977696 0.952232 0.97296 0.939655
(0.14769 (0.213301 (0.16224 (0.23817

YTSI Respondent had a spell on the first 0.083333 0.075511 0.167158 0.14185
incarnation of YTS. (0.27642 (0.264241 (0.37321 (0.34896

YTSII Respondent had a spell on the second 0.116667 0.131206 0.234022 0.246473
incarnation of YTS. (0.321061 (0.337661 (0.42349 (0.43104

YT Respondent had a spell on YT 0.053922 0.06237 0.09882 0.111677
(0.22589 (0.241851 (0.29849 (0.31503

Pred. Training allowance An estimate of the respondents training - 3.998719 3.952304
allowance. (-I (-I (0.165671 (0.14224\

Regions North, Yorkshire & Humberside, East - - -
Midlands, East Anglia, Greater London, (-) (-) (-) (-)
South East, South West, West Midlands,
North West and Wales. North of England is
used as a reference crouo.

Cohorts Dummies for Cohorts 1 to 6. Cohort 1 is - -
used as a reference group. (-I (-) (-I (-)

Exogenous Variables

Youth Unemployment These variables were collected by region and come from 0.064805 0.064578 0.076662 0.075117
Regional Trends. Wages are adult figures and are dis- (0.03561) (0.03562) (0.04027) (0.03982)

Regional YT Places
aggregated by gender, so females in the database are

0.083314 0.083677 0.090544 0.090273assigned mean female wages for their home region In the
relevant time period. Regional training place figures BrB (0.02429) (0.02434) (0.02228) (0.02213)

Average Wages normalised by using the population of 16-19 year olds in 233.1733 159.0188 220.9955 150.5093
the region for each year. Population figures provided by (32.5365) (24.2911) (24.4659) (19.6396)
the Office for National Statistics (ONS).

LEA Unemployment Using the National on-nne Manpower Information 10.01333 9.922007 11.11412 10.96832
System (NOM IS). unemployment figures were collected (4.13270) (4.14132) (4.36587) (4.31522)
for each month for each Local Education Authority (LEA).
Rates were then calculated by dividing through by
Census population figures of the number of individuals In
the labour market for each LEA. The 1981 Census Is
used for the period to 1991 and the 1991 Census Is used
thereafter.

Sample Size 4115 4770 2034 2552

Table 2.1: Summary Statistics of the Four yeS Subsets Used in this Study

all ages of study and young people from all ethnic minority groups were more likely to

be in full-time education than those who classified themselves as white. In 1994, as the

final sweep of cohort 6 drew to a close, 87% of Asian 16 year olds and 66% of Asian 18
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year olds were in full-time education. Compare these to figures of 72% of all 16 year olds

and 40% of all 18 year olds. At the same time there were increases in the proportion in

full-time education among 16 year olds from groups with traditionally low levels of edu-

cational continuity. These groups included those with lower GCSE attainment, parents in

unskilled manual occupations and those who stated that they had truanted during year

11. The key activity at age 18 continued to be full-time education. In 1994, 40% of 18

year olds responded that this was their main labour market state. Young men were more

likely to be in a government sponsored training scheme at all sweeps compared to women.

Table 2.2: The Cohort Design Structure of the YCS Survey

As the non-response literature would suggest, see Taylor (2000), those with higher

achievement, both educationally and with respect to their labour market outcomes are

more likely to have responded to the survey. Hence these groups are over represented,

whilst those in other activities are under-represented in sweeps 2 and 3. In an effort to

counter this effect, those who administered the survey applied weightings. However the

attrition present in sweeps 2 and 3 re-introduces the bias. As a result, data from sweep 1

is more reliable than that from sweep 2, which is in turn mor reliable than that of sweep

3. Variables used in the weighting process were population variables for sex, school type,
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region, year 11 attainment and participation in full-time education at 16. The weighting

methods differ for each cohort to reflect changes in sample selection.

Having weighted the initial sample, some bias still remained once the data was col-

lected. This was the result of differing response rates among different groups of young

people. At sweep 1, the data were weighted to education census figures for participation

in full-time education. As an example of the need to weight the initial sample to bring it

into line with population estimates, as well as the bias which remained post survey, Table

2.3 contains estimates of how the main labour market activity taken from YCS compares

with administrative estimates of those in full-time education and on government sup-

ported training for cohorts 5 and 6. As this table demonstrates, YCS consistently over

represents those in full-time education, whilst under predicting the proportion in Gov-

ernment supported training. It should be noted that YCS included a sub-sample from

independent colleges of education, which the DfEE excludes from its figures.

The yeS is a clustered dataset, because it's school-based. This work does not consider

the implications for the design effect which clustering can have. Throughout this work we

do not estimate robust formulae for standard errors, nor do we attempt to identify any

school effects.

Some questions, which we considered of high importance to our study, were only put

to a subset of those sampled. For instance, questions regarding reservation/expected

wages were only put to those who were unemployed at the time of survey, whilst training

allowances were only available for those persons participating in a training scheme at the

time of the survey. We follow other work in this area (such as the research presented in

papers by Lynch (1983), Lancaster and Chesher (1983), Main and Shelley (1988), Jones

(1988), Gorter and Gorter (1993), and Dolton and O'Neill (1995)) and use as a measure

of the reservation wage denoted (, the individual's response to the question 'What is the

lowest weekly take home pay you would consider for a full time job?', To measure the

expected wage denoted x, we use responses to the question 'How much weekly take home

pay do you expect to earn in your next job?
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Of course all the usual caveats apply to the use of this typ of question to construct

information of the kind we seek. The details of the derivation of th se variables are

provided in Table 2.1. The distributions of these variables are graphed in Figure C.3. It

is reassuring that these graphs look reasonable and that the joint distribution of the two

variables provided in Table 2.4 throws up only 5% of young people in the sample who are

irrational, in the sense of having either ~ > x, or ~ < b or x < b,. where b equals the

unemployment benefit level. This proportion is very low for studies of this kind".

16 Year Olds 1992 1994
DfEE vcs DfEE yes

FT education (not
on Government

65.1% 66.0% 71.4% 72.0%

14.0% 13.6% 12.0%

16.0% 16.5% 15.0%18.6%

7.0%

Table 2.3: Comparison of YCS R sults with DfEE Estimates

2This proportion is also consistent with people who did not understand the question or who made a

mistake with their response.
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2.1.2 Duration and Dated Variables

Much of the analyses, which we present towards the end of this work, are concerned

with labour market state durations and transition processes. yeS provides two separate

sources of information about dated events, which we use to define our duration and

transition variables. In the first, respondents are asked to complete a diary for the year

prior to each sweep (6 months for sweep 1) in which they recall their labour market status

in each month. Although respondents could include a large number of labour markets

states, we have chosen to aggregate the classification of labour market states into a single

consistent classification over time: (i) unemployed; (ii) on YTS (or other government

training scheme); (iii) in full time employment; (iv) in full time education; (v) other.

yeS gives each individual's state for around 30 months over the period when they were

between 16 and 19 years old. Taken together the first six cohorts in the yeS survey cover

the 114 months from September 1984 to February 1994. Every person within our dataset

has a fully completed labour market state diary. This data is fully described in Dolton

et al. (1999). Short Fortran programs were written to derive variables such as total

time spent unemployed during the survey period or individual labour market state spell

length from this invaluable and rich dataset. The code used to extract unemployment

durations for those who then exited to a full time job is reproduced in Appendix A.1.

The second source of dated information comes from the responses to particular questions

on the survey questionnaire at each sweep. Both sources of information were used to

construct the variables in this study.

In order that we might maintain the sample size when estimating models for labour

market state transition processes it was necessary to predict the reservation/expected

wages and training allowances of those who did not report them before we could include

them in the model. Descriptions of the specifications for these estimations are provided

during the presentation of our empirical findings.
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2.1.3 The NOMIS Dataset

Variables such as the unemployment rate by the Local Education Authority (LEA) within

which individuals undertook their secondary education, youth unemployment rate by re-

giorr' of individuals residence and available youth training places as a proportion of the

population by region of residence were constructed from the National Online Manpower

Information System (NOMIS) data resource. Summary statistics for all the NOMIS de-

rived variables are included in Table 2.1.

LEA and youth unemployment measures were selected due to their relevance to our

dataset, also youth labour force unemployment rates were not available at the national

level. These measures were believed to improve on national unemployment rate figures

in that the disaggregation of each by LEA and region would reflect the real state of em-

ployment prospects for individuals due to the wide variations in labour market conditions

between such regions.

It was hoped that a measure of Youth Training Places might allow us to capture a

greater part of the extent to which 16 and 17year old schoolleavers were unemployed. This

was of concern to us following the law change of September 1988 when such persons were

no longer eligible for unemployment benefit (Job Seekers Allowance) and so disappeared

from the unemployment register as defined as those actively seeking work. Youth Training

Places might also capture the affluence of a region. Wealthier regions with more healthy

employment prospects for the young can at the same time afford a higher level and quality

of training scheme provision which in turn might increase the long-term employment

prospects of scheme recipients.
3The Survey took as its population all persons of school leaving age in the relevant years within

England and Wales. This was divided into regional areas as follows: North, Yorkshire and Humberside,

East Midlands, East Anglia, Greater London, South East, South West, West Midlands, North West and

Wales.
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Reservation Wage

Expected Under 100 125 150 175 200 225 250 Over Total
Wage 27.5 250

Under 27.5 3 10 2 1 0 0 0 0 0 16
100 21 3305 84 35 11 3 4 1 2 3466
125 2 2539 797 16 9 0 1 2 0 3366
150 0 583 832 210 2 4 1 0 1 1633
175 0 133 390 216 85 2 2 0 1 829
200 0 75 135 101 49 29 0 0 0 389
225 0 15 34 49 27 18 11 0 0 154
250 0 18 26 20 40 22 9 10 0 145

Over 250 0 7 16 9 13 12 8 17 18 100

Total 26 6685 2316 657 236 90 36 30 22 10098

Table 2.4: The Joint Distribution of Reservation and Expected Wages within the yeS

Dataset

2.2 The Search Theory Framework for Exit from Un-

employment

This section briefly outlines the standard model of optimal job search. Job offers arrive

at random intervals. In particular it is assumed that risk neutral agents receive job offers

according to a Poisson process with arrival rate A. The length of an interval between

any two successive job offers is therefore random. The implication of this is that the

probability of obtaining an offer in any short interval of time is directly proportional

to the length of the interval. These risk neutral agents seek to maximise the expected

present value of their income, discounted to the present over an infinite horizon at rate

p. Income maximisation is not crucial to the general implications of the model. However

its use leads to simpler derivations than if we were to assume the more realistic situation

of utility maximisation. The probability of receiving at least one job offer within a short

interval of length t is At + o(t), where o(t) is the probability of receiving more than one
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offer in the interval and o(t)/t -+ 0 as t -+ O.

On receiving a wage offer w, an individual has to decide whether to accept that offer

and earn w forever, or reject the offer and search for a better offer next period. Once

rejected an offer cannot be recalled. Under the assumption we have made a recall option

would never be exercised, as with a constant reservation wage, an offer, which is unaccept-

able now will be unacceptable at any time in the future. What is important is that the

value of occupying a job forever is an increasing function of the wage rate, w. Successive

job offers which arrive during a period of unemployment are independent realisations from

a known wage offer distribution with finite mean and variance, cumulative distribution

function F(w) and density f(w). Each individual faces a wage offer distribution, which

reflects his or her status in the labour market. Knowledge of this distribution allows them

to follow an optimal search strategy.

While searching the individual may receive non-labour income in the form of a benefit

level, b. Let Vu denote the value of searching during the next period, i.e the present value

of future net income given that the optimal strategy will be pursued in the future and Vw

the present value of stopping, accepting the offer and working forever at that wage."

Since a person's net income flow during a spell of unemployment is constant, job offers

are independent and identically distributed and assuming stationarity for both F(w) and

.A, it follows that Vu will be constant over the entire spell. We can characterise the problem.

1.At 1
Vu= 1 bt + Ew[max{Vu, Vw}] + (1 - At) 1 t Vu+ o(t} (2.1)+pt l+pt +p

4It is straightforward to allow for job loss, with probability say, s, in a given period in this model.

However the inclusion of job loss in this fashion does not alter the basic results presented below. A fixed

date retirement may also be included, but as the length of a working life is long and the persons within

our dataset young, the practical implications of this change are negligible. (see Lynch (1983)).
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The first term on the right side of the equation translates as the discounted present value

of net income whilst unemployed over the short time interval t. The second represents the

probability of receiving an offer in the interval t multiplied by the discounted expected

value of following the optimal policy if a job offer of w is received, where Vw denotes the

present value of accepting the offer. The third term is the probability of no offer in the

time interval t multiplied by the discounted value of optimal job search ever after. The

final term signifies the returns to job search when more than one wage offer is received.

o(t) is the probability of receiving more than one offer and K is the value of the optimal

job search policy given that more than one offer is obtained. Assuming the Poisson arrival

rate, then o(t)/t -+ 0 as t -+ O. Vw is therefore the present value of expected lifetime

income at wage rate w. This is characterised by the equation

w
Vw=-.p (2.2)

Given that Vw is continuous and strictly increasing with wand Vu does not depend on w,

it follows that the optimal strategy is a stationary reservation wage policy. The individual

accepts the offer if w ~ ~, where the reservation wage ~ is a minimum acceptable wage

offer as defined by equating the expected present value of employment and the expected

present value of continued optimal search. Therefore

(2.3)

Ifwe substitute equations (2.2) and (2.3) for Vw and Vu in equation (2.1) we get

~= 11 bt+ At Ew[max{w,~}l + (~-At)~+u(t).
p +pt l+pt pp +ptp

(2.4)

For an individual faced with the above problem the optimal strategy is to choose a reser-

vation wage ~, such that the individual will accept the first wage offer greater than or

equal to~. When rearranging terms and taking limits, equation (2.4) translates to

Alex>~=b+- (w-~)dF(w).
p e

(2.5)
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The rate at which individuals accept job offers and exit is equal to the hazard

h = 'x[1 - F(e)]. (2.6)

From equation (2.6) we see that the probability of exiting unemployment depends on

the rate at which job offers arrive and the probability that an individual will accept an

offer, which in turn is a function of the reservation wc;tge. It can be shown that under

certain regularity conditions: a reduction in b, a reduction in e or an increase in ,x will all

lead to an increase in the probability of exiting from unemployment; see Van Den Berg

(1994).

2.3 Derivation of Job Search Elasticities

Lancaster and Chesher (1983) have shown that by differentiating both the reservation

wage given by (2.5) and the hazard function given in (2.6) with respect to b and ,x one

can obtain estimates of the responsiveness of the reservation wages and re-employment

probability to changes in the offer arrival rate and the level of unemployment benefits.

The advantage of this approach is that by combining the restrictions implied by the

optimal job search model with information on reservation wages and expected wages we

can deduce many of the structural parameters of the model without specifying the nature

of the unknown wage offer distribution. The procedure also facilitates a comparison of

the magnitudes of the estimates obtained in this fashion, with those obtained using more

standard parametric procedures.

Using the restrictions embodied in reservation wage equation (2.5), Lancaster and

Chesher (1983) show that the elasticities of the reservation wage with respect to the

benefit level and the arrival rate of offers can be written as

dlogE b (x - E)
d log b = ~ (x - b)

(2.7)
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and

dloge
dlog,x

(e - b) (x - e)
e (x - b)

(2.8)

where b, ,x and e are as defined above and z is the expected wage given that this wage is

accepted, that is

z = E[wlw ~ eJ.

Using these equations and information on b, x and e we can determine the extent to which

the reservation wage is affected by changes in the benefit level and the offer arrival rate. In

order to determine the impact of these variables on the hazard rate h (the probability of

leaving unemployment given that a job has not yet been found) we need to specify a form

for the wage offer distribution. Lancaster and Chesher adopt the Pareto Distribution,

with density

I
awOl
__ 0, w> Wo

f(w) = wO!H -

0, otherwise
(2.9)

where Wo and a are the lower bound and scale parameter of the distribution, respectively.

The Pareto distribution is characterised by a long tail. If a > 1, the expected value of a

wage offer, w is awo/(a - 1) if a > 2 the variance is aw3j{(a - 1)2(a - 2)}. Although

this distribution is often used in analyses of this kind, economic theory does not present

a compelling argument for its use. As such the choice of this wage offer distribution is a

potential source of lack of fit or misinterpretation of results. Having made this assumption

the elasticities can be written as

dlogh b x
dlogb = -~ (x - b) (2.10)

and

dlogh
dlog,X

dlog~
dlogb

(2.11)
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To examine the robustness of our estimates to the Pareto assumption we also estimate

these last two elasticities assuming that the wage offer distribution has an exponential

rather than Pareto distribution. Under the exponential assumption it can be shown that:

dlogh
dlogb

b (2.12)
(x - b)

and

dlogh (x - ~)
d log A - (x - br (2.13)

Given information on the individual's level of b, ~ and z we can calculate the above

elasticities for each individual using that individual's value of b, ~ and x. The results we

report represent the mean values of these elasticities across individuals.P

2.4 Matching: A Solution to the Government Train-

ing Scheme Evaluation Problem

Having outlined the theory behind the derivation of the job search elasticities we hope

aim to produce estimates of these indicators for the datasets used throughout this work.

Early work focuses on the YTS treatment effect for scheme participants. We suggest that

those who experienced YTS were subject to a process of self-selection and as such our

measurements of the effect of treatment on such individuals and their job search methods

will be biased. Having acknowledged the existence of an effect, we will make use of

several matching procedures to correct for such bias. This section outlines the nature of

experimental datasets and details how matching can allow us to employ non-experimental

datasets when asking experimental questions.

5We have also computed these elasticities by taking the mean values of b, ~ and x, for the sample

first and then applying the formula. This is the method used by Lancaster and Chesher (1983). The

qualitative results are not sensitive to this method of calculation.
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The evaluation of Government Training Schemes is a problem of missing data. The

attempts we make to isolate the mean treatment effect of YTS participation are com-

plicated by the simple fact that persons can exist in either one of two "scheme states"

(Participating or Non-participating) but not both at the same time. This would not be

such a problem if those who had not experienced YTS were a suitable control for YTS par-

ticipants. However one must consider that self-selection into government training schemes

will exist and as a result non-participants will form a biased control group. The following

argument helps to explain the nature of our predicament.

When we compare the outcome of people with YTS experience against the outcome

for those without our conclusions will be biased by the inherent differences between those

who need to spend time on such schemes and those who don't. It seems reasonable to

expect that on average, persons in the non-treatment group would possess different per-

sonal and labour market characteristics compared to YTS participants. These enhanced

characteristics may have an effect on the outcome of treatment. If this were the case then

it would not be sensible to compare people with YTS experience to such a group as we

may erroneously be attributing the estimated differences to a treatment effect when in

fact it is merely due to the different types of people who undertake YTS and not.

In a well designed experiment we would expect the non-treatment group (or control

group) differed only from the treatment group in the sense that they lacked treatment.

One way to approximate such an experiment is to use a matching algorithm. The purpose

of the matching algorithms described below are to produce a synthetic control group of

individuals who have not experienced training but who are similar to the YTS participants.

Ideally we would like to generate a control group who possess identical values for a given set

of their labour market characteristics to be used as dependent variables when measuring

the YTS treatment effect as experienced by those of the YTS treatment group. As we

will demonstrate, the assumptions, which underpin the methods of matching which we

describe, allow us to analyse our non-experimental data set in such a way that it identifies

the same parameters as an experimental analysis.

25



2.4. Matching: A Solution to the Government Training Scheme Evaluation Problem

2.4.1 Modelling Outcomes

A formalisation of the problem helps us to understand its nature and at the same time the

way in which matching allows us to overcome it. We begin by introducing the notation

of Heckman et al. (1997). Let

D={ 1 if a person participated in YTS,

o otherwise,

and

{
Yl denotes the outcome for participants,

Y=
Yo denotes the outcome for non-participants.

Also, X denotes the other characteristics which we use as conditioning variables, and

P(X) = Pr(D = 1IX). Using this notation we can define the outcome for any given

individual as the sum of the observed outcomes, Yi. and Yo such that

Y = DY1 + (1- D)Yo. (2.14)

Outcomes are then a function of observables, X and unobservables, (UI, Uo):

Y1= 91(X) + Ut

Yo = 90(X) +Uo (2.15)

where E(Ud = E(Uo) = O. We assume that 91 and 90 are non-stochastic functions. The

evaluation of the treatment effect can concentrate on the construction of many features

of the missing data. In other words, Y1 and Yo can take many forms. However the main

parameter, which researchers often seek to identify from non-experimental data, is "The

Mean Impact of Treatment on the Treated" .

This gain from participating in the program is defined conditional on the set of personal

and labour market characteristics X as

26



2.4. Matching: A Solution to the Government Training Scheme Evaluation Problem

E(Yi - YoIX, D = 1)

= E(6IX, D = 1)

= gl(X) - gO(X) + E(U1 - UoIX, D = 1) (2.16)

where ~ = Yi - Yo. Using the matching methods described below we can estimate an

averaged version of (2.16) over a subset of the support of X, Sx, using:

Is E(6IX,D = l)fx(XID = l)dX

.:lD~l = Sx (fx(XID = l)dX
i:

(2.17)

where /x(XID = 1) is the density of X.

If we could simultaneously observe Y1 and Yo for the same person, there would be

no evaluation problem and the need for matching would be removed, since one could

construct 6D=1 for everyone. This parameter may be interpreted as the gross gain from

treatment experienced by participants.

2.4.2 Randomisation as a Solution to the Evaluation Problem

A randomised experiment with random attrition from the YTS program would allow us

to recover the conditional distributions of Yo and YI, Fo(YoID = 1,X) and FI(ydD =

1,X) respectively, by randomising at the point of enrolment so that some of those who

would normally have been accepted for the scheme would be refused a placement. Our

evaluation problem is the result of the non-experimental nature of our yeS data set.

Such a randomised experiment would append our data with the necessary information to

construct the missing counterfactual, E(YID = 1,X) and thereby calculate (2.17).

If, having applied and been accepted for a position on the YTS scheme, partici-

pants had then been randomly refused entry, then randomisation would exist on the

sub-population for whom D = 1. Let us define a new variable R such that
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{
I if a person from the D = 1 population is randomised into YTS,

R=
o otherwise.

It is not assumed that E(UlIX) = 0 or E(Uo IX) = 0, therefore X is not required

to be exogenous. In the presence of a randomisation and using the notation of previous

sections observed outcomes, Y as defined in equation (2.14) is now

Y = D[RYi + (1 - R)Yo] + (1 - D)Yo (2.18)

and as a result

E(YID = 1,R = 1,X) = E(Yi ID = 1,X) = gl (X) + E(UlID = 1,X) (2.19)

E(YID = 1,R = 0,X) = E(YoID = 1,X) = go(X) + E(UoID = 1,X). (2.20)

It is from equation (2.19) that we are able to estimate the outcomes for YTS partici-

pants. Equation (2.20) allows us to obtain the counterfactuals for these outcomes. Ifwe

then subtract equation (2.19) from (2.20) we arrive at

E(YID = I,R = I,X) - E(YID = I,R = OX)

= gl (X) - go(X) + E(Ul - UolD = 1,X)

= E(~ID = I,X). (2.21)

If the yeS data set was the result of such a randomised experiment then we would be

able to estimate the treatment effect via the above. In general E(Ut, UolD = 1,X) i- O.
As we will show the methods of matching which we have used assume that given X

E(YoID = I,X) = E(YoID = O,X). (2.22)

In essence we are assuming that there exists no group of variables Z which D depends on

and which are not independent ofYIX. A randomised experiment would remove the need

for this assumption when attempting to calculate the treatment effect for participants.

However the absence of randomisation means that the distributions of the X variables
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for participants and non-participants may well be different. Whenever the support of the

distribution of X conditional on YTS participation is different to that for X conditional

on non-participation equation (2.22) will not hold and so we cannot retrieve information

regarding the outcome Y. Since estimation of ~D=l (gross treatment effect on the treated)

requires that the support of XID = 1 is equal to that of XID = 0 it is often necessary to

examine the effect of treatment on a single variable of interest.

2.4.3 The Underlying Assumptions of Traditional Methods of

Matching

As we have already touched upon, there exist several key assumptions which underpin the

methods of matching we have employed. If these assumptions hold then it is possible to

use matching to generate counterfactual estimates from which we may derive ~D=l even

if the data is generated in a non-random setting.

Firstly we assume that having conditioned on X, the outcomes (Yi, Yo) are orthogonal

to D, that is

(Yl! Yo) j_ DIX. (2.23)

As long as this assumption holds we may infer that

F(YoIX, D = 1) = F(YoIX, D = 0), (2.24)

which may be interpreted to mean that, conditional on X, persons who do not participate

in the scheme (D = 0) attain outcomes (Yo) with the same distribution as the outcomes

which those who participated (D = 1) would have received if they themselves were non-

participants. Since we are already able to measure the outcome, Yl for participants it

follows from equation (2.14) that

E(YoIX, D = 1) = E(YoIX, D = 0). (2.25)

Secondly we assume that

0< Pr(D = 11X) < 1 V X (2.26)
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Figure 2.1: Relationship Between P(X), the choice of D and the Outcome Y.

so that (2.16) can be defined for all X.

If these assumptions hold, non-experimental data sets such as our yeS data can iden-

tify the same parameters as an experimental data set with randomised scheme exclusions.

In fact, for estimation of (2.16) it is enough to assume

Y..lDIX. (2.27)

Assumptions (2.23) and (2.26) which Rosenbaum and Rubin (1983) refer to as "strong

ignorability" are all that is required to allow us to match on X. However, in reality X may

consist of many variables which would lead to problems of dimensionality in large data

sets. Fortunately Rosenbaum and Rubin (1983) demonstrate that assumptions (2.23) and

(2.26) together imply

(YI, Yo) ..l DIP(X) (2.28)

and hence

Yo..l DIP(X) (2.29)

where P(X) = Pr(D = 11X) and is a propensity scor 6 for scheme participation. Fig-

ure (2.1) illustrates the nature of the relationship b tw n P(X), a per on' choic of D

and the outcomes Y. Simply put, if we have two persons with th sam P(X), on with
6See section 2.6 for a description of propensity scores.
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treatment and one without, then the diagram suggests that the outcome Yo for the non-

participant is the counterfactual for the outcome Yi for the treatment person and that the

fact that their choices of D differ has no effect on this relationship. Thus matching may

be performed on P{X) alone and the problem of highly dimensional X is replaced by a

one-dimensional solution. Under conditions (2.28) and (2.29), we can use the estimate

nl

~D=l = nIl L Yli{Xi) - E{YOiIP(Xi), Di = 0)
i=I:D;=1

(2.30)

where ni are the number of participants with X values that satisfy assumption (2.26).

2.5 Estimating Elasticities using Matched Samples

Having examined the underlying theory and the reasons behind the use of matching to

correct for the non-experimental nature of many datasets we now present three algorithms,

which can be used to perform such procedures.

2.5.1 The Nearest Neighbour Matching Protocol

We begin by introducing the simplest and most intuitive method, which is often referred

to as nearest neighbour matching. The method of matching, known as Mahalanobis

matching with propensity score callipers, is broadly similar to that described in Lechner

(1999), and an advance on simple propensity score nearest neighbour matching, an early

example of which is used by Cochran and Rubin (1973). An individual from that section

of the population who did not participate in YTS, which we denote as the control group,

is deemed to be similar to a given treatment person if their covariate structure is near to

that of the treated individual.

Although our version of the nearest neighbour algorithm mirrors that of Lechner (1999)

we choose to present it using the notation of Heckman et al. (1997). This ensures a consis-

tency of argument when taken together with the theory from proceeding sections. Hence,

we denote labour market variable responses for treatment or non-treatment (controls) as

31



2.5. Estimating Elasticities using Matched Samples

Yii and Y()i respectively. Variables which remain unaffected by treatment we label Xi and

D, is defined to be an indicator of YTS participation, taking value D, = 1 if individual

i receives treatment and Di = 0 otherwise. The difficulty in estimating the treatment

effect is highlighted by this notation. If an individual, i, receives treatment then we can

observe Y1i, however it is then impossible to observe YOi• If we make certain assumptions

then it may become possible to determine the average causal effect of treatment, D..D=l,

as

D..D=l = E(YI - YoID = 1)

= E(YIID = 1) - E(YoID = 1), (2.31)

where E(·ID = 1) is equal to the population mean for all those who participated in

YTS. To determine th~ causal effects of treatment Lechner (1999) introduces the Stable

Unit Treatment Value Assumption (SUTVA). SUTVA must be satisfied for the whole

population. The main implication of which is that values of Y1i and Yoido not depend on

the treatment of individuals other than i.

We are unable to identify D..D=l due to the unobservability of the second term in (2.31),

E(YoID = 1). If the assignment into YTS participation was random, then outcomes would

be independent of assignment, in which case E(YiID = 1) would equal E(YoID = 0) and

non-participating individuals could form a control group. However analysis of the data

suggests that it is unreasonable to assume that assignment is independent of final outcome.

