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Abstract

This thesis investigates the use of numerical methods to solve the static and
dynamic behaviour of a single mooring line, some part of which may be lying
on the seabed. For static analysis both the analytic catenary equations and a
3D numerical formulation are presented. Comparisons of results generated by
the two approaches show generally good agreement. The numerical static model
is used as the initial equilibrium position for the dynamic solution procedure.
The equations of motion are developed in accordance with published theory, but
whereas published theory have some aspects neglected, here all possible effects are
included in the development of the theory and specific effects are only neglected

when this can be justified.

The Central Difference, Houbolt, Wilson-# and Newmark time integration
schemes are then used to solve the 2D equations of motion. An important as-
pect of any numerical scheme is the accuracy and stability of the results generated
by its use. Here the numerical stability and accuracy of the different time integra-
tion schemes used are discussed. Whereas these characteristics can be examined
analytically when the equations being solved are linear, the aspects of the solution
obtained from nonlinear formulations are generally unique in each case and must
be examined numerically. It is therefore important that these aspects be explicitly
examined to gain confidence regarding the general application of the solvers pre-
sented. The different schemes are therefore used in an extensive numerical study of

the resulting predictions to determine the efficacy of these schemes when applied

to the solution of nonlinear mooring dynamics.

A 3D formulation of the equations of motion is developed and solved with the
Houbolt scheme. This more generally applicable solver is used to generate results of
relevance to the design of mooring lines. In particular effort is directed towards the
calculation of the dynamic tension amplification factors. These generated solutions
can then be used to comment upon the safety factors used and required within the

rules of the classification societies.
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An alternative method of solution which uses the eigensolutions of a matrix
form of the equations of motion is also presented. This method is common in small
displacement finite element dynamics. However, the large displacement require-
ment imposed for mooring line dynamics requires some important new aspects in
the solution procedure to be considered. These include the updating of the modal
matrix and the use of different time steps with the uncoupled equations. Consider-
ations such as these do not appear to have been fully appreciated in the literature

associated with mooring line dynamics as solved by modal methods.

A section detailing the influence of ‘ground effects’ is also presented. These
include the effects of suction and friction upon the grounded portion of the line

and the discretisation problems caused by the lifting and grounding of the node

masses.

This thesis presents for the first time a detailed comparison of the predictions of
mooring line dynamics using different time integration schemes. The comparisons
indicate which scheme is to be preferred, highlight the numerical problems which

can be expected to affect the quality of the solution, and how best to avoid the

noted numerical problems.

Copyright (© 1993 by David O. Thomas
The copyright of this thesis rests with the author. No quotation from it should
be published without David O. Thomas’s prior written consent and information

derived from it should be acknowledged.
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CHAPTER 1

Introduction

This thesis is essentially concerned with the development of a robust dynamic
analysis of a mooring line. In particular comparative studies are undertaken using
four of the most commonly implemented time integration schemes to provide so-
lutions to the dynamic mooring line equations. This study was motivated by the
ultimate objective of trying to couple the full three dimensional (3D) time domain
dynamic motion analysis of an arbitrary floating structure subject to a random
seaway with a full 3D dynamic mooring line analysis. To date the full coupling of
these two distinct dynamic analyses has not yet been attempted, although several
different efforts have been made in this direction (see below). This is despite the
increasing trend of thought that mooring line effects may significantly contribute

towards the large low frequency motions of the floater.

In first order water wave theory, developed for the analysis of ship motions,
the orbits of the wave particles are closed. Since there is no net movement of the
water particles there is no net transfer of momentum. This results in a linear model
where there should be no need for mooring lines since the predicted ship or floater
oscillations in the horizontal plane are about a mean position which remains con-
stant. However, in reality, if the floater were not moored it would drift off station
due to the mean second order forces which the structure experiences. These damp-
ing effects were demonstrated in a famous set of experiments by Wichers(1979).
These were later confirmed in Wichers(1982) by a comparison between further ex-
perimentation and theoretically predicted values. This effect is known by several
names, e.g. low frequency damping, second order effects and wave drift damping
and acts so as to cause the floater to drift a long way off station - hence the need

for mooring lines to act as ‘restoring springs’ to keep the floater on station.

When considering the time domain solution of moored floaters several attempts
have been made to include the effects of the mooring lines. These attempts have, to
date, always involved some simplification of either the floater model or the mooring
line model. In all cases, bar one, the mooring lines are included in a static sense as a
modification to the hydrostatic restoration terms. Hairston(1979) uses a simplified

three degree of freedom (3 d.o.f.) model to represent the horizontal motions of



Introduction 21

the floater and includes the mooring line effects as static forces derived from the
catenary equations. Experimental and empirical values were used to provide values
of the first order hydrodynamic added mass and fluid damping which means that
the model was not able to analyse the more important second order effects. Seidl et
al.(1987) carried out a full time domain simulation for the floater motions, but with
the mooring line being included as a ‘look up’ table of previously prepared force-
displacement characteristics as derived from the catenary equations. This same
approach was later adopted by Hearn et al.(1988) when investigating the effects
of low frequency damping upon the excursions of moored structures, as well as by
Ramzan and Mitchell(1985). Wichers and Huijsmans(1990) have determined, both
experimentally and computationally, the effect of low frequency surge on mooring
line damping using the mooring dynamics model presented by Boom et al.(1987).
In this case the high frequency effects caused by the first order wave forces were
included by calculating the dynamic amplification factors (DTA) from analytical
results. Ansari and Khan(1986) present a model which is also based on a ‘look up’
table of previously prepared mooring line characteristics, but these were dynamic,
not static, tensions calculated from a 2D time domain model. However, this model
did not allow for the elasticity of the mooring line and the floater motions were
formulated as an uncoupled 3 d.o.f. model representing in-plane motions only.
Nakajima(1986) presents a coupled simulation where the mooring line dynamics
are calculated in 3D and are directly included in the step by step integration of the
equations of motion for the floater. The surge, heave and pitch equations for the
floater are uncoupled and some indication of how they are solved is given. Chen
and Chou(1986) present a strip theory method for the calculation of hydrodynamic
quantities which are then used in a full 6 degree of freedom time domain model
for the floater. A quasi-static method is then used to calculate the mooring line
forces at the vessels equilibrium position. During the simulation the mooring line
forces are calculated using the actual position and orientation of the floater. With
no indication to the contrary it is assumed that the quasi-static method is used to

derive the mooring line forces during the simulation.

This review demonstrates that the integration of the full floater and line anal-
yses has not yet been achieved despite the increasing acceptance that the inclusion
of dynamic mooring line effects may have a significant influence upon the motions

of a moored floating vessel. See, for example, Ramzan and Robinson(1986), Tein

et al.(1987) and Huse(1986).
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Since the coupling of floater and mooring line dynamics is the ultimate aim,
it was decided to undertake a study of the various numerical schemes available
for the prediction of the dynamics of mooring lines. In particular, to study the
attributes of the time integration schemes being used to integrate the equations of
motion. This is necessary because it would be a requirement of the fully coupled
analysis that the solution of the mooring line dynamics be robust, and provide
sufficient accuracy, so that it would not cause the collapse of the coupled solution

process, or, introduce unacceptable errors in the solution.

If a mooring line is regarded as a particular example of the suspended string
class of problems, then within the literature it will be seen that there are literally
hundreds of solutions. These dating back to 1781 when Euler solved the problem
of the pendulum motion of an undamped suspended string hanging vertically in
water (see McLachlan(1961)). Since 1781 many analytic solutions have been devel-
oped for different problems of differing complexity. However despite all the effort
expended in this field, it has not been possible to produce a closed form solution
for the full nonlinear 3D mooring line problem. This is because any simplifica-
tions to the model which are introduced to produce an analytic solution, tend to
remove the more important features of the model (particularly certain nonlinear-
ities). Consequently the available analytic solutions tend to belong to a narrow
class of problems. To fully account for the dynamics of mooring lines the nonlinear
equations are required to be solved. Hence this thesis is limited to the numerical
solution of the equations of motion, and in particular two variants of the same

solution process are considered, namely:
1. Direct time integration, and
2. Modal analysis techniques.

To the author’s knowledge, the earliest numerical method available for the solu-
tion of mooring dynamics problems was by Walton and Polachek(1960), and this
paper can be regarded as having founded this class of solution, for this type of
problem. In the method proposed by Walton and Polachek, the line is discretised
into straight line, massless segments (or elements) with all the line mass and the
internal and external forces assumed to act at the nodes connecting the elements.
Their 2D model was deficient in respect of cable elasticity, the grounding and lift-
ing of nodes from the seabed, the friction and suction effects of the seabed on
the line and the effects of ocean waves. This was probably because they were, at

the time, assumed to be negligible. The equations of motion were solved using
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the Central Difference (CD) time integration scheme, and the paper included a
stability analysis of the resulting explicit Finite Difference (FD) equations. This
demonstrated the expected conditional nature of the stability of the explicit CD
method through the derivation of the largest time step which could be used to en-
sure stability. This analysis was later extended in 1963 (see Polachek et al.(1963))
to include the effects of elasticity, but unfortunately both papers only provide the

briefest indications of the results to be expected from such a procedure.

Following the paper of Walton and Polachek(1960), the attention of other
investigators turned to other suspended string problems, for example towing prob-
lems and the motion of free falling anchor systems. Consequently it appears that
the next reported reference to direct integration being applied to the solution of
mooring line dynamics is by Nakajima et al.(1982). Here line elasticity is included
in the model and a solution method is proposed to cope with the shock loadings
introduced into the solution by the lifting and grounding of a node to and from
the seabed. However seabed suction and ocean waves were still neglected and the
model developed remains 2D only. This paper used the unconditionally stable
Houbolt scheme to perform the required time integration. This procedure allows
the use of a larger integration time step than is possible with the CD scheme, and
subsequently the CD method does not appear to be used again in the reported

literature concerned with mooring line analysis.

Ractliffe(1984) presents a time domain model where the aim was to reduce
the CPU time and the computer storage associated with the solution process. No
indication of which time integration' scheme is used is given, although in earlier

work (see Ghosh(1980,1981)) most of the common time integration schemes are

mentioned as having been considered.

Boom(1985) develops a 2D model in which mooring line elasticity is included
and seabed contact is accounted for through the use of a spring-damper model. The
primary aim of this paper was to provide a much needed validation study where
the results derived from the theory are compared with experimental results. In
a subsequent paper (Boom et al.(1987)) the model is extended to include simple
wave effects as well as the bending moments and shear forces developed by the
mooring line. Consequently the model could be applied to riser configurations. In
both cases the equations of motion are integrated using the Houbolt scheme, but

the numerical effectiveness of this scheme is not investigated.
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The paper of Nakajima(1986), which makes an attempt to couple the floater
and mooring line dynamics, solves the 3D equations of motion for the line using
the Newmark integration scheme. No reason is given for the change of integration
scheme from the Houbolt method used in the previous paper, and no study is

reported of the numerical properties of the Newmark scheme.

Of all the previous work none, bar that of Ghosh(1981), make any attempt
to investigate the numerical properties of the different time integration schemes
available. In fact researchers have not even indicated the influence of varying
the size of the time step on the solution for any one particular scheme. Even
the report of Ghosh(1981) presents no comparisons of the solutions obtained with
different schemes. As a result it was deemed necessary that a study be carried out
to investigate the relative merits of the schemes most commonly applied in the

analysis of mooring line dynamics.

The preceding cited papers represent the principal references concerned with
studying the direct time integration schemes applied to the solution of the equa-
tions of motion of a2 mooring line. An alternative finite element (FE) technique
has been developed for this type of application; the details of the FE method will

not be discussed here, but some useful references are now given:

In Jennings(1962) a numerical procedure is used to determine the static dis-
placement and tension distribution of a cable slung between two supports. Trial
values for the horizontal (H) and vertical (V) tensions at one end are required so
that from the equilibrium conditions at each node, a position for the cable free
end may be determined. In general this position for the free end will not coincide
with the required support point position, therefore an iterative process must be
applied to the values of H and V. Through the introduction of the concept of link
flexibility, the change in the endpoint position for a given change in the values of
H and V may be determined. This is then used to give much better estimates of
the new trial values for H and V hence reducing the number of iterations needed

to converge.

In O’Brien(1967) a numerical procedure is used to obtain a 3D static solution
for an arbitrary cable structure. Trial estimates for the resolved tension com-
ponents in the first element are required to start the solution procedure. The
‘misclosure’ between the derived cable endpoint position and the required end-
point position generally means that new trial estimates of the tension components

in element 1 are needed. To this end a correction procedure based on that of



Introduction 25

Jennings(1962) has been adopted to generate estimates of the tension components
which will improve the convergence time. Through the analysis of a number of
problems some insight has been gained of how the size of the initial errors in the
estimates of the tension components can be expected to affect the rate of conver-

gence of the procedure.

The paper of Skop and O’Hara(1972) presents a development of their earlier
work (see Skop and O’Hara(1970)) on the method of imaginary reactions to what
they have called the extended method. Here, cable array systems can be considered
by the introduction of ‘cuts’ in the array and an imposition of imaginary reactions
at these points. Under the action of these imaginary reactions the structure then
becomes statically determinant. Initial estimates are made for all the imaginary
reactions which have been introduced into the cable array. From this the equilib-
rium configuration can be calculated. The error function can then be determined
with respect to the geometric constraints on the original array. A correction force
is then introduced to the initial estimates of the imaginary forces. A new error
function can then be calculated; this procedure is then repeated until the error
function is less than some predetermined error margin. This method is stated to
be globally convergent. i.e. convergence is achieved for any set of initially guessed
internal reactions, the proof of which is given in their earlier paper, see Skop and
O’Hara(1970).

In Webster(1975) the true finite element method as proposed by Oden(1972)
and Zienkiewicz(1971) is used to develop a full 3D description of the problem of
underwater cables. A valuable summary of the literature is given before the theory
is developed. The mass and the stiffness matrices are fully developed for the case
of linear elements with linear material properties. Although this is not the only
choice of element type available, this element is selected because..“it is the least
complicated and the most readily implemented.” Once the equations of motion
have been formulated the time integration is carried out through the use of the
Newmark scheme where a modified form of Newton-Raphson iteration is used at
each time step to obtain convergence. It is indicated that the optimum choice of
the 4 and 8 parameteres used in the Newmark scheme for use in this context is
the subject of further studies. Three example problems are presented; the static
configuration of a sphere towed by a cable, a single degree of freedom dynamic

response problem and the results for an anchor drop.

The paper of Peyrot(1980) formulates the mooring line problem as a nonlinear
finite element model similar to that proposed by Webster(1975). The principal
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difference arises in the derivation of a curved cable element which can be consider-
ably longer than the linear elements often used by investigators of this problem. It
is pointed out that the determination of the correct equilibrium position necessary
to start the dynamic simulation can be difficult with the use of linear elements,
although once established the dynamic solution does not suffer from this. The
linear acceleration method is used for the time integration. Iterations during each
time step make use of the nodal imbalance vector and the displacements at each
iteration. Several diverse examples are given to illustrate the versatility of this

method.

The paper of Leonard(1979) outlines the main approaches available for the
numerical analysis of steady state three dimensional ocean cable systems. In these
methods the nonlinear behaviour of the cable is usually treated either by loading
which is incrementally applied or by assuming a trial solution which is corrected
according to some resultant error; the latter approach is used in this paper. The
error function usually selected for such problems is the difference between the
nodal displacements at each iterative step. A new estimate of the solution is
either calculated by trial and error or by using the error function to scale the new
estimate. In this paper a Newton-Raphson method of gradient scaling is derived
for a general situation and these results are then used to analyse the steady state

solution of circularly towed cable buoy system.

In addition to the FE formulation being solved by direct time integration
schemes, the method of modal analysis is often used. This technique can also be
adapted to solve the equations of motion which are not formulated through the
use of FE. The main benefit of this technique is that it allows the equations be-
ing solved to be uncoupled and to be expressed in terms of a coordinate system
which leave the coeficients of the acceleration, velocity and displacement terms
as elementary functions of the initial matrices. The ‘uncoupled’ equations can
then be integrated more efficiently than was originally possible. Dominguez and
Smith(1972) formulate the equations of motion for each lumped mass in the line
discretisation and then assemble the mass, damping and stiffness terms into ap-
propriate matrices. These equations are then uncoupled and integrated using a
convolution integral. Johansson(1978) has also formulated a matrix description of
the equations of motion, as previously described, but it is not clear what method of
solution was adopted. Wilhelmy and Fjeld(1981) calculated the eigensolutions for

a matrix system representing the static configuration and then appear to use the
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eigensolutions to uncouple the equations of motion where the Newmark scheme is

subsequently used for the time integration.

The thesis is divided into 10 chapters where Chapters 2 to 5 recount the the-
oretical development and Chapters 6 to 8 demonstrate and discuss applications of
the computer implementations of the theory. Chapter 2 is concerned only with the
static problem, for which the theory associated with the analytical and numerical
formulations is presented. It starts with the analytical formulation of the catenary
equations and in particular a general expression is developed which describes the
2D displacement of the line under arbitrary loading. When the loading is specified
as being constant along the line length, then the catenary equations are derived
and developed for both the partial and complete cases, i.e. for nongrounded and
grounded mooring lines. The 3D numerical formulation is then given with a de-
scription of the discretisation and the lumping procedure, as well as the calculation
of the fluid forces. A solution scheme is also presented. In contrast to the remain-
ing theory chapters, this chapter also includes results generated from the computer
implementation of the two alternate analyses. In particular, a comparative study is
carried out between the analytical and numerical models. For the numerical model
a sensitivity study indicating how the number of elements used in the discretisation

may be expected to affect the solution is reported.

Chapter 3 represents the main section of work. Here the formulation of the
equations of motion are presented together with the solution procedure using the
four cited time integration schemes. The derivation of the equations of motion is
a relatively straightforward task, but now includes the modification of the acceler-
ation and velocity terms due to the presence of ocean waves and an ocean current.
There is also a method of coping with the grounding and lifting of the nodes from
the seabed. In the section concerned with the solution procedure a brief state-
ment of the four time integration schemes is given together with the necessary
rearrangements of the equations of motion necessary to facilitate the solution pro-
cess. This process is essentially the same for all four schemes, and therefore details
are only explicitly indicated for the Houbolt scheme. The slight differences which
arise when the other schemes are used are highlighted. The chapter concludes
with a short section detailing the selection of initial conditions and the starting

procedures required for each scheme.

Chapter 4 presents the modal method based solution of the equations of mo-
tion formulated in Chapter 3. The 2D equations of motion are cast into a matrix

form. The natural vibration modes of the solution are then derived from the free
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undamped equations. These eigensolutions are then used to extend the solution
technique to the case of arbitrarily excited systems. The case of most relevance,
that of damped arbitrarily excited systems, is then examined and the procedure
required to uncouple the equations of motion indicated together with their refor-
mation in the ‘modal form’ prior to their solution using any of the available time
integration schemes. The chapter concludes with a discussion of the nonlinearities
inherent in the formulation, and how the nonlinearities might affect the modal
method based solution. Preliminary results which indicate the change in natural

frequencies as the mooring line becomes more taut are included.

Chapter 5 is concerned with the derivation, the numerical stability and the
accuracy of the four integration schemes. The schemes are briefly restated to-
gether with their main characteristics, and the original pertinent references are
cited. To fulfil the aims of the chapter a section describing the jargon associated
with the numerical analysis of FD schemes (of which the time integration schemes
considered here are a subset) is presented. In particular the different types of er-
rors associated with the implementation of the numerical schemes are explained.
Then each of the FD schemes are derived; the CD and Houbolt schemes are de-
rived from considerations of the theory of linear multistep methods as applied to
first and second order problems, whereas the Newmark and Wilson-8 schemes are
derived by making different assumptions regarding the linear variation of the ac-
celeration over each time interval. A more detailed section describing the stability
of the numerical schemes is then presented. This includes the stability analysis
developed in Walton and Polachek(1960), the method of amplification matrices
and the Routh-Hurwitz conditions. The next section presents considerations of
the numerical accuracy in terms of the period elongation and amplitude decay and
indicates the consequence of these for the results obtained. The last section details
the calculation of two time step sizes, namely one which integrates all the modes
present in the solution accurately and one which corresponds to the limiting time

step size which can be employed with the CD scheme.

Chapter 6 presents the main results of the numerical comparison of the four
time integration schemes used. The results are primarily concerned with the nu-
merical properties in the solution of mooring dynamics. Although in Chapter 3 the
3D equations of motion were developed it is their 2D equivalents which are then
solved with each of the four time integration schemes. Validation of the different

numerical models is carried out by presenting some results for the limiting cases,
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that is results corresponding to the cases of no endpoint excitation and when ex-
citation has decayed out. A major section of work is presented where the results
obtained from the four schemes are compared for different situations. Points of
interest include : The maximum time step which can be used, the influence of time
step size and the number of elements, CPU times obtained, starting procedures
and the influence of the segment error function. Finally a short conclusion is given

for this chapter which summarises the main results.

Chapter 7 uses the recommendations of Chapter 6 with regard to which scheme
should be used to solve the 3D equations of motion. A short validation of the 3D
model is carried out, as well as a brief parametric investigation. The main section
of the chapter is concerned with the definition and the calculation of the dynamic
tension amplification (DTA) factors for the cases where the fairleader excitation is
coincident with the surge, sway, heave and tangential (to the line at the fairleader)
directions. This then allows an assessment of the relative importance of the ‘in

plane’ and ‘out of plane’ directions upon the dynamic tension history.

Chapter 8 is entirely concerned with an examination of the influence of seabed
interactions. These are the friction and suction effects which the seabed soil causes
on the mooring line, and the important question of nodal lifting and grounding.
The theory in the former is developed and implemented for both the normal and
tangential directions, and in each case for the line lying on or submerged in the
seabed soil. Results are then presented which show the influence of the various fric-
tional coefficients upon the tension time histories. The nodal lifting and grounding
theory is referred to in Chapter 3 and the details are given in Appendix F. Here the
potentially adverse effects are illustrated. The tension time histories during the
grounding of one node in different circumstances are isolated and plotted together

to illustrate the detail of the changes during grounding.

Chapter 9 brings the thesis to a conclusion. Here the main areas of work which
have been undertaken are summarised and the main conclusions for each chapter
are brought together. Then overall conclusions are derived regarding the impact
and relevance of the reported research and recommendations are made regarding

the further development of the theoretical model.

Note that throughout the thesis reference to ‘tension’ is taken to be the effective

tension in the line - see Sparks(1983).



CHAPTER 2

The Static Mooring Line Problem

2.1 Introduction

With a mooring line coming under the more general heading of ‘suspended
strings’, even a brief examination of the literature reveals a plethora of solutions
and different approaches to the problem. The solution methods may be broken
down into two main categories - analytic and numerical methods, with each con-
taining many variants. Most variety occurs in the analytic category where many
different simplifying assumptions are made, either to yield a tractable solution or
to make the method applicable to a certain class of problems. In the numerical
category there is less variety since the basic approach is the same, but certain
aspects of the solution may be different. In this chapter the derivation of the so-
called catenary equations is presented as an example of the analytic category. This
specific form was selected because of its common use in the estimation of mooring
line forces but also because the limitations of use are not often pointed out as they
will be here. A rigorous development of the two dimensional (2D) form of the
catenary equations is given in Dominguez and Filmer(1971) with the use of vector
notation. The derivation of the catenary equations is also given in Berteaux(1976)
who derives the general elemental forces present and then simplifies them. A de-
tailed description of the forces affecting an element of a mooring line is given by
Goodman and Breslin(1976) together with a derivation of the catenary equations
are given from first principles. Oppenhiem and Wilson(1982) present an analytic
method for determining the static geometry of a line composed of different materi-
als and with line attachments present. Hairston(1979) uses a modified form of the
catenary equations in a paper on the dynamics of moored vessels. The catenary
form of the equilibrium equations can, in principle, be derived in three dimensions
(3D) and although this is indicated in Section 2.2, only an explicit derivation of
the 2D form is given. This is done under the simplifying assumption that the
out-of-plane effects, such as ocean currents and friction from any grounded por-
tion of the line, can be neglected. The 3D formulation presented here includes
general fluid loading, but the derivation of the catenary equations assume that the
line is short and heavy, and, as a consequence, the gravity forces are taken to be

much greater than the fluid forces so that the latter can effectively be ignored, see
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Berteaux(1976). This also has the consequence that the elastic stretch of the line
is ignored in the catenary equations, meaning that they are to be regarded as ‘stiff’

mooring lines.

The numerical method developed in this chapter is a variation of that pre-
sented by Nakajima(1986a) where the continuous distributions of mass, geometry
and forces are replaced with a ‘lumped’ model with the mass and forces concen-
trated at nodes which are connected by straight line, massless springs. Thus the
differential equations governing the continuous case are reduced to an equivalent
set of algebraic equations which are to be solved at the nodes. The force balance
which forms the algebraic equations at each of the nodes is explained in detail
along with an indication of how all the forces on the line are to be included. This
explanation also includes the numerical integration of the fluid loading and the

definition of the mass distribution.

With the catenary equations being an example of the analytic solution cate-
gory, it will be seen from the ensuing theory that the numerical formulation has two
main advantages over the analytic formulation, namely (i) line attachments (e.g.
subsea buoys and clump weights) are readily included, and (ii) arbitrary fluid load-
ing from a known 3D current profile can be included in a straight forward manner.
The drawbacks to this method are, (i) a slightly more complicated formulation and
solution procedure, and (i) that it requires a longer solution time compared to the
time required for the catenary equations. The results in this chapter are divided
into two sections; firstly a comparison of the analytic and numerical solutions is
undertaken which shows how the geometries, maximum line tensions and tension
distributions compare. The second results section details some important features
of the numerical model only; in particular the influence of varying the number of

elements and the major line parameters are examined.

2.2 Analytical Formulation

Consider Figure 2.1 which shows a line segment which has an external loading
of W(s) and a resultant of @(s) for that segment. The length of the line segment is
As and w(s) is the net weight per metre of the line material at the point s, where
8 is measured positively from the origin (anchor point) along the line. In order for
the segment to be in equilibrium, there must be no net external force or moment
acting on it, that is

Y F=0 (2.1)
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Y M =0. (2.2)

Vector addition of all the forces indicated in Figure 2.1, yields
Y F=-T+(T+AT)+(s)As = 0,

and hence AT
A_.S + w(s) =0.

In the limit as As — 0, the last equation reduces to

dl  _
= + w(s) = 0. (2.3)

Taking moments about the arbitrary point O leads to
SM=FA=T)+F+ A7) AT + AT) + (Fw awAs) =0

which reduces to

AT - AF - AF
Py = = 4 F ai(s) = 0.
In the limit as As — 0, then AT — 0 and 7, — 7, therefore the last equation

yields

_ [T _ - dF
r/\[zs—+w(s)]+TAds—0.

Together with the result in Equation (2.3), this reduces to

T ,ﬂ = 0. (2.4)
ds

Equations (2.3) and (2.4) represent the sum of forces and moments for the equi-
librium condition of the line segment in Figure 2.1. Next consider, in a little more
detail, the sum of forces given by Equation (2.3). The two external forces acting
on the mooring line are the fluid drag and the self weight of the line, thus w(s)

can be written as

@(s) = Fy(s)i+ Fy(s)j + [Fa(s) — w(s)]k, (2.5)
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where Fy(s), Fy(s) and F,(s) are the fluid loadings in the component directions
at a position s along the line. The tension, T, can also be expressed in component

form with respect to the global Cartesian axes as
T =Tyi+Tyj+T:k (2.6)

By substituting Equations (2.5) and (2.6) into Equation (2.3), and separating into

component parts, the following results are obtained

d;;x = —F,;(s)

dT,

d_sy = —Fy(s) (2'7)
dT,

- = w(s) — Fy(s).

The component tensions at any point s along the line can be obtained by integrat-
ing the relevant expression in Equation (2.7) from zero to the point of interest.
This shows that the horizontal components of tension are dependent only upon
the fluid loading in the component directions. As expected the vertical tension is
proportional to both the self weight of the line and the fluid loading in the vertical

direction. For zero fluid loading it is required that
w(s) = —w(s)k, (2.8)

and thus the horizontal components of the tension in Equation (2.7) will equal
zero. This indicates that there is no change in these components along the length
of the line with zero fluid loading. The vertical component of tension is given by
T = w(s).

To find the vertical component of tension this expression is integrated with respect

to s, the length along the line, to yield
8
T,(s) = /0 w(s)ds + T,(0) (2.10)

This shows that the vertical component of the tension is directly proportional to

the external loading, which in this case is only the self weight of the line.
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Now consider the sum of moments as given in Equation (2.4). The position

vector 7 can be written in component parts as

r=uxi+yj + 2k (2.11)

Substitution of Equations (2.11) and (2.6) into Equation (2.4) yields
. . d, . .
(Tzi + Tyl + Tz_]g) /\ZS'(:I?L + (] + zk) =0 (212)

which can be conveniently expressed in matrix determinant form as

d d dz |

e g o Ll=9 (2.13)

NT; T, T,

Equation (2.13) along with Equation (2.7) completely define the three dimensional
equilibrium conditions for a line segment subject to its own net self weight and
external fluid loading. By solving this system of equations, the geometry and
tension distribution along the mooring line can be obtained. The derivation of the
more usual two dimensional equations now proceeds by ignoring the y component
in the calculation of the ‘determinant’ of Equation (2.13). This will be given
explicitly, but first an indication of the solution in 3D is given. The expansion of
Equation (2.13) yields

dy dz dz dz dx dy
_ _ 0, (214
(T’ds Tyds) K (T PR ) TE (Tyd 23 ds) 0, @M

which can be written as the single scalar relationship
(Ty — Ty)dz + (Ty — Tp)dy + (Ts — Ty)dz = 0, (2.15)

upon summing the three implicit relationships of Equation (2.14). Dividing Equa-
tion (2.15) successively by dz, dy and dz produces an implicit set of equations for

%, -2% and %f which must be solved iteratively, so that

’ﬂ

dy (L -T, )dz Y
de (T, - Tz)dm
dz (Tz Ty) dm

E f(Tz,Ty’Tz)’Say,
(
&y~ (T, — T)dy+(
(
(

fl(Tx,Ty,Tz),Say, and (2.16)

de _ (Ty~T,)dz

dz  (T; — )

)
)
)
)
; = FoTe, Ty, T2), 2.
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From differential geometry
dz? + dy? + d2? = ds? (2.17)

which becomes

ds _[(dw\*,
dr —

ds _

dy

(&)
" ( ) &)+ -
(

Therefore by substituting Equation (2.16) into Equation (2.18), the geometry of

the line can be obtained from

1
| T AETLT Y™

&l
&%
SN——’
no
+
[y
ol

2 1%
1

= ——— say, 2.18)
f4(Tx,Ty’Tz) y (

%I

Q.
(X[

8
z =/0 £3(Te, Ty, Tx)ds,
8
y = /0 fa(Ty, T,, T.)ds, and (2.19)

8
Z = A fs(Tz,Ty,Tz)ds,

since s = 0 at the origin. The solution of Equation (2.19) allows the 3D description
of the geometry of the line and hence also of the tension distribution, but depends
upon being able to evaluate the quantities in Equation (2.16). The derivation of
the 2D equations follows a similar procedure. Setting all the j components in

Equation (2.13) to zero results in the following expansion of the determinant
dz dz
(%) - (%)

d
T,= o (2.20)

Now substitute Equation (2.10) into Equation (2.20) to yield

and hence

dz 1 s T.(0)
= - kAN 2.21
T, /0 w(s)ds + T, (2.21)
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Equation (2.21) gives the relationship for the slope of the catenary at any point and
shows that it is, as expected, a function of the vertical (f; w(s)ds) and horizontal

(T:) forces at that point. From differential geometry

dz? + d2? = ds? (2.22)
hence’
dz ds\2
— =/(—) —-1. 2.23
dz (da:) ( )

By equating Equations (2.21) and (2.23) and rearranging, it can be shown that

ds

z(s) = ’ . 2.24
) /" V14§ w(s)Tr'ds + LT 2

Equation (2.24) now gives the general equation for the displacement of the line in
two dimensions under a prescribed vertical loading as defined by w(s). In order
to calculate z(s) explicitly Equation (2.24) needs to be integrated. Alternative
equivalent descriptions of the mooring line are the Cartesian description (z,2)
derived from Equation (2.21) and the (z,s) description derived from Equation
(2.24). To determine either, the load w(s) must be specified and this is usually
done for two special cases of interest. In the first case the load is viewed as
a variation with z rather than s, with the load/unit length in the z direction
being constant. In the second case the constant load is invariant with s and this
corresponds to a uniform line supporting its own weight, that is w(s) = —w The

negative sign indicating that the weight acts downwards, see Equation (2.8).

In the first case w(z) = —w and so assuming that z varies from 0 to z whilst
s varies from 0 to s, substitution for w in Equation (2.21) yields the equivalent
expression
dz =1 (= T.(0)
e = Fx /0 wdz + —:’T_’

where repeated integration with respect to = gives

2(z) = ;‘;’;’2 + T}(zo)z + 2(0) (2.25)

where the assumption that % = 0 is a necessary condition.

The second case is very similar to the first case except that the constant load is

now with respect to the line parameter s and not the horizontal distance z. As the
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pretension is increased so the catenary for the two cases will agree more closely. It

is under these conditions that the so called ‘catenary equations’ are now developed.

Catenary Equations

When considering a mooring problem and the description of this by the cate-
nary equations, it can be seen that there are two distinct cases which need to be

considered independently, namely :
e The ‘complete’ catenary where there is zero slope of the line at the seabed.
e The ‘partial’ catenary where there is a non-zero slope at the seabed.

Both cases are illustrated in Figures 2.2 and 2.3 respectively. Physically the com-
plete catenary has some portion of the length of the mooring line lying on the
seabed and in the case of the partial catenary mooring line is grounded. The two

cases are now considered separately:

Complete Catenaries

At the origin (z = 0) the following boundary conditions apply

i =0, s=0 and T, =0. (2.26)
dz

Therefore with w(s) constant and T, = 0, Equation (2.24) simplifies to

s ds
.’II(S) =/0 W (227)

which can be rearranged as

which is a standard integral form, the solution of which is

z(s) = (%) sinh™! (%) .

Clearly rearrangement of this solution leads to

s= T2 gon (3"-5) (2.28)
w Ty
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Under these same conditions, Equation (2.21) simplifies to

dz  ws
= T, (2.29)
and substituting for s using Equation (2.28) leads to
dz ) we
et sinh (-1—,;>
which is directly integrable and yields
z= L [cosh(g)ﬁ) - 1]. (2.30)
w z

The two dimensional vector equation for the tension is

T= Tzl + Tzk

hence
IT| =T = /T2 + T2. (2.31)

Since the vertical tension component is only dependent upon the weight of the

mooring line, Equations (2.20) and (2.29) imply that

T = +/T? + (ws)2. (2.32)

In order to make use of the results derived in Equations (2.30) and (2.31), a further

relationship is needed and this is derived from Equation (2.22), i.e.

— =4/1+ (d:z;)Z. (2.33)

dz
Substituting for % from Equation (2.29) and rearranging, leads to the following

result

sds
@)

Integrating over the fluid depth d and mooring line length L leads to

d L sds
b= Jor (@)
L (2.34)

dz =
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Rearrangment of this equation leads to the following result

Lo (2.35)

Thus Equations (2.28), (2.30), (2.31) and (2.35) define all the relevant quantities

for specification of the complete catenary problem.

Partial Catenaries

For the case of partial catenaries the boundary conditions at the origin become

dz _ tanf,, and s =0 (2.36)
dz

Direct application of the first two boundary conditions in Equation (2.21) gives

tan By = -7-1;_'(—0) (2.37)

and hence direct substitution into Equation (2.24) with a constant loading w, yields

the following

o(s)= [ ds , 2.38
(¢) -/0\/1+('7”~f+tanﬂo)2 (2.38)

The form of Equation (2.38) is very similar to Equation (2.27) and so the integra-

tion process is also analogous. In particular, using the substitutions

p= w3 +tanfy and a=1 (2.39)
T,
it follows that
To[. . _y(ws o 240
z(s) = —|sinh (— + tan ﬂo) — sinh (tan ,30) ( . )
w T

and rearranging for s gives

s = & [sinh (E + sinh'l(tan ﬂo)) —tan ﬂo] . (2.41)

w T,
These two equations can be used to calculate s and z, but a value for z is also
needed. From Equations (2.20) and (2.21) and the first boundary condition of

Equation (2.36), it can be seen that

dz ws
—_—— 2.42
T - + tan f,. (2.42)
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By substituting for ws/T; from Equation (2.41), and then integrating (implicitly),

the equation for z is
z = / smh[ + sinh~!(tan ﬂa)] (2.43)
Explicit integration then leads to
Tx we N _1 . _1
== [cosh (T + sinh™" (tan ,Bo)> — cosh(sinh™ (tan 3,)){. (2.44)
w z

To calculate the axial tension at any point s along the line, both Ty and 7T, are

required. Equation (2.10) is restated
7.(s) = | " w(s)ds + T(0) (2.10)
and under the condition of constant loading, w(s) = w, it follows that
T,(s) = ws + T, tan fy, (2.45)
by using Equation (2.20) and the first boundary condition of Equation (2.36). The

general expression for axial tension for the case of a partial catenary is now derived

from Equation (2.31), that is

T(s) = \/Tf + (T, tan B, + ws)2. (2.46)

Also it follows that T, = T'cos § = T, cos B,. As before, a further relationship is
derived from Equation (2.33), i.e.

ds dzy\2

= - haied 2.33

— =11+ ( dz) , (2.33)
but from Equation (2.21)

dz ws

= = 2.47

- T + tan G,. ( )

Rearranging Equation (2.47) to provide p = %, then substitution into Equation
(2.33) and some rearranging yields

/ dz = —== /:2 b (2.48)

tphyfa? +p?
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Following the use of standard integrals, substituting in the limits and some alge-

braic manipulation, the following results

Ty _ (L% — d%) cos B,
w  2(d—Lsing,)’

subject to cos By # 0 and T # 0.

(2.49)

Summary of Theoretical Analysis

This chapter, so far, has primarily been concerned with the general 3D deriva-
tion of the equilibrium conditions for a catenary segment subject to arbitrary
external loading. Initially equilibrium was expressed through Equations (2.3) and
(2.4), with the final forms given by Equations (2.7) and (2.13). Having indicated
how this system of 3D equations could be solved, the general 2D solution was ex-
plicitly derived, as expressed in Equation (2.24). This solution is dependent upon
being able to analytically evaluate the integral in the denominator of Equation
(2.24), which, in turn, depends upon the arbitrary loading function w(s). To com-
plete the analytic integration two simple forms of loading were assumed. In the
case of w(s) being treated as w(z) = w, where w is constant, the analytic expres-
sion for z(z) has a parabolic form, see Equation (2.25). The alternative case of
w(s) = w, where w is constant, leads to the so called catenary equations and these
have been discussed in some detail. These equations are developed to analyse two
situations; firstly where some part of the mooring line is lying on the seabed, and
secondly where all the line is suspended. The former situation corresponds to a
‘complete’ catenary and the appropriate equations are Equations (2.28), (2.30),
(2.32) and (2.35). The latter situation corresponds to a ‘partial’ catenary and the
relevant equations are Equations (2.41), (2.44), (2.46) and (2.49). The solution of

these analytic equations is now discussed in the context of the developed software.

Outline of Analytical Software

With the theory of the catenary equations developed, their solution is now

discussed in terms of the role of each equation in the iterative scheme developed.

Complete Catenaries

The governing equations for this case are re-presented here for ease of expla-

nation of the calculation process, that is

=12 g (1"3) (2.28)
w 1Ty
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2= TE [cosh(f”-f) -1 (2.30)
T = /T2 + (ws)?, (2.32)

and .oy
—=5-3 (2.35)

Initially the principal parameters to be specified are, the uniform load w, depth
of water d (here it is assumed for convenience that the fairleader is attached to
the floater at the undisturbed water line, but this assumption can be changed by
making d the height of the fairleader above the seabed), the length of the mooring
line L and the horizontal location of the fairleader relative to the origin O, z, say.
In general w is specified by providing the nett weight of the mooring line in the

water.

With the principal parameters defined, an iterative scheme is used to calculate
the touchdown point of the line on the seabed. Although the vertical height of the
upper endpoint position is known, it is now calculated for two possible extreme
positions of the touchdown point. The first touchdown point is defined at the
anchor, whereas the initial second touchdown point is defined at a position slightly
less than z,, T say, from the origin, O. Using Equation (2.30) with z = z, the
vertical position of the fairleader, 2, say, for the first selected touchdown point can
be determined. For the second initial touchdown point, the vertical position of the
fairleader, zp1 say, is determined from Equation (2.30) with z = zp1 and Equation
(2.35) is used to define Ty using L = L—zp;. The required upper endpoint position
z = d will then lie between z, and z,;. Likewise the true position of the touchdown

point will lie between z, and x,1, at x4 say. Using

Tp + Tpl
‘”‘d=(p2p>

to find a new estimate, and using this point as the new ‘origin’, Equations (2.30)
and (2.35) are applied with = 2, — ;g and L = L — z44. Depending upon where
the value of z calculated for z;4, 24 say, lies in relation to zp, the bisection method

is used to provide a new estimate of z;9 according to the following relations:
If 2(z44) <2, then z, =124

and

If z(z43) > 2, then zp; = zyq.
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This process is repeated until 2 as given by Equation (2.30) lies within an ac-
ceptable margin of error. Equation (2.28) should then provide a estimate of the
length of the mooring line which is in close agreement with L = L — z;3. The
iterative scheme described is readily appreciated upon studying Figures 2.2 and
2.4 together.

Partial Catenaries

As before the governing equations are re-presented to explain the iterative

calculation process. In this case the following are required:

s = % [sinh (? + sinh™}(tan ﬂ,,)) — tan ,8,,] , (2.41)
z= Twﬁ [cosh (% + sinh™!(tan ﬂo)) — cosh(sinh™!(tan ﬂo))], (2.44)
T(s) = \/TE + (T, tan B, + ws)?, (2.46)
T, (L? - d®)cosf, (2.49)
w  2(d—Lsinf,)’

Here the same principal parameters as for complete catenaries are defined. The
depth of the catenary is now calculated from Equation (2.44) subject to (%)
determined from Equation (2.49). Initially 8y = 1°; if for this value of Bo the
catenary depth is greater than the water depth, then this situation is considered
to conform to a complete catenary, and the algorithm described previously should
be used. Otherwise, the increment in the iteration process is one degree, where with
an increasing value of fy it is expected that the catenary depth will increase. The
increase in By continues until its value is just sufficient for the catenary depth to be
greater than the water depth and that for the previous value of By (by definition),
the catenary depth is less than the water depth. Linear interpolation is then used
to calculate the required By value and this value is used to calculate T, /w. With
the correct values of §y and T /w having been established, the catenary geometry
can now be calculated by taking intervals in z and using Equation (2.44). The

flow chart for this process is shown in Figure 2.5.

Iteration and General Solutions

In offshore engineering the catenary equations can be used to provide estimates
of the additional stiffness of the moorings in the equations of motion for the floater.

This thesis is primarily concerned with the solution of the more general problem
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of mooring line dynamics. However, the software developed for the solution of
the catenary equations provides some insight regarding the numerical iteration
schemes, and in Section 2.6 these solutions will be compared with the predictions
derived from another solution method. Prior to this a numerical formulation of the
static equations for a mooring line is presented, along with a numerical solution

scheme.

2.4 Numerical Formulation

In Figure 2.6 the continuous mooring line is represented as a series of straight
line elements with the nodes numbered from zero starting at the anchor point.
References to elements is done by taking the ‘mean’ values of the node numbers
bounding the element. Similarly, see Figure 2.7, geometric and element force quan-
tities are subscripted according to the element number. This particular approach
to modelling the statics of the line is known as the Lumped Mass (LM) method
because the continuous distributions of mass, external forces and geometry is re-
placed by a discrete distribution of mass and forces acting at the nodes defining the
geometry of the line. The nodes are considered to be joined by massless, straight

line elements which are treated as springs to simulate the elasticity of the mooring

line.

The terminology and nomenclature introduced here is consistent with that
used in the formulation of the corresponding dynamic problem in Chapter 3. In

particular the following are used:

T; +1 Tension in element j+1,
Fx( i+1) Global fluid loading along the z axis for element j+3,
M, 1 Net mass of element j+4, half of which is lumped at node j,

T Net weight of line attachement at node j,
The angle that element j+1 makes with the global zy plane,

Vi+i
The angle that element j+4 makes with the global zz plane.

€i+d
Quantities of a similar form but with a different coordinate dependent subscript,
simply relate to these properties acting along different local or global axes. The

forces acting on the system of masses are
1. Self weight of the mooring line.

2. The influence of any line attachments which may be present.
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3. Fluid loading on the line segments and line attachments.

The self weight of the line must account for the buoyancy of the line segments in
order that the total immersed weight of each line segment is used. This is then
lumped at the appropriate node and acts negatively along the global z axis. Since
at each node the influence of two segments is considered, i.e. the segments above
and below the node, then the mass lumped at the node is taken to be an average
of the mass of the segments on either side. Modifications of the mass lumped
at a node may occur if there are any line attachments present where the points
of attachment are always considered to act at a node. These attachments are
generally subsurface buoys (SSBs) or clump weights introduced to achieve some
desired alteration of the tension distribution or geometry in the line. At all times
the line of action of the attachments is parallel to the global z axis. For SSBs the
weight of the structure is corrected to account for the associated buoyancy force
assumed to act at the node. That is the mass equal to the buoyancy force of the
attachment is subtracted from the net mass lumped at the node. The clumped

weights are treated similarly.

The calculation of fluid loading on a line segment is considered to be the
problem of an arbitrarily oriented smooth cylinder in a uniform ocean current.
Morison’s equation is used to estimate the drag forces on the cylinder, however the
inertial term is not considered because this is a function of relative fluid acceleration
which is not applicable in a static formulation. For complete specification of the
fluid loading, correct estimation of the normal and tangential drag coeflicients
is necessary. Although it is recognised that tangential drag is likely to be very
small compared to the normal drag, and that the estimation of the tangential drag
coefficient is less certain than the determination of the normal drag coefficient,
both are included for completeness. In the calculation of the fluid loading acting
on line attachments it is assumed that the attachments remain vertical, even in
the presence of a current. Furthermore the attachments are assumed to exhibit
some form of geometric symmetry, usually spherical, in order to avoid unnecessary
complication of the problem. Fluid loading is again calculated from Morison’s
equation with the drag coefficient estimated as a function of the local Reynold’s

number.

By resolving the weights and forces along the global axes of Figure 2.7, the
conditions of static equilibrium can be expressed as

1
Tj_% COSY;_g COSE;_1 = Tj+% COSY; 44 COSE; 1 + §(F2(j—%) + Fz(j+%))’ (2.50)
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. 1
T. jcosy;_gsing; 1 =T; C08 741 sine; | +§( y(j_%)+Fy(j+%)), (2.51)

=3 =3 J+§'
. Lo 1
=450 Y-y F M+ My g + a5 = Ty sinyipg +5(F-p + Fagie)-

(2.52)
In continuous mechanics, equilibrium conditions would normally produce six equa-
tions. Here, because all the forces are assumed to act at the nodes no corresponding
moment equations can be generated. Since the fluid forces acting on an element
depend upon the orientation of the element and this, like the tension, is not known

a priori, a method of satisfying Equations (2.50) to (2.52), is now considered.

Solution Outline

Suppose that all the element properties, masses and fluid forces are known
for element j-%, then Equations (2.50), (2.51) and (2.52) still have six unknowns,
namely TH- s Ve Sirdr Feirdy y(J+§) and F 2(i+1) and hence these equations
cannot be solved to yield these unknown values. To solve them an initial solution
is calculated where the influence of current forces are omitted, then Equations
(2.50), (2.51) and (2.52) reduce to

Tj_% COSYj_3 COSE;_1 = Tj+% COS Y14 COSEj 4 1 (2.53)
Tj_% cos'yj_%sinej_% = Tj+1 €08 Yj 4.1 sine; 1 (2.54)
Tj_% sin'yj_% = TH-% sin ;1 -——(M +M]-+%)g—,uj. (2.55)

Under the conditions of the original assumption, all the quantities on the left
hand side of these equations are known. Consequently there is now a set of three
equations in the three unknowns T i+3 Tits and €, i+ and hence the equations can
now be solved. Clearly once a set of values for the first element have been selected,
then this set of equations can be solved successively for each element, resulting
in a complete description of the line geometry and the tension distribution. Thus
it immediately follows that the final solution depends directly upon the initial
values assigned to T1 » 7} and ¢ 1 The boundary condition for the solution at the
upper endpoint of the hne is that its location must coincide with the preselected
position designated (zp,yp,2,). Here without any loss of generality, this point
can be located on the undisturbed free surface. In order that the upper endpoint
converges to this point a series of iterations as discussed in Section 2.5 must be
made with different initial values to achieve the required converged solution. Once

convergence is achieved a description of the line geometry and tension distribution
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exists and this solution can be designated ~1 +1 and T . The next step is to

i+3 €
account for any fluid forces which might be present The manner of including these
forces is to formulate a series of approximate solutions which include the fluid forces
derived from the displacements of the previous solution. The i** approximation is

now determined from the original equations and is written in the form

t 1 $ :—1 i—1
Tj_%cos'yj_%cosaj %—T'_l_l cos'y+1 cose’ i+h + ( 2 §)+F G+ )), (2.56)

[y

$ i s i i—1 i—1
Tj_% cosy;_psine; s = TJ+% cosy} i+ smeH_l + = (Fy(] _1) + Fy(]._*_%)), (2.57)

Tt %sin'y': | = T'+1 sm*y i+3 + = (F")1 b +F:(_j1%)) - -;—(M 1 +M+%) — Uj.
(2.58)
For this particular problem ¢ not exceeding 4 has been found to provide accurate
solutions. Assessment of accuracy and convergence can be monitored through the
differences in the nodal displacements predicted by the i** and (i + 1)* solutions.
With ¢ = 4, for example, there will have been three successive solutions which
include the effects of fluid loading. Prior to presenting the iterative aspects of the
solution technique in any great detail, the methods for evaluating the fluid loading
and the tension distribution are discussed. Some further account is also given on

how to lump the mass of the mooring line.

Calculation of Fluid Loading and Tension

So far the calculation of the tension and the effects of fluid loading have only
been discussed in general terms in the context of the outlined solution procedure,
but this is now considered in some detail. In the absence of any tensile forces an
element is considered to have an unstretched length of I,, whereas the new length
under tensile loading is 1. These lengths are now assumed to be related according

to Hooke’s law, that is

T=1(1+¢) (2.59)

where oT
- 2.60
€= % (2.60)

Thus € is the line extension under loading, D is the line diameter with no tension

and E is the Young’s Modulus of the line material.

In order that the fluid loading forces can be evaluated according to Morison’s

equation, the value of the line diameter under loading, D, is required. This is
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related to D, € and Poisson’s ratio (v) for the line material through the following

relationship

D = D(1 - ve). (2.61)
The normal and tangential fluid loading will act respectively over an effective

diameter D and a surface area given by
A, =lD. (2.62)

Here the fluid loading is assumed to arise from ocean currents, the components of
which are usually defined with respect to the global axes. In order to calculate
the fluid forces on a line segment, the normal and tangential fluid velocities on
a particular element need to be calculated. Since each element has a different
orientation defined by Vit and ¢, 1y then the normal and tangential components
need to be calculated for each element. This is achieved by introducing a set
of local axes, Pitdr Gixds Tisho which are orthogonal to the element orientation
(see Figure 2.7). They are also defined as being coincident with the global axes
(z,y,2) when Vit and e, 1 are both zero. Dropping the subscripts on € and « for
convenience, the transformation matrix (see Appendix A) between the two axes

systems is given by

P COSYCOSE  cosysing sinvy z
q | = —sine COSE 0 yl. (2.63)
T —cosesiny —sinysine cosYy z

Let (92) denote the transformation matrix of Equation (2.63). Since the current
velocities are also related through the same transformation, then the local current

components p, ¢ and r satisfy

(2.64)

N @ 8-

p
g]=(2)

However in the application of Morison’s equation the resultant normal velocity
defined by
1
up = (§% +#%)2 (2.65)

is used. Also it follows that orientation of the resultant velocity is specified through

¢ = arctan (%) (2.66)
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The general form for the drag component of Morison’s equation is
1
F= §pCdDu|u|, (2.67)

where p is the density of sea water, Cy is the drag coefficient, D is the characteristic
dimension and wu is the fluid velocity. Therefore the normal and tangential drag

forces acting on a line segment are given respectively by
1 3
Fn = é'pCdn.DUnlunnl (2.68)

and

Fy = %PCthutlutl, (2.69)

where A is as defined in Equation (2.62), D is given in Equation (2.61) and u; = p.
Once the normal and tangential drag forces at any point along the line segment
have been determined, they must be integrated to find the total drag forces acting
on the element. Since half the total force on each element is lumped at the appro-
priate nodes, the integration is carried out separately over each half element, as

indicated in Figure 2.8. The forces in the local axes are calculated from

Fog| = Facosé |. (2.70)
Fy Fysing

The forces along the element are integrated according to the 3 point Gauss -

Legendre quadrature. The general n point quadrature formulae is defined by

1

[ Heis = 3 Hiftas), (271)

-1

where Hj is the j** weighting, and a; is the j** abscissa of the closed interval [1,1].
With different limits of integration, a and b say, both a; and H; would be scaled by
(%—9) Thus for the selected case of n = 3 the following apply : a; = —0.77459667,
az =0, a3 = 0.77459667, H; = H3 = 0.55555..., and H2 = 0.88888....

The tangential force is integrated by multiplying each of the three values of F}
by the appropriate element length. Once the total force has been calculated for

each half element in the local system, it must then be transformed into the global
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axes ready for lumping at the appropriate nodes. This is done according to the
inverse of the transform of Equation (2.63), that is

Fl=()F]. (2.72)
F, F,

The lumping of the forces at the nodes means that for each element there are six
points of integration. However, since the integration is performed by application of
the 3-point scheme twice, the maximum order of an exactly integrable polynomial
by this scheme is 5. Thus if the actual distribution of the fluid forces over the
entire element is represented by a 5* or lower order polynomial, then this method
of integrating the fluid forces would have been performed accurately. Since as the
current profile is only defined as being piecewise linear, then the above scheme

may be considered to provide adequate accuracy.

Mass Distribution

It is seen from Figure 2.9 that half of the mass associated with the first and
last elements should, in theory, be lumped at the extremities of the mooring line.
However, since the conditions specified at these end points are the required bound-
ary conditions for the solution, they do not enter into the static solution explicitly.
Hence the total weight of the mooring line which enters the solution using the mass

distribution defined in Figure 2.9 is Mr;g say, and is given by

11
MTlg = Z '2-(M]+.% + Mj_%)g7 (273)
]:

assuming that there are h elements. However the total weight of the line as ex-

pressed at all the nodes, is given by

h

|
o
N —

(Mj+% +M,_1)g. (2.74)

B =

Mrog =
1

where h is the total number of elements. To realistically account for the ‘extra’
mass of %(M 3t M,_ } ), this is equally divided between all the ‘internal’ nodes.
Thus the mass at any internal node is now distributed as illustrated in Figure 2.10.

That is, it is given by

(M, %+M 1)+ AM, (2.75)
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where

(M% +Mh—%)

AM = 2(h — 1)

2.5 Solution Procedure for the Numerical Scheme

The numerical formulation of the static equilibrium problem described earlier
is known as an ‘initial value’ problem, since the solution obtained depends upon
the initial values chosen. In this section a description of how the initial values of
T% Rt and € 1 can be systematically varied to provide a solution which satisfies the
upper boundary condition, is presented. A flow chart of the solution procedure
is given in Figure 2.11, and is shown in more detail in Figure 2.12. To further
clarify these procedures some of the ideas contained in the flow diagrams must be
explained. The first concept relates to the definition of a ‘convergence line’, (C).
This is a line which lies in a horizontal plane passing through point (zp,yp, 2y) and
whose horizontal angle is defined between the horizontal line from the origin to the
point (z,,y,) and the global z axis. The second parameter is the ‘radial position’
R, which is the distance along the C; where the boundary condition (Zp,¥Yp, 2p)

lies. The terms are defined mathematically as

C; = arctan (&> (2.76a)
Tp
and
Ry = (22 + )t (2.760)

To start the solution procedure, estimates of the tension and the vertical and
horizontal orientation of the first element are needed. For the initial estimate of
the tension in the first element the value of the line breaking strength (BS) can
be used. Although this will cause the tension in the subsequent elements to be
greater than this, when the upper endpoint boundary condition has been satisfied
the maximum value of the tension distribution should be less than the breaking
force, leading to a safe solution. If it is not then the solution procedure must be
repeated with a line material which has a greater breaking strength. Since it is
not known a priori whether the first element is grounded or not, two angles are to
be associated with the vertical orientation of the first suspended element. Firstly
a small angle which defines when the element has become ‘grounded’; this means
that once the element angle has become less than this specified value, the solution

procedure will assume that this element is grounded on the seabed. The second
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larger angle provides an upper bound for 4. It corresponds to an angle made by a
straight line drawn from the anchor position to the free surface, which has a length
equal to that of the mooring line. These angular limits are referred to as Y™ and

~4™3X and are given by

'™ = 0.005° (for example) (2.77a)
and d
~™&* = arcsin (Z) (2.775)

where d is the water depth and L is the length of the catenary. When considering
the horizontal orientation of the first element the angular definition of the Cj as
defined in Equation (2.76a) is used to define maximum and minimum values of ¢,

that is

min

gmin — G _10° (2.78a)

and

emi® = 01 4 10°. (2.78b)

Before the calculation loop of Figure 2.11 is entered, the following initial conditions
to be used are T1 = BS, 7 =7 min 5nd ¢ L= eMmint  The values for the variables
T; +30 it} and e] +} for j = 1,...,h are then calculated as described in Section
2.4.1 using the scheme set out in Flgure 2.11. The first objective of the iterative
solution procedure is to bring the upper endpoint of the line onto the surface
defined by z,. To do this the calculated vertical position (2c) of the endpoint is
compared with z,; if it is found to be greater than z, the first element is grounded
and the solution is restarted with exactly the same initial conditions but now
these are applied to the second element. This process continues until z is less
than z,. When this is the case, v is set to y™** and this is used to provide a
value for z, designated as z.;, which will lie above the free surface. Interpolation
can now be used to establish a value for « i+ which causes z, &~ zp. Because of
the nonlinear relationship between To+} and zp, where the subscrlpt g+% denotes
the first nongrounded element, the 1nterpolat10n is an iterative process and so an
acceptable error margin for z, must be defined for z to lie within. This error
typically has a value of 0.01% of the water depth. When the endpoint lies on the

free surface this is the end of the first loop of the solution process.

