
User-Controlled Access Management
to Resources on the Web

by

Maciej Paweł Machulak

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

Newcastle University
Newcastle upon Tyne, UK

2014

Dedicated to my Mom, my Dad, my Sister, and most importantly, my Wife.

1

Acknowledgements

Some of the presented work in this thesis was a joint effort and I want to acknowledge specific

people with whom I worked during my research.

The User-Managed Access (UMA) proposal, which is presented in this thesis, is researched

by the User-Managed Access Work Group at Kantara Initiative which consists of academic re-

searchers as well as industry professionals. UMA is based on the ProtectServe protocol, which

was initially defined by Eve Maler, Paul Bryan and Marc Hadley, as well as other researchers

from Sun Microsystems. In parallel, I developed a related protocol, called User-Managed Access

Control (UMAC), which is discussed in this thesis. I did not think it was useful to continue

separate work on UMAC while concurrently UMA was being developed. Therefore, this disser-

tation focuses on UMA and our novel UMA software design and implementation, leveraging our

increased user experience, design, and understanding of issues related to development of systems

similar to UMAC. The work on UMA has received numerous contributions over the years from

the entire UMA Work Group, including Eve Maler (Sun Microsystems and later other com-

panies), Paul Bryan (Sun Microsystems and later other companies), Thomas Hardjono (MIT),

Domenico Catalano (Sun Microsystems and later Oracle Italy), George Fletcher (AOL), Chris-

tian Scholz (COMlounge GmbH), Jacek Szpot (Newcastle University), Łukasz Moreń (Newcastle

University), Mike Schwartz (Gluu), Mark Dobrinic (Cozmanova), myself, among many others.

I have been contributing to the UMA Work Group since 2009. In particular, I have been con-

tributing to the use cases analysis, architecture, protocol design and several implementations. I

have also held various leadership positions in this work group. Most importantly, since May 2010

I have been the vice-chair, use cases editor, and implementation coordinator of this work group.

I have been engaged in advocating UMA to academic, developer, and identity communities.

Furthermore, certain parts of the software implementations, which are demonstrated in

this thesis, have been done in collaboration with my colleagues who worked with me on the

JISC/HEFCE funded SMART (Student-Managed Access to Online Resources) project at New-

castle University. I was leading the research on this project as well as managing the research

group at the University. Firstly, Łukasz Moreń mostly worked with me on design and imple-

mentation of SMARTAM V1/V2, UMA/j, OAuth Leeloo, and other software; Jacek Szpot was

mostly responsible for implementation of Puma that was based on our design and experience

with UMA/j and he was also responsible for implementing Python demo applications that are

discussed in this thesis.

The user study of the implemented Authorisation Manager was a joint effort with MSc

student Iain Carter (Newcastle University) and other researchers of the SMART project where

i

I was responsible for the design of this study. Also, I acknowledge contributions from Maciej

Wolniak (Newcastle University) and Domenico Catalano who worked with me on improving

the User Experience of the implemented Authorisation Manager. Maciej Wolniak was also

responsible for implementing SMARTAM V2 user interfaces based on our research and findings

and he implemented user interfaces of some the presented demo applications.

The work on the Street Identity proposal, which is mentioned in this thesis, was done during

my two placements at Google. Importantly, the initial proposal was first defined by the identity

team at Google, including Eric Sachs, Andrew Nash, Breno de Medeiros, and Marius Scurtescu,

among others.

Furthermore, I would like to thank numerous people who influenced my research and allowed

my PhD studies to be an amazing experience.

Most importantly, I would like to thank my supervisor, Professor Aad van Moorsel, who was

most helpful during my research on access control solutions. Aad shared his valuable knowledge

and his time to provide me with the necessary guidance on my scientific research. He always

motivated me to never settle and always push my work forward and he provided me with a

learning environment where I could develop personally and professionally. Without a doubt,

throughout the years of my project, he was not only a mentor but became a friend as well.

Further thanks go to my colleagues from the User-Managed Access Work Group. Firstly, I

wish to thank Eve Maler who always found time for "yet another discussion" on improving the

UMA proposal and taught me to think about "a bigger picture". Secondly, I would like to thank

Paul Bryan for introducing me to the emerging ProtectServe (renamed to UMA) proposal in the

first place. I would also like to thank Thomas Hardjono with whom I had numerous discussions

on the protocol specification and I am grateful for support from Domenico Catalano who visited

my research group in Newcastle and worked with us on our software implementations.

I would like to specially thank Łukasz Moreń who joined me during the SMART project and

provided valuable input to its software engineering side. It was his passion for building great

and robust software that contributed to the success of our work.

Special thanks go to Marius Scurtescu who was my mentor at Google and spent his time on

helping me better understand digital identity on large scale. I am very grateful for numerous

conversations when we discussed dozens of different identity protocols. Further thanks go to

Breno de Medeiros who was an exceptional team leader at Google and taught me to balance my

research between functionality, security and usability. I wish not to forget support from other

colleagues at Google, including Eric Sachs, Andrew Nash, Naveen Agarwal, David Huska, David

Primmer, Chunlei Niu, and others.

I am forever indebted to my family for their encouragement and support when it was most

ii

required. In particular, I wish to thank my parents, Krystyna and Eugeniusz, for giving me the

necessary strength to start my PhD journey in the first place. I am also very grateful to my

sister, Anna, who taught me to be strong and always work towards my dreams.

And last but not least, I wish to thank my beloved wife Marzena for her endless support,

her help, and love during my research journey. She always motivated me and encouraged me to

achieve goals even when achieving them seemed impossible. I am very grateful that I can share

my love for science with her.

iii

Abstract

The rapidly developing Web environment provides users with a wide set of rich services as

varied and complex as desktop applications. Those services are collectively referred to as "Web

2.0", with such examples as Facebook, Google Apps, Salesforce, or Wordpress, among many

others. These applications are used for creating, managing, and sharing online data between

users and services on the Web. With the shift from desktop computers to the Web, users create

and store more of their data online and not on the hard drives of their computers. This data

includes personal information, documents, photos, as well as other resources. Irrespective of

the environment, either desktop or the Web, it is the user who creates the data, who dissemi-

nates it and who shares this data. On the Web, however, sharing resources poses new security

and usability challenges which were not present in traditional computing. Access control, also

known as authorisation, that aims to protect such sharing, is currently poorly addressed in this

environment. Existing access control is often not well suited to the increasing amount of highly

distributed Web data and does not give users the required flexibility in managing their data.

This thesis discusses new solutions to access control for the Web. Firstly, it shows a proposal

named User-Managed Access Control (UMAC) and presents its architecture and protocol. This

thesis then focuses on the User-Managed Access (UMA) solution that is researched by the User-

Managed Access Work Group at Kantara Initiative. The UMA approach allows the user to

play a pivotal role in assigning access rights to their resources which may be spread across

multiple cloud-based Web applications. Unlike existing authorisation systems, it relies on a

user’s centrally located security requirements for these resources. The security requirements are

expressed in the form of access control policies and are stored and evaluated in a specialised

component called Authorisation Manager. Users are provided with a consistent User Experience

for managing access control for their distributed online data and are provided with a holistic

view of the security applied to this data. Furthermore, this thesis presents the software that

implements the UMA proposal. In particular, this thesis shows frameworks that allow Web

applications to delegate their access control function to an Authorisation Manager. It also

presents design and implementation of an Authorisation Manager and discusses its evaluation

conducted with a user study. It then discusses design and implementation of a second, improved

Authorisation Manager. Furthermore, this thesis presents the applicability of the UMA approach

and the implemented software to real-world scenarios.

iv

Publications

Workshops and Conferences

• M. P. Machulak, Ł. Moreń, and A. van Moorsel. Design and Implementation of User-

managed Access Framework for Web 2.0 Applications. In Proceedings of the 5th Inter-

national Workshop on Middleware for Service Oriented Computing, pages 1–6. ACM,

2010.

• M. P. Machulak, E. L. Maler, D. Catalano, and A. van Moorsel. User- Managed Access to

Web Resources. In Proceedings of the 6th ACM workshop on Digital identity management,

pages 35–44. ACM, 2010.

• M. P. Machulak and A. van Moorsel. Architecture and Protocol for User-Controlled Access

Management in Web 2.0 Applications. Proceedings of the 2010 IEEE 30th International

Conference on Distributed Computing Systems Workshops, pages 62–71, 2010.

• M. P. Machulak, E. Maler, D. Catalano, and A. van Moorsel. User-Managed Access to

Web Resources. In IEEE SSP’10: Proceedings of the 2010 IEEE Symposium on Security

and Privacy, Oakland, California, USA, 2010. (Poster Abstract)

• M. P. Machulak and A. van Moorsel. A Novel Approach to Access Control for the Web.

IEEE SSP’09: Proceedings of the 2009 IEEE Symposium on Security and Privacy, 2009.

(Poster Abstract)

• M. P. Machulak, S. Parkin, and A. van Moorsel. Architecting Dependable Access Control

Systems for Multi-domain Computing Environments. Architecting Dependable Systems

VI, pages 49–75, 2009.

• M. P. Machulak, J. J. Halliday, and M. C. Little. Metadata Support for Transactional

Web Services. In EDOC Conference Workshop, 2007. EDOC’07. Eleventh International

IEEE, pages 53–56. IEEE, 2007.

Technical Reports

• M. P. Machulak, Ł. Moreń, and A. van Moorsel. Design and Implementation of User-

managed Access Framework for Web 2.0 Applications. Technical Report CS-TR-1221,

Newcastle University, October 2010.

v

• M. P. Machulak, J. J. Halliday, and M. C. Little. Metadata Support for Transactional

Web Services. Technical Report CS-TR-1158, Newcastle University, August 2010.

• M. P. Machulak, E. L. Maler, D. Catalano, and A. van Moorsel. User- Managed Access to

Web Resources. Technical Report CS-TR-1196, Newcastle University, March 2010.

• M. P. Machulak and A. van Moorsel. Use Cases for User-Centric Access Control for the

Web. Technical Report CS-TR-1165, Newcastle University, August 2009.

• M. P. Machulak and A. van Moorsel. A Novel Approach to Access Control for the Web.

Technical Report CS-TR-1157, Newcastle University, July 2009.

• M. P. Machulak and A. van Moorsel. Architecting Dependable Access Control Systems

for Multi-Domain Computing Environments. Technical Report CS- TR-1156, Newcastle

University, July 2009.

vi

Abbreviations

HAT / PAT - Host Access Token / Protection API Token

RAT / AAT - Requester Access Token / Authorisation API Token

RPT - Requester Permission Token

AT - Access Token

RT - Refresh Token

RP - Relying Party

AP - Attribute Provider

UMAC - User-Managed Access Control

UMA - User-Managed Access

AM - Authorisation Manager

API - Application Programming Interface

UX - User Experience

UI - User Interface

IDP - Identity Provider

REST - Representational State Transfer

OIDC - OpenID Connect

PEP - Policy Enforcement Point

PIP - Policy Information Point

PAP - Policy Administration Point

PDP - Policy Decision Point

STS - Security Token Service

vii

Contents

Acknowledgements i

Abstract iv

Publications v

Abbreviations vii

List of Figures xvii

List of Tables xxii

1 Introduction 1

1.1 Motivation . 4

1.1.1 Scenario . 5

1.1.2 Shortcomings . 7

1.1.3 Requirements . 11

1.2 Goal . 12

1.3 Approach . 13

1.4 Novelty of Approach . 14

1.5 Contributions . 16

1.6 Thesis Outline . 19

2 Background 23

2.1 Introduction . 23

2.2 Distributed Environments . 25

2.2.1 Multi-Domain Computing Environments 26

2.2.2 Web Environment . 28

2.3 Access Control in Distributed Environments . 29

viii

2.3.1 Policies . 30

2.4 Delegated Authorisation . 32

2.4.1 Interactions . 34

2.5 Access Control Mechanisms . 36

2.5.1 Capability-Issuing Security Architecture 37

2.5.2 Decision-Issuing Security Architecture . 39

2.6 Access Control Challenges . 40

2.6.1 Policy Challenges . 41

2.6.1.1 Heterogeneity and Distribution of Subjects and Objects 42

2.6.1.2 Context and Content-Based Access to Resources 44

2.6.1.3 Policy Heterogeneity Management 45

2.6.1.4 Policy Conflict Resolution . 46

2.6.2 Architectural Challenges . 48

2.6.2.1 Interoperability Between Access Control Components 48

2.6.2.2 Location of Policy Decision Points 50

2.6.2.3 Management of Access Control Systems 50

2.6.2.4 Communication Performance . 52

2.6.2.5 Autonomy of Administration Domains 54

2.6.2.6 Access Control Delegation . 54

2.6.2.7 Attribute Aggregation . 55

2.6.2.8 Authorisation Credential Issuing and Validation 56

2.6.2.9 Assignment of Arbitrary Authorisation Attributes to Users . . . 57

2.6.2.10 Security of Access Control Systems 58

2.7 Chapter Summary . 59

3 Related Technologies 60

3.1 Introduction . 60

3.2 XACML . 61

3.2.1 XACML in Multi-domain Computing Environments 63

3.3 SAML . 64

3.4 Kerberos . 65

3.5 OAuth 1.0 . 66

3.6 OAuth 2.0 . 68

3.7 OpenID Connect . 71

3.8 Street Identity . 72

ix

3.8.1 Architecture . 72

3.8.2 Protocol . 75

3.8.3 Discussion . 79

3.9 Sticky Policies . 80

3.10 VOMS . 81

3.11 Locker Project . 81

3.12 Menagerie . 82

3.13 Secure Web 2.0 Sharing Beyond Walled Gardens 84

3.14 Secure File System for the Web . 86

3.15 Fine-grained Access Control Policies for Social Networking Applications 88

3.16 Chapter Summary . 88

4 User-Managed Access Control 89

4.1 Introduction . 89

4.2 Initial Proposal . 91

4.2.1 Architecture . 92

4.2.2 Interactions . 92

4.2.3 Discussion . 93

4.3 Refined Proposal . 95

4.3.1 Architecture . 96

4.3.2 Protocol . 99

4.3.3 Implementation . 105

4.3.4 Advantages . 107

4.3.5 Extensions . 107

4.3.6 Limitations . 109

4.4 Chapter Summary . 110

5 User-Managed Access 111

5.1 Introduction . 111

5.2 Requirements Analysis . 113

5.3 Architecture . 114

5.4 Delegation Protocol . 117

5.4.1 User introduces host to AM . 118

5.4.1.1 Host learns the location of the user’s preferred AM 119

5.4.1.2 Host discovers AM’s functionality 121

5.4.1.3 Host registers dynamically at AM 122

x

5.4.1.4 User authorises the Host for their AM 122

5.4.1.4.1 Host obtains initial authorisation in form of a code. . . 122

5.4.1.4.2 Host exchanges the code for an access token for AM. . 124

5.4.2 User registers resources for protection at AM 125

5.4.3 User defines access control policies at AM 131

5.4.4 Requester gets access token from AM . 132

5.4.4.1 Access request did not contain an RPT 133

5.4.4.1.1 Requester authorisation at AM. 133

5.4.4.1.2 Requester obtains a new RPT for a Host at AM. 135

5.4.4.2 Access request contained an invalid RPT 136

5.4.5 Requester wields access token at Host to gain access 139

5.5 Trust Model . 140

5.5.1 Subject Registration . 141

5.5.2 Host Registration at AM . 143

5.5.3 Trusted Claims Gathering . 144

5.5.4 Trust Delegation and Trust Chain . 145

5.6 Credentials . 146

5.7 Claims . 146

5.7.1 Claims 2.0 . 148

5.7.2 Trusted Claims . 148

5.7.2.1 OpenID Connect Claims . 149

5.8 Protected Information . 150

5.9 Evaluation . 154

5.10 Limitations . 155

5.11 Chapter Summary . 159

6 Host and Requester Frameworks 160

6.1 Introduction . 160

6.2 UMA/j . 163

6.2.1 UMA/j Common . 164

6.2.2 Discovery . 165

6.2.3 Dynamic Registration . 165

6.2.4 OAuth 2.0 . 166

6.2.5 UMA/j Host . 167

6.2.5.1 Resource Registration . 169

xi

6.2.5.2 Request Filter . 171

6.2.5.3 Token Validation . 172

6.2.5.4 Core . 173

6.2.6 Requester . 173

6.2.6.1 Requester Filter . 174

6.2.6.2 Token Retrieval . 175

6.2.6.3 Core . 177

6.2.7 Limitations . 177

6.3 Puma . 178

6.3.1 Framework Structure . 179

6.3.1.1 Puma.UMA.* . 179

6.3.1.2 Puma.OAuth.* . 179

6.3.1.3 Puma.Util.* . 180

6.3.1.4 Puma.Storage.* . 180

6.3.1.5 Puma.Pouches.* . 180

6.3.2 Common . 181

6.3.2.1 Discovery . 181

6.3.2.2 Dynamic Registration . 181

6.3.2.3 OAuth 2.0-based Authorisation 182

6.3.3 Host . 183

6.3.3.1 Data Model . 183

6.3.3.2 Resource registration . 184

6.3.3.2.1 Resource Registration Handler. 185

6.3.3.2.2 Share button iframe. 186

6.3.3.3 Token status validation . 187

6.3.3.3.1 The Warden. 188

6.3.4 Requester . 189

6.3.4.1 Data Model . 190

6.3.4.2 Protected Resource Access . 192

6.3.4.3 Obtaining Requester Access Token 192

6.3.4.4 Obtaining Requester Permission Token 193

6.3.5 Limitations . 196

6.4 Chapter Summary . 197

xii

7 Authorisation Managers 198

7.1 Introduction . 198

7.2 SMART Authorisation Manager V1 . 200

7.2.1 Architecture . 201

7.2.2 Security . 202

7.2.3 Support for User-Managed Access . 203

7.2.3.1 Authorisation tokens . 203

7.2.3.2 Support for host applications . 204

7.2.3.3 Support for requester applications 204

7.2.4 Policy Model . 206

7.2.5 Policy Evaluation . 207

7.2.5.1 Claims . 208

7.2.5.2 Authorisations . 209

7.2.6 User Interface . 211

7.2.7 Integration with Applications . 215

7.2.8 Implementation . 220

7.2.9 Limitations . 220

7.3 Evaluation of SMARTAM V1 User Interface . 223

7.3.1 Research . 223

7.3.1.1 Usability Factors . 224

7.3.1.2 Research Method . 224

7.3.1.3 User Scenario . 226

7.3.1.4 Data Collection . 227

7.3.2 Research Results . 227

7.3.2.1 Feedback from the respondents 228

7.3.2.2 Interpretation of the results . 229

7.3.2.3 Interface inconsistencies . 230

7.3.2.4 UMA-protocol understanding . 231

7.3.3 Shortcomings and Recommendations . 231

7.3.3.1 Analysis of usability factors . 232

7.3.3.2 Shortcomings . 233

7.3.3.3 Recommendations . 234

7.4 SMART Authorisation Manager V2 . 236

7.4.1 Architecture . 237

7.4.1.1 Persistence and Services Layer 237

xiii

7.4.1.2 API Layer . 238

7.4.1.3 Presentation Layer . 239

7.4.2 Security . 240

7.4.3 Support for User-Managed Access . 240

7.4.3.1 Authorisation Tokens . 241

7.4.3.2 Support for Host Applications 242

7.4.3.3 Resource Registration . 242

7.4.3.4 Support for Requester Applications 243

7.4.4 Federated Authentication . 245

7.4.5 Policy Model . 246

7.4.5.1 Database Implementation of Policies 248

7.4.6 Policy Evaluation . 250

7.4.6.1 Issuing empty RPTs to Requesters 250

7.4.6.2 Registering Permissions . 250

7.4.6.3 Obtaining Authorisation . 251

7.4.6.3.1 Authorising User acting as Requesting Party. 252

7.4.6.3.2 Requesting Party added manually by Authorising User. 253

7.4.6.3.3 Any Requesting Party. 254

7.4.6.4 Validating Tokens from Requesters 254

7.4.7 Access History . 255

7.4.8 User Interface Description . 256

7.4.8.1 Scenario . 256

7.4.8.1.1 Login at Host and AM. 257

7.4.8.1.2 Register a document for protection at AM using host

application. 257

7.4.8.1.3 Choose contacts to share the document with. 259

7.4.8.1.4 Choose applications to be used by contacts for accessing

the document. 260

7.4.8.1.5 Setup permissions for contacts and applications. 260

7.4.8.1.6 Share the document. 262

7.4.8.2 Main User Interface . 263

7.4.8.3 Comparison . 271

7.4.9 Implementation Details . 275

7.4.9.1 Presentation Layer . 276

7.4.9.2 Services Layer . 277

xiv

7.4.9.3 Persistence Layer . 277

7.4.9.4 Application Programming Interface 277

7.4.9.5 Security . 278

7.4.10 Limitations . 278

7.5 Chapter Summary . 281

8 Conclusions 282

8.1 Thesis Summary . 282

8.2 Future Work . 284

8.2.1 Deployment and acceptance of user managed access control approaches . 285

8.2.2 Development of improvements to UMA protocol 286

8.2.2.1 Optimised integration with client applications 286

8.2.2.2 Schema for protected resources 286

8.2.2.3 Protected resources discovery support 287

8.2.2.4 User’s preferred AM discovery support 287

8.2.3 Development of improvements to SMARTAM implementation 288

8.2.3.1 Extended audit with support for arbitrary events 288

8.2.3.2 Extended policy support . 288

8.2.3.3 Visualisation of complex policies 289

8.2.3.4 User studies of the newly implemented AM 289

8.2.3.5 Integration of AM with federated authentication proposals . . . 290

8.2.3.6 Mobile applications support . 291

8.3 Concluding Remarks . 291

Appendices 292

Appendix A Graphical representation of UMA/j module dependencies 293

Appendix B Example UMA/j Host configuration file 296

Appendix C UMA/j Implementation and Evaluation 299

C.0.1 Implementation . 299

C.0.2 Evaluation . 299

Appendix D Puma Implementation and Evaluation 302

D.0.3 Implementation . 302

D.0.4 Evaluation . 302

D.0.4.1 Host application . 303

xv

D.0.4.2 Requester application . 306

Appendix E SMARTAM V1 Data Model 308

Appendix F SMARTAM V2 Data Model 310

Appendix G Example UMA Authorisation Manager Configuration Data 312

Appendix H Questionnaire for SMARTAM V1 UI Research Study 313

Appendix I Sharing Trustworthy Personal Data with Future Employers Sce-

nario 315

Appendix J Mind map of access control for the open Web 324

Bibliography 327

xvi

List of Figures

1.1 Scenario highlighting interactions and the flow of data between Web applications. 6

1.2 Distributed access control policies created and managed in example scenario. . . 10

1.3 World map showing visitor demographics of the OAuth Leeloo website at [117]

between 1st August 2010 and 29th April 2013. Map has been generated using the

Google Analytics software [18]. 18

1.4 Visualisation of the thesis outline. 20

2.1 Overlap of access control requirements in different deployment environments. . . 25

2.2 Multi-domain computing environment forming a Virtual Organisation [219]. . . . 27

2.3 The Internet & the Web environment. 28

2.4 Agent model approach to access control [219]. 36

2.5 Capability-issuing approach to authorisation in computing environments [219]. . 38

2.6 Decision-issuing approach to authorisation in computing environments [219]. . . . 39

2.7 A high-level view of the Policy Administration Point / Policy Syndication Server

hierarchy. 53

3.1 XACML data-flow diagram [97]. 62

3.2 Interactions between parties in the Kerberos protocol [273]. 66

3.3 OAuth 1.0 protocol flow [200]. 67

3.4 OAuth 2.0 - Authorisation Code Grant (former Web Server profile) [202]. 70

3.5 The Google’s Street Identity proposal. 73

3.6 Access tokens involved in the Street Identity protocol. 75

3.7 Example of data organisation in PC-centric vs. Web-centric world [195]. 83

3.8 The system architecture of the proposed Web 2.0 content sharing solution [286]. 85

4.1 Research path on proposals for user-managed access control solutions for the Web. 90

4.2 High level view of the user-centric access control system for the Web. 91

xvii

4.3 Basic Architecture for User-Managed Access Control for the Web [244]. 96

4.4 Comparison of relations between parties of a user-managed access control solution

with XACML [245]. 99

4.5 High-level overview of the UMAC protocol [244]. 100

4.6 UMAC Step 1: A User establishes a trust relationship between a Host and AM. . 101

4.7 UMAC Step 3: A Requester obtains authorisation token from AM. 103

4.8 UMAC Step 4: A Requester attempts access with authorisation token. 104

5.1 Interactions between entities involved in the UMA protocol [238]. 115

5.2 Sharing use cases in User-Managed Access [178]. 118

5.3 High-level overview of the User-Managed Access protocol [238]. 119

5.4 UMA Step 1: User introduces Host to AM. 120

5.5 User-Managed Access API Endpoints available on the Authorisation Manager. . 121

5.6 OAuth 2.0 authorisation page displayed to the User. 123

5.7 UMA Step 2: Host registers resources for protection at AM and directs a User to

the policy URI at AM. 126

5.8 Access requests issued by Requesters can be subject to different protocol paths,

depending on the presence and validity of the RPT. 132

5.9 UMA Step 3: Requester gets RAT/AAT and RPT tokens from AM. 134

5.10 UMA Step 4: Requester wields RPT at Host to gain access to a protected resource.137

5.11 User-Managed Access Trust Model [157]. 141

5.12 Bootstrapping Trust in User-Managed Access [156]. 142

5.13 Trust Delegation and Trust Chain in User-Managed Access [157]. 145

5.14 UMA conceptual model with Trusted Claims [155]. 150

6.1 High-level overview of the modules in the UMA/j framework and related libraries. 163

6.2 Design of the UMA/j framework and its integration with a Web application [239]. 168

6.3 Structure of the Puma framework [123; 124]. 180

6.4 High-level architecture of Puma integration with a host application [123]. 183

6.5 Simplified ERD diagram of using Puma framework in a host application [123]. . 184

6.6 Flow using Resource Registration Handler [123]. 185

6.7 Message flow through the Puma Warden [123]. 189

6.8 Simplified ERD diagram of using Puma framework in a requester application [124].191

7.1 Research path on Authorisation Manager implementations. 198

7.2 Architecture of SMART Authorisation Manager V1. 201

xviii

7.3 Example implementation of an access control policy. 206

7.4 Example of a resource linked with an access control policy. 207

7.5 Main page of the SMARTAM V1 UI. 211

7.6 View displaying registered applications at AM. 212

7.7 View displaying registered resources at AM. 213

7.8 View displaying a list of Requesting Parties created by an Authorising User. . . . 213

7.9 View displaying list of available restrictions (claims). 214

7.10 View for creating new access control policies. 215

7.11 View for creating new rules to be added to an access control policy. 216

7.12 View for associating existing restrictions (claims) with an access control policy

(drag and drop). 216

7.13 View for associating an access control policy with a resource (drag and drop). . . 217

7.14 User Interface of the requester application that allows the Requesting Party to

provide their credentials. These credentials are used for authentication at AM. . 219

7.15 User Interface of the requester application that allows the Requesting Party to

provide self-asserted claims. These claims are sent to AM for evaluation. 219

7.16 User scenario used during research study of the SMARTAM V1 UI. 226

7.17 Results regarding the general ease of use of the SMARTAM V1. 228

7.18 Visualisation of shortcomings of the SMARTAM V1 UI. 234

7.19 Architecture of SMART Authorisation Manager V2. 237

7.20 Overview of the User Interface architecture of SMARTAM V2. 239

7.21 SMARTAM V2 integrated with Facebook. 245

7.22 Entity Relationship Diagram of access control policies in SMARTAM V2. 248

7.23 Authorisation page that allows the Requesting Party to authorise a requester

application to access a protected resource stored on a Host. 253

7.24 Request for access page that allows the Requesting Party to request access to a

protected resource stored on a Host. 254

7.25 User scenario used for discussion of the SMARTAM V2 User Interface. 257

7.26 Resource and a Share button rendered for this resource on a Host. 258

7.27 View presenting myself-type policy provided by SMARTAM V2 and accessed di-

rectly from a host application. 258

7.28 View presenting others-type policy provided by SMARTAM V2 and accessed di-

rectly from a host application. 259

7.29 Access control policy view with missing contacts. 260

7.30 View for selecting contacts to be used in a policy. 261

xix

7.31 View for selecting applications and actions for these applications to be used in a

policy. 261

7.32 Example email that could be sent to a Requesting Party notifying them about a

newly shared resource. 262

7.33 Information sent to the Facebook wall of a Requesting Party notifying them about

a newly shared resource. 262

7.34 Main view of SMARTAM V2 presenting resources registered for protection. . . . 264

7.35 View presenting the resource registered for protection on SMARTAM V2. 264

7.36 View presenting a specified myself type access control policy. 265

7.37 View presenting a specified others type access control policy. 265

7.38 View presenting a specified others type access control policy with application details.266

7.39 View presenting a specified others type access control policy with application and

permission details. 267

7.40 View showing the list of contacts. 268

7.41 View presenting resources shared with a Requesting Party. 268

7.42 View showing the form that allows the user to add new contacts manually. 269

7.43 View showing the list of registered applications at AM. 269

7.44 View showing resources shared with a particular application. 269

7.45 View showing access history list (audit log). 270

7.46 View showing requests to access protected data. 270

7.47 Request for access mechanism implemented by SMARTAM V2. 271

7.48 Visualisation of improvements to the User Interface introduced in SMARTAM V2. 272

7.49 Prototype view of UI for SMARTAM V2 allowing the user to specify access control

policy in a single screen. 274

8.1 Visualisation of UMA Connection concept [155]. 290

8.2 User Interfaces of a prototype mobile application integrated with SMARTAM V2. 291

A.1 UMA/j Host module dependency graph. 293

A.2 UMA/j Requester module dependency graph. 294

A.3 UMA/j Authorisation Manager module dependency graph. 295

C.1 User Interface of a Web application accessing UMA-protected resource. 301

D.1 Python applications integrated with SMARTAM V2 using the Puma framework. 303

D.2 UMA-protected RESTful Web API of the PDS application. 304

xx

E.1 SMART Authorisation Manager V1 Entity Relationship Diagram. 309

F.1 SMART Authorisation Manager V2 Entity Relationship Diagram. 311

I.1 Step 1 - Sean attempts to access his online data at the S3P application. Sean visits

the S3P Web application at Newcastle University. Selects “Newcastle University”. 316

I.2 Step 2 - Sean signs in to Newcastle University with his existing credentials. . . . 317

I.3 Step 3 - Sean sees his personal data stored by the S3P application. 317

I.4 Step 4 - Sean can view his academic record. Sean then attempts to apply for a

job position at the CareerMonster Web application. 318

I.5 Step 5 - Sean visits the CareerMonster Web application. Selects to sign in with

his University’s account. 318

I.6 Step 6 - Sean signs in to Newcastle University with his existing credentials. . . . 319

I.7 Step 7 - Sean is presented with a list of available job positions. He attempts to

apply for the “Junior Software Engineer” position. 319

I.8 Step 8 - In order to apply for a job position, Sean has to fill in some information

or import it from S3P. 320

I.9 Step 9 - Sean is presented with a consent page, where he is required to authorize

CareerMonster to access his personal data from S3P. This consent is represented

on SMARTAM in form of sharing settings for Sean’s name. 320

I.10 Step 10 - Sean’s personal data is retrieved by CareerMonster directly from S3P.

Sean then selects to import his academic record from S3P as well. 321

I.11 Step 11 - Sean is presented with a consent page, where he is required to authorize

CareerMonster to access his personal data from S3P. This consent is represented

on SMART in form of additional sharing settings (this time for Sean’s academic

record). 321

I.12 Step 12 - Sean’s academic record is retrieved by CareerMonster directly from S3P.

At this point, all required information has been submitted to CareerMonster and

Sean can apply for the job position of his choice. 322

I.13 Step 13 - Sean can sign in to SMART and view various information regarding his

University’s data and how this data is shared with other applications. 322

I.14 Step 14 - Sean can view sharing settings for his academic record. 323

I.15 Step 15 - Sean can view how his data is shared with other applications. 323

J.1 Mind map of access control on the open Web - part 1. 325

J.2 Mind map of access control on the open Web - part 2. 326

xxi

List of Tables

2.1 Relationships between access control challenges and requirements for a user-

managed access control proposal. 42

5.1 Operations supported by Authorisation Manager Resource Registration endpoint. 128

5.2 Parameters of a resource set description. 129

5.3 Parameters of an action description. 130

5.4 Relationships between tokens and actors of the UMA proposal. 147

6.1 Comparison of UMA/j and Puma frameworks. 161

7.1 UMA-enabled Web applications developed during the course of research and their

integration with developed Authorisation Managers. 200

xxii

List of listings

1 Example of a SAML Authorisation Decision Statement. 65

2 Example of HTTP request, carrying token credentials, sent by the client applica-

tion to the server [200]. 68

3 Example of authorised HTTP request with a MAC access token sent by the client

application to the resource server. 70

4 Example of response from the Street Identity API Discovery endpoint. 77

5 Example of response from the Street Identity API Token Info endpoint. 78

6 Example of a resource set registration request issued by a Host to AM. 129

7 Resource set registration response containing the registered set’s revision and the

URI of the policy. 130

8 Host registers a permission at the AM’s Permission Registration endpoint. 138

9 Example of AM’s RPT status response returned to the Host. 140

10 Resource registration JAX-RS endpoint for Host applications. 170

11 Example simplified code of the Request Filter component. 171

12 Registering a resource set at AM and creating a ResourceMap on a Host application.185

13 Dynamically generating a widget for integration with Authorisation Manager. . . 187

14 Puma Warden logic that checks if a resource is UMA-protected (simplified code)
[123]. 189

15 Requester obtains an empty RPT and includes it in a request to a protected

resource on a Host (simplified code) [124]. 193

16 Requester processing responses from Host and AM with attached claims informa-

tion (simplified code) [124]. 194

17 Response from SMARTAM V1 containing information about required list of claims.208

18 Example of a claims requested document issued by SMARTAM V1. 209

19 Example of a claims document with a self-asserted claim sent by a Requester to

SMARTAM V1. 209

xxiii

20 Evaluating submitted claims by the claims engine at SMARTAM V1 (simplified

code). 210

21 Authorisation token response sent by AM to Requester. 210

22 Example implementation of an UMA Requester client code (simplified). 218

23 HTTP request of Requester applying for permissions to be assigned to an RPT. . 251

24 Claims requested document issued by AM. 252

25 Example UMA/j Host configuration specified in the Spring XML-based configu-

ration metadata file. 298

26 Protecting the applications API with UMA using Puma Warden [123]. 305

27 Example of Authorisation Manager Configuration Data - SMARTAM V2. 312

xxiv

Chapter 1

Introduction

Identity management is an important part of computer security that requires a strong estab-

lishment of digital identities [144]. Its role is to encapsulate people, processes and services and

to allow identification and management of resources that are used in any computing system.

Identity management allows to authenticate subjects, such as users or processes, and to grant

or deny access rights to a system’s resources. Identity management comprises of identification,

authentication, access control (also known as authorisation) and auditing [278]. Identification

and authentication are used to establish a digital identity, while access control answers the ques-

tion of what this identity is entitled to do. Auditing, on the other hand, allows for insight into

identification, authentication, as well as authorisation events within a computing system.

Access control, being an important part of identity management, protects resources against

unauthorised disclosure and unauthorised or improper modifications [277; 275]. Protected re-

sources in computing systems may include personal information, attributes about an individual

or a group of individuals, documents and photos, or any information, data1 or services to which

access should be restricted. In its simplest form, access control allows for making decisions about

who (subject) can access what (object) in which way (actions). Therefore, it is inevitably linked

with the aforementioned identification and authentication which allow for identifying subjects

and verifying their credentials, respectively.

In desktop systems, end users are often in control over their resources. In such non-networked

systems, not only do they host resources using a single device under their control but they also

typically limit access to these resources with a single mechanism (and a single User Interface -

UI) that is commonly based on the reference monitor concept introduced in early 1970s in [224].
1Data and information constitute two distinct terms. Data most commonly refers to raw and unorganised

facts while information refers to data which has been already processed, organised and structured in some way.
In this thesis, however, there is no need for a distinction between these two terms during discussions on access
control and both terms are used interchangeably.

1

Chapter 1. Introduction

For example, most modern multi-user operating systems keep the user data private but provide

them with user interfaces that allow sharing selected data with other users or applications of

the same system. Importantly, the set of subjects in these systems is limited to the users and

programs available on the system, while actions are defined by the system itself (e.g. read,

write, and execute operations available on Unix-like systems). Closed environments, such as

those built on LDAP [280], Windows Active Directory [50] or internally deployed Web systems,

that are used extensively within enterprises, allow to achieve a comparable functionality because

of their finite and well-defined set of users, resources and possible actions on those resources.

In contrast to desktop systems and enterprise settings, the Web (and Web 2.02) is highly

distributed with its parts being under control of different authorities. Data is no longer stored

in a single location (or in a set of well-defined locations) but is rather hosted on different Web

applications often residing in distinct administrative domains with no existing trust relationships

between each other. Commonly, these applications use a traditional isolated authorisation model

where access control mechanisms are tightly bound to the application. Such mechanisms often

have limited flexibility in terms of their configuration or adaptation to a particular user’s security,

usability or sharing requirements [203; 194].

The Web has become exceedingly user-centric and user-driven since its been first proposed

by Tim Berners-Lee in 1989 [145]. In existing Web applications, it is the user who creates the

data, who disseminates it and who shares it with other users and services on the Web. Interacting

with Web applications, as well as creating, storing and sharing resources poses new security and

usability challenges. The identification and authentication problems have been well-researched

by industry and academia and have resulted in the shift of the Web from isolated technologies

towards a more user-centric identity model [272; 102; 78; 58]. In such model, authentication is

delegated to specialised third party components. A Web application, instead of authenticating

users by itself, acts as a Relying Party (RP) that relies on the Identity Provider (IDP) to

authenticate the user correctly. Importantly, users can often choose Identity Providers that

satisfy their specific needs for a particular Web transaction and these users have a certain level

of control over the release of their identity information to RP applications [249]. For example,

some users may sign in to a social Web application (e.g. Pinterest [65]) with their Facebook

account, but may use their corporate or University account to sign in to an Online Blogging

Platform (e.g Wordpress [90]).

There are various technologies that allow applications to delegate authentication to third

party IDPs and that support users with better control over their digital information. Most
2The term Web 2.0 was coined in the year 1999 to describe web sites that use technology beyond the static

pages of earlier web sites [88; 266]. Throughout this thesis, this term is used interchangeably with the term "Web"
in relation to collaborative, user-driven and distributed Web applications.

2

Chapter 1. Introduction

notable and widely used proposals include OpenID [104], OAuth 1.0/2.0 [200; 202], OpenID

Connect [58], or various other proposed standards such as SAML [102] (implemented widely in

Shibboleth [72]), ID-WSF [43], among many others. Web applications implement these propos-

als using libraries and frameworks. These proposals can be directly available from IDPs such

as Google (Google+ Sign In [27] and Google Identity Toolkit [26] with the AccountChooser

extension [263]), Facebook (using Facebook Login [11]), or the UK Federation WAYF (Where

Are You From) [83]. Furthermore, these identity federation technologies can be used through

"Identity Hubs" or "Identity Aggregators" with such examples as Janrain [32] or Gigya [14].

Unlike authentication, access control is currently incomparable in terms of maturity, avail-

ability of technologies or software solutions for Web applications [240; 238]. In particular, existing

access control is poorly addressed in the open Web environment and it is not well suited to the

increasing number of distributed resources that are made available online every day. Most im-

portantly, the modern Web still lacks a comparable access control solution based on concepts

analogous to existing user-centric authentication technologies. These authentication technolo-

gies allow users to select their preferred IDPs that should be used when the user signs in to an

application. As such, the user can have an account on a single IDP and may be able to sign in

to all their applications that support and trust this particular IDP.

A user-centric access control solution would allow users to choose their preferred access

control software components and use their functionality across a number of different Web ap-

plications, irrespectively of where these applications reside [194]. Similarly to user-centric au-

thentication mechanisms, such access control solution would require applications to support and

trust the users’ preferred components. It would also support selective sharing of resources in

complex online transactions with other Web users and services.

This thesis demonstrates novel approaches that satisfy requirements for user-centric access

control solutions for the Web. Firstly, it presents a solution to user-driven3 access management

for Web 2.0 applications and discusses its architecture and implementation. This proposal,

named User-Managed Access Control (UMAC), has been introduced in [241], [243] and [244].

UMAC consists of an architecture of services and a protocol that defines interactions between

these services. UMAC puts a user in full control of assigning access rights to their resources

which may be spread across multiple cloud-based Web applications.

This thesis then focuses on User-Managed Access (UMA) [297], first proposed as Protect-

Serve in [177] and defined in [176], which also discusses a user-centric design for managing autho-

risations to distributed Web resources. UMA provides a method for users to control third-party

application access to their protected Web resources residing on any number of host applications.
3This thesis uses the terms "user-driven", "user-managed" and "user-centric" interchangeably. These terms are

used to highlight the pivotal role of the end-user in various steps of the proposed access control solutions.

3

Chapter 1. Introduction

The UMA architecture and its protocol, credentials used by different UMA entities, the UMA

trust model, and limitations of this proposal are presented.

UMA has been initially researched by the User-Managed Access Work Group (UMA WG)
[86] at Kantara Initiative4 [40] virtually in parallel with our work on access control solutions

for the Web. Importantly, I did not think it was useful to continue separate work on UMAC

while concurrently UMA was being developed. Therefore, this dissertation focuses on the UMA

proposal and a novel UMA software design and implementation, leveraging our increased user

experience, design, and understanding of issues related to development of systems similar to

UMAC. This thesis briefly describes similarities and differences between UMAC and UMA.

Unlike existing authorisation systems, both UMAC and UMA rely on user’s centrally located

security requirements5 for Web resources. Such security requirements can be expressed in the

form of access control policies and are stored and evaluated in a specialised component called

Authorisation Manager6. By centralising these requirements, both proposals give end user a

consistent User Experience for managing access control across their Web applications. Moreover,

these proposals provide users with a holistic view of the security applied to distributed data.

This thesis presents the design and implementation of UMAC. It then focuses on the UMA

proposal and presents its architecture and protocol. It also demonstrates UMA implementations.

Firstly, it shows UMA frameworks that allow Web applications to interact with the implemented

Authorisation Manager according to the UMA protocol. Furthermore, it presents two UMA

Authorisation Managers. This thesis also discusses evaluation of the User Experience of the

first implemented Authorisation Manager by presenting results of the conducted user study.

Moreover, it demonstrates evaluation of the UMA proposal and its implementation against the

formulated set of requirements for user-managed access control solutions.

1.1 Motivation

"The goal of a flexible, user-centric identity management infrastructure must be to allow the

user to quickly determine what information will be revealed to which parties and for what

purposes, how trustworthy those parties are and how they will handle the information, and

what the consequences of sharing their information will be.” [158]

The above quote from Dr Ann Cavoukian, the Information and Privacy Commissioner of
4Kantara Initative is a non-profit association dedicated to advancing technical and legal innovation in the field

of digital identity management.
5This thesis occasionally uses the term "security requirements" to refer to "access control policies". Importantly,

access control is only a subset of computer security.
6The UMA solution has eventually adopted a different terminology aligned with the OAuth 2.0 protocol. The

most recent terminology used by UMA can be found in the most recent revision of [297].

4

Chapter 1. Introduction

Ontario, captures precisely the motivation behind the research presented in this thesis. In

particular, this quote relates to a need for a new user-centric authorisation system for highly

distributed environments such as the open Web.

Section 1.1.1 presents an example scenario with a complex Web transaction that involves

secure data sharing. This scenario helps to better understand the aforementioned quote and the

motivation towards a novel access management system. A thorough analysis of this scenario

is provided and this analysis helps to identify shortcomings in existing authorisation solutions.

These shortcomings were used to derive a set of high-level requirements which should be met by

a desired user-centric access control system.

The scenario presented in Section 1.1.1 is only one of many that were published in [243] and
[85]. The research presented in this thesis considers characteristics and peculiarities of various

identified scenarios.

1.1.1 Scenario

A graduate student stores their academic-related information in an online database, similar to

existing Personal Data Store (PDS) systems (see [64; 51; 63] for examples of such systems).

This system resembles the one available at Newcastle University, called Student Self-Service

Portal (S3P) [69], which allows students to access their "Graduate Programme" information and

"Transcript of Records" documents. Additionally, the student has an account at the Online

Courses Service, where they host a certificate for one of their completed courses (examples of

such providers include popular Web sites such as Coursera [6], Udacity [82] and Mooc [49]). The

student also stores their photos at the Online Gallery Service and stores their documents in the

Online Storage Service. This scenario is visualised in Figure 1.1.

The aforementioned applications reside in distinct Web domains7 and are under control of

different authorities. Importantly, the user is the author/source of authority for only some of

their information (e.g. their name or their photos) while other types of information, such as

"Transcript of Records" documents and certificates have other sources of authority (e.g. respec-

tive institutions).

The aforementioned applications provide Web APIs8 to allow programmatic access to data.

The presented scenario assumes that APIs are protected using existing Web protocols, such as

OAuth 1.0a [200], OAuth 2.0 [202], API keys, or HTTP Basic or Digest Authentication [192].
7A Web domain represents a set of Web applications within a single administrative domain that share a

common set of features, including common authentication or authorisation functionality. The Web environment
is discussed in Section 2.2.2.

8Web APIs have been the key growth driver for most applications from a wide range of industry sectors
[127]. As of 28th April 2013, the Web Services Directory at ProgrammableWeb [66] lists almost 9000 Application
Programming Interfaces available on the Web. Since 2005/2006, this number has been growing exponentially.

5

Chapter 1. Introduction

Figure 1.1: Scenario highlighting interactions and the flow of data between Web applications.

Online Courses Service uses secret links to protect access to hosted data. Such secret links are

hard-to-guess URLs that uniquely identify a resource that a person wants to share.

In the presented scenario, the graduate student interacts with the Online Career Service

through its provided UI. This application allows students to create their personal accounts and

apply for advertised job positions. Students have to fill in an application form with the necessary

details, including personal information (e.g. their verified name), "Transcript of Records" docu-

ment and additional certificates from various institutions. Students may also choose to upload

their photos. In the presented scenario, employers can also request additional information from

students (e.g. phone number).

In order to complete the application form for "Job Position 1" at Online Career Service, the

student can either fill in certain fields of the application form manually or can import the data

from online systems using their Web APIs. In the presented scenario, the student completes the

steps that are visualised in Figure 1.1. Each step has a corresponding number in the figure.

1. Student provides their personal information by manually filling in their name and address

information;

2. The verified "Transcript of Records" document is retrieved by the Online Career Service

directly from the S3P application using its Web API;

3. Student provides a secret URL to their "Certificate 1" document hosted on the Online

6

Chapter 1. Introduction

Courses Service;

4. Student downloads a "Certificate 2" document from their Online Storage Service and up-

loads it to the Online Career Service;

5. The edited photo of a student is retrieved directly from the Online Photo Editing Service

using its Web API (firstly, this photo is provisioned to this application from the Online

Gallery Service).

When the application form is completed, the student can submit it to finalise the first step of

the job application process. The student can repeat the above steps when filling in an application

form for another job position (e.g. "Job Position 2").

In many cases, the application process takes time and some of the submitted information

can change in the meantime. For example, the student can change their address and their

"Transcript of Records" document can be updated with newly obtained marks. Importantly,

such information is updated at the respective applications that store the data. Therefore, in

the presented scenario, providing updated information to potential employers requires manual

intervention from the student either on the Online Career Service or through direct interaction

with the employer.

Potential employers, who act as receiving parties of the information from students, may de-

cide that some information is missing and that such information should be additionally provided.

Therefore, an additional step is specified in the presented scenario:

6. The employer asks the student to provide access to their verified phone number information.

1.1.2 Shortcomings

This section analyses the presented scenario. It discusses the shortcomings that can be observed

in existing access control solutions. These shortcomings have not yet been addressed or have

been addressed only partially by access control proposals for the Web. As discussed further in

this thesis, both UMAC and UMA in particular address all of these shortcomings collectively.

S1 Access control available at existing cloud-based Web 2.0 applications lacks sophistication

and does not fit well to complex Web transactions that involve sharing multiple resources

and multiple users or applications as recipients of those resources;

S2 The user has to define their security settings for online data using diverse and possibly

incompatible policy languages across distributed applications;

7

Chapter 1. Introduction

S3 The user needs to use many diverse and bespoke policy management tools with diversified

User Experience for managing access to their online data;

S4 The user lacks a consolidated view of the applied access control policies and audit information

across multiple Web applications.

The first weakness S1 relates to the fact that most Web applications implement an isolated

access control model where the authorisation function is tightly bound to the application. This

limits its configuration or adaptation to particular user’s security and usability requirements.

Such access control can often only address relatively simple scenarios where data is either made

public or accessible only by a predefined set of users of the application. More complex scenarios

are handled by externalised authorisation components but these are only used in enterprise

settings and not on the open Web. Authorisation systems focus on protecting access to Web data

in single applications and during simple transactions. These systems are very limited in more

complex transactions that involve sharing multiple distributed resources with multiple different

recipients. Additionally, these authorisation systems are limited when it comes to sharing data

with users or with services on the Web. These systems also fail to provide means for allowing

recipients to apply for access in the absence of access control policies. This is related to the fact

that access control simply lacks sophistication required by existing complex Web transactions

(such as the one discussed in the scenario) because access control is considered a side issue for

typical cloud-based Web 2.0 applications.

In the presented scenario, the student uses authorisation mechanisms provided by respec-

tive Web applications. These mechanisms may not necessarily meet all security or usability

requirements of the student. These mechanisms may not allow the student to group recipients

of protected data and assign access rights to such groups. In the provided example of a Web

transaction, the "Transcript of Records" document is shared separately when applying for "Job

Position 1" and "Job Position 2" (refer to Figure 1.1). This results in two access control policies

(or two entries in a single policy) for a single resource being created and managed by the end-user

at the S3P application. Surprisingly, a simple functionality of grouping users in authorisation

policies is missing in numerous popular Web applications. Furthermore, sharing the "Transcript

of Records" document and other data required during the job application process has to be

done separately. This is despite the fact that these resources are shared as part of a single Web

transaction (i.e. the user shares some data to achieve a common goal like applying for a job

position). Furthermore, potential employers are unable to easily apply for access to protected

resources (see step 6 of the presented scenario). Policies need to be created in advance in most

existing Web applications, which does not allow to share data on "as needed" basis.

8

Chapter 1. Introduction

When access control does not fully meet the security or usability requirements of the user,

this user may decide to share data manually, as in the case of sharing name and address informa-

tion in the presented scenario. Such provisioning of data by hand and by value poses challenges

as the user loses control over how data is managed by the receiving party as well as how data

gets updated if necessary. This provisioning is also very inefficient. Sharing using secret links, as

in the case of the discussed certificate stored on the Online Courses Service, may be perceived as

convenient but it is very insecure and unsuitable for sensitive data. Links can be shared further

by receiving parties without the user’s consent, which means that the data can be accessed by

others without the user’s knowledge.

Delegating access control from Web applications to more specialised components using

existing proposals and their frameworks and libraries may mitigate the aforementioned prob-

lem. In the context of Web 2.0 applications, these frameworks include the ESAPI framework

from OWASP9 [61; 60], OAuth 1.0a, and OAuth 2.0 frameworks. Delegation in enterprise set-

tings is often achieved using such standards as XACML [97; 109; 107; 113] and SAML [102;

98]. Moreover, there are various academic proposals for delegated authorisation. Existing access

control proposals are discussed in Chapter 2 and in Chapter 3 where the shortcomings of these

proposals are also presented.

Secondly, a lack of a unified policy language used among cloud-based Web applications can

be observed (S2). These applications, being under control of different authorities, potentially

use authorisation mechanisms based on distinct access control policy types based on diverse and

possibly incompatible policy languages. Despite the fact that such languages are not exposed

to end-users directly but only through User Interfaces, forcing the user to define their security

in diverse languages becomes a problem in distributed settings. In particular, it is not easy to

reapply policies when resources are moved between applications or compose a policy for a group

of resources residing in numerous applications (e.g. the student cannot create a single policy

for all "job application-related resources" that reside on a number of different applications and

share these resource in a complex Web transaction).

In the presented scenario, the S3P application may use a simple access control matrix and

the Online Gallery or Online Photo Editing services may support more flexible and expressive

policy languages. Such diversity requires the student to familiarise themselves with numerous

access control solutions. Additionally, the presented Online Courses Service does not implement

any policies but uses secret URLs that allow access to Web data. In such cases, the student is

unable to define access control rules only once and apply these rules to their personal information,

"Transcript of Records" document or certificates which are spread across different applications.
9The Open Web Application Security Project (OWASP) is an open-source community that works to create

freely-available articles, methodologies, documentation, tools, and technologies in the field of Web security.

9

Chapter 1. Introduction

Figure 1.2: Distributed access control policies created and managed in example scenario.

Moreover, if the student decides to move some of their resources from one Web application to

another, then they may not be able to reuse already defined access control rules (in this case, in

the form of recipients of a secret URL) and may be challenged with composing new policies.

Another important weakness of existing authorisation solutions are custom management

tools and their diverse User Interfaces used by Web applications (S3). This results in inconsistent

User Experience (UX) when managing access to resources involved in a single transaction. In the

presented scenario, the student has to concern themselves with interfaces of numerous security

tools at their Web applications in order to share resources efficiently, and most importantly,

securely. Despite the fact that these resources are shared as part of a single Web ransaction, the

student has to concern themselves with three different UIs for managing access control as well

as one UI for generating secret URLs. These interfaces may differ significantly from one another

with some of them being more usable than others. This weakness is visualised in Figure 1.2 that

clearly shows that different UIs available need to be used at different applications (i.e. UI-1,

UI-2, UI-3, and UI-4 in Figure 1.2).

At present, it is more probable that a user will choose their preferred Web applications based

on their functionality rather than based on their security features. However, these applications

are unlikely to provide security-related UIs tailored to all their possible target user groups.

Therefore, security conscious users may decide to abandon functionally rich applications if their

security-related UX does not meet their needs and expectations. Additionally, forcing users to

be concerned with multiple distinct access control solutions in order to complete transactions

on the Web is neither efficient nor desirable. As discussed in [217], security decisions should be

hidden in the user’s workflow, and having a consistent UX is one of the means to achieve that.

The fourth weakness S4 that can be observed is the heterogeneity and distribution of access

control policies, which results in a user having a very limited view of the applied security controls

over their distributed Web resources. Introducing new access control policies, modifying existing

10

Chapter 1. Introduction

ones, and auditing them is a challenging task and requires traversing Web applications and

configuring access control at these applications separately. This weakness is also visualised in

Figure 1.2 that shows multiple locations of security policies that were created to complete a

single Web transaction.

In the presented scenario, the student does not have a holistic view over the applied access

control rules for their personal information at the PDS, "Transcript of Records" document at

the S3P application or their certificates at the Online Courses Service application. Furthermore,

in the presented scenario the student shares their photo from Online Gallery with the Online

Photo Editor, and only then with the Online Career Service. This results in two access control

policies being created and stored at two different locations for the purpose of achieving a single

goal of using the photo in the job application process. With the increasing amount of resources

that the student may store on the Web and possibly share with potential employers (or other

interested parties), managing relationships between policies and resources becomes challenging

and highly error-prone.

Moreover, auditing access requests to protected resources requires retrieving such informa-

tion from all Web applications involved in a particular transaction. The student, for example,

has limited ability to correlate access requests to resources hosted on different applications. The

student is required to access this information separately at each application if they want to

audit how and when their data is being accessed. As shown in Figure 1.2, policies are stored at

different systems and viewing what has been shared and how is a non-trivial task despite the

fact that these resources are shared as part of a single Web transaction.

It is important to note that the scenario discussed in Section 1.1.1 was only one of many

published in [243] as well as among those submitted to [85] that were considered during research

presented in this thesis. Therefore, the aforementioned shortcomings S1 - S4 can be related to

other scenarios as well.

1.1.3 Requirements

This section presents the core requirements for a new access control solution, formulated based

on identified shortcomings. These requirements are in line with the key trend of the Web 2.0

environment to include a user as a core part of its model. In particular, when formulating these

requirements the aim was to provide a system that can be defined as following:

User-Managed Access Control System is a centralised system that allows the user play a

pivotal role in managing access to various distributed online resources and supports secure and

selective sharing of those resources in complex online transactions with other Web users and

11

Chapter 1. Introduction

services.

The identified high-level requirements are defined as:

R1 The user should have a choice to use the access control mechanism and interface which

provides the required sophistication, functionality and usability as well as satisfies their

needs for their Web applications to allow them share their data securely and selectively

with other users and services on the Web;

R2 The user should be able to compose access control policies for their Web resources in a

uniform way and in a single policy language of their choice and the user should be able to

apply these policies to distributed and heterogeneous data;

R3 The user should be able to compose access control policies using a single policy management

tool that would provide a consistent User Experience when assigning access rights to Web

resources hosted at distributed Web applications that reside in arbitrary Web domains;

R4 A consolidated view of the applied security controls as well as audit information should be

provided to support users with managing access to the ever-growing number of resources

on the Web.

The above mentioned high-level requirements aim to address the previously described short-

comings, i.e. requirement R1 addresses the shortcoming S1 and so forth. Furthermore, these

requirements can be mapped directly to the quote from Dr Ann Cavoukian that is presented in

Section 1.1.

The defined requirements were used to provide a user with the necessary solution to manage

security for distributed resources on the Web. Importantly, such solution would be able to

provide access control to resources which the user owns (i.e. where the user is the source of

authority) as well as resources that the user controls (i.e. where the source of authority is

different from the user, e.g. it is an organisation).

1.2 Goal

The research on user-driven access control solutions for the open Web aims to make a step

forward to empowering individuals with control over access to their online data. Privacy is

about allowing individuals to possess the means and tools to share their personal information

and other resources selectively to achieve desired goals and securely complete various transactions

on the Web. Therefore, modern access control solutions should not focus on allowing users to

keep their data inaccessible but should support such selective, flexible and secure sharing.

12

Chapter 1. Introduction

Goal: The primary aim is to define a secure and thorough proposal for a user-driven access

control system that meets formulated requirements and allows individuals to have full control

over access to their distributed Web resources.

Objectives: In order to achieve the presented goal, it is necessary to define the architecture

and the protocol for a user-centric access control proposal. It is also necessary to provide a

software implementation of such proposal and share knowledge and practical experience gathered

during its development. The provided system should prove to be both user as well as developer

friendly, as both characteristics are crucial in achieving the uptake of any security solution.

Furthermore, the implemented system should support integration with new and existing

applications, through the use of developed frameworks. Finally, findings of the conducted

research should be applied to other existing authorisation solutions. This would allow to extend

the user-driven approach to managing access to distributed data beyond the original proposal.

1.3 Approach

The goal of providing a user-managed access control system for the Web has been achieved

through an iterative design and development process (Figure 1.4).

Firstly, it was necessary to study the literature in the field of identity and access management

as well as existing access control systems. The focus was put on the concepts of access control in

distributed environments, access control policies, delegated authorisation, as well as challenges

in authorisation policies and architectures. Parts of this work were published in [240].

Furthermore, a set of scenarios that describe different types of user transactions on the

Web, which are currently poorly addressed by existing authorisation solutions, was defined and

published in [243]. Scenarios were analysed and used to identify shortcomings which were not

addressed or were addressed only partially in existing literature and available solutions. Identified

shortcomings were used to formulate requirements for a user-managed access control proposal.

An attempt was made to map the existing XACML-like solutions [97] to the Web 2.0 envi-

ronment. A proposal was defined based on a simple access control query/response protocol and

it is discussed in [241]. A prototype solution of this proposal was implemented. This proposal

was then refined and named User-Managed Access Control10 (UMAC), which was discussed in
[244]. In the prototype implementation of the refined UMAC system, a user could compose

authorisation policies using a central application and apply these policies to distributed Web

resources. The prototype application provided a User Interface for managing policies and a
10The original proposal was in fact called User-Centric Access Control (UCAC) and this name is used in initial

publications.

13

Chapter 1. Introduction

RESTful API for client applications that host the data or applications that access the data.

Further research on access control has been done as part of the User-Managed Access Work

Group (UMA WG) at Kantara Initiative where a proposal for a similar solution has emerged,

named User Managed Access (UMA). This thesis focuses on UMA, leveraging our increased user

experience, design, and understanding of issues related to implementation of systems similar to

UMAC. Importantly, I have contributed to the work group, including contributing findings from

our own design and implementation. I have been a member of the UMA work group since 2009.

Since 2010, I have been the Vice-Chair of the Work Group as well as the Use Cases Editor and

the Implementation Coordinator. I am also the co-author of the UMA protocol specification.

The list of members of the User-Managed Access Work Group is maintained at [87].

An UMA proposal was implemented during the SMART (Student-Managed Access to Online

Resource) project [77]. The developed UMA implementation consisted of various frameworks,

namely OAuth Leeloo, UMA/j and Puma. This software was used to build client applications

that were used to evaluate the UMA proposal. It was also used to get experience in integrating

access control features with new and existing Web applications.

The UMA implementation also included Authorisation Manager applications. Initially, a

prototype Authorisation Manager, called SMARTAM, was developed and this system was eval-

uated using the conducted user study. Based on this study, a second version of SMARTAM

implementation was provided. This version addresses numerous usability issues that were iden-

tified in the study. It also provides additional functionality in comparison to the first version.

Moreover, our knowledge and experience was contributed to the Google’s emerging Street

Identity proposal [28], which aimed to allow selective access to distributed user attributes. Such

hands-on experience in designing, developing and deploying a highly scalable and robust identity

and access management protocol allowed us to further refine some of the features in our own

design and implementation.

1.4 Novelty of Approach

Both proposals for access control for the Web 2.0 environment, which are discussed in this thesis,

have several advantages over existing authorisation solutions. The presented proposals address

the identified shortcomings and meet formulated requirements. Both proposals also fit precisely

to the user-driven Web 2.0 environment. This section focuses primarily on presenting the novelty

of the UMA proposal and the UMA implementation, which are discussed in this thesis.

Firstly, in the UMA proposal, access control functionality is separated fromWeb applications

14

Chapter 1. Introduction

and is provided in the form of a pluggable Web service, named Authorisation Manager11 (AM).

Access control may vary depending on the particular AM used by the end-user and does not

depend on the actual Web application. Therefore, the user can decide to use the AM that satisfies

their particular needs and provides the required level of security, usability and functionality.

With such approach, different groups of users will be able to benefit from the functionality

provided by a particular Web application and will be able to choose the AM which precisely

satisfies their needs. In particular, the AM is able to provide access control functions necessary to

satisfy common Web transactions that involve sharing resources from multiple Web applications,

such as those presented in Section 1.1.

Additionally, unlike existing systems, the user of the UMA system can compose access control

policies for many or all of their applications using a single policy language that is supported by

the user’s preferred AM. As such, in this proposal the user is able to easily define and apply a

single policy to resources hosted on different and distributed Web applications. UMA does not

require the AM to understand the representations of resources that it protects. Its functionality

is applicable to arbitrary resources which can be identified with URLs. It has been shown that

this proposal can be applied to such data as photos and documents as well as individual pieces

of information and attributes (details are discussed in further chapters of this thesis). Moreover,

reusing a policy can allow a user to set up security before actually sharing a particular resource

at any application, which is a part of the UMA proposal. The above mentioned functionality is

not present in existing proposals or solutions on the Web.

In the proposals discussed in this thesis, a user can apply a single policy across a set of

distributed Web resources and is given a unified User Experience throughout the entire process

of composing an access control policy, linking this policy with resources, as well as amending

this policy as necessary. Therefore, a user does not have to interact with different authorisation

solutions in order to complete a single Web transaction that may involve distributed resources

owned or controlled by this user.

With a central component responsible for access control, a user has a holistic view of the

applied security controls for their Web resources. Importantly, a user can introduce new policies,

modify existing ones, and audit them from a single location. Access requests to resources on

different hosts are evaluated centrally by AM. Therefore, a user may easily audit various aspects

of such requests and correlate them as necessary without the need to pull logging information

from all hosts involved in a Web transaction.

A user is also not required to be directly involved in interactions between services accessing
11The name Authorisation Manager will be introduced and defined in further chapters of this thesis and this

term is used to describe a specialised component concerned with making access control decisions for distributed
Web resources.

15

Chapter 1. Introduction

data and services hosting data after such user successfully sets up policies at AM. The necessity

of such direct involvement is one of the shortcomings of existing proposals (e.g. OAuth 1.0a,

OAuth 2.0 or OpenID Connect). In UMA, various interactions between distributed applications

are controlled in a fashion guided by a user’s defined policies that are managed and audited

through the digital "footprint dashboard" provided by AM.

1.5 Contributions

The main contributions of the PhD research are listed below. Importantly, there were others

who were involved in the work on some of the listed contributions. Therefore, this section should

be read along with the Acknowledgements section given earlier that provides more details on the

involvement of others in the conducted research.

1. A thorough analysis of existing access control proposals for distributed computing envi-

ronments;

2. Architecture and protocol for the user-controlled access management solution for dis-

tributed environments (User-Managed Access Control);

3. Contribution to the design and development of User-Managed Access at Kantara Initiative;

4. Software design for UMAC and UMA proposals;

5. Comprehensive software implementation, including:

(a) User-Managed Access Authorisation Manager, with various extensions, as discussed

in this thesis;

(b) Java framework for building UMA-enabled Web applications;

(c) Python framework for building UMA-enabled Web applications;

(d) One of the first complete OAuth 2.0 frameworks for Java applications;

6. Policy model for the implemented UMA Authorisation Manager;

7. User studies of the proposed UMA Authorisation Manager;

8. Contribution to the design and development of the Google’s Street Identity protocol, in-

cluding multiple prototype implementations.

A thorough analysis of existing access control proposals for distributed computing envi-

ronments was used to identify shortcomings in these proposals. In particular, proposals for

16

Chapter 1. Introduction

multi-domain computing environments, the open Web and Web 2.0 applications were reviewed.

The focus was put on the concepts of access control in distributed environments, access control

policies, delegated authorisation, as well as challenges in authorisation policies and architectures.

A scenario and use case analysis, which was originally published in [243], was then provided.

It was necessary to analyse various Web transactions to identify weaknesses of existing autho-

risation solutions. An extensive literature review of available authorisation solutions was also

conducted. Based on this analysis and review, a set of high-level requirements for a new access

control proposal was formulated. As discussed in this thesis, some of the existing authorisation

proposals meet either none or only selected requirements.

A new approach to user-controlled access management for the Web was designed. This

proposal was named User-Managed Access Control (UMAC). UMAC puts a user in full control

over access to their resources and relies on a user’s centrally located security requirements for

these resource, which may be scattered across multiple Web applications.

The focus was then shifted to the proposal from the User-Managed Access Work Group

and further research efforts continued solely on the User-Managed Access solution (and not on

UMAC) at Kantara Initiative. In collaboration with the research team at Newcastle University,

I contributed to the design and development of UMA through participation and work in the

UMA WG. We also contributed with the knowledge from the design of the software that would

realise the architecture and the protocol of the UMA proposal. In particular, we implemented

all parties of this proposal, including Authorisation Manager, Host and Requester applications

that UMA defines.

During conducted research, an UMA Authorisation Manager called SMARTAM V1 was

developed. This AM provides a UI that allows users to manage access control for distributed

Web resources. It also provides a RESTful API for client applications. This contribution was

awarded the Identity Deployment of Year (IDDY) Award [121] in 2011.

The UI of SMARTAMV1 was evaluated with a user study that allowed to verify the approach

to user-managed access control and the developed software. Results of this evaluation were used

during development of a second version of UMA Authorisation Manager called SMARTAM V2.

SMARTAM V2 included feedback gathered during the conducted user study. It also imple-

mented a more recent revision of the UMA proposal. SMARTAM V2 was built in a modular

way using developed frameworks, namely OAuth Leeloo and UMA/j.

Both developed Authorisation Managers implement a rich access control policy model.

SMARTAM V1 allows users to define policies that include identities of users and optional re-

quired self-asserted claims. A policy evaluation engine to support those policies was designed

and implemented as well. On the other hand, SMARTAM V2 allows users to define myself- and

17

Chapter 1. Introduction

Figure 1.3: World map showing visitor demographics of the OAuth Leeloo website at [117] between
1st August 2010 and 29th April 2013. Map has been generated using the Google Analytics software
[18].

others-type policies. The first type allows for selective sharing of resources with other services

on the Web on behalf of the owner (or controller) of those resources. The second type of policies

allows for selective sharing of resources with other users on the Web. Others-type policies can

include third-party asserted claims using OpenID Connect.

In parallel to AM implementations, various frameworks related to UMA have been developed.

Firstly, a complete OAuth 2.0 Java library was designed and implemented. OAuth 2.0 is the main

building block of UMA and it was necessary to provide its implementation that could be easily

used by other UMA software. The implemented library, named OAuth Leeloo [117], included

some proposed extensions, with dynamic registration as an example. It was first released in

August 2010 and submitted to the Apache Software Foundation few months later. Despite the

fact that the code was incorporated into a Top-Level Project (Apache Oltu) [129], the original

release of OAuth Leeloo continued to attract various communities. Between its release and the

29th April 2013, the website at [117], has been visited 20,128 times (with 11,166 unique visitors)

from 117 different countries (Figure 1.3). The software has been downloaded more than 3000

times from the website, which does not include downloads from the Maven Central Repository.

OAuth Leeloo was used to develop an UMA framework in Java called UMA/j. UMA/j

supported development of Authorisation Managers and UMA-enabled client applications. The

18

Chapter 1. Introduction

framework introduced various architectural choices that are discussed in this thesis. Additionally,

its API was used to provide feedback to the UMAWG on the UMA protocol and how the protocol

can be implemented in new or existing Web applications.

To further simplify development of client applications, a Python implementation of the

UMA protocol was also provided with various extensions that are discussed in this thesis. Puma

targets rapid application development using the popular Google’s Platform-as-a-Service (PaaS)

- Google App Engine [21]. Puma was used to implement one of the first UMA-enabled PDS-like

systems, which is discussed in this thesis. On 26th March 2012, I was a member of the Technical

Workgroup at the World Economic Forum "Re-Thinking Personal Data" - Tiger Team meeting

held in San Jose, CA, USA. The meeting discussed the emerging Personal Data market and

applicability of various technologies. I discussed the UMA proposal and the implemented UMA

software during this meeting.

Findings from the design and development of UMAC and UMA solutions were additionally

contributed to the Google’s Street Identity protocol in 2011 and 2012. Street Identity allows

clients, called Relying Parties (RP), to obtain verified attributes about individual users from

applications called Attribute Providers (AP). Access is authorised by Google IDP that records the

user’s consent to share a specific attribute type and issues authorisations to RPs. Street Identity

in its current form can be considered a simplified version of the UMA proposal. Importantly,

I contributed throughout the entire lifecycle of the protocol, starting from design up to its

deployment to the Google’s production infrastructure.

1.6 Thesis Outline

This thesis is organised as following. Firstly, this chapter introduces the thesis. It outlines the

main goals and the approach taken in satisfying these goals. It also introduces the motivation

behind a new access control solution for distributed and user-driven environments such as Web

2.0. It presents an example scenario describing a transaction on the Web. It provides analysis of

this scenario and points out the shortcomings of existing access control systems. It then presents

formulated requirements for a new access control proposal. This chapter summarises the novelty

of the solutions presented in this thesis and also discusses main contributions.