As we showed in subsection 2.4.3, the work of Rubin (1977) and Rosenbaum and Rubin

(1983) suggests a weaker condition known as the Conditional Independence Assumption

(CIA), which they call "random assignment conditional on a covariate". They assume

that assignment is independent of potential training outcomes conditional on a covariate,

that is

Yo j_ DIX = x. (2.32)

Equation (2.32) is assumed to be valid in all the support of x. Under CIA, E(YoID =
1, X = x) = E(YoID = 0, X = x). The probability of participation in YTS conditional
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on z [P(D = llX = x)] is called the propensity score which we denote P(x). Given that

o < P(x) < 1 holds, then E(YIID = 1) = E[E(YoID = 0, X = x)ID = 1]can be estimated

for large samples. If equation (2.32) holds, then Yo is also independent of D conditional

on P(X) = P(x) and so

E[YoID = 1,P(X) = P(x)] = E[(YoID = 0, P(X) = P(x)]. (2.33)

Hence estimation is possible using

E(YoID = 1) = E{E[YoID = 0, P(X) = P(x)]ID = I}. (2.34)

Thus the dimension of the estimation has been greatly reduced, however the price to

pay for this simplification is the need to estimate the assignment probability for each

individual using a probit model.

To begin with we select variables, which are to be used to gauge similarity. These

variables, defined as V, are the independent variables in a probit model estimation for

YTS participation. So that we might examine the differing effects of YTS on both men

and women the data set is split before matching to prevent persons being matched to

individuals of the opposite sex. This leads to a need to run the matching procedure twice.

We then compute v/3 and its conditional variance var(V,BIV = v) for each observation in

the dataset. Persons are split into a treatment vector (people with YTS experience) and

a control vector. The order of individuals within these two vectors is then randomised.

The first person in the randomised T vector is selected. A calliper is constructed (see

Appendix C.I, Matching Algorithm) so that it forms a 90% confidence interval around

the propensity score, vnt/3 of this individual. Members of the C vector who lie within

this caliper are denoted j. If j ~ 1 then we select the observation j which minimises the

distance

(2.35)

If j = 0 then it is necessary to calculate the distance for all members of the C vector and

33



2.5. Estimating Elasticities using Matched Samples

match to the one with the minimum ,(j). The matched individual is then removed from

the C vector and the matching process is repeated for the next individual in the T vector.

This is repeated until all individuals from the treatment vector T, are matched with a

control from the C vector. The algorithm can be adjusted so that matched controls are

not excluded from the dataset and as a result may appear more than once in the matched

dataset. This may lead to an over dependence on a few controls. Hence we choose to

employ a method with matched control exclusions.

2.5.2 The Kernel Regression Matching Estimator

Unlike the "nearest neighbour" matching protocol described in subsection 2.5.1, kernel

regression matching uses the whole comparison sample. A kernel regression estimator

assigns each member of the control group a weight so that the control observations closer

in terms of distance between propensity score, IP(Xli) - P(Xoj)l, to a treatment person

receive greater weight. These weighted people are then fused together to form a synthetic

control person.

Let W (i, j) be the weight placed on observation j in forming a mean synthetic com-

parison individual for treatment observation iwith

NoL W(i,j) = 1 and 0 s W(i,j) s 1
j=1

(2.36)

where No is the total number of control group individuals. Then the weighted mean

synthetic comparison individual for treatment person i is

No

YOi =LW(i,j)YOj'
j=1

(2.37)

Using this equation we can obtain "synthetic" control responses for each person in the

treatment group using the propensity scores. This can be done for all variables required

for analysis. During this work we refer to collections of synthesised variables generated

to match those of a treatment person as a "Synthetic Control Person". Repetition of this

process for the whole of the treatment group produces a "Synthetic Control Group". The
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weights are calculated using a kernel method as

(2.38)

where K is a kernel and b« is the bandwidth (smoothing parameter). A commonly used

kernel function is the biweight kernel of the form presented in equation (2.39)

(

165 (X2 - 1)2 if [z] < 1
K(x) = 1

o otherwise.
(2.39)

This function weights and combines all persons in the control group differently for each

person in the treatment group with a unique P(Xi)' The impact of treatment is then

estimated by way of the mean difference across all treated individuals as

1 NI ( _) 1 NI ( No ., )
m = Nl tt Yli - YOt = Nl tt Yli - f;W(z,))Yoj . (2.40)

2.5.3 Local Linear Regression Matching Estimator

Here we present a method of matching which is similar in nature to that of kernel match-

ing. The weights, which the local linear method assigns to non-participants, are again a

reflection of their similarity to the participant of interest and take the form

where

and K(.) is the biweight kernel function as defined in equation (2.39). Heckman et al.

(1997) recommend the weights that the above function delivers over those produced by

the kernel regression method due to their high rate of convergence at boundary points. In

fact, the order of the bias of local linear regression weights is the same at the boundary
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points as elsewhere. The ability to adapt to differing design densities is also a strong

feature of this estimator since its bias does not depend on the density of P(X). As with

the kernel regression matching estimator, the weights from equation (2.41) are used to

calculate the treatment effect via equation (2.40).

2.6 Calculation of the Propensity Score

An individual's propensity score is simply the probability of them having a certain char-

acteristic or doing a certain activity, given their personal set of characteristics and that

they have been exposed to a particular series of external factors. Since they are in fact

predicted probabilities, all propensity scores lie between 0 and 1.

All three of the matching methods, which we have outlined during this chapter, require

us to have already calculated a series of propensity scores for YTS participation. When

using these propensity scores we will rely on the result of Rosenbaum and Rubin (1983),

section 2.4.3, where we showed how, through a series of assumptions, they arrived at result

2.29, which implied that a propensity score constructed from a model containing a series

of relevant variables could be matched upon and that problems of highly dimensional X

were then replaced by a one dimensional solution.

We can estimate propensity scores for a group of individuals using one of a number

of models. Heckman et al. (1997) choose the conditioning variables in X such that

the logit model they employed to estimate each individuals propensity to participate in

YTS produces the highest number of correct participating state predictions. We elected

to make use of probit models for the construction of our YTS participation propensity

scores. A probit model is defined to be

P(Di =1= 0) = F(X B) (2.42)

where F(.) is the cumulative distribution function, and X B is the probit score. Those

wishing to interpret the coefficients from the model should bear in mind that since X B

has a Normal distribution, each unit increase in a dependent variable with a coefficient
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of, say 0.8, implies an increase in the probit score of 0.8 standard deviations. However,

interpretation of the results of our probit model is not the main focus of this work. The

scores, which we obtain, are needed for use in the matching procedures we have described.

With the scores defined to be P(Yi =1= 0) we are generating probabilities for persons having

the outcome Yi = 1, which in this case is the probability that they took part in YTS.

Probit models are employed when the dependent variable that you wish to run a

regression for takes binary discrete values. Our dependent variable took the value 1 if a

person indicated that they had undertaken a period of YTS training and 0 otherwise. The

results of our propensity score estimations by gender using these models are presented in

Table C.4. A wide variety of labour market characteristics, personal (education level etc.)

and locational (regional and cohort dummies) were included in the model. See Table 2.1

for a description and summary statistics of the variables used. Notice that the female

sample consists of around 700 more individuals than the male sample. This is consistent

with the higher response rate amongst females for the whole of the YCS dataset. See

Table 2.2 for an outline of the YCS cohort design structure as well as response rates per

sweep for each cohort.
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2.7 Stochastic Dominance

Imagine that we have generated a set of propensity scores for YTS participation. We can

separate the persons for whom these scores were predicted into two groups, treatment and

control. All those in the treatment group experienced YTS; all those in the control group

did not. When attempting to match on these scores we will be assuming that there are

sufficient high propensity control persons to match to those who received treatment. All

this despite prior knowledge suggesting that those from the treatment group would, on

average, have higher propensities. Hence we shall need a control group sufficiently large

in number to offset this lack of high propensity controls. This poses the problem, how do

we know if our control group is large enough to supply us with the persons we need?

We begin by introducing the notion of stochastic dominance and explain what we mean

when we say that one distribution dominates another. Next we investigate whether, by

only observing the properties of the cumulative distribution functions of the treatment

and control propensity score distributions, we can say if F(P(X1)) dominates C(P(Xo))

or not? The concepts of first and second order stochastic dominance can help us to form

a conclusion as to whether our dataset will produce good matches. We conclude this

section with an explanation of how to achieve this goal.

2.7.1 First Order Stochastic Dominance

If for any propensity score there is more chance of there being a person with that score

from population F than population C, then we can say that, on the whole, F dominates

C.

If a propensity score distribution has a lot of probability mass skewed towards higher

propensities then it is more likely to contain high propensity persons than a distribution

which has a lot of probability mass skewed towards low propensities. If this is the case,

then we have what is called "first order stochastic dominance". This is defined as follows.

Definition 2.1 First Order Stochastic Dominance: F is said to dominate G on [a, b]
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according to first order stochastic dominance if and only if F(p) :::;G(p) for all pE [a, b].

This is denoted F 2:vl G.

Figure 2.2 demonstrates this more clearly. When comparing the cumulative distribu-

tion function H with either F or G. Specifically, note that for any pE [a, b], F(p) :::;H(p)

and G(p) :::;H(p) as H lies uniformly above F or G. Considering any p E [a, b]' then we

see immediately that there is more "area" under the curve between a and p than there is

under the F or G curve between a and p. Thus, there is a greater probability mass under

H(p) than F(p) or G(p) for any p E [a, b], i.e. the probability that any t is less than p

under H is greater than the probability that any t is less than p under F or G. Thus

both F and G dominate H.

However, note that this criterion fails when comparing the cumulative distribution

functions F and G with each other. Obviously, neither F nor G are uniformly above each

other thus it neither F dominates G nor G dominates F. In particular, note that below

F(x) 14-__ F_>_D_G_>_D_H__ ...... I- __G_>_D_F_>_D_H__ ...
1 .

>-.
(j
c
Q)
::J
0-
0)~
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>..;:;
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Q)

0::

o a v w b P(X)

YTS Propensity

Figure 2.2: First and Second Order Stochastic Dominance
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point v, F(p) ::; G(p), whereas above point v, F(p) ~ G(p), or [1- G(p)] ::; [1- F(p)]. As

we cannot compare F and G according to the first order stochastic dominance criterion,

then ~Dl is only a partial ordering on the space of cumulative distribution functions.

The purpose of the first order stochastic dominance is to enable us to order (if only

partially) distributions according to the degree to which the distribution is skewed towards

the right and high propensities: in other words, F ~Dl H implies that F is unambiguously

likely to contain more high propensity persons as a percentage of its total, than H because

it deposits the bulk of its probability mass amongst higher propensities, and thus will have

a higher expected mean propensity. But, as we see in Figure 2.2, we cannot compare F

and G by this criterion. If v is the mean, then F and G have the same expected mean

propensity. However, in Figure 2.2, it also seems as if the probability mass of F is "less

dispersed" than G. An alternative criterion, then, would be to argue that a particular

distribution contains more high propensity persons than another as a percentage of its

total if it has an unambiguously higher expected mean propensity. This is the purpose of

the second order stochastic dominance criterion.

2.7.2 Second Order Stochastic Dominance

Second order stochastic dominance helps us rank distributions in terms of the spread

of the probability mass of the cumulative density functions. Let us define A as the area

between the two curves F and G in [a, b], specifically A = J:[G(t) - F(t)]dt. In Figure 2.2,

we can notice that everywhere below v, G is above F, thus the area in between the curves

below v is Al = J:[G(t) - F(t)]dt > O. However, above v, G is below F, thus (negative

of) the area between the curves above v is J:[G(t) - F(t)]dt < O. But notice that A

is cumulative, Le. A = J:[G(t) - F(t)]dt + J:[G(t) - F(t)]dt for all p E [a, b], thus we

add up the areas where G is above F and subtract from it the areas where G is below F

(note: we can allow G and F to rise above and dip below each other several times over

the range). Thus, in Figure 2.2, A(w) = JaW[G(t)- F(t)]dt is the sum of the areas Al and

A2 where, Al > 0 and A2 < O.
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If A 2:: 0 for all a, b p is undefined here., then the cumulative area where G is above F

is greater than the area where F is above G, Le. the probability mass of G is more spread

out than the probability mass of F, which with reference to Figure 2.2, implies that Gis

dominated by F. Conversely, if A ~ 0 for all pE [a, b], then the mass of F is more spread

out than G. We want to "rank" distributions F and G according to whether A is positive

or negative over the entire range. Thus, we now define the following:

Definition 2.2 Second Order Stochastic Dominance: F dominates G according to second

order stochastic dominance, or F 2::D2 G, if A = J:[G(t) - F(t)]dt ~ 0 for all pE [a, b].

Notice in Figure 2.2 that it is quite probable that F ~D2 G by this criterion, thus

F dominates G according to second order stochastic dominance. Notice also that if A

compares H with F or G, then it is indeed true that F ~D2 Hand G 2::D2 H. Thus, first

order stochastic dominance implies second order stochastic dominance, but not vice-versa.

2.7.3 Judging whether a Dataset will produce Good Matches

Ideally we want to develop a set of rules for good matching practice. A dataset whose

properties are deemed to adhere to these rules would then be judged to be suitable for

matching to occur. The method we propose is more ad hoc than constituting a universal

solution. Knowledge of the nature of the dataset which we are interested in is the basis

from which we develop a test. Hence, although our method may be adapted to test for

suitability amongst other datasets an understanding of the difference in propensity score

distributions between treatment and controls must be obtained before considering the use

of the concept of stochastic dominance.

Prior understanding of the nature of YTS participation leads us to expect that those

who undertake a period ofYTS training will produce a propensity score distribution which

is skewed to the right whilst those from the non YTS grouping will have lower average

YTS propensities. Hence, it is at the right side of the distribution that we are likely to

find too few controls. We are searching for fragments along the propensity score range
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2.7. Stochastic Dominance

(0 ~ P(x) ~ 1) for which, given that both treatment and control groups contain the same

number of individuals, the control group would have insufficient numbers to match to

those from the treatment group. Formally we test for second order stochastic dominance

of the control group propensity scores verses the treatment group scores. If the control

group does not stochastically dominate the treatment group then we may conclude that

the treatment group has more high propensity persons as a percentage of it's total, leading

to the need for us to sample a larger number of controls to offset the shortfall.

A plot of both the treatment and control group CDFs allows us to visually identify

areas of concern. Any section of the treatment curve with a gradient in excess of that

corresponding section of the control group will, in samples of equal size lack support for

high quality matching. As already observed, it is the high propensity end of the dataset,

with which we are likely to uncover a lack of support.

When attempting to identify whether data will produce a well matched dataset there

are three criteria which must be met. Ifwe can prove that a pair of treatment and control

propensity score distributions meet all three, then we can say that there are enough control

group people whose propensity to participate in YTS is sufficiently similar to those from

the treatment group over the full range of propensity scores (0 ~ P(x) ~ 1) to produce a

well matched dataset.

1. Maximum and Minimum Values of the Propensity Score Distributions.

The control group propensity score distribution must sit to the left and right of

the treatment group propensity score distribution. It is possible that the control

group propensity score distribution can stochastically dominate the treatment group

propensity score distribution whilst still producing a series of poor (perhaps very

poor) matches. Figure 2.3 presents an example of a pair of propensity distributions

which would fail to produce good matches. If we imagine that F(P(x)) repre-

sents the treatment group propensity score distribution and G(P(x)), the control

group propensity score distribution, then we see that the control group distribution

stochastically dominates the treatment distribution. Hence, the control group has
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Figure 2.3: Maximum and Minimum Values of the Propensity Score Distributions

a large number of high propensity individuals. However, in this case there are in-

sufficient low propensity persons to match with the treatment group. To counteract

this we begin by ensuring that the propensity score distributions obey the following

rule

min(Pli(x), POi(X)) = min(Poi(x))

max(P1i(X), POi{X)) = max{POi(X))

(2.43)

(2.44)

where Pli is a sample point from the treatment group and POi is a sample point

from the control group.

2. Establish the Nature of Dominance. The above ensures that the control group

distribution spans the range of the treatment group distribution. We still need to

uncover the relationship between the treatment and control group propensity score

distributions. If the treatment group propensity distribution is found to 1st order

stochastically dominate that of the control group (our prior belief), then we can say

that if no = nl the treatment group contains more high propensity individuals as a
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percentage of its total than the control group.

If after plotting the cumulative distributions of the treatment and control groups we

discover that, over the full range of P(x), neither distribution 1st order stochastically

dominates the other, then we must consider second order stochastic dominance.

When investigating second order stochastic dominance relations the question of

whether one distribution dominates another depends on what range of the variable

you are considering. Returning to the pair of distributions, G and F, from Figure

2.2 then we can say that if v represents the halfway point in the range of P{x)

then F 1st order stochastically dominates G in the range a to v and that GIst

order stochastically dominates F in the range v to b. If we were to substitute the

control group propensity score distribution for distribution F and the corresponding

treatment group distribution for G, then we could say that for distributions of equal

size the control group would not contain sufficient numbers of individuals in the tails

of its propensity score distribution to match to those from the treatment group.

Since we are interested in discovering any fragments of the propensity score range

for which we lack sufficient control persons for matching it makes sense to consider

the distributions in fragments of infinitely small size. Hence we note the areas for

which the gradient of the. control group CDF is less than that of the treatment

group.

A full investigation of the nature of the dominance relations between the treatment

and control group distributions will facilitate an understanding of the ranges of

propensity scores for which the control group will lack sufficient numbers to perform

high quality matches when using groups of equal size. The YCS dataset contains

far more control than treatment individuals.

3. Account for the Relative Size of the Treatment and Control Groups. The

discovery of a range of propensity scores over which the treatment group stochas-

tically dominates the control group does not necessarily indicate that there will be

insufficient control persons to perform a full series of high quality matches. Instead
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it indicates that for treatment and control groups of equal size there will be insuf-

ficient high quality matches. Hence, we must also examine the ratio of treatment

and control group sample sizes. Since if No > NI, this may be sufficient to offset

the shortfall, in the control group.

To summarise, the definitions of first and second order stochastic dominance, combined

with the relative sizes of the treatment and control groups, enable us to predict whether

a dataset will produce a series of good matches when using a nearest neighbour matching

algorithm. If these concepts reveal a lack of high propensity controls, then we could

randomly exclude some persons from our treatment group. The number of exclusions

needed being a function of the degree to which the treatment group propensity score

distribution stochastically dominates that of the control group and the relative size of the

two sub-samples. We will return to this issue in Chapter 4. Cochran and Rubin (1973)

examine the degree of concordance of key variables between pre-match and post-match

datasets. This research does not contain a detailed examination of concordance. We

focus on YTS treatment effects and the sensitivity of matched datasets to the matching

procedure being used.

45



Chapter 3

Investigating the YTS Treatment

Effect

3.1 Introduction

In this chapter we shall present some early results from our investigations into the rela-

tionship between YTS and the job search process for YCS school leavers. We calculate

the job search elasticities as derived by Lancaster and Chesher (1983) (see section 2.3)

for the men and women of the YCS dataset in an attempt to uncover the ways in which

a spell on YTS affected their job search strategies. The introduction of a series of impor-

tant considerations leads us to refine the model further and present alternate estimations.

The need to allow for self selection into YTS necessitates use of the nearest neighbour

matching algorithm for the first time.

3.2 Comparisons with Previous Studies

We begin by calculating elasticities of the structural search model as set out in Lancaster

and Chesher (1983) and described in section 2.2 for males and females in the YCS dataset.

For purposes of comparison various population elasticities estimated from previous studies
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that used this approach are included in one table. Our sample size of 4,115 young men,

compares favourably to those used in many previous studies (the sample sizes in Gorter

and Gorter (1993), Jones (1988), Lancaster and Chesher (1983), Main and Shelley (1988)

and Lynch (1983) were 213, 845, 639, 838 and 52 respectively). The relatively large sample

size should allow us to get quite precise estimates of the structural parameters. Comparing

our results for all young men and women in the final two columns of Table 3.11 with those

of the other studies we find that while our results are within the range of estimates from

the previous studies, there are some differences.

One reason for the relative difference between our estimate and that of the other studies

is that our data consists solely of young people. In contrast the sample in Dolton and

O'Neill (1995) consisted of workers who were unemployed at least 6 months, the Lancaster

and Chesher (1983) estimates refer to a sample from the stock of all unemployed workers.

As a result the reservation wage reported by the individuals in the other studies may

already be at the minimum level necessary to insure a positive payoff to work. To the

extent that the reservation wage may become more rigid in a downward direction the

longer the unemployment spell continues and the older the sample is, we might expect

changes in benefits to have more of an effect on reservation wages in our sample of young

people than in other studies.

Our estimate of the elasticity of the reservation wage with respect to the offer arrival

rate is 0.1776 for men and 0.1754 for women which again is higher than the estimates of

0.11, 0.15 and 0.14 reported by Lancaster and Chesher (1983), Lynch (1983) and Main

and Shelley (1988) respectively. This may be due to the responsiveness of young people to

an exogenous change in labour market circumstances. It is possible that older job seekers

and the longer term unemployed are less responsive to a changing offer arrival rate.

The third row shows the elasticity of re-employment with respect to unemployment

benefits under the Pareto assumption, while the fourth row reports the estimate under

the Exponential assumption. Our estimate of the elasticity for men is close to -0.41

IThroughout this work figures in parenthesis are standard errors
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Jlog; 0.11
Jlogb (0.002)

J]og; 0.11 0.09
J log). (- ) (-)

JJog h + -1.0 -0.91 -2.89 -0.4891
Jlogb (- ) (0.03) (-) (0.0043)

Jlogh ++ -0.96 -0.56 -0.3405
Jlogb (- ) (-) (-) (0.0061 )

JJogh ++ 0.24 0.21 0.2897
J Jog). (- ) (-) (0.004) (0.0030 (0.0028)

Sample Size 639 52 338 112 3520 4115 4770
+ Pareto Assumption, ++ Exponential Assumption

Table 3.1: Elasticities for Previous Studies

under the Pareto assumption and -0.33 under the exponential.f Th corresponding two

elasticities for women are -0.48 and -0.38 indicating that, with r gard to th hazard of

leaving the state of unemployment, women may w 11be more s nsitiv to a hang in the

b nefit level than men.

The fifth row of Table 3.1 reports the lasticity of r - mploym nt probability with

respect to changes in the offer arrival rat, und r th Expon ntial as umpti n.3 Th
20ur figure is substantially lower than the stimate of -2.89 obtain d in Gorter and G rt I' (1993).

However using parametric procedur s Gorter and Gort r (1993) ar unabl to find a signifi ant ffect of

eith r benefits or reservation wages on duration.
3In the Table we present the estimates reported by Lancast r and Ch sher (19 3) and by Lyn h

(1983) in their papers. However, these authors s em d to hav ov rlooked th fact that under th Par to

assumption these elasticities should be equal to the lasticity of th r s rvation wag with resp et to th
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results suggest an estimate around 0.27 for men and 0.28 for women. An alternative

interpretation of these figures can be obtained if one assumes the hazard function for a

given individual is constant over time. In this instance an individual's completed un-

employment duration has an exponential distribution, with mean 1/h. The elasticity of

mean unemployment duration with respect to the offer arrival rate is then the negative of

the estimates given in rows 1 and 5. Our results imply that a 10% fall in the mean time

between offers is associated with around a 1% to 3% reduction in the average length of

unemployment duration.

It is particularly interesting to consider the extent to which our results mirror those of

Lynch (1983). Her dataset was collected from a survey of young people living in Greater

London during March of 1979 who planned to leave school that summer at the minimum

legal age of sixteen. Individuals who remained in the labour force were swept every

six months after departure from school. Although the original sample consisted of 1922

individuals, the dropout rate was substantial. The results which we reproduce here were

calculated using the sweep of November 1980, by which time only about 70%of the original

sample remained in the labour force. Beyond the obvious similarities between the YCS

and Lynch's datasets, she also used responses to questions such as "What is the lowest

weekly wage you would accept before tax and other deductions?" to represent reservation

wages, "How much do you expect to earn before tax and other deductions?"for expected

wages and "How do you manage for money while you are out of work and how much

does that amount to each week?" as a measure of benefits received; All of which mirror

the questions which were put to YCS respondents. It is a source of some encouragement

that her results are so similar to ours, in both sign and magnitude for all five elasticities

of interest. Perhaps the differences between our results and those of Lynch (1983) when

compared to those of Lancaster and Chesher (1983), Main and Shelley (1988) and Gorter

and Gorter (1993) are in fact a reflection of the nature of the datasets employed.

All of these studies, whose authors based their calculations on the measurement of
benefit level.
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reservation and expected wages as responses to questions at interview, present vid ne

which broadly supports the existence of a number of relationships which the job search

model of section 2.2 predicts. Results suggest that higher benefit levels I ad to higher

reservation wages, whilst higher job offer arrival rates lead to an upward pressure on

reservation wages. At the same time the hazard of exiting from unemployment into work

falls when benefit levels rise.

3.3 Search Model Elasticities

0.18646
(0.00176)

alogh +
alogb

logh ++
alogb

Table 3.2: Job Search Elasti ities and Wag for M n and Worn n

Examination of the different government training sch m s whi h xi t d v r th

1984-94 period reveals important differences with resp et to th ir durati n, training n-
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tent and how they were perceived by employers. In addition the various incarnations of

the scheme operated against different background unemployment rates and training al-

lowances. These background factors are graphed in Figures C.5 and C.6. Without losing

sight of the historical economic environment, it is interesting to examine whether different

YTS schemes induce different job search behaviour and expectations on behalf of their

recipients. In Table 3.2 we estimate the elasticities for and by whether or not men and

women have ever been on YTS. This allows us to compare the parameters across sub-

groups. The first column of Table 3.2 reports the estimates for all men, while the next two

columns compare elasticities of those young men who have had a spell on youth training

with those who have not. The last three columns report the corresponding estimates for

young women.

If we assume that both reservation and expected wages are normally distributed then

the computation of elasticities for the different subgroups facilitates a direct statistical

test of the differences in the means between the comparison groups. A two sample t-test

with null hypothesis of Ho : J..Ll = J..L2 verses a two tailed alternative was performed, where

J..Ll and J..L2 were the mean values of a given elasticity or expected/reservation wage for

those with YTS experience and those without. Test results are presented in Table 3.2.

Throughout this work all emboldened elasticities are significantly different to the corre-

sponding elasticity of their alternate specification at the 10% level; those which are shaded

are significant at the 5% level.

The same statistical test is used to investigate differences in the means of the reser-

vation and expected wages between subsamples. The difference between the reservation

wages of men who had some experience of YTS and those who didn't was significantly

different from zero at the 5% level whilst the expected wage was significant at the 10%

level. Tests on the exit status mean values failed to reject the null hypothesises",

Tests on elasticities for the "YTS participation" subgroups led to some interesting
4Comparisons between the elasticities of those who exit from unemployment before the end of the

survey and those who don't prove inconclusive and are not reproduced here. None of the elasticity

couples between these two subgroups proved significantly different from each other.
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conclusions. Young men who spend time on YTS have reservation wage elasticities with

respect to both the benefit level and the arrival rate of job offers which are significantly

lower than for those with no YTS experience. Under both the Pareto and Exponen-

tial wage offer distributional assumptions we see that young men with YTS experience

have an unemployment leaving hazard elasticity with respect to the benefit level which

is significantly lower than for individuals without YTS training. The hazard elasticity

with respect to the arrival rate of job offers under the Exponential assumption is also

significantly less for male YTS participants.

These findings taken together suggest that those young people who are more employ-

able, have better qualifications and hence higher reservation wages, and those who have

been on YTS, have lower wage expectations. It would seem that the propensity to change

one's reservation wage following a benefit change or a change of the offer arrival rate is

affected by whether one has been on YTS.

Tests on the mean reservation and expected wages of the female participants in the

YCS Cohort survey indicated that differences for both wage types were significantly dif-

ferent from zero at the 5% level if the women had a spell on YTS5. Elasticity estimation

produced rather mixed results. The elasticity of the reservation wage with respect to

the job offer arrival rate was significantly different between women with a spell on YTS

and those without. The unemployment leaving hazard elasticity with respect to the ar-

rival rate of wage offers under the exponential wage offer distributional assumption was

significantly different with YTS participation.

When comparing the results for males and females in Table 3.2 one could conclude

that there is some evidence to suggest that for females, the experience of YTS lowers

reservation and expected wages but that experience of YTS has a more marked effect on

the sensitivity of the elasticities for men than for women.
5As with the male subsamples, mean values for the exit status subsamples were not significantly

different from one another.
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3.3.1 Heterogeneity of YTS Treatment Types

Up until now our examination of the YTS treatment effect has allowed for the difference

between the male and female experience of YTS. However there is another potential bias

in the data which casts a shadow over the validity of our conclusions thus far. In this

section we attempt to account for our second area of concern, that of heterogeneity of

YTS treatment types.

In Table 3.2 the grouping together of all YTS types obscures the differences between

these schemes. The literature points to the considerable differences existing between these

schemes, prompting us to consider the estimation of separate elasticities for different

training regimes. Table 3.3 contains elasticities for men and women by YTS scheme

type. Taking men and women separately we investigate the treatment effects participants

received from the three YTS schemes. We compare the shaded cells contain elasticities and

mean reservation/expected wages which are significantly different to the corresponding

elasticities and wages of Table 3.2, (YTS=O), at the 5% level.

The expected wages of men on YTS I and women on types YTS I and YTS II were

significantly different from their YTS=O mean values at the 5% level. The mean for men

with YT experience was significant at the 10% level. Reservation wages were significantly

different from their YTS=O equivalents at the 5% level for YTS II and YT men and

significant for YTS I and YTS II women at the 5% and 10% levels respectively.