The second loop of the solution process is intended to bring the catenary

endpoint onto the C;. For the first loop described above, convergence on the free
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surface has been achieved for values of & o+l and T | 1 which have not been changed
from the initial values they were set to. For the start of the second loop new initial
values of T% = BS, 7= 4™ and € 1= ™% are set and the first loop is then
repeated until the solution converges on the free surface for a second time. Now
there are two solutions which lie on the horizontal plane defined by 2z, and which
lie on either side of the Cj. The same interpolative method used in the first loop
is now used to alter the horizontal orientation of the first element so that the

endpoint converges on the C;. This is the end of the second loop.

The solution has now been developed to the point where the upper endpoint
of the mooring line lies on both the free surface and also on the Cj. At this point
in the solution process the tension in the first nongrounded element still has the
value of T,. 1= BS. This value is now reduced to a nominal 10% of this level
and the solution is again restarted. When the end of the second loop is reached
for the second time there are two solutions which lie on the Cj, but with different
radial positions. Again interpolation, as described previously, is used to provide
the initial tension required to satisfy the boundary condition, that is the endpoint
is located at the requested Rp. This ends the third loop in the solution procedure,
and the solution now satisfies the required boundary condition for the case of no

fluid loading.

Up to this point the solution has been generated without the application of
fluid loading, as discussed in Section 2.4, that is the solution has been obtained for
i = 1. The fluid loading forces are now calculated for the static geometry obtained
from above. Next the entire process is repeated again so that a new solution is
obtained which now takes some account of the fluid loading. The fluid loading is
then again calculated from the new geometry and the whole process repeated; this
is done until the change in the displacements of the solutions obtained for ¢ — 1

and ¢, lies within some predefined tolerance.

With the final solution, the tension distribution along the line can be used to
confirm or reject the original choice of line material. With this numerical procedure
it is possible to define different material types for each individual element so as to
reduce the stresses in areas of high tension. For the practical application of this
software error limits are defined on the water depth, the horizontal orientation of
the convergence line C; and the radial position Rp. Note, however, that each time
an initial condition is changed, the whole convergence procedure must be repeated
up to that point.
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2.6 Results

Having developed iterative schemes to solve the analytic catenary equations
and indicated how to solve the more general numerical problem, comparisons be-
tween the two can now be undertaken. Within the open literature, however, very
few published papers provide comparisons of predictions using the catenary equa-
tions and the numerical formulation. One such is a paper by Dominguez and
Filmer(1971). Although the numerical technique is not explicitly described in the
paper, it is based on the equilibrium of forces at each node. Thus the principle,
at least, is the same as the formulation presented in Section 2.4. Wang(1975) also
presents a comparison between analytical and numerical methods, although there

are subtle differences, namely:

1. The analytic form of the catenary equations is not developed, instead the differ-

ential equations of equilibrium are directly integrated using numerical methods.

2. Three numerical models are developed but results for the model which corre-

sponds to that in Section 2.4 are not discussed in detail.

3. Both the analytic and numerical models are regarded as initial value problems
and not as boundary value problems as formulated in this thesis and in the

paper of Dominguez and Filmer(1971).

This means that only the results from Dominguez and Filmer(1971) can be used

as a basis for comparison.

Similarly very few papers exist which present the explicit derivation of, or the
results from, the numerical method. One paper which does is by Nakajima(1986a).
In this case the formulation is presented in some detail, but the required data
and the results derived from the method are not clearly given. Consequently
validation of the present numerical model with results presented in the literature
is not possible. Tables 2.1 and 2.2 illustrate the principal variables required to
run the numerical and the analytical programs respectively, together with typical
values used. This basic data set is changed as necessary to yield the required

results for the different case studies now reported.
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Parameter Symbol | Units Value
x position of endpoint Tp m 1000
y position of endpoint Yp m 1000
Water depth d m 1000
Line breaking force BS N 800000
Length of mooring line L m 2000
Number of elements - 20
Water density p Kg/m? 1025
Then for each element the following are defined
Line diameter D m 0.07148
Mass per metre in air m kg/m 25.5
Young’s Modulus E Afl\:/I;N/mz 7.848 x 1010
Poisson’s ratio v - 0.3
Normal drag coefficient Cd, - 1.6
Tangential drag coefficient Cdy - 0.03
Radius of SSB Ry m 1.5
Density of SSB material pssp | kg/m? 0.0
Drag coefficient of SSB Cdggp - 0.1
Radius of clump weight Rew m 0.5
Density of clump weight pew | kg/m? 1000
Drag coefficient of clump weight | Cdey - 0.4
End of element data
% error in depth Zerr - 0.001
Angular error on Cj Clerr | degrees 0.01
% error on R, Rperr - 0.01

Table 2.1 — Line Parameters for Numerical Model
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Parameter Symbol | Units | Value
Length of mooring line| L m 2000
water depth d m 1000
Radial position R, m 1414
Second limit 2] m 995

% error in depth Zerr - 0.001
Net mass per metre w(s) |Kg/m®| 21.4

Table 2.2 — Line Parameters for the Analytical Method

2.6.1 Comparison of Analytic and Numerical Results

Case Study 1 : Geometric Comparison

The first obvious comparison to be undertaken is the geometry generated by the
analytic and numerical models. In general it is expected that the geometries should
be the same for the same boundary conditions. Using the catenary equations
Figure 2.13 shows the predicted geometry of the complete catenary for different
values of R, where Ry is the horizontal distance between the anchor position and
the endpoint of the line (see Equation (2.76b)). Thus as R, increases, more of
the line is lifted from the seabed and the resulting change in geometry is clearly
illustrated.

Figure 2.14 shows the corresponding predictions for a numerical model based
on 20 elements. It can be seen that the geometries are almost identical with those
of Figure 2.13, including the estimation of the amount of line lying on the seabed.
Figures 2.15 and 2.16 show predictions generated when using the same R, values
applied to numerical models of 10 and 3 elements respectively. They show how an
increasingly coarse discretisation of the line leads to less accurate predictions of
the line geometry. In particular, the 3 element model shows expected inaccuracies
in the prediction of the amount of grounded line as the R, value changes. This
is illustrated by comparing the predictions for R, values of 1500m and 1550m.
For the first R, value it is seen that the first element is grounded, whereas in the
second case the solution predicts no grounded line at all. This sudden change in

the line geometry has implications regarding the line tension.
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A more instructive comparison of the predicted geometries is shown in Figures
2.17 and 2.18. The former shows that the geometries of the 20 element numerical
model and the analytic model agree very well for most of the length of the line,
only differing slightly in the touchdown region. The geometry of the 3 element
model is, as expected, not in good agreement with the other models. Figure
2.18 provides a comparison of the same four models but at values of R, which
correspond to the maximum practical limits allowed in the models. Again the
20 element numerical model and the analytical model agree well, whereas the 3
element numerical model shows the worst comparison at the lower R, value, but

exhibits a much better geometric comparison at the larger R, value.

Case Study 2 : Tension Variation at Different Excursions

Figure 2.19 indicates how the maximum tension developed in the mooring line
varies as a function of R, for the four different models. Figure 2.20 shows the
percentage deviation of the numerical models’ maximum tension from the solution
obtained from the catenary equations. The location of the maximum tension in a
mooring line is normally at the top end, since at this point all the weight of the
line is being borne. The position of the maximum tension may change when there
is a subsurface buoy (SSB) with a large buoyancy force located at an intermediate
position along the line. In this case the maximum tension may be found to be in
the element adjoining the SSB. For the present no SSB is assumed so the maximum
tension is considered to be located at the top of the line. As the model becomes
more coarse, the excursion curve (i.e. the curve of maximum tension versus Rp)
becomes more irregular, although the same general trend is maintained. Also the
tension developed by the 20 element numerical model very closely matches that
developed by the analytical model, but that it diverges slightly at the larger values
of Ry. Also the results from the 10 element model closely follow the predictions
of the 20 element model, even if they are very slightly greater. This difference

increases slightly with R,.

The excursion curve for the 3 element model is worthy of further discussion,
because the coarseness of the model highlights an important feature not immedi-
ately apparent in the behaviour of the other numerical models. Firstly, there is
the general shape of the excursion curve. The gradient of the curve is shallow at
low R, values, indicating that a large change in R, produces only a small change
in the value of the maximum tension. However the gradient quickly steepens as
Rp is increased, until B, = 1550m. Reverting to Figure 2.16 it is observed that
at approximately this value of R, the first element is lifted from the seabed. It
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is this which causes a reduction in the gradient of the excursion curve of Figure
2.19. This characteristic can be interpreted in terms of the elastic behaviour of the
mooring line. With the first element grounded and the value of R, increasing, the
two freely suspended elements are gradually becoming more taut. Furthermore,
any increase in Rp is not only altering the geometry but also is extending the line in
a Hookean fashion. As R, continues to increase the effect is increasingly to stretch
the line and not to change the geometry. This is due to a decreasing amount of
geometric ‘slack’. This effect manifests itself as an increase in the gradient of the
excursion curve of Figure 2.19, up to R, = 1550m. Following the lifting of the
grounded element, the amount of geometric ‘slack’ suddenly is increased. This can
be thought of as having an effect similar to that of reducing the R, value when the
first element is grounded. That is, this would cause a reduction in the gradient
of the excursion curve in Figure 2.19. As the R, value continues to increase, the
gradient of the excursion curve again becomes steeper. Thus it may be concluded
that the tension developed in a mooring line is affected by two characteristics of
the line, which may be termed the geometric stiffness and the material stiffness.

The above discussion indicates that with a low R, value a small change in the
top tension produces a large change in the R,. This occurs because at this point
on the excursion curve most of the increase in the tension is being absorbed by the
geometric stiffness and the contribution of the material stiffness is not as significant.
As R, increases, the amount of geometric slack decreases and hence the ability of
the geometric stiffness to absorb the change in the top tension is reduced. Thus
the increase in the top tension is increasingly countered by the material stiffness
which requires a large change in force to produce a change in displacement. By
this reasoning the shape of the excursion curve for the 3 element numerical model
is qualitatively explained using concepts of geometric and material stiffness. The
same concepts apply to all solutions of mooring lines and act to produce the same
effects, but it is only in the 3 element numerical model that these become obvious.

The distribution of tension along the line for the 4 models considered is shown
in Figure 2.21. As expected the tension in the grounded elements remains con-
stant, and then gradually increases as the upper endpoint of the mooring line is
approached. This is a consequence of there being more line to support and hence

a greater tension results.
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Case Study 3 : Influence of Water Denth on Mazimum Tension

In this study the length of the mooring line is always considered to be twice
the water depth, and similarity of catenary shape at different depths is maintained
by ensuring that z, and y, (the coordinates of the boundary condition) are equal
to the water depth. Furthermore, all numerical results are now obtained with the
20 element model unless otherwise stated. The difference between the predicted
maximum analytical and numerical tensions are shown in Figure 2.22 for increas-
ing depths. The predicted maximum tensions can be seen to linearly diverge with
increasing water depth, suggesting that the analytic results become increasingly
inaccurate as water depth increases. The difference between the maximum pre-
dicted tension for different numerical models relative to the analytic solution for
increasing values of R, for the same water depth, were presented Figure 2.20.
This shows that as R, increases the difference in the results increases, but even
at the maximum practical value of R, the difference is not significantly greater
than at lower R, values (for the 20 element model). In both cases the maximum
tensions derived from the analytic method are seen to underpredict the maximum
tensions derived from the numerical method. This difference, caused by increasing
either the water depth or R,, can be explained on the grounds that the catenary
equations are developed for short lines where line stretch is considered relatively
unimportant. This is equivalent to demanding that Young’s Modulus is infinite
which further implies that no line stretch is allowed in the solution generated by
the catenary equations. As such this is an effect related to the material stiffness
term previously discussed in case study 2 and, as indicated there, this term only
becomes important as Ry increases. Therefore in the case of the analytic solution
the effect of material stiffness upon the predictions will be unchanging with R, or
water depth. The predictions generated by the numerical model will, however, be
subject to the effect of the material stiffness term. As mentioned in case study
2 this effect will increase with increasing R, values, thus causing the divergence
present in Figures 2.20 and 2.22. Therefore the difference in the results is due to
having more limiting constraints implicit in the assumptions used to derive the

catenary equations.

Properties of the Numerical Model

Case Study 4 : Change of CPU with Number of Elements

Figure 2.23 indicates the computer central processing unit (CPU) time taken

to obtain each solution as a function of the number of elements (k). The graphs
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are seen to be nonlinear and that within the limits of obtaining an accurate CPU
time, the times do not appear to be depth dependent. A rough estimate of the

CPU time required as a function of A has the form
CPU =~ ARB,

with A &~ 5.435 and B ~ 1.755.

Case Study 5 : Change of Mazimum Tension with Number of Elements

Figure 2.24 indicates how the maximum tension developed is affected by the
number of elements used in the numerical model. This shows that 60 elements
would give a very good approximation to the assumed ‘true’ solution obtained
with 100 elements. With 20 elements the solution is over predicted by roughly
1%, but the required CPU time drops from 7000ms (for the 60 element model)
to 1000ms. This result is confirmed in the paper of Dominguez and Filmer(1971).
Here the right hand side of case IIl is the relevant result for comparison where an
over prediction of approximately 1.5% is found for the 20 element model. However
this result is based on comparison with the analytic solution and not to the ‘true’
numerical solution as assumed here. Figures 2.26 and 2.27 show the percentage
deviations of solutions with differing numbers of elements from the solution with
100 elements (100E) and the analytical solution respectively, for three different
water depths. What is apparent from Figure 2.26 is that the accuracy is indepen-
dent of the water depth and it can also be seen that a numerical model with 20
elements only incurs a relative error of 1%. Figure 2.27 shows that the differences
are depth dependent, for the reasons given in case study 3, but that for each depth
the trends are the same. Additionally a 20 element model is seen to give an error
of approximately 1%. Consequently 20 elements may be regarded as a practical
number of elements to use with the numerical model with respect to the compro-
mise struck between the accuracy of the predictions and the CPU time required

to obtain the solution.

Figure 2.25 is analogous to Figure 2.24, but indicates the sensitivity of the
predictions for three different water depths. It may also be concluded that the 20
element model gives increasingly accurate results in shallower waters. This is to
be expected since the similarity condition, described in case study 3, means that
the length of the catenary, and hence the size of the elements, is being reduced
with the water depth. Consequently with the element sizes reducing the answers

are increasingly accurate.
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ase Stud : Influence of A Subsurface Buo B

In many practical deep sea mooring applications, the tension at the top end of
the mooring line is very large; if the entire line is manufactured to withstand this
top tension, then it can become a very costly item. One method of reducing the
top tension in the line is to attach SSBs at strategic points along the length of the
line, to support part of the line weight. The influence on the maximum tension
and the tension distribution, as a result of attaching a SSB at a point along the

line is now examined.

Figure 2.28 shows the effect on the tension distribution by attaching a SSB
with an equivalent buoyancy force of 200KN at node 15 of a 20 element model.
With a SSB this large it is seen that the maximum tension is now located in the
element which lies immediately below the buoy, and that the tension immediately
above the buoy is almost the same as the tension in the grounded portion of the
line. Consequently the tension at the top point of the line is greatly reduced in

comparison to the situation when there is no SSB present.

Figure 2.29 shows how the presence of a SSB affects the geometry of the line by
measuring the component displacements from the original position of each node.
As expected the largest nodal changes occur at the node to which the SSB is
attached, whilst it can be seen that there is little effect upon the grounded portion
of the line. Because there are no out-of-plane effects present, the displacements
in the = and y directions will be the same. Note that although the two curves of
z (or y) and z displacements are not identical in magnitude they are very nearly
symmetrical about the ‘0 displacement’ line. The graphs indicate that the presence
of the SSB increases the z coordinates of all the nodes whilst it decreases the x

and y coordinates.

Figure 2.30 shows more readily interpretable data, that is, the percentage
changes in the tension and the geometry caused by the presence of a SSB. It can
be seen that the SSB causes a large percentage change in the tension distribution
over most of the line except at the point of attachment of the SSB. This is to be
expected in the situation where the SSB does not cause significant lifting of the
grounded portion of the line, since the weight of line supported at the point of
attachment will be the same with or without the SSB present. The percentage
change in the z and y coordinates is relatively small indicating that the presence
of the SSB does not cause a significant horizontal change in the position of the

line. The curve which indicates the percentage change in the z coordinates can be
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a little misleading. This is because the elements originally forming the grounded
portion of the line initially had zero z values, hence any change caused by the
presence of the SSB, no matter how small, will produce a large percentage change.
Despite this it can still be seen that the percentage change in the z coordinates
over most of the rest of the line is generally much larger than the corresponding
change in the = and y coordinates. This is to be expected since the action of the
SSB is in the z direction.

Figure 2.31 indicates how the tension distribution is affected by locating the
SSB at different positions along the length of the line, namely at nodes 8, 10,12, 14,
and 16. With the SSB at different positions the same general shape in the distribu-
tion of the tension is present, but each curve has a slight distortion for the different
nodal locations of the SSB. But it would seem that having the SSB located at node
10 or 11 would produce the greatest reduction in the tension along the line. This
conclusion is more explicitly indicated in Figure 2.32 where a plot of the tension

in four ‘critical’ elements is shown. The four elements under consideration are:
1. The first element of the line (1).
2. The element below the node at which the SSB is located (2).
3. The element above the node at which the SSB is located (3).
4. The last element in the line (4).

As expected the tensions in (2) and (4) are the greatest. As a result the intersection
of these two curves indicates the optimum position for the SSB, that is the location
which reduces the tension in the line by the greatest amount - in this case node
11.

Figure 2.33 shows excursion curves for the SSB located at different positions
along the line length. It confirms the previous conclusion that node 11 is the
optimum site for the location of the SSB. Furthermore, it also shows that this
conclusion is unaffected by the value of R, for the line. With the SSB located
progressively nearer the line endpoint (i.e. at nodes 14 and 16), it is seen that
the beneficial influence of the SSB in reducing the maximum tension is gradually
mitigated, until the difference in the tension distribution from the case with no
SSB is not discernible. With the SSB located at node 8 the maximum tension is
again developed at the top end of the line, since the greatest portion of suspended

line is now above the buoy.
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Influence of Major Line Parameters

The influence on the maximum tension developed in the line by varying the
major line parameters is now investigated. The major line parameters are regarded
as Young’s Modulus (£), Weight per metre (w(s)) and the line diameter D. How-
ever, since the latter can be directly transformed into an increase in w(s), results

are not explicitly presented for the change in line diameter.
ase Study 7 : Influence of Young’s Modulus

Figure 2.34 shows the effect of a percentage change in the value of E, realised
as a percentage change in tension. Since E is the ratio of stress and strain it
therefore affects the material stiffness and not the geometric stiffness, and since
material stiffness is only important at large values of Rp, this graph is for the
relatively low R, value of 1414m. It is expected that a change in £ will have a
small influence upon the tension distribution. This conclusion is borne in Figure
2.34, however, it is to be noted that a reduction in E produces a larger drop in
tension than the equivalent increase in E produces an increase in tension. This
can be explained, albeit in rather a convoluted fashion, thus: By decreasing E the
material stiffness of the line is reduced and hence under a given constant loading
the length of the line will be increased. If the value of E is left unchanged an
increase in the length of the line can be effected by increasing the tension in the
top element. If an excursion curve is now considered where the usual abscissa of R,
is replaced by the line length L, then it is seen that an increase in L is equivalent
to a decrease in R, - both resulting in a decrease in the tension distribution.
Thus the nonlinearity of Figure 2.34 can be explained in the same fashion as the
nonlinearities associated with the excursions curves presented earlier. This is more
clearly illustrated in Figure 2.35 where the percentage change in tension is plotted
against the percentage change in E. This effectively represents the reciprocal of

the excursion curves.

Case Study 8 : Influence of Weight per Metre

Figure 2.36 shows the linear influence of changing the w(s) of the line. Here
the same percentage change in tension is produced by the same percentage increase
and decrease in w(s). Hence the same difference in tension changes against load

changes, presented in Figure 2.37, is applicable to all elements.
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Case Study 9 : Influence of Depth to Length Ratio

The next investigation examines the relationship between the maximum ten-
sion in the line and the water depth to line length ratio, (%) Figure 2.38 clearly
indicates that the changes in tension due to the changes in (%) depend upon
whether d or L is being varied, and the value of the fixed variable. The effect of
increasing L when d is constant, and of increasing d when L is constant, is sim-
ilar to changing the radius of the boundary condition for fixed d and L. Hence
it is expected that the resulting curves should be similar to the excursion curves
described previously. This is borne out in Figure 2.38. The most important con-
clusion to be drawn from this figure is that if it is desired to obtain the maximum
tension in a mooring line by using the nondimensional ratio of ( %), that no general
combination of d and L can be used. Therefore if it is desired to investigate the
change in maximum tension caused by, for example, changing the line length at a

given water depth, the specific curve appropriate for that depth must be used.
ase Study 10 : Influence of Cd, and Cd

The next investigation concerns the influence of ocean currents and the values
assigned to the normal and tangential drag coefficients. Figure 2.39 shows the
change in tension distribution which occurs when a vertically uniform in-plane
current is introduced. It is clear that magnitude rather than the shape of the
excursion curve is affected. Also the increases in the magnitudes of the tensions

are nonlinear for linear increases in the current velocity.

The increase in tension relative to the case of the no current situation is pre-
sented in Figure 2.40 and the corresponding percentage difference is presented in
Figure 2.41. These predictions indicate that when there is a uniform ocean cur-
rent, the largest increase in the tension is associated with the first nongrounded
element, whilst there is a relatively smaller increase in the top tension. For exam-
ple, with a current of 2.0 m/s there is an increase in tension in the grounded line
of approximately 150%, but an increase of only 40% in the tension of the endpoint

element.

Figure 2.42 shows the percentage change in the = (and y) coordinates caused by
the different vertically uniform currents. As expected the in-plane current causes
an increase in the nodal excursions of the elements roughly in the midpoint of the
suspended line. What is interesting is the reduction in nodal excursions of the first

few nongrounded elements. Also the transition from a reduction to an increase in
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nodal excursion occurs at roughly the same position along the line, regardless of

the magnitude of this current.

Figure 2.43 shows the corresponding changes in the z coordinates of the nodes.
In presenting these results an artificial cut off percentage change of 10% has been
used, since any finite change from zero for the grounded elements will produce
extremely large percentage changes. The presence of the current causes the line
to move in the same plane as the current. There is also a kind of ‘pivotal’ effect
approximately halfway along the suspended part of the line, in the sense that for
that portion of the line below the ‘pivot’ the z coordinate increases, and for that
portion of line above the ‘pivot’ the z coordinate decreases. This is reasonable
since the action of the current on the elements forming the top part of the line is
to induce a horizontal movement which can only occur when the elements in the

lower portion are moving vertically.

Figure 2.44 shows the change in the tension distribution caused by altering the
normal drag coefficient of each element by the same amount. The change in the
tension for each element for different Cd, values is nearly, but not quite, linear.
Also, as expected, an increase in Cd, results in a larger fluid loading force and

hence a displaced tension distribution curve.

Figure 2.45 shows the percentage change in tension distribution from the case

with zero fluid loading, i.e. Cdy, = 0.

Figure 2.46 shows the change in the tension distribution caused by a change
in the tangential drag coefficient, Cd;, with Cd, held constant. As expected the
tangential drag force does not have a significant influence upon the tension. This is
further confirmed in Figure 2.47 which shows the percentage change in the tensions.
From this it is possible to conclude that it is important to use an appropriate value

for Cdy, but that Cd; can be effectively ignored.

2.7 Summary

This chapter has investigated the analytical and numerical formulation of the
static mooring line problem and presents predictions using both methods. The
analytical formulation was developed in 3D up to the point where the solution of
the resulting equilibrium equations required an iterative scheme. Therefore the
more usual 2D form was developed, with the analytic solution dependent upon

the assumption made regarding the form of the loading; the two most common
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solutions are the ‘parabolic’ and the ‘catenary’ equations. The analytical develop-
ment then continued with the catenary equations by addressing the two particular
cases associated with the grounded and nongrounded situations. An outline of the
solution method and the developed software is presented. The formulation of the
numerical model is then given, where it is explained that this formulation allows
for the inclusion of fluid loading and line attachments - in particular subsea buoys.

The solution method was then described in detail.

Predictions using both formulations (the catenary equations and the numerical
method) were then presented. The following points summarise the main conclu-

sions.

1. Predictions of the line geometry obtained from the analytical and 20
element numerical models are in close agreement. Increasingly coarse
numerical meshes (i.e. fewer elements) results in less compatible predic-

tions.

2. Excursion curve predictions are in generally close agreement for the
analytical and 20 element numerical models. The predictions however

tend to diverge slightly as R, increases.

3. From the excursion curve of the 3 element numerical model, two contri-
butions to the overall restoring force of the mooring line can be identi-

fied. These are termed ‘geometric’ and ‘material’ stiffness.

4. Increasing water depth causes a slight divergence in the predictions of
the line tensions for the analytical and 20 element numerical models.
This is indicated to be a result of the ‘infinite’ stiffness condition implicit

in the development of the catenary equations.

5. Increasing the number of elements used to model the mooring line affects
the C PU time for solution in a nonlinear fashion. This is shown to be

independent of the water depth used in the simulation.

6. Increasing the number of elements improves the accuracy of the tension
predictions. However a 20 element model will only over-predict the
‘correct’ solution by approximately 1% but this is obtained at a relatively
low CPU cost.
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7. Subsurface buoys are shown to have a significant influence upon the
tension distribution within a mooring line. This can result in a greatly

reduced maximum tension.

8. Changes in E produce a nonlinear change in the tension; this can be
considered as the reciprocal of the excursion curves. Changing w(s) has

a linear influence upon the predicted tensions.

9. The depth to length ratio % cannot be used with any general values of d
and L. This is because the excursion curves produced are not coincident

for different values.

10. Variation Cd; is shown to have little influence on the results, but the

value of C'd, can have a significant effect.

This validates the use of the catenary equations in situations where fluid load-
ing, line attachments and different line materials are not considered. The numerical
formulation has two main advantages over the analytic method, namely : (i) the
inclusion of line attachments, and (ii) that arbitrary fluid loading are both handled
in a straight forward manner. The drawbacks of the numerical method are (i) the
slightly more complicated formulation and (ii) the longer solution times, particu-
larly when fluid loading is included. Even so the numerical formulation is more
flexible and can handle situations outside the scope of the catenary equations and
most importantly, the numerical static solution is used as the equilibrium position

(starting point) for the numerical solution of the dynamics of a mooring line.



CHAPTER 3

Formulation and Solution of Mooring Line Dynamics

3.1 Introduction

This chapter details the presentation of a rigorous and consistent derivation of
the equations of motion for a discretised line structure and of the solution of these
equations to yield the time domain history of line tension and displacement. The
problem may be stated thus: “Given the initial conditions (i.e. position and veloc-
ity at time t = ty) of a line immersed in a fluid, determine its subsequent motions”
(Walton and Polachek(1960)). Apart from the required information about initial
and boundary conditions, there are to be no further explicit restrictions on the
equations of motion or the adopted solution procedure. Therefore it is a totally

general problem to be solved, which allows for:
1. Out of plane longitudinal and transverse motions of the line.
2. Large displacements from the original equilibrium position.
3. General definitions of the boundary conditions.
4. Different line materials along the length of the line.
5. The inclusion of line attachments.

This general statement of the problem also allows for the inclusion of large displace-
ment, low frequency motions as induced by second-order hydrodynamic induced
drifting of the vessel, and the high frequency, small displacement motions of the
vessel generally associated with the presence of ocean waves. A third possible
type of motion is the very high frequency motions induced by the vortex shedding
forces around the mooring line. This effect, known as strumming, is only likely
to be significant for extremely high line tensions as present, for example, in TLP

moorings, and it is therefore not considered further here.

3.2 Equations of Motion for A Mooring Line

In order to derive the numerical formulation of what is in reality a continuous

and smooth distribution of line geometry, mass and applied forces, the line must
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be ‘discretised’. In such a formulation the mooring line is modelled as a series of
straight, massless, spring-like elements which are connected at ‘nodes’. It is at the
nodes that the average of the mass of, and the forces acting on, the adjoining ele-
ments are considered to act. The equations of motion can then be formulated for
each node, and it is at the nodes that the solution scheme is subsequently applied.
Having solved the static problem as described in Chapter 2, the discretisation pro-
cess has already been applied, hence the static solution is used as the starting point
for the dynamic simulation. The most complete presentation of this procedure is
given by Walton and Polachek(1960). This may be regarded as the founding pa-
per with regard to the numerical static and dynamic solution of a broad class of
“suspended cable” type structures. Several other more concise presentations exist,
see, for example, van den Boom(1985), van den Boom et al.(1987) and Nakajima
et al.(1982). However all these papers are deficient in the necessary mathematical
detail because of lack of space. Additionally the formulation and solution is only
presented in two dimensions (2D) and further, they contain various simplifying
assumptions. Although the extension of the 2D problem to three dimensions (3D)
is conceptually a relatively easy task, there are a few nuances associated with the

3D solution which have not been presented in the literature.

At this point the difference between longitudinal, transverse and out-of-plane
motions is indicated. Consider a line lying totally in the 2D plane defined by the
global z and z axes. By increasing the displacement of the mooring line upper
endpoint in a direction parallel to the line angle at this endpoint, longitudinal
motion will result. However because of the curvature of the line this will also
cause transverse motion, that is, motion in a direction which has a component
normal to the line axis at any point along the length of the mooring line. Out-
of-plane motions are induced by forces which do not act in the (z,z) plane, for
example, ocean currents or waves. This produces a component of motion which is

normal to the (z, 2) plane.

Having established the discretisation presented in Chapter 2, the equations of
motion can be formulated explicitly for each node. The forces considered to act on
every node in the discretisation, except those nodes which represent the boundary

conditions, are:

1. Gravity forces: These include the net self weight of the line in water and
the addition of any line attachments, as well as the reaction forces between

the seabed and any portion of line which may be grounded.
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2. Drag forces: These arise as a result of the drag imposed by the fluid on the
line and are directly proportional to the square of the relative fluid velocity
between the line and the fluid.

3. Inertial forces: These are the forces caused by the relative acceleration of

the node and the surrounding fluid.

Each of these external forces give rise to the internal force of tension. All these
forces conspire to make the problem dynamically nonlinear and to couple the trans-
verse and longitudinal degrees of freedom through the resulting line curvature. Ef-
fects due to bending are not considered because a mooring cable, and certainly a
mooring chain, is deemed flexible enough not to transmit bending moments along
its length. Cable kinking should not occur so long as the mean level of the line
tension is high enough. Cable rotation is considered to have insignificant effect
on the total solution, although it might be important locally, for example at the
winch point, but these effects will not be considered here.

Mathematically the equilibrium of forces at each node can be expressed through

Newton’s second law of motion, namely
.= MTU. (3.1)
G; = MFU,,

where the j** node is considered. Each vector has three components, i.e.

Gz My ;
Gi= |Gy |, M; =1 My |, Ui= 19
Gj M.; zj

The right hand side of Equation (3.1) is known as the inertial term since it is
dependent upon the acceleration vector IZ,-. Each of the components in M; has
two contributing terms, the actual mass M;, which is lumped at the node and
is acted upon by the nodal accelerations, and the added (or entrained) mass m;,
which, in this idealisation, depends upon the relative accelerations evaluated at

the element midpoints. Therefore Equation (3.1) can be rewritten in the form
Gj=MU; + P; + P}, (3.2)

where P; is the average of the products of the inertia coefficients and the relative
midpoint acceleration for each adjoining element, and P; is the added mass of any

line attachments at the ;" node and is the product of an inertial coefficient for
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the line attachment and the acceleration which is assumed to act at node j. The

actual mass, Mj, is given by
Mj=—(mj_§l pFmialg )+M;, (3.3)

where m represents the mass per meter of each element, ! is the unstretched length
of each element and M} is the additional mass of any line attachments acting at
the ;** node. It follows from Equation (3.3) that without the presence of line
attachments, M; is the average of the mass of the line elements on either side of

node j. Equation (3.2) can now be written as

[2 mi-yli-g + Misgling +M}]I’Z,-+£,—+£;. (3.4)
In order to evaluate P; the fluid forces acting on each element either side of the
node must be considered. Initially the force for element j+3} is considered in more
detail. The transformation matrix [f)] has already been defined in Appendix A
and this is now used to relate the local coordinate system (p,g,r) to the global
coordinate system (z,y,z). The same transformation is used to relate the local and
global relative velocities and accelerations. With the element subscript j dropped

for convenience, one may write

r

rl. (3.5)

r

= ()

e E AT ~Y e . 1
N L 8

The added mass can now be defined in terms of the inertial forces along each of

the three local axes, so that

Pp = atﬁ,
P, = ang, (3.6)
Pr = an;',

where the added mass coefficients a; and a, are assumed to remain constant for
each element as the solution proceeds. The added mass in the global axes is given

by the inverse of the transformation in Equation (3.5), yielding

Pl=()|p|. 3.7)
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The combination of Equations (3.6) and (3.7) is shown in Appendix B and can be
reduced to the following form

.
£] % = e].‘l"% j+%, (3.8)

where the element subscript has now been re-introduced, the superscript r indicates
that relative acceleration is to be used and €t} is the global added mass coefficient
matrix. The same result also applies for element j-3}, and thus the average of the
added masses for the elements on either side of node j, which is considered to act
at node j, is given by

P;=

.y .
B; = 5(e5-3 -y + ¢4 5e) (39)

DO | o=

and this becomes
1 - r . " e r . "
P;= 1 [ej_%(Qj +U;4)+ 6]-_,_%(&,' +Qj+1)]’ (3.10)

upon specifying the accelerations at the midpoint of an element as the mean of
the accelerations of the nodes defining the element. This formulation leads to an
intractable solution since the calculation of P; now involves a knowledge of the
relative accelerations at three nodes. Since it is only possible to solve the equations
of motion for one node at a time, it is required that the equation for P; involves
quantities at that node only. To achieve this it is assumed that the accelerations at
the centroids of the neighbouring elements are approximated by the acceleration

at the common node, so that Equation (3.9) is then given by

1 .y
Bj=5(ejoy + i) L (3:11)

This means that instead of taking the average of the added masses for the elements
on either side of node j, the average of the added mass coeflicients for the elements
have been used together with the relative nodal accelerations. The added mass,

Pj, for any attachment to the line at the ;** node is given by
Pt = o130, (3.12)

where Z} is the equivalent volume associated with the added mass for the attach-
ment. Thus Equation (3.2) may be written in the form

1 w
(3.13)

1 .



Sec 3.2 Numerical Formulation and Solution 73

The vector G; therefore now contains all the remaining external forces associated
with fluid drag and gravity, as well as the internal force of tension. Resolving these
forces into their global component directions in a manner analogous to Equations
(2.50) to (2.52), the following are derived

Gzj = T]+% €S ;4 1 COSE; 1 —Tj_%cos'yj_% oS €;_1 + Fyj
Gyj = j+3 €08V 41 8inE; 1 “T,'_% cosy,;_ysing; 1 + Fy; (3.14)

Gy = Tj+% siny;,1 = TJ_% sin7y;_1 — Wj + F;j.

This can be expressed more generally as
(o) = Ty (o) + 0, (318)

where N; contains the fluid drag and gravity forces which act at node j and o;, !
and a;_ 1 define the resolution of the forces acting above and below the node. The
gravity force is W; and this is the net weight of the average of the segment masses

lumped at node j, plus the net weight of any attachment. Wj is therefore given by

1 mp 2 2 )
Wj = 9{5(”%'-%’:'—% i) -3 (’f—%Dj—% 40514

(3.16)
+(M5 = Vi)
The drag forces Fyj, Fy; and F,; are calculated in a similar fashion to the added
mass, but with one important difference, viz: The added mass is seen to be linearly
proportional to the accelerations in the local component directions and thus it is
possible to calculate the added mass in local component form and directly trans-
form these back to global components. However with the drag forces it is seen that
they are proportional to the square of the relative fluid velocity across the element
and hence are nonlinear. By transforming the global fluid velocity components
into local fluid components, there will be two local normal fluid velocities, and
one tangential component relative to the line element. The original semi-empirical
derivation of Morison’s equation referred to a cylinder subject to fluid velocity in
one normal direction only and most experimental values for drag coefficients are
derived for this case. This situation appears to exclude the possibility of a cross
flow which would produce complex fluid interference effects around the cylinder
and would apparently make the use of a drag coefficient derived for flow in one

direction invalid. Here this difficulty is partially overcome by providing a resultant
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normal velocity calculated from the two normal velocity components. This is then
used to calculate the velocity squared normal drag which is then resolved back to
the two local normal axes. The details of calculating the drag forces are given in
Section 2.4 via Equations (2.65) to (2.70). It is assumed that the drag coefficients
remain constant during the solution procedure. Thus the definition of V; becomes

e

1
Nj = 5[Kpuy = Kiy] - 1 (3.17)

where k is the unit normal along the 2 axis and K is defined in Appendix C. All
that remains is to define exactly the relative velocities to be used in Equation
(3.17) to calculate ;. These are the resultant velocities between the mooring line
nodal velocities and water particle velocities which may arise from ocean currents
or waves or a combination of the two. The current profile vector at the j** node, C';,
has components C;j, Cy;j and C,;, and the wave velocity vector W has components

2j» Wy; and W7, These are defined as being positive along the positive global
Cartesian axes. The theoretical calculation of the combined wave and current
water particle accelerations, Q;-vc, and velocities, Q;Jc, is discussed in Section 3.3,
here it is simply noted that

U;=U0;+U;". (3.18)

This concludes the principal part of the derivation of the equations of motion
for a mooring line structure. The equations used in the analysis are provided by
equating Equations (3.13) and (3.15) and using Equations (3.16) and (3.17) to
define N;. In the next section two further aspects of the model are examined,
namely the calculation of the relative fluid velocities and accelerations and the

method of modelling the interaction between the line and the seabed.

3.3 Wave Modification of Velocity and Acceleration Terms

In this section it is shown how the relative fluid accelerations of Equation (3.13)

~ and the relative fluid velocities of Equation (3.17) are determined for a combination
of linear waves and an ocean current. More information on this is to be found in
Hedges(1983) and Peregrine(1976). By using a relatively simple wave model it is
possible to gain some understanding as to whether wave effects are significant or
not. If they should prove significant then a more sophisticated wave model should
be derived to account for water pa,fticle velocities and accelerations in an irregular
seaway, see, for example, van den Boom et al.(1987). The procedure now outlined
is based on developing a description of the wave in the presence of a vertically

uniform current profile. First consider Figure 3.1 which shows that the direction
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of the wave crests for a monochromatic wave system have a heading of §' with
respect ot the global z axis. Also indicated is the set of local axes (z',y', z') which
are used to define the wave quantities. The current velocities U and V along the

z' and y' axes are respectively defined as

U=Cycosb — Cy sin ¢’

3.19
V =Cycost + C,sin¢’ (3.19)

The assumption of a monochromatic wave implies that there is no variation in
wave properties along the wave crests. It is also assumed that the presence of the
ocean current has no effect upon the profile of the wave. Having calculated U, the
current velocity in the direction of wave propagation, it is possible to define wave
celerity, wave period and wave frequency with respect to either an origin which is
fixed in space and time, or to an origin which is steadily advancing with a forward
velocity of U in the direction of wave propagation. In the fixed system the apparent
quantities of wave celerity, wave period, and wave frequency are designated as C,,
T, and w, respectively. If an observer travels along the ' axis at the current
velocity U, then the wave would appear to be propagating on ‘still’ water and the
corresponding relative quantities of C,, T, and w, are seen. The wave celerities

measured in respect to the fixed and relative axes systems are related according to

Ca - Cr + U, (3-20)
where \
=2 3.21
Ca T (3.21)
and
o = v (3.22)
T T,

Clearly Equation (3.20) describes a linear combination of wave and current effects.
Also note that the wavelength ), is assumed to be the same in both reference
systems. Both of these assumptions are to be considered as approximations to
the real situation. In reality the presence of a current will have a nonlinear effect
on the wave profile and thus nonlinearly affect the water particle velocities and
accelerations. This is due to the nonlinear kinematic and dynamic free surface

boundary conditions which control the wave propagation, see Stoker(1957).

Similarly there are definitions of apparent and relative wave frequency, viz
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and
2T
wr = Tr. (3-24)
Therefore Equations (3.21) and (3.22) become
_ Aww(l _ AVV“‘)I'
C, = 5 and C = 5
and hence Equation (3.20) can be rewritten in the form
2r
We = wy + :\—u-’U.
The quantity 27 /A, is the wave number, &, and so
we = wy + kU. (3.25)

From basic linear water wave theory there is the dispersion relationship which

relates the wave frequency to the wave number, i.e.
w? = gk tanh(kd), (3.26)

where d is the water depth. Substituting for w, from Equation (3.25) in Equation
(3.26), leads to
(wa — kU)? = gktanh(kd). (3.27)

With w,, U, g and d known, Equation (3.27) can be iteratively solved for &, as
indicated in Appendix D. Then Equation (3.26) will yield a value for w,. With k
and w, known, it is now possible to calculate the associated water particle velocities
and accelerations from the definition of the velocity potential for a linear wave.
With respect to a fixed reference system, (z', 2'), the associated velocity potential

has the form
gH cosh(k(z + d))

in(kz — 3.28
2w cosh(kd) sin(kz — wt), ( )

oz, ,t) =

where 7 is the distance from the origin of this reference system to the point of
interest and z is the distance from the mean free surface to the same point. Now
with a forward velocity of U towards the point of interest, then at any time ¢ the

separation between the moving origin and the point of interest is given by

Z, =% — Ut (3.29)
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where Z, = Z at time t = ¢ = 0. As stated previously, with reference to the moving
axes system, the wave profile appears to be propagating on ‘still’ water, and hence
the corresponding velocity potential will have the same form as Equation (3.28),

but this time Z and w are expressed in terms of their relative quantities, that is

__ gH cosh(k(z + d))

= in(kZ, — wyt). .
20r cosh(kd) sin(kZ, — wyt) (3.30)

&2, 2,t)

It is from Equation (3.30) that the relevant expressions for the water particle

velocities and accelerations are now derived.

Water Particle Velocities

The horizontal and vertical water particle velocities are denoted by V;,+ and
V,, respectively and are calculated by differentiating Equation (3.30) with respect

to Z, and Z respectively, to yield

Voo = 0% _ kgH cosh(k(z + d))

) = = Ty — wyl 3.31
¥ 0z 2w, cosh(kd) cos(kzr — wrt) (3:31)

and

0% _ kgH sinh(k(z + d))
0z 2wy  cosh(kd)
Since Equations (3.31) and (3.32) provide velocities with respect to the moving
observer, the equivalent for a stationary observer is derived directly from Equation
(3.20) to yield

Ve = sin(kZ, — wyt). (3.32)

kgH cosh(k(z + d))

kZ, — wyt), 3.33
2w,  cosh(kd) cos(kzr — wrt) (3.83)

Vaz’ =U+

and, by analogy,

kgH sinh(k(z + d))

in(kZy — wyt), 3.34
2wr  cosh(kd) sin(kZy —wrt) ( )

VGZ/ = Cz +

where C, is the current component along the 2z’ axis. V, and V,, thus defined
are the horizontal and vertical water particle velocities for a linear wave which
accounts for the presence of a vertically uniform ocean current. Note that they are
defined in an axis system which is parallel to the direction of wave propagation.

Their corresponding values in the global axes system are given by

e Vg cos @'
U= [ gee | = | =Vowsing' |. (3.35)
s V,.

J



3.3.2

Sec 3.4 Numerical Formulation and Solution 78

Water Particle Accelerations

To derive the water particle accelerations, it is assumed that the current veloc-
ity is time invariant, i.e. that it makes no contribution to the inertia forces. The
substantive (or total) derivatives of Equations (3.33) and (3.34) are taken to yield
the accelerations. The substantive derivative is generally defined as

by _20 20,90 90 (3.36)

Dt ot Oz dy 0z’

Thus the  and z acceleration components are respectively given by

D 0 0 0 0
Ager = E(Vaz’) = E(Vaz')'f’vaz’%(vaz’)'l'Vay’éz','(va:c’)+Vaz’5z—,(vax’) (3'37)
and
D lij 0 0 0
Agzr = D—t(vaz’) = EZ(Vaz’)'*'V;zz’%(Vaz’)+V;1y’a_y,(vaz’)+vaz’5;7(vaz') (338)
where
Vaz' = Vrz’ + Ua
Vay =V, and

Vazt = Ve + Co,

where U and V are defined in Equation (3.19). By carrying out the differentia-

tion and applying the assumptions made in Appendix E, the following results are

derived L
Ay = %[wr siné — fﬂ—sim?cos6+ Ciky 0035] (3.39)
and
€ . ek
Agy = 3 [C’,ka siné + —ﬂ-a'y — wyy CO8 5] (3.40)

where «, f3, v, § and ¢ are defined in Appendix E. The vertical and horizontal
accelerations for a wave in the presence of a vertically uniform current have now
been derived, but because A, and A,, are defined relative to the direction of
wave propagation, they must be resolved along the global axes thus

gy Agqr cos b
Qj =| P | = | —Aswsind |. (3.41)

“we
Zj Aazl
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Therefore the relative nodal accelerations Q; of Equation (3.13) are given by the

following vector combination

Ui =0; + 05" (3.42)

3.4 Mooring Line / Seabed Interaction

Due to the nature of the Lumped Mass method adopted here, there are a series
of nodes at which the mass of the line is concentrated and where the forces are
assumed to act. Each node is then considered to be joined by straight, massless seg-
ments. If any of these masses should lift from, or ground on, the seabed during the
dynamic simulation, then unrealistically large shock loads will be introduced into
the solution. Therefore a manner of reducing the shock loads should be included in
the mathematical model in order that the resulting solution of the tension history
should not contain spurious peaks. To this end, three basic approaches seem to

have been adopted in the literature, viz:

1. Linear springs with critical damping are used to model the seabed. This is
the most widely adopted approach. See, for example, Larsen and Fylling
(1982) and van den Boom(1985).

2. To set the velocities and accelerations of the nodes to zero when they reach
the seabed. See, for example, Wilhelmy and Fjeld(1981) and Hwang(1984).

3. To reduce the mass of the first freely suspended node as it approaches the

seabed. See, for example, Nakajima et al.(1982).

Each of the three methods have difficulties associated with their implementation,
but apart from the paper of Larsen and Fylling(1982), where these problems are
highlighted, none of the other references make mention of any mathematical or
numerical difficulties in applied analyses. In fact throughout most of the literature
associated with lumped mass models of mooring line dynamics, the interaction be-
tween the line and the seabed is rarely indicated by more than a passing comment.
With method (1) the problem lies in the correct selection of the stiffness constants
for the springs, since these values will depend upon the mass and velocity char-
acteristics of each node. This means that not only will each node have a stiffness
value associated with it because of its (possibly different) mass, but this value also
depends upon the motion of the node and hence is time dependent. In method
(2) the problem of preventing shock loading is not really addressed. By setting
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the velocity and acceleration to zero when the node reaches the seabed, all that is
achieved is prevention of the node passing through the seabed. Shock loading will
still be introduced because the node has been suddenly prevented from moving.
For method (3) the problem rests with how to reduce the mass in a consistent
manner - in fact this procedure is directly analogous with method (1), since a re-
duction in node mass corresponds to a reduction in the downward force associated

with that node, and this is exactly the desired effect of using the springs in method
(1).

Of these three approaches, method (3) models most closely what happens
physically as a real line is laid down or picked up from the seabed. It is seen that the
mass of the suspended part of the line is gradually reduced as the grounded portion
of the line is increased, and vice versa. Therefore the usual numerical formulation
of the line still applies, but now the mass assigned to the first suspended element
varies according to its distance from the seabed. The mass distribution of the
line is shown in Figure 2.10. It can be seen that as the first suspended node
approaches the seabed, the amount of line which in reality contributes mass to
that node is constantly being reduced. Hence in the limiting case it is expected
that just before the node grounds, its mass should be equal to half the mass of the
next element, plus AM. Therefore because of the physical basis for the method
and because of its direct analogy with method (1), it has been adopted here. The
details of this procedure are presented in Appendix F, but will be briefly described
here. Essentially a parabola is constructed through the first suspended and the
last grounded nodes, with the straight line between the nodes used as the reference
axis. The distance from the last grounded node to the intersection of the parabola
and the seabed is calculated. This is then used as a proportion of the element

length in order to reduce the mass associated with the first suspended node.

Other seabed effects which are present include friction and suction on the
grounded portion of the line. In the tangential (or axial) direction along the line
it is supposed that frictional effects are not large, but ground suction may be
important. The effects of both normal and tangential soil friction forces, together
with the instabilities introduced by the nodal grounding and lifting procedure, are

further examined in some detail in Chapter 8.

3.5 Solution Procedure

The equations of motion which have been formulated are essentially stated
through Equations (3.13) and (3.14), and these are to be solved in the time domain
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3.5.1

using direct integration schemes. With a complete solution known at a particular
instance, the use of time integration schemes allows the calculation of a trial solu-
tion for the next time step which is then subject to correction by the application
of an appropriate constraint equation. The use of direct time integration schemes
enables accurate answers to be obtained, since all the nonlinearities inherent in the
formulation are preserved. However, the limitations of the schemes must be well

understood in order that a sensible interpretation of the results can be made.

Overview of Time Integration Schemes

An investigation into the numerical properties of the direct time integration
schemes used here is undertaken in Chapter 5. Here the forms of the four different

schemes selected are stated, without the inclusion of the element subscripts, as:

Central Difference Scheme

=n n+1 n n—1 43
=17 (Q =220+ U ) (3.43)
o ) n+1 n-1 3.44
U =s5n (‘Q -U ) 349
Houbolt Scheme
o n41 n+1 n n=1 _ n—2 3.45
U At2< Untt — U™ +4U u ) (3-45)
entl RS n+l n n=-1 _ n—2 . 3.46
0™ = (g - s 4 ot - 20 ) (3.46)
Wilson-8 Scheme
cntf n+8 n)y ___9 ;" _ 4
i (Mt)z (Q _U ) = tu 20" (3.47)

0 _ 3 (nto _ gy _%E 4
i Mt(u u)—w 0. (3.48)
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ewma, cheme

e 1

Ut =0"+ At [(1 - 8§)U" + 80 (3.49)

Ut = Um 4+ AT + A [(0.5 ~ )" +al". (3.50)
Note the slight difference in the notation associated with the Wilson-6 scheme.
This is introduced because the size of the time step is now considered as non-
integer and so cannot be denoted by integer increments as with the other schemes.
The variable § measures the size of the time step, so that n +1 = n + 8 when
0 =1 (0 is usually taken as being equal to 1.4 for reasons which are explained in
Chapter 5). The principal difference between the Central Difference (CD) scheme
and the three remaining schemes can be seen from the functional dependence of
the solution at the next time step upon the previous solutions. The CD scheme

can be rearranged in the form
U= f(um, et gh, (3.51)

where the displacement at the next time step (n+1) is calculated from the solutions

up to, and including n only. The remaining schemes can be rearranged in the form
Ut = g (e, uet ot o, (3.52)

where it is seen that the displacement at the next time step, U™}, is related to
the solutions up to and including time step n + 1. Hence it is possible to define
two general families of time integration schemes, namely ‘explicit’ and ‘implicit’
schemes. The CD scheme is a member of the former, whilst the remaining schemes
belong to the latter. The most important difference between these two families is
that for explicit schemes to remain numerically stable there is a maximum limit on
the size of the time step which can be used, whilst, in theory at least, the implicit
schemes are applicable with any size of time step. This point is further expounded
in Chapter 5.

In order to use the time integration schemes described in Equations (3.43) to
(3.50), the equations of motion must be rearranged into a more amenable form,

and this is shown next.
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3.5.2 Rearranged Equations of Motion

The aim of this section is to rearrange the equations of motion, as given by

Equation (3.13) and (3.14), into the following functional form

T = f(vj,ej,Tj,sz,atj,an1>,
:'.)J' = f('ijsj’Tj’ij’aij’anj)’ (3-53)

zj = f('yj,ej,’-’}',sz, Wj,atj,anj)-

The general form of the equations of motion as expressed by Equation (3.13), is
given by
G;=M;U; + P, (3.54)

where M; now represents the mass of the elements and the attachments, and P; is

the added mass of the elements as well as the added mass of any line attachments,
and is given by Equation (3.11), viz

.

Bi= 5 (e5y +¢i-3) 5

where it is assumed that there are no line attachments present. First consider the
€ir} Q; term, where the expanded components of this are given in Appendix B in
Equations (B.6), (B.7) and (B.8). These further reduce to the following forms

2

nr 2 2 102 inl ]
. =1 COS sin .
Pz(1+§) m][atcos 4 cos 5+an(sm e+ € 7) i+

"y 2 .
J|lag — an ) COS Cos €81n 5] .
+ §}{(as — an) cos® i+

+ 2} [(at — ay,)sin <y cos <y cos e]j+% (3.55)

_nr - 2 .
Py(j+§) = &} [(at ay) Cos 7s1necose]j+%

+ j [at cos® ysin? € + ay(cos® € + sin’e sin? 7)]j+=}

+ %5 [(at — ay)sin <y cosvsin E]H% (3.56)
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Pz(j+%) =] [(at - an)sin'ycos'ycosa]j_'_%

+ ;5 [(at — ap) siny cosvsin 5] it}
. . 2 2
+ z; [at sin” v + ay cos 7]]__._%. (3.57)

It can also be seen that P 2(j—1)? (- 1 and P 2(i-1) will have the same form as

the three equations above. Hence with the fluid added mass vector P; described
as

Fei\ ) (Betiny T FaG-p)
Ei=|hi| =3 Buptho-b |
Fsj Peirp) * Puii-p)

it can be seen that the components are given as

i+
+
J-—

1
2 5
1
2

r
z% .
Py = ?’ [at cos2ycos? e + an (sm2 € + cos? £ sin® 7)]

T
+ -2i [(at —ay) cos? 4 cos € sin E] +
P
+ —21 [(at ~ @y ) siny cos 7y cos e] +, (3.58)
=3
]+§

4"
Py = -21[(at — ay) cos® vy sin € cos f;‘]1+1
7

+
[XC LR X

J
J

o |J“., o | &

i+
[at cos? ysin? e + an(cos’ € + sin e sin? y)| +

+

M (3.59)

e (X o

(a¢ — ap) siny cos 7y sin 6]
]

i+3
(at — an)siny cosy cos E] +,
I—%

—

s
sz=-é]—

Jj+
+ [at—an sm'ycos'ysme] +

D= N

J

J+§

+ [at s1n “ + ay cos *y] (3-60)

(Y W wl&’,

where the notation introduced above should be interpreted thus

i+3

[]+1‘“’ -

N
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Equation (3.54) is now written in component form as
Goj = Prj + M;i;
Gyj = Pyj + M;j; (3.61)
Gej = Ppj + M%,

where G; now contains all the remaining external forces indicated in Equation
(3.14). Therefore Equation (3.61) can finally be expressed in the following form

{(Mj + M]*):c] + %: :at cos? 4 cos? € + an(sin? € + cos? £ sin’ 7)];;; + 55;/"/;}
+ %ir :(at — ap) cos? y cos £ sin e]j—ti
+-z2—; (a1 — an) sm'ycos'ycose] ith
= [T COS ¥ €08 e]j:z + Fij (3.62)

B +1
i (at—an)cos 7sm€cos€] +1
2 -3
A

: . . i+ .
a; cos? ¥ sin? € + azn(cos2 ¢ + sin? ¢ sin? '7)]J.+,If + y}pV,,*}
-3

2t
. i+d
+-L|(as — an)sin*ycos’ysine]Jﬁ?
2 i—3
1
=[T cos 7 sin 6];1-? + Fy; (3.63)
-2
51 : i+}
—24- (at — ay) siny cos 7y cos s]j-_t;
¥ir . . i+3
+?J (at — ay) sin+y cos ysin e]j-_t%
+ (M'-}-M?)% +f-;— agsin’y + a, cos? ]j+%+5'- v
J 1)%;T5 tSI” Yy T an v -+% HAL)

[Tsm'y] 1+F,, W;. (3.64)
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These three equations can be rearranged to give

=RiT, 1 + 5T, +T;
7 7
§; = UjTJ’+% + V,T]__% + W; (3.65)

2 =0T 1 + BT,y +Qj,

where the rearrangement and the coefficients in Equation (3.65) are shown in
Appendix G. Examination of these coefficients shows that Equation (3.65) has
now been arranged in the required form specified by Equation (3.53). It is now
possible to apply the direct time integration schemes to these forms.