Access control in distributed environments is presented in Chapter 2. This chapter provides

background information regarding concepts that are used throughout this thesis. It starts with

an overview of multi-domain computing environments, the open Web and Web 2.0 applications,

and presents their specific characteristics that are of interest in the context of access control.

Furthermore, it discusses different concepts of access control in distributed environments, access

19

Chapter 1. Introduction

Figure 1.4: Visualisation of the thesis outline.

20

Chapter 1. Introduction

control policies as well as delegated authorisation. It then discusses challenges in access control

policies and architectures. Parts of this chapter were first published in [240].

Chapter 3 provides a literature review. It discusses existing standards and standard pro-

posals as well as academic work. It presents various solutions for access control that allow

individuals to be in control of access to their Web data.

Chapter 4 introduces a novel authorisation solution for distributed Web resources, called

User-Managed Access Control (UMAC). It discusses the architecture and the protocol of this

proposal. It also shows how this proposal meets identified requirements for a new user-managed

access control system. It then discusses the identified shortcomings and limitations of UMAC.

Parts of this chapter were published in [242; 244].

Chapter 5 presents the User-Managed Access (UMA) solution, which is researched by the

User-Managed Access Work Group at Kantara Initiative. UMA has been used in research pre-

sented in this thesis. This chapter discusses additional requirements for UMA. It also presents

the UMA architecture and the protocol. This chapter then evaluates UMA and provides an

overview of its limitations. It also shows differences between UMA and the UMAC approach.

Importantly, Chapter 5 is based on specifications and other work published by the User-Managed

Access Work Group. Furthermore, parts of this chapter were published in [238].

Chapter 6 presents two UMA frameworks that allow applications to externalise their access

control functionality and act as Hosts and Requesters, as defined by the UMA protocol. Section

6.2 presents a Java implementation named UMA/j. Section 6.3 presents a Python implementa-

tion named Puma. This chapter also discusses identified limitations of both frameworks.

UMA/j was targeted at enterprise-level (but still user-driven) cloud-based Web applications.

The framework provides a high-level UMA API for applications as well as allows to use low-

level APIs for finer control of the protocol flows. Parts of Chapter 6 that discuss UMA/j were

published in [239], as a joint effort with Łukasz Moreń.

PUMA, on the other hand, was built primarily for applications running on the Google App

Engine PaaS [21]. Because this framework was designed and implemented later than UMA/j,

it contained various enhancements and simplifications for application developers. It also imple-

mented a more recent revision of the UMA protocol. Parts of Chapter 6 that describe Puma

were first published as blog posts during the SMART project in [123] and [124], as a joint effort

with Jacek Szpot.

Chapter 7 presents two UMA Authorisation Manager implementations that were developed

in parallel to the work on UMA frameworks. It starts by discussing an initial AM implementation,

called SMARTAM V1. It presents the design of this software and its policy model. It also

discusses integration of SMARTAM V1 with example applications.

21

Chapter 1. Introduction

Chapter 7 then presents the conducted user study that was used for evaluation of SMARTAM

V1 and its User Interface. It presents identified shortcomings of SMARTAM V1 based on the

gathered feedback from the user study. It also presents requirements that were derived from these

shortcomings and that were used in further work on UMA software. The user study presented

in this chapter is a joint effort with MSc student Iain Carter also published in an MSc thesis in
[153], where I was responsible for the design of this study.

Moreover, Chapter 7 discusses a second AM implementation, named SMARTAMV2. SMAR-

TAM V2 addresses various shortcomings that were identified in the earlier implementation. It

also provides support for a more recent revision of the UMA protocol. This chapter discusses the

architecture of this software and its policy model. It also presents its unique features that pro-

vide additional value on top of the core UMA proposal. This chapter also provides an overview

of shortcomings of SMARTAM V2.

Finally, Chapter 8 concludes this work. It discusses a summary of the thesis. It also presents

future research directions and finally provides concluding remarks.

22

Chapter 2

Background

2.1 Introduction

Modern computing systems are no longer built from monolithic applications provisioned from a

single and central location but rely on loosely coupled components distributed among different

hosts or deployed as individual Web applications/services or even entire Web ecosystems. The

Service Oriented Architecture (SOA) paradigm supports such a decentralised computing model.

Software is viewed as composite applications built from single units called services that can

be reused across multiple applications [175]. SOA promotes reusability of services and eases

application management and integration. Using SOA principles allows to build systems that are

scalable and can evolve according to changing requirements [99].

SOA provides a solid foundation for business agility as well as adaptability. Therefore, it

has gained much attention during the last decade, primarily in the enterprise settings. Services

are built, exposed and consumed by internal applications in intra-organisational scenarios and

exposed to other domains of business partners or specialised Service Providers [215]. Systems

that span multiple administrative domains form multi-domain computing environments and are

created to enhance collaboration between the parties as well as to promote sharing of resources

and services.

Similarly, in today’s rapidly developing and open Web environment, various applications and

services are provided in the Software-as-a-Service (SaaS) model. These SaaS applications provide

users with functionality as varied and complex as desktop applications that would normally be

used by individual users or internally within organisations. Those applications are collectively

referred to as "Web 2.0", with consumer examples such as the Wordpress platform [90], Blogger
[130], Google+ [16], Facebook [9], as well as business-oriented examples such as Google Apps [22],

23

Chapter 2. Background

Salesforce [68], Liferay [44], or Concur [5], among others. Those applications allow individual

users or entire organisations to create, manage and share their content online. In an environment

of cloud-based applications, more and more data is released online and stored in a distributed

manner. Both, in multi-domain computing environments as well as on the Web, data can be

accessed using such technologies as Web Services.

Web Service technology is a flexible distributed computing abstraction that enables applica-

tion composition from resources and services located in different organisational or administrative

domains or over the Web [94; 226]. Web Services fit well into SOA because they allow applica-

tions and resources to be exposed as services that can be accessed remotely [137]. In modern

computing environments, either SOAP-based or RESTful Web Service technologies are used.

The first type uses the eXtensible Markup Language (XML) [110] to describe service interfaces

in WSDL [165] and to encode messages that are exchanged in SOAP [294], while the latter one,

initially described in [187], is a more lightweight and scalable approach based entirely on the

HTTP protocol, which follows the principles of Representational State Transfer (REST). REST

principles are discussed in [187].

RESTful services, in particular, fit well into the open Web environment because of their

nature of stateless operations, caching capabilities, and low-overhead messages, among other

factors. These services have been recently used to build various Web-accessible Application

Programming Interfaces (Web APIs), abandoning XML in favour of a more lightweight Javascript

Object Notation (JSON) [166; 167]. This thesis explains how the discussed UMA proposal uses

REST in its architecture and protocol and how it provides a solid authorisation solution for

protection of RESTful Web services.

Web Service-based integration of computing environments from autonomous administrative

domains poses numerous security challenges and mechanisms typically used for protecting re-

sources and services within single organisations may not be sufficient. Different organisations

often have conflicting security requirements [142] but they may still need to interoperate by

exposing a part of their resources and services to other parties. Therefore, architecting secu-

rity mechanisms for such multi-domain environments has become an important, but complex

and error prone task that requires a deep understanding of the functional and non-functional

requirements of each participating domain [173].

The same applies to the Web, where autonomous applications or even entire Web ecosystems

may be required to share various data, according to the needs of organisations or, more impor-

tantly, individual users involved in online transactions1. Therefore, access control, in particular,

needs to be well understood to enable efficient and secure collaboration and resource sharing.
1 This thesis focuses primarily not on the organisation but on the user who owns the data or controls the data.

24

Chapter 2. Background

Figure 2.1: Overlap of access control requirements in different deployment environments.

Resources and services need to be protected within their administrative boundaries but should

be accessible according to security requirements imposed beyond these boundaries.

This chapter provides background information regarding concepts that are used through-

out this thesis and it is organised as following. Section 2.2 introduces distributed computing

environments, including multi-domain computing environments, the open Web and Web 2.0 ap-

plications. It presents their specific characteristics that are of interest in the context of access

control. As shown in Figure 2.1, requirements for access control for the Web and Web 2.0 overlap

with the requirements of multi-domain computing environments. Such overlap has been recog-

nised in existing literature, e.g. [281], which presents parallels with the issues of data sharing

and trust in Social Network applications and those that have arisen in the e-* (e.g. e-Science,

e-Research, e-Health, e-Business, etc.) arena. Section 2.3 presents access control mechanisms

and discusses them in the context of distributed computing environments. It also introduces

delegated authorisation and presents its various derivatives. Section 2.6 discusses access control

policy and architecture challenges.

2.2 Distributed Environments

This section introduces distributed environments and provides a brief overview of their architec-

tures.

25

Chapter 2. Background

2.2.1 Multi-Domain Computing Environments

Multi-domain computing environments have evolved to provide means of resource sharing and

problem solving among various institutions [189]. These environments are composed of multiple

separate and autonomous administrative domains where each domain belongs to a different

entity. For example, domains can be managed by single users, departments within a company or

most typically entire organisations. Such environments may run on collaborations in an ad-hoc

fashion [228]. Those are typically peer-to-peer based bilateral collaborations where partners do

not need to have pre-established trust relationships. Collaborations between multiple domains

can be also in the form of federated environments. Such environments are designed to simulate

a similar environment to a single domain with pre-established trust relationships between all

collaborating partners.

A multi-domain computing environment, when composed to address a specific business or

science related problem, is often referred to as a Virtual Organisation (VO), as described in [189].

Such environment supports collaboration between parties of specific expertise. A high-level view

of a multi-domain computing environment in the form of a Virtual Organisation is depicted in

Figure 2.2. Each VO member has its own set of resources (WS) protected by policy enforcement

points (PEP). Policies are stored by administration points (PAP) and are evaluated by decision

points (PDP). Policy enforcement, decision and administration points constitute the building

blocks of a general policy-based authorisation system and are discussed in Section 2.4. These

components have been used as building blocks in the proposals that are discussed in this thesis.

Organisations that form VOs have trust relationships established between each other. In

Figure 2.2, Organisation 1 trusts Organisation 2 (TO12), while Organisation 2 trusts Organi-

sation 3 (TO23). In the provided example, trust is bidirectional between respective systems but

is not transitive, which means that Organisations 1 and 3 do not necessarily have to trust each

other despite that TO12 and TO23 are in place.

Individuals and institutions that form a VO share data and applications implemented as

resources or services. Due to the highly distributed nature of shared resources/services and a

limited trust between collaborating partners such sharing needs to be controlled. Providers of

resources need to be able to define clearly and carefully how these resources are provisioned, who

is allowed to access those resources and what are the conditions under which access may occur.

Additionally, sharing relationships can vary dynamically over time [189; 164]. This includes

resources involved in sharing, participants of the VO who want to access those resources, and

access control rules that exist.

There are different types of multi-domain computing environments. They can differ in the

purpose of being established, their scope, size, duration, structure, community and sociology

26

Chapter 2. Background

Figure 2.2: Multi-domain computing environment forming a Virtual Organisation [219].

[189]. Those characteristics influence authorisation systems that need to be employed by such

environments. An example would be where the size of a multi-domain computing environment

determines the distribution of components of the access control mechanism and has impact on

performance of the protocols used for authorisation. Duration of such environment may also

influence the way permissions are assigned to entities. For example, in highly dynamic and large

environments, access control can be based not on explicitly named set of individuals but on

the attributes of those individuals. For example, access control policies can contain rules for

participants with certain attributes, capabilities, or levels of trust, among others, rather than

for those that have specific identity credentials or even roles.

Existing multi-domain environments, such as Virtual Organisations, often have a well-

defined set of access control components (e.g. policy decision and administration points) and

are commonly concerned with: (1) enforcing access control policies for inter-domain access re-

quests, (2) enforcing access control policies within individual domains. Interactions between

these components are not necessarily established dynamically as and when required but they are

established during formation of a VO. Resources and services that are protected with a policy-

based authorisation system refer to decision points based on existing configurations. Therefore,

it is often the responsibility of a VO administrator (or a set of administrators) to establish re-

lationships between services and access control components and to define security policies for

resources and services. The user is not directly involved in these processes but may be able

to compose policies for resources and services that this user owns or controls. As discussed in

this thesis, excluding the user from access control processes is considered as one of the main

disadvantages of existing authorisation solutions, which does not fit well with the requirements

for a user-managed access control solution for the open Web (recall requirements presented in

Section 1.1.3).

27

Chapter 2. Background

Figure 2.3: The Internet & the Web environment.

2.2.2 Web Environment

Similarly to multi-domain computing environments, the Web is composed of various distributed

systems, including organisations, individual Web systems and recently emerging Web ecosystems

(Figure 2.3). These systems reside in distinct domains under the control of different entities.

In the first case, organisations expose their resources and services through publicly facing Web

sites or Web Application Programming Interfaces (Web APIs). Individual Web systems are

deployed and managed outside the perimeter of any organisation. In case of Web ecosystems,

these constitute sets of various Web applications within a single administrative domain (or a set

of such domains) and share a common set of features2.

In the current Web model, named Web 2.0 [88; 266], these distributed systems are inher-

ently interconnected since the Web itself enables creation of new applications by reusing and

combining different services or data from various sources [251]. These services and resources

are accessed using SOAP-based APIs or more recently RESTful APIs [66]. On the Web, the

user is both a consumer and a provider of various distributed resources and often maintains a

separate copy of identity, social relationships or access control polices at different systems [286].

As depicted in Figure 2.3, distributed resources on the Web are protected by their respective

mechanisms, similarly to previously defined multi-domain computing environments. Organisa-

tional resources, despite being exposed on the Web, use the existing organisational mechanisms

based on the PEP/PDP/PAP architectures, while individual systems or Web ecosystems use

their own mechanisms.

On the Web, distributed systems can form trust relationships between each other, which

is similar to multi-domain computing environments. However, such relationships are rarely
2An example of such a Web ecosystem is the one provided by Google, with distinct applications such as

Gmail [15], Google Drive [25], YouTube [92], among many others, that share a common set of features, including
authentication, authorisation, or even APIs.

28

Chapter 2. Background

pre-established because of the number of possible components. Instead, such relationships are

formed in a dynamic way either by administrators of applications or (more often) by individual

users of those applications. Trust relationships most commonly refer to federated authentication,

where systems rely on authentication information asserted by identity providers. In Figure 2.3,

Organisation 1 trusts Ecosystem 1 with authentication information, while Ecosystem 1 trusts

authentication from Organisation 1 (TO1E1). Additionally, Web System 1 trusts users from

Ecosystem 1, however, Ecosystem 1 does not trust authentication information asserted by Web

System 1. The latter case shows a uni-directional trust, which is more common on the open

Web than bi-directional trust. In this figure, arrows denote the direction of trust. In case of

uni-directional trust relationships the arrow is directed from the trustee to the trusted system.

In the context of authorisation, trust relationships allow one system to enforce access control

decisions made by another system. In particular, this functionality exists for API management

on the Web. Examples of such functionality include Mashery [46], 3scale [1], and Apigee [2],

that differ in their architecture. However, these systems are mostly concerned with protecting

organisational Web APIs that can be accessed by client applications. Therefore, these systems

do not focus on giving end users the control over data that can be spread across numerous Web

applications (either data owned by the user or data controlled by the user). Moreover, in these

systems, there is rarely a distinction between the actual service and the owner of that service in

relation to access control.

Giving control over resources and services to end users is the subject of this thesis, which

discusses proposals that allow for dynamically established bi-directional trust relationships to

be formed by components of the system. Moreover, in the discussed proposals, different users

can delegate authorisation from the same application to different access control components

depending on the requirements of these users.

2.3 Access Control in Distributed Environments

Access control (authorisation) constitutes an important part of Identity and Access Management.

IAM encapsulates people, processes and services to identify and manage resources used in various

information systems and this is required to authenticate users (subjects) and grant or deny access

rights to specific resources and services. IAM itself comprises of the following four components:

1. Identification;

2. Authentication;

3. Access Control (Authorisation);

29

Chapter 2. Background

4. Auditing.

Identification allows users or applications to present their digital identity to the receiving

party, while Authentication allows the receiving party to verify the correctness of such identity

(e.g. by verifying credentials). Access Control allows to make decisions about which resource(s)

a user or an application can use and what actions can be performed on these resources. Auditing

further enhances the aforementioned processes by logging identification, authentication and au-

thorisation events. This thesis focuses primarily on Authorisation and this concept is presented

further in this chapter.

Access control protects resources against unauthorised disclosure and unauthorised or im-

proper modifications. It also ensures that every access is controlled and that only authorised

access requests can succeed [277; 275]. In single host computing systems, access control can be

provided by establishing a barrier around this host and by making sure that all access requests

are analysed and checked. For example, requests have to pass through a reference monitor that

makes access control decisions [224] (recall Chapter 1).

In multi-host, distributed and dynamic computing environments a more flexible authorisa-

tion architecture is required. In such environments, creating a simple barrier around a group

of distributed services is neither feasible nor desirable. Instead, a logical rather than a physical

barrier has to be established.

Access control can be discussed at different levels of abstraction. This includes access control

policies, mechanisms and models [275; 184]. Policies describe how access is managed and who,

under what circumstances, may access which resources. Mechanisms enforce policies and define

how access requests are evaluated against those policies. Models bridge the gap between high-

level policies and low-level mechanisms by defining means of how access control rules should be

applied to protect resources. Such models are defined mostly in terms of subjects and objects

and possible interactions between them [184]. This thesis presents novel proposals that intervene

all three levels of abstractions, i.e. policies, models and mechanisms.

2.3.1 Policies

Different access control policies have been proposed over the years. These policies, as discussed

in [275], fall into one of the following 3 main categories:

1. Mandatory Policies;

2. Discretionary Policies;

3. Role-Based Policies.

30

Chapter 2. Background

In Discretionary Access Control (DAC) policies, access is based on the identity of the sub-

ject and on specific access control rules that define which operations are allowed on what objects

(and possibly including under what conditions). Mandatory Access Control (MAC) policies con-

trol access based on centrally mandated sensitivity levels (classifications) of protected resources

and authorisation levels of subjects (clearances). The third category, Role-Based Access Con-

trol (RBAC), allows composing access control policies that map naturally to an organisation’s

structure [276; 275]. In RBAC, access control decisions are made based on roles that individual

subjects may possess and rules that are applied to resources. RBAC merges the flexibility of ex-

plicit authorisations with additionally imposed organisational constraints. It has been further ex-

tended as Attribute-Based Access Control (ABAC) or Claims-Based Access Control (CBAC) [133;

216] to support control that is based on arbitrary types of attributes or claims. As such, RBAC

and ABAC/CBAC are well suited to distributed environments that need to address security

requirements for a large base of subjects and objects. Those environments include previously

discussed multi-domain computing environments as well as the open Web (further explanation

of the use of CBAC is given in Chapter 5).

Access control policies may contain positive statements (positive authorisations) or negative

ones (negative authorisations). Statements can be presented in the form of Access Control Lists

(ACL). Positive statements define what actions can be performed on what objects by which

subjects. Negative statements define what actions are not allowed.

Negative authorisations allow to efficiently prevent a particular subject from accessing a

specific system or resource, as required. Additionally, such statements are often used to impose

additional constraints on access control policies and to support various access control models.

These policies allow to define such constructs as conflict of interest or separation of duty [149].

For example a positive authorisation may state that a particular user is able to access an online

expense system as well as the online payment authorisation system. A negative authorisation

may further state that this user cannot access those two systems at the same time (in order to

prevent an expense being submitted and further authorised by the same user).

Positive and negative statements may be defined in a way that a conflict arises. For example,

a positive policy grants access to a specific object while the negative policy denies access to this

object. In such cases, policy conflict resolution mechanisms can be used. Despite the fact that

such conflicts are inevitable in large and distributed computing environments such as the open

Web, this thesis does not focus on them. The solution presented in this thesis only supports

positive statements.

31

Chapter 2. Background

2.4 Delegated Authorisation

Resources and services in distributed environments, such as those based on the SOA paradigm,

and with pre-established trust relationships between various components often do not handle

authorisation by themselves but offload this functionality to specialised components. Such exter-

nalised authorisation is not a new concept but has been already discussed in various forms in [231;

223; 254]. In [300], authors presented a generalised access control policy language and a contract-

ing protocol for offloading access control from end servers to specialised authorisation servers.

In their model, services are required to enforce authorisation but delegate the decision making

process to specialised components that are better-suited for this task.

In case of the open Web where applications reside in distinct Web domains under the control

of different authorities, such delegation exists only in limited form. Importantly, it does not

address the shortcomings that were presented in the previous chapter. The solution presented

in this thesis allows applications to establish dynamic bi-directional trust relationships between

components that had no prior knowledge of each other. These relationships are established

based on preferences of individual users concerned with protecting their data. Additionally, this

solution builds on specific features of delegated authorisation that exists in SOA-based computing

environments within single administrative. These features are used to allow for Internet-scale

access control.

Externalised policy-based authorisation mechanisms rely on four main components [97]:

Policy Enforcement Point (PEP) The PEP component is responsible for enforcing access

control policies. It creates a barrier around the resource that it protects and mediates all

accesses to this resource. It enforces decisions that are made by other components.

Policy Decision Point (PDP) Evaluates access request decision queries issued by enforce-

ment points. PDP has access to the set of policies and evaluates access requests against

applicable policies.

Policy Administration Point (PAP) The PAP components provide administrators or indi-

vidual users the ability to manage policies in the authorisation system. These components

usually have user interfaces or provide high-level tools that support policy composition

and management.

Policy Information Point (PIP) PIPs are used to provide information that can be used

during evaluation of access requests against applicable access control policies. These com-

ponents may gather attributes related to subjects, objects and the environment in which

access requests are performed.

32

Chapter 2. Background

The proposals presented in this thesis leverage the aforementioned concepts.

There are numerous advantages of externalising security, and access control in particular,

and providing these functions in a modular-type architecture for other services and applications

to use. Individual applications or even entire systems can be composed from business services

and services that address various nonfunctional requirements of the applications. In such appli-

cations, business logic is well separated from authorisation which is an orthogonal functionality.

Authorisation can be managed independently and plugged easily into more complex distributed

applications or systems without the necessity of prior knowledge about relationships between

these applications [198]. On the Web, such authorisation can be potentially applied to a dis-

tributed set of resources and services.

In enterprise scenarios, security policies can be written independently and these policies

do not need to be defined and coded at the same time and in the same package as business

services. This facilitates audits and checks of security policies for the purpose of correctness,

governance and compliance. As business services in SOA can be used to compose arbitrarily

complex applications, such checks and audits are of significant help in anticipating problems

before they occur. Changes to security policies can also be easily introduced in order for the

computing system to comply with changing security or compliance requirements. This can be

done without the need of modifying the logic of business services [198].

In case of applications managed by individual users, externalised access control policies can

be applied to potentially distributed resources and services. Therefore, a user could use a single

and centralised system in order to apply security to Web data that this user owns or controls.

This thesis focuses solely on such user-centric and user-managed cases in the Web environment.

When authorisation is delegated to specialised components then potentially more accu-

rate authorisation decisions can be made [300]. Authorisation services can have a detailed

and holistic view of the computing environment and may introduce useful information into

the policy evaluation process. Because authorisation services provide their functionality for a

group of services, typically the entire computing system, administrative domain, or an ecosys-

tem, a consolidated view of the security that is applied within such a system is also possi-

ble. This may support better manageability because standard management tools can be de-

veloped for the entire system. Additionally, authorisation services easily contribute to uni-

formity of accounting and auditing functions and this is discussed in more detail in [300;

158]. The aforementioned characteristics of delegated authorisation match precisely one of the

requirements as defined in the previous chapter (see requirement R4). This thesis discusses

proposals that rely on such delegated authorisation.

33

Chapter 2. Background

2.4.1 Interactions

Interactions between the decision (PDP) and enforcement (PEP) points can be based on one

of the three proposed main authorisation decision query sequences. These sequences have been

discussed in existing authorisation frameworks such as the Generic AAA Architecture presented

in [168], Authorization Framework presented in [293], with requirements in [182] and examples

discussed in [292], the Access Control Framework described in the ISO/IEC 10181-3:1996 recom-

mendation [250] or the Conceptual Grid Authorization Framework and Classification proposed

in [234]. These decision query sequence models are:

1. Agent model;

2. Pull model;

3. Push model.

The access control decision agent model is a proxy-based approach where a specialised com-

ponent sits in front of an exposed service (resource provider) and mediates all access requests

to this service. It is the simplest form of the previously mentioned reference monitor, which

was first introduced in [224]. It is also the most commonly implemented model in existing Web

applications. In this model, the PEP and PDP are collocated together at the service side. The

service can only communicate with the agent and does not accept access requests from any other

sources (i.e. all access requests have to be mediated through this agent). In the access control

decision pull model, the access request is made directly to the service, which is responsible for

sending it to a decision component, such as PDP, of the authorisation system. When such access

request is successfully validated against applicable policies then the client is given access to the

service. In the access control decision push model, it is the client that communicates with a

decision component (PDP) and obtains a capability for a specific service or a resource. The

decision component decides if a capability (representing permissions of the client for a particu-

lar resource or a service) should be issued to the client using applicable access control policies.

This capability is later checked by the enforcement point. In case of push and pull models, the

decision component is separated from the client as well as the service.

Importantly, all three authorisation decision query sequences can be combined with either

push or pull credential sequence models. In the push credential sequence model, it is the client

that is concerned with obtaining credentials before the access control process (i.e. before these

credentials are used to evaluate permissions of this client for a service or a resource). In the pull

credential sequence model, it is the enforcement point that obtains the credentials and then uses

them during the access control process (see [160]).

34

Chapter 2. Background

The next sections of this thesis discuss various access control decision query models combined

with the push credential sequence model. In the provided examples, the client first obtains the

credentials and only then an access control decision process takes place, either using agent, pull

or push model. The service that issues credentials is called the Credential Service, the service

that issues capabilities is called the Capability Service, and the service that issues access control

decisions is called the Policy Service. The capability and the policy service are concerned with

checking access requests against applicable access control policies. The objective of the provided

examples is to present how access control is performed and not how clients are authenticated or

how their credentials are validated.

The agent model constitutes a decentralised approach to access control policy management.

Policies need to be expressed, managed and enforced in each distributed agent and these agents

are located at the perimeter of every domain where services are enforced. A single administrative

domain may have multiple subdomains where services are located and may require multiple

agents to control access to those services. As depicted in Figure 2.4, a client makes a request to

a resource (step 1) and this request is evaluated by the policy service against applicable access

control policies. This policy evaluation is performed locally within the agent.

In the provided example, policy evaluation is done based on supplied credentials. The client

issues a request for credentials (step I) and such credentials are provided to the client after

successful verification (II). These credentials are used in access requests to resources, which

constitutes the credential push model. Importantly, the agent (proxy) has an established trust

relationship with the Credential Service and therefore it can trust the credentials that are issued

by that service.

The access control decision making service (Policy Service) is an integral part of the agent

that mediates access to resources. Access to a resource is granted or not (2) based on the

decision issued by this service. The agent model could be observed in the scenario presented in

Section 1.1.1 and this model is considered ill suited for the open Web. The PEP and the Policy

Service are collocated and therefore these two components have an assumed trust relationship

established between themselves.

In case of access control decision push and pull models, policies can be managed indepen-

dently from the services. These policies can then be applied to various services located in different

domains. Therefore, only these two models fit well into SOA and the open Web. Both solutions

provide means of centralising authorisation information in specialised servers [184]. These two

particular models have been used during design of the proposals that are discussed in this thesis.

The push and the pull model of authorisation decision query can be presented by comparing

two distinct authorisation mechanisms:

35

Chapter 2. Background

Figure 2.4: Agent model approach to access control [219].

1. Capability-issuing mechanism;

2. Decision-issuing mechanism.

The capability-issuing mechanism uses the access control decision push model. A client first

obtains appropriate capability to access a resource. Such capability represents the permissions

that the client has for a particular resource/service. This capability is then passed along with the

access request to the resource. Capabilities can be attached to the access request as an assertion,

which upon verification by the service, results in access being granted or not. Kerberos [255] is

an example of such system and it is discussed in Section 3.4.

The pull model can be well presented by discussing the decision-issuing access control mech-

anism. In this mechanism, a client is only concerned with invoking the business service. Such

service is then responsible for communicating with the appropriate decision component to de-

termine whether access should be granted or not. XACML [97], along with SAML [102], is an

example of a decision-issuing mechanism. XACML and SAML are discussed in Section 3.2 and

Section 3.3 respectively.

The capability-issuing and decision-issuing approaches to access control are similar in terms

of the general structure and syntax. However, these two approaches differ in terms of their exe-

cution semantics. They have different trust relationships and interactions between components

of the security architecture [219]. These differences are discussed in more details in Section 2.5.1

and Section 2.5.2.

2.5 Access Control Mechanisms

The next two sections present the push and pull model of authorisation decision query by pre-

senting two distinct policy-based access control mechanisms. The capability-issuing mechanism

uses the access control decision push model while the decision-issuing mechanism uses the pull

36

Chapter 2. Background

model. Both access control mechanisms use policies for their authorisation decision making

process. The following sections discuss the differences between these two mechanisms.

2.5.1 Capability-Issuing Security Architecture

A capability-issuing authorisation architecture features a trusted capability service [219] that can

be used by clients of business services. This Capability Service makes authorisation decisions

and can be viewed as Policy Decision Point (PDP). Referring to Figure 2.5, a client issues a

capability request (step 1) which is evaluated by a Capability Service against applicable policies.

A Capability Service replies with a capability response (2), acting additionally as a Security

Token Service (STS). This response typically includes signed assertions that contain information

about the action (or actions) that can be performed by the subject on an object. These signed

assertions are collectively referred to as capabilities. A response from a Capability Service may

also pose additional constraints on the permissions that the client has. An example of such

constraint may be the period of time during which a particular permission is valid.

A client (subject), which requested capabilities, includes them when making requests to a

business service (3). Optionally, a client can include its credentials as well. The capability is

extracted on the business service side and it is validated for its integrity and authenticity. Only

then the enforcement point checks whether the capability is sufficient for access to be granted

(4).

In the example visualised in Figure 2.5, policy evaluation is done by the Capability Service

based on supplied credentials. The client issues a request for credentials to the Credential Service

(step I) and such credentials are provided to the client after successful verification (II). These

credentials are used in the request that the client makes to the Capability Service.

Importantly, there are a number of trust relationships between different components of

the capability-issuing architecture (see Figure 2.5). The Capability Service, before issuing the

capability to the client, has to trust the provided credentials. Therefore, this service has an

established trust relationship with the Credential Service. Secondly, there is a trust relationship

between the enforcement point and the Credential Service as well as the Capability Service.

Firstly, the enforcement point can validate if access requests come from trusted clients (i.e. the

PEP can verify that calls to services are authenticated and that credentials can be trusted).

Secondly, the enforcement point can validate if the capability that is sent by the client can

be trusted. The trust relationship between the PEP and Credential Service is optional when

access requests made by client applications to this PEP do not contain any credentials. The

enforcement point of a resource provider needs to have access to trusted public key certificates

of credential and capability services and is able to technically assert a trust relationship with

37

Chapter 2. Background

Figure 2.5: Capability-issuing approach to authorisation in computing environments [219].

those services. Another approach is where a secret key is shared between the enforcement point

and the capability and credential services. The same principles apply to the trust relationship

between the Capability Service and the Credential Service.

Capabilities can be encoded by the Capability Service using different formats depending

on the actual deployment and the underlying protocol. In case of Web Services in enterprise

settings, capabilities can be encoded as SAML assertions [102] or even X.509 certificates [206].

In the modern Web, the use of access tokens in various forms (e.g. JSON-encoded tokens [39])

is more popular. In all cases, assertions are included in requests to resources. For example, an

assertion can be included in a header of a SOAP message that is sent by a client. An assertion

can be also included in a header of HTTP request to a RESTful Web Service. More lightweight,

but less secure, proposals allow the use of assertions in HTTP queries.

In the capability-issuing approach, the policy decision making process may be distributed

within the computing environment. Even though the capability service may assert that a client

can access a resource, the resource provider may still make the final access control decision.

This allows using the capability service to prescreen clients and issue capabilities based on

general information. The resource providers may impose their own restrictions on access requests.

Similar approach has been included in the Street Identity protocol discussed in Section 3.8.

There are two-well known examples of a capability-based access control systems. Those

are the Community Authorization Service (CAS) [268], which provides security for Globus, and

Kerberos [255] that is widely used within enterprises. Both solutions differ with respect to

the format of the capabilities that are issued and the granularity of capability-enriched access

requests. The CAS system uses X.509 proxy certificates for capability encoding while Kerberos

uses its own format for this purpose. On the Web, OAuth 1.0 and OAuth 2.0 protocols have

38

Chapter 2. Background

Figure 2.6: Decision-issuing approach to authorisation in computing environments [219].

been proposed and these proposals are discussed in Sections 3.5 and 3.6 respectively.

2.5.2 Decision-Issuing Security Architecture

In decision-issuing authorisation architectures, a client is not required to obtain any capabilities

or to pass them to a a resource that this client tries to access. Access requests are made as

usual by client applications and it is up to the security mechanism on the service side to obtain

a decision whether those requests should succeed or not. A decision-issuing security architecture

is depicted in Figure 2.6.

Referring to Figure 2.6, when the enforcement point intercepts an access request (step 1),

it describes it by creating an authorisation decision query that is sent to a decision point (2).

This authorisation query contains information about the subject of a request, be it a user or

another service, the target and action which has been requested (e.g. reading or writing). PDPs

can request additional information about the environment in which the access request is being

performed. This may include time of access request or possible history of previous access requests

made by this client [171]. PDP evaluates access requests and decides whether access should be

granted or not. Authorisation decision response is returned to the enforcement point (3) which

adheres to this decisions and optionally fulfils additional obligations. PEP then grants or denies

access to a resource (4).

Single PDPs can be used for each administrative domain, while PEPs need to be located in

every place where access control should be enforced. PDPs have engines to determine whether

access to the resource should be granted or not. A PDP evaluates an authorisation query against

a policy or a set of policies that are retrieved from a policy repository handled by PAP. PDPs

additionally obtain information from PIP components and this information can be used during

39

Chapter 2. Background

the decision making process.

In the example visualised in Figure 2.6, policy evaluation is based on supplied credentials

- i.e. the client issues a request for credentials (step I) and such credentials are issued to the

client after successful verification (II). These credentials are used by the client when making

access requests to the resource. The PEP component extracts these credentials and provides

them to the Policy Service. The PEP does not have to be concerned with the trustworthiness

of the credentials supplied by the client.

Importantly, there are various trust relationships between different components of the decision-

issuing architecture. Firstly, the Policy Service, before issuing an access control decision, has

to trust the provided credentials. Therefore, this service has an established trust relationship

with the Credential Service. The PEP component has to trust decisions that are issued by the

Policy Service and has an established trust relationship with this service. This trust relationship

is mutual as the PDP should only issue decisions to trusted PEP components.

Optionally, the PEP component may want to trust credentials that are passed by the client

in the access request to the resource. Therefore, this component may also have an established

trust relationship with the Credential Service. In such setting, the PEP can validate if access

requests come from trusted clients (i.e. the PEP can verify that calls to services are authenticated

and that credentials can be trusted). This trust relationship, however, is optional when access

control decision making is fully delegated to the Policy Service.

2.6 Access Control Challenges

Building secure and dependable authorisation systems for multi-domain computing environments

poses numerous challenges. Such environments have significantly different requirements for ac-

cess control than those in closed systems, as discussed in the previous chapter. In particular,

authorisation must not only follow requirements that are common for SOA and the Web such

as modularity, extensibility or re-usability [140]. Such access control needs to span separate and

autonomous domains of administration, scale to large base of users, resources and services, and

should be efficient enough to handle even fine-grained interactions between distributed compo-

nents [211; 240].

The next sections discuss common access control challenges and requirements, which are

orthogonal to the previously presented requirements R1 - R4 introduced in Chapter 1. These

challenges were discussed in [240] and are as following:

1. Policy challenges:

(a) Heterogeneity and distribution of subjects and objects;

40

Chapter 2. Background

(b) Context and content-based access to resources;

(c) Policy heterogeneity management;

(d) Policy conflict resolution;

2. Architecture challenges:

(a) Interoperability between access control components;

(b) Location of policy decision points;

(c) Management of access control systems;

(d) Communication performance;

(e) Autonomy of administration domains;

(f) Access control delegation;

(g) Attribute aggregation;

(h) Authorisation credential issuing and validation;

(i) Assignment of arbitrary authorisation attributes;

(j) Security of access control systems.

The relationships between the previously identified requirements and the challenges discussed

here are shown in Table 2.1.

2.6.1 Policy Challenges

Policies that define access control rules need to address a wide spectrum of subjects and objects

that the authorisation system aims to protect [240]. As far as subjects are concerned, access

control policies must be able to scale to a large user base and should be able to address the

heterogeneity of subject credentials. Such heterogeneity is inevitable on the open Web.

Importantly, access control should be flexible and should allow decisions to be made based

on attributes of subjects and not only on their identities as those may not be known a priori

in dynamic distributed environments. As far as objects are concerned, authorisation policies

should be applicable to their wide spectrum. Such policies should allow newly created resources

to be easily protected with the existing authorisation system.

Moreover, the access control system should provide means of making decisions based on mul-

tiple policies. Such policies in multi-domain environments are commonly defined with different

syntax and semantics. In such cases, interoperability at the level of access control policies is a

necessity. Moreover, policy conflict resolution protocols must exist to support decision making

41

Chapter 2. Background

Table 2.1: Relationships between access control challenges and requirements for a user-managed
access control proposal.

R1 R2 R3 R4
Heterogeneity and distribution of subjects
and objects

X X X

Context and content-based access to re-
sources

X X X

Policy heterogeneity management X X X X
Policy conflict resolution X X X
Interoperability between access control
components

X X

Location of policy decision points X X X
Management of access control systems X X X X
Communication performance X X
Autonomy of administration domains X X
Access control delegation X X X
Security of access control systems X
Attribute aggregation X X X
Authorisation credential issuing and vali-
dation

X

Assignment of arbitrary authorisation at-
tributes

X

process when applicable policies come from separate administrative domains because these poli-

cies may contain contradicting rules. Centralised authorisation systems partially alleviate this

problem, which is discussed in this section.

2.6.1.1 Heterogeneity and Distribution of Subjects and Objects

The access control infrastructure should be able to address security of a highly distributed

environment of heterogeneous subjects and objects [211]. It must also scale to a large number

of objects. These requirements hold particularly for the open Web, which is the largest existing

computing environment.

On the Web, it is necessary to be able to specify different access control rules for different

methods which are normally invoked by issuing requests directed to a single URL as in SOAP-

based Web services. It is necessary to provide authorisation based on the content of messages

that those services exchange. The Web Services profile for XACML [107] defines policy assertions

that can be used for specifying authorisation and privacy requirements. Such assertions may

constitute policies that are specified at the Web Service side using the WS-Policy framework
[232].

In case of RESTful Web Services, which have been proposed as a more lightweight approach

to SOA-type integration of computing systems, similar profiles to those available for SOAP-

42

Chapter 2. Background

based Web Services are not necessary. Following constraints imposed by the Representational

State Transfer (REST) architectural style, Web Services are accessed using different URLs and

HTTP methods and it is easier to control access to these services. The UMA proposal that is

discussed in this thesis allows for flexibility in specifying resources as well as actions on these

resources, and these can be defined during runtime.

As far as heterogeneity and distribution of subjects are concerned, the authorisation system

needs to take into account that subjects’ credentials can be issued by IDPs from separate admin-

istrative domains. There are various ways of ensuring that different IDPs are capable of issuing

credentials that can be trusted by authorisation components. Most of these approaches rely

on the Public Key Infrastructure (PKI) [134] which constitutes a fundamental block of building

trust between collaborating parties. These approaches of trust between the authorisation system

and user credentials can be:

1. Identity-based;

2. Capability-based;

3. Trust-negotiation based.

In identity-based access control systems, it is the user that presents its own identity cre-

dentials and the authorisation system may trust the party (Identity Provider) that assures this

identity. The authorisation system may simply contact the IDP and ask for all the information,

collectively referred to as profile, that it requires to make an access control decision [144]. In this

approach, the service gets to know the identifier of the user and attributes (claims) associated

with this identifier.

In multi-domain computing environments such as the open Web, the user base is very large

and defining access control rules based on specific identities may not always be efficient (impor-

tantly, this differs depending on the exact use cases - e.g. sharing across a group of friends on

the Web can easily leverage user-defined contact lists, which are based on identifiers). Therefore,

clients that issue access requests to services only provide their identifier so that it can be used

to obtain attributes, which are used to make access control decisions. Such attributes may be in

form of roles that the user is entitled to activate during a particular access request, or contain

personal information that is used for policy evaluation (e.g. verified date of birth information is

used during the decision making process).

In case of capability-based access control systems, the user does not use their identity but

obtains the required capabilities from a capability service and sends them to the enforcement

point. Such capabilities are later used during policy evaluation. This approach is widely used

43

Chapter 2. Background

in enterprise settings, e.g. in the CARDEA authorisation system as presented in [235], and it is

being introduced to the Web with such protocols as OAuth.

In capability-based systems, access requests are evaluated dynamically according to a set

of relevant characteristics of the client rather than considering specific local identities. This

reduces reliance on local identities to define authorisations for each potential user [240]. In

capability-based systems, it is possible to define the set of required attributes that the client

needs to present to the service. As in identity-based systems, those can be in form of roles,

which the user activates to perform a particular access request on a service. Similarly, these

can be verified claims such as the previously mentioned date of birth information. However, in

capability-based systems, these can be also permissions that a client must have for a particular

service or a resource.

In case of highly dynamic multi-domain computing environments, user management may be

very complex. Neither identity- nor capability-based approaches of determining one another’s

trustworthiness may provide the required functionality in terms of their ease of management,

user provisioning or scalability. In such situations, it may be necessary to provide mechanisms

where trust could be established without the assumption of familiarity of collaborating parties.

Collaborating parties may use trust negotiation to assure the enforcement and decision points

that they indeed should be granted access to a particular resource. In this process, the client and

the resource provider (or the decision point) conduct a bilateral and iterative exchange of policy

information and credentials/claims to incrementally establish trust between themselves [227].

A more detailed explanation of trust negotiation is discussed in various publications including
[299], [226] and [227]. The last one presents an approach where specialised components, called

Trust Servers, handle trust negotiation processes and determine which users are authorised to

access resources within their protection domains.

2.6.1.2 Context and Content-Based Access to Resources

Controlling access to resources in a multi-domain computing environment involves defining com-

plex access control policies. It should be possible to specify restrictions on access requests based

on the context of such requests. Moreover, it should be possible to declare arbitrarily complex

conditions under which an access should be granted or denied. Information that can be useful

for specifying authorisation policies may include users’ administrative domains, time of access,

or an environment state [211].

As depicted in Figure 3.1 in Section 3.2, the authorisation decision query sequence speci-

fied by the XACML model involves retrieval of attributes through the PIP component. Those

attributes may refer to the subject, resource, action and environment. PIP components may

44

Chapter 2. Background

provide those attributes, particularly those that refer to subjects and resources, and may cal-

culate attributes for actions and environments during the access request. PIP components may

provide attributes from a number of IDPs depending on the configuration or on the actual access

request that comes from the PDP. The UMA proposal, discussed in Chapter 5, envisions that the

context may be used in the access control decision making process. The UMA implementation,

which is discussed in Chapter 7, does not yet support this feature.

Access control rules should also be able to address the need of a content-based access. Such

requirement, as presented in [211] in the context of XML-based multi-domain environments,

should allow resource owners or custodians to specify restrictions depending on information

contained within the resource. Similarly, Sun et al. [286] recognises such need in the open Web,

where access control should allow a content owner to protect a photo in an album, an event in

a calendar, or even a paragraph within a blog. The UMA proposal allows applications to define

resources at any level of granularity. For example, an application can protect an entire blog post

or a single paragraph in that blog post.

In dynamic Web Services, it is virtually impossible to predict the content of the resource

which is requested by the client because such content can vary. This makes content-based

access control more challenging. Certain access control policy languages, such as XACML,

incorporate the concept of obligations, which could be used to provide the required content-

based authorisation. As discussed in Section 3.2, obligations are actions that must be executed

before, with or after an authorisation decision. XACML does not constrain obligations and

allows them to be implementation specific. Therefore, such obligations could be used to provide

the required level of content-based access control.

For example, in the context of Web Services, when a resource is requested then the hosting

application can be informed that access can be granted but an advanced check on the content

of the resource should be performed. These requirements would be provided in form of an

obligation. The required advanced check would determine whether the client can access the

resource. The access control proposal that is discussed in Chapter 5 supports applications

hosting data to be able to have the final decision whether access should be provisioned or not,

thus partially providing solution to content-based authorisation.

2.6.1.3 Policy Heterogeneity Management

When distinct administrative domains create a federated environment, most typically each do-

main has their own security policies (called local policies). On the Web, in particular, local

policies exist in every single system, which is used by the individual user. As discussed in [211],

integration of local policies that are distributed entails various challenges including reconciliation

45

Chapter 2. Background

of semantic differences between these local policies, secure interoperability, containment of risk

propagation and policy management.

There are various potential ways of approaching those challenges as discussed in [211] and
[212]. Management of policies, including access control policies, in multi-domain computing

environments could be addressed by employing one of the following approaches:

1. Policy mapping;

2. Standardised policy language.

In the first approach, a global authorisation policy is defined for the entire computing en-

vironment and its rules are then applied to each individual domain. For example, a global role

can be mapped to local roles within different domains. Local policies do not have to be in the

same format or language as the global policy as long as the mapping can be done correctly.

However, the use of a standard language, such as XML, simplifies policy management because

XML allows for uniform representation, interchange, sharing, and dissemination of information

in heterogeneous environments. Authors in [211] recognise the challenges of managing semantic

heterogeneity and integration of multiple different policies in an XML-integrated multi-domain

computing environment.

The other approach is to enforce usage of a standard policy language that would be used

consistently throughout the entire security system. With a standard policy language, access

control rules from different domains would have a uniform representation (e.g. in XML).

In multi domain computing environments, organisations are moving towards standardising

their authorisation policies and the latter approach is more favourable. This is discussed on the

example of XACML in Section 3.2. In the open Web, however, relying on a single standard

policy language in distributed applications is unrealistic because of the number of different Web

applications. Therefore, this thesis discusses a solution which centralises access management

for distributed resources but still allows for high-level of flexibility to be achieved by different

Web applications. In the discussed approach, policy mapping, uniform policy representation or

standard language are not required to address the challenge of policy heterogeneity. Instead,

the user is able to define their own policy using their preferred policy management tools and

in the language of their choice using a central component. Such policy can be later applied to

distributed online resources.

2.6.1.4 Policy Conflict Resolution

Policy decision points evaluate access requests against all applicable policy sets, policies or

rules, which are retrieved from designated administration points (Section 2.4). In distributed

46

Chapter 2. Background

computing systems, each domain typically has its own set of PAPs where different authorities

or individual users define access control policies (refer to Figures 2.2 and 2.3). The same applies

to the Web, where individual systems or entire Web ecosystems have their own PDPs as well as

PAPs. PDPs and PAPs allow to centralise policies that can be later applied to resources that

are distributed.

It is typical that multiple distinct authorities are supported by a single authorisation system.

Decision components of such system may wish to retrieve policies that reside in various policy

repositories. Such solution has been adopted by the PRIMA authorisation system where users

as well as administrators from different domains are able to delegate authorisation for resources

for which they are authoritative to other authorities [235].

As policies, which are evaluated during the access control decision making process, may

come from different authorities then policy conflicts may arise. This is due to omissions, errors

or conflicting requirements of parties specifying those policies [236]. When multiple policies or

rules apply to the same access request then it is possible that inconsistencies may occur. This

can happen when two or more policies apply to the same subject, operation and to the same

resource and their rules are contradicting. An example is when one policy states that a particular

access request is valid while another policy forbids such access.

Policy inconsistencies may result in illegal accesses to resources or in legal accesses being

prevented. Therefore, ensuring that policy conflicts are resolved is an important issue. Certain

conflicts can be resolved before policies are deployed within the computing environment (i.e.

before those policies are sent to PAPs). This process, called the static conflict resolution, is

based on static analysis of policies and applies only to modality conflicts [236]. Such analysis

enumerates all {subject, action, object} tuples which have a different set of applicable policies.

If there are two or more policies applicable to a tuple then there is a potential conflict that

may need to be resolved. These policies must be later checked to see whether there is an actual

conflict, i.e., a positive and negative policy with the same subjects, targets and actions [236;

214].

As stated in [97; 229], conflict resolution in XACML is addressed with the use of rule and

policy combining algorithms, which are used for making authorisation decisions based on policy

sets and multiple rules. XACML defines following algorithms for this purpose: deny overrides,

permit overrides, first applicable and only one applicable. When an XACML-compliant decision

point finds two or more policies or two or more rules within a single policy with contradicting

semantics then it uses one of the mentioned algorithms to make its access control decision.

Static analysis cannot point out all conflicts in access control policies. Some conflicts are

application specific and are usually visible only at runtime once all policies are deployed within

47

Chapter 2. Background

the system. An example of such conflicts is when rules defined in policies do not address the

required principle of Separation of Duty (SoD) [149]. Such principle may be imposed by an

organisation that collaborates in a multi-domain computing environment. One of the proposed

solutions to the problem of application specific conflicts are meta-policies that contain constraints

on other access control policies [236].

Considering access control mechanisms discussed in Section 2.4 and the environments de-

picted in Figures 2.2 and 2.3, meta-policies can be placed both within each domain or can be

applied to all domains. In the first case, constraints usually refer to the SoD principle where

the same client should not be able to access certain resources at the same time. In case meta-

policies are used for the entire multi-domain computing environment then policies may address

conflict-of-interest type issues according to the model proposed by Brewer and Nash [150]. When

a certain collaborating party decides to access resources from one domain then this party is pre-

vented from accessing any resources from a different domain within this computing environment.

2.6.2 Architectural Challenges

The access control architecture in distributed environments needs to take into account arbitrarily

complex integration scenarios between organisations, ecosystems or applications that form the

environment. It needs to address the heterogeneity of components that comprise such architec-

ture and has to provide means to ensure interoperability between them. Components should be

able to exchange information meaningfully when interacting during access control related tasks.

The authorisation architecture should additionally be secured in a similar way to resources

within the computing environment. Communication between components should be dependable

with confidentiality, authenticity and integrity of messages being preserved. Such architecture

should be capable of scaling along with the environment itself while preserving efficiency of

communication between its components. With the ever growing number of applications and

data generated by users on the Web, for example, such scalability characteristics are of pivotal

importance. Challenges in access control architectures are presented in more details in further

sections.

2.6.2.1 Interoperability Between Access Control Components

Separate and autonomous administrative (Web) domains need to cooperate in a distributed au-

thorisation system. Such a system needs to maintain a consistent authorisation strategy and each

domain should have at least some knowledge of its potential collaborators throughout the entire

lifecycle of the multi-domain computing environment. Authorisation decisions that span admin-

istrative domains require that components in every domain are capable of correctly producing,

48

Chapter 2. Background

accepting and interpreting authorisation information from a group of potentially heterogeneous

peers. A common agreement protocol, syntax and semantics of every piece of information that

is exchanged between components of the authorisation system is a necessity [235]. This includes

interoperability at the level of language that is used for specifying permissions and at the level

of protocols that are used for communication between various components of the system.

Achieving interoperability at the level of policy specification language has been the subject

of much research and numerous languages exist for specifying access control rules [97; 106; 148;

199; 147]. The XML technology has emerged as one of the most promising approaches for those

languages [211]. XML allows uniform representation, interchange, sharing and dissemination

of information between heterogeneous systems within an environment. XML constitutes the

base for such access control policy languages as XACML (see Section 3.2). XML is also used

by XACML to exchange messages between components of the XACML architecture3. The

open Web has adopted a more lightweight JSON-based approach, which is mostly used for

the purpose of exchanging authorisation data between different systems (and not necessarily

for specifying access control policies that can be coded using XML). In the UMA proposal,

components communicate with each other using JSON-based messages, while policies can be

defined using a totally different technology (e.g. the presented UMA implementation stores

policies within a relational datastore).

Standardising protocols that are used for communication between distributed components

of the authorisation system is a necessity. Such standard is presented in this thesis. As discussed

in Section 3.2, information flow between enforcement, decision, information and administration

points of the access control system requires multiple messages to be exchanged. Components of

the authorisation system must agree on the syntax and semantics of information that they wish

to exchange in order to interoperate. The request/response protocol proposed in the XACML

standard aims to achieve interoperability but is ill-suited to the open Web. Chapter 5 discusses

a standard that fits precisely to the user-driven Web environment.

Apart from the syntax and semantics of information exchanged between various components,

interfaces of those components should be standardised as well. This also applies to components

which expose their functionality as SOAP-based or RESTful interfaces. In both cases those

interfaces must be well-defined and other components of the access control system must be

able to interact with them. In case of XACML-compliant components of the authorisation

architecture, interoperability of components and their interface definitions have been discussed

in [108] and [112]. The UMA proposal, as discussed in Chapter 5, defines these interfaces for

interoperability purposes. Moreover, applications can discover the location of these interfaces at
3A standard that defines JSON-formatted request and response messages between components in the XACML

architecture has been proposed in [125].

49

Chapter 2. Background

runtime.

2.6.2.2 Location of Policy Decision Points

Once an access request is made to a resource, the enforcement point needs to contact the decision

point to determine whether access should be granted or not. The enforcement point needs to

know which decision point should be used. In distributed systems with a limited number of com-

ponents of the authorisation infrastructure, the relationship between PEP and PDP components

can be static (e.g. configured by the IT administrator). When the PEP is initialised, it simply

checks whether a pre-configured PDP is available and a communication channel is created with

this point [300].

Decision and enforcement points have to form a mutual trust relationship between each

other in order to interact. Both components must undergo a mutual authentication, e.g. based

on a shared secret or using PKI. This mutual authentication is necessary because of two rea-

sons. Firstly, enforcement points need to be sure that authorisation decisions come from trusted

decision points. This guarantees that enforcement actions reflect applied security policies. Sec-

ondly, decision points should only reveal decisions on authentic access request decision queries.

Otherwise, these systems may potentially leak information about access control policies in place.

Although static binding between enforcement and decision components in small distributed

systems is sufficient, it does not fit into large computing environments spanning multiple separate

administrative domains. At first, PEPs may delegate rights to other domains and may not

wish to specify exactly which PDPs should be used. Instead, PEPs may rely on individual

users to provide information on their preferred PDPs that should be used to protect this user’s

resources. Moreover, in case of large and dynamically changing distributed systems, a static

binding between PEPs and PDPs may not be feasible. In such cases, a discovery mechanism

needs to be employed.

This thesis discusses a dynamic approach that allows enforcement points to form relation-

ships with decision points in an ad-hoc basis. These relationships are created based on preferences

of users. Communication channels between enforcement and decision points use SSL/TLS as

well as access tokens to meet the requirement of mutual trust relationship.

2.6.2.3 Management of Access Control Systems

Configurations of different enforcement points in an access control system are often managed

independently in order to implement the security policy as accurately as possible. In such cases,

each enforcement point is configured with their own security policy specific to a resource or

a set of resources that this enforcement point protects. Consequently, it is an expensive and

50

Chapter 2. Background

unreliable proposition to modify the security policy and deploy it within the entire environment.

Additionally, it is virtually impossible to obtain a consolidated view of the safeguards and security

controls that are deployed within the entire enterprise or the entire computing environment, such

as the open Web. This may result in a poor understanding of the security rules that are actually

enforced.

In enterprise settings, there is an increasing pressure on executives from customers, share-

holders and regulators to demonstrate best practice in the protection of the information assets

of the enterprise and its customers. Executives are forced to assure that security is provided

in a way that follows guidelines from such documents as ISO2007 [95; 96] and is in line with

necessary legislation requirements such as the UK Data Protection Act (DPA) [288]. Similarly,

on the open Web, users are increasingly concerned with security and privacy of their growing

number of resources. These users may want to verify how security is applied to their resources

but also how such resources are accessed as well.

Access control systems need a way of providing a consolidated view of the authorisation

policies that are enforced within a computing environment. This can be achieved by centralising

PAP and PDP components. Policies can be composed independently of the services for which

these policies are used. In enterprise settings, those policies can be defined to meet compli-

ance or governance requirements. In the context of the open Web, such policy centralisation

allows individuals to easily define their security requirements for online data. Moreover, central-

ising policies guarantees that those policies are applied consistently among a set of distributed

resources. Policy centralisation also facilitates audit of security rules.

In enterprise settings, for example, a corporate LDAP can be used for storing a single policy

or a set of policies that are later pulled by local PDP components. However, a single policy is

neither feasible nor desirable on the open Web. In this environment, a more favourable approach

is to centralise access control policies. Centralising policies and keeping them separate from the

actual services or resources provides benefits to individual users, which is discussed in this thesis.

Moreover, as discussed in [97], policy management in access control systems involves many

different steps. These steps include writing, reviewing, testing, approving, issuing, combining,

analysing, modifying, withdrawing, retrieving and enforcing authorisation policies. Providing

means of securing all those steps should be considered mandatory in an access control solution.

The proposals that are discussed in this thesis centralise policy management and policy

evaluation. Therefore, they allow for consistent security to be applied across distributed Web

applications used by an individual user. These proposals also support audit allowing the user to

quickly verify how security is applied to various services or resources on the Web.

51

Chapter 2. Background

2.6.2.4 Communication Performance

Authorisation decision is often based on information from different distributed components.

This situation occurs when enforcement points reside in different domains than decision points

and the decisions points additionally collect information from a distributed set of information

points. In such scenarios, it is necessary to ensure that communication between components of

the authorisation system is efficient in terms of the number of messages that are sent between

components and the size of those messages.

The protocol used for offloading authorisation from business services should be based on the

exchange of a possibly small number of messages. In decentralised approaches to authorisation,

access request received by the enforcement point may need to be encapsulated in some form of

access request decision query and sent for evaluation. In such case, minimising the number of

interactions between components can be achieved using caching, as proposed in [300]. PEPs

may cache decisions made by PDPs. Additionally, PDPs may cache policies that they would

normally retrieve from PAPs.

Caching can significantly reduce the number of messages that are exchanged between access

control components but has certain drawbacks. At first, information stored in the cache memory

may not be up-to-date which may result in false positive or false negative access control decisions.

This reduces the flexibility of revoking old access control rules or introducing new ones. This

problem can be minimised by introducing time constraints on validity of locally cached copies by

different components of the system. Moreover, components may only decide to cache information

which does not change frequently but is used more often than other information (e.g. only a

subset of infrequently changed but commonly used policies can be cached).

Importantly, caching can provide significant benefit when the cached information refers to

commonly accessed resources. For example, a PEP may cache an access control decision that

has been made in relation to the entire resource set. This cached decision can then be reused

when access requests are made for individual resources from this particular set. Similarly, if

a resource changes frequently and is being accessed on a continuous basis then caching of the

decision for this particular resource can be desirable.

The proposals that are discussed in this thesis allow the use of caching. Initially, in UMAC

this would be based on the existing HTTP caching mechanisms, i.e. Expires or Cache-Control

headers in HTTP response. The refined UMAC proposal as well as UMA uses tokens which

would have a specific lifetime of validity.

Additionally, minimising the number of messages in the access control system can be achieved

through policy syndication, as proposed in [285]. A global PAP, which is managed centrally,

may hold a global security policy. Such policy is then syndicated to more local PAPs residing in

52

Chapter 2. Background

Figure 2.7: A high-level view of the Policy Administration Point / Policy Syndication Server hierarchy.

different administrative domains or in the same domain in which syndication takes places. These

local PAP components can incorporate all changes or only those that are in line with constraints

imposed by authoritative bodies of those local PAPs. A hierarchy of such PAP interactions can

be created as depicted in Figure 2.7.

This thesis does not aim to discuss policy syndication in further details. The presented

UMAC and UMA approaches use delegation that allows a policy to reside in a single location

and relies on enforcement or decision points to refer to authoritative sources to make meaningful

decisions regarding access requests.

Communication between components of the authorisation infrastructure should also aim to

be based on lightweight messages that would not affect the overall throughput of the computing

environment. Such characteristic is particularly important with regards to authorisation built

on Web Services and deployed on Internet-scale. Messages used for carrying as access control

decision queries or responses can be secured with Web Service-compliant standards and these

messages are significantly bigger then those which do not use any security mechanisms [213].

In particular, exchanging security policies between components may constitute a drawback

as policies are likely to consist of multiple access control rules. Similarly, communicating ac-

cess control decisions can affect performance if messages contain vast amount of information.

XACML, for example, uses XML to encode access control policies, which results in the size of

policies and privilege statements being significant due to the XML encoding overhead and ver-

bosity of the language. The system discussed in this thesis uses a lightweight approach that is

well-suited to the Web environment where information can be passed in HTTP headers (in par-

ticular, the WWW-Authenticate and Authorization headers) as well as using JSON-formatted

messages (as discussed in [261; 296], this format is significantly more efficient in distributed

environments and Web applications in particular).

53

Chapter 2. Background

2.6.2.5 Autonomy of Administration Domains

When resources are shared between different systems residing in distinct domains then access

control is delegated in a cross-domain fashion. One domain may decide to accept access control

decisions that come from a different domain. Therefore, access control components may form

trust relationships that span such multiple domains. Importantly, components that interact with

each other should be able to preserve their autonomy in making access control decisions. Each

domain will typically introduce their own access control rules that should be enforced for each

access request.

Approaching the challenge of preserving autonomy of separate domains can be done with

the use of authorities hierarchy. Each level in such hierarchy can be responsible for defining

access control rules for a different scope. An example of this approach is discussed in [235] in

relation to the PRIMA authorisation system. In this system, multiple entities are authoritative

for resources at a different level. For example, a site wide policy can be defined by the site

authority and a policy for single resources can be defined by individuals. In addition, there may

be authorities that have control over authorisation policies for entire multi-domain computing

environment (e.g. Virtual Organisation) or a specific Web ecosystem.

Each level of authorities may impose its own constraints on acceptable access control rules.

When such constraints result in conflicts then those can be resolved using some of the proposed

policy conflict resolution mechanisms, with examples presented in [235]. The XACML standard

provides profiles that could address requirements regarding autonomy of administrative domains.

Those profiles extend appropriate schemas to describe administrative requests and delegation

policies [109; 113]. A detailed discussion on delegation in authorisation systems is provided in the

next section. Importantly, the proposals that are discussed in this thesis support such autonomy.

Furthermore, these proposal allow components storing the data to make final decisions regarding

access requests.

2.6.2.6 Access Control Delegation

As discussed in the previous section, a collaborating party within a Virtual Organisation may

delegate access control decision making process to a different party of the same VO. Such dele-

gation is typically specified in administrative policies that define who is authorised to compose

access control rules for resources [275]. A centralised administrative policy is not sufficient for

multi-domain computing environments because collaborating parties may not agree upon a sin-

gle authority to grant and revoke authorisation permissions. In such cases, domains may use

cooperative type administrative policies and such policies require all collaborating parties to

agree on authorisation rules.

54

Chapter 2. Background

Another approach that is well suited for multi-domain computing environments is a decen-

tralised model of administrative policies. In this model, each domain has its own administrative

policy and defines how much of its access control decision making process should be delegated

to other domains. When such access is delegated to other domains then those domains may or

may not be able to delegate it further. This complicates the authorisation management process

because it may be hard to track the actual rights for resources. As discussed in [275], revocation

of access control rights is also complex in such cases.

An example usage of delegation is that proposed in the PRIMA authorisation system [235].

This system supports multiple authorities by allowing users as well as administrative personnel

to delegate access to resources for which they are authoritative. The resource authorities can

use the same mechanisms to grant privileges to other users and to issue policy statements for

resources. The XACML standard also provides means of achieving delegation through the use

of profiles. The proposals that are discussed in this thesis support delegation. This is shown on

the example of a custodian imposing security constraints on distributed Web resources (refer to
[243] for more details).

2.6.2.7 Attribute Aggregation

In distributed computing environments, it is often the case that authorisation is based on arbi-

trary user attributes rather than on user identifiers, as the latter approach does not scale well

for large numbers of users. For example, access control to a particular service can be granted

to users who are within a specific location, have a particular role assigned or are members of

a particular institution. These attributes can come from a single source (IDP) or multiple dif-

ferent sources. The user, when trying to access a service, has to present the necessary third

party asserted attributes. The service can then use these attributes in an access control decision

making process (either locally or using a remote service such as a PDP).

Existing authorisation systems, which allow for attribute-based access control, support poli-

cies that define which attributes must be presented in order to get access to a service or a

resource. However, these systems often support only individual authorities for these attributes

(i.e. users can present attributes from a single IDP). Even if policies allow to define attributes

that should be asserted by different IDPs, there are currently multiple different approaches to ag-

gregating user attributes and presenting them to the resource provider so that these attributes

can be used in the access control decision making process. A more thorough explanation of

existing attribute aggregation models is presented in [162] and [183].

When designing an access control system, it is necessary to understand various attribute

aggregation proposals. Providing a way for users to aggregate their attributes and present

55

Chapter 2. Background

them to resource or service providers is desirable. This is because individual users often have

relationships with numerous IDPs and their attributes from these providers could be successfully

used in authorisation policies. Challenges related to such aggregation are presented in [162] as

well as in [183] and the discussion below is based on these publications.

As discussed in [162] and [183], challenges include aspects of usability, privacy, user consent,

protocol, and trust. Firstly, the system should allow the actual aggregation to happen using

various means (e.g. via Web browsers or mobile clients) while requiring a minimum amount

of interaction from the user. The system should protect the user’s privacy through the use of

technical controls, which are independent of legal means. Data shared with resource or service

providers should be shared only based on the user’s consent. Moreover, interactions should be

able to span multiple domains and be able to be tunnelled through firewalls using existing ports

such as HTTP or HTTPS. These interactions should also extend existing protocols rather than

being based on new ones. Furthermore, service providers should be able to require authorities

to digitally sign the attributes to have high-level of confidence in the provided attributes. Im-

portantly, each model, as discussed in [183], has its own strengths and weaknesses, which must

be considered for a particular access control solution.

2.6.2.8 Authorisation Credential Issuing and Validation

In order for the client to be able to access a resource, this client has to be in possession of some

credentials that will allow the resource provider to assess if the client has the necessary rights.

As discussed in [160], authorisation credentials may be pushed to the provider by the client or

pulled by the provider from a credential issuing service, or a mixture of both. Applying the right

model for an access control solution is critical. Therefore, it is desirable to understand the issues

that relate to each model.

As discussed in [160] and [161], credentials are issued by a Credential Issuing Service (CIS)

and validated using the Credential Validation Service (CVS). There can be at least four different

models in which these services are used in conjunction with PEP and PDP components. Firstly,

there can be a case where credentials are pulled by the client from CIS and then pushed to the

actual resource. In this case, the PEP can either decide to validate these credentials directly

at the CVS and only then consult with the PDP whether access should be granted or not.

Alternatively, the PEP can offload the task of credential validation to the PDP and it is then up

to this PDP to interact with the CVS component for the purpose of credential validation. The

PDP then issues an access control decision to the PEP.

Secondly, the client can interact directly with the service provider and credential issuing and

validation happens at the service side. The PEP can interact with the CIS and CVS for the

56

Chapter 2. Background

purpose of obtaining credentials and then validating these credentials respectively. The PEP can

then use validated credentials at the PDP to obtain the access control decision. Alternatively,

the PEP can only pull the credentials from the CIS and then pass these credentials to the PDP

component. The PDP uses the CVS for the purpose of credential validation and can reply with

an access control decision that should be enforced by the PEP component. Importantly, the CIS

and CVS are often collocated and can be a part of the Security Token Service.

The CIS has to have a policy that defines which parties are entitled to receive the issued

credentials and such policy is called an attribute release policy. Some services (such as credit

card issuers) may only issue credentials to their rightful holders. Other services (such as the

Shibboleth [72]) may issue them to trusted service providers. This is determined by the actual

attribute release policy [160].

The described models of issuing and validating credentials during access control differ in

trust relationships between components as well as in the actual execution semantics. Importantly,

access control solutions have to consider where trusted connections can be made or where digitally

signed messages can be exchanged.

The UMA solution, as discussed in this thesis, adopts a credential push model where the

client pulls credentials from CIS and then interacts directly with the service, including a capa-

bility in its requests. The service is then concerned with any validation, i.e. interacting with

the CVS as well as with the PDP. In this proposal, CIS and CVS are collocated and constitute

a part of the STS component.

2.6.2.9 Assignment of Arbitrary Authorisation Attributes to Users

Access control solutions in multi-domain computing environments have to take into account the

complexity of user attributes that can be potentially used for authorisation. More importantly,

if these solutions span different domains of control then types of attributes that are released

by distinct Identity Providers are often different (apart from common attribute types such as

user identifier). Moreover, some of these attributes, including group memberships, are often

meaningful only within the context of a single domain. For example, information about a group

membership of a particular user within one domain may not be meaningful in another domain

where access control decisions are unlikely to be based on that particular information. A better

approach would be to allow assigning attributes that can span users across different domains.

For example, users from numerous domains could be assigned a particular group (e.g. within a

VO) and access control at different resource providers could be based on such group membership.

The actual enforcement and policy checking can still be done locally in each domain.

In highly dynamic multi-domain computing environments, as well as within the context of

57

Chapter 2. Background

the open Web, it is necessary to allow for such flexible attribute assignment. Firstly, it should be

possible to introduce new attribute types (such as the previously mentioned group membership)

and assign the actual attributes to users across different domains and systems. This would

allow these newly created attribute types to be used during policy definition and further in

authorisation processes. Secondly, it should be possible to delegate such attribute type creation

and attribute assignment to different entities. For example, additional attribute for users from

one domain could be controlled by users at another domain.

Systems such as VOMS [135] introduce a new component (VOMS Server) that can be used

specifically to meet the aforementioned two requirements in the context of VOs and grid com-

puting. Firstly, VOMS allows to create new attribute types dynamically and assign attributes

to users irrespectively of the actual domain that these users reside in. These new attributes

can be combined with the actual user identity, as defined by local Identity Providers, and used

along those local attributes during access control. Secondly, this new component can be used

within a single VO and access to it can be delegated to numerous domains depending on the

actual deployment or configuration requirements. VOMS relies on policies to be evaluated and

enforced locally in each domain. VOMS is discussed further in Section 3.10.

The UMA proposal, as discussed in this thesis, addresses the aforementioned requirements

by allowing the central access control system to interact with distributed IDPs to gather the

necessary attributes that can be used during access control processes. Therefore, it is possible

to include new types of attributes by establishing a link between the discussed system and new

IDPs. Similarly, users from various Web domains can use the discussed proposal to define which

attributes are necessary, irrespectively of the domains of IDPs for those attributes. Enforcement

of policies is done locally but decision making is delegated to a central component.

2.6.2.10 Security of Access Control Systems

Access control systems need to be protected against any potential attacks in order to be able to

protect resources effectively. Security should be applied to individual components of the access

control system as well as to interactions between these components [240].

Single components must be protected against illegal accesses to information that they store

or processes that they perform. This relates to access control policies stored by PAPs and

the access control decision making process done by PDPs respectively. Interactions between

components must be protected to ensure that messages can be exchanged securely.

Access control policies need to be protected as well. Mechanisms used for such protection are

typically implementation specific within each computing environment. The approach discussed

in [219] presents security mechanisms for the authorisation infrastructure that are based on the

58

Chapter 2. Background

same PEP/PDP mechanisms that protect ordinary resources. This results in the authorisation

system being easier to administrate as all access control rules are specified using a single policy

language with only one policy administration interface. The security infrastructure can be

flexibly managed using policies and does not rely on hard-coded security rules. The authorisation

for ordinary resources and for access control policies is based on the same mechanism and single

policy language. This results in checks on the security of such system being easier and less error

prone. Security for the authorisation system can be introduced in form of a specialised service

as discussed in [218].