The elasticity of reservation wages with respect to a change in the benefit level was

significantly different to that of men with no YTS experience for all versions of YTS and

for women who had spells on YT. The elasticity of the reservation wage with respect to

the arrival rate of wage offers was significantly different to the elasticities of YTS=O for

YTS I and YTS II for both sexes.

The elasticities of the unemployment exit hazard with respect to changes in the benefit

level were significantly different to those of YTS=O for both sexes for all but men with

YTS I experience under the exponential assumption and women with YT experience under

both assumptions. The elasticities of the hazard with respect to the wage offer arrival
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alog~
alogA.

alogh +
alogb

alogh ++
alogb

alogh ++
alogA

Table 3.3: Job Search Elasticities and Wages for Non-Match d Men and Women by

Training Type

rate was significantly different for men and women of all YTS experienc types xcept

women with a spell on YT.
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3.4 An Application of the Nearest Neighbour Algo-

rithm

It is at this point that we acknowledge that there may be a degree of self selection into

YTS, which could cause a bias in the results thus far presented. In an attempt to adjust

for this effect we apply the Nearest Neighbour matching algorithm to the dataset. For

a motivation and description of matching in general and Nearest Neighbour methods in

particular see section 2.4.

3.4.1 Heterogeneity of YTS Treatment Types in Matched Sam-

ples

Having obtained two full synthetic control groups for the male and female samples; each

containing a single matched individual for every member of the YTS treatment group

we re-estimated the elasticities for all men, all women, those with YTS experience and

those without. Table 3.4 contains the computed elasticities for the new matched sample

of males for both the YTS treatment and synthetic control groups. Base numbers differ to

those of Table 3.2 where persons could not be matched with sufficient quality to te smaller

treatment groups. In contrast to our non-matched male sample (see Table 3.2) there now

appears to be no significant difference between the expected and reservation wages of

those men in the YTS=O control group and those with YTS experience (YTS=1).

The effects of a YTS spell on the search elasticities of men seem to follow much of

the pattern we saw for the non-matched male sample. There are significant reductions

in the elasticities ..of ~, reservation wages, and h, the hazard, with respect to a change

in b, the benefit level, under both the Pareto and Exponential wage offer distributional

assumptions for men with YTS experience at the 5% level. The elasticity of h with respect

to A, the arrival rate of job offers under the Exponential assumption, is also significantly

lower for males with YTS experience, although only at the 10% level.

The last three columns of Table 3.4 present the estimated elasticities for the female
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ologb

olog 0.177601

ologA (0.002513)

ologh + -0.4131

ologb (0.0043)

logh ++ -0.32491
ologb (0.003739)

Table 3.4: Job Search Elasticities and Wages for Matched Men and Women

matched sample of the YTS treatment and control groups. As with the mean reported

expected and reservation wages of the last three columns of Table 3.2 ther is a significant

fall (at the 5% level) in values for those women with YTS experience.

The elasticities of ~ and h (under the Exponential assumption) with respect to a hang

in ). are significantly higher for the YTS exp rienced women than for women without YTS

experience. This is also true for the elasticity of the reservation wag with r sp ct to a

rise in the benefit level.

As with our analysis of Table 3.2 the effects of YTS participation whi h w may inf r

are coloured by the inherent difference betwe n those with YTS xp ri nce and tho

without. As before it is likely that this difference will act to inflate the p rceiv d ff ts

of a spell on YTS. Therefore Tables 3.5 and 3.6 present these elasticiti s r al ulat d
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using the male and female matched datasets of Table 3.4 respectively.

alog~
alogb

alog~
alogA.

alogh +
alogb

alogh ++
alogb

alogh ++
a log A.

Table 3.5: Job Search Elasticities and Wages for Matched Men by Training Type

The elasticities for the synthetic control groups of ach variant of YTS are report d

in the columns to the right of each YTS treatment group. Treatm nt ffects are d m d

to be significant if the YTS treatment group elasticities diff r from th corr sponding

synthetic control group elasticities.

Unlike the non-matched male half of Table 3.3, where there was a marked tr atm nt

effect for young males who had participated in YTSI, Table 3.5 shows no ignificant

differences between those with YTSI experience and those without. As with Tabl 3.3

results for men with a spell on YTSII indicate that there is a significant tr atm nt ff t

which acts to lower all five of the elasticities under consideration here. Th final two

columns of Table 3.5 indicate a moderate YT treatm nt effect. Only th elasticiti s of th
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alog~
alogb

alog~
alOgA

0.166186
(0.005528)

-0.51265
(0.029877)

Jlogh ++
Jlogb

logh ++
JIOgA

Table 3.6: Job Search Elasticities and Wages for Matched Women by Training Type

hazard with respect to the benefit level under both wage offer distributional assumptions

are significantly different to the corresponding mean values for th synthetic control group.

Table 3.6 presents the female matched dataset YTS treatment effects by s h me typ

and takes the same form as Table 3.5. Results suggest that, oth r things being qual,

women with experience of YTSI will on average hav lower xp cted and r rvation

wages than those without. This result mirrors that found in Table 3.3. How v r unlik

Table 3.3 these results do not support the hypothesis that participation in YTSI has an

effect on any of the five elasticities. Table 3.6 indicates that, on average YTSII training

has no effect on the wages or elasticities of women who enter into it. Wh r a Tabl 3.3

contained only one significant treatment effect for women on the third schem , YT, Tabl

3.6 contains results which point to a treatment effect for many of the indicators under
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consideration. The mean value for the reservation wage of YT participants is significantly

lower than that of the synthetic control group. The elasticities of ~ and h (under the

Pareto wage offer distributional assumption) with respect to a change in the benefit level

are significantly higher for those with YT experience. The elasticities of ~ and h (under

the Exponential wage offer distributional assumption) with respect to A are also higher

for YT participants.

3.5 Context and Implications of Results

In this chapter we have presented evidence indicating the presence of some YTS treat-

ment effects on wage expectations and search elasticities. Section 3.3 Table 3.2 suggested

the existence of a marked change in the mean values for the structural parameters and

expected/reservation wages of individuals who had undertaken a period of YTS training.

However human capital theory would suggest that there may well be some fundamental

differences between those who sought YTS training and those who had no experience of

such schemes.

Our results support the heterogeneity of YTS treatment types. We allowed for the

schemes' evolution by subdividing our male and female samples into the three groups of

YTS (YTSI, YTSII and YT). We then re-estimated the structural parameters and ex-

pected/reservation wages for the non-matched dataset. Table 3.3 suggested that YTS

participants of both sexes could expect to experience large treatment effects for all three

YTS variants; the early scheme(YTSI) having a largely detrimental effect. However the

estimates by scheme type for the matched datasets presented in Tables 3.5 and 3.6 cast

a shadow over the results of Table 3.3. They offer little evidence of a YTSI effect on the

structural parameters and some evidence for a reduction in expected/reservation wages

following a spell on YTSI. YTSII appeared to have a marked effect on male participants

but there was no evidence to support the hypothesis of a female treatment effect. Evi-

dence for the third variation, YT, suggested that female participants experienced a marked
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3.5. Context and Implications of Results

treatment effect for both their structural parameters and reservation wages. Males who

undertook a period of YT training exhibited an effect only through a drop in the magni-

tude of the elasticity of the hazard of exiting unemployment, h (under both the Pareto

and Exponential wage offer distributional assumptions), with respect to a change in the

benefit level, b. The explanation of these results must lie in labour market factors. An

examination of the economic climate over the period of YTS evolution provides some clues

for the explanation.

To understand the implications of these results we need to examine the labour mar-

ket conditions experienced by different generations of government training recipients and

compare our unconditional estimates with the conditional ones which may be estimated

controlling for regressors. Table C.5 contains regression model estimations for reservation

and expected wages by gender for both control and treatment individuals. Notice the fact

that all three YTS types have a positive effect on both wage types for men whilst only

YT has any effect on the wages for women. This result would indicate that experience

of YT /YTS actually increases wage expectations. Presumably because YTS recipients

would feel that their human capital had been enhanced. Training allowances and the

average wage rates for under 18's also have a significant role in determining reservation

and expected wages. Both youth and Local Education Authority (LEA) unemployment"

are negatively significant for both sexes, indicating that adverse local labour market con-

ditions can lower expected and reservation wages. Women who live with their parents

have much lower wage levels. Perhaps due to the fact that living costs are lower whilst

they remain at home and so jobs offering lower levels of pay become acceptable to these

women.

Appendix Figures C.5 and C.6 contain plots of various economic indicators over the

time span of interest, some personal to the persons being studied, some regional and

some national. In 1986 when cohort 1 sweep 2 and cohort 2 sweep 1 people were ques-

tioned and YTS took the form of YTSI the unemployment rate (which has been scaled to

6The unemployment rate for the area in which an individual finished his/her schooling.
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overlay the wage data) was high (14%). After the introduction of YTSII unemployment

fell steadily until 1990 when it bottomed out (8%). As the third YTS variant YT was

introduced unemployment was again on the rise and had climbed back up to around 11%

by 1994. This trend coupled with the result from Table C.5 that unemployment rises led

to falls in reservation and expected wages" which. might account for the YTS treatment

effects uncovered in Tables 3.5 and 3.6 if the unemployment rate affected those with YTS

experience differently to our control group.

Male expected wages followed actual average male wages closely for the whole period

of study. It is interesting to note that the male school leavers in our sample returned

expected wage levels which were above the average rate of pay for males under 18 in the

years 1986 and 1994. Female under 18's expected wages were much lower than average

female wages for most of the period of interest. Young women appear to have expectations

for wages below the female average. Minimum training allowances were all but frozen for

all six cohorts and as a result the gap between reservation wages and training allowances

had widened considerably by 1994.

An important respect in which young men and young women are different is that

over the 1980s and 1990s girls in school were out performing boys in terms of educational

scores", Our results may be consistent with the view that although human capital has been

rising among young women their labour market expectations have not risen accordingly.

Another explanation for the differences which we observed between the treatment

effects for men and women is the existence of gender discrimination by employers. This

long recognised phenomenon could be causing female job seekers to revise down their

wage expectations in the light of poor wage offer distributions. After the introduction

of YT and as the unemployment rate rose it appears that women with YT experience

revised downward their expectations and their search elasticities. This indicates that for

7Remember that reservation and expected wages are scaled by changes in the Retail Price Index (RPI)

relative to 1998 prices.
8See Dolton et al. (1999) who examine the average GCSE exam score difference between boys and

girls.
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female school leavers the later YTS schemes had the effect which the government sought.

The fact that there was not a similar effect for their young male counterparts (except for

the elasticity of h with respect to b) might well be due to the high proportion of women

(relative to men) who enter the service and leisure sectors, which were growth areas in

the mid 1990s.

3.6 Conclusions

There are two principal empirical findings of this Chapter. Firstly, that the different

types of youth training have distinct effects on expected and reservation wages and search

elasticities. Secondly, that the effect of government training on males and females seems

to be radically different. The effect on the former is to enhance optimistic expectations for

men, but modify those of women. The implications of these findings are that in empirical

analysis of the labour market outcomes of young people it is necessary to consider men

separately from women. In addition it would also appear to be wrong to categorise all

government training as the same".

On a wider methodological level our estimation strategy also suggested that erroneous

conclusions could be reached if non-comparable groups, those receiving treatment and

those not receiving treatment, had been compared. Our approach of using a matched

sample suggests that one may reach less dramatic comparative conclusions, but ones we

may have confidence in. We suggest that the matching methodology has wide applications.

However, there are a number of performance issues relating to the nearest neigh-

bour algorithm. In the next chapter we will investigate the performance of the Nearest

Neighbour algorithm as used above. This investigation will lead us to consider alternate

matching solutions, methods whose performance will also be discussed.

9The much of the literature has treated YTS as a single unchanging entity. See Mealli et al. (1996)
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Chapter 4

Matching Estimator Performance

and its Bearing on Our Conclusions

As we were able to demonstrate in section 2.4.3 the performance of any given matching

algorithm is dependent on the validity of the assumptions, which underpin it. In this

chapter we investigate the performance of the differing matching algorithms, which we

have employed and attempt to assess the validity of the conclusions we might draw from

subsequent statistical tests on our matched datasets. The concept of Stochastic dominance

is used to assess the region of overlapping support. Several plots are used to highlight the

weaknesses which are inherent within traditional matching methods.

4.1 Nearest Neighbour Matching Protocol Performance

The "Nearest Neighbour" matching protocol described in subsection 2.5.1 matches an

individual from the control group to a person from the treatment group by selecting

the control whose propensity score is closest to that of the said treatment person. The

control is then removed from the population of unmatched controls and is unavailable

for matching to a subsequent treatment person. This method has the advantage that it

matches real people to each other facilitating any further investigation we may wish to
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4.1. Nearest Neighbour Matching Protocol Performance

perform".

Such an approach can be expected to produce close matches for as long as the propen-

sity score distributions take a form similar to that of Figure 4.1 Case 1. Here we depict

a pair of stylised propensity score distributions. The yellow distribution represents the

propensity score distribution for the treatment population, whilst blue represents that of

the control population. Notice how the blue distribution completely envelops the yellow

distribution. This is a highly desirable property for data, which we propose to perform a

"Nearest Neighbour" matching procedure on as it follows from this that for any treatment

individual there exists a control whose propensity score is similar to theirs. However, if

the propensity score distributions of the treatment and control populations take the form

of Figure 4.1 Case 2, we can expect the algorithm to produce some poor matches with

respect to propensity score.

Area A represents the portion of the treatment propensity score distribution, which

is not enveloped by the blue of the control group. At some point during a run of the

"Nearest Neighbour" algorithm all the controls with a propensity score, which lies within

Area B, will have been matched and removed from the unmatched control group. However

there will still exist treatment individuals who possess a propensity score within this

range. These treatment persons must then be matched to individuals from the remaining

unmatched control group who reside to the left of Area B and therefore possess propensity

scores, which are poor matches. That is to say that when we match on data which has

the form of Figure 4.1 Case 2, we can expect that as successive treatment persons are

matched to controls the remaining unmatched control population will look less and less

like the remaining unmatched treatment population.

Having described the "Nearest Neighbour" matching algorithm in subsection 2.5.1, we

then performed it in section 3.4 for males and females of the YCS dataset, cohorts 1-6.

The extent to which the conclusions that we drew are valid depends on the degree to which

1Since our matched controls are actual people and not synthesised, they retain their full set of covari-

ates post match.
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Case 1: Data Sets Which Produce Good Matches

Theoretical DistributionI
of the Propensity Score
for Non-Partcloants

Theoretical Distribution
of the Propensity Score
for Participants

o
Area A

)
Case 2: Data Sets Which Produce Some Bad Matches

\ AreaS

o YTS Propensity Score

Figure 4.1: Theoretical "Nearest Neighbour" Matching Algorithm Performance

the propensity score distributions of the YTS participants and non-participants overlap.

Figure 4.2 contains the actual propensity score distributions for the male sub-populations.

Notice how the YTS non-participants propensity distribution (blue) envelops all of the

left side of the YTS participants' propensity distribution (yellow). However, the right tail

contains a number of YTS participants for whom there will be no close matches. This is

true whenever the blue columns are smaller than the corresponding yellow columns.

In Figure 4.3 each pair of points represents the average distance between the propensity

scores of a matched couple for every twenty matches. An examination of Figure 4.3

reveals how the effect of this lack of high propensity control group persons causes the

mean distance between matched propensity scores to widen as the algorithm proceeds.

Notice how the algorithm produces consistently good matches until those of the 43rd
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Figure 4.2: Propensity Score Distributions for both YTS Participants & Non-Participants

(Males)

average distance point, after which treatment persons are matched to controls of lesser

propensity.

Any conclusions drawn from analysis of this matched dataset will be tainted by the

existence of these poorer matches within it.

One solution, which the literature suggests for the above problem, is to drop any

treatment individual from the dataset for whom the algorithm fails to find a match of

sufficient quality. Cochran and Rubin (1973) suggest a version of "Nearest Neighbour"

caliper matching which makes a match to person i only if there exists a person j, from

the control group such that,

(4.1)
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Figure 4.3: Matching Performance from First Match to Final Match (Males)

where E represents the caliper boundary. In fact our version of caliper matching could

be easily adapted to perform a more advanced variation of this method if we only made

a match to person i when there was some control person j, whose propensity score lay

within the caliper of person i, I.e:

(4.2)

See Appendix C.l for a description of the full matching protocol we used". There is

however a major flaw in the caliper rejection approach in that it remove per on from

the treatment group non-randomly. Under such a scheme w would lose people from the

right tail of the treatment group propensity score distribution, causing us to generat a

biased matched sample containing too few high propensity treatment-control matches.

In our attempt to remove one potential bias we would have introduced another. This

point is of crucial importance when an investigation is concerned with something such as

2Based on Lechner (1999)
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Figure 4.4: Propensity Score Distributions for both YTS Participants & Non-Participants

(Females)

measurement of the YTS treatment effect. People with high YTS propensities are likely

to be part of the self-selection phenomenon. Indeed, it is these people who the scheme was

designed to help. As such they must remain in the dataset for us to accurately evaluate

the YTS treatment effect. Previous studies often overlook this fact when choosing to

drop poorly matched persons. Although, the recently released" STATA 7 .do program

"psmatch", automatically excludes those persons whose propensity scores lie beyond the

region of support when performing it's version of matching it is possible to override this

feature.

Figures 4.4 and 4.5 depict the female versions of the plots presented in figure 4.2

and 4.3. As with their male counterparts we again see a shortage of high prop n ity

control persons with which to match. This leads to a reduction in match quality after th

forty ninth-point average. Too many poor quality matches for high prop en ity treatment

3Barbara Sianesi, University College London and Institute for Fiscal Studies, Jun 2001

68



4.2. Minimising the Number of Poor Matches

~ Treatment
.Control

0.1

0.5

0.4
~
.~ 0.3
Q)
c..o 0.2....a,

o

Earlier Order of Matching Later

Figure 4.5: Matching Performance from First Match to Final Match (Females)

individuals may therefore bias conclusions we draw from work on the female matched

sample.

4.2 Minimising the Number of Poor Matches

4.2.1 Overlap of the Propensity Score Distributions

Ideally we would wish to possess a method of calculating orne statistic, which we could u e

to judge whether a given treatment and control data et would produce good matche wh n

employing the method of nearest neighbour matching. Todd (1999) pr sents a method of

discriminating between data, which will produce potential good and poor matches. Sh

terms the support of P(X) for which both ix(P(X)ID = 1) > 0 and ix(P(X)ID = 0) > 0

as the "region of overlapping support". She also describes a method for identifying the

observations that lie in the region in which the density i(P(Xi)ID = 0) (using D = 0
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4.2. Minimising the Number of Poor Matches

control group data) at each of the P(Xi) values observed for D, = 1 observations is

calculated. The standard nonparametric density estimator used is reproduced here in

equation (4.3).

(4.3)

where K is a kernel function and hn is the bandwidth parameter. The density esti-

mates at each point are then ranked. From this the 1% or 2% quantile of the positive

density estimates is obtained. A value of P(Xi) with an estimated density greater than

this quantile is considered to reside within the "overlapping region of support". Values

of P(Xi) less than this quantile reside beyond the region of support and Todd (1999)

recommends they be excluded in estimation.

The weakness of this method is that we are again rejecting persons from our sample in a

non-random manner. As we have already discussed it seems likely that for our dataset the

region of non-overlapping support will lie to the right of the propensity score distributions

and as such a method such as we have just recounted would reject mainly high propensity

YTS persons from our sample and hence bias any conclusions which we attempt to draw

from analyses of the matched dataset. Furthermore it is not unreasonable to assume that

these high propensity YTS individuals are the group who require a scheme such as YTS

to help them develop their employment prospects and as such it is the effect of the scheme

on these persons, which we should be most interested in. Clearly rejecting persons of this

type is not desirable given our aim is to uncover the YTS treatment effect on the treated.

Todd (1999) does recognise that the majority of the treatment group could be outside

of the region of overlap, if the model for participation predicted unusually well. The

solution proposed is to re-estimate the propensity scores using an alternative set of X

variables. This solution seems to rely on using a poorer model for YTS participation to

increase the region of overlap. As a result this solution is flawed.

Having stated our reservations as to the validity of any method which proposes to

remove persons from the treatment group for whom there are insufficient controls pos-
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Figure 4.6: Cumulative Distributions of Males with YTSI Experience and those without

any YTS scheme experience

sessing a similar YTS scheme propensity before proceeding to match on the remaining

dataset, we now suggest that it is as valid to retain all treatment persons and adjust

our conclusions from analyses carried out after matching on this complete dataset using

the knowledge that there were some poor matches rather than reject treatment persons

non-randomly and make no allowance post match for the bias this has induced.

One way in which we may hope to gain an understanding of the degr e of overlap in

the YTS propensity score distributions is to compare the cumulative distributions of the

propensity scores for the control group and the various YTS sch me participants. It is

recommended that the reader become acquainted with the notion of stochasti dominan e

before proceeding any further. See section 2.7 for an overview of the concept and it'

relevance to the problem we now face.
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Figure 4.7: Cumulative Distributions of Males with YTSII Experience and those without

any YTS scheme experience

If the CDF of the propensity score for YTS participants, F(P(X1)), dominates that of

non-participants, G(P(Xo)), according to second order stochastic dominance and the con-

trol group is not sufficiently large enough to compensate, then we would expect that near-

est neighbour matching, performed using these scores, would produce some poor matche

for those treatment persons with high YTS propensity scores. These high propensity

individuals are the persons whose outcomes we are most eager to examine. The scale of

the problem would be directly related to the "degree" of stochastic dominance and the

sample size shortfall.

Figure 4.6 shows the relative CDFs and their respective 5% confidence regions for the

male control group and males with YTSI experience. Notice how the two CDFs n v r

cross. This indicates that the propensity score distribution for the control group stochas-
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Figure 4.8: Cumulative Distributions of Males with YT Experience and those without

any YTS scheme experience

tically dominates that of the male YTSI participants; the control group's distribution lies

to the left of the YTSI group's distribution. Figure 4.7 contains a similar result for males

with YTSII experience. Hence, it follows that matches produced using the YTSI and YT-

SI! male datasets with the nearest neighbour algorithm may produce some poor match s

for treatment individuals, as there are insufficient controls of high YTS propensity when

the treatment and control groups are of equal size. Our pr -mat h control group is larger

than the pre-match treatment group, but is this sufficient to overcome the problem?

Figure 4.8 contains the CDF of males with a spell on YT against that of tho e with-

out any kind of YTS experience. Here we see that the two CDFs cross. This indicates

that there are sufficient control persons of similar YTS propensity to produce a matched

dataset, which will not suffer from degradation in match quality as th algorithm pro-
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Females with no YTS
Experience

Females with YTSI

o

Figure 4.9: Cumulative Distributions of Females with YTSI Experience and those without

any YTS scheme experience

gresses.

Figures 4.9, 4.10 and 4.11 contain CDFs for the various female YTS sub-groupings. As

with the male samples the females with YT experience sub-grouping is the only dataset

for which there are sufficient female controls to match, without degradation, using nearest

neighbour methods and datasets of equal size. Again the question of wheth r the female

control group is sufficiently large to offset this problem arises.
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Females with no YTS
Experience

o

Females with YTSII

Figure 4.10: Cumulative Distributions of Females with YTSII Experience and those with-

out any YTS scheme experience

4.3 Implementation of Kernel and Local Linear Match-

ing Methods

Having uncovered a number of issues during our investigations concerning th performanc

of our nearest neighbour matching algorithm we now examin kern 1 based matching

methods. To see a motivation for matching methods as well as an xplanation of th

methods in particular see sections 2.5 and 2.4. Since these methods require one to select

the bandwidth parameter before attempting to match, it follows that th ir performanc

may be sensitive to this choice. As such this section will present our early kernel and

local linear matching method results in terms of their performance and the ramifications

for our understanding of the YTS treatment effect.
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Experience
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Females with YT

Figure 4.11: Cumulative Distributions of Females with YT Experience and those without

any YTS scheme experience

4.3.1 Kernel Regression Matching Performance

The main strength of the kernel regression matching estimator which we described in

subsection 2.5.2 is that it makes use of all available control group persons (from j =
1, ... ,ne) and weights them in accordance with their similarity to the treatment person

i, as measured by their propensity scores. Unlike the "nearest neighbour" method, the

pool of control individuals does not erode as the algorithm progr ssively er ates matches

for the treatment persons from i = 1 to tu,

During our explanation of the kernel regression matching estimator we introduced th

concept of the bandwidth parameter li«, which the user of the algorithm must select for

themselves and which can influence the accuracy of the subsequent match s produc d.

Many people have proposed methods for choosing hn. Silverman (1986) presents a method
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Figure 4.12: Kernel Regression Matching Performance as Measured by t-statistic Fluctu-

ations for Differing hn (Males) See Appendix C.2

for the determination of the optimal hn where you select hn to be the width which min-

imises the mean integrated square error under the assumption that the data is Gaussian

and a Gaussian kernel is to be used. This optimal hn is calculated via

h 06 -1/5
n = 1. sti, (4.4)

a more robust version of which is

. ( IQR) -1/5= mm s, 1.34 nt (4.5)

However due to the assumptions, such an "optimal" value for hn is not to be considered

as a global solution. For multi-modal highly skewed densities, this width is usually too

wide and can over smooth the density. Also we have chosen to u e the biweight kernel,

as such the above assumption does not hold. Despite this, Silverman (1986) method still

represents a valuable tool when attempting to estimate a value for hn.

Before attempting to use a plug in optimal hn we present t-test results of signifi-

cant treatment effects for any form of YTS schemes by gender without regard for YTS

heterogeneity, for various hn. This specification mirrors that of the early investigations

in chapter 3. These include estimates of the search elasticities as describ d in chapter
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2.2 for the actual treatment and synthetic (kernel derived) control groups. As in sec-

tion 3.3 we have calculated t-statistics to test the null hypothesis Ho : J-tl = J-t2 verses

a two tailed alternative, where J-tl and J-t2 were the mean values of a given elasticity or

expected/reservation wage for those with YTS experience and those without. It is by

rerunning the algorithm for various hn and then carrying out our tests on wages and

elasticities that we hope to capture the variation in matching performance. This process

generated a series of t-statistics. Figure C.1 compares kernel regression matched males

with and without any form of YTS experience. In it we present a plot of these t-statistics

as h« was varied between 0 and 1. The z-axis represents the variation in hn from 0 to

1. The y-axis depicts the t-statistic values for the differences between treatment and syn-

thetic controls of wages/elasticities produced using the values of hn• Therefore, the yellow

plot lines represent the movement of these t-statistics for each wage/elasticity pair as hn

increases. The wages/elasticities to which the yellow lines belong are indicated to the

right of the figure. The red area represents the area of no significant difference between

a synthetic control person and their treatment counterpart. Hence yellow plots, which

reside beyond this region, indicate the presence of a treatment effect. Those plots, which

move from the area of significant difference to that of no significant difference or vis-versa,

are difficult to interpret. Even those plots which remain significant over the range of hn

may experience a change in the magnitude of the significance as hn increases. Hence the

size of the treatment effect can be hard to discern.

Notice that both the treatment effects on the reservation and expected wages move in

and out of significance as hn increases. Overall though it is interesting to note that none

of the plots deviates alarmingly over the range of hn• Hence if one was to take a value

of hn and from it generate a matched sample from which one could create a table such

as Table 3.4, section 2.5 which was produced using the nearest neighbour algorithm, one

would draw broadly similar conclusions to those of Table 3.4. If you recall, the expected

and reservation wage effects on this male sub-sample were shown to be insignificant after

nearest neighbour matching, whilst the elasticities of the reservation wage and hazard
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Figure 4.13: Kernel Regression Matching Performance as Measured by Fluctuations in

the Percentage Differences Between Treatment and Synthetic Elasticities for Various hn

(Males) See Appendix C.2

with respect to a change in the benefit level were shown to exhibit an effect in line with

that which we see in Figure C.1 for all values of b« after kernel regression matching.

The elasticity of the hazard with respect to a change in the arrival rate of job offers

(exponential wage offer distributional assumption) also moves in line with the nearest

neighbour result for males. These results are evidence of the robustness of our results to

differing matching methods.

Figure C.2 presents the way in which the magnitudes of the differences between

treatment and synthetic wages/elasticities vary over hn for the same male sub-sample

as Figure C.1 using kernel regression matching. Here we have standardised the treatment

wages/elasticities to 1. Hence, a synthetic control wage/elasticity with a value great r

than 1 indicates that the wage/elasticity increased after treatment. Once gain there ar

no large fluctuations in any of the male plots over the range of hn-

Figure 4.14 contains the female sub-sample counterpart to Figure C.l. The ffects of

all variations of YTS combined on this female sub-sample would appear to b far more
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Figure 4.14: Kernel Regression Matching Performance as Measured by t-statistic Fluctu-

ations for Differing hn (Females) See Appendix C.2
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Figure 4.15: Kernel Regression Matching Performance as Measured by Fluctuations in

the Percentage Differences Between Treatment and Synthetic Elasticiti s for Various hn

(Females) See Appendix C.2

sensitive to our choice of hn than was the case for the male sub-sample. A number of

the elasticities move into the region of no significance for values of hn > 0.2. Again a

comparison with the findings of Table 3.4 is of interest.