3.5.3 Application of Time Integration Schemes

In this section the application of the two families of integration schemes (i.e.
the implicit and explicit methods) are considered separately, since the methodology

of solution differs slightly in each case.

Implicit Schemes

Here the three implicit schemes, namely the Houbolt, Wilson-8, and Newmark
methods are considered. The implicit nature of these schemes means that the
solution, Q;-"H, is required at time ¢t = (n + 1)At and is therefore dependent not
only upon past displacements, but is also dependent upon the acceleration at time
t=(n+1)At,ie. [Z?H. This displacement is generally expressed by Equation
(3.52) where the function f; is defined for each of the individual schemes and the
subscript j is omitted for convenience Since the correct value of U™*! is dependent
upon the correct value of Qn , and the latter is not yet known, a trial or teziaitlve
estimate of this acceleration vector must be made, which is denoted by U , in
order to calculate a tentative estimate of U"™*!, namely Izn+1. Therefore, Equation

(3.52) can be rewritten as

xn+1
R (i ' U UL, U, (3.66)

By application of the constraint equation (explained later) to the solution of tenta-
tive dlsplacements i +1, a correction can be calculated which is to be applied to
Qn+ so that the distance between the predicted nodal displacements matches the
distance predlcted through Hooke’s law. The correction process is then continued

until I"* ! is deemed to have converged. At this point it is worth noting that an
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examination of the coefficients in Appendix G for Equation (3.65), shows that the
tentative accelerations are dependent upon both the tentative tensions and the

tentative displacements, thus

x n+1 ~n+1

= f(Q ,Tn+l). (367)

Thus the constraint equation may be satisfied with any non-unique pairing of [Zn+1
and 7"t!, which means that there are potentially an infinite number of solutions.
A unique solution can only be obtained when either the tentative displacements
or the tentative tensions of Equation (3.67) are held constant, the choice of which
depends upon the form of the rearranged equations of motion. Following the
rearrangement adopted here, as indicated by Equation (3.53), the displacements
are maintained constant whilst the values for the tensions are used for the iteration.
Thus Equation (3.67) becomes

x n+l _ f(un+1,j‘m+l)_ (3.68)

The foregoing discussion indicates in general terms the solution procedure using
implicit schemes. This is now considered in more detail for one scheme, the Houbolt
method. Results for the Wilson-f and Newmark schemes can then be drawn from
the general conclusions obtained with the Houbolt scheme and although subtle
differences exist, these will be explained at the end of this section. Once the
relations in Equation (3.65) have been substituted into the rearranged component
form of Equation (3.45), and bearing in mind the result of Equation (3.68), it can
be shown that

1 A [l A ~ A

~ntl _ -1 -2 2 41 | mAm+l | A

£ = 5 {50) — dap ™l 4 op 2 4 AR [RRTIH + ST 4 17}

pr ] o e

gt = 5{5.«/;-‘ — 4Tyl AR [OPTEE 4+ VPT + W}‘]} (3.69)
1 A ~ A ~ A

sl _ -1, .n-2 2 +1 +1 A

¥ = 2o - 4t AR (oI + BT +03]

The subsequent computational procedure can now be split into three main steps:

1. Find a set of tensions and coordinates at time ¢ = nA¢, i.e. Tj"+1 and U7
These must represent a correct or consistent solution from which it is possible
to extrapolate forward in time; for the first time step (¢t = #) the solution is

taken to be the static solution obtained in Chapter 2.
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2. Now a set of tentative displacements are determined for the next time step
through the relations in Equations (3.69) using tentative estimates for the ten-
sions at the next time step. For a first estimate these are considered to be the

tensions at the previous time step.

3. In general the tentative displacements obtained at time t = (n + 1)At will
not satisfy the condition that the distance between the nodes predicted by
Equation (3.69), be the same as the distance calculated from Hooke’s law. This
requirement forms the constraint equation, and from this a set of corrections
6T™*1 can be calculated and applied to 7! so that the constraint equation

will be satisfied. Letting & indicate the iteration index, the new tension can be

expressed as

k+1mtl _ kpmtl g gpntl (3.70)

and for k=0
14n+l _ fmn (3.711)

At this point the distinction between keeping the displacements constant and it-
erating with the tensions can be more clearly made. From Equations (3.69) and
(3.70) it is seen that a new tentative value for the displacements is calculated so
that they are not strictly maintained constant as previously suggested. However,
if it were necessary to calculate two or more iterations for tentative displacements,
each new value is only dependent upon the past displacement solutions and not
upon the past iterative value of the displacements. With the tension iteration in-
dicated in Equation (3.70), it can be seen that each new iterative tension value is
dependent upon the previous iterative value, hence it is by definition the tensions
which are being used in the iteration. The main difficulty in the solution scheme
is the determination of the set of corrections, §T"+!, which are to be used. The

constraint equation can be mathematically formulated as

kQn+l =(k+1i.'r_a+1 _ k+15@+1)2 N (k+1gn+1 _ k+1~n+1)2
- j

j-1 ' Yj-1
) kjwfa+ll 5
k+1+ k+1~ 2 =
+ ( + z;}+1 _ +lz;;j-11) _ lj—% [1 + _E;ll] , (3,72)

where the variable kQ;‘j'; is sometimes known as the segment error function. By
substituting Equation (3.69) into Equation (3.72), it can be seen that the following
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functional dependence exists

kon+1 __ n+1 k rn+1 k Arn4l
Ot = TR LT (3.73)

since the general form of Equation (3.69), without element subscripts, is given by
k+1u"’+1 f(Qn Qn_ an+1).

If, for example, the three tensions in Equation (3.73) are to be determined at
iteration k + 1, then by substituting Equation (3.70) into Equation (3.73) the

following functional dependence exists
k+1 n+1 kAn+1 n+1 kAn+1 n+1 kAmn+1 n+1
Q = f( T+% +5Tj+%, T]_% +6TJ._%, TJ_% +6Tj_%). (3.74)

Furthermore, Equation (3.74) can be expanded in a Taylor series about the point

(an-l-l kT n+1 an+1) to give
J+§ i- 5 -

aan+1 aan+l
k+19;1+; kQ@+l+akTi:_zl 6Tr&+1 + aan+§l 6Tn+1
akﬂn-i-l 5
+6k—ﬁ§”n+l 4+ H.0.T, (3.75)

where ‘H.0.T.’ represents the neglected higher order terms. So to first order,
Equation (3.75) may be expressed as

k+IQ;‘+; m;.‘f; + A;.‘j; 6T]?‘jgl + B;.‘j;&TJ?‘jg + c;*j;w;f; (3.76)
where A”+ B"+£ and C’H'; represent the partial derivatives of Equation (3.75).
Hence for the segment error function to vanish, it is necessary that there is a zero
difference between the nodal distances predicted from Equation (3.69) and the
nodal distances obtained from Hooke’s law. The evaluation of the derivatives in
Equation (3.76) is given in Appendix H. Equation (3.76) and the requirement that

k‘*’lﬂ;’_’_’; = 0 can be seen to represent a system of linear equations which can be
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written in the following matrix form

(B optt o 0 0 (GT%‘“\ (—’“Q’g“\
AgtoBgt oot o0 . 0 6Tyt —Fag+!
0 Al gl optl 0 sTeH —kqut

3 3 3 2 = 2
0 0 0 4N B G || LY -kt
\ 0 6 0 o arl prl ) \grntl)  \-kqril)
3 3 ] 2

(3.77)
This can be solved by standard matrix inversion routines to yield the set of tension
corrections 67}?’:%1. These are then used with Equation (3.70) to gain a better
estimate of k"'l’.i";': %1 which is then used with Equation (3.69) to provide a new set
of tentative displacements. Thus the improved estimate of tentative tensions is
acting to reduce the segment error function. This iterative process continues until
convergence is deemed to have been achieved which is when the segment error
function is less than some predefined (small) percentage of each element length. It
is worth noting here that the segment error function must be satisfied for all the
elements simultaneously. If, for example, all but one of the elements satisfy this
condition, then the whole iterative cycle must be repeated again involving all the
elements. This could quite possibly mean that an element which had previously

satisfied the condition might not do so on the next iteration.

Up to this point only the acceleration form of the Houbolt scheme and not the
velocity form has been used. Implicit in the coefficients of the rearranged form of
the equations of motion, given by Equation (3.65), are the drag terms. The method
of calculating and integrating the drag forces over each element is exactly the same
as described in Section 2.4, with the exception that there is now a component due
to the nodal velocity of the line as given in Equation (3.18). The velocity form of
the Houbolt scheme, Equation (3.46), is used to calculate the relative velocity, Q;
However, examination of Equation (3.46) shows that it is not possible to evaluate
Qn+l at the same time as trying to evaluate U™*1. Therefore the nodal velocities

and hence the drag forces are evaluated at the previous time step, and this is used

as the closest approximation to the drag forces at the current time step.

The details of the solution process based on the Houbolt scheme has now been
presented. The differences in the solution technique when implementing either

of the remaining two implicit methods is now indicated. First considered is the
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Wilson-0 scheme. Here the new tentative displacements are not sought at time
t = (n+1)At, but at a multiple of this, i.e. ¢t = (n + 6)At, where 6§ > 1. Therefore

(3.78)
. n+0 n+9 n) 2 _ @ n
o™ = (u —Un) -t - R
where the derivation of this is given in Chapter 5. Once the solution is obtained at
time ¢ = (n + 0)At, the following set of equations are used to interpolate in order

gain the solution at the correct point in time, i.e. at ¢t = (n + 1)At

n At2 At?

U= DA+ N+ o (- 0)
AR ( A 11 (3.79)
g =i (0 - 1),

The boundary condition for the top point of the mooring line must also be handled
in a slightly different manner. Since this is given as a predefined displacement
with time, then the calculation of velocity and acceleration at the line endpoint
is easily accomplished using the Houbolt Scheme. With the Wilson-@ scheme, the
displacement at time step n+ 0 for the upper endpoint is required so that the total
solution is obtained at this point, prior to using Equation (3.79) to interpolate for
the solution at the correct point. The first relation of Equation (3.78) is used to
obtain U™t however since the upper endpoint is a boundary condition it does
not explicitly enter into the solution process and therefore the value of Q 0 is not
calculated. Hence the approximation of _U_ ~ [I" is used and substituted into

the first relation of Equation (3.78) to yield

(048)" pm (3.80)

Qn-l-o Qn_l_!l OAL 4 ~—~ 5

Equation (3.80) is recognised as a Taylor series expansion of the displacement
about the point U". As with the Houbolt scheme the velocity form of the Wilson-
f method is used to calculate the drag forces at time t = nAt, which is one time

step behind the solution point.

The Newmark scheme is relatively easier to apply than the Wilson-8 scheme in
so far as the solution point is at time ¢ = (n + 1)At and not at time ¢ = (n+0)At.
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Equation (3.50) is used to gain the displacements of all of the nodes, but there is
a problem in the calculation of the velocity and acceleration for the mooring line
endpoint. The acceleration is gained by rearranging Equation (3.50) and this is
then substituted into Equation (3.49) to obtain the velocity of the endpoint.

Explicit Schemes

The explicit scheme studied here is the familiar Central Difference (CD) scheme
represented by Equations (3.43) and (3.44). However, some confusion seems to ex-
ist within the literature regarding how the scheme is applied to the solution of
nonlinear equations. In Bathe(1982) it is stated that: “The solution therefore sim-
ply corresponds to a forward marching in time...”, with the tacit assumption that
no iteration is performed at each time step, in order to satisfy a constraint equa-
tion. Wood(1990) does not clarify whether iteration is necessary or not. At one
stage he describes the solution at time step n as an approximate solution, subject
to the correct solution at time step n + 1 being obtained. Later he describes the
comparison of explicit schemes with the iterative methods necessary for use with
the implicit schemes - with the tacit implication that there is no iteration involved
with the CD scheme. Only in the Walton and Polachek(1960) paper is a solution
of mooring line dynamics with the CD scheme presented and they very definitely
undertake iteration at each time step. In the present study both approaches, i.e.
with and without iteration, were employed. This conclusively showed that iteration

at each time step is essential to prevent the solution collapsing.

By taking Equation (3.51) and the relations in Equation (3.53), the following

functional dependence is seen
Qn+1 — f(un’un—l,Tn), (3'81)

indicating that the displacement at the next time step is dependent upon the
tension at the previous time step. This means that the constraint equation for the
tentative values at the next time step is being satisfied using the tension at time
step n. Since any value at time step n is a solution which cannot be changed, then
these tensions cannot be used for the iteration otherwise the solution procedure
would be solving for the tensions one step behind the displacements. However

rewriting Equation (3.81) in the form

Qn+l — f(Qn,Qn'l,Tn'H), (3.82)
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leads to an ‘implicit type’ scheme. Hence the solution procedure is now identical
to that of the implicit schemes described previously because now the constraint
equation must be satisfied at n + 1 using values at n+ 1. However it is to be noted
that by rewriting the explicit form of Equation (3.81) as an ‘implicit’ type form
(as given in Equation (3.82)), the numerical properties of the explicit nature of the
scheme are preserved. The adoption of Equation (3.82) is only done to facilitate

the solution procedure.

With the methodology for the solution with both the implicit and explicit
schemes being identical, the general solution procedure can be outlined as indicated

in Figure 3.2 where the iterative process necessary at each time step is shown.

3.6 Starting Procedures and Initial Conditions

3.6.1

3.6.2

Houbolt Scheme

The Houbolt scheme always requires a knowledge of the solution at the previous
two time steps in order to be able to calculate the next one. Therefore at times
t = 0 and ¢ = At the scheme cannot be used to calculate U**! forn =0 orn = 1.
In this case a Taylor series expansion of the displacement about the initial position

is used, that is

T =+ A’ + %tiiz“ + H.O.T. (3.83)
With the initial velocity assumed to be zero, Equation (3.83) can then be used to
calculate the displacements at times ¢ = At and ¢ = 2A¢. It should be noted that
dynamic solutions are ‘path dependent’, which means that the final solution can be
significantly affected by the initial conditions and consequently may be significantly
affected by the starting procedure. Thus it might be prudent to use the CD scheme,
with a much smaller time step than that used in the implicit scheme, to generate
the solutions at the first two time steps. Thereafter, the solution can be advanced

with the implicit scheme.

Central Difference Scheme

For the first time step the Taylor series expansion as given by Equation (3.83)
is again used with the assumption that the initial velocity is zero. Although the
solution is still path dependent, the effect of using a different starting procedure
is mitigated by the use of a time step with the CD algorithm which is generally
much smaller than that used with the implicit schemes. Also the path dependency

is reduced because the Taylor series acts over one time step only.
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3.6.3 Wilson-0 and Newmark Schemes

These schemes are attractive to use because they require no special starting

procedure, except that the initial velocity is still set to zero.

3.7 Summary

This chapter has dealt with the derivation of the equations of motion for a
‘suspended cable’ type structure and explains how these equations are to be solved
using direct time integration schemes. For the first part, the use of the static
solution and discretisation as a starting point for the dynamic procedure is in-
dicated. The equations of motion are stated as they apply to each node in the
discretisation by equating the inertial (acceleration dependent) terms with the re-
maining external and internal forces. The manner of calculating the added mass
was presented in detail so that the final representation of the inertial terms used
is as given in Equation (3.13). With the remaining forces acting on the system of
nodes identified, the basic model for the equations of motion for a mooring line
structure has been developed. These equations are then slightly modified to ac-
count for the presence of ocean waves and currents, and to model the interaction
of the line with the seabed. For the former, the linear velocity potential for a
wave is modified to take into account the presence of a vertically uniform current.
From the modified velocity potential it is possible to derive the associated water
particle velocities and accelerations. These are then combined with the mooring
line motions to yield the relative velocities and accelerations from which the added
mass and drag forces are calculated. Modelling the interaction of the cable and the
seabed is more imprecise, but essentially involves trying to reduce the downward
force of the first suspended node as it approaches the seabed. This is done so that
when the node reaches the seabed it will have no subsequent motion until there
is sufficient resolved upward force to lift it again. The more important reason for
doing this is to reduce the shock loadings induced by the lifting or grounding of
the mass which has been lumped at the nodes.

The second half of the chapter was concerned with the solution of the equa-
tions of motion by the use of direct time integration schemes; these are also more
generally referred to as finite difference (FD) expressions. The general functional
form of implicit and explicit FD schemes were indicated and the rearrangement of
the equations of motion to a form indicated by Equation (3.53) is shown. A com-
plete statement of the equations of motion is given by Equations (3.62), (3.63) and
(3.64) and it is these which are rearranged to the form given by Equation (3.66).
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Next the FD expressions were applied to these equations; because the general so-
lution procedure is the same for all the four integration schemes considered here,
only a detailed description of the solution using the Houbolt scheme is given. The
differences in the solution procedure which arise from using either the Wilson-0
or the Newmark schemes, were indicated. In particular, the additional complexity
introduced by the use of the Wilson-6 scheme is discussed. The use of both of these
schemes must be modified when applied to the upper endpoint of the cable and
this is also indicated. The solution utilising the CD scheme is then demonstrated,
and in particular the ‘implicit’ type representation of the explicit CD scheme which
must be adopted to make the solution ‘sensible’, is given. For all the methods the
velocity forms of the schemes are applied one step behind the solution, so that
the drag forces are always calculated for the previous solution. This must be done
because the drag forces cannot be calculated at the current solution point, as this
would involve variables which are not known until the solution at the current time

step has been determined.

This chapter concludes with an indication of the manner by which the solution
with each scheme is started. With the Houbolt and CD schemes a Taylor series
expansion of the displacement is used to start, since solution advancement relies
upon past displacements which are not available at the start of the simulation.
The Wilson-6 and Newmark methods require no special starting procedures. The

initial conditions needed to start the dynamic solution are also indicated.



CHAPTER 4

Modal Methods and Mooring Line Dynamics

4.1 Introduction

This chapter indicates how the equations of motion for a mooring line are

solved by modal methods.

The application of the modal method essentially involves the rewriting of the
equations of motion in matrix form and then finding the 24 eigenvalues and eigen-
vectors, where k is the number of elements used to model the system. Each so-
lution, that is an eigenvalue and its associated eigenvector, is called a mode, and
the total solution is gained by the appropriate summation of the solutions for each
mode. The eigenvectors are assembled into the ‘modal’ matrix A and this is then
used to uncouple the equations of motion. The equations of motion are more ef-
ficiently solved in their uncoupled form than in their coupled form. However, in
the application of modal analysis techniques to more common structural dynamics
problems, the dynamic displacements of the structure are considered to be small.
Therefore A has only to be calculated once and can then be used, unmodified,

throughout the rest of the solution.

In the situation where the displacements cannot be considered small, as is the
case with mooring line dynamics, then A must be recalculated periodically through-
out the solution, ideally at every time step. It is the application of this method
to the solution of problems involving large displacements which distinguishes it
from the many solution cases presented in the literature which are relevant only

for small displacement problems.

It is surmised that a solution accurate enough for engineering purposes may
be obtained by the summation of relatively few modes and by recalculating A
only at a predetermined multiple of the time step, every 10 time steps, say. This
approach might therefore yield a solution technique which is more efficient in terms
of computation time than the direct integration methods alluded to in Chapter 3,
whilst still providing sufficient accuracy. As indicated in Chapter 1, the theoretical
analysis in this chapter was implemented in a computer program, but there was

insufficient time to debug the code and generate any results.
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Only a few references to this method of solution as applied to large displace-
ment dynamics, exist in the literature. Most of these papers omit the details of
the solution process and the necessary matrix manipulations, and give only brief
accounts of how the nonlinearities are dealt with in the solution process. Whilst
details are discussed in Section 4.6, here a short description of the contributions
made in two references which examine this subject is given. Johansson(1978) for-
mulates the equations of motion in a matrix form in the usual fashion, however
the description of the solution method is a little confusing. The same forces are
considered to act on the line as here, but it is not clear whether A is calculated
once only or periodically as the solution advances. Further, it is stated that all
modes of the solution must be considered, although the heuristic argument pre-
sented to justify this does not seem to precisely address this point. Dominguez
and Smith(1972) uncouple the equations of motion by the application of a method
due to Foss(1958) and then find the eigensolutions for the resulting set of first
order equations. Here the mooring line is assumed to undergo small displacements
about the initial equilibrium position, and therefore it is tacitly assumed that the

determination of A only needs to be carried out once.

4.2 Recasting of the Equations of Motion in Matrix Form

Here it is shown how the original three dimensional (3D) form of the equations
of motion are reduced to a two dimensional (2D) form and then how these 2D
equations are cast into a matrix form by way of a four element example. This
method is only applied in 2D to establish the validity, or otherwise, of this approach
and to develop a solution methodology. In particular the problems addressed are
simplified by neglecting the influence of line attachments and the presence of ocean
waves so that Q; = Q, The 3D equations of motion expressed in Equations (3.62),
(3.63) and (3.64) are reduced to their 2D form by setting € = 0 and ignoring all

terms pertaining to the y direction, thus

ZJ

2

M-—- M»—-

i+
{M a:,+ 2 ay cos? 4 + ay, sin 7] i} (at—an)sm'ycos'y]

(4.1a)
J+§
[T cos 'y] + Fy;
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and

e . j
% [(at — ap)siny cos 7] ‘
j

D= o

+ . Zs J+§
+. + {szj + 2’ [at sin? 4 + a, cos 'y] }
- (4.1b)

[Tsm’y] - +F,,J W;.

The expansion of the tension related terms in Equations (4.1a) and (4.1b), yields

i+ 1
[T cos ’7]] , 7[951411}457 —2i(Tiy + Tj_g) + xJ—lT'_%] (4.2a)
and
i+ 1 2
[Tsm'v]j ; = 7[2j+1Tj+% —zj(T3 + T, 1) + Zj—lT'_%] (4.20)
upon assuming that l 7 -} = [. That is, it is to be assumed that the elemental

lengths are the same and remain constant throughout the solution. Substituting
Equations (4.2a) and (4.2b) into Equations (4.1a) and (4.1b), then these equations

can be explicitly written in matrix form for a four element model as an example,
ie.

(M M} 0 0O
M} M} 0 0
0 M21 M% 0 T
0 M2 M 0 Z
0 0 0 M} M:||3is
0 0 0 M M) \zu)

0 (%)

0 %

o O O ©

0
0
0
0

\
(1)

(Tll 0 T2 0 0 0 0 0\]|a [ Fu )
0 T} 0 T 0 0 0 0[]z Fpn—Wi
_1fTt 0o 1 0o 12 0 0 0ffa + Fa (4.3)
o T2 0 T o 12 0o o] Fo-W |
0 0 77 0 T8 0 T¢ o z3 Fg3
\0 0 0 T 0 T! o TH T4 \ Fas — W3 /

\ 24/



Sec 4.2 Modal Methods 99

where
1 . j+%
M} =M;+ E[at00827+an5m27] +
=3
1 j+%
b _ .
M; = 3 [(at — ay) sin 7y cos 7];%
ir . i+
Mf = M] + E[atsmz’y+an 00527] Ty
1=z
1 __
I = =T34 + T3-y)
2 _
Iy = Tty

Whereas the matrix representation of Equations (4.1a) and (4.1b) given in Equa-
tion (4.3) is correct, it is not directly solvable since the accelerations are only
defined at nodes 1, 2, and 3, but the displacements are defined at nodes 1, 2, 3 and
4. This situation arises because the displacement at node 4 is explicitly included
in the formulation through the specification of the ‘forcing function’ (or bound-
ary condition) of the dynamic solution. As such, terms related to the boundary
condition can be partitioned from the stiffness matrix, which yields the following

matrix representation of Equations (4.1a) and (4.1b)

(Mll MZ 0 0 0 0) (21 ( Fa )
MZ M@ 0 0 0 O 2 Fju-Wy
0 0 M} MZ 0 O 2 Fro
0 0 M22 M23 0 0 Z2 + F,o — W,
0 0 0 0 M} M}||is Fi3
L0 0 o 0 M2 M) \zx) \Fs-ws)
(T} 0 T 0 0 0\ (1) (0)
0 T} 0 T2 0 0 ||= 0

1|78 0o 18 o T} o g2 | Tss| O
0 T2 0 T} 0 Tf||=]| T

0 0 T 0o T 0[] x4
\o0 0 o0 72 o0 1}/ \z) \ 24/

(4.4)

upon noting that T? = T35, the tension in the last element. Since z4 and z4 are
known, the matrix problem has been reduced to a solvable form. Equation (4.4)

can be expressed more generally as

MU+DU+KU=F, (4.5)
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where the current induced drag matrix from Equation (4.4) is now expressed as
the product of a matrix of damping coefficients and the relative velocity vector,

and the elements in the stiffness matrix contain the common factor of -lr

Prior to undertaking the solution of Equation (4.5) some preliminaries related

to matrix methods are now presented.

4.3 The Free Undamped Equations of Motion

For the free undamped equations of motion there are no terms relating to the

drag or to the boundary condition, therefore under these conditions Equation (4.5)

becomes

MU+KU=0, (4.6)

where both M and K are defined in Equation (4.4) and are noted to be real sym-
metric matrices. The implication of excluding a damping term from Equation
(4.6) is that any external force introduced to the system will produce an oscilla-
tory motion that will not decay with time as it would with damped systems. By
excluding the forcing function from the solution of Equation (4.6), the ‘natural’
modes of Equation (4.6) are obtained. It is now assumed that the natural modes

of Equation (4.6) will have a solution of the form

2h
U= Asin(pit + i), «7)

1=1

where
U is the matrix of displacements,
A; is the column modal matrix of nodal z and z displacements for the
i** mode, hence the upper limit of summation of 2h,
p; is the frequency of oscillation for the :t* mode,
¢; is the phase of the :** mode.

By differentiating Equation (4.7) twice with respect to time, the acceleration vector
is

w“ 2h

U=-3 Ap}sin(pit + ¢:). (4.8)

i=1 _
Substitution of Equations (4.7) and (4.8) for the i** mode only, into Equation
(4.6), yields
K A; =p*M 4; (4.9)

g4l Ldge
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This represents what is called the eigenproblem where the eigenvalues are p? and
the associated eigenvectors are A;. However the eigenproblem of Equation (4.9) is
in nonstandard form because of the presence of M on the right hand side. It is

possible to premultiply both sides of Equation (4.9) by M1, yielding
M K A; = p2A;, (4.10)

which now represents the standard form of the eigenproblem. However the matrix
defined by M1 K will be unsymmetric. Because the maintenance of symmetry is
an important consideration for the efficient solution of matrix problems, the form
given by Equation (4.10) is not preferred for solution. The alternative is to perform
a Cholesky decomposition of M into the form

M=VTy. (4.11)

By premultiplying both sides of Equation (4.9) by (j_/__l)T, and noting that K =

KI = K V™'V and the results in Equation (4.11), it follows that
1T - —1\T
V) KY'vA=p}(Y YTV A (4.12)

This can be reduced to
K, AY = ptA} (4.13)

upon defining the equivalences

K,=¥ Y Ky
Al =V A;

and noting that
Y ¥ =@y =1

Equation (4.13) now represents the standard form of the eigenproblem where K,
has been preserved as a symmetric matrix. This can be solved using standard
routines to calculate the eigenvalues and eigenvectors of Equation (4.13). The

eigenvalues are generally returned in ascending order, so that

[P?] = [P%,P%apg, oo apgh where P?+1 2> p,z. (414)
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If there are & nodes in the discretisation there will be 2k eigenvalues and eigen-
vectors returned from the solution of Equation (4.13) since each node in the dis-
cretisation has two degrees of freedom associated with it. The eigenvectors are
then assembled into what is called the modal matrix, A, where each column is the

eigenvector associated with each eigenvalue of Equation (4.14), thus A is given by

A= A—laA%-Aii, v 7-4?‘
An\ (A2 (A [.--\ (A
(4.15)
_ An Agp Az o | ] Ao
Arl Ar2 \Ar3 v Arr

with r = 2h. For the i** mode the eigenvalue is p? and the eigenvector is given by
the i column of the modal matrix. The eigenvectors are determined to within an
arbitrary constant which depends upon the initial conditions of the problem under
consideration. Thus when the initial conditions are not specified, the eigenvectors
can be normalised in any fashion required, the most common is such that the sum

of the squares of all the elements equals 1. Therefore if the original eigenvector is

given by

then the scaling factor is gained by the Euclidean norm, that is N; = (A% + A%; +

R A,z.,-)%, and the normalised eigenvector A"*™, say, is given by

Ay
1 | Az

norm _ ___ 4.16
Ay

Next it is shown how the initial conditions can be used to determine the ‘true’
modal matrix. With the general solution given by Equation (4.7), the total dis-
placement at each node is defined as the sum of the displacements at each node for

each mode. Thus, for example, at time ¢t = 0 and for a two node problem Equation
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(4.7) reduces to

z1 = A11sin ¢y + A1z sin ¢ + Ay sin ¢z + A4 sin ¢4

z1 = Aoy sin @1 + Apg sin ¢dg + Az sin ¢3 + Agq sin ¢y

. . . . 4,17
x9 = A3y sin @1 + A3z sin ¢z + Asgsin ¢3 + Aszqsin ¢y ( )

29 = A1 sin ¢y + Aggsin ¢ + Az sin @3 + Ay sin @y.

For one of the component directions, z say, this can be expressed more generally

as
r

i = Z A;jsin ¢;, (4.18)
5=1

thus the relationship presented in Equation (4.17) can be expressed in the matrix

form
U=AS (4.19)
where
sin ¢y
sin ¢2
S=1". . (4.20)
sin @3
sin ¢4

As already noted since the evaluation is for the initial conditions, i.e at time ¢ =0,
the elements of S are written as sin ¢; and not as sin(p;t + ¢;). It can also be
deduced from Equation (4.17) that all the elements of each eigenvector can be
expressed relative to the elements of the first eigenvector, so that Equation (4.17)

can be expressed in the alternative form

z 1 1 1 1 Aq1sin ¢y
al_ |« Bi m & Ay2 sin ¢ . (4.21)
T2 ay P2 2 62| | Anssings
23 a3 f3 43 63/ \Awsingy

The analogous matrix form to Equation (4.21) for the initial velocities is also
required for the complete specification. This is simply the time derivative of Equa-
tion (4.21) but with the ¢; replaced with (p;t + ;) to facilitate the differentiation,

hence

T pPr p2  p3s P4 A1y cos ¢y
21 c1pr Pip2 vips 61pa | | Ar2cos ¢ ' (4.22)
g c2pr Pep2 Yops baps | | A1scos és
22 azpr Papz vaps b3ps/ \ Aracos ¢y
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With the initial conditions for the displacements and velocities known, Equations
(4.21) and (4.22) can be solved for the eight unknowns defined by

J1 = Ansin ¢y Js = A1 cos ¢;

J2 = Ajgsin ¢ Jo = Ay cos ¢

Jy=Ausings  Jr= A cos g (423)

Jy = Ayssin ¢y Jg = A14 cos ¢d4.

where J; are the solutions to Equations (4.21) and (4.22). By solving the set of
simultaneous equations in Equation (4.23), the true values of the elements of the
modal matrix A;; are obtained as well the phase angles of each mode ¢;. The
values for the displacement at each node is then given by Equation (4.19) but with

the ‘true’ modal matrix instead of A and with S given by

sin(p1t + ¢1)
_ | sin(pat + ¢2) 494
= sin(pat + 43) | (424)
sin(pat + ¢4)

4.4 Undamped Arbitrarily Excited Systems

The equations of motion for an undamped arbitrarily excited system is given

generally by
MU+KU=Q), (4.25)

where Q(t) is a column vector describing the time varying forces applied in each

direction to each node, that is with r = 25, i.e.

Q [ f1()
92 fa(t)

Qty=|a|=]f(t) |. (4.26)
qr \fr(t))

As revealed by the original re-casting of the equations of motion into a matrix form,
there is excitation only at the last node of the discretisation, i.e. at the point of
attachment to the floater. Hence f,(t) # 0 and f(,_y)(t) # 0, but f;(t) = 0 for
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j =1,...,(r —2), therefore

[0
0

= : |. (4.27)
fe-1y(t)
\ fe(t) /

The diagonalisation of the matrices in Equation (4.25) would result in an uncoupled
form of the equations of motion and this form is more efficient for advancement
by the direct time integration schemes discussed in Chapters 3 and 5. To reduce
the matrices to a diagonal form an orthogonal transformation is required, that is a
matrix with property that P~! = PT. Here diagonalisation is achieved using the
transpose of the modal matrix of ‘true’ values, as derived in the previous section,

to premultiply Equation (4.25) to yield
ATMU + ATEU = ATQ(t). (4.28)

Now define U, through the following relationships

U= _A.Qp
. . (4.29)
U= Aup
so that Equation (4.28) reduces to
MUy + EpUp = Q1) (4:30)
where
M,=ATM A

K,=ATKA
Q,(t) = ATQ().

The equations of motion given by Equation (4.30) are now defined in what are
called principal coordinates. Under the transformations performed on the original
mass and stiffness matrices, both M, and K, are now diagonal. As a result the

equations of motion are now described as being uncoupled. This means that when
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written in principal coordinates, they have neither inertial or elastic coupling.

Furthermore @, (t) is given by

A Ay ... Ar\T 0
Ay A ... A :
Q,(t) = ATQ(t) = 2 ' 22 e fon® (4.31)
Ay A oer Aw £(0),
where expansion of Equation (4.31) leads to the simpler form
Ag-11 A
Q,0 = fen® | T |+ 50| 47| (4.32)
Ay Ary

Thus any constituent equation which forms part of the system described in Equa-
tion (4.30), has the form

mpi-i'pi(t) + kpixpi(t) = f(r—l)(t)A(r—l)i + fr(t)Ari, (4'33)

where zp; and &,; are the general coordinates defined by Equation (4.29). Using
the same notation as adopted in Chapter 3, Equation (4.33) can be expressed in
the time domain in the form

n n+1+kn n+1 = fr+loan y+ Hgn (4.34)

MpiZp (r=1)“%4(

This equation can be solved using one of the direct integration schemes described
in Chapter 3, such as the Houbolt method given by Equations (3.45) and (3.46).

In this case )
it = [2:v”+1 5z + 42" — 27|,

A2
and substitution into Equation (4.34) and following the usual iterative procedure
described in Chapter 3, allows x;‘;" 1 to be evaluated. However, since wp,*' corre-

sponds to the solution in principal coordinates, the ‘true’ displacements are derived
from the first relationship presented in Equation (4.29). For example, for a 2 node

problem, Equation (4.29) is explicitly written as

z1 All A12 A13 A14 Tpl
2| _(An An Axn Au || 2 (4.35)
T2 A1 Az Aszz A | | zp2

22 Ag Ags A Au) \ 72
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and minor manipulation yields

z1 An A1z Az Aus

21 A Ajo Ajz Aq
= Tp1 + 2Zp1 + Zp2 + zp2

T2 P Asy P21 Az PEl Az P A

29 Ay Ay Ags Ay

This can be written in a general form for one component, z say, as

r

zi = ) (2piAij)- (4.36)
j=1

It should be noted that the initial conditions and starting procedure is the same as
described for the Houbolt method as presented in Section 3.4.4. The real advantage
of uncoupling the equations of motion is now clear. That is that the response
in each mode is decoupled from the response in any of the other modes and so
different time step sizes can be used to integrate each equation of Equation (4.30).
If all these equations were to be integrated with the same time step size, then this
procedure would be identical to using the direct integration schemes of Chapter 3
on the original coupled equations of motion. However, the method of determining
the size of each time step for each mode, and the number of modes to be used when
integrating the equations of motion to provide an accurate solution, can only be

gauged through a systematic numerical investigation.

4.5 Damped Arbitrarily Excited Systems

The equations of motion for a damped arbitrarily excited dynamic system can be

expressed as

MU+DU+KU=Q(t). (4.37)

Before looking at how to include the damping effects, the equations are transformed
into what are called normal coordinates. To do this the modal matrix A, as derived
for the free undamped equations of motion in Section 4.3 is again used, but it is
now normalised with respect to the mass matrix. In particular, each column of A

is modified according to

B, = i (4.38)

where the scalar C; is given by

Ci=+ATM A, = + J 3 A MuAy). (4.39)
=1

i=1
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Aj; is defined by Equation (4.15). If the mass matrix contains diagonal terms only,

Ci== 'i(MjA},-). (4.40)
j=1

Defining B to consist of columns defined by Bj, and U, as satisfying the following

then Cj is given by

relationships
U=BU,
U=BU,,

then premultiplication of Equation (4.37) by BT leads to
B"MBU,+B"DBU,+B"KBU,=BTQ(t). (4.41)

Because of the normalisation performed by Equation (4.38), BTM B =1. Also

rewriting Equation (4.9) with this transformation, yields
BTK B; = p}Bf M B;, (4.42)

where A; has been replaced by its normalised form, B;. Hence _I:Z,T_K_ﬁ.' = p?, and
thus Equation (4.41) can be written as

U,+B™DBU, +piU. = Q,(t) (4.43)

where @ _(t) = _BT_Q (t). If the damping term were to be removed from any equation
of Equation (4.43), then that equation would become identical in form to Equation
(4.33) except that having written Equation (4.43) in Normal coordinates, the mass
terms are now unity and the stiffness terms are the eigenvalues. Equation (4.43)
represents the equations of motion for a damped arbitrarily excited structure which
are written in Normal coordinates. However there is still the problem of how to
include the damping term BT D B into the solution. An excellent account of the
influence of damping in multidegree systems can be found in Timoshenko, Young
and Weaver(1974), where three methods are proposed to assimilate the damping
matrix into the solution. Two of these are obtained through an estimation of the
amount of damping in the system and the other assumes proportional damping.

These procedures are now outlined.
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Proportional Damping

In this case the damping matrix D is considered to be linearly proportional to

some linear combination of the mass and stiffness matrices, thus
D=aM+ b._l&_:, say. (4.44)
Substitution into Equation (4.43) yields
Un+B (e M+bK)BU, +piUs = Q,(t).

Remembering that BTM B = I, and bearing in mind Equation (4.42), the above
reduces to

!Zn + (a' + bp?)lzn + pzzun = Q_n(t)'

Thus it can be seen that the resulting equations have been uncoupled with the
modal matrix A derived for the undamped class of problems. This form of damp-
ing is alternatively known as classical or Rayleigh damping. The problem with
this method lies in the selection of a and b to give a good approximation to the
total damping. As stated by Bathe(1982): “In general the damping matriz cannot
be constructed from element damping matrices, such as the mass and stiffness ma-
trices of the element assemblage...”. In other words the correct selection of a and
b for Equation (4.44) is not straightforward and would require a certain amount of
numerical experimentation and calibration with the direct methods of Chapter 3.

Any scalar equation of Equation (4.44) is expressed as
Tni + (a + bp?‘)im’ +P?$ni = Qni(t)

The modal damping ratio is £; and is thus defined as

2
6= 210 (4.45)
Pi

This relationship is introduced because it is useful in studying the effect of varying
the constants a and b upon the amount of damping which is admitted into the

system.

Highly Damped Equations

If it is expected that the amount of damping present in the equations of motion
is likely to be large, then it is proposed to use the method due to Foss(1958).
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Although the title of this paper implies that the solution method is used only for
linear systems, it is supposed that it is applicable in this situation as the solution
can be thought of being essentially linear over each time step. The reason for this
is thus: The main contribution to the nonlinearities inherent in the formulation
of the equations of motion are the nonlinear influence of the geometry, and the
variable nature of the coefficients of the second order differential equation being
solved. The effect of the geometry is particularly significant at large excursion
values, but even so the influence of a change in geometry over one time step could
be considered linear. The second order differential equation being solved is the
matrix representation of the equations of motion formulated in the preceeding
sections, and hence the coefficients are the mass, damping and stiffness matrices.
It is evident from Equation (4.3) that the mass matrix only changes because the
added mass changes as a function of gebmetry. The stiffness matrix comprises the
tension in each element and this too changes as a consequence of the geometric
changes. The drag force, although nonlinear, is often linearised by some method,
hence together with the geometric change over one time step considered as linear,
it is proposed that the solution process can be considered as a series of approximate
linear solutions. This then allows the method of Foss(1958) to be applied. This
method involves the transformation of the A coupled second order equations into
2h first order equations, from which the homogeneous and the nonhomogeneous

solutions are derived.

Lightly Damped Equations

Here it is assumed that the damped equations of motion are uncoupled by the
modal matrix A obtained for the undamped solution. This means that A is not
only orthogonal with the mass and stiffness matrices, but that it is assumed to be
orthogonal with the damping matrix, D. As stated in Timoshenko et al.(1974):
“This assumption implies that any off diagonal terms resulting from the operation
BTD B are small and can be neglected.” Furthermore, the values of the damping
ratios £; must be experimentally determined, or assumed, before the solution can
commence. This leaves the familiar scalar equation for the undamped equations
of motion, namely

Fni + 2pilibiitni + PiTai = BT gi(t) (4.46)

where §;;, the kroneker delta, is present to ensure that only terms on the diagonal
enter the solution. The solution procedure for Equation (4.46) is identical to that
for the undamped equations of motion as described in Section 4.3, except that now

the velocity relation from the Houbolt time integration scheme is also needed.
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4.6 Discussion of Nonlinearities

Modal analysis is usually applied to systems of linear equations, where it proves
to be particularly effective if only a few modes are excited. A linear system is
one where the amplitude of the response is proportional to the amplitude of the
exciting force and the coefficients of the differential equation being solved must
be constant. Clearly the equations of motion as formulated for a mooring line are
nonlinear, where the contributions to the nonlinearity arise from four main sources:
(i) Geometric nonlinearity, (ii) seabed interaction, (iii) quadratic fluid drag forces,
and (iv) time dependent coefficients. The first contribution is clearly shown in
the excursion curve results of Chapter 2, where the tension-displacement curves
are nonlinear. The second contribution is more subtle and is a less significant
effect, as discussed in Section 3.4 and further in Chapter 8. Fluid drag forces are
modelled through the use of Morison’s equation which contains a nonlinear effect
through the velocity squared term. The fourth effect arises because the coefficients
of acceleration, velocity and displacement represented by the mass, damping and
stiffness matrices, are time dependent as can be seen from Equations (4.1) and
(4.2). This occurs because as the displacements of the nodes change with time,
so do the angles of inclination of the elements. It can therefore be seen that the
time varying contributions to the mass matrix are the added mass terms. This
is not usually a consideration in normal structural analysis, since the added mass
of air is neglected. This results in a diagonal mass matrix which, in turn, implies
that there is no inertial coupling. The stiffness matrix is also time dependent but
for two reasons. Firstly, the change in element orientation, v, and secondly the
changes in nodal displacements cause the element tensions to change. The tension
part of the equations of motion is totally analogous to the expression: force =
stiffness x displacement, which is more usual in structural analysis. For linear
problems the stiffness (or slope of the force-displacement graph) is constant, but
for a nonlinear problem, the stiffness changes with the displacement, which implies

that it also changes with time.

From the above discussion of nonlinearities, the difference in the application of
modal techniques when applied to linear and nonlinear equations becomes clear.
For linear equations once the modal matrix A has been determined it remains
unchanged and hence it is used to uncouple the equations of motion only once and
thereafter the uncoupled form of the governing equations are integrated. With
nonlinear equations the coefficient matrices are time dependent and hence so is

the modal matrix. This means that the mass and stiffness matrices are updated at
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each time step and hence the modal matrix A must also be constantly recalculated
before use. Physically this implies that the nonlinearities present are causing the
mode shapes and frequencies of the solution to change with time. Thus at each
time step it is required that the mass and stiffness matrices are updated and that
the eigenvalues and eigenvectors are calculated from the free undamped equations
of motion. These are used to calculate the modal matrix A, which is then used
to uncouple the damped equations of motion as described in the previous section.
These are then integrated using the Houbolt scheme, say. At this new time step,
both the mass and stiffness matrices must be updated and the whole process, as

illustrated in Figure 4.1, must be repeated.

It is clearly a time consuming process to find the eigensolutions for a matrix
of 2h at each time step. However, when considered in the context of the iterative
process necessary at each time step, which might involve the inversion of a matrix
of order h typically three times per time step, this process might not prove such
a penalty. Additional computational savings may be gained by being able to
assume that the mass, stiffness and hence modal matrices remain constant over a
number of time steps so that the amount of updating necessary is reduced to a
minimum. As mentioned previously, modal analysis is most effective for problems
where only a few mode shapes need to be evaluated to provide an accurate solution.
In particular, if less than 25% of the eigenvalues (and therefore the associated

eigenvectors) are needed, then more efficient matrix solvers can be used.

With the preceding theory and discussion presented, a more detailed appraisal

of the few relevant papers in the open literature can now be made.

Johansson(1978) finds the solutions for a linearised form of the free, undamped
equations of motion and uses this to uncouple the equations so that they are
written in normal coordinates. In the discussion of the solution procedure it is
not clear whether the modal matrix is determined at each time step, although this
could be inferred from the information given. The formulation of the equations of
motion is different to that presented here, although the same forces are indicated
as being included in his model. The solution procedure is also different but again
corresponds, in principle, to the solution methods proposed here. The drag force
is linearised by assuming that the nodal velocity is small compared to the fluid
velocity. However the paper does not provide any insight into the effect of not
updating the modal matrix at every time step; also it is indicated that all modes are
used to provide the solution, but there is no mention of the degree of approximation

that can be expected if only a few modes are used. Therefore it seems that this
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paper is describing the same solution process as proposed here but does not provide
any discussion of the potential numerical advantages or disadvantages inherent in

the formulation.

Nuckolls and Dominguez(1977) use modal methods to determine the natural
frequencies of a particular mooring configuration and then uncouple the equations
of motion using the modal matrix. The solution is gained through the use of the

‘Phase-Plane 6’ method, and not the more usual time integration methods.

Dominguez and Smith(1972) formulate a linearly damped set of equations
which they then solve using the method of Foss(1958). Here the original 2A cou-
pled second order differential equations are reduced to 4h uncoupled first order
equations for which the eigensolutions are determined and then used to uncouple
the equations of motion. The solution is then carried out in Normal coordinates
and utilises a particular convolution integral technique. Because of the assumption
of small displacements about the initial equilibrium position, the calculation of the
modal matrix A only needs to be done once. No mention is made of the fact that
it is possible to integrate each uncoupled mode with different time step sizes, and
so the potential computational saving inherent in the modal method has not been

fully realised.

4.7 Preliminary Results

In this section the eigenvalues for the free undamped equations of motion
(see Equation (4.3)) are obtained. These are then used to assess the minimum
value of the time step to be used in the direct integration method. In order to
prepare the mass and stiffness matrices, the static numerical model described in
Section 2.4 is used in conjunction with the values in Table 4.1. In addition to
these values the normal and tangential added mass coefficients were taken as 1.98
and 0.0 respectively. With this 20 element model there will be 38 modes in the
solution; approximately, the first 19 will represent the transverse modes, whilst the
remainder are essentially the longitudinal modes. Half of the natural frequencies
for the first 19 modes are shown in Figure 4.2 as the endpoint of the mooring line
is moved further away from the anchor position. As would be intuitively expected
the natural frequencies of the transverse modes increase as the line becomes more
taut. However, the natural frequencies of the longitudinal modes remain essentially

constant - typical values are shown in Table 4.2:
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Quantity 2D static values
z displacement of endpoint 1000 m
y displacement of endpoint 1000 m
z displacement of endpoint 1000 m
Length of mooring line 1790 m
Number of elements 20
Water density 1025 kg/m3
Diameter of mooring line 0.07148 m
Mass per meter in air 25.493 kg/m
Young’s modulus 7.848 x 1010N/m?
Cdy, Cdy 1.6, 0.03

Table 4.1 — Static Input Parameters

Mode

Natural Frequency (rads/sec)

20
22
24
26
28
30
32
34
36
38

6.0
17.63
28.88

29.4
48.97
57.33
64.28
69.65

73.3
75.16

Table 4.2 — Natural Frequencies for Higher Modes

In order to incorporate all the modes into a time stepping dynamic solution,

experience suggests that a time step of approximately Tlﬁth of the period of the
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highest mode should be used. In this case a time step of 0.0084 seconds would
be needed; this compares with the “minimum practicable value” of 0.001 seconds

used in the results presented in Chapter 6.

4.8 Summary

In this chapter the method of solving the equations of motion for a mooring
line by modal techniques is discussed. The importance of deciding whether the
solution is required for small or large displacement problems is indicated. With
the former, the modal matrix A need only be determined once; with the latter, A
should be determined periodically - the regularity of which affects the efficiency of
the solution. In particular, how the simplified 2D equations are assembled into the
necessary mass and stiffness matrices. Then details of the matrix manipulations
required for the solution are presented. In particular how the equations may be
uncoupled by using the modal matrix derived from the undamped free oscillation
equation. The manner of including the damping is extensively discussed since this
presents the one obstacle to the uncoupling of the damped equations of motion.
Finally there is a discussion of the nonlinearities present and how these have been
accounted for during the suggested solution process. Also a selection of the relevant

literature is discussed in the light of the theory presented in this chapter.



CHAPTER 5

Numerical Properties of Time Integration Schemes

5.1 Introduction

This chapter is intended to be a guide to the finite difference (FD) time inte-
gration schemes presented in Chapter 3. It is essential to have an understanding
of the numerical properties of these schemes and how these properties can be ex-
pected to affect the solution. This enables features of the solution to be correctly
ascribed to either the equations being solved or the numerical procedure being
used to solve them. This chapter starts with a statement of the four FD schemes
proposed for use in the solution of the equations of motion. This is then followed
by a brief introduction to some of the numerical terms and definitions used in the
analysis of FD schemes. The next section presents the derivation of the Central
Difterence (CD) and Houbolt schemes from consideration of general expressions
for first and second order linear multistep methods. The Wilson-6 and Newmark
schemes are derived in a straightforward manner from the assumption of linear
acceleration over a time interval. The next section then examines the stability of
these methods when applied to linear equations. The stability of the schemes is
demonstrated through the numerical analysis of the resulting amplification matri-
ces. This is followed by a section on numerical accuracy, again for the schemes
applied in the solution of linear equations. The chapter concludes with estimations
of the minimum time step size to ensure accurate results and the ‘critical’ time

step size for the CD scheme.

Whilst many texts and papers exist on this subject, the work in this chapter
is largely based on one or two works most commonly cited. Books by Wood(1990)
and Ritchmyer and Morton(1967) form as complete a mathematical treatise on the
subject as is usually required, but many of the points of interest to the practicing
engineer are couched in complex mathematical verbage. The paper of O’Brien,
Morton and Kaplan(1950) details many of the terms most commonly used in a
fashion that is less rigorous and therefore more understandable. The book of
Bathe(1982) gives a brief but succinct account of the stability and accuracy of
these schemes. |
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5.2 Brief Presentation of Finite Difference Schemes

5.2.1

Here the FD schemes which have been adopted for study in this thesis are
briefly presented in the forms in which they most commonly appear in the litera-

ture. The origins of each scheme are also indicated.

Central Difference Method

The Central Difference (CD) scheme has been used in one form or another for
many years, having been often developed in many branches of engineering from
an intuitive understanding of the problem being considered. As such the scheme
does not have an ‘originator’, but the first reported use of the CD method for
the numerical solution of problems in mooring line dynamics was by Walton and
Polachek in their well established paper of 1960. Since then the CD method does
not seem to have been widely adopted for the solution of this class of problem,
mainly because the unconditional stability of alternative FD schemes has made

these alternatives more attractive. The identities for the CD scheme are

Frh 1 n— n n
0" =5 (U -2 + U (5.1)
and )
1 (bl -l .
U" =% (T -1, (5.2)

where U™ is the general displacement vector at time n. It is called the Central
Difference method because the differences are centred at time n and the solution is
required at time (n + 1). This is known as an explicit integration scheme because
the solution at (n + 1) depends only upon the solution at n and (n —1). By
substituting Equations (5.1) and (5.2) into the standard form of the equations of

motion given by

MU+DU+KU= f(t), (5.3)

it is seen that the stiffness matrix K does not appear as a factor of the required
solution ( U™*1). This is another way of defining an explicit scheme. One of the
most important features of this explicit scheme is that it is conditionally stable.
This means that a critical time step limit, At.,, exists and if this value is exceeded,
the numerical solution becomes unstable. This instability manifests itself either
as an unfeasible solution, or, as in the case of line dynamics, the collapse of the

solution procedure caused by the uncontrolled growth of numerical errors.
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Houbolt Scheme

The Houbolt method was first presented in 1950 (Houbolt(1950)) in a paper
dealing with the dynamic response of elastic aircraft. The scheme was developed
from consideration of a cubic curve passing through four displacement points and
obtaining the derivatives at the last point. This results in the following expressions

for acceleration and velocity

Izn+1 — ${2Qn+l _ 5Qn + 4Qn—1 _Qn—Z} (5.4)
and 1
ot = @{na”“ —18U™ 4+ 99U — 2!1"‘2}- (5.5)

Since its introduction this method has been frequently used in the solution of
dynamic equations and seems to be particularly popular in the field of mooring
line dynamics. By substituting the above expressions into Equation (5.3), the
resulting equations can be solved for dynamic equilibrium at time (n + 1), rather
than at time n as in the CD method. For this reason the Houbolt method is called
an implicit scheme; this is also illustrated by the stiffness matrix now appearing as
a factor of U™*! (the required solution) and thus it has to be inverted during the
solution process. The advantage of this scheme, and the remaining two implicit
schemes considered here, is that there is no limit, in the context of numerical
stability, upon the permissible size of the time step which can be used. This
means that in general the time step can be much larger for these three implicit
methods than the time step used with the explicit CD scheme. However, the size

will eventually be constrained by consideration of the required solution accuracy.

The Newmark Algorithm

The Newmark algorithm was first presented in 1959 (Newmark(1959)) in con-
nection with the estimation of structural response to earthquake loadings and has
subsequently become established as probably the most popular method of predict-
ing the response of dynamic systems. It is not however, frequently used in the field
of mooring line dynamics, where only a few papers exist detailing its use in this

context. This algorithm is defined by
AR L At{(l ~ & + 512"“} (5.6)

and

Utt=ur+ A" + Atz{(O.S —B)I" + BU "“}. (5.7)
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The parameters 6 and 3 are introduced to allow control over how much of the
acceleration at the end of each time interval enters the solution. They also control
other aspects of the scheme such as stability and accuracy and with certain choices
of these parameters, other FD expressions are obtained. For example with § = %
and § = %, the Newmark algorithm reduces to the ‘linear acceleration’ method
(not considered here) and with § = 0.5 and § = 0 the algorithm reduces to the
explicit CD scheme. With 6§ = % and g = i it becomes the ‘unconditionally’
stable method originally proposed by Newmark. This is alternatively known as
the constant-average-acceleration method or the trapezoidal rule. The scheme is
implicit and therefore has properties similar to those discussed for the Houbolt

method.

The Wilson-0 Method

The Wilson-0 method was first presented in 1968 (Wilson(1968)) as an exten-
sion of the linear acceleration method. The algorithm is defined by the following

approximations of acceleration and velocity, namely

gt _ 6 wtd _pn) — 8 o 5.8
and 3 0AL
-n+9__ nt6 g\ _ ot _ YBLyn 9

The linear acceleration method (not considered here) can be derived from these
equations by setting 6 = 1; this scheme will be shown to be conditionally stable in
Section 5.7. By establishing dynamic equilibrium at time (n + 6)At with § > 1.37,
this becomes an unconditionally stable implicit method. Once the total solution is
obtained at time (n + 6)At, interpolation is used for the required solution at time
(n +1)At.

Numerical Terms and Background

The formulation of an equation or a set of equations which describe a physical
process is, in most cases, a relatively straightforward task in comparison to the
problems which can be encountered in the solution of these equations. Often
analytical solutions cannot be derived unless various simplifying assumptions are
made during the derivation. Without simplification, recourse must be made to
various numerical solution techniques which are now widely available. However the

choice of which methods are the most applicable, and under which circumstances,
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and how best to optimise the solution has become a separate subject of study in
itself. In the case of mooring line dynamics an analytical solution does not exist for
the full nonlinear second order partial differential equations (PDEs) which govern
the physics. To preserve the inherent nonlinearities a numerical solution has been
derived which involves a discretisation of the space and time dimensions. This
means that the original PDEs are now replaced by a set of ordinary differential
equations (ODEs) which are second order and have variable coeflicients. Next
the derivatives of the ODEs are represented by equivalent numerical difference
equations. The numerical representation to be adopted is hereafter referred to as a
finite difference equation (FDE). In the context of the time domain, these difference
equations are sometimes called Time Integration schemes. It then follows, by
definition, that the solutions obtained subsequently will only be an approximation
to the ‘true’ solution obtained, if it were possible, from the PDEs. There are two

main reasons for needing a FD representation of a derivative:
1. Because the derivative cannot be evaluated analytically.

2. If it can be evaluated analytically this might require much greater effort

than numerical evaluation.