The UMA proposal that is discussed in this thesis does not address security of individual

components. The implementation presented in Chapter 7 does not allow policies to be shared

between different users and each policy can be kept private. Scenarios where policy sharing

between users is desirable are presented in [243]. Protecting policies is one of the future research

directions that is discussed in Chapter 8.2.

Security of interactions between components needs to address confidentiality, integrity and

authenticity of messages which are typical requirements for security in Web Service-based com-

puting environments [253]. Such messages as those carrying access request queries need to be

protected with encryption and signatures. Encryption guarantees that no information about

access control policies or issued authorisation queries is revealed [93]. Signatures guarantee au-

thenticity of messages which is mandatory to ensure that only valid policies are evaluated and

that only valid access control decisions are enforced [114]. Apart from message level security, the

transport protocol used to exchange those messages needs to be protected as well. HTTP can

be secured with such mechanisms as TLS/SSL [193; 172]. Security of the presented proposals is

discussed in the next chapters of this thesis.

2.7 Chapter Summary

This chapter presented access control in distributed environments. It provided background

information regarding concepts that are used throughout this thesis. It started with an overview

of multi-domain computing environments, the open Web and Web 2.0 applications. It presented

their specific characteristics that are of interest in the context of access control. Furthermore,

this chapter discussed different concepts of access control in distributed environments, access

control policies as well as delegated authorisation. It then discussed policy and architecture

access control challenges.

59

Chapter 3

Related Technologies

3.1 Introduction

Access control systems for the Web have been researched extensively and aim to address mostly

flexibility [143] or usability [141] challenges. These systems, however, do not appear to be

well-suited to the increasingly user-driven Web environment with an ever-growing number of

resources and services. Proposals such as eXtensible Access Control Markup Language [97;

113], Security Assertion Markup Language [102; 151] and Identity Web Services Framework
[78], or Kerberos [255] have been successfully deployed within single administrative domains or

more complex multi-domain computing environments. However, these proposals are not well-

suited to environments where individual users, and not entire organisations, are concerned with

protecting their individual attributes or sets of resources/services. These solutions, however,

provide a strong basis and their various concepts were used in the research presented in this

thesis.

Moreover, various proposals for controlling access to resources exposed through Web APIs

have been proposed and are in the standardisation process. Most important work includes OAuth

1.0 [200], OAuth 2.0 [202], OpenID Connect [58] and Google’s Street Identity [29]. These propos-

als fit well to the user-driven Web architecture but fail to provide all the necessary characteristics

to satisfy requirements identified in Chapter 1. In particular, despite allowing individuals to have

control over their data, these proposals are unable to simplify various policy management pro-

cesses that are discussed in Section 2.6.2.3. Other proposed academic or open-source solutions

aim to fit into an open and user-driven Web environment by empowering users with more control

over access rights to their data. More notable works include those discussed in [207; 286; 289;

195; 284; 196; 152] and [281].

60

Chapter 3. Related Technologies

This chapter discusses the aforementioned technologies for access control and it is organised

as following. First, this chapter includes an analysis of various standards and proposals for

standards to access control solutions in distributed environments. Furthermore, it provides a

review of similar academic research on user-centric authorisation. It also compares some of the

presented proposals to the UMAC and UMA solutions.

3.2 XACML

The eXtensible Access Control Markup Language (XACML) [97] is one of the approaches to

provide an interoperable solution to authorisation in highly distributed and multi-domain com-

puting environments. XACML is an OASIS standard that aims to specify the following:

1. General purpose access control policy language;

2. Access control decision request/response protocol.

The access control policy language provides syntax in XML for defining action (type of

request) rules for subjects (users) and targets (resources). The authorisation request/response

protocol defines format of messages and the information flow between enforcement and decision

components of the authorisation system. Attributes that are exchanged between components of

the system can be encoded using the Security Assertion Markup Language (SAML) [102].

SAML allows to exchange standard authorisation data between components. An example

would be when a capability service issues SAML assertions to encode capabilities that are later

consumed on the resource side by the enforcement point. The SAML profile for XACML de-

fines how to use SAML to protect, transport, and request XACML schema instances and other

information in XACML-based authorisation systems [98].

XACML supports interoperability between domains of trust so that separate components

of the security architecture can work together across domains. It aims to replace proprietary

policy languages or formats that apply to specific applications only. This enables a consolidated

policy view across the entire computing environment. Defining a standard XML-based syntax

also aims to address management related issues. It eases development of standard management

tools and toolkits that would serve common policy needs. Those tools can be deployed in a

centralised manner to reduce operational costs [235].

The request and response protocol that XACML has defined is based on the exchange of

XACML context. As depicted in Figure 3.1, XACML-conformant PEPs issue requests and

receive responses from XACML PDPs in form of such context. Cases where PEPs cannot

issue XACML contexts are not discussed. This can be solved by introducing an intermediate

61

Chapter 3. Related Technologies

Figure 3.1: XACML data-flow diagram [97].

component, which would convert between the request/response format understood by the PEP

and the XACML context format understood by the PDP [97].

The data flow model of XACML, as shown in Figure 3.1, follows the pull model of the

authorisation decision query sequence (see Section 2.5). The access request is received by the

PEP component which then communicates it to the decision point. PDP evaluates the access

request with regards to the applicable policy set, policy or rule and replies with an authorisation

decision. To make a decision, PDP components obtain attributes associated with the client, the

resource that is being accessed, and the environment in which access request is taking place.

Such attributes are retrieved from information points (PIPs).

Decisions, which are made by PDPs, do not only specify whether access should be granted

or not but may additionally impose certain obligations on PEPs. Those obligations are an

important mechanism of the authorisation system [169]. They allow to define actions which the

enforcement point must perform before, with or after an authorisation decision (recall Section

2.6.1.2). Therefore, obligations allow to minimise the list of policies that need to be composed.

With the concept of obligations, administrators can introduce parameterised actions into

the policy enforcement stage. An example would be when resources should be encrypted before

being returned to the client and the strength of their encryption should depend on some specific

attributes of the client, resource or the environment. XACML does not specify how policy

obligations should be defined within authorisation decision messages. Therefore, a bilateral

agreement between the components of the authorisation system must exist. Enforcement points

62

Chapter 3. Related Technologies

need to understand obligations defined within policies stored by administration points [97].

The use of XACML or SAML assumes and requires trust between components of the security

infrastructure. However, none of those standards includes provisions to establish or guarantee

such trust. SAML, for example, is not concerned with guaranteeing confidentiality, integrity, or

non-repudiation of the assertions which are in transit. For the purposes of secure communication,

those standards refer to XML Encryption [93] and XML Digital Signature [114] or to other

mechanisms provided by the underlying communication protocol and platform [253]. Security

is not only provided at the message level with such standards as the above mentioned ones but

also at the transport protocol level. When Web Services are used for communication between

components of the access control system, then the underlying HTTP protocol is secured with

such mechanisms as Secure Sockets Layer (SSL) [193] or Transport Layer Security (TLS) [172].

3.2.1 XACML in Multi-domain Computing Environments

The XACML standard aims to provide authorisation for highly distributed computing environ-

ments. This standard along with ongoing research on its extensions fits well into authorisation

systems for multi-domain computing environments. This can be considered from different per-

spectives including the modularity of the system and its ability to span distinct domains of

administration, the ability to compose policies or policy sets from distributed sources and pro-

viding means of XACML policy administration within the computing environment. Because

policies and messages exchanged between components of the access control system are encoded

using XML, problems with interoperability between XACML compliant components can be min-

imised.

The first feature of XACML, which allows its deployment in multi-domain computing en-

vironments, is tightly related to its SOA-style architecture where components are exposed and

consumed as services. Such services can be integrated in a loosely coupled manner and can be

re-used depending on the requirements of the authorisation system that must be provided. Mul-

tiple enforcement points can use different decision points of their choice. Those decision points

may be located in separate administrative domains and use arbitrarily chosen information and

administration points for attribute and policy retrieval. Because policies use a common language

in terms of syntax and semantics, they can be easily used in all domains that form a computing

environment.

In XACML, policies can be composed of a variety of distributed policies and rules that can

be possibly managed by different organisational units [235]. Therefore, rules in such policies

may have contradicting meanings. An example would be when there is more than one appli-

cable policy, one that allows access to a resource and one that forbids such access. XACML

63

Chapter 3. Related Technologies

describes the use of combining algorithms which support access control decision making process.

Decisions can be derived from multiple rules (rule combining algorithms) or multiple policies

(policy combining algorithms). In both cases, it is up to the systems administrator to define

which combining algorithms should be used (e.g. first applicable, deny overrides, etc.). A more

detailed explanation of available combining algorithms can be found in [97].

An important feature of XACML that supports its adoption by large scale distributed envi-

ronments is policy administration which is supported by various XACML profiles. This includes

the XACML Administration and Delegation profile [113] which extends policy schema to de-

scribe delegation policies. This profile also extends the request context schema to describe

administrative requests. A more detailed explanation of this profile can be found in [113].

Another XACML profile to address security needs in multi-domain computing environments

is the Cross-Enterprise Security and Privacy [109] profile. It describes mechanisms to authenti-

cate, administrate, and enforce authorisation policies and aims to protect information residing

within or across separate administrative domains. Various extensions exist for XACML that

address administration of XACML policies as well. The one presented in [219] proposes an

XACML-based access control policy model for XACML policies and addresses the problem of

rights delegation.

3.3 SAML

The Security Assertion Markup Language (SAML) [151] and Liberty Identity Web Services

Federation (ID-WSF) frameworks [78] are federated identity standards that enable identity

information-sharing. SAML has been created by the OASIS Security Services Technical Com-

mittee [54], while ID-WSF has been standardised by the Liberty Alliance organisation1 [42].

SAML is an XML-based standard for exchanging authentication and authorisation data

between security domains, i.e. between an Identity Provider (a producer of assertions) and a

Service Provider (a consumer of assertions). Its aim is to express assertions about a subject in a

portable and a standardised way for various applications within and outside of an administrative

domain to trust. These assertions can describe authentication statements, attribute statements,

as well as authorisation decision statements.

Most typical SAML deployments involve Single Sign-On (SSO) with attribute transfer that

takes place at login time, and this is where the ID-WSF defines an architecture that includes

a discovery service for locating and gaining authorised token-based access to a person’s various

identity-enabled services as well as user attributes. Both are able to capture and propagate a
1On 20th April 2009, the work from Liberty Alliance has been moved to Kantara Initiative, which is where

the work on User-Managed Access is taking place.

64

Chapter 3. Related Technologies

user’s act of consent throughout the authorisation process.

1 <saml:Assertion...>
2 <saml:AuthorizationStatement Decision="Permit"
3 Resource="http://example.com/resource">
4 <saml:Subject>...</saml:Subject>
5 <saml:Actions ActionNamespace="http://example.com/abcd">
6 <saml:Action>Read</saml:Action>
7 </saml:Actions>
8 </saml:AuthorizationStatement>
9 </saml:Assertion>

Listing 1: Example of a SAML Authorisation Decision Statement.

Additionally, SAML is concerned with providing the solution to access control in environ-

ments spanning multiple administrative domains. In particular, it provides a standard way of

expressing authorisation decisions (see Listing 1) and a query/response protocol for obtaining

such decisions from the IDP (acting as the Attribute Authority). A Relying Party from one

domain can query an Attribute Authority from another domain whether access to a particular

resource should be granted for a specific subject (either a human being or an application).

To protect the exchange of security information in SAML, both message-level and transport-

level security have been provided and both use PKI-based mechanisms. The first mechanism

allows to secure communication channel with such protocols as TLS/SSL [193; 172]. The second

one allows to sign and encrypt SAML assertions using XML Signature [114] and XML Encryption
[93] respectively.

Despite similarities in certain features of SAML and ID-WSF, the UMAC and UMA solutions

differ from both proposals. UMA, in particular, is independent from identifier systems and

incorporates user-driven policy decision-making in addition to consent alone. UMA uses a similar

concept of a query/response protocol for authorisation decisions. It provides transport-level

security but can be extended with support for message-level security. In particular, such message

level security can be applied to tokens used for authorising requests to resources (refer to MAC

tokens used by OAuth 2.0 [55]).

3.4 Kerberos

Kerberos [255; 220] is a well-established protocol developed by the Kerberos Consortium [41],

which allows to delegate access control from servers, called Service Servers or Application Servers,

to a centralised component, called the Ticket Granting Server (TGS). The flow of the protocol

65

Chapter 3. Related Technologies

Figure 3.2: Interactions between parties in the Kerberos protocol [273].

is shown in Figure 3.2.

Clients must first authenticate to an Authentication Server (AS_REQ and AS_REP) and

then receive a Service Ticket from the TGS (TGS_REQ and TGS_REP). Such Service Ticket

contains the Ticket Granting Ticket (TGT) that is encrypted using TGS secret key. It also

contains the session key (encrypted using the secret key of the requesting user). This ticket can

be later used by a client to gain access to a resource on a Service Server which validates this

ticket locally based on a session key that was used to encrypt it (AP_REQ and AP_REP).

Only then access to a resource is granted.

Kerberos allows to centralise authorisation for various services but it requires a well-defined

point of authority, relationships between services to be pre-established and relies heavily on

symmetric cryptography. As such, it is ill-fitted for the open and dynamic Web environment.

Moreover, in the current form, Kerberos does little to empower users with better control over

access to their online resources. The recent proposal of OAuth 2.0 support for Kerberos [118]

seems to allow this protocol to be easily extendable to the Web. However, this approach inherits

the weaknesses of OAuth 2.0 (see Section 3.6).

3.5 OAuth 1.0

OAuth 1.0 [200] is one of the early proposals to address authorisation between Web services that

attracted much attention in the Web community. It has been based on proprietary standards,

most notably Flickr Auth [13], Google AuthSub [17] and Yahoo! BBAuth [91], as discussed in
[122]. OAuth 1.0 allows a Resource Owner (RO) to share data between two Web applications,

one being a Server and the other being a Client. Access to data is authorised by RO at the

Server side which results in an access token being issued to a Client. As a result, Client does

not learn credentials of RO and is able to make authorised access requests to selected resources

66

Chapter 3. Related Technologies

Figure 3.3: OAuth 1.0 protocol flow [200].

or services at a Server using this acquired scoped token. Commonly, each Web application acts

as an independent OAuth 1.0 server. The OAuth 1.0 protocol flow is visualised in Figure 3.3.

A crucial part of the OAuth protocol is the concept of scopes and authorisation page (some-

times called consent page). A scope combines a resource (or a group of resources) with an

operation (or a group of operations). For example, a scope calendar_view can allow for read-

type access to a calendar feed, while documents_manage can allow for both read-type and

write-type access to a set of documents stored at a Web application. An authorisation page is

presented to the user and provides them with the necessary information to make a meaningful

decision whether access should be allowed or not. This information includes the name of the

application as well as the list of scopes for which access will be granted. The concepts of scopes

and authorisation page are used in the UMAC and UMA proposals.

As discussed in [200] and [122], OAuth uses three kinds of credentials: client credentials,

temporary credentials, and token credentials. Client credentials are obtained during a registration

step and are provided to the application out of band. Temporary credentials are requested by

the application before obtaining the actual authorisation and eventually token credentials from

the Server. These credentials are not RO-specific but are used solely to identify requests and

authorisations. Token credentials are issued based on RO authorisation and are used to access

resources (Listing 2).

Authenticity and integrity of requests in OAuth 1.0 is achieved with digital signatures (refer

to Section 3.4 of the OAuth 1.0 specification [200]). Clients, when issuing requests to Servers,

compute a signature of the HTTP request using a keyed-hash message authentication code

(HMAC [221]) which calculates a Message Authentication Code (MAC) in combination with

67

Chapter 3. Related Technologies

1 GET /resource HTTP/1.1
2 Host: example.com
3 Authorization: OAuth realm="Example",
4 oauth_consumer_key="9djdj82h48djs9d2",
5 oauth_token="kkk9d7dh3k39sjv7",
6 oauth_signature_method="HMAC-SHA1",
7 oauth_timestamp="137131201",
8 oauth_nonce="7d8f3e4a",
9 oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw"

Listing 2: Example of HTTP request, carrying token credentials, sent by the client application to the
server [200].

a secret cryptographic key. In particular, OAuth 1.0 supports HMAC-SHA1 where the client

secret and token secret are used as a key and the SHA-1 function [262] is used to compute

a signature. Unlike client secret, the token secret is provisioned during the protocol flow and

therefore requires additional transport level security (i.e. HTTP over TLS/SSL). Furthermore,

OAuth 1.0 allows the use of asymmetric cryptography, namely RSA-SHA1, where private/public

key pairs are used both by the client as well as the server. In such case, HTTP over TLS/SSL

is not necessary.

With scoped tokens being used for accessing protected resources, OAuth 1.0 addresses the

password anti-pattern [267], i.e. a user does not have to reveal their credentials to give one service

access to protected resources hosted at a different service on the Web. Each OAuth Server used by

the user, however, must independently serve an authorisation management function without the

possibility of centralised management, defeating requirements identified in Chapter 1. Moreover,

OAuth 1.0 requires a person to be present when authorising an access request and does not

allow pre-configured policies to be used when making access control decisions. Additionally,

client applications are required to be pre-registered with the servers, which limits the use of the

protocol in dynamic environments such as Web 2.0. Proposals discussed in Chapters 4 and 5

alleviate these shortcomings of OAuth 1.0.

3.6 OAuth 2.0

OAuth 2.0 [202] is a less complex attempt to solve the problem of authorisation for Web resources

to that proposed by OAuth 1.0. In particular, in its base form it only relies on transport-level

security (i.e. the use of HTTPS protocol) without message-level security. This reduces the

complexity of client libraries and frameworks. It also reduces the application development effort.

OAuth 2.0 has been based on the initially proposed OAuth Web Resource Authorisation Profiles

68

Chapter 3. Related Technologies

(WRAP) [119], eventually submitted to OAuth Work Group at Internet Engineering Task Force

(IETF) [79].

OAuth 2.0 allows a Web application, called a Resource Server (RS), to delegate authorisation

to a trusted authority called an Authorisation Server (AS). A Client, when seeking access to a

Protected Resource hosted on RS, must first obtain an access token from AS and present this

token along with an access request.

Obtaining authorisation from the Resource Owner (RO) can be accomplished using various

ways, which are considered as grants for OAuth 2.0. The specification defines four grant types:

authorisation code, implicit, resource owner password credentials, and client credentials. The

first two types are considered a 3-legged variant, while the latter two types are considered a

2-legged variant of the OAuth 2.0 protocol.

The 3-legged variant of the OAuth 2.0 protocol involves direct interactions between the

following three parties: the Resource Owner, the Authorisation Server, as well as the Client.

Importantly, in this variant an authorisation is transferred from the AS to the Client through

the RO. For example, a one-time code is transferred from the AS to the Client through the RO’s

user-agent application such as the Web browser. This authorisation code is later exchanged

for an actual access token that allows the Client to interact with the RS. In this variant, the

Resource Owner does not share their credentials with the Client.

In the 2-legged variant of the OAuth 2.0 protocol, the Client interacts directly with the AS

in order to obtain an access token for a specific RS (and not through the RO). For example,

instead of requiring the code to be transferred through the user-agent application, the Client

can exchange credentials of the RO directly at the AS in order to obtain an access token from

this AS. Importantly, the Client does not have to store these credentials but uses them only

to obtain a long-lived access token that is scoped for a particular access type at RS. Because

credentials need to be shared with the client, this variant of the OAuth 2.0 protocol should be

used only when there is a high degree of trust between the RO and the Client. Additionally, the

Client may also use this variant to exchange its own credentials (and not credentials of the RO)

for an access token to access resources at the RS. A detailed explanation of different variants of

the OAuth 2.0 protocol is given in [202].

The OAuth 2.0 Authorisation Code grant type has been used as the basis for our research

on UMAC and it also constitutes an important building block for the UMA proposal. This type

allows to obtain the authorisation using the Authorisation Endpoint. This grant is presented as

part of the entire OAuth 2.0 flow in Figure 3.4 and an example of an HTTP request containing

MAC access token in Listing 3.

Access tokens returned by AS to Clients are often short-lived and their validity is implemen-

69

Chapter 3. Related Technologies

1 GET /resource HTTP/1.1
2 Host: example.com
3 Authorization: MAC id="h480djs93hd8",
4 ts="1336363200",
5 nonce="dj83hs9s",
6 mac="bhCQXTVyfj5cmA9uKkPFx1zeOXM="

Listing 3: Example of authorised HTTP request with a MAC access token sent by the client application
to the resource server.

Figure 3.4: OAuth 2.0 - Authorisation Code Grant (former Web Server profile) [202].

tation specific. These tokens are returned from the Token Endpoint and can be accompanied

by a refresh token. Such refresh token can be used by client applications to obtain new access

tokens without the need of going through the authorisation flow. While access tokens cannot be

revoked, the refresh tokens can [290].

Similarly to the first version of this protocol, OAuth 2.0 also relies heavily on the autho-

risation page being presented to the end-user. Such page provides information regarding the

application seeking access to resource as well as the list of scopes for which access will be autho-

rised. It is important to note that the protocol allows downscoping, which can be used by the

user to limit the list of permissions that the application will be authorised for (despite the fact

that the application itself may ask for a broader set of permissions). Unfortunately, such down-

scoping is rarely implemented (e.g. from existing major OAuth 2.0 providers, only Facebook

supports this feature) but may pose security concerns in certain cases [230].

Accessing protected resources in OAuth 2.0 is done by including the access token retrieved

from the AS in the request to the RS. A token is usually passed in the Authorization header

of the HTTP request but can be included in the body of the HTTP POST request or as a query

in the HTTP GET request. OAuth does not mandate the use of any particular token type and

70

Chapter 3. Related Technologies

this is dependent on the AS used by the Client. At the time of writing, at least two token types

were specified for OAuth, namely Bearer [210] and MAC [55] access tokens. The latter one, in

particular, can allow access over insecure channels (e.g. HTTP without the use of TLS/SSL).

Despite allowing the use of an external entity to control access to Web resources, OAuth

2.0 fails to provide certain features required in the open Web environment. In particular, it

does not define dynamic introductions by users, requires relationships between parties to be pre-

established, and does not define how RS comes to trust AS2. Moreover, OAuth 2.0 does not define

the communication between RS and AS and in typical scenarios these two components reside

in a single administrative Web domain. This requires the hosting application to understand the

syntax and semantics of authorisation tokens issued by AS in order to validate them locally,

which limits the use of the proposed OAuth 2.0 framework in the open Web. Furthermore,

OAuth 2.0 does not allow to demand claims from Clients, which can be perceived as yet another

of this protocol’s major weaknesses. Therefore, OAuth 2.0 fails to address identified shortcomings

(Section 1.1.2) and does not meet all the requirements as discussed in Section 1.1.3.

The UMA protocol, which is discussed in this thesis, relies on the OAuth 2.0 protocol for

its interactions between entities of the proposed architecture. It builds on two instances of this

protocol. The use of OAuth 2.0 in the UMA model is presented in Chapter 5.

3.7 OpenID Connect

The OpenID Connect 1.0 protocol [58] is the successor of OpenID 1.x [56; 100] and OpenID 2.0
[105] protocols and allows federated authentication on the Web. It is a simple identity layer on

top of the previously defined OAuth 2.0 protocol. Most importantly, it allows authentication

as well as authorisation. It extends OAuth 2.0 with a new token, called idtoken, as well as the

UserInfo endpoint.

The flow of the protocol differs slightly from the originally proposed flow of OAuth 2.0

in three ways. Firstly, the authorisation request that is sent by the client to the Autho-

risation Endpoint at AS, apart from other requested scopes, has to contain OpenID-related

scopes (i.e. openid scope, and optionally any of the following: profile, email, address,

phone). Secondly, the token response from the Token Endpoint contains an additional value

- the id_token, apart from the previously discussed access token and optional refresh token.

This id_token, which is a cryptographically-signed JSON object encoded in base64 [39; 38;

37], contains claims about the authentication event and other requested claims. In particular,

it defines the authenticated subject’s identifier and the authentication method. Additionally, it
2I am a co-author of the recently emerging protocol for dynamic client registration, which is standardised at

IETF [274].

71

Chapter 3. Related Technologies

clearly states the audience of this token as well as possible authorised presenters (in case the re-

quester acts on behalf of another set of entities, which is common in distributed environments).

Another difference between OpenID Connect and OAuth 2.0 is the presence of the UserInfo

Endpoint which allows the access token to be used for obtaining claims about the authenticated

user. The set of claims is standardised in [57] and includes, among others, the name, gender,

age, or address of the person.

The OpenID Connect has been used in the UMA proposal to allow users to define their

access control policies based on claims and not only identities of individuals. As discussed in

further chapters, a policy can allow access to a particular resource/service if the person seeking

access can provide claims of a specific type. This is similar to the trust negotiation that is

discussed in Section 2.6.1.1, which allows for trust to be built gradually. In UMAC and UMA,

for example, access can be restricted based on age or gender of the individual user or it can be

based on a proof of "possession" of a particular email address. UMA implementation shown in

Chapter 7 supports policies where individuals need to provide a proof of a verified email address.

3.8 Street Identity

The Street Identity protocol is a proposal from Google that builds on top of OAuth 2.0. It

is similar to OpenID Connect as it allows for exchange of user attributes between Attribute

Providers (AP) and Relying Parties (RP). Attribute exchange is mediated by a Street Identity-

enabled Identity Provider3. In this proposal, user attributes can be accessed in a decentralised

fashion, i.e. RPs can interact directly with possibly distributed APs to get attributes of the

user. The architecture and the protocol of the proposal are discussed in subsequent sections.

3.8.1 Architecture

Street Identity distinguishes the following actors (see Figure 3.5):

1. User;

2. Attribute Provider;

3. Relying Party;

4. Identity Provider.

The User is the main actor in Street Identity who dynamically links different parties of

the proposal. Firstly, they register their chosen APs with their IDP. Secondly, they authorise
3This section uses the term Identity Provider in relation to a Street Identity-enabled Identity Provider.

72

Chapter 3. Related Technologies

Figure 3.5: The Google’s Street Identity proposal.

RPs to access their attributes stored at these APs. The User is assumed to have a pre-existing

relationship with the IDP and the AP. Exchange of attributes is usually triggered when the user

establishes a relationship with RP.

The Attribute Provder is a Web application that acts as a source of trustworthy information

about the User. The AP is registered by the User at the IDP only as a source of specific types of

attributes. Attributes are exposed through APs programmatic APIs for consumption by RPs.

The API exposed by an AP is protected with the 2-legged OAuth 2.0 protocol, or other means,

as agreed between the AP and RP. A brief introduction to a 2-legged OAuth 2.0 protocol is

given in Section 3.6. A more detailed description is given in [202].

Importantly, a pre-existing relationship between the AP and RP is a requirement. These two

types of applications have to be integrated prior to interacting with each other according to the

Street Identity protocol. Each access request for an attribute at the AP has to be accompanied

by an access token, issued by the IDP, that uniquely identifies the application that acts as the

RP. This access token also identifies the owner of the requested attribute. Moreover, such request

has to contain credentials (e.g. an OAuth 2.0 access token) that an RP has for this AP. As such,

the AP can validate whether access to an attribute should be granted or not. For example, the

AP may impose monetary charges on the RP at each request to an attribute. Such billing was

one of the requirements for the Street Identity protocol.

The Relying Party is an application that acts as a client of information stored at APs. This

application is authorised by the User at the IDP to discover APs registered by this user and to

learn the location of user attributes. RPs can obtain access tokens for these attributes from the

IDP. RPs can be authorised at the IDP to access all or only selected attribute types and such

authorisation is given explicitly by the user during the OAuth 2.0 flow. Authorisation cannot

73

Chapter 3. Related Technologies

be restricted to selected APs or individual attributes. RPs have to be pre-integrated with APs

that they want to interact with (i.e. there has to be a pre-existing relationship between these

two applications, as previously discussed).

The Identity Provider is an OAuth 2.0 compliant IDP with specific Street Identity extensions

(including Street Identity API endpoints) that mediates interactions between RPs and APs. The

User can use the IDP to register their APs as well as RPs. RPs can then discover APs registered

for a particular user. The IDP is also concerned with issuing access tokens to RPs and these

tokens can be used to access user attributes at APs. It also allows APs to remotely validate such

access tokens received from RPs.

In order to provide functionality for RPs and APs, the IDP uses standard OAuth 2.0 end-

points as well as newly introduced Street Identity API endpoints. Registration of APs and RPs

is done using OAuth 2.0 Authorisation and Token endpoints. Importantly, such registration

only marks an applications either as an AP or RP of a particular attribute type at the IDP.

This registration is different from the one where an application obtains OAuth 2.0 credentials

that are later used to interact with OAuth 2.0 endpoints of the IDP. Other functionality related

specifically to Street Identity is provided using the newly introduced endpoints of the Street

Identity API. These endpoints are Discovery, Token and Token Info endpoints. The Discovery

endpoint allows Relying Parties to discover APs that have been authorised by the user as sources

of trustworthy information. RPs use the Token endpoint to obtain access tokens for specific APs.

The Token Info endpoint is used by APs to remotely validate these tokens received from RPs.

The functionality of the IDP is discussed in more detail when providing an overview of the Street

Identity protocol in the next section.

The Street Identity protocol involves a number of access tokens that are used by differ-

ent actors of this proposal. These tokens are shown in Figure 3.6. The following naming

scheme is used for these tokens: ATIssuer-Subject(Audience). The IDP issues the ATIDP-AP(IDP)

and ATIDP-RP(IDP) tokens to APs and RPs respectively and these tokens can be used by these

applications to interact with the IDP. These tokens are standard OAuth 2.0 tokens (e.g. Bearer-

type [159]) which are issued by the OAuth 2.0 Token endpoint of the IDP. Furthermore, the

RP can obtain ATIDP-RP(AP) tokens which are then used to interact with APs to obtain user

attributes. The ATIDP-RP(AP) access token is returned by the Street Identity Token endpoint

of the IDP and it is a JSON Web Token (JWT) [39], encrypted with JSON Web Encryption

(JWE) [37] and signed using JSON Web Signature (JWS) [38]. Furthermore, before an RP can

interact with any AP, it has to obtain an access token (or other credential4) issued by this AP -

ATAP-RP(AP). This token identifies the RP at the AP and allows the AP to include additional
4Street Identity leaves unspecified how authentication is done between the RP and AP but the initial proposal

would assume a 2-legged OAuth 2.0 protocol between these two parties.

74

Chapter 3. Related Technologies

Figure 3.6: Access tokens involved in the Street Identity protocol.

checks in its access control process (e.g. access to user attributes is only given once the AP can

charge the RP for such access).

3.8.2 Protocol

The Street Identity protocol is composed of the following steps (as highlighted in Figure 3.5):

1. User registers Attribute Providers at the Identity Provider;

2. User registers Relying Parties at the Identity Provider;

3. Relying Parties discover Attribute Providers;

4. Relying Parties obtain access tokens for specific Attribute Providers;

5. Relying Parties interact with Attribute Providers to obtain user attributes;

6. Attribute Providers validate access tokens before releasing attributes.

In the protocol description that is provided below, various assumptions are made. Applica-

tions, acting as either RPs or APs, can interact with the IDP and these applications are already

registered as OAuth 2.0 clients (i.e. OAuth 2.0 credentials are issued to these applications).

Furthermore, there is an existing relationship between an RP and AP. Most importantly, the

RP knows the OAuth 2.0 client identifier which is used by the AP at the IDP. Similarly, the AP

knows the OAuth 2.0 client identifier of the RP at the IDP. Moreover, the RP is registered with

this AP (e.g. as an OAuth 2.0 client) and understands what information can be obtained as well

as what APIs this AP supports. This RP also has the necessary access token (e.g. refer to the

75

Chapter 3. Related Technologies

introduced ATAP-RP(AP)) for this AP. Moreover, the given discussion assumes that the User is

already signed in to the IDP (refer to Step 0 in Figure 3.5).

In the first step of the Street Identity proposal, the User registers AP with their IDP5 (see

Step 1 in Figure 3.5). Such registration is based on the Authorisation Grant of the OAuth 2.0

flow and requires the user to authorise a client application for one of the existing Street Identity

"write" type OAuth 2.0 scopes. Currently, Street Identity supports scopes for the following

attribute types: street address, verified age, and verified gender. The corresponding OAuth 2.0

scopes for these attribute types are the following:

1. https://www.googleapis.com/auth/streetidentity.write

2. https://www.googleapis.com/auth/verifiedage.write

3. https://www.googleapis.com/auth/verifiedgender.write

Once an application is authorised by the user for any of the above scopes at the IDP then

this IDP issues the ATIDP-AP(IDP) token to this client application which becomes an AP. Au-

thorisation for these scopes is used for a dual purpose. Firstly, these scopes allow to distin-

guish APs for different attribute types. For example, if an application has been authorised

for the https://www.googleapis.com/auth/streetidentity.write scope then this applica-

tion is treated by the IDP as an AP only for the street address attribute type. Secondly, if an

application has been authorised for any of the aforementioned "write" type scopes, then this

application can use the ATIDP-AP(IDP) token to validate tokens (ATIDP- RP(AP)) received from

RPs by interacting with the Token Info endpoint of the IDP.

Importantly, the client application during registration as an AP has to obtain an IDP-issued

user identifier and link this identifier with its locally used identifier for the user. This identifier

will be used to obtain the correct attributes that are requested by RPs. Importantly, Street

Identity protocol, unlike OpenID Connect, does not impose any constraints on the actual API

through which attributes are exposed to RPs.

During the second step of the Street Identity protocol, the User registers a Relying Party

at the IDP (Step 2 in Figure 3.5). Such registration requires that an application is authorised

for one of the Street Identity "read" type OAuth 2.0 scopes. These scopes correspond to the

previously discussed "write" type OAuth 2.0 scopes and are the following:

1. https://www.googleapis.com/auth/streetidentity.read

2. https://www.googleapis.com/auth/verifiedage.read

5At the time of writing, Google was the only known Street Identity-enabled Identity Provider.

76

Chapter 3. Related Technologies

3. https://www.googleapis.com/auth/verifiedgender.read

Once an application is authorised by the user for any of the above scopes then the IDP issues

the ATIDP-RP(IDP) token to this client application which becomes an RP to an Attribute Provider

(apart from being an RP to the IDP). Authorisation for Street Identity "read" type scopes allows

the RP to use the issued ATIDP-RP(IDP) token and interact with the IDP’s Street Identity API.

Firstly, these scopes define for which attribute types the RP can discover APs. For example, if an

application is authorised for the https://www.googleapis.com/auth/streetidentity.read

scope then this application can only discover APs that are registered for at least the street address

attribute type. Secondly, if an application has been authorised for any of the aforementioned

"read" type scopes, then this application can obtain access tokens for APs of the corresponding

attribute types using the Token endpoint. Importantly, the RP cannot be restricted to access

only individual APs or even individual attributes stored at these APs.

RP has to know which providers are available for a particular user before it can retrieve

them from AP. The RP uses the Discovery endpoint to learn about available APs for a particular

user. The RP interacts with this endpoint using an HTTP GET request. An example response,

excluding any HTTP headers, returned by the Discovery endpoint is provided in Listing 4. This

response includes OAuth 2.0 client identifiers for different attribute types.

1 {
2 "https://www.googleapis.com/auth/streetidentity.read":[
3 "01234.example.apps.googleusercontent.com",
4 "56789.example.apps.googleusercontent.com"
5],
6 "https://www.googleapis.com/auth/verifiedage.read":[
7 "56789.example.apps.googleusercontent.com"
8],
9 "https://www.googleapis.com/auth/verifiedgender.read":[

10 "01234.example.apps.googleusercontent.com"
11]
12 }

Listing 4: Example of response from the Street Identity API Discovery endpoint.

As discussed earlier, the RP can discovery all or only selected APs registered by the user and

this depends on the actual authorisation. In the example given in Listing 4, the RP is authorised

for all three available attribute types at the IDP that returns information about available APs.

The RP can decide which AP to use in case there are multiple APs for the same attribute type

(see two APs listed for the https://www.googleapis.com/auth/streetidentity.read scope

in Listing 4). This decision is made based on pre-existing relationships between the RP and

77

Chapter 3. Related Technologies

APs. For example, the RP may decide to use the AP that charges the least money to access an

attribute for a particular user. Alternatively, the RP may ask the user to select the AP of their

choice. This step of the protocol is visualised as Step 3 in Figure 3.5.

Before the RP can interact with any AP, this application has to obtain an access token for

this AP (ATIDP-RP(AP)). A token to access attributes is obtained by the RP using the Street

Identity Token endpoint. The RP interacts with this endpoint by issuing an HTTP POST method

and providing the OAuth 2.0 client identifier of the AP that this RP wants to interact with. This

identifier corresponds to one of the identifiers from the response returned by the aforementioned

Discovery endpoint of the IDP. Among others, the ATIDP-RP(AP) token provides information

about the audience (i.e. for which AP this token was issued) and the user identifier (i.e. for

attributes of which particular user this token was issued). Importantly, the user identifier is

unique only within the scope of the IDP but it is mapped to a local user identifier at the AP.

The step of obtaining an access token from the IDP is visualised as Step 4 in Figure 3.5.

The AP exposes user attributes through its programmatic API and the RP accesses this

API with the accompanied access token. Importantly, there is no particular standard on how

the attributes should be exposed and there are no requirements in relation to the API supported

by the AP. Instead, the RP has to have a relationship with the AP and must understand the

API that is used to expose those user attributes. The ATIDP-RP(AP) token is passed by the RP

as a query parameter in the HTTP request to the AP, which can validate this token locally (in

case encryption has been done by the IDP using a shared secret) or using the Street Identity

Token Info endpoint. An example response from this endpoint is shown in Listing 5. The AP

extracts the user identifier from this token and uses it to get attributes of the correct user (recall

the requirement for the AP to map such user identifier, as specified by the IDP, to its local user

identifier).

1 {
2 "issuer" : "https://www.googleapis.com/streetidentity/v1/token",
3 "audience" : "01234.example.apps.googleusercontent.com",
4 "issued_to" : "11111.example.apps.googleusercontent.com",
5 "user_id" : "0123456789",
6 "scope" : "https://www.googleapis.com/auth/streetidentity.read",
7 "issued_at" : 1368316800,
8 "expires_at" : 1368320400
9 }

Listing 5: Example of response from the Street Identity API Token Info endpoint.

78

Chapter 3. Related Technologies

RPs and APs need to have a pre-established relationship between each other, which is

required for the envisioned billing in the Street Identity proposal (i.e. APs can monetize access

to user attributes). Access requests made by RPs to APs have to include additional credentials

which are specific for an RP at this particular AP. For example, the RP has to include an access

token obtained from this AP (recall the ATAP-RP(AP) token that was introduced in Section 3.8.1)

or needs to provide some other credentials issued by this AP. Neither the access token nor the

credentials are revealed to the IDP and these are only shared between the RP and AP. Steps

of accessing user attributes and validating the ATIDP-RP(AP) token are visualised as Step 5 and

Step 6 respectively in Figure 3.5.

3.8.3 Discussion

The Street Identity protocol has been designed and developed at Google after we have developed

UMAC and during our work on UMA. Therefore, it has been influenced by these two solutions.

In its initial version [70; 53], the protocol would allow for fine-grained access control to individual

attributes stored at APs, which is similar to the UMA proposal. Firstly, APs would not only

be able to register at the IDP using the standard OAuth 2.0 flow but these APs could also

provide metadata about individual user attributes to this IDP. Such functionality required a

new endpoint to be exposed by the IDP for APs.

This level of control required an additional screen to be presented to the user during the

authorisation phase and this would result in an additional access control policy being created at

the AS (apart from a standard OAuth 2.0 related authorisation). Furthermore, the user would

be provided with an additional User Interface at the IDP that would fulfil a dual function.

Firstly, this UI would allow the user to view registered APs as well as information on individual

attributes. Secondly, the user would be able to review access control policies for their attributes

stored on distributed APs.

The Street Identity protocol has been eventually simplified, which would limit the control

that end users had over attribute release6. The user would not be presented with two different

authorisation pages, i.e. one page for authorising RP at the IDP and another page to specify

which attributes or APs should this RP be authorised for. With the lack of an additional access

control policy being created at the IDP, no new User Interface would be necessary. The existing

OAuth 2.0 related UI that allows the user to review which applications have been authorised at

the IDP for which scopes was sufficient and would allow the user to review their RPs and APs.

The aforementioned simplifications have been done primarily due to two reasons. Firstly, it
6Due to the lack of documentation about the changing protocol, refer to the source code revision a69050731b9c

in [126].

79

Chapter 3. Related Technologies

was necessary to simplify the User Experience for end-users who were unfamiliar with the flow

involving multiple parties from different administrative domains (i.e. Relying Party, Attribute

Provider, Google’s Street Identity-enabled Identity Provider). Additionally, it was vital to pro-

vide a solution, which could be implemented by developers in their Web and mobile applications

without unnecessarily steep learning curve. The complexity of the initial proposal was considered

an obstacle for successful deployments.

3.9 Sticky Policies

Sticky policies is another approach of enforcing access control to data that can be spread across

numerous applications. As discussed in [269; 163], such policies can be bound to the actual data

that is sent to different applications. A user allows an application to have access to specific data

(e.g. personal information) based on a policy that is attached to this data. Such data is often

encrypted and the decryption key is released only when the application confirms adherence to

the terms within the policy. For example, an application may need to interact with a third party

component to get access to a key and such interaction is logged for audit purposes (e.g. a user

can later review that a particular application has accessed the data and confirmed adherence to

the terms contained within a policy).

As discussed in [269], the access to data can be fine-grained and this is based on policy

definitions, underlying encryption mechanisms, and a related key-management approach that

specifically encrypts data based on the policy. A third party is responsible for mediating access

to data, checking for compliance to policies to release decryption keys. This provides users with

fine-grained control over access and usage of their data in the open environments, such as the

Web.

Authors in [269] give an example of the use of sticky policies where medical data is passed

between institutions. In this example, a health-care record is passed from a hospital to a research

institution and later to a research team. In such a record, medical results or personal information

(e.g. name and address) are encrypted. A sticky policy would be associated with such record

describing how parts of this could be used. For example, a policy may state that information

can be released only to research teams, it should be deleted after three years, and a notification

should be sent to the patient every time the information is passed on from one system to another.

80

Chapter 3. Related Technologies

3.10 VOMS

Virtual Organisation Membership Service (VOMS) [135; 136] is a system that allows for flexible

assignment of attributes to users. Such attributes can be later used in access control decisions

made by resource or service providers. VOMS introduces a new component (VOMS Server)

that can be used specifically to meet two important requirements in the context of Virtual

Organisations and grid computing. The VOMS Server acts as a central entity that provides its

functionality to different domains of control (within a Virtual Organisation).

Firstly, VOMS allows to introduce new attribute types (e.g. group membership) and assign

the actual attributes to users across different domains and systems. These newly created at-

tribute types can be used during policy definition and further in authorisation processes within

the computing system. New attribute types can be created dynamically and can be assigned

to users irrespectively of the actual domain that these users reside in. Importantly, these new

attributes can be combined with the actual user identity, as defined by local IDPs, and used

along local attributes during access control. Secondly, VOMS allows to delegate such attribute

type creation and attribute assignment to different entities. The VOMS Server can be used

within a single VO and access to it can be delegated to numerous domains depending on the

actual deployment or configuration requirements. For example, additional attribute for users

from one domain can be controlled by users at another domain. VOMS relies on policies to be

evaluated and enforced locally in each domain.

3.11 Locker Project

A system named Locker [80] (recently commercialised as Singly [73]), describes itself as a con-

tainer for personal data, which gives the owner of the data the ability to control how this data is

protected and shared. Locker acts as a central system that retrieves and consolidates data from

multiple sources, including Google, Facebook or LinkedIn applications, among many others [45].

As such, it creates a single view of online data that the user stores at their Web applications.

Data is retrieved from applications using connectors implementing a particular protocol provided

by an application (e.g. OAuth 2.0 for Google and Facebook; OAuth 1.0 for LinkedIn). This data

is later stored in Locker to form a collection (aggregation of common data types like photos,

contacts, etc). An actual copy of the data is retrieved to Locker and not just a reference. Col-

lections are further exposed to applications through a RESTful API to which access is protected

based on user’s requirements.

Locker, like UMAC and UMA proposals, recognises similar shortcomings in existing access

control models in today’s Web 2.0 environment. In particular, it’s objective is to empower

81

Chapter 3. Related Technologies

an individual to have the necessary holistic view of their online resources and to share these

resources from a central location. Locker envisages the use of such protocols as OAuth or UMA

to control access to their resources, which would be accessed through a RESTful API.

However, Locker provides access control for data that it actually stored within its platform

and not data distributed on the Web. Therefore, despite giving users the convenience of man-

aging access rights to their Web resources from a central location, it fails to scale with the ever

growing number of those resources. Firstly, having two copies of the same resource in different

locations requires synchronisation techniques in case such resource is changed. Secondly, despite

having a holistic view of data sharing at the Locker platform, the user does not gain any insight

into sharing done via applications that store original resources. For example, a particular photo

can be shared from Locker with a selected group of users but the same photo can be accessible

at Facebook by a different group. Moreover, with the growing number of resources on the Web,

having to store a copy of each resource seems to be ineffective.

3.12 Menagerie

The Menagerie system proposed in [195] recognises the problem of data being distributed across

multiple Web applications residing in distinct administrative Web domains, which need to be

accessed and managed by individual users. In PC-based systems, access to such data would

be simplified, irrespective of the application being used. Additionally, a single access control

mechanism could be applied to that data. However, on the open Web, this data is isolated

in separate Web applications as seen in Figure 3.7, each implementing its own authentication,

authorisation and sharing schemes. Authors recognise the need for a new service interface to

be defined and adopted by Web applications, similarly to trusted layers that exist in modern

operating systems.

The system proposed by the authors addresses the challenge of data organisation and man-

agement, data manipulation and processing, as well as protected data sharing on the open Web.

In data protection, emphasis is put on allowing individuals to aggregate and share collections of

distributed objects with other individuals or groups of individuals. It differs significantly from

the previously discussed Locker project, because it puts emphasis on objects remaining stored

and managed by their respective Web services and only aggregating pointers to these objects.

As discussed in [195], Menagerie facilitates organisation and sharing of collections of Web

service objects using two distinct components, namely Menagerie Service Interface (MSI) and

Menagerie File System (MFS). MSI is an API that facilities inter-Web-service communication

and access control while MFS allows Web applications to access and manipulate distributed data.

82

Chapter 3. Related Technologies

Figure 3.7: Example of data organisation in PC-centric vs. Web-centric world [195].

Such heterogeneous Web services expose access operations through a well-defined API and can

be mounted into a local file system namespace. Web applications access this data from the MFS

using MSI. This is similar to the proposals discussed in this thesis, which require applications

to be enabled for consuming APIs. However, current MSI implementation, as presented in
[195], uses an XML-RPC layer [298], while the discussed approaches are based on RESTful Web

services. Authors in [195] also provide an overview of implemented Menagerie Group Sharing

(MGS) service, which allows for central management of distributed objects, which is similar to

the Authorisation Manager that is discussed in this thesis.

Access control is implemented as a "hybrid capability-based protection system". The au-

thors based this approach on the authorised/unauthorised pointer model used initially in the

IBM System/38 [146], which merges capabilities with ACL-based authentication. In Menagerie,

resource requesters must possess a token to access data and can be subject to additional authen-

tication. For example, read type operations can be allowed for clients possessing the capability

token, while write type operations can require additional authentication from these clients.

In Menagerie, a capability token is an unforgeable token containing the globally unique ID

of the (root) object as well as the access rights. It is embedded in the URL which can be shared

by users (e.g. using email or by embedding URLs on Web pages). Similar approach is already

implemented by existing providers such as Google Calendar [23], which uses secret-links for read

type operations, augmented with authentication for write type operations. Additionally, services

have sole control whether access to a resource is granted or not.

As discussed in further chapters, the aforementioned characteristics of Menagerie differ from

the approaches that are discussed in this thesis (and from UMA in particular). Firstly, this

thesis shows the use of URLs as resource identifiers where access to subtrees of a resource are

not allowed (i.e. access has to be explicitly defined for each individual resource or a group of

83

Chapter 3. Related Technologies

resources). Secondly, in the presented approaches access control decisions are made by a central

component. Implementation of Menagerie presented in [195], includes a Menagerie Web Object

Manager (WOM), which lets users organise and share their distributed Web objects. WOM

resembles the Authorisation Manager, as discussed in Chapter 4 and Chapter 5.

Capabilities are created using a create_capa and can be revoked using revoke_capa func-

tions available from MSI. Access rights to resources can be either open or closed. In the latter

case, additional authentication is required from a client, which allows Web services to track users

accessing particular objects. This is a requirement for user-centric access control for the Web to

allow a user have a holistic view of the applied security controls as well as audit logs.

Menagerie, however, restricts access to Web resources through its Menagerie File System

component only. Such restriction does not fit well with the current Web model where data is

stored at different applications and exposed through their respective Web APIs. The propos-

als discussed in further chapters impose certain constraints on developers who must use the

proposed protocol, but who are not required to make significant changes to their applications.

In Menagerie, however, developers are additionally required to interfere with the business logic

of their applications and must use the proposed mechanisms for managing data. This can be

considered as an unnecessary level of complexity, which disqualifies this proposal for existing

applications.

3.13 Secure Web 2.0 Sharing Beyond Walled Gardens

In [286], authors describe an access control solution that allows users to share content using

existing secret-link mechanisms. This solution consists of an architecture and a protocol (refer

to Figure 3.8) that aims to solve similar problems to the solutions discussed in this thesis.

In particular, authors recognise the problem of "broken" access control in the open Web with

such challenges being not addressed as usability, inter-operability, granularity of control and

accountability [286].

The proposal from the authors is based on two main components. The first one, called

OpenIDemail, allows users to log in to distributed Web applications using their emails as OpenID

identifiers. Translation between emails and standard URL-based OpenID identifiers is made

using the Email Address to URL Translation (EAUT). The latter component is called the Open-

Policy Provider and provides four different functions. Firstly, it provides a UI for users to define

email-based access control policies for Web resources. Secondly, it allows users to associate

policies with distributed resources from a single location. Additionally, this component acts

as a resource notification service by sending the secret-link of the protected resource to email

84

Chapter 3. Related Technologies

Figure 3.8: The system architecture of the proposed Web 2.0 content sharing solution [286].

addresses following user’s policies. Lastly, it evaluates resource clients against policies using

proposed distributed inference engine. Importantly, both OpenIDemail and OpenPolicy Provider

are user-centric and users can choose their preferred components for these functions. The ar-

chitecture and the protocol of this proposal are shown in Figure 3.8 and are discussed in more

detail in [286].

Resources are shared using secret-links, which the authors identified as most commonly

implemented by such providers as Google, Flickr or Facebook. The secret link is generated by

the Web application hosting the data and is later combined with the policy by the OpenPolicy

Provider (which later sends out this link to clients).

As presented in Figure 3.8 and discussed in [286], the user, acting as the content owner,

creates access control policies and associates these policies with distributed content using the

OpenPolicy Provider. A client, when accessing data at a Web application, is required to present

its identity as well as context information. The latter one includes user-specific attributes, loca-

tion, date/time of the request as well as user credentials (asserted attributes). This information

is used by the Web application, acting as the PEP, to consult the OpenPolicy Provider whether

request is valid or not. A decision is made solely by the OpenPolicy Provider, which acts as

the PDP and PAP. This component calculates role memberships for the client to match them

against the user-defined policies.

The OpenPolicy Provider contains a Sharing Log and an Access Log as well, which are used

for auditing purposes. The first log is used to store information regarding secret-links sent out by

the Distributed Mailing component. The latter one is used to store information about distributed

authorisation decisions (issued by the Distributed Authorisation component). Both these logs

can be used by the user for accountability and audit purposes and can provide a view of the

applied security controls over distributed resources.

The system proposed by the authors is similar to the ones discussed in this thesis from the

85

Chapter 3. Related Technologies

perspective of identified challenges that it aims to solve as well as the high-level architecture

with a designated component for access control over distributed Web resources. Moreover, it

recognises the need for a user-centric access control rather than site-centric model, which is

currently deployed on the open Web. According to [286] and similarly to the discussion from the

previous chapter, the authors emphasise the need for users to "have the freedom to choose their

favourite providers of their identities, content, social relationships, and access-control policies."

However, the system differs significantly from the proposals discussed in this thesis in terms

of functionality of the components used as well as the protocol itself. In particular, it uses role-

based access control as the underlying model for policies. It also relies on secret links. On the

other hand, UMA uses identities or arbitrary claims that can be used for access control and also

allows resources to be made available through publicly facing Web APIs. This fits well with the

current model where applications expose their data through RESTful Web APIs.

Furthermore, this approach targets access to resources made by individuals using their Web

browsers. Both UMAC and UMA focus on programmatic access to data by (Web or mobile)

applications used by end users. Moreover, the proposed authorisation system can be perceived

as tightly coupled with authentication since it requires the OpenIDemail service in its architec-

ture. Therefore, it may not address various sharing scenarios discussed in [243] and satisfy the

requirements, which were presented in Section 1.1.3.

3.14 Secure File System for the Web

A secure file system service for Web applications [207] separates Web data from applications,

similarly to existing PC-based systems, where applications access files from the local file system.

Authors motivate such separation by pointing out similar challenges that were identified in the

previous chapter. In particular, it is mentioned that in the current approach Web applications

provide their own data storage with their own-defined Web APIs, which are most commonly

incompatible with each other. Controlling access to such data results in access control policies

being distributed, which complicates data sharing for individual users.

In the proposed system, files can be stored locally or remotely and can be accessed by

Web applications using the system’s client component that gets integrated with each application

within a user’s Web browser. Authors implement a POSIX-like API, which allows for such

operations as open(), read(), write(), truncate(), etc. [207]. In the proposed approach, the user

is free to choose a file system service that best suits their needs. This makes it a user-centric

system, which is similar to UMAC and UMA proposals.

Access control is based on capabilities which must be obtained by an application to access

86

Chapter 3. Related Technologies

user’s data. The user can enforce access control at any time, independent of the application,

and this is done using a user interface proposed by the authors. Such interface provides a file

browser for the user to delegate access to their files. Selecting a file results in a capability being

issued and eventually passed to the application. Closing a file, on the other hand, expires the

capability (i.e. revokes it). As discussed in [207], the current implementation only supports

single file access, which differs from the proposals that are discussed in this thesis. Additionally,

capabilities can be shared between applications with limited ability for their revocation. The

discussed implementation has its own access control system for simplicity but envisions the use

of such delegated access control as that provided by OAuth [200] or the one discussed in [204].

In the secure file system approach, there is no notion of access control policies. This limits

the use of the system in at least two ways with regard to the previously discussed requirements

(recall Section 1.1.3). Firstly, authors do not consider sharing to be done without the presence

of the data owner. As discussed in Section 3.5 and Section 3.6, this is a limitation that prevents

applications from having possibly long-term access to resources that may change over time (e.g.

calendar feed, updated resume, etc.). Secondly, the user has no notion of how resources have

been shared with distributed applications over time.

In the secure file system model, sharing resources (i.e. files) is done only between a user

and their own applications. Authors, however, provide a brief explanation of how sharing could

be solved between different applications of the same users or between different users. In the

first case, applications could share capabilities while in the latter case the server side component

could provide users (and not applications) with these capabilities. Both types of use cases are

currently covered by the UMAC and UMA proposals.

The secure file system proposal relies heavily on the trustworthiness of the identities of

applications involved in transactions. Additionally, this proposal does not impose any constraints

on authentication mechanisms used for applications. Security is achieved mostly through the

use of SSL/TLS for communication between the file system (either local or remote) and Web

applications. These characteristics are similar to the UMA proposal.

Because the proposed approach requires data to be separated from Web applications, it

entails significant changes in existing approaches to building Web applications, which currently

rely heavily on having direct access to such data for various reasons (e.g. performance or easy of

use). In the current model where resources are distributed on the Web, this proposal does not

appear to fully solve the problem of authorisation for Web resources.

87

Chapter 3. Related Technologies

3.15 Fine-grained Access Control Policies for Social Network-

ing Applications

In [281], authors discuss data sharing and authorisation for social networks. They motivate their

work by the need of fine-grained access control policies for user’s data that would meet the user’s

specific requirements as well as provide them with the appropriate audit information.

In particular, authors state the principles of data sharing and put these principles in the

context of such Web 2.0 applications as social networks. These principles are: "who can see

what is clearly the responsibility of the data owner; as one cannot predict a priori what policies

particular data owners might wish to impose, support for flexible and fine-grained models is

essential; and data owners should be able to know who has seen their data, that is to say that

tailored or transformed audits should be available."

Authors compare the need of sharing data in the open Web with their previous research

done in the e-Health field. In particular, they refer to their work in [270], [282] and [283].

Their proposal discussed in [283] describes a mechanism for facilitating access to, and sharing

of, healthcare-related data across organisational boundaries. It utilises XACML [97] for policy

specification purposes. This is mapped to the context of social networking applications with

examples of policies defining access rules for individuals (based on their name), networks, as well

as rules based on such user attributes as sex, gender or age.

The proposals discussed in this thesis take into account the requirements presented in [281]

as well as policy types, which are given as examples. In particular, these proposals recognise the

need of very fine-grained access control based on arbitrary user attributes. For example, this

thesis discusses the use of policies where access is restricted based on the age of the individual user

seeking access to a resource. The implementation presented in this thesis also shows integration

of social networks into access control policies, where users can share data with their Facebook

friends.

3.16 Chapter Summary

This chapter provided an analysis of various standards and proposals for standards to access

control solutions in distributed environments. Furthermore, it provided a review of similar aca-

demic research on user-centric authorisation. It also compared some of the presented proposals

to the UMAC and UMA solutions.

88

Chapter 4

User-Managed Access Control

4.1 Introduction

This chapter introduces the initial solution to a user-controlled access management in the open

Web. This proposal, named User-Managed Access Control (UMAC), fits precisely to the user-

driven Web 2.0 environment.

The UMAC approach consists of architecture of services, each with a well-defined role, and

access control protocol that specifies interactions between these services. UMAC puts a user in

full control of access to their resources on the Web. Unlike existing authorisation systems, it relies

on a user’s centrally located security requirements for those resources, which may be scattered

across multiple distinct Web applications. These security requirements can be expressed in

the form of access control policies and are stored and evaluated in a specialised user-chosen

component.

In UMAC, a user creates and shares content as usual at their Web applications. However,

the user is additionally empowered to flexibly control access to their increasing amount of online

resources, using the proposed component. Moreover, a user gets a holistic view of the applied

security controls for their online data.

UMAC was initially designed as an external security module for Web applications. This

module provided its functionality through a RESTful Web API and acted as a component in

Service Oriented Architectures. This proposal was later refined to address the shortcomings and

to satisfy requirements that were discussed in Section 1.1.2 and Section 1.1.3 respectively. These

shortcomings and requirements were clarified in our further research.

Further work has focused on research and development of the User-Managed Access (UMA)

protocol [297], a comparable technology that emerged at the same time as our work on UMAC.

89

Chapter 4. User-Managed Access Control

Figure 4.1: Research path on proposals for user-managed access control solutions for the Web.

UMA is presented in Chapter 5. The work on UMA has been conducted at the User-Managed

Access Work Group (UMA WG) [86] at Kantara Initiative [40], which includes researchers and

professionals from industry and academia. The list of members of the UMA WG is maintained at
[87]. UMA proposal has been submitted to IETF [79]. I have been contributing to this workgroup

since 2009. In particular, I have been contributing to the use cases analysis, protocol design and

implementations. I have been also holding various leadership positions in this work group.

Most importantly, since 2010 I have been the vice-chair, use cases editor, and implementation

coordinator of this work group.

We did not think it was useful to continue separately the work on UMAC, while concurrently

UMA was being developed. Hence, we have focused our research efforts solely on UMA, leverag-

ing our increased understanding of issues related to user experience, design, and implementation

of systems similar to UMAC. Figure 4.1 visualises the research path.

The remainder of this chapter is organised as follows. Section 4.2 introduces the initial

UMAC proposal to access control by providing its high-level overview. This proposal was pub-

lished in [242]. The refined UMAC proposal, including its architecture and protocol, is discussed

in Section 4.3, which was published in [244]. A prototype implementation is presented in Sec-

tion 4.3.3. The advantages of UMAC and its evaluation are given in Section 4.3.4. Section 4.3.5

presents possible UMAC extensions and Section 4.3.6 presents its limitations.

90

Chapter 4. User-Managed Access Control

Figure 4.2: High level view of the user-centric access control system for the Web.

4.2 Initial Proposal

User-Managed Access Control1 is a proposal for a novel user-centric authorisation system for

distributed environments, such as the Web 2.0 environment. UMAC is based on the concepts

analogous to modern authentication mechanisms, where applications delegate authentication to

specialised Identity Providers that are capable of authenticating users for multiple Web appli-

cations.

Web applications externalise their authorisation function to a specialised component, called

Authorisation Manager (AM). This component was initially named Security Provider (SP), as

presented in [241]. Because the aim of the work on UMAC, similarly to the work done by the

UMA WG, is to provide users with the mechanisms to centrally control access to distributed

data, we have eventually adopted the terminology accepted by this work group in favour of the

terminology that was used in our previous architecture [241]. Therefore, the new terminology

in relation to UMAC is used throughout this thesis. Security Provider has been renamed to

Authorisation Manager.

Authorisation Manager allows users to define security requirements for their distributed Web

resources, irrespectively of where these resources are hosted. For example, a user can use the

AM to restrict access to their documents stored on an online storage system and to their photos

stored on an online gallery service. Access requests to protected resources are subject to access

control defined by user policies that are stored and managed at AM. This concept is visualised

in Figure 4.2.
1In the course of the project, we changed the original name of User-Centric Access Control [243; 241] to User-

Managed Access Control in order to better reflect the nature of our system with users being in control of access to
their Web resources. The change was also dictated by our emerging collaboration with the User-Managed Access
Work Group at Kantara Initiative.

91

Chapter 4. User-Managed Access Control

4.2.1 Architecture

The generic proposal distinguishes Web applications that have the data, the Authorisation Man-

ager component that secures access to this data, and clients of the data (see Figure 4.2). The user

delegates access control functionality from their Web applications to AM using a well-defined

RESTful Web API. The AM is a Web application that provides a User Interface for users and

an API for applications that want to use its functionality. The AM allows the user to manage

their security requirements for their online resources in a uniform way irrespective of the Web

application that hosts those resources. Security requirements are encoded in the form of access

control policies and the AM makes access control decisions based on those policies, using its

provided policy evaluation engine.

A particular Authorisation Manager to be used across applications is chosen and can be

optionally controlled by a user. This concept is based on that originally proposed in OpenID [56;

100; 105] where a user chooses their preferred Identity Provider according to their requirements

and preferences. Moreover, a technically-skilled user may decide to build and use their own AM

that implements the proposed protocol and this is also similar to user-centric authentication

systems where users may sign in with their custom-built IDPs to their Web applications.

The UMAC approach uses the concept of delegated authorisation (refer to Section 2.4 and
[300]) and is related to XACML [97]. In particular, the AM provides functions of the PAP,

PDP, and PIP components, which are specified in [97]. On the other hand, Web applications

are mostly concerned with enforcing access control policies and act as PEPs.

4.2.2 Interactions

UMAC requires a user to complete two simple steps of the initialisation phase. At first, a user

registers an account with their chosen AM. UMAC does not define how an account is created

and this step can be completed with various authentication mechanisms. Therefore, the proposal

is authentication-agnostic, which makes it usable in various scenarios and deployments with

different (and possibly incompatible) authentication protocols used. The user then generates

a secret key at the AM using the provided UI and such key is used at a Web application to

communicate with this AM. Importantly, the user generates separate keys for each of their Web

applications that they wish to integrate with their AM.

In the second part of the initialisation phase, a user configures their chosen set of Web

applications to delegate access control for all or part of a user’s resources to this component.

Such configuration involves providing a URL of a user’s AM or selecting one using a graphical

User Interface. This approach is based on solutions adopted by existing user-centric identity

92

Chapter 4. User-Managed Access Control

federation proposals, such as OpenID. Importantly, the user also configures the Web application

by providing a shared secret key that is used for communication with AM.

A user interacts with their Web applications and manages their resources in a usual way.

When access control needs to be applied to a resource (e.g. by clicking on a "Share" button), a

user is redirected to their preferred AM. This is based on the configuration stored by the appli-

cation and the trust relationship that has been established by the user between their application

and the AM (with the use of a shared secret key). At AM, the user can specify either a new

access control policy or can apply an already composed policy to a resource. Access control

policies allow to specify users who should have access to a particular resource.

Access requests to Web resources are performed as usual by users with their Web browsers.

These requests are subject to access control by the AM component. In particular, users have

to provide credentials, which were provisioned to them, in order to access protected resources.

These credentials are used by the AM to make access control decisions that are later enforced by

Web applications. Communication between applications hosting resources and AM is based on

the access control pull model and is transparent for clients accessing resources. Such enforcement

model is depicted in Figure 4.2.

4.2.3 Discussion

UMAC allows the user to choose their preferred Authorisation Manager component to provide

the access control function for their set of Web applications. The user then plays the pivotal role

in various policy management steps, including those discussed in Section 2.6.2.3 (and presented

in [97]). The user has full control of access to their distributed resources and applies centrally

located security requirements to protect those resources. Importantly, those requirements allow

the user to share their data with other users by providing them with necessary credentials to

access online resources.

The authorisation function is externalised from Web applications and encapsulated in form

of an easily pluggable Web service accessible by applications over a RESTful Web API. Web ap-

plications are only concerned with enforcing access control decisions made by AM. This approach

clearly shows that not only functional but also non-functional parts of Web applications can be

provided in the form of services that can be used to compose more complex applications on

the Web. This approach fits precisely to the SOA paradigm that supports such a decentralised

computing model [175; 99] (recall Chapter 2).

Establishing trust relationships between Web applications and AM, and composing security

policies is done with the provided UI accessible with a Web browser. Interactions between

components of the proposed architecture use HTTP as the transport protocol and conform to the

93

Chapter 4. User-Managed Access Control

REST architectural style. In the initial UMAC proposal, transport-level security is provided by

requiring the use of TLS/SSL [193; 172] for communication between components. Furthermore,

a shared secret key is established between Web applications and the user’s AM. The proposed

model fits precisely to the user-centred design of the modern Web [251], with different and

heterogeneous Web applications that are used for creating and managing data.

The AM may be chosen by the user based on such requirements as available policy languages,

policy editors, policy management tools, or the overall User Experience (UX), among other

factors. It is believed that there is scope for providers of authorisation services in the open and

user-driven Web environment, similarly to providers of identities or attributes. Similar services

have been already well-adopted in various multi-domain computing environments, including

those forming VOs (refer to Section 2.2.1). On the Web, well-defined interaction sequences and

APIs of such services as the proposed access control one, should facilitate their adoption among

distributed applications.

Having access control policies stored centrally gives the user means to easily introduce new

rules or change existing ones with minimum effort. Additionally, the user can be given a con-

solidated view of the applied security mechanisms across multiple Web applications, which is

discussed as one of the requirements in Section 1.1.3.

Management of access control policies can be simplified through policy reusability as well,

i.e. the same policy can be reapplied to different online resources, not necessarily from the same

Web application or even the same Web domain. Furthermore, UMAC allows the policy to be

applied to a resource even if this resource is moved from one Web application to another. The

user does not need to re-establish necessary security rules but can reapply the same policy with

minimum effort.

The initial UMAC proposal had various limitations. Therefore, it was considered only as the

basis for further research. In this proposal, interactions between different components required

manual user intervention. For example, the user would be required to establish a link between

the host application and AM by exchanging a shared secret between these applications. Policies

that were stored and managed at the AM required that users manually share credentials with

other users who would request access to protected resources. Resources themselves would not

be registered at the AM and there was no mechanism for applications to register such resources

dynamically. Moreover, the proposal targeted use cases where resources would be accessed with

Web browsers and this proposal was not tailored for sharing resources through Web APIs. It

was also based on a simple pull model and was not easily scalable. Therefore, this proposal was

refined and a new version was developed (see next section).

94

Chapter 4. User-Managed Access Control

4.3 Refined Proposal

The proposal presented in Section 4.2 constituted the basis for further research. This proposal

was refined and its architecture and the authorisation delegation protocol were clarified in order

to make it usable in today’s Web and applicable to existing Web applications. The refined

UMA aimed to address identified shortcomings S1 - S4 and to meet formulated requirements

R1 - R4, as presented in Section 1.1.2 and Section 1.1.3 respectively. This refined UMAC was

published in [244].

In comparison to the initial proposal, two major refinements were introduced:

1. Protected resources can be accessed by Web APIs;

2. Communication between a Web application and Authorisation Manager is based on enti-

tlement model.

The initial UMAC proposal allowed access to protected resources using existingWeb browsers

controlled by individual users. For example, a user could access a protected document and they

were required to provide their issued credentials to access this document. This approach was

refined to allow protecting access to resources exposed via Web APIs. Importantly, UMAC fo-

cused to support client applications, such as mobile or Web applications (and not User-Agents),

to access resources using such APIs.

Secondly, in the initial proposal, communication between applications hosting resources

and AM was based on the access control decision pull model and was transparent for clients

accessing resources. Such enforcement model was depicted in Figure 4.2. The refined UMAC

supported the entitlement model and allowed requester applications to obtain authorisations to

access protected resources similarly to capability-issuing architectures (see Section 2.5.1). The

refined UMAC introduced a step of obtaining an authorisation token, similarly to the OAuth

WRAP proposal [119]. When the authorisation token is presented to the hosting application,

this application validates this token at AM. The AM does not issue an authorisation decision but

provides the host with the information regarding permissions associated with this authorisation

token. The rational for this design decision is given in Section 4.3.2.

A similar approach is also adopted by the UMA proposal [297] that based its protocol on

WRAP at some point as well (UMA was initially based on OAuth 1.0a but eventually adopted

OAuth 2.0). Originally in UMA, the application accessing data would not obtain the token from

AM but would rather establish an authorisation state for a scope on an application hosting the

data. This state would then be checked by the host application when querying AM for the access

control decision. The UMA proposal is discussed in Chapter 5.

95

Chapter 4. User-Managed Access Control

Figure 4.3: Basic Architecture for User-Managed Access Control for the Web [244].

The refined UMAC solution consists of an architecture of services, each with a well-defined

role, and an access control protocol that specifies interactions between these services. The

architecture is presented in Section 4.3.1 and the protocol in Section 4.3.2.

4.3.1 Architecture

As depicted in Figure 4.3, UMAC distinguishes five main actors that play various roles in this

access control system: User, Authorisation Manager, Host, Requester, and Requesting User.

A User is an entity that stores and manages resources using a Web application, called

the Host. A User delegates access control functionality from a single or multiple Hosts to

an Authorisation Manager. The User may use the AM to define access control policies to

protect their resources and may authorise another user, called the Requesting User that uses a

client application called the Requester to access these resources. The Requester can issue access

requests to protected resources and these requests need to be authorised by the AM, which issues

authorisation tokens to Requesters. Therefore, the entire access control logic is performed by

the AM, which decides whether access to a resource should be granted or not. A more detailed

explanation of each actor is given below:

1. User: A User is an entity that stores and manages resources using hosts and shares these

resources with requesting users. The user also composes access control policies using an

Authorisation Manager and links these policies with resources. In order to delegate access

control from hosts, the user establishes a trust relationship between these hosts and the

user’s preferred AM. In such a relationship, the communication between the host and the

96

Chapter 4. User-Managed Access Control

AM is secure, i.e. the integrity, confidentiality, and authenticity of messages between these

components is guaranteed.