Our nearest neighbour matched females produced a set of results, which differed from
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those of their male counterparts. However not all the differences are replicated by the

kernel regression matched female sample. Firstly, the kernel regression matched females

exhibit a wage effect post treatment, in that both the expected and reservation wages are

lower for those who undertook a period of any YTS treatment. This was also the finding

of the nearest neighbour analysis. However, the elasticities of the reservation wage with

respect to the benefit level and the arrival rate of job offers or the hazard with respect to

the arrival rate (exponential wage offer distributional assumption) failed to move in line

with the nearest neighbour results. A look at the results for the local linear regression

matched female sub-sample may help to reconcile these findings. As with Figure C.2,

Figure 4.15 highlights the need to uncover some evidence as to what the correct value

of hn should be; the magnitude and significance of the measured treatment effects vary

substantially over the range of hn• The expected and reservation wages are effected by

as little 4% or as much as 7% whilst the nearest neighbour wage estimate pairs both

experienced a drop of around 3%. The elasticity of the reservation wage with respect to

a change in the arrival rate of job offers also agrees with the nearest neighbour algorithm

result of Table 3.4 with a percentage change of between 0% - 5% over the range of hn.

However, as seen in Figure 4.14 the elasticity of the hazard with respect to the benefit

level under both wage offer distributional assumptions also indicates a treatment effect

although the nearest neighbour result of Table 3.4 refutes this.

4.3.2 Local Linear Regression Matching Performance

As with the kernel regression matching estimator, the local linear regression matching

estimator weights everyone in the non-participating sample by their similarity to each

treatment person. However the local linear estimator has a number of advantages over

the previous method. Subsection 2.5.3 provides a description of these advantages.

Figure 4.16 contains the t-test results for the same male sub-sample as that used for

Figure C.l. We performed local linear regression matching for various values of hn• As

with our analysis of the kernel density matching results a comparison with the nearest

81



4.3. Implementation of Kernel and Local Linear Matching Methods

10.000

()loS"
8.000 iJloSb

Area of 6.000 alos"
Positive
Significance

alosb

4.000

.2 Reservalionen 2.000 Wage

~ Expecled

X·Axis .!. 0.000 Wage
are values 0
of hn

iJloS~

·2.000 iJlogA

Area of
Negative -4.000
Significance

-6.000

Figure 4.16: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing h., (Males) See Appendix C.2

neighbour matching results of Table 3.4 is of interest.

Notice how for all values of hn the local linear method revealed no significant treatment

effects on the reservation and expected wages of males. This result mirrors that of Table

3.4 in which we saw no significant wage effects for men who experienced any form of YTS.

The elasticities of the hazard with respect to the benefit level under both the Pareto

and Exponential wage offer distributional assumptions remained highly significant for

all values of hn. The result of Table 3.4 also indicated the presence of a hazard effect

following a benefit change for either wage offer distributional assumption. The elasticity

of the reservation wage with respect to the benefit level and the elasticity of the hazard

with respect to the arrival rate of job offers remain significant for all values of hn. These

results were also seen in Table 3.4. However the elasticity of the reservation wage with

respect to the arrival rate is only significant for values of hn such that 0.25 < hn > 0.65.

Interestingly, this elasticity was not significant in the analysis of Table 3.4. Perhap this

suggests that the correct bandwidth, hn, lies in the region 0.25 > hn < 0.65. This result

highlights the importance of the selection of hn. Even if we put aside th mov ment of

this one elasticity in and out of significance, it remains the case that the magnitude of

the significance of all the parameters we have estimated varies with hn and as a result
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Figure 4.17: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Males) See Appendix C.2

it is difficult for us to arrive at a prediction of the size of the treatment effect on each

parameter.

We can again examine the way in which the magnitudes of the treatment effects

vary by standardising the estimated synthetic parameters by their treatment parameter

counterparts. Figure 4.17 contains plots of the predicted synthetic search elasticities

and reservation/expected wages for the male sub samples after standardisation. The

reservation and expected wage rates of the male sample remain fairly stable over the

range of hn; they are close to 1 as was indicated by their t-statistic plots of figure 4.16.

The elasticity of the reservation wage with respect to the arrival rate of job offers for

persons with treatment is 4%(approx.) greater for all hn. The elasticities of th hazard

with respect to the benefit level, or the arrival rate under both the Pareto and exponential

wage offer distributional assumptions experience a treatment effect of around 6% - 10%

over the range of hn after treatment as opposed to the kernel density plots of Figure

C.2 which moved by 5% - 10% and the nearest neighbour estimates of Table 3.4, which

exhibited a treatment effect of around 5% for both these elasticities. Here we seth
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Figure 4.18: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Females) See Appendix C.2

elasticity of the reservation wage with respect to the benefit level exhibits a treatment

effect of around 11% - 15%. This compares with the kernel density plots of Figure C_2

that suggested the effect between 20% - 30%. The nearest neighbour method produced

a pair of elasticities, which indicated a reduction of the responsiveness of the reservation

wage by around 7.4%.

As the reader will recall, our comparison between the t-test results for the nearest

neighbour matched females by all types of YTS participation against those obtained fol-

lowing a match performed using the kernel density matching algorithm suggested that

alternative matching methods could result in differing conclusions. This result contra-

dicted the evidence from the male analysis, where both algorithms produced results of a

similar nature. Our local linear matched male sample also produced t-test results akin to

those of our previous analysis. What of the female local linear results?

Figure 4.18 contains the t-test results for females with and without any form of YTS

experience, after local linear matching. Once more we compare our results to those of Ta-

ble 3.4. Within Figure 4.18 we observe a wage effect for persons with any YTS xperience.

Both expected and reservation wages are reduced for women with such xperience. As

with the kernel density matching analysis, t-tests between the wage estimates of women
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with and without a spell on YTS after nearest neighbour matching (Table 3.4) produced

the same result. The elasticities of the reservation wage with respect to both the benefit

level and the arrival rate of job offers are significant for some values of hn (see their plots

on Figure 4.18). This is also true for the elasticity of the hazard with respect to the

arrival rate of job offers (exponential wage offer distributional assumption). The female

results of Table 3.4 show these three elasticities to be significantly altered in the same

direction as part of this local linear matching analysis. Hence the local linear regression

matching algorithm produces elasticities and wage estimates for synthetic control per-

sons that are significantly different from their YTS treatment person counterparts in line

with the results we saw in the nearest neighbour case. This result contradicts some of

the t-test evidence of the female kernel density matched sub sample. In Figure 4.14 we

saw the elasticities of the hazard with respect to the benefit level under both wage offer

distributional assumptions and that of the reservation wage with respect to the arrival

rate of job offers were significant for values of hn > 0.25. Only the kernel density analysis

indicated a significant change for the hazards with respect to the benefit level.

Figure 4.19 depicts the female elasticity/wage plots standardised as before. Both the

reservation and expected wages experience a treatment effect of around 2% - 5%. This

compares to the kernel density plots of Figure 4.15, where we saw a change of around

4%-7% and the point wage estimates of the nearest neighbour matching algorithm (Table

3.4), where there was an effect of around 2% - 4%. The elasticity of the reservation wage

with respect to a change in the benefit level (Figure 4.18) varies by 5% - 8%, whilst

the kernel density analysis (Figure 4.15 not demonstrate the presence of a significant

treatment effect and the nearest neighbour estimates of Table 3.4 indicated an effect

of around 9%. The elasticity of the hazard with respect to the arrival rate of job offers

(exponential wage offer distributional assumption) after local linear matching experienced

a change of 3% - 4%, no significant effect under the kernel analysis of Figure 4.15 and

around 6% following a nearest neighbour matching procedure, Table 3.4.
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Figure 4.19: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Females) See Appendix 0.2

4.4 Choice of the Bandwidth Parameter

As has been highlighted by the various figures for t-statistic and standardised elastic-

ity /wage estimates, the selection of the kernel bandwidth parameter hn can have an

important bearing on the nature and magnitude of any YTS treatment effects we un-

cover using the kernel density or local linear matching methods. It is ther fore of great

importance that we arrive at a method of choosing a reasonable value for hn given the

dataset upon which we are to match. The unique nature of our analysis complicates this

task. It is not possible to generate a value of hn prior to running the algorithm (kernel or

local linear). Hence we propose a bootstrapped iterativ procedure as a solution to thi

problem.
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4.4.1 Bootstrap Sampling

As we have said, we needed a method for estimating a sampling distribution from which we

could obtain an estimate and standard error for the bandwidth parameter, hn' used in the

kernel based matching methods as described in sections 2.5.2 and 2.5.3. Our solution was

of an ad-hoc nature and relied on some aspects of bootstrap sampling. Before we describe

the algorithm we used, we present a brief discussion of bootstrap sampling methods.

The population distribution of any statistic can be approximated by the distribution

of that statistic derived from the bootstrap samples. If we have a dataset containing

N individuals, then a single run of the bootstrap samples N people from the N person

dataset with replacement. It follows that some of the original people may appear on

multiple occasions whilst others not at all. Hence, each bootstrap sample contains a sub

sample of sample population individuals, many of whom appear more than once.

Having generated this new dataset we can estimate statistics of interest, in this case

the job search elasticities and wage rates. This procedure is can then be repeated, each

time generating a new set of estimates. Finally, we will arrive at a dataset of estimated

statistics.

Bootstrapping relies on the validity of the asumption that the observed distribution

is a good approximation of the population distribution. For this procedure to produce

good estimates, this assumption must hold. The accuracy of this estimate of the sampling

distribution is a function of the number of repetitions. As a result, some experimentation

is required to identify the number of repetitions needed.

4.4.2 Estimation of the Optimal Bandwidth Parameter hn

Our solution to the problem of choosing a value for hn is to take the basic local linear

matching algorithm and apply it iteratively to the dataset until the difference between

a generated b« and the previous one is sufficiently small. The algorithm starts with an
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4.4. Choice of the Bandwidth Parameter

initial value for hn 4.

From this starting point the algorithm generated a matched sample from the dataset,

containing synthetic control persons and their elasticity and wage estimates constructed

from the weights placed on control individuals using the formula of Equation (2.41). It

then used these estimated synthetic elasticity and wage controls to estimate a new value

for hn using an approach akin to that of Silverman (1986), see Equation (4.4). The process

was repeated, except that in subsequent iterations the control group on which Equation

(2.41) placed a set of weights was the synthetic control group" that the weights from the

previous iteration had generated. This continued until the difference between the last two

iteration estimates of hn was sufficiently small",

The main program only passed a random sub sample of size one thousand, of the

sample population of treatment and control persons to the above subroutines. This process

was repeated until it had generated one thousand estimates of hn and their corresponding

synthetic treatment and control elasticities/wages from one thousand intital random sub

samples. An example of the bootstrap iterative code, which produced these estimates, is

given in Appendix B.2.

The choice of the bootstrap sample size (number of iterations) was made after an

analysis of the evolution of our estimates for b« as the bootstrap sample size increased.

Table 4.1 presents this analysis for males with YTSI experience. Figure 4.20 contains the

corresponding plots of the estimates of hn, which each of the one thousand bootstrapped

iterations of the local linear regression algorithm produced. Notice that the majority

of the values lie around the overall bootstrapped estimate of 0.041. At the same time

the standard deviation of the estimates settles around 0.013. Plots of the bootstrapped

iterative estimates of hn for all the other versions of the YTS scheme, both male and
4During our analyses we chose to employ an initial value of hn = 0.5. The choice of which was entirely

arbitrary. In tests, the algorithm was not found to be sensitive to alternate initial values for hn
IiSpecifically the Synthetic control group propensities
6When the difference between two successive estimates of hn $ 0.005 the iterative procedure was

terminated and the current values for the synthetic estimates of the elasticities and wages were recorded.
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female were of a similar form, with most iteration estimates of hn around the overall

Size of Bootstrap Sample

5 10 25 50 75 100 150 200 500 1000

Table 4.1: The Evolution of Bootstrapped Estimates of hn as the Size of the Bootstrap

Sample Increases for Males with YTSI Experience

For every variable estimated we now possessed a distribution. As the bootstrap sample

size was increased so we were able to observe the shape of these distributions form. Figures

C.7 to C.9 contain the distributions for the synthetic control elasticities and wages as the

sample size increased from 5 to 500 (Males with YTSI experience). One can observe the

distributions settling down to a bell curve shape as the number of iterations rises to 500.

The male treatment group elasticity/wage distributions by YTS type are reproduced

in Figure C.lO. The corresponding distributions for matched male controls by YTS type

(bootstrap sample of 1000 iterations) are presented in Figure C.11. Notice that the

tails of all the distributions for synthetic matched male controls are longer than those of

the male treatment group elasticity and wage distributions. This result arises because

bootstrap samples are taken with replacement, therefore the proportion of outliers in the

bootstrap sample may be higher than in the original one. Hence bootstrap distributions

may have heavy tails, which can result in inflated variance estimators. This property

may be manifest in the standard deviations reported in Table 4.1. Two similar sets of

distributions for the female treatment and control groups by YTS type are reproduced in

Figures C.12 and C.13. As with the male sample, the tail ends of the femal synthetic

control distributions are longer than those of the female treatment group elasticity and

wage distributions.

For each YTS treatment type and for both sexes we had generated a bootstrapped
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sample of size one thousand for hn. This allowed us to draw the resulting bootstrapped

average value for hn on graphs of the t-statistic and normalised elasticity/wage estimates

and hence draw some conclusions as to the direction and magnitude of YTS treatment

effects on the various job search elasticities/wages.

4.4.3 The Bootstrapped Iterative Optimal Bandwidth Parame-

ter, h., and it's Implications for Our Interpretation of the

Treatment Effect Analysis (Males)

Figure 4.21 contains the t-statistic plots of elasticities/wages for YTSI males and their

synthetic controls, where 0 < hn < 1. It also includes a vertical yellow line which

indicates the position of the bootstrapped iterative estimate of hn for this dataset. Notice

the difference in the plots when compared to those for all YTS types which we saw in

Figure (4.16).

As with our analysis of the kernel and local linear results for the combined YTS

samples, the interpretation of the results produced by the matched samples of each YTS

type is aided by a return to the nearest neighbour results obtained using the same datasets.

Table 4.2 contains the mean elasticity and wage estimates which are calculated from their

distributions which we obtained using the bootstrap iterative procedure when estimating

hn• T-test results are also presented here and test for significant differences between the

means of the treatment and corresponding control groups. Table 3.5 contains the nearest

neighbour matched results for the same male datasets. Figure 4.21 contains the local linear

t-test plots from the male YTSI sample and may be compared to the plots of Figures C.1

and 4.16. The difference is striking. Whereas the plots of the later two figures were

broadly comparable, those of the former exhibit some marked differences. This highlights

the heterogeneity, which was hypothesised and then evidenced by the results of Chapter

3 subsection 3.4.1. Firstly we see that Figure 4.21 and Table 4.2 columns 1 and 2 suggest

the presence of a wage effect for males with YTSI experience. Both the reservation wage
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Figure 4.21: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Males YTSI) See Appendix C.2

and expected wages of these individuals undergo an effect, which sees them lowered as a

result of the scheme. The results of Table 3.5 indicated that there may be some evidence

for a wage effect, in that the reservation wage, post treatment was significantly lower to

that for those without treatment at the 10% level. Table 3.5 also indicated that YTSI had

no affect on any of the job search elasticities of interest. This result is largely repeated

in this local linear analysis. Table 4.2 suggests that only the elasticity of the hazard with

respect to the benefit level under the exponential wage offer distributional assumption

exhibits a significant effect post treatment. However, an examination of the t-test plot

for this elasticity in Figure 4.21 shows that the test statistic lies near the area of no

significance. This combined with the fact that the elasticity of the hazard with respect

to the benefit level under the Pareto distributional assumption is insignificantly different

post treatment suggest that results of the male YTSI analysis are similar to those of the

nearest neighbour study of Chapter 3.

Figure 4.22 contains the t-test plots for the elasticities and wages of treatment/control

persons following local linear regression matching on the male YTSII dataset. A look to

the values of the t-test statistics calculated at the bootstrap iterative optimal estimat

of the bandwidth, hn, shows evidence of more substantial treatment effects for those
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with YTSII experience. All five elasticities of interest are affected by a spell on YTSII.

The elasticities of the reservation wage with respect to a change in the benefit level or

the arrival rate of job offers are lower for scheme participants. The magnitudes of the

elasticities of the hazard with respect to a change in the benefit level (both wage offer

distributional assumptions) or a change in the arrival rate of job offers are also reduced. All

these effects are well within the area of significant difference. As with our analysis of the

male YTSI treatment effects, Table 4.2, columns 3 and 4 contain the mean elasticity and

wage values and t-test results for both the treatment and control groups after matching

at the bootstrap iterative optimal value for hn• These results are comparable to those of

Table 3.5 columns 3 and 4 following a nearest neighbour matching procedure. Recall that

the results of Table 3.5 had suggested that there did indeed exist a treatment effect for

these elasticities. All were lowered by a similar order of magnitude.

Again there appears to be a consistency in the results regardless of the matching

procedure used. However the results of Table 3.5 also led us to conclude that there was

no evidence to support the suggestion of a wage effect post YTSII treatment. In contrast,

Figure 4.22 and Table 4.2 do indicate that there may be a reservation wage effect. Here we

see reservation wages rise for those with YTSII experience. Although the plot of Figure

4.22 for the t-test statistic of the reservation wage effect does cross into the area of no

significance for values of 0.4 > hn < 0.7. This result (as are others) is therefore reliant on

the assumption that our optimal value for hn is a correct one.

Figure 4.23 presents the t-test plot results for the male YT dataset after local linear

matching for various values of hn• Both the expected and reservation wage t-test plots

remain insignificant over the whole range of hn and are therefore insignificant at the

optimal value for hn• Table 4.2, columns 5 and 6 reflect this result with the mean wage

values calculated after local linear regression matching with a bandwidth of hn producing

insignificant t-test statistics. This corresponds to the nearest neighbour matching results

of Table 3.5, columns 5 and 6, where we saw no evidence for the existence of a wage effect

following a spell on YT.
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Figure 4.22: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Males YTSII) See Appendix C.2

The t-test plots for the elasticities of the reservation wage with respect to the benefit

level and the hazard with respect to the arrival rate of job offers Figure 4.23 indicate a

large treatment effect for YT participants, which produces the result of lowering these

elasticities for the treated (see also Table 4.2). This is in contrast to the results of Table 3.5

(nearest neighbour matching), which gave no evidence for a YT treatment effect for these

job search elasticities. The t-test and mean value estimates after optimal hn local linear

regression matching for both elasticities of the hazard with respect to the benefit level

(Figure 4.23) indicate that these elasticities experience a reduction in magnitude following

a spell on YT. The result of Table 3.5 after nearest neighbour matching mirrors thes

findings. However, the elasticity under the exponential assumption was only significant

at the 10% level. The plot of Figure 4.23 for the elasticity crosses into the ar a of no

significance for 0.4 > hn < 0.7. Perhaps this can help to explain the nearest neighbour

result.

Lastly, we see that the t-test plot for the elasticity of the hazard with respect to a

change in the arrival rate of job offers (exponential wage offer distributional a umption)

is significant at the optimal value for hn. The elasticities' mean values (treatm nt and

control) indicate a reduction in this elasticity post YT treatment. The result of Table
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Figure 4.23: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Males YT) See Appendix C.2

3.5 following a nearest neighbour matching procedure led us to conclude that there was

insufficient evidence for the existence of a treatment effect for this elasticity post YT.

How can these two results be reconciled? As with the analysis of both elasticities of the

hazard with respect to the benefit level, we see that the plot for the t-test statistics of

the elasticity (Figure 4.23) lie on the boundary of the area of no significance and in fact

cross this boundary for some values of hn. This might explain the ambiguity between the

results following different matching procedures.

We now turn our attention to the magnitude of the treatment effects upon the job

search elasticities and wages following spells on the various versions of YTS. Figure 4.24

contains the standardised plots of treatment to control elasticites/wages following the local

linear regression matching of Figure 4.21 and Table 4.2, columns 1 and 2 (males with YTSI

experience). Again the vertical yellow line represents the point of the bootstrap iterative

optimal hn. Compare Figure 4.24 with the plots of Figure 4.16 to see the differ nt results

we obtain once we allow for YTS scheme heterogeneity. The pr sence of the optimal

value for hn allows us to compare the magnitude of various YTSI treatment effects at

this point against those of the nearest neighbour analysis (Table 3.5. Table 4.3, column

1 and 2 contain the significant elasticity and wage differences pre and post treatment
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Figure 4.24: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Males YTSI) See Appendix C.2

following a spell on YTSI as estimated from nearest neighbour and local linear regression

matched data respectively. Hence we see that the treatment effect on the reservation wage

after a spell on YTSI is such that males reduce their reservation wages by around 2.7%

(nearest neighbour result) or 3.8% (local linear result). The local linear regression male

YTSI subset also indicated a treatment effect of around 3.3% for both the expected wage

and the elasticity of the hazard with respect to the benefit level (exponential wage offer

distributional assumption).

Figure 4.25 and Table 4.3, columns 3 and 4 allow us to compare the magnitudes of the

treatment effects after a spell on YTSII. This scheme affects all the elasticities and there is

also evidence of a wage effect. These results are present in both the nearest neighbour and

local linear regression analysis. The evidence suggests that the elasticity of the reservation

wage with respect to the benefit level for males with a spell on YTSII is lowered by betw n

16% (nearest neighbour result) and 15% (local linear result). This is a marked effect, which

exists well beyond the area of no significant difference. Both the lasticiti of th hazard
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Figure 4.25: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Males YTSII) See Appendix C.2

with respect to the benefit level experience a treatment effect of 7.2% (Pareto wage offer

distributional assumption) and 4.7% (exponential wage offer distributional assumption)

for the nearest neighbour analysis. Whilst the same elasticities experience effects of 10.7%

and 9.5% respectively with the local linear regression analysis. Again these are highly

significant results. The elasticity of the reservation wage with respect to the arrival rate

of job offers underwent an effect of around 7.7% under the nearest neighbour analysis and

6.4% for the local linear procedure. Finally, we see the elasticity of the hazard with respect

to a change in the arrival rate of job offers reduced by 10.6% (nearest neighbour) and 9.3%

(local linear ). On the whole we have observed a consistency of both the significant effects,

which the two matching methods have uncovered, and the magnitudes of thes effects. All

the significant effects were of a similar magnitude when compared with th corresponding

results for the alternate matching procedure.

Figure 4.26 and Table 4.3, columns 5 and 6 contain evidence for the magnitude of the

significant treatment effects for males with YT experience using the local linear matching
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Figure 4.26: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Males YT) See Appendix C.2

algorithm. The plots within Figure 4.26 remain broadly constant over the whole range of

h«. We again concentrate on the effects as calculated at the estimated optimal value for h.;

We see more significant effects than we uncovered using the nearest neighbour algorithm

(Table 3.6. The nearest neighbour analysis suggested a significant treatment effect for the

elasticity of the hazard with respect to the benefit level (either wage offer distributional

assumption) of 7.5% and 8.2% respectively. Whilst our local linear regression analysis

suggests effects of 8.8% and 6.3% respectively. As with our previous analysis of the

effects for males with spells on YTSI or YTSII these effects are of similar magnitude

regardless of the method of matching used.
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Jlog~ 0.173905 0.179581
JJOgA (0.000935) (0.000628)

Jlogh + -0.409242 -0.448803

Jlogb (0.010636) (0.001615)

-0.317484
(0.009659)

Jlogh ++ 0.273052
JlogA (0.001065)

Table 4.2: Elasticities for Matched Men Using the Local Linear Algorithm with Boot-

strapped Estimate for hn
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CJlogh ++
CJJogb

CJlogh ++
CJIOgA

7.1%

Table 4.3: Comparative Magnitudes of Significant Treatment Effects by Various YTS

Types for Matched Men Using Both the Nearest Neighbour and Local Linear Algorithm

with Bootstrapped Estimate for hn
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Figure 4.27: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Females YTSI) See Appendix C.2

4.4.4 The Bootstrapped Iterative Optimal Bandwidth Parame-

ter, h., and it's Implications for Our Interpretation of the

Treatment Effect Analysis (Females) See Appendix C.2

We now move on to investigate the treatment effects, which the various forms of YTS had

on the women within our sample. Figure 4.27 contains the t-test statistic plots for the

elasticities and wages of females with and without YTSI experience. These plots should

be compared to those of Figure 4.18 (all YTS types combined).

Once more, the vertical line represents the point at which the plots cross the optimal

bootstrap iterative hn. Table 4.4, columns 1 and 2 contain estimates of hn and compar s

to the nearest neighbour results of Table 3.6 suggested that the effect of a spell on YTSI for

the female subgroup was purely a wage reduction. The local linear regression matching

technique also uncovers this wage effect. However, we now observe a set of la ticity

effects. Firstly, the elasticity of the reservation wage with respect to the benefit I vel ris s

following a spell on YTSI this is also true of the elasticities of the hazard with resp et to

the benefit level (both wage offer distributional assumptions), which increase in magnitud

post treatment. As does the elasticity of the hazard with respect to the arrival rate of
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Figure 4.28: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Females YTSII) See Appendix C.2

job offers. All of these elasticity effects are only uncovered using the nearest neighbour

algorithm.

Figure 4.28 contains the t-test statistic plots for females on YTSII for the range of

values of hn, having employed a local linear regression matching algorithm. Only the

plots for both the elasticities of the hazard with respect to a change in benefit level lie

beyond the area of no significance. The results of Table 4.4, columns 3 and 4 reveal

that the evidence points to a reduction in these two elasticities when we employ a local

linear regression approach. Previously, the results of Table 3.6, following the nearest

neighbour algorithm had failed to produce any evidence of a YTSII treatment effect for

female scheme participants.

Turning to look at YT scheme effects for females, we se that th t-test statistic

plots of Figure 4.29 remain fairly constant for the plots, which exist beyond th area of no

significance. Table 4.4, columns 5 and 6 present the estimated mean elasticities and wag s

as calculated at the yellow vertical line of Figure 4_29and compares to the results of Table

3.6, columns 5 and 6. The nearest neighbour analysis of Table 3.6 pointed to th existence

of a number of YT treatment effects on the female sub sample. We saw a wag effect in

that the reservation wage was seen to fall after a spell on YT. This result is repeated at
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Figure 4.29: Local Linear Regression Matching Performance as Measured by t-statistic

Fluctuations for Differing hn (Females YT) See Appendix C.2

the (10% level) within the results of Table 4.4. We had also discovered evidence for the

existence of a rise in the elasticity of the reservation wage following a spell on YT. -It

was seen to rise. This too is repeated within the local linear regression setting. Using

local linear regression matching we also see a rise in the elasticity of the reservation wage

with respect to the arrival rate of job offers after a spell on YT. -This we also saw for the

nearest neighbour matched female dataset. The evidence for a YT effect on the elasticity

of the hazard with respect to the benefit level is mixed. The local linear matching results

reveal a drop in the elasticity (exponential wage offer distributional assumption), but this

is only significant at the 10% level. In contrast the nearest neighbour analysis produced

an effect on the elasticity (Pareto wage offer distributional assumption) that seem d to

indicate a rise post treatment. These results conflict on another and are difficult to

reconcile. Lastly, we observe (Table 4.4) a rise in the elasticity of the hazard with respect

to the arrival rate of job offers. The nearest neighbour findings (Table 3.6) mirror this

result.

We now examine the magnitude of the various YTS treatment ffect we have uncov-

ered. Figure 4.30 contains the standardised treatment effect plots over the range of hn for

the YTSI female sub sample compares to that of the combined YTS plots of Figure 4.18.
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Figure 4.30: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Females YTSI) See Appendix C.2

The approximate size of the significant treatment effects for this YTSI female dataset

as calculated at the yellow vertical line of Figure 4.30 are presented within Table 4.5,

columns 1 and 2. The nearest neighbour algorithm produced a modified dataset from

which the treatment effect on the expected and reservation wages was a reduction of 7.6%

and 8.6% respectively. Whilst matched data from the local linear procedure suggests that

these wages were reduced by 8% and 8.8% respectively. The local linear dataset analysis

also contains evidence for the existence of some treatment effects for the elasticities of

interest. The elasticity of the reservation wage with respect to the benefit I v I under-

went an increase of 8.6%. The two versions of the elasticity of the hazard with resp ct

to the benefit level increase in magnitude by 5.4% (Pareto) and 4.5% (expon ntial). The

elasticity of the hazard with respect to the arrival rate of job offers also incr a d by 4.9%.

Figure 4.31 contains the standardised treatment effects plot for women following a

spell on YTSII. The approximate treatment effects as evaluated at th optimal bandwidth,

hn' are reproduced within Table 4.5, columns 3 and 4. The neare t neighbour r sults of
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Figure 4.31: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Females YTSII) See Appendix C.2

Table 3.6 contained no evidence for the existence of any effects on the job search elasticities

and wages. However, these results conflict with those we observe within the local linear

regression setting to the extent that we see an effect on both versions of the elasticity of

the hazard with respect to a change in the benefit levels.

Figure 4.32 contains the standardised plots of the treatment effect upon the elasticities

and wages of interest for females with YT experience. Table 4.5, columns 5 and 6 contain

the magnitudes of those effects, which we found to be significant (as calculated at th

optimal value for hn). We uncover some evidence for the existence of a wage eff ct.