If, for example, the velocity derivative dU/dt (where U is displacement and ¢ is
time) is to be evaluated, then a relationship between I/ and ¢ must be known if
the differentiation is to be carried out. An equivalent FD representation of this
particular derivative might be TIE(Q"'H - Qn'l). This expression corresponds
to the velocity form of the Central Difference scheme, and it can be seen that
the derivative is now expressed as a function of known past displacements. It
is the study of FD representations of continuous derivatives and the subsequent
implications for the accuracy and stability of the solution which is the subject of

this chapter.

In order to discuss these concepts further an initial introduction is made using
the notation of O’Brien et al.(1950). This is then slightly more formalised using a
notation due to Lambert(1973) and Richtmyer and Morton(1967). The following

terms are defined
1. P is the exact solution of the PDEs.

2. N is the exact solution of the FDEs.
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3. A is the numerical solution of the FDEs.

Note the distinction between the exact (to infinite precision) and the numerical
(to finite precision) solutions. In the discussion of FDEs three main error terms

arise, and these are:
1. The Global Truncation Error (GTE).
2. The Local Truncation Error (LTE).
3. The Global Rounding Error (GRE).

The GTE is also known as the ‘discretisation error’ and measures the difference

between P and N at any point during the solution, thus
GTE" = P" —N".

A more useful concept is the LTE which may be considered as a local measure of
the GTE. By considering the GTE defined at time steps n and n + 1, then the
LTE can be thought of as being the difference between these two, namely

LTE" = GTE**! — GTE"
- (Pn+1 _ Nn+1) _ (Pn _ Nn).

To illustrate this consider the general point (i, 7) in space and or space/time. That
is, for example, ¢ might represent a general space coordinate and j might represent
position in time. Thus the LTE at this point can be seen to be a measure of the
GTE at the point (,5 + 1) when the FDEs are applied once only to the exact
solutions of the PDEs.

The GRE is a numerical error which is derived only from the practical con-
siderations of computing the required values. This means that it arises from the
inability of the computer to calculate numbers to infinite precision. The GRE is
therefore defined as N - A, which is the difference between the exact solution of
the FDEs and the actual answers returned by the computer. Maintaining a bound
on the GRE is the subject of numerical stability, which is dealt with in more detail
later. The stability of a FDE requires that any error introduced during the solution

will decay at an acceptable rate with time.
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Having given an intuitive definition of these terms a slightly more formal ap-

proach is now adopted. Consider the FD representation
E\U" = EU” (5.10)

with U denoting the displacements, F;(i = 0,1) represent the FDE coefficients
and n indicates the time level as before. Note that this is a one step FD scheme,
since only the time levels n and n + 1 are involved. However this form will be
used for the introduction of the concepts of consistency, convergence and stability.
A multistep formula is not used here since it can be reduced to an equivalent set
of one step formulae through the introduction of dependent variables. Equation

(5.10) can also be written in the form
Uttt = cany®, (5.11)
where C(At) = ET'Ep. Now introduce the definition

dU(t) _
LY v, (5.12)

so that A represents the form of the differentiation to be undertaken on the variable

U(t) to provide the required derivative. It can be seen that

yrt-ut (5.13)
Al

represents a simple approximation to the time derivative of U. Use of the FD

representation in Equation (5.11) leads to

cany~-u
N~ AU. (5.14)

Following Richtmyer and Morton(1967) the concept of consistency is expressed
through the requirement that “the family of operators C(At) provides a consistent

approximation for the initial value problem if
H{g_(_%{ — A}Q(t)” —0 as At —0, (5.15)

where [ is the identity operator. In Equation (5.15) the quantity represented by
|| M|| is called the ‘norm of M’ and merely represents a measure of the magnitude of
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the difference. It can therefore be seen that the consistency condition as expressed
by Equation (5.15) requires the FD representation (C(At)) of the derivative oper-
ator A, to be exactly equal to A as the time interval At tends to zero. Hence the
consistency condition is actually independent of the initial value problem being

solved. An alternative equivalent form of this consistency condition is that

HQ(t + At) = C(AY)U(2)

- ” 0 as At —0 (5.16)

where the term under the norm is called the local truncation error and is the
mathematical equivalent of the verbal definition given previously. Therefore the
LTE measures how closely the genuine solution of the initial value problem matches
the numerical solution of the FD equations. It can therefore be seen that if the
LTE tends to zero as At — 0 the FD expression is consistent with the original
PDE.

The concept of convergence can now be introduced. This too is associated with
the GTE defined previously. If the initial value U, is operated on n times by the
FDE then

U = [C(A)]"Us. (5.17)

The equivalent analytical solution is given by U(UAt) = DU,, say. Then C(At)

is said to be a convergent approximation to the PDE if
I[C(AL)]*"Uy — DUo|| — 0 as At — 0. (5.18)

This means that for C(At) to be a convergent approximation to A, the GTE must

vanish as At — 0.

These definitions of consistency along with the briefly mentioned concept of
stability, allows for the introduction of the Equivalence Theorem due to Lax which
states: “Given a properly posed initial value problem and a FD approzimation to
it that satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence”, see Richtmyer and Morton(1967, pg. 45). In other
words given that the FD scheme is consistent with the initial value problem in the
sense of Equation (5.15), then if it can be shown that the FD scheme is stable,
this will guarantee that it is also convergent. The converse is also true, i.e. by
establishing the convergence of a FD approximation this guarantees the stability

of the numerical expression.
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As mentioned at the start of this section, all these remarks apply to one step
FD schemes. However, the practical differences between these definitions and those
for multilevel schemes arise in the mathematical rigour of the derivations. Thus
when multilevel schemes are employed the following difference must be noted: For
one step schemes, vanishing of the truncation error as At — 0 implies consistency,
whereas for multilevel schemes consistency also depends upon the schemes being
stable.

5.4 Derivation of the FD Schemes

The four schemes alluded to have been widely used in the solution of dynamic
problems, but as yet a comprehensive derivation of all of these schemes has not
been presented. In this section the CD and Houbolt schemes are derived from
methods in numerical analysis, whereas the derivations of the Wilson-0 and the
Newmark schemes are based on the linear acceleration concept. Before undertaking
the derivation of each scheme a few preliminary concepts are introduced to provide
relevant background. In particular, the local truncation error of general first and
second order differential equations will be considered in some detail. On route the
concept of order of accuracy and its relation to the consistency of approximation

will be introduced.

A Second Order Differential Equation

From numerical analysis (see Lambert(1973)), a linear, k-step solution scheme

for the general second order problem of § = f(z,y) is defined as having the form

k . k »
S o UM = B2 Y B, (5.19)
j=0 j=0
where o and §; are suitably selected coefficients and h is the step size. This is the
definition of the form of a multistep FD scheme. The associated LTE is a function
of the step size and the behaviour of [ and its derivative. This can be estimated
using
k .. .
L[U(=);h] = 3 [aUlz + jh) — K260 (z + jh)], (5.20)
=0
where the coefficients of the FD scheme are used with the analytic solutions for one
time step only. Since an approximation to [ is not possible with less than three
values, k must be at least 2. Equation (5.19) is introduced with the differential
equation U= f(z,y) so that the order of accuracy of the Linear Multistep Method
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(LMM) may be formally defined without having to solve for the required derivatives
of the initial value problem, which, in any case, may not exist. Expanding Equation

(5.20) in a Taylor series about z yields
LIU(2); h] = Coll(z) + C1AUM (z) + ... + C RIUD(z) + ... (5.21)

where C, are constants which are obtained by expanding each term in Equation
(5.20) as a Taylor series about z and then collecting coefficients of the same power,

to give

Co=a0+a1+a2+...+ak
Ci=a1+20 + ...+ kay

Cy = .él_!(al +2%0 + o + K2ag) = (Bo + B1 + Ba+ e + Bi) (5.22)

(B1 +29728, + ... + K7725;).

1 1
— q q —
Cy = q!(a1+2 az+ ... + Klag) (=)

The LMM defined in Equation (5.19), is said to have an order of accuracy of p if

The LMM is said to be a consistent method if it has an order of at least 1. Con-
sistency defined in this sense indicates that the order of accuracy in the Taylor
series expansion of the LTE must be at least O(h?), i.e. the same as the order of

accuracy of the difference equation.
A _First Order Differential Equation

The form of a linear k-step solution scheme for the general first order problem

U = f(z,y) is considered as

k
L[U(e);h] = 3 [ol(e + jh) — hBU(z + jh)]- (5.24)
0

9=

The use of a Taylor series expansion about the point  leads to a relationship of
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the same form as Equation (5.21), but the coefficients are now defined by

Co=ap+ar+oar+..+a
Cr=a1+2as+ ...+ kar—(Bo+ B+ B2 + ... + Bt)

(5.25)
1 1 - -
Cy= ;(al + 2% + ... + klox) — W(ﬂl +2971 8 4+ L),
The LMM defined by Equation (5.24) is also said to have an order of accuracy of
p if
Co=C1=..=Cp=0, and Cpy1 #0. (5.26)

The two LMM formulations defined in Equations (5.20) and (5.24), together
with the coeficients of the associated Taylor series expansion defined in Equations
(5.22) and (5.25) are now used to derive the FD equations for the CD and the

Houbolt schemes.

5.4.1 Derivation of the CD Scheme

Acceleration Erpression

An explicit scheme is required to operate over 3 time levels in order to provide
a representation of the acceleration. This implies that k = 2 in Equation (5.19).
Advantages will also occur if the scheme minimises the number of functional eval-

uations involved. The expansion of Equation (5.19) with k = 2 yields
aol® + oanU™ + U™ = B2(Bo " + B f™F! + o f"?). (5.27)
To minimise the number of functional evaluations, 8y = 2 = 0 and f; = 1, hence
aU" + a U™ + apU™+? = p2 ot (5.28)
where o, a1 and ey are yet to be specified. Here f n+1 denotes that the acceleration

is evaluated at time step n + 1. The Taylor series expansion of the LTE provided
in Equations (5.21) and (5.22), for k = 2 assumes the form

LlU(z); h] = EC RIUG () = Coli(z) + C1hU(z) + Cob*U(z).  (5.29)
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It is required that the error in the expansion is of order O(h?), hence from Equation
(5.23), p = 2 so that Cy = C; = Cy = C3 = 0. This also satisfies the consistency
requirement, namely that p > 1. Therefore the coefficients Cy, defined in Equation

(5.22), become
Co=0=ar+ a1+ a3

C3=0= %(al + 8ap) — 1.

Taking any three of the four equations defined above and solving, yields ap =
l,a; = —2 and a3 = 1. This shows that there are only 3 independent equations.
Substitution of these values into Equation (5.28), and noting that the interval A is
in fact the time step At, the following representation of acceleration is derived

0n+1. - ‘Z].ZE(Q'; _ 2Qn+1 + Qn+2) (530)

which is the acceleration form of the CD scheme.

Velocity Ezpression

The equivalent form to Equation (5.28) for the velocity expression is derived

through Equation (5.24), and is
aol" + U + U2 = h L, (5.31)

where f®*1 is now velocity. The coefficients from the Taylor series expansion are
presented in Equation (5.25). For the order of the error in the expansion again to
be O(h?), p = 2 and hence from Equation (5.26) Co = Cy = Cy = 0, therefore

Co=0=ap+a1+

Ci=0=a;+2a5~1 (5.32)

Cy=0= %(al +4a2) —-1.

Thus, it follows that
ap = —(a1 + a3)
a;=1-2a (5.33)

ay =2 —4as.
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The solution for the last two equations yields a; = 0 and @ = 1/2, and hence
ag = —1/2, so that Equation (5.31) becomes

el L n+2 _ yrn
Uu = 2At(-U- ur), (5.34)

which is the velocity form for the CD method.

Derivation of the Houbolt Method

Acceleration Term

The Houbolt scheme is a four step method and this implies that k¥ = 3. Hence

Equation (5.19) assumes the form
ool " +an U +aaUm 2 +as U™ = k2 (Bof™+ 61" 4622485 f**2). (5.35)

If the method is to be implicit and the number of functional evaluations is to

minimised, then fy = f; = f2 =0, and f3 = 1, hence
aol" + aaU™ + U2 4 aU™He = R ™43, (5.36)

where kb = At as before, and f™*3 is the acceleration at time t = n+3. The Taylor

series expansion of the LTE now assumes the form

k .
clute)) = X ont=Dua) o
i= .

=C()Q(m) + C]h[l(:r) + Cgh2[2(m) + Cghsi.

with the coeflicients satisfying

Co=ap+ai1+az+a3

Cr =a1+ 20 + 3a3

(5.38)

1
Cy = §(a1 + 40 +9a3) — 1

1
Cs = g(al + 8az + 27a3) — 3.
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For the order of the error in the expansion to be O(h2) p = 2 and hence Cy =
C1 = Cy = C3 = 0, which reduces Equations (5.38) to

o= —(a1 4 az+a3)
a; = —(2az + 3a3)

a; =2 — (4ag + 9a3)
a) = 18 — (8az + 27as3).

The simultaneous solution of these equations yields a3 = 2,3 = —5,a; = 4 and

ap = —1. Thus Equation (5.36) becomes

™ = UM - UM U - 1), (5.39)

which is the acceleration form for the Houbolt scheme.
Velocity Term

The equivalent form of Equation (5.36) for the velocity expression, is gained

through Equation (5.24) and is given by
aoU™ + aqU™! 4+ 0 U2 + aaU"F? = a1

where b = At and f*t3 is the velocity term. The relevant coefficients of the Taylor

series expansion of the LTE are given by
Co=art+ar+azt+og
Ci=a;+2a+3a3—1

1
Cr = -2—(a1 +4as +9a3) — 3

1 9
Cs = g(al + 8as + 27a3) — 2

" For the expansion in the LTE to have an order of accuracy of O(h?), p = 2 and
hence Cy = C; = C; = 0 and C; # 0 although its precise form is not defined.

Solving the first three relations allows ag, @ and az to be expressed in terms of

a3 only. 3
Qg = -2- — Qa3
a1 =3a3 —4

ay = 3 — 3a3.
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It can be seen that there is not enough information to completely define the velocity
form of the Houbolt scheme. This means that a family of velocity relations can
be derived according to the value selected for a3. To precisely derive the Houbolt
form, the order of accuracy demanded of the scheme should be increased, therefore
p = 3 and hence solution of C3 = 0 yields a3 = 11/6. The relations above then
give ag = —2/6, a3 = 3/2 and a2 = —6/2. Substitution of these values yields

o™ = 6At(11U”+3 18U™? +9U™+ — 2U™), (540)

which is the velocity form of the Houbolt scheme.

Derivation of the Wilson-§ Method

The underlying assumption of this method is that the acceleration varies lin-
early over each time step, as in the linear acceleration method, but in this case the
size of the time step is taken to be # where # > 1. Therefore at any time 7 on the

interval, the acceleration is given by
. “ Y R
U=+ {0 -0, (5.41)

i.e. straightforward linear interpolation. With @ = 1 this scheme reduces to the
linear acceleration method which is only conditionally stable. In order to make
this method unconditionally stable it is required that § > 1.37. This result is seen
from the numerical study of the stability of these schemes carried out in section
5.7. Thus the solution is sought at time (n+0)At and interpolation is then used to
determine the relevant quantities at time (n+1)At. Integration of Equation (5.41)
with respect to 7, yields the following expressions for velocity and displacements

respectively, namely

n+44

= D (-0} + 4

20At

and on
U r?
9 60At

Setting 7 = 0, the constants of integration are A = U" and B = U", hence

n+6

Ut == ~J"}+ A7+ B.

{Q

Izn+r _ {Qn+0 o n} (542)

20At



5.4.4

Sec 5.4 Numerical Properties 131

and,
” n 2

Ut =Ur+0U'r + Q2

+ 5m1 {QM o'} (5.43)

When evaluated with 7 = 0, these last two equations yield

AR L Qé\_’:‘{u"“ i, (5.44)
and AL
. t é .
U = U 4 7 0AE + - (o™ + 20"}. (5.45)
Rearranging Equation (5.45) yields
e n+d _ 2 4
U™ = gm iU -ury 20" Mtu (5.46)
the acceleration form for the Wilson-6 method. Rearranging Equation (5.44) for
Qn+ , and substituting this into Equation (5.45), yields
ntl n AL
o= = S _fym _ g} - o - -0 (5.47)

the velocity form for the Wilson-6 method. Thus Equations (5.46) and (5.47) are
used to establish the solution at time (n + 0)At, with unconditional stability, then
Equations (5.42) and (5.43) are used with 7 = 1(= At) to establish the solution

at the correct position in time.

Derivation of the Newmark Algorithm

This scheme is also based on the linear acceleration assumption which underlies
the Wilson-0 method. The latter can therefore be used as a convenient starting

point. Consider Equation (5.42) with § =1 and 7 =1, i.e.

AR /N i +—{Ii"+1 oy, (5.48)

The premise of this scheme is that it is possible to introduce artificial variables
which control how much of the increase in the acceleration, at the end of the time
interval, will enter the expressions for velocity and displacement. Thus Equation

(5.48) may be written as

n+1 . n}

O™ = 0" 4 " 4 g2 {u
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Alternatively this can be expressed in the form
U™ =0+ asg™ + 1 - 60", (5.49)

which is the velocity form for the Newmark method.

Now consider the displacement from the Wilson-8 method, as given by Equa-
tion (5.43), but with § =1 and 7 = 1, then

. n n 2 2 n /3
Ut =0+ UAt+ 0 ét—+ A—t{a ot (5.50)

By introducing the variable ¢, it is again possible to control the amount of increase

in acceleration influencing the updated displacement, thus

n At2 At?

UM =+ UM A+ O e = {0 -7, s,
and this can be manipulated to give
U =0t + 0 A+ AR{(05 - AT" + 80T ). (5.51)

This is the displacement form for the Newmark Method.

The selection of the values for the parameters 8, § and B are discussed in

Section 5.7 after the concepts of stability and accuracy have been introduced.

Numerical Stability

The essence of numerical stability (hereafter referred to as stability) is that
there should be a limit to the extent to which any component of the initial function
can be amplified by the numerical procedure as the solution is advanced. This
means that the solution should, in some as yet undefined sense, remain bounded
throughout the solution time. It should be noted that the concept of stability
does not depend upon the original PDEs which are being solved, but is solely a
property of the FD scheme used to approximate the derivatives of the PDEs. With
U3 representing the numerical solution at time t = nAt and U;(nAt) representing
the (presumably unknown) analytical solution at the same point in time then the
GTE is defined as U} — U;(nAt). In order to gain an insight into the stability
of a particular scheme two questions about the behaviour of the scheme must be

asked, namely:
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1. What happens to |GTE| as n — oo with At fixed, and
2. What happens to |GTE| as At — 0 with nAt fixed?

In both cases it can be seen that in the limit the number of time steps n tends
to infinity. Therefore there is a possibility of an unlimited amplification of any
errors which may be introduced during the numerical solution. The answers to

both these questions are addressed in the next section.

von Neumann Stability

It is possible to postulate that two types of stability exist, weak and strong. If
the overall numerical error, as defined by P—A, grows, then this is defined as strong
instability and if it decays this is strong stability. If an individual component of the
error grows, then this is weak instability, and vice versa. The assumption that weak
stability implies strong stability and that weak instability implies strong instability,
is the underlying premise of the von Neumann (VN) stability analysis method. This
assumption allows the investigation of the simpler problem of weak (in)stability
and hence allows information to be inferred about the strong (in)stability of the
scheme being considered. The following functional form of a FD equation can be
defined

R =FUY) (5.52)

where n indicates the time differences and j the space differences. The function
defined in Equation (5.52) allows all values of n and j to be considered. If the exact
solution of the FDEs is represented by Equation (5.52), then an error parameter,

g, can be defined which allows the derived solution to be represented as
Fy=F(U? +¢7). (5.53)

The difference of Equations (5.53) and (5.52) leaves the variational form of the
FDE, namely
Fy = F(e}). (5.54)

It is to be noted that the form of the variational equation is the same as the original
FD expression. This indicates that the transient part of the solution, as defined
by ¢, usually has the same growth characteristics as the total FD expression. As
previously implied, this is not always the case since the initial conditions and
boundary conditions only act on I/ and not on €, because so far as the actual

computation is concerned, ¢ is a nonexistant abstract quantity.
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Strictly speaking this method only applies to linear Differential Equations
(DEs) which have constant coefficients. The linear nature of the FDEs means
that the corresponding variational equation will also be linear, regardless of the
form of the original PDE. However if the PDE is nonlinear, the coefficients of the
variational equation will depend upon the functional dependence on space and
time of the original PDE. Hence the coefficients of the variational equation are
no longer constant, and the application of this method becomes invalid. When
confronted with this situation, the usual procedure is to consider only a small area
of the space-time plane (see Walton and Polachek(1960)), over which it may be
assumed that the coeflicients of the variational function are invariant and then

proceed with the analysis as for constant coefficients.

The application of the VN stability method involves introducing a set of errors -
at each stage of the computation, which are expressed as a finite Fourier series.
This implies that a harmonic decomposition of the errors can be made so that each
error harmonic can grow or decay independently of the other harmonics, depending

upon the associated growth factor. The harmonic decomposition of the errors can

be represented by
e} = ) Amezp(ifnc). (5.55)

m=0

The procedure just described has effectively linearised the variational problem,
hence the growth of only one term in the above series needs to be examined to de-
termine the stability of the scheme. The specific term which needs to be considered
is

ez, (5.56)
In order that this term can represent any error harmonic which is potentially
present, 8 is to be any member of the set {f,}. Without loss of generality,

Equation (5.56) can be studied at time n = 0. Hence an expression is required
which reduces to Equation (5.56) at this time, and this is given by

eanAteiﬂz. (5_57)

It is seen from Equation (5.57) that to prevent the original error, as defined in
Equation (5.56) from growing, a bound on e*®2* is required and this is given by

IeanAtI < 1, (5.58)

where this is the basis of the VN stability criterion. This condition is necessary

for all FD schemes, and it is also sufficient for schemes of only two time levels.
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If this condition is satisfied, then no error harmonic is amplified. If it is violated
then any harmonic may potentially grow without bound as n increases and could

eventually swamp the solution.

The Generous von Neumann Condition

Consider the following where U? is the initial solution, and U' is the solution

at the next time step,

vl=gr. (5.59)

Then G is the amplification matrix associated with the FD scheme being used (see
Section 5.5.4). It also follows that

U? =G(au’) (5.60)

so that in general

un+l — Qn+1Q0_ (5.61)

The spectral radius of G is denoted as R, where this is defined as the largest of all
the eigenvalues of the matrix. Hence the spectral radius associated with G*is
R™*!. A necessary condition for stability is that there exists a constant B; such

that
R* < By for 0 <nAt<T. (5.62)

This condition implies that the spectral radius of the solution remains bounded
for all n since T is the solution time. Taking natural logs of Equation (5.62) leads
to

nlog.R = log.B1,

or

1 T
= Bn <p<—, 5.63
R=B} for 0<n< 4 (5.63)

From the condition that 0 < nAt < T cited with Equation (5.63), it can be seen
that because At < T, then n > 1. Without loss of generality, B; can be taken to
be greater than or equal to unity. A plot of Bl%'2 against At is shown in Figure
5.1. It is seen from this figure that regardless of the values of By or T, that as
At — 0, then Bl%'£ — 1. Furthermore, the curve has a very shallow exponential
shape which means that it can be approximately bounded by a linear expression of
the form 1 + By At. The spectral radius for this ‘generous’ VN stability condition

is therefore

R <14 0(At) (5.64)
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The relevance of this definition of the VN stability condition is that for some
problems the solution may contain legitimate exponential growth; these would
not be permitted by the more stringent condition of R < 1 which was defined
previously, but are allowed by the condition in Equation (5.64).

Application of the VN Method to Mooring Line Dynamics

The stability analysis presented in Walton and Polachek(1960) for the stability
of the CD scheme, uses the concept of VN stability to demonstrate the conditional
nature of this scheme. Further, because the CD scheme operates over two time
levels only, the stability condition can be used to derive an expression for the size
of the critical time step. However it is important to note that this analysis applies

only in the case of a inelastic line.

The present analysis differs from that of Walton and Polachek(1960) in that
the equations of motion are formulated to include the elasticity of the mooring line,
and that the Houbolt scheme is to be used for the solution. Because this scheme
operates over more than two time levels it must be remembered that satisfaction
of the VN stability criterion would only demonstrate satisfaction of the necessary

stability condition and not the sufficient stability condition.

In order to reduce the considerable amount of algebraic manipulation required
for the stability analysis, the equations of motion are reduced from their 3D form
to their 2D form. This process is shown in Section 4.2; the 2D form is restated

here as

M;z; = TJ_*_% cos'yj+%—T- 1 COSY;_1

I3
) _ (5.65)
- E(Fn(j_*_%) siny;j,1 + Fn(j_%)sm'yj_%)
and
M;z; = it} sin'yj_'_%—-Tj_% Sin')'j__iF
) (5.66)

+ 5 (Fa(iag) 087544 + Faiogy c08%5-4)-

In this form of the equations of motion the added mass terms have been neglected.
Also the drag components F;; and F,; have been expanded using the 2D form of
the transformation matrix [Q2] derived in Appendix A, where the contribution from
the tangential drag is assumed to be negligible. The details of the derivation of
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Equations (5.65) and (5.66) and the remaining derivation of the stability condition
is contained in Appendix I, only a summary of which is presented here. The first
step in the process is to derive the variational form of Equations (5.65) and (5.66),
along with the variational form of the constraint equation. The constraint equation
is defined in Equation (3.72), the 2D form of which is given by

constant = (zj41 — 7;)? + (2j41 — 2;)* — [1 4 Itz J+2 (5.67)

which can be alternatively expressed as

T?
0 = cos? + sin® -1+ 2TJ+7 + ity (5.68)
= % Vj+g Ti+} (EA)? '

The variational form of these equations are derived by assuming that there is an

error associated with each term, so that

T..1=T. 1+5T

5 T Ti+3y
zj = zj + 6z; (5.69)
zj = zj + 0z;.

These are substituted into Equations (5.65), (5.66) and (5.67) so that when the
original forms of these equations are subtracted the variational equations result.
These are given in Equations (1.11), (I.12) and (I.13). The errors in the solution

are then assumed to have the following harmonic forms
8z; = aexp(iBj + anlt)

8zj = bexp(iBj + anit) (5.70)
6T; = cexp(iBj + anAt),

where a, b and c represent the differing amplitudes of the error functions. Substi-
tuting in the relationships in Equation (5.70) into the variational equations and
following a considerable amount of algebraic manipulation, a matrix representation

of these equations can be derived and is given by

F —Asiny D+ Bsiny Hcosy a
—D+ Acosy F—Bcosy Hsiny ||b]=0 (5.71)
G cos vy Gsiny I c
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or [P][a] = 0. Examining the coefficients of Equation (5.71), as defined in Equation
(1.26), it is seen that the P33 element represents the elasticity of the mooring line.
It is shown in Appendix I that if the mooring line is assumed to be inelastic then
P33 =0.

The next step in the derivation of the stability condition is to calculate the
characteristic equation, or determinant, of the coefficient matrix [P], since for a

non-trivial solution of Equation (5.71) it is required that
|P| = 0. (5.72)

Examination of the magnitudes of the roots of the characteristic equation will then
indicate the stability, or otherwise, of this system of equations. For an inelastic
mooring line the resulting polynomial is of order 3 (since P33 = 0), but for the elas-
tic case the polynomial has an order of 6. Therefore a numerical algorithm is used
to obtain the roots, the theory of which is presented in Grant and Hitchins(1971).
They state that the determination of the roots of a polynomial using this method
can be problem dependent and as a consequence the algorithm may fail. However,

this did not appear to be a problem for the polynomials solved here.

A slight complication arises in the selection of the values of B,. In the analysis
of stability presented by Walton and Polachek(1960), this problem does not arise
since the VN condition is both necessary and sufficient. As a result B, can be
easily selected to yield the largest estimate of the size of time step. In the present
case, the selection of a value of 8y, to derive a limiting criteria for the time step

size is not obvious and therefore values for B, must be explicitly assigned.

In order to do this, careful consideration must be given to what the harmonic
composition of the errors (as given by Equation (5.55)) actually represents. The
variable £} is to represent any error variable in the variational form of the equations
(i.e € represents 6T or éz or 6z etc.) at the mesh point n in time and j in space.
This is equivalent to identifying all the variables at node j in the mooring line at
time n. Then for any one of these error variables, assume that it can be expanded
in a finite Fourier series represented by the right hand side of Equation (5.55). For
example this means that the error variable 6T} is considered to be composed of
a series of components (harmonics), each of which has a different amplitude (Am)
and frequency (fm) associated with it. From Equation (5.71) it is seen that the
amplitudes Ap, do not enter into the solution of the determinant of [P] since they

have been factored out as the variables to be solved for.
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However the problem of selecting the number of terms in the series, m, and
the frequencies Sy, still remains. To the author’s knowledge there is no guiding
principle available in the literature for the selection of these values, consequently
there is a certain amount of arbitrariness involved. However, certain convenient
choices can be made which help to simplify the problem. For example if the length
of the mooring line is L and it is divided into A elements each of length [ (i.e.
L = hl), then it is convenient to introduce the same number of terms in the series
as there are elements in the space dimension. From the theory of Fourier series,

the general frequency is
B=—: n=0,1,2,..,h

Therefore, for the maximum value of 8, n = h and with L = hl, the range of 3

becomes
o<1l < (5.73)
Im
where Iy, = Min |l|, since this will allow for the largest error frequency which can
enter the system. Therefore the stability of the scheme can only be assessed by

using this range of the § values in the stability polynomial.

Following the extensive derivation of the characteristic polynomial associated
with the elastic and inelastic equations (shown in Appendix I), it is possible to show
that the VN necessary stability condition is satisfied. Due to the large amount
of algebraic manipulation needed to establish the VN condition, the proof was
not extended to include the Newmark or Wilson-6 methods. The stability of all
the schemes is now presented in the next section which deals with amplification

matrices.

The Method of Amplification Matrices

The principle behind the derivation of amplification matrices is that it is pos-
sible to establish a recursive relationship between the solutions at two adjoining
time steps. This relationship is unique to each particular FD scheme under con-

sideration and has the following general form
U = QU™+ L™t (5.74)

where v = 0, At or §At according to which integration scheme is being used.
The matrix G is then defined as the amplification matrix, and the vector L is the
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load operator. By substituting the acceleration and velocity expressions of each
integration scheme, G and L can be derived in a relatively straightforward manner
as shown in Appendix J. However, the analysis of stability can be undertaken with
arbitrary initial conditions, therefore Equation (5.74) can be considered with no

load, and hence becomes

Uttt =qgur. (5.75)

The variational form of Equation (5.75) is derived in the same manner as the
variational equations of motion (given in Equations (I.11) and (1.12)) and is seen
to be

e"tl=Gem (5.76)

The characteristic equation (or determinant) of G is called the stability polynomial

and this may be expressed as

P
Z ZaAs =20 + 7101 + z2A§ + 220 =0
a=0
where A% are the roots of the polynomial. These are also the eigenvalues of the
amplification matrix. In order to prevent the unbounded growth of errors in the
solution of Equation (5.75), it is required that the spectral radius of G as denoted
by R, should be less than, or equal to, unity, i.e.

(G =R<1 (5.77)

where

R = Max(|Ai])
and where ); are the eigenvalues of the amplification matrix G.

In order to explicitly derive the amplifications matrices for each FD scheme,
a form of the equations of motion must be assumed, to which the velocity and
acceleration expressions of the integration scheme can be applied. The form used
is given by Equation (4.46) which represents the uncoupled modal form of the
equations of motion with the assumption that they are lightly damped. This is

restated here in vector form as
U+2ptU+pU=r (5.78)

where the various subscripts and the Kronecker delta are omitted for clarity. Thus

stability and accuracy of the FD schemes can be studied as a function of At/T, §
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and r, rather than as a function of the mass, damping and stiffness matrices. Given
that the physical parameters of the equation remain constant, it can be seen from
an examination of the amplification matrices in Appendix J, that R is a function of
the frequency w. Because w = 27 /T where T is the natural period of the system,
it is possible to plot R against At/T for each time integration scheme. This will
illustrate the conditional stability of the CD scheme and the unconditional stability
of the Houbolt, Wilson-f and Newmark schemes.

Having determined the amplification matrices as shown in Appendix J, it is
relatively straightforward to calculate the spectral radius of each matrix for given
values of At, T, £, 0, 6 and B. Stability curves for each scheme are shown in
Figures 5.2, 5.3, 5.4 and 5.5, where for each scheme the damping ratio has the
following range: 0 < £ < 1. All the graphs indicate that the same trend of the
curves R vs. (At/T) is maintained for each scheme, regardless of the damping
ratio. They also show that the inclusion of damping does not alter the conditional
or unconditional nature of the scheme. It should be remembered that in general
this is not true. In most analyses of numerical stability, it is assumed that an
equation of the form of Equation (4.34) (i.e. with damping neglected) is sufficient
to determine the stability characteristics of the particular scheme being considered.
This is based on the assumption that the inclusion of physical damping, as present
in the equations of motion, will improve the stability of the solution. Whilst this
assumption has been shown to hold true for the numerical schemes considered
here, it cannot be said to be generally true, since the inclusion of damping may
in fact change a scheme from being unconditionally stable to one which is only
conditionally stable, Wood (1990, pg. 126).

Figure 5.2 clearly shows the conditional nature of the stability of the CD
method and hence the importance of selecting a time step which is less than a
critical time step limit, At,. Figures 5.3, 5.4 and 5.5 show the unconditional
stability of the Houbolt, Wilson- and Newmark methods. This means that re-
gardless of the size of the time step (At) which is used, the spectral radius of the
amplification matrix is never greater than unity. A cursory examination of these
three graphs indicates that as the damping ratio increases uniformly, the resulting

stability curves tend to limiting values.

The Routh-Hurwitz Conditions

Before considering the Routh-Hurwitz (RH) conditions, there is an important

concept associated with the roots of the second order differential equation (i.e. the
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equations of motion) which should be introduced here. Consider the homogeneous

scalar form given by

mZ + ct + kz = 0. (5.79)

Following the usual procedure for obtaining the solution of a second order differ-
ential equation, it will be seen that for any of the three cases associated with the

conditions of the roots, the solution will contain terms of the following form

- Vel —
exp{ ct 2cm 4km}. (5.80)

From Equation (5.80) it will be seen that if ¢? < 4km the two roots will be com-
plex and hence the solution will contain sine and cosine terms and is therefore
oscillatory. If ¢2 > 4km then the roots will be real and consequently the solution
will exponentially increase or decrease and therefore represents an unbounded so-
lution. Since from the the physics of the problem it is expected that the solution
will remain bounded, it is a requirement that the roots of the differential equation

remain complex. The condition for this is that
é® < 4km. (5.81)

This condition can only be implemented for two step FD formulae; the reason for
this is now made clear. In the previous section the amplification matrices were used
with numerical values to yield the spectral radii. If the characteristic determinant
(or stability polynomial) of the amplification matrix is explicitly derived it will

have the following functional form

F(&p, At + (6,0, ADA+ f3(6,p, AN + ... + figa (6,9, AN =0 (5.82)

where k indicate a k-step formula. It can then be seen that the condition in

Equation (5.81) can only be applied when k = 2, where it results in the following

f2(&,p, A)? < 4£1(€,p, A1) f3(E, p, At). (5.83)

Equation (5.83) will usually provide a limiting condition for At, but in the case of
an unconditionally stable scheme this condition will illustrate this. This indicates
that the roots of an unconditionally stable scheme always remain complex. For
conditionally stable schemes it indicates the regions where the complex and real
roots occur, but then the RH conditions have to be applied to yield stability
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conditions. Therefore for schemes where p > 2 or which are conditionally stable
use must be made of the RH transformation (Wood(1990), pg 536) where the
transformation is to be applied to Equation (5.82) and is given by

142
A= . .
1> (5.84)
This results in an equation of the following form
ap2? + a3 .+ ap-12+ap =0 (5.85)
where a; = fi(¢,p,At) for : =0,1,...,p. The RH conditions are
a; >0 for 1=0
(5.86)

a; >0 for t=1,...,p

These conditions ensure that |R| < 1 which is the requirement for the scheme
to be stable. Application of the inequalities in Equation (5.86) to conditionally
stable FD schemes will then produce a set of inequalities which provide a limit on
the time step to be used. When applied to unconditionally stable schemes it will

merely demonstrate the unconditional nature of the schemes.

By requiring the spectral radius of an amplification matrix to always be less
than or equal to unity, what is being demanded is called the necessary condition
for stability. This means that if a scheme is stable then this condition will always
be satisfied, however to guarantee the stability of a scheme there are, in general,
further sufficient conditions. These might require, for example, that B <7 where
n < 1, hence it is seen that the necessary condition is satisfied for this further
sufficient condition. The derivation of the necessary condition is relatively straight
forward and intuitive, however the derivation of sufficient conditions is more com-

plex and will not be considered here.

5.6 Numerical Accuracy

As well as an investigation into the stability of FD schemes, an assessment of
the accuracy must also be made, in order that the validity of the solution for the
particular problem under consideration can be gauged. With the CD scheme the
maximum size of the time step is limited by stability considerations where this limit
is then small enough so that in general it will provide accurate results. With the

unconditionally stable implicit methods, the size of the time step is unrestricted
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from the stability point of view, however it will be realised that there must be a
limit in order to provide an accurate solution. The most effective and illustrative
way in which to demonstrate the accuracy of different time integration schemes, is
to apply them to a simple equation, the solution to which is known analytically.

Bathe(1982) uses the following equation
iP+wlz=0 (5.87)

and indicates that it is sufficient to illustrate the concepts. Wood(1981) prefers
the following equation
i+ 2uwi + wle = pe'* (5.88)

in order that some insight may be gained as to the effect of damping and a periodic

forcing function upon the numerical accuracy of the solution.

Before continuing it will be useful to now define what is meant by an accurate
solution. Obviously the reason for employing numerical techniques to solve a par-
ticular problem, is because of the inability to derive a tractable analytic solution.
Hence, once the numerical solution has been obtained, there are only two ways of

judging whether or not it is accurate:

1. To see if the trend of the results conform to what is expected - obviously not

a good measure of the accuracy, just an indication of the general validity.

2. To have established the accuracy of a particular integration scheme on ei-
ther Equation (5.87) or Equation (5.88), where it can be compared to the

analytical result.

Accuracy, as defined through the second approach, is gauged by two measures, the
period elongation (PE) and the amplitude decay (AD), of the numerical solution
relative to the analytical result, see Figure 5.6. In Bathe(1982), each of the inte-
gration schemes under consideration were applied in turn to Equation (5.87) and
the results for PE and AD derived. Wood(1990) employs a more rigorous approach
by assuming a general form for a FD expression and substitutes this into Equation
(5.88). The exact solution to the homogeneous form of Equation (5.88) is given

by exp(+t), where
¥ =—vw £ w1 - 12 (5.89)

e7t — w(—cosatisina)t (5,90)

hence
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where v = cosa so that the damping is always less than critical, i.e. v < 1.
After substituting the general form of the FD expression into Equation (5.88), the
principal root of the resulting polynomial is given by e(**"4? where 7 is the error
in the numerical solution. Assuming that this error has the form 5 = § + i¢, the

principal root becomes

WAL _ —AY(wcos a+8)+iAt(twsin a+te) . (5.91)

It can be clearly seen from Equation (5.91) that it has been assumed that the error
in the numerical solution will have a twofold influence. Firstly it is considered to
have the effect of increasing the damping by §, resulting in the AD already referred
to, and, secondly, of increasing the frequency by an amount ¢, which manifests itself
as the PE. Wood(1990) uses this result to derive general formulae for the PE and
AD for a particular FD expression. These two effects upon a total solution are

illustrated in Figure 5.7.

Using either the approach of Bathe(1982), or of Wood(1990), graphs of PE
and AD against %‘! can be determined and a comparison of the two approaches
shows that they give the same trends and very close answers for the same schemes.
Figures 5.8 and 5.9 show the graphs of AD and PE quoted from Bathe(1982).
They can be used to determine how much PE and AD can be expected for a
given At/T ratio, and thus determine whether a particular scheme and / or a
particular time step are suitable. Note that these results are only given for the three
implicit schemes considered. Also note that the Newmark scheme will introduce

no amplitude decay when used with § = % and 8 = i.

5.7 A Further Discussion of Accuracy and Stability

The selection of the Wilson-0 and the Newmark scheme parameters (4,4, 3),
are made to enhance particular aspects of numerical stability and accuracy. For
0 a value of 1.4 is usually selected since a plot of the spectral radius against 6
shows that the scheme is only conditionally stable for § < 1.37 and that it is
unconditionally stable for § > 1.37; see Figure 5.10. This is then usually rounded
up to 1.4 for convenience; larger values are not usually used since this increases
the time for convergence at each step. The choice of parameters for the Newmark
scheme is more complicated, but for the scheme to be unconditionally stable it is

required that
26> 6> 0.5. (5.92)
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It can be shown that no ‘algorithmic’ damping is introduced when § = 0.5; that
is there is no amplitude decay in the solution caused by the numerical scheme
being used. This means that all the modes present in the solution are being
preserved. It has been suggested (Wood(1990)) that the higher frequency modes
become increasingly inaccurate and because of this that a value for § should be
selected which is slightly greater than 0.5. This would then damp out the higher

modes in the solution whilst still preserving the more accurate lower modes.

In engineering applications however it is more common to keep the value of §
equal to 0.5 and then to rewrite the Newmark scheme (Equation (5.49) and (5.51))
with this value to derive the one parameter Newmark-3 family of schemes. The
value of 3 for most purposes is set equal to 0.25 since from Equation (5.92) this is
the minimum value to ensure unconditional stability. Newmark (Newmark(1959))
remarks that this value will ensure that the maximum velocity response is correct.
A value of 3 = 1/12 would yield a better convergence rate and a more accurate
solution but the scheme then becomes only conditional in nature. Therefore the

following parameters are used
6=14, §=0.5 and 8 =0.25. (5.93)

Having discussed the selection of 6, § and 3, a further discussion of the stability
and accuracy of each scheme can now be undertaken. As pointed out in Chapter 4,
the total solution can be expressed as a summation of solutions in different modes,

i.e.

where h is the total number of modes and U; represents the solution for the it
mode. For each solution (eigenvector) there is an associated distinct frequency
(eigenvalue) p; and the solution procedure usually orders the eigensolutions from
the largest to the smallest frequencies, i.e. piy1 > pi. Hence the term ‘higher
modes’ refers to those modes with high frequencies and vice versa. When it is
realised that the response in the lower modes change more slowly than the response
in the higher modes, it can be seen that a larger time step may be used to integrate
the lower modes, whilst for the higher modes, successively smaller time steps will
have to be used to integrate each mode accurately. Thus the two advantages of

using the modal analysis technique presented in Chapter 4 are:
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1. Different time step sizes can be used to integrate the different modes. This
is in contrast to the direct integration methods of Chapter 3 where one time

step is used to integrate all modes present in the solution.

2. Generally only the first b modes need to be summed to provide an accurate

solution, where b < h.

Intuitively it is to be expected that the lower modes contribute most significantly
to the solution since they are associated with the low frequencies where their slowly
varying nature means that the associated amplitudes dominate the solution. Thus
the higher modes are seen to increasingly contribute less to the solution since
the high frequencies present mean that the amplitudes of the oscillations must be
necessarily smaller than those of the lower modes. Thus for modes higher than b

it is assumed that the contribution to the total solution is negligible, i.e.

1. For modes 1 — b, where b < h, it is considered that they contribute signif-

icantly to the solution.

2. For modes b — h, their contribution to the total solution is assumed to be

negligible.

Now consider the graphs of AD and PE indicated in Figures 5.8 and 5.9. These
have been calculated when each of the three implicit schemes have been applied
to Equation (5.87) where both the forcing function and the damping have been
neglected. The abscissa in both cases is the nondimensional time step to period
ratio (At/T). For a fixed value of At, an increasing value for this ratio implies that
T is decreasing and hence that the frequency is increasing, i.e. larger time step
to period ratios apply to the higher modes present in the solution. It can be seen
that if At/T is less than approximately 0.01 then all the modes in the solution are
integrated accurately. However an increasing value for At means that the higher

modes present in the solution will not be accurately integrated.

With the preceding remarks in mind, first consider what happens if the same
time step size is used to integrate all the modes present in the solution. Define
T; as that value of period for which %‘- = 0.01 and T} as being the period of the
mode b. As long as Ty < T} then an accurate solution will result, but if Ty > T;
then some errors will be introduced since some of the modes which are required in
the sum for the total solution will be integrated inaccurately. The assessment of

these errors is the basis of the accuracy analysis for FD schemes.
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When different time step sizes are used to integrate each mode separately then
as long as At is selected so that At;/T; < 0.01 then the :** mode will be integrated
accurately. This can be seen to imply that the higher the mode which needs to
be integrated, the smaller the time step which is required which is also what is
intuitively expected. Also if At/T; < 0.01 then the value of At will also integrate
all the modes up to and including T} accurately and its only for higher modes that
the value of At needs to be reduced. Examining the curves of spectral radius,
R, against At/T for zero damping as shown in Figure 5.11, it becomes clear why
errors are introduced into the solution. For a value of At/T < 0.01 it is noted
that R = 1 and therefore that the solution is not amplified at all. With increasing
values of At/T the solution will be multiplied by a value which is less than unity

and hence this introduces the AD which is seen to be present.

Now attention is turned to a description of the characteristics of the curves in
Figures 5.8 and 5.9. In both graphs the Houbolt method is seen to produce greater
AD and PE when compared to either the Wilson-6 or the Newmark methods.
Also the Newmark method produces less PE than the Wilson-6 method, but no
AD as can be seen from the spectral radius in Figure 5.11, which is unity. As
indicated in Wood (1990, pgl20) the unconditional nature of stability will always
introduce a certain amount of PE and this error cannot be continuously controlled
by altering the parameters in the schemes. In contrast, AD can be systematically
controlled in the Newmark method by selecting a value for § which is greater than
0.5 (where the unconditional nature of the scheme is now maintained by setting
B = 0.25(6+0.5)?). Increasing the numerical dissipation (AD) for the higher modes
in the solution is actually a desirable property for a FD scheme to possess, see, for
example, Hilber and Taylor(1978), as long as it can be continuously controlled. The
AD in the Wilson-0 with § = 1.4 is already very high and is considered to damp
out modes which may contribute significantly to the total solution. Increasing
the value of @ allows for a systematic increase in the AD, but in this case this
is not desirable because of the high dissipation already present. Reducing the
value of 6 is not possible since for § < 1.37 the scheme becomes only conditionally
stable. Therefore the only scheme where the amount of numerical dissipation can
be controlled is the Newmark method, however to introduce AD here it is required
that § be greater than 0.5 and this then means that the scheme becomes less
than second order accurate and it is for this reason that introducing numerical
dissipation is not one of the desirable properties listed by Hilber and Taylor(1978)

which a FD scheme should contain.
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5.8 Estimation of Time Step Size

From the modal analysis of Chapter 4, there are a set of A equations which
represent the h different modal solutions corresponding to the different frequencies
of the solution. To obtain a correct total solution, each modal equation is integrated
with an appropriate time step size. However, with the direct methods of Chapter
3, only one time step is used, therefore the ‘correct’ solution is only obtained by
integrating all the equations with a time step small enough to accurately assess the
contribution of the higher frequencies. The minimum time step size is therefore

related to the minimum period of the mesh. Consider the equation

Aw
== 5.94
p=2 (5.94)
where
P s the period,
Aw 1s the wavelength,

C is the wave speed.

There are two modes of wave propagation in a line element, transverse and longi-
tudinal and, following Ractliffe(1984), they are denoted by

C'T=‘/i and C’L=‘/£ (5.95)
Pm Pm

o is the stress in the line element,

where

pm 18 the line material density,
E is Young’s Modulus.

Clearly Cr > Ct and because the minumum mesh period is required, Cf, is used
in Equation (5.94), i.e.

Pmin = /\w _P_m.

E
From experience Bathe(1982) suggests that At should be equal to Ppin/10, but
Ractliffe(1984) suggests it should be P, /5. In connection with the present study

the former seems to be more applicable, hence

At = ’1_"(; n (5.96)

where I, is the minimum size of any of the elements. Equation (5.96) can be

used to establish a time step size for which all A modal equations are integrated
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accurately. However, as pointed out previously, it can be considered that the
modes associated with higher frequencies contribute little to the total solution.
This means that by using a time step size which is small enough to accurately
evaluate the modes associated with the higher frequencies, little is been gained as
far as the accuracy of the total solution is concerned but at the expense of excessive
computing time. Thus it is proposed that the size of At can be much larger (of the
order of 100 times) where this will still allow the accurate integration of the more

important lower modes with the advantage of greatly reduced computing time.

One point for further consideration is the estimation of the critical value of At
for use with the explicit Central Difference scheme. From Figure 5.2 the following

empirical relationship is derived

At 1

=22 5.97

P (5.97)
hence p

where P is given in Equation (5.94). In order to calculate the maximum At, the
maximum wave period and hence wave celerity, is required. This is given by Cr

in Equation (5.95); hence it can be shown that

At = _\10"::7 IL”\/ETE (5.99)

where
m is the mass per meter,
lmaz is the maximum mesh length,

T is line tension.

The question then arises as to what value of T should be used, the minimum
dynamic tension, or the maximum static tension. The results are further discussed
in Chapters 6 and 7.

5.9 Summary

This chapter is intended to give what can only be considered as an introduction
to the complex subject of the stability and accuracy of FD schemes. The chap-
ter begins with a brief statement of the four FD schemes which are used in this
study and indicates the original references where they were first presented. This

is then followed by a section which verbally indicates the errors which are to be
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expected when a numerical solution of this type is used. This is then slightly more
formalised with the use of notation derived from Richtmyer and Morton(1967)
and Lambert(1973). Following this the four schemes are derived from first prin-
ciples. The Central Difference and the Houbolt scheme are derived from direct
consideration of the Linear Multistep Methods for first and second order differ-
ential equations. The Wilson-6 and the Newmark methods are derived from the

assumption of a linearly varying acceleration over each time interval.

The numerical stability of these FD expressions are investigated through the
use of the von Neumann stability condition, the method of amplification matrices
and the Routh-Hurwitz conditions. The first and last methods produce inequalities
which allow the time step size to be selected so as to guarantee the stability of
the scheme, whilst the second method is a numerical way of demonstrating the
stability. Given that a particular FD scheme will be stable, the accuracy of the
results must then be assessed. This is measured through the amplitude decay
and the period elongation of the numerical solution when compared to a known
analytical solution. Finally an indication is given of how to determine a time step
size which will integrate all modes present in the solution in order to obtain an
accurate answer. Also included is another method for the determination of the
limiting time step size to ensure the stability of the Central Difference algorithm.

It must be stated now, as a conclusion to this chapter, that all the preceding
remarks about the stability and accuracy of FD schemes only strictly apply to the
analysis of equations which are linear. However this discussion of the linear case
is still of importance since it may illustrate the possible errors which arise and
how they might occur, when these schemes are applied to nonlinear equations. It
would seem that it is not possible to provide an analytic analysis of the stability and
accuracy of the solution of nonlinear equations using FD schemes. The only method
of gaining this is by actually solving the equations in question and then examining
the numerical properties of the scheme used. As pointed out in the introduction,
no published study of the numerical properties of these time integration schemes

as applied to mooring line dynamics, seems to exist.



CHAPTER 6

Numerical Investigation of Time Integration Schemes

6.1 Introduction

The first section of this chapter indicates how the reduction of the equations
of motion from a three dimensional (3D) form to a 2D form is achieved. These
are then compared with published sets of equations to establish any discrepancies
which might be present. The next section demonstrates the validity of the 2D
equations of motion by comparing the results obtained through the use of four
different time integration schemes. Also shown is how the dynamic results reduce
to the static results (as predicted by the numerical method in Chapter 2) in the
limiting excitation cases. The final section of this chapter provides a comprehensive
numerical investigation and comparison of the predictions derived using the four
time integration schemes as they are applied in the solution of the 2D form of
the equations of motion. For this study the effects of nodal grounding and lifting
are ignored as this will be studied in greater detail in Chapter 8. Next, a short
section detailing the setting up of “benchmark” tests for mooring line dynamics is
introduced. These would then allow for the assessment of the use of different time
integration schemes or of new theoretical developments relative to some commonly
acceptable “benchmark” results. Finally a brief summary of the main points from

the results of the comparative study is presented.

6.2 2D Form of the Equations of Motion

The reduction of the 3D equations of motion, as represented by Equations
(3.62), (3.63) and (3.64), to their 2D form has been demonstrated in Section 4.2.
This was achieved by ignoring all the terms pertaining to the y direction and
by setting Eiry = 0° for j = 0,1,...,(h — 1). The 2D equations are then given by
Equations (4.1a) and (4.1b), where the influence of line attachements and the wave

particle velocity and acceleration terms are neglected. These equations, restated
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here, are of the form

7 g 1 E : it}
{Mjwj + ?J[at C082’7 + a, sin? 7L . }+%’ [(at — ayp) sin 4 cos 'y]j .
-3 -3
i+ (6.1)
= [Tcos7] - +F
i-%
and
& i+3 3. N 5 i+d
—2—[(at —ap) sin’ycos*y] + + {Mj%j + 5] a; sin“ v + a, cos 7]]_ 1}
J=3 -2 6.2
j+% (62)
= [Tsin'y] -, =W
1=3

6.2.1 Comparison with Nakajima(1982)

Equations (1) and (2) in the paper of Nakajima (1982) correspond to a 2D set
of equations of motion derived for a mooring line. The differences between these
and Equations (6.1) and (6.2) are:

1. A slight difference in notation. A reference to element j+} in this thesis

would be referred to as element j+1 in the Nakajima paper.

2. In this thesis the normal (or tangential) added mass to be lumped at node
j is calculated as being the average of the product of the normal (or tan-

gential) added mass and a function of the element angles for those elements
: - : +3 ..

which adjoin node j, for example the term [an sin® 7]5,-_5-_? . In Nakajima’s

paper the average of the normal (or tangential) added masses are calcu-

lated, as well as the average of the functions of the element angles and then

the product of these is calculated. This is represented by
1
Anj = 5 [ani1) + an(y)]
to denote the average of the normal added massses, and
V= l[7j+1 + 71']
2

to denote the mean angle. Hence the normal added mass to be lumped at

node j is given by A = A,; sin? ;. The principal difference between the two



Sec 6.2 Numerical Investigation 154

approaches readily explained. In this thesis all the forces are expressed in a
global cartesian coordinate system, i.e. (z,y, z), before they are lumped at
the appropriate nodes. In the approach of Nakajima(1982) these quantities
are not resolved globally until they have been lumped at the nodes. This

different approach will result in a slight difference in the predictions.

3. The only other difference is in the remaining drag and tension forces ex-
pressed by Equations (3) and (4) of Nakajima(1982). Here the drag terms
are incorrectly subtracted from the right hand side when they should be
added. In Nakajima(1986b) these drag forces are added which implies a

typographic error in the earlier paper.

6.2.2 Comparison with van den Boom(1985)

The equations of motion are represented in matrix form by Equation (1) of the
van den Boom(1985) paper. It appears that the same general approach is adopted
as that of Nakajima(1982), with the functions of the element angles based on the
average of the element angles on either side of the node in question. However,
it is not particularly clear how the local normal and tangential added masses are
incorporated into the added mass matrix. In the van den Boom approach, this is
given by

()] = anj ()] + a1 [247)]

where [Ap;(7)] and [A4;(7)] represent the transformation matrices which relate the
local and global added masses in the normal and tangential directions respectively.
As previously indicated, the angles in these transformations are the average of the
angles of the adjoining elements. However, the notation in this paper implies that
an; and aq; are the local normal and tangential added masses which are assumed
to be lumped at node j, and therefore correspond to some averaging principle, as
used by Nakajima(1982). Furthermore, the added mass quantities are indicated as
being calculated thus

.
apj = pCznZDlej

and

.
ayj = pCthDlej

where D; and [; represent the diameter and length of element ; and Ci, and Ciq

denote the normal and tangential added mass coefficients respectively. In order
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for this formulation to be consistent with that of Nakajima(1982) the calculation

of an; and ay; given above would have to be given by
= 7 Ci.rivinD2. . 1: Ci. D3l
Qpj = P8 Wn(j+1)Vj41t+1 + Crn(y D5y

and
a._fc'. D%, 111+ Ciyn D3I
ti = P\ G+ Vi1t LOESTEE

where j and j+1 refer to the element quantities above and below node j respectively.

Comparison with Walton and Polachek(1960)

In this paper the equations of motion are represented in the matrix form given
by Equation (2.1), where the tangential added mass and drag effects have been
neglected. Thus the equations of motion used in this thesis are directly comparable
with those of Walton and Polachek(1960).

General Observations Deduced From Comparative Study

It would seem, therefore, from the different models considered above, that two
basic procedures have been adopted in the development of a lumped mass method,

namely:

1. To express all forces acting on the elements in global coordinates and then
lump them at the appropriate nodes. This is the procedure adopted in this

thesis.

2. To average and lump the local values of fluid inertia and drag at the node
before evaluating the global components, whilst the remaining forces are
handled as in (1). -

The differences between the two formulations are expected to be small. However,
the first approach has the advantage of being consistent, but the disadvantage of

slightly more involved encoding in the associated software.