2. Authorisation Manager: The Authorisation Manager is the main component in the

UMAC architecture. Its role is to allow the user to define access control policies for their

online resources in a uniform way irrespective of the Web application that hosts these

resources. It also evaluates these policies before issuing authorisation tokens to requester

applications.

The AM provides functionality of PAP, PDP, and PIP components, such as those defined

in [302; 97]. Therefore, the general UMAC architecture is related to the one proposed by

XACML in multi-domain computing environments [97]. The AM also acts as a Security

Token Service (STS) that, following evaluation of access requests, issues authorisation

tokens to requesters. This is similar to Kerberos [255].

In the UMAC proposal, the user chooses and controls a particular AM. This concept is

based on OpenID where a user chooses their preferred IDP according to their requirements,

preferences, or the trustworthiness of this IDP, among other factors. The user may choose

their preferred AM based on available policy languages, policy editors, management tools,

or the AM’s overall UX. More security conscious users may even decide to build their own

AMs to protect resources on hosts. A more detailed discussion on user motivations towards

choosing the AM is given in [243].

Access control functionality of the AM is used by the user’s chosen set of hosts, which

delegate access control to AM. These hosts are then concerned with using the AM to

obtain information whether authorisation tokens supplied by requesters are sufficient to

access a particular resource. The AM provides access control decisions with associated

entitlements (permissions) and it is up to the host to enforce them. In the refined UMAC,

access control is based on entitlement model and such model is discussed in more detail on

the UMA example in Chapter 5.

3. Host: A Host can be any Web application which allows its users to create or upload and

then share their data with other users or services on the Web. Access control functionality

of such an application is delegated to AM. Therefore, the host is concerned with enforce-

ment of access control decisions that are issued by AM. As such, the host acts as a policy

enforcement point (PEP) [302].

Before the host can offload its access control to the user’s chosen AM, the user must

establish a trust relationship between these two components. This trust relationship guar-

antees secure communication between the host and AM using the transport-level security.

97

Chapter 4. User-Managed Access Control

Depending on the host’s configuration, access control can be delegated to AM either for

the entire application, for individual users only, or for individual resources. In a typical

setting, it is likely that each user will choose their preferred AM for all of their resources

stored on a particular host. UMAC, however, does not restrict such configurations which

are implementation specific [243].

4. Requester: A Requester is an application that is capable of issuing access requests to

resources that are stored on hosts and that are protected by AM. The requester obtains the

necessary authorisation token from AM and presents this token to the host when issuing

access requests to protected resources. Such token may need to be obtained only once

and can be used for multiple subsequent identical access requests to the same protected

resource (or the same set of resources) indefinitely (or for a specific period of time) or

the token may need to be obtained for each single access request. This is implementation

specific and depends on the actual deployment environment. Firstly, the token’s lifetime

can be configured or the token itself can be single use.

A requester can be any Web application, controlled by a requesting user, that accesses

resources stored on a different Web application through their Web APIs. An example

would be an online photo editing software accessing a photo hosted on an online gallery.

An example set of such applications is discussed in this chapter. A requester can be also

a Web browser controlled by a requesting user who wishes to access a particular resource

stored on a host. In such case, the Web browser has to be able to interact with other

components of the proposed architecture according to the defined protocol, e.g. through

the use of a plugin.

5. Requesting User: A Requesting User is an individual user that uses a Requester (either

a Web application or a Web browser with a plugin) to get access to resources shared with

this user. Before access to these resources can be granted, the Requesting User must meet

conditions defined by access control policies stored at AM. The Requesting User may be

the same entity as the User in case resources are shared between applications or it can be

a different user when resources are shared between users.

UMAC, similarly to UMA, differs in various ways from classic access management systems,

such as XACML, that are based on the concept of centralised access control components. Most

importantly, XACML assumes that the resource owner is the host while UMAC distinguishes

between these two entities. UMAC is also designed for the open Web where there can be multiple

different resource owners at any given host. Furthermore, XACML is tailored towards closed

environments where trust relationships between components (e.g. hosts and central authorisation

98

Chapter 4. User-Managed Access Control

systems) can be pre-established while UMAC allows such trust relationships to be established

dynamically by the user. Importantly, nothing in UMAC (and UMA) prevents trust relationships

between different entities to be pre-established out of band but this thesis does not focus on such

setup. UMAC, similarly to UMA, also does not mandate the use of any particular policy type

and allows the user to protocol interactions [180].

Figure 4.4 presents a conceptual difference between a user-managed access control proposal

and existing solutions. Such comparison was originally prepared for UMA and published in [245].

However, this comparison also applies precisely to the UMAC proposal. Importantly, UMAC

focuses on individual users who use Web applications to store their online resources. These

users can disclose location of those resources to potential clients. UMAC allows these users and

not security administrators to define access control policies for those resources. In particular,

requesters must satisfy policies stored at AM, i.e. must meet the contract terms, before access

can be granted. Hosts, on the other hand, must check authorisation from requester applications

before access to a resource can be granted.

(a) Classic access management. (b) User-managed access control solution (e.g. UMAC
or UMA).

Figure 4.4: Comparison of relations between parties of a user-managed access control solution with
XACML [245].

4.3.2 Protocol

A high-level view of the protocol defining interactions between all parties of the UMAC system

is depicted in Figure 4.5. The protocol consists of the following steps: (1) Delegating Access

Control, (2) Composing Policies, (3) Acquiring Authorisation Token, (4) Accessing Protected

Resource. The protocol flow for Subsequent Access Requests (5) is also discussed. This section

presents the steps but without all the details, because the protocol will be superseded by UMA.

UMA is presented in detail in Chapter 5.

99

Chapter 4. User-Managed Access Control

Figure 4.5: High-level overview of the UMAC protocol [244].

1. Delegating Access Control: During this step, the user establishes a trust relationship

between the host and the Authorisation Manager (Figure 4.6). This is done by collecting

the user’s consent at AM and providing a host with a delegation token. The host can use

this token to protect resources using this AM. At this point the host becomes the PEP

while the AM acts as the PDP/PAP/PIP component.

The delegation token is a bearer token opaque to the host. It allows this host to use the

functionality provided by AM. It has similar characteristics to single-sign-on (SSO) cookies

used in Web browsers. UMAC proposes that the size of such token is at least 128 bits.

Importantly, the user trusts the host application that it will delegate access control to the

AM. Furthermore, the user trusts the AM that it will issue an access token to the host

and that it will provide access control for resources stored at a host. Trust between the

host and AM is created dynamically by the user.

In UMAC, the user has to manually register resources at the Authorisation Manager.

This proposal does not support dynamic resource registration. Such registration has been

introduced in the UMA proposal.

2. Composing Policies: The user stores and manages resources on the host as usual. The

way access control is exposed to the user depends on the application but is typically

achieved by providing a configuration menu. Such menu is often accessible by clicking on a

security-related link associated with a resource (e.g. “Share”, "Sharing Settings", "Protect",

etc.).

Because the host now delegates its access control functionality to AM, then after clicking

100

Chapter 4. User-Managed Access Control

Figure 4.6: UMAC Step 1: A User establishes a trust relationship between a Host and AM.

on such a link the user, instead of defining access control policy at a host, is redirected to

this AM. The user can then associate a resource or a group of resources with an already

existing policy or may define a new policy as necessary.

Access control policies in the proposed system can be arbitrarily complex and may require

requesting users to authenticate themselves or submit necessary claims. In the first case,

policies require the requesting user to authenticate to the AM before access can be granted.

In the latter case, there can be a more complex process of negotiating access to a resource

based on claims provided by requesting users. This process involves requesting claims from

the requester and evaluating the submitted claims at the AM. The concept of authorisation

is discussed in Section 2.6.1.1.

There can be multiple different policies associated with a resource or a group of resources.

With multiple policies in place, it is common for policy conflict resolution protocols to be

used. UMAC currently supports positive statements in access control policies. Therefore,

this system does not require such protocols to be adopted.

3. Acquiring Authorisation Token: In order to access the resource protected by AM, the

requester has to issue an access request accompanied by an authorisation token. This is

101

Chapter 4. User-Managed Access Control

the push model that was discussed in Section 2.4.1. The authorisation token is bound to

a particular resource or a group of resources (scope), a method that needs to be executed

on these resources, and the requesting user. This token must be obtained from AM. The

requester learns about the AM that protects a resource by issuing an access request to the

host, which replies with AM location in the WWW-Authenticate header.

Requesters obtain authorisation tokens from AM by providing information regarding the

original access request to a host. The AM uses this information contained in the request

to find applicable policies and it evaluates the access request against these policies.

Policy evaluation is independent of the protocol itself. UMAC allows AM to support

policies based on identifiers or claims. Therefore, the requester may need to engage the

requesting user in the authorisation phase (either providing its credentials or submitting

self-asserted claims, as depicted in Figure 4.7).

The AM issues an authorisation token to the requester based on policy evaluation. The

authorisation token is opaque to the host and to the requester. Therefore, the host must

use the AM for the validation process.

Using the push model in UMAC allows the host to be only concerned with receiving a

token that must be checked for permissions at the AM. Firstly, the AM only has to interact

with the requester to communicate what information is necessary to satisfy a particular

policy and the host does not have to participate in this process. Moreover, the requester

itself interacts with the AM and supplies the necessary information in order to obtain

authorisation for a particular resource or a set of resources. This process of obtaining

authorisation may involve multiple exchanges of messages with this AM. Therefore, the

pull model would be inefficient in such cases and would require the host to implement

additional functionality, which is now placed at the AM.

4. Accessing Protected Resource: A requester uses the authorisation token in access

requests to resources at the host. Tokens are bound to a specific resource or a group of

resources as well as an access method. Therefore, these tokens can be only used to access

specific resources.

The host extracts the token from the access request and starts the token validation process

- either remotely using AM or locally, if the decision for such request is cached. The AM

evaluates access requests and issues decisions: either "permit" or "deny", with the attached

set of permissions for a token (i.e. entitlements are communicated by AM to the host).

Based on the decision as well as attached permissions, access to a resource is granted or

not. The host may choose to cache access control decisions issued by AM.

102

Chapter 4. User-Managed Access Control

Figure 4.7: UMAC Step 3: A Requester obtains authorisation token from AM.

103

Chapter 4. User-Managed Access Control

Figure 4.8: UMAC Step 4: A Requester attempts access with authorisation token.

104

Chapter 4. User-Managed Access Control

5. Subsequent Access Requests: Subsequent requests to protected resources do not have

to follow all the steps of the protocol and can be simplified if the requester is already in

possession of the authorisation token. The previously obtained decision can be reused by

the host, which does not have to validate tokens at AM.

The flow presented in Figure 4.5 as well as figures for individual steps of the protocol

deliberately does not include details on the authentication process between the parties of the

UMAC system. UMAC assumes that this process can be completed with existing technologies.

For example, the user could authenticate to the host or AM using username and password or

OpenID and the requesting user could authenticate with OpenID Connect credentials or SAML

assertions [151].

4.3.3 Implementation

A simple prototype of the Authorisation Manager has been implemented. This AM allows the

user to compose access control policies and apply them to a set of resources hosted on different

Web applications. The AM provides both Web-based and RESTful interfaces and supports

creating, updating, deleting and reading policies which are persisted in a datastore [19]. The

Web-based interface can be used by the user to manage policies and the RESTful interface is

used for interactions with hosts and requesters.

The prototype AM implementation allows the user to create a set of general policies from

which a single policy can be applied to a resource or a group of resources. In addition, a resource

or a group of resources can be linked to a specific access control policy. For example, the user

may compose a general policy which defines identities of requesting users that should have access

to these resources. The user could also compose more specific policies and further restrict access

to particular subsets of protected resources.

Evaluating access requests against access control policies is performed by a custom-built

policy engine and the resulting decision can be either "permit" or "deny", with the attached

permissions for the token. First, the engine evaluates the request against the general policy

defined by the user for the group of resources to which a particular resource belongs. For

example, the AM can evaluate a policy for the directory of files. If the evaluation results in

a "deny" decision then no other policy is processed. Otherwise, the engine checks whether a

specific policy is associated with the resource, evaluates the access request against this policy,

and produces a final decision. For example, the AM can evaluate a specific policy that is

associated with a single file.

A custom policy engine was used instead of an existing one because at that time the re-

105

Chapter 4. User-Managed Access Control

search focused on the architecture and the protocol of a new access control solution and not on

authorisation policies. Development of a custom engine was not considered a challenge and such

engine would simplify testing of the UMAC solution. Furthermore, having a custom engine was

efficient during its integration with UIs for setting access control policies at the implemented

AM.

Furthermore, two prototype hosts have been implemented - the Secure File System and the

Online Photo Gallery. The first one is an online file system accessible over the Web where the user

can upload arbitrary files and create an arbitrary directory structure. The second application

allows the user to upload photos and create photo albums. In addition, it allows the user to edit

their photos (resize, rotate, crop, etc.). Thus, this application also acts as a Web-based photo

editing tool.

Both developed hosts have a built-in access control functionality allowing the user to define

access rights to their resources. The user, however, can configure both applications to delegate

access control to the implemented prototype AM. The user can then compose policies at the AM

and can link these policies to resources hosted on implemented Web applications.

Both implemented Web applications can act as requesters. The photo gallery can access

photos hosted on the online file system depending on access control policies that are defined for

these photos. As such, the user can store photos on the online file system and can upload them

directly to the photo gallery to produce albums or to edit photos as necessary. Analogically,

the file system can access photos hosted on the photo gallery, e.g acting as a backup service for

these photos.

Additionally, a requester application, in form of a simple Web client, has been implemented.

The application is able to interact with two host applications through their RESTful APIs. It

uses the discussed protocol to obtain authorisations to access protected resources.

The prototype software was implemented in Java and can be deployed to the Google App

Engine (GAE) platform [21]. The discussed applications make use of the rich set of APIs provided

by the GAE platform to achieve the described functionality. Data in these applications is stored

in the datastore provided by Google App Engine [19].

All three client applications, i.e. Online Gallery Service, Secure File System, and a requester

application, have been used as a basis for further development of the software that would imple-

mented the UMA proposal. In particular, newly developed UMA frameworks were later added

to each application (substituting any UMAC-related code). Moreover, the software itself was

extended and its user interfaces were improved. Therefore, the implemented client applications

are discussed in more details in Chapters 5, 6, and 7 on the example of the User-Managed Access

proposal.

106

Chapter 4. User-Managed Access Control

4.3.4 Advantages

The UMAC proposal for the open Web environment and its implementation have several ad-

vantages over existing solutions. In particular, UMAC addresses the identified shortcomings

discussed in Section 1.1.2 by meeting the requirements formulated in Section 1.1.3.

1. Access control functionality is externalised from Web applications and is provided in the

form of a service, called Authorisation Manager. Its configuration capabilities depend on

the particular AM used by the user and do not depend on the actual Web application.

Therefore, the user can decide to use AM that satisfies their particular needs and provides

the required level of sophistication. This characteristic of UMAC meets requirement R1

as the AM can provide a rich functionality which could support complex Web transactions

irrespectively of the involved Web applications.

2. The user can compose access control policies using a single policy language that is sup-

ported by the user’s preferred AM. As such, the user is able to easily define and apply a

single policy to various resources hosted on multiple Web applications. (R2)

3. Security policies can be composed using a single management tool provided by AM. This

allows the user to have a consistent UX when managing these policies for resources stored

on different Web applications. (R3)

4. The user has a holistic view of the applied security controls for their Web resources and

can introduce new access control policies, modify existing ones, and audit them in a single

location. Moreover, access requests to resources on different hosts are evaluated centrally

by AM and the user may easily audit and correlate these requests. There is no need to

pull logging and audit information from distributed locations. (R4)

The user may choose their preferred AM based not only on its functionality but on the

UX provided by this AM. Furthermore, with the proposed user-centric access control solution,

different groups of users will be able to benefit from the functionality provided by a particular

Web application and will be able to choose the AM which precisely satisfies their needs for access

control on the Web.

4.3.5 Extensions

In the discussed UMAC approach, the user is the same entity that stores and manages resources

on hosts and which defines access control policies for these resources. However, it would be

possible that the user may only be concerned with managing resources and a different entity, a

107

Chapter 4. User-Managed Access Control

Custodian, could be responsible for composing policies for these resources. A scenario has been

identified where such a setting is desirable. In this scenario, young online users can use their social

networking applications to interact with their peers (e.g. by sharing photos, videos, comments,

or other resources). However, these users may not have the required skills or knowledge to make

meaningful decisions regarding the security and privacy of their online data because of their

young age (e.g. if Alice is only 13 years old she may not know if sharing her birthday photos

or phone number information with random users on the Internet is considered safe). In this

scenario, social networking applications would allow access control to be managed by parents or

guardians of such young individuals. Access control would not be managed at social networking

applications but would be delegated to a separate component. Parents or guardians could use

this component to define access control policies for online data. Moreover, they could audit

access requests and potentially spot any abuses. At the same time, young users could still enjoy

the benefits of social networking on the Web while staying safe. The scenario is discussed in

more detail in [243]. Its refined version in the context of the UMA proposal is given in [85].

The UMAC proposal allows the user to delegate access control from a set of hosts to the

Authorisation Manager. In the most common configuration, a single user would have a single

AM to manage access to all their distributed resources. However, the user could require multiple

AMs for different hosts. For example, one AM could protect access to social data (e.g. family

photos or video clips) stored on multiple hosts and a different AM could protect more sensitive

information. Furthermore, different AMs could be used to protect access to different resources

hosted by a single host or to protect the same set of resources on one or more hosts. A discussion

about possible configurations is given in [243].

Typically, all access control decisions are issued by AM and the user is not involved in the

decision making process. However, scenarios have been identified where a real-time user consent

must be obtained by AM before granting authorisation to the requester [243]. The UMAC

protocol does not restrict how such consent should be obtained. The AM, for example, could

interact with the user over e-mail or using SMS messages. Support for real-time user consent

in access control policies requires that the interaction between the requester and the AM is

asynchronous. Such interaction is discussed in further chapters on the example of the UMA

proposal.

Depending on the functionality of a particular AM, policies can be arbitrarily complex and

may define identities and their access rights, claims, or the previously discussed real-time user

consent. Third-party asserted claims, in particular, are very powerful for access control. For

example, the AM may require a payment confirmation to be submitted by the requesting user.

As such, the user could use a popular online gallery service to sell photos even if such service

108

Chapter 4. User-Managed Access Control

would not support this functionality by itself. Such functionality would extend the presented

claims-based authorisation [247] and this authorisation has been adopted by the User-Managed

Access protocol (as discussed in Chapter 5).

4.3.6 Limitations

The refined proposal for User-Managed Access Control, despite addressing identified shortcom-

ings as well as meeting formulated requirements (as presented in Section 1.1.2 and Section 1.1.3

respectively), still had a number of limitations. The limitations are discussed in this section.

Firstly, unlike the initial UMAC solution (recall Section 4.2), the refined version was targeted

at protecting resources accessible through Web APIs (i.e. the client that would access protected

resources would be a Web or mobile application and not a User-Agent such as a Web browser).

If users wanted to access protected resources with existing Web browsers then such browsers

would need to be equipped with plugins with support for the proposed protocol.

In order to allow interactions between different components of the proposed architecture,

a certain level of user intervention would still be required. In particular, the user would need

to manually register resources at the AM that would provide its access control functionality

for distributed host applications. The proposed solution did not include a resource registration

protocol but such functionality exists in the UMA proposal (see Chapter 5).

The refined solution was based on the access control push model where the requester ap-

plication would inform the AM about the access being sought and would obtain the necessary

authorisation token for this access. The requester would inform the AM about the HTTP method

to be executed on a protected resource as well as the location of this resource. Therefore, the

responsibility of running the authorisation phase was solely in the hands of the requester appli-

cations. Moreover, actions on resources were directly related to HTTP methods. This would

limit the flexibility of the host in communicating to the AM which permissions are required

for a particular access type. For example, despite the fact that a particular resource would be

accessible with a single action only (irrespective of the actual HTTP method), the requester

would still try to obtain authorisation for different access types (e.g. requester could consider

HTTP PUT and HTTP POST as different access types even though the host would not differenti-

ate these methods). The limitation of the push model has been addressed in the UMA solution

(see Chapter 5).

Moreover, the UMAC proposal has undergone only limited testing and implementation eval-

uation during the conducted research. In particular, the implemented applications were basic

and were not subject to substantial testing As discussed in Section 4.1, we did not think it was

useful to continue separately the work on UMAC, while concurrently UMA was being developed.

109

Chapter 4. User-Managed Access Control

Hence, we have focused our research efforts solely on UMA, leveraging our increased understand-

ing of issues related to user experience, design, and implementation of systems similar to UMAC.

Further implementations and testing of a user-centric access control solution has been therefore

done as part of our work on UMA.

4.4 Chapter Summary

This chapter introduced a novel solution to access control for distributed Web resources. It

discussed the architecture of this proposal, called User-Managed Access Control (UMAC), as

well as the protocol that defines interactions between different parties of this proposal. It also

showed how this proposal meets identified requirements for a new user-managed access control

system. It then discussed possible extensions for this proposal and provided an overview of its

limitations.

The UMAC approach puts a user in full control of access to their resources on the Web.

Unlike existing authorisation systems, it relies on a user’s centrally located security requirements

for those resources, which may be scattered across multiple distinct Web applications. These

security requirements can be expressed in the form of access control policies and are stored and

evaluated in a specialised user-chosen component. Applications delegate their access control

function to this component.

110

Chapter 5

User-Managed Access

5.1 Introduction

This chapter presents the User-Managed Access (UMA) proposal [86]. UMA is a novel access

management solution that consists of an architecture and a new access control delegation protocol
[297; 238]. UMA provides a method for users to control third-party application access to their

protected resources, residing on any number of host sites, through a centralised authorisation

manager that makes access decisions based on user instructions. UMA is similar to UMAC that

was discussed in Chapter 4. However, the UMA protocol differs in various ways from UMAC.

Therefore, this chapter discusses the UMA proposal in detail.

The UMA proposal consists of a specialised service for authorising access to online resources

and services [297; 238]. The user can define policies and impose demands on Web or mobile

applications that wish to access a user’s data. Importantly, such data can be spread across

distributed host applications. Moreover, the user can manage relationships between online ser-

vices from one location. With a specialised component being in charge of relationships, the user

does not have to manually provision copies of data to potential clients, nor attempt to redefine

access control policies at multiple hosting applications. Instead, requesters can be pointed to

authoritative sources from which these requesters can access the data directly in a secure and

efficient way.

UMA has been researched and defined by the User-Managed Access Work Group (UMA

WG) [86] at Kantara Initiative [40], which includes researchers and professionals from industry

and academia. The list of members of the User-Managed Access Work Group is maintained at
[87]. The UMA proposal has been submitted to IETF [79]. The protocol was first proposed

in [177] and [176] but has since undergone significant modifications, especially with respect to

111

Chapter 5. User-Managed Access

the adoption of OAuth 2.0 [202]. This chapter is therefore based on specifications and other

work published by the User-Managed Access Work Group or its participants, including [297;

84; 85; 246; 238; 274; 157; 156; 154; 247; 155; 179; 180; 178]. The UMA proposal has been

evolving during the research presented in this thesis; hence, some of the discussed terminology,

architectures, and protocols have changed. Such changes are not discussed in this thesis. The

most recent version of the UMA proposal can be found in the publications of the UMA Work

Group [86].

I have been contributing to the UMA Work Group since 2009. In particular, I have been

contributing to the use cases analysis, architecture, protocol design and implementations. I

have also held various leadership positions in this work group. Most importantly, since May

2010 I have been the vice-chair, use cases editor, and implementation coordinator of this work

group. I have also led the research and development efforts of the SMART project at Newcastle

University, which designed and implemented a complete UMA-based system.

Our shift from UMAC towards working on the UMA proposal was a natural progression.

We did not think it was useful to continue separately the work on UMAC, while concurrently

User-Managed Access was being developed. Hence, we have focused our research efforts solely

on UMA, leveraging our increased understanding of issues related to user experience, design, and

implementation of user-managed access control systems. Figure 4.1 from Chapter 4 visualises

our research path.

The UMA proposal specified by the UMA WG addresses the shortcomings of existing access

control solutions on the Web, which are discussed in Section 1.1.2. It also meets requirements

presented in Section 1.1.3. Additional requirements used specifically during research on User-

Managed Access are discussed in Section 5.2.

The remainder of the chapter is organised as follows. Analysis of additional requirements

for a user-managed access control solution is provided in Section 5.2 and these requirements

complement those from Section 1.1.3. Section 5.3 discusses the architecture of the UMA proposal

and Section 5.4 presents the UMA protocol. An overview of the UMA trust model is given in

Section 5.5. Credentials that are used in UMA are discussed in Section 5.6. Section 5.7 presents

self-asserted and third-party asserted claims in UMA. Section 5.8 discusses the applicability of

the UMA model to different types of information. Evaluation of UMA is given in Section 5.9

and its limitations are discussed in Section 5.10. The implementation of the discussed access

control solution is presented in Chapter 6 and Chapter 7.

112

Chapter 5. User-Managed Access

5.2 Requirements Analysis

This section presents requirements that were defined by the UMA WG and that were used

during the research and development of the UMA proposal. Some of these requirements have

been initially presented in [84]. These requirements supplement the ones discussed in Section

1.1.3. These new requirements address the shortcomings of existing access management systems

such as those based on Kerberos or XACML, which can be perceive as inflexible, insufficiently

user-managed and ill-fitted for the user-driven and open Web environment. Definitions of each

requirement listed below are based on the definitions presented in [238] and [84].

1. Dedicated access relationship service (R5) Access control should be delegated from

Web applications and provided as a dedicated online service. Users should be able to man-

age such service in order to control relationships between applications. These applications

should be able to reside in distributed Web domains and they should be able to establish

relationships between themselves dynamically. It should be possible to apply the function-

ality provided by the dedicated service for multiple different applications. Moreover, this

service should not be required to understand the resources and services it protects and its

functionality should be applicable to resources that can be addressed with URLs.

2. User-driven policies (R6) An individual user should be able to manage their own

policies that would be used to make authorisation decisions for resources and services

managed or owned by that user. It should be possible to apply an access control policy

across distributed Web resources Moreover, the process of composing and applying such

a policy to a resource/service should be provided to the user via a consistent UX. For

example, a user should be able to create a policy to share their certificates stored at one

application and their "Transcript of Records" document stored at another application with

the same set of users (e.g. potential employers). Moreover, access to resources/services

should be given based on user-defined policies or even with the user’s consent that may be

given in real-time.

3. Support for claims (R7) Access control should not be based solely on identities because

identification and authentication of client applications can be often insufficient on the

Web. In such dynamic and open environments as the Web, identities of clients may not

be known in advance when users compose their access control policies. Therefore, policies

should allow a user to define what attributes clients should possess before access to a

resource/service can be granted to those clients. Moreover, the solution should support

communication between the dedicated service and the client in relation to the required

113

Chapter 5. User-Managed Access

attributes (i.e. the dedicated service should be able to clearly state which attributes are

required and the client should be able to provide such attributes that would be used in the

policy decision making process).

4. User-management of access control (R8) Access relationships between services, ex-

pressed in the form of policies, should be user-managed. A user should be able to modify

these relationships or even stop them completely at their own discretion. Importantly, the

new solution should not require a user to be directly involved in interactions between the

client applications and the applications that store resources. Instead, dedicated service

and user-defined policies should dictate which interactions are allowed. The user should

be able to then audit and monitor these interactions.

The UMA Work Group also included the below requirements in their research (as listed in
[84] and [238]):

1. Design simplicity that would promote understanding of the solution, its implementation

as well as Internet-scale deployment;

2. The use of REST principles in order to support protection of Web resources;

3. Independence from identification or authentication systems;

4. The use of OAuth for building trust relationships between parties.

A full list of requirements and design principles that were defined by the UMA WG can be found

in [84].

Using OAuth as the underlying protocol for trust relationships between parties would likely

support the adoption of the new solution among the increasing number of applications on theWeb

that already implement this protocol [188]. Therefore, UMA chose OAuth instead of a custom

protocol. The use of OAuth dictates communication flows between different UMA entities.

5.3 Architecture

UMA is based on four main entities: Authorising User, Authorisation Manager, Host, and Re-

quester (Figure 5.1). Additionally, it includes an entity, called Requesting Party. These entities

have similar functions to UMAC entities that were presented in Section 4.3.1. The below defi-

nitions of UMA entities are based on definitions specified in [297; 238; 178]1:
1As discussed earlier, the UMA proposal has evolved and eventually adopted a new terminology aligned with

the OAuth 2.0 protocol. The most recent version of the UMA proposal can be found in publications of the UMA
Work Group [86].

114

Chapter 5. User-Managed Access

Figure 5.1: Interactions between entities involved in the UMA protocol [238].

1. Authorising User: An Authorising User delegates access control from their chosen Hosts

to an Authorisation Manager (AM). Such a user is also responsible for configuring policies

at AM and linking these policies with resources. The AM then makes access control

decisions when a Requester attempts to access a Protected Resource at a Host. A user,

therefore, can be considered as their own policy administrator for their resources (either

resources that this user owns or merely controls).

2. Authorisation Manager: An Authorisation Manager (AM) acts on behalf of an Autho-

rising User. It uses access control policies to evaluate access requests made by Requester

to Protected Resources at Host application. It also issues access tokens to Requesters

and these tokens are required to make authorised access requests. AM also serves Host

applications and may evaluate access tokens for these applications. AM provides function-

ality of PAP and PDP, as defined in [302; 97] by exposing a Protection API for Host

applications. AM also plays the conceptual role of STS as defined in [252], by exposing an

Authorisation API for Requester applications.

3. Host: A Host is a Web application that is used by an Authorising User to store and manage

Protected Resources. These Protected Resources (either data or services) can be shared by

an Authorising User with specific Requesting Parties and Requesters. The Host delegates

access control to the AM following configuration by the Authorising User. The Host is then

115

Chapter 5. User-Managed Access

concerned with enforcing access control based on the permissions of a particular Requester

(and this information is supplied by an Authorisation Manager). Therefore, the Host acts

as PEP. Importantly, the Host can still apply its own logic to the access control decision

making process.

4. Requester: A Requester is an application that interacts with a Host in order to get

access to a Protected Resource. Access to a Protected Resource can be granted only after

a Requester interacts with an AM to obtain an access token. The Requester is controlled

by a person or a company (Requesting Party) that uses such an application in order to

access a protected resource on their own behalf.

5. Requesting Party: A Requesting Party is a Web user, a corporation, or other legal

person, that uses a requester application in order to get access to an UMA-protected

resource. If the Requesting Party is a natural person, it may or may not be the same

person as the Authorising User.

UMA focuses on protecting resources that can be accessed using third party applications

and not Web browsers. Any application (e.g. mobile or Web application) that can interact

with Hosts and AMs according to the UMA protocol can be a Requester. Web browsers would

need to be either extended or equipped with a plugin that is able to interact with Hosts and

AMs according to the UMA protocol in order for these browsers to be able to act as Requesters

and access protected resources. This thesis focuses solely on applications and not Web browsers

acting as Requesters.

To better understand the parties of the UMA proposal, an example scenario is given below.

This scenario is similar to the one presented in [238] or discussed in Section 1.1.1 In UMA, a

Web user (Authorising User) can authorise a Web application for access to a set of personal

data including their CV stored at a personal data service (Host). Such access could be one-time

or ongoing and this would depend on the access control policy. A user can configure a host to

check with the user’s preferred access control service (Authorisation Manager). The requesting

party who would control the client Web application might be a recruitment company whose site

is acting on behalf of the user himself to assist him in applying for one of the advertised job

positions. It might also be an actual recruiter who is using a specialised application to collect

resumes and match them against available job positions.

Another example for UMA is the electronic health record scenario. In this scenario, a

patient might serve as an authorising user who chooses a particular AM to manage relationships

between various applications. These applications may include physician, analytical laboratory,

health vault, among others. These applications can act as both a host and a requesting party

116

Chapter 5. User-Managed Access

seeking access to information generated by other medical hosts.

Importantly, the UMA model is applicable to various types of information. This includes

information where the user is the author/source of authority, e.g. name or phone number

information stored at the user’s personal data service. However, the UMA model can be also

applied to information where the source of authority is different from the user. This includes

such information as the previously discussed "Transcript of Records" documents or various types

of medical information. The applicability of the UMA model to different types of information is

discussed in Section 5.8.

An extensive set of use cases with various settings of the proposed entities of the UMA

solution as well as different kinds of information being protected is discussed in [85]. These

use cases fit into one of the existing sharing categories that have been identified for UMA and

presented in [246]:

1. Person-to-Self Sharing;

2. Person-to-Person Sharing;

3. Person-to-Service Sharing.

These sharing categories are depicted in Figure 5.2 and discussed in [178; 246]. In the person-

to-self sharing scenario, data is shared between services on behalf of the same individual. In this

scenario, the authorising user can impose specific terms (Terms of Service (TOS) in Figure 5.2)

on the requester application. In the person-to-person sharing scenario, data is shared from one

service with a different service used by a requesting party that is not the owner (or controller)

of the data. In such scenario, the user can impose specific access constraints on this requesting

party. In the person-to-service sharing scenario, the authorising user shares a data with a legal

entity, e.g. with a specific organisation. In such cases, the TOS is imposed on the Non-Person

Entity (NPE). NPE is defined in [246] as "A legal person (such as a corporation) with the

capacity to take on contractual duties and obligations as a participant in an UMA interaction."

A thorough explanation of their peculiarities, mostly from the perspective of obligations that lay

on different parties in the aforementioned settings can be found in [246]. The implementation

presented in Chapter 7 supports all three sharing categories.

5.4 Delegation Protocol

The User-Managed Access protocol describes interactions between all of the previously defined

entities. As depicted in Figure 5.3, UMA protocol consists of the following main steps:

117

Chapter 5. User-Managed Access

Figure 5.2: Sharing use cases in User-Managed Access [178].

1. User introduces host to AM;

2. User registers resources at AM;

3. User defines access control policies at AM;

4. Requester gets access token from AM;

5. Requester wields access token at host to gain access.

The aforementioned steps are defined in the UMA protocol specification in [297]. Impor-

tantly, step 3 is not a part of the UMA protocol per se. UMA does not impose any constraints

on policy management but this step is presented in this section for the purpose of completeness.

The UMA protocol differs in various ways from the UMAC proposal, which was discussed in

Chapter 4. Furthermore, our research efforts focused solely on UMA, leveraging our increased

understanding of issues related to user experience, design, and implementation of user-managed

access control systems. Hence, it is useful to present the entire protocol and not only its dif-

ferences against UMAC in this chapter. A specification of the UMA protocol can be found in
[297].

5.4.1 User introduces host to AM

In this step, a user establishes a trust relationship between a Host and an Authorisation Man-

ager. Such trust relationship is necessary for the Host to be able to delegate its access control

functionality to AM. This step of the UMA protocol consists of the following phases that are

discussed separately in subsequent sections:

118

Chapter 5. User-Managed Access

Figure 5.3: High-level overview of the User-Managed Access protocol [238].

1. Host learns the location of the user’s preferred AM;

2. Host discovers AM’s functionality;

3. Host registers dynamically at AM;

4. User authorises the Host for their AM.

This step of the protocol is visualised in Figure 5.4.

5.4.1.1 Host learns the location of the user’s preferred AM

Firstly, the Authorising User provides the location of their preferred AM to the host application.

UMA does not restrict how the Host learns such location or how the AM is selected by the user.

For example, Authorising User may provide the URL of their AM to a Host by typing it into

a text field on a Web page, transmitting through an information card, or by using a graphical

interface [238]. This approach is based on solutions adopted by existing user-centric identity

federation proposals such as OpenID [105].

Initial versions of the OpenID protocol for federated authentication required the user to

provide their URL-based (or email-based) identifier during the sign in process. Such identifier

was used by the application to discover the user’s IDP that should be used for authentication.

More recent research, such as that presented on the Google’s Internet Identity Research website

available at [131], shows that allowing users to use their email addresses or to select IDPs

using graphical User Interfaces is a more intuitive and a less error prone approach. The recently

119

Chapter 5. User-Managed Access

Figure 5.4: UMA Step 1: User introduces Host to AM.

120

Chapter 5. User-Managed Access

Figure 5.5: User-Managed Access API Endpoints available on the Authorisation Manager.

proposed AccountChooser [263] allows a user to securely aggregate accounts from their numerous

IDPs and use these accounts across distributed Web applications which support this proposal.

5.4.1.2 Host discovers AM’s functionality

When a Host is provided with the location of the AM then it uses the host-meta discovery

mechanism [201] to obtain a metadata document from the AM. This document is formatted as

JSON (JavaScript Object Notation) [166] and is called the Authorisation Manager Configuration

Data. Such document resides in /uma-configuration directory of the AM’s host-meta location

(e.g. https://www.smartam.org/.well-known/uma-configuration).

Authorisation Manager Configuration Data document defines the location of various end-

points exposed by this AM. The defined endpoints provide functionality for Hosts and Requesters.

The document also provides various configuration-related information, e.g. whether the AM sup-

ports dynamic registration for applications (which is an optional step for UMA) or what types of

claims (e.g. attributes) can be provided by applications that interact with the AM (see example

AM Configuration Data in Appendix G).

As shown in Figure 5.5, Host-related endpoints, called Protection API, include the Re-

source Registration, Permission Registration, and the Token Validation endpoints. Requester-

related endpoints, called Authorisation API, include the Permission Request endpoint. The

implementation presented in Chapter 7 defines an additional endpoint as part of the Authorisa-

tion API, called Requester Host Token endpoint2. Additionally, both Hosts and Requesters can

share the Dynamic Registration, User Authorisation and the Token endpoints (although these

three endpoints can be provided separately for both application types, see Figure 5.5) [297].

These endpoints are used in further phases of the UMA protocol.
2Recent revisions of the UMA protocol have both endpoints as part of the Authorisation API.

121

https://www.smartam.org/.well-known/uma-configuration)

Chapter 5. User-Managed Access

5.4.1.3 Host registers dynamically at AM

A host application has to be registered at the AM that the user chooses for this Host. Dynamic

registration allows the Host to receive the required OAuth 2.0 client credentials {client_id,

client_secret}. These credentials are used by the Host when establishing a trust relationship

with the AM on behalf of the user. Such trust relationship may not exist a priori and it is

established solely by the user (building trust relationships is discussed in more details in Section

5.5). Importantly, credentials are used by Hosts only and are not user specific. Therefore, Hosts

need to perform the registration step only once per AM, and not per user. Furthermore, Hosts

can be pre-registered at specific AM and dynamic registration is only required for those AMs

which are not known to host applications.

Registration of host applications is done using the Dynamic Registration Endpoint of the

AM. This step is not defined by the UMA protocol per se, but relies on the OAuth 2.0 Dynamic

Client Registration proposal presented in [274]. A similar proposal for dynamic registration

used specifically for the OpenID Connect protocol is discussed in [264]. Dynamic registration

involves providing the AM with information about the application, i.e. its name, description,

URL address, redirect URL, and icon URL. The AM would display such information to the user

in later stages of the UMA protocol.

5.4.1.4 User authorises the Host for their AM

During this phase, the Host obtains the user authorisation for the AM. This authorisation is

required for the Host to be able to use the functionality provided by the AM, which includes

registering resources that should be protected with this AM (through interactions with the

Resource Registration Endpoint), registering permissions for Requesters (Permission Registration

Endpoint) and validating tokens received from Requesters (Token Validation Endpoint).

This phase of the UMA protocol is completed using OAuth 2.0 Authorisation Code Grant

(formerly Web Server flow) [202]. As discussed in [297], the Host acts in the role of an OAuth

client during this flow. The Authorising User acts in the role of an OAuth end-user resource

owner. The AM acts in the role of an OAuth authorisation server. During this phase, the Host

completes the following two steps as part of the OAuth 2.0 flow:

1. Host obtains initial authorisation in form of a short-lived code;

2. Host exchanges the code for an access token for AM.

5.4.1.4.1 Host obtains initial authorisation in form of a code. In this phase, the Host obtains

the initial user authorisation to use the functionality provided by the AM. This authorisation is in

122

Chapter 5. User-Managed Access

Figure 5.6: OAuth 2.0 authorisation page displayed to the User.

form of a short-lived authorisation code as defined by OAuth 2.0 in [202]. The host application

directs the user to the User Authorisation endpoint at the AM, with a set of client-specific

parameters (such as client_id, redirect_url, and scope, among others).

Before the user is presented with an OAuth 2.0 authorisation page, this user has to be

authenticated at the AM. Authentication, however, is outside of the scope of UMA. Such au-

thentication can be done using existing mechanisms (e.g. based on username and password)

or with federated identity protocols, such as those proposed by OpenID, OpenID Connect or

SAML.

An example authorisation page is shown in Figure 5.6. Such page can be loaded in a pop-

up, with a clearly displayed URL of the AM, or in the same Web browser window during the

redirect phase. The purpose of this page is to collect the user consent, which will allow the

AM to issue initial authorisation to the Host. The user has to authorise the Host for a specific

set of permissions, which will allow this Host to use the AM’s Protection API, i.e Resource

Registration, Permission Registration, and Token Validation endpoints . As depicted in Figure

5.6, these permissions, and their respective OAuth scopes, can be:

1. Register your data for protection (uma_resourcereg OAuth scope)

2. Register permissions for applications accessing your data (uma_permissionreg)

3. Validate access requests to your data (uma_validation)

123

Chapter 5. User-Managed Access

Initially, UMA would not dictate the names and granularity of OAuth scopes that need

to be authorised by the user to allow the Host-AM communication. The above ones have

been proposed by the SMARTAM V2 implementation, which is discussed in Chapter 7. The

implemented granularity follows OAuth 2.0 best practices, where a single scope is associated

with a single endpoint and access type. To simplify the process of authorisation, SMARTAM

V2 has eventually used a single uma_host scope, which would allow the Host to obtain access to

all three Protection API endpoints (more details are given in Chapter 7). More recent versions

of the UMA protocol define the following scope to be used by Host applications - http://docs.

kantarainitiative.org/uma/scopes/prot.json.

After successful authorisation, the UMA protocol follows the OAuth 2.0 flow, where a short-

lived authorisation code is transferred to the Host using the front-channel communication, as a

code parameter.

5.4.1.4.2 Host exchanges the code for an access token for AM. When the Host obtains

an authorisation code, it can then exchange this code for the Host Access Token (HAT) at

the AM’s Token Endpoint. Further research on UMA resulted in the name of this token being

changed to the Protection API Token (PAT). This thesis uses the name HAT because of the

implementation that is presented in Chapters 6 and 7. HAT is used by the Host when interacting

with various Protection API endpoints at AM (the AM itself acts in the role of OAuth resource

server by exposing these endpoints to the Host).

UMA does not define the format of HATs that are issued by AMs. Instead, it relies on the

underlying OAuth 2.0 specification for this purpose. In particular, Bearer type access tokens

are supported [210]. Such tokens are short-lived and have to be refreshed from time to time

(token’s lifetime is purely implementation specific). Therefore, apart from the HAT, the AM

may also return a long-lived refresh token. Example token requests and responses are given in

the OAuth 2.0 protocol specification. Similar requests are made by the host application to the

Token Endpoint of AM. The software presented in Chapter 6 provides support for automatic

refresh of access tokens without the need of user or developer intervention.

Once a trust relationship is established between a Host and AM, the communication between

these applications is secure in terms of the integrity, confidentiality and authenticity of messages.

UMA does not require the use of message level security but guarantees the aforementioned

properties with transport level security (i.e. messages are transferred using HTTP over TLS/SSL
[172]). Furthermore, HAT allows only a specific Host to act as the client for AM.

When the Host receives the HAT then the user can protect resources stored at this Host

using the AM that issued this HAT. The Host becomes the enforcement point while the AM

124

http://docs.kantarainitiative.org/uma/scopes/prot.json
http://docs.kantarainitiative.org/uma/scopes/prot.json

Chapter 5. User-Managed Access

acts as the PDP/PAP/PIP component. The Host also stores the {user_id, am_url, host_id,

hat} relation in its persistent store.

There can be multiple different configurations of the described access control delegation,

depending on the needs of the user as well as functionality provided by the Host. In terms of

user requirements, as discussed in [243], the user may decide not to "put all eggs in one basket”

and can use multiple Authorisation Managers depending on the sensitivity of their resources,

e.g. a different AM can be used to protect sensitive personal information and a different one

to protect social information. From the perspective of the Host, this application can delegate

access control to a single AM for all its resources, to different AMs depending on the user that

manages resources, or to different AMs depending on individual resources (and irrespectively of

the user). A detailed explanation of various proposals is presented in [243] and [85].

5.4.2 User registers resources for protection at AM

The user stores and manages resources on host applications as usual (i.e. the protocol does not

impose any constraints on this process but only interferes with the access control functionality).

The way access control is exposed to this user is application dependent but is typically achieved

by providing a configuration menu that can be accessed by end users at the UI level. For

example, such menu can be accessible by clicking on a security-related link associated with a

resource (e.g. “Share”, "Sharing Settings", "Protect", etc.). In UMA-enabled applications, these

links may point to access control policies at AM instead of local policies (Figure 5.7).

The Host can register user’s resources, in the form of resource sets, using the AM’s Resource

Registration endpoint [297]. Registration of resource sets is done using the resource registration

protocol proposed by UMA WG and discussed in early revisions of [297]3. This protocol has

been later published as an independent specification but this is not presented in this thesis. The

resource registration protocol allows the Host to describe a resource set in a JSON format. The

Host registers the description and manages its lifecycle at the AM through the aforementioned

Resource Registration endpoint (see Figure 5.7).

Resource Registration endpoint is a RESTful API provided by AM as part of the Protection

API. It supports the following operations on Resource Sets: Create, Read, Update, Delete, and

List. The Host has to use its valid HAT obtained previously to gain access to this endpoint.

HAT is also used to identify the Host when creating resource sets at the AM.

The Resource Registration API has a well-known structure of {rsreguri}/resource_-

set/{rsid} (e.g. https://www.smartam.org/uma/api/resourcereg/resource_set/{rsid}),

which simplifies development of host applications. These applications only need to learn the
3The resource registration protocol has been eventually extracted from the main UMA protocol specification.

125

https://www.smartam.org/uma/api/resourcereg/resource_set/{rsid}

Chapter 5. User-Managed Access

Figure 5.7: UMA Step 2: Host registers resources for protection at AM and directs a User to the
policy URI at AM.

126

Chapter 5. User-Managed Access

location of the rsreguri (through the discovery process) and are able to interact with various

UMA-compliant Authorisation Managers. The rsid identifies a resource set and this value is

set by the Host. In case the rsid component is not included in the PATH during requests to the

AM, then the URI applies to the set of resource set descriptions already registered by the Host.

API operations are summarised in Table 5.1. Presented URI structure assumes a defined

{rsreguri} PATH component. Presented requests and responses are formatted in JSON.

127

Chapter 5. User-Managed Access

Ta
bl
e
5.
1:

O
pe
ra
tio

ns
su
pp

or
te
d
by

Au
th
or
isa

tio
n
M
an
ag
er

Re
so
ur
ce

Re
gi
st
ra
tio

n
en
dp

oi
nt
.

O
pe

ra
tio

n
on

R
e-

so
ur
ce

Se
ts

H
T
T
P

m
et
ho

d
an

d
U
R
I
st
ru
ct
ur
e

R
eq
ue

st
Su

cc
es
sf
ul

H
T
T
P

re
sp
on

se
R
es
po

ns
eb

od
y
of

a
su
cc
es
sf
ul

re
-

sp
on

se

C
re
at
e

PU
T

/r
es
ou

rc
e_

se
t/
{r
sid

}
R
es
ou

rc
e

se
t

de
sc
rip

-
tio

n.
C
on

te
nt

ty
pe

of
ap

pl
ic

at
io

n/
um

a-
re

-
so

ur
ce

-s
et

+j
so

n

20
1

Cr
ea

te
d.

Lo
ca

ti
on

he
ad

er
w
ith

U
R
I
of

th
e
cr
ea
te
d

re
so
ur
ce

se
t.

ET
ag

w
ith

th
e
ve
rs
io
n
of

th
e

re
gi
st
er
ed

se
t.

St
at
us

m
es
sa
ge
,

in
cl
ud

-
in
g

_i
d,

_r
ev

,
po

li
cy

_-
ur

i
(o
pt
io
na

l).
C
on

te
nt

ty
pe

of
ap

pl
ic

at
io

n/
um

a-
-

st
at

us
+j

so
n

R
ea
d

G
ET

/r
es
ou

rc
e_

se
t/
{r
sid

}
N
o
bo

dy
20

0
OK

R
es
ou

rc
e

se
t

de
sc
rip

tio
n,

in
cl
ud

in
g

_i
d,

_r
ev

,
po

li
cy

_-
ur

i
(o
pt
io
na

l).
C
on

te
nt

ty
pe

of
ap

pl
ic

at
io

n/
um

a-
-

re
so

ur
ce

-s
et

+j
so

n
U
pd

at
e

PU
T

/r
es
ou

rc
e_

se
t/
{r
sid

}
U
pd

at
ed

re
so
ur
ce

se
t

de
-

sc
rip

tio
n.

C
on

te
nt

ty
pe

of
ap

pl
ic

at
io

n/
um

a-
re

-
so

ur
ce

-s
et

+j
so

n.
If

-M
at

ch
he

ad
er

w
ith

th
e
ve
rs
io
n
of

th
e
se
t
be

in
g

up
da

te
d.

20
4

No
Co

nt
en

t.
ET

ag
he

ad
er

w
ith

th
e

ne
w

ve
rs
io
n

of
th
e

up
-

da
te
d
se
t.

N
/A

D
el
et
e

D
EL

ET
E

/r
es
ou

rc
e_

se
t/
{r
sid

}
N
o
bo

dy
.

If
-M

at
ch

he
ad

er
w
ith

ve
rs
io
n
of

th
e
se
tb

ei
ng

de
le
te
d.

20
4

No
Co

nt
en

t.
N
/A

Li
st

G
ET

/r
es
ou

rc
e_

se
t/

N
o
bo

dy
.

20
0

OK
T
he

lis
t
in

th
e
fo
rm

of
a
JS

O
N

ar
ra
y
of

{r
sid

}
va
lu
es

(r
es
ou

rc
e

se
ts

re
gi
st
er
ed

by
a
H
os
t)
.

128

Chapter 5. User-Managed Access

Table 5.2: Parameters of a resource set description.

Parameter Description Required
_id A string that uniquely identifies the resource set. The resource

set is meaningful only to the Host. However, the AM is able to
map this resource set description to a particular user through
the provided HAT used by the Host during interactions with the
resource registration endpoint.

required

name A human-readable string that describes a set of one or more re-
sources.

required

icon_uri A URI pointing to a graphical icon representing the resource set.
Such icon can be displayed for the user at AM.

optional

actions An array referencing one or more URIs identifying actions that
this resource set supports.

required

1 PUT /api/uma/resource_reg/resource_set/CRrg4O8B HTTP/1.1
2 Authorization: Bearer 7e6e5d10e725482c34a5ac59a4b37b2b
3 Accept: application/uma-status+json
4 Content-Type: application/uma-resource-set+json
5 Host: www.smartam.org
6

7 {
8 "resource_set":{
9 "_id":"CRrg4O8B",

10 "name":"Phone number",
11 "icon_uri":"https://puma-pds.com/icons/phone.png",
12 "actions":["https://puma-pds.com/uma/scopes/read",
13 "https://puma-pds.com/uma/scopes/write"]
14 }
15 }

Listing 6: Example of a resource set registration request issued by a Host to AM.

A resource set description, as defined in [297], is an object with the name resource_set

and with parameters as presented in Table 5.2. Example of a registration request containing a

complete resource set description is given in Listing 6.

As shown in Table 5.2 and presented in Listing 6, the actions parameter contains list of

URIs that point to descriptions of actions that can be performed on the resource set. These

actions are similar to OAuth scopes, but can be applied to multiple resources (e.g. read action

could be applied to address and email resources at a Host, while OAuth would typically differ-

entiate between read_address and read_email scopes). It is up to the Host to define actions

for different resources and make these available for Authorisation Managers in form of JSON

129

Chapter 5. User-Managed Access

Table 5.3: Parameters of an action description.

Parameter Description Required
_id A string that uniquely identifies the action at a Host. required
name A human-readable description of the scope of access for a resource

set.
required

icon_uri A URI pointing to a graphical icon that represents the scope of
access.

optional

documents. Such actions do not necessarily need to be related to HTTP verbs. Documents

that describe actions contain the _id, name and icon_uri parameters. These parameters are

presented in Table 5.3. A document example is given in the UMA protocol specification in [297].

Both name and icon_uri parameters are used at AM to present to the Authorising User

during the policy composition steps. Importantly, action descriptions can be stored anywhere on

the Web and the Host is not required to store these descriptions by itself. This allows the use of

standardised scope descriptions for resources (e.g a standardised set of actions could be provided

for personal data stored on distributed applications). Descriptions have to be accessible to AMs

through HTTP GET requests made to the URIs of action documents.

1 HTTP/1.1 201 Created
2 Location: https://www.smartam.org/api/uma/
3 resource_reg/resource_set/CRrg4O8B
4 ETag: ef21be1a-4393-44e0-bdf3-5e27c6c9ec1d
5 Content-Type: application/uma-status+json
6

7 {
8 "_id":"CRrg4O8B",
9 "_rev":"ef21be1a-4393-44e0-bdf3-5e27c6c9ec1d",

10 "policy_uri":"https://www.smartam.org/am/data/8/sharing_settings"
11 }

Listing 7: Resource set registration response containing the registered set’s revision and the URI of
the policy.

Successful registration of a resource set at AM is confirmed back to the Host (see example

response in Listing 7). Such a response contains the revision of the registered resource and

such revision is used in update or delete requests (as presented in Table 5.1) The Host can be

optionally provisioned with the information regarding the policy location for this set.

Once a resource set is registered at AM, the Host must use UMA mechanisms to limit access

to any resources corresponding to this resource set. The Host has to rely on the AM to supply

130

Chapter 5. User-Managed Access

valid permissions for authorised access and these permissions are based on the token that the

Host receives from the Requester.

It is important to note that initial versions of the UMA protocol would not define the resource

registration protocol. Authorising Users would need to create their resource descriptions directly

at AM and the Hosts would contact the AM whether access to resources should be granted or

not. Manual resource registration is shown on the example on SMARTAM V1 implementation

discussed in Chapter 7.

At the end of this step, a set of resources is successfully registered with the Authorisation

Manager and the user can specify policies for these resources.

5.4.3 User defines access control policies at AM

The UMA protocol does not impose any constraints on how access control policies are composed

by a user or how a policy is linked with a resource [238]. Policy management and decision-making

take place solely within the AM and this information is not conveyed to other UMA entities.

The AM is meant to provide a consistent UX by allowing users to manage their policies for

distributed Web resources with a coherent UI. Different AMs may provide different management

tools with different user interfaces and underlying policy types or policy engines. Support for

specific tools may dictate the choice of AM by a user.

UMA purposely does not constrain the policy composition process in order to support a

variety of resource sharing scenarios on the Web. A user may compose policies that identify

specific subjects and their access rights to a user’s resources or services. A policy may also

require an Authorising User’s consent to be collected in real time. More importantly, the UMA

protocol supports the ability of an AM to require "claims" from a Requester before authorisation

is granted. The requirement for such claims can be driven by policies that are defined by

Authorising Users at AM. Other examples of policies are discussed in more detail in [85].

Linking a policy to a resource may be performed in a variety of ways. A Host may offer a

typical security-related user interface (e.g. the previously mentioned “Share”, "Sharing Settings",

or "Protect" link). When a user clicks on such a link then they are redirected to the configured

AM to associate a resource with an existing policy or create a new policy (recall Figure 5.7).

Similarly, a user may decide to log in to an AM and manually link a policy with a resource

or configure an existing policy using provided management tools. The UMA implementation

discussed in Chapter 6 and Chapter 7 supports both types of interactions. Section 6.3 shows a

simplified process of resource registration and policy composition with a one-click solution.

At the end of this step, a set of resources is successfully associated with one or more access

control policies defined by a user at the AM. The AM evaluates access requests issued by requester

131

Chapter 5. User-Managed Access

Figure 5.8: Access requests issued by Requesters can be subject to different protocol paths, depending
on the presence and validity of the RPT.

applications against these policies and only then issues tokens to Requesters.

5.4.4 Requester gets access token from AM

The requester application, instructed by the Requesting Party, can access protected resources

that are managed at host applications. The UMA proposal does not define how the Requester

learns the location of a protected resource. Such location, in form of a Web accessible URI, can

be advertised by the Authorising User for Requesting Parties. The Requester needs to know

the required syntax and semantics for accessing resources (e.g. it has to understand the APIs

provided by host applications).

HTTP access requests to protected resources need to be accompanied by an access token

called Requester Permission Token (RPT)4. This token is necessary for the access control

process to be initiated at the Host. As specified by the UMA protocol in [297], the Host can

respond to the Requester’s access request in one of several ways depending on the circumstances

of the access request (Figure 5.8). This depends on the presence as well as validity of the RPT

included in the request to the Host. Based on the response, the Requester initiates different

UMA protocol flows and these flows depend on the following:

1. Access request did not contain an RPT;
4Requester Permission Token has been eventually renamed to Requesting Party Token. However, this thesis

uses the original name.

132

Chapter 5. User-Managed Access

2. Access request contained an invalid RPT;

3. Access request contained a valid RPT.

The first two flows are presented further in this section. The third flow of a Requester

presenting a valid RPT is shown in Section 5.4.5. This protocol step is depicted in Figure 5.9.

5.4.4.1 Access request did not contain an RPT

Initially, if RPT is missing in the request issued by a Requester then a Host responds with

a HTTP 401 Unauthorized response [186]. The UMA protocol uses the WWW-Authenticate:

UMA header, to inform the Requester about the AM protecting the resource. The Host includes

information about the AM (via am_uri parameter) as well as the Host (via the host_id pa-

rameter) in this header. The latter one is the identifier of the Host used at AM, i.e. the Host’s

client_id.

The Requester uses the provided am_uri to perform discovery of various endpoints of the

AM, in case the Requester has not yet interacted with this AM. Such discovery is done similarly

to the discovery used by host applications (recall Section 5.4.1.2). This discovery results in

the requester application learning about the following endpoints: Dynamic Registration, User

Authorisation, and Token endpoint. The Requester also learns about the Authorisation API,

i.e. Host Token, and Permission Request endpoints.

The UMA specification at some point specified only a single endpoint named Permission

Request endpoint as part of the Authorisation API5. This endpoint provided dual function of

issuing new RPTs to Requesters as well as associating existing RPTs with new permissions.

However, this chapter discusses two endpoints separately because of the implementation which

provides support for both endpoints (see Chapter 7). Host Token endpoint is responsible for

issuing empty RPTs to Requesters and the Permission Request endpoint is responsible for asso-

ciating new permissions to RPTs.

The requirement for AMs to issue empty RPTs and only then associate permissions with

these RPTs is related to the fact that AMs are unaware of the permissions that are required for

a particular access request to succeed. Therefore, Hosts have to provide such information to the

AMs and only then permissions can be associated with RPTs (after the policies are evaluated).

This is discussed in more details in Section 5.4.4.1.2 and in Section 5.4.4.2.

5.4.4.1.1 Requester authorisation at AM. If the Requester is not yet registered with the AM,

it registers using OAuth 2.0 Dynamic Client Registration [274]. The Requester can then proceed
5This was changed in more recent revisions of the UMA protocol, which now includes two separate endpoints.

133

Chapter 5. User-Managed Access

Figure 5.9: UMA Step 3: Requester gets RAT/AAT and RPT tokens from AM.

134

Chapter 5. User-Managed Access

to obtaining the Requester Access Token (RAT). Further research on UMA resulted in the

name of this token changed to the Authorisation API Token (AAT). This thesis, however,

uses the name RAT because of the implementation that is discussed in Chapters 6 and 7. A

part of the UMA implementation presented in Section 6.2 was based on an even earlier version

of the UMA protocol with a yet different naming scheme.

Obtaining the RAT token, similarly to obtaining the HAT token (recall Section 5.4.1.4), is

based on the OAuth 2.0 protocol and the Authorisation Code grant. It requires the Requester to

redirect the Requesting Party to the User Authorisation endpoint at AM. Before an authorisation

page is displayed, the Requesting Party needs to authenticate to the AM. Similarly to the UMA

step defined in Section 5.4.1, this phase of the protocol does not define how the Requesting Party

authenticates.

After successful authentication, the Requesting Party can be presented with an authorisation

page and has to provide consent at this page to authorise the Requester to use this AM’s

Authorisation API (this is similar to the authorisation page presented in Figure 5.6). UMA

would initially not dictate the names and granularity of scopes which need to be authorised by the

user to allow the Requester-AM communication. The SMARTAM V2 implementation, which is

discussed in Chapter 7, uses a single uma_requester scope, which allows the Requester to obtain

access to all endpoints of the AM’s Authorisation API. The recent versions of the UMA protocol

define the following scope to be used by Requesters - http://docs.kantarainitiative.org/

uma/scopes/authorization.

When the Requesting Party authorises the Requester at the AM, it is then redirected back

to the Requester, along with a short-lived authorisation code. Such code is later exchanged for

RAT. This is similar to the interaction between the Host and AM (recall Section 5.4.1.4.2).

RAT is a token which is used by a Requester to acquire access to the Authorisation API

on AM. This token is usually short-lived but it can be issued by the AM to the Requester with

an optional refresh token, which can be a long-lived token. Refresh token can be used by a

Requester to subsequently reuse already obtained authorisation and to request fresh Requester

Access Tokens from AM without the need of repeating the authorisation process at AM. The

time for which both the access and refresh tokens are valid can be controlled by a user at AM

or can be determined solely by an AM, and is implementation specific [238].

5.4.4.1.2 Requester obtains a new RPT for a Host at AM. When the Requester obtains

the RAT, it can use the AM’s Host Token endpoint to obtain an RPT for a host application

that stores the protected resource. It can obtain such RPT by sending an HTTP POST message

to this endpoint, with the identifier of the Host, and this information is used by the AM to

135

http://docs.kantarainitiative.org/uma/scopes/authorization
http://docs.kantarainitiative.org/uma/scopes/authorization

Chapter 5. User-Managed Access

issue a new empty RPT. The RPT is associated with the {Requesting Party, Requester, Host}

tuple. Requester obtains the empty RPT once per {Requesting Party, Host} tuple. Therefore,

the initial request for such empty RPT can be considered negligible as far as efficiency and

performance is concerned.

Initially, the RPT is not associated with any permissions. Therefore, if the Requester uses

this token to access a protected resource then such access will simply fail. However, for every

request that is accompanied with an RPT that is not valid, the Host registers the necessary

permissions at AM and this situation is discussed in the next section.

The design choice for issuing empty RPTs is dictated by the fact that the AM does not

know which permissions should be associated with an RPT for a particular access request. The

AM requires this information to be provided by the Host (see Section 5.4.4.2). This allows the

Host to be solely responsible for determining what are the necessary permissions for a particular

access request. Importantly, new permissions can be associated with the RPT only if the relevant

access control policy (or policies) is met.

5.4.4.2 Access request contained an invalid RPT

When the Requester obtains the RPT, it can use this token to access a protected resource but

such access will simply fail, since no permissions have been associated with the RPT. In such

case, the Host registers the necessary permissions that would be required for such access to

succeed. This part of the UMA protocol is visualised in Figure 5.10.

The Host uses the Permission Registration endpoint at the AM. This registration requires

providing the identifier of the resource set being accessed as well as the set of actions, which

need to be authorised for the Requester. This information is used in further phases of policy

evaluation. An example of a permission registration request is shown in Listing 8.

When the permission is successfully registered, the Requester is provisioned with the per-

mission ticket by the host application and can interact with the Permission Request endpoint

provided by the AM. The purpose of this endpoint is to allow the Requester to take part in the

authorisation phase (recall the discussion from Chapter 2). This endpoint requires an RPT and

the permission ticket to be present in the request (example of such request is given in [297]).

The UMA protocol does not define how the AM performs evaluation of access requests. For

example, the AM may use simple rules or more sophisticated policy engine to evaluate access

requests against applicable policies. Once the AM decides whether the access request is valid

or not, it may respond to a requester application in one of three ways - a successful access

response, an unsuccessful access response or a claims-requested document. The corresponding

HTTP responses are listed below:

136

Chapter 5. User-Managed Access

Figure 5.10: UMA Step 4: Requester wields RPT at Host to gain access to a protected resource.

137

Chapter 5. User-Managed Access

1 POST /api/uma/permissions_reg HTTP/1.1
2 Authorization: Bearer 7e6e5d10e725482c34a5ac59a4b37b2b
3 Accept: application/uma-permission-ticket+json
4 Content-Type: application/uma-requested-permission+json
5

6 { "requested_permissions":[
7 { "resource_set_id":"6fe22d2d22ab8d59bd4fc9dd3d8c02a8",
8 "scopes":[
9 "http://static.smartam.org/puma/read.json",

10 "http://static.smartam.org/puma/write.json"
11] }]
12 }

Listing 8: Host registers a permission at the AM’s Permission Registration endpoint.

1. HTTP 401 Unauthorized - the Requester is unable to access a resource and it will not be

able to apply for permissions;

2. HTTP 201 Created - response containing a newly created RPT, with associated permis-

sions for a resource;

3. HTTP 200 OK - response containing the claims-requested document.

Firstly, the AM may decide that a Requester is definitively not authorised to access a par-

ticular resource according to a user’s policy. In this case the AM responds with an unsuccessful

access response and the Requester knows that it should not attempt to further access a resource.

Secondly, if the AM has all the required information concerning this particular access request

then it may respond with a successful access response. For example, the issued RPT is already

associated with the necessary permissions. As defined in [297], such a response contains a new

or upgraded RPT with associated permissions. The Requester can proceed with this RPT to

access an UMA-protected resource on a Host.

The third case is where there is a policy defined by an Authorising User and such policy

has to be met before new permissions can be added to RPT. For example, a user’s policy can

specify requested claims that must be conveyed from a requesting party before an authorisation

is granted. Such claims can be in the form of as self- or third-party-asserted identification, or

even a promise to adhere to specific licensing terms.

Based on the user defined policy, the AM may engage the Requester in the authorisation

phase, which is referred to in UMA as "claims-gathering flow". The AM responds with a claims-

requested response containing a list of all requested claims. The Requester has to provide claims

on behalf of the Requesting Party, which can be used by the AM in the policy decision making

138

Chapter 5. User-Managed Access

process. This is discussed in more details in Section 5.7.

Based on the supplied claims and applicable policies, the AM can decide whether authorisa-

tion can be granted or not. The AM may then respond with a successful or unsuccessful access

token response, or with yet another claims-requested response if more claims are needed.

At the end of this step, a Requester is in a possession of RPT issued by an AM for a specific

access type to a resource on a Host.

5.4.5 Requester wields access token at Host to gain access

This step is executed when a Requester has acquired an RPT from AM and such RPT con-

tains the necessary permissions. A Requester presents this token when attempting to access a

protected resource on a Host.

A Host can evaluate the RPT locally or may use the AM for the evaluation process. In the

first case, it is the Host that decides whether to grant access to a resource or not. Importantly,

this decision must be based on the received access token (such token must be self-contained for

the Host to allow this application to make a meaningful decision). If the token is valid then access

to a resource is granted. In case the RPT is invalid then a Host registers the necessary set of

permissions at AM (using Permission Registration endpoint) and responds with the HTTP 401

Unauthorized response that contains information about the location of the AM that protects

this resource and the permission ticket which should be used by the Requester at AM.

In case a Host decides to use the AM for the RPT validation process, it then sends the

RPT to the AM’s Token Validation endpoint. UMA specifies this phase of the protocol as a

requirement for bearer tokens, which are opaque to the Host. The request for validation is

accompanied by a Host’s own HAT previously acquired in step (1) of the UMA protocol (refer

to Section 5.4.1). Additionally, a Host sends information regarding the resource on which access

is being attempted, i.e. the resource set identifier. An example of such validation request is

given in the UMA protocol specification in [297]. The AM replies with a status of the RPT

token message. If valid, this status contains permissions that his RPT carries.

Remote token validation, although reducing the work that needs to be done on a Host’s side,

may result in a significant overhead due to the necessary communication between a Host and

an AM. Therefore, the AM sets an expiration time for such status to allow the host application

reuse the validation response for scalability and performance purposes. Expiration time is set

using the exp parameter. This allows the Host to rely on the RPT token status for a specific

period of time and not refer to the AM for every single access request that carries this particular

RPT.

Whether decision should be cached or not is implementation specific and depends on the

139

Chapter 5. User-Managed Access

Host. In particular, expiration of the token status is given in the response message (such expi-

ration is not set using HTTP headers). Example of AM’s response that contains permissions of

a particular RPT is presented in Listing 9.

1 HTTP/1.1 200 OK
2 Content-Type: application/uma-rpt-status+json
3 Cache-Control: no-store
4 Pragma: no-cache
5

6 [{
7 "resource_set_id": "CRrg4O8BOUXjJ4WIx5zYCIBe3mRbO",
8 "scopes": [
9 "https://puma-pds.com/uma/scopes/read",

10 "https://puma-pds.com/uma/scopes/write"
11],
12 "exp": 1300819380
13 }]

Listing 9: Example of AM’s RPT status response returned to the Host.

After this step of the protocol, a Requester gains authorised access to a protected resource

or is denied access if the presented RPT is invalid. In the latter case, Requester can further

engage with the AM and try to obtain the necessary authorisation for a resource (according to

the protocol that was discussed in earlier sections of this chapter).

5.5 Trust Model

The User-Managed Access proposal involves numerous actors which include: Authorising User,

Requesting Party, Host, Requester, and Authorisation Manager. UMA assumes that these actors

do not necessarily have any prior relationships with each other. Moreover, these parties can

reside in different domains that may be under control of different authorities. Therefore, the

underlying trust model for UMA is quite complex and this model is discussed in this section.

Importantly, the discussion on the UMA trust model in this section is based on existing overviews

of or related to the UMA trust model that have been published in [157], [156] and [246]. The

presented discussion includes the work done by Domenico Catalano.

In order to describe the trust model, it is necessary to consider relationships between the

aforementioned parties of the UMA proposal. These relationships are visualised in Figure 5.11.

As discussed in [157], there are three main aspects of the UMA trust model:

1. Host Registration at AM (Host - AM trust relationship);

140

Chapter 5. User-Managed Access

Figure 5.11: User-Managed Access Trust Model [157].

2. Trusted Claims Gathering (AM - Requester trust relationship);

3. Trust Delegation and Trust Chain (Host - Requester trust relationship).

Authors in [156] specify that the above three aspects relate to the core UMA actions, which

are: Protect, Authorise and Access. There is also a fourth aspect of the underlying trust model

for UMA, which is related to the registration of the Authorising User at the Host and AM. This

aspect is referred to as Subject Registration [157]. Such registration is the foundation of further

trust relationships and is therefore also referred to as Bootstrapping Trust [156; 157].

5.5.1 Subject Registration

Subject registration constitutes the initial step of bootstrapping trust in UMA. It allows to create

trust relationships between the Subject (i.e. Authorising User) and the Host, as well as between

the Subject and the Authorisation Manager. These two trust relationships are bi-directional.

Firstly, the user has to evaluate trustworthiness of the applications they are interacting

with using quantitative (e.g. level of assurance) and qualitative (e.g. reputation) factors [156].