The reservation wage was subject to a reduction of around 2.8% following a sp 11on

YT. However, this result was only significant at the 10% lev l. Analysis of the n ar t

neighbour matched dataset Table 3.6, columns 5 and 6, had revealed a res rvation wage

effect of 6.9%. The elasticity of the reservation wage with respect to a chang in th b n fit

level is subject to a large treatment effect of around 56.4%. The near st neighbour analy i

had indicated an effect of around 22.5%.
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Figure 4.32: Local Linear Regression Matching Performance as Measured by Fluctuations

in the Percentage Differences Between Treatment and Synthetic Elasticities for Various

hn (Females YT) See Appendix C.2

The elasticity of the reservation wage with respect to a change in the arrival rate of

job offers leapt by around 8.4% following a spell on YT (local linear regression matched

dataset) and 17.5% (nearest neighbour matched dataset). Again the direction, if not the

magnitude of the treatment effect was consistent irrespective of the matching m thod em-

ployed. As we saw during our analysis of the results for the differing specifications of the

elasticities of the hazard with respect to a change in the benefit level are not consi tent

across the alternate matching methods. The elasticity under the Pareto wage offer dis-

tributional assumption seems to experience no treatment effects when using 10 al lin ar

regression matching. Yet the analysis of the nearest neighbour match d data ugge t a

rise of around 13.2%. In contrast, the local linear regres ion analysi sugg ts a fall in th

elasticity under the exponential wage offer distributional assumption of 4.1%. There is no

evidence for such an effect within the nearest neighbour analysis. Finally, th la ticity

of the hazard with respect to a change in the arrival rate of job off r s ms to rise by

around 13.8% within the local linear regression matching analysi and 31% within th
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nearest neighbour matching analysis.
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alogb

-0.506171
(0.008997)

0.174638 0.173309
(0.004213) (0.000542)

dlogh +
dlogb

-0.465501
(0.008105)

I_I 1-
, ..,

I I I: , ... a .

• • •_I 1- :..I-... ; , , ... e;.
• •Sample Size 362 362 629 629 299 299

Btstrap h, 0.038565 0.026783 0.036960
+ Pareto Assumption, ++ Exponential Assumption

logh ++ -0.3981 -0.380909
d logb (0.007434) (0.000911)

-0.380466
(0.000669)

alogh ++
dlog).

0.266983
(0.001038)

0.292431
(0.000880)

Table 4.4: Elasticities for Matched Women Using the Local Linear Algorithm with Boot-

strapped Estimate for hn

108



4.4. Choice of the Bandwidth Parameter

alogh ++
alogb

alogh ++
alogA

Table 4.5: Comparative Magnitudes of Significant Treatm nt Effe ts by Various YTS

Types for Matched Women Using Both the Nearest Neighbour and Lo al Lin ar Algorithm

with Bootstrapped Estimate for ti;
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4.5 Context and Implications of Results

This chapter began with some thoughts on the ideal pre-match dataset. Using a pair of

stylised distributions (Figure 4.1) we suggested that our pre-matched dataset might in

fact resemble the situation we outlined in Figure 4.1 Case 2. If Case 2 did approximate our

dataset, then we hypothesised that a nearest neighbour matching method would produce

progressively poorer quality matches as the algorithm proceeded. Our analysis of Figures

4.2 and 4.4, where we presented the actual propensity score distributions for the male and

female combined YTS datasets concluded that there was a subset of high YTS propensity

treatment individuals for whom there were insufficient corresponding high propensity

control persons. Further to this regard, we presented a pair of plots (Figures 4.3 and 4.5)

depicting the average distances between nearest neighbour matched pairs as the algorithm

progressed". Emphasis was placed on the implications of these results for any conclusions,

which we might draw from any analysis on a matched dataset of this type.

We called into question the practice of dropping treatment persons from the sample

non-randomly, for whom there were no controls in possession of sufficiently similar YTS

propensity scores. We concluded that rejecting anybody from our dataset on a non-

random basis would lead to a situation where an effort to remove the bias caused by a

lack of high quality matches would in itself induce a secondary bias through the removal

of mainly high propensity treatment persons. It was also noted that these high propensity

persons were exactly the kinds of individuals, which the schemes were designed to benefit.

As such the treatment effects on this subset of YTS participants was of great interest to

us.

Section 4.2.1 touched on the concept of stochastic dominance and how an examination

of the cumulative distributions of treatment and control groups' YTS propensity scores

could allow us to predict whether a dataset would produce a good matched dataset with

few poor matches (in terms of distance between YTS propensity scores within matched

7See Chapter 2 section 2.5.1 and Appendix C, section C.l for a full exposition of the matching

algorithm used.
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pairs). There was a brief examination of the CDFs for the subsets of interest for our

study. Only the male and female YT datasets proved to have sufficient high propensity

controls from which to construct a complete nearest neighbour matched dataset without

degradation in quality.

4.5.1 Results

Section 4.3.1 introduced some early evidence for the existence of treatment effects on

the job search elasticities and wages for men and women who had any kind of YTS

scheme experience using a kernel regression matched dataset. We commended the kernel

regression algorithm for its use of the whole control group when synthesising each new

control person. However, we tempered our optimism for the performance of the algorithm

with a cautionary look at the nature of the bandwidth parameter, hn, which needed to

be chosen before running the algorithm. In an effort to demonstrate the problems of

bandwidth selection we began to present t-test results for the significance of treatment

effects over the range of 0 < hn < 1 (see Figures such as C.1). These plots showed the

need for some method of selecting a value for hn for each dataset which would allow the

algorithm to generate a matched sample from which to draw some conclusions as to YTS

treatment effects. The Silverman (1986) optimal method of hn selection was discussed.

During the analysis of t-test results we returned to the equivalent nearest neighbour

matching results, Table 3.4 Section 3.4, to consider whether these two matching schemes

had produced synthetic datasets on which testing indicated the presence of similar treat-

ment effects. We concluded that for the male dataset the results of t-tests even without

a value of hn on which to settle, were broadly in line with those which we saw within the

nearest neighbour setting. However kernel regression matching, using the female dataset,

over the range of hn led to a set of t-test plots which were harder to interpret. We saw

large fluctuation in the t-test statistics especially for values of hn in the range 0.2 - 0.4.

We again returned to the nearest neighbour matching results of Table 3.4, Section 3.4 in

an effort to discover whether the pattern of treatment effect was consistent across match-
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ing methods for the female dataset. We consistently uncovered evidence of a wage effect

on the treated, irrespective of the algorithm used; both methods suggested the presence

of a reduction in wage expectations post scheme, for females. However, evidence for a

treatment effect on the elasticities of job search was inconsistent and therefore difficult to

interpret. It was suggested that a local linear regression analysis might help to uncover

the truth and allow us to form a consistent picture.

We also took time to consider the magnitudes of any significant treatment effects,

which we found. Again we had to acknowledge that without a method to select a value

for hn we would have to present plots for the movement of treatment effects as hn varied.

Figures C.2 and 4.15 presented the ways in which the magnitudes of the treatment effects

for males and females varied over the range of hn•

Section 4.3.2 then examined the t-test results for the same combined YTS datasets

after having performed local linear regression matching. A comparison between the male

t-test plots of Figure 4.16 and the nearest neighbour t-test results of Table 3.4 concluded

that there was a consistency of treatment effect for all matching algorithms we employed.

However the elasticity of the reservation wage with respect to a change in the benefit

level crossed beyond the area of no significant difference for some values of values of hn• If

b« did reside within the area where this elasticity was significant, then this result would

conflict with that of the nearest neighbour analysis. As had been suggested during our

analysis of the results for the female kernel regression matched dataset, the equivalent

female local linear regression matched dataset produced t-test results which were broadly

in line with the results of the nearest neighbour analysis of Table 3.4. This cast doubt on

the validity of the kernel regression results.

Again we examined the ways in which significant YTS treatment effects varied over

the range of hn. Figures 4.17 and 4.19 contained plots of the magnitudes of the treatment

effects on the various elasticities/wages, as revealed using local linear matching. These

highlighted the need for a single optimal value of hn.

Section 4.4.2 introduced a solution to our bandwidth selection problems. We formu-
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lated the idea of a bootstrap iterative optimal value for hn' with the method of Silverman

(1986) at its heart. We demonstrated the convergence of the bootstrap estimates (Male

YTSI sub sample). As the size of the bootstrap sample increased, the estimated mean of

the bandwidth parameter settled to a given value whilst the bootstrap standard deviation

tended to zero. Plots of the sample distributions for the various elasticities and wages

were also shown to converge.

Subsection 4.4.3 saw us concentrate all further analyses solely on test results produced

using local linear regression matching. No more use was made of the kernel regression

algorithm. We now re-introduced the notion of presenting results by YTS type. Again,

there was evidence to support the hypothesis of YTS scheme heterogeneity.

Figure 4.21 presented the t-test statistic plots for the YTSI male sub sample after

local linear regression matching. All further plots now contained a vertical yellow line

to indicate the location of the bootstrap iterative value for the optimal hn• Elasticity

and wage treatment effects were considered using their bootstrap iterated sample distri-

butions", The results within Table 4.2 were comparable to those of Table 3.5, subsection

3.4.1. Table 4.3 contained the magnitudes of all significant treatment effects for males

with YTSI experience, as estimated using both the nearest neighbour and local linear

regression matched datasets.

Results suggested that males with YTSI experience lowered their reservation wages

by between 2.7% and 3.8% (depending on the matching algorithm used) after exiting

to another labour market state. This indicates that YTSI produced the wage effect for

males which some advocates of this initial incarnation of the scheme had hoped. The

scheme appeared to cause participants to reappraise their earnings expectations and as

such price themselves into work. The local linear analysis also suggested a similar effect

on the expected wage, in which this important employment prospects indicator was also

reduced. Furthermore the local linear regression results contained some evidence for

the existence of a reduction in the elasticity of the hazard with respect to a change

8See Appendix C, Figures C.1O to C.I3
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in the benefit level (exponential wage offer distributional assumption) for males with

YTSI experience. Again, this was good news in some political quarters as this result

indicated that scheme participants' job search strategies became less sensitive to benefit

level rises post treatment. These results seem to reflect some of the historical opinion

regarding the nature of the overall YTSI scheme effect. Recall from our introduction in

Chapter 1, that YTSI grew out of a previous Government training scheme, YOP (Youth

Opportunity Program), which was an attempt to address what was generally considered

to be a temporary excess supply of youth labour. However, as the 1980s began, the

numbers of unemployed youngsters continued to climb. This led to the introduction of

YTSI, which encouraged participants to learn general transferable skills, which employers

might find of use. If YTSI succeeded in improving the skills base of its participants then

we might expect to see some of the elasticity effects which we have discovered evidence

of. At the same time the scheme also attempted to suppress reservation wages and there

is evidence that it was successful in this regard.

The local linear regression algorithm produced a male YTSII matched dataset with

some interesting t-test results. Unlike YTSI, YTSII seemed to lead to an upward appraisal

of male participants reservation wages. This result suggests that this second incarnation

of the scheme had a wage effect which was the antithesis of one of the original aims of the

scheme (to lower wage expectations post participation). The nearest neighbour analysis

had failed to uncover such an effect.

Results of t-tests for the possible existence of treatment effects on elasticities caused

us to conclude that males with YTSII experience possessed a set of elasticities whose

magnitude was reduced as a result of the scheme. These results mirrored those of the

nearest neighbour analysis. Males with a smaller elasticity of the reservation wage with

respect to a change in the benefit level will as a consequence be less sensitive to a rise

in the benefit level. Allowing policy makers to raise the benefit level, thereby improving

claimants' standards of living without so much of a rise in the numbers of claimants. A

fall in the magnitude of the elasticity of the hazard with respect to a change in the benefit
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level would also have contributed to this effect.

The way in which one interprets the reductions in the elasticities of the reservation

wage and hazard with respect to a change in the arrival rate of job offers depends on

whether the economy was successful in generating increasing numbers of jobs during the

period in which males began to exit YTSII. If the arrival rate of job offers was rising during

this period, then YTSII would be regarded as having a detrimental effect as it depressed

males' receptiveness to the increasing arrival rate of offers. Whereas if the rate of arrival

fell then the treatment effect would ensure that the hazard was slow to fall. Conversely,

it is desirable for the reservation wage to fall rapidly when the arrival rate of jobs falls

and rise slowly when it climbs. Interestingly, this schemes introduction coincided with a

fall in the numbers of young people leaving school and an economic boom''; the YTSII

male wage effect would have acted to counter the upward pressure these labour market

conditions would have placed on reservation wages. The depreciation in the elasticity of

the reservation wage with respect to the arrival rate of job offers would also have acted

to counter these conditions and maintain scheme participants competitiveness within the

job market. However, the falling elasticity of the hazard of exiting unemployment would,

under these conditions, lead to a smaller rise in response to an increase in the arrival rate

of job offers.

Evidence for the existence of a male YT treatment effect was more pronounced within

the local linear regression matching algorithm. The elasticities of the reservation wage

and hazard with respect to a change in the benefit level and that of the hazard with

respect to the arrival rate of job offers all experienced a fall in magnitude following a

spell on YT. As YT matured the economy lurch back into recession, which in turn had a

negative effect on the job prospects for schoolleavers. Under such conditions within the

labour market, YT would have caused the hazard of exiting unemployment to decline at a

reduced rate for its male participants. This may be interpreted as a positive result, given

9Appendix C, Figure C.5 contains plots of the evolution of several key labour market indicators over

the time period of all YTS incarnations
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the Governments wish that the scheme should aid the unemployment to work transition

process.

Discussion then moved to the effects of each YTS incarnation on the female scheme

participants. As we had discovered during the nearest neighbour matched data analysis

of Section 2.5 the YTSI, YTSII and YT treatment effects for women uncovered using

local linear regression matched datasets were very different to those uncovered for the

corresponding male samples.

As with the male analysis, test results for the female YTSI sub sample using both

nearest neighbour and local linear regression matched data revealed the presence of a

lowering in both expected and reservation wages post participation. Again YTSI had

some success at pricing the young into jobs. However, results for the treatment effects on

the job search elasticities indicated that YTSI female participants had search elasticities

of greater magnitude. Hence, female participants sensitivity to a change in the benefit

level rose after treatment. Given that the economy was in recession as YTSI matured

and those exiting the scheme were facing reduced job prospects and in the light of these

findings any rise in the benefit level would have caused those females with YTSI experience

to become uncompetitive within the job market at an increased rate to non-participants

in the scheme.

Results for the treatment effects of YTSII showed that females were affected only

through a reduction in the magnitude of both specifications of the elasticity of the hazard

with respect to a change in the benefit level. The probability of participants exiting

unemployment during this period would therefore be less responsive to any rises in the

benefit level. There was no evidence for a wage effect. These results where found to be

in line with those of the nearest neighbour analysis of Section 2.5.

Finally, we investigated the effect of YT on females within our dataset. There was

some evidence for a wage effect post treatment. The reservation wage was seen to fall.

-The last incarnation of YTS did appear to price women into work. Evidence for the effect

of YT on elasticities was mixed. The elasticities of the reservation wage with respect to
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changes in either the benefit level or arrival rate of job offers increased post treatment.

Given the unhealthy state of the labour market at the time when those who undertook

a period of YT training were finishing their training it is reassuring to uncover evidence

of increased sensitivity of the reservation wage with respect to the arrival rate of job

offers as those with scheme experience would have acted quicker to adjust their wage

expectations downward as conditions deteriorated. Evidence for a rise in the elasticity of

the hazard with respect to a change in the arrival rate of job offers was also uncovered.

With the arrival rate falling, with probability females with YT experience exiting from

unemployment would have fallen at a greater rate than that of non-participants.

4.5.2 Random Exclusions: A Solution?

Figures 4.3 and 4.5 demonstrated that our fears for the performance of the nearest neigh-

bour algorithm were well founded. As a run of the algorithm progressed the average

distance between matched propensity scores began to rise. Interestingly this rise was not

gradual; the average distance between propensity score matches for both male and female

matching runs rose sharply towards the end of the process.

Conventional nearest neighbour matching methods would not have led to a degradation

in match quality. However, this high level of match quality would have been maintained

by excluding people from the treatment group for whom there was no control person left

whose propensity was sufficiently similar. We cannot countenance the use of such meth-

ods. The nature of the dataset, which we uncovered during our prematch examination

of stochastic dominance of treatment and control group propensity score distributions

indicated that there might be a lack of support in the right tail of these distributions.

Figures 4.3 and 4.5 did not reveal whether the poor matches were distributed throughout

the matched treatment persons or concentrated in one area (Most likely to the right of

the propensity score distribution). The plot in Figure 4.33 depicts the actual distance

between the propensity score of matched male couples. The distances are ordered along

the x-axis by the size of the propensity score of the treatment person in the matched
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Figure 4.33: Matching Performance from Lowest Treatment Prop nsity to High st Treat-

ment Propensity (Males)

couple. Notice how the quality of the matches remains high for tr atm ent p rsons with

propensity scores under 0.4. However, as w had feared it is amongst the high prop nsity

(0.5 and greater) treatment people that most of the poor matches oc ur.

Our study seeks to uncover the true natur of th YTS tr atm nt ffo t. B y n 1 this

goal we are interested in the effect of the schm on high pI' P nsity person, sine th

literature suggests that it was these young, low skill d individuals'" for wh m th shin

was introduced to help!': As such we w re cone rn d that tra itional mat .hing In tb cl

might introduce a bias which could prev nt us from un v ring th tru Y S tr atrn nt

effect. If our nearest neighbour algorithm had b n adapt d to in lud alip r x lusi ns,

the majority of rejections would have occurred at th high proj nsity nd of th p

laThe Probit models which produced th propensity score for both mal and f males in Tabl .4

indicate a relationship between academic underachiev merit at 16 and high r PI' p nsity to patti ipato in

YTS.
llSee Chapter 1 for an outline of YTS inception.
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Figure 4.34: Theoretical Basis for Random Exclusions

treatment people.

We sought a solution to the above problem. There are variations of the nearest neigh-

bour algorithm, which include returns of controls to the unmatched pool from the matched

pool to counteract the lack of support. These methods raise a number of questions. Firstly,

how many times should a single control person be available for matching? Twice, three,

ten times? If no limit is placed on the number of possible rematches then analyses on the

matched sample may lead to conclusions, which are over reliant on a handful of multiple

matched high propensity control persons. Secondly, what is the criteria for the return of

matched controls to the unmatched control pool. Should they be automatically returned

to the pool after matching with a treatment person, or should they be excluded until

such time as there are no control persons in the unmatched pool with a propensity, which

lies within the caliper of a treatment person, upon which the full pool of matched and

unmatched controls would become available for matching? Beyond these examples lies a

large array of variations. The implications for the nature of the matched dataset, which

might result are difficult to predict. We have chosen to examine the performance of just

one example of the nearest neighbour algorithm with a view to a comparison with the

results from kernel density and local linear regression matching methods.

We suggest that rather than allow the algorithm to drop treatment persons or resample
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4.5. Context and Implications of Results

controls non-randomly, it is more sensible to randomly drop persons from the treatment

group until the control group offers sufficient support for nearest neighbour matching to

occur without degradation in match quality. Figure 4.34 contains two stylised frequency

distributions. Let F(x) represents the control group's propensity score frequency distri-

b~tion and G(x) that of the treatment group. We breakup G(x} into three areas, A, B

and C. A represents the area of poor support. Our twin goals are to minimise region

A whilst not introducing a bias into the dataset. A method based on caliper exclusions

would be successful in the first requirement but would fail to meet the second. A random

reduction in numbers from the combined areas under the curve, G(x), would see the size

of all three areas fall, without altering the ratios of each area to the others. Therefore, we

would be.minimising area A whilst adhering to the requirement that no new bias should

enter the dataset. Of course there is a downside to such an approach. Random reductions

in the size of the treatment group mean that not only are people dropped from area A

(as with caliper exclusions) but also from areas Band C. As such, standard errors will

rise with the result that it becomes harder to identify specific treatment effects. As an

example, if the ratio of area A to the combined area of Band C was 1 to 2, then for every

1 person which caliper exclusions would drop from area A, a random exclusion method

would need to drop a similar person from area A, that person plus another 2 from the

combined area of Band C.

It should be noted at this point that there are those who do not consider non random

exclusions to be a problem. They argue rightly, that the Rosenbaum and Rubin (1983)

result does not require us to maintain the original "shape" of the treatment group in

order to remain valid. This is indeed the case. Since all that it gives us is a framework

of assumptions in which the propensity scores of the treatment group and control group

persons are accurate predictors of the degree of similarity between any two persons plucked

from the two groups. As such, even a dataset with a treatment group, the numbers of

which have been reduced non-randomly to account for a lack of support, will still produce

a well matched dataset. This also is true. However, any further tests on this dataset
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will only identify the treatment effect on those treatment people contained within it. this

effect cannot be interpreted as the average treatment effect on the treated.

We are presented with a trade off. Caliper exclusions reduce poor matches but in-

troduce bias into the dataset. Whilst random exclusions could also reduce poor matches

whilst not introducing bias but the smaller size of the resulting matched dataset might

make it difficult to uncover treatment effects.

4.6 Conclusions

The alternative to trying to develop the nearest neighbour algorithm further was to step

sideways and employ a kernel based matching method. Such schemes take advantage of the

whole dataset when generating each synthetic control person. Sample size is maintained,

since there is no need to drop persons from the treatment group. However we saw evidence

of the weaknesses of such methods. Firstly, the strength gained from the use of all of the

control group can also develop into a weakness when most of the contribution to the

synthetic controls comes from a handful of prematch controls. Secondly, the choice of

the bandwidth parameter was shown to be crucial to the performance of the matching

process. We produced results which showed variations in perceived YTS treatment effects

when the bandwidth was varied between 0 and 1. Comparisons with elasticity and wage

rate results from the nearest neighbour analyses suggested that conclusions drawn from

datasets produced using differing matching algorithms can vary.

We suggest that the ability of the nearest neighbour and kernel based methods to

produce well matched datasets is jointly dependent on the structure of the unmatched

dataset and the inherent strengths and weaknesses of the algorithms themselves. It is

not enough to simply perform these algorithms and present results as though the act of

matching has removed the problem of self-selection whilst not introducing a secondary

bias. The researcher must ask himself, what is the question I wish to answer? And will

this procedure produce a dataset which might allow me to address it?
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Chapter 5

Labour Market State Transition

Processes

In this section we present a modified version of the Burdett et al. (1984), Kiefer and

Neumann (1979), Mortensen (1986) and Neumann (1984) paper in which we model indi-

viduals' search and decision problems when faced with moving between unemployment,

YTS training and work. Their formal model may be modified to consider all these states

simultaneously although it requires some careful adaptation and reinterpretation. First

we outline the model then we review the implications of the model for our empirical data

problems.

We proceed to estimate the unemployment to work transition process using unmatched,

nearest neighbour matched and local linear matched datasets. We examine the consis-

tency of transition model results and find some evidence to support our earlier findings

as to the sensitivity of kernel matching methods to the choice of bandwidth.
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5.1. A Three State Model of Training, Unemployment and Work Transitions

5.1 A Three State Model of Training, Unemployment

and Work Transitions

Let Uj be utility in state j = N, T, U where N denotes the state of employment, T denotes

the state of training and U denotes the state of unemployment. Assume that each state

has associated with it a utility which may be determined as follows.

UN = Z+fl

UT = a+f2 (5.1)

and

Uu = b

where Z is the unconditional mean wage and individual attributes exogenously determine

flJ a is a training allowance paid by employers to trainees and b is the unemployment

benefit level (which is fixed).

This model is a reasonable approximation to what may be observed empirically in the

labour market. Young people get jobs which will have wage levels influenced by their level

of human capital. However this process is stochastic and may depend greatly on extra-

neous factors, unobservables or even luck. Likewise the determination of the allowance

paid by an employer when training is partly fixed in the sense that there is a government

minimum level of such payments. (See Data Appendix for details). However, in practice

it is left up to the employer to pay what they deem appropriate to trainees. We can see

from the distribution of this training allowance in our data graphed in Figure C.4 that a

substantial minority of employers choose to pay more than the statutory minimum. From

the viewpoint of the individual this discretionary component of the training allowance is

stochastic.

Assume individuals get random draws of wage offers and training allowance offers from

a cumulative probability distribution function F(flJ f2) which is known to workers. In
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5.2. Analysis of Duration Data using Hazard Functions

addition assume that the arrival of such offers follow a Poisson process with parameters

8N and 8T respectively. Burdett et al. (1984) show that given state j, future optimal

decisions are characterised by

(5.2)

The analogue of the reservation wage property in this model is in terms of acceptance

sets of doubletons (El! E2)' The position can be represented in Figure 5.1. This figure

shows the areas of acceptance sets Aj associated with the three labour market states of

unemployment, training and work. Conditional on the individual's draw on El and E2

this will determine which region in the diagram they fall into and hence the choice of

the optimal state. The borders in the diagram provide the threshold levels between the

different labour market states. Burdett et al. (1984) fully explore the analogue of this

model for the states of unemployment, work and out of the labour force. They describe the

comparative statics associated with changing levels of human capital on the acceptance

sets which carryover to our modified structure.

Burdett et al. (1984) use the model to motivate a reduced form estimation of state

to state transitions in terms of cause specific hazards. However, in their data they have

no information on reservation wages and they ignore the potential simultaneity between

unemployment duration and reservation wages. This study does not have these limita-

tions. The next section makes use of our data on reservation wages in the reduced form

estimation of the transition equation of moves between unemployment and work.

5.2 Analysis of Duration Data using Hazard Func-

tions

A person who positions themselves within the labour market may at some point during

their working life experience a period of unemployment. These periods are referred to

as spells. A single spell can be thought of as the length of time from the entry into
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Figure 5.1: The 3-State Model of Labour Force Participation

unemployment until the person exits to another labour market state or the measurement

is taken. Measurement of spell length can occur before the individual has exited.

During the course of this section we will highlight the use of Hazard functions when

attempting to analyse survival data. Data for the duration of each YTS participants' sp 11

of unemployment can be thought of as a set of survival data. An individual survives in the

state of unemployment for the duration of their spell before exiting to a new state, such

as employment. The hazard is defined to be the probability of a person exiting to uch a

state. If measurement occurs before an exit is achieved then we have a censored dataset.

The yeS data which we will be investigating contains many individuals who were still

unemployed at the time of the survey. All such people have a spell which continues up

to the end of the survey and perhaps beyond. Any model should explicitly allow for the
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5.2. Analysis of Duration Data using Hazard Functions

fact that the data are censored.

Let spell length be denoted by random variable T, with continuous probability distri-

bution f(t), where t is a realisation of T. Then the cumulative probability is

F(t) = it f(s)ds = Pr(T s t). (5.3)

The Survival Function is defined as the probability that the spell is of length at least t,

that is

S(t) = 1- F(T) = Pr(T ~ t). (5.4)

When dealing with unemployment duration data the Hazard function maybe thought

of as the conditional probability of an individual making a transition out of unemployment

in a small interval of time (t, t + Oi) given that they have been unemployed for at least t

periods. Ifwe assume that the hazard is some function of t and denote it by A(t) then we

have

h( ) _ u Pr(t ~ T < t + OiIT ~ t)t - 1m .
6t-+O 8t (5.5)

From the definition of conditional probability, we have

P (T r IT ) _ Pr[(t ~ T ~ t + 8t) n (T ~ t)]
r t < < t + ut ~ t - Pr(T ~ t)

Pr[(t ~ T ~ t + 8t)]
- Pr(T ~ t)

F(t + 8t) - F(t)
- Pr(T ~ t)

Therefore,

h(t) = lim F(t + 8t) - F(t) 1 = f(t) = f(t) . (5.6)
6t-+O 8t Pr(T ~ t) 1- F(t) S(t)

There exists a direct relationship between the hazard and the probability distribution

of T. This can be demonstrated via use of the Integrated hazard function

H(t) = it A(u)du = it f(u) duo
o ol-F(u)

(5.7)
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5.2. Analysis of Duration Data using Hazard Functions

Rearranging we arrive at

1- F(t) = e-J~>.(v.)du.

Parametric models of the above have the advantage of simplicity but the restrictions

imposed via their structural implications leads to possible distortions of the estimated

hazard rates. Cox (1972) proposes a semi-parametric Proportional Hazard (PH) model

which has the advantage of fewer restrictions. The model specifies that

(5.8)

where Ao is the baseline hazard and captures individual heterogeneity. This can be viewed

as an individual specific constant. Hence the proportional hazard model does not include a

constant term. The partial likelihood estimator allows us to estimate f3 without requiring

estimation of Ao. The conditioning operation is used to remove any heterogeneity. Central

to the proportional hazards framework is this notion that all direct dependence of the

hazard on duration is captured in the baseline hazard and so differences across individuals

at duration point t depend on t only through regressor variation over time. If the regressors

remaining constant over time, then so does the factor of proportionality. The direct

dependence on t encapsulated by the baseline hazard can be thought of as a measure of

any economic processes whose actions are not contained within the regressor function.

Suppose the sample consists of K exit times, Ti, ... ,TK. For any time Ii, we define

the risk set R; to consist of all individuals whose exit time from unemployment is at

least Ii. The risk set with respect to any time T consists of all those individuals who

remain unemployed prior to that time. For individual j in risk set R;, tj ~ Ii. Then the

probability that an individual exits at time Ti given that one individual exits at time is

ePIXi
Pr(tj = IiIR;) = L: f3lx • (5.9)

JERi e j

The conditioning has removed the heterogeneity. Under the simplest situation of one exit

per period and no censoring, the partial log-likelihood is

1nL = i: {f3fXi -log (L ef3IXi)}.
1=1 \jERi

(5.10)
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5.3. The Unemployment to Work Transition Process for the yeS Data

When m; individuals exit at time ti, the contribution to the log-likelihood is just the sum

of the terms for each of these individuals.