Benchmarks With McNamara(1993)

A simulation run based on the parameters indicated in Table 6.1 (see over) was
undertaken and compared with the results generated by McNamara(1993, Figures
6.0A and 6.0B) in order that independent corroboration could be obtained. The

results of this comparison are shown in Table 6.0:
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Present Method McNamara(1993) % Differences

20 Elements | CABLE-3D (30E) | FLEXCOM-3D (86E)| 30E | 86E
Static 495.3kN 478.9kN 479.2kN 3.42% | 3.36%
Dynamic 884.7kN 904.1kN 825.0kN 2.15% | 7.2%

Table 6.0 - Benchmark Comparison

Note that the values indicated in Table 6.1 for the static analysis are given in 3D,
whilst the dynamic quantities are specified in 2D; also the amplitude of excitation
in the z direction is 10m for this case. The formulation and discussion of the
FLEXCOM-3D program is described in O’Brien and McNamara(1989). Although
this is a FE formulation which includes bending stiffness, with the latter set to a
small value, the program can be used to analyse mooring situations. The results

seem to offer an acceptable degree of comparison.

6.3 Comparison of Dynamic and Static Results

In this section an attempt is made to correlate the predictions based on the
limiting excitation cases of the dynamic model (i.e. situations for which there is
no endpoint excitation) with comparable results derived from the static numerical
model described in Chapter 2. The principal input parameters and the numerical
values assigned to them for this study, for both the static and dynamic models,

are shown in Table 6.1.

Since the software for the numerical static model is written for the 3D case,
the input data specified is 3D. However, for the purposes of the comparisons in
this chapter, the four different time integration schemes have been encoded only
for the 2D equations of motion. Hence in this study the upper endpoint excitation
is restricted to the initial static plane of the mooring line. The endpoint excitation

function is defined by

U? =U2 + (1 - &™) 4, sin(wenAt +g,). (6.3)
where
A, is the amplitude of the excitation function.
We is the frequency of the excitation function.

Ee

is the phase of the excitation function.
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and the term (1—e¢™A%) allows the excitation to be gradually introduced to prevent

possible numerical start up errors.

When referring to the 3D static or dynamic quantities, the normal reference system
is the Cartesian system. However for the 2D programs the z direction refers to
an axis which lies horizontally in the plane of the mooring line with the origin
coincident with the anchor point. Therefore endpoint excitation might be thought
of as corresponding to a surge excitation in the case of a mooring line being attached
to a floating body. Throughout Sections 6.3 and 6.4 the influence of changing the
various parameters in Table 6.1 is examined. Each variable is examined in isolation,
unless otherwise stated, from the remaining variables. Unless indicated otherwise,

the variables always have the same values as indicated in Table 6.1.

Case Study 1: No Dynamic Excitation

In the first case study the four dynamic models are run with no endpoint
excitation. The static value for the tension in the last (uppermost) element is T =
495336.993N. The mean uppermost element tensions for the dynamic solutions are
calculated over two time periods, 0 —350 seconds and 100 —350 seconds. The latter
is used to ensure that any numerical irregularities from the start up procedure do
not affect the calculation of the mean. The results are shown in Table 6.2 where “%
Diff.” denotes the percentage difference of the dynamic tension from T, relative to
Ts. From these results it is possible to see that the solution obtained from each of
the schemes with no endpoint excitation represents very closely the static solution.
Furthermore, it can be said that the solution obtained from the Central Difference
(CD) scheme is more accurate than the remaining three schemes. However, these
differences are only of interest from an academic point of view, since they all lie

well within the limits of engineering accuracy.
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Static Dynamic
Quantity Value Quantity Value
z Endpoint displacement | 1000.0 (m) | Time increment(At) |0.02 (secs)
y Endpoint displacement | 1000.0 (m) Simulation time(T) | 255 (secs)
Water depth (d) 1000.0 (m) 9 1.4
Length of line(L) 1790.0 (m) B 0.25
Number of elements(k) 20 § 0.5
Sea water density(p) 1025 (kg/m®) ® 0.5
Line diameter(D) 0.07148 (m) Amp. 0.0
Mass per metre in air  |25.493 (kg/m) Amp. 2 0.0
Young’s modulus(E) 7.848 x 1010 ¢ Freq. 10
Poisson’s ratio(v) 0.0 z Freq. 75
Normal drag coeff.(Cd,) 1.6 ¢ Phase 0.0
Tangential drag coeff.(Cdy) 0.03 z Phase 0.0
- - Growth factor(() 0.05
- - Tan. AM. Coeff.(Ca;) 0.0
- - Nor. AM. Coeff.(Ca,)] 1.98

Table 6.1 — Principal Static and Dynamic Input Parameters

Scheme | Mean1 | % Diff. Mean 2 | % Diff. |CPU (secs.)l
Houbolt |495338.223 |-0.000248 | 495338.735|-0.000351 | 330.723
CD 495337.026 | -0.000008 | 495337.046 | -0.000012 | 411.472
Wilson-0 |495338.259 | -0.000256 | 495338.769 | -0.000359 | 387.977
Newmark | 495337.346 | -0.000073 | 495337.493 | -0.000101 | 430.491

Table 6.2 — Mean of Solutions with no Excitation.
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Case Study 2: Decayed Dynamic Excitation

In the next part of the study the four schemes are run with a sinusoidal exci-
tation in the 2D z direction. This oscillation is introduced at the upper endpoint
position indicated in Table 6.1 and is allowed to gradually grow to a maximum
amplitude of 10m with a growth factor, (, of 0.05 (see Equation (6.3)). This ex-
citation is then allowed to decay back to the original point with the same (but
negative) growth factor once the maximum amplitude has been reached. A steady
decayed solution is only obtained after 250 seconds and therefore the mean tension
is calculated between 250 and 350 seconds only. The results are summarised in
Table 6.3.

Scheme | Mean(250 — 350) | % Diff. From T, | CPU (secs.)l
Houbolt 495072.393 0.0534 341.245
CD 495075.519 0.0528 510.445
Wilson-4 495069.875 0.0539 517.263
Newmark | 495091.284 0.0496 447.680

Table 6.3 — Means of Decayed Sinusoidal Solutions.

Table 6.3 shows that the accuracy of the four scheme are now comparable, but
that the relative errors are worse than for the case with no excitation, see Table
6.2. This suggests that once numerical oscillations are introduce through endpoint
excitation, they become established and do not entirely decay out as the solution
proceeds following the termination of the endpoint excitation. However, although
the error is of the order of 100 times larger than the case of no excitation, in engi-
neering terms the decayed dynamic solution and the static solution are essentially

the same.

Case Study 3: Influence of Total Simulation Time

To see if the total simulation time affects the results, each of the four models
are run with a regular sinusoidal excitation in the 2D « direction for simulation
times (T) of 350 and 1000 seconds. In addition to the overall mean (Ty,) being
calculated for both simulation times, the means of the tension peaks (Ip) and of

the tension troughs (7}) for the region containing the last five peaks of the solution
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are also calculated. The results for the 350 second simulation are shown in Table
6.4, whereas the 1000 second simulation results are in Table 6.5. The percentage
differences in the results obtained for the two different simulation times are given
in Table 6.6. |

Scheme | Tp(N) Tm(N) Ty(N) | CPU (secs.)
Houbolt |885723.69 [ 508968.55 | 175344.243| 337.01
CD 885362.47 | 508913.78 | 175622.45 558.55
Wilson-0 | 888632.04 | 508943.99 | 165704.72 572.58
Newmark | 886024.66 | 509794.17 | 177694.86 | 462.096

Table 6.4 — Tension Means for 350 Second Simulation.

Scheme | Tp(N) | Tm(N) | Ti(N) |CPU (secs.)|
Houbolt |885699.96 | 508972.16 | 175340.97| 962.05
CD  |885358.36|508917.99 [175624.13| 1613.59
Wilson-0 | 88863053 | 508944.72 | 165702.91 | 1636.72
Newmark | 886021.07 | 509798.43 | 177696.50 | 1320.84

Table 6.5 — Tension Means for 1000 Second Simulation.

Scheme Peaks |[Overall Means| Troughs
Houbolt [0.00268% | -0.00071% 0.00186%
CD 0.00046% | -0.00083% | -0.00096%
Wilson-# |0.00017% | -0.00014% | 0.00109 %
Newmark [ 0.00041% | -0.00084% |-0.000923%

Table 6.6 — % Differences in Tensions.
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The percentage differences are so negligible it may be considered reasonable to
assume that, for the problem considered, short simulation times will be represen-

tative of the results obtained from longer simulations.

Case Study 4: Influence of Irregular Endpoint Excitation

Having examined the influence of a regular upper endpoint excitation, each
scheme is now subject to an irregular endpoint excitation. This is also allowed to
grow and decay over 250 seconds as in Case Study 2. The irregularity is introduced
by selecting, at random, values for the amplitude, phase and frequency of the gov-
erning excitation function (see Equation (6.3)). The randomness is generated from
a pseudo random number generator and limits are imposed upon the ranges which
the randomised variables can attain. The total simulation time is 350 seconds so
the mean of the decayed result is calculated for the last 100 seconds. The results
are indicated in Table 6.7.

Scheme |Mean(250 — 350) | % Diff. from T, [ CPU Times (secs.)
Houbolt 495337.322 -0.000067 342.76
CD 495335.17 0.000367 757.06
Wilson-6 495335.09 0.000384 560.59
Newmark 495346.45 -0.001910 551.32

Table 6.7 — Decayed Mean Tensions for Irregular Excitation.

These results are analogous to those given for the case of decayed regular excitation
presented in Table 6.3. However, the accuracy obtained in the present case is better
than that for the case of decayed regular excitations This implies that spurious
numerical oscillations generated by the solution, die out more readily for irregular
excitation than for regular excitation. Also note that the CPU times for the
Houbolt scheme (see Tables (6.3) and (6.4)) are comparable for the two cases of
excitation. However, for the remaining three schemes the CPU times with irregular
excitation are 48%, 8% and 23%, respectively for the CD, Wilson-6 and Newmark
schemes, greater.
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6.3.5 Case Study 5: Different Excitation Amps. and Fregs.

Finally each of the four models are now run with different amplitudes and
frequencies of excitation in the 2D z direction. These regular excitations are then
allowed to decay away so that the effects of different endpoint excitations can be
examined. The percentage differences between the average dynamic tensions of

the decayed solution and the static tension Ty, and the CPU times are shown in

Table 6.8.
Scheme Freq. Amp; =5m Amp, = 15m Amp; = 25m
(rads./s.) | % Diff. | CPU (secs.) | % Diff. | CPU (secs.)] % Diff. | CPU (secs.)
Houbolt -2-51 0.05324 338.84 0.05313| 352.71 ]0.05396 376.89
Cb 0.05307 [ 733.241 [0.05207| 914.573 [0.05213( 1001.686
Wilson-6 0.04912| 539.642 |0.05045| 584.789 [0.05066) 632.652
Newmark 0.05424| 532.457 |[0.05197| 611.064 [0.05108| 664.472
Houbolt %% 0.05357| 338.934 |0.05446( 339.358 |0.05443| 339.332
CD 0.05272| 472.120 |0.05275( 587.570 ]0.05236| 695.632
Wilson-0 0.05276] 509.328 |0.05102| 508.751 |0.04993| 543.662
Newmark 0.05097| 442.266 |0.05095( 480.968 ]0.05233| 526.908
Houbolt %% 0.05093 | 338.937 |0.05051| 338.838 [0.04950( 342.301
CD 0.05183| 437.946 |0.05198| 493.562 [0.05177| 584.061
Wilson-6 0.05000| 507.281 [0.05095| 516.517 [0.05151| 519.734
Newmark 0.05355| 447.671 [0.05349| 452.263 ]0.05417| 475.284

Table 6.8 — % Differences for Different Amplitudes and Frequencies of
Excitation.

From Table 6.8 it follows that the amplitude and frequency of the endpoint ex-
citation has, once the excitation has died away, a negligible influence upon the
percentage difference between the static solution and the means of the decayed

tensions.

In conclusion, it is clear that once the dynamic solutions (by any of the four

schemes) have reached a point where there is no longer any excitation present,
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then the resulting endpoint tension is, for all practical purposes, identical to the
static solution. This is as far as the self validation of the dynamic model with the
static model can be carried. A more detailed numerical comparison of the solutions
generated using the four different time integration schemes is presented in the next

section.
6.4 Numerical Study of Four Time Integration Schemes

6.4.1 Case Study 6: Maximum Permissible At Values

In this case study the influence of the amplitude and frequency of the endpoint
excitation is examined with regard to the maximum permissible value of the time
step, At, which can be used to obtain a valid solution. The three implicit schemes
(the Houbolt, Wilson and Newmark) will, in theory, provide a solution regardless
of the size of At. However the solutions obtained with these schemes do eventually
collapse at a certain maximum value of At. The reason for this is that for larger
values of At the ‘basin of attraction’ of the Taylor series expansion used in the
iterative process, see Equation (3.76), is exceeded. Thus it can be seen that it is
not the implicit nature of the scheme which is causing the collapse of the solutions,
but rather it is the restriction imposed by the use of the first order Taylor Series
expansion. This is clearly not a limitation in the integration of linear equations

since no iterative procedure is employed in this situation.

In principle it is expected that increasing either, or both, the amplitude and
frequency of excitation will result in a smaller permissible value for the maximum
value of At. This supposition is clearly borne out in Figure 6.1 generated using
the Houbolt scheme. It can be seen that for any given amplitude, increasing
the frequency has the effect of reducing the maximum permissible value of At.
Similarly it can also be seen that at any given frequency, increasing the amplitude

has the same effect. Note that both are nonlinear effects.

The features present in the results for the (CD) scheme - as illustrated in Figure
6.2 - are not so easily explained. For the portion of the graph prior to a frequency
of approximately 0.3 rads/s., the behaviour is as expected. For frequency values
greater than this it appears that any subsequent increase in the frequency results in
an increase in the maximum permissible value of At. It is not possible to directly
attribute this effect to a particular cause, but it can be hypothesised that some
‘resonance’ effect is present which, for certain combinations of excitation amplitude
and frequency, enhance the stability properties of the CD scheme. However this
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can only be a ‘localised’ effect since, as indicated above, increasing the amplitude
and frequency of excitation in the extreme must reduce the size of the maximum

permissible At.

It is seen from Figure 6.2 that the result for an excitation amplitude of 5m
does illustrate a local peak at approximately 0.48 rads/s. After this peak the trend
for a decreasing maximum value of At is again established. As the amplitude of
excitation is increased it seems that the ‘local’ peak becomes larger in the sense
that it applies over a greater range of frequency values. The supposition previously
mentioned suggests that at higher frequencies than used here, the decreasing trend
ought to again reappear. If this is infact true, then this means that increasing the

amplitude acts to increase the ‘size’ of the peaks for the larger At values.

Figure 6.3 shows the results for the Wilson-0 scheme. It is again evident that
certain combinations of frequency and amplitude produce slight increases in the
maximum value of At. However the broader picture confirms the initial hypoth-
esis that the maximum permissible value of At decreases as the amplitude and
frequency increases. The results in Figure 6.3 also exhibit some local effects anal-
ogous to those described for the CD scheme, namely an increase in the maximum
permissible value of At with increasing excitation frequency at the lower end of the
frequency range. However the trend at the higher frequencies is opposite to that
demonstrated with the CD scheme meaning that as the amplitude is increased, the

size of the local peak decreases.

Figure 6.4. shows the results for the Newmark scheme. Again a local peak in
the results is present, and the characteristics of the peak follow precisely the same

trends identified for the Wilson-8 scheme in Figure 6.3.

Case Study 7: Influence of Excitation Ramping Function

In this case study the influence of the growth factor ¢ in Equation (6.3) is
examined. The growth factor is applied to the sinusoidal excitation function which
governs the endpoint motion. This allows the excitation to be gradually introduced
rather than starting suddenly and risk the possibility of introducing numerical

shocks.

Examination of Equation (6.3) shows that as n, the number of time steps so
far, increases, so the function (1 — e¢”2%) will tend to unity. This will then yield

the correct amplitude, g,, for the endpoint excitation. The practical upper limit
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imposed by the computer system on the calculation of e$"4% is 174, i.e.

In(174)
nAt

"t <174, hence (<

If, instead of using nAt, the value of the simulation time, T, is used, then it is
possible to obtain the smallest possible value of (. With T' = 250 seconds, the
range of permissible values for { obtained for the four schemes are shown in Table
6.9.

Scheme ¢ range
Houbolt {0.02 < (¢ <17.2
CD 0.02< (<123
Wilson-8 {0.02 < ( <17.2
Newmark| 0.02< (<15

Table 6.9 — Range of Growth Factors for Each Scheme.

If, however, the values for At are taken from Figures 6.1 to 6.4 for an excitation
amplitude of 10m and a frequency of ;, as an example, then Figure 6.5 shows ¢
plotted against the maximum permissible value of At. Note that the At values for
the CD scheme have been scaled up by a factor of 10 and the growth factors by 0.15
to provide values comparable with the results for the other schemes. For the three
implicit schemes it seems that once the value of ( is greater than approximately 0.5
the maximum permissible value of At remains constant. Remembering the scaling
of the results for the CD scheme, it can be seen that they are not as variable as
they appear on the graph. It also seems possible to identify a ‘critical’ value of (,

for all the schemes, beyond which the maximum value of At is invariant.

These comments also apply to Figure 6.6 where ¢ is plotted against the means
of the tension peaks, Tp. Here the critical limit would seem to be approximately
1.0, rather than the value of 0.25 for the determination of a maximum value of
At. Again the the abscissa for the CD scheme has been scaled by a factor of 0.15.
Figure 6.7 shows ¢ plotted against the overall mean of the tensions, Ty,, and Figure
6.8 shows the same graph but for a smaller range on the z axis. It is difficult to

make generalized comments applicable to these graphs other than to say that for
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¢ > 1 both the CD and Wilson-8 schemes produce means which are invariant of
¢. The Newmark scheme exhibits the greatest variation (of approximately %%),

whilst the Houbolt scheme seems to be tending towards a limiting value.

Case Study 8: Influence of Vertical Excitation upon At

So far the endpoint excitation has been limited to the horizontal (2D ) direc-
tion. In this case study the influence of simultaneous motion in both the horizontal
(2D z) and vertical (2) directions upon the maximum value of At is investigated.
An initial amplitude of 10m is maintained in the z direction, whilst the amplitude
of the motion in the z direction lies in the range 0.0 < A, < 10.0. The motion
in the z direction is selected to be 90° out of phase with the motion in the z di-
rection, i.e. €, = . This is to obtain elliptical, and not linear, endpoint motion.
The frequency of oscillation in both directions was maintained at 7/10 and the
same ramping function of { = 0.05 was used in both directions. With A, < 10.0,
the resultant endpoint motion will be truly elliptical, whilst when A; = 10.0 the
resultant motion will be circular. It is expected that with increasing A;, the max-
imum permissible value of At should decrease since the excitation is becoming
more extreme. This is borne out in Figure 6.9, but the effect is not as great as
might initially have been supposed. The maximum reductions in the maximum
permissible value of At being 33%, 3%, 20%and13% for the Houbolt, CD, Wilson-0

and Newmark schemes respectively.

Case Study 9: Irregular Endpoint Motion upon Max. At

Here the influence of the irregularity of the endpoint motion in the 2D =z
direction, upon the maximum value of At, is investigated. The irregular motion
is composed of a specified number of sinusoidal components which have randomly
assigned amplitudes, frequencies and phases as in Case Study 4. Figure 6.10 shows
the maximum attainable value of At plotted against the number of components
used to generate the irregular motion. Precisely because of the irregularity of
the endpoint motion, it is not possible to generalize comments about this graph.
However, it does appear that the more components which are used to generate the

endpoint motion, the smaller the maximum value of At becomes.

Generally speaking it would be expected that the effects produced by the ir-
regular excitation would cancel out. However, were this always true then the

occasional spurious component of endpoint excitation caused by reinforcement of
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the different components would not occur. Spurious values for the endpoint ex-
citation will result in maximum permissible value of At and maximum predicted
tensions which could be greatly different to those normally expected. Figures 6.11,
6.12 and 6.13 show plots of the number of components against the maximum,
mean and variance of the resulting tension time history. It will be noted that the
behaviour of the four schemes seem to separate into two groups. Both the CD and
the Houbolt schemes appear to react more dramatically to produce wider varia-
tions in the maximum At, the maximum tension and the mean tension than either

the Wilson-0 or the Newmark schemes.

Case Study 10: Relationship Between At and Mesh Size

In this case study one of the most important features of finite difference (FD)
schemes is examined, namely the relationship between the maximum permissible
value of At and the number of elements (k) used, i.e. the mesh size. Figure 6.14
indicates, as expected from the analysis in Chapter 5, that the value of the maxi-
mum permissible At decreases as the number of elements increases. In particular,
in Section 5.8 the maximum time step size was shown to be proportional to the
minimum period of the mesh. Therefore as the number of elements increase, so the
minimum period decreases, and hence so does the allowable time step size. Also
indicated in Figure 6.14 is the theoretical limit for the CD scheme (note that the
ordinates for both CD curves have been scaled up by a factor of 10) as given by |
Equation (5.99). To estimate At., as given by Equation (5.99), a value for the
tension T needs to be defined. For this case this is taken to be the maximum value
of tension from the static analysis. This theoretical limit is well below the curve of
actual maximum permissible values of At showing that at least for this nonlinear

problem, the theoretical limit for the CD scheme is conservative.

Case Study 11: Solution Histories for Different At and k

Here the effects of using different values of At and A upon the actual tension
time history is examined for each of the four time integration schemes. In all cases
the excitation is in the 2D z direction only. This has an amplitude of 10.0m and a
fixed frequency of 7 /10 rads/s. The value of h ranges between 10 and 30 (inclusive)
with an interval of 5, whilst the range of At for each scheme is shown in Table 6.10.
The minimum practical value for At was taken as 0.001 seconds because for smaller
values the program execution times became intolerably long. The maximum values
were chosen to be ‘sensibly’ less than the permissible maximum At values obtained

in the previous case study for 30 elements, see Figure 6.14. Also the maximum
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At values were selected so as to easily divide to give an appropriate range. Each
scheme was run with At = 0.001 seconds and then at multiples of the intervals as
indicated in Table 6.10.

Scheme |Range of At (secs.) |interval (secs.) | Range of A | Interval
Houbolt | 0.001 < At <£0.20 0.04 10<h <30 )
CD 0.001 < At <£0.025 0.005 10<h <30 5
Wilson-6{ 0.001 < At <0.15 0.03 10 <30 5
Newmark | 0.001 < At £0.20 0.04 10<h <30 )

Table 6.10 — At and h Used for Each Scheme Considered.

To plot the full range of the solution, i.e. to show the peaks, troughs and
everything in between, produces a graph where no distinction can be made between
solutions obtained with different values of At and h. For this reason the extreme
sections of the peaks and troughs of the tension time history have been isolated and
then separately plotted so that the differences become clear. A simulation time of
250 seconds was used throughout and only the results for the last five peaks and

troughs of the simulation were plotted.

Results from the Houbolt Scheme

The results for the Houbolt scheme are shown in Figures 6.15 to 6.24. For a
given value of h the tension time histories are plotted for the different values of At.
Apart from the graphs corresponding to h = 30, the others clearly show a trend of
reduced amplitudes with increasing values of At. With h = 30 the tension peaks
obtained for the two largest time steps (0.16 and 0.2) are very erratic, whilst the
solution for the remaining four values of At produce regular and smooth responses
for the tension peaks. The results for the tension troughs with h = 30 are totally
erratic. The remaining solutions for different numbers of elements and values of At
are generally smooth and regular. Even those which are not regular, e.g. for h = 25
and At = 0.2 seconds, the mean trend of the irregularities are consistent with
the regular results. Furthermore, these irregularities also die out as the solution

proceeds.

The percentage deviations from the solution with At = 0.001 seconds of the

solutions obtained with the remaining values of At are indicated in Table 6.11. The
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indicated percentage differences are greater for the troughs than for the peaks. This
is to be expected since the absolute value with which the percentage relative error is
being calculated is much lower for the troughs. However, closer examination of the
associated computer output (not presented) indicates that the absolute differences
at the peaks and troughs are nearly equal. Therefore it is not meaningful to
attach any significance to the differences in the percentage errors between peaks
and troughs for any given value of h. Rather, it is more instructive to simply
compare the percentage differences for peaks (or troughs) only for different values
of h. If the entries in Table 6.11 corresponding to A = 30 and At = 0.16 and 0.20
are neglected because of the unacceptable irregular oscillations already indicated,
then as previously mentioned for a given value of h it can be seen that increasing

the value of At reduces the amplitude of the results.

For the case where At is fixed and the variation of the solution with increasing
h is examined, it can be seen that there is no clear trend regarding the results
of the peaks. If there is any trend it is not monotonic but oscillatory, and not
always diminishing in amplitude. In contrast the results for the troughs show a
clear trend, i.e. that increasing the number of elements for any given value of At

reduces the percentage differences from the ‘accurate’ solution.

The plot of troughs for A = 30 is very irregular with no semblance of order
until the last two peaks of the time history and even these are still fairly erratic.
The reason for this is not obvious, but clearly the irregularities in the solution
manifest themselves first at the lower tensions present in the time history, i.e.
the equivalent peaks are more smooth. To summarise the results for the Houbolt

scheme, the following points are made:

o For any given value of h, increasing At increases the deviation of the results

from the ‘accurate’ solution.

e For any given value of At, increasing h reduces the deviation of the results

from the ‘accurate’ solution.
¢ For certain combinations of h and At irregular results will arise.

¢ There is Period Elongation (PE) present in the solution but this only ap-
pears at low tensions (i.e. at the troughs) and for the case of higher element

numbers.
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h At (secs.)
0.04 0.08 0.12 0.16 0.20

10| Peaks | 0.25846 | 0.45137 | 0.69313 | 0.92488 | 1.15418
15 0.27669 | 0.48138 | 0.73745 | 0.96550 | 1.21146
20 0.19895 | 0.37244 | 0.63485 | 0.87766 | 1.11313
25 0.23749 | 0.49363 | 0.74139 [ 0.95510 | 1.07855
30 0.17934 | 0.32847 | 0.55554 | 0.20366 |-0.17045
10 | Troughs | -2.05888 [ -3.84874 | -5.66534 | -7.63957 { -9.72212
15 -1.67186 [-2.91125 [ -4.42944 | -6.05168 | -7.59973
20 -1.39027 | -2.54198 | -3.94135 | -5.43076 | -6.72520
25 -1.23533 | -2.28871 | -3.63527 | -4.66045 | -2.52475
30 -1.21205|-2.29210}-1.73907 | 4.50663 | 6.51207

Table 6.11 — % Deviations of Peaks and Troughs for Houbolt Scheme.

Results from the CD scheme

The corresponding sets of results for the CD scheme are shown in Figures 6.25

to 6.34 and Table 6.12. Basically the same trends are evident here as for the

equivalent results of the Houbolt scheme, however, the most noticeable difference

is that the CD scheme produces no irregularities over the range of At and h values

considered. Additionally, there is a noticeable amount of PE produced by using

increasing values of At, and this becomes more pronounced for the solutions with

more elements. The percentage deviations from the ‘accurate’ solution (i.e. the

CD solution with At = 0.001) are shown in Table 6.12.
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h At (secs.)

0.005 0.010 0.015 0.020 0.025
10| Peaks | 0.04780 | 0.10287 | 0.15529 | 0.12320 | 0.25721
15 0.04305 | 0.09724 | 0.15101 | 0.20483 | 0.25837
20 0.00802 | 0.03795 | 0.07897 [ 0.12569 | 0.17526
25 0.05195 | 0.11043 | 0.16543 | 0.21906 | 0.27212
30 0.00580 | 0.03399 | 0.07355 | 0.11868 | 0.16724
10 | Troughs | -0.27785 | -0.66920 | -1.08161 | -3.94454 | -1.92798
15 -0.18908 | -0.45599 | -0.74761 [ -1.05176 | -1.36573
20 -0.217721-0.45618 | -0.70464 | -0.96355 | -1.23252
25 -0.18200 | -0.41056 | -0.64634 | -0.88728 | -1.13528
30 -0.24799 | -0.50402 | -0.74482 [ -0.98118 | -1.21922

Table 6.12 — % Deviations of Peaks and Troughs for CD Scheme.

A study of Table 6.12 indicates that increasing At for a given value of h

increases the percentage deviation from the ‘accurate’ solution. However, for a

given value of At the effect of increasing the number of elements is not immediately
clear. A trend for the peaks cannot be discerned, but for the troughs it appears

that an increase in A causes a reduction in the deviations up to a certain point, i.e.

for 30 elements the deviations start increasing again. A summary of the results for

the CD scheme are as follows:

No case of irregular solutions.

Discernible amounts of PE exists and this increases with increasing h and

At.

For a given value of A, increasing At increases the deviation of the solution

from the ‘accurate’ solution.

For a fixed value of At, no consistent trend is identifiable in the deviations

of the peaks or troughs with increasing h is evident.

For all combinations of At and h considered here, extremely smooth and

regular solutions were obtained.
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Results from the Wilson-8 scheme

The Wilson-0 scheme results are shown in Figures 6.35 to Figure 6.44, and

Numerical Investigation

in Table 6.13. What is immediately obvious from these results is the existence of
more irregular solutions for much lower values of At and h irrespective of whether
the comparison is with the Houbolt or CD results. An increase in irregularity is
apparent when increasing both At and h. The solutions obtained when & = 30 for
both peaks and troughs show no semblance of regularity at all, see Figure 6.43 and
6.44. The solutions obtained with the smallest time step of 0.001 seconds seem
regular for any value of h except 30. For any other combination of At and h the

solutions are irregular and not particularly pleasing for engineering applications.

h At (secs.)
0.03 0.06 0.09 0.12 0.15

10| Peaks | 0.18291 | 0.33712 | 0.48648 | 0.53198 | 0.60837
15 0.16543 | 0.30965 | 0.47131 | 0.51426 | 0.63984
20 0.20726 | 0.32564 | 0.46320 | 0.48344 | 0.60677
25 0.21414 | 0.35604 | 0.49344 | 0.49365 | 0.43279
30 0.23809 | 0.35094 | 0.26005 | -6.01958 -28.588@
10 { Troughs | -2.80331 | -5.13665 | -7.31494 | -9.19764 -10.20959’
15 -1.95354 | -3.54515 | -4.98693 | -6.50764 | -7.75304
20 -1.50725 | -2.81252 { -4.14949 [ -5.18531 | -5.70435
25 -1.38008 [ -2.42457 | -3.34438 [ -4.56348 | -2.76595
30 -0.93274 | -1.93308 | -3.96353 | 10.4831215.21909

Table 6.13 — % Deviations of Peaks and Troughs for Wilson- Scheme.

The percentage deviations from the ‘accurate’ solution are shown in Table
6.13 which suggests more regularity than is present in the Figures. This is readily
explained thus : The percentage deviations are calculated using the means of the
last five solution peaks and troughs from the means of the ‘accurate’ solution
peaks and troughs. Therefore the averages of the irregular solutions are lending
themselves to produce an indication of regularity in Table 6.13. The main points

to be summarised for the Wilson-8 scheme are:
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e Markedly more irregular tension time histories.
e No viable solution for any value of At at A = 30.

e In the more regular plots, Figure 6.35 for example, there is a noticeable
amount of PE (negative in this case) produced by increasing the value of

At.

Results from the Newmark scheme

The results for the Newmark scheme are shown in Figures 6.45 to Figure 6.52
_and Table 6.14. The figures presented show the most complicated set of features,
where no solution for A = 30 is plotted since the time histories for this case were
so irregular they made the plots unintelligible. If Figures 6.45 and 6.46 are first
examined, the regularity in the solutions is to be noted, but it is also apparent that
the solution with At = 0.001 seconds has been markedly offset from the remaining
solutions. The behaviour of this offset with increasing values of A is not regular,
since increasing h seems to introduce different amounts of offset for the peaks and
the troughs. If the solution with At = 0.001 seconds is ignored, then the remaining
solutions can be judged as well behaved, regular and follow the trends previously
indicated for the other procedures. However when large numbers of elements are
combined with larger time steps, irregularity is evident yet again. The percentage
deviations presented in Table 6.14 are included for completeness. However, given
the behaviour of the solution with At = 0.001 seconds the relevance of the inclusion
of this table has to be questioned. The main points to be summarised in this case

are.

o The main trends as previously identified for other schemes are observed,
except for the solution with At = 0.001 seconds which behaves quite differ-

ently.
o Irregularity is very pronounced for A = 30 and leads to a non-viable solution.

¢ Period elongation is again evident, but to a lesser extent than for the other

schemes.
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h At (secs.)
0.04 0.08 0.12 0.16 0.20

10| Peaks |-0.94913|-0.70932 | -0.46115 | -0.23775 | -0.02806
15 -1.03280 | -0.79276 | -0.54984 | -0.31925 | -0.07390
20 -0.65479 | -0.40004 | -0.14333 | 0.09145 | 0.31424
25 -0.60606 | -0.35002 | -0.10103 | 0.07700 | -0.68254
30 -0.43123 1 -0.19969 | -0.05306 | -10.16856] -31.34569|
10 | Troughs | -17.14541]-19.63783 -22.33766| -24.97102] -27.61055]
15 -1.22756 | -2.73982 | -4.60053 | -6.44855 | -8.32078
20 10.71017| 9.38077 | 7.89400 | 6.41231 | 4.98713
25 17.04024 [ 15.87448 [ 14.62463 | 14.17566 | 21.67207
30 19.80074 | 18.78001 | 20.50214 | 29.82369 | 34.80034

Table 6.14 — % Deviations of Peaks and Troughs for Newmark

Scheme.

6.4.7 Case Study 12: Further Analysis of Solution Histories

In this case study a further analysis of the graphs presented in Figures 6.15 to
6.52, i.e. the peak and trough tension time histories for different combinations of
At and h, is undertaken. The means of the tension peaks and troughs respectively
are presented for the Houbolt scheme, plotted against At, in Figures 6.53 and
6.54. Again the smooth reduction in the means of the peaks as the time step
size increases is shown, and the irregularity present in the graph for A = 30 is

highlighted.

Figures 6.55 and 6.56 provide the corresponding results for the CD scheme.
There is a linear reduction (or increase) in the peaks (or troughs) again evident as

the time step size increases for any value of h > 10.

Figures 6.57 and 6.58 demonstrate the same results for the Wilson-6 scheme.
Here the irregularity of the method is again apparent; also note that the increase

(decrease) of the peaks (troughs) with increasing At for the lower h values is not
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linear. For higher values of & (25 and 30) the troughs switch from near linear

increases in the mean tension to near linear decreases.

Figures 6.59 and 6.60 show corresponding results for the Newmark scheme.
The curious behaviour noted earlier for the case of the solution with At = 0.001
seconds has a marked effect on the initial parts of the graph - as might be expected.
Subsequent to this and prior to the onset of any irregularity, the graphs display

the same relationship as noted before.

Case Study 13: CPU Timings for Simulations

The influence of the selection of At and A can now be made with reference to
the plots of Case Study 11. In selecting values for At and k, solutions are required
which exhibit smooth and regular time histories. Furthermore, it is also desirable
that the computational effort required is not to great. Given this, then it is also
of interest to examine the Central Processing Unit (CPU) time required for the
execution of the different simulations. CPU time is, of course, dependent upon the
computer system used, but the figures given here will allow a comparison of the

relative efficiency of the four time integration schemes used.

Up to the point of writing it has not been possible to obtain a concensus of
opinion as to whether the CPU times obtained here are influenced by the load
on the system. It is the authors experience that they are and therefore have to
be considered as values subject to an error of approximately £10%. Rather than
present the total CPU time for execution, it is more instructive to show the CPU
values for the time spent executing the Newton-Raphson iterative solver (CPU2),
and the time for the execution of the rest of the code (CPUy) - their sum giving
the total CPU time for the simulation.

Results for the Houbolt scheme are presented in Figures 6.61 and 6.62 and show
the expected trends for all values of h. Namely, that as the time step increases, both
CPU; and CPU, decrease. It should be noted that the CPU times for At = 0.001
are not presented since to include them would cause the scale to eliminate the
detail for the remaining values of At. These graphs show that for a given value of
At there is a linear decrease in CPUy, see Figure 6.61, and a nonlinear decrease in
CPUy, see Figure 6.62. Thus it can be seen that the total CPU time will decrease
nonlinearly with a reduction in the numbers of elements used, and that this is
directly attributable to the nonlinear decrease in CPU,. The order of magnitude

of the values of CPU; and CPUj remain roughly comparable over the range of
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At and h considered. Thus approximately half the solution time is spent in the

iterative portion of the code.

The corresponding graphs for the CD scheme are presented in Figures 6.63 and
6.64. Again it is clear that CPU; decreases linearly and CPU; non-linearly with
decreasing h for any given value of At. Figure 6.64 shows an additional feature,
namely an increase in CPU; for certain cases where a decrease is expected. For
At < 0.01 the nonlinear decrease in CPU; with decreasing h follows the expected
trend, however for the remaining portion of the graph, particularly at larger values
of A, an increase in CPUj is observed with increasing values of At. This implies
that in terms of CPU timing, the CD scheme has an optimum value for At for
execution, and that this value is less than the ‘critical’ value. This is important to
realise since it means that a more accurate solution will be obtained, and that this
more accurate solution will be derived more efficiently than a solution gained with
larger values of At. The reason for this effect is explained later in Section 6.4.11.
Whilst for At < 0.01, CPU; and CPUj again remain roughly comparable, for the
case of h = 30, for example, it can be seen that when At = 0.025 seconds, CPU;

is seven times greater than CPUj.

The results for the Wilson-6 scheme are shown in Figures 6.65 and 6.66. The
same trends as for the Houbolt scheme can be identified, namely a linear decrease
in CPU; with decreasing h, and an associated nonlinear decrease in CPUz. The
most important point to note here is that the ratio of CPU; to CPUj is much
greater for larger values of h. For example, with k = 30, the ratio with At = 0.04
is 4.8, whilst the comparable ratio for the Houbolt scheme is 1.1. This indicates
that the Wilson-8 scheme spends a greater proportion of its execution time in the
iterative part of the code. This difference can be partially accounted for on looking
at the details of the procedure, see Section 3.5. In particular this scheme requires
an additional interpolation in order to establish the solution at time ¢ = (n + 1)At
rather than at the solution point of time t = (n +6)At, where § > 1.37. The latter
is required to provide the scheme with unconditional stability. However the effect
of this additional interpolation on the CPU time is not thought to be significant
enough to cause the noted disparity seen in the CPU ratios.

The CPU times for the Newmark scheme are shown in Figures 6.67 and 6.68
where the same trends as noted earlier are again clearly visible. The CPU ratio is
3.43 at At = 0.04, which indicates that, in common with the Wilson-6 scheme, the
Newmark method spends a disproportionate amount of time in the iterative cycle.
There is a slight increase in CPUj as At increases for the 25 and 30 element models.
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This can be seen to be insignificant in relation to the same effect associated with
the CD scheme. In light of the fact that this does not increase the total CPU
time, as happens for the CD scheme, it can be considered insignificant here. The

following points summarise this case study:
o Generally the total CPU time decreases with increasing At.
e CPU; decreases linearly with décreasing element numbers.
e CPUj; decreases nonlinearly with decreasing A.

e An optimum At value can be identified for the CD scheme which is less

than the maximum permissible value.

Case Study 14: Direct Comparison of Solution Histories

Now that the results for the CPU times have been plotted on the same graph for
direct comparison, the solution peaks for the different integration schemes are now

plotted on the same graph for a common value of At. Figures 6.69, 6.70 and 6.71

show the solution peaks for At = 0.001, 0.021 and 0.042 seconds respectively. It is

suggested that if the time step restriction on the CD scheme can be accommodated,
that this scheme models more appropriately what happens in reality. This is
because the implicit nature of the Houbolt, Wilson-6 and Newmark schemes, see
Section 3.5, means that a solution which is derived at time ¢ = (n 4+ 1)At depends
upon knowing what has already happened at that instant in time and intuitively
this can be seen not to be physically correct. In contrast, the solution for the
explicit CD scheme at time ¢ = (n + 1)At depends only upon the solutions at
time ¢ = nAt and earlier, and is therefore a more consistent scheme to use. With
this in mind, it can be said that the solution for the CD scheme with the smallest
time step would be expected to yield the most accurate and physically appropriate

results for any given number of elements.

With At = 0.001 seconds (Figure 6.69) it can be seen that the Houbolt and CD
schemes are virtually identical, apart from the high frequency oscillations at the
peaks of the Houbolt scheme. The amount of high frequency oscillation appears to
decay as the solution proceeds. As mentioned in Case Study 11, and seen clearly
here in Figure 6.69, the mean trend of the high frequency oscillation closely follows
the solutions for the remaining three schemes. This is evident because, at least
visually, the solution obtained from the CD scheme appears to represent a mean
of the solution obtained from the Houbolt scheme. This numerical instability
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probably has its origins at the instant in time when the ramped growth of the
endpoint function is terminated, which is just prior to these results. If this is the
case then it is significant to note that the remaining schemes seem unaffected. The
CD scheme has a very smooth solution free of any such numerical instabilities.
Figure 6.69 also shows the over and under prediction of the solutions generated
by the Newmark and Wilson-8 schemes respectively, relative to the CD scheme.

However, the maximum range of the discrepancy is only of the order of 1%.

Figure 6.70 shows the corresponding results for the solutions generated with
At = 0.021 seconds. There is now a slight difference between the solutions gener-
ated by the Houbolt and CD schemes, although the numerical instabilities present
in Figure 6.69 for the Houbolt scheme are no longer seen. For this time step both
the Wilson-0 and the Newmark schemes overpredict the results of the CD method
by approximately 0.5% and 0.26% respectively. However, the overprediction is

smaller than that for the smaller value of At.

Figure 6.71 shows the same trends as established in Figure 6.70, with the
discrepancy between the Houbolt and the CD solutions continuing to increase. The
overpredictions of the Wilson-0 and the Newmark schemes are now approximately

0.6% and 0.4% respectively. A summary of these results is given in Table 6.15.

At (secs.) | CD Value (N)| %A CD | %A Houbolt | %A Wilson-0 | %A Newmark
0.001 888600.0 - 0.0 -0.52 0.61
0.021 887350.0 0.14 -0.04 -0.27 -0.27
0.042 885450.0 0.36 -0.19 -0.59 -0.38

Table 6.15 — % Deviations of Schemes from CD with At = 0.001.

Table 6.15 indicates several points of interest. Firstly, the percentage change in
the peak tension produced by the CD scheme with the smallest practicable time
step of At = 0.001 and the largest possible time step of At = 0.042 is only 0.36%.
Secondly, each row of the table shows the percentage change of the three implicit
schemes relative to the CD scheme and these demonstrate that the maximum
discrepancy is only 0.61%. The value of At = 0.042 has been used as the maximum
time step for the previous three figures since it represents the critical time step

limit associated with the CD scheme.
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Figures 6.72, 6.73, and 6.74 provide comparisons of the three implicit schemes
for time steps larger than, and including, At = 0.042. It is immediately apparent
that the same relative predictions of the Wilson-§, Newmark and Houbolt schemes
(i.e. that the predicted magnitudes of the solutions descend in that order) are
preserved regardless of the size of the time step. Also the peak magnitudes for
the Wilson-6 scheme become less uniform as At increases. With reference to the
previous graphs, it appears that the regularity of the Wilson-8 solutions improve at
the extremes of the At range considered, but deteriorate for the middle At values.
Table 6.16 shows the percentage differences of the three implicit schemes relative
to the explicit CD solution with At = 0.001.

At | %A Houbolt { %A Wilson-0 | %A Newmark
0.042 0.16 -0.25 -0.04
0.15 0.79 0.12 0.64
0.29 1.77 - 0.81

Table 6.16 — % Deviations of Schemes from CD with At = 0.001.

It is evident from Table 6.16 that as At increases and approaches the point at
which all the schemes collapse, that the undershoot becomes more significant.
That is, as At increases, the peaks of the solution decrease. It can also be seen
that the Houbolt scheme is the most significant underpredictor and this confirms
the often cited result that the Houbolt scheme produces the greatest amount of
AD of the the three implicit schemes considered. Also note that the last value for

the Wilson-0 scheme was too erratic to present. To summarise :

e The CD scheme gives smooth results which remain essentially constant over

the whole practical range of At.

e For all values of At considered, the predicted tension peaks decrease ac-
cording to the following order, the Wilson-6, Newmark, Houbolt and CD
schemes respectively. The Newmark scheme predictions lay between the
predictions of the Wilson-8 and the Houbolt schemes when At > 0.021.

o As At increases, the magnitudes predicted by the Wilson-6 scheme improve

in consistency, for those values of At providing a solution.
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Case Study 15: Influence of —%—t Ratio

In this case study the effect of the ratio of At/A is investigated as it applies
to the quantities already examined. The study is undertaken with the weak sup-
position that results are dependent upon the At/h ratio rather than the absolute
values of At and h. Figures 6.75 to 6.82 show the means of the tension peaks
and troughs plotted against this ratio for different meshes. Again the irregularities
clearly show up as deviations from what are otherwise reasonably linear graphs.
These graphs also serve to demonstrate that these quantities are very dependent
upon the absolute values of At and k, and that they are essentially independent
of the At/h ratio. For dependence upon this ratio to be in evidence, it is expected
that the curves for different values of A would be coincident. For example, for a
ratio of 0.008 there are three different values of the mean tensions according to
the numbers of elements used and this shows that the results are independent of
At/h.

Figures 6.83 to 6.86 demonstrate the total CPU time plotted against the At/h
ratio, and again indicate that the results for CPU depend upon the absolute values

of At and h and not their ratio.

Case Study 16: Direct Comparison of CPU Times

So far all of the CPU results for the four schemes have been plotted inde-
pendently of one another. Here the CPU time breakdowns for each scheme are
plotted on the same graph to enable direct comparison. Note that in all cases the
abscissa values associated with the CD scheme have been scaled up by a factor of

10, whereas the CD ordinates have been divided by 10 for most cases.

Figures 6.87 to 6.91 show the total CPU time required by each scheme for
different numbers of elements. Of the three implicit schemes the Houbolt method
consistently provides the lowest total CPU time. As expected the results for the
CD scheme are greater by virtue of the fact that a small value of At must be used
to ensure stability. As pointed out earlier, the total CPU of the CD scheme can be
seen to increase in certain circumstances as At increases - this is in contradiction
to the general expectation in the trend of the results. This situation occurs as the
number of elements are increased. The reason for this is as follows: The Newton-
Raphson iterative solver employed in the solution of these non-linear equations, is
essentially a first order truncated Taylor Series, see Equation (3.76), which depends

upon the value of the step size (At in this case) for its accuracy. As At increases
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the point at which the solution is sought moves further away from the last known
solution point and starts approaching the limits of the ‘basin of attraction’. As
this happens the number of iterations necessary to obtain the solution increases
and it is this effect which causes the total CPU time for the CD scheme to start

to rise as At approaches its limit.

The formulations for the Wilson-6 and the Newmark schemes are in essence
very similar, and consequently similar values for the total CPU time would be
expected. However the results show that the Wilson-6 scheme always takes slightly
longer for execution and, as suggested before, this can be attributed to the extra
interpolation necessary for a solution obtained using the Wilson-8 scheme. What
is also evident, as expected, is the increase in total CPU time, for all the schemes,

with an increase in the number of elements used to model the mooring line.

Results are now presented for the CPU breakdowns described in Case Study
13. Figures 6.92 to 6.96 show the variation of CPU; with At and for different
numbers of elements. Again notice that the results for the CD scheme have been
appropriately scaled to fit the graphs. As expected the values of CPU; for the
CD scheme are much higher than the remaining three implicit schemes, where the
results are more or less equal. The values for CPU; for the Newmark and the
Houbolt methods are so similar that it is hard to distinguish one from the other.
These graphs also show that the values of CPUj, for each of the four schemes,
increase almost linearly with the number of elements. This is to be expected since
increasing the number of elements will only increase the upper bounds of the loops

in the computer code and hence result in a linear increase in the CPU time.

Figures 6.97 to 6.101 illustrate the variations in CPU; as a function of At
and for different numbers of elements. In this case only the abscissa values for
the CD scheme have been scaled. Bearing this in mind this shows that CPU2 for
the CD scheme is more comparable with the three remaining schemes, than for
either CPUj or the total CPU. Whilst examining earlier results for the CD scheme
(see Figures 6.63 and 6.64), it was noted that the iterative part of the code, as
measured by CPUs, is responsible for the increase in total CPU as At increases.
This nonlinear variation in CPU; means that at larger values of At, the amount
of CPU time spent in executing the iterative part of the code dominates and this
starts to outweigh the savings derived from using a larger value of At. This same
trend is also apparent, but to a lesser extent, in the results of the Newmark scheme,
although they do not manifest themselves in the graphs of total CPU. For both the
Houbolt and the Wilson-8 schemes this trend is not present, where the total CPU
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results in both these cases are seen to tend to limiting values. It can also be seen
for any one scheme that the value of CPU; increases nonlinearly as the number of
elements are increased; hence it can be seen that it is the iterative part of the code

which generates the nonlinearity in the total CPU times. To summarise:

e As expected the general trend is for decreasing CPU times with increasing
values of At - except in the case of the CD scheme where an increase in

CPU time can result under certain circumstances.

o Total CPU time increases nonlinearly as the number of elements increases;

CPU; increases linearly, but CPU; increases nonlinearly.

Case Study 17: Investigation of Varying 0

Here an investigation of the effect of varying @ in the Wilson-6 scheme is made.
Figure 6.102 shows a plot of the tension peaks for increasing values of 6, where 8 is
greater than 1.37, the value necessary to ensure unconditional stability. Increasing

0 seems to have a twofold effect upon the solution:
1. To slightly increase the numerical instabilities present in the peaks.
2. To increase the maximum value of the tension peaks.

Bearing in mind that the Wilson-0 scheme already overpredicts the results given
by the other schemes, see Case Study 14, any increase in the overprediction is
undesirable. Table 6.17 shows the percentage deviations of the solutions for § =
2.0, 2.5 and 3.0 relative to the solution obtained with § = 1.4, and the percentage
deviation of all these solutions relative to the CD scheme solution with At = 0.001.

0=1410=20(0=25[0=3.0
% Dev. from 8 =1.4 - -0.17 | -0.26 | -0.39
% Dev. from CD -0.46 | -0.64 | -0.72 | -0.86

Table 6.17 — % Deviations with 6.

Figure 6.102 also clearly shows the presence of PE effects and how these change
with . It is seen that the solution for peak tension gained through the use of the
CD scheme introduces very little PE. From Figure 6.70 it can be seen that the
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Wilson-@ scheme has introduced a small amount of (negative) PE for At = 0.021
seconds and @ = 1.4. Figure 6.102 therefore shows that the effect of increasing 6
beyond the value of 1.4 acts to increase the amount of PE present in the solution.
Figure 6.103 shows how the value of 8 affects the maximum size of the time step
which can be used. This figure illustrates that an optimum value of § may be
defined with respect to the CPU time. In this case it appears to be quite close
to the value of § = 1.4 which is usually selected to ensure unconditional stability.
The latter is more precisely obtained with = 1.37 but for most purposes this is
taken as 1.4. It would therefore seem that the value of § = 1.4 is the most suitable

for several reasons:
1. It ensures the unconditional stability of the scheme.

2. It has a near optimum value in terms of the maximum size of At which may

be used.

3. Increasing the value of § increases the overprediction of the results obtained
from the Wilson-6 scheme when compared with the results for the CD

scheme.

Figures 6.104 to 6.115 illustrate the effect of § upon the tension peaks and
troughs generated. With At = 0.001 the solutions are smooth and regular, and the -
magnitude of the peaks continually increase as § increases. The troughs, however,
illustrate a slightly different behaviour, in that both the amplitude and PE do not
change in a regular manner. With At = 0.025, see Figures 6.106 and 6.107, there
is a great increase in the irregularity of the solutions for the peaks and the troughs,
although closer examination of these figures reveals that there is a ‘regular’ change
in both the amplitude and the PE of the predicted troughs and peaks. This
‘regularity’ is lost with further increases in At. Some of the solutions for the
conditionally stable schemes (§ < 1.37) are lost due to time step restrictions. It
can be said, as a general comment, that the solutions obtained for the peaks show
a degree more regularity than those obtained for the troughs. This is in keeping

with previous observation of time histories for peaks and troughs.

Also of interest is the influence of § upon the CPU times required to generate
the solutions. Here the same notation is used as in Case Study 13. The total CPU
time shown in Figure 6.116 indicates that there is an optimum value of 8 with
respect to the solution time. Unfortunately the best that can be said is that the
optimum value of 6 lies somewhere in the range of 1.6 < § < 2.0. Figure 6.117
indicates that there is virtually no variance of CPU; with 8. This is to be expected
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since changing the value of § is not increasing the upper bound on the program
loops and the variation displayed is well within the possible 10% variation of CPU

times due to the computer system load.

Figure 6.118 shows how CPU, varies with § and it is clearly this component
which generates the shape of the total CPU curve. The optimum value of § with
respect to CPU time can therefore be seen to be related to the number of iterations
needed for the solution. The increase in total CPU with increases in  is analogous
to the total CPU increase with increasing At for the CD scheme. This is because
increasing 0 is establishing the required solution at a point further away from the
last known solution point and this causes an increase in the number of iterations

needed for the Newton-Raphson scheme to converge.

Case Study 18: Effects of Different Starting Procedures

In this case study the influence of different starting procedures upon the time
history results gained using the Houbolt scheme is examined. It will be recalled
from Section 3.6.1 that a truncated Taylor Series (TS) expansion of the displace-
ment which neglects velocity terms, Equation (3.83), is used over the first two
time steps of the solution to provide U 1 and U2. These values of displacement,
together with Qo, are enough for the Houbolt scheme to proceed. However, as
stated in Bathe(1982, pg 506) : “it is more accurate to calculate “'U and 288 by
some other means; i.e. we employ special starting procedures. One way of proceed-
ing.....is to use the CD scheme with a fraction of the At value used for the Houbolt

scheme, as the time step”.

Before identifying the different starting procedures adoptéd it is instructive to
define two distinct time step values. As before, let At denote the value of the
time step which is to be used for most of the solution, except for the first two
values over which the starting procedures are defined. The suggestion of Bathe
is to subdivide the first two time steps (2At) into a number of smaller time step
values which are denoted here as At;. Therefore, for example, if At; = 0.1A¢ then
2At = 20At;, that is, the two solution points of interest (At and 2At) are given by
10At; and 20At; respectively. Four different starting methods are now described

and compared :

1. A TS is used over the first two time steps (2At) in which the velocity terms

are neglected. Thereafter the Houbolt scheme is used to generate the rest of
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the solution. That is, a single common time step of At is used throughout.

This is the method already adopted and will be called the ‘usual’ procedure.

2. The region of 2At is divided into a number of Aty values. A TS approach,
as described in method 1, is then used to obtain the solutions at the first
two points, i.e. at At; and 2At;, and thereafter the Houbolt scheme is
used for the remaining At; values. Then At is used for the remainder of

the solution.

3. A TS is again used over the first two time steps (2At) with a time step,
Aty, set to a fraction of the time step (At) to be used with the Houbolt
scheme for the rest of the solution. After the solution has been obtained
for At; and 2At;, the velocity terms are included in the TS expansion, see
Equation (3.83), for generating the remainder of the solution to be obtained
with At;. Then At is used for the remainder of the solution.

4. The CD scheme is used over the interval 2At with a time step (At1) which

is a fraction of that to be used later with the Houbolt scheme.

The values of the time steps used and the CPU time breakdowns for the ex-
ecution times are shown in Table 6.18. The fifth starting procedure indicated in
the table is the solution obtained with the CD scheme where At = 0.001. This is

included for comparative purposes.

Starting Proc. | At(secs.)| Atj(secs.)] CPUp (secs.) | CPU; (secs.)l
1 0.1 0.001 70.93 92.65
2 0.1 0.001 70.04 91.90
3 0.1 0.001 79.14 104.67
4 0.1 0.001 78.33 102.91
) 0.001 - - -

Table 6.18 — At and CPU for Houbolt Starting Procedures.

The solutions are plotted in Figures 6.119 and 6.120 where it can be seen that there
are only two discernible curves representing the four different starting procedures.

In order to distinguish them, recourse is made to the original computer output
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data files (not presented). It then transpires that the first two starting procedures
(1 and 2) are virtually identical to the last two starting procedures (3 and 4). Both
sets predict the same maximum and minimum for the tension peaks and troughs,
but the second set have a constant amount of PE which displaces them from the
first set. There is also a difference between the two groups with regard to CPU;
and CPU,, with both CPU values exhibiting an approximate 10% increase for

starting procedures 3 and 4 over starting procedures 1 and 2.

From this it can be concluded that the difference between the first two starting
procedures is negligible, which implies that there is no difference between starting
with the TS which uses At and ignores velocity, and starting with the Houbolt
scheme which uses At;. It can also be seen that for the second set there is no prac-
tical difference between using the TS or the CD method as starting procedures. It
can also be concluded from consideration of the relative errors, that the differences
between the two sets are also negligible. It would therefore seem that any of the
starting procedures considered here can be used to provide an accurate solution to

this non-linear problem.

It seems quite clear from these results that the tension time histories are, for
all practical purposes, independent of the starting procedure used. This is contrary
to the initial hypothesis of Bathe, however, his comments were aimed toward the
solution of linear systems of equations. The conclusion would seem to be that
the sensitivity to the starting procedures is not a property inherent to nonlinear

systems in which iterative techniques have been employed.