Secondly, applications must also trust the identity of the subject involved in the entire process

(i.e. both the Host and AM have to trust the Authorising User).

141

Chapter 5. User-Managed Access

Figure 5.12: Bootstrapping Trust in User-Managed Access [156].

[156] defines at least three different approaches to bootstrapping trust (see Figure 5.12).

These approaches are:

1. Self Registration;

2. Affiliate Registration;

3. Trust Framework-based Registration.

Self Registration (Figure 5.12 (A)) is the simplest approach of bootstrapping trust and

requires the user to manually establish a relationship with an application (either Host or AM).

The user registers for an account at these applications as usual (e.g. by filling in a registration

form). The user is solely responsibly for establishing their identity at these applications. Because

it is the user who provides information directly to these applications and such information does

not need to be trusted by these applications then Self Registration is also referred to as Untrusted

Registration [156].

In Affiliate Registration (Figure 5.12 (B)), the user registers with their Host and AM ap-

plications using existing identity federation technologies, such as SAML or OpenID Connect.

In this approach of bootstrapping trust, Host and AM applications have to trust the Identity

Provider that acts as a source of trustworthy information about the user.

It is important to note that the IDP has to trust that information (e.g. user attributes)

is released to trustworthy host or AM applications. This trust is based on the consent that

the user provides at the IDP. The Authorising User bootstraps the trust with the IDP using

self registration, affiliate registration of trust framework-based registration. Bootstrapping trust

with the IDP, however, is outside of the scope of this thesis.

Trust Framework-based Registration (Figure 5.12 (C)) is similar to Affiliate Registration.

In this type of registration, the Identity Provider is the source of trustworthy information about

142

Chapter 5. User-Managed Access

the Authorising User. However, in this approach, the Host and AM applications may achieve a

higher level of assurance in user identity as there may be a requirement for the Identity Provider

to be in the same Trust Framework as the Host and AM applications. In such setting, it is

possible to achieve business, legal and technical trust6, which can be monitored by the Trust

Framework Provider (TFP) [156]. For example, before a particular application is included within

a trust framework, this application may need to be contractually bound to specific business or

legal terms and conditions.

5.5.2 Host Registration at AM

Host registration is the first phase of the UMA protocol. During this phase, the Authorising

User delegates access control from a Host to AM. It is the user who explicitly informs the Host

that access control should be delegated to an external service. Other configurations can be also

present in the UMA proposal (e.g. preconfigured relationships between host applications and

AMs) but are not discussed in this section.

Before access control is delegated from a Host to an external service, the user has to have

relationships with these two applications. The user also has to trust these two applications and

this was discussed in the earlier section. Delegation of access control from the Host requires the

following two steps to be completed:

1. Host is registered with AM;

2. Authorising User authorises Host at AM.

Host registration at the AM can be done either in advance or can be dynamic (recall Section

5.4.1.3). Such registration establishes a bi-directional relationship between the Host and AM. In

particular, the AM issues credentials to the Host and then trusts that any requests related to the

UMA protocol come from this particular Host to which such credentials were issued. Similarly,

the Host can communicate with the AM and trusts this AM to provide a specific functionality

(i.e. access control related functionality as defined by the UMA protocol).

When the Authorising User delegates access control from Host to AM, this is done by

establishing a trust relationship between these two applications that will communicate with

each other on behalf of this user. This relationship is established by the Authorising User who

is involved in the following tasks:

1. Verifying that the correct Host application will be given authorisation for the AM;
6Trust relationships between computing systems and services require trust to exist at each of these three levels.

Firstly, relationships between services can be constrained by contractual agreements that define what services
can or cannot do. Secondly, there have to be legal enforceability of these agreements. Lastly, necessary technical
measures must exist to support business and legal trust between services.

143

Chapter 5. User-Managed Access

2. Verifying that access control will be delegated from the Host to the correct AM.

Therefore, it is the Authorising User that establishes a bi-directional trust relationship between

the Host and the AM. As discussed in Section 5.4.1.4.1, it is important that the user is aware

of the Host application from which authorisation is delegated as well as the AM which will

be responsible for protecting resources or services on this Host. Ensuring that the user can

verify trustworthiness of both host and AM applications is based on the trust that the user has

initially bootstrapped with these applications (refer to Section 5.5.1). There are various ways of

supporting users with verification that they are indeed interacting with the correct application

but these require some form of user involvement. Reliance on these ways is considered one of

the limitations of the UMA proposal and it is discussed in Section 5.10.

On the open Web, host applications may possibly interact with various AMs. However, in

certain scenarios and for certain use cases, such as financial or health-care, host applications may

only be allowed to interact with Authorisation Managers which meet specific requirements at the

business, legal, and technical levels. Authors in [157] introduce the notion of an accreditation

system into the UMA model. Such system can provide the necessary foundation for increasing

the level of trustworthiness between the Host and AM applications. An Authorising User may

only be allowed to introduce host applications to trusted Authorisation Managers. A detailed

explanation of the use of such accreditation system in UMA is presented in [157].

5.5.3 Trusted Claims Gathering

In UMA, the AM is likely not to have any prior relationship with the Requester that acts

on behalf of a Requesting Party (this is true when the Requester does not know the AM).

Such relationship is necessary for the AM to be able to evaluate whether a particular Requester

satisfies a specific access control policy and whether this Requester should be given authorisation

to access a resource/service on behalf of a Requesting Party. This requires that the AM can

trust the information that is provided by the Requester for the policy evaluation process.

On the other hand, the Requester has to trust that the AM will use the provided information

only for the purpose of policy evaluation and not for anything else. For example, the Requester

has to trust that by providing some attributes to the AM these attributes will not be passed by

the AM to other applications to impersonate the Requester.

Therefore, there is a requirement for a bi-directional trust relationship between the Requester

and the AM. This relationship is initiated when the Requester first interacts with the Host and

learns from this application the location of the AM that protects a resource. The Requester

then interacts with the AM to obtain authorisation for that resource.

144

Chapter 5. User-Managed Access

Figure 5.13: Trust Delegation and Trust Chain in User-Managed Access [157].

The AM must ensure that the information provided by the Requester is trustworthy before

using such information in the policy decision making process. Therefore, the AM may refer

to trusted third party Identity Providers or Attribute Providers to obtain this information. In

UMA, such information provided by Requester applications is referred to as claims. Examples of

claims that can be obtained by the AM include the user’s name, date of birth, or phone number

information, among many others.

As discussed in more detail in Section 5.7, claims must be issued by Trusted Third Parties

(TTPs) and must be verifiable by AMs in order to be considered trustworthy. Therefore, the

trust model in UMA for the Requester-AM relationship relies on the trust framework that allows

the AM to trust claims issued by TTPs [157].

5.5.4 Trust Delegation and Trust Chain

The trust relationship between the Requester and the Host application is built on two concepts:

Trust Delegation and Trust Chain. Both concepts for UMA have been introduced in [157].

Trust delegation is related to the fact that the AM issues authorisations (RPT tokens)

to Requesters and such authorisations are later used at the Host. The token, representing

permissions, is delivered from the AM to the Requester and subsequently from the Requester to

the Host (i.e. the trust is delegated from the AM acting as the source of this trust to the Host).

Trust chain refers to previously established trust relationships, which include the Host-AM

and Requester-AM relationships that were discussed in earlier sections. These relationships allow

Host and Requester applications to determine the AM as the source of trust. Trust delegation

and trust chain are visualised in Figure 5.13.

The AM uses the trusted claims to evaluate policies during its authorisation process. Based

on the outcome, the AM may issue an RPT to the Requester. The Requester uses this RPT

145

Chapter 5. User-Managed Access

when interacting with the Host. Before access to a resource can be granted, the Host leverages

its trust relationship with the AM to check whether the RPT can be trusted (i.e. the Host checks

that the RPT has been issued by a trusted AM that protects this particular resource/service on

this Host) and what permissions this token carries.

Importantly, the trust relationship between the Host and the Requester is bi-directional and

does not only involve the Host trusting the Requester through the chain of trust (as discussed

earlier). The Requester also has to trust the Host that it will not abuse it. For example, if the

Requester obtained the RPT based on a submitted payment that would satisfy a policy for a

resource, then the Requester trusts the Host that it will provide access to this resource.

5.6 Credentials

There are multiple tokens involved in the UMA proposal and these tokens represent creden-

tials used by different UMA entities. This section summarises the tokens and presents their

relationships with existing UMA actors (see Table 5.4).

Firstly, the Host Access Token / Protection API Token represents credentials, which bind

the Authorising User, the Host and the Authorisation Manager. These credentials allow the

Host to use the AM’s Protection API. A new HAT/PAT must be obtained for each Authorising

User at a Host. It also uniquely identifies this user at AM (e.g. when the Host registers resources

and uses a particular HAT/PAT then these resources are registered for a specific user).

Secondly, the Requester Access Token / Authorisation API Token, binds the Requesting

Party, the Requester, and the Authorisation Manager. This token, similarly to HAT/PAT, must

be obtained for each RP and Requester pair separately.

The Requester Permission Token links the Requesting Party, the Requester, the Authori-

sation Manager and the Host application. In particular, RPT represents the credentials of a

Requesting Party, using a particular Requester, when accessing a resource (or resources) stored

at Host. RPT contains specific permissions of Requesting Party and Requester pair for resources

of Authorising Users at Host, i.e. it can provide access to multiple different resources.

5.7 Claims

The UMA protocol does not constrain users in composing access control policies for their re-

sources (subject to AM implementation limitations). Rather, it allows the AM to inform the

Requester about the necessary claims that should be submitted and that will be used in the

146

Chapter 5. User-Managed Access

Table 5.4: Relationships between tokens and actors of the UMA proposal.

Actor HAT/PAT RAT/AAT RPT
Authorising User X
Host X X
Requester X X
Requesting Party X X
Authorisation
Manager

X X X

access control decision making process. This allows users to specify very flexible policies which

are not only based on identities of users accessing data but also on arbitrary attributes of these

users. As discussed in [154], the claim can be defined as "An assertion made by a Claimant of

the value or values of one or more Identity Attributes of a Digital Subject, typically an assertion

which is disputed or in doubt." [4].

There are different types of claims that can be used in UMA and these were presented in [238].

Firstly, claims that are submitted by requester applications may be affirmative, representing a

statement of fact. An affirmative claim can be asserted by a Requesting Party or another claims

issuer (e.g. such a claim can be signed by a third-party service). A statement of fact might

be "The requesting party is over 18 years of age." or "The requesting party is the owner of the

bob@gmail.com email address."

Secondly, a claim can be also promissory and can be asserted by the Requesting Party specif-

ically to the Authorising User. For example, such claim may state that "The requesting party

will adhere to the specific Creative Commons licensing terms indicated by the AM in accessing

this resource." or that "The requesting party will use the resource only for job application re-

lated purposes." As discussed in [238] and [246], it is envisaged that the process of demanding

and submitting claims would have legal enforceability consequences as necessary. For example,

submitting a claim can be recorded by the AM, also for accountability and audit purposes.

The UMA protocol does require that any specific types of claims are used. Therefore, a

Requester has a certain level of flexibility how it provides such claims to AM [238]. The protocol

can potentially make use of already established types such as these proposed in [181; 151; 111;

103], and [115]. However, some of these types may be too complex and therefore not well-suited

for Web 2.0, and all these types appear to lack the ability to specify required parameter values

in claims. Therefore, these types may be unable to satisfy complex use cases such as these

discussed in [85].

UMA would initially provide support for a new simple and extensible claim type based on

the Claims 2.0 specification [247]. More recently, an OpenID Connect Claim Profile has been

defined for UMA as well. Further information on the use of claims is given in the UMA protocol

147

Chapter 5. User-Managed Access

specification in [297].

5.7.1 Claims 2.0

Claims 2.0, as published in [247], allows to express both self-asserted claims and third-party

asserted claims in a lightweight way using a widely supported JSON format [166]. This format

allows for a variety of claim types to be requested and submitted which increases the flexibility

for users to demand the exact properties which are required for the access control decision making

process. For example, the policy can demand that Requester provides the age of a Requesting

Party or asserts that the age is above a certain pre-defined threshold.

Claims 2.0 allows to express claims that are requested and claims that are submitted. The

first type is called the claims-requested document. This document contains a list of all required

claims that must be conveyed by a Requester on behalf of the Requesting Party. The latter one

is a list of all claims that are submitted by Requester to AM. An example structure of both

document types is given in the Claims 2.0 specification in [247]. A derivative implementation

of this proposal is discussed in Chapter 7 on the example of a prototype AM. Example of a

claims-requested document is also given in that chapter.

5.7.2 Trusted Claims

UMA supports third-party asserted claims. This section provides an overview of such claims

and the presented discussion is based on the work published in [154].

Third-party asserted claims can be explained on a person-to-person data sharing scenario

presented in [154]. The Authorising User wants to restrict sharing of a resource to a specific

Requesting Party (based on its identity) but such identity is not established at the AM. Instead,

this identity would be based on supplied attributes from the Requesting Party. For example, a

resource at a host application can be shared with a user who carries an attribute that they are

the owner of the bob@gmail.com email address (i.e. the Requesting Party can submit a claim

that they indeed own this email address).

Importantly, the AM has to trust the third-party identity claim issuer to consider the sub-

mitted claim trustworthy and to be able to use it in the decision making process. The AM may

also need to make sure that only specific issuers can assert specific claims. For example, not

every issuer should be able to provide information that the Requesting Party is the owner of the

bob@gmail.com address. This is the role of the trust model that was discussed in Section 5.5.

By providing support for third-party asserted claims, UMA allows for Claims-Based Access

Control (CBAC) (recall Section 2.3.1). In CBAC, the decision to grant access to a protected

148

Chapter 5. User-Managed Access

resource is made using information about the subject (i.e. its attributes) when such information

can be considered trustworthy. UMA WG has identified a set of use cases for such access control,

including enterprise-type scenarios and social Web type scenarios (these scenarios are given in
[85]).

The Authorising User can use CBAC to restrict access to their protected resources based

on attributes of Requesting Parties. These attributes must be issued by Identity Providers

or Attribute Providers that are trusted by Authorisation Managers. These IDPs or APs are

collectively referred to as Trusted Third Parties (TTPs) [154]. When the AM requests claims it

acts as a Claims Requester and an IDP or AP that issues these claims acts as a Claims Provider.

Importantly, there has to be some form of a trust framework to allow the AM consider the claims

trustworthy (recall Section 5.5).

5.7.2.1 OpenID Connect Claims

In UMA, OpenID Connect allows third-party asserted claims from distributed sources to be

collected and transmitted to AMs. Such claims can then used for the access control decision

making process, as discussed in [157].

The UMA protocol provides an OpenID Connect claim profile [58], where the AM acts as

the OpenID Connect client when interacting with OIDC-compliant IDPs. Claims are obtained

from the UserInfo endpoint that returns claims about the authenticated user. Which claims

should be accessed by the AM depends on the scope of authorisation requested by this AM and

such scope depends on the actual access control policy applicable for a resource/service. For

example, if the Authorising User defines a policy that a protected resource can be shared with

someone who is the owner of a particular email address then AM has to be authorised by the

Requesting Party for a scope which will allow access to such verified email address (this is the

OIDC email scope).

OpenID Connect specification [58] defines the following claim-related scopes for which a

client can be authorised: profile, email, address, and phone. The profile scope allows the

AM to access end-user’s name, gender, date of birth, among others. The email, address, and

phone scopes are self-descriptive. The UMA implementation presented in Chapter 7, allows the

use of the email scope. Support for additional claims is planned in the near future.

In OpenID Connect, claims are associated with the issuer. The AM can check if such

issuer matches one of the trusted ones (e.g. the AM checks if the identifier matches one of the

pre-registered identifiers). In OpenID Connect, the issuer identifier is globally unique - it is a

case sensitive URL using the HTTPS scheme that contains scheme, host, and optionally, port

number and path components of the OIDC IDP. Moreover, OpenID Connect uses JWS [38]

149

Chapter 5. User-Managed Access

Figure 5.14: UMA conceptual model with Trusted Claims [155].

for signing claims and this allows the AM to verify authenticity of the claims using PKI. More

information on trusted claims and the use of OpenID Connect in UMA is given in [157]. A basic

implementation of the OpenID Connect profile is discussed in Chapter 7.

5.8 Protected Information

The UMA model is applicable to various types of information. This includes information where

the user is the author/source of authority, e.g. name or phone number information stored at

the user’s personal data service. However, the UMA model can be also applied to information

where the source of authority is different from the user. This includes such information as the

"Transcript of Records" documents or medical information.

Resources, which are not owned by the user, are typically stored on systems managed by

other entities and the user is merely given some control over access to this data. For example,

the student does not own their "Transcript of Records" document but may be given the ability

to share it from the University’s institution. Similarly, the patient may not own the data that is

stored at an online health vault (e.g. it may be the hospital that is the owner of this data) but

this user merely provides consent for others to access their medical information.

When the user is both the owner and controller of the data then it is at the sole discretion

150

Chapter 5. User-Managed Access

of this user how such data is shared and accessed by other users and services. For example,

the user can provide "read" or "read and write" type access to some of their resources for other

users and services on the Web. Importantly, there are no specific constraints that would be

imposed on such permissions being granted by the user for others. In the UMA model, the AM

can issue tokens to requester applications based on evaluation of user-defined policies. The Host

can act accordingly based on the permissions which are returned by AM for a given client (i.e.

permissions associated with the RPT token determine the type of access that will be given for

the client).

However, when the user selectively shares resources which are sourced from others, e.g.

organisations, then certain restrictions may apply. In such situations, organisation-wide or

application-wide policies may still need to be combined with user-defined policies and can even

take precedence over how resources are shared and accessed (depending on the actual policy

combining algorithms). In such case, the decision making process in UMA would not only take

place in the AM and this process may also need to take place within other components (e.g.

additional decision points) or within the Host itself. Furthermore, such process may take place

at different stages of the UMA protocol, either when the RPT is being issued to the Requester

or when the actual access request happens.

For example, the user could use their AM to grant permissions to a Requester to access

their academic related data stored within their Higher Education institution. However, such

data would still only be shared according to specific University regulations. Such regulations

could be managed in the form of access control policies stored at some central PDP/PAP that

would be integrated with various hosting applications at the HE institution. Therefore, not

every permission granted at the AM may allow the Requester to successfully access the user’s

data. For example, an application could be given "read" access to the "Transcript of Records"

document that is hosted at a University’s personal data service. However, this application may

still not get access to the resource if it does not meet specific criteria set by the University. This

criteria may include, among others, membership of the requester application in a particular trust

framework or adherence of the Requesting Party to specific additional licensing terms.

As discussed in Section 5.4.3, the UMA protocol does not impose any constraints on how

policies are specified or linked with resources that should be protected. Therefore, UMA is very

flexible in this regard and can be combined with various mechanisms for policy management.

The user can define their policies in one language at AM and other potential policies could be

defined elsewhere and in a different language.

When the access control decision making process involves multiple policies then the policy

management and policy evaluation may become challenging. Firstly, policies do not necessarily

151

Chapter 5. User-Managed Access

need to be managed in single location (such as AM) but are more likely to be spread across

different access control components. For example, policies can be managed independently at

different PAPs that are integrated with numerous and potentially incompatible PDPs. Moreover,

multiple different access control rules have to be considered before access is granted or denied.

Policies from multiple sources could be used by the AM when issuing RPTs during the

"claims-gathering" flow. On the other hand, additional policies that should apply to a resource

or a set of resources could be used by the Host (or any of its decision making components) when

evaluating access requests which already have RPT tokens in place. Because the role of the AM

component in UMA is to address the requirements of individual users and not combine multiple

policies from different sources then it is likely that the latter situation would occur and the AM

itself would not participate in managing or evaluating multiple policies. The Host that stores

the resource may not know in advance which AM will be used for management of user policies

and therefore it would be the Host that would be concerned with any additional policies. In

this setting, the AM would evaluate the policy (or policies) specified by end-users before issuing

RPT tokens to Requesters and any further decision making would be outside of UMA.

There are various challenges that need to be considered in architectures where multiple

policies are applicable to a particular resource or a set of resources (some of these challenges

were discussed in Section 2.6). Firstly, because different policies have to be combined, there needs

to be a way to easily evaluate them and calculate effective permissions for requester applications.

In the UMA model, policies themselves are not exposed outside of the AM to the Host. Instead,

the AM provides RPT validation functionality informing host applications about permissions

associated with RPT tokens. The Host (either itself or with the use of any decision points)

would need to combine this information with any additional policies in place (e.g. organisation-

wide or application-wide policy). Therefore, there must be a mechanism that would translate

the permissions, currently encoded in the JSON format, to a format that can be easily combined

with any other applicable policies (e.g. XACML-encoded policies).

When evaluating multiple policies, it may be the case that access control rules are contradict-

ing or inconsistencies occur (recall the discussion in Section 2.6.1.4). Therefore, policy conflict

resolution protocols have to be adopted as well. Combining policies and resolving any potential

conflicts could be done at the Host side or at any of access control components integrated with

the Host and this is outside of the UMA model. Importantly, conflicts would need to be resolved

at runtime and not by using static conflict resolution mechanisms (unless of course there would

be a way to get access to all policies that apply to a specific resource).

Because policies are evaluated in multiple locations, then the user has little knowledge about

the effective permissions which are associated with their resources. In particular, the user can

152

Chapter 5. User-Managed Access

only see and verify permissions which are set directly at the AM. The UMA model does not

define any interface or protocol that would allow such AM to pull any policy information from

host applications or any third party access control policy components. Such information could

be presented to the user who could verify if the resource is shared as required. Without such

information, the user does not have the necessary knowledge regarding the security settings that

apply to their data and loses the ability to easily audit such security.

Moreover, if any additional access control checks are done by the Host (either directly or

when the Host interacts with any additional decision making components) then the user has

little knowledge about how resources have been actually shared and accessed. For example, the

Requester may be able to negotiate access to a particular resource (by submitting the necessary

claims to the AM) and then issue an access request to the hosting application. Even though the

permissions may be sufficient to access a resource (according to the UMA model), the Host may

still decide not to provide access to a resource or a service. For example, a particular Requester

may not meet specific criteria set at the Host by the organisation that manages this application.

In such case, the trust between the Requester and the Host is also broken (such trust relationship

is discussed in Section 5.5.4).

When multiple rules need to be checked or when policies are evaluated in separate locations

before access to a resource can be granted then performance becomes one of the challenges as well.

This relates to the performance of policy evaluation when different and possibly contradicting

rules have to be evaluated by a policy engine or a set of engines. Performance also relates to

the number of messages that have to be exchanged between different components of the access

control solution.

The aforementioned challenges related to protecting resources that have sources of authority

different from the user who manages those resources are often addressed in other access control

proposals such as XACML or VOMS, among others. XACML was discussed in Section 3.2 and

VOMS was discussed in Section 3.10. These proposals rely on centrally located security require-

ments which can be defined by administrators or end-users. Both proposals do not give users

the ability to dynamically establish relationships between hosting applications and authorisation

components. Instead, such relationships are predefined (and often established during deployment

time and not at runtime). With well-defined authorisation components, the aforementioned chal-

lenges, which relate to policy management and evaluation, can be addressed. Firstly, policies

are evaluated in a single component (or a set of well-defined components). These policies are

written in the same language (e.g. XACML) which simplifies their evaluation. Any potential

conflicts can be detected using static analysis and not necessarily at runtime. Moreover, if au-

thorisation is done within a single component then the performance can be improved because

153

Chapter 5. User-Managed Access

less messages need to be exchanged between the hosting application and the authorisation com-

ponent. However, these proposals lack the necessary characteristics required by a user-managed

access control solution. We discussed those characteristics in Section 1.1.3 and Section 5.2.

5.9 Evaluation

The proposed User-Managed Access architecture and protocol address all identified shortcomings

discussed in Section 1.1.2 by meeting all of the requirements described in Section 1.1.3 and

Section 5.2. Evaluation of the UMA solution was initially published in [238].

The inclusion of an Authorisation Manager within the UMA architecture and allowing users

to delegate access control from host applications to this component satisfy requirements R1 and

R5. A central component responsible for access control may provide its functionality in order to

support complex Web transactions, similar to the one presented in Section 1.1.1. Requirement

R5 is further satisfied by the fact that all the entities of the proposed architecture can reside in

distinct Web domains and interactions between different parties (namely Hosts, Requesters and

AM) are based on the standard HTTP protocol and follow the REST architectural style [187].

The AM does not need to understand the identifiers used by various hosting Web applications.

Therefore, UMA can be deployed in "today’s Web". Additionally, the AM does not impose any

constraints on what resources may be protected and its functionality can be applied to arbitrary

Web resources or services.

An Authorising User can be involved in all the steps of access control policy management

such as those given in [97] and discussed in Section 2.6.2.3. Importantly, the user can serve as

their own policy administrator in UMA and it is the user that applies access control policies to

their Web resources or services and grants authorisations to Requesters of these resources using

the AM. The UMA proposal does not constrain how the user defines access control policies and

the user is free to choose their preferred AM that offers tools that meet user’s requirements

and expectations (R1). Having a single AM, user can be provided with a consistent UX when

composing policies and linking these policies with distributed Web resources or services. Hence,

the UMA proposal also meets requirements R2, R3 and R6.

The UMA protocol supports communication of claims between Requesters and the AM and

this was discussed in Section 5.7. Such claims are used by the AM in the authorisation process

and allow a user to define policies that define arbitrary attributes of requesting parties that may

need to be requested before authorisation can be granted. Policies do not have to be based

solely on specific identities of potential requesting parties but rather on attributes. Therefore

such policies fit well into the highly dynamic and open Web environment where servers may not

154

Chapter 5. User-Managed Access

know in advance possible identities of clients accessing data. In UMA, policies may also impose

contract terms that govern ongoing access to data and may require requesting parties to convey

their agreement to these terms. UMA relies on legal means to enforce such agreements (more

information on this topic is given in [246]). The aforementioned properties of the UMA proposal

meet requirement R7.

With access control being delegated from various Web applications to a user’s preferred

AM, a user may easily manage relationships between their online services [238]. Access control

decisions for distributed Web resources and services are performed by this central component.

A user does not have to be directly involved in interactions between services accessing data and

services hosting data as these interactions happen according to pre-defined policies. These UMA

properties satisfy requirements R4 and R8.

As discussed in [238], the UMA solution is fundamentally different from existing proposals

for access control that exist both within closed and open environments. Unlike classic access

management systems such as Kerberos [255] and XACML [97], UMA allows all interacting

entities to establish relationships dynamically. Moreover, it allows the user to play a pivotal

role in managing policies for their distributed Web resources and to serve as their own policy

administrator. The UMA model, however, can be used in parallel with such technologies as

XACML or Kerberos and this was discussed briefly in Section 5.8. Moreover, unlike protocols

such as OAuth 1.0/2.0 [200; 202], the UMA solution allows to aggregate the authorisation for

many point-to-point relationships between applications. Such relationships have been rapidly

emerging on the Web and the UMA provides means to secure them.

5.10 Limitations

The User-Managed Access proposal, despite addressing identified shortcomings as well as meeting

formulated requirements, still has a number of limitations.

Firstly, host and requester applications have to be registered at the AM in order to interact

with this AM.Without registration, a malicious application could try and obtain an authorisation

for AM. Firstly, the user would be given no information about the identity of the application

they would be authorising at the AM. The user would need to rely on the redirect URI to

understand where they will be redirected after authorisation and such manual check can be

insufficient. Similarly to problems discussed in [59], malicious applications could direct the user

to AM and could try to use either open redirect servers or by exploiting XSS flaws [7] on trusted

applications in order to get authorisation for the AM. Therefore, the user must be provided

with a clear explanation of the application that will be given the authorisation. Existing OAuth

155

Chapter 5. User-Managed Access

providers, which allow unregistered applications to use the OAuth flow for their APIs (through

the use of anonymous credentials), show a very cautious message to the user on the authorisation

page.

Application registration itself does not necessarily solve all the problems related to the trust

that the user should have when establishing a relationships between an application and AM.

During dynamic registration, applications can potentially provide any information that they

want to the AM. Therefore, the AM must not trust this information and must make necessary

steps to inform the user about this at the authorisation page. For example, the AM could inform

the user that the application is registered dynamically, provide the time of such registration or

even state if the registration has been verified (e.g. manually by the administrator) at the AM.

In UMA, the human being is the sole point of establishing a trust between the Host or

Requester and the AM. Requiring the user to check application’s identity or its redirect URIs is

one of the limitations of UMA. The AM itself can support users in this process, e.g. by validating

if registered application names are sufficiently different from existing and reputable ones or that

redirect URIs do not contain query parameters (which may mean that an attacker is trying to

exploit an open redirect on a reputable site). The AM may limit the format of such redirect

URIs thus giving the user better information on the actual location that they will be redirected

to after authorisation.

As discussed in [225], user-centric systems, such as the UMA proposal, are prone to phishing

attacks that may trick users to reveal confidential information (e.g. username and password) to

malicious third parties during redirects. For example, user can be redirected to malicious AM

where they can be tricked to provide their credentials for the real AM. Existing research, such

as that discussed in [131], proposes that the address bar with the URL is clearly displayed to

the user and that the redirect happens in a standalone Web browser window (and not within an

iframe). As discussed in [287; 279; 301; 170; 303], unfortunately, existing Web browser security

indicators may not work efficiently for users. Indicators that can be installed at Web browsers

as plugins [205] are also subject to these problems.

Host and requester applications obtain authorisation using the OAuth 2.0 protocol, which

relies on authorisation code being transferred using front channel communication. This autho-

risation code can be possibly exposed to the browser itself or other malicious third parties.

Furthermore, any messages contained in the query of the URL are normally stored in log files of

HTTP servers as well as any HTTP proxies through which access to the Host/Requester or AM

takes place. Unfortunately, this problem occurs irrespectively of whether HTTP is used over

TLS/SSL or not. Therefore, it is important that only a short-lived and one-time use authorisa-

tion codes are transferred through the user’s Web browser.

156

Chapter 5. User-Managed Access

When the user is redirected to AM to authorise a host application, this user often started

the OAuth 2.0 flow by themselves. However, in case of requester applications, the Requesting

Party might have started the flow by trying to access a protected resource and not necessarily

knowing anything about the AM that protects this resource. Therefore, the Requesting Party,

when authorising a Requester at the AM, should be presented with clear information on why

they have been redirected to the AM while trying to access a protected resource. UMA currently

does not discuss the necessity of such information to be shown to the Requesting Party, which

is one of the usability limitations of the UMA proposal. Such information could be presented

either at the AM or preferably at the Requester before redirecting the Requesting Party to this

AM.

UMA is targeted at protecting resources accessible through Web APIs (i.e. the client that

would access protected resources would be a Web or a mobile application and not a User-Agent

such as a Web browser). If users wanted to access protected resources with existing Web browsers

then such browsers would need to be equipped with plugins with support for the UMA protocol.

This is one of the limitations of the proposal as users would need to install additional software

in such cases.

The AM is the sole point of issuing authorisations to Requesters and validating tokens for

host applications. Therefore, the AM is single point of failure. If such component is either

compromised or is malicious then the data that is managed at hosting applications can be

exposed. In particular, in the current version of the protocol there is nothing that would allow

the Host to further require requesting applications to authenticate themselves at the Host. This

differs from the Street Identity protocol, where the Relying Party has to authenticate at the

Attribute Provider and must include an authorisation token before access to a verified attribute

can be granted. This limitation of the UMA proposal could be addressed by using secure and

possibly various AMs. As discussed in Section 5.4.1.4.2, the user may decide not to "put all eggs

in one basket” and can use multiple AMs depending on the sensitivity of their resources, e.g. a

different AM can be used to protect online documents and a different one can be used to protect

online photos.

Having the AM in the centre of interactions between different components imposes certain

constraints on scalability of the entire solution. In particular, if the AM becomes unavailable

and cannot issue authorisations or validate tokens then access to resources cannot be granted

even if the Requester can communicate with host applications. This limitation of UMA can be

addressed by not imposing constraints on authorisations that are issued to requester applications.

Such authorisations can be self-contained and issued for a specific period of time and may be

validated by Hosts without the need of remote token validation at the AM. For example, the

157

Chapter 5. User-Managed Access

authorisation can be encrypted with a secret that is shared between the AM and the Host and

this authorisation may contain all the information needed to make an access control decision at

the Host.

Moreover, UMA allows to centralise access control for distributed applications that can

manage various types of resources and services. Therefore, UMA provides a significant benefit

to users who no longer have to manage their access control settings in different locations but can

use the provided UX of their preferred AM for access management. Having a single component

responsible for security to various resources requires that the provided UX and functionality

needs to be adapted to various types of resources. For example, the user experience at the AM

needs to take into account that this AM may be used for protecting financial information as well

as personal data. Therefore, it is unlikely that such UX will be optimal for all resource types and

this may be considered as one of the limitations of UMA. Centralising access control significantly

outweighs the described shortcoming and the users gain a significant benefit of improved control

over their distributed data with a centralised solution such as AM.

Similarly to existing IDPs, the AM has a view on applications that are used by the user.

However, the AM also knows about relationships between these applications. Therefore, if such

AM is compromised then not only the attacker can get access to resources of the user but can also

get an insight into existing transactions of that user. Moreover, the attacker can get insight into

relationships of a particular user with specific requesting parties (i.e. other users or institutions).

It is therefore essential to provide the necessary security for the AM.

The Requester needs to refer to the AM in order to obtain the authorisation for resources

at the Host. In particular, it is the Host that decides on the scope of access for which the autho-

risation should be given (recall permission registration described in Section 5.4.4.2). Therefore,

the Requester may need to refer to the AM numerous times in order to build the necessary set

of permissions for a single resource (e.g. read, write, manage) or for multiple resources. This

requires numerous messages to be exchanged between the AM and the Requester and affects

the performance of the protocol. UMA does not contain a mechanism which would allow the

Requester to communicate to the Host using a single request that multiple permissions may be

required. This limitation of the UMA proposal, however, clearly separates the roles allowing the

Requester to have little knowledge about the internals of the host application. Therefore, the

Requester is only concerned with referring to the AM once access at the Host cannot be granted

immediately.

UMA is currently tightly bound to OAuth 2.0 and this may be perceived as one of its

limitations. Therefore, its communication flow follows the one proposed by OAuth 2.0 (where

the client forwards credentials to the AM and obtains a capability that is later used to interact

158

Chapter 5. User-Managed Access

with the Host). However, using OAuth as the underlying protocol for trust relationships between

parties would likely support the adoption of the new solution among the increasing number of

applications on the Web that already implement this protocol [188].

5.11 Chapter Summary

This chapter presented the User-Managed Access solution. It started with presenting additional

requirements for UMA. Then, the chapter discussed the UMA architecture and its protocol. It

also discussed credentials used in this proposal and presented the UMA trust model. It also

showed applicability of UMA to different types of information. This chapter also contained the

evaluation of UMA and its limitations.

UMA provides a method for users to control third-party access to their protected resources,

residing on any number of host sites, through a centralised authorisation manager that makes

access decisions based on user instructions. UMA gives users the required flexibility in sharing

their data and supports requesters with accessing such protected data, similarly to the previously

discussed UMAC proposal.

159

Chapter 6

Host and Requester Frameworks

6.1 Introduction

This chapter presents User-Managed Access frameworks1 that allow applications to externalise

their access control functionality and act as Hosts and Requesters, as defined by the UMA pro-

tocol. Developed frameworks additionally contain specific enhancements to simplify the process

of interactions between applications of the UMA proposal.

In particular, this chapter presents two distinct frameworks that have been designed and

implemented for different programming and deployment environments:

1. UMA/j - framework for applications written in Java (Section 6.2);

2. Puma - framework for applications written in Python (Section 6.3).

UMA/j and Puma frameworks were developed as part of the JISC/HEFCE-funded SMART

project [77]. Some parts of Section 6.2 that discusses UMA/j have been first published in [239],

as a joint effort with Łukasz Moreń. Parts of Section 6.3 that discusses Puma were first published

as blog posts in [123] and [124], as a joint effort with Jacek Szpot.

UMA/j and Puma were designed and implemented during different times of development

of the emerging UMA proposal. This chapter restrains from providing revisions of the protocol

implemented by this software. This is due to the fact that both frameworks were continuously

improved over time. Development of both frameworks allowed to provide valuable feedback

to the UMA WG and such feedback was often used during work on the core UMA protocol

specification. The differences between both frameworks are summarised in Table 6.1.
1This thesis uses the terms "framework" and "library" interchangeably, despite the fact that these two terms

are sometimes used to describe slightly different types of software.

160

Chapter 6. Host and Requester Frameworks

Table 6.1: Comparison of UMA/j and Puma frameworks.

UMA Actor Support UMA/j Puma
Host Yes Yes
Requester Yes Yes
Authorisation Manager Yes No
Functionality
Integration with SMARTAM 1 Yes No
Integration with SMARTAM 2 Yes (early versions only -

no permission registration)
Yes

Resource Registration Yes (with SMARTAM 2) Yes
Permission Registration No Yes
Claims 2.0 Only self-asserted claims Self- & third-party as-

serted claims (both types
through redirects)

Token Naming
Host-AM Token Host Access Token (HAT) Host Access Token (HAT)
Requester-AM Token Requester Access Token

(RAT)
Requester Access Token
(RAT)

Requester-Host Token Authorisation Token (AT) Requester Permission To-
ken (RPT)

Implementation
Programming language Java Python
Programming paradigm Imperative Functional
Deployment Web application container Google App Engine
Tests Unit/integration tests Unit tests
Configuration XML-based In Python code

161

Chapter 6. Host and Requester Frameworks

UMA/j supports development of UMA Authorisation Managers, Hosts and Requesters.

Parts of this framework were used to develop SMARTAM V2 that is discussed in Chapter

7. Therefore, this chapter only discusses the host and requester part of UMA/j. These parts are

called UMA/j Host and UMA/j Requester.

Initial versions of UMA/j Host and UMA/j Requester were used to build client applications

that were integrated with SMARTAM V1. The framework was then used for integration of

these client applications with early versions of SMARTAM V2. However, such integration was

eventually abandoned with the introduction of permission registration and permission tickets

to the UMA proposal and to the SMARTAM V2 implementation. These two concepts are

not supported by UMA/j Host or UMA/j Requester. Therefore, UMA/j is discussed from the

perspective of its integration with late versions of SMARTAM V1 and some parts (e.g. RAT

tokens) are shown from the perspective of their integration with early versions of SMARTAM

V2. UMA/j also implements a modified version of the Claims 2.0 specification [247]. The claims

module allows Requesters to submit self-asserted claims, similarly to those discussed in Section

5.7.1.

In terms of implementation, UMA/j is written in Java and provides a high-level UMA API

for applications. It also allows to use low-level APIs for finer control of UMA protocol flows. It

was implemented during early stages of research on UMA. Therefore, its integration with Web

applications still required a significant level of knowledge of the underlying protocol, which can

be considered a major issue with this software. UMA/j follows an object-oriented design with

different software modules responsible for different steps of the UMA protocol. UMA/j comes

with unit and integration tests in place. It can be used in Java Web applications, which conform

to the Java Servlet specification [101]. It provides additional support for the popular Spring

framework [74] and its configuration can be provided in an XML configuration file.

Puma, on the other hand, was developed as a more lightweight framework and it provides

support for building host and requester applications only. This framework was used to build

client applications for a more recent version of SMARTAM V2. Furthermore, Puma provides

support for permission registration and permission tickets. This framework supports only basic

Claims 2.0 proposal through redirects of Requesting Parties to an AM. This support allows for

both self-asserted as well as third-party asserted claims to be used at an AM (see Chapter 7).

Puma is built primarily for applications running on the Google App Engine Platform as

a Service. Puma is written in the Python language. Because this framework was designed

and implemented later than UMA/j, it contains various enhancements and simplifications for

application developers. In terms of programming paradigms, this framework follows a functional

design [208; 295]. At the time of writing, the framework only contained basic unit tests but

162

Chapter 6. Host and Requester Frameworks

Figure 6.1: High-level overview of the modules in the UMA/j framework and related libraries.

integration tests are planned to be provided in the future. Unlike UMA/j, this framework

requires configuration to be provided directly in the Python code.

6.2 UMA/j

UMA/j has been built as the first known framework to provide Web applications with support

for the UMA protocol. An overview of the host part of this framework was published in [239] as

a joint effort with Łukasz Moreń and this section of this thesis is based on that publication. A

high-level overview of modules comprising the developed software is shown in Figure 6.1.

UMA/j can be integrated with new and existing Web applications to allow these applications

to become UMA-compliant Hosts capable of delegating access control to users’ chosen Autho-

risation Managers (UMA/j Host). It also provides the mechanisms for applications to become

UMA-compliant requesters that can access Web resources protected with the UMA protocol

(UMA/j Requester). Furthermore, it also provides a module for building UMA-compliant Au-

thorisation Managers and this module has been used when building SMARTAM V2 (UMA/j

Authorisation Manager). Importantly, UMA/j uses additional libraries that were developed as

part of the SMART project, namely Discovery, Dynamic Registration, and OAuth 2.0.

UMA/j abstracts away specifics of the underlying UMA protocol and allows applications

to use high-level abstractions to comply with the protocol. By providing a single UMA API,

the framework allows developers to keep a clean separation between the business logic of their

applications and the proposed security mechanism. In terms of programming paradigms, UMA/j

follows an imperative design [295], which puts emphasis on changes in state.

The framework implements one of the early revisions of the UMA protocol. It has been

initially developed to allow integration of client applications with SMARTAM V1. It was later

adapted to allow integration with a more complex but more functional SMARTAM V2. However,

163

Chapter 6. Host and Requester Frameworks

this second integration was done only with an early version of SMARTAM V2 when the UMA

proposal did not have permission registration in place. Further implemented client applications

that were integrated with SMARTAM V2 leveraged the Puma framework that is discussed in

Section 6.3.

The remainder of this section is structured as following. First, this section discusses the

Common module and related libraries that are used by Host, Requester, and AM parts of the

UMA/j framework. It then presents the Host module followed by the Requester module. This

section does not discuss the UMA/j AM module. Instead, the AM implementation that uses

UMA/j AM is presented in Chapter 7. This section also discusses the limitations of the UMA/j

framework. UMA/j implementation and evaluation are discussed in Appendix C.

6.2.1 UMA/j Common

The UMA/j Common module provides shared code, which is used by Host, Requester, and AM

parts of the framework. A description of each package of this module is given below:

uma.common.domain.*

POJO classes used among different modules of the UMA/j framework, e.g. used to store

AM information, access and refresh tokens, requests and responses, error messages, etc.

uma.common.exception.*

Implementations of different exceptions, including checked and runtime exceptions.

uma.common.providers.*

UMA data provider interfaces, used by host and requester applications. Common in-

memory implementations are provided for developer convenience.

uma.common.validator.*

Validators used for requests and responses used in the UMA protocol.

uma.common.utils.*

Various utility methods related to token handling and exception-to-error mappings.

These packages are used in different parts of the UMA/j framework. These classes have been

combined in a single module to ease development of UMA/j AM, UMA/j Hosts, and UMA/j

Requester. In particular, having implementations of messages and validators in a single module

allowed to ensure the consistency among different parts of UMA/j.

164

Chapter 6. Host and Requester Frameworks

6.2.2 Discovery

The discovery module implements the Well-Known Location [260] and Web Host Metadata
[201] discovery. It allows the client application to obtain information about services available at

a user’s chosen AM. Such information is provided in a JRD document [201] that describes the

locations of endpoints exposed by AM and the AM’s supported access token formats, among

other information. Acquired information from the configuration document is later consumed by

the Core module and is available to other UMA/j components. Discovery is an optional step in

UMA and can be omitted by applications that have been pre-registered in any other way (e.g.

manually by the application developer).

Initially, discovery would constitute an integral part of UMA/j. However, since it imple-

mented a protocol that was independent from the UMA protocol itself, it has been provided as

a separate library. Therefore, it can be used by other libraries than UMA/j. Furthermore, this

module was originally developed to consume XRD documents [116] which were used in SMAR-

TAM V1. This module was adapted to support more recent revisions of the UMA protocol and

to allow processing of JRD documents (see example JRD document in Appendix G).

6.2.3 Dynamic Registration

The Dynamic Registration module allows host and requester applications to receive the required

OAuth 2.0 client credentials {client_id, client_secret} that must be used when establishing a

trust relationship with an AM on behalf of a user. Dynamic registration involves providing an

AM with information about the application that an AM displays to a user during the authori-

sation step.

Dynamic registration is performed according to one of the models defined in [237] (with

further changes in [274]) where an application pushes information to an AM (Push model) or

where an AM discovers information directly from an application (Pull model). UMA/j extends

the Pull model by allowing an AM to respond with a nonce, which a client must place into

its descriptor file (e.g. XRD or JRD file). An AM then retrieves this file from the client’s

discovery URL and verifies its validity. In both models, similarly to requirements for the OAuth

2.0 protocol, a transport level security must be provided with the use of the TLS/SSL.

In the Pull model, an AM has more flexibility in determining the trustworthiness of a Web

application because a description of such application is retrieved from an authoritative source.

For example, an AM may use HTTPS to retrieve information and may check that the domain

in the obtained SSL certificate matches that from the XRD/JRD descriptor file. The nonce is

included in the file to ensure that it is the actual application that provisions this description.

165

Chapter 6. Host and Requester Frameworks

The dynamic registration module retrieves the {client_id, client_secret} pair. These cre-

dentials are retrieved only once for each {Host, AM} or {Requester, AM} pair and are reused

among different users of the same application (a user of the application never learns the client_-

secret). For example, when the first user of a particular host application decides to use their

chosen Authorisation Manager and this AM is not yet known to the Host then a pair of client

credentials is acquired. All further users of this Host would already rely on the previously re-

trieved client credentials. Importantly, such setup is provided for developer convenience only

and there is nothing in the protocol that would prevent the application from obtaining new

credentials for each user (although that would not be an efficient mechanism).

UMA/j uses the dynamic registration module to support all aspects of application regis-

tration based on the application’s configuration provided by the developer. In most cases, this

configuration is required to be provided during deployment of the application and not at run-

time. Therefore, UMA/j allows developers to provide this information in the XML configuration

file. In case of the Pull model, UMA/j provides an endpoint that handles application discovery

by the AM. A developer has to include this endpoint in their application without the need of

custom implementation (e.g. by including it as a servlet in the web.xml deployment descriptor).

Dynamic registration, similarly to discovery, is an optional step and can be omitted by

applications that have been pre-registered in any other way (e.g. manually). Additionally,

requesters may not be registered at all and can act as anonymous clients, depending on the AM

implementation. UMA/j can be configured to allow such anonymous flow. However, in such cases

the Requesting Party has to be careful when giving authorisation to an anonymous application

(Requester) to access protected resources. This is discussed in more details in Chapter 7.

Dynamic registration, similarly to the discovery module, has been eventually provided as an

independent software component. It can be also used in other libraries than UMA/j.

6.2.4 OAuth 2.0

The introduction step in UMA is based on the OAuth 2.0 Authorisation Code Grant [202] and

allows Hosts and Requesters to access the functionality provided by an AM. UMA/j supports

this step of the protocol with a custom-built OAuth 2.0 library [117; 120; 129] that is integrated

with other modules of the framework and can be also used as a standalone library. This library

was introduced in Section 1.5.

This OAuth 2.0 library allows an application, which is registered at an AM, to receive either

of the following tokens2:
2First versions of the UMA/j framework would not support different token types for requester applications.

Instead, the Requester would only obtain a single token that would be used to access protected resources on host
applications. This is discussed in more detail in the next chapter of this thesis.

166

Chapter 6. Host and Requester Frameworks

1. Host Access Token (HAT) - allows a Host to use AM to register resources which should

be protected and to validate Authorisation Tokens (AT) received from Requesters;

2. Requester Access Token (RAT) - allows a requester application to receive ATs that

can be used to access protected resources on hosts.

The OAuth 2.0 library can receive the aforementioned access tokens and their corresponding

refresh tokens. When a particular HAT or RAT becomes expired, then a corresponding refresh

token is used to obtain a new access token. UMA/j supports this process in a transparent

way to the application. The framework provides mechanisms to refresh an access token if the

previous one expired based on the AM’s response (i.e. when an AM responds with HTTP 401

Unauthorized). The framework can also check the expiration of the access token, prior to

attempting to use it, and then refresh such token if necessary.

Whether an application receives a HAT or RAT is determined by the scope that this appli-

cation gets authorised for at a particular AM. UMA/j provides default values for UMA scopes

(refer to Section 5.4.1 and Section 5.4.4). However, it also allows developers to change the names

of these scopes for their convenience and to support arbitrary AM implementations. Moreover,

the UMA/j Requester, during its emerging development, has encapsulated the OAuth 2.0 library

in one of its own modules (Requester Filter) that is discussed in Section 6.2.6.1.

6.2.5 UMA/j Host

This section demonstrates design of the Host part of the UMA/j framework, called UMA/j

Host. UMA/j Host is set of modules that allows applications to externalise their access control

functionality to Authorisation Managers.

167

Chapter 6. Host and Requester Frameworks

Fi
gu

re
6.
2:

D
es
ig
n
of

th
e
UM

A/
jf
ra
m
ew

or
k
an
d
its

in
te
gr
at
io
n
wi
th

a
W
eb

ap
pl
ica

tio
n
[2
39
] .

168

Chapter 6. Host and Requester Frameworks

UMA/j Host adds host specific functionality on top of the previously discussed modules, i.e.

UMA/j Common, Discovery, Dynamic Registration, and OAuth 2.0. This functionality is added

in the following new modules:

1. Resource Registration;

2. Token Validation;

3. Request Filter;

4. Core.

All UMA/j modules required by host applications are depicted in Figure 6.2. These modules

are discussed in further sections. The dependency graph of UMA/j Host, generated using the

Maven Graph Plugin [48], is provided in Appendix A.

6.2.5.1 Resource Registration

The Resource Registration module provides support for flexible authorisation delegation by

allowing an application to communicate information about resources to an AM. This information

includes resource location and associated metadata (e.g. name, icon). Authorising Users can

use this information when defining access control policies at an AM.

This module supports all operations available for the UMA resource registration step. These

operations include creating, reading, updating, deleting, and listing resource sets registered at

an AM. The module provides a ResourceRegClient class that implements an easy-to-use API

for the aforementioned operations.

This module allows AMs to communicate the location of the policy URI, which can be used

by Hosts for user convenience. In particular, this allows a Host to provide a user with a notion

of a "Sharing Settings" button. Such button may point to an access control policy associated

with a resource and located at an AM.

The Resource Registration module additionally allows a developer to expose a Resource

Registration endpoint at a host application. Such endpoint acts as an entry point to UMA-

related functionality and to the aforementioned ResourceRegClient. This endpoint allows for

registration and de-registration of resources from AM and is provided as a JAX-RS endpoint
[271], which can be included as part of API of an application. Resource registration is then

simplified to providing a Web form with a hidden resource ID (e.g. encoded URI of the resource),

which should be used during resource registration. When this form is submitted then resource

information is used by the discussed endpoint, which takes care of the UMA protocol flow. For

example, this endpoint registers a resource or removes one from an AM. In case a resource cannot

169

Chapter 6. Host and Requester Frameworks

be registered, e.g. because the user has not yet introduced a Host to an AM, then the framework

can automatically initiate the necessary steps (including discovery, dynamic registration, and

host introduction).

A simplified code of a resource registration endpoint is presented in Listing 10. Available

actions on resources can be included in the application as static JSON files. UMA/j Host allows

for registration of these files using provided configuration options (see actionId, actionUri,

actionName, and actionIconUri constructor arguments for UMABasicAction, as presented in

Appendix B). Similarly, deleting resource information from AM can be done using a similar

method of the provided JAX-RS endpoint.

1 @POST @Path("/resource_reg_entry")
2 public Response createResource(
3 @FormParam("resource_id") String rId,
4 @Context HttpServletRequest req,
5 @Context HttpServletResponse res) throws Exception {
6

7 Principal principal = req.getUserPrincipal();
8 HostUMAInfo info = provider.getUMAInfo(principal, rId);
9 Token at = umaInfo.getAccessToken();

10 if (at == null || StringUtils.isEmpty(at.getToken())) {
11 return performOAuthAuthorization(req, res);
12 }
13 final String token = info.getToken();
14 return performResourceRegistration(rId, info, token, req, res);
15 }

Listing 10: Resource registration JAX-RS endpoint for Host applications.

It is important to note that Web applications can register arbitrary resources that can be

identified by URIs as required by UMA. The presented framework extends this by allowing

arbitrary grouping of resources and protecting such groups by AMs. This is done through

UMA-defined notion of resource sets. However, a developer is required to define these groups

for UMA/j Host. For example, an online gallery service could group photos in albums or allow

grouping of individual photos based on user-supplied tags. Similarly, a personal data service

could group personal information such as name, phone number, and address to form a user’s

profile.

A Host may delegate access control to an AM in a very flexible manner, depending on its

requirements. As discussed in Chapter 5, a Host can delegate access control for all resources of

a particular user, for groups of resources or for individual resources only. Additionally, a Host

can delegate access to all its Web accessible resources to a particular AM, too. UMA/j supports

170

Chapter 6. Host and Requester Frameworks

all granularity levels of access control delegation envisioned for the UMA proposal.

6.2.5.2 Request Filter

UMA/j provides a generic mechanism for filtering HTTP requests to Web resources. The Request

Filter checks these requests and detects those that are issued to resources protected with UMA.

Information whether a resource is UMA-protected is provided by the Core module. A simplified

example code for this module is given in Listing 11.

1 private HostUMADataProvider dataProvider;
2 private HostUMAValidationProvider validationProvider;
3 // ...
4 public void doFilter(ServletRequest req,
5 ServletResponse resp, FilterChain chain) throws Exception {
6

7 if (HttpConstants.Methods.HEAD.equals(req.getMethod())) {
8 UMAResource resource =
9 dataProvider.getUMAResourceFromRequest(req);

10 if (resource != null && resource.isSecured()) {
11 // ... Inform about UMA authorisation
12 }
13 // ...
14 } else {
15 // ... Authorisation Token validation
16 UMAHostResourceRequest resourceRequest =
17 new UMAHostResourceRequest(request);
18 HostUMAAccessDecision decision =
19 validationProvider.validateAccessToken(resourceRequest);
20 if (!decision.isAllowed()) {
21 // ... Require UMA authorisation
22 }
23 // ... Provide access to resource
24 chain.doFilter(req, resp);
25 }
26 }

Listing 11: Example simplified code of the Request Filter component.

When the resource is protected but the required Authorisation Token (AT)3 is missing

then the filter responds with a standard HTTP 401 Unauthorized response and includes the fol-

lowing information about: (1) URL of the AM that protects this resource, (2) the resource iden-

tifier as registered at this AM, (3) the Host identifier at this AM. However, if AT is detected, then

the filter uses the token validation component, implemented as HostUMAValidationProvider,
3The initially implemented version of UMA/j used the term Authorisation Token instead of Requester Per-

mission Token.

171

Chapter 6. Host and Requester Frameworks

for further processing and AT validation (lines 18-22 in Listing 11).

Importantly, UMA/j does not support permission registration, which was introduced in later

stages of the UMA protocol development. Therefore, the described behaviour of filtering access

to resources differs from the protocol flow that was discussed in Chapter 5. Instead of registering

a permission and returning a permission ticket, UMA/j simply returns information about the

protected resource at AM (including resource set identifier, identifier of the host application and

the location of the AM).

UMA/j supports a Security Discovery mode. Such mode is implemented in the filter and

allows requester applications to issue HTTP HEAD requests to hosts integrated with UMA/j.

Requesters can investigate whether resources are protected or not, without seeking access to

actual resources. Host replies with metadata of a protected resource only, providing the same

UMA information as in the case of normal access requests to resources. This mode is configurable

by a developer.

The Request Filter module is implemented as a Servlet Filter. This allows the framework

to be used in Java Web applications that conform to the Java Servlet specification [101]. This

module can be added to an application by including the UMAHostSecurityFilter class as a

filter in a web.xml deployment descriptor of an application.

6.2.5.3 Token Validation

This component supports both local and remote validation of Authorisation Tokens which are

first processed by the Request Filter. Importantly, the UMA protocol itself does not restrict the

token format to be used. Therefore, this module can work with different token types.

Remote token validation is performed by sending a JSON-formatted access decision request

to an AM and receiving a response, which was presented in Listing 9 in Section 5.4.5. This mod-

ule provides an UMAValidationClient class that implements a getValidationInfo() method.

This method is used to send an access control decision request to an AM and to retrieve an ac-

cess control decision response. Such response is then handled by UMAAccessDecisionEvaluator

that makes the final decision regarding access to a resource. This final decision is made on the

Host side.

On the other hand, local validation is performed by plugins responsible for different token

types. By default, the framework supports validation of SWT tokens [115] by validating sig-

natures, using the supplied public key of the AM, checking the token’s issuer (i.e. if it is the

AM that was registered by a user) and matching its properties against requested access type.

UMA/j also supports the inclusion of custom plugins for other token types.

172

Chapter 6. Host and Requester Frameworks

6.2.5.4 Core

This Host module provides the following functions:

1. Allows a host application to use UMA functionality;

2. Provides services for all UMA/j components;

3. Exposes an abstraction of persistent storage of UMA-related data to these components,

based on the code provided by the UMA/j Common module.

This module combines all the Host modules together. It provides the configuration options,

i.e. allows the applications to attach the UMA/j Host framework and configure its different

aspects. An example of UMA/j Host configuration, included in the Spring XML metadata

configuration file, is given in Appendix B.

The Core module hides the complexity of using separate UMA/j components by exposing

a high-level UMA API. Firstly, this API allows an application to delegate access control to an

AM. Secondly, it allows to an application to register resources that are meant to be protected.

The framework then takes care of the underlying steps (e.g. Discovery, Dynamic Registration,

and Introduction).

This module is used by other UMA/j components. For example, these components use Core

to obtain discovered information about endpoints or get the correct HAT that would be used

for resource registration and token validation.

The Core module provides an interface, called HostUMADataProvider, for persistent storage

of all UMA-related data which includes endpoint descriptions, credentials, and access and refresh

tokens for different AMs (possibly used by different users of the same Web application). This

information is then used by an application and other modules of the framework. UMA/j depends,

however, on a developer to provide a concrete implementation of this interface (e.g. a developer

can decide to store UMA-related data in a file or using a SQL-based database). The UMA/j

Core module provides implementation of a MemoryHostUMADataProvider for testing purposes

and this implementation stores data in a HashMap.

6.2.6 Requester

This section discusses design of the Requester part of the UMA/j framework, called UMA/j

Requester. This set of modules allows applications to access UMA-protected resources at Hosts.

UMA/j Requester extends the common UMA/j functionality by adding the following new

modules:

1. Requester Filter;

173

Chapter 6. Host and Requester Frameworks

2. Token Retrieval;

3. Core.

The dependency graph of UMA/j Requester, generated using the Maven Graph Plugin [48], is

provided in Appendix A.

Currently, the framework is targeted at Web applications only, which can use it through the

provided UMA API. Future plans include adaptation of the framework for applications running

on mobile devices. Similarly to UMA/j Host, applications can also use low-level APIs, in case

more fine-grained control of the protocol flow is required. Importantly, UMA/j Requester is

simpler in comparison to UMA/j Host. This section focuses on a late version of the framework

with already implemented support for OAuth 2.0 and RAT tokens. Initial versions of UMA/j

Requester only needed to obtain Authorisation Tokens from an AM (see SMARTAMV1 discussed

in Section 7.2) and could use these tokens to access protected resources.

6.2.6.1 Requester Filter

Requester Filter is the main component used in the framework for Requester applications. It

is applied as a filter to the actual business logic implementation, e.g. servlet or controller.

The role of this filter is to intercept all User-Agent-initiated calls to an application to access

resources, which may be UMA-protected, before these calls reach the actual business logic of

the application (e.g. logic of the implemented HTTP client in the application). The filter uses

the UMAMappingProvider to check if a requested resource has been previously accessed by this

application and if this resource was UMA-protected.

If the resource was previously accessed, then Authorisation Token information is obtained

from the provided implementation of the RequesterUMADataProvider interface. This module

checks if the AT is valid and it can refresh this token as necessary. In case a refresh token was

not issued by the AM in the first place, the framework directs a user to an AM according to the

OAuth 2.0 protocol, as presented in Section 6.2.6.2. Earlier versions of the UMA/j Requester

framework did not use the OAuth 2.0 Web Server Flow (Authorisation Code Grant) but were

based on the OAuth 2.0 Username and Password flow [202]. The latter approach in UMA/j

Requester was used during integration of applications with SMARTAM V1 but this approach is

not discussed further in this thesis.

However, if a resource has not yet been accessed, then the filter executes a normal UMA

flow. In particular, it can send the HTTP HEAD request to the resource. The purpose of this

request is to check whether a resource is protected with the UMA protocol (recall the Security

Discovery mode of the UMA/j Host framework, which was discussed in Section 6.2.5.2). If the

174

Chapter 6. Host and Requester Frameworks

resource is protected, then the host’s response should contain all the necessary information to

proceed with the UMA flow, i.e. URL of the AM protecting the resource, the resource ID, and

the Host ID (this differs from the original UMA proposal - recall Section 5.4.4). Requester Filter

does not pay attention to the actual AM that protects the resource because this function is

covered by the Token Retrieval module (see Section 6.2.6.2).

Importantly, the implemented filter does not access the resource itself but directs the original

User-Agent-initiated request, along with the attached AT, to the actual controller/servlet. Such

controller/servlet then uses its own HTTP client to access a resource. Therefore, UMA/j allows

applications to use their own HTTP client libraries and still benefit from the provided UMA

functionality.

Requester Filter is developed as an ordinary Servlet filter in the RequesterResourceFilter

class. Such implementation allows this component to be applied to any Java Web application

that conforms to the Java Servlet specification [101].

6.2.6.2 Token Retrieval

The Token Retrieval module is provided to support application developers with obtaining Au-

thorisation Tokens. This module consists of three parts: RequesterTokenRetrievalServlet,

RequesterCallbackServlet, and ClaimsProcessor. The RequesterTokenRetrievalServlet

is used to initiate the UMA protocol flow. On the other hand, the RequesterCallbackServlet

is used to obtain authorisation for an AM in form of a short-lived authorisation code. Both

RequesterTokenRetrievalServlet and RequesterCallbackServlet encapsulate OAuth 2.0

(recall Section 6.2.4). The authorisation code is eventually exchanged for RAT using the AM’s

Token Endpoint. UMA/j also provides a ClaimsProcessor implementation, which supports

processing of claims-requested and claims documents according to the Claims 2.0 specification

(recall Section 5.4.4). The ClaimsProcessor was used in early versions of the framework and is

discussed only briefly in this section.

The Token Retrieval module is used in UMA/j in two cases. Firstly, if the resource being

accessed is not yet known and the Requester Filter detects that this resource is UMA protected,

then the RequesterTokenRetrievalServlet is used to obtain authorisation from the correct

AM to access that resource. In particular, it may perform the Discovery, Dynamic Registration,

and Introduction parts of the UMA protocol flow (these functions were discussed in Sections

6.2.2, 6.2.3, and 6.2.4 respectively). This module can then obtain the Authorisation Token.

Secondly, this module is used in case the RAT (or the AT), which have been previously obtained

from the AM, are expired or invalid and there were no corresponding refresh tokens issued. For

example, if a RAT is expired then this module redirects a Requesting Party to an AM to obtain

175

Chapter 6. Host and Requester Frameworks

a new code that is later exchanged for a RAT.

In order to obtain a RAT using the OAuth 2.0 protocol, this part of the framework provides

the RequesterCallbackServlet class. When a Requesting Party is redirected back from an AM

to a Requester, after authorising this application for an AM, then such redirect is accompanied

with a short-lived authorisation code. This code is exchanged for a RAT that is used at the AM

to obtain the necessary AT.

The Authorisation Token is used for accessing protected resources at Hosts. A Requester

can obtain an AT from an AM. How the Requester communicates with AM in order to obtain

authorisation has changed over time. In early versions of the framework, the Requester provided

the URL of the resource that it wanted to access and the type of access (e.g. HTTP GET

method). UMA/j was further adapted to support providing resource and host identifiers to an

AM. Moreover, the early versions of UMA/j Requester did not differentiate between tokens used

for communication with AM (RATs) and tokens used for accessing protected resources (ATs). A

Requester had to authenticate a Requesting Party to an AM (similarly to OAuth 2.0 Username

and Password flow). Support for both token types has been eventually introduced and support

for RAT has been added to UMA/j.

Because of the changing UMA protocol and the UMA/j implementation, as discussed earlier,

these evolving parts of the framework are not shown in detail. Instead, a more detailed inte-

gration between a Requester and an AM is presented on example of a second framework, which

is demonstrated in Section 6.3 because this framework implements a later, improved revision of

the UMA proposal.

As discussed in Chapter 5, user policies at an AM may define claims, which must be submit-

ted by Requesting Parties before an AT can be provisioned. The implemented Token Retrieval

module contains a ClaimsProcessor component that implements an amended version of the

Claims 2.0 specification. This component allows parsing claims-requested documents received

from an AM and presenting them to a Requesting Party during the authorisation phase.

Developers are required to provide a UI view for presenting such requested claims, as well

as for gathering user’s consent to those claims. For example, the developer must implement a

view to ask the user to confirm that they are over 18 years old and then record the confirma-

tion. Users must select claims in order to confirm them. These claims are later processed by

ClaimsProcessor and are sent to the AM. Only then the AT can be provisioned by AM or, if

further claims should be submitted, a new claims-requested document is received. Importantly,

UMA/j supports only self-asserted claims, which is one of the limitations of this framework.

176

Chapter 6. Host and Requester Frameworks

6.2.6.3 Core

This module of the UMA/j Requester framework provides a similar function to its equivalent in

UMA/j Host. In particular, its aim is to:

1. Provide services for all UMA/j components;

2. Expose an abstraction of persistent storage of UMA-related data to these components,

based on the code provided by the UMA/j Common module.

The Core module provides functionality to other Requester modules. Similarly to UMA/j

Host, this module provides the configuration options, i.e. allows an applications to attach the

UMA/j Requester framework and to configure its different aspects. Such configuration is similar

to the UMA/j Host configuration shown in Appendix B.

This module provides services for other UMA/j components that can use Core to get the

required data. Core exposes a RequesterUMADataProvider interface, which supports storing

and retrieving information about authorisations to resources. Developers have to implement

this interface in their applications but UMA/j provides a basic in-memory implementation, too.

The Core module also includes UMAStateProvider and UMAMappingProvider interfaces.

The first interface declares methods used for storing state information that defines a resource

accessed by a Requesting Party. This information must be remembered before a Requesting

Party is redirected to an AM and must be restored when a Requesting Party is redirected

back to a Requester. The latter interface allows the framework to store {resourceUri, hostId,

resourceId} tuples for UMA-protected resources. This information allows the framework to

establish if a resource is protected before issuing any requests to the Host. UMA/j provides

in-memory implementations of both interfaces.

6.2.7 Limitations

Integration of host and requester applications with the UMA/j framework still required a signif-

icant level of knowledge of the underlying protocol, which was considered a major issue with this

software. Furthermore, the UMA protocol was continuously improved and some of the protocol

flows changed over time. This affected host and requester behaviour, e.g. permission registration

and permission tickets were added to the protocol. Moreover, obtaining that way tokens were

used in the software changed over time as well (recall Section 6.2.6.2).

Introducing changes to the UMA/j framework required a significant effort and each change

triggered further adjustments in unit and integration tests. Using Java for further development

of Host or Requester applications, along with the necessary tests, was not consider pertinent at

177

Chapter 6. Host and Requester Frameworks

that stage of the rapid development of the UMA protocol. Therefore, features such as support for

third-party asserted claims or permission registration were not added to the framework despite

the fact that this part of the UMA protocol was considered mandatory in further research.

Moreover, retrieving authorisation tokens was not finalised and integration between a Requester

and AM was tested only in a limited form.

UMA/j Host was tested primarily with bearer tokens which were opaque to host applications.

Therefore, UMA/j was mostly concerned with remote token validation. Such validation may not

be sufficient in terms of performance for applications where access to resources is frequent. Al-

though UMA/j provides initial implementation of local token validation, such validation was not

tested further during integration of UMA/j with example Java applications (these applications

are discussed in Appendix C.

Based on the experience gained with UMA/j, a new framework was implemented in Python.

The goal of the new framework was to address the aforementioned challenges as well as implement

new features that were introduced in the UMA proposal.

6.3 Puma

The Puma4 framework has been developed to further extend the possibility of integrating Web

applications with UMA Authorisation Managers in different environments than Java. As pre-

sented in Table 6.1, this framework differs in several ways from UMA/j.

Firstly, developers can use Puma to build UMA-enabled Host and Requester applications.

Puma does not support development of Authorisation Managers, while such functionality is

present in the UMA/j framework. Puma was developed according to a newer revision of the

UMA protocol and it was tested against SMARTAM V2. In particular, Puma implemented

support for permission registration and permission tickets. It also supported self-asserted and

third-party asserted claims through redirects. Puma adopted the new terminology of the UMA

proposal and used Requester Permission Tokens and not Authorisation Tokens. Furthermore, it

is targeted at developers familiar with the Python programming language and those who want

to build Web applications using the Google App Engine (GAE) platform [21] (the framework

eases integration of GAE applications with UMA but can be effectively used with other Python

frameworks, such as Django [8], as well).

In terms of programming paradigms, the Python UMA library approaches a functional

design [295]. Such functional programming focuses on the application of functions, in contrast

to imperative programming that puts emphasis on changes in state [208].
4The name Puma originally came from combining the words Python and UMA, also indicating the ability of

very rapid development of UMA-enabled Web applications ’at a speed of a Puma animal’.

178

Chapter 6. Host and Requester Frameworks

Subsequent sections of this chapter discuss the design of Puma and its integration with

example UMA-compliant Host and Requester applications. These applications have been built

taking into account the scenario, as presented in Section 1.1.2. Puma has been designed and

implemented in a way, which allows its use by various Web applications. The discussion in this

section follow steps of the UMA protocol, i.e. each section represents a part of the UMA flow

and maps the designed modules and functions of the framework to this flow. Parts of this section

were first published as blog posts in [123] and [124], as a joint effort with Jacek Szpot.

Section 6.3.1 discusses the framework’s structure and its modular design. Section 6.3.2 intro-

duces the common functionality provided by Puma. Host and Requester parts of the framework

are discussed in Section 6.3.3 and Section 6.3.4 respectively. Limitations of the Puma framework

are presented in Section 6.3.5. Puma evaluation and implementation is given in Appendix D.

The host related functionality of Puma is presented using an example of a simple Personal

Data Store (PDS) type application implemented using Google’s Python webapp framework. The

PDS application resembles the previously discussed S3P application [69]. The Puma Requester

part is presented using a simple UMA-enabled client application that can retrieve Web-accessible

resources according to the UMA protocol (this application has been named CareerMonster and

provides a similar function to an online job application portal for graduate students allowing

them to apply for advertised job positions).

6.3.1 Framework Structure

Objects and functions in Puma are categorised depending on their role in the UMA protocol.

These categories are shared between protocol steps that are common, as well as between steps

that are specific to Host and Requester related functionality. This categorisation is visualised in

Figure 6.3. A description of each category is given further in this section.

6.3.1.1 Puma.UMA.*

Functions related to core UMA functionality, irrespective of the role of the application (i.e.

whether it acts as a Host or Requester), reside in Puma.UMA. This includes functions such as

discover_am_endpoints(...), register_resource(...) check_token_status(...) and

other methods common for UMA clients.

6.3.1.2 Puma.OAuth.*

This module contains OAuth 2.0 parts of UMA which are specific to the framework. Among

others, the following functions are available in this module: get_authz_uri(...) trade_-

code_for_hat_and_store(...) and a refresh_token(...) function.