In the absence of any information on the baseline hazard, only the order of the dura-

tions provides us with information about our unknown coefficients. The partial likelihood

framework allows us to easily accommodate our censored yeS dataset.

The job search/unemployment duration literature contains many variations on the'

basic unemployment duration model described above. An earlier study of the Restart

Survey data by Dolton and O'Neill (1995) used a multiple exit framework. They distin-

guish between exits to employment, training and those into a state of non-participation

in the labour force. Under a competing risks framework the exit time ti is characterised

by both a censoring indicator and an exit type indicator. K mutually exclusive and ex-

haustive exit types let C represent the exit type. At any given time the exit process in

terms of K transition intensities is defined to be

h ( ) _ I' Pr{t ~ T < t + 6t, C = kiT ~ t)
k t - 1m 6 .

6HO t
{5.11}

The total hazard rate h{t) then equals the sum of all K transition intensities at time t,

that is h{t) = Ef=1 hk{t).

5.3 The Unemployment to Work Transition Process

for the yeS Data

Research which makes use of empirical Two Stage Least Squares methods to analyse

unemployment durations is limited by the analysis of only uncensored durations. Using

the three state model introduced above in section 5.1, a more flexible empirical approach of

the kind adopted by Burdett et al. (1984) and Gritz (1993) is possible. More specifically

it is feasible to estimate transition functions between any pair of states in the model

outlined in the previous section.

The approach taken by Burdett et al. (1984) is to estimate such a transition between
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5.3. The Unemployment to Work Transition Process for the yeS Data

the states U and N using assumed exogenous regressors and predicted wages. The pre-

dicted wage regressor is included to capture the possible effects of changing human capital

or labour market employment prospects. Burdett et al. (1984) did not have reservation

wage or expected wage information in their data (and it is unclear how they may have

used it had it been available). In addition, the Burdett et al. (1984) paper was not

concerned with evaluation of a government training programme on the unemployment to

work transition.

5.3.1 Evidence from Cox Proportional Hazard Models Using an

Unmatched YCS Dataset

As with previous chapters we again concentrate on the dual goals of uncovering the nature

of the YTS treatment effect, whilst offering a critical assessment of the methods which

we employ. As such we are only interested in datasets which include both treated and

control/untreated observations. A dataset which excludes either one of these is lacks the

necessary data to evaluate the counterfactual, which is vital to the determination of the

YTS effect. Although the 3-state model allows for us to estimate transition equations for

the any state to any other, we shall concentrate on the unemployment to work transition

process and attempt to uncover any changes in this mechanism for those who have ex-

perienced a spell on YTS. The YTS to unemployment/work transition process is of less

concern to us as it does not represent an opportunity to investigate the YTS treatment

effect since there are no persons without YTS experience within such a dataset.

Again, we consider the YTS treatment effect to be different for the sexes. Hence, as

with earlier work we present results for males and females separately. Table 5.1 contains

proportional hazard model results estimated using male and female unmatched samples.

The model specification allows us to concentrate on the YTS treatment effect whilst

at the same time examine the robustness of the results to the dataset and matching

procedure being used. Only individuals whose labour market state diary contained a

period of unemployment which was characterised by an exit to work or censored were to
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5.3. The Unemployment to Work Transition Process for the yeS Data

be considered. With this in mind, the male sample consists of 1303 individuals and the

female 1142 sample.

Looking at the results for ethnicity first; we included a number of dummy variables

to represent the various categories of ethnicity from which, persons responded that they

originated. The category 'White' was used as the reference group. We find no evidence

to support the hypothesis that an individuals ethnic origin has an effect on the U to N

transition process. Results for the effect of education suggest that, for both sexes, the

probability of exiting from unemployment into work is enhanced for those with a higher

level of educational attainment at 16. Of course, this represents our prior beliefs, since we

would expect that, other things being equal, those with higher previous attainment will

be more attractive to prospective employers. The size of the effect seems to be greater for

females. Perhaps this is a reflection of the different kinds of jobs which the two sexes were

likely to do during the period of study. It seems to suggest the females were more likely

to take work which required the individual to have attained a higher level of educational

qualification. Large numbers of males still had the option to undertake unskilled work,

requiring no previous qualifications.

The next two effects we observe are only present for the male sample. LEA unem-

ployment is seen to be negatively significant for males making the U to N transition.

The lack of a significant effect for the female sample is perhaps another reflection of the

area of the job market into which they were likely to enter. Women have traditionally

found work in the service sector, and it is this area of the economy which emerged the

healthier after the recession of the early 1980s. Expansion of the sector, combined with

lower labour force participation rates amongst women could have acted to reduce the

effect of unemployment rates on the female U to N transition process. Those males who

had previously applied for a job are more likely to make the transition.

As with the models for the propensity score and the reservation wage we include a

number of regional and cohort dummies. The reference groups being the "North" and

cohort 1 respectively. A number of effects were observed in the estimated model.
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The natural extension to the model outlined by Burdett et al. {1984}is to explicitly

include a term in this reduced form estimation which attempt to capture the 'threshold

utility' levels that a person in unemployment might have for entering the states of work or

training. According to the 3-state Burdett model described above such reservation levels

on the rewards for entering these states will explicitly influence the size of the acceptance

sets for entering one of these other two states. Hence this logic suggests that the predicted

reservation wage could be used to proxy for these reservation utility levels. Clearly it is

necessary to use predicted levels of these reservation levels, since not every person in the

data had occasion to report each of these values. These predictions are based on the

reduced form estimations reported in Table C.5 in the Data Appendix. This variable

is included in the unmatched dataset as a regressor in the estimated equations reported

in Table 5.1. We see from this that the coefficient of the reservation wage variable is

insignificantly different from zero in both the U to N transition equations ..
Lastly, we consider the YTS treatment effect as measured in unmatched samples.

Unlike in Chapter 3, we make immediate allowance for the heterogeneity of YTS. This

seems reasonable given the evidence we uncovered for the differing effects of the three YTS

incarnations during the work that followed. The months prior to the beginning of each

individuals unemployment spell were scanned for the presence of any YTS spells. Once a

spell was found we checked its' start date to determine which version of the scheme the

participant had undertook and then set a dummy variable for that version of the scheme

to 1, or 0 otherwise. The reference group were those individuals who had not experienced

YTS.

Results indicate that males who undertook a period of YTSI were less likely to find

work in any subsequent unemployment spell within the period of study. There was no

evidence for such an effect amongst the female sample. This may be the result of a lack

of females who undertook YTSI. Evidence for the effect of YTSII is consistent across the

sexes. Both males and females are less likely to make the transition from U to N during

a period of unemployment if they had previously experienced a spell of YTSII. Neither of
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the coefficients of YT experience for males or females are seen to be significant.

All of these results seem to support anecdotal evidence for the stigmatisation of those

who had participated in both YTSI and YTSII by prospective employers. Whilst perhaps

the lack of a negative effect for YT is the result of an improvement in both the scheme

and employers perception of it following the introduction of vocational qualifications to

the programme. However, much as with the early results for Chapter 3 these results were

obtained using a dataset which had not been adjusted to make allowance for self-selection

into YTS. We propose to examine the robustness of these findings to adjustments made

using alternative methods of matching.

5.3.2 Evidence from Cox Proportional Hazard Models Using a

Nearest Neighbour Matched YCS Dataset

We now move on to consider Cox proportional hazard models, estimated using matched

datasets. We just run a Cox partial ML estimator on a single dataset containing nt

treatment cases and the same number of matched controls.

Before the matching process could begin the correct subsample of the dataset needed

to be selected. As with the estimation of the U to N transition model using unmatched

samples, only persons whose labour market state diary contained a spell of unemployment

which was either censored or exited to work were considered. These individuals were

separated by sex. The resulting two datasets were then cut to only include those persons

with a complete set of U to N transition model dependent variables. Nearest neighbour

Mahalanobis matching of the type already used in Chapter 31 was then performed. This

process culminated in the production of male and female matched datasets. The number

of treatment and control individuals now present were equal within each gender. Hence,

we now had a male dataset which contained a treatment group of 572 persons and a

matched control group consisting of a single individual for each of these, for a grand total

of 1144 men. The female matched sample now consisted of 540 treatment and 540 control

1See section 2.5 for an explanation of the method and its assumptions.
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persons for a total dataset of 1080 women.

Results for the estimation of the U to N transition using the matched datasets are

presented in Table 5.2. As with the results for unmatched samples we find no evidence

for the existence of an effect on the transition of those males and females who responded

that they were from an ethnic background other than white.

In contrast to the results for the unmatched male sample we now observe a positive

effect for the number of YTS training places. This may indicate that in areas where YTS

provision was high the number of high quality placements was correspondingly higher and

as such many males participants in YTS were effectively apprentices and may have been

unaware of their YTS status. The lack of a effect for YTS provision for the female U

to N transition again suggests that the mechanisms by which YTS affected males and

females are different. It would be helpful to know the breakdown of YTS provision by

employment sector. It could be that in areas with high YTS provision, the majority of

that provision was in sectors where the work force was traditionally dominated by male

workers. We could also postulate that YTS provision was of less use to the female labour

force. This appears to run parallel to the initial purpose of the YTS scheme which was,

at least in part, a measure designed to fill the gap in young male training vacated by the

declining manufacturing sector and its' system of apprenticeships.

Our a priori belief for the existence of a negative unemployment effect for both males

and females was only partially realised when we estimated the U to N transition models

for the unmatched dataset. LEA unemployment proved to be negatively significant for the

male transition process. We observe this effect for the nearest neighbour matched dataset

with a similar magnitude. We now also see weak evidence for the existence of a regional

youth unemployment rate effect. The coefficient of this variable is negatively significant

at the 10% level for the male sample. Once again there is no evidence to support the

hypothesis of a female unemployment rate effect. Once again we see a positively significant

coefficient for those males who had previously applied for a job, the magnitude of which

corresponds to that seen using unmatched samples.
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Although all of the significant regional and cohort effects which we previously observed

appear here, with the same signs and similar magnitudes, a number of new effect are also

present. Cohort dummies 4 and 5 are now significant at the 10% level. An examination

of the unmatched sample shows these two coefficients to have been bordering on this level

of significance previously. Interestingly the coefficient of 'Yorkshire and Humberside' for

males is now significant at the 5% level. There was no evidence for such an effect when

using unmatched samples.

Once more reservation wages fail to capture the "threshold utility" levels that a person

in unemployment might have for entering the state of work. As such, we find no evidence

for an effect on the U to N transition for males or females when using the reservation

wage as a proxy for individuals "threshold utility".

Evidence for the YTSI, YTSII and YT treatment effects remain consistent with the

findings for the unmatched dataset. Again, we see a negative effect for males who expe-

rienced YTSI, although this is now only significant at the 10% level. A look back to the

same coefficient in Table 5.1 for males reveals that the previous result was borderline sig-

nificant at the 5% level, indicating that this result is still consistent. All three significant

effects are of similar magnitudes to those of the unmatched sample.

5.3.3 Evidence from Cox Proportional Hazard Models Using a

Local Linear Matched YCS Dataset

We now present results from of Cox proportional hazrd models using local linear matched

datasets. Hence the male sample contains nt males from the treatment group and nt

"averaged" matched control people. These datasets were created using the local linear

method as described in subsection 2.5.3.

We now propose to take the concept of the synthetic control group a stage further.

Before we could attempt an analysis using a local linear regression matched dataset, we

needed to work through the problems which arise as a result of the lack of covariate

data following a conventional local linear matching procedure. In the same way that we
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had generated synthetic elasticities and reservation/expected wages'' using the weights as

calculated using Equation (2.41) we were now able to generate synthetic values for all

the covariates which we would need to proceed with a Cox Proportional Hazard Models

analysis of a local linear regression matched dataset. In essence we had created a set,

of size nt (the number of persons in the treatment group), of synthetic control persons

who "possessed" synthetic values for their covariates calculated from a combination of the

unmatched control group covariates and the local linear regression weights matrix. The

variables were now ready for use in our Cox Proportional Hazard Models analysis.

As with the presentation of the local linear matching results for the YTS treatment

effects on job search elasticities and wages we suggest that results can be sensitive to the

choice of the kernel bandwidth parameter, hn• In an attempt to observe any fluctuations

in the magnitude and significance of the coefficients we present our results over the range

of hn• Chapter 4 contained a series of plots for the migration of job search elasticities and

wages as the bandwidth parameter, hn, varied. We now present our results for the local

linear matched dataset U to N transition model in a series of plots (Figures 5.2 to 5.7)

for each of the key variable coefficients over the range 0.1 ::; hn < 1. Each of these plots is

constructed such that hn is represented by the x-axis. There are then two y-axes; the left-

hand y-axis measures fluctuations of the coefficient, whilst the right-hand y-axis measures

fluctuations in the t-stat for that coefficient. The blue plot line represents the coefficient

and the red plot line represents it's t-stat. The range of the t-stat axis which we report

covers only the region 0 to 0.1, since this corresponds to the area in which a coefficient is

significant. Hence it does not appear on the graph in Figure 5.2 if it falls outside of this

range. Regions of the y-axis over which the red line is missing correspond to regions of no

significance. At the same time we present Table 5.3, a model evaluated using a dataset

matched at the iterative optimal bandwidth for the purposes of comparison with Tables

5.1 and 5.2.

Examination of the results in Table 5.3, for the male local linear matched sample
2See subsection 4.4.2 for an explanation of how this was done.
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reveals that, as with those for the unmatched and nearest neighbour datasets, there is

no evidence for the existence of any ethnicity effects. Plots of the coefficients for the

variables "Black", "Asian" and "Other Ethnic Origin" , over the range of hn are presented

in Figure 5.2. All three reveal that although the magnitudes of the coefficients vary over

this range, at no point do any of them become significant. Results for the female dataset

contrast with those seen using the two previous female samples. Unlike the results for the

unmatched and nearest neighbour matched female datasets, the U to N transition model

estimated at the optimal bandwidth using the female local linear matched sample contains

evidence suggesting that female Asians and those who placed themselves in the category

"Other Ethnic Origin" are less likely to move from unemployment to work. Figure 5.5

contains the plots for the coefficients of these two variables over the range of hn• Notice

just how sensitive some of these results can be to the choice of hn• Taking the plot for

the coefficient of "Asian" first we observe that the negatively significant result in Table

5.3 is only significant over the approximate range 0 < hn < 0.2, after which, a movement

of the coefficient causes it to enter the region of no significance, where it remains for the

approximate range 0.2 < h-. < 1. The sudden shift in the red t-stat line between hn = 0.2

and hn = 0.3 is testament to the sensitivity of this coefficient to the kernel bandwidth.

Both the unmatched and nearest neighbour matched male and female datasets pro-

duced models with significant positive coefficients for the education score at 16. Table 5.3

shows that the coefficient of the variable 'Education Score at 16' for local linear matched

males, calculated at the optimal bandwidth parameter, is insignificant. The plot of this

coefficient in Figure 5.2 shows that although it's magnitude varies over the range of hnl

at no point does it become significant. In contrast, the results for the female education

score variable in Table 5.3 are consistent with previous findings. Unemployed females with

higher educational attainment do appear to find it easier to make the transition to work.

The plots of this coefficient and it's t-stat contained in Figure 5.5 are interesting in that

the variable remains significant over the range of hn, with the value of the t-stat remaining

close to 0 at all times. However, we do observe some fluctuation in the magnitude of the
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coefficient around the region hn = 0.2 to 0.5.

Results for the local labour market variables within the male local linear matched

sample are stronger than those seen when estimating the two previous male U to N

transition models. The coefficient of the variable for regional YT provision within the

unmatched sample was insignificantly different from zero. The same coefficient, when

estimated using the nearest neighbour male sample was positively significant. Once again

we observe a positive significance for this variable. The plot for this coefficient and it's

t-stat is contained within Figure 5.3. The red t-stat line is present for low values of

the bandwidth before moving outside of the range of significance as the magnitude of

the coefficient begins to fall. Higher values for the bandwidth lead to a matched dataset

which produces a model in which magnitude of this coefficient begins to rise again. As this

happens we see the red t stat line return to the area of significance. Any conclusions as to

the effect of regional YT placement provision on the rate of males making the transition

from unemployment to work made using these results would be dependent on the choice

of the kernel bandwidth.

Neither of the two previous datasets produced a model which contained a significant

result for the effect of regional YT provision on the female U to N transition. Results

for the female local linear matched dataset both support and contradict these findings.

Again this is due to fluctuation in the magnitude and in consequence the t-stat of the

coefficient of this variable. Figure 5.3 contains the plots for this variable. The coefficient

is insignificant until hn > 0.35, at which point, the red t-stat line appears and remains

until hn = 0.5 It the reappears for hn > 0.65. Clearly both the male and female local

linear matched samples are extremely sensitive matching specification.

Evidence from models estimated using the unmatched and nearest neighbour datasets

had suggested a relationship between male LEA unemployment rates and the rate of

exit from unemployment to work. Results for females had failed to uncover any such

connection. The coefficient of LEA unemployment for male and female U to N transition

models are now seen to be negatively significant at the optimal bandwidth. A look at
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both the male and female plots for the coefficients and t-stats of this variable, in Figures

5.3 and 5.6, show that both are significant over the entire range of hn• Notice also that

the form of the variation in the magnitude of these coefficients for both males and females

is the same; most of the variation occurs around the 0.2 < li« < 0.4.

Previous results had not indicated a link between youth unemployment rates and the

transition of unemployed males and females into work. The male transition model using

local linear matched data now contains a negatively significant coefficient for this variable.

Figure 5.3 contains the plot for this coefficient. As hn increases, so the magnitude of the

coefficient falls until around hn = 0.3, when it ceases to be significant. Results for the

female local linear matched dataset were in line with those using the two previous datasets.

The variable "Ever Applied for a Job" had shown mixed results for the unmatched

and nearest neighbour matched datasets. It's coefficient was positive for males using

"both. Neither model had suggested such a relationship for female job seekers. Figure 5.3

contains the plot for the male coefficient of this variable. At no point does the red t-stat

line appear. In contrast, the female coefficient plot of Figure 5.6 shows the coefficient

become negatively significant around hn = 0.3.

We do not present a full investigation of the migration of the coefficients of the regional

and cohort dummy variables since these were only included to control for variations in

the dataset resulting from differing local labour market conditions and temporal changes

in the economic environment into which, young school leavers were exposed.

As was stated at the beginning of this whole section, we included a predictor of reser-

vation wages with the hope that it might capture the 'threshold utility' levels that a

person in unemployment might have for entering the states of work or training. The male

and female populations, from all three datasets used, produced U to N transition models

with insignificant coefficients for this variable. However a look at the plot for the male

local linear matched sample, in Figure 5,4, does reveal a move to positive significance for

the coefficient when matching was performed using values of hn > 0,45. At the same time

the coefficient almost doubles in magnitude. The equivalent plot for the female dataset,
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Figure 5.7, contains no regions of significance.

We now consider the effect of all three versions of YTS on the U to N transition.

Taking the coefficient of YTSI· first, Table 5.3 shows this to be negatively significant for

males and insignificant for females at the optimal bandwidth. These results reflect those

for the unmatched and nearest neighbour samples. The plot for the male YTSI coefficient,

Figures 5.4, indicates that the effect is strongly negatively significant over the entire range

of hn• However, it's magnitude does decline as hn rises. The female YTSI coefficient plot

contains no evidence for a significant female YTSI effect.

As with YTSI, results for YTSII are in line with previous findings. Results suggest

that the unemployed of either sex, with YTSII experience, were less likely to exit to work.

In contrast to the male YTSI coefficients, the magnitude of the effect grows as n« rises.

The female effect reduces in magnitude as hn rises.

Finally, we consider the effect of YT on the U to N transition. None of the three male

datasets uncovered an effect for YT. Figure 5.4 contains the plot for the coefficient of this

variable reveals that this remains the case over the whole range of hn• The unmatched and

nearest neighbour models did not suggest a relationship between female YT experience

and the time to exit from unemployment into work. Table 5.3 suggests that females with

a spell on YT maybe less likely to exit. The plot for this coefficient contains reveals that,

as with several of the results in this subsection, this result is sensitive to the choice of hn.

We do not observe the red t-stat line around the region of 0.25 < hn < 0.45.
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Males Females
Regressors U-7N Standard U-7N Standard

Error Error

Black -0.3010644 0.4655724 -0.2622033 0.2825738
Asian 0.0991228 0.2796618 -0.1381936 0.2774568

Other Ethnic Origin 0.1086571 0.1736851 -0.2241836 0.1844621
Education Score at 16 0.0175384 0.0062921 0.0239475 0.0060667

Regional YT Places 7.177268 5.012926 4.351977 5.279642
LEA Unemployment -0.0321242 0.0115167 -0.0113013 0.011341

Regional Youth -1.92945 1.69107 -1.778768 1.809986
Unemployment

Ever Applied for Job 0.1863709 0.0781305 0.0335759 0,0719602

Yorkshire & Humberside 0.1959552 0.1370854 0.1474534 0.1369818
East Midlands -0.270313 0.1174874 0.2945252 0.1173168

East Anglia -0,0621847 0.1978639 -0.0019859 0.2173162
Greater London 0.2214141 0.1863598 0.1502816 0.2081107

South East -0.1656823 0.2522709 0.3690366 0.2470798
South West 0.6610613 0.3731564 0.8151292 0.3753839

West Midlands 0.0876336 0.252259 0.4720825 0.2615014
North West 0.0728373 0.2121285 0.4301338 0.2295347

Wales -0.0167016 0.1376586 0.2759921 0.1586849

Cohort 2 0.0171707 0.1443004 -0.0230942 0.1514039
Cohort 3 0.0279374 0.1697276 0.138981 0.1867366
Cohort 4 0.303183 0.1902795 0.3244546 0.2078507
Cohort 5 0.2839207 0.251272 0.4290856 0.2696632
Cohort 6 -0.2695125 0.2106865 0.2074527 0.1957924

Predicted log of Wage -0.1231428 0.6758956 0.0048022 0.7800348

YTS I before -0.3204607 0.1620362 -0.1159314 0.2008059
Unemployment Spell

YTS II before -0.3412091 0.1095644 -0.3723779 0.1198777
Unemployment Spell

YT before Unemployment 0.1821303 0.2574848 0.107904 0.2484242
Spell

'l 96.77 102.44
Pseudo R;l 0.0059 0.0073

Log Likelihood -8149.1472 -6994.4895

Sample Size 1303 1142

Table 5.1: Cox Proportional Hazard Model for th U to N Mal and ' mal Tran iti n

Process (Unmatched Dataset)
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Males Females
Regressors U7N Standard U7N Standard

Error Error

Black -0.3348777 0.4686046 -0.2061529 0.3401145
Asian 0.0989408 0.2809493 -0.178762 0.2779017

Other Ethnic Origin 0.0809268 0.1811238 -0.2476814 0.1873954
Education Score at 16 0.0140513 0.0066223 0.0234838 0.0062533

Regional YT Places 11.31041 5.712521 2.576579 5.412354
LEA Unemployment -0.0292295 0.0124654 -0.0127602 0.0116797

Regional Youth -3.381178 1.985636 -0.545921 1.937689
Unemployment

Ever Applied for Job 0.2071765 0.0855468 0.0384625 0.0734508

Yorkshire & Humberside 0.2881552 0.1433614 0.1556714 0.1399598
East Midlands -0.3123568 0.1285754 0.3177136 0.1204551

East Anglia 0.0146096 0.2180934 -0.0336035 0.2210286
Greater London 0.3838412 0.2098404 0.1570495 0.2121221

South East 0.033044 0.2785128 0.3473323 0.2533353
South West 0.8652406 0.4236607 0.7421164 0.3827568

West Midlands 0.2963857 0.286848 0.4571354 0.2651298
North West 0.2365539 0.2344751 0.4081132 0.2347613

Wales -0.026711 0.1481314 0.2927429 0.1623819

Cohort 2 -0.0395245 0.150275 0.0067976 0.1531237
Cohort 3 0.0250025 0.1925307 0.183334 0.1916085
Cohort 4 0.3065541 0.2116407 0.3669918 0.2129891
Cohort 5 0.2722826 0.2592821 0.5043142 0.2751833
Cohort 6 -0.2860503 0.2244709 0.2338126 0.199947

Predicted log of Wage -0.0072393 0.7043089 0.1485837 0.7982437

YTS I before -0.2888603 0.1635088 -0.1216007 0.2013769
Unemployment Spell

YTS II before -0.354268 0.110578 -0.3704267 0.1203834
Unemployment Spell

YT before Unemployment 0.1674214 0.2668467 0.1245818 0.2494195
Spell

e 97.71 96.00
Pseudo R:.! 0.0069 0.0073

Log Likelihood -7001.4393 -6555.4162

Sample Size 1144 1080

Table 5.2: Cox Proportional Hazard Mod 1 for th Mal and mal U t N 'an iLi 11

Process (Nearest Neighbour Match d Dataset)
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Males Females
Regressors U-7N Standard U-7N Standard

Error Error

Black -0.6415866 0.4848389 0.0345284 0.5073386
Asian 0.538299 0.4043378 -1.825117 0.6301077

Other Ethnic Origin -0.1539133 0.3232332 -0.8306165 0.3378005
Education Score at 16 -0.0114904 0.010881 0.0542092 0.01028

Regional YT Places 14.22831 6.238399 11.88717 8.663363
LEA Unemployment -0.0677621 0.0179002 -0.0684307 0.0172047

Regional Youth -6.988046 2.752259 1.81104 2.913894
Unemployment

Ever Applied for Job 0.0822098 0.1376205 -0.0280611 0.142718

Yorkshire & Humberside 0.212276 0.1529093 -0.5604344 0.1900364
East Midlands -0.4488667 0.195606 -0.255107 0.175739

East Anglia 0.150119 0.227893 -0.2014418 0.3239725
Greater London 0.1219509 0.1644689 0.0454197 0.3114626

South East -0.5371308 0.3598346 1.175755 0.3863077
South West 0.631213 0.4044976 0.5719454 0.6021811

West Midlands 0.3146283 0.2142097 0.119334 0.4039506
North West 0.07504 0.2412238 0.2270781 0.3585024

Wales 0.0698121 0.1880825 -0.2758991 0.2592864

Cohort 2 0.3719814 0.1476243 0.9178647 0.2370152
Cohort 3 -0.3499463 0.1637918 1.496143 0.2713786
Cohort 4 0.1761424 0.2219662 1.55833 0.3213547
Cohort 5 -0.0492508 0.3314125 1.657248 0.3899189
Cohort 6 -0.5645457 0.2921989 1.876665 0.2847118

Predicted log of Wage 1.163237 0.8785303 0.000667 1.379391

YTS I before -0.685633 0.1695052 -0.1007095 0.215254
Unemployment Spell

YTS II before -0.6487357 0.1299508 -1.12893 0.1427642
Unemployment Spell

YT before Unemployment 0.1497676 0.3258626 -0.6500879 0.3035491
Spell

x2 231.56 268.53
Pseudo R2 0.0166 0.0206

Log Likelihood -6843.473 -6374.1187

Sample Size 1144 1080

Table 5.3: Cox Proportional Hazard Mod 1for th Mal and mal U t N 'an, iti 11

Process (Local Linear Matched Dataset)

142



5.3. The Unemployment to Work Transition Process for the yeS Data

-0.62
-0.63.:.:: -0.64e

CII
12 -0.65

-0.66
-0.67

,__-----------------r 0.1
0.08
0.06 Q.

0.04
0.02

+-~~-.~_r~,_~~,,~_._r._,_,__~O

Figure 5.2: Coefficients of Independent Variables in the Cox Proportional Hazard Mod 1

for the Male U to N Transition Process (Local Linear Match d Data t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

0.7

c 0.5
CII 0.3'iii
CII

0.1
-0.1

-,-------------------.,. 0.1
0.08
0.06 Q.

0.04
0.02

+-~~,,_._._,_r._,_,_,_,,"_.~_.~~ 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

.~ -0.1
e -0.15J::-Cl) -0.2...
Cl)
J:: -0.25-0 -0.3

0.1
0.08
0.06

Q.
0.04
0.02
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

-,--------;:;------------,- 0.1
0.08
0.06 Q.

0.04
0.02

+-~-.~_r._~._~_._r~,_,_~_.~-+ 0

Cl) 0.005...
0 0een

-0.005wen -0.01o
~

-0.015
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

143



5.3. The Unemployment to Work Transition Process for the yeS Data

>: 15

ftj 10e
.2
Cl 5
Cl)

a:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

0.1
0.08
0.06

0-
0.04
0.02
0

a. -0.06 ,-------------------,

~ -0.065
c
:::J -0.07
~ -0.075
...J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

hn

0.1
0.08
0.06

0-
0.04
0.02
0

a. 0 0.1
E 0.08Cl) -2e 0.06:::J -4 0-
J: 0.04-::J -6 0.020> -8 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hn

~
.2-..
o-'C
.!
Q.
0-
&a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.99

hn

Figure 5.3: Coefficients of Independent Variables in the Cox Proportional Hazard Model

for the Male U to N Transition Process (Local Linear Matched Dataset)
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Figure 5.5: Coefficients of Independent Variable in the Cox Pr portional Hazard Mod I

for the Female U to N Transition Process (Lo al Lin ar Mat h d Data t)
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5.4 Conclusions

First examination of the results contained within this chapter might lead one to believe

that matched datasets produce transition model results which differ from those estimated

from unmatched datasets. Furthermore, datasets adjusted using differing matching algo-

rithms can produce results which are not consistent. This last statement is of particular

concern when we consider that these matching methods are designed to solve the same

problem. Namely to remove self selection bias from the data.