Finally an investigation was carried out to see whether the size of At; has
any influence on the results when starting procedure 4 is used. The range of At
considered was 0.001 < At; < 0.025. The solutions generated proved identical. It
should be noted here that the maximum value of At which could be used when the
CD scheme is employed on its own is 0.042 but this value cannot be used in this
case. It seems that by coupling two time integration schemes together, as done in

this case study, the maximum time step value which can be used is affected.

Case Study 19: Influence of Newmark Parameters

In this case study the influence of varying é and 8 in the Newmark scheme,
see Equations (3.49) and (3.50), is examined. Firstly the effect of increasing 6 is
studied. It should be noted that with § = 0.5 the Newmark scheme introduces

no algorithmic damping into the solution, Newmark(1959). Thus increasing 6 will
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increase the algorithmic damping and hence reduce the predicted maxima and
minima of the solution. For the Newmark scheme to be unconditionally stable,
it is required that 28 < § < 0.5. In this part of the case study the following is
adopted, namely, 28 = é. Figure 6.121 shows the variation in the mean of the
peaks (Tp) and the mean of the troughs (7}), with § having the following range
0.5 < 6 < 1.0. Note that the results for the troughs have been scaled up by a factor
of 5 so that both the results for the peaks and the troughs could be presented on
the same graph. It is clear that the increased algorithmic damping affects the T
values more significantly than the 7, values. This might be explained as follows:
As the mooring line is excited, the stiffness of the line (and hence of the equations
of motion) is constantly changing. The stiffness of the equations are at their
greatest when at the tension peaks and at its lowest when at the tension troughs.
It is known that Time Integration schemes can have different stability properties
depending upon the ‘stiffness’ of the equations being solved, see Park(1975). It is
therefore suggested here that the stiffness also affects the amount of AD present
in the solution. The conclusion to be drawn from these results is that when the
stiffness is high the algorithmic damping introduced has a less significant effect on

the solution than for the case when the stiffness is low.

An attempt was also made to study the effect of 8 when the 23 = 6 relationship
was not maintained. However, no combination of §, 3, and At would provide a
solution for this case. The conclusion here must be that for this particular nonlinear
problem the relationship 23 = § must always be employed. It is also interesting
to note that 28 = § = 0.5 is almost universally used in the engineering literature

even if no explanation is given.

Case Study 20: Inclusion of Sub Surface Buoys (SSBs)

Here the influence of including a Sub Surface Buoy (SSB) at some point along
the mooring line is examined. In the present 20 element model, node 14 was used
as the location for the SSB. The radius (R;) of the SSB was gradually increased
from 0.0m (obviously the case with no SSB) and the results for the maximum time
step, the CPU times and the tension histories were noted. Figure 6.122 shows the
variation of the maximum obtainable value of At with Ry. It is interesting to note
that for the three implicit schemes the presence of the SSB actually improves the
stability of the solutions (apart from one spurious point on the Newmark curve).
In contrast the stability of the CD scheme is virtually unaffected over the same

range of Ry values.
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However, although the maximum permissible values of At will initially increase
with Ry, there exists a value of Ry at which the schemes completely collapses and
the equations of motion cannot be integrated even with the smallest practical time
step of At = 0.001. These two effects can be explained through the following

reasoning :

1. The whole objective in including a SSB along the length of a mooring line
is to reduce the maximum tension, or stiffness, which the line develops.
Because a slack system (low tension) transmits information more slowly
than a taut one, it can be seen that a larger value of At can be used in the

integration of the equations of motion because the quantities are changing

less rapidly.

2. The cause of the total collapse is less clear but it is possible that at certain
values of R a resonance is set up which causes the collapse of the solution
procedure for all At. This hypothesis would need to be further tested with

numerical experimentation not undertaken here.

Figures 6.123 and 6.124 show the effect of Ry upon the tension time histories
for the Houbolt scheme. Increasing the value of Ry is seen to have a nonlinear effect
in reducing the peak tensions predicted. For the troughs, apart from the case of
Ry = 1.0, increasing Ry reduces the tension troughs; therefore the overall effect
of including a SSB is to cause a reduction in the mean tension value of the time
history, or, a bodily (but not necessarily linear) reduction in the tension values.
The case of Ry = 1.0 for the troughs demonstrates an increase in the tension and

this cannot be explained.

Figures 6.125 and 6.126 indicate the equivalent results for the CD scheme. It
will be noted that although the maximum values of At have been obtained for the
CD scheme for 0.0 < Ry < 1.7, for values of Ry > 0.6 the solutions exhibit a high
degree of nonlinearity and are therefore not included. However for 0.0 < Ry < 0.6
exactly the same trends can be identified for the CD scheme as for the Houbolt

scheme,

Figures 6.127 and 6.128 show the same results for the Wilson-6 scheme as for
the Houbolt scheme, including the ‘rogue’ behaviour of the trough for Ry = 1.0.
It is interesting to note that as R increases the magnitudes of the peaks and
troughs change, but the minor peaks and troughs are preserved in trend, but not

in magnitude.
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Figures 6.129 and 6.130 show the equivalent results for the Newmark scheme.

These results display the same trends as observed for the other schemes.

Case Study 21: Influence of the Convergence Parameter 75

As explained in Section 3.5, the Newton-Raphson iterative process is continued
at each time step until a certain convergence limit called the segment error function
(here denoted by 7) is satisfied. This limit is defined in this thesis in terms of a
percentage of the unstretched length of each element; for all the data generated
in the Case Studies up to now 7 has always been set to 0.0001%. In this case
study an investigation is carried out to assess the influence of altering  upon the
following quantities of the tension time history : CPU;, CPUj, (see Case Study
13), Tp, Ty and Tp,. The values of 1 used in this study are 0.0001, 0.001, 0.01, 0.1,
1.0 and 10.0.

As expected the influence of 7 upon CPUj is negligible, or at least within the
+10% variation possible due to system load, since this measures the amount of
time spent outside the iterative process. The effect upon CPUj is more significant
and this is illustrated in Figure 6.131. It can be seen that, as would be expected,
CPUj, decreases with increasing 5 and rapidly reaches a limiting value, i.e. beyond

a value of n = 1%, CPUj is essentially invariant.

Scheme |%ACPU; | %AT, | AT | BAT,,
Houbolt 25.6 -94 | 23.1 -2.5
CD 57.1 -4.5 2.2 -1.8
Wilson-6 82.7 21 | 7.0 -0.3
Newmark 22.7 -17.5 | -154 | -19.0

Table 6.19 — The Influence of 7 upon Output Parameters.

Table 6.19 shows the percentage change in CPUs, T, T; and T, when the
value of 5 is changed from 0.0001% to 10.0%. The influence of 5 upon Tp, T; and
T is shown in Figures 6.132, 6.133 and 6.134 respectively. These figures together
with Table 6.19 show an interesting variation in results. For example the Wilson-0
scheme shows a reduction in CPU; of 83% when 7 is changed from 0.0001% to
10.0%, but this change has a minimal effect on the statistics of the tension time
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history. The Houbolt scheme shows only a 25% saving in CPUy, but the change in
n causes a relatively large change in the tension statistics. The Newmark scheme
exhibits the least CPU; saving and demonstrates the most change in the tension
statistics. The CD scheme shows the second greatest saving in CPUj,, which is

accompanied by only a moderate change in the tension peaks and troughs.

6.5 Benchmark Tests

In many Finite Element (FE) applications, so-called “Benchmark” tests have
been developed. These allow new solution developements to be compared with
existing and accepted (benchmark) solutions. The latter may be analytical solu-
tions to a particular structural problem (for example) or they maybe well tried and
reliable numerical results which have been successfully reproduced by a number of
researchers. These then allow an interpretation of the accuracy of the new tech-
niques and would also quickly allow an investigator to identify whether the correct

“ballpark” results were being obtained during the software development.

It is the intention of this section of the thesis to suggest a number of benchmark
tests to which the results from all dynamic mooring line models should aspire to
conform to. As mentioned in Section 6.4.9, of the four time integration schemes
considered here, the CD scheme is physically the most appropriate method to
use and is to be the preferred method if the small size of the time step can be
accommodated. It is also considered reasonable that the benchmark tests should
be considered under the headings of the accuracy and the efficiency of the solution.
Because of the appropriateness and the consistently regular results generated under
all conditions examined in this thesis, it is suggested that the CD scheme be used

to generate the “accurate” benchmarks results.

In Section 6.4.11 the Houbolt scheme was shown to consistently provide the
most efficient solutions, and it is therefore proposed that this scheme be used to
generate the “efficiency” benchmark results. These tests, and an indication of

which scheme should be used to derive them, are shown in Table 6.22.
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Benchmark tests Accuracy (CD) | Efficiency (Houbolt)
1.Decay tests °
2.Simulation time effects o
3.“Regularity” of solution °
4.Max. value of At o
5.CPU times o

Table 6.20 — Benchmark Tests.

The results should be presented for all five tests for both schemes although the
bulletpoints indicate which are the preferred schemes for each test. The bench-
marks tests are to be obtained for a standard set of physical parameters. The
actual values would not be of importance as long as they remained constant for
the generation of the benchmark results and for each comparative study. There-
fore, the values established in Table 6.1 would form a convenient set of starting

values. The suggested benchmark tests are now detailed further.

Decay Tests

Here a small software program can be used to calculate the various statistical
quantities of the solution history between certain pre-specified limits in the solution
time. In this case the mean of the solution history is to calculated for the last 100
seconds of a 350 second simulation time. The means are to be calculated for two

cases of endpoint excitation:
1. No endpoint excitation.

2. Endpoint excitation which is allowed to grow and decay out before 250

seconds.

More details are given in Case Studies 1 and 2 of Section 6.3. Since the mean is
calculated for the last 100 seconds of a 350 second simulation, then in both the
cases indicated above it will be seen that the mean is calculated for the case of

zero endpoint excitation.
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Influence of Length of Simulation Time

If the endpoint excitation being used is regular, then it is desirable to determine
the shortest possible time which may be considered representative of much longer
simulations. The details of this are given in Case Study 3 of Section 6.3. Essentially
a sinusoidal endpoint function is defined and allowed to run for two simulation
times, one short and one long. The solution history - maximum mooring line
tension in this case - will therefore be sinusoidal. The means of the last five
occuring peaks and troughs, as well as the overall solution mean, are calculated
for the two solution times. It must be ensured that the effects of any excitation

ramping (if used) have decayed before the means are calculated.

“Regularity” of Solution History

This is a more subjective criteria since there can be no clear measure of reg-
ularity other than a subjective visual inspection. The results obtained from the
new scheme/method should, for a perfect sinusoidal excitation, generate a perfect
sinusoidal solution, such as illustrated, for example, in Figures 6.29 and 6.30. The
extent of the irregularities (see, for example, Figure 6.39 and 6.40) can then be
assessed relative to the perfect sinusoidal solution. As discussed in Section 6.5.2
the following statistics, the mean of the troughs, means of peaks and the overall
mean, can be calculated for the last five peaks of the solution history. This can

also be done for the new scheme/method and the results compared.

Maximum Permissible Value of At

Although the CD scheme is limited by a maximum value of At, the explicit
nature of this scheme means that this must be very small in comparison with the
values of At used with implicit schemes. Therefore it is proposed that the value
of the maximum permissible At is to be taken from the results obtained through
the use of the Houbolt scheme since of the schemes considered in this thesis, these
provide the best results, see Figures 6.1 to 6.4. However, comparisons between the
implementations of different schemes/methods are difficult to make on the basis of
this benchmark. The reason for this is thus: Although a scheme may successfully
integrate the equations of motion for a large value of At, the results might be
unacceptably irregular - see Section 6.5.3. A different scheme/method might also
integrate successfully but produce a more regular solution. Therefore it is the
assessment of the regularity of the solution for different values of At which forms

the subjective assessment involved with this benchmark test.
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6.5.5 CPU Times

Again, because of the relative efficiency of the Houbolt scheme, it is proposed

to use the results gained from it in this benchmark description. Here a common

value of At is used for a simulation time of, say, 250 seconds, for both the Houbolt

scheme and the new scheme/method. A comparison of the two CPU values will

then give a assessment of the relative efficiency of the new scheme/method.

6.5.6 Benchmark Sheet

The indicated series of benchmark tests are now presented in the tabular form

given by Table 6.20. The benchmark test numbers are given in Table 6.20.

Benchmark Test Notes CD Scheme | Houbolt Scheme | New Scheme
1 1. No Endpoint Excitation| 0.00001% 0.0004%
2. Decayed Excitation 0.06% 0.06%
2 Ty = 350s., T2 = 1000s. 0.0009% 0.0008%
3 See indicated Figures: [6.25t06.34| 6.15 to 6.24
AT, 0.175% 1.113%
AT, -1.233% -6.725%
4 A =10m, w = 0.2rads. 0.0435s. 0.4s.
5 At = 0.001 secs. 2208s. 3233s.
At = 0.001 secs. - 21.46s.

Table 6.21 — Benchmark Test Values

The terms AT, and AT; are the percentage changes in the means of the peaks
and troughs relative to these values when obtained from the CD scheme with
At = 0.001. The percentages indicated in Table 6.21 are to be considered as

positive or negative error bounds.

6.6 Summary

To bring together all the different aspects of the analysis studied in this chapter

a brief summary of the main points considered is stated prior to summarising the

findings. The principal aspects studied were:
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e The reduction of the 3D equations of Motion to a 2D form. These were then

compared with other published sets of equations to highlight any differences.

e A short section was presented which derives the limiting results for the dynamic

models (i.e. results with no endpoint excitation, or with decayed endpoint

excitation) and then compares these with static results.

e Then a major section of work is presented in which results obtained from the

four different time integration schemes are compared so that an assessment of

which scheme is more appropriate for the investigation of mooring dynamics

can be made.

The last section presents many results from the numerical experimentation. From

these, the main points of interest have been distilled and are presented below :

1.

For all practical purposes (and certainly within the limits of engineering
accuracy), it can be said that if there is no endpoint excitation (or even
if this has been allowed to decay out), then all the schemes predict
a maximum tension which is identical to that predicted by the static

numerical procedure described in Chapter 2.

Generally it can be said that, as expected, increasing the amplitude and
frequency of the endpoint excitation will cause a reduction in the size
of the maximum permissible value of At which can be used to integrate

the equations of motion.

The growth factor used to ramp the endpoint excitation does not have
a significant effect upon the final solution; therefore the excitation can

be ramped up quite quickly.

The maximum value of At which can be used, decreases as the mesh

size decreases.

Certain combinations of At and h will produce irregular time histories,
whilst other combinations will produce smooth results. This does not
depend upon the ratio of At/h but rather upon the absolute values of
At and h. Of the four schemes, for the ranges of At and h considered,

the following generalities are observed:

e The CD scheme produces very regular and smooth solutions.
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10.

11.

12.

e The Houbolt scheme also gives smooth solutions over most of the
range of At and h but can generate irregularities at the larger values
of At and h values.

o The Newmark and Wilson-8 schemes are notably worse, generating
irregular solutions at lower values of At and A than for the Houbolt
scheme. Also the solutions which are regular overpredicted the ‘accu-

rate’ solution gained from the CD scheme when At = 0.001 seconds.

Generally the total CPU time needed for execution decreases nonlinearly
with increasing values of At. There is an optimum value of At which

can be identified for the CD scheme, and this is less than the maximum

value.

Of the three implicit schemes, the Houbolt scheme always provides the
closest approximation to the ‘accurate’ solution (from the CD scheme).

The other two implicit schemes show relatively greater error.

A value of § = 1.4 used with the Wilson-6 scheme, represents a near
optimum value with regard to both numerical accuracy and stability,

although not with respect to CPU times.

Four different starting procedures are used with the Houbolt scheme to
see if this will significantly affect the resulting time histories. All predict
the same peak tensions but two have a slight, but constant, amount
of Period Elongation which can be considered negligible. Therefore it
seems that the resulting solutions are essentially independent of the

starting procedure used, at least when the Houbolt scheme is used.

When considering the Newmark scheme a solution cannot be obtained
when the minimum condition for unconditional stability ( 28 = §) is

violated.

The presence of a Sub Surface Buoy reduces the maximum tension and,
up to a point, increases the size of the maximum time step which can
be used. Beyond this point a solution cannot be obtained for any value

of the time step.

It seems that the value of the segment error function, 7, can have a
profound effect upon the solutions gained from different schemes. In
particular the Newmark and the Houbolt schemes show relatively little
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saving of CPUj,, but a large degradation in the statistics of the the
tension time histories when % is changed from 0.0001% to 10.0%. The
CPU; saving of the Wilson-8 scheme is significant with relatively little
change in the predicted values; the same is true but to a lesser extent
for the CD scheme.

As a final conclusion and to answer the main aim of this study, it would appear
that if the time step restriction (At) imposed on the CD scheme cannot be
accommodated, then of the three remaining implicit schemes, the Houbolt method
is to be preferred. Ifit is necessary to use a value of At which allows the inclusion of
the CD scheme for consideration, then the CD scheme should be used in preference
to the three implicit methods. In general, however, a time step which is larger than

Aty is usually employed.



CHAPTER 7

3D Dynamic Results

7.1 Introduction

7.2

The preceding chapter gave a detailed numerical comparison of four of the most
commonly used time integration schemes (namely the Houbolt, Central Difference,
Wilson-8 and Newmark schemes) as applied to the solution of the 2D equations of
motion for a mooring line structure. The conclusion drawn from this comparative
study is that the Houbolt and CD schemes have a number of advantages over the
Wilson-8 and Newmark methods. Furthermore, the ability of the Houbolt scheme
to generate ‘regular’ time histories at much larger time steps than the critical time
step limit associated with the CD scheme, makes the former method more attrac-
tive to use. With this justification of the appropriateness of the Houbolt scheme,
it is thus used to obtain the solution for the 3D equations of motion of a mooring
line. This chapter describes a series of studies which examine various aspects of
the results generated by a 3D mooring line model starting with a validation of the
3D model along similar lines to that undertaken in the beginning of Chapter 6.

Often in this chapter reference is made to the 3D model being run ‘in-plane’.
This means that the amplitudes and frequencies specified in the global z and y
directions are equal and hence the mooring line is restricted to move in the vertical
plane defined by the anchor and the line endpoint. Running the 3D model in-plane
allows direct comparison with results generated from the 2D model which utilises
the Houbolt scheme.

3D Mooring Line Results

Unless otherwise stated, all the values used to run the dynamic model are given
in Table 6.1. As before, these values are maintained as constant unless they are

being systematically varied in one of the case studies.

Out of plane results are generated and compared with those of McNamara(1993,
Figure 7.0). The static parameters are shown in Table 6.1 and the dynamic pa-
rameters in Table 7.0A:
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Parameter 3D o.p.v.

Excitation amp. in x| 7.07107m
Excitation amp. in y | 7.07107m

Excitation amp. inz | 0.0m

Excitation freq. in x 10
Excitation freq. iny | {5
Excitation freq. in z 0.0
Excitation phase in x 0.0
Excitation phase in y 3
Excitation phase in z 0.0

Table 7.0A - Dynamic Excitation Values

The results of the comparison are shown in Table 7.0B:

Present Method| McNamara(1993) |% Difference
20 Elements |FLEXCOM-3D (90E)
Dynamic 717.0kN 664.78kN 7.85%

Table 7.0B - Benchmark Comparison

The difference in these results is comparable to the difference indicated in Table
6.0 for the in plane situation. This indicates that the present method appears to
be consistent, in the sense that the differences in the results remain very similar

for the two situations considered.

Validation of the 3D Model

Initially the 3D model is run with no endpoint excitation. Consequently the
mean of the tension time history (T},) is expected to be close to the maximum
static value Ty. It is found that T, = 495337N and that T},(0 — 350 seconds) =
Tm(133 — 350 seconds) = 495337N. This demonstrates the accuracy of the 3D
solution technique for the case of no endpoint excitation. This also shows close

comparison with the results in Table 6.2.

As in Case Study 2 of Section 6.3, a regular in-plane sinusoidal endpoint exci-
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tation is defined which is allowed to grow and decay so that there is no excitation
after 250 seconds. The resulting mean for the last 100 seconds of the simulation is
Tin(250 — 350) = 495343N. This indicates that the numerical transients die away
much more readily for the 3D solution than for the same results generated with
the 2D scheme, see Table 6.3.

By running the 3D program in-plane a direct comparison with the 2D model
can be made. A sinusoidal endpoint excitation is defined, thus allowing the cal-
culation of the means of the solution peaks () and troughs (1}), as well as the
overall mean(T,) in addition to CPUy and CPU; (see Case Study 13 of Chapter
6 for the definitions of CPU; and CPUj). The percentage differences between the
2D and 3D solutions are calculated with respect to the 2D results, and these are
illustrated in Figures 7.1 and 7.2. It can be seen that the differences in the tension
results are, from an engineering point of view, negligible. However the differences
in the CPU times are very much more significant. The 3D version requires approx-
imately twice the amount of CPU; time and 2.5 times the amount of CPU; time

than required in the 2D model.

Next the effect of out-of-plane motions is investigated. This is done by pre-
scribing the endpoint excitation to be at 90° to the static equilibrium plane of the
mooring line. This is achieved by setting the amplitudes in the global z and y di-
rections to be equal, but setting the phase of the y component to be 7 /2. Table 7.1
summarises the overall means, Ty,, obtained with different forms for the endpoint

excitation and over different parts of the simulation time:

The term %AT denotes the percentage change in the overall mean tension (Tm)
from the static value Ts. Again it can be clearly seen that the results show that
the means of the dynamic results as indicated in Table 7.1 are essentially the same

as the maximum static tension T}.

Time [secs.] | Tm[N] | BAT (T, = 495337)[N] Motion
0-250 498066 -0.55 Sinusoidal only
133-250 | 498463 -0.63 Sinusoidal only
0-350 496637 -0.26 Sinusoidal growth and decay
250-350 | 405339 -0.0004 Sinusoidal growth and decay

Table 7.1 — T}, for Out of Plane Motions with Different Excitations.
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The results of this case study can be summarised thus:

o The results (tension means) for the 3D problem when run in-plane

compare very closely with the corresponding 2D results.

e CPU times are at least twice as great for the 3D in-plane model as
for the 2D model.

e The results derived from running the 3D model out of plane are

essentially the same as the static result Tj.

7.2.1 Brief Parametric Investigation of 3D Model

Here a brief parametric investigation is carried out along lines similar to the

static parametric study undertaken in Chapter 2.

Variation of Mazimum At

The first topic of interest is identification of the maximum time step which can
be used with the 3D Houbolt scheme. The results shown in Figure 7.3 are generated
for 3 cases and present the maximum attainable value of At as a function of the
amplitude of the endpoint excitation. The 3D scheme is run with both in-plane
and circular excitation functions, where the results for the 2D scheme, run under
the same conditions, are also included for comparison. Figure 7.3 shows that there
is little difference between the results of the 2D model and the 3D in-plane model -
as would be expected. However, when the 3D model is run with a circular endpoint
excitation function in the horizontal plane the maximum value of At which can
be used increases. It can be shown that the distance traversed in one time step
for the in-plane motion is greater than the distance moved in one time step for
circular motion, hence the maximum attainable values of At are greater for this

case than for the in-plane case.
ormal and Tangential Drag Coefficients

Next an investigation into the influence of the normal and tangential drag
coeflicients, Cd,, and Cdy respectively, upon the tension time history is carried
out. The range of Cd, considered is 0.3 < Cd, < 3.0 and it is assumed that
Cdy can be calculated as 2% of the Cd, value, see Berteaux(1976). A sinusoidal
in-plane excitation is prescribed and the means of the peaks T}, troughs T; and
the overall mean, T, are calculated. These values are first established with a

series of C'd,, values where the Cd; values have been set to zero. The means are
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then established with both Cd, and Cd; assigned non-zero values; the percentage
differences in the means are then calculated relative to the case with no tangential
drag. The results are shown in Figure 7.4. This figure shows that the inclusion of
tangential drag has a negligible influence on T}y, a slightly larger influence upon
Tp and causes the maximum differences in 7}. It can be seen that the maximum
differences occur for a range of Cd, of approximately 1.2 < Cd, < 2.5. The

differences for values of C'dy, outside this range are seen not to be as significant.

The influence of C'd, and Cd; upon the peak and trough tension time histories
are shown in Figures 7.5 and 7.6. These figures indicate that increasing the value
of Cd, without limit starts to have a detrimental effect upon the solution. In
particular with Cd, = 3.0 the solution for both the peaks and troughs shows an
increasing amount of irregularity, compared to the solution with C'd, = 1.65, say.
These figures also show a significant decrease in the amplitudes of the peak and
trough tension values as Cd, is increased. Relative to the tension values with
Cd, = 1.65 there is a 10% (57%) increase in the peaks (troughs) when Cd, = 0.3
and a 38% (117%) decrease in the peaks (troughs) when Cd, = 3.0.

A solution cannot be obtained with Cd, = Cd; = 0; this means that physical

damping must be present to stabilise the solution.
ormal and Tangential Added Mass Coefficients

A similar investigation is now carried out into the influence of the normal
and tangential added mass coefficients, Ca, and Ca;. The range of Ca, which
is considered is 0.0 < Ca, < 3.0 and Ca; is calculated as being 16% of the Cay
values. This value is a little higher than the value of 12.5% used in van den
Boom(1984), but the percentage used here is still considered representative. As
with the drag investigation, Tp, Ty and T, are established for the range of Can
values indicated but with tangential added mass neglected; then the values are
re-calculated with both normal and tangential added mass coefficients and the
percentage differences relative to the values with Cay only are calculated. The
differences are plotted in Figure 7.7 and it is clearly seen that tangential added
mass has a negligible influence upon the tension means. The percentage changes
in Tp, Ty and Ty, when Cay, is changed from 0.0 to 3.0 are —1.8%,—4.53% and
—0.85% respectively. Therefore it can be seen that increasing Cay,, acts to increase

the amplitude of the tension time history.
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I nce of Line Diameter, Young’s Modulus and Weight

Now the influence of three major line parameters are investigated. These are
the line diameter, D, the Young’s modulus, E, and the weight per metre of the line
material. It is expected that increasing any of these parameters will result in an
increase in the amplitude of the resulting tension history. The results are shown
in Figures 7.8, 7.9 and 7.10 and they show that the initial expectation is broadly

confirmed.

Figure 7.8 shows the change in T and T; as the mooring line diameter is
increased. The diameter increase is expressed as a percentage of the reference di-
ameter which is 0.07148m. The trend is almost, but not quite, linear; the deviation
is caused by an alteration in the nonlinear drag forces as the line diameter changes.
It is also seen that increasing the diameter increases the amplitude of the solution,

that is the tension peaks increase whilst the tension troughs decrease.

Figure 7.9 shows the effect of increasing the stiffness (i.e. Young’s modulus
E) of the line material, not only upon T, and 7} but also upon the maximum
attainable value of At. Note that the values on the abscissa of Figure 7.9 refer to
the exponent of E, i.e. this is 10 for the value of E given on Table 6.1. As with
a change in the line diameter, increasing E increases the amplitudes of the peaks
and troughs of the tension history. However, there is a limiting value of £/ where
the values of T, and T; remain essentially constant as E is further increased. It
can also be seen that increasing E acts to decrease the maximum attainable value
of At. With a stiff set of equations of motion (corresponding to large value of E)
information is transmitted more rapidly along the line and therefore a smaller time
step is necessary to adequately represent the changes occuring. Slack systems (cor-
responding to low values of ) transmit changes much more slowly and therefore
larger time steps can be used for the integration of the equations of motion. As
with T, and Ty, a limiting value of E can be identified beyond which At remains
essentially constant - this limit is very close to the limit to achieve constant values

of T, and T;.

Figure 7.10 shows the changes in 7, and T} as the weight per metre increases.
Over the lower portion of the graph both T, and T} increase more or less linearly.
After a multiplier of approximately 6, the curves become more irregular but the
overall trend is still increasing. The point to note is that both T, and T; are

increasing which means that increasing the weight per metre increases the peak
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tension which can be expected as well as increasing the troughs - in contrast to

Figure 7.8 where the troughs decrease.
The results for this case study can be summarised thus:

¢ The maximum value of At which can be used with the 3D in-plane
and the 2D models is roughly the same. Elliptical endpoint motions
for the 3D model increases the maximum value of At which can be

used.

¢ The inclusion of tangential drag and tangential added mass forces

have a negligible influence upon the results.

e The correct selection of the normal drag coefficient, Cd,, is impera-

tive to ensure accurate values of the peak and trough tension.
o The exclusion of drag forces leads to the breakdown of the solution.

e An ‘optimum’ value of Cd, may be identified from the point of
view of the numerical irregularities introduced into the solution time

histories.
o The inclusion of Ca, has a marginal influence upon the results.

o Increasing line diameter alone, increases the amplitudes of the solu-

tion in a nearly linear fashion.

o Increasing the weight per metre alone, increases both the peak and

trough means in a nearly linear fashion.

e A ‘critical’ value of E can be identified beyond which the values of

Tp, Tt and the maximum value of At remain essentially constant.

7.2.2 Dynamic Tension Amplification Factors

In this case study one of the more directly relevant quantities obtainable from
a dynamic analysis, the dynamic tension amplification (DTA) factor, is derived.
This is then used to show how mooring line dynamics are affected by different

input parameters. The DTA is usually defined as

“The ratio of the maximum dynamic tension to the maximum static tension”,
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and hence is used to measure the increase (or amplification) of the static tension

value caused by the inclusion of dynamic effects in the model.

Some discussion of the reasons for calculating the DTA in this fashion is neces-
sary before considering the results. The maximum dynamic tension can be easily
obtained from the tension time history of a dynamic simulation. As long as it
is clear that this is a true maximum and not one introduced by the numerical
irregularities already discussed in Chapter 6, or by the process of nodal grounding
or lifting to be considered in Chapter 8, then there is no problem. The point of
discussion arises in the choice of which value of static tension is to be used as
the divisor in the calculation of the DTA. A slightly better definition of the DTA
should read thus:

“The ratio of the dynamic tension at any point in the solution time, to the

static tension at that point”.

The introduction of this DTA definition leads directly to the idea of a time history
of DTAs. However, the work involved in calculating the static tension at each
point in time makes this an infeasible definition. It is, however, the strictly correct
definition since from the DTA time history it is possible to obtain the maximum
DTA. This maximum would not necessarily be the same as the DTA calculated
from the first definition. Despite this, the first definition of the DTA is a more
practical one, however a problem arises in the determination of the maximum static
value. From the point of view of the theoretical model if the endpoint excitation

is defined as a simple sinusoid, then the maximum excursion of the line is given as
(.'1:, y’z)e = [(xo + Az), (yo + Ay), (zo + Az)] (71)

The subscript e is to represent the point of maximum excursion, the subscript o
indicates the original equilibrium position of the line structure and A;, Ay and A,
represent the amplitudes of the sinusoidal endpoint excitation in the global z, y
and z directions respectively. Thus for a simple endpoint excitation the maximum
static tension can be calculated at (z,y,z). and the DTA values obtained without
a problem. The real problem lies in the calculation of the maximum static tension
when the endpoint excitation is defined as the sum of two or more sinusoids. If, for
example, two sinusoidal components were to be defined in the surge direction (i.e.
in the plane of the mooring line), one a low frequency (LF) sinusoid and the other
a high frequency (HF) component, then, unless the HF is an exact multiple of the

LF, the maximum excursion will not occur at the sum of these two amplitudes. The
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problem is further compounded when more than two components are introduced
and excitation in the vertical direction is considered. At this point it can be seen
precisely how difficult the calculation of the maximum static tension can be and

how it is important to appreciate how the DTA is to be calculated.

To remain consistent with the literature the point of maximum excursion is
defined as the sum of the amplitudes of each component in each direction, and

hence the endpoint position at which the static tension is calculated is given by

(z,y,2)e = [(za + ic:Az;), (yo + fc: Ayi), (Zo + {z: Azi)]7 (7.2)

=1 1=1 =1

where n. is the number of components used to define the endpoint motion. Al-
though this excursion point may never be reached because of the different fre-
quencies and phasings of the components, it represents the maximum theoretically
attainable displacement of the endpoint. The maximum static tension at this
point is denoted by T} and the static tension at the original equilibrium position

is denoted by T,.

Given the potential difficulty of obtaining T} and the inherent possibility of
then misunderstanding how a given DTA is calculated, it would seem that there is
a strong argument for using two DTA values during the design and construction
phases of a moored floating structure. During the design phase it would be easy to
establish a value for T, once the length and material type for the mooring line have
been determined, as well as the operating water depth. This value can then be
used in the calculation of DTA values for different endpoint excitations whether
these be defined theoretically or from a time series of fairleader motions. Thus
it would be straight forward to see under which conditions the largest (worst)
values of the DTA would be obtained. In terms of the construction of the mooring
line, T, can be calculated according to Equation (7.2) for the conditions which
produced the worst DTA during the design phase, and this can be used to establish

a ‘construction’ DTA.

By taking the tensions at the peaks and the troughs of the solutions these can
be used to define peak and trough DTA values. These prove useful in studying the
results of the simulations. Figures 7.11 and 7.12 show the changes in the peak and
trough DTA values when the amplitude and frequency of the endpoint excitation is
varied. As expected the largest dynamic tension (and hence DTA values) arise with

the greatest endpoint amplitude (a;) and frequency (w;). Except for one spurious
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point in Figure 7.12 the same trends are observed regardless of the values of a;
and w;. It is interesting to note in Figure 7.12 the decrease in the DTA values at
higher values of w; and how this decrease becomes more prominent at larger values
of a;. This shows that the worst dynamic tensions cannot be assumed to occur
when the largest excitation amplitudes and frequencies are used simultaneously.
The maximum DTA can be seen to occur with the largest amplitude of excitation,
but in general the DTA will have to be calculated for a wide range of possible

excitation frequencies, so that the maximum may be correctly identified.

Figures 7.13 and 7.14 show the effect of pre-tension (i.e. T,) upon the peak
and trough DTA values for a given value of ¢;. These figures show that, contrary
to expectations, slack lines can develop DTA values which are comparable to those
developed at larger values of T,. From Figure 7.14 where the troughs in the DTA
values can again be identified, it can be seen that the effect of increasing the
pre-tension is to move the troughs towards the lower end of the frequency range
considered. A similar, although not as distinct, trend can be identified in Figure

7.13 for the peak DTA values.

Figures 7.15, 7.16, 7.17 and 7.18 show the peak and trough DTA values for
four directions of motion, i.e. in surge (in-plane), sway (90° out-of-plane), heave
(vertical) and axial motion. The last direction is defined as being tangential to
the orientation of the top element in the line when at the equilibrium position.
An initial glance at the four figures indicates that the DTA values decrease in the
following order of motions: axial, heave, surge and sway. Apart from a couple of
spurious results in Figure 7.18, the effects of pre-tension and increasing w; are as
previously identified. Table 7.2 gives a brief summary of the peak DTA values
at different frequencies for the middle of the three pre-tension values. This table
clearly shows the negligible effect which sway motion has upon the dynamic tension
and this provides a strong justification for developing only 2D mooring line models

to be used to analyse deep water moorings.

wi (rads.) | Surge | Sway | Heave | Axial
0.3 1.287 { 1.002| 1.504 {2.027
1.05 |}1.885]1.061| 2.382 |3.257
1.8 1.993 | 1.028] 2.655 | 3.638

Table 7.2 — Peak DTA Values for Selected Frequencies.
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In contrast, the effect of axial motion can be seen to be very significant in mag-
nifying the static value of the tension. Remembering that axial motion must, by
definition, be composed of the three axial components, it follows that pure heave

has the largest influence upon the DTA values.

Another important concept which needs to be introduced here, and that is the
definition of safety factors (SF). In Macdonald(1984) mooring line SFs are defined

for 5 operating conditions; these definitions are reproduced in the table below:

Case Condition SF
1 Operating 3.0
2 Damaged operating | 2.0
3 Survival 2.0
4 Damaged survival [1.4
5 | Damaged survival(c.p.) | 2.0

Table 7.3 — Mooring Line Safety Factors - After Macdonald(1984)

Cases 1 and 3 are for the intact mooring system, cases 2, 4 and 5 refer to the
mooring system after the failure of one line and case 5 is intended for vessels
operating in close proximity to other installations. It will be seen that the SFs
of Table 7.3 are exceeded in many cases by the DTA values of Table 7.2, and
this serves to highlight the important difference between the two concepts. In

Macdonald(1984), the SF is defined as:

“mooring line breaking strength over the maximum tension.”

Or,
BS
= — 7.3
S = 72, (1.9
with,
BS = ID?(44.0 — 0.08D) (7.4)
where
D = Mooring chain diameter in mm,

- I'= 1.4 - chain grade U2,
2.0 - chain grade UB,
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2.15 - oil rig quality,
2.8 - chain grade 4.

The above definitions apply for mooring chain only and not for wire rope. It is not
made clear in Macdonald(1984) whether the maximum tension defined above is the
maximum dynamic tension, the maximum static tension (7p) at the original equi-
librium position or the maximum static tension (7;") at the position of maximum
excursion. From the context of the paper it is assumed to be Ty, particularly in
the light of conclusion 5.2.a where it is suggested that work on the dynamic aspect

of mooring lines needs to be carried out.

In the present analysis D = 71.48mm, therefore BS becomes
BS = 1955961. (7.5)

If it is assumed that oil rig quality chain is used, then I = 2.15 and hence BS=
420531N. With reference to Figure 7.11, the value of 7" used to define the DTA
values for an excitation amplitude of 10m is 520817N, and hence the SF according
to Equation (7.5) is 1.24 - much lower than the DTA values associated with this
excitation amplitude, namely in the range 1.85 to 3.0. Using selected results from
Figure 7.11, Table 7.4 gives a more comprehensive comparison between DTA values

and safety factors for different values of Tj'.

Amp.[m]| Ty[N] | SF [wi[rads/s.] | DTA
2.0 500048.0 1.19 0.6 1.123
1.2 1.291

1.8 1.362

6.0 509953.011.213 0.6 1.659
1.2 1.933

1.8 1.993

10.0 1520817.0f1.24 0.6 2.367
1.2 2.632

1.8 3.014

Table 7.4 — Compariso.ns of DTA Values and SFs
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It is clear from this table that the SFs are much lower than the DTA values, thus

underlying the importance of distinguishing between the two definitions.
The main points can be summarised thus:

¢ A clear understanding of which static value is used in the calcula-
tion of the DTA values is needed. Due to the possible confusion
which may arise it is suggested that 7, should be used for the design

comparisons.

e DTA increases with increasing endpoint amplitude, but the greatest

DTA value does not occur for the largest endpoint frequency.

o The order for ranking the importance of the influence of the direction
of excitation upon the dynamic tensions is axial, heave, surge and

sway.

e An important distinction between the safety factors and the DTA

factors needs to be made, since they measure different quantities.

7.2.3 Dynamic Line Geometry

Figures 7.19, 7.20 and 7.21 show the mooring line geometries for pure surge,
heave and sway respectively. In each case the geometries are calculated for four
points during one period of excitation after the start up transients have died away.

The points are:
1. At the endpoint equilibrium position.
2. At 100% of the endpoint amplitude.
3. Again at the endpoint equilibrium position.
4. At -100% of the endpoint amplitude.

Figures 7.19 and 7.20 show a very interesting feature near the anchor end of
the line, and that is apparent geometric discontinuities. Closer inspection shows
these to occur when the endpoint is returning from its point of maximum excur-
sion and tending towards the point of minimum excursion. Although the majority
of the geometry behaves in an expected manner, the discontinuities are redolent
of what happens if compression is applied to a series of links. Hence it can be

concluded that this is what is happening for this portion of the geometry. This is
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in violation of the original assumptions used in the derivation of the lumped mass
method, in particular the assumption that the elements will not support compres-
sion. However, this does not appear to cause the invalidation of the method, but
an awareness that the results are subject to this effect is needed. The whole ques-
tion of grounding or lifting of the elements from the seabed is further investigated

in Chapter 8.

Figure 7.21 shows the geometry of the mooring line in the horizontal plane
for one sway cycle. Even graphically it can be seen that the same amplitude
of endpoint excitation used for sway as for surge and heave produces much less
variation in line geometry. This confirms the markedly lower DTA values obtained

for sway in the previous case study.

Figure 7.22 illustrates the variations in the dynamic tension time history for
surge, sway and heave for the same cycle for which the line geometries have been
produced in Figures 7.19 and 7.20. The most obvious point to note is the clear
asymmetry of the tension time history for surge and heave. This asymmetry reflects
the discontinuous geometry of the mooring line near the seabed as previously
identified, and the the negative tension confirms that compression is occuring in
the line. However these irregularities in geometry and tension histories are not
seen to occur for combinations of a; and w; which produce less rapid changes in
the geometry. Therefore for any given situation which is to be analysed with
this method, critical combinations of a; and w; should be identified at which such
irregularities start to occur. This is only an important consideration if the total
tension time history needs to be known. If the peak values only are required then
this method can still be used because the geometries show no signs of irregularities

around the point of maximum excursion and the tension time history is regular.
The main points arising from this study are:

o Large values of excitation amplitude and frequency can produce ge-

ometric discontinuities in the mooring line near the seabed.

o The tension history is significantly affected by the geometric discon-

tinuities, but it is thought that the peak values are unaffected.

7.2.4 High and Low Frequency Excitations

In this case study combinations of low frequency (LF) and high frequency (HF)

endpoint excitations are analysed by means of calculating the DTA values and the
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energy expended during one cycle of excitation. The reason behind an analysis of
this kind is that it gives an insight into the effect of LF motions in the horizontal
plane (surge and sway) when they are coupled with HF heave motions. The former
is intended to simulate the slow drift oscillation of a vessel induced by the effects
of a wave train, whilst the latter is intended to simulate the HF heave motion
induced by waves. Figures 7.23 and 7.24 illustrate the excursion of the endpoint
(in metres) when pure sinusoidal motion is applied to give LF surge and HF heave

respectively.

Figure 7.25 shows the complete tension time history for HF heave motion only.
As an aside, this figure illustrates two points: (a) Why the complete tension time
histories are not used for the graphical comparisons presented in Chapter 6, and
(b) the near symmetry of the tension history when the combination of a; and w; is
not enough to produce geometric irregularities. Figure 7.26 shows the effect of a
combined combined LF surge and HF heave motion upon the tension time history.
Both components are clearly visible. Figures 7.27 and 7.28 further illustrate the

tension time histories obtained for combinations of LF and HF heave.

Table 7.5 shows more useful quantities for comparative purposes.

Motion |Energy (150-200 secs.) | DTA
1. LF Surge|  4.85641 x 10!2 1.373
2. LF Sway 5.94592 x 1012 1.010
3. LF Heave]  5.58039 x 10'2 1.676
4. HF Heave  8.45079 x 1012 1.827

1+4 6.81266 x 1012 2.481
2+4 8.52708 x 1012 1.048
3+4 7.69331 x 1012 1.916

Table 7.5 — Energy and DTA Values for HF and LF Motions.

The term “energy” used in Table 7.5 is defined as

tg .
Energy:/t1 T(h_%)xh.dt (7.6)
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where 7} is the vector velocity of the mooring line endpoint and T(h- 1 is the
tension in the upper element. From Table 7.5 it can be clearly seen that the
energies in the system under the different endpoint excitations can be split into
two groups according to the relative magnitudes. The two groups are defined by
the presence or absence of HF heave motion in the endpoint excitation. Those with
HF heave have greater energy than the results with no HF heave. This indicates
that HF heave motion makes the most significant contribution to the damping of

the vessel caused by the dynamics of mooring lines.

Also of significance is the magnitude of the energy in the system induced by
LF sway motion. This is the largest of the LF motions, however it also produces
the lowest DTA value. This difference is important to note in the context of
assessing the influence of the mooring line damping upon the motions of the floating
structure. If the influence of mooring line damping were to be judged by comparing
the relative magnitudes of the DTA values only, then sway motion would be deemed
the least significant. However, the energy expended during one cycle clearly shows
that pure sway gives rise to the largest contribution to the damping of vessel motion

by the mooring lines.

This table also shows that the energy contained in one combined cycle of high
and low frequency heave motion is lower that the LF motion alone. This is in
contrast to the remaining combinations of high and low frequency motions which
are always larger than for the LF motion alone. This suggests that in the case of
the combined heave motions that “interference” of the two excitations leads to a

slight cancellation of the resulting energy in the system.
The main points arising from this case study are:

e In the calculation of the contribution of mooring line damping to

vessel motions, the sway direction must be included.

e Combined HF and LF excitation should be considered in the calcu-

lation of the DTA values.

7.2.5 SSBs, Ocean Currents and Waves

In this case study the influence of the following parameters upon the peak and

trough DTA values is investigated:

1. The inclusion of subsea buoys (SSB).
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2. The inclusion of ocean current.

3. The effect of wave induced water particle velocity and acceleration.

The Inclusion of SSB’s

Here the standard 20 element model is used and the peak and trough DTA
values are calculated with a SSB of radius 1.0m located at different nodes along
the length of the mooring line. The influence of the frequency of excitation is also
investigated and as expected both the peak and trough DTA values decrease as the
excitation frequency decreases. Note that the value of T} used in the calculation
of the DTA values is the maximum static tension at the maximum excursion with
the SSB included in the line. The DTA curves are presented in Figure 7.29. It can
be seen that they follow very similar trends and that these are nearly symmetrical
about the condition corresponding to the SSB being located at the middle node of
the line. The peak DTA values are a maximum at this point and the trough DTA

values are a minimum.

The Inclusion of Qcean Current

Figure 7.30 shows the effect of an in-plane, vertically uniform horizontal current
(U) upon the peak and trough DTA values. The expected trends are clear, namely
that an increase in ocean current velocity increases the peak and trough DTA
values. T, is calculated in the usual fashion, i.e. with the value of T,f being
taken as the maximum static value at the extreme excursion point, but with no
current loading. However, also included for the purposes of comparison, are the
peak and trough DTA values (denoted as DTA;) for a positive current U when
T, is calculated as a function of U. These show that a maximum DTA; value is

reached and that the DTA; values decrease with increasing values of U.

The Inclusion of Wave Effects

Figure 7.31 shows the effect of the inclusion of wave induced water particle
velocities and accelerations upon the DTA values. To allow the peak and trough
DTA values to be presented on the same graph with sufficient detail, the trough
DTA values have been scaled up by a factor of 5. It can be seen that the inclusion
of these effects is negligible; this is perhaps to be expected since the influence of
surface waves decrease exponentially with depth. However some point of inflexion
is clear at the wave frequency of 0.6 radians, where the peak DTA values are a

maximum and the trough DTA values are a minimum, but this is still relatively
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insignificant. It can thus be concluded that the influence of wave particle velocity
and accelerations upon the dynamic tension developed in a deep water mooring

line is negligible and should therefore not be included in the theoretical model.
To summarise the main points of these studies:

e The inclusion of SSBs induces the maximum peak and minimum
trough DTA values when the SSB is located halfway along the moor-

ing line.

e Ocean current has a significant effect upon the DTA values and an
assessment should always be made with potential ocean currents

included.

o The influence of wave induced water particle velocities and acceler-

ation is negligible.

7.2.6 Excitation and Response Timelag

Also of interest is the time difference between the excitation and the response -
the maximum dynamic tension in this case. This would then provide a qualitative
understanding of the point in the excitation cycle at which the maximum mooring
line tension would be expected to occur. Figure 7.32 shows the variation in the
time difference as the frequency of endpoint excitation is changed and clearly
indicates a decrease with increasing frequency. Figures 7.33 and 7.34 compare
the time histories of the maximum dynamic tension and the endpoint excursion
for two different frequencies. In order that the endpoint displacement caused by
the excitation function and the tension time history can be directly compared,
the displacements are illustrated with a scale which is deliberately not indicated.
It can be seen that the tension time history ‘lags’ the excitation and that this
decreases with excitation frequency. This is to be expected since at the point of
maximum excursion there is very little line motion and this is reflected by a tension
value which is not a maximum. For example for the excitation frequency of 0.3

. rads. shown in Figure 7.33, the timelag is 2.9 secs. Since the period of excitation
is approximately 20.9 secs., it can be seen that the maximum tension is developed
at 55% of the quatre period. This means that the maximum tension occurs when
the endpoint is approximately half way between the equilibrium position and the

point of maximum excursion.
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7.3 Summary

The main results from this chapter may be summarised thus:

1.

10.

11.

12.

13.

Dynamic tensions predicted with the 3D model for the case of no and

decayed excitations agree very well with the maximum static value.

The values for T, T; and T}, agree very closely between the in-plane 3D
model and the 2D model.

For the case investigated the total CPU time for the 3D model was
approximately 2% times the total CPU time for the 2D model. This
means that for situations when the out of plane effects can be neglected,
the 2D model should be used in preference to the 3D model.

The maximum value of At which can be used is nearly identical for the
2D and 3D models.

The inclusion of tangential drag has a negligible effect upon the tension

peaks but is slightly more significant in influencing the tension troughs.

Physical drag is required to stabilise the solution, but too much can

cause irregularities to be introduced in the time history.

The inclusion of tangential added mass has a negligible effect on both

the peak and trough tension.

Heave is the most significant motion in producing the maximum DTA

values; sway is the least significant.
A distinction between safety factors and DTA values need to be made.

Large amplitudes and / or frequencies for the endpoint excitation can

produce geometric irregularities which manifest themselves as reduced

tension troughs.

LF sway produces the largest energy dissipation and therefore makes
the largest contribution to the damping of vessel motion despite the fact

that sway motion produces the lowest DTA values.
In-plane ocean currents can significantly affect the DTA values.

Wave induced water particle velocity and acceleration have a negligible

effect upon the solution.
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14. The tension time history always ‘lags’ the endpoint excitation; this lag

decreases as the excitation frequency increases.

The results from the studies carried out in this chapter have several impor-
tant implications regarding the original development of the model. In particular
it can be seen that the inclusion of tangential drag and tangential added mass
can be neglected thus considerably simplifying the derivation. Also the water par-
ticle velocities and accelerations induced by the action of surface waves can be
neglected in all but the shallowest of water situations, again resulting in a further
simplification in the derivation of the model. This chapter has also highlighted the
inconsistencies in the derivation of the dynamic tension amplification factor and
suggests the use of two DTA values; one for design comparisons and the other for
construction. Furthermore, the differences between the definitions of the safety

factors and the DTA values have been emphasised.



CHAPTER 8

Mooring Line and Seabed Interactions

8.1 Introduction

This chapter examines the effects of the interaction between the sea bed and

the mooring line, with particular reference to two aspects:
1. Frictional and suction effects.
2. Problems associated with the lifting and grounding of the nodes.

The latter has been briefly mentioned with in Section 3.4 and a formulation
to account for this is given in Appendix F. The effects of seabed friction and
suction have not been accounted for, so this chapter opens with a description of
a model designed to include these effects, in a static fashion, for both the normal
and tangential directions. Results are then generated using this model to illustrate
the influence of these effects upon the peaks, troughs and means of the resulting
tension time histories. Following this, an extensive examination of the lifting and
grounding model proposed in Appendix F is undertaken, and an explanation of the
irregularities caused by a grounding node is offered. It is important to realise at
this point that the effects due to lifting and grounding are present only because of
the discretisation employed to describe a physically continuous system. Therefore
this work is not an extension of theoretical mooring line analysis, but is rather
an attempt to contain the irregularities introduced through the use of a numerical

model.
8.2 Seabed Frictional Effects

8.2.1 General Considerations

The assessment of frictional effects falls into four categories, two for the direc-
tion considered and for each of these, consideration must be given as to whether the
mooring line is lying on the seabed or is ‘submerged’ therein. The two directions

are:
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e Tangential motion, i.e. the sliding of the line on or through the seabed soil

in the same direction as the orientation of the last grounded element, and

e Normal motion, i.e. the sliding of the line on or through the seabed soil in

a direction which is at 90° to the orientation of the last grounded element.
There are three sources of pertinent literature :
1. Discussions of pipeline on-bottom-sitability.

2. Discussions of the final configuration of the anchor chain which is submerged

because of attachment to a submerged anchor pile.
3. Literature dealing directly with the problem in hand.

There are very few references in the last category; the first category contains an
extremely large body of material and although the physical processes are the same
for pipelines as for mooring lines, the differences in diameter and flexural rigidity
makes the results for pipelines less applicable for the present problem. Category 2
contains the most useful references with regard to the movement of the mooring
line on or through the seabed soil. Although there are only a few references in this
field they are concisely summarised in a paper by Dutta(1988) where the methods
for estimating the soil forces (both normally and tangentially) are adopted here.
In reviewing the literature in these categories, the following assumptions which

apply to the problem in hand are worth noting:

1. The same physical effects apply to both chain and wire rope, although the

relative magnitudes will be different.

2. The mooring line will be considered to lie on, or just below, the surface of
the seabed.

3. The anchor point is assumed to be on the seabed surface.

With reference to literature in Category 3 it will be seen that the frictional
interaction of the mooring line with the seabed is considered in very few papers
which deal with mooring line dynamics. One such paper is that of Kwan and
Bruen(1991) where the inclusion of frictional effects is implemented through the
classical (or Coulomb) friction law of F = uR, but this is not further expanded

upon in this paper.



Sec 8.2 Mooring Line/ Seabed Interactions 219

A brief review of pipeline/soil interaction (Category 1) yields many papers
examining aspects of this topic. Some selected references are: Hale et al.(1991),
Allen et al.(1989), Wagner et al.(1987), Hale et al.(1989), Lammert et al.(1989),
Brennodden et al.(1989) and Karal and Halvorsen(1982). Successive researchers
in this field have come to the conclusion that the simple Coulomb friction model
is not suitable for use in pipeline analysis. As a result of these deficiencies a
detailed pipeline dynamics model has been developed, see, for example, Lammert et
al.(1989). Here the equations of motion are formulated through the finite element
method and are solved in the time domain. However it is reported that these
types of theoretical models are not well suited to pipeline design purposes because
information regarding the weight requirements for the pipeline coating cannot be
readily derived from the results. Also, the nature of engineering design in general,
requires a method which is quick and easy to use which these types of theoretical
models are clearly not. Because of this efforts have been made to derive simplified
models which are seen to be extensions of the Coulomb friction law where some
account is taken of the dynamic effects between the pipe and the soil. Attention
is largely concentrated on cyclic hydrodynamic loadings (e.g. those induced by
waves and tides) leading to pipe embedment. This increases the soil resistance

and therefore the new empirical models take the form
Ft=Fc+Fea (81)

where Fj is the total soil friction force, Fy is the soil frictional force due to the usual

Coulomb law and F, is the increase in the soil friction force due to the embedment

of the pipe in the soil.

For the second category, namely static mooring line behaviour when submerged
in seabed soils, analysis techniques have developed and culminated with a static
finite difference representation of the part of the mooring line in the seabed soil.
Using an iterative procedure and appropriate boundary conditions the distribu-
tion of geometry and hence line tension can be derived. This is clearly explained
in Dutta(1988) where a brief but concise review of previous efforts to solve this
problem can also be found. In this work the soil forces which are considered to
act on a segment of the submerged line are divided up in to normal and tangential

components in the following manner

fo = KSuAy (8.2)
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and
ft = aS‘uA.‘h (83)

where:
fn, ft  normal and tangential soil resistance per unit length,
K soil bearing capacity factor (9 < K < 11),
Su undrained soil shear strength,
Ap, As effective sliding/bearing area per unit length,

o tangential sliding friction factor.

Both these soil forces apply to the mooring line moving through the seabed soil.
Dutta(1988) also identifies a third soil resistance force which is considered to act
in lieu of the previous two when the mooring line lies on, or is partially embedded

in the seabed. This is expressed as a Coulomb friction model of the form
f=nW,. (8.4)

However, no attempt is made in this paper to indicate how A; and A, should be
calculated or what the typical values of the coefficients K, o and 7 might be.

Lateral Formulation

Consider Figure 8.1 which shows a plan view of the last grounded and first
suspended elements in the discretisation of a mooring line, and their angles relative
to each other in the horizontal plane. The normal soil friction force at any point
along the element (j-1) is f,. The total normal soil resistance is therefore fn -}
where [ -1 is the length of element (j—3). It is assumed that all of the soil res1stance
is lumped at node j; therefore this node will only move if

61_%) > fnlj_%. (8-5)

T.. 1cos Ti+} sin(e

J+7 J+i' -

Once the node moves, the angles €. i+l and ¢; -} will change and the new angles
are denoted by ¢’. i+} and 6 e . The node wxll move in the normal direction until

the resolved tens1on force is equal to the normal soil resistance, i.e. until

TJ+§ 3 COSYjy1 s1n(eJ+% - 6' 1) fal,_y =0, (8.6)
hence £l
! ! s =1 " "‘1
€,,1—€, 1 =sin . (8.7)
3 T1-% [TJ+§COS7J+1]



8.2.3

Sec 8.2 Mooring Line/ Seabed Interactions 221

Now assume that ¢ i+ and €j-1 have changed by the same amount, i.e. that

' —
€isl = €t} —A¢
8.8
e;._%=ej_%+As. (8:8)
Substituting Equation (8.8) into Equation (8.7) the following results

1 fnl]-_l
Ae=|={e; 1 —€; 1 —sin”! | ——2—|}]. 8.9
|2{ ity Cim% [T.H% cos7j+%]}| (8.9)

The estimation of f, follows Dutta(1988); for this it is required to know before the
start of the simulation whether the mooring line is (a) resting on the seabed, or
(b) totally submerged in the seabed soil. For (a) the Coulomb friction model may
be applied, i.e. fn = 7o W, where 7, is the normal surface friction coefficient. For

case (b) it is more appropriate to use Equation (8.2).