179

Chapter 6. Host and Requester Frameworks

Figure 6.3: Structure of the Puma framework [123;
124].

6.3.1.3 Puma.Util.*

Utility and helper functions used both internally and externally by the library are available in

the Puma.Util module. An example function is get_owner_of_resource(...).

6.3.1.4 Puma.Storage.*

This module provides an abstraction layer for allowing Web applications that integrate Puma to

use different persistent storage technologies. This module provides, among others, the following

functions: get_uma_user_for_user(...) create_new_uma_user_with_am(...) and a get_-

am_by_hostname(...) function.

6.3.1.5 Puma.Pouches.*

This module provides a collection of objects that represent data and messages passed between

client applications and AM. These objects have been provided with such methods as to_json(),

which allows for consistent JSON encoding of messages in Puma, e.g. RegistrationData and

ResourceSetDescription, which represent client application information as well as resource set

that is registered by a Host respectively.

180

Chapter 6. Host and Requester Frameworks

6.3.2 Common

The common part of Puma contains the functionality which is required by all UMA client

applications, irrespective of whether these applications act as Hosts or Requesters. In particular,

it contains functionality related to common parts of the UMA protocol flow, i.e.:

1. Discovery (Section 6.3.2.1);

2. Dynamic registration (Section 6.3.2.2);

3. OAuth 2.0-based authorisation (Section 6.3.2.3).

6.3.2.1 Discovery

Applications that want to interact with AMmust first learn about its API endpoints, as discussed

in Chapter 5. Host applications must be able to discover the Protection API and requester

applications must discover the Authorisation API.

Puma provides a discover_am_endpoints() function that performs discovery and returns

a configuration for a given AM. This function returns an AuthorizationManager entity that

is created in the persistent datastore. This entity serves as a binding point and copy of the

JRD-based uma-configuration file for that AM.

The locally created data is kept in synchronisation with the contents of the original JRD file.

This process, however, is "manual". The JRD document is synchronised when the same AM is

chosen by another user (for Host applications) or when a resource is accessed and simultaneously

protected by this AM (for Requester applications).

Currently, neither UMA nor the presented AM implementations contain an extension that

would allow the JRD configuration file to contain a validity (or refresh) period. After such

period, the client application would need to check if the contents of the file have changed. At this

moment, this is only achieved using the existing HTTP-based mechanisms (e.g. Cache-Control

or Expires headers of the HTTP response with the uma-configuration file [186]).

6.3.2.2 Dynamic Registration

Dynamic registration has been implemented according to one of the early drafts of the OpenID

Connect Dynamic Client Registration protocol5 [264] and not using the latest OAuth 2.0 Dy-

namic Client Registration [274]. The client application issues a registration request and receives

OAuth 2.0 client credentials. Application information can be later updated, if necessary.
5At the time of writing, Puma implementation was not fully compatible with this standard.

181

Chapter 6. Host and Requester Frameworks

Dynamic registration is supported by the Puma.OAuth module and its oauth_registration()

function. This function accepts a RegistrationData object. Such object needs to be created

by a developer and must contain information about the client that will be registered at an AM.

Upon successful registration, the client application is provisioned with client credentials, which

can be later stored in a datastore. Storing data can be done using the provided Puma.Pouches

module which binds the AM configuration to a particular user. Registration is done once per

application and not per user, and client credentials and the configuration can be later shared

with other users that choose to interact with the same AM, either through a Host or Requester

application.

6.3.2.3 OAuth 2.0-based Authorisation

Hosts and Requesters require a valid token to interact with the Protection API and the Authori-

sation API respectively. A Host needs to engage an Authorising User in order to obtain a token

for the Protection API. Such applications then act on behalf of an Authorising User when reg-

istering resources or validating tokens at an AM. Requesters need to engage a Requesting Party

to obtain a token for the Authorisation API. These applications act on behalf of a Requesting

Party when providing necessary claims to an AM.

Obtaining authorisation in form of an access token, either Host Access Token or Re-

quester Access Token, is a standard OAuth 2.0 flow. A client application redirects an end-

user to a User Authorisation endpoint at an AM. The location of this endpoint is obtained from

the uma-configuration JRD file.

Puma handles the redirect of a user to a valid URL of a User Authorisation endpoint at

an AM. It prepares this URL, with a set of client-specific parameters, using the authz_uri_

for_user() function. Puma uses the following scopes for Hosts and Requesters respectively:

uma_host and uma_requester. Both scope names are configurable and can be changed to the

recently adopted scopes in UMA (refer to Section 5.4.1 and Section 5.4.4 for more details).

When a user authorises a client application for an AM, this user is redirected back to this

application with a code. The callback handler at the client application exchanges this code for

an access token. Puma provides the following functions that allow to exchange a code for an

access token and that can be used by Hosts and Requesters respectively: trade_code_for_-

hat_and_store() or trade_code_for_rat_and_store(). The obtained HAT or RAT is later

used by a client application to interact with an AM.

182

Chapter 6. Host and Requester Frameworks

Figure 6.4: High-level architecture of Puma integration with a host application [123].

6.3.3 Host

This section demonstrates functionality of the Puma framework that is available for host ap-

plications. This part of the framework is referred to as Puma Host in this section. The given

discussion follows presentation of an implemented simple Personal Data Store (PDS) type ap-

plication. Even though the PDS is used as an example of a Host, the same principles apply to

any host application that integrates with Puma. The PDS application is discussed further in

Section D.0.4.1 of Appendix D.

The host functionality provided by the Puma framework, along with its typical elements

and mechanisms, is discussed in the following sections:

1. Data model (Section 6.3.3.1);

2. Resource registration (Section 6.3.3.2);

(a) Resource registration handler (Section 6.3.3.2.1);

(b) Share button iframe (Section 6.3.3.2.2);

3. Token status validation (Section 6.3.3.3);

(a) The Warden (Section 6.3.3.3.1).

The provided descriptions follow the flow of the UMA protocol, which is used by host appli-

cations. These descriptions assume that discovery, dynamic registration and Host introduction

have been completed.

6.3.3.1 Data Model

Host applications that integrate with Puma must have some notion of users or accounts. Users in

such applications must have locally unique identifiers. Puma Host references these identifiers in

its own data model. The relationship between Puma’s own entities and entities of the application

183

Chapter 6. Host and Requester Frameworks

Figure 6.5: Simplified ERD diagram of using Puma framework in a host application [123].

is visualised in Figure 6.5. This figure shows the application-specific notion of users/accounts

as the User object. This object is the sole point of integration between the application and the

framework. Puma objects are defined below:

AuthorizationManager

These entities store information about discovered authorisation managers. Each entity

holds data that is related to the discovery and dynamic registration phase of a particular

AM. The former is a list of AM endpoints, i.e. Protection API, while the latter is a set of

OAuth 2.0 credentials.

ResourceMap

A single ResourceMap entity represents and holds information about a resource on a host,

which has been registered for protection. This information includes, among others: re-

source ID, URI, name, icon URL, and an optional short description for UX purposes.

UMAUser

The previous two entities are related together through UMAUser. This entity allows Puma

to get information about an AM that protects resources of a user, which user is an

owner of a ResourceMap, etc. This entity has a monogamous relation (has) with an

AuthorizationManager and an outside User entity. It also has a polygamous (has-many)

relationship with ResourceMap.

6.3.3.2 Resource registration

Puma provides a Pouches.Puma.ResourceSetDescription object which is used by developers

during resource registration. This object has to be created with information about a resource

and is then converted into a JSON description (see Listing 12). The pre_generated_id is a

unique identifier chosen by a Host and this identifier is used by an application to reference a

resource at an AM. Resource registration is handled by the register_resource(...) function.

184

Chapter 6. Host and Requester Frameworks

Figure 6.6: Flow using Resource Registration Handler [123].

Once a resource is registered at an AM, the final step involves creating a ResourceMap object

in the local datastore (Listing 12). This object stores information about the registered resource.

In particular, it contains the location of the access control policy for this resource. The presence

of a ResourceMap is how Puma determines whether a resource requested via the RESTful API

is UMA-protected.

1 res_description = Puma.Pouches.ResourceSetDescription()
2 res_description = # ...fill in details of resource description ...
3 rx = Puma.UMA.register_resource(user_key, res_description)
4 if rx.status == 201: # resource registered successfully
5 json_data = json.loads(response.read())
6 else: # registration failed
7 ...
8 etag = response.getheader(’ETag’)
9 policy_uri = json_data[’policy_uri’]

10 map = Puma.Util.create_resource_map(real_uri, pre_generated_id,
11 etag, name, icon_uri, policy_uri, user_key)

Listing 12: Registering a resource set at AM and creating a ResourceMap on a Host application.

6.3.3.2.1 Resource Registration Handler. In order to simplify the process of resource regis-

tration, Puma supports the use of a resource registration handler, which is similar to the UMA/j

Resource Registration endpoint discussed in Section 6.2.5.1. The PDS can delegate the resource

registration process to a specially constructed handler that resides at the /uma/register-resource

path (and under the context of where the application is deployed). A flow chart describing the

resource registration process using the proposed handler is shown in Figure 6.6.

This handler expects a set of values through an HTTP POST request. Therefore, resource

registration can be simplified to providing a standard Web form with a hidden resource ID (e.g.

185

Chapter 6. Host and Requester Frameworks

encoded URI of a resource), which should be used during resource registration at an AM. When

this form is submitted by a user then resource information is used by the handler to create a

ResourceSetDescription object. This object is then used as an argument for the register_-

resource(...) function that registers the resource at the user’s AM. Upon receiving a success

response, a local resource description is created in the form of a ResourceMap object that is

stored in a persistent storage. The handler then redirects a user to a specified callback address

at an application and this allows for the resource registration process to be transparent for a

user.

6.3.3.2.2 Share button iframe. Puma extends the core UMA proposal and allows a user

to view an access control policies for a protected resource when the user is at a host applica-

tion. This is achieved through the use of an iframe element. Puma provides a handler, called

UMAMiniPanelHandler, that is meant to be used inside an iframe. This handler provides a

clean separation of the framework and the business logic of the application.

This handler can display either of the following buttons:

Share - displayed when a resource is not yet registered at an AM;

Sharing Settings - displayed when a resource is already registered at an AM.

When a resource is protected by an AM, the handler also displays the following button:

Stop Sharing - displayed along with the "Sharing Settings" button to allow de-registration of

a resource from an AM.

The UMAMiniPanelHandler handler can be made available at /uma/uma_mini_panel path

of the application and its input parameters include the required URI and the optional name of

a resource. An example simplified source of an iframe, used by the PDS application, that uses

the jQuery library [36] to interact with the handler is given in Listing 13.

Upon receiving an HTTP request from a Web browser, the handler checks if the resource

identified by the URI is protected with UMA. The handler then retrieves the policy URI for

this resource from the persistent store (recall the ResourceMap object) and creates a "Sharing

Settings" button that is displayed on a Web page. This button points to the access control

policy and it can be used by a user to access this policy directly from the Host. The handler

also generates an additional "Stop Sharing" button.

On the other hand, if the resource is not protected, then this handler creates a "Share"

button. When this button is clicked, a hidden Web form containing the resource information is

submitted using HTTP POST to the /uma/register-resource URL. The resource is registered

186

Chapter 6. Host and Requester Frameworks

<h3>Phone number</h3>
<!-- Puma start. -->
<div style="display:inline;" id="uma_panel_phonenumber">

<script>
$.get(’/uma/uma_mini_panel?
uri=/api/users/{{userid}}/phone&name=Phone%20number’,
function(data) { $(’#uma_panel_phonenumber’).html(data); });

</script>
</div>
<!-- Puma end. -->

<p>Your phone number is {{phonenumber.number}}</p>.

Listing 13: Dynamically generating a widget for integration with Authorisation Manager.

at the user’s preferred AM and only then the "Sharing Settings" and "Stop Sharing" buttons are

generated.

To simplify the user experience for sharing resources directly from host applications, a single

button ("Sharing Settings") has been eventually used. This button allows a user to register a

resource (if necessary) and view an access control policy with a single click.

6.3.3.3 Token status validation

In UMA, any requests made by a Requester come with an attached RPT that is included in a

WWW-Authenticate header (recall Section 5.4.5). The token itself can be an opaque value to the

Host. In such case, a Host has to refer to an AM in order to validate such token.

Puma provides the Puma.UMA.check_token_status() function that performs token vali-

dation. This function is used when the framework checks if the requested resource is indeed

protected by any AM (see Section 6.3.3.3.1 for more details). Based on the information included

in the AM’s token status response, the host application can decide whether access to a particular

resource should be granted. For example, the Host translates the /users/123/phone URL to a

resource ID that is managed internally. The framework then compares this ID with the one that

is returned by an AM in the token status response. Furthermore, the Host translates the HTTP

GET request to the https://puma-pds.com/scopes/read.json action and also compares if such

action is present in the token status response.

Importantly, the application must know how to translate actions to scopes (and vice-versa)

for its resources. Such translation is configured by the developer of the application. In Puma,

the entire process of validating RPT tokens is encapsulated in the Warden component, which is

discussed in the next section.

187

Chapter 6. Host and Requester Frameworks

6.3.3.3.1 The Warden. The Warden component implemented in Puma provides token vali-

dation function. This component is a piece of WSGI6 middleware that can be used with WSGI-

compliant Python Web applications. It acts as a filter to incoming requests (recall Figure 6.4).

Typically, an application (such as the discussed PDS) is composed of the following two

parts: (1) the User Interface (UI), and (2) the Application Programming Interface. The PDS

implements these two parts in two separate files:

main.py

This file consists of the native application code, i.e. business logic of the PDS application

related to storing personal data, used by the User Interface.

restapi.py

This file contains the implementation of the Web API that allows read-write access to data

stored by the application. The API follows RESTful principles and maps HTTP verbs (e.g.

GET, POST, PUT, DELETE) to actions on resources.

Any HTTP request that is directed to /api path is processed by the code in restapi.py

and all other requests are processed by the code in main.py.

The Warden component intercepts requests to an API and applies UMA-based authorisation.

In particular, it can check if a resource is protected and whether access to this resources should be

granted. If a ResourceMap object for the resource’s URI exists in the datastore then the resource

is considered protected with UMA. A simplified example code of the Warden component is given

in Listing 14. The flow of this component is illustrated in Figure 6.7.

Case one (line 4): if a ResourceMap object is found, the Warden acts accordingly to the

UMA protocol - check for an access token, ask the AM about the status of the token, optionally

register permissions at the AM, respond to the Requester with an UMA response (with optional

ticket) and continue according to the protocol;

Case two (line 16): if a ResourceMap object is not found, then the resource is not con-

sidered UMA protected. The request is passed to the API handler, which prepares a response

based on its own business logic and responds back to the Requester.

Puma implementation differs slightly from the recent revisions of the UMA protocol. The

permission ticket is not returned in the body of the response to the Requester. Instead, Puma

returns such ticket in the WWW-Authenticate header, which must be extracted by the requester

application in order to seek access to a protected resource (refer to line 12 in Listing 14). Future

plans include adjusting Puma to the most recent revision of the UMA protocol.
6WSGI is the Web Server Gateway Interface. It is a specification for web servers and application servers to

communicate with web applications and it is also a Python standard, described in PEP 333 [89; 62].

188

Chapter 6. Host and Requester Frameworks

1 path = environ[’PATH_INFO’]
2 map = ResourceMap.gql("WHERE real_uri = :1", path.strip(’/’)).get()
3 if map:
4 ... # resource is protected with UMA
5 token_status_re = UMA.check_token_status(am, hat, request_body)
6 body = token_status_re.read()
7 verdict = self.check_if_enough_permissions(
8 resource_id, environ[’REQUEST_METHOD’], body)
9 if not verdict:

10 ticket = UMA.request_permission(rat, resource_id, owner,
11 self.permissions_map[environ[’REQUEST_METHOD’].lower()])
12 build_headers(host_id,resource_id,am_url,ticket)
13 start_response(’403’, headers)
14 else:
15 ... # access to a resource is granted
16 else:
17 ... # resource not UMA-protected
18 return self.app(environ, start_response)

Listing 14: Puma Warden logic that checks if a resource is UMA-protected (simplified code) [123].

Figure 6.7: Message flow through the Puma Warden [123].

6.3.4 Requester

This section demonstrates functionality of the Puma framework that is available for requester

applications. This part of the framework is referred to as Puma Requester in this section. The

given discussion follows presentation of an implemented simple simple client application.

The application, named CareerMonster, is implemented as a demo of an online job appli-

cation system. CareerMonster allows students to create their personal accounts where they can

apply for advertised job positions. The application process requires submitting personal infor-

mation, such as email address, full name, as well as the verified "Transcript of Records" document

(recall the scenario presented in Section 1.1.2).

Additionally, the CareerMonster application allows prospective employers to create accounts

189

Chapter 6. Host and Requester Frameworks

and add new job positions. Importantly, employers can later view applications submitted by

students and can request additional data from students. For example, employers can request

access to the phone number information stored at the PDS.

CareerMonster can access UMA-protected resources using the Puma framework. In partic-

ular, it allows students to import their protected data from the PDS application. Additionally,

it can request access to UMA-protected resources, i.e. request for access is submitted by a Re-

questing Party and later evaluated by an Authorising User. Such functionality is currently not a

part of the UMA protocol but was added as an extra feature to this framework. This feature is

presented in Section 7.4.6. This application is further discussed in Section D.0.4.2 of Appendix

D.

Puma Requester is demonstrated in the following sections:

1. Data model (Section 6.3.4.1);

2. Protected resource access (Section 6.3.4.2);

3. Obtaining Requester Access Token (Section 6.3.4.3);

4. Obtaining Requester Permission Token (Section 6.3.4.4).

Given descriptions follow the flow of the UMA protocol that is used by requesters. Even

though the CareerMonster is used as an example of a Requester in this section, the same prin-

ciples apply to any requester application that integrates with Puma.

6.3.4.1 Data Model

Requester applications must have some notion of users/accounts in order to integrate with Puma.

These users must be identifiable by a locally unique ID. The relationship between Puma’s own

entities and that of the Requester is visualised in Figure 6.8. This figure demonstrates the

application-specific notion of users/accounts as the User object. This object is the sole point of

integration between the application and the framework. Other objects are discussed below:

AuthorizationManager

These entities store information about known (i.e. discovered) authorisation managers,

which protect resources at hosts (recall Section 6.3.1.4). For requester applications, only

endpoints of the AM’s Authorisation API have to be known.

RequesterAccessToken

A RequesterAccessToken entity represents a single RAT that is required by a Requester

to interact with an AM on behalf of the Requesting Party. A Requester Access Token

190

Chapter 6. Host and Requester Frameworks

Figure 6.8: Simplified ERD diagram of using Puma framework in a requester application [124].

is a regular OAuth token. There is only one token per {Requesting Party, Authorisation

Manager} pair. This token allows a Requester to access the AM’s Authorisation API. A

RequesterAccessToken entity is linked to an AuthorizationManager entity that repre-

sents the AM for which this token is valid. This entity has as a polygamous (has-many)

relationship with a RequesterPermissionToken.

RequesterPermissionToken

A RequesterPermissionToken entity represents a single RPT obtained by a requester

application for a particular host. A Requester requires at least one token per Host (but

can support multiple tokens) and obtains these tokens from authorisation managers. A

Requester has to be in the possession of a RAT to obtain RPTs. These RPTs can be

associated with permissions for specific resources on Host applications.

RequestingParty

This entity represents a user in Puma. It allows the framework to obtain information about

RATs that can be used to interact with authorisation managers. A RequestingParty entity

also allows Puma to obtain information on RPTs that could be used to access protected

resources. This entity has a monogamous relation with the application’s User entity; as

well as a polygamous (has-many) relationship with RequesterAccessToken.

Puma provides a set of API calls to support management of RAT and RPT tokens. There-

fore, developers are not required to deal with these tokens directly and can focus on the func-

tionality of their requester applications.

191

Chapter 6. Host and Requester Frameworks

6.3.4.2 Protected Resource Access

Before a Requester, on behalf of a Requesting Party, can access a protected resource, it can check

if such resource is indeed UMA protected. Puma supports Security Discovery that provides such

functionality (recall the UMA/j framework demonstrated in Section 6.2.5.2). The framework

can make an initial HTTP request (in the form of HTTP HEAD request) to a resource. Puma

expects such an initial request to fail (unless a Requester already has the RPT in place). However,

headers (especially WWW-Authenticate) of the response should contain the necessary information

for the UMA protocol to be further executed. In particular, Puma determines if a resource is

UMA protected based on the following:

1. HTTP response status is HTTP 401 Unauthorized;

2. HTTP response contains the WWW-Authenticate header with UMA-specific parameters:

URL of the AM protecting the resource (am_uri) and the identifier of the Host at this AM

(host_id).

Puma uses information from the WWW-Authenticate header to learn about the AM which

can issue a RAT, and eventually an RPT. There are two conditions that have to be met by a

Requester to be able to interact with this AM:

1. The application has to know the location of the AM’s Authorisation API;

2. The application has to be registered as an OAuth 2.0 client with this AM.

The above steps can be achieved using (1) discovery and (2) dynamic registration, which

were discussed in Sections 6.3.2.1 and 6.3.2.2 respectively. Further discussion assumes that these

steps have been completed. A Requester has to complete the OAuth 2.0 authorisation, which

was introduced in Section 6.3.2.3.

6.3.4.3 Obtaining Requester Access Token

Puma supports obtaining RAT tokens as following. Firstly, the framework creates a RequestingParty

entity. This entity is the requester-equivalent of an UMAUser object (recall Section 6.3.3.1). The

framework also creates RequesterAccessToken entity, which has a dichotomous role:

1. Contains a RAT for a specific AM;

2. Contains a set of RPTs for Hosts (internally called an RPT Wallet).

To obtain a RAT, a Requester uses a standard OAuth 2.0 flow. Puma supports generation of

a URL to which a user is redirected. A user has to authorise an application for an AM and this

192

Chapter 6. Host and Requester Frameworks

step was discussed in Section 6.3.2.3. In particular, when returning from an AM, a Requesting

Party is redirected to a callback URL at a Requester. This callback has to be implemented as

a handler because Puma does not provide a generic code, which could be included in a client

application. Such handler extracts the authorisation code returned by an AM and exchanges

it for a RAT. This RAT is used by a Requester to interact with the AM’s Authorisation API.

Importantly, a RAT is user specific and each Requesting Party has to be associated with their

own token.

6.3.4.4 Obtaining Requester Permission Token

Accessing protected resources at Hosts requires that Requester presents a valid RPT. A Host

evaluates RPTs, either locally or using an AM, and acts according to the UMA protocol. In case

an RPT is missing in the request, then a Host provides Requester with information where such

token can be obtained.

Puma Requester can check if an RPT is already present for the previously obtained RAT

for a Requesting Party. If yes, then this RPT is included in requests to resources stored at a

Host. If not, a Requester uses the AM’s Host Token endpoint7 to get a new RPT.

RPT does not have any permissions associated when it is first issued to a Requester. Such

RPT is issued without any policies being checked at an AM. A Requester associated a new

RPT with the RequesterAccessToken entity. This RPT is then used in all further requests to

protected resources at a Host. A simplified example code that implements the aforementioned

behaviour of Puma is given in Listing 15.

1 rpt = Puma.Util.get_rpt_for_host_id(rp, am, host_id)
2 if not rpt: # There is no RPT for the host
3 rpt = Puma.Util.obtain_and_store_rpt_for_host_id(rp, am, host_id)
4 headers = { ’Authorization’: ’Bearer ’ + str(rpt)}
5 hx.request(’GET’, url, ’’, headers)
6 re = hx.getresponse()

Listing 15: Requester obtains an empty RPT and includes it in a request to a protected resource on
a Host (simplified code) [124].

HTTP requests, which are equipped with an RPT, can result in one of the following responses

from a Host:

1. HTTP 200 OK - a Host determined that an RPT carries enough permissions, and allowed
7The SMARTAM V2 implementation, which is presented in Chapter 7, provides a separate endpoint for

obtaining new RPTs and a separate one for associating permissions with existing RPTs.

193

Chapter 6. Host and Requester Frameworks

access; the response body contains the requested resource8.

2. HTTP 403 Forbidden - an RPT is valid but it does not have the required permissions. The

response contains a WWW-Authenticate header with the included permission ticket. This

ticket should be used to upgrade (i.e. assign new permissions) an RPT. New permissions

can be assigned to an existing RPT or a new RPT can be issued.

The HTTP 403 Forbidden response is returned for RPTs that do not carry any permissions.

Therefore, a Requester sends such an RPT to the AM’s Permission Request endpoint. This

endpoint serves the purpose of assigning new permissions to RPTs. An AM either assigns

permissions to the RPT (or issues a fresh RPT with newly assigned permissions) or responds with

a claims-requested document. In the latter situation, a Requester can engage in the authorisation

phase.

A simplified example code, which is used to process a response from a Host and is used to

interact with the AM’s Permission Request endpoint, is given in Listing 16.

1 if re.status == 403:
2 www_auth = re.getheader(’WWW-Authenticate’)
3 ticket = Puma.Util.ticket_from_www_auth(www_auth)
4 claims_requested = Puma.UMA.send_ticket_to_claims_endpoint(rat,
5 ticket, www_auth)
6 for claim in claims_requested:
7 if claim[’claim_type’] == ’redirect_required’:
8 self.redirect(claim[’claim_value’])

Listing 16: Requester processing responses from Host and AM with attached claims information
(simplified code) [124].

As presented in line 7 of Listing 16, a claims-requested document is a claims_requested

object, which is returned by an AM. This object contains an array of claims that a Requester

needs to provide in order to satisfy an access control policy.

Puma Requester supports integration with SMARTAM V2 implementation only (this AM

is demonstrated in Section 7.4). In this AM, there is only one type of claims that a Requester

can encounter: redirect_required. When such a claim is received by a Requester, then a

Requesting Party is redirected to the location contained in the claim. As shown in Section 7.4,

SMARTAM V2 leverages this redirect to validate identity and other attributes of a Requesting

Party.
8Importantly, the UMA specification has been recently changed to allow different responses from a Host to

support arbitrary APIs and not only HTTP GET requests.

194

Chapter 6. Host and Requester Frameworks

After the necessary claims are provided to an AM, a Requesting Party is redirected back

to Requester’s callback handler. Puma does not provide a generic handler which could be

used by client applications. Therefore, a custom implementation is used by the CareerMonster

application.

This handler, apart from acting as a regular OAuth 2.0 callback handler, also performs

upgrades of RPTs. This callback handles four different cases, which are determined by the

presence of a specific parameter in the request to this handler:

1. code - standard OAuth 2.0 flow, where authorisation code is returned to the Requester.

This code can be later exchanged for a RAT. This parameter is used solely for RATs and

not for RPTs, as discussed in Section 6.3.4.3.

2. x-oauth_access_granted - Post-claims redirect, which provides information to the Re-

quester whether access was granted (i.e. if necessary permissions can be associated with

an RPT).

3. x-oauth_access_req - Post-claims redirect, which provides information to the Requester

whether access to a resource was requested at an AM.

4. x-oidc_claims_submitted - Post-claims redirect, where a Requesting Party has suc-

cessfully submitted necessary claims to an AM, allowing the Requester to continue access

to a protected resource.

If the callback handler finds the x-oauth_access_granted parameter in the HTTP request,

then it checks if this parameter has the true value. The presence of this value means that a

user has authorised Requester to access their protected resources on a Host. This flow is used in

the Person-to-Self sharing scenario, where the Requesting Party is the same as the Authorising

User.

On the other hand, if the handler finds the x-oauth_access_req parameter set to true in

the HTTP request, this means that a request for access has been submitted to an AM. This

situation can occur when an access control policy has not yet been created for a particular

Requesting Party who seeks access to a protected resource. This flow is used in the Person-to-

Person or Person-to-Service sharing scenarios. Requester can present a custom UI and inform

a Requesting Party that a request for access has been submitted successfully.

Furthermore, the AM implementation, which is demonstrated in Chapter 7, supports OpenID

Connect claims. The callback handler can process the x-oidc_claims_submitted parameter

set to true in the HTTP request to this handler. Such parameter occurs in Person-to-Person

sharing scenarios, where a Requesting Party successfully submitted necessary OIDC claims to

an AM.

195

Chapter 6. Host and Requester Frameworks

In cases where either x-oauth_access_granted or x-oidc_claims_submitted parameters

are returned with their value set to true, then an RPT is considered to bear new permissions

and a Requester should try to access a resource again. The access request to a protected resource

should return HTTP 200 OK. The UMA protocol has been later adapted to allow arbitrary HTTP

return codes to be returned by host applications and this change was dictated by the need to

provide the UMA proposal for protection of arbitrary Web APIs (and not only to access resources

using HTTP GET requests).

Importantly, the aforementioned parameters, i.e. x-oauth_access_granted, x-oauth_-

access_req, and x-oidc_claims_status, which are handled by the callback handler, have been

first proposed in the Puma framework. These parameters are not part of the UMA protocol

specification. These parameters are used in the SMARTAM V2 implementation, allowing to

achieve the functionality that is presented in Section 7.4.6 of Chapter 7.

6.3.5 Limitations

Despite the fact that Puma has been developed after the completion of the UMA/j framework,

it still contains certain shortcomings.

Firstly, Puma only provides functionality for host and requester applications. Unlike UMA/j,

it does not support development of Authorisation Managers. However, such functionality was

considered unnecessary during the framework development. The goal was to create a framework,

which would allow development of new applications that would integrate with SMARTAM V2

rather then to support development of additional AM applications.

Puma was implemented to support integration with SMARTAM V2. Therefore, it only

supports claims through redirects (which allow a Requesting Party to provide either self-asserted

or third-party asserted claims). As discussed in Section 6.3.4.4, there is only one type of claims

issued by SMARTAM V2 that a Requester can encounter: redirect_required. When such

claim is received by a Requester, then a Requesting Party is redirected to the location contained

in the claim. This differs from UMA/j, which provided support for self-asserted claims that would

be conveyed by a Requester directly to an AM. Adding support for directly conveyed claims was

not considered a priority during Puma development. However, such support is planned in further

versions of this software.

Moreover, the implemented framework provides support for remote token validation only.

Hosts have to refer to an AM to get information on permissions associated with an RPTs. This

differs from the UMA/j proposal that provides some support for local token validation (see

Section 6.2.5.3).

In terms of the implementation and deployment, the Puma framework has been mostly

196

Chapter 6. Host and Requester Frameworks

tested with two applications (namely the aforementioned PDS and CareerMonster). Moreover,

testing of the framework integration has been done primarily on the Google App Engine plat-

form although Puma was designed and implemented to be independent from the underlying

application framework. Testing of the framework itself is based on unit tests only while UMA/j

contained integration tests as well.

The Puma.Storage module contains the StorageInterface that provides an abstraction

layer for the persistent storage (and subsequently allows Puma to persist information in various

datastores). Despite providing such an abstraction layer, testing of the Puma framework was

limited only to using the Google’s non-relational datastore. More thorough tests should be

conducted to ensure that Puma can be easily used on other platforms.

Puma requires developers to provide configuration directly in the code. Such configuration is

necessary for Host and Requester applications. For example, both application types require con-

figuration that relates to dynamic registration. Host applications also define which resources are

protected and which HTTP methods map to what actions on specific resources. Such application

configuration should be provided in separate files and not within the code. This shortcoming of

the framework is planned to be addressed in further versions of the developed framework.

The Requester part of the framework, as discussed in Section 6.3.4.3, currently requires

developers to implement the callback URL as a Python handler. Puma itself does not provide

a generic code that could be included in the application. Such generic code is planned to be

provided in further versions of Puma.

6.4 Chapter Summary

This chapter presented User-Managed Access frameworks that allow applications to externalise

their access control functionality and act as Hosts and Requesters, as defined by the UMA pro-

tocol. It first presented a Java implementation named UMA/j. It also presented a Python

implementation named Puma. It discussed specific enhancements incorporated into both frame-

works that would simplify the process of interactions between UMA-enabled applications. It

also discussed existing limitations of both frameworks.

197

Chapter 7

Authorisation Managers

7.1 Introduction

This chapter demonstrates two distinct implementations of UMA Authorisation Managers. It

also presents a conducted user study of the first implementation. This study allowed to identify

numerous shortcomings that were addressed in the second implementation. The research path

on AM development is visualised in Figure 7.1.

Both Authorisation Managers have been implemented as part of the SMART project [77].

Therefore, both implementations have been named SMART Authorisation Managers (SMAR-

TAM) and are referred to in this thesis as SMARTAM V1 and SMARTAM V2. Where the

version of the designed software is omitted in the discussion, this is done deliberately in order

to highlight the functionality which exists in both implementations.

Both AMs have been integrated with various Web applications acting as Hosts and Re-

Figure 7.1: Research path on Authorisation Manager implementations.

198

Chapter 7. Authorisation Managers

questers. This proved that the UMA system can be successfully applied to different scenarios

and can solve various use cases, such as those presented in [85] and [243], as well as that it can

address the shortcomings identified in the scenario presented in Section 1.1.2. Such integration

has been done using the implemented state-of-the-art UMA frameworks, which were discussed

in Chapter 6.

Initially, Authorisation Managers were integrated with an online storage system and an

online photo gallery service1. These applications were named Secure File System (SFS) and

Gallerify.me respectively. A Requester application, called SmartFetch, which acts as a client for

both host applications, was also implemented. SmartFetch allows users to access files from SFS

and photos from Gallerify.me.

Further focus was directed towards solving the "Sharing Trustworthy Personal Data with

Future Employers" scenario, which was submitted to the UMA WG. A complete description of

this scenario is given in [71]. An amended and simplified version of this scenario is presented in

Section 1.1.2. Therefore, a Personal Data Store (PDS) application was developed. This applica-

tion allows users to store personal information and academic records. The PDS application has

been implemented as a demo of one the previously discussed online systems available at New-

castle University - S3P application [69]. A client application that can access UMA-protected

resources at the PDS was also implemented. This application, named CareerMonster, mimics

an online system where students can apply for advertised job positions. CareerMonster also

allows prospective employers to request access to protected information from PDS and obtain

such access based on approval from students. The flow of the improved scenario is showed in

Appendix I.

The list of applications and information on their integration with the implemented Authori-

sation Managers is given in Table 7.1. This table also shows the framework, which was used for

integration. By integrating several applications with Authorisation Managers, it was possible to

design and implement very generic UMA software, which could be successfully applied to other

Web applications as well.

During development of both Authorisation Managers, the UMA protocol has undergone

various significant modifications. As such, this chapter restrains from providing revisions or

versions of the protocol used by the implemented software. Importantly, the development efforts

allowed to provide valuable feedback to the UMA WG and such feedback was incorporated into

the core protocol specification.

This chapter also presents a conducted user study, which evaluated the User Interface of

SMARTAM V1. Furthermore, this study also aimed to evaluate the User-Managed Access
1 It was eventually decided not to continue development and support for the online gallery service. Therefore,

this application is no longer accessible on the Internet.

199

Chapter 7. Authorisation Managers

Table 7.1: UMA-enabled Web applications developed during the course of research and their inte-
gration with developed Authorisation Managers.

Application UMA role Framework SMARTAM V1 SMARTAM V2
Secure File Sys-
tem (SFS)

Host/Requester UMA/j X

Gallerify.me Host/Requester UMA/j X X(with initial versions)
SmartFetch Requester UMA/j X X(with initial versions)
Personal Data
Store (PDS)

Host Puma X

CareerMonster
(PDS Client)

Requester Puma X

protocol in general. Conclusions from this study were used to build a new version of the AM,

named SMARTAM V2.

The remainder of this chapter is organised as follows. Section 7.2 presents an initial imple-

mentation of the UMA Authorisation Manager called SMARTAM V1. This AM was developed

in the initial stage of UMA protocol development. In particular, it did not contain such features

as resource or permission registration. Therefore, this AM is presented in limited form only, fo-

cusing on its provided functionality as well as its UX. This section also discusses its integration

with the SFS and Gallerify.me applications.

Section 7.3 presents evaluation of the implemented SMARTAM V1. A user study was

conducted to gather feedback on the UMA proposal and on the User Interface of the implemented

AM. This study allowed to identify shortcomings in the initial AM implementation and to

formulate requirements for further research.

Section 7.4 presents a second implementation of the UMA Authorisation Manager, named

SMARTAM V2, which was based on the feedback of the conducted user study. This Authorisa-

tion Manager implemented a more recent version of the UMA protocol and provided various new

features, such as resource or permission registration, among others. Both versions are compared

in more details in Section 7.4.

7.2 SMART Authorisation Manager V1

SMARTAM V1 allows a user to compose access control policies and apply them to a set of

resources hosted on different Web applications (Hosts). These applications delegate access con-

trol to this AM using the UMA protocol and do not have to provide any policy specification

interfaces to end users. Instead, these applications refer to the AM to validate access requests

to protected resources made by clients (Requesters) and only enforce access control decisions

returned by this AM during the validation process. Requesters, one the other hand, can use the

200

Chapter 7. Authorisation Managers

Figure 7.2: Architecture of SMART Authorisation Manager V1.

AM to obtain the necessary tokens to access protected resources on host applications. Hosts and

Requesters are discussed in more details in Section 7.2.3.2 and Section 7.2.3.3 respectively.

SMARTAM V1 provides both a User Interface and a RESTful Web API. The UI can be

used by a user to manage policies for their distributed resources stored at Hosts. In particular,

SMARTAM V1 supports creating, updating, deleting and reading policies which are persisted

in a datastore. The RESTful API is used for interactions with Hosts and Requesters according

to the defined UMA protocol.

7.2.1 Architecture

SMARTAM V1 has been implemented as a multi-tier Web application, comprising of the follow-

ing layers: persistence layer, services layer, presentation layer, and API layer. The architecture

of this AM is visualised in Figure 7.2. The user is able to access the application with existing Web

browsers or mobile devices2. They use the provided UI to manage their registered applications,

resources, access control policies and contacts.

Data in SMARTAM V1 is processed by different components of the services layer and dif-

ferent services are provided for each function. For example, the User Service is responsible for

management of Authorising Users as well as Requesting Parties. The Host Service and Requester
2The implemented Authorisation Manager was also accessed on Microsoft Surface interactive tables. Very

basic experiments were conducted on how to set access control policies by interacting with a screen. However,
no results from these tests have been published.

201

Chapter 7. Authorisation Managers

Service manage client applications, which can interact with this AM. The Policy Service and

Claims Service are responsible for policy evaluation and claims gathering functions. Similarly,

the Resource Service is responsible for managing resources at the AM.

Services store and retrieve data from a SQL database. SMARTAM V1 does not interact

with the database directly but it uses Object-Relational Mapping (ORM) engine for this purpose.

Specific Data Access Objects (DAOs) are provided, which are used by services to get access to

domain objects. For example, the Policy Service uses a Policy DAO to manage Policy domain

objects in the persistent store.

Client applications interact with SMARTAM V1 using HTTP requests sent to the AM’s

RESTful Web API. This API exposes standard UMA endpoints. For host applications, it

provides the following endpoints: Authorisation Manager Configuration endpoint (used in the

discovery process), Host Dynamic Registration endpoint (dynamic registration), Host User Au-

thorisation endpoint and Host Token endpoint (OAuth 2.0), and Token Validation endpoint

(authorisation validation). Requester applications can use the Requester Token endpoint. These

endpoints are discussed in details in Section 7.2.3.

The presentation layer has been developed as a Rich Internet Application (RIA) [174]. There-

fore, the UI functionality runs within the user’s Web browser and resembles a desktop applica-

tion. Communication between the UI and backend Java services uses BlazeDS. In particular,

specific actions conducted by a user at the UI trigger invocations of remote Java methods, while

server responses are translated for representation at the UI (e.g. saving a policy communicates

required information to the Policy Service on the server, which can return a success response

that is displayed to a user).

7.2.2 Security

A user has to authenticate in order to access the UI of the SMARTAM V1. This AM does not

support any federated authentication protocols. Instead, the user needs to register manually

and the sign in process is based on username/password authentication.

Security of the API is provided with username/password authentication, HTTP Basic Au-

thentication and the OAuth 2.0 protocol. API endpoints that are required for user interaction,

such as the User Authorisation endpoint, require username/password authentication. On the

other hand, endpoints that provide functionality to client applications are protected with OAuth

2.0. In particular, the Validation endpoint requires an OAuth 2.0 token to be present in the

HTTP request. Furthermore, the Requester Token endpoint requires credentials to be included

in the Authorization header of the HTTP request. Importantly, all communication between

different parties and SMARTAM V1 is done using the HTTP protocol with TLS/SSL.

202

Chapter 7. Authorisation Managers

7.2.3 Support for User-Managed Access

User-Managed Access functionality is exposed through an API. This API is composed of all the

necessary endpoints to achieve the required functionality of centralised authorisation.

This API allows Web and mobile applications to discover available AM endpoints. Discovery

is done through the Authorisation Manager Configuration endpoint, which returns an XRD-

formatted document that lists endpoints, among other configuration options.

The Host Dynamic Registration endpoint allows applications to register themselves as clients

dynamically, using the protocol discussed in [237]. Registration allows applications to be provi-

sioned with the necessary OAuth 2.0 credentials, i.e. {client_id, client_secret}, that are later

used during communication with AM. It is important to note, that SMARTAM V1 only re-

quires registration of host applications and not requester applications (i.e. Requesters act as

anonymous clients without any client credentials).

The UMA API also exposes further additional endpoints for Hosts and Requesters. These

endpoints use the components provided by the services layer. For example, obtaining authorisa-

tion by Requester using the Requester Token endpoint, requires this endpoint to interact with

the Policy Service as well as Claim Service.

SMARTAM V1 has been developed according to one of the early revisions of the UMA

protocol. Therefore, it did not contain all the features that were described in Chapter 5. In

particular, this AM differs in the following aspects from the described UMA proposal:

1. AM provisions requester applications with single tokens;

2. Resource registration is not supported;

3. Permission registration is not supported.

The missing resource registration requires users to register resources manually at the AM

with the provided UI. On the other hand, the missing permission registration requires a simplified

UMA flow when a Requester attempts to access a protected resource. Furthermore, SMARTAM

V1 issues Host Access Tokens (HAT) to host applications and Authorisation Tokens

(AT) to requester applications (recall additional RPT tokens discussed in Chapter 5). These

differences are discussed in further sections.

7.2.3.1 Authorisation tokens

SMARTAM V1 supports the following tokens:

1. Host Access Token - this token is used by the host application to communicate with the

AM when validating Authorisation Tokens received from Requesters.

203

Chapter 7. Authorisation Managers

2. Authorisation Token - this token is obtained by the requester application from AM’s

Requester Token endpoint. The Requester needs to exchange credentials of the Requesting

Party (as well as optional claims) in order to be provisioned with this token.

Tokens in SMARTAM V1 are bearer tokens, which are opaque to host and requester appli-

cations. These tokens have similar characteristics to single-sign-on (SSO) cookies used in Web

browsers (e.g. after the user establishes a session with a Web system). Tokens in SMARTAM

V1 are at least 128 bits.

7.2.3.2 Support for host applications

A user can authorise their host applications at AM and delegate their access control functionality

from these applications. The OAuth 2.0 Web Server Flow (Authorisation Code Grant) has been

implemented for this purpose [202]. In particular, SMARTAM V1 exposes standard OAuth 2.0

endpoints for this purpose, i.e. User Authorisation and Token endpoints. When provisioned with

an access token by the AM, these host applications are able to validate received Authorisation

Tokens from Requesters using the available Validation endpoint.

The Validation endpoint supports Hosts with evaluating access requests to protected re-

sources. This endpoint is slightly different from the one discussed in Section 5.4.5. In particular,

host applications send an HTTP POST request with a JSON-formatted body, containing the

realm, method, and token fields of type String. These fields represent the URL of the resource,

HTTP access method used by the Requester, and the Authorisation Token received from the

Requester respectively.

The Host uses its own HAT in order to get access to the Validation endpoint. Importantly,

the Host can only validate access requests to resources stored on this particular host. The AM

responds with a simple access control decision, provided as a value (either permit or deny) of

the decision field in JSON-formatted object. Policy evaluation which leads to such decision is

discussed in Section 7.2.5.

7.2.3.3 Support for requester applications

Requester applications, unlike Hosts, are not required to be registered as OAuth 2.0 clients with

SMARTAM V1 and these applications can act as anonymous clients (i.e. these applications are

not provisioned with their own {client_id, client_secret} pair). Requesters interact with the

provided Requester Token endpoint at the AM on behalf of the user. This endpoint provides

functionality according to OAuth 2.0 Username and Password flow (Resource Owner Password

Credentials) [202] where credentials are provided using the HTTP Basic Authentication scheme

204

Chapter 7. Authorisation Managers

[192]. Importantly, Requesters do not use any of their own credentials but only provide username

and password on behalf of the Requesting Party.

Requesting Parties, before accessing protected resources, have to meet access control policies

defined at the AM. This may require Requesting Parties to use the username and password that

were provisioned to them by an Authorising User. A Requesting Party provides their credentials

at the requester application, which sends these credentials to the AM on behalf of that user.

If the provided credentials are sufficient to meet an access control policy (or policies) then the

Requester is provisioned with the Authorisation Token for a specific protected resource at the

Host. In case access control policies contained any claims then a Requesting Party may need

to provide self-asserted claims before the Authorisation Token is issued. The Requester collects

these claims from the Requesting Party and sends them to the AM on behalf of that user. The

process of collecting claims by Requesters is discussed in Section 7.2.5.1.

Importantly, the information (either Requesting Party’s credentials or self-asserted claims)

are always sent on behalf of the user and the Requester itself does not send any credentials

of its own (i.e. it acts as an anonymous client to the AM). Along with the Requesting Party’s

credentials or claims, the Requester also passes information, in the HTTP POST request, regarding

URL of the protected resource, and the method that it wishes to use on that resource. This

information is passed as uri and method fields of a JSON-message.

It is important to note that the credentials that are submitted by Requesting Parties at

requester applications are not used in any other sign in processes. In particular, these credentials

are only issued by Authorising Users for Requesting Parties to access a specific set of protected

resources. For example, an Authorising User generates such credentials at the AM and provides

them to a Requesting Party out of band for use at this specific AM. These credentials are then

exchanged them for an Authorisation Token that is scoped for a specific set of resources.

SMARTAMV1 is authentication agnostic and does not define how a Requesting Party should

authenticate to the AM. A Requesting Party can present its credentials, such as username

and password, or use a SAML assertion to authenticate. SMARTAM V1 focuses primarily

on the HTTP Basic Authentication scheme [192] to exchange username and password for an

Authorisation Token. Such authentication method is available in OAuth 2.0 specification but

requires the use of transport-level security. As already discussed, all endpoints exposed by

SMARTAM V1 are available over HTTP with SSL/TLS. Basic support for SAML assertions
[151] has been also implemented but it has not been tested.

It is important to note that the scope of access for an Authorisation Token is specified by an

Authorising User in the access control policy (see Section 7.2.4). The initially proposed solution

contains shortcomings and these relate to credential management (e.g. provisioning credentials

205

Chapter 7. Authorisation Managers

Figure 7.3: Example implementation of an access control policy.

to Requesting Parties, managing multiple different credentials by Requesting Parties, password

resets, etc.). These shortcomings are discussed in more details in Section 7.2.9. Redesigned inter-

actions between Requesters and AM are shown on the example of a second AM implementation

in Section 7.4.

7.2.4 Policy Model

Authorisation Tokens are issued to Requesters based on user defined policies and the AM allows

users to create such policies and apply these policies to resources stored at multiple Hosts, which

are registered with SMARTAM V1. Policies can be created once and can be reused across

different resources. Moreover, multiple policies can be linked with a single resource.

The implemented policy model comprises of two sets: Rules and Claims. A single rule

defines a set of Requesting Parties and a set of access rights that these users possess. Access

rights are expressed in the form of HTTP methods that can be executed on a resource (e.g. user

can specify only GET or only POST requests). A single claim defines a statement that Requesting

Parties must assert to the AM. For example, Requesting Party must assert that they are over 18

years old or that they will not print the photos that they are accessing. Claims are self-asserted

and the AM implementation only collects user confirmation to those statements. An example of

a policy is given in Figure 7.3.

A workflow for creating a policy and associating this policy with a resource at the imple-

mented Authorisation Manager comprises of the following steps:

1. User creates a new Access Control policy element;

2. User defines a new Rule to be added to the AC policy;

3. User associates an existing Claim with the AC policy;

4. User links a Resources with the AC policy.

206

Chapter 7. Authorisation Managers

Figure 7.4: Example of a resource linked with an access control policy.

The UI of SMARTAM V1, which supports this workflow, is shown in Section 7.2.6. Once

a policy is created and linked with a resource, it can then be viewed by an Authorising User

through the provided UI of the AM. Importantly, resources registered at the AM can be linked

with a single or multiple policies (Figure 7.4).

7.2.5 Policy Evaluation

Before accessing a resource, a Requester has to be in a possession of an Authorisation Token.

Therefore, it uses the Requester Token endpoint at the AM to obtain such token. As discussed

in Section 7.2.1, a Requester issues the HTTP POST request with Requesting Party credentials

as well as the URI of a resource and the HTTP method of access to this resource. Based on

the information contained in the request, the AM can search for applicable policies, which were

specified by an Authorising User. These policies are used for the access control process.

Access control policies in SMARTAM V1 can be complex and may require users to authenti-

cate themselves or negotiate authorisation. In the first case, policies require that the Requesting

Party authenticates to the AM before access can be granted. The AM communicates the need

for authentication in reply to the Requester’s HTTP request issued to Requester Token end-

207

Chapter 7. Authorisation Managers

point. This reply contains the required authentication type (SMARTAM V1 supports HTTP

Basic Authentication).

In the latter case, there can be a more complex process of negotiating access to a resource

based on claims provided by Requesting Parties. This process involves sending a claims requested

document to the Requester and evaluating the claims response.

In SMARTAM V1, there can be multiple different policies associated with a resource or a

group of resources. With multiple policies in place, it is common for policy conflict resolution

methods to be used. This AM currently supports only positive statements in access control

policies (see Section 2.3.1). Therefore, it does not require such methods to be adopted.

Evaluating access requests against access control policies is currently performed by a custom-

built policy evaluation engine, which checks whether the Requesting Party should be provisioned

with the Authorisation Token. Following is a short description of how policies are evaluated:

1. If a policy has only Rules then Requesting Parties must authenticate to the AM to prove

their identity. Then policy evaluation engine checks if the requested access type matches

the one specified in the applicable rule;

2. If a policy has only Claims then all Requesting Parties must provide these claims. Access

type is restricted to defined types in the policy. Authorisation phase may require the

Requester to exchange multiple claims documents with the AM (see Listing 20);

3. If a policy has both Rules and Claims then Requesting Parties must authenticate to the

AM and also submit claims for evaluation by the implemented policy engine. Only then

access to a resource can be granted.

7.2.5.1 Claims

The Claims 2.0 proposal [247] has been used and adapted in SMARTAM V1. Claims 2.0 defines a

JSON-based format for expressing claims and requests for claims. The AM informs the Requester

about the list of claims that must be submitted using the claims requested document included

in the body of the HTTP response (see Listing 18 and Listing 17).

1 HTTP/1.1 401 Unauthorized
2 ContentType: application/x-www-form-urlencoded
3

4 claims_requested={...claims_requested_document...}

Listing 17: Response from SMARTAM V1 containing information about required list of claims.

208

Chapter 7. Authorisation Managers

1 { "http://c2.io/claims-requested": [
2 { "type": "https://am.example.com/claims/confirmation",
3 "description": "You must acknowledge to be > 18 years old." }]
4 }

Listing 18: Example of a claims requested document issued by SMARTAM V1.

When the Requester receives a claims requested document, it collects the claims from the

Requesting Party and sends the claims document back to the AM. Such collection may require

the Requesting Party to provide consent to specific terms or include additional information that

will be presented to the AM. Importantly, the Requester can exchange multiple claims documents

with the AM before authorisation can be granted (recall Figure 5.9 - C).

In UMA, claims can be either self-asserted or third-party asserted. The example presented

in Listing 19 shows a self-asserted claim that the Requesting Party is over 18 years old. Third-

party asserted claims additionally contain the issuer of the claim as well as the signature of

the claim [247]. SMARTAM V1 provides support for self-asserted claims only, which is one of

this AM’s limitations (see Section 7.2.9). Third-party asserted claims are discussed in Section

7.4. Claims received from the Requester can be recorded by the AM for accountability purposes

before issuing authorisation. Importantly, the AM may negotiate the necessary set of claims

based on the implemented logic and during the authorisation phase. A simplified code used to

evaluate submitted claims before issuing the Authorisation Token is shown in Listing 20.

1 { "http://c2.io/claims": [
2 { "type": "https://am.example.com/claims/confirmation",
3 "description": "You must acknowledge to be > 18 years old.",
4 "value": "YES" }]
5 }

Listing 19: Example of a claims document with a self-asserted claim sent by a Requester to SMAR-
TAM V1.

7.2.5.2 Authorisations

SMARTAM V1 can grant an authorisation by issuing an Authorisation Token that is bound

to the access request and cannot be used to access other resources protected by this particular

AM (i.e. the token is scoped for a particular access request). The AM stores such token in its

persistent store, along with information regarding the Host, protected resource, HTTP method,

209

Chapter 7. Authorisation Managers

1 List<Claim> claimList =
2 claimDao.findClaimsForRule(rule.getPk().getRule().getId());
3 List<Claim> necessaryClaims = new ArrayList<Claim>();
4

5 if (!claimList.isEmpty()) {
6 List<ClaimSubmitted> submittedClaims =
7 JSONClaimsProcessor.parseClaims(claims);
8 for (Claim claim : claimList) {
9 boolean claim_satisfied = false;

10 for (ClaimSubmitted submittedClaim : submittedClaims) {
11 if (ClaimEngineImpl.evaluate(submittedClaim, claim)) {
12 claim_satisfied = true;
13 break; }
14 }
15 if (!claim_satisfied) {
16 log.debug("Adding claim.");
17 necessaryClaims.add(claim); }
18 }
19 }

Listing 20: Evaluating submitted claims by the claims engine at SMARTAM V1 (simplified code).

requesting party, as well as the timestamp when the token was issued. This information is stored

for accountability and audit purposes. It is also used to determine whether a Host should grant

access to a particular resource (see next section).

1 HTTP/1.1 200 OK
2 Content-Type: application/x-www-form-urlencoded
3

4 authorisation_token=07cJwX2W352t9x9T
5 &issued=1360587000
6 &expires_in=3600

Listing 21: Authorisation token response sent by AM to Requester.

The Authorisation Token is passed back to the Requester using the authorisation_token

parameter. The response from the AM also contains the timestamp when the token was issued

and its lifetime (using issued and expires_in parameters, respectively). This token is used by

the Requester when issuing access requests to protected resources at the Host.

The initial UMAC proposal, as discussed in [241; 242], was based on the access control

pull model that did not require an Authorisation Token to be acquired from an AM and was

transparent for a Requester. The additional step of obtaining such a token based on the OAuth

WRAP proposal [119] has been introduced. A similar approach is also adopted by the UMA

210

Chapter 7. Authorisation Managers

Figure 7.5: Main page of the SMARTAM V1 UI.

protocol [297] that SMARTAM V1 implements. UMA has based its protocol on WRAP at some

point as well (UMA was initially based on OAuth 1.0a). Originally in UMA, the Requester would

not obtain a token from an AM but would rather establish an authorisation state for a particular

scope on a particular Host. This state would then be checked by a Host when querying an AM

for an access control decision.

7.2.6 User Interface

SMARTAM V1 provides a User Interface that allows Authorising Users to manage their regis-

tered applications, resources, policies, and contacts. The layout of this UI, as presented in Figure

7.5, is divided into four major views. These views are available from a horizontal navigation bar

and directly from the main page of SMARTAM V1:

1. My applications;

2. My shared items;

3. People I want to share with;

4. Advanced permissions.

My applications category displays a list of host applications that are registered at the AM

(Figure 7.6). These applications have to be dynamically registered using the previously men-

tioned Host Dynamic Registration endpoint. This view provides a name, URL and icon for each

211

Chapter 7. Authorisation Managers

Figure 7.6: View displaying registered applications at AM.

listed application. Furthermore, each host application is associated with a Share Item button,

which allows users to manually register resources for protection.

The My shared items view displays the pivotal part of the application, i.e. the list of

protected resources (Figure 7.7). This list is shown with use of an accordion component. Each

item on the list is provided with a brief description, including the name of the registered resource

and the URL of the resource at the host application. Furthermore, underneath the resource

description there is a list of currently applied access control policies. At the UI level, these

policies are referred to as Sharing Settings. Each policy has a user defined name. By selecting

a particular policy from the list and clicking on the Details button, an overlay is displayed with

a list of Requesting Parties associated with this policy that have been granted permission to

access this resource. Additionally, an Authorising User can view the list of applied restrictions.

As discussed in Section 7.3, Requesting Parties are stored as Rules, while restrictions are stored

as Claims in access control policies.

The People I want to share with view shows a list of registered Requesting Parties at this

AM for this particular Authorising User (Figure 7.8). Each Requesting Party represents a set

of credentials that have to be provisioned out of band.

The Advanced permissions view shows a list of existing claims, which can be used when

composing access control policies (7.9). The user can add new claims as necessary.

In order to add a new access control policy, the user is required to click on the Share It

button available at the resource view. The button triggers a sharing options overlay, which

allows users to associate access control policies for a resource. If the available access control

212

Chapter 7. Authorisation Managers

Figure 7.7: View displaying registered resources at AM.

Figure 7.8: View displaying a list of Requesting Parties created by an Authorising User.

213

Chapter 7. Authorisation Managers

Figure 7.9: View displaying list of available restrictions (claims).

policies are insufficient for a particular resource then new policies can be created. Users can

create rules for new policies and can also apply restrictions for these policies.

When discussing the policy creation process further in this section, it is assumed that the user

has already registered a set of Requesting Parties and provisioned these parties with credentials.

This can be done out of band and is not a part of the UMA protocol or the presented AM

implementation. It is also assumed that the user has created a set of Claims. SMARTAM V1

allows a user to create new claims using the provided UI and this is discussed further in this

section. Registered Requesting Parties and claims can then be used in multiple policies at the

AM. The necessary steps of creating a new access control policy for a resource are presented in

Figures 7.10, 7.11, 7.12, and 7.13.

Figure 7.10 shows how a policy is created using the implemented AM. The user has to

provide a name of the policy as well as its description. Such policy is then associated with roles

and/or with claims. A single rule requires a name, an access method to which it refers to (this

access method is an HTTP verb), as well as the set of Requesting Parties. As discussed earlier in

this section, each Requesting Party represents a set of credentials that have to be provisioned by

the user out of band. For example, "Alice @ smartFETCH" represents credentials provisioned

to a user Alice that uses an application called smartFETCH to access protected resources (refer

to Figure 7.11). Credentials are discussed in Section 7.2.7.

Policies can be also associated with claims. Each individual claim in the AM contains a

name and a statement. The statement is a simple string that the user, who composes a policy,

will require from the requesting user to be confirmed before access to a resource can be granted.

As depicted in Figure 7.12, the user can associate a set of claims with a policy and the AM

implements a drag and drop UI for this purpose (the user has to drag a policy from the set of

"Available Claims" to the set of "Selected Claims"). When rules and claims have been defined

214

Chapter 7. Authorisation Managers

Figure 7.10: View for creating new access control policies.

for a policy, the user can associate this policy with a resource and SMARTAM V1 provides a

drag and drop UI for this purpose (Figure 7.13). A composed policy can be later used for other

resources as well.

7.2.7 Integration with Applications

SMARTAM V1 has been integrated with two prototype host applications - an online Secure

File System and an Online Gallery Service. Both applications are introduced in Section 4.3.3

of Chapter 5. The first one is an online file system accessible over the Web where the user can

upload arbitrary files and create an arbitrary directory structure. The second application allows

a user to upload photos and create photo albums. In addition, it allows the user to edit their

photos (resize, rotate, crop, etc.). Thus, this application also acts as a Web-based photo editing

tool.

The previously implemented requester application has been adapted to support the UMA

protocol. The application interacts with two host applications through their RESTful APIs and

implements the logic of the UMA protocol. Simplified code of the implemented Requester is

215

Chapter 7. Authorisation Managers

Figure 7.11: View for creating new rules to be added to an access control policy.

Figure 7.12: View for associating existing restrictions (claims) with an access control policy (drag
and drop).

216

Chapter 7. Authorisation Managers

Figure 7.13: View for associating an access control policy with a resource (drag and drop).

presented in Listing 22.

When a Requester tries to access an UMA-protected resource and this Requester does not yet

have the Authorisation Token, then it will require the Requesting Party to act. The Requester

can detect the AM that protects the resource. It then allows the Authorisation Token to be

acquired from this AM for different types of policies, including ones composed of rules and

claims. Importantly, it can authenticate Requesting Parties against SMARTAM V1 and can

participate in the authorisation phase.

Authentication of Requesting Parties has been implemented using OAuth 2.0 Username and

Password flow where credentials are passed according to HTTP Basic Authentication scheme
[192] (recall Section 7.2.3.3). An example of obtaining credentials from a Requesting Party is

depicted in Figure 7.14. Furthermore, the authorisation phase allows the Requester to collect

claims from the Requesting Party and present those claims to the AM in order to obtain the

actual authorisation for a resource (or a set of resources). SMARTAM V1 supports self-asserted

claims and allows the Requesting Party to confirm terms imposed by the user that owns the

protected resource. The requesting user may confirm all or only selected claims and if these claims

are insufficient then the Requester can present additional ones, depending on the response from

the AM (recall Listing 20). For example, the user could confirm only one of the presented claims

and this would not necessarily result in access being denied. Instead, the AM could then present

a different set of claims to the user based on the implemented access control policy. This process

could be repetitive up to a point where the AM can gather the set of claims sufficient to grant

access to a resource. However, SMARTAM V1 currently does not allow such flexible policies to

217

Chapter 7. Authorisation Managers

1 public String getResource(String resourceUrl, String token) {
2

3 GetMethod hostResourceMethod = new GetMethod(resourceUrl);
4 Header header = null;
5 if (accessToken != null) {
6 header = \
7 new Header("Authorization", "token=\"" + token + "\"");
8 }
9 hostResourceMethod.addRequestHeader(header);

10 try {
11 hostResourceMethod.setDoAuthentication(false);
12 client.executeMethod(hostResourceMethod);
13

14 if (hostResourceMethod.getStatusCode() == \
15 HttpServletResponse.SC_UNAUTHORIZED) {
16 // ...try to acquire authorisation token...
17 // ...authentication (optional)
18 // ...claims submission (optional)
19 } else if (hostResourceMethod.getStatusCode() == \
20 HttpServletResponse.SC_OK) {
21 // ...get the resource from the response...
22 }
23 } catch (Exception e) {
24 // ...
25 } finally {
26 hostResourceMethod.releaseConnection();
27 }
28 // ...
29 }

Listing 22: Example implementation of an UMA Requester client code (simplified).

be composed by the user (this limitation is discussed in Section 7.2.9).

The requester application provides a new user experience to the end-user that acts as a

Requesting Party by showing an additional screen (or a set of screens) before access to a resource

can be granted. This is dictated by the requirement of authentication of the Requesting Party

to the AM as well as by the necessity to gather claims that have to be provided to AM prior

to obtaining the authorisation token. Such UX in the presented solution is similar to existing

ones, such as OAuth, that require the user to authenticate and authorise an application before

accessing a resource. The presented UX has been updated and refined to be more aligned with

the UX proposed by OAuth that is based on redirects and is already widely accepted on the

Web. This new user experience of accessing a resource is presented in Section 7.4.6.3.

Host and request applications have been implemented in Java and deployed to the Google

App Engine platform [21]. These applications make use of the rich set of APIs provided by the

218

Chapter 7. Authorisation Managers

Figure 7.14: User Interface of the requester application that allows the Requesting Party to provide
their credentials. These credentials are used for authentication at AM.

Figure 7.15: User Interface of the requester application that allows the Requesting Party to provide
self-asserted claims. These claims are sent to AM for evaluation.

219

Chapter 7. Authorisation Managers

GAE platform to achieve the described functionality.

7.2.8 Implementation

SMARTAM V1 has been implemented in the Java programming language using the popular

Spring framework [74; 76]. The User Interface has been implemented using Adobe Flash tech-

nology [128]. The API has been implemented using the Apache CXF framework [138] and its

JAX-RS component [271]. Security of the AM itself has been provided with Spring Security

framework [75], which requires authentication for the implemented User Interface as well as

some of the aforementioned API endpoints. Additional security for other API endpoints, as

discussed, was achieved using OAuth leeloo [117], which implemented the OAuth 2.0 protocol.

SMARTAM V1 can be deployed to a Web container, such as Apache Tomcat [139], and uses a

MySQL Community Edition relational database [132] to store information about resources being

protected, policies, issued authorisations, and other data.

7.2.9 Limitations

SMARTAM V1 contained a number of limitations that were identified during its development.

These shortcomings are discussed in this section. Further analysis of the SMARTAM V1 im-

plementation and its UX is given in Section 7.3 and the shortcomings identified during AM

evaluation are discussed in Section 7.3.3.

A list of identified shortcomings is provided below:

1. Lack of support for resource registration via an API;

2. Lack of support for permission registration via an API;

3. Limited support for management of Requesting Parties;

4. Limited support for claims-based policies.

5. Lack of support for federated authentication;

6. Requesters are provisioned with single type tokens only;

7. Support for bearer tokens only;

8. Limited grouping of resources;

9. Lack of support for negative policies;

10. No on-demand sharing of resources;

220

Chapter 7. Authorisation Managers

11. Access to resources via UMA-enabled applications only.

SMARTAM V1 did not support resource registration that could be done by client applica-

tions. Therefore, it was the sole responsibility of the user to register resources at the AM using

the provided UI. Manual registration of resources is considered unsatisfactory and potentially

error-prone. Moreover, host applications did not have information regarding resources that were

registered at AM and would refer to the AM for all access requests to resources of a particular

user (if such user configured these host applications for UMA).

SMARTAM V1 also did not support permission registration which is defined in more recent

revisions of the UMA protocol. This registration prevents the Requester from learning specific

permissions that must be assigned to an access token for resources on a Host. Instead, informa-

tion regarding required permissions to access a resource or a service is shared only between the

AM and the Host.

The policy model of SMARTAM V1 allows rules and claims to be included in access control

policies. As discussed in Section 7.2.4, a single rule defines a set of Requesting Parties and a

set of access rights that these users have. Each Requesting Party includes a set of credentials

that have to be provisioned by the user out of band (recall policy examples presented in Section

7.2.6). Such manual management of credentials is inefficient, potentially error-prone, and poses

specific constraints.

Firstly, the Authorising User has to create contacts and credentials for their contacts at the

AM manually using the provided UI. Moreover, this user has to deliver credentials securely to

Requesting Parties. Contacts cannot be shared between users and have to be defined by each

user at the AM individually (this is related to the fact that credentials must not be shared).

Secondly, Requesting Parties have to manage credentials for each {Authorisation Manager,

Authorising User} pair. Moreover, SMARTAM V1 does not implement a password reset function

that could be used by Requesting Parties. Therefore, if credentials are exposed, a malicious party

can potentially use any application to access resources of the user on a Host. In SMARTAM

V1, the end-user is also unable to restrict access to Requesting Parties to use only specific

applications when accessing UMA-protected resources. This AM implementation also supports

only the username/password flow and the Requester learns the credentials of the Requesting

Party at the AM. This requires that only trusted applications are used as Requesters (refer to
[202] and [233] for more information on existing threats to clients using credentials to obtain a

token from a server).

Policies in SMARTAM V1 can also contain claims. As discussed in Section 7.2.4, a single

claim defines a statement that Requesting Parties must assert to the AM. This AM only supports

self-asserted claims and the AM only collects user confirmation to those claims. Therefore, it

221

Chapter 7. Authorisation Managers

is assumed that the user tells the truth to the AM before the AM uses the information in the

policy evaluation process. For example, the AM can only collect user confirmation that the user

is over 18 years old in order to give access to a specific resource.

Moreover, in the presented implementation all claims in the policy have to be provided to

the AM. However, it would be beneficial to allow more flexible composition of claims where the

Requesting Party could submit only selected claims. For example, the Requesting Party could

decide not to provide their confirmation not to print the photos that they are accessing. Instead,

the Requesting Party would decide to submit a payment confirmation that would be sufficient

to give this user the necessary permissions to access a resource or a service on a Host.

SMARTAM V1 requires both Authorising Users as well as Requesting Parties to sign in to

the AM with their credentials. However, federated authentication should be provided to sim-

plify interactions with this system. Currently, the registration process for Authorising Users is

manual and requires a developer to create accounts accordingly (recall that Requesting Parties

are created by Authorising Users themselves). Moreover, the password reset function is miss-

ing. Having a federated authentication mechanism in place would allow to resign from such

functionality and to offload authentication to more specialised third party IDPs.

When a Requester applies at AM for access to a resource on a Host, this application is

provisioned with a single token (Authorisation Token). The presented AM does not distinguish

between tokens that are issued to Requesters for interaction with this AM and then for interaction

with host applications. This prevents the Requester to be easily recognisable at the AM which

limits the audit functionality that is vital for the end user. Moreover, this AM did not provide

any UI for Authorising Users for audit purposes. Therefore, the user was unable to review when

a particular policy was created or when a specific resource was accessed.

Moreover, tokens issued for Requesters are bearer-type tokens. This requires Requesters to

carefully handle such tokens and not expose them to malicious third parties. Moreover, these

tokens are opaque to Hosts. Therefore, the Host has to refer to the AM to check every access

request that comes from the Requester. Moreover, the AM issues access control decisions and

does not inform the Host about the permissions associated with the token. Therefore, the Host

also has limited availability to reuse decisions from the AM for potentially related access requests

(e.g. if permissions are assigned for a group of resources, such as all photos in a particular album,

then the Host cannot know that and must refer to AM for each access request to every single

photo in that album).

In SMARTAM V1, resources are registered as URLs. Therefore, there is limited support

for host applications to easily group resources unless the Host can map such URLs internally as

necessary. For example, the user can create a resource with a URL of a directory on a Host and

222

Chapter 7. Authorisation Managers

the Host can decide that each file within this directory will be accessed according to that policy.

Because SMARTAM V1 does not support negative policies, then certain use cases and

scenarios may need to be implemented using complex positive policies. Once the Requesting

Party is provisioned with credentials, it is not possible to easily provide access to all resources

apart from specific ones stored on distributed host applications.

Moreover, SMARTAM V1 requires explicit policies to be created in advance before access

requests take place. For example, an Authorising User has to first authorise specific Requesting

Parties to access their resources and only then these parties can use requester applications.

SMARTAM V1 does not support Requesting Parties with applying for access to resources on

host applications. Such requests for access would allow the Authorising User to establish policies

on demand.

Resources and services can be accessed by Requesting Parties via requester applications

that understand the UMA protocol. As such, typical Web browsers cannot act as clients unless

these browsers are equipped with some plugins that are able to interact with the Host and AM

according to the UMA protocol.

7.3 Evaluation of SMARTAM V1 User Interface

This section presents the evaluation of the SMARTAM V1 User Interface. It discusses the

conducted user study, which has been used for evaluation. Based on the gathered feedback,

it presents identified shortcomings and derived requirements. These requirements were used in

further research on the AM’s UX. In particular, these requirements were used for development

of a new Authorisation Manager, called SMARTAM V2, which is discussed in Section 7.4. The

study in this section is a joint effort with MSc student Iain Carter also published in an MSc

thesis in [153], where I was responsible for the design of this study. This MSc thesis presents the

complete study and results as well as provides more details than those discussed in this section,

including a complete question by question analysis.