If we begin by comparing the unmatched dataset and the two matched datasets, then

we can conclude that both matched datasets produce a transition model which is different

to that for the unmatched sample. The question is, can we attribute this to the removal

of self selection bias, or is it the result of a new bias introduced during the processes of

matching? Furthermore, is it possible to obtain consistent results when employing two or

more matching methods?

The answer to the question of consistency between the results for the two matched

datasets in Tables 5.2 and 5.3 is partially addressed by the coefficient/t-stat plots for

the transition model estimated using data matched with varying bandwidths using the

local linear method. A variable such as the youth unemployment rate, was seen to be

significant at the 10% level when using the male nearest neighbour matched dataset. The

same variable was significant at the 5% level using the optimal bandwidth local linear

dataset. However the coefficient plot over the range of hn offered evidence to explain the

change in this result, as it revealed that as hn increased, so the level of significance for this

effect fell. A similar series of circumstances is seen for the female dataset with regard to

the variable for Asian descent. Inconsistencies in the result for the variable "ever applied

for a job" are also partially explained by movements in and out of significance for the

female coefficient plot.

We included the predicted reservation wage with the hope that it would capture the

threshold utility levels between the different labour market states. However neither table

contained a significant coefficient for this variable. This however is not the end of the
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story. The male plot for this coefficient shows us that as the bandwidth rises so a positively

significant coefficient emerges.

Finally, we see that the female nearest neighbour dataset produced a model which did

not contain a significant result for the YT variable. This was in contrast to the findings

for the model estimated using the optimal bandwidth local linear matched data. Yet

again, an examination of the plot for this female coefficient reveals that it moves in and

out of significance over the range of hn.

When considering the nearest neighbour algorithm separately we conclude that wider

callipers lead to convergence in the coefficients of models run using these matched datasets.

This follows intuitively since as the caliper width approaches 1, the set of controls which

can be matched approaches the total number of controls. Similarly, as the bandwidth of

a kernel based method approaches 1, so the set of controls to be weighted for the creation

of a synthetic match approaches the total number of controls.

A deeper examination of results from the two matching regimes has shown us that

many of the their apparent differences are less visible as the bandwidth of the kernel rises.

We would suggest that this is a reflection of our adjustment of the nearest neighbour

algorithm to not exclude anyone from the treatment group, even if they lacked support,

since this is akin to widening the bandwidth for the local linear algorithm Hence, results for

the local linear dataset converge to those of the nearest neighbour data as hn increases.

In conclusion, we have evidence to suggest that given a suitable framework, differing

matching algorithms of the type considered in this work, can produce results which are

consistent with one another.
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Chapter 6

Conclusions

In the introduction to this work we broached two points for discussion. Firstly, we asked

what was the YTS treatment effect. We wondered whether the scheme, in its different

versions, had succeeded in meeting the Governments requirements of it. Secondly, we

acknowledged some of the difficulties inherent in an empirical study of this question and

introduced the concept of matching as an answer to the problem of self selection into

YTS. When using matching methods it is important to question of the performance of

these algorithms and whether consistent results could be produced when using them.

6.1 On the Question of Matching Algorithm Perfor-

mance and Consistency

If all matching methods produced the same matched dataset, there would be no need

for researchers to use any but the simplest, most convenient method. In reality, since

each method of matching gives rise to a different "quasi-control" group it is important to

compare them. The methods which we have considered during this work all have their

strengths and weaknesses. The nearest neighbour algorithm benefited from the fact that it

matched real people to one another. As well as being intuitively simple, nearest neighbour

methods produce matched samples containing individuals with full sets of covariates. A
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feature which greatly simplifies any analysis which might follow. However, with datasets

containing areas of poor support and depending on whether we choose to match in spite of

this or exclude those without support, such algorithms can produce either poor matches

or biased datasets. Kernel based algorithms such as the kernel and local linear methods

have the advantage that they reuse the dataset by weighting individuals within the control

set by how similar they are to each person in the treatment set. The Achilles heal of

such methods lies in the need for researchers to select the bandwidth parameter prior to

matching. Silverman (1986) has suggested the use of an optimal bandwidth. However, the

nature of the dataset which we employed made this difficult to estimate. Kernel methods

also suffer from the need to synthesise the covariates which we wish to employ in our post

match analyses.

The results which we have presented during the course of this work provide evidence to

suggest that we cannot rely on matching methods as "magic box" solutions. The nature of

each dataset can exacerbate the various weaknesses of each method. Rendering it unwise

to perform a match with a given algorithm. It can never be enough to simply submit a

dataset for input to an algorithm and then perform an econometric analysis on the output.

Although the Rosenbaum and Rubin (1983) result of Chapter 2, section 2.4 provides

a theoretical framework that justifies methods that match using propensity scores, the

assumptions which underpin it, especially those which relate to the observation of a

complete set of X variables, for the whole of the sample are limiting given the nature of

real world data. Clearly, propensity score models, containing X variables which capture

the nature of the propensity for treatment are needed. However, the greater the number

of independent variables used, in a model for propensity, the smaller the sample available

to us. This is especially true of exogenous variables such as local labour market data,

which are difficult to accurately merge with the endogenous data obtained from survey

respondents. The tradeoff which a researcher must face may determine the stress to which

assumptions are subjected.

We have also highlighted the issue of "region of overlapping support". We tackled
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the question of whether a researcher must make choices about the omission of persons

whose propensity scores lie outside of the region. We voiced our concern for results ob-

tained using datasets matched with some treatment persons excluded. We demonstrated

that given that exclusions for non-overlapping support were likely to occur without uni-

form probability throughout the group, it followed that any treatment effect subsequently

uncovered would represent the effect for those treatment persons who remained in the

sample and not the effect for the dataset as a whole. Such exclusions did not effect the

validity of the Rosenbaum and Rubin (1983) result. However, in most cases the researcher

must be aware that their actions lead to an exclusion bias, which can prevent them from

answering the question they most frequently pose, 'What is the mean treatment effect on

the treated?'

6.2 On the Question of YTS Performance

We began our study of the YTS treatment effect in Chapter 3, with the belief that the

males and females YTS experience had been very different. In order that we might capture

these differences all subsequent analysis was performed separately for males and females.

As was acknowledged during our early analysis of the YTS treatment effect grouping

together of all YTS types obscures the differences between these schemes. We identified

three incarnations of the scheme which we labelled YTSI, YTSII and YT, and proposed to

treat them separately during our investigations into the YTS treatment effect. From that

point on, we considered these to be three kinds of YTS treatment effect. This gave us the

opportunity to chart the progress of each scheme to determine whether later incarnations

were more or less successful than their predecessors.

Early work considered the treatment effect on reservation/expected wages and various

job search elasticities. Results for the nearest neighbour matched datasets were less

dramatic than those for the unmatched sample. Perhaps suggesting that there had been

a self selection bias present in the unmatched dataset. We found strong evidence for the
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presence of a YTS treatment effect.

Chapter 4 began to question the ability of the nearest neighbour algorithm to produce

consistently good matches throughout the evolution of a matching 'run'. We demon-

strated the degradation in match quality as a match progressed. We introduced the

kernel and local linear methods of matching and investigated the YTS treatment effect on

the reservation/expected wages and various job search elasticities using datasets matched

with these methods.

Finally, Chapter 5 introduced the 3-state labour market model as a theoretical frame-

work for the labour market state transition process. Given the government's original

desire to train the young so that they might become more attractive to employers seeking

skilled workers, we choose to concentrate on the unemployment to work transition. Cox

proportional hazard models were then estimated for this transition. The effects of YTSI,

YTSII and YT were captured through the inclusion of dummies for whether individuals

had experienced a spell on such a scheme prior to their spell of unemployment.

6.2.1 The YTSI Effect

Taking the results for reservation/expected wages and the various job search elasticities

first, the unmatched male dataset suggested a strong YTSI treatment effect. YTS was seen

to depress expected wages whilst having mixed effects on the magnitudes of the various

elasticities. However, we suggest that these results were the product of the inherent

pre-scheme differences between those who had participated in YTSI and those who did

not.

The effect of YTSI on wages and job search elasticities, as revealed in male and

female nearest neighbour and local linear matched samples, was minimal. We uncovered

some evidence to suggest the presence of a downward effect on wage expectations for

both genders. Other things being equal this would have increased the chances of YTSI

participants finding work post scheme. Results for the local linear matched male sample

also suggested that YTSI had increased the magnitude of several job search elasticities.
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Results from the male unmatched and matched datasets, for the unemployment to

work transition process, suggested that YTSI had a detrimental effect on the probability

of exiting from unemployment into work. This suggests a failure of the scheme in it's

attempt to improve the employment prospects of participants and is evidence for the

"scaring" which some have suggested such schemes can lead to. With reference to the

previous paragraph, "other things" were clearly not equal. Female transition models

estimated using all three datasets offered no evidence for a YTSI effect on the probability

of transition.

6.2.2 The YTSII Effect

The effect of a spell on YTSII for males and females as estimated using the unmatched

sample and measured on wages and job search elasticities was, as with the YTSI effect,

mixed. Male reservation wages were seen to rise whilst the elasticities of both genders

were reduced for scheme participants. As with our discussion of the YTSI effect, some of

these "effects" may be the result of self selection bias.

Results for the nearest neighbour and local linear matched male samples suggest that

there are a number of YTSII treatment effects on job search elasticities. Some desirable

and some not so. The elasticities of the reservation wage to the benefit level, arrival rate

of job offers are lower for those with YTSII experience. Indicating that these males were

less likely to price themselves out of the labour market following changes in benefits or

job vacancies. Results for the elasticities of the hazard with respect to benefits indicated

that males with YTSII experience were more willing to take a job than those without as

benefits rose. However, results for the elasticity of the hazard with respect to vacancies,

was adversely effected by YTSII. This indicates that even when the number of positions

on the market rose, those with YTSII experience lost out to those without. Evidence that

YTSII may also have "scared" its participants.

The female nearest neighbour dataset produced estimates of control persons wages and

elasticities which were insignificantly different from those of participants. The local linear
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female sample produced job search elasticities for the hazard with respect to benefits which

suggested that female YTSII participants were less likely to remain unemployed following

a rise in benefits. This scheme seems to have reduced female participants dependence on

benefit payments through a maintenance of their willingness to take on a job in the face

of rising benefits.

Transition models for unemployment to work for males and females using unmatched

and matched samples revealed that, as with YTSI, its successor reduced the prospect of

future employment on its participants. It seems that the desirable movements in many of

the elasticities which we observed were not enough to offset the reduction in the hazard

with respect to the arrival rate of offers. Again, evidence points to "scaring" of those with

YTSII experience leading to employers choosing not to employ those, of either gender,

with a work history containing a period on the scheme.

6.2.3 The YT Effect

The final incarnation of YTS, YT was much vaunted due to it's emphasis on the attain-

ment of vocational qualifications. As such it is interesting to see whether this recognition

of new skills allowed those with experience of YT to demonstrate to employers the en-

hanced skill level which they obtained from the scheme.

The unmatched male wage and elasticity results indicated that men with YT ex-

perience had higher required higher wage rates and reduced magnitudes of the various

elasticities. There was little evidence for a female YT treatment effect. As with both

previous scheme analyses we considered there to be a self selection bias component to

these results.

Nearest neighbour matched male samples produced evidence of a wage effect. It

appears that males with YT experience had higher mean wage expectations. This result

was not replicated using the local linear male sample. If present, then there was some

evidence to suggest that this effect was offset by a reduction in the elasticity of the

reservation wage with respect to the benefit level. Both matched male datasets produced
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results for the elasticities of the hazard with respect to benefits showing that the rate

of reduction in the hazard was lower for those with YT experience. The results for the

elasticity of the hazard with respect to vacancies differed in direction of significance across

matching methods.

The female nearest neighbour matched dataset gave a value for reservation wages of

those women with YT experience which was significantly lower than for those without.

However, reservation wages are more sensitive to benefits and the number of job vacancies.

Also, we uncovered some evidence to suggest that those women with YT experience were

less likely to leave the state of unemployment as benefits rose. Finally, we see that the

hazard with respect to the benefit level was is larger post scheme. Perhaps this is evidence

of the value of the qualifications which YT participants could now achieve.

Turning to the YT effect on the unemployment to work transition process we find no

evidence for a YT effect on the likelihood of males making the transition. This might

help to explain the mixed results for the male elasticity of the hazard with respect to

vacancies. Suggesting that YT succeeded in convincing employers of the value of a spell

on YT. The evidence for the YT effect on females within the dataset suggests that they

were less likely to exit the state of unemployment and into work following a period of YT.

It seems that the rise in the elasticity of the hazard with respect to vacancies was not

enough to offset the rise in reservation wages for scheme participants.

6.3 Final Remarks

Our concluding remarks of Chapter 3 voiced some reservations for the performance of

matching methods. We noted that such procedures, when used correctly, could be a

powerful tool. Much of the work that followed was concerned with the examination of

these methods. It was hoped that by subjecting them to the full range of their specification

we might identify a consistency in the YTS treatment effect. Results have shown us the

danger of matching as a "magic box" solution and the importance of the careful use and
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appraisal of the different matching algorithms. Despite the problems highlighted using

different matching methods, we believe that their use in a non-experimental setting did

allow us to better understand the YTS effect and when used carefully could do the same

for a range of econometric bias reduction problems.
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Appendix A

A.I Fortran Code for Extracting Unemployment Du-

rations from Labour Market State Diary Data

c Program to calculate unemployment durations for those
c who exit to a full time job with laststate indicator
c
c

double precision wagel,wage2
integer id,sweep,x(116),i,j,ndur,lstytdur,m,lststate,ytstart
open(7,file='trans3.txt')
open(8,file='trans4e.res')
do 10 i=1,1000000

x(1)=-99
read(7,*,end=11) id,wagel,wage2,sweep,(x(j),j=2,l15)
x(116)--99
lststate=-9
m-l
do 20 j=l,116

call duration(x,m,ndur,lstytdur,lststate,ytstart)
vrite(8,200) id,ndur,lstytdur,lststate,ytstart
if (ndur.lt.O) goto 10

20 continue
10 continue
200 format (5il0)
11 stop

end
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subroutine duration(x,m,ndur,lstytdur,lststate,ytstart)
integer i,j,k,x(116),ndur,xx,xxx,lstytdur,lststate,m,ytstart
lstytdur=O
lststate=O
ytstart=O
do 10 i=1,115-m

xx=x(m+i)
if «(xx.eq.l).or.(xx.eq.2».and.(x(m+i+1).eq.5» goto 20

10 continue
ndur=-99
return

20 m=m+i
do 30 j=1,m-1

xx=x(m-j)
if «xx.ne.l).and.(xx.ne.2» then

lststate=xx
if (xx.eq.8) then

do 25 k=l,m-j-l
xxx-x(m-j-k)
if (xxx.ne.8) then

lstytdur-k
ytstart=m-j-k+l
goto 40

end if
25 continue

end if
goto 40

end if
30 continue
40 ndur-j

return
end
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Appendix B

B.l Fortran Code for Nearest Neighbour Matching

Procedure

c Program to match treatment and control group individuals
c with similar covariate structures: First estimate a Probit model for YTS
c participation (I did this in STATA). There is a switch in STATA which cau
c ses the PROBIT command to also produce the covariance matrix from the mod
c el. -You'll need this. Including the constant I had 26 variables in my
c PROBIT
c

double precision prpensty,covarmtx(26,26),data(26)
t ,disc,lc(100000),uc(100000),dvar,betas(26)
t ,datat(26),datac(26),lpt(100000),lpc(100000)
& ,dist,mindist,eucldist,mineucl,rub2(100000)
integer dopid(100000) ,ytsindic(100000) ,i,j,k,ytstart(100000)

& ,totcalip,l ,dopidt(100000),dopidc(100000) ,ytstartt(100000)
& ,ytstartc(100000),nt,nc,exclude(100000),calipmtx(100000)
& ,excludet(100000),excludec(100000),m,nearest,match(100000)
t ,o,nearcalp,p,q,label(100000),rubl(100000),r

c Covariance matrix must be complete (not just the bottom half)
c Covariance matrix is then stored in covmatrix.txt

open (7,file-'covmatrix.txt')
do 10 i-1,26

read(7,.) (covarmtx(i,j),j-l,26)
print ., 'hello',i

c Covariance matrix is now read into the 2-D array, covarmtx(i,j)
10 continue

close(7)
c The estimates of the betas from the PROBlT model are stored in
c thebetas.txt. There are 26 of these. Just list them one after the other

open (7,file-'thebetas.txt')
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read(7.*) (betas(i),i-l.26)
close(7)
print *. (betas(j).j-1,26)

c The betas vector is now read into the array. betas(j)
c
c The variables for each person in turn are then read in using the file
c thedata.txt. This file must list the variables for each person in the
c same order as they are for the covariance matrix and betas.
c I used the STATA command:
c outfile «dopid. propensity. yts participation indicator. ytstart date
c (could just leave this set to 1 since the algorithm never used it.).
c a variable for indicating when a person has been matched (Set exclude-O)
c and names of variables in order used for PROBIT» using thedata.txt

open (7.file-'thedata.txt')
nt-O
nc-O
do 20 i-1.3905

read(7.*) dopid(i),prpensty.ytsindic(i).ytstart(i)
& .exclude(i).(data(j).j-l,25)

c Now read in the data
data(26)-ldO
print *, dopid(i),prpensty.ytsindic(i),ytstart(i)

& ,exclude(i),(data(j),j-l,26)
c The data is now read into the matrix data(j).

if (ytsindic(i).eq.l) then
nt"'nt+1
dopidt(nt)-dopid(i)
ytstartt(nt)-ytstart(i)
excludet(nt)-exclude(i)
do 15 j-l,26

datat(j)-data(j)
continue
disc-OdO

15

40
30

dvar-OdO
do 30 j-1,26

disc-disc+betas(j)*datat(j)
do 40 k-l,26

dvar-dvar+covarmtx(j,k)*datat(j)*datat(k)
continue

continue
lpt(nt)-disc
print *, disc,dvar
lc(nt)-disc-1.645*dsqrt(dvar)
uc(nt)-disc+1.645*dsqrt(dvar)

else
nc-nc+l
dopidc(nc)-dopid(i)
ytstartc(nc)-ytstart(i)
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excludec(nc)-exclude(i)
do 16 j-l,26

datac(j)=data(j)
16 continue

disc==OdO
do 31 j==1,26

disc=disc+betas(j) *datac(j)
31 continue

Ipc(nc)=disc
print *, disc

end if
20 continue

print *, nt,nc
close(7)
do 47 p=l,nt

label (p)=p
47 continue

ifail=O
call g05ehf(label,nt,ifail)
do 49 q==l,nt

rub1(q)=dopidt(label(q»
rub2(q)-lpt(label(q»

49 continue
dopidt==rub1
Ipt-rub2

do 52 p==l,nc
label (p)==p

52 continue
ifail=O
call g05ehf(label,nc,ifail)
do 54 r-1,nc

rub1(r)-dopidc(label(r»
rub2(r)-lpc(label(r»

54 continue
dopidc-rub1
Ipc-rub2

do 50 i-1,nt
write(6,987) i

987, format('Person ',i3)
totcalip-O
do 60 1-1,nc

if (excludec(I).eq.1) goto 60
if «lpc(l).ge.lc(i».and.(lpc(l).le.uc(i») then

totcalip-totcalip+1
calipmtx(totcalip).l

end if
60 continue

print *, totcalip
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if (totcalip.eq.O) then
mindist-1d10
do 80 m-l,nc

dist-(lpc(m)-lpt(i».(lpc(m)-lpt(i»
if «dist.lt.mindist).and.(excludec(m).eq.O» then

mindist-dist
nearest-m

end if
80 continue

match(i)=nearest
excludec (nearest)Kl

end if
if (totcalip.eq.l) then

nearest-calipmtx(l)
match(i)=nearest
excludec(nearest)-l

end if
if (totcalip.ge.2) then

mineucl-1d10
do 90 o-l,totcalip

eucldist-(lpc(calipmtx(o»-lpt(i»
& *(lpc(calipmtx(o»-lpt(i»

print ., eucldist
if (eucldist.lt.mineucl) then

mineucl-eucldist
nearcalp-o

end if
90 continue

print ., nearcalp
nearest-calipmtx(nearcalp)
match(i)-nearest
excludec(nearest)-l
end if

print ., nearest

50 continue
c Matches are now output

open (7,file-'trainmatch.res')
open (8,file-'contlmatch.res')
open (9,file-'bothmatch.res')

c trainmatch.res contains the matched YTS participants
write(7,*) (dopidt(j), j-l,nt)

c contrlmatch.res contains the matched YTS non-participants
write(8,.) (dopidc(match(j»,j.l,nt)

c bothmatch.res contains the matched YTS participants followed by the
c matched non-participants
c
c The first dopid number in trainmatch.res has been matched to the first
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c dopid number in contrlmatch.res
write(9,*) (dopidt(j), j-l,nt)
write(9,*) (dopidc(match(j»,j-l,nt)
close(7)
close(8)
close(9)

200 format(il0,i4,3d25.15)
11 stop

end
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B.2 Fortran Code for Local Linear Regression Boot-

strap Iterative Procedure

c Program to match treatment and control group individuals
e with similar covariate structures (for men) using local
c linear regression with t-test for treatment/control
e differences. HO: m1.eq.m2 vs H1: m1.neq.m2
c
c Takes random samples of 1000 individuals from all control
e persons and YTSI treatment individuals. Repeats this process
c 1000 times and produces the Bootstrapped estimates of job search
c elastieites from these samples.
e
e The main program reads in the data and then generates the Boot-
e strapped random samples. These are then passed to the subroutine
c genh.
c

double precision prpensty(5000),ebyb(5000),ebyl(5000)
& ,bprpnsty(1000),bebyb(1000) ,bebyl(1000) ,bphbyb(1000) ,behbyb(1000)
& ,behbyl(1000),bnewrw(1000),bnewew(1000),booth
& ,phbyb(5000),ehbyb(5000),ehbyl(5000),newrw(5000),newew(5000)
& ,totnewew,tsynewew,tnewewt,relnewew,synnewew,newewtpl
& ,totnewrw,tsynewrw,tnewrwt,relnewrw,synnewrw,newrwtpl
& ,totebyb,tsyebyb,tebybt,relebyb,synebyb,ebybtpl
& ,totebyl,tsyebyl,tebylt,relebyl,synebyl,ebyltpl
& ,totphbyb,tsyphbyb,tphbybt,relphbyb,synphbyb,phbybtpl
& ,totehbyb,tsyehbyb,tehbybt,relehbyb,synehbyb,ehbybtpl
& ,totehbyl,tsyehbyl,tehbylt,relehbyl,synehbyl,ehbyltpl
& ,tsrnewew,tssnewew,sdrnewew,sdsnewew
& ,tsrnewrw,tssnewrw,sdrnewrw,sdsnewrw
& ,tsrebyb,tssebyb,sdrebyb,sdsebyb
& ,tsrebyl,tssebyl,sdrebyl,sdsebyl
& ,tsrphbyb,tssphbyb,sdrphbyb,sdsphbyb
& ,tsrehbyb,tssehbyb,sdrehbyb,sdsehbyb
& ,tsrehbyl,tssehbyl,sdrehbyl,sdsehbyl
integer p,newid(4500) ,ytsindic(4500) ,nall,sampn,samp(1000)
& ,bnewid(1000),bytsindc(1000),bootnumb,o
open (7,file='kernelmytsi.txt')
open (8,file-'newrwewytsi.txt')
bootnwnb=1000
booth-0.9
sampn==1000
nall-3384
do 20 p=t ,nall

read(7,.) newid(p),prpensty(p),ytsindie(p),ebyb(p),ebyl(p)
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t ,phbyb(p),ehbyb(p),ehbyl(p)
read(S,*) newrw(p),newew(p)
print *, newid(p)

20 continue
close(7)
close(S)
open (3,file='booti.res')
open (8,file='bootlocalytsim.res')
open (7,file='bootlocalytsim2.res')
call g05CCF
do 24 o=1,bootnumb
ifaU-O
call G05EJF(newid, naIl, samp, sampn, ifail)

do 23 p=L, sampn
bnewid(p)-samp(p)
bprpnsty(p)-prpensty(samp(p»
bytsindc(p)-ytsindic(samp(p»
bnewrw(p)-newrw(samp(p»
bnewew(p)-newew(samp(p»
bebyb(p)-ebyb(samp(p»
bebyl(p)-ebyl(samp(p»
bphbyb(p)-phbyb(samp(p»
behbyb(p)=ehbyb(samp(p»
behbyl(p)-ehbyl(samp(p»

23 continue
call genh(bnewid,bprpnsty,bytsindc,bebyb,bebyl
t ,bphbyb,behbyb,behbyl,bnewrw,bnewew,sampn,booth
t ,relnewew,synnewew,newewtpl,relnewrw,synnewrw,newrwtpl
t ,relebyb,synebyb,ebybtpl,relebyl,synebyl,ebyltpl
t ,relphbyb,synphbyb,phbybtpl,relehbyb,synehbyb,ehbybtpl
t ,relehbyl,synehbyl,ehbyltpl
t ,sdrnewew,sdsnewew,sdrnewrw,sdsnewrw
t ,sdrebyb,sdsebyb,sdrebyl,sdsebyl
t ,sdrphbyb,sdsphbyb,sdrehbyb,sdsehbyb
t ,sdrehbyl,sdsehbyl)
print *, booth
totnewew-totnewew+relnewew
tsynewew-tsynewew+synnewew
tnewewt-tnewewt+newewtpl
tsrnewew-tsrnewew+sdrnewew
tssnewew-tssnewew+sdsnewew

c *************************************
totnewrw-totnewrw+relnewrw
tsynewrw=tsynewrw+synnewrw
tnewrwt-tnewrwt+newrwtpl
tsrnewrw-tsrnewrw+sdrnewrw
tssnewrw-tssnewrw+sdsnewrw

c *************************************
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totebyb-totebyb+relebyb
tsyebyb=tsyebyb+synebyb
tebybt-tebybt+ebybtpl
tsrebyb=tsrebyb+sdrebyb
tssebyb-tssebyb+sdsebyb

c *************************************
totebyl-totebyl+relebyl
tsyebyl-tsyebyl+synebyl
tebylt-tebylt+ebyltpl
tsrebyl-tsrebyl+sdrebyl
tssebyl-tssebyl+sdsebyl

c *************************************
totphbyb-totphbyb+relphbyb
tsyphbyb-tsyphbyb+synphbyb
tphbybt-tphbybt+phbybtpl
tsrphbyb-tsrphbyb+sdrphbyb
tssphbyb-tssphbyb+sdsphbyb

c *************************************
totehbyb=totehbyb+relehbyb
tsyehbyb-tsyehbyb+synehbyb
tehbybt-tehbybt+ehbybtpl
tsrehbyb-tsrehbyb+sdrehbyb
tssehbyb-tssehbyb+sdsehbyb

c *************************************
totehbyl-totehbyl+relehbyl
tsyehbyl-tsyehbyl+synehbyl
tehbylt-tehbylt+ehbyltpl
tsrehbyl-tsrehbyl+sdrehbyl
tssehbyl=tssehbyl+sdsehbyl

c *************************************
write (8,*) '***********'
write (7,*) '***********'

24 continue
totnewew-totnewew/l000
tsynewew-tsynewew/l000
tnewewt-tnewewt/l000
tsrnewev-tsrnewew/l000
tssnewev-tssnewew/l000

c *************************************
totnewrw-totnewrw/l000
tsynewrw-tsynevrw/l000
tnewrwt-tnewrwt/l000
tsrnewrv-tsrnewrw/l000
tssnewrw-tssnevrw/l000

c *************************************
totebyb-totebyb/l000
tsyebyb-tsyebyb/l000
tebybt=tebybt/l000
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tsrebyb-tsrebyb/l000
tssebyb-tssebyb/l000

c *************************************
totebyl-totebyl/l000
tsyebyl-tsyebyl/l000
tebylt-tebylt/l000
tsrebyl=tsrebyl/l000
tssebyl-tssebyl/l000

c *************************************
totphbyb-totphbyb/l000
tsyphbyb-tsyphbyb/l000
tphbybt-tphbybt/l000
tsrphbyb-tsrphbyb/l000
tssphbyb-tssphbyb/l000

c *************************************
totehbyb-totehbyb/l000
tsyehbyb-tsyehbyb/l000
tehbybt-tehbybt/1000
tsrehbyb-tsrehbyb/l000
tssehbyb-tssehbyb/1OOO

c *************************************
totehbyl-totehbyl/l000
tsyehbyl-tsyehbyl/l000
tehbylt-tehbylt/l000
tsrehbyl-tsrehbyl/l000
tssehbyl-tssehbyl/l000

c *************************************
write (3.*) totnewew.tsynewew.tnewewt
write (3.*) tsrnewew.tssnewew
write (3.*) totnewrw.tsynewrw.tnewrwt
write (3.*) tsrnewrw.tssnewrw
write (3.*) totebyb.tsyebyb.tebybt
write (3.*) tsrebyb.tssebyb
write (3.*) totebyl.tsyebyl,tebylt
write (3,*) tsrebyl,tssebyl
write (3,*) totphbyb,tsyphbyb,tphbybt
write (3,*) tsrphbyb,tssphbyb
write (3,*) totehbyb,tsyehbyb,tehbybt
write (3,*) tsrehbyb.tssehbyb
write (3,*) totehbyl,tsyehbyl,tehbylt
write (3.*) tsrehbyl,tssehbyl
close (3)
close(S)
close (7)