Tangential Formulation

Consider Figure 8.2 which shows a mooring line discretisation and the touch-
down forces in the vertical plane. The touchdown node will only move tangentially

if the following inequality is satisfied

Tj+% C08 ;41 > filg, (8.10)

where I, is the length of grounded line. It is assumed that the mooring line will
stretch according to Hooke’s law, so that the new length of the grounded line is

given by

I = Tj+;15 CoSTi+3 ~ Jilg I (8.11)
g AE e

where A and E are the cross sectional area and Young’s modulus for the grounded
line and these are assumed to be the same for all the grounded elements. Effects
due to Poisson’s ratio are ignored and f; is calculated according to Equation (8.3)
or Equation (8.4) depending upon whether the line is assumed to lying on, or

submerged in, the seabed soil.
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Results for Seabed Interactions

Case Study 1: Seabed Friction

Sinusoidal excitation which causes motion in the tangential direction was exam-
ined first. Figures 8.3 and 8.4 show the results with in-plane excitation amplitudes
of 14.14m and 21.21m respectively, both with a frequency of {5 rads/s and with
some portion of the mooring line lying on the seabed, (L=2000m). The results
shown are the means of the peaks and troughs (Tp,Tt) as well as the overall mean
(Tm), of the sinusoidal tension time history once the ramping function used to
start the solution no longer has any effect. The lines indicated by the box markers
are the same means as described above but as derived by neglecting the seabed
interactions, both frictional and lifting. Thus for the latter there are only three
values, one each for the overall mean and the means of the peaks and troughs. It
should be noted that these are not function of n; but are plotted as such to show

the differences when seabed interactions are considered.

It is clear from these figures that once the tangential soil force becomes large
by increasing the values of 7;, the inequality of Equation (8.10) is not satisfied
and there is then no change in the geometry of the grounded line. Increasing
the excitation amplitude as shown in Figure 8.4 means that a larger value of
n¢ is needed before the inequality is no longer satisfied - as would be expected.
From both figures it can be seen that the effect of tangential soil friction on Ty
and T, may be relatively small, but that the effects upon T}, is more significant.
The percentage differences (relative to the case where no seabed interactions are
considered) with n; = 0.2 are 1.63% and 4.95% respectively for the two endpoint

amplitudes considered.

Figures 8.5 and 8.6 show the same set of results but repeated for the case
where the line is assumed to be submerged in the seabed soil. With the undrained
soil shear strength taken to be 1000N/m? (1KPa) it can be seen that even with
a (the tangential submerged friction coefficient) taken to be 1.0, the inequality of
Equation (8.10) is always satisfied, i.e. the grounded portion of the line is always
modified by the resolved tension in the first suspended element. However in both
figures the means are seen to tend towards the limiting case of the means calculated
without the seabed interaction effects (again denoted by the lines with the box
markers). The percentage difference relative to the case with no interactions for
the means of the peaks with a = 0.5 is 3.2% and 3.63% respectively for the two

different excitation amplitudes considered. Hence it can be seen that the inclusion
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of tangential seabed friction effects can have a significant effect upon the magnitude
of the predicted response; but it also shows how sensitive to the correct selection

of the friction coefficients the procedure is.

For the case of normal motions it was not possible with any combination of a;
and w; to produce enough resolved tension in the normal direction to cause any
change in Tp, T; and Ty,. However, a closer examination of the computer output (
not presented), showed that the last grounded element was in fact moving according
to the procedure described in Section 8.2.2. This was not large enough, however, to
register a change in the tension means. This result confirms the previous work in
Chapter 6 where it is shown that the DTA values for pure sway are only marginally

greater than unity.

Case Study 2: Introduction to Nodal Lifting/Grounding

Figure 8.7 shows a sinusoidal solution where no lifting or grounding is allowed.
Figure 8.8 shows the result for the same situation except now with the inclusion of
nodal lifting/grounding. It can be seen that the result for the latter case is generally
more irregular, but more importantly note that the magnitude of the peaks and
troughs have been reduced. The results of Figure 8.8 are compared with results of
McNamara(1993, Figure 8.8A) analysed for the same situation. Here the average of
the the last five tension peaks are found to be 420kN which compares with a value
of 400kN (McNamara(1993)), a difference of 5%. The significant differences in the
two tension time histories (Figures 8.7 and 8.8) provides the justification for the
investigation into the lifting and grounding of nodes. Figure 8.9 again illustrates
the same situation as previously, but now both nodal lifting and grounding as well
as seabed friction effects are included. Note the greatly increases irregularity; this

is clearly not an acceptable situation.

In order to investigate the effect of nodal lifting/grounding in a more systematic

manner, two types of endpoint excitation were defined:

1. Where the endpoint moves from a predetermined maximum excursion to a

predefined minimum excursion, (to examine grounding only).
2. The reverse of the above to investigate nodal lifting only.

These are illustrated in Figures 8.10 and 8.11 respectively; also shown next to the
irregularities are the nodes which upon grounding or lifting have caused these.

Note the initial irregularity at the beginning of both simulations. This is caused
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because, unlike the sinusoidal excitation, no ramping function has been applied at
the start. Once the increment in endpoint displacement has been determined at the
first time step this is applied unmodified throughout the simulation meaning that
the endpoint goes from rest at time ¢t = 0, to moving with a constant acceleration
and velocity for all subsequent time steps. The reason for doing this is to allow
the full extent of the grounding irregularities to be shown, i.e. unmodified by the

ramping function.

To examine in more detail what is happening, only the case of nodal lifting is
considered. Further, the results for node 5 only are identified and isolated. Firstly
a free body analysis of the moving node shows that the vertical force which the
node experiences can be expressed thus

M;(%; — g)+ D, + (TJ+% sin'yj_i_% . T,_.% sin'yj_%) = F, (8.12)
where each term represents the inertia, drag and stiffness forces respectively and F’
is the exciting force. Figure 8.12 shows F plotted against the total simulation time
for node 5 only. Clearly visible are the start up irregularities and the influence of
the groundings of nodes 3 and 4 prior to the grounding of node 5 which occurs at
approximately 40 seconds into the simulation. Note that the total force is always
negative since the node is moving towards the seabed. After the grounding of
node 5 both the velocity and acceleration of this node are zero so there will be no
drag or inertial terms in Equation (8.12) except for the (negative) weight of the
node. The stiffness term continues to make a contribution but this is reduced as
the vertical orientation of element 6 reduces. This eventually becomes zero when
node 6 is grounded at approximately 65 seconds into the simulation. Therefore
the only contribution to F' after 65 seconds is the —M;g term of Equation (8.12)
and this remains invariant for the rest of the solution as confirmed by Figure 8.12.

Subsequent graphs now show each component in Equation (8.12) for node 5
for the total simulation. Figure 8.13 shows the inertial term (i.e. Mj(%; — g))
which is clearly constant after the grounding of node 5. Figure 8.14 shows the
vertical drag force on the node; again this is clearly zero after the node grounds.
Figure 8.15 shows the variation in vertical stiffness and how this becomes zero at
approximately 65 seconds when node 6 grounds. Figure 8.16 shows the addition of
vertical drag and stiffness terms for node 5 and illustrates a very interesting feature.
It can be seen from Figure 8.14 and 8.15 that prior to the grounding of the node,
the variation in the graphs is not regular, however Figure 8.16 shows that the

addition of these two components prior to grounding is virtually constant (except
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when nodes 3 and 4 ground). This can be seen to be the primary contribution to
the near constant value F' in Figure 8.12 prior to grounding. Upon reflection a
constant value of F is to be expected since with a uniform endpoint velocity and
acceleration each node will also possess a near constant velocity and acceleration
until such time as it grounds. From an examination of these figures it can be seen
that the inertial force makes the largest contribution to F', then vertical stiffness

and then the drag forces; the last two being positive whilst the first is negative.

Case Study 3: Influence of i and At

The next investigation examines the influence upon the total grounding history

of:
1. The number of elements (k) with a constant value of At.

2. Size of the the time step for a constant value of h.

For (1), h took on the following values: 10,20,30,40,50 and the grounding
histories for these are shown in Figures 8.17, 8.18, 8.19, 8.20 and 8.21 respectively.
These show that up to a certain point, increasing the number of elements acts to
reduce the numerical irregularities associated with the successive grounding of the
nodes. This is to be expected since increasing the number of elements will reduce
the mass ‘lumped’ at each node thus reducing the impact forces as it grounds.
However the solutions for & = 40 and h = 50 and to a certain extent the solution
for b = 30 show a degree of irregularity. Figure 8.22 shows the grounding history for
h = 50 but with a reduced value of At. From this it is clear that the irregularities
associated with the larger values of h are caused by the use of an inappropriate

value for At being used.

For a value of h = 20 the grounding histories for different values of At
are shown in Figures 8.23, 8.24, 8.25, 8.26 and 8.27 for values of At which are
0.35,0.25,0.15,0.05 and 0.001 respectively. The largest value of At which could
be used was numerically determined to be 0.388 seconds. It can be seen that with
At = 0.35 secs. (Figure 8.23) a solution is obtained where the groundings can
be identified but in between these irregularity is evident. The irregularity is re-
duced with At = 0.25 secs. (Figure 8.24) and is almost completely eliminated with
At = 0.15 (Figure 8.25). However, further reduction in At causes a reappearance
of irregularity and an increase in both the magnitude and duration of the irregu-
larities associated with each grounding. With At = 0.001 (Figure 8.27) although

the groundings can still be identified, the irregularities all but swamp the solution.
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For a more detailed view of the tension variation as the node grounds, Fig-
ure 8.28 presents the isolated tension time history as node 5 grounds for At =
0.35,0.25,0.15 and 0.05. The solution for At = 0.001 was not included in Figure
8.28 since the oscillations associated with this value obscured the other results.
What is clear from this figure is that the solutions with the extreme values of the
time step always contain oscillations, but it is not clear whether these are caused
by the grounding of the nodes or by numerical problems inherent in the solution
technique. If the curve for At = 0.15 is examined it will be seen that prior to the
grounding there are no oscillations in the solution; then as the node grounds some
oscillations are set up but these immediately start to decay so that by approxi-
mately 4 seconds after grounding the solution again shows no oscillations. With
a smaller value of At the magnitude of the oscillations caused by the grounding
increases and, more importantly, the oscillations never completely die away. As
mentioned before the numerical oscillations produced with At = 0.001 obscures
the solution. It therefore seems that there are two intertwined effects which need

to be separated out, and they are:

1. The numerical oscillations inherent in the solution procedure and which
directly depend upon the %1 ratio where it seems that an optimum value

can be identified.
2. The oscillations caused by the grounding process alone.

In order to isolate the second effect which is the one of interest, a value of At should
be selected which allows for a smooth and continuous variation of the tension time
history away from the areas of grounding. For the remaining case studies At was

taken as 0.1 seconds unless otherwise stated.

Case Study 4: Influence of Grounding Angle
The grounding angle, 4,, is used in conjunction with the length of the first
suspended element to calculate a distance above the seabed, zg, i.e.

zg = lj+% sing. (8.13)

When the vertical height of the first suspended node above the seabed is less than
zg then the node is deemed to have grounded and the acceleration and velocity

of the node are set to zero. It then takes no further part in the dynamic solution
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unless the resolved vertical tension in the first suspended element is greater than

the weight of the grounded node, i.e. unless
Tj_’_% sin’yﬂ_% > Mg, (8.14)

when the node will then rejoin the solution procedure. This case study investigates
the influence of varying «,. Table 8.1 shows the effect of different values of 44 upon

the time at which the node grounds, ¢,:

vy (degs.) | 2z, (m) [ty (secs.)
1.00 1.745 38.7
0.75 1.309 | 38.8
0.50 0.873 39.2
0.25 0.436 39.7
0.00 0.000 40.1

Table 8.1 — Grouding Information as v, Varies.

The column headed by ¢, indicates the time at which node 5 grounds; it can be
seen that as the value of v, is decreased the time at which node 5 is grounded
is increased. This is to be expected since decreasing v, decreases z, and hence
the simulation must proceed for longer before the vertical height of node 5 is less
than z,. The tension time history is shown in Figure 8.29 for t; —4 <t <t +8;
close examination of this figure shows that apart from the different ¢4 values, the
magnitudes and number of oscillations of the solution after grounding is virtually

identical for all values of .

Case Study 5: Influence of Mass Modifiers

The derivation of the mass modifiers is shown in Appendix F and are shown
to be

Al
MM; = C - = -
Al )
MM2 = 02 - —I_,

where M M; and MM, are used to premultiply the masses of the first and second
suspended nodes respectively. C); and C, are the variables used to control the
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magnitudes of MM; and MM,, [ is the length of the first suspended element
and Al is defined in Appendix F. For all the numerical examples so far presented
MMy = MM; = 1.0. An indication of the influence of Equations (8.15) can be
gained by setting C1 = 1.5 and keeping MM, = 1.0. It can be seen from Figure
8.30 that there is a greater discontinuity than with MM; = MM, = 1.0 but that

the number of oscillations after the grounding has been reduced.

The next step is to carry out an investigation of the effects of different values
of MM; and MM, through a systematic variation of Cy and C,. This is shown
graphically as in Figure 8.30 by isolating the tension time history for t; — 4 <
t < ty + 8. Before further detailing the influence of Cy and Cj, a discussion of
the physical changes which occur during the grounding process is made. In this,
particular reference is made to the tension in the elements in the touchdown area

and the masses of the first two suspended nodes.

Initially assume that MM; = MM, = 1.0 then the results are given as the
solid line of Figure 8.30. The increase in the tension evident between the ground-
ings (clearly seen in Figure 8.25) is difficult to account for, although one possible
explanation might be as follows: The prescribed excitation allows for the endpoint
to have zero acceleration and a constant velocity for the simulation time. However
it will be realised that nodes further away from the endpoint will develop a finite
amount of acceleration because of the increasing influence of drag effects. It is
therefore suggested that a vertical acceleration develops for the nodes away from
the endpoint and that this increases with the simulation time. This acts directly
to alter the relative displacements of the nodes and therefore (through Hooke’s
law) alters the tension distribution. If nodal separation increases then the asso-
ciated values of the tension time history will also increase. This explanation is
rather heuristic but at the same time justifiable not by the physics of the real life
situation but by the physics of the Lumped Mass method adopted for the solution.

Once the vertical distance of a node is less than or equal to z4, the z coor-
dinate of the node is maintained at this value and the acceleration and velocity
associated with that node are set to zero - in effect the node is stopped dead. This
information cannot be instantly transmitted to all other points along the line and
so the remaining part of the mooring line is still behaving as if the node had not
grounded. In particular, the node which is now the first suspended one is still mov-
ing towards the seabed in an unchanged fashion. However, because the grounded
node is now ‘fixed’ the motion of the node above causes the first suspended ele-

ment to ‘compress’, directly resulting in a reduction in the tension of the line. The



Sec 8.3 Mooring Line/ Seabed Interactions 229

subsequent oscillations after grounding are due to the solution procedure trying
to re-establish dynamic equilibrium across all the nodes where the initial out of
balance has been caused by the compression in the first suspended element. This
involves the tension oscillating about the new ‘correct’ value until that value is

attained.

The effect of a systematic variation of the C; coefficient is shown in Figures 8.31
and 8.32 where M M is maintained at unity. In Figure 8.31 the effect of increasing
(1 is seen to result in two major features in the solution. Firstly the level of the
tension before grounding increases as C) increases; this is to be expected since
Equation (8.15) indicates that the value of the mass multiplier associated with the
first suspended node will increase with Ci. An increase in the mass of any node in
the line will obviously result in an increased value of the maximum tension level
since the line is now ‘heavier’. The second effect is more significant and that is the
reduction in the tension trough which immediately follows the grounding of the
node. This is explained thus: If the first and second suspended nodes are denoted
as node A and node B respectively, then it will be seen that just prior to node A
being grounded the mass modifier (M M) will be approximately 0.5 (see Equation
(8.15), since —A«,l ~ 1.0) and for node B the mass multiplier (M M;) will be 1.0. As
soon as node A grounds the mass lumped here is no longer explicitly pre-multiplied
by a mass modifier and therefore returns to the original value. However, node B,
instead of being multiplied by M M(= 1), is now multiplied by M M; whose value
in this case is of the order of 0.6 (when C; = 1.5). In effect the mass modifier
associated with node B has changed from 1.0 to 0.6 over the time step in which
node A has grounded. It can therefore be seen that the drop in tension just after

node A has grounded is due to two effects :
1. The stopping ‘dead’ of node A whilst node B continues downwards.

2. The sudden change in the mass of node B since it is now premultiplied by

a constant other than 1.0

When the mass modifier applied to node B is less than 1.0 the downward motion
of node B is reduced because the mass has been reduced (see Equation (8.12)),
hence resulting in compression in the element above node B. As C increases (see
Equation (8.15)), the value of M M; will also increase. For example, in the case
where Cy = 1.5 as shown in Figure 8.30, it is found that at the moment of grounding
for node A, MM, = C, - AI ~ 0.6, therefore 5 Al ~ 0.9. Hence if Cy = 1.9 it is seen
that MM; will be 1.0 at the time of groundmg. This will reduce the amount of
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compression which occurs in the element above node B and thus reduces the trough
in the maximum tension after node A grounds. However, close examination of
Figure 8.31 shows that an optimum value of C; can be identified. In this example,
C; = 1.7 seems to provide the minimum trough after grounding; increasing C}
further starts to yield a deeper trough. This is clearly seen in Figure 8.32 where

the effect of using much larger values of C is examined.

The reason for this ‘optimum’ value of Cj is clear. By increasing the mass of
node B (after node A has grounded) as C} increases past the optimum, there is
a relatively greater effect on the compression of the element below node B than
on the tensioning of the element above. This would result in an increased trough
after grounding. With reference to Figure 8.32, for values of C} greater than
2.5, it can be seen that the solution following the grounding is more irregular.
Closer examination of the output information (not presented) shows that these
irregularities are caused by a subsequent lifting and regrounding of the node which
has just grounded. Increasing the value of C; increases the weight of the node and
causes it to ground sooner than a ‘lighter’ node and at a point when the inequality

of Equation (8.14) is still satisfied.

A similar investigation was also carried out into the effect of varying Cz whilst
maintaining MM; = 1.0. The results are shown in Figures 8.33 and 8.34. The
minimum value of Cy which could be used without the solution collapsing was
determined to be 1.25. All the trends as observed for the variation of Cy are
present in these figures but to a different extent. Therefore it is logical to assume
that the same processes are at work - the difference being that they are being
applied to the second suspended node and therefore will have different absolute

values.

Figure 8.35 shows what happens when both C; and C; were varied simultane-
ously but maintaining the same value. The same broad trends as shown for the
individual variation of either Cy or Cj can be identified. A ‘best’ solution, at least
graphically, would appear to be when C; = C2 = 1.5 or when C; = C2 = 1.9;
note that these values are just either side of the ‘optimum’ value identified for the

variation of C; or C; alone.

Table 8.2 shows that the greatest variation in ¢, is when C; and C are varied
simultaneously whilst minimal variation occurs when Cj is varied alone. Note that
for the purposes of plotting the graphs in Figures 8.32 through to 8.36 the shift
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in the grounding history (i.e. the variation in ;) caused by different nodal masses

has been removed so that a more direct comparison may be made.

Cy |ty (secs.) | Ca |ty (secs.) [C1 = Cy |, (secs.)
131 573 1.25 44.6 1.3 77.1
1.5) 50.7 |1.45 426 1.5 56.3
1.7] 452 1.65 41.3 1.7 46.2
1.9 409 1.85, 40.2 1.9 40.9
201 39.0 [2.0] 393 2.0 38.7
21 376 [2.05 394 2.1 36.9
25( 333 2.5 38.2 2.5 32.2
30( 302 (3.0] 371 3.0 28.4
3.5 28.0 [35] 364 3.5 26.0
40| 26.5 4.0 35.5 4.0 24.1

Table 8.2 — Influence of C; and C2 Upon Grounding Time

8.3.6 Case Study 6: Mass Reduction by Increasing h

In this case study an attempt is made to investigate the influence that changing
the node mass by increasing the number of elements (k) has upon the irregularities
caused by nodal grounding. The increase in the number of elements is done in such
a manner that there is always a node at the same point of interest along the line.
As previously (see Section 8.3.2), the position in the mooring line for the new
discretisation, which corresponds most closely to node 5 is isolated and examined
in more detail. However by changing the length of the elements the accuracy of
the solution will be affected and hence a direct and meaningful comparison is hard

to gain. As a result two cases are considered :
1. Where the %1 ratio is maintained.
2. At = 0.001 for all values of A.

Details for both cases are given in Tables 8.3 and 8.4 respectively. For either

case the solution when h = 72 was extremely erratic and therefore not included.
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The only point of interest to note from these tables is that the time of nodal
grounding, t,, is significantly influenced by the number of elements used to model
the mooring line. This is part of the modelling error introduced by using a discrete
model to account for a physically continuous situation. It will be seen therefore,
that not only does the number of elements affect the magnitude of the grounding

irregularities, but it also affects the position of the nodal grounding in the solution

time.
h |At(secs.) [ 4§t |Node [ty(secs.)
9 0.100 [0.00045| 3 23.8
18| 0.050 ]0.00045| 6 51.8
36| 0.025 [0.00045f 12 72.85

Table 8.3 — Mass Changes Whilst Maintaining 4§ Ratio

h | At(secs.) | Node [ ¢4(secs.)
8| 0.001 3 23.68
18( 0.001 6 51.77
36( 0.001 12 | 72.84

Table 8.4 — Mass Changes Whilst Maintaining At

Figure 8.37 shows the results for the case where the ratio of At/h is maintained
at a constant value. Note that the ¢, values are all shifted so that they coincide
with the ¢, value for A = 8. It is clear that reducing the mass of the nodes has
a very significant effect upon the grounding irregularities, to the point that for
h = 36 the irregularities are insignificant compared to those for h = 9. Therefore
there is clearly an improvement caused by increasing the number of elements, but
this must be weighed against the increase in the CPU time which this entails.
The initial percentage drops in the tensions relative to those immediately prior
to grounding are 20%,11% and 3% respectively for & = 9,18 and 36. This is a

significant reduction in the magnitude of the initial tension drop. This is caused
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by both the reduction in the mean level of the tension prior to grounding and the

reduction in the node mass introduced by the use of a finer mesh.

Figure 8.38 shows the results for the case where At is maintained at 0.001
seconds. Whilst significant drops in mean tension are found for A = 9 and 18,
the change for h = 36 is barely perceptible. What is apparent is the increased
numerical irregularities caused by using such a small time step, but also that the
magnitude of the irregularities is reduced by using a finer mesh. It can be seen that
the means of the irregularities apparent here correspond very closely with those
of Figure 8.37. Figure 8.38 illustrates the dangers inherent in using a value of At

which is to small, on the assumption that greater accuracy will result.

Case Study 7: Effect of Ramping Mass Modifier Changes

Consider the first three suspended nodes in a discrete model of a mooring line,
nodes A, B and C say. Now assume that node A is about to ground, therefore its
mass multiplier is M M, that of node B is M M3 and for node C the mass multiplier
is 1.0, the default value for all the nodes in the discretisation. As explained in
Section 8.3.5 at the point of grounding Al/! 2 1.0 therefore MM; ~ C; — 1.0 and
MM; = C; — 1.0. In this case study the following values are used : C1 = 1.5 and
C, = 1.8, therefore MM; ~ 0.5 and MM, ~ 0.8. However after node A grounds,
the value of the mass multiplier for node B changes from approximately 0.8 to
1.5 — —Az—’; similarily that for node C changes from 1.0 to approximately 1.8 — %—1,
where %—l now applies to the element between nodes A and B. Table 8.5 illustrates
these concepts with a numerical example. Therefore, for example, when node 5
grounds, the mass multiplier of node B changes from 0.8 to 0.643, and that of node
C from 1.0 to 0.943 in the space of one time step.

It is suggested in this case study that as a node grounds it is the rapidity of
the change of the mass multipliers during one time step which causes the initial
drastic change in tension. The ensuing oscillations are a result of the solution pro-
cedure trying to re-establish dynamic equilibrium across the remaining suspended
nodes. Therefore a remedy might be to gradually introduce the changes in the
mass modifiers over a number of time steps, N;. The method for doing this is
simple and is now briefly described: As soon as node A grounds, two values for
the mass multiplier applied a node B (also for node C since the same procedure
applies) are retained, By and B; say. Bj is the value of M M, immediately before
node A grounds and B is the value of MM, immediately node A has grounded.
Therefore By — B; represents the change in the mass modifier applied at node B
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as indicated in Table 8.5. By calculating AB = (B; — Bz)/N,, then the change is
gradually applied over N, steps to give B’ = BjAB. However one problem with
this procedure is that at the end of the ramping time (i.e. after N, steps), B' # B,
because the solution has advanced and the ratio Al/! will have changed.

Before Grounding After Grounding

ty(secs.) [Node| A B C A B C
5.0 2 10.50070{0.80070| 1.0 - 0.58064 | 0.88064
14.5 3 10.50042 [ 0.80042 -1.0 - 0.61500]0.91500
30.1 4 10.50001 {0.80001| 1.0 - 0.63325]0.93325
52.0 5 [0.50040(0.800401 1.0 - 0.64305 ] 0.94305
81.6 6 [0.50012(0.80012] 1.0 - 0.643280.94328
117.2 7 10.50004 {0.80004| 1.0 - 0.65862 [ 0.95862

Table 8.5 — Mass Modifiers Before and After Grounding

Table 8.6 shows the values of the mass modifiers as node 5 grounds at four

points of interest in the solution, namely :
1. The values just before node 5 grounds.
2. The values immediately after grounding.
3. The values at the end of the ramping period.
4. The values immediately after the end of ramping.

It is noted that the quantities in (1) and (2) are the same as the values indicated
in the columns headed A and B of Table 8.5. Table 8.6 shows the results. Note
that the first run maintains MM; and MM; as unity throughout the solution,
and that the second run introduces the changes over one time step which is the
original procedure. The solution histories for the grounding of node 5 are shown
in Figure 8.39 but in the interests of clarity the histories for runs 4 and 6 have
been omitted. The result for run 1 shows a significant initial drop - of the order
of 7.5%. Solutions for the remaining runs have noticeably lower levels of tension

prior to the grounding of node 5.



Sec 8.3 Mooring Line/ Seabed Interactions 235
Pomt ) .
Run |tg(secs.) | Ns| MMy | MM, | MMy | MMy | MMy | MM, | MM; | MM,
1 40.1 - 1.0 1.0 1.0 1.0 - - - -
2 52.0 | 0 {0.50040|0.80040 | 0.64305 | 0.94305 - - - -
3 52.1 |10]0.50001 |0.80001 | 0.78580 | 0.98421 | 0.67208 { 0.85793 | 0.65787 | 0.85793
4 52.0 |200.500420.80042|0.79329)0.99213 | 0.66493 | 0.85050 | 0.65780 | 0.84263
5 51.9 }30}0.50039{0.80039|0.79563 | 0.99476 | 0.66246 | 0.84793 | 0.65770 | 0.84269
6 51.9 [40]0.50028 [ 0.80028 | 0.79690 { 0.99608 [ 0.66073 | 0.84705 | 0.65715 | 0.84313
7 51.3 |500.50022 [ 0.80022 | 0.79730 | 0.99692 | 0.65720 | 0.84902 | 0.65429 | 0.84593

Table 8.6 — Ramped Mass Modifiers at the Four Points of Interest

Table 8.7 shows the initial percentage changes which occur in the tension where

AT represents the change in tension over the initial tension drop, and Max. AT

is the maximum change of tension relative to any of the ensuing oscillations. The

result for run 7 cannot be determined since the level of tension prior to grounding
is not clearly defined. It can be seen from Table 8.7 that the percentage change in

tensions decreases as the time over which the mass modifiers are ramped increases.

The large difference between run 1 and the remaining cases is not only ex-

plained by the reduction in the tension drop after grounding but also by the lower

value of the tension prior to the grounding. Additionally, however, the greatest

differences between the tensions prior to and after grounding actually increases,

despite the fact that the initial tension drop is decreasing.

Run | Ng | BAT | % Max. AT
1 -1 75 7.5
2 10| 36 3.6
3 [10] 1.6 3.5
5 [30] 1.3 4.2
7 |50 - 5.17

Table 8.7 — %AT at Grounding for Ramped Mass Modifiers
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It also appears that as the value of N, increases so does the amount of irreg-
ularity which is present immediately after the initial tension drop. With N, = 50
it appears that this irregularity does not die out and is present in the solution as

indicated by the irregular tension prior to grounding in Figure 8.39.

Case Study 8 : Attempts to Improve ‘Overall’ Response

In this case study an attempt is made to reduce the numerical irregularities
associated with the grounding and lifting of nodes for a more realistic (sinusoidal)
endpoint excitation than considered in the previous case studies. Figure 8.40 shows
the tension time history for a sinusoidal excitation of amplitude 15m and frequency
7 /10 rads/s, a time step of 0.1 seconds and C; = C2 = 1.0; this is a reproduction
of Figure 8.8 and is included here for ease of comparison with subsequent attempts
to improve the response. Although a steady state appears to have been reached
after approximately 150 seconds, the irregularities associated with nodal lifting
/ grounding (1/g) are clearly visible especially after comparison with Figure 8.7
where no 1/g is allowed. Examination of the output files (not presented) indicates
that for the 1/g associated with the peak tensions, there is a brief period of time
when the node oscillates between a lifted and grounded condition. This change
between the lifted and grounded condition takes place over the interval of one time
step. With the smooth sinusoidal excitation used it is to be expected that when
a node lifts that it will remain lifted and not demonstrate the aforementioned

oscillatory behaviour.

A first attempt to reduce this behaviour was made by marginally increasing
the mass of the last grounded node. To this end a multiplier of 1.1 was used
and the results are shown in Figure 8.41. As expected the values of the tension
peaks increase due to the greater ‘weight’ of the line caused by the multiplier. It
is also apparent that a greater regularity is now present and that a steady state
is reached shortly after the growth in excitation amplitude - at approximately 103
seconds - has stopped. The tension troughs have the same values whether the mass
multiplier is 1.0 or 1.1. Increasing the value of the multiplier only results in an

increase in the peak tensions; a steady state is reached at the same time.

Examination of the output files, however, indicates that oscillation in 1/g is
still taking place even with the introduced multiplier. To eliminate this effect the
computer code was modified to accept a variable which allows the user to specify
how many time steps after /g that the code controlling the 1/g portion of the

program should be ignored. This effectively ‘fixes’ the node in question in a lifted
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or grounded condition, thereby manually eliminating the oscillation effect and the
distortion in the results which this causes. The results are shown in Figure 8.42
with the multilpier described above reset to 1.0. A marked change in the magnitude
and form of the tension peaks is clearly in evidence. It can also be seen that there
is a slight irregularity present just prior to the maximum tension value and this is
seen from the output files to be caused by node lifting. Again the troughs remain

unaffected.

This represents the ‘best’ response for the tension peaks and is therefore suffi-
cient if only the peak tension values are required, for example to facilitate mooring
line design purposes. However for the requirement of the coupled simulations
motivating this study, the total solution history is important and therefore the
irregularities associated with the grounding oscillation in the region of the tension
troughs must be reduced. The only method found to achieve this was by selecting
different values for the variables C; and C,; Figure 8.43 shows the results with
Cy = 1.5 and C; = 1.8 and no ‘fixing’ to reduce the 1/g irregularities. This figure
shows a slight reduction in the peak tension values, but a notable increase in the
irregularity just prior to the peaks when compared with Figure 8.42. The irreg-
ularities near the tension troughs are greatly reduced in magnitude. Figure 8.44
shows the effect of ramping in the changes in the mass modifiers (as described in
Case Study 7) and ‘fixing’ the node concerned to eliminate 1/g oscillations. This
represents an ‘optimum’ solution history for this case but it is noted that there are

still irregularities associated with the 1/g of the nodes.

The maximum changes in the tension (AT') at the point of lifting or grounding

were calculated from the output files and are indicated in Table 8.8:

Run | C3 | N,|ISET | AT@140secs. | AT@151secs. | Figure No.
1 |1.810 0 31988 7013 8.43
2 {1.8]30] 10 -22025 7510 8.44
3 |1.7130¢1 10 -17237 7694 -
4 [1.6(20] 10 -21755 4692 -

Table 8.8 — AT for the Lifting and Grounding of Nodes
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Note that AT@140secs. corresponds to a node being lifted and AT@151secs.
corresponds to a node being grounded. N, controls over how many time steps
the changes in C1 and C; are ramped in and ISET is the number of time steps
for which the node remains ‘fixed’ - a value of 0 indicates no ‘fixing’. It is clear
from Table 8.8 that and adjustment of C5, ‘ramping’ and ‘fixing’ has a significant
effect upon the maximum changes in the tension when a node lifts or grounds.
However it must be stressed that the improvement in the results illustrated here
was gained only through an approach of trial and error in the variation of the

relevant parameters.

8.4 Summary

The first part of this chapter deals with the development of a model to account
for tangential and normal seabed friction effects. This is essentially a static based
procedure with motion only allowed if the resolved tension in the mooring line
exceeds the static friction forces. Different formulations are required according to
whether the grounded portion of the mooring line is assumed to lie on, or to be

submerged in, the seabed soil.

The second part is an account of the results gained for both frictional and
lifting/grounding effects. For the former a clear conclusion was that motion in
the tangential direction occurs and therefore should be taken into account, whilst
for the normal direction it was not possible to produce any movement. This in-
dicates that a formulation to account for normal seabed friction, either with the
line on or submerged in the seabed soil, is not necessary. In the case of nodal lift-
ing /grounding effects a standard endpoint motion was defined where the mooring
line endpoint moves from a maximum to a minimum excursion value. To exam-
ine in greater detail what is happening during this endpoint motion, the tension
time histories for one node (node 5 in all the examples presented) are isolated
for different grounding conditions and presented. The following points succinctly

summarise these results:

1. The components of the dynamic vertical force are, in decreasing order

of magnitude: Inertial force, vertical stiffness and then the drag forces.

2. Variations in k and At show that, generally, increasing k or reducing At
reduces the irregularities associated with the grounding of nodes. Be-
yond certain values, however, the ‘usual’ numerical irregularities reap-

pear.
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Changing the value of the grounding angle, 74, produces virtually no
discernible differences in the magnitude and number of oscillations after

grounding, but does affect the timing of the grounding.

. The effects of C; and Cy used in the mass modifiers can significantly

affect the irregularities after grounding. It is clear however that values
selected for one node under a prescribed endpoint excitation cannot be

applied to any other node.

. The effect of increasing h is to reduce the node mass and hence the

impact irregularities.

. Ramping the changes to the mass modifiers over a number of time

steps will, generally speaking, improve the initial tension drop. However
ramping over longer times will actually have a detrimental effect upon

the solution after grounding.

. The ‘optimum’ overall solution can be obtained from combining N,

ISET and C; in a manner which can only be determined through trial

and error.

The last point is important and must be stressed. It means that there is no
known method available to select these values before a simulation is started and
so they can only be determined through numerical experimentation. Also once
these values have been determined for a particular node to yield an ‘optimum’
grounding history, they will not be generally applicable to other nodes. However,
it is suggested that with the magnitude of endpoint amplitudes and frequencies
normally encountered, that unless a particularly fine mesh is being used, only one

node is likely to be lifted and grounded during any given simulation.



CHAPTER 9

Concluding Remarks

9.1 Summary and Conclusion

The problem of a static analysis of a mooring line is considered from two
perspectives in Chapter 2. Firstly the analytic catenary equations are developed.
This is done in a rigorous fashion and also shows why they cannot be developed
in three dimensions (3D). Flow charts and a brief explanation of the arrangement
of the software is given and the differences between the theory for grounded and
non-grounded situations is highlighted. The chapter then continues by developing
a 3D numerical model which is used to determine the equilibrium position for the
dynamic situation to be considered later. It is explained how this formulation
allows for the inclusion of fluid loading as a straightforward addition to the theory,
as well as allowing for the inclusion of sections of different materials and line
attachments. Because the static work is relatively distinct from the remaining
part of the thesis, results are also presented here. Generally very close agreement
between the catenary equations and the numerical method is found, demonstrating
the validity of the catenary equations in situations where no fluid loading, line
attachments or different materials are considered. The numerical formulation has
the two distinct advantages that it can allow for out of plane situations, i.e. 3D,

and that it is needed as the starting point for the dynamic solutions.

Chapter 3 is the principal theory chapter; it deals not only with the formulation
but also the solution of the equations of motion for a mooring line. In the numerical
static procedure described in Chapter 2, the mooring line is divided into a number
of straight line, massless elements which are connected by nodes at the points of the
element discontinuities. All the mass of, and forces which act on, the mooring line
are assumed to be concentrated at these nodes and this then allows the equations
of motion to be explicitly formulated for each node. This formulation is given in
some detail and also includes an introduction to the problem of the lifting and
grounding of the nodes on the seabed. A method for including the wave induced
water particle velocity and acceleration is also presented. The second half of this
chapter deals with the solution of the equations of motion by finite difference

schemes. To facilitate this the equations must be rearranged into a form where the
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components of nodal acceleration are calculated as a function of mass , added mass,
drag and stiffness forces. This then allows the application of the Central Difference,
Houbolt, Wilson-8 and Newmark finite difference schemes, where acceleration and
velocity are expressed as functions of past (and hence known) displacements. Four
programs have been developed where the equations of motion are solved by the four
schemes already alluded to; the special starting procedures and initial conditions

for each scheme are also indicated.

Modal analysis provides an alternative method of solution to the direct ap-
proach of using the finite difference schemes alluded to in Chapter 3. Chapter
4 indicates how the 3D equations of motion are reduced to a 2D form and how
these are recast into a standard matrix form. A form more efficient for direct time
integration is obtained when the equations of motion are uncoupled (i.e. no cross
terms). This is achieved through the use of the ‘modal’ matrix which is derived
from the eigensolutions of the free undamped equations of motion. Methods to
include damping which still allow the equations to be uncoupled are examined.
The inclusion of nonlinearities which are inherent in the equations of motion for
a mooring line have important implications for the solution of the equations and
these seem to have been ignored in the relevant literature. The main point to note
is that, as with the direct methods of Chapter 3, iterations must be undertaken at

each time step to satisfy a predetermined constraint equation.

The four finite difference (or time integration) schemes used in Chapter 3,
poses distinct and important characteristics with regard to their numerical stability
and accuracy. Chapter 5 presents an introduction to the theory associated with
these topics. The four schemes used here are derived from first principles and
the stability aspects as applied to linear equations are investigated through the
use of the von Neumann condition, the Routh-Hurwitz conditions and the method
of amplification matrices. The first two methods allow inequalities to be derived
which place restrictions on the size of the time step which can be used, whilst
the latter is a numerical way of demonstrating stability. The accuracy of the
results obtained from these schemes is assessed by the amount of amplitude decay
and period elongation present in the numerical solution of an equation to which
the analytic solution is known. A method of determining apriori a value for the
size of the time step whereby all modes present in the solution will be accurately
integrated is given, as well as a method of estimating the critical time step limit
used with the Central Difference scheme. A great deal of theoretical analysis is

possible when the equations being solved are linear. If the equations of motion
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are nonlinear then both the stability and accuracy have to be investigated by
examining the limiting tendencies of a number of solutions for different conditions
of interest. This means that the stability and accuracy characteristics have to
be determined by conducting a series of numerical ‘experiments’ and cannot be

calculated theoretically.

Chapter 6 is the first of the results chapters. It provides an extensive com-
parison of the numerical properties of the four time integration schemes used as
applied to the 2D equations of motion for a mooring line. This chapter presents

three sections of work:

2. The reduction of the equations of motion from a 3D to a 2D form, which are

then compared to published sets of equations to highlight any differences.

3. A short section which derives limiting results for the dynamic models, i.e.

results where the endpoint excitation has died out or is non-existent.

4. A major section comparing the results gained from the four time integration

schemes.

The main aspects of interest for each scheme is the comparison between the size
of the time step which will give a stable and accurate solution and the desire not
to incur excessive CPU times. From these results it has been possible to produce a
recommendation as to the ‘best’ scheme to be employed in the solution of mooring
dynamics. The major conclusions which have been found from this investigation

are .

e Increasing the amplitude and frequency of endpoint excitation reduces the

maximum value of At which can be used.
e The maximum value of At decreases as the mesh size [ decreases.

o Stability and accuracy are functions of the absolute value of At and [ and

are independent of the ratio %i

e The Central Difference scheme has a critical value of At beyond which the

solution is impossible to gain.

o Total CPU time decreases nonlinearly with increasing values of At. There
is an optimum value of At for the Central Difference scheme which is less

than the critical value.
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o Different starting procedures implemented with the Houbolt scheme have a

negligible effect.

e The value of § = 1.4 is a near optimum value with respect to the stability

and accuracy of the scheme.

The recommendation as to which scheme should be used depends upon the
value of At which can be used. If this is to be less than the critical value identified
for the Central Difference scheme then this is the scheme recommended for use. If

this is not the case then it is recommended that the Houbolt scheme be used.

The results from the preceding chapter are not directly useful for mooring
line design purposes. The aim of Chapter 7 is to provide a method of calculating
dynamic tension amplification (DTA) factors and to present a parametric study
of the main factors affecting mooring line dynamics. The DTA values cannot be
directly compared with the safety factors specified by the classification societies,
because they measure different aspects of mooring dynamics. It is shown that the
manner of calculating the DTA can differ according to how the maximum static
tension is defined; this is clearly pointed out and two types of DTA values are
identified, tentatively referred to as design and construction DTA values. The
former is suggested for use in the design phase of a floating production system,
whilst the latter should be used for the design and construction of the mooring

lines only. The main conclusions to be drawn from this chapter are :

e The CPU time for the 3D model is approximately twice that for the 2D
model run under the same circumstances. Thus if out of plane effects can

be ignored, the 2D model should be used in preference.

e Physical drag is required to stabilise the solution, but too much can cause

irregularities.
¢ Tangential added mass and drag forces are generally negligible.
e Heave motion produces the largest DTA; sway the smallest.
¢ Wave induced water particle velocity and acceleration is negligible.

Chapter 8 is an investigation into the interaction of the mooring line with the
seabed. The two effects considered are the soil frictional forces and the lifting and
grounding of the nodes in the Lumped Mass discretisation. The frictional effects

need to be considered for two cases : (i) When the line is assumed to be lying on
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the seabed, and (ii) when the line is considered to be submerged in the seabed

soil. It was shown that no movement of the grounded portion of the line could be

effected for any combination of endpoint amplitude and frequency. Therefore the

tangential effects only need to be considered. The principal conclusions are :

e Changing the grounding angle v, has no influence except on the time of

nodal grounding.

The effect of increasing the number of elements is to reduce the mass con-
centrated at each node and hence to reduce the irregularities caused by

impact of the nodes on the seabed.

Ramping the changes in the mass modifiers over several time steps, which
otherwise would take place over one time step, can improve the grounding

irregularities.

An ‘optimum’ solution can be gained from numerical experimentation with
certain factors, but these are then only applicable for a particular node

under the prescribed endpoint excitation.

9.2 Recommendations for Further Work

In this section a distinction is made between further work relevant to the work

already undertaken and further work which is an extension of the existing effort.

9.2.1 Recommendations for Existing Work

A further and more detailed parametric study for the work carried out in
Chapters 6 and 7 but related to ‘real’ mooring situations so that experience

through case studies can be built up.

The most obvious recommendation is the full implementation of the modal
theory described in Chapter 4 so that comparisons of the effectiveness (or

otherwise) can be made with the direct methods of Chapter 3.

The four time integration schemes used here are only examined because they
are the most popular schemes used in the solution of structural dynamics.
In reality they represent a small fraction of the total number of schemes
available. Therefore the possibility exists that a scheme which has not been
considered here might be more suited to the specific problem of mooring

line dynamics.
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e In the solution scheme adopted here the mass and damping matrices remain
constant during the iterative procedure whilst the stiffness (tension) is used
as the iteration parameter. An investigation should be carried out as to the
effect on the solution efliciency of allowing the mass and damping terms to

be updated at the end of each iteration.

e In the present implementation of the solution, the matrix inversion method
used to calculate the tension corrections (see Equation (3.77) of Chapter 3)
takes no advantage of the tridiagonal nature of the coefficient matrix. More
effective methods exist for the inversion of matrices with this characteristic

and these should be implemented to improve the efficiency of the solution.

9.2.2 Recommendations for Future Work

o Further software should be developed which handles a spread of mooring
lines as attached to a rigid floater. Endpoint motions can then be specified
for each line in order that the fairleaders remain in the same relative posi-
tions. This would allow for a global analysis of the dynamics of a realistic

mooring arrangement.

¢ More advanced than the previous point is the coupling of the mooring line
dynamics with a time domain analysis of the motions of the floater. Soft-
ware exists for both analyses separately and although several efforts have
been made towards full coupling, various simplifications have usually been
employed to make the problem more tractable. The full coupling would
allow very detailed analysis of the total system and in particular the effects

of line failure could be assessed.

o In Chapters 7 the calculation of the dynamic tension amplification (DTA)
factors is demonstrated. In the light of this work, an assessment of the
validity of the safety factors issued by the certifying authorities can be

made and compared with the results from operational experience.

o Hooke’s law is used to model the stress-strain relationship, however this is
only applicable when chain and/or wire rope is being analysed. Neither
of these materials are ideal for use in the deep waters proposed for the
exploitation of marginal oil and gas fields where the use of synthetic rope has
been suggested. This material type has a nonlinear stress-strain relationship

and this should be incorporated into the present analysis.
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e Tollowing the previous point a natural extension to the proposed work pro-
gram is the analysis of fatigue failure of mooring lines. As far as can be
ascertained there is a dearth of test data available for both chains and wire
ropes and none for synthetic materials. If exploitation of the marginal fields
continues then it is suggested that extensive fatigue analysis of synthetic

materials is needed.

As a final comment, it may be said that the broad objective outline in the
introduction, namely an assessment of the numerical efficacy of different time in-
tegration schemes as applied to the solution of mooring line dynamics, has been
achieved. The variation of the schemes to input parameters such as the time
step size and the element length has been shown and this has highlighted some

important aspects not previously demonstrated in the literature.
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Appendix A

Rotational Coordinate Transformations

The general rotational coordinate transformation matrix is derived for a right
handed coordinate system. This is then tailored to suit the requirements of this

work. If the original axis system is defined as being (z,y,z), then a complete
general finite rotational transformation is defined by the three following Eulerian

rotations:

1. Rotate anticlockwise about z by an angle € to give a new axis system defined

by («',y', 2).

2. Rotate anticlockwise about y' by an angle v to give a new axis system defined
by (z",4/, 7).

3. Rotate anticlockwise about z" by an angle 3 to give a new axis system defined
by (z",y", 2").

These individual rotations are shown in Figure Al. Figure A2 shows the first of
these three transformations, i.e. the rotation about the z axis and from this it is
seen that

z=rcos(6+¢), y=rsin(d+e¢)

and

t' =rcosb, y =rsind.

By expanding cos(6 + ¢) and sin(d + ¢) and using the equations for «’ and y’ the

following matrix form (which also includes the unmodified z coordinate)

2! cose sine O z

!

= | —sine cose 0 Y (A.1)
0 0 1 z

can be derived after some matrix inversion. By applying the same derivation

process to the next two rotations the following two matrices result

z' cosy 0 siny) /2
Y 1= 0 1 0 y' (A.2)
2 —siny 0 cos¥y z
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and
z" 1 0 0 z"
v | =0 cosfp sing y . (A.3)
2" 0 —sinf cosB/ \ 2

If each of the transformation matrices defined above are denoted by T,, T; and

T respectively, then the total transformation is defined by

"

T T
y" =TsT;T, | y (A-4)
2" z

where the transformation matrix, T, is given by

1 0 0 cosy 0 siny cose sine 0
0 cosfB sinf 0 1 0 —sine cose 0
0 —sinf cospf —siny 0 cosvy 0 0 1

Note that the order in which the rotations are defined controls the order of the
matrix multiplication in the resulting transformation matrix T. This results in the

total transformation matrix T being defined as

COS Y COS € cosysine sin 7y
T = | (—sinysinfScose —cosfFsine) (—sinysinBsine + cosJcose) sinBcosy

(—sinycos Bcose + sin Bsine) (—sinycos Bsine —sin fcose) cosBcosy

Since for this application § = 0, the transformation matrix T becomes (1), say,
and is defined by

COS7YCOSE  cosysine sinvy
(Q) = —sine cose o |, (A.5)

—sinycose —sinysing cosvy

and if the local axis system is now defined as (p, ¢,r), then

P Cosycose  cosysing sin7y T
q|= —sine COSE 0 yl. (A.6)
T —sinycose —sinysing cosy z

Now the same form of transformation matrix is also used to relate the local and
global velocities and accelerations, although this is not strictly correct for the
following reason. Consider the local displacement p, as given in Equation (A.6),
i.e.

p = cos vy cos€(z) + cos ysin&(y) + siny(2). (A7)
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Then the velocity is strictly given by

. dcosy dcose dzx
p =——— cos e(z) + cosy I (z) + cos~ cos e
dcosy . dsine . dy
o sin e(y) + cosy i e(y) + cos~ysin e (A.8)
dsin¥y . dz
+ - (z) + sin T

The assumption used in this work is that the contributions from the angular ve-

locities are negligible so that p is assumed to be given by
p = cosy cos g(x) + cosy sine(y) + siny(2). (A.9)

Thus it is seen that the velocities are related by

= (Q) (A.10)

[ Qe -
N =2 8.

If Equation (A.8) were again to be differentiated with respect to time to obtain
the acceleration p, and all the first and second derivatives of functions of v and
¢ are assumed negligible, then the global and local accelerations are also related

through the same transform, namely

D z
il=)]9]. (A.11)
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Derivation of The Added Mass Coefficient Matrix

From Equation (3.6)

Py atp
Py | =1 ang (B.1)
P, anT

where p, ¢ and # are given from Equation (3.5), hence Equation (B.1) becomes

r

Pl=lo a o|()]3]. (B.2)
P, 0 0 a, z"

Explicitly inserting () from Equation (A.5) of Appendix A, Equation (B.2) re-

duces to

P, @1 COS7YCOSE  @;cosysinE  agsinvy T
P | = ansine ay COSE 0 i, (B.3)
P, @, COSESINY —apsSinySiNE apCosYy z"
but from Equation (3.7) the following result holds
=) p|. (B.4)
P, P,

Due to the orthogonal nature of (), its inverse is equal to its transform so substi-
tuting this and Equation (B.3) into Equation (B.4) results in the following identity

Py COSYCOSE —sing —cosesiney
P, | =| cosysine cose —sinesiny | x
P, sin 4 0 cOs Y

(B.5)

a1Z" cosycose + a;j" cosysine + ayz" siny
—a,Z"sine + a,4" cose

—apZ’ siny cos€ — apy" sinysine + a,z" cosy

By expanding and collecting terms for each component acceleration, the following
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equations result

P, = (at cos? vy cos? € + ap(sin? & + cos® € sin? 7)) i’
+ (at cos? 7y cos €sin € + ay sin € cos e(sin2 v - 1)) " (B.6)

+ (at sin -y cos 4y cos € — ay, Sin 7y Cos 7y €os e) 2"

Py = (at cos? ycosesin e + an sin € cos(sin? v — 1)) z"
+ (at cos? ysin? € + an(cos’ € + sin® ¢ sin’ 7)) g (B.7)
+ (at sin 7y cos y sin € — ay, 8iny cos 7 sin s) z"
P, = (at $in 4 cos 4 €os € — @y, 8in <y cos 7y cos e) z'
+ (at §in 7y cos vy sin € — a, sin <y cos 4 sin e) " (B.8)
+ (at sin? v + ap, cos? 'y) z'.

When assembled back into matrix form, with a; and a, separated out, the final
form for the global added mass is

Py

A
Py | = [m(®) +an ()] | 77 (B.9)
P, z"
where
cos? 2 2 : :
ycos“e  cos“ycosesing sin<ycosycose
(1) = | cos?ysinecose  cos?ysin?e  sinycosysine
sinycosycose sin<ycosysine sin? v
and
.2 2 .9 . 9 .
(sin“e 4+ cos“esin®y)  —sinecosecos®y  —sinycosycose
() =| -—sinecosecos’y  (cos®e+sin’qysin?e) —sinycosysine
—sin-ycosycose —sin“ycosysine cos?y

By reintroducing the element subscript j+3, Equation (B.9) can be expressed as

Bjyy =einiling (B.10)
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where the global added mass term e i+ is defined as the matrix which premultiplies
Q; +1 and [ is the vector containing all the relative fluid accelerations. Therefore
€1} is given by

i1} = [at(91)+an(ﬂg). (B.11)
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Derivation of the Fluid Drag Matrix, K

Equations (2.70) and (2.72) can be combined to give

Fy F,
Fy | =()T| Facosg |. (C.1)
F, Fusing

Expanding this into component parts results in

F, = Fy[cos 4 cos e] -F, [sin € cos ¢ + cos ¢ sin 4 sin ¢]

F,=F cos 4 sin e] -F, [sin ~ sin € sin ¢ — cos € cos ¢]

F,=F -sin'y] - F, [- cos'ysinqb],

and this can be expressed in the following matrix form

F; COS Y COS € sin € cos ¢ + cos € sin 4 sin ¢
Fy | = F;| cosysine | — F, | sinysinesing — cosecos ¢ | . (C.2)
F, sin 7y — cos~y sin ¢

Letting K = (Fy, Fy, F,)T and if the element subscript is reintroduced, then Equa-

tion (C.2) can be re-expressed as
Kjpy = {Fil] - F,,[Q4]}j+% (C.3)

where {},, 3 implies that all the angles within the braces have the subscript j+3.
Similarily for the other element attached to the node the same form of the Equation
(C.3) is present but now with the subscript j-1. Thus the total fluid loading force

to be concentrated at node j is given by

lr, -
N;= E[I‘H'% - I‘j—%] (C.4)
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Solution of the Dispersion Equation

The dispersion equation presented in Equation (3.27) of Chapter 3, is

(wa - kU)2 = gk tanh(kd) (D.1)
where
wg 1s apparent wave frequency,
k is wave number,
U s current velocity coplanar with the wave heading,
g is gravitational constant,
d is water depth.

All the variables in Equation (D.1) are known except for the wave number k. The
value of this has to be determined implicitly since k appears on both sides of
Equation (D.1) and on the right hand side k occurs in a transcendental function.

It is therefore not possible to rearrange the equation to solve directly for k.

The method of determining k is iterative, therefore a value of k is selected and used
to evaluate both sides of Equation (D.1). These two values are then compared and
if they agree the value of k is correct. If not then the value of k is modified and
the process is repeated until the difference between the left and right hand sides

of Equation (D.1) is negligible.

The largest possible starting value for k can be determined from the asymptotic
behaviour of tanh(kd), that is, since

tanh(kd) =1 for kd > 11.9, (D.2)
then let
11.9
== D.3
k== (D.3)

Rearranging Equation (D.1) yields the following alternative estimate of k, namely

_ 2
ky = (e — )" : (D.4)
g tanh(k;d)
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If (k2 — k1) is less than some limit, then k3 = k; = % and the wave number has
been determined. If (ky — k1) is greater than this limit then a new estimate of k;

can be made from

by = (kl—;@ (D.5)

and this value is then substituted into Equation (D.4). This process is repeated
until (k3 — k1) is less than the required limit.

It should be mentioned that Equation (D.1) is not the most common form of the
dispersion equation used in the forward speed ship hydrodynamic problems. For
such ship problems it is normal to assume deep water so that Equation (D.1)
reduces to a quadratic equation in k since tanh(kd) = 1 and in this case there will
always be two solutions. For the case U = 0 and w, = w the dispersion relationship

for a regular wave is again solved in the manner described above.

In this study Equation (D.1) is the forward speed dispersion equation for a finite
water depth of d. Because of the forward speed term, which in this case corresponds
to the uniform current velocity U, there are four possible solutions to Equation
(D.1). These solutions depend upon the relative magnitude of U to the wave
velocity and are described in Hedges(1983) and in more detail by Peregrine(1976).
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Wave Particle Acceleration

Upon substituting Equation (3.29) into Equations (3.31) and (3.32) the fol-

lowing are derived

kgH cosh(k(z + d))
2wy  cosh(kd)

Vet = cos(kz' — t(kU + w;)) (E.1)

and
kgH sinh(k(z + d))

%,  cosh(kd) sin(ke’ — #(kU +wr))- (E.2)

Vrz’ =

For the # Component;

For the z component of water particle acceleration we appeal to Equation

(3.37), that is

D i} 0 0 0
Aaz’ = b_t(‘/;zx’) = 6t(vaz )+Vaz’a ,(Vaz’)'i'vay 6 ,( az )+Vaz'a ;(Vax') (E3)

where V,or = Vi + U and V,y = V. Therefore the above equation becomes

0 0
Aax' = ot (Vrz' + U) + (Vn:’ + U)a ,(Vrz' + U)
]
Ve + U)+ (w4 s (Ve +0). (B4)

Since the current is steady, %[tl = 0 and since the current is assumed to be horizon-

- oU

tally uniform, 4% = 5y = 0. Also for a monochromatic wave there is no variation

in the properties of the wave along the wave crest and so %(V,y:) = 0. Therefore
Equation (E.4) reduces to

8 d
57 (Vo) + (Ve + U)

Agyr = =

Viar) + ( rz'+cz)a ,(Vrz"i'U)- (E.5)

From Equation (E.1), the following results are derived

0 kg H cosh(k(z + d))

e 1) = i - r))s
at(Vm ) = (kU 4+ wy) % cosh(kd) sin(kz’ — t(kU + wy))

0 Vo= —k%gH cosh(k(z + d))

57 (Vre') = 2 cosh(id) sin(kz' — t(kU + wy)),
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i(V ) = k2gH sinh(k(z + d))
FRAMLE 2wy cosh(kd)

cos(kz' — t(kU + w,)).