7.3.1 Research

In UMA, the AM becomes a central point for managing access to distributed Web resources.

Therefore, this system needs to represent a high standard of user-friendliness and its usability

becomes a paramount factor.

The difficulty of achieving the usability lies in the distribution of the entire UMA system

which comprises of multiple different components, which are host applications, requester ap-

plications and the AM itself. The number of parties may cause confusion and a user can get

223

Chapter 7. Authorisation Managers

disoriented easily. Moreover, a user may not easily follow which step should be taken next when

managing access control for their resources, taking complexity of the UMA protocol into account.

Therefore, the usability factors that the AM should meet are discussed in the next section.

7.3.1.1 Usability Factors

To achieve a satisfactory standard of usability, the Authorisation Manager has to fulfil non-

functional usability factors, according to Nielsen [257], such as:

U.1 Learnability - level of ease which lets the user accomplish basic tasks at the first time

they encounter the application;

U.2 Efficiency - quality of completing the task, once the user has learned the features of the

designed interface;

U.3 Memorability - user’s ability to perform particular tasks after a period of time when they

did not use the application;

U.4 Errors recovery - design principle letting the user to self correct and get back to the

previous stage;

U.5 Satisfaction - quality measured by a user as overall difficulty of use, time it takes to

achieve certain tasks and how attractive (both aesthetically and functionally) the service

was.

Importantly, Nielsen [256] expresses that usability at a level of 50% is alarming and the one

at a level of 66% is average. A research was conducted to verify if the SMARTAM V1 UI fulfils

its functional roles within the frames of the aforementioned non-functional usability factors U1-

U5. The goal of the research was to test the overall usability score as well. The research method

is presented in Section 7.3.1.2.

7.3.1.2 Research Method

A research study was conducted using a controlled experiment followed by a questionnaire. In

this study, participants were explained a brief background on the user access control, the outline

of the UMA protocol, the UMA AM and what was the intention of the study and the prepared

survey. Secondly, the participants were given instructions and were asked to complete a sample

task using the implemented SMARTAM V1. This task was based on the scenario, which is

presented in Section 7.3.1.3. After completing the user scenario, the participants were requested

to fill in the prepared questionnaire. This questionnaire is included in Appendix H.

224

Chapter 7. Authorisation Managers

There were two locations where the study was conducted. Survey participants completed the

study either online (postal-questionnaire, where respondents answer questions without the aid

or presence of the researcher), or completed it in person via an interview (person-administered

questionnaire). The use of postal-questionnaire is a low cost method, minimising interviewer bias

and is not restricted by participant geolocation [265]. On the other hand, person-administered

questionnaires promote a high-response rate and allow interviewer assessment of the user as well

as any necessary explanation to the participation [190]. The opportunity for the interviewer

to observe the participant while completing the task and questionnaire was also an important

factor in choosing the person-administered method. Nielsen states “Listening to what people say

is misleading: you have to watch what they actually do.” [259]. By observing how participants

used the implemented UI of SMARTAM V1, it was possible to collect additional data and gather

additional feedback.

Many different aspects of the questionnaire have been specifically designed in order to in-

crease the response rate of the prospective participants. As suggested in [265], the following

factors should be taken into account during research: advance warning, publicity, incentives and

confidentiality. The study presented in this section has addressed each of these four factors.

Firstly, an email was sent to candidates giving them advance warning of the study. The study

was publicised locally using the aforementioned email distributed to all students in the School

of Computing Science at Newcastle University. Furthermore, information regarding the study

was placed on the information TV screens throughout Newcastle University and was added to

the bulletin board of the UMA WG website at the Kantara Initiative [86]. As an incentive, £10

was offered to anyone who participated in person. Finally, to overcome any potential respon-

dent’s possible apprehensions, each questionnaire featured a small introduction, explaining the

purpose of the study, and alerting participants to the fact that all information received from the

questionnaire would be anonymous.

The prepared questionnaire contained open and closed questions. Open questions allow

freedom of answers, the opportunity to probe and the testing of user ideas or awareness [265],

and can lead to answers that were unexpected [190]. The intension of closed questions was to

make the task less time consuming to complete it by the participants as well as to analyse,

process and compare the gathered data more easily. Each closed question was partnered by an

open ended "please explain" question. This allowed the participant to explain their previous

choice without being hindered with pre-defined categories, and to fully express freedom and

spontaneity in their answers [265].

Questions were ordered so that more personal information came last allowing participants to

invest time in the survey before they were asked anything that may potentially scare them away

225

Chapter 7. Authorisation Managers

Figure 7.16: User scenario used during research study of the SMARTAM V1 UI.

[185]. Furthermore, Fowler proposes in [190] that the use of coloured paper for questionnaires

encourages a higher response rate. Therefore, the online questionnaire was designed with a green

background.

7.3.1.3 User Scenario

During the study, users had to complete a well-defined scenario, which is visualised in Figure

7.16. This figure was shown to participants, who completed the scenario using the SMARTAM

V1 UI. The task was kept short, but did encompass the use of all areas of the implemented UI

in order to receive feedback on all aspects of SMARTAM V1. Importantly, in the study users

did only interact with the AM and not with Host or Requester applications. The steps of the

scenario are presented below:

1. S1 Login at Authorisation Manager;

2. S2 Register a photo for protection at AM;

3. S3 Choose contacts to share the photo with;

4. S3.1 Manage contacts if necessary (add new contacts);

5. S4 Set restrictions to be used in access control policies;

6. S5 Share the photo by creating an access control policy.

In the presented scenario, two existing applications were used: Facebook [9] and Google Docs
[24], which were registered at AM. Importantly, these applications were not integrated with AM

(i.e. it was not possible to protect resources stored on those systems) but were presented to

users for the purpose of simplicity (it was assumed that users would be more familiar with

these applications and not with custom-built UMA-enabled Web applications). The user used

226

Chapter 7. Authorisation Managers

Facebook as a store of their personal information and photos. Moreover, they used Google Docs

as an application for managing online documents. As a data owner, the user was asked to share

some of their data from Facebook and Google Docs with other Web users, e.g. the user could

share their photo. The owner defined who can access what information using SMARTAM V1.

Additionally, the owner applied certain sharing restrictions (which were discussed as "claims" in

Section 5.7). For instance, they granted access to their data to those users who were over 18

years old.

During the evaluation, the aforementioned scenario was used to collect the data from the

study participants. Unfortunately, because of time constraints it was not possible to propose

other use cases or scenarios of SMARTAM V1. Such additional use cases would be beneficial and

would allow participants to use the implemented system for other tasks than those proposed.

This is one of the limitations of the presented AM evaluation.

7.3.1.4 Data Collection

The study was conducted during summer of 2010 and run for a fixed period of 3 weeks. During the

study, 34 participants, both men and women, aged between 19 and 50 years old, were interviewed.

These 34 responses could be broken down into 30 in person via person-administered method and

4 online via the postal-method. Unfortunately, it was not possible to attract more users to

participate in the user study and this is considered as one of the limitations of the presented

evaluation.

The responses to the questionnaire had combined both qualitative and quantitative data.

The quantitative data collected has been already broken down into specific classifications, as

participants were required to select pre-defined responses to each question. However, the qual-

itative data was subjected to quantification by selecting key trends or exceptions, then such

similarities had been combined together. Such groups of trends were coded into numerical val-

ues and statistical data had been counted. To quantify data, the Likert Scale [291] was applied.

A detailed analysis of coding of the qualitative data is given in [153].

7.3.2 Research Results

This section provides a summary of the participants’ answers given in questionnaires and their

comments on the implemented UI of SMARTAM V1. In particular, a summary of the feedback

given by respondents is given in Section 7.3.2.1. A more detailed analysis is provided in Section

7.3.2.2 and Section 7.3.2.3. A thorough question by question analysis is given in [153]. Findings

regarding the UMA concept in general are shown in Section 7.3.2.4.

227

Chapter 7. Authorisation Managers

Figure 7.17: Results regarding the general ease of use of the SMARTAM V1.

For the closed-question answers, the Likert Scale [291] was used: strongly disagree, disagree,

neither agree nor disagree, agree and strongly agree were replaced with numbers from 1 to 5

respectively. Open-ended questions were coded so that the opinions contained within them

could be analysed. More details are given in [153].

7.3.2.1 Feedback from the respondents

The overall result of the research indicated unsatisfactory level of usability of SMARTAM V1.

The general trend was that participants found the AM too complex due to many steps in the

process of sharing a resource. They also found it too confusing because of the colour scheme

which was difficult to differentiate elements. Furthermore, in such a scheme elements were not

sufficiently emphasised. Men tended to find the layout comprehensible; however, they stated

that it could have been better. Participants mentioned a confusing order of headlines as a major

flaw.

Along with the evaluation of the usability, the research study tried to track users’ understand-

ing of the UMA-based approach to protecting and sharing online data. Although respondents

understood the idea of protecting resources with a single centralised AM and found it beneficial,

they indicated a high level of complexity and difficult use of the proposed UI. Firstly, when the

participants were asked if the proposed AM was easy to use, the majority of participants (62%)

replied with a score of 3 or less. Only 38% of participants gave 4 in response, agreeing with the

statement. Among the respondents there had been no "strongly agree" replies. Such a result

implied that the UI did not represent a high level of usability [258].

228

Chapter 7. Authorisation Managers

Secondly, the responses to the open-questions suggested that participants had in fact suc-

ceeded with their task, but many reported that completion of a task was possible only due to

the detailed instructions provided (53% of respondents). This implies that without instructions

the task might have been difficult to complete. One participant commented: "Without initial in-

structions, I would have been lost". The user comments mentioned that the accordion navigation,

as implemented in the UI of SMARTAM V1, was difficult to use. One respondent mentioned:

"The tab bars were extremely confusing".

7.3.2.2 Interpretation of the results

The interpretation of the obtained results shows poor self-explanation of the implemented UI

of SMARTAM V1. From both direct observation of users completing the tasks, and their own

comments, an impression might have been drawn that the participants were often unable to locate

the resource that they had registered for protection at the AM. However, no hard evidence exists

to support this. Any resource added by the user to share with other Web users appears at the

bottom of the list in the implemented UI, making it difficult to locate (e.g. one participant

commented "The list of files was difficult to see.").

Users’ difficulty with filling in the form fields proved low learnability. A commonly mentioned

issue was that the names of form input fields were not accurate. The reason why participants

had difficulties with the text fields was often because they were unsure what to enter due to

imprecise corresponding field labels. Terms such as "name", which were required during resource

registration, were causing confusion for participants of the study. While observing the partici-

pants, one could have see that they often wanted to enter a person name into these fields (instead

of a descriptive and user friendly name of the resource) [153].

The participants found the layout to be not immediately obvious, poorly satisfying the factor

of learnability. According to Krug et al., a good usability would require a Web application to

be self-explanatory, as discussed in [222]. The most frequent comment of the respondents was

that they required a large extent of assistance before they would be able to progress with using

the UI. One participant responded: "The layout is not immediately clear where everything is."

Participants had claimed to depend on the instructions when completing the task of setting

a sharing policy for a newly registered data. The minority of 9 participants commented that

they would have been unable to fulfill the task without the instructions that they had been given

during the study. Explanations made as to what was unclear regarding the layout often included

the counter-intuitive order of the headlines which were in different order than the stages of the

requested task. Some comments included, for example: "Headings do not follow order in which

they are to be carried out."

229

Chapter 7. Authorisation Managers

7.3.2.3 Interface inconsistencies

The responses of 79% of participants stated that they noticed inconsistencies while using SMAR-

TAM V1. These inconsistencies were, among others: misleading form field labels, the order of

headlines not corresponding to the order of the steps of the sample task, unintuitive drag-and-

drop boxes, or the use of the accordion component. One participant commented: "The list of

files is confusing – one tab is already open which meant I didn’t even notice." Participants re-

ported to be particularly confused with the layout of the sharing settings screen. Especially, the

drag-and-drop box module caused confusion. The implemented solution of available choices in

the right hand column, and a request to drag selected options into the left hand column was

found by the participants to be the other main factor leading to confusion. Comments had been

made that a more natural solution would be dragging the boxes from left to right rather than

from right to left. Especially, in the western world users are used to read from left to right.

Human ergonomics in Web application design is essential and not ergonomic design suggests

poor usability [248].

In order to improve usability of the proposed UMA system, confusion should be eliminated

from the user experience. However one of the comments submitted by the participants was to

additionally incorporate an on-screen help to guide users through the process of sharing their

online data. Krug et al. [222], however, explains that users are not willing to be confused and all

processes ought to be made straightforward. Therefore, if users turned to looking for additional

help, it is presumed that the interface was not self-explanatory enough. The new UI and how it

addresses this challenge is discussed in further sections of this chapter.

Respondents of the study reported a high level of the error recovery feature. In the opinion

of the majority of the participants, they believed that they could easily recover from their

mistakes. They had an option to either cancel any command or simply go back if they did a

mistake. Nielsen describes error recovery as one of key guidelines to be taken into account when

designing any user interface [258]. Because users claimed to recover from mistakes easily, then

SMARTAM V1 proved to address the error recovery factor.

The research study showed that the use of colours in the UI was graded equally by the

participants. Van Schaik et al. explains in [291] that the use of colour is important to aid

the navigation for users. In the study, nearly half of the participants claimed that the interface

lacked the necessary use of colours, while the other half accepted the interface as it was. Because

many of the respondents believe that the use of colour was poor, this factor was limiting the

usability of the implemented UI.

The colour design of the buttons had an instant impact on the users’ ability to locate certain

objects and process the tasks, as defined by the scenario. Both from observation of participants

230

Chapter 7. Authorisation Managers

and from their own comments, it was possible to reason that the lack of distinction between

the background and other structural objects of the UI (e.g. accordion module, etc.) frequently

made the participants miss the list of shared resources. Participants reported to be confused

as the changes on the list of resources were not distinct enough. They had also declared that

more colours would be required while hovering over and selecting items on this list. In the

presented UI, buttons and objects change from grey to a lighter shade of grey when being

hovered. Participants note that this change is not sufficient to be visually noticeable, and this

can lead to confusion.

The majority of the participants found the concept of using the SMARTAM V1 UI com-

prehensible. Most of them (64%) believed that they knew what stage of the task they were at.

While using the AM, they were able to point the stage in the task (as depicted in Figure 7.16).

7.3.2.4 UMA-protocol understanding

Beside the assessment of the SMARTAM V1 UI, the aim of the research study was to measure

users’ comprehension of the UMA-based access control. Participants understood the approach of

the proposed security model with centrally-located Authorisation Manager and they considered

it to be advantageous. Participants were satisfied with the functionality of the AM, recognising

that the use of it with the ever growing number of Web resources could be helpful. The general

concept of the AM itself was frequently highlighted by participants of the research study as one

of the key features that they liked the most.

In particular, participants referred to the feature of setting their own restrictions for dis-

tributed Web resources. One participant commented: "The ability to set your own restrictions is

useful." As the AM implements the UMA protocol, the collected results show that participants

were complimenting the UMA technology itself and that such technology might not have been

difficult to understand. Only 9% of participants found the concept of the Authorisation Man-

ager, and consequently UMA protocol itself, confusing. These participants responded with score

1, indicating that they disagree with the statement that they understood their actions when

using the AM. Importantly, no participant responded with score 0 (i.e. "strongly disagree").

7.3.3 Shortcomings and Recommendations

This section maps the obtained results from the study with the defined usability factors U1 - U5,

as defined in Section 7.3.1.1. The presented discussion takes into account the Nielsen’s Heuristic

Evaluation as one of the methods for improving the usability of an interface [258]. In particular,

it takes into account the Consistency and standards of this method.

231

Chapter 7. Authorisation Managers

A list of identified shortcomings of SMARTAM V1 and its UI are provided with regards to

the defined usability factors. Recommended improvements to the AM were derived from these

shortcomings. These recommendations were used during implementation of a new AM system,

named SMARTAM V2, which is discussed in Section 7.4.

7.3.3.1 Analysis of usability factors

The study of the research results, as presented in Section 7.3.2, illustrates that some aspects of

the implemented AM’s design support the appropriate usability but only to a certain extent.

The intention of the initial design of the UI was to include certain usability factors (as presented

in Section 7.3.1.1). The responses received during the study imply that participants found the

AM to be consistent (refer to [258] for more details on the importance of consistency within Web

domains) and such consistency has been proved to be a key factor providing good usability.

Furthermore, the user interface achieved the goal of proper error recovery (U4). The major-

ity of the participants in the study agreed that they were able to easily recover from mistakes.

Error recovery is another key usability factor [258].

However, other results of the research study point out that a number of the UI features

proved that this UI does not fully support usability. Results found that the design of the UI is

counter-intuitive in various places and can be considered illogical. The goal of efficiency (U2)

was failed to achieve in SMARTAM V1. Weak support of human ergonomics, e.g. right to

left drag boxes, is the evidence of poor usability [248]. The use of colour was reported to be

limited, whereas colour helps improve both accuracy and the speed of visual recognition when

using interfaces [291]. Therefore, wrongly implemented colour was considered as a limitation of

the usability of evaluated UI. This suggests lack of user satisfaction (U5).

Furthermore, the interface failed to satisfy both learnability (U1) and memorability (U3)

factors. Brief help description was voted the participants’ favourite feature. On each page,

a help icon offered specific information relevant to common tasks at hand and participants

made note of this feature suggesting that it was a useful inclusion to the AM. However, if the

design was usable and self-explanatory, participants would not have required any help, thus this

indicates poor usability of the user interface and fails to achieve the goal of the aforementioned

learnability and memorability. As the users failed to learn the features of the implemented UI,

it is also assumed that they would fail to use its features effectively after a break from using it.

The interpretation of the participants’ feedback reveals the process of using the Authorisation

Manager to be difficult and confusing. Especially the comments provided by 9 participants

claimed that they were unable to use the AM unless they were provided with a detailed guidance

(such as that included in the task description). In order to prove good usability, any implemented

232

Chapter 7. Authorisation Managers

process should be kept simple [222]. If the process is confusing, it demonstrates poor usability.

As a number of aspects of the AMs design promote appropriate usability, it would be ex-

pected that participants’ overall impression would be positive. As it was not, the obtained results

indicated that the user interface afforded low level of usability.

As discussed in Section 7.3.1.1, Nielsen [258] expresses that usability of 50% is abominable,

and 66% is average. It is not suggested that the percentage of people who find the Authorisation

Manager easy to use would be the same as the percentage of people who could complete a task in

a Web usability test. However, it is possible that these numbers are comparable to some extent.

The research results therefore suggest that SMARTAM V1 has poor usability. It is believed that

this could be looked into further with specific usability testing, as discussed in [153].

7.3.3.2 Shortcomings

The participants requested that several changes are introduced to the Authorisation Manager.

They reported to like the original UI home screen. As a result, the new home screen, as presented

in Section 7.4, was based closely on the original design. It was noted that the participants did

not like original layout of the headers, and that these headers would need to be rewritten and

given more apparent titles. For example, a change from "People I want to share with" to "My

contacts" was requested. These headers were also required to be rearranged in order to logically

represent the process of sharing a resource using the AM. The list of shortcomings of SMARTAM

V1 and its UI is summarised below:

SC1 Illogical and counter intuitive design. The order in which the headers were presented on

the screen showed poor human ergonomics.

SC2 Accordion component caused problems for the majority of participants of the study. These

participants were unable to locate shared resources and easily define restriction settings

for those resources. Accordion was voted as the participants’ least favourite feature. Ad-

ditionally, right to left drag boxes showed poor human ergonomics.

SC3 Vague names of input fields were confusing for most participants. These fields were used

at all stages of the resource sharing task, i.e. while adding new resources, defining settings

for those resources and specifying restrictions.

SC4 Lack of colours to prioritise objects on the page as well as to highlight the selected items

or to make links and buttons stand out more clearly.

SC5 Not enough help was provided during the resource sharing task. The UI was not self-

explanatory and such help was necessary.

233

Chapter 7. Authorisation Managers

Figure 7.18: Visualisation of shortcomings of the SMARTAM V1 UI.

These aspects of the design have been found by the participants to be of low usability level.

These aspects are visualised in Figure 7.18.

7.3.3.3 Recommendations

The UI of SMARTAM V1 had particular aspects that were appreciated by participants (e.g.

consistency, easy recovery from mistakes, brief help on various pages). These aspects have been

found by participants to be useful and they also coincide with features of a correct, usable

design. Furthermore, the UI satisfied all the functional roles required to complete the sample

task (as depicted in Figure 7.16). However, the shortcomings of the study results in general

indicated a necessity to define new requirements for a User Interface. This was due to the fact

that participants reported a poor standard of usability of the UI. These recommendations are

presented in the list below:

NR1 Rearrange the order in which the headers will be presented on the screen. The order of

the headers should correspond with the order of stages in user scenario and a resource

234

Chapter 7. Authorisation Managers

sharing tasks.

NR2 Accordion component and drag-and-drop components should be exchanged for a simpler

visual representation. A simple list or table of items could be a possible substitute.

NR3 Existing labels for input fields should be rewritten to be less confusing. In order to

make them more user-friendly, the labels should be accompanied by ordinal numbers, for

example: "1) Choose contacts", "2) Choose policies". Such proposal is likely to cause less

confusion among the users and will provide them with clear information regarding the step

of the resource sharing process.

NR4 More vivid colour scheme should be chosen to highlight elements of the layout on the page

as well as links and buttons that trigger interactions with the user.

NR5 Layout with a higher self-explanatory level should be designed to allow the user, who is

unfamiliar with the AM, comprehend what actions they are expected to take. The help

feature should be used only as a last alternative.

The aforementioned recommendations are derived from the previously identified shortcom-

ings, i.e. recommendation NR1 is derived from shortcoming SC1, etc. Apart from these recom-

mendations, the navigation in the UI should also be redesigned with the intention of allowing

direct access to each of the individual sections of the AM. Furthermore, design should follow

closely the guidelines of Nielsen [258] and Krug [222], in particular:

1. Allow the user to easily return to the main page [222] - a home icon is evident on all

screens.

2. Adopt an aesthetic, yet minimalist design [222], [258] – text information is kept to minimum

with no unnecessary information visible.

3. Use graphical icons [258] – the use of icons has been shown to increase usability as icons

help users to recognise different tasks.

To address the identified shortcomings by meeting newly formulated requirements, a new

working prototype, called SMARTAM V2, has been developed. This Authorisation Manager is

presented in the next section of this chapter. The UI of this new AM is shown in Section 7.4.8.3

based a new and redefined user scenario (Figure 7.25).

235

Chapter 7. Authorisation Managers

7.4 SMART Authorisation Manager V2

SMARTAM V2 is the second, improved implementation of the UMA Authorisation Manager

developed during the SMART project. It addresses most of the limitations of SMARTAM V1

as well as shortcomings that were identified during the conducted user study. Furthermore, it

provides support for a more recent revision of the UMA protocol. This AM allows the user to

compose access control policies and apply them to a set of resources hosted on different Web

applications. These applications delegate access control to this AM and are only concerned with

enforcing access control decisions. It allows requester applications to obtain authorisations to

access protected resources.

SMARTAM V2 was built as a new system and not on top of the first AM implementation.

There were three main reasons behind a complete redevelopment effort:

1. Results from the UI evaluation have been obtained;

2. The UMA protocol has changed significantly;

3. A new framework for building Authorisation Managers has been developed.

The list of most significant additions to SMARTAM V2 is given below:

1. Discovery of AM endpoints is based on the newly adopted discovery mechanism;

2. Both host and requester applications can register dynamically;

3. Hosts can register resources using the provided API;

4. Requesters can register permissions using the provided API;

5. AM issues HAT, RAT and RPT tokens to client applications;

6. Policies can be defined for other Web services and other users;

7. AM provides an audit log of data access history;

8. Requester applications can request access to data in the absence of access control policies;

9. Redesigned User Interface provides various ways of showing shared data;

10. Support for third-party asserted claims based on OpenID Connect;

11. Support for federated authentication;

12. Support for management API for mobile applications.

These newly introduced characteristics of SMARTAM V2 are discussed in the next sections.

236

Chapter 7. Authorisation Managers

Figure 7.19: Architecture of SMART Authorisation Manager V2.

7.4.1 Architecture

Similarly to the initial prototype, SMARTAM V2 has been implemented as a multi-tier Web

application, comprising of the following layers: persistence layer, services layer, presentation

layer, and API layer. The architecture of the AM is presented in Figure 7.19.

Users of SMARTAM V2 can use the provided UI to manage their registered applications,

Web resources, policies for those resources, and contacts. Furthermore, the User Interface has

been extended in comparison to the first prototype implementation in order to allow users to

review pending access requests to their data (request for access notifications) and to review how

their data is being accessed (access history). These two new concepts of the system are discussed

in Section 7.4.6 and Section 7.4.7 respectively.

7.4.1.1 Persistence and Services Layer

Data in SMARTAM V2 is processed by different components of the services layer. This layer

has been extended in comparison to the first implementation. Firstly, services for managing

users (User Service) and contacts (Contacts Service) have been separated. The Policy Service

has been substituted with a Sharing Settings Entry Service that is responsible for managing

individual policy entries. Resource Service is now responsible for managing resources as well as

237

Chapter 7. Authorisation Managers

managing policies associated with those resources (see Section 7.4.5). Because SMARTAM V2

supports dynamic resource registration, this service also handles registration of resources via the

UMA API.

Permission Service and Ticket Service have been developed. Both services provide support

for permission registration as defined by the UMA proposal. The Requester Host Token Service

is responsible for RPT tokens, while the OAuth Data Service is a generic service, which supports

HAT and RAT tokens for host and requester applications respectively. The Claims Service has

been removed and its functionality has been substituted with a new endpoint that is discussed

further in this chapter.

Additionally, Access History Service has been implemented. This service allows users to

review access requests to their distributed data. Therefore, users are provided with simple audit

log information. The Access Request Service allows requester applications to apply, on behalf of

Requesting Parties, for access to protected resources in the absence of authorisation policies for

those resources.

Services store and retrieve data from a SQL database. SMARTAM V2 uses ORM engine

for this purpose. Specific Data Access Objects (DAOs) have been provided, which are used by

services to get access to domain objects. For example, the Resource Service uses the Resource

DAO to manage Resource domain objects in the persistent store.

7.4.1.2 API Layer

Client applications interact with the Authorisation Manager using HTTP requests sent to the

AM’s RESTful Web API. This API has been redesigned in comparison to the earlier implemen-

tation. Most importantly, this AM supports all endpoints required by UMA Protection API and

Authorisation API as well as common endpoints for Hosts and Requesters.

Firstly, an updated version of the Authorisation Manager Configuration endpoint, which

now supports JRD-based documents, is provided. Furthermore, Dynamic Client Registration

endpoint for Hosts and Requesters has been implemented.

Furthermore, an OAuth 2.0 Authorisation Server has been implemented. This server pro-

vides the User Authorisation and Token endpoints that can be used by Hosts and Requesters at

SMARTAM V2.

Host applications use Permission Registration and Validation endpoints, while requesters

are provided with Requester Host Token and Permission Request endpoints. The peculiarities of

these endpoints are discussed in Section 7.4.3. SMARTAM V2 also includes an Access Request

endpoint that allows Requesting Parties to apply for access to protected resources in the absence

of authorisation policies.

238

Chapter 7. Authorisation Managers

Figure 7.20: Overview of the User Interface architecture of SMARTAM V2.

To allow building mobile applications that could integrate with SMARTAM V2, a Manage-

ment endpoint has been designed. Support for mobile is in its very early stages of development.

Therefore, this is discussed as future work in Chapter 8. Importantly, users can still use their

mobile devices, such as smartphones or tablets, to access the provided UI of the AM.

7.4.1.3 Presentation Layer

The UI has been implemented using HTML, Javascript and CSS instead of a more complex

framework (i.e. Adobe Flex) that was used in SMARTAM V1. The approach of Responsive Web

Design (RWD) has been adopted and it allowed to implement the AM to be easily accessible

from a range number of different devices, including smartphones and tablets. The latter ones,

in particular, were becoming more common and the User Interface has been adapted to be

accessible on Apple iPad tablets3.

Requests to specific views of the AM (e.g. resources, contacts, etc.) are routed by im-

plemented backend View Controllers, which operate on Models and return appropriate Views.

Importantly, SMARTAM V2 has very lightweight controllers only and in most cases these con-

trollers are required to return a view and not provide any sophisticated operations on the model.

Instead, the AJAX-based communication is leveraged between the view that is returned to the

user’s Web browser and the backend API of the AM. For scalability reasons, it was decided to

use the popular Amazon S3 service to host static resources. The architecture adopted by the

presentation layer is visualised in Figure 7.20.
3A number of presentations showing SMARTAM V2 have been conducted using Apple iPad tablets only.

239

Chapter 7. Authorisation Managers

7.4.2 Security

In order to access the functionality provided by AM, users are required to authenticate first.

It has been decided to use a federated authentication protocol for this purpose. SMARTAM

V2 allows users to sign in with their Facebook accounts. This functionality uses the OAuth 2.0

derivative protocol, which is implemented by Facebook and discussed in more details in [11].

Therefore, users are not required to register an account manually. Instead, SMARTAM V2 uses

the Facebook’s Graph API in order to obtain information about a user.

Security of the API is provided with session-based authentication as well as the OAuth

2.0 protocol. API endpoints that are required for user interaction, such as User Authorisation

endpoints for Hosts and Requesters, require authentication. On the other hand, endpoints that

provide functionality to client applications are protected with the OAuth 2.0 protocol. In partic-

ular, the following endpoints require an OAuth 2.0 access token to be present in HTTP requests:

Permission Registration, Validation, Requester Host Token, and Permission Request. The Man-

agement endpoint for mobile applications requires an API Key to be attached to HTTP requests.

API keys are planned to be substituted with OAuth 2.0 in the future. All communication be-

tween users and the AM require HTTP protocol with TLS/SSL (although this is deployment

specific). The same applies to the communication between client applications and the API of

SMARTAM V2.

7.4.3 Support for User-Managed Access

SMARTAM V2 exposes the User-Managed Access functionality through an Application Pro-

gramming Interface, as shown in Figure 7.19. This software provides this API using a newly

developed framework named UMA/j Authorisation Manager (UMA/j AM). UMA/j AM pro-

vides implementation of the Protection API and the Authorisation API which were introduced

in Chapter 5. UMA/j AM is itself based on the OAuth 2.0 implementation, which was discussed

in Chapter 1. Furthermore, it uses the developed Discovery library.

The UMA API provided by SMARTAM V2 comprises of the following parts:

1. Discovery;

2. OAuth 2.0 Client Dynamic Registration;

3. OAuth 2.0 API (User Authorisation and Token endpoints);

4. Protection API (Resource Registration, Validation, and Permission Registration endpoints);

5. Authorisation API (Requester Host Token and Permission Request endpoints).

240

Chapter 7. Authorisation Managers

Discovery is available through the Authorisation Manager Configuration endpoint, which

allows to access a JRD-formatted document that lists endpoints available at AM, supported au-

thorisation types, supported claim types, and other configuration options as discussed in Chapter

5. AM configuration is exposed as a JSON-formatted document (see example in Appendix G).

The OAuth 2.0 Client Dynamic Registration allows applications to register themselves as

clients of SMARTAM V2 dynamically, using the protocol discussed in [274]. These applications

can be provisioned with the necessary OAuth 2.0 credentials, i.e. {client_id, client_secret}.

These credentials are later used during communication with AM. Registration is provided for

both host and requester applications. The latter one can also act as anonymous clients as dis-

cussed in this section. The discovery and dynamic registration steps are optional and applications

can be pre-registered at AM as well.

In order to use the Protection API and the Authorisation API endpoints by client applica-

tions, users have to authorise these applications for the AM. For this purpose, the OAuth 2.0

Authorisation Code Grant [202] has been implemented. In particular, SMARTAM V2 exposes

standard OAuth 2.0 endpoints, i.e. User Authorisation and Token endpoints.

7.4.3.1 Authorisation Tokens

Hosts and Requesters need to obtain access tokens that are authorised for the uma_host and

uma_requester OAuth scopes, respectively. These tokens are named:

1. Host Access Token (HAT) (recently renamed to Protection API Token (PAT));

2. Requester Access Token (RAT) (recently renamed to Authorisation API Token

(AAT)).

As discussed in Chapter 5, HAT allows host applications to register resources for protection

at AM and to validate access tokens received from Requesters. RAT, on the other hand, allows

Requesters to obtain access tokens for protected resources and these tokens are known as Re-

quester Permissions Tokens (RPT). Tokens have been implemented similarly to those used

in SMARTAM V1, as discussed in 7.2.3.1.

Access tokens are accompanied with additional information, namely the expiration time

given as a Unix timestamp as well as corresponding refresh tokens. Importantly, access tokens

are valid for 3600 seconds (1 hour) and have to be refreshed by client applications. Refresh

tokens, on the other hand, are long-lived and have to be revoked by users manually. The

implemented client frameworks, which were discussed in Chapter 6, can automatically detect

validity of access tokens based on their expiration time, and can refresh these tokens without

any intervention from the application developer.

241

Chapter 7. Authorisation Managers

7.4.3.2 Support for Host Applications

Host applications have to be registered as OAuth 2.0 clients in order to interact with the Protec-

tion API provided by SMARTAM V2. Hosts have to be authorised for access to those endpoints

by Authorising Users. This authorisation is obtained using the OAuth 2.0 Web Server flow,

which uses the provided User Authorisation and Token endpoints at SMARTAM V2 and allows

the Hosts to obtain HATs.

The Protection API is composed of the Resource Registration, Permission Registration,

and Validation endpoints. The first one supports host applications with registering resources

for protection. This is a major difference in comparison to the first AM implementation that

required manual resource registration using the UI. This endpoint conforms to the one discussed

in Chapter 5 but additionally allows host applications to obtain a URL of the access control

policy, that is associated with a resource after registration. This is discussed separately in

Section 7.4.3.3.

Hosts register permissions required by requester applications using the Permission Registra-

tion endpoint of SMARTAM V2. Implemented Validation endpoint supports host applications

with evaluating access requests to protected resources. This endpoint conforms to the one dis-

cussed in Section 5.4.5. The Host sends the RPT, along with its own HAT, in order to receive

permissions associated with this RPT. Therefore, the Host can make a meaningful decision

whether access to a resource should be granted or not. Policy evaluation is discussed in Section

7.4.6.

7.4.3.3 Resource Registration

SMARTAM V2 implements the resource registration protocol provided by the User-Managed

Access proposal. This differs from SMARTAM V1, which required users to register resources

manually. Users can interact with the AM directly from their host applications. In particular,

they can select which resources should be protected and host applications can register such

resources at runtime. This functionality has been provided using the UMA/j AM framework.

Chapter 5 gives detailed explanation of the resource registration protocol.

When a user creates a resource at a Web application then this resource is either private

or public. Such setting depends solely on the design choices and implementation of such Web

application. If access control is delegated to the implemented AM then the default policy for

registered resources is set. Currently, the resource is automatically associated with an empty

policy and advanced settings must be set manually by a user. Automatic policy associations

are planned to be introduced in further versions of the presented AM implementation. Policy

templates which support such functionality are given in Section 7.4.5.

242

Chapter 7. Authorisation Managers

The basic proposal of resource registration has been extended to support access control

policies, which are currently left outside of the UMA scope. This extension allows the AM to

register a resource for protection and then inform the Host about the policy in place. This

functionality is necessary in order to support users with their interactions with existing Web

applications. In particular, introducing this feature allows to address the issues, which are

identified in the scenario in Section 1.1.2 from Chapter 1.

When a resource is first registered, the AM creates a link to the policy for this resource and

returns this link back to the host application. The host application can associate such link with

the resource itself on its side. Chapter 6 discussed how the Puma framework uses this policy

link to provide a simplified user experience for managing access to Web resources.

7.4.3.4 Support for Requester Applications

Requester applications are not required to be registered as OAuth 2.0 clients and these applica-

tions can act as anonymous clients to the AM. These applications can interact with the provided

User Authorisation and Token endpoints providing their obtained credentials or {anonymous,

anonymous}. When these applications interact with the AM without registration, no refresh

token is issued for the corresponding RAT and these applications have to go through the autho-

risation every time the RAT expires. Support for anonymous clients is planned to be removed.

Requesting parties are required to authorise their requester applications for the Authorisa-

tion API provided by SMARTAM V2 before they can access UMA-protected resources. This

API, composed of the Requester Host Token and Permission Request endpoints, allows these

applications to obtain the necessary RPTs and take part in the authorisation phase. Requesters

first obtain empty RPTs using the implemented Requester Host Token endpoint and only later

associate necessary permissions with this RPT using the Permission Request endpoint and newly

introduced Access Request endpoint. Importantly, as defined by UMA, Requesting Parties may

need to provide claims before the RPT can be associated with necessary permissions.

It is important to note that the scope of access for the RPT is specified by the Authorising

User in the policy associated with a resource (see Section 7.4.5). Depending on the policy, the

requester application that interacts with the Permission Request endpoint can either obtain

an upgraded RPT (if the policy allows for it) or can be provided with the claims requested

document, which lists the necessary claims that must be submitted by the Requesting Party.

SMARTAM V2 implementation supports only one type of claims that a Requester can

encounter: redirect_required. When such claim is received by the Requester, then the Re-

questing Party is redirected to the location contained in the claim. Such redirect is provided to

support the following cases:

243

Chapter 7. Authorisation Managers

1. Requesting Parties that are also owners of protected resources can authorise their requester

applications to access these resources ad hoc;

2. Requesting Parties that are not owners of resources can provide additional OpenID Connect

claims to authorise their requester applications. This holds for access control policies that

include entries which require claims;

3. Requesting Parties that are not owners of resources can request access to protected re-

sources at AM.

In the aforementioned use cases, after the redirect is complete, the Requesting Party is

redirected back by the AM to the requester application’s callback URL. Then Requester can

proceed depending on the AM’s response. This callback URL is discussed using an example in

Section 6.3.4.4. The response returned by the AM to the Requester using the post-claims HTTP

redirect includes such information as the state, which the Requester can use to pull information

on the original request to access to data, and either of the following parameters issued by the

AM:

1. x-oauth_access_granted - informs a Requester whether access was granted or not.

2. x-oauth_access_req - informs a Requester whether access to a resource was requested

at an AM or not.

3. x-oidc_claims_submitted - informs a Requester if a Requesting Party has success-

fully submitted necessary claims to an AM, allowing a Requester to continue access to a

protected resource.

If the Requester finds the x-oauth_access_granted parameter in the HTTP request, then

it checks if this parameter has the true value. The presence of this value means that the user

has authorised the Requester to access their protected resources on the Host. This is the Person-

to-Self sharing scenario, where the Requesting Party is the same as the Authorising User.

On the other hand, if the Requester finds the x-oauth_access_req parameter set to true

in the HTTP request, then it knows that a request for access has been submitted to AM. This

situation occurs when the access control policy has not yet been setup for the Requesting Party,

who seeks access to a protected resource. This is the Person-to-Person or Person-to-Service

sharing scenario. The Requester can present a custom UI to the Requesting Party and can

inform the Requesting Party that request for access has been submitted successfully.

Furthermore, support for OpenID Connect claims in SMARTAM V2 has been implemented.

Therefore, the Requester must be able to respond to the x-oidc_claims_submitted parameter

244

Chapter 7. Authorisation Managers

Figure 7.21: SMARTAM V2 integrated with Facebook.

set to true in the HTTP request. Such parameter occurs in Person-to-Person sharing scenarios,

where the Requesting Party successfully submitted necessary claims to the AM using the OpenID

Connect protocol.

In cases where either x-oauth_access_granted or x-oidc_claims_submitted parameters

are returned with their value set to true, then the RPT is considered to bear new permissions

and the Requester should try to access the resource again.

Importantly, the aforementioned parameters, x-oauth_access_granted, x-oauth_access_-

req, and x-oidc_claims_submitted, have been introduced in the implementations presented

in this thesis. These parameters are not part of the UMA protocol specification. Examples of

how these parameters are used in the discussed software are provided in Section 6.3.4.4.

7.4.4 Federated Authentication

SMARTAM V2 supports federated authentication. It allows users to sign in with their Facebook

accounts using the OAuth 2.0 derivative protocol implemented by this IDP. Furthermore, users

can use Facebook to import their contacts using the integrated Graph API [10]. Each imported

contact is created as an unregistered user and is linked with the original user through a notion

of a contact. Users are then able to create new access control policies using these contacts. The

integration between SMARTAM V2 and Facebook is visualised in Figure 7.21.

Moreover, the AM implementation allows users to define access control policies with man-

ually registered contacts. In such cases, these contacts may need to authenticate to the AM

using the OpenID Connect protocol. For example, if a policy includes an entry that would allow

access to a person who owns the bob@gmail.com email address, then this person has to sign in

with their OIDC-compliant Google Identity Provider.

245

Chapter 7. Authorisation Managers

7.4.5 Policy Model

Resource sets registered at SMARTAM V2 are always associated with an access control policy.

Such policy was initially called Sharing Settings4 and was composed of multiple Sharing Settings

Entries (which are equivalents of access control entries). The Sharing Settings and Resource

database tables have been eventually merged. Each registered resource at the AM now contains

the list of policy entries that define how this resource is shared.

When the resource is first created then the list of entries is empty by default. The AM

provides a UI to create new entries that define how a resource is shared. Each entry can specify

an application, which can act as a Requester to access the data. Also, each entry can specify

a user and application pair, which can act as a Requesting Party and Requester pair that can

access the data. Entries can belong to a single policy only and cannot be shared across multiple

policies. This limitation of the AM implementation is discussed further in this section.

SMARTAM V2 supports the following policy types (which are in fact policy entries):

1. Myself - contains the list of requester applications and their permissions for a resource;

2. Others - contains the list of Requesting Parties, associated with requester applications,

and their permissions for a resource.

The myself type policy is provided for Person-to-Self sharing scenarios, which are similar

to OAuth where resource is shared between services on behalf of the same user. The UI for

this policy type is presented in Figure 7.36. A detailed explanation of possible sharing scenarios

in UMA is given Section 5.3. For example, a user may authorise their online photo editing

tool to access their photos stored in their online gallery service. Another example is where the

user authorises an online job application system to access their verified "Transcript of Records"

document stored on their Personal Data Store application. Implementation of the latter scenario

is given in Section 6.3 and screenshots of this flow are given in Appendix I.

The others type policy allows users to share data with other users on the Web. Importantly,

these users have to use applications that can access UMA-protected resources. As such, typical

Web browsers cannot act as clients unless these browsers are equipped with some plugins that

are able to interact with the Host and AM according to the UMA protocol.

User interfaces for the others policy type are shown in Figures 7.37, 7.38, and 7.39. This

policy type supports Person-to-Person and Person-to-Service sharing scenarios where a resource

is shared between services and the Requesting Party is different from the Authorising User. For

example, a user can share their photo album with other users, irrespectively of the application
4In this section, the terms "access control policy", "policy" and "sharing settings" are used interchangeably.

246

Chapter 7. Authorisation Managers

that they use (e.g. such album will be accessible by specific users over the API through a

number of different applications). Another example is where a user shares their verified personal

information with a potential employer, who uses a specific online job application system to access

such data. Other examples have also been discussed in this thesis (see Chapter 1 and Chapter

5).

Importantly, myself- and others-type policies support restricting access to specific actions on

resources. Such actions are resource set specific and are dynamically registered by Hosts at the

AM. These actions are represented as string values and can be arbitrarily complex (e.g. delete

and perform_analysis). These actions were discussed in Section 5.4.2.

Resources that are protected by AM are considered to have a custom access control policy,

which is defined by the entries in such policy. However, the user can still make registered

resources publicly available without disassociating them from AM. The implemented UI allows

users to mark a resource as public. On the other hand, if the resource should be made private,

the UI supports such function as well. Importantly, marking a resource as public or private does

not modify existing entries in the access control policy but results in the Validation endpoint

returning either "positive" or "negative" responses to host applications. Furthermore, requester

applications that want to associate necessary permissions with their RPTs will either have these

permissions associated automatically, or will be automatically rejected. By allowing users to

create entries in their access control policies as well as to quickly mark resources as publicly

available or private using the AM, the user has flexibility in how their online resources are

managed. In particular, users can use the AM to make resources temporarily private, adjust

policies as necessary, and only then share these resources with other users and services on the

Web.

The user can also mark resources public or private at the Host, which would allow the Host

to resign from consulting the AM about the access rights of these specific resources. In such case,

the Host would not have to make the extra effort of contacting the AM as long as it knows the

correct access rights of the resource. The discussed model does not prevent this situation where

users define access rights locally at host applications and this can be more efficient in terms

of communication overhead. However, the user would lose all benefits of the UMA approach,

including the ability to have a holistic view of the applied security controls over their distributed

data.

SMARTAM V2 implementation does not allow for policy reuse across different resources. In

particular, it is not yet possible to share a single policy. Such functionality existed in SMARTAM

V1 (recall Section 7.2.4). Despite this limitation, the presented policy model can be considered

as very flexible and being able to meet numerous user needs for complex online transactions.

247

Chapter 7. Authorisation Managers

Figure 7.22: Entity Relationship Diagram of access control policies in SMARTAM V2.

Shared policies are planned to be introduced. Such policies would allow users to create reusable

policy templates. Importantly, the presented policy model in AM has been designed to support

such templates.

7.4.5.1 Database Implementation of Policies

In order to understand the policy model available in SMARTAM V2, this section presents the

database implementation. It shows how different entities of the DB model are related to provide

the described functionality (see Figure 7.22).

user - list of users in the Authorisation Manager. one-to-many relationship with the user_host

table, that links users and their registered applications (either Hosts or Requesters);

contact - links two different user entries together;

resource - one-to-many relationship with the sharing_setting_entry table, describes the

resource being protected at AM;

ID - internally used identifier of the resource;

HOST_ID - ID of the Host application, which registered this resource for protection;

USER_ID - ID of the Authorising User, which is the owner of the registered resource;

248

Chapter 7. Authorisation Managers

RESOURCE_ID - externally visible resource ID as registered by the Host;

TYPE - specifies the security of the resource - PRIVATE, PUBLIC, or CUSTOM;

sharing_setting_entry - stores policy entry for a single {application, user} pair;

HOST_ID_MYSELF - ID of the Requester for which this policy is defined. Set only

if the policy is defined for the Authorising User ("myself-type policy"), otherwise it is

a policy for others (refer to HOST_ID and USER_ID). It has to be equal to the USER_ID

column in the resources table that it references;

HOST_ID - ID of the Requester for which this policy is defined, which will be used by

Requesting Parties other than the Authorising User ("others-type policy");

USER_ID - ID of the Requesting Party, for which this policy is defined ("others type

policy"). This identifier references the contact table;

RESOURCE_ID - internally used ID of the resource; points to the resource table;

resource_has_action - list of available actions associated with a resource;

selected_action - list of actions associated with the sharing_setting_entry (actions from

myself or others policy).

In others-type policies, entries use the contact table to specify Requesting Parties. Impor-

tantly, this table has a recursive relationship with the user table. Therefore, it links two user

entities together. This is a typical parent-child relationship, with an Authorising User being the

parent and the contact user being the child.

Importantly, the entries in the resource table have the TYPE column, which is used to

define how a policy should be treated at the AM. If the resource type is set to PUBLIC, then

no entries are checked during permission requests and validation processes. Therefore, requester

applications can have their RPTs associated with permissions without any form of authorisation.

Additionally, host applications are always provisioned with a "positive" validation response from

AM. However, if the resource type is set to PRIVATE then the resource itself is not accessible

(irrespectively of whether Requesters were issued any RPTs for this resource, since the RPT

validation will simply fail). The CUSTOM type means that individual entries for a resource should

be checked.

Furthermore, the AM implementation has defined the following identifiers in the sharing_-

setting_entry table as special cases: HOST_ID = 10 (meaning "Any Requester Application")

and USER_ID = 10 ("Any Requesting Party"). Both identifiers were implemented to support the

following cases:

249

Chapter 7. Authorisation Managers

1. Resource is public - the resource is accessible using the UMA protocol by any Requesting

Party that uses any Requester application (HOST_ID = 10 and USER_ID = 10). This is the

equivalent of marking the resource as public but it distinguishes the actions for which a

resource is made public;

2. Person-to-Person sharing - the resource can be accessed by a specific Requesting Party

using any Requester application (HOST_ID = 10 and USER_ID 6= 10);

3. Person-to-Service sharing - the resource can be accessed by any Requesting Party using a

specific Requester application (HOST_ID 6= 10 and USER_ID = 10).

7.4.6 Policy Evaluation

SMARTAM V2 evaluates policies before RPTs are issued to requester applications or associated

with necessary permissions. Furthermore, the validation of these tokens is considered as part of

the policy evaluation process, too.

7.4.6.1 Issuing empty RPTs to Requesters

The Requester has to be in the possession of an RPT in order to access protected resources

at a Host. Therefore, as defined by the UMA protocol, it uses one of the Authorisation API

endpoints to obtain such a token for a specific Host.

SMARTAM V2 provides a Requester Host Token endpoint, which issues empty RPTs. This

differs from an early UMA proposal, where RPTs were issued by the Permission Request endpoint

(see Chapter 5 the UMA protocol specification in [297]). Importantly, the RPT is initially

associated with the {Requesting Party, Requester, Host} tuple.

7.4.6.2 Registering Permissions

Requesters use the newly issued RPTs for access requests to protected resource. Since these

RPTs are not yet associated with any permissions, then such requests will simply fail. However,

for every request that is accompanied with an RPT, the Host registers the necessary permission

that would be required for such access to succeed.

SMARTAM V2 provides host applications with the Permission Registration. Registration

requires providing the identifier of the resource being accessed as well as the set of actions, which

need to be authorised for the Requester. This information is used in further phases of policy

evaluation at the AM. An example permission registration request is given in Listing 8. Such

registration results in the permission ticket being returned to the Host and eventually to the

Requester.

250

Chapter 7. Authorisation Managers

Requesters use the permission ticket, along with their RPT, at the Permission Request

endpoint. The purpose of this endpoint is to allow the Requester take part in the authorisation

phase. An example request is shown in Listing 23.

1 POST /api/uma/permissions_grant/ticket/3a055317... HTTP/1.1
2 Authorization: Bearer 7e6e5d10e725482c34a5ac59a4b37b2b
3 Accept: application/uma-claims-required+json
4 Content-Type: application/json
5

6 { "rpt": "908ba7ad3fea56a15fcaa73248ac9ba7" }

Listing 23: HTTP request of Requester applying for permissions to be assigned to an RPT.

SMARTAM V2 uses information from the request to find the registered permission and

to retrieve the resource and its associated access control policy entries. This functionality is

provided by the Resource Service and Sharing Settings Entry Service. Both services evaluate

access requests against defined policy entries and can result in one of the following responses

returned to the Requester:

1. HTTP 401 Unauthorized - the policy specifies that the resource is private;

2. HTTP 201 Created - response containing a newly created RPT, with associated permis-

sions for a resource if either: (1) the policy specifies that the resource is public, (2) the

policy contains an entry that matches the registered permission;

3. HTTP 200 OK - response containing the claims requested document.

Furthermore, in case there was a problem with the request, the AM responds with the HTTP

400 Bad Request response. In particular, such error is returned if there was a problem with

the permission ticket (e.g. this ticket might have been already used or it cannot be found).

7.4.6.3 Obtaining Authorisation

The AM supports only one type of claims in the claims requested document: redirect_required

(see example in Listing 24). When such claim is returned to the Requester, then the Requesting

Party should be redirected to the location contained in the claim value. Importantly, SMARTAM

V2 distinguishes a case where a policy contains an entry with a manually added Requesting

Party. Such manually added party contains an email address. This email address can be used

as an attribute in the policy evaluation process. In such cases, the redirect URL in the claim_-

value field contains the claims_ext_openid parameter set to true. The decision to use the

251

Chapter 7. Authorisation Managers

email as the attribute was dictated by the adoption of the OIDC protocol in SMARTAM V2

implementation. This protocol is used to gather claims of the Requesting Party and email is

among the standard OIDC claims that is required to be returned by OIDC IDPs [58].

1 { "requested_claims":[
2 {
3 "claim_type":"redirect_required",
4 "claim_name":"Redirect Required",
5 "claim_value":"https://www.smartam.org/request_access/
6 entry?x-request-access=true&
7 scope=35f4b49e2bbde56631e777dfc8789e8b
8 &response_type=code&x-type=popup
9 &redirect_uri=http%3A%2F%2Fpds.com%2Fa%2Fuma%2Fredirect

10 &claims_ext_openid=true&client_id=23663654000000"
11 }]
12 }

Listing 24: Claims requested document issued by AM.

The redirect URL in the claim_value field points the Requesting Party to the Access

Request endpoint. This endpoint is not a standard UMA endpoint and has been introduced

in the discussed AM implementation. Importantly, this endpoint supports three different cases

that differ based on the party that is redirected to this endpoint. In particular, the following

parties are distinguished at the Access Request endpoint:

1. Authorising User acting as Requesting Party;

2. Requesting Party added manually by Authorising User;

3. Any Requesting Party.

7.4.6.3.1 Authorising User acting as Requesting Party. When the Authorising User equals

the Requesting Party, then the Access Request endpoint displays a page for the user, where

such user can authorise their requester application for a specific access type. Such page resem-

bles a standard OAuth 2.0 authorisation page, which provides information regarding the client

application, the resource as well as the set of actions which will be authorised (please note a

difference between this page and a standard OAuth 2.0 page, which only informs the user about

the client application and a set of OAuth scopes). Example of such page is presented in Figure

7.23. Importantly, the user has to be signed in to the AM.

When the user authorises their Requester to access a protected resource on their behalf, a

corresponding entry in the access control policy for this resource is created. With such approach,

252

Chapter 7. Authorisation Managers

Figure 7.23: Authorisation page that allows the Requesting Party to authorise a requester application
to access a protected resource stored on a Host.

the user can establish relationships between their online applications on an ad hoc basis. Policies

do not have to be specified in advance. Furthermore, the AM informs the Requester about

granted access using the x-oauth_access_granted parameter in the post-claims redirect. This

approach differs from the classic OAuth, because relationships between different applications are

stored centrally and not on distributed OAuth Authorisation Servers.

7.4.6.3.2 Requesting Party added manually by Authorising User. The policy may contain

an entry that specifies a Requesting Party, which was added by an Authorising User manually.

In such case, a Requesting Party is presented with a choice to sign in to the AM using the

OIDC protocol. SMARTAM V2 currently supports a very basic attribute model by requiring

Requesting Parties to provide verified email addresses. Furthermore, this AM supports only the

Google IDP, which was one of the existing OIDC implementations available at the time when

this feature was implemented.

With OpenID Connect claims, the Requesting Party signs in to the OIDC Provider and

authorises the AM to access their profile information. Because SMARTAM V2 supports email

attributes, authorisation for both openid and email scopes is required [57]. When the AM is

able to verify that the email address obtained from the UserInfo endpoint of the OIDC provider

matches the email specified in the policy, it can then upgrade the RPT that belongs to the

requester application. Requester is informed about granted access using the x-oidc_claims_-

submitted parameter, which is returned using the front-channel communication (i.e. via the

User-Agent).

253

Chapter 7. Authorisation Managers

Figure 7.24: Request for access page that allows the Requesting Party to request access to a protected
resource stored on a Host.

7.4.6.3.3 Any Requesting Party. When the Access Request endpoint is accessed by any Re-

questing Parties, the AM presents a Request for Access page (see Figure 7.24). This page is not a

part of UMA but has been introduced in the presented AM to support use cases, as discussed in

Chapter 1. This page resembles the OAuth authorisation page. However, it does not authorise

any access but merely asks the Requesting Party if they wish to request access to a protected

resource. This request is stored in a persistent store on AM, which may also send an email to

the user who owns the data informing them about a new pending access request. Importantly,

no data is shared without the user’s explicit consent. After successfully submitting this request

for access, the AM redirects the Requesting Party, using front-channel communication, to the

requester application and includes the x-oauth_access_req parameter set to true. This pa-

rameter informs the Requester that access to a resource has been requested. Therefore, the

Requester can act accordingly, e.g. periodically check if access was approved.

7.4.6.4 Validating Tokens from Requesters

Policy evaluation is also performed when the host validates the received RPT from the requester

application. Requests for validation are sent to the AM’s Validation endpoint. This endpoint

uses a custom AMValidationProvider that implements a simple logic, which returns either a

public authorisation, none authorisation, or a custom authorisation.

Custom authorisation depends on the RPT presented by the Host to AM and the resource

for which access is requested. Firstly, the AMValidationProvider checks if the Authorising User

and the Requesting Party are the same and if an entry already exists for this user. Depending

254

Chapter 7. Authorisation Managers

on the existence of the entry, either a custom or a none authorisation is returned to the client

application.

On the other hand, if the Requesting Party is different from the Authorising User, then

the provider uses the implementation of the SharingSettingsEntryService interface to check

policy entries using either:

1. findByAccessTokenResourceIdByClientId();

2. findForAnyUserAnyHost().

The first method searches for the RPT token data, which was originally issued to the Requester.

It additionally matches such data with existing policy entries for the resource stored on the Host.

This results in a single entry being returned by this method. The findForAnyUserAnyHost()

method is a fallback mechanism that is used to check if the Authorising User has defined a

resource to be accessible by any {Requesting Party, Requester} pair. If no entries are found, a

none authorisation is returned to the Host.

7.4.7 Access History

In Chapter 1, the following requirement for a user-managed access control solution was provided:

"A consolidated view of the applied security controls as well as audit information should be

provided to support users with managing access to the ever-growing number of resources on the

Web.". To meet this requirement, a new feature has been introduced to the presented AM named

"History". With this new functionality, users can quickly review how their distributed resources

are accessed by Requesting Parties and Requesters. This feature is provided using a separate

UI view. This view presents a list of entries representing individual access requests to protected

resources.

Each entry in the list is created during the RPT validation process. A single entry specifies

a request, which resulted in the public authorisation or custom authorisation, as discussed in

Section 7.4.6. Such entry contains the following information: Requesting Party, Requester,

resource being accessed, Host that stores this resource, time of access.

SMARTAM V2 issues tokens that are opaque to Hosts. Therefore, RPT validation has to be

performed every time a host application receives an RPT. This results in such validation being

logged at the AM and it is visible to the user through the provided UI. Currently, only successful

access requests are logged but failed requests are planned to be logged as well.

The discussed "History" view currently supports access requests to UMA-protected resources

only. This view is presented in Section 7.4.8.3 in Figure 7.45. However, this view is planned to

be extended to support other events of the AM. In particular, it is planned to include policy

255

Chapter 7. Authorisation Managers

specification related events, such as creation or deletion of a new entry in a policy for a particular

resource or resource registration and de-registration events.

7.4.8 User Interface Description

The UI has been redesigned based on the feedback gathered during the initial user study, as

presented in Section 7.3. Furthermore, it included new features, based on additional feedback

gathered during the research and development of the UMA protocol and implementation of this

protocol. This UI is believed to satisfy the usability factors, which were presented in Section

7.3.1.1, more successfully. In particular, the new design is more intuitive in comparison to the

previous UI. The layout of the elements is more logical and wizard-type solutions have been

introduced.

Furthermore, a single screen layout is used in the system. In the original design in SMAR-

TAM V1, users were required to switch between different screens (recall the "My Shared Items"

and "People I want to share with" screens) when they wanted to set up a single policy for a

resource. In the new design, a user has a single screen where they can view a resource that

is being protected by AM and is presented with a simple choice of myself- or others-type poli-

cies. Myself-type policy allows to display a list of requester applications and their permissions.

Others-type policy allows the user to view the list of Requesting Parties, their associated re-

quester applications, and their permissions.

The interface also provides users with access to history of access requests that were issued

by Requesters to protected resources. Furthermore, it supports users with creating policies at

runtime for their Requesters as well as for those Requesting Parties that apply for such access.

7.4.8.1 Scenario

This section presents the implemented UI based on a new and redefined generic user scenario,

which includes new features of the UMA protocol. These features did not exist during the

original user study that was discussed in Section 7.3. In particular, these features, visible to the

end-user, include dynamic resource registration that was not implemented in SMARTAM V1.

Federated authentication has been also integrated with SMARTAM V2.

The new scenario is depicted in Figure 7.25. It includes the following steps:

1. NS1 Login at Host and AM;

2. NS2 Register a document for protection at AM using host application;

3. NS3 Choose contacts to share resources with;

256

Chapter 7. Authorisation Managers

Figure 7.25: User scenario used for discussion of the SMARTAM V2 User Interface.

4. NS3.1 Manage contacts if necessary (add new contacts);

5. NS4 Choose applications to be used by contacts for accessing the protected resource;

6. NS5 Setup permissions for contacts and applications;

7. NS6 Share the document.

Registering resources and available actions for those resources is now moved to the host

application where the data is stored. This step is now a part of the UMA protocol that was

discussed in Section 5.4.2. For the purpose of the scenario, it was decided to use the developed

applications, namely PDS application as well as the CareerMonster application (see Appendix

D).

7.4.8.1.1 Login at Host and AM. In the new scenario, the user completes the first step NS1

by signing in to the PDS and to the Authorisation Manager. Typically, the user would login

separately at the PDS and separately at the AM. Then, following the UMA protocol, the user

would need to establish a trust relationship between the PDS and the AM, which would result

in the PDS being provisioned with the HAT/PAT token that this application can use at AM.

However, a new User Experience simplification has been tested, which would allow the user to

sign in to a Host (e.g. PDS) and additionally achieve the following: (1) the user gets signed in

to the AM without any additional authentication or authorisation processes, and (2) the Host

obtains the HAT/PAT token to use the AM’s Protection API. This simplification was tested

using a third party identity federation proxy and it is not discussed further in this thesis.

7.4.8.1.2 Register a document for protection at AM using host application. At the PDS,

the user is able to protect their personal information and the "Transcript of Records" data,

among other resources, with the implemented AM. After selecting the sharing option, available

257

Chapter 7. Authorisation Managers

Figure 7.26: Resource and a Share button rendered for this resource on a Host.

Figure 7.27: View presenting myself-type policy provided by SMARTAM V2 and accessed directly
from a host application.

through the "Share" button, the user is redirected from the Host to the AM (see Figure 7.26).

This way, the second step NS2 in user scenario is completed automatically (in comparison to

manual resource registration, as presented in Section 7.3.1.3). In particular, the resource is

registered at AM and the PDS application obtains information about the policy location for this

resource. This policy is displayed for the user directly from the host application.

The redirect of the user to the policy location was initially done in a pop-up, which was

displayed on top of the original UI of the Host. Therefore, the user had the impression that this

policy is a part of the host application. However, the user could still verify that it is their AM

that was being used for policy specification. For example, the URL of the AM being accessed

was displayed in the address bar of the pop-up window. The user could also verify that the

access was done through HTTPS (see Section 5.4.1). In further versions, the redirect of the user

to the policy is provided within an iframe and not within a pop-up. Examples of policies loaded

within an iframe are shown in Figure 7.27 and Figure 7.28.

At the policy view, the user is presented with an icon for the resource that they are protecting

with AM, and myself- and others-type policies for this resource. Importantly, each resource is

258

Chapter 7. Authorisation Managers

Figure 7.28: View presenting others-type policy provided by SMARTAM V2 and accessed directly
from a host application.

associated with a single policy only and such policy can contain multiple different entries. Each

entry is marked as either myself- or others-type and the view simply filters entries based on

the type selected by the user. By default, when the policy is accessed from the Host then the

myself-type policy is displayed (see Figure 7.27).

When the resource is first registered, there are no entries in the access control policy for this

resource. In the discussed scenario, the user shares the data using the others-type policy, which

is more complex and allows to discuss more details of the implemented AM. In the others-type

policy, the user can add Requesting Parties and Requesters. In the myself-type policy, only

Requesters can be added.

As discussed in Section 7.4.5, policies can also specify resources as public and private through

the "Make Public" and "Make Private" options. Currently, both options are only available using

the main interface of the AM and are not displayed when the policy is accessed directly from a

host application.

7.4.8.1.3 Choose contacts to share the document with. In order to add new entries in the

others-type policy, the user is required to click on the "add people" button, which constitutes

step NS3 of the discussed scenario. This results in an overlay with a form being displayed to the

user. In order to make the form more straight forward, it has been designed to be more visual

and not to resemble a usual Web input form. Each step of creating a new policy entry is initially

hidden and is displayed only if the previous step has been completed. Furthermore, the field

labels have been rewritten in comparison to SMARTAM V1 (see Figure 7.30). By taking such

measures, the form resembles a wizard form with each step of the policy specification process

clearly indicated to the user.

259

Chapter 7. Authorisation Managers

Figure 7.29: Access control policy view with missing contacts.

SMARTAM V2 has been integrated with the Graph API provided by Facebook. Therefore,

it supports importing contacts from Facebook and associating them with the user at AM. The

relationships between the Authorising User and potential Requesting Parties were discussed in

Section 7.4.5.1. The user can import contacts from Facebook into the AM by clicking on the

Get Conctacts button (see Figure 7.29).

7.4.8.1.4 Choose applications to be used by contacts for accessing the document. After

selecting the contacts, the user is provided with the next view of the policy specification step.

The user can select applications which can be used by previously selected contacts to access the

resource. This is stepNS4 of the scenario. Furthermore, the user can also select that Requesting

Parties will be able to access resources using any application. Such access can be also restricted

by specific actions selected in the policy entry. Importantly, the user has to select applications

first before it is possible to select any actions for these applications.

7.4.8.1.5 Setup permissions for contacts and applications. When applications and actions

are selected, the user can add the new entry to the policy (Figure 7.31). This step NS5 ends

the process of defining an access control policy entry for a resource. Once the user adds this new

entry to the policy, then the overlay is closed and the user lands on the view of their resource

at the PDS. On selecting the "Share" option again, the user is shown the screen and can verify

that the policy has been created.

260

Chapter 7. Authorisation Managers

Figure 7.30: View for selecting contacts to be used in a policy.

Figure 7.31: View for selecting applications and actions for these applications to be used in a policy.

261

Chapter 7. Authorisation Managers

Figure 7.32: Example email that could be sent to a Requesting Party notifying them about a newly
shared resource.

Figure 7.33: Information sent to the Facebook wall of a Requesting Party notifying them about a
newly shared resource.

7.4.8.1.6 Share the document. When a new entry is created in a policy for a resource, then

the Authorisation Manager could send an email to the Requesting Party with whom the new

resource has been shared. Such email could contain information regarding the application that

can be used to access the resource as well as the resource location. Unfortunately, it has not

been possible to implement sending of such emails yet and the Authorising User has to inform

the Requesting Party about a newly shared resource or a service out of band (e.g. by manually

sending an email). This step NS6 ends the newly defined scenario for the AM’s UI.

Emails could be sent only to those contacts that have their email address specified. For

example, contacts imported from Facebook do not have email addresses. Therefore, a different

approach of notifying users about newly shared resources would be necessary (Figure 7.33).

Users who are provided with information about newly shared resources have to be cautious

when accessing applications or links that are referred to in the received notifications. As discussed

262

Chapter 7. Authorisation Managers

in Section 5.4.1.4.1, there is a possibility of phishing attacks. For example, an attacker can send

out spam emails containing URLs to his own (attacking) Web sites rather then genuine ones.

Such attacks may trick users to reveal confidential information (e.g. username and password) to

malicious third parties. Therefore, it is important for the user to understand and recognise the

legitimacy of the application they are accessing. For example, the user needs to check that the

URL in the address bar in the browser matches the URL of their legitimate client application

or their legitimate Authorisation Manager. However, this thesis does not focus on the phishing

problem and makes an assumption that the user is conscious about the application they are

interacting with.

7.4.8.2 Main User Interface

The AM can be also accessed in a standard way and not by initiating the flow at the host

application. As such, it provides Authorising Users with a Web-based administration panel,

which UMA calls the "Privacy Dashboard". The user can sign in to the AM with their Facebook

account, as previously discussed.

At the main view, the AM presents a list of protected resources stored on registered host

applications. This view is called "Data" (Figure 7.34). Users can manage either myself or others

type policies for each registered resource (Figure 7.35). Importantly, this view is the same as the

one accessible directly from the host application. In particular, it allows users to access myself

and others type policies. However, it also introduces the options to make the resource private

or public (such setting takes precedence over entries in the policy). The user can revoke access

rights by deleting individual entries in the policy.

As discussed in the previous section, the myself type policy shows a list of requester applica-

tions that are authorised by the user to access protected resources on behalf of this user. Each

requester application is authorised for specific actions which can be executed on these resources

(Figure 7.36). The others type policy shows a list of Requesting Parties with whom a resource

has been shared, including the applications and authorised actions.

Instead of a confusing accordion module and drag-and-drop boxes, nested lists are displayed

for both myself and others type policies. On the myself type policy, at the first level, there is

a list of authorised requester applications. The user can select each application and is provided

with the list of authorised actions for this application (Figure 7.36). On the others type policy,

at the first level there is a list of Requesting Parties, i.e. contacts (Figure 7.37). Next to each

contact there is a list of requester applications displayed at the second level (Figure 7.38). At

the third level, there is a list of authorised actions (Figure 7.39).

Apart from specifying policies for their online resources using the Web interface provided by

263

Chapter 7. Authorisation Managers

Figure 7.34: Main view of SMARTAM V2 presenting resources registered for protection.

Figure 7.35: View presenting the resource registered for protection on SMARTAM V2.

264

Chapter 7. Authorisation Managers

Figure 7.36: View presenting a specified myself type access control policy.

Figure 7.37: View presenting a specified others type access control policy.

265

Chapter 7. Authorisation Managers

Figure 7.38: View presenting a specified others type access control policy with application details.

266

Chapter 7. Authorisation Managers

Figure 7.39: View presenting a specified others type access control policy with application and
permission details.

267

Chapter 7. Authorisation Managers

Figure 7.40: View showing the list of contacts.

Figure 7.41: View presenting resources shared with a Requesting Party.

AM, the user can also manage their contacts, which can be used in access control policies. The

UI with the list of contacts is presented in Figure 7.40. The contact list, when accessed directly

from the AM side, has more features in comparison to access done from host applications. On

selecting a person from contact lists, the contact details are displayed. The user can also view

which resources can be accessed by this particular contact (Figure 7.41).

By default, users can import their contacts from Facebook. SMARTAM V2 also supports

manual contact registration. Manually registered contacts can be later used for OpenID Connect-

based claims in access control policies. For example, sharing with bob@gmail.com requires the

Requesting Party to simply authenticate with an identity associated with such verified email

address. This functionality has been implemented using the OpenID Connect protocol. The

user can add contacts by providing a name and email address (Figure 7.42).

A new view has been also implemented to allow users to see applications available at

SMARTAM V2. The "Applications" view provides a list of all applications, including Hosts

or Requesters (Figure 7.43). When the user selects an application then they can review which

resources can be accessed by this application on behalf of the user (Figure 7.44).

268

Chapter 7. Authorisation Managers

Figure 7.42: View showing the form that allows the user to add new contacts manually.

Figure 7.43: View showing the list of registered applications at AM.

Figure 7.44: View showing resources shared with a particular application.

269

Chapter 7. Authorisation Managers

Figure 7.45: View showing access history list (audit log).

UI of SMARTAM V2 provides the user with a view for access history ("History") which is

presented in Figure 7.45. The access history list displays each event of accessing a resource,

with such details as the name of the person who has accessed it, the name of the application

used for access, an icon of the resource, the name of the Host that stores this resource and a

date when the resource was accessed. The user can easily amend the policy for resources and

this is provided directly from the access history view (the user has to select the "modify access"

option).