11 stop
250 format(ld25.10)

end
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c The subroutine genh calls varoius other functions which
c generate the values of h (the bandwidth parameter for
c the kernel) and the matches themselves.

subroutine genh(newid.prpensty,ytsindic,ebyb,ebyl
t ,phbyb,ehbyb,ehbyl,newrw,newew,nall,booth
t ,relnewew,synnewew,newewtpl,relnewrw,synnewrw,newrwtpl
t ,relebyb,synebyb,ebybtpl,relebyl,synebyl,ebyltpl
t ,relphbyb,synphbyb,phbybtpl,relehbyb,synehbyb,ehbybtpl
t ,relehbyl,synehbyl,ehbyltpl
t ,sdrnewew,sdsnewew,sdrnewrw,sdsnewrw
t ,sdrebyb,sdsebyb,sdrebyl,sdsebyl
t ,sdrphbyb,sdsphbyb,sdrehbyb,sdsehbyb
t ,sdrehbyl,sdsehbyl)
double precision prpnstyc(5000),prpensty(6000)
t ,ebyb(5000),ebyl(5000),phbyb(5000),ehbyb(5000),ehbyl(5000)
t ,newrw(5000),newew(5000)
t ,ebybt(2000),ebylt(2000),prpnstyt(2000),s
t ,phbybt(2000),ehbybt(2000),ehbylt(2000)
t ,ebybc(4000),ebylc(4000),sumkernl,kernel,weighsum
t ,phbybc(4000),ehbybc(4000),ehbylc(4000)
t ,weight(500,3500),synebybc(4500)
t ,synebylc(4500),syphbybc(4500),syehbybc(4500)
t ,syehbylc(4500),smkpdfsq,smkpdiff,pdiff
t ,kpdiffsq,kpdiff
t ,newrwt(4500),newewt(4500),newrwc(4500),prpdif(500,3500)
t ,newewc(4500),synewrwc(4500),synewewc(4600),sqprpdif(4500)
t ,diffebyb(4500),diffebyl(4500),difphbyb(4500),hidiff,oIdhi
t ,difehbyb(4500),difehbyl(4500),difnewrw(4500),h,hsize
& ,difnewew(4500),mdifebyb,diffsq(4500),sd,t,ntplus,sumdiff
t ,sdifebyb,totdiff,sumdifsq,sdp,tplus,meandiff ,meanact ,meansynth
& ,ssknl,sskn12,sumnum,spls,sumkern,sumkern2,numerat(4500),booth
& ,sumprpi,meanprpi,sumsqpdf,stdevdfi,hi,synprpyc(4600),samp(1000)
t ,relnewew,synnewew,newewtpl,relnewrw,synnewrw,newrwtpl
t ,relebyb.synebyb,ebybtpl.relebyl,synebyl,ebyltpl
t ,relphbyb,synphbyb.phbybtpl.relehbyb.synehbyb,ehbybtpl
t ,relehbyl.synehbyl.ehbyltpl,stderact,stdersyn
t ,sdrnewew.sdsnewew,sdrnewrw,sdsnewrw
t ,sdrebyb,sdsebyb,sdrebyl,sdsebyl
& ,sdrphbyb,sdsphbyb.sdrehbyb,sdsehbyb
t ,sdrehbyl,sdsehbyl
integer i,p,j,k,newid(4500),ytsindic(4500) ,naIl
t ,newidt(4500),newidc(4500),iter
t ,nt,nc
h-O.OOldO
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nt=O
nc-O
do 21 p=l,nall

if (ytsindic(p).eq.l) then
nt=nt+l
newidt(nt)=newid(p)
prpnstyt(nt)=prpensty(p)
newrwt(nt)-newrw(p)
newewt(nt)-newew(p)
ebybt(nt)-ebyb(p)
ebylt(nt)=ebyl(p)
phbybt(nt)=phbyb(p)
ehbybt(nt)=ehbyb(p)
ehbylt(nt)-ehbyl(p)

else
nc=nc+l
newidc(nc)-newid(p)
prpnstyc(nc)-prpensty(p)
newrwc(nc)=newrw(p)
newewc(nc)-newew(p)
ebybc(nc)-ebyb(p)
ebylc(nc)-ebyl(p)
phbybc(nc)-phbyb(p)
ehbybc(nc)-ehbyb(p)
ehbylc(nc)=ehbyl(p)

end if
21 continue

print *, nt,nc,h
do 30 i-l,nt

do 32 j=l,nc
prpdif(i,j)·prpnstyt(i)-prpnstyc(j)

32 continue
30 continue

sumprpi-OdO
do 37 j-l,nc

sumprpi-sumprpi+prpnstyc(j)
37 continue

meanprpi-sumprpi/nc
do 40 j-l,nc

sqprpdif(j)-(prpnstyc(j)-meanprpi)*
& (prpnstyc(j)-meanprpi)

40 continue
sumsqpdf-OdO
do 42 j-l,nc

sumsqpdf·sumsqpdf+sqprpdif(j)
42 continue

stdevdfi-sqrt(sumsqpdf/(nc-l»
hi-l.0S*stdevdfi*(nc**(-0.2»
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hi=booth
print *, 'hi:',hi

iter=1
print *, 'iteration:', iter
write (7,300) iter
write (7,250) hi
call mksynth(newrwc,newewc,ebybc,ebylc,phbybc

t ,ehbybc,ehbylc,synewrwc,synewewc,synebybc,synebylc,syphbybc
t ,syehbybc,syehbylc,synprpyc,prpnstyc,prpnstyt,hi,nt,nc)
call passhi(prpnstyt,synprpyc,nt,nc,hi)
write (7,250) hi
iter=2
hsize-0.005
hidiff=1
do while «hidiff.gt.hsize).and.(iter.lt.101»

print *, 'iteration:', iter
write (7,300) iter
write (7,250) hi
oldhi=hi
call mksynthx(newrwc,newewc,ebybc,ebylc,phbybc

t ,ehbybc,ehbylc,synewrwc,synewewc,synebybc,synebylc,syphbybc
t ,syehbybc,syehbylc,synprpyc,prpnstyc,prpnstyt,hi,nt,nc)

call passhi(prpnstyt,synprpyc,nt,nc,hi)
hidiff-sqrt«oldhi-hi)*(oldhi-hi»
iter-iter+1
end do

totdiff-OdO
meanact-OdO
meansynth-OdO
meandiff-OdO
sumdifsq-OdO
sdp-OdO
tplus-OdO
booth-hi
write (3,*) booth
type *;' *******.* ••***••****••****•••*.*******.***.*.* •••*.

t•••••••••*••••*.*••*,
type ., ' Local Linear Regression: hi -',hi,'
t I'
type .,' ••••• *.*••••••••••••••• *••*•••••••••••••••••••• ***.

t···***·· •••*•••*.*.*,

t-stat
treatment
I '

Synthetictype

"
. ',

type .,' ••••••••••••••••• *•••••••••••••••••••••••••••••••••
t***··* •••••••••••• **,
type
"
. ',

I '
call ttesting(newewt,synewewc,nt,totdiff,meandiff,sumdifsq
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t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relnewew=meanact
synnewew=meansynth
newewtpl=tplus
sdrnewew-stderact
sdsnewew=stdersyn
call ttesting(newrwt,synewrwc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relnewrw=meanact
synnewrw=meansynth
newrwtpl=tplus
sdrnewrw=stderact
sdsnewrw-stdersyn
call ttesting(ebybt,synebybc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relebyb=meanact
synebyb=meansynth
ebybtpl=tplus
sdrebyb=stderact
sdsebyb-stdersyn .
call ttesting(ebylt,synebylc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relebyl=meanact
synebyl-meansynth
ebyltpl-tplus
sdrebyl-stderact
sdsebyl-stdersyn
call ttesting(phbybt,syphbybc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relphbyb=meanact
synphbyb=meansynth
phbybtpl-tplus
sdrphbyb-stderact
sdsphbyb-stdersyn
call ttesting(ehbybt,syehbybc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relehbyb-meanact
synehbyb=meansynth
ehbybtpl-tplus
sdrehbyb-stderact
sdsehbyb-stdersyn
call ttesting(ehbylt,syehbylc,nt,totdiff,meandiff,sumdifsq
t ,sdp,tplus,meanact,meansynth,stderact,stdersyn)
relehbyl-meanact
synehbyl=meansynth
ehbyltpl-tplus
sdrehbyl-stderact
sdsehbyl-stdersyn

177



B.2. Fortran Code for Local Linear Regression Bootstrap Iterative Procedure

type *, ' ***************************************************
&********************'
return

200 format(i10,i4,3d25.15)
250 format(1d25.10)
300 format(i3)

end

c The subroutines mksynth and mksynthx generate the synthetic wages
c and elasticites.

subroutine mksynth(newrwc,newewc,ebybc,ebylc,phbybc
& ,ehbybc,ehbylc,synevrwc,synewewc,synebybc,synebylc,syphbybc
& ,syehbybc,syehbylc,synprpyc,prpnstyc,prpnstyt,hi,nt,nc)
double precision diff(4500),actual(4500),synth(4500)
& ,ssknl,sskn12,sumnum,sumkern,s,kernel,hi,numerat(4500),weighsum
& ,synewrwc(4500),synewewc(4500),synebybc(4500),synebylc(4500)
& ,syphbybc(4500),syehbybc(4500),syehbylc(4500),nevrwc(4500)
& ,newewc(4500),ebybc(4500),ebylc(4500),phbybc(4500)
& ,ehbybc(4500),ehbylc(4500),prpnstyc(4500),prpnstyt(4500)
& ,weight(400,3500),synprpyc(4500),sumkern2,spls
integer i,j,k,nt,nc
do 150 i-1,nt

ssknl-OdO
sskn12-0dO
sumnum-OdO
do 160 j-1,nc

sumkern-OdO
sumkern2-0dO
do 154 k-1,nc

s-(prpnstyc (i)-prpnstyt (k»/hi
spls-prpnstyc(k)-prpnstyt(i)
kernel-15*(s*s-1)*(s*s-1)/16
sumkern-sumkern+kernel*spls
sumkern2-sumkern2+kernel*spls*spls

154 continue
s-(prpnstyc(i)-prpnstyt(j»/hi
spls-prpnstyc (j)-prpnstyt (i)
kernel-15*(s*s-1)*(s*s-1)/16
numerat(j)-sumkern2*kernel-sumkern*kernel*spls
sumnum-sumnum+numerat(j)

160 continue
weighsum-OdO
synprpyc(i)-OdO
synewrwc(i)-OdO
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synewewc(i)-OdO
synebybc(i)"'OdO
synebylc(i)-OdO
syphbybc(i)-OdO
syehbybc(i)"'OdO
syehbylc(i)"'OdO
do 155 j=l,nc

weight(i,j)-numerat(j)/sumnum
weighsum=weighsum+weight(i,j)
synprpyc(i)-synprpyc(i)+weight(i,j)*prpnstyc(j)
synewrwc(i)-synewrwc(i)+weight(i,j)*newrwc(j)
synewewc(i)-synewewc(i)+weight(i,j)*newewc(j)
synebybc(i)-synebybc(i)+weight(i,j)*ebybc(j)
synebylc(i)-synebylc(i)+weight(i,j)*ebylc(j)
syphbybc(i)-syphbybc(i)+weight(i,j)*phbybc(j)
syehbybc(i)-syehbybc(i)+weight(i,j)*ehbybc(j)
syehbylc(i)-syehbylc(i)+weight(i,j)*ehbylc(j)

155 continue
150 continue

return
300 format(3d25.10)

end

subroutine mksynthx(newrwc,newewc,ebybc,ebylc,phbybc
& ,ehbybc,ehbylc,synewrwc,synewewc,synebybc,synebylc,syphbybc
& ,syehbybc,syehbylc,synprpyc,prpnstyc,prpnstyt,hi,nt,nc)
double precision diff(4500),actual(4500),synth(4500)
& ,ssknl,sskn12,sumnum,sumkern,s,kernel,hi,numerat(4500),weighsum
& ,synewrwc(4500),synewewc(4500),synebybc(4500),synebylc(4500)
& ,syphbybc(4500) ,syehbybc(4500) ,syehbylc(4500) ,newrwc(4500)
& ,newewc(4500),ebybc(4500),ebylc(4500),phbybc(4500)
& ,ehbybc(4500),ehbylc(4500),prpnstyc(4500),prpnstyt(4500)
& ,weight(400,3500),synprpyc(4500),sumkern2,spls
integer i,j,k,nt,nc
do 150 i-l,nt

ssknl-OdO
sskn12-0dO
sumnum-OdO
do 160 j-1,nc

sumkern-OdO
sumkern2-0dO
do 154 k-l,nc

s-(synprpyc(i)-prpnstyt(k»/hi
spls-synprpyc (k)-prpnstyt (i)
kernel-15*(s*s-1)*(s*s-1)/16
sumkern-sumkern+kernel*spls
sumkern2-sumkern2+kernel*spls*spls
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154 continue
s-(synprpyc (i)-prpnstyt (j»/hi
spls-synprpyc(j)-prpnstyt(i)
kernel-15*(s*s-1)*(s*s-1)/16
numerat(j)-sumkern2*kernel-sumkern*kernel*spls
sumnum-sumnum+numerat(j)

160 continue
weighsum-OdO
synprpyc(i)-OdO
synewrwc(i)-OdO
synewewc(i)=OdO
synebybc(i)-OdO
synebylc(i)-OdO
syphbybc(i)-OdO
syehbybc(i)=OdO
syehbylc(i)-OdO
do 155 j-1.nc

weight(i.j)-numerat(j)/sumnum
weighsum-weighsum+weight(i.j)
synprpyc(i)-synprpyc(i)+weight(i.j)*prpnstyc(j)
synewrwc(i)-synewrwc(i)+weight(i.j)*newrwc(j)
synewewc(i)-synewewc(i)+weight(i.j)*newewc(j)
synebybc(i)-synebybc(i)+weight(i.j)*ebybc(j)
synebylc(i)-synebylc(i)+weight(i.j)*ebylc(j)
syphbybc(i)-syphbybc(i)+weight(i.j)*phbybc(j)
syehbybc(i)-syehbybc(i)+weight(i.j)*ehbybc(j)
syehbylc(i)-syehbylc(i)+weight(i.j)*ehbylc(j)

155 continue
150 continue

return
300 format(3d25.10)

end

c The subroutine passhi creates the new value for h (the bandwidth
c parameter of the kernel) from the arguements passed to it.

subroutine passhi(prpnstyt.synprpyc.nt.nc.hi)
double precision prpnstyt(4500).synprpyc(4500).hi
& .fprpdif(1400.3500).fsumprpi.fmeanpri.fsqprdif(4500).fsumsqdf
& .fstdevdf
integer i.j.nc.nt
nc-nt
do 400 i-1.nt

do 410 j-1.nc
fprpdif(i.j)-prpnstyt(i)-synprpyc(j)
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410 continue
400 continue

fsumprpi=OdO
do 420 j"1,nc

fsumprpi-fsumprpi+synprpyc(j)
420 continue

fmeanpri=fsumprpi/nc
do 430 j=1,nc

fsqprdif (j)=(synprpyc (j)-fmeanpri)*
& (synprpyc(j)-fmeanpri)

430 continue
fsumsqdf=OdO
do 440 j=1,nc

fsumsqdf-fsumsqdf+fsqprdif(j)
440 continue

fstdevdf=sqrt(fsumsqdf/(nc-l»
hi=1.06dO*fstdevdf*(nc**(-0.2dO»

print *, 'hi:',hi
return
end

c The subroutine ttesting performs the t-tests for significant
c differences between the actual and synthetic wages and
c elasticites.

subroutine ttesting(actual,synth,nt,totdiff,meandiff
& ,sumdifsq,sdp,tplus,meanact,meansynth,stderact,stdersyn)
double precision diff(5000) ,actual(5000),synth(5000)
& ,totdiff,meandiff,diffsq(5000),sumdifsq,sdp,ntplus
& ,tplus,sumact,meanact,sumsynth,meansynth,difactsq,sumdfasq
& ,difsynsq,sumdfssq,varact,varsyn,stderact,stdersyn
integer i,nt
sumact-OdO
sumsynth-OdO
meanact"OdO
meansynth-OdO
difactsq-OdO
sumdfasq-OdO
difsynsq-OdO
sumdfssq-OdO
varact-OdO
varsyn-OdO
do to i-t,nt

sumact·sumact+actual(i)
sumsynth·sumsynth+synth(i)
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B.2. Fortran Code for Local Linear Regression Bootstrap Iterative Procedure

10 continue
meanact=sumact/nt
meansynth=sumsynth/nt
do 20 i=1,nt

difactsq=(actual (i)-meanact) *(actual(i)-meanact)
sumdfasq=sumdfasq+difactsq
difsynsq=(synth(i)-meansynth)*(synth(i)-meansynth)
sumdfssq=sumdfssq+difsynsq

20 continue
varact=sumdfasq/(nt-1)
varsyn=sumdfssq/(nt-1)
ntplus-nt
stderact-sqrt (varact)/sqrt (ntplus)
stdersyn-sqrt(varsyn)/sqrt(ntplus)
sdp·sqrt«varact/nt)+(varsyn/nt»
tplus=(meanact-meansynth)/sdp
write (8,250) meanact,meansynth,tplus
write (8,250) stderact,stdersyn
type *, J I ' I

II; , ' I " '
return

250 format(3d25.10)
end

I'
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Appendix C

C.l Matching Algorithm: Based on Lechner (1999)

1. Estimation of Propensity Score via a Probit Model.

2. Compute vfi and its conditional variance var(VfilV = v) for each observation.

3. Split people into a treatment vector (people with YTS experience) and a control

vector.

4. Randomise the order of observations in both the T and C vectors.

5. Draw the first person in the randomised T vector.

6. Calculate caliper of propensity score for observation in terms of its predicted probit

index, vntfi, and its conditional variance var(VfilV = vnt}.

7. Find observations from C vector (denote these as j) which lie within the caliper.

I.e:

vjfi E [vntfi±CJvar(vntfi)) Where C = 1.65, so that each treatment persons caliper

forms a 90% confidence interval for their propensity score, Vnt~

8. If j ~1 then calculate the above only for those j people within the caliper.

9. Remove the matched individual, j, from C.

10. Repeat until all individuals from treatment vector are matched with a control.
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C.2. Interpretation of Charts within Chapter 4
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Figure C.1: Kernel Regression Matching Performance as Measured by t-statistic Fluctu-

ations for Differing hn (Males)

C.2 Interpretation of Charts within Chapter 4

Chapter 4 contains a number of plots which are explained here to avoid repetition.

C.2.1 Charts Representing t-statistic Fluctuations

Figure C.1 compares kernel regression matched males with and without any form of YTS

experience. In it we present a plot of these t-statistics as hn was varied between 0 and 1.

The x-axis represents the variation in hn from 0 to 1. The y-axis depicts the t-statistic

values for the differences between treatment and synthetic controls of wages/elasticities

produced using the values of hn. Therefore, the yellow plot lines represent the movement

of these t-statistics for each wage/elasticity pair as hn increases. The wages/elasticities

to which the yellow lines belong are indicated to the right of the figure. The red area

represents the area of no significant difference between a synthetic control person and their

treatment counterpart. Hence yellow plots, which reside beyond this region, indicate the

presence of a treatment effect.
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C.2. Interpretation of Charts within Chapter 4
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Figure C.2: Kernel Regression Matching Performance as Measured by Fluctuations in

the Percentage Differences Between Treatment and Synthetic Elasticities for Various hn

(Males)

C.2.2 Charts Representing Percentage Difference Fluctuations

Figure C.2 presents the way in which the magnitudes of the differ nces betw en tr at-

ment and synthetic wages/elasticities vary over hn for the same male sub-sampl a

Figure C.1 using kernel regression matching. Here we have standardis cl th tr atment

wages/elasticities to 1. Hence, a synthetic control wage/ala ti ity with a valu gr at r

than 1 indicates that the wage/elasticity increased after treatm nt.
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C.3. Data

C.3 Data

Un-Mtchd Un-Mtchd Mntched Matched
Males Femolos Molos Fomoles

Regressors Description Mean Mean Moon MBan

Reservation Wage Responses to the question: 'What Is the 96.16908 88.6961 98.75319 88.61614
lowest weekly take home pay you would (0.49596) (0.42353) (0.65670) (0.52228)
consider for a full time iob?'

Expected Wage Responses to the question: 'How much 126.1087 115.8429 126.6414 114.2719
weekly take home pay do you expect to (0.66737) (0.54631) (0.90866) (0.69372)
earn in your next job?

Ethnic Origin White: Respondent is white, 0.081128 0.073842 0.066863 0.069749
Other: Respondent belongs to another (0.27306) (0.26154) (0.24985) (0.25477)
ethnic group.

Education Score at 16 These are education scores calculated from 6.084804 8.661265 4.265467 5.339342
a persons GCSE (or equivalent) results. (9.72350) (9.66383) (5.51636) (6.40732)
The scores are computed as A=5 points,
8=4 points, C=3 points, 0=2 points and
E-1 point.

Maths GCSE 1 Respondent held a GCSE (or equivalent) 0.215931 0.168986 0.086529 0.107367
In Maths at grade C or above. (0.41152) (0.39154) (0.28121) (0.30964)
o Otherwise.

English GCSE 1 Respondent held a GCSE (or equivalent) 0.256618 0.325824 0.139626 0.206505
In English at grade C or above, (0.43682) (0.46873) (0.34668) (0.40488)
o Otherwise.

No. of Siblings The total number of siblings (not a dummy). 1.807843 1.858156 r07325)~ r023119
(1.55990 11.62853 1.69402 1.72236

Career Service Interview 1 Respondent attended a career service 0.141667 0.111181 0.174041 0.142633
interview, (0.34875) (0.31439) (0.37924) (0.34977
o Otherwise.

Live With Parents Respondent lived with parentts). ~.977696 ~.952232 ((0.9729~ ~.93965~
0.14769 0.21330 0.16224 0.23817

YTSI Respondent had a spell on the first 0.083333 ~.075511 ~.16715,~ ((0.1416~
Incarnation of YTS. 10.27642 0.26424 0.37321 0.34696

YTSII Respondent had a spell on the second 0.116667 0.131206 ~.23402~ ~.246473
Incarnation of YTS. (0.32106 (0.33766 0.42349 0.43104

VT Respondent had a spell on YT 0.053922 0.06237 (0.0988~ ~.111a77. (0.22589 (0.24165 0.29649 0.31503
Pred. Training allowance An estimate of the respondents training - ~.99871~ ~.952304

allowance. (- (- 0.18567 O. t4224
Regions North, Yorkshire & Humberside, East - - - -

Midlands, East Anglia, Greater London, (-) (-) (-) (-)
South East, South West, West Midlands,
North West and Wales. North of England Is
used as a reference arOUD.

Cohorts Dummies for Cohorts 1 to 6. Cohort 1 Is
1-) I-~ I-~ I-iused as a reference arOUD.

Exogenous Vllrlables

0.064805 0.064576
(0.03561) (0.03562)
0.083314 0.083677
(0.02429) (0.02434)
233.1733 159.0168
(32.5365) (24.2911)

10.01333 9.922007
(4.13270) (4.14132)

Sample Size 4115 4770 2034 2552

Table C.1: Summary Statisti of th • ur YCS Sub ts , cl in this tudy
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C. 4. Figures

C.4 Figures

ReservationWage

Expected Under 100 125 150 175 200 225 250 Over Total
Wage 27.5 250

Under 27.5 3 10 2 1 0 0 0 0 0 16
100 21 3305 84 35 11 3 4 1 2 3466
125 2 2539 797 16 9 0 1 2 0 3366
150 0 583 832 210 2 4 1 0 1 1633
175 0 133 390 216 85 2 2 0 1 829
200 0 75 135 101 49 29 0 0 0 389
225 0 15 34 49 27 18 11 0 0 154
250 0 18 26 20 40 22 9 10 0 145

Over 250 0 7 16 9 13 12 8 17 18 100

Total 26 6685 2316 657 236 90 36 30 22 10098

Table C.2: The Joint Distribution of R rvati nand Exp t d Wage

Table C.3: The Cohort D ign Stru tu!' f th Y 111'
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Figure C.3: Distributions of both R rvati nand Exp L d Wag s r r It
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C.4. Figures
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Figure C.4: Distributions of both R s rvation and xp t cl Wag. f r 11 h rtf)
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C.4. Figures
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Figure C.5: Graph Showing the Paths of Various Economi Indi ator f r th P riod r
Study. Using the Male Matched Sample. Average Earnings (Sour : R gi 11(\1 1'1' nds),

Reservation and Expected Wages are Gender Sp cific. LEA un mpJ ym nt is multipli d

by 10.
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Figure C.6: Graphs Showing th Paths of Vari
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C. 4. Figures

Table C.4: Male and Femal Probit Mod 1 timati 118 f Y arti .ip Li II
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C.4. Figures

Men Women
Reservation Wages Expected Wages Reservation Wages Expected Wages

Regressors Coet. Std. Error Coef. Std. Error Coef. Std. Error Cocf. Std. Error

Ethnic Origin 10.89702 3.464913 15.45376 4.837764 -0.7331 2.108997 2.938049 2.804193
Education Score at 16 -0.4328 0.219833 -0.48605 0.306934 0.061281 0.124128 0.365425 0.165045

Maths GCSE -0.17245 2.87702 -4.4208 4.016939 2.713062 2.128552 -0.91137 2.830194
English GCSE 2.849834 2.333186 9.246686 3.257629 2.778337 1.661183 -1.79623 2.208765
No. of Siblings 0.062976 0.501925 -0.40546 0.700795 -0.27913 0.330924 -1.02411 0.440008

Career Service Interview 4.612076 1.792269 6.053792 2.502393 -1.34014 1.429507 -0.57241 1.900721
Youth Unemployment -189.823 45.1496 -213.118 63.03854 -123.306 36.04723 -79.8102 47.92961

Regional YT Places 9.139832 122.273 31.0028 170.7193 310.8223 117.4818 51.41146 156.2078
YTSI 33.63028 13.58253 32.92925 18.96413 8.759707 6.803698 -8.38859 9.046426
YTSII 17.21374 6.120887 17.90767 8.546074 4.548775 4.144305 -2.17982 5.510407

YT 67.00084 19.53328 72.06455 27.27267 15.60367 9.103098 -3.72546 12.10379
Average Wages 0.593443 0.139266 0.760058 0.194445 1.300284 0.121493 1.432638 0.161541

Pred. Training Allowance 124.6503 42.01457 136.9275 58.66138 50.7928 25.52927 -6.55406 33.94458
Live With Parents 5.848049 4.619193 8.146328 6.449386 -12.5849 3.478181 -8.12764 4.624706

LEA Unemployment 0.74072 0.30864 0.733179 0.430928 -0.53105 0.193458 -0.85525 0.257228

Yorkshire & Humberside 0.042642 2.994493 2.386416 4.180956 1.958798 2.574407 -1.72809 3.423018
East Midlands -0.72384 3.285392 -1.53823 4.587114 ·8.81026 2.711551 -4.40834 3.605369

East Anglia 14.95051 4.953959 17.77626 6.916791 8.421936 4.315854 1.690732 5.738505
Greater London 2.185735 4.383977 7.481988 6.120975 11.2164 4.23051 6.220016 5.625029

South East 4.912493 5.527611 6.95248 7.717733 0.811709 4.053202 -1.66377 5.389274
South West -49.4123 10.9313 -55.2298 15.26245 -46.3038 7.834674 -49.474 10.41725

West Midlands -26.946 7.719467 -27.5619 10.77804 -34.2984 5.433954 -47.9169 7.225168
North West -0.55041 4.601312 3.317585 6.424421 5.315443 5.193808 -4.91661 6.905862

Wales ·2.69004 3.4771 -0.77979 4.854779 -0.06344 2.72888 1.485483 3.628411

Cohort 2 0.039398 2.642059 ·2.5973 3.688883 0.489976 2.251418 -4.55783 2.993561
Cohort 3 8.467371 11.3175 -1.38315 15.80167 ·10.436 4.52875 -28.9266 6.021578
Cohort 4 3.692701 12.41048 -3.26482 17.3277 -15.523 5.893457 -33.902 7.836138
Cohort 5 -28.5584 10.42568 -32.7629 14.55648 -32.9492 6.141893 -43.1951 8.166468
Cohort 6 -46.5554 5.561294 -56.113 7.764762 -46.6177 5.127124 ·50.3621 6.817196

Constant -541.831 162.2768 -598.091 226.5733 -295.898 119.9743 -22.587 159.5219

F(29,2004) or F(29,2522 9.93 B.05 13.00 12.80
Prob. > F 0.00 0.00 0.00 0.00

R 0.1256 0.1043 0.1301 0.1283

Sample Size 2034 2034 2552 2552

Table C.5: Male and Female Regression M d 1 stimati n f r

Wages

rvs U n t 11 po to I
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C. 4. Figures

Table C.6: Tobit Regression Estimat s of aining All wall 5, Wa r sand cscrvation

Wages
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C.4. Figures
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