Therefore Equation (E.5) can be written as

_ kgH cosh(k(z+d)) . ,, ,
Ay =(kU + wy) %r  cosh(kd) sin(kz' — t(kU + w,))
k%gH cosh(k(z + d)) ]
— (Vi + U)[ 2w cosh(kd) sin(kz' — t(kU + wy)) (E.6)
k?gH sinh(k(z + d)) BU]
+ (Ver +Ci) 2w,  cosh(kd) cos(ka’ = t(kU +wr)) + a2

Defining the following terms

o = cosh(k(z + d)),

B = cosh(kd),

+ = sinh(k(z + d)),

§ = ka' —t(kU + wy),
kgH

)
2w,

E =

and assuming that there is a vertically uniform current (i.e. g—g = 0), then the
following is derived from Equation (E.6) once the substitutions for V;,» and Vyn
are made form Equations (E.1) and (E.2)

Ayt = [(kU + wr)sg sin 6] [Uke— sin § + ezk—— sin 6 cos 5]

; ; iz )
C. kel cos§ + 52k sin é cos 6].
[ B B
Rearranging and cancelling leads to
€ : ek .
Ayt = 3 [aw, sin§ — 7 siné cos 6 + C kv cos 6]. (E.8)

For the z Component:

In this case Equation (3.38) provides the expression

3} 0 0 0
Aaz; = at(‘/az/)-{-‘/azla '( azl)+‘/ay a '( az/)""‘/:;zla ,(‘/az’)
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where Vo = Vi + Cy and Vo = Vo + U. Also §% = &% = 0 since C, is
the same at any point, %C—t" = 0 since C, is assumed to be time invariant, and
yag(vrz' + C,) = 0 since there is no variation in the properties of the wave along
the wave crest. Therefore the above equation reduces to

0 0 0
Aaz' = _'(V;‘z’) + (er' + U)B?(Vrz') + (Vrz’ +C. )a l(Vrz’ +C. ) (Eg)

ot

From Equation(E.2), the following results are obtained

0 (Vi) = —(kU + wr)kgH sinh(k(z + d))

cos(kz' — t(kU + wy)),

ot 2w,  cosh(kd)
3} k2gH sinh(k(z + d)) )
-a—m7(V,z,) = S0 cosh(kd) cos(kz' — t(kU + wy)),
0 _ k%gH cosh(k(z + d)) . '
5;7(‘/”/) = 2o cosh(kd) sin(kz' — t(kU + wy)).

Therefore Equation (E.9) can be written as

kgH sinh(k(z +d
Agy = — (kU + wy) Qir smccgs}f(zk-ld_) ) Cos(km' — (kU + wy))
k?gH sinh(k(z + d
+ (Vog + U)[ 25) SmccEs}E(Zk-;) D cos(ka’ — (kU + w,))] (E.10)
k?gH cosh(k(z + d)) . au
+ (Ver + Cz)[ 25, 2 ccfs}f(kd) ) sin(kz' — ¢(kU + w,)) + 5;,-]

Defining the same variables as before, and making the substitutions for V;,» and
V,» given in Equations (E.1) and (E.2), leads to

Agy = [ (kU + wy)e— cos5] [Uke— c035+52k 7 cos? 6]

IB2

[C,keﬁ sind + €2k sm 5]

(E.11)

where %7 is assumed to be zero. Rearranging and cancelling leads to

Agy = % [C,ka siné + Ek%Z — Wy COS 5] . (E.12)
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Derivation of Mass Modifiers

Consider Figure F1 where this diagram shows the geometry of the grounding
area with a parabolic profile between the last grounded and first non-grounded
nodes. Here it is shown in two dimensions, for the benefit of clarity, but the
subsequent derivation is easily generalised to three dimensions. The purpose here
is to try and reduce the mass of the first suspended node as it approaches the
seabed, in order to reduce the associated impact forces. The actual mass lumped

at node j is given by

1
Maj = 5[ i-li-3 T Mg j+%]’ (F.1)

and it is this term which is to be modified. In terms of Figure 2.8b, the mass at

any node j is given by

M, ]+AM

I\DI'—‘MI“-‘

[M;,
(M, _y+AM) + (M, + AM)]. (F.2)

Mass modifiers are to be applied to the masses lumped at both the first and second
nodes. These are denoted by MM; and MM respectively and they are applied to
both the first and second lifted nodes, i.e.

My, = Mgy x MM,

(F.3)
Mps = Mpy x MM;.
The modifiers are defined by
Alj__l
MM; = C) - z (F.4)
l. 1
=3
and
Alj_l
MM; =C; - z (F.5)
lj_%

If the constants Cy and C; are taken to be unity, then in the limit as the node
grounds, Al;_ } lj_% , so that M; — 0 which, in theory, is what is required.
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Cy and C; are introduced to facilitate the numerical study of this phenomenon
carried out in Chapter 8. The next problem is how to determine the length Al -4
Consider Figures F2 and F3; O is defined to be midway along the first suspended
element and has coordinates (a, b, ¢) in the global (z,y, z) axis system. In order to
construct the parabola as indicated in Figure F1, a local set of axes, (z",y",2"),
must be defined, with the z” axis coincident with the the first suspended element,
and y” and 2" are normal to it. The definition of the required parabola is achieved

through the following steps:

1. Transform the coordinates of nodes j and j+1, from the (z, y, z) to the (z', 3/, 2')

system by using the following translation
g’ =(r—a)
y =(y-"b) (F.6)

Z = (z-c¢).

2. Now rotate the axes (z',y',2') by €i+) and Ti+d in order to obtain the new

axis system (z",y", 2"), that is

w" x’
v | = (D) | Y | (F.7)
Z” ZI

where ({1, 1 ) is the rotational transformation matrix defined by Equation
(A.5) of Appendix A.

3. Calculate the distance r from the node j, (or j+1), to the origin of the (2", 3", 2")
axis system. Following the transforms defined in Equations (F.6) and (F.7), it

follows that r is equivalent to /.

4. Next the parabola is defined. Consider the Figure F4. A parabola defined
about the point A has the following form

2
T
==, F.8
2= | (F.8)
Therefore the origin of the (z",y",2") axis system (defined at O) must be
shifted to the origin of the parabola defined at A. This accomplished by in-

creasing all the 2" coordinates by an amount §, i.e

M= + g (F9)
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5. By selecting a series of positive and negative 2" values, which range evenly
from zero (at A) to r, 2"’ can be calculated and hence there are now a series

of points on the parabola defined (z",y", z"),.

6. Now the local (z",y",2"), coordinates must be transformed back to the global

axes. This is done by reversing all the coordinate transformations described

above, namely

r

(w",y”,zm)p - (:v",y",z”) by L= M 5, (F.IO)
x, x/l
H = (9, )T " (F.11)
= U vyl '
z, Z"
and then
c=z+a
z = Z, +c.

7. Now the intersection of the parabola with the seabed must be determined. This
is done by finding the two points on the parabola which lie on either side of
the seabed; this is straightforward since the point above the seabed will be the
first point with a positive z coordinate. Linear interpolation is used between
these two points to find the z coordinate of the intersection with the seabed,
designated z4;, and hence the length Al i+ See Figure F1, is given by

Alj_*_% = T4 — ;. (F.13)
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Rearrangemeﬁt of the Equations of Motion

The equations of motion are defined in Equations (3.14) and (3.54) and are repre-

sented here as

r1 1
Mii;+ Py = [Tcos*ycos e]j;; + Fyj (G.1)
N . 19+3
M;y; + Pyj = [T cos 7 sin 6];:2 + Fy; (G.2)
. . 1itd
M;z; + P, = [T smfy]j:% + Fyy — W;. (G.3)

Rearranging Equation (G.1) yields

P l{cos’yﬂ% cosej+%} _r 1{cos'yj_% cosej_%}+ {ij - ij}
- M; 72 M; M;

and this is then defined as

A

= BTy 3 + 5Ty + 15 (G.4)

Rearranging Equation (G.2) in the same manner, yields

) COSYjy 1 sineH% cos Y;_1 sinej_% ij—Pyj}
yf:TH%{ M; }_ i-%{ M, }+{ M;
J J 2
and this is then defined as
gj = Uj1}+% + VJT}—% + W;. (G.5)

Similarly rearranging Equation (G.3) yields

sin7y, 1 siny,_1 F.. —W: =P,
5.=T. 4—2%21 i=3 zj j n}
“ TH'%{ M; } T"'%{ M; }+{ M;

which then becomes

+ Q, (G.6)
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Where the following apply

A L ‘.1
Rj = M; [cos')'j_‘_iF cosej_*_%]

>

_ .—1[ . ]
M; €08 Y;_4 COSE;_1

J
Tj = Mj.l [sz - sz]
U] 1[cos'y i+ s1nej+%]
Vj = -—Mj_l [cos -1 sinej_%]

Wj = M7 [F,; - Pyj]

0; = M [sin 7j+%]

Py =-M;! [sin 7]._1]

Qs = M;* [Fij = Wy = Pyj.

The fluid loads P;j, Pyj and P,; are defined in Equations (3.58), (3.59) and (3.60)
where, with the addition of the fluid loads on the line attachments, they become

"7 . . +3
P = —2’-{ [a, cos? y cos? € + a,(sin? & + cos? e sin® 7)];+; + PV;z}

{[(at—an ) cos 7cosasme] +1 +pV';}

X I.J"., X |$,,

+
{[ (ar — an) s1n7cos7cos€] +3 +pV;;},

z" ) +3
P!If = ?’{[(at - an)0052751n6cos E];t; + PV;;}

o
+ %’-{ [at cos? ysin® € + a,(cos? € + sin? ¢ sin® 7)] + + oV, }
zt ) . 14+
+ —27—{[(at —an) s1n7cos'ysm€];-t; + pV;,},
and p 1
z; ) i+
P,= _le{[(at — ay) sin 4 cos v cos e]’.—t? + pVJ‘;}
1
+ 8o~ an)sinyeosysine] E + v}

>T

ZJ *
+ 2{[atsm v + ay cos 7] +1+pV,}.
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Matrix Coefficients for the Segment Error Function

Firstly Equation (3.76) of Chapter 3 is restated, that is

k+lﬂrf+1 _k Qn+1 +An+1(5Tn+1 +Bn+15Tn+l +C"’+15Tn+l (Hl)
1‘7

where A"t], B"*! and C"*] are defined by
=3 J=3 J—%

ATt = kqetly  prtl o 0 _kgetly g ool = 2 kgt
=3 8’°T”+1( M i3 akT."+11( J-%) -3 (’)ka“ql( i-4)
=3 +3
and where
kuptl _ (k+1zndl _ k+lznd1\2 | (k41ondl _ k+1sntl
QJ -3 ( j J"l) +( Yy Y- 1)
FHlgntl _ k+1zn4] 2 kT;j%l 2 (H2)
~n n
2! +)* - 1 [1+__]
+( 7 %=1 =% E. 1A 1
i-5%-3

First consider the evaluation of B""’ which is given by direct differentiation of
7
Equation (H.2) thus

Bl —a(MHgmH _ b n+1) 9 (k+15:ry+1 bigntl)

i-3 -1 akTJn+; J Tj-1
k+1~ n+1 k+1~n+1 d (k+1 n+l _ k415 n+1)
+ 2( Y5-1 ) P iar Yj Yj-
= 7
k+1 k d (H.3)
+2( +lgn+l _ +15n+1) ( +ignt+l _ k+1~n+1)
J J-1 aan+l J Zj-1

5
P an+l

1 2
e (1)),
8kT;’_"'%l{]"% +E- 1A, 1

J=z 72
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Next, using Equation (3.69) with Equation (H.3), this yields

n+1 __ k+1zn41 _ k41lzn+l
Bi7) _2( ] 1—1)

0 5 -1 1 P -2 At n kipn4 kA
6’°T”+1{[ — 2z} T8 Tt - Ty +Sn Tn +Tn)]
1 At? .
- [—:II 2$n:11 + 22:]_12 + ___2__( 1,1 an + Sn ) an +Tn )]}

+ 2( k+1- n+1 k+1y;z;l-11)

- =1 4 Lneo n ki on kpn4l | 14
-[- -2+ +A—t(U" sty o e )}

+ 2( k+12;z+1 k+12]n+11)

0 5 0L e AR st s Eamgl | A
{[2 2 =27 4 527+ (O] PO 4+ BT +Q7)]

aan+1 J J v
1 g At .
- [2 -1~ 22?_11"'52?—12‘*'—2"(0"‘ an+1+Pn Ty +Q1 1)]}
5 [y kT2
SN § BT S i 1 (H.A4)
RT3 E. 1A
i-% =373

Carrying out the differentiation indicated in Equation (H.4) yields

B;j; =At2{(k+1§'}+1 _ k+15:1_ni—11)(§1; _ ]‘{?—1)

k
+ ( k+1y;t+l +ly;zi-1)( _1)

+ ( k+l£,;t+1 k+1s n+1)(Pn . ?_1)} (H5)

212 kpnil

- % (1+ i-3 )

The derivative A"+1 has almost the same form as Equation (H.4), except that the
explicit derlvatlves are now taken with respect to ¥7 T" , rather than with respect
7

to T”'*'1 Hence
-3

1 2 k+1~ 1
An+ —At {( + :v;-’“ k41 n+1) " 1+(k+l ~n4l _ k+1y;1:l— )an_l

7
(H.6)
+ (k“z}”'l k+14 n+1 }
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Similarily the derivative C’]"j'%l is obtained from Equation (H.4) by replacing the

explicit derivatives with respect to T;’j’; by kj}?_:’;, to yield

C;zj-%l — Atz{(k+1§?+l _ k+15:;zj-ll)R;_z + (k+1:ar}+1 _ k+1?7;zj-ll)UJn

H.7)
k+1~n+1 k+1xn4+1\An (
+ ( Zj - zj—l )0] }
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VN Stability for Mooring Line Dynamics

In this appendix the important details in establishing that the VN stability
condition is satisfied when the Houbolt scheme is applied to the problem of mooring
line dynamics are presented. To simplify the algebraic manipulation, the proof
is only established for the 2D form of the equations of motion. The derivation
is further simplified by neglecting terms related to added mass, tangential fluid
drag and line attachements. Despite these assumptions the amount of algebraic
manipulation is considerable and therefore only the principle points in the solution

are indicated.

The 2D form of the equations of motion are given in Equations (4.1a) and
(4.1b) which, under the assumption that terms related to the added mass are

neglected, are written as
M;i; = [Tcos'y] =] +F,, (L.1)

and
M;z; = [Tsm'y] =1 +F,J W;. (1.2)

The constraint equation, as expressed in Equation (3.72), is also required. The 2D

form of this is

2 2 TJ+7
constant = (z;41 — ;)" + (yj41 — ¥;)° — |, [1 + == TA ] (1.3)

The drag terms Fy; and F;; in Equations (I.1) and (I.2) are derived from con-
sideration of the 2D form of the transformation matrix [Q2], which is derived in
Appendix A. The 2D form is obtained by setting € = 0 and ignoring all the terms
related to the global y direction, so that

[ = ( o Sin7). (L.4)

—siny cosvy

The relationship between the global and local fluid loads on element j+}, for ex-

ample, is then
(Fz) 3 (cos'y -—sin'y) (Ft) (L5)
F, i+ siny  cos”y i+d F, j+§.
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With Fpj = 3(F, G+ T Fy 1)) and F; = %(Fz(Hé) + Fz(j_%)), the following

are derived
1
Fpj= ( n(j+%) s1n7]+1 + Fy - 7)sm V-4 ) (16)

and

F,; = —(F 1ycos 7,1+ n(j_%)cos'yj_%) (L7)

with the assumption that the tangential fluid drag force, Fy, is negligible. Therefore
the expanded forms of Equations (I.1) and (I1.2) are

M;z; = i+) cos"yj_*_%—Tj__%7 €oSY;_1

1 (1.8)
( n(j+1) s1n7]+1 +F(J -1 Sln71 1)

and

M;z; = TH_% s1n'yj+%—-Tj_% sin7;_1

1 (19)

From basic trigonometry it will be seen that Equation (I.3) can be re-expressed in

the following equivalent form

2T,

2 .2 J+7 Tj+§
0 = cos Vj+g Hin" g - 1+ + EAYl (1.10)

Equations (1.8), (1.9) and (1.10) form the starting set of equations for this deriva-
tion. The ‘variational’ forms of these equations are now derived. This is done by
assuming that each variable has an associated error, for example the error in the
tension T i+} is denoted by 6T, 44 SO that the total tension term is now expressed
as T, i+} + 6T +1 Similarily the total acceleration and angle terms are denoted by
U + 5U and cosy; +3t dcosy i+l respectively. By subtracting the original form
of the equations, the variational forms are derived and are given by

M;éz; = J._|_1¢5cos‘;'j_}_1¢5T+1 €08 741 -—’.T‘J-_%&cos'yj_%5Tj_% cos Y;_1

[6F (G+3 )s1n7]+1 t FagapSsinyjpy + 85y HSinY-3 (L11)

Fn(j_%)ésinﬂyj_%]
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M;éz; =Tj+%6sin7j+15T +1 s1n7]+1 - 1}_%6sinfyj_%6Tj_% sin'yj_%

1
_5[6Fn(j+%)cos7j+%+Fn(j+%)6cos7j+%+6 n(i-$) 0871 (L12)

+F( )60037] 7]

. . 20T5031. Tiy
0 =26cos7j+%cos7j+% +25sm'7j_‘_,17sm"yj_'_,iF ~~FHaA [1 ~EA ]

In this it is assumed that only errors of first order are significant, that is terms

such as 6Tj +} 6 cos i+ are considered negligible. The normal drag component

(L13)

F Gi+3) is represented by

n

or,
Foisp) = 2PC i+% J+vfsl J+§|TJ+§’ (L15)
The variational form of this is derived from Equation (I.14), so that
§Fyis1y = pCd; 44 ]+§|r]+§|6 i+) (1.16)
The normal velocity component # i+} is derived from [Q]sp and is
Pipd = —Ej4p 8074y +E g cos Y (L.17)

The velocity in the global z direction is also considered to include the effects of

ocean currents, therefore

. 1r,. .

T4y =5 [($j+1 = Ca(j41)) + (25 = ij)]
and hence Equation (1.17) becomes

. 1
Fisd =75 (Zj41 — Cj41)) + (&5 — C’z,)] s1n'y]+1 + % 5ivd s1n'yl+1 (I.18)

and the variational form is
. 1r .. . ;
5rj+% =-3 [(5mj+1_6cz(j+1)) + (625 — 5011')] SIDY;43
1r,. ) .
-3 [(xj+1 = Cyis) + (25 — Czj)]53m Vi+}

+6zJ+1 €08 Y;4 1 +z %j41 08741

(L.19)
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Additionally, the variational forms of the velocity and acceleration forms (Equa-
tions (3.46) and (3.45) respectively) of the Houbolt scheme are needed. These are,

simply,
« n41 1 n e _
5 = (At)z{zagg+l—5agj+4auj L syt (1.20)
and
ontl 1 - -
U7 = st - sy + 0y sz} (121)

The variational forms of the cosine and sine terms are represented in terms of nodal

displacements, to yield
Saji1 — 8z (1.22)

1

6cos7j+% =
J+3

and

6Sin7j+% = 62]—';1:1—:521- (1.23)
1+3
Substitution of Equations (I.15) to (I.23) into the variational Equations (I.11),
(I1.12) and (1.13) and, following some manipulation, it will be seen that the varia-
tional terms in these three equations are only éz, §z and 6T, with the appropriate

subscripts. The error terms are assumed to have the following form
éz; = a.exp(ifj + anAt)

6z; = b.exp(iBj + anlt) (1.24)
6T; = c.exp(1Bj + anAt).

It is to noted that there will be terms of the form exp(:3;) and exp(anAt) which
are common to all terms and therefore cancel. After some further considerable
algebraic manipulation, the terms may be grouped as coefficients of a, b and ¢, to

yield the following matrix representation of the three equations

F —Asiny D+ Bsiny Hcosy a
—D+ Acosy F—Bcosy Hsinvy b|=0 (1.25)
G cosy Gsinvy I c
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where
A= ”C‘ZDW {2 2sin f — ’;Z‘:u +cos B)(11) — 18 + 9A~1 — 2/\‘2)}
B= @{Qi(i —C,)sinf— l;"Ast”’u +cos B)(11A — 18 + 921 — 2/\‘2)}
D =:iD,sinp
F = ( ilt ; (20 =5 + 4271 — A7%) 4 4T'sin’ (g) (1.26)

H = 2isin (g)
(@ @)

G=- <cosﬂ+zs1nﬂ—1)

During the manipulation the variational equations, given by Equations (I1.11),
(I.12) and (L.13), into the matrix form of Equation (I.25), several assumptions

and simplifications have been made. These are:

1.

All coefficients of the variational quantities are assumed to be constant over a
small area of the space-time region. This means that terms suchas T}, } 6 cosy;y 1=
Tj_%é c0sY;_1 for example, becomes T'(6 cos Tiry ~ 6 cos 71-_%).
The following are employed

A = exp(aAt)

exp(iB) = cos B+ isin B

exp(—if) = cos f —isin f.

The subscripts have been omitted for clarity and ease of presentation.

Equation (1.25) is more succinctly expressed as

[P][a] =0 (1.27)

and it will be seen from the definitions of the coefficients given in Equation (1.26)
that the P33 element is the only term which includes the elasticity of the mooring

line. For an inelastic line, the constraint equation expressed by Equation (I.3)

becomes

2
ey = (@inn = 2)" + (241 — 7))’
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or,

1 = cos? Yipy FSinyg (1.28)

Following the usual procedure, the variational form of Equation (I.28) is
0=6cos—yj+%cos'yj+%+6sin’yj+%sin7j+%. (1.29)

When the solutions for the error terms given by the relationships in Equation (1.24)
are substituted in Equation (I.29), it is seen that the coefficient of ¢ will be zero

since there is no tension term present. Hence P33 = 0 for an inelastic mooring line.

The stability of the set of equations expressed in Equation (I.27) is examined
by calculating the roots of the characteristic equation (or determinant) of the

coefficient matrix [P]. For a non-trivial solution it is required that
|P| = 0. (1.30)

The complexity of the resulting characteristic equation is governed by whether
the case of an inelastic or elastic mooring line is considered. The characteristic
equation for the inelastic case is a 3" order polynomial in A, whilst for the elastic
case the characteristic equation is 6% order polynomial in A. The initial expansion

for the determinant in Equation (1.30), for an elastic mooring line, is given by

. F — Bcosy Hsiny . ~D + Acosy HSin‘Y)
F-A -(D+B
( s1n7)( Gsinvy I > D+ s1n'y)( G cosvy I
-D+ A F-B
+(Hcos7)< T Acosy .0087 =
G cosy Gsinvy

(1.31)
Making the substitutions given by the relationships in Equation (1.26) and fol-

lowing some extensive manipulation, the coefficients of the powers of A can be
determined. These coefficients are further arranged into their real and imaginary
parts. From this it transpires that the greatest power of A is 6; because of this,
a general analytic solution cannot be used to obtain the roots of the polynomial
and consequently a numerical solution technique developed by NAG was used. The
routine selected was CO2ADF; the theory is described in Grant and Hitchins(1971)
but briefly, the method determines one root at a time and then divides this out
from the polynomial using the technique of ‘composite deflation’ to minimise the

€rrors.
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Derivation of Amplification Matrices

Here the Finite Difference schemes are applied to the uncoupled scalar form of
the Equations of Motion as derived in Chapter 4. For this purpose it is assumed

that the equations are lightly damped and that there is no forcing function, i.e.

U+2ptU +p*U =0. (J.1)

Central Difference Scheme

By application of the CD equations as given by Equations (3.43) and (3.44) of
Chapter 3, a matrix recursion expression of the following form is obtained

() £

and the resulting amplification matrix is defined by

2-p’At?  Ap-1
(A) = ( 1+?tfp 1+8t€1’) . (3.3)

Houbolt Scheme

Application of the equations for the Houbolt scheme, as given in Equations
(3.45) and (3.46) in Chapter 3, to Equation (J.1), yields a recurrence form thus

Qn-{-l Qn
U | =)yt (J.4)
Qn-l Q'n—Z

and the resulting amplification matrix is given by

(artsz +6K) = (a7 +35) (g +%)
1 0 0

(4)= (3.5)
0 1 0
where ) 11¢ 1
A= (At2p2+3mp+1) . (1.6)
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Wilson-8 Scheme

By applying the equations of the Wilson-6 scheme, as given by Equations (3.47)
and (3.48) of Chapter 3, a recursion equation of the following form is required

« n+6A¢t . 0
!-in+9At gn
U =(A)| U (3.7)
U'n+0At Qn
hence
(1-os—5~)  —42s+05) ()
(A)=| a-2-2_24) (-x-%) -G&)| @)
ARG - - ) A-5-%) (1-9)
where . ¢ 1
ﬂ:(pwﬁwpﬂ) . (J.9)

Newmark Scheme

By applying the equations of the Newmark Scheme, as given by Equations
(3.49) and (3.50) in Chapter 3, to Equation (J.1), a recurrence equation of the

following form is derived

Qn+1 I--ln
Ut = a) | U (3.10)
Qn+l Qn

and the resulting amplification matrix is
—(2x(1 = &) + (3 — @)
(A)=| At(1—6—2ké(1 - 6) - Bé(3 — a))
A3 (3 — o — 20k(1 - 8) - af(3 - o)
E+d) (&)
(1-2x6—-88)  —(£) (J.11)
At(l = 2ka—af) (1-ap)

where

1 266 -1
A= (At2 2+A£t o). (J.12)

The expression for & is the same for all the matrices and is given by

k= I-i% (3.13)
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Figure 2.1 — Geometry For A Catenary Element
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Figure 2.7 — Definition Nodes, Elements and Orientation in 3D
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Figure 6.26 — Central Difference Scheme Tension Troughs For A = 10.
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Figure 6.27 — Central Difference Scheme Tension Peaks For h = 15.
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Figure 6.28 — Central Difference Scheme Tension Troughs For h = 15.
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Figure 6.30 — Central Difference Scheme Tension Troughs For h
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Figure 6.32 — Central Difference Scheme Tension Troughs For A = 25.
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Figure 6.34 — Central Difference Scheme Tension Troughs For A
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Figure 6.42 — Wilson Scheme Tension Troughs For h = 25.
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as

i
s s o = -
B
3 e e = S S
i ndnd Y htinae o
—— .lo.+ -
u o Soay, “re - .
N

Ay

N . |

" 3 !
.\\.\1\‘3-.\ li\c\\ﬁ\ .\.._ pede=1" »

-
e oied LS K S -
— yo—
e = % —
- - L - 'Av."'.l n
T
- o)
-

ey §

a3l el g

T el i S ey
- P > P e m

- -
’ -~ \..\.‘.\..
A A\
S - e f.. .m
T - - ..
~allo - e, N
Ml - - . -t .
= -

.10*

.
. -
. —
]
=
9)]
wn
-
=
Y]
St
¥
—Ee e ~ &
X T . - —
-
A 2
e
r ~
Tes Tewv lll.l'.l'll.l..',.l. u m | 9
1 vl s SR L o
- == L pomae==— - -l 3 N S
~\ ’ P .\.v\..l -
A N \ § 1] <
N NS .. { m -~ E
[.l- Yo" koo -~ ”.” L 4.7..:’:..' | m T a
B !n!-!v%ll!r S Q
i, TP i e =]
-l S pue - - -
- b = - - |-
- ~ S S e ”
ix ¥ o g
e
B i e S g s i I
“uml\. e T —_— o e ol e P Sy
-1 ’ f\.\ o - 2 = —ee B L Sy e SO
A r - — —— e -t 1
/I.In- Shao S r;.l. P) g [ NN, -l.n/ Stee L ST —— -
f-hh.l - ~—r ~——), - N Aot F~d 3\ T
—r el - . e —— \\ o= T -4 )|
Fetcadaan = ”.’ —— . e .-o.lI-\;\ovj - ed==1" —d
- 'Dltl"l'."l - — beonenpees=] o l'\t\.r.n - ‘\kw‘.‘x‘\
lllll g Sy o = — |
'3 S I WO L R By, oo m
ONTO® Ol TTTTTI20 00 x»
t 833688« [-rmdm=="T"""} N EL ot
— riianes RERRR RN =l ™ e el s o Qy+eaqq
- . Soa b DR et
7 T & EBER | - © e TTmnpg 83338
P | E— -
/o fl AN MRMM f o ()] = 2 !T:-o: L - “-
izl -~ S - . 1 e “ 3 28 .
-l & S @ .. - 7. .~ \ ~
ilhnluhh. i S = g Y & B ]
e I N - 20 B il IR e, A ﬂ 5 i
B v i s o e .1-| 88488 P
RN -2 e L ez 22> hedrdel !
. - - R s s e ..
’ ! —— T . - % s iyt NS . _ . | _ _ m
g & 3 3 - P _
i 83 % 3 SR B L R R s L s
N ~ R - a
gt £ F 828R RE e 85 8 3
- -

(N) uoisua oiwiouAg . :
' (N) uoisua) owouAg

Simulation Time (secs)

Figure 6.130 — Newmark Troughs for Different SSB Radii.



=103

0.30
]
025 T Fteolt Schwrre
T ecesse mw
/y? ] ~ = = Wilson Schame
8 7] — - - Newnark Scherme
v 0.20
® g
B . 4
- -I;
80.15:,§_._ﬁ _____ S e e S S
= 5 | ST OSUOTNN UOUNUOUTINS [USOTTUos AOURUSUNON FURPRENS NANSSTUUON SOTPUOOTSY U S
o g A ST I S— ]
= 0.10
e 1
2 1
0.05 q"v _________________________________
1L\‘ ---------------------------
Oooo N L) T T T 1 LI . 5 : S= = il T ; — W T p g 4 e g T ) SR T T T 5 T Ll L B LN 7 LN I
0 1 2 3 4 5 6 7 8 g 10

% Element Error

Figure 6.131 — CPU; vs. % Convergence Limit For Elements.

«10°
10.4
10.2
-
Z 10.0
7] |
S
L 98]
= i
‘m 9.6
[ 1
@ =
e
%= 9.41
S ]
L 924
9.0
T ===
8.8 v 17 17 T 11T T ¥ L =i =l B £ . T L R S S A 2 HEE . D SR R A L e T G ) T
0 1 2 3 4 5 6 7 8 9 10

Figure 6.132 — T, vs. % Convergence Limit For Elements.



+«10°

N)

Mean of Tension Troughs

2.1
] | ——
. | "]

20 n T .
n Houbolt Scheme t P +

1.9 i1 | CD Scheme e =

A — - - Newmnark Scheme |-

4 et
B ~P./
=3 - -

18 .

N
¥

Lifl
\
-

[ S
-

-

-

I 5 |
/l
H
|
]
1
1
i
i
1
)
|
I
H
U
’

o
o

Lot )

o

-
>
1111 1111

o
@]

T T T T L T | LAELBR S LN Ty LI T T T LIRS B LjE G i |

3 4 5 6 7 8 9 10
% Blement Error

(o}
-
N

Figure 6.133 — T; vs. % Convergence Limit For Elements.

=10°
6.0 T
- { R
-~
4 /_/
. —— Houbolt Scherme 1
S8+41+—m+1--- CD Schems - -
] — == Wison Schems L
— i == Newmnark Scheme /_,
\2_/ - /,/‘
n 5.6 e
e g .
.S ] 17
2 -1 ,_/'
’_;_o ] L~
5.4 -
s L
5 ] y
{7} N s
g
= 50
.
5.0
LR L AL L O | LI B B | LN A e LI A A L LA L (NE U AR § mrrT LA B A | T
o 1 2 3 4 5 6 7 8 9 10

Figure 6.134 — Tm vs. % Convergence Limit For Elements.



N et 11‘ﬁ

H3SIH 20 dOL LY NOISN3L JAILO3 443

ﬁ

(S) AWIL

00°952 0o0°vee 00°261 00 09T 00°8¢CT 00°96 00°99 00°2¢ 0°0
L L N | ! i 1 i | 1 1 1 1 | nlcu
i : ] i | =
w

N

o

s

(=]

N

(€ ]

o

o

o

wm

p=

b

o

o

w

B

o

o

A g -
)

N

S

=3

o

Q.Q.NZO_WEN>
ge-WOIX3d

SISATVNY DINVNAQ Q-€ - 13AON LNIN3T3 06 - H3SIY AHYNILYD FTONIS

(8)

NOISNAL °*O3J4F ¢ HEAON W01 06 WIATH

Figure 7.0 - FLEXCOM-3D (90E), McNamara(1993)



1.0 3 )
: { |
. | IO v ner R F 1
0.5 / ﬁ?
0.0 S SRR -
8 - "'r' g {
& o %
S -05- 1
a ] |
32 y |
j / 1 — ===~ X differemce in overall means
-1.5 /
-210 | T T T T T T T T T T ' T T T T T T T T T T T T T T T T T
0.02 0.05 0.08 0.11 0.14 0.17 0.2
Time Step (secs.)
Figure 7.1 — % Differences in T,,, T; and T}, for 2D and 3D vs. At.
*10?
1.6
LSt
E T xanemmmow.] | e
. B i -l R T e
]
2 ]
5 1.3
K 1
S 1.2
13 i
1.1
o.g " T T 1 T ¥ T T T L) |} ¥  § T T T T v L] T T T T T T T T T : | T
0.02 0.05 0.08 0.11 0.14 0.17 0.2

Time Step (secs.)

Figure 7.2 — % Differences in CPU; and CPU; for 2D and 3D vs. At.



Maximum At (secs.)

% Difference in Tension

0.7

o
o

G

|

o
>

|

LA 1 1

.

e w

k]

TYTTT T Y

7

(4]

TTYrroYy

TYrTTrTTY

9 11

TrTTrTrTT

TTrTrTTYY

13 15

TTTrrrTY

17

TYTTTrrY

TTrTryrTrTY

21

7

19

Armplitude of Excitation

TTrTYY

23

Figure 7.3 — Max. At vs. Excitation Amplitude for 3D Model.

™rrrrT

25

4.0 ;
3.0 Difterence in Mean of Peaks ‘ I,L

i I IR Difference in Mean of Troughs /

- .= Diftference in Overall Mean

] 3 /
2.0 T

- //\
1.0 7

- \//
0.0~ I Y—-—"' _ >’\\ .....

-1.0 G S S T T T T —r—
0.0 0.5 1.0 1.5 2.0 2.5

Normal Drag Coefficient

3.0

Figure 7.4 — Ty, T; and T, with and Without Tang. Drag vs. Cd,,.




*10°*

'L‘\ —
R

.,

e d

(N) voisua) oiwouAg

145

140

Figure 7.5 — Tension Peaks With Different Drag Coefficients.

- )
e — ——reziis .\.
..................... I So'o.!ltc‘o‘fj
B e oo
/ iy l.-l.lrll.t.h.
- o - ) °
\ I ..
J— A
Aaname A"
iiiiiiii —
f ..afl- . . B m
R ._,T.u........!... - §
e i |
/ o ™, j] m
\.. 7 ” T
..... foe |
\ iy e
3““ pnsavervend m
......... o .
st S Y O e
.............
. S Rt fanan SN —
/ T, l.lu.u.m.s
b\-. . i n
\ | es3saseeee ‘nhnl.....i. 4 p— m ‘
> saassss “
arn - - -
s a—— gdard
— c?otoo-c:"-
.......... v.n..:...!...o. lu.'col‘nll ?o; u “ m
)., Bt
N ~~ 333
- -
/ —F Vg
‘Il‘.\.l‘x\‘-i’ull-qln — iy
= :
)

8 8 g 2

(N) uoisua] 2iwouAq

Figure 7.6 — Tension Troughs With Different Drag Coefficients.



0.6

0.5

0.4
{
S
§ 0.3
<
} 02
&
g;—-’ 0.1
2
0.0
-0.1
0.2
«10°
12.0
10.0
= 80
=
S
£ 6.0
—
L0
E 40
=
>
o
20
0.0

1 v
= L
] ——— Difiersnce in MeanofPeaks | | | 7

RS Difference in Mean of Troughs e

1 .= Difference in Overall Mean //
. 7
-~ Ed
. ,.f’;
. g
] 7
o /]
. i
4 /
i Y -

v ey f"'_ -
e i \ -
: — ]

e, - P—

B \\_—\

T T T T i R T T T Al T T v T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5

Normal Added Mass Coefficient

Figure 7.7 — T, T, and T; with and Without Cay vs. Ca,

Tersion Pedks I
Tension Troughs

75

100

X of Reference Diamneter

Figure 7.8 — T, and T; vs. % of Reference Diameter.




*10*

14.0 0.5
7
I +
120 1% — -0.45
i “\ / Tension Peaks
2 10.0 R [0 [ B Tension Troughs -0.4
= i ‘\/ — — Max. ﬂ —
g 80 : §
K :/‘.“ —0.35 5
£ 6.0 B 3
© g [}
5. y ] 0.3
(=) g \ X
4.0 T
Z\ | o A -0.25
2.0 ] *\M
: .................................................................................................
o-o T 7T Ll T R Al T T T ) R IS : i S SR ) ' T T 1T T ]’ T T T T v Al T v L T 0-2
9 1 13 15 17 19 21 23 25
The Exponent of Youngs Modulus
Figure 7.9 — T}, T; and Max. At vs. the Exponent of E.
=10°*
8.0
7.0 f /
: ——— Mean of Tension Pedks i A
6.0 . Mean of Tersion Troughs T /
= ] '
S 50 3
7 it
5 40" | —
40977/ 1 | &« 1 1.
23.0 . ZofR N v
| ; // ............... : ik
2.0
- :,/ ..........
o.o-..'vvxv T i ; | aN man S | T rs T™rrey Ty \ Ghch b EEE o o m i R
1 2 3 4 5 6 7 8 9 10

Multiple of Weight / m.

Figure 7.10 — T,, and T; vs. the Multiple of Weight/m.



DTA

DTA

3.0

2.5

2.0

1.5

1.0

1 .'
Amp. -
e = ;
Oom -
....... e - "
———- - i |
- = - == =T
-
- - - o .
- @ =
PP
- ® |
: o = |
| -
| - o
- -
-4 -~ -
" - ) N » « e+ — ¢
: ] ——T
' —
‘ —
: . o -
) g
- ! —
:‘ B v T
f" .‘ = _—-—.----_-- g
I | _——_-’ -—"--—- ,_--—
’ ‘ Lowem" I
e
: 4 s |
e ; s |
= 4" l
— i e R TR TP SRS
: A T ol
- e
- ,-/ ........... |
- ol (S
| ~ S L
:
T e
4+ e
T T T L T T LA R A A S R U L S o

0.

9 : K

2 1

Frequency of Excitation (rads/s)

.5

1.8

Figure 7.11 — Peak DTAs vs. Frequency of Endpoint Excitation.

1.0

0.8

0.6

0.4

0.2

0.0

. l
L
B ’ — Amp = 2m !
T Amp. = 4m \
: . 1 -~=- Amp = 6m A
] \\ —— AMP. = BM | \.
N —— AMP. = 10m Y
«L \. T N
9 N { \\
- \ S o ey, / \
» s e S BT / Y
1 N T . S T A e, e
o “h~ T L ILTTTEPRIIDPPPPY SUTPILLLLY
. . |
- \\ TNl ’
= 4

e \ Seeel | ’;
- \ R R '/
. S 0

~. v

~. ;
: ~ T —
3 N i —
; e ! -
] T—— f s —— ..—', A
: \
T T T T T T T T T -ﬁ‘ -Kii P EE—— w— w—— - S S B e

0.9

Frequency of Excitation (rads/s)

1.8

Figure 7.12 — Trough DTAs vs. Frequency of Endpoint Excitation.



DTA

DTA

2.1 ]

|

— Pre-tension = 416085N

Pre-tonsion = 40533 7N

B -wee- Pro-tonsion = 7 JOOSN

1.1 T Al T

T T T T

Y

0.9

T 7 T v T

|
|
|
|
I

1.1

1.3
Frequency of Excitation (rads/s)

T

T

T

Figure 7.13 — Peak DTAs for Different 7, vs. w.

0.9
0.8 {
; \ ——— Pre-wnsion = 47 BO85N
Q7T ] e Pre-wnsion = 4@5337N
4\ — ==+ Pre-mnson « 7« 7005N
0.63 \
6 \ N
0.5 ~ \
: \ \
0.4 —
5 s \u. \
0.3 g T
; o 8 \ ————————— ‘
02— e e R
] s S .S I --\~g."—\ e
o-o 1 T L 2 T T T B T T L ¥ T T T L T i T E Al T T R i
0.3 0.6 0.9 1.2 1.5

Frequency of Excitation (rads/s)

Figure 7.14 — Trough DTAs for Different T, vs. w.




DTA Values for Surge

DTA Values for Sway

2.0
1.5
Peak DTA for T, = 423670
N N A (A e Peak DTA for T, = 500048
-~=- Peak DTA for T, = 828752
1.0 —-— Yrough DTA for T, = 423670
4 - = = Trough DTA for T, = 500048
<4~ —--- Trough DTA for T, = 828752
T \\\ ) :
i -~ - \,\.\ i
~. - ,
0.5 - S ;
. e >~ ‘
.~ ~ |
oo, . g
_F -~ - - - {0 e, . - i . — . __l’_. e e — -
- T [ EEE e iyt B
o-o T T T £ ] T T ;. ! e T ! L T T Rl AJ T T ' T T T T
0.3 0.6 0.9 1.2 1.5 1.8
Endpoint Excitation Frequency (rads/s)
Figure 7.15 — Peak and Trough DTAs for Surge vs. w.
1.20 ]
B ——— Peak DTA for T, = 423670
1.157 cenes Poak DTA for T, = 500048
2 ~==- Peak DTA for T, = 828752
B ——-=— Trough DTA for T, = 423670
1,10 ~= = Trough DTA for T, = 500048
° - —— e+ Trough DTA for T, = 828752
.
1051 =
R e
1.00-] =
:
0.95 — | .
] |
0.90-] ' !
o .
g v
0.85
3
o.w ] T v T T T LA B | T T T ¥ 2 5 & | T T 2 T T T T
0.3 0.6 0.9 1.2 1.5 1.8

Endpoint Excitation Frequency (rads/s)

Figure 7.16 — Peak and Trough DTAs for Sway vs. w.



DTA Values for Heave

DTA Values for Axial Motion

4.0

I

L1 4

3.0

—— Poak DTA for T, = 423670

Peak DTA for T, = 500048

—=-- Peak DTA for T, = 828752
— = Trough DTA for T, = 423670
—= = Trough DTA for T, = 500048
Trough DTA for T, = 828752

g}

20

-4

.

4.

~.
P~ ~
o
S o
- ~. s e — — — s
I O D P bt AR
0.0 Tee ~N
- e, - e
] ‘\"i.‘~ _ J
~. b, - o e ————
'\‘- - —— e- e - - -
1 [~. p—
-— . —
t— p——
- —— - —
e+ ¢ e+ © o ¢ S+

-1.0 T T T T L AR i T T T T 1 v T v 7T AR SN N T

0.

9

Endpoint Excitation Frequency (rads/s)

Figure 7.17 — Peak and Trough DTAs for Heave vs. w.

4.0
.

3.0 /
i -
- |

2.0 e f——casamgszIIs =
-------- » f
-/ ——— Peak DTA for T, = 423670 |
4 | e Peak DTA for T, = 500048
. — ==~ Peak DTA for T, = 828752

1.0 — = Trough DTA for T, = 423670
B -= = Trough DTA for T, = 500048
I~ ==+ Trough DTA for T, = 828752

~ o~

= i N ™

0.0 i g,q~\:_ _______________ — e —, ‘.__~_..._._:-‘—\ ..............
B . ~e o SSie o ..
. [~ - o \'\.\ = P ™ o
B ST - o ~~ s>,

1.0 it~ L2 S LI LT3 o N (Y ~-

-2_0 T 1T ™% T T et Jaces ok Eac | S e RACRT dC o | s aama amas mme o

0.

9 1.2

Endpoint Excitation Frequency (rads/s)

Figure 7.18 — Peak and Trough DTAs for Axial Motion vs. w.



*10°
10.0

8.0

6.0

4.0

Water Depth (m)

2.0

0.0

'102
10.0

8.0

6.0

4.0

Water Depth (m)

2.0

0.0

1500

: — Geometry at Equiibnum
........ QGeometry at +10C amplitude
: --== Geometry at Equilbnum
: - Geometry at -100% amplitude
] o
B ‘_b‘: ),
(o} 600 900 1200
Radial Position (m)
Figure 7.19 — Cable Geometry for One Surge Cycle.
: — Geometry at Equdibrium
........ Geometry at +100% amplitude
N ---~ Geometry at Equibrium
- — e GeOometry at -100% ampliuce
]
0 300 600 900 1200

Radial Position (m)

Figure 7.20 — Cable Geometry for One Heave Cycle.

1500



«10*

10.0 7
: ‘ .5“/,1...
1 _e:o
] —— Ceametry ot o
801—1 - Gsometry ot +100X avplitude
3 - - - Geometry ot >
] — - Csormetry ot —100% orplituds
E 3
® 6.0
g :
S .
S 3
S 407
>
2.0
O.o = L) Ll Ll ) & b 4 A A T T § 1. T 17 7T vV ¥V U Ll v Al Al T Bl A v Rl v v
(0] 200 400 600 800 1000
X Coordinate (m)
Figure 7.21 — Cable Geometry for One Sway Cycle.
=10°
3.0
E ,;"'; /\ —— Dynomic tersion for muge
20 S Dynamic tersion for heave
— ] r ’ = == Dynamic tersion for sway
= 1/ \,
& 737
2 V
= 1.0
2l | Wl
S ] :\\ ' LF 7
e . W\ I/~
0.0 '\\\V
. /
—0.5]
—1.0 . T T v L B T T T T T T L] Y g ; T | Y L
150 160 170 180 190 200

Simuation Time (secs.)

Figure 7.22 — Tensions for Surge, Sway and Heave for One Cycle.



=10°

Excursion (m)

*

)

Excursion (m

1.45

AR

.-A
>
(]

SR IR

2

ek
>
N

N

o
£
-

\

o
>

1.39

3 S O SO

2 1S IS0 T I G N S SIS Y L 1l Lol A L g L. 21 12 ¢

1.38

10°
1.006

1.002

T T T T

100

150 200 250 300

Simulation Time

50

o

Figure 7.23 — Low Frequency (LF) Surge Only.

Figure 7.24 — High Frequency (HF) Heave Only.



sl

Dynamic Tension (N)

ol

100

=«10°

Dynamic Tension (N)

16.0

11.0

6.0

3
(o) 100 150 200 250
Simulation Time
Figure 7.25 — Tension History For HF Heave Only.
] | Hﬂ
) [ | n 1
M | U
o 100 150 200 250

Figure 7.26 — Tension History For LF Surge and HF Heave.



16.0-
z 1 |
IR 1 VT Y
-g“;” U | U U
1.0
z I !
—4.0;17 o 100 150 ‘200' ”250””

*

-h
oo
(o}

Dynamic Tension (N)
o o) b i
o b o) tn

:

-1.0

Figure 7.27 — Tension History For LF Sway and HF Heave.

:

] n il

5 | ﬂ i
(s) 100 150 200 250

Simulation Time (secs.)

Figure 7.28 — Tension History For LF and HF Heave.



Peok and Trough DTA’s

Peak and Trough DTA’s

5

b

N
o

o

&
(o]

2]
tn

o
o

;

0.5

e
°

;

= -
-y -\
1] —— Peck DTA% for w=2w/6 ———
1 |- Trough OTA%s for m’.
h - - Pack DTA% for w=2w/20
. — -« Trough OTA% for w=2n/20 | |_____
B -= -Podk DTAS for w=2w /100 | | " =w=e-ea. . _
F-7] — Trough DTA% for w=2n/100 [ | | T TTmmsdeeeea o]
:-_ S e o= = - - ® o e i S U S o
B R - e v S 0 T —
)
s [UUUPTTRUURON SSSRPIFIITIIIIIE SERNUN (NN SRR PTEL TEELIL LIt itl RRAAARAAAATIES
1
4 6 8 10 12 14 16
Nodd Position For SSB

Figure 7.29 — DTAs vs. w With a SSB at New Positions.
] | o
1 | —— Peak DTA’s for +ve in—plane cusrent
ki Trough DTA’s for +ve in—plone asrent //—
o - == Peck DTA’s far —ve in—plone asvent
3 | —-- Trough DTA’s for —ve In—plane current /
1 | -~ - Peak DTA,’s for +ve in—plane curent >
4 | —-- Trough DTA,”s for tve in—plane curent / T -
5 __--—""‘
4 |oae=--"
4 e

i
] S0 b
5 4" ................
] "’"'/-
- "."
: ‘,/‘/
i S —
. ~E
=
.
-—1.0 Y T T Y T i G 5 Ll Ll Y T T s Ea 2 T T ry T 2 J 2 3 Y . . §

-3 -2 -1 0 1 2 3

In—plane Current Velocity (m/secs.)

Figure 7.30 — DTAs vs. Different In-plane Current Velocities.



1.9

1.85

8

=

S 18

=

(]

<

g'1.75

=

g

8 47

>

a.
1.65
1.6
3.0
2.5

g 2.0

&

=15

[++]

E

-

>

S 1.0

a.
0.5
0.0

N l
] /\ Peoak DTA vaives
i weeeos Trough DTA valves * §
; | |
3 \ 1 !
z X o
RS e Sresuy e e

] / U P | |
- / \ ,.,..-"T |

7 \\ e 'i
] |
N/ |
. \Y 1 I
4 !
B !
i |

T 7 T T LA T T R 7 T : § T T T Al T T 1 T T T T ] Al T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
In-plane Wave Frequency (rads/s)
Figure 7.31 — DTAs vs. Wave Frequency.

g
i
- \\
: \
0.3 0.6 0.9 1.2 1.5 1.8

Excitation Frequemncy (rads/s)

Figure 7.32 — Peak Time Lags vs. w.



1 o
—— | »
i ——— -
wi -
......... R U R e i
iy
1B B— B
!
F ......... 5 St Pessnr e ses g, i
s o [ ST N
T —— - )
il 8 N
e B L MU S
) i i
T
Rt et T ganbal TTEN. I
) e S b
= S T I |

e @ @ 9 9 9 o9
@ N ¢ O < M o
$81J0}SIH juodpul % uoisua|

9.0

+«10°

T
L
e
- — P15t e st ettt o s, |
................ i S
r.l.ll’, Ty
[ st |
= b | 2= e
—— w M P—— i e
el - h j
i R I e o ——
IIIIIIIIII atal L L e
_—
[ ’.rl’l’.ld ........
el
A - s U N r
: e - S ——— .
_ : T -
o : x\\_‘l\ -
.,....l.le::l.n e - i
LI TTTT TiTT —_‘_\.4 TirT LI LN LB

150 200 250
Time (secs.)

100

50

1on

Si

Figure 7.33 — Tension and Endpoint Time Histories for « = 0.3.

-ﬁ_*q__
Q
o

$31J0}SIH juodpul % uoIsua|

o
N
I

150
Simulation Time (secs.)

100

50

Figure 7.34 — Tension and Endpoint Time Histories for w

=0.9.



A Ticosy,
Tcosysin(e-€,,)

Figure 8.1 — Plan View of Touchdown Area

z |\

Water depth

Ticosy,

—

7 sea bed
2%

F —n——-

Figure 8.2 — Side View of Cable Discretisation and Forces



L]

-

(=)
[]

37
35— B -3 5
= g
N 4 .
s3as}—1—t+——1—+—+— L ot T e i
72} B === Macn of Terwlon
S 1 3 Macn of Tersion Pecks; No SEABED.
[ 5 -9 - Msan of Terwion Troughs No SEABED.
Q 317 —3- Mean of Termiory No SEABED. B
SapN—— == -t
G ]
g 2.7 ﬁ
2 ﬁ'g ------------ P s it snssrsnipasnssners T, M. S SEE; T [T '— o
25 ¢ 17
1 Y
u L L L] T L e M A J Al T v T v == § v Al v v ) T Bl A\l Al L ; | 1§ T
0.0 0.1 02 03 04 0SS 06 0.7 o8 09 1.0
Tangentiad Surface Friction Factor
Figure 8.3 — Tangential Motion, a; = a; = 10m
=10°
5.0 I
4 |
i !
..\ !
c n !
.0 . |
2 4.0 T
= el v
K N - == Mean of Yermion
E 35 3 Meon of Termion Peddx No SEABED.
o . €3 - Mean of Yersion Troughs No SEABED.
s . ~E3- Meon of Fersiory No SEABED.
o =
A T
S 3.0 é—*;‘- o}t 3. -9 -]
@ :
o] i
g .
2.5
@1_.,,._.,..._.;.““ ........... e T L e e L ] SRR —— o
2.0 T . amEn oo E | \J  ; E J A 2 ; 1 A L] L 5 Jamh S . 3 ] T  J L] 1 1 1§ AJ T v
0.0 0.1 02 03 04 05 06 07 08 09 1.0

Tangentiad Surfoce Friction Coefficient

Figure 8.4 — Tangential Motion, a; = ay = 15m




«10°*

3.8
3.6
Z m 0 0 i
.5 3.4 ] —— Msan of Tersion Pedks
72 1+ 1 | V= Maon of Terwion Troughs
5 g - =~ Maon of Tersion
- ] 3 Mson of Tersion Peckas No SEABED.
03’2 .9 - Mean of Tersion Troughs No SEABED.
'é : ~£3- Mean of Tersiors No SEABED.
o -
| =
IO F==—==g=——=F = fme ety =] === o g —
il S SRS R S | R L B S )
o .
w281 —
g
& - i
28ty @ ol S I ‘i
2.4 N Al L L Al ¥ A Al (S Ted: LA Al v v Al LA Al Al Al L) Ll Al LI L
00 01 02 03 04 05 06 0.7 o8 09 10
Tangentid Submerged Friction Coefficient
Figure 8.5 — Tangential Motion, Line Submerged a; = ay = 10m
=10°
50—
4.5 =
= ! = . = it
S ]
2 40 e Ve ot Toaten Triung
o 7 roughs
— 4 -~ = Mean of Tension
&5 5 £} Msan of Tersion Pedag No SEABED.
= g -3 - Mecn of Tersion Troughs No SEABED.
g 3.5 B 3~ Mean of Termicey No SEABED.
- 5o Il
o |
t 30 -c—h--._-: e s e B B 2 EE e e
m -1
g ]
2.5
@}.:::::::::*::::::‘.::::'_ EEY L1 TN ::::'.:'.'.'.:'.'..:'.'.::::::ﬂﬂt'.'.'.'.'.‘.'.:'.".‘.:'.:'.’.'.'.'.'.‘. i L 2o Ll ::::'.:::'.:C’J
2.0 Al Al T L] A} Al ; Al R Al A Al L) T v LI . | L Rl Al R g i GEE. LEe: 3
00 01 02 03 04 05 06 07 08 09 10

Tangentid Submerged Friction Coefficient

Figure 8.6 — Tangential Motion, Line Submerged a; = ay = 15m



Dynamic Tension (N)
\

”
<°
\-
e
\
¥

VAVAVAVAVIVAYA
VUV Uy VIV

o 50 100 150 200 250
Simulation Time (secs.)

b
-1
S ——

LA 1 L

Figure 8.7 — No Nodal Lifting/Grounding

Dynamic Tension (N)
Nl g j e O (e ] s‘;
—
T———
_——
N—_—

2.0 T T T v ¥ T T Al | M T v T 'l Y | AB T L L L) T 1 1] T j]
0 50 100 150 200 250

Simulation Time (secs.)

Figure 8.8 — Effect of Nodal Lifting/Grounding : No Friction



P.3

GALWRY IRL 91 68457

'S5 05:5%6 MC S

RG2S

R it T S e S

H3ASIH 4O dOL 1V NOISN3AL 3ALLD3443

(S) FWIL

00°952 00°vZT 00°Z6T 00°09T 00 - 8eI 00°96 00" %9
L 1 | | 1 1 _

1 s |

o
<o

00°2¢
L i ! 1 |

1

I T
‘00z

00°0s¢C

{

I

0C'00€

1

00°0S€E

1!

Kl

|

-
B -
!
co'oov
NOISNdYL 03443 € EAON TvO0T1 06

—
00°0SY

97T NOISHIA
ae-NOoJXx3d

ONLLEN * AdI -:JINVYNAG G-€ -73AON LNIWIT3 06 -HISIH AHYNILYD ITONIS

(5)
W33

Figure 8.8A - FLEXCOM-3D (90E), McNamara(1993)
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Figure 8.16 — Vertical Stiffness and Drag Force for Node 5
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