The UI also provides the user with a view for requests for access ("Notifications") which is

presented in Figure 7.46. The request for access list provides information with pending inquiries

Figure 7.46: View showing requests to access protected data.

270

Chapter 7. Authorisation Managers

(a) View showing pending requests for access to data.

(b) View for granting access to data.

Figure 7.47: Request for access mechanism implemented by SMARTAM V2.

from Requesting Parties that wish to access protected resources. The same list is also visible for

the user in the sidebar of the UI (see Figure 7.47). The user is given a choice to either accept

such request or deny such request. When the user accepts such request then a new entry in

the access control policy is created (Figure 7.47). Importantly, the AM sends an email to the

Authorising User informing them about pending requests for access. When such requests are

accepted, the AM may send the necessary notification to Requesting Parties (recall Figure 7.33).

7.4.8.3 Comparison

The newly designed User Interface addresses identified shortcomings and incorporates formulated

requirements, which were presented in Sections 7.3.3.2 and 7.3.3.3 respectively. We visualise the

summary of the list of most notable improvements to the AM User Interface in Figure 7.48.

In reply to the respondents’ complaints of a counter intuitive arrangement of the layout and

to address the shortcoming SC1, a new approach has been taken. Firstly, initiating the setup of

an access control policy for a resource has been moved to the host application where a resource

is located. The Host is integrated with an AM and can be provisioned with the location of a

policy for resources that are registered for protection. Therefore, the Host can point the user

directly to the actual access control policy for a resource. In particular, users do not have to visit

the AM as such to protect their resources, but can start the flow of sharing resources directly

from the Host.

Furthermore, the options available to the user on the main page of the presented AM have

been changed to "Data", "Contacts", "Applications", "History", and "Notifications" and represent

different sets of data available to the user. In particular, the user has direct access to one

of the main functionalities provided by the AM, i.e. viewing the list of resources registered

for protection and being able to access their policies ("Data" view). The user can also manage

271

Chapter 7. Authorisation Managers

Figure 7.48: Visualisation of improvements to the User Interface introduced in SMARTAM V2.

272

Chapter 7. Authorisation Managers

their potential Requesting Parties and Requesters using the "Contacts" and "Applications" views

respectively. Separate views are provided for displaying information about accessed resources

("History") and requests for access ("Notifications"). Setting up the policy for the purpose of

sharing and protecting data has been simplified and has been provided with a wizard-like UI, as

discussed in Section 7.4.8.3

Shortcomings SC2 and SC3 have been addressed by presenting the list of registered re-

sources at the AM on the main screen, irrespectively of where these resources are located. It

is envisaged that the user is able to filter resources, either by selecting the application or by

providing few letters of the resource name in an search field, but the search feature has not yet

been implemented. Each resource is associated with an icon, provided by the host application

(or applied by AM, if the provided icon was missing), which allows the user to easily locate a

resource and specify sharing settings for this resource. By clicking on the resource icon, a user

is presented with a choice of policies, either for themselves or other users.

Nested lists have been introduced in exchange of the accordion module and drag-and-drop

boxes, which were originally used in SMARTAM V1. This solution makes the form more direct

and more interactive for the user. The form for setting up an access control policy resembles

a wizard-like UI, which displays consecutive steps only after completing previous steps. The

necessary form fields next to specific input fields have been provided. Furthermore, all labels

have been rewritten and ordinal numbers for each field are now provided. This approach aims

to guide users in the process of specifying access control policies for their online resources.

The design principle behind the newly designed User Interface for access control policies was

to keep all the options in a limited number of screens. Also, features associated with a particular

task should be displayed on a single screen. The goal was to display only features available at a

particular time during the resource sharing task.

A truly single screen existed in one of the first revisions of the UI implemented for SMAR-

TAM V2, which is presented in Figure 7.49. With the introduction of myself- and others-type

policies, it was decided to provide separate screens for these two policy types. In the myself-type

policy, a user is presented with a view of authorised applications and their associated permis-

sions. When adding a new application, the user is presented with a simple screen where they

can choose an application and authorised actions for this application. In the others-type policy,

users are provided with the list of {Requesting Party, Requester, Actions} tuples. When adding

a new policy entry, users first choose the Requesting Parties. They can then restrict access to

specific Requesters and select actions that should be authorised. This second step of adding

applications and actions is initially hidden but is revealed when the user completes the first step

of choosing Requesting Parties.

273

Chapter 7. Authorisation Managers

Figure 7.49: Prototype view of UI for SMARTAM V2 allowing the user to specify access control
policy in a single screen.

274

Chapter 7. Authorisation Managers

The aim was to provide a UI layout, which would make the user feel that they know which

step they are at. Only after choosing contacts and applications/actions, the "add" call to action

button is displayed. Therefore, the user cannot save sharing settings if all of the required

information has not been provided. After the user successfully saves a policy, the view of

this policy is reloaded asynchronously using AJAX without refreshing the page. The user can

immediately see that the policy for a resource has changed and a new entry is available.

Furthermore, the identified shortcoming SC4 of poor colour scheme has been addressed by

introducing graphic icons next to each element of the top menu. Buttons and links have been

redesigned to stand out more and to call user to action. Links in the text are coloured blue and

when a user moves a mouse cursor over a hyperlink, then such link is underlined. The buttons

are coloured deep blue, light blue and light grey. All major buttons are deep blue, large and in

contrast to the background. The "add" button is the only one coloured light blue, in such a way

it is distinctive and different than the rest of the buttons. Back button is coloured grey, as it

is a less important option. All the confirmation buttons are coloured green and red. Negative

answer buttons are coloured red and positive answer buttons are coloured green. It is believed

that the proposed solution supports human ergonomics as it resembles the colours of the traffic

lights with which most of the users are familiar with.

The help feature stated in the shortcoming SC5 has not been introduced in the UI of

SMARTAM V2. However, this UI is believed to be self-explanatory and any further assistance

will be introduced only if required.

7.4.9 Implementation Details

SMARTAM V2 has been developed using the Spring Framework [74], which is a Java framework

that provides a comprehensive set of tools for building multi-tier applications in Java. Spring

is based on the Inversion of Control (IoC) and Depenency Injection (DI) design patterns [191].

Spring provides a convenient alternative to the Java EE architecture [34]. Instead of using

EJBs (Enterprise Java Beans), Spring allowed to use simple POJOs (Plain Old Java Objects)

where additional services (such as transactions or security, which were used extensively in the

discussed implementation) were added to those objects by the application container. The con-

tainer, through injecting specific dependencies, combines objects together based on a specific

configuration.

Spring allowed to compose the presented software from individual components. In partic-

ular, it was possible to combine Discovery, OAuth 2.0, and UMA/j AM frameworks, among

others, with components and services specific to the AM application. The aforementioned devel-

oped frameworks were tailored for Spring and were configured in Spring XML-based metadata

275

Chapter 7. Authorisation Managers

configuration files.

Spring Framework, in its current form, is based on a set of separate components that provide

tools for solving specific development problems [74]. In particular, these tools allow developers

to easily manage access to various relational and non-relational data stores, transactions, se-

curity or integration with external systems. These components include the following modules:

core container, data access/integration modules, Web, Aspect-Oriented Programming (AOP),

instrumentation and tests. The core container manages dependency injection and provides the

inversion of control functionality. It manages object lifecycle and provides generic functionality

to be used by other modules (e.g. event handling or application context management).

In Spring, data access and integration modules allow the application to communicate with

databases using JDBC [33] or such tools as Hibernate that rely onORM techniques. In Spring,

the Web layer is provided through the Spring Web MVC Framework [76] that simplifies develop-

ment using the Model-View-Controller (MVC) design pattern [209]. Aspect oriented program-

ming (AOP) allows Spring to separate business logic from other non-business related functional-

ity, such as transactions or security management. The test module, on the other hand, simplifies

application testing with such popular tools as JUnit or TestNG and provides support for mock

objects (allowing isolated testing of applications).

7.4.9.1 Presentation Layer

The SMARTAM V2 UI has been implemented according to the MVC design pattern. The Spring

Web MVC framework has been used for this purpose (Figure 7.20). As discussed, requests for

specific views of the discussed AM (e.g. resources, contacts, etc.) are routed by implemented

backend View Controllers, which operate on Models and return appropriate Views. Importantly,

SMARTAM V2 provides very lightweight controllers only and in most cases these controllers are

required to return a view and not provide any sophisticated operations on the model. Instead,

SMARTAM V2 leverages the AJAX-based communication between the view that is returned to

the user’s Web browser and the backend API.

A set of JavaScript functions has been developed to support communication between the

browser and backend controllers. These functions have been developed using the jQuery library
[36] and can request the data from the AM’s AJAX API and generate results in the HTML

format. The Pure templating tool [67] has been used to generate HTML from JSON data. The

Amazon S3 has been used as the Content Delivery Network. This service has been used to host

most of CSS and JavaScript files, as well as such static files as images.

UI of SMARTAM V2 follows the rules of the Responsive Web Design, which allowed to

implement the system to be easily accessible from a range number of different devices, including

276

Chapter 7. Authorisation Managers

smartphones and tablets. The latter ones, in particular, were becoming more common and the

UI has been adapted to be accessible on Apple iPad tablets, too.

7.4.9.2 Services Layer

The business logic has been implemented as services and components of the Spring framework.

Separate services are provided for each core functionality related to users, host and requester

applications, resources and their associated policies, etc. Services expose both fine-grained and

coarse-grained operations on resources. The Spring-provided transactions are used to provide

ACID properties [197] for these operations. Developed services are injected into Web controllers

and other services, and allow to operate on the data provided by the AM. Importantly, these

services do not access data directly but use implemented DAOs for this purpose.

7.4.9.3 Persistence Layer

SMARTAM V2 uses a MySQL Community Edition relational database [132] to store information

about users, resources, access control policies, and other data. SMARTAM V2 does not have

direct access to the database but leverages the Hibernate framework and the Hibernate Query

Language (HQL), which provide ORM and allow to easily map objects to database tables. In

order to minimise the number of database access requests, SMARTAM V2 uses the Infinis-

pan framework [31], which caches the data received from the database in an efficient No-SQL

key/value datastore and makes it available to services of the AM.

7.4.9.4 Application Programming Interface

API endpoints have been implemented using the Apache CXF framework [138] and its JAX-RS

component [271]. This framework has been used for both AJAX-based as well as UMA-related

endpoints. The developed endpoints are designed to be RESTful to the maximum possible extent

and are based on existing HTTP methods.

Developed frameworks, such as Discovery, OAuth 2.0, and UMA/j AM, have been developed

with support for Apache CXF. Therefore, these frameworks have been added to the AM with

minimum effort. In most cases, it was only required to provide configuration of specific endpoints

in Spring XML-based configuration files and to implement necessary interfaces of data providers

or validators of these frameworks.

The UMA-related functionality in SMARTAM V2 has been implemented using UMA/j Au-

thorisation Manager framework, which provides implementation of Protection API and Autho-

risation API. UMA/j AM has been built as the first known framework to provide developers

with the ability to implement custom UMA-compliant Authorisation Managers. UMA/j ensures

277

Chapter 7. Authorisation Managers

that API endpoints exposed by AMs provide functionality that conforms to the UMA protocol.

Importantly, it provides these endpoints as Java Servlets as well as JAX-RS endpoints, which

supports flexibility in building Web applications.

Existing API endpoints provided by this framework were included in SMARTAMV2. UMA/j

AM requires configuration mostly and allows such configuration to be specified in Spring XML-

based metadata configuration files. Furthermore, various custom data providers and valida-

tors, which were necessary for different API endpoints, have been implemented. For exam-

ple, adding the Resource Registration endpoints to SMARTAM V2 required including the the

JAXRSResourceRegService from UMA/j and implementing the CRUD-like ResourceRegProvider

interface that is required by this service.

7.4.9.5 Security

SMARTAM V2 extensively uses Spring Security [75] - a framework that provides out-of-the-box

user authentication and user authorisation functionality for Web applications. Spring Security

allows to manage user sessions at the AM, irrespectively of how the user got authenticated

in the first place (e.g. it was easy to use the described Facebook login instead of traditional

username/password login). Additionally, it provides access to a Security Context, which is

associated with each session, which is used during access control of users at a method level. For

example, the user identifier is checked for authorisation at various layers of the AM, including

controllers as well as services.

Spring Security has been extended with support for the OpenID Connect, OAuth 2.0 and

UMA protocols by implementing these protocols as additional modules. With this approach,

users can authenticate to SMARTAM V2 with their existing identities. Furthermore, client ap-

plications can access various APIs provided by SMARTAM V2 and UMA-compliant applications

can interact with Protection API and Authorisation API of this AM.

7.4.10 Limitations

SMARTAM V2 was the second implementation of an UMA-compliant Authorisation Manager

that addressed various limitations that were identified in SMARTAM V1. However, during the

research and development of the UMA protocol further shortcomings have emerged and some of

these shortcomings have affected this AM implementation.

This section discusses the following limitations of SMARTAM V2:

1. Access control policies are not reusable;

2. Limited support for claims-based policies;

278

Chapter 7. Authorisation Managers

3. Limited support for OpenID Connect;

4. Support for bearer tokens only;

5. Limited grouping of resources at AM;

6. Limited support for notification management;

7. Lack of support for resource types;

8. Lack of support for negative policies;

9. Access to resources via UMA-enabled applications only.

Unlike the first AM implementation, SMARTAM V2 does not currently support reusable

policies. The Authorising User cannot define a policy and then apply it to numerous resources.

Instead, the user has to reapply the policy at the central AM (this already introduces a level of

convenience for the Authorising User). Although the lack of reusable policies can be considered

as a significant limitation, it can be easily resolved and this is planned in further versions of the

software. In particular, SMARTAM V2 can be extended to support policy templates. Support

for such templates would allow the user to create a policy for a particular resource and then save

it as a template. This template could then be applied to other resources as necessary.

SMARTAMV2 supports only redirect-type claims. Such claims require the Requesting Party

to be redirected by the requester application to this AM. The Requesting Party then engages in

the claims gathering flow, either by signing in with their account or by providing OIDC claims to

the AM. Support for OIDC claims is currently limited and allows the Requesting Party to only

assert to the AM that they are the owner of a particular email address. This limitation is related

to the fact that SMARTAM V2 currently uses only the email field of the supplied OIDC claims.

Therefore, implemented access control policies for resources may define that only specific users

(owners of a particular email address) will be given certain permissions for a resource/service.

This behaviour is different from SMARTAM V1 where Authorising Users could define claims

that would need to be self-asserted by Requesting Parties, irrespectively of the identities of

those parties.

Tokens issued for Requesters are bearer-type tokens and this is similar to SMARTAM V1.

This requires Requesters to carefully handle such tokens and not expose them to malicious

third parties. Moreover, these tokens are opaque to Hosts. Therefore, a Host has to refer to

SMARTAM V2 to check every access request that comes from a Requester. Unlike in SMARTAM

V1, the SMARTAM V2 informs a Host about the permissions associated with a token. Therefore,

279

Chapter 7. Authorisation Managers

a Host can reuse this information for subsequent access requests that include the same token

from a Requester.

Hosts can register resources for protection at an AM and can group them as required through

the notion of resource sets (recall Section 5.4.2). However, these resource sets cannot be further

grouped at the SMARTAM V2. It would be beneficial to allow the Authorising User to register

numerous resources from various host applications and then group them if these resources are

logically connected (e.g. recall the scenario of applying for a job position that requires sharing of

resources from a set of distributed Hosts). A single access control policy could then be applied

to such a group instead of to individual resources.

As discussed in Section 7.4.5, when an Authorising User creates an entry in an access control

policy then a notification is sent to a Requesting Party who may be concerned with accessing a

resource/service. An Authorising User currently cannot control which information is sent and

this could be introduced in further versions of the software. For example, an Authorising User

could decide when an AM sends emails or other notifications.

When a resource is first registered at an AM, it is associated with an empty access control

policy (i.e. there are no sharing setting entries associated with this resource). It is up to an

Authorising User to create new entries in that policy and share a resource. This limitation in

terms of user experience could be addressed by allowing policies to be automatically assigned

to resources based on resource types. For example, if a user registers social-type resources (e.g.

videos, photos, blog entries, and similar) then these resources could be potentially shared based

on a well-defined logic at an AM (e.g. social-type resources could be by default shared with all

friends of an Authorising User). It would be important, however, to inform a user about the

access control policy that would be applied to a resource during its registration and before that

resource is actually shared.

Authorisation Managers are envisioned for managing access control for various resources

stored on distributed hosting applications. With vast amount of information, it would be neces-

sary to support user with any policy management functions, such as those mentioned in Section

2.6.2.3. SMARTAM V2 is currently limited in this respect. In particular, this AM does not allow

for resource types to be used and such resource types could simplify management at the AM and

would also help to visualise for an Authorising User what data is protected and in which way.

Importantly, further tests regarding the use of SMARTAM V2 that provides its functionality for

various hosting applications and large amounts of different resources should be conducted.

Similarly to SMARTAM V1, the second AM implementation does not support negative

policies. Therefore, certain use cases and scenarios may need to be implemented using more

complex positive policies. Requesting Parties have to be given explicit permissions to access

280

Chapter 7. Authorisation Managers

resources and it is not easily possible to give them access to all resources and exclude only

certain ones.

Resources and services protected with SMARTAM V2 can be accessed by Requesting Parties

via requester applications that understand the UMA protocol. As such, typical Web browsers

cannot act as clients unless these browsers are equipped with some plugins that are able to

interact with a Host and an AM according to the UMA protocol. This is considered as one of

the limitations of the implemented AM.

7.5 Chapter Summary

This chapter presented two UMA Authorisation Manager implementations. It started by dis-

cussing an initial AM implementation, called SMARTAM V1. It presented the design of this

software and its policy model. It also discussed integration of SMARTAM V1 with example

applications.

This chapter then presented the conducted user study that was used for evaluation of SMAR-

TAM V1 and its User Interface. It presented identified shortcomings of SMARTAM V1 based

on the gathered feedback from the user study. It also presented requirements that were derived

from these shortcomings and that were used in further work on UMA software.

Moreover, this chapter discussed a second AM implementation, named SMARTAM V2.

SMARTAMV2 addresses various shortcomings that were identified in the earlier implementation.

It also provides support for a more recent revision of the UMA protocol. This chapter discussed

the architecture of this software and its policy model. It also presented its unique features

that provide additional value on top of the core UMA proposal. This chapter also provided an

overview of shortcomings of SMARTAM V2.

281

Chapter 8

Conclusions

This chapter concludes the presented work. It first summarises the thesis. This summary is

followed by a consideration of future research directions and concluding remarks.

8.1 Thesis Summary

This thesis pointed out the weaknesses in existing systems managed by different authorities. It

also discussed the requirements for a new system that would address these weaknesses. This the-

sis discussed a novel authorisation system called User-Managed Access Control. It also presented

the User-Managed Access (UMA) proposal that is researched by the User-Managed Access Work

Group at Kantara Initiative. The proposed systems, unlike existing ones, allow the user to play

the pivotal role in the workflow of sharing data securely and efficiently with other users and

services on the Web. This thesis also presented details of the developed UMA software.

Firstly, Chapter 1 introduced the thesis. It outlined the main goals and the approach taken

in satisfying these goals. It also introduced the motivation behind a new access control solution

for distributed and user-driven environments such as Web 2.0. It presented an example scenario

describing a transaction on the Web. It provided analysis of this scenario and pointed out the

shortcomings of existing access control systems. It then presented formulated requirements for

a new access control proposal. This chapter summarised the novelty of the solutions presented

in this thesis and also discussed main contributions.

Access control in distributed environments was presented in Chapter 2. This chapter pro-

vided background information regarding concepts that were used throughout this thesis. It

started with an overview of multi-domain computing environments, the open Web and Web 2.0

applications, and presented their specific characteristics that are of interest in the context of

282

Chapter 8. Conclusions

access control. Furthermore, it discussed different concepts of access control in distributed envi-

ronments, access control policies as well as delegated authorisation. It then discussed challenges

in access control policies and architectures.

Chapter 3 provided a literature review. It discussed existing standards and standard pro-

posals as well as academic work. It presented various solutions for access control that allow

individuals to be in control of access to their Web data.

Chapter 4 introduced a novel authorisation solution for distributed Web resources, called

User-Managed Access Control (UMAC). It discussed the architecture and the protocol of this

proposal. It also showed how this proposal meets identified requirements for a new user-managed

access control system. It then discussed the identified shortcomings and limitations of UMAC.

The UMAC approach puts a user in full control of access to their resources on the Web. It

relies on a user’s centrally located security requirements for those resources, which may be scat-

tered across multiple distinct Web applications. These security requirements can be expressed

in the form of access control policies and are stored and evaluated in a specialised user-chosen

component. Applications delegate their access control function to this component.

Chapter 5 presented the User-Managed Access (UMA) solution, which is researched by the

User-Managed Access Work Group at Kantara Initiative. UMA has been used in research pre-

sented in this thesis. This chapter discussed additional requirements for UMA. It also presented

the UMA architecture and the protocol. This chapter then evaluated UMA and provided an

overview of its limitations. It also showed differences between UMA and the UMAC approach.

UMA provides a method for users to control third-party access to their protected resources,

residing on any number of host sites, through a centralised authorisation manager that makes

access decisions based on user instructions. UMA gives users the required flexibility in sharing

their data and supports requesters with accessing such protected data, similarly to the previously

discussed UMAC proposal.

Chapter 6 presented two UMA frameworks that allow applications to externalise their access

control functionality and act as Hosts and Requesters, as defined by the UMA protocol. Section

6.2 presented a Java implementation named UMA/j. Section 6.3 presented a Python implemen-

tation named Puma. This chapter also discussed identified limitations of both frameworks.

UMA/j was targeted at enterprise-level (but still user-driven) cloud-based Web applications.

The framework provides a high-level UMA API for applications as well as allows to use low-level

APIs for finer control of the protocol flows.

PUMA, on the other hand, was built primarily for applications running on the Google App

Engine PaaS. Because this framework was designed and implemented later than UMA/j, it con-

tained various enhancements and simplifications for application developers. It also implemented

283

Chapter 8. Conclusions

a more recent revision of the UMA protocol.

Chapter 7 presented two UMA Authorisation Manager implementations that were developed

in parallel to the work on UMA frameworks. It started by discussing an initial AM implemen-

tation, called SMARTAM V1. It presented the design of this software and its policy model. It

also discussed integration of SMARTAM V1 with example applications.

SMARTAM V1 allows a user to compose access control policies and apply them to a set of

resources hosted on UMA-enabled Web applications. These applications delegate access control

to this AM and are only concerned with enforcing access control decisions. The AM provides a

User Interface for managing policies and a RESTful API for client applications.

Chapter 7 then presented the conducted user study that was used for evaluation of SMAR-

TAM V1 and its User Interface. It presented identified shortcomings of SMARTAM V1 based

on the gathered feedback from the user study. It also presented requirements that were derived

from these shortcomings and that were used in further work on UMA software.

Moreover, Chapter 7 discussed a second, improved AM implementation, named SMARTAM

V2. SMARTAM V2 addresses various shortcomings that were identified in the earlier implemen-

tation. It also provides support for a more recent revision of the UMA protocol. This chapter

discussed the architecture of this software and its policy model. It also presented its unique fea-

tures that provide additional value on top of the core UMA proposal. This chapter also provided

an overview of shortcomings of SMARTAM V2.

Similarly to the first version, SMARTAM V2 allows the user to compose access control

policies and apply them to a set of resources hosted on different Web applications. These

applications delegate access control to this AM and are only concerned with enforcing access

control decisions. SMARTAM V2 allows requester applications to obtain authorisations to access

protected resources.

Finally, Chapter 8 concludes this work. It discusses a summary of the thesis. It also presents

future research directions and finally provides concluding remarks.

8.2 Future Work

The main future research directions are:

1. Deployment and acceptance of user managed access control approaches;

2. Development of improvements to UMA protocol:

(a) Optimised integration with client applications;

(b) Schema for protected resources;

284

Chapter 8. Conclusions

(c) Protected resources discovery support;

(d) User’s preferred AM discovery support;

3. Development of improvements to SMARTAM implementation:

(a) Extended audit with support for arbitrary events;

(b) Extended policy support;

(c) Visualisation of complex policies;

(d) User studies of the newly implemented AM;

(e) Integration of AM with federated authentication proposals;

(f) Mobile applications support.

These directions are discussed in further sections.

8.2.1 Deployment and acceptance of user managed access control approaches

Despite numerous advantages of such solutions as UMAC or UMA in particular, as well as the

presented UMA implementations, it is still too early to tell if users will fully appreciate the

new functionality. In particular, it would be necessary to focus on broader deployment and

integration of the UMA protocol with existing applications used on the Web. Such integration

will allow for real-world validation of the proposed solution and its applicability to protecting

distributed Web resources.

There are various use cases where it has been identified that the individual should be em-

powered to control access to the data. Some of these use cases have been submitted to the

UMA WG and are available at [85]. New implementations supporting similar scenarios have

been emerging. By allowing the individual user to be in control over their data, the user can

make better choices how such data is shared and used, which may potentially provide a better

value not only to the user but also to the recipient of the data. However, user uptake is still

unpredictable, and it will be very interesting to find out to which extent users will utilise the

features of user managed access approaches. In particular, it will be beneficial to investigate how

UMA fits into existing business models (or changes them) where users are offered a free service

and in exchange the application gets access to the personal data of the users.

Furthermore, the UMA approach should be aligned with other existing access control propos-

als that should increase its adoption. Such solutions as Google’s Street Identity can be perceived

as the first approach towards "UMAnising" APIs and allowing for more user-controlled access to

distributed resources. Further work is necessary on making the UMA protocol a real standard,

published as RFC at IETF by the User-Managed Access Work Group.

285

Chapter 8. Conclusions

8.2.2 Development of improvements to UMA protocol

This section discusses potential future work in the area of UMA protocol improvements.

8.2.2.1 Optimised integration with client applications

Users of host and requester applications are required to go through the complete OAuth 2.0

flow, which is a core part of the UMA proposal, in order to authorise these applications to

use functionality provided by authorisation managers. This flow is required for applications to

obtain HAT or RAT tokens respectively. Importantly, the user has to go through such a flow (or

a similar one) twice in case their application uses federated authentication, i.e. once during the

sign in with their preferred IDP and once during application authorisation for their preferred

AM.

It would be beneficial to simplify the process of obtaining HAT and RAT tokens by applica-

tions. In particular, it should be possible for applications to obtain the required token when the

user signs in to such an application. This would allow the user to sign in to the client application

(either host or requester) and authorise this application for the AM functionality in a single flow

and with a single redirect only. For example, when the user signs in to the AM with the OpenID

Connect protocol, then the client application would, apart from user information, obtain the

HAT/RAT token for a particular AM that the user chooses to use.

8.2.2.2 Schema for protected resources

Current UMA proposal allows host applications to register arbitrary resources at the user’s pre-

ferred Authorisation Manager. This registration requires certain information to be provided by

the host application, including the name of the resource as well as its icon URI. Such information

is used mostly to support the user during policy management steps at AM and is required at

the User Interface level.

Work is planned on providing a schema for most commonly used data types which could be

protected using UMA. Host applications would be able to register resources and specify their

type rather then their icon URI or even their name. This solution would achieve two goals.

Firstly, the user experience would be standardised at the AM by allowing the AM to decide

on the icons to be displayed based on the particular resource that was registered. This will allow

the user to more easily review their protected resources by their specific type. For example, it

will be possible to identify personal information, documents, or photos based on their category.

Such user experience is of particular importance on the open Web where users are concerned

with various data types distributed among numerous applications and the registration of their

286

Chapter 8. Conclusions

various resources at a single AM.

Secondly, it would be possible to make a step forward towards allowing the AM to associate

existing policies to newly registered resources without any user intervention. In particular, a

user that registers a resource should not be concerned with manually associating a policy to

protect and share this resource. Instead, the Authorisation Manager could suggest a policy that

should be applied based on the resource type.

Moreover, by applying categories to different resources, the user will be able to review

security settings for those resources more precisely, either manually or with the help of the AM.

For example, the user might be provided with a view of policies for their personal information

and will be able to quickly detect any anomalies. Another example is where the AM will be able

to notify the user that a policy for a resource of a particular type is different from policies for

other resources of the same kind.

8.2.2.3 Protected resources discovery support

The UMA proposal does not specify how requester applications learn about protected resources

that these applications could access for a particular user. For example, a user of an online

job application system must provide the location of their PDS that could be used as a source of

data, in case this system integrates with numerous PDS applications. Furthermore, an online job

application system is unable to detect if the PDS actually stores a required piece of information.

It would be beneficial to allow the requester discover applications used by the user for specific

types of protected resources. For example, the requester could discover applications used by the

user for storing verified phone numbers or "Transcript of Records" documents. The user would

then be presented with a limited set of choices when trying to import the data to their requester

application. Such discovery would also allow requesters to provide additional functionality if the

requester can discover that the user has a particle resource type. For example, the application

can offer premium-type functionality in case the user decides to provide it with a verified phone

number. Such solution is adopted by the Google’s Street Identity protocol that defines a discovery

endpoint.

8.2.2.4 User’s preferred AM discovery support

UMA does not specify how host applications can discover the preferred AM of the user dynam-

ically. In particular, the user is concerned with choosing the right AM after signing in to the

application. The user can be presented with an input field where they must provide the URL of

the AM or they can be provided with a UI that supports them with the AM selection process.

In the latter case, the user might be challenged with numerous logos of potential authorisation

287

Chapter 8. Conclusions

managers and this is commonly referred to as the nascar problem.

It would be useful to provide hosts with the ability to discover the user’s preferred AM

during the sign in process. In particular, such discovery would be possible with authentication

federation protocols. The user’s preferred AM could be provided as one of the attributes available

for the user at their IDP (e.g. as one of the claims returned by the UserInfo endpoint available

in OpenID Connect). Moreover, the AM function could be added on top of the IDP, which

would eliminate the need for such discovery. For example, the application would be provided

with a token for the IDP and AM during the sign in process. In fact, such approach of combining

identity providers and authorisation managers has been already discussed and considered by the

UMA WG.

8.2.3 Development of improvements to SMARTAM implementation

This section discusses potential future work in the area of AM development.

8.2.3.1 Extended audit with support for arbitrary events

SMARTAM V2 allows users to quickly review how their resources are accessed by requesting

parties and requesters. This feature is provided using a separate UI view. This view presents a

list of entries representing successful access requests to protected resources.

However, this view currently supports access requests to UMA-protected resources only.

This view is planned to be extended with support for other events of the AM. In particular, this

view could include policy specification related events (e.g. creation or deletion of a new entry

in a policy for a particular resource) or resource registration/de-registration events. Different

approaches to showing this information to the user are planned to investigated, e.g. based on

the level of events, which is similar to adopted logging strategies in software development.

8.2.3.2 Extended policy support

SMARTAM V2 provides support for myself- and others-type policies. However, a single policy

cannot be reused for multiple resources. Reusable policies were only provided in SMARTAM

V1. The existing SMARTAM V2 implementation is planned to be extended to allow users to

define policy templates which could be applied to newly registered resources. For example, the

user could share their newly uploaded photos with a predefined set of friends for whom a policy

has been created earlier, or with a predefined set of services.

The policy model is also planned to support arbitrary third-party asserted claims. Firstly, it

would be necessary to support OpenID Connect claims in policies. SMARTAM V2 implementa-

tion supports only the email attribute and allows users to present a verified email to get access

288

Chapter 8. Conclusions

to protected resources. Future plans include extending this support with other claims that are

specified in [57].

Furthermore, it might be useful to allow users to compose their own contracts. These

contracts would be enforced by services accessing data. Contracts are particularly important in

Person-to-Service sharing scenarios. For example, a user could share their data only for a specific

purpose and under specific terms, which is one of the goals of the UMA proposal. The purpose

and the terms could be defined in a document. Adherence to terms would be acknowledged by

the receiving party and this would have legal enforceability.

An interesting use case for policies is also presented in [243]. This use case discusses mon-

etisation of access to resources. It would be possible for the user to use UMA to monetise access

to their data even if the hosting application did not support such feature. During access to a

protected resource, the requesting party would be required to provide a payment confirmation

and only then would be provisioned with the necessary permissions for the RPT token.

8.2.3.3 Visualisation of complex policies

UMA centralises authorisation policies for user’s distributed Web resources. The externalisation

of policies from host applications introduces a new level of complexity for the user. In particular,

the user has to map the authorisation structure for their different resources and with numerous

resources and their policies in place, this might be a difficult task. It is likely that the user will

be lost with too many policies in place and will not be provided with a meaningful holistic view

of the security settings for their online data. This may result in the loss of privacy, exploitation

of online personal information or a security breach if data is not shared as intended [155].

Research should be continued in providing the user with a better understanding of sharing

of their data in such highly distributed environment as the open Web. Importantly, policy

visualisation techniques could be used to enhance privacy controls available at the developed AM.

Initial attempts towards achieving this goal have been already made with preliminary research

conducted as a joint effort with Domenico Catalano. Initial presentation of this research can be

found in [155]. This research aims to define a context of the data sharing policy. A visualisation

approach is planned to be used to help users define the appropriate context of sharing their

information. A visualisations of the proposed concept, which is named UMA Connection, is

shown in Figure 8.1.

8.2.3.4 User studies of the newly implemented AM

During the presented research, the functionality and benefits provided by UMA as well as the

User Interface of SMARTAM V1 were evaluated. Further evaluation of SMARTAM V2 should

289

Chapter 8. Conclusions

Figure 8.1: Visualisation of UMA Connection concept [155].

be also conducted in order to gather feedback on the newly designed UI of this AM. The goal is

to investigate the newly proposed policy model that allows users to share their resources using

myself- and others-type policies. Furthermore, it would be necessary to investigate how users

respond to the new functionality introduced in SMARTAM V2, i.e. access history as well as

request for access notifications.

8.2.3.5 Integration of AM with federated authentication proposals

SMARTAM V2 proposal could be integrated with other third party Identity Providers using

such novel protocols as OpenID Connect. OIDC is one of the emerging Web technologies that

aims to solve the problem of authentication on the Web. Users could be able to sign in to the

AM with their existing accounts from their chosen OIDC-enabled IDPs. This would significantly

simplify the login user experience to the AM.

However, it would also pose interesting challenges with regard to policy specification. For

example, a user can share a resource with their friend based on this friend’s Google identity but

such friend can sign in to the AM with their account from another OIDC-enabled IDP when

trying to satisfy the policy. In such situation, the policy would not be satisfied and access to a

resource would not be granted. Account linking is therefore necessary and such linking would

allow a user to link multiple federated identities to their local account at the AM. This issue is

planned to be investigated further.

290

Chapter 8. Conclusions

Figure 8.2: User Interfaces of a prototype mobile application integrated with SMARTAM V2.

8.2.3.6 Mobile applications support

To allow building mobile applications that could integrate with the AM system, a Management

endpoint in SMARTAM V2 was designed. However, support for mobile is in its very early stages

of development. Further development efforts are planned and this would allow other developers

to be able to build applications on top of this AM. In particular, the goal is to expose the

policy specification functionality over an API. With this approach, others will be able to build

their own user interfaces and still benefit from the proposed rich policy model as well as already

implemented UMA functionality,. Figure 8.2 illustrates the UI of a prototype implementation

of a mobile application that supports viewing audit log information. This prototype application

was implemented using the Feedhenry framework [12].

8.3 Concluding Remarks

The open Web environment has emerged as an ubiquitous platform that allows numerous online

transactions to take place. Web applications have become more user-centric and allow their

users to create different types of data, and to disseminate this data and share it with other users

and services. With the ever-growing number of resources owned by individual users, there is

a clear need for new ways to control the data and its access by other users or services. The

proposals discussed in this thesis aim to provide a solution to protect resources according to

user’s requirements. Supporting users with making meaningful choices regarding their data

sharing is an important step in realising one of the goals of the Web - making the user the core

part of this platform.

291

Appendices

292

Appendix A

Graphical representation of UMA/j

module dependencies

Figure A.1: UMA/j Host module dependency graph.

293

Chapter A. Graphical representation of UMA/j module dependencies

Figure A.2: UMA/j Requester module dependency graph.

294

Chapter A. Graphical representation of UMA/j module dependencies

Figure A.3: UMA/j Authorisation Manager module dependency graph.

295

Appendix B

Example UMA/j Host configuration

file

1 <beans>

2 <jaxrs:server id="uma" address="/uma">

3 <jaxrs:serviceBeans>

4 <ref bean="resourceRegEntryService" />

5 <ref bean="deleteService" />

6 </jaxrs:serviceBeans>

7 </jaxrs:server>

8 <bean id="umaValidationProvider"

9 class="...HttpUMAHostValidationProvider">

10 <property name="accessDecisionEvaluator"

11 ref="gallerifyAccessDecisionEvaluator"/>

12 <property name="requester" value="false"/>

13 </bean>

14 <bean id="abstractResourceReg"

15 class="...AbstractResourceRegistrationOAuthAwareService"

16 abstract="true">

17 <property name="provider" ref="gallerifyUMAProvider"/>

18 <property name="oauthAuthorizationUrl" value="${oauth.entry}"/>

19 </bean>

20 <bean id="resourceRegEntryService"

21 class="...ResourceRegEntryService" parent="abstractResourceReg">

296

Chapter B. Example UMA/j Host configuration file

22 </bean>

23 <bean id="deleteService"

24 class="...ResourceRegDeleteService" parent="abstractResourceReg">

25 </bean>

26 <bean id="resourceRegExceptionMapper"

27 class="...ResourceRegExceptionMapper"/>

28 <bean id="gallerifyUMAProvider" class="...GallerifyUMAProvider">

29 <property name="actions">

30 <list>

31 <bean class="net.smartam.uma.host.core.domain.UMABasicAction">

32 <constructor-arg name="actionId" value="view_album_api"/>

33 <constructor-arg name="actionUri"

34 value="http://static.gallerify.me/json/view_album_api.json"/>

35 <constructor-arg name="actionName"

36 value="Viewing albums from external applications."/>

37 <constructor-arg name="actionIconUri"

38 value="http://static.gallerify.me/images/api.png"/>

39 </bean>

40 <bean class="net.smartam.uma.host.core.domain.UMABasicAction">

41 <constructor-arg name="actionId" value="view_album"/>

42 <constructor-arg name="actionUri"

43 value="http://static.gallerify.me/json/view_album.json"/>

44 <constructor-arg name="actionName"

45 value="Viewing albums in Gallerify.me application."/>

46 <constructor-arg name="actionIconUri"

47 value="http://static.gallerify.me/images/read.png"/>

48 </bean>

49 </list>

50 </property>

51 </bean>

52 <bean id="umaProperties" class="...PropertiesFactoryBean">

53 <property name="locations">

54 <list>

55 <value>classpath:uma-config-host.properties</value>

56 </list>

297

Chapter B. Example UMA/j Host configuration file

57 </property>

58 </bean>

59 </beans>

Listing 25: Example UMA/j Host configuration specified in the Spring XML-based configuration
metadata file.

298

Appendix C

UMA/j Implementation and

Evaluation

C.0.1 Implementation

UMA/j has been implemented in Java according to software engineering best practices with

design patterns applied where necessary. Its modularity allows for adjustment to different de-

ployment environments and the use of its different components independently. For example, the

initially embedded OAuth 2.0 module has been externalised and can be now used as a stan-

dalone library (see Section 6.2.4 for more details). The same applies to Discovery and Dynamic

Introduction modules. Moreover, UMA/j does not rely on any specific Web framework and can

be easily integrated with applications that conform to the Java Servlet specification [101].

Unit tests were provided for individual components. The framework’s compliance with the UMA

protocol1 was verified using integration tests. The project can be built using Apache Maven [47].

Therefore, its modules can be added as dependencies to software that uses Maven as a build and

packaging manager.

C.0.2 Evaluation

UMA/j has been evaluated empirically from the perspective of Web application developers as well

as end-users of these applications. Performance or scalability tests have not yet been conducted.

UMA/j Host was tested empirically with two Web applications - an online storage service and

an online photo gallery service that can be deployed to the Google App Engine (GAE) platform.

Both applications provide User Interfaces and RESTful APIs. The online storage service is
1As discussed in this thesis, the UMA protocol was changing at the time this framework was developed.

Therefore, compliance was tested against an existing revision of UMA at the time of framework development.

299

Chapter C. UMA/j Implementation and Evaluation

based on Java servlets, while the online gallery service is based on the Spring MVC framework.

RESTful APIs are provided using Apache CXF. UMA/j was integrated with both applications

and tested using SMARTAM V1.

Integration of UMA/j Host required some programming effort and changes in configuration

files of the implemented applications. Firstly, necessary dependencies were included in the

classpath of these applications (since UMA/j is provided as Maven artifacts, it was possible to

add the framework as a dependency to the Maven pom.xml file of each of example applications).

Then, the UMA API was added to provide a clear separation between the framework and the

business logic. Discovery, dynamic registration, introduction (OAuth 2.0), and request filtering

were configured by adding software modules to deployment descriptors of Web applications (i.e.

in web.xml files). The first three modules were included as a single servlet, while the last

module was included as a filter. Configuration for all UMA/j modules was provided in an XML

configuration file and was included in WAR files of both applications. UMA functionality was

exposed to end-users with a custom UI at each application.

End-users of implemented Web applications were able to use the provided UI to delegate access

control for their resources to an Authorisation Manager. Such delegation had to be set up only

once per user per application. A user could choose their preferred AM either with a graphical

interface or by providing a URL of an AM at a simple Web input form (recall the discussion

on different approaches to the problem of selecting the Authorisation Manager in Section 5.4.1).

Then, a user was able to select which resources should be UMA-protected and they defined access

control policies for those resources at an AM. Both applications used a custom implementation

of the HostUMADataProvider.

UMA/j Requester was tested similarly to UMA/j Host. In particular, this framework was

added to a Web application, which was used as a Requester for the aforementioned Hosts. This

application allowed a user to provide a URL of an UMA-protected resource and get access to

such resource. It could access either files stored at the secure file service or photos stored at the

online gallery service.

Integration of UMA/j Requester required some programming effort and changes in configuration

files of the implemented requester application. Similarly to UMA/j Host, this framework was

included in the classpath of the application (i.e. as a dependency in the Maven pom.xml file).

Then, the UMA functionality was added by including the Requester Filter and Token Retrieval

modules in the deployment descriptor of the application (i.e. in the web.xml file). Configuration

of the framework was provided in an XML file.

End-users of the Requester used the implemented UI to provide a URL of the resource that they

wanted to access. The Requester then tried to access such resource and referred to an AM to

300

Chapter C. UMA/j Implementation and Evaluation

Figure C.1: User Interface of a Web application accessing UMA-protected resource.

obtain authorisation (Figure C.1).

Early versions of the UMA/j Requester framework were also tested with resources that were

protected with policies that required self-asserted claims to be submitted (such support was

provided by SMARTAM V1). In such situations, users were presented with a custom UI, where

these claims had to be confirmed. The JavaServer Faces (JSF) [35] technology was used to build

the Requester’s UI for self-asserted claims. Confirming these claims triggered the functionality

provided by the framework’s ClaimsProcessor. Figure 7.15 in Chapter 7 shows the User Inter-

face of an early Requester implementation where a use could confirm claims that were later sent

to the Authorisation Manager.

The framework’s implementation of the RequesterUMADataProvider interface was used to store

information regarding tokens for accessed resources in memory. It used a simple HashMap field

to store associations between protected resources and authorisation tokens. Therefore, sub-

sequent access requests to UMA-protected resources did not require the authorisation step,

as already obtained authorisation tokens could be used. In-memory implementation of the

RequesterUMADataProvider was sufficient for tests.

301

Appendix D

Puma Implementation and

Evaluation

D.0.3 Implementation

Puma has been implemented in the Python programming language. In terms of programming

paradigms, the library follows a functional design, as discussed in Section 6.3.2. Such design fits

in well with the statelessness of the HTTP protocol [186]. Unlike the UMA/j framework, Puma

provides all UMA-related functionality by itself and does not use separate libraries for discovery,

dynamic registration, or OAuth 2.0.

Puma can be embedded in Python Web applications. It has been tested using applications

running on the Google App Engine (GAE) platform [21]. However, the framework could be

effectively used with other Python Web frameworks, such as Django [8].

Puma provides an abstraction layer, which allows applications to use various storage technologies.

This layer has been introduced in order to allow Puma to be server-stack independent. Initial

version of the Puma framework was tightly bound to the Google App Engine platform and its

non-relational datastore [19].

D.0.4 Evaluation

Puma has been evaluated empirically from the perspective of Web application developers as well

as end-users of these applications. For this purpose, two Web applications have been developed:

1. Personal Data Store (Newcastle S3P) - UMA Host;

2. CareerMonster - UMA Requester.

302

Chapter D. Puma Implementation and Evaluation

Figure D.1: Python applications integrated with SMARTAM V2 using the Puma framework.

High-level view of the implemented applications is given in Figure D.1.

D.0.4.1 Host application

A simple Personal Data Store (PDS) type application has been implemented to test the Puma

framework. This application is a demo of the previously discussed Newcastle University S3P

application [69], which was introduced in Section 1.1.2.

The purpose of the PDS was to provide a solution, based on the UMA proposal, to the sce-

nario that was presented in Section 1.1.2. In particular, this solution could allow to introduce

procedural and technical improvements into the existing workflow of applying for job positions

by graduate students. In particular, the following improvements were used as the basis for

implementing the PDS and integrating it with Puma:

1. Students should be allowed to obtain trustworthy University data easily and securely with-

out unnecessary overheads. They should have the ability to securely share data, e.g. for-

matted as HEARs (Higher Education Achievement Reports) [30], directly from the Uni-

versity. Sharing should be done from existing systems - e.g. the aforementioned S3P,

Blackboard [3], or legacy NESS (Newcastle Electronic Submission System [52]).

2. Students should be able to share trustworthy University data without the need of engaging

University staff or without the need of manually handling data sharing every time such

data changes. They should be allowed to establish continuous access to their educational

data (HEARs, "Transcript of Records" document, etc.) without the need of contacting the

school’s administration staff.

303

Chapter D. Puma Implementation and Evaluation

Figure D.2: UMA-protected RESTful Web API of the PDS application.

3. Third party services on the Web (employers, career services, other universities) should

be able to access shared data. These services would get access to up-to-date students’

academic records and personal data (students do not have to update their information

during long processes of applying for graduate job positions). Access should be provided

based on users’ explicit consent.

The implemented PDS application allows to achieve these improvements. In particular, it allows

users to store personal information, e.g. full name, date of birth, phone number, their address,

attended schools and universities, as well as "Transcript of Records" documents. This application

exposes data through an UMA-protected RESTful API. The user can choose the AM to protect

their data and to enable selective access to this data. The API of the PDS application is visualised

in Figure D.2. This application was implemented using Google’s Python webapp framework [20].

Integration of Puma with the demo PDS application required minimal programming effort and

mostly basic configuration. Firstly, this framework was included as a module in the Module

304

Chapter D. Puma Implementation and Evaluation

Search Path of the PDS. Secondly, a custom UI to allow users to choose their preferred AM

was implemented. This UI contained a simple Web form that allowed users to provide the

AM’s URL. For simplicity purposes, this UI view was eventually removed and users were only

concerned with authorising the PDS to use SMARTAM V2. Discovery, dynamic registration, and

host introduction was performed as discussed in Sections 6.3.2.1, 6.3.2.2 and 6.3.2.3 respectively.

A custom callback handler was implemented, which exchanged the authorisation code for a HAT.

To allow users to register resources for protection, a resource registration and de-registration

handlers provided by Puma were added to the PDS. Both handlers were included in the url_-

mapping array of the WSGIApplication (refer to documentation of Google App Engine in [81]

for detailed information about adding handlers to Web applications). Necessary Web forms were

included for both handlers. Each form provided a hidden input field, with the encoded resource

URL that was used during resource registration. Information about successfully registered re-

sources was stored on the PDS by Puma.

In further research, the approach described in Section 6.3.3.2.2 was used. This approach further

simplified implementation of the UMA functionality at the UI level. A "Sharing Settings" button

was displayed next to individual resources. This button directed a user to the access control

policy associated with a resource and such policy was displayed within an iframe.

The Puma Warden component was used to protect access to resources via the API. As discussed

in Section 6.3.3.3.1, the Warden is a piece of WSGI middleware suitable for use with any WSGI-

compliant Python web application, and it was easily added to the application (see Listing 26).

The Warden applied the UMA protocol to all access requests to protected resources (recall

Listing 14). Importantly, the developer was only concerned with permission configuration (lines

6-8 in Listing 26).

1 routes = [(’/api/users/(%s)/name’ % r1, ApiNameHandler),
2 (’/api/users/(%s)/phone’ % r1, ApiPhoneNumberHandler)
3 ...]
4 app = webapp.WSGIApplication(routes)
5 def main():
6 permissions_map = {
7 ’get’: ’http://static.smartam.org/puma/read.json’,
8 ’post’: ’http://static.smartam.org/puma/write.json’ }
9 app_with_warden = Puma.Warden.Warden(app, permissions_map)

10 wsgiref.handlers.CGIHandler().run(app_with_warden)

Listing 26: Protecting the applications API with UMA using Puma Warden [123].

Users in the PDS were uniquely identifiable and this identifier was used for integration with

305

Chapter D. Puma Implementation and Evaluation

Puma entities (recall Section 6.3.3.1). Furthermore, each identifier was linked with an email

address. A simple Discovery endpoint was implemented. This endpoint allowed a requester

application to discover a user identifier based on a provided email address as a parameter of an

HTTP GET request. This endpoint was not UMA protected.

D.0.4.2 Requester application

Puma Requester was evaluated by integrating it with an application named CareerMonster.

CareerMonster is implemented as a demo of an online job application system. It allows students

to create their personal accounts where they can apply for advertised job positions. The job

application process requires submitting personal information, such as email address, full name,

as well as the verified "Transcript of Records" document (recall the scenario presented in Section

1.1.2).

Additionally, the CareerMonster application allows prospective employers to create accounts and

add new job positions. Importantly, employers can later view applications submitted by students

and can request additional data from students. For example, employers can request access to

the phone number information owned by a student and stored at the PDS.

CareerMonster can access UMA-protected resources using the Puma framework. It allows stu-

dents to import their protected data from the PDS to CareerMonster. Additionally, this applica-

tion can request access to UMA-protected resources, i.e. request for access can be submitted by

a Requesting Party and later evaluated by an Authorising User. Such functionality is currently

not a part of the UMA protocol but was added as an extra feature to to Puma Requester. This

feature is presented in Section 7.4.6.

Integration of Puma Requester required minimal programming effort and very basic configura-

tion only. Similarly to Puma Host, this framework was included as a module in the Module

Search Path of the Requester application. A UI was implemented to allow students to apply for

advertised job positions. In particular, a simple Web form was implemented where students can

provide their data either by manually filling in the form or by importing this data from their

PDS. Required data included the name and the "Transcript of Records" document.

Accessing data from the PDS was done according to the UMA protocol. A custom

RequesterCallbackHandler has been implemented. This handler was responsible for perform-

ing discovery, dynamic registration, and requester authorisation. This handler also allowed to

obtain RPT tokens, which were used to access resources from the PDS. Obtaining RPT was done

based on the x-oauth_access_granted parameter with the use of Puma.Util.obtain_and_-

store_rpt_for_host_id() method. This functionality supported the Person-to-Self sharing

scenario (recall Section 5.3).

306

Chapter D. Puma Implementation and Evaluation

The Person-to-Person sharing scenario has been also provided using Puma. In this scenario,

the employer was able to access data stored at the PDS and owned by a student. An extension

to UMA has been used to allow requests for access in the absence of security policies at an

AM. Implementation of this flow was provided in the RequesterCallbackHandler and used the

x-oauth_access_req parameter. CareerMonster could access a protected resource only when

request for this access has been approved by a student (i.e. Authorising User) at an AM.

In both aforementioned scenarios access to data did not require Requesting Parties to provide

the location of resources they were trying to access (this differs from applications implemented

using UMA/j). Such location was determined dynamically by the CareerMonster application

using the Discovery endpoint available at the PDS. In particular, CareerMonster used the email

address of the user who was signed in at this application to discover the identifier on the PDS.

Then, the API client of the CareerMonster application used such identifier when making requests

to protected resources on this PDS. This functionality was added to the previously discussed

RequesterCallbackHandler.

307

Appendix E

SMARTAM V1 Data Model

308

Chapter E. SMARTAM V1 Data Model

Fi
gu

re
E.
1:

SM
AR

T
Au

th
or
isa

tio
n
M
an
ag
er

V1
En

tit
y
Re

la
tio

ns
hi
p
D
ia
gr
am

.

309

Appendix F

SMARTAM V2 Data Model

310

Chapter F. SMARTAM V2 Data Model

Fi
gu

re
F.
1:

SM
AR

T
Au

th
or
isa

tio
n
M
an
ag
er

V2
En

tit
y
Re

la
tio

ns
hi
p
D
ia
gr
am

.

311

Appendix G

Example UMA Authorisation

Manager Configuration Data

1 { "version":"1.0", "issuer":"https://www.smartam.org",
2 "dynamic_client_registration_supported":"yes",
3 "token_types_supported":["artifact"],
4 "host_grant_types_supported":["authorization_code",
5 "client_credentials"],
6 "claim_types_supported":["openid"],
7 "client_dynamic_registration_endpoint":
8 "https://www.smartam.org/api/oc/register",
9 "host_token_endpoint":

10 "https://www.smartam.org/oauth/token",
11 "host_user_endpoint":
12 "https://www.smartam.org/oauth/authorize",
13 "resource_set_registration_endpoint":
14 "https://www.smartam.org/api/uma/resource_reg/resource_set",
15 "token_status_endpoint":
16 "https://www.smartam.org/api/uma/validation",
17 "permission_registration_endpoint":
18 "https://www.smartam.org/api/uma/permissions_reg",
19 "requester_token_endpoint":
20 "https://www.smartam.org/oauth/token",
21 "requester_user_endpoint":
22 "https://www.smartam.org/oauth/authorize",
23 "requester_host_token_endpoint":
24 "https://www.smartam.org/api/uma/requester_host_token",
25 "permission_request_endpoint":
26 "https://www.smartam.org/api/uma/permissions_request/ticket" }

Listing 27: Example of Authorisation Manager Configuration Data - SMARTAM V2.

312

Appendix H

Questionnaire for SMARTAM V1 UI

Research Study

The questionnaire consisted of the following open and closed questions. Questions 1-7 were closed

questions and could be answered in one of the following ways:Strongly Disagree, Disagree, Neither

Agree nor Disagree, Agree, Strongly Agree. These questions were additionally accompanied by

"Please Explain" subquestions. On the other hand, questions 8-9 were open while question 10

allowed to gather information about the participant.

1. The Authorisation Manager User Interface is easy to use. Did you have any particular

problems or issues with the interface while completing the task?

2. The process of using the Authorisation Manager User Interface in order to set access control

policies for requesters is clear. Were the actions required in each step clear,or did you find

the process confusing?

3. The process of setting up access control policies has a logical order of individual steps.

Without the instructions, do you think you would have proceeded in the same way? Would

you know what to do to setup a policy?

4. I understand what it was that I was doing when using the Authorisation Manager. Were

you aware of the stage of each step when setting up access control policies?

5. I don’t notice any inconsistencies when I use the Authorisation Manager User Interface.

Did all the buttons, headings, labels, etc. react in the same consistent way? Did anything

behave unexpectedly?

6. I can recover from mistakes easily using the User Interface of Authorisation Manager.

313

Chapter H. Questionnaire for SMARTAM V1 UI Research Study

7. There was a good use of colour in the Authorisation Manager User Interface.

8. What was your favourite feature of the Authorisation Manager User Interface? Please

Explain.

9. What was your least favourite feature of the Authorisation Manager User Interface? Please

Explain.

10. Please provide your: Gender, Occupation, Age.

314

Appendix I

Sharing Trustworthy Personal Data

with Future Employers Scenario

This appendix shows an implemented solution for the "Sharing Trustworthy Personal Data with

Future Employers" scenario, which was submitted to the UMA WG as well as used in the dis-

cussed research (recall Section 1.1.2). This solution comprises of two example Web applications,

which were presented in Appendix D:

1. Personal Data Store, named S3P (Host);

2. Online Job Application Service, named CareerMonster (Requester).

Users can sign in to both applications using an identity provider proxy mechanism, which allows

both applications to be also provisioned with the HAT/RAT tokens. Users are also automatically

signed in to the Authorisation Manager. Access to data stored in S3P system is protected with

our implemented SMARTAM V2. Importantly, SMARTAM will require user approval before

information is shared outside of the PDS application. It will also record access requests to user’s

information for the purpose of accountability. SMARTAM provides a unified UI for end-users

to define how data is shared, as discussed in Chapter 7.

The following steps are identified in our scenario:

1. Sean signs in to the CareerMonster website using his existing account;

2. Sean searches for the job position of his interest. He then selects the job position and

applies using the provided application form;

3. Instead of manually uploading a trustworthy "Transcript of Records" document, Sean recog-

nises that the website supports direct import from Newcastle University;

315

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

4. Sean decides to share his exam marks with CareerMonster directly from the University.

He clicks on the "Import" button and is redirect to SMARTAM;

5. Sean authorises CareerMonster to be able to access his exam marks from S3P in a secure

way. SMARTAM mediates the transaction and allows to establish a trust relationship

between CareerMonster and S3P;

6. CareerMonster retrieves the "Transcript of Records" document directly from S3P, implying

that this information is trustworthy and has not been forged. Sean does not have to provide

a signed and stamped version of the document;

7. Sean applies for the job position by clicking the "Submit" button.

All steps are presented in Figure I.8 to Figure I.15.

Figure I.1: Step 1 - Sean attempts to access his online data at the S3P application. Sean visits the
S3P Web application at Newcastle University. Selects “Newcastle University”.

316

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.2: Step 2 - Sean signs in to Newcastle University with his existing credentials.

Figure I.3: Step 3 - Sean sees his personal data stored by the S3P application.

317

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.4: Step 4 - Sean can view his academic record. Sean then attempts to apply for a job
position at the CareerMonster Web application.

Figure I.5: Step 5 - Sean visits the CareerMonster Web application. Selects to sign in with his
University’s account.

318

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.6: Step 6 - Sean signs in to Newcastle University with his existing credentials.

Figure I.7: Step 7 - Sean is presented with a list of available job positions. He attempts to apply for
the “Junior Software Engineer” position.

319

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.8: Step 8 - In order to apply for a job position, Sean has to fill in some information or import
it from S3P.

Figure I.9: Step 9 - Sean is presented with a consent page, where he is required to authorize
CareerMonster to access his personal data from S3P. This consent is represented on SMARTAM in
form of sharing settings for Sean’s name.

320

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.10: Step 10 - Sean’s personal data is retrieved by CareerMonster directly from S3P. Sean
then selects to import his academic record from S3P as well.

Figure I.11: Step 11 - Sean is presented with a consent page, where he is required to authorize
CareerMonster to access his personal data from S3P. This consent is represented on SMART in form
of additional sharing settings (this time for Sean’s academic record).

321

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.12: Step 12 - Sean’s academic record is retrieved by CareerMonster directly from S3P. At
this point, all required information has been submitted to CareerMonster and Sean can apply for the
job position of his choice.

Figure I.13: Step 13 - Sean can sign in to SMART and view various information regarding his
University’s data and how this data is shared with other applications.

322

Chapter I. Sharing Trustworthy Personal Data with Future Employers Scenario

Figure I.14: Step 14 - Sean can view sharing settings for his academic record.

Figure I.15: Step 15 - Sean can view how his data is shared with other applications.

323

Appendix J

Mind map of access control for the

open Web

324

Chapter J. Mind map of access control for the open Web

Fi
gu

re
J.
1:

M
in
d
m
ap

of
ac
ce
ss

co
nt
ro
lo

n
th
e
op

en
W
eb

-p
ar
t
1.

325

Chapter J. Mind map of access control for the open Web

Fi
gu

re
J.
2:

M
in
d
m
ap

of
ac
ce
ss

co
nt
ro
lo

n
th
e
op

en
W
eb

-p
ar
t
2.

326

Bibliography

[1] 3scale: Free and Enterprise API Management Platform and Infrastructure. http://www.
3scale.com. Accessed 16/05/2013.

[2] Apigee: Free API Management - API analytics and control. http://www.apigee.com.
Accessed 16/05/2013.

[3] Blackboard. http://blackboard.ncl.ac.uk. Accessed 16/05/2013.

[4] Claim. http://wiki.idcommons.net/Claim. Accessed 16/05/2013.

[5] Concur Online Business Travel and Expense Management. https://www.concur.com.
Accessed 16/05/2013.

[6] Coursera. https://www.coursera.org/. Accessed 16/05/2013.

[7] Cross-site scripting. https://en.wikipedia.org/wiki/Cross-site_scripting. Ac-
cessed 16/05/2013.

[8] Django. Python Web Framework. http://www.djangoproject.com. Accessed
16/05/2013.

[9] Facebook. http://facebook.com. Accessed 16/05/2013.

[10] Facebook graph api. https://developers.facebook.com/docs/reference/api/. Ac-
cessed 16/05/2013.

[11] Facebook login. https://developers.facebook.com/docs/concepts/login/. Accessed
16/05/2013.

[12] FeedHenry - Mobile Application Platform. http://www.feedhenry.com/. Accessed
16/05/2013.

[13] Flickr Authentication API. http://www.flickr.com/services/api/auth.howto.web.
html. Accessed 16/05/2013.

[14] Gigya social login. http://www.gigya.com/. Accessed 16/05/2013.

[15] Gmail. https://mail.google.com. Accessed 16/05/2013.

[16] Google+. https://plus.google.com. Accessed 16/05/2013.

[17] Google Accounts Authentication and Authorization: AuthSub for Web Applications.
https://developers.google.com/accounts/docs/AuthSub. Accessed 16/05/2013.

[18] Google analytics. www.google.co.uk/analytics/. Accessed 16/05/2013.

[19] Google App Engine - Storing Data. https://developers.google.com/appengine/docs/
python/datastore/. Accessed 16/05/2013.

327

http://www.3scale.com
http://www.3scale.com
http://www.apigee.com
http://blackboard.ncl.ac.uk
http://wiki.idcommons.net/Claim
https://www.concur.com
https://www.coursera.org/
https://en.wikipedia.org/wiki/Cross-site_scripting
http://www.djangoproject.com
http://facebook.com
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/concepts/login/
http://www.feedhenry.com/
http://www.flickr.com/services/api/auth.howto.web.html
http://www.flickr.com/services/api/auth.howto.web.html
http://www.gigya.com/
https://mail.google.com
https://plus.google.com
https://developers.google.com/accounts/docs/AuthSub
www.google.co.uk/analytics/
https://developers.google.com/appengine/docs/python/datastore/
https://developers.google.com/appengine/docs/python/datastore/

BIBLIOGRAPHY

[20] Google App Engine - The webapp Framework. https://developers.google.com/
appengine/docs/python/tools/webapp/. Accessed 16/05/2013.

[21] Google AppEngine. http://appengine.google.com. Accessed 16/05/2013.

[22] Google Apps for Business. http://www.google.com/enterprise/apps/business/. Ac-
cessed 16/05/2013.

[23] Google Calendar. https://calendar.google.com. Accessed 16/05/2013.

[24] Google Docs - Online Documents, Spreadsheets, Presentations. https://docs.google.
com. Accessed 16/05/2013.

[25] Google Drive. https://drive.google.com/. Accessed 16/05/2013.

[26] Google Identity Toolkit. https://developers.google.com/identity-toolkit/. Ac-
cessed 16/05/2013.

[27] Google+ Sign In. https://developers.google.com/+/web/signin/. Accessed
16/05/2013.

[28] Google street identity. https://sites.google.com/site/streetidentitylmnop/. Ac-
cessed 16/05/2013.

[29] Google Street Identity. https://sites.google.com/site/streetidentitylmnop/. Ac-
cessed 16/05/2013.

[30] HEAR: Higher Education Achievement Report. http://www.hear.ac.uk/. Accessed
16/05/2013.

[31] Infinispan: Transactional in-memory key/value NoSQL datastore and Data Grid. http:
//www.jboss.org/infinispan/. Accessed 15/05/2013.

[32] Janrain Engage. http://janrain.com/products/engage/. Accessed 16/05/2013.

[33] Java Database Connectivity. http://en.wikipedia.org/wiki/Java_Database_
Connectivity. Accessed 16/05/2013.

[34] Java Platform, Enterprise Edition (Java EE) Technical Documentation. http://docs.
oracle.com/javaee. Accessed 16/05/2013.

[35] JavaServer Faces Technology. http://www.oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html. Accessed 16/05/2013.

[36] jQuery JavaScript Library. http://jquery.com/. Accessed 16/05/2013.

[37] JSON Web Encryption (JWE). http://tools.ietf.org/html/
draft-ietf-jose-json-web-encryption. (Work in Progress) Accessed 16/05/2013.

[38] JSON Web Signature (JWS). http://tools.ietf.org/html/
draft-ietf-jose-json-web-signature. (Work in Progress) Accessed 16/05/2013.

[39] JSON Web Token (JWT). http://tools.ietf.org/html/
draft-ietf-oauth-json-web-token. (Work in Progress) Accessed 16/05/2013.

[40] Kantara Initiative. http://kantarainitiative.org/. Accessed 29/06/2010.

[41] Kerberos Consortium. http://www.kerberos.org. Accessed 16/05/2013.

[42] Liberty alliance. http://www.projectliberty.org/. Accessed 16/05/2013.

328

https://developers.google.com/appengine/docs/python/tools/webapp/
https://developers.google.com/appengine/docs/python/tools/webapp/
http://www.google.com/enterprise/apps/business/
https://calendar.google.com
https://docs.google.com
https://docs.google.com
https://drive.google.com/
https://developers.google.com/identity-toolkit/
https://developers.google.com/+/web/signin/
https://sites.google.com/site/streetidentitylmnop/
https://sites.google.com/site/streetidentitylmnop/
http://www.hear.ac.uk/
http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://janrain.com/products/engage/
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://docs.oracle.com/javaee
http://docs.oracle.com/javaee
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jquery.com/
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://kantarainitiative.org/
http://www.kerberos.org
http://www.projectliberty.org/

BIBLIOGRAPHY

[43] Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Spec-
ification. http://www.projectliberty.org/liberty/content/download/3440/22946/
file/liberty-idwsf-authn-svc-v2.0-original.pdf. Accessed 16/05/2013.

[44] Liferay Enterprise open source portal and collaboration software. http://www.liferay.
com. Accessed 16/05/2013.

[45] Locker: Service development status. https://github.com/LockerProject/Locker/
wiki/Service-development-status. Accessed 16/05/2013.

[46] Mashery API Management. http://www.mashery.com. Accessed 16/05/2013.

[47] Maven - Apache build manager for Java project. http://maven.apache.org. Accessed
16/05/2013.

[48] Maven Graph Plugin. http://mvnplugins.fusesource.org/maven/1.0/
maven-graph-plugin/index.html. Accessed 16/05/2013.

[49] MOOC List: Massive Open Online Courses List. http://www.mooc-list.com/. Accessed
16/05/2013.

[50] [MS-ADTS]: Active Directory Technical Specification. http://msdn.microsoft.com/
en-us/library/cc223122.aspx. Accessed 16/05/2013.

[51] Mydex Personal Data Store. http://mydex.org/. Accessed 16/05/2013.

[52] NESS: Newcastle Electronic Submission System. http://ness.ncl.ac.uk. Accessed
16/05/2013.

[53] Nov 2011 Google and ID/DataWeb demo. https://sites.google.com/site/
streetidentitylmnop/workinggroup/demo2. Accessed 16/05/2013.

[54] OASIS Security Services (SAML) TC. https://www.oasis-open.org/committees/
security/. Accessed 16/05/2013.

[55] OAuth 2.0 Message Authentication Code (MAC) Tokens. http://tools.ietf.org/html/
draft-ietf-oauth-v2-http-mac. Accessed 16/05/2013.

[56] OpenID Authentication 1.0. http://openid.net/specs/specs-1.0.bml.

[57] OpenID Connect Messages 1.0. http://openid.net/specs/
openid-connect-messages-1_0.html. Accessed 16/05/2013.

[58] OpenID Connect Specifications. http://openid.net/connect/. Accessed 16/05/2013.

[59] OpenID Phishing Brainstorm. http://wiki.openid.net/w/page/12995216/OpenID_
Phishing_Brainstorm. Accessed 16/05/2013.

[60] OWASP - Open Web Application Security Project. http://www.owasp.org.

[61] OWASP Enterprise Security API. http://www.owasp.org/index.php/Category:OWASP_
Enterprise_Security_API. Accessed 29/06/2010.

[62] PEP 333 - Python Web Server Gateway Interface v1.0. http://www.python.org/dev/
peps/pep-0333/.

[63] Personal Data Ecosystem Consortium. http://pde.cc/. Accessed 16/05/2013.

[64] Personal.com. http://personal.com. Accessed 16/05/2013.

329

http://www.projectliberty.org/liberty/content/download/3440/22946/file/liberty-idwsf-authn-svc-v2.0-original.pdf
http://www.projectliberty.org/liberty/content/download/3440/22946/file/liberty-idwsf-authn-svc-v2.0-original.pdf
http://www.liferay.com
http://www.liferay.com
https://github.com/LockerProject/Locker/wiki/Service-development-status
https://github.com/LockerProject/Locker/wiki/Service-development-status
http://www.mashery.com
http://maven.apache.org
http://mvnplugins.fusesource.org/maven/1.0/maven-graph-plugin/index.html
http://mvnplugins.fusesource.org/maven/1.0/maven-graph-plugin/index.html
http://www.mooc-list.com/
http://msdn.microsoft.com/en-us/library/cc223122.aspx
http://msdn.microsoft.com/en-us/library/cc223122.aspx
http://mydex.org/
http://ness.ncl.ac.uk
https://sites.google.com/site/streetidentitylmnop/workinggroup/demo2
https://sites.google.com/site/streetidentitylmnop/workinggroup/demo2
https://www.oasis-open.org/committees/security/
https://www.oasis-open.org/committees/security/
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac
http://openid.net/specs/specs-1.0.bml
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/connect/
http://wiki.openid.net/w/page/12995216/OpenID_Phishing_Brainstorm
http://wiki.openid.net/w/page/12995216/OpenID_Phishing_Brainstorm
http://www.owasp.org
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.python.org/dev/peps/pep-0333/
http://www.python.org/dev/peps/pep-0333/
http://pde.cc/
http://personal.com

BIBLIOGRAPHY

[65] Pinterest. http://pinterest.com. Accessed 16/05/2013.

[66] ProgrammableWeb: Web Services Directory. http://www.programmableweb.com/apis/
directory. Accessed 16/05/2013.

[67] Pure Templating Engine. http://beebole.com/pure/. Accessed 16/05/2013.

[68] Salesforce CRM. http://www.salesforce.com. Accessed 16/05/2013.

[69] Self-Service Student Portal. Newcastle University. https://s3portal.ncl.ac.uk. Ac-
cessed 16/05/2013.

[70] September Google initial demo. https://sites.google.com/site/
streetidentitylmnop/workinggroup/demo1. Accessed 16/05/2013.

[71] Sharing Trustworthy Personal Data with Future Employers. http://kantarainitiative.
org/confluence/display/uma/cv_sharing_scenario. Accessed 16/05/2013.

[72] Shibboleth Web Single Sign-On. http://shibboleth.internet2.edu/. Accessed 29/06/2010.

[73] Singly. http://singly.com/. Accessed 16/05/2013.

[74] Spring Framework. http://www.springsource.org/spring-framework. Accessed
16/05/2013.

[75] Spring Security. http://www.springsource.org/spring-security. Accessed
16/05/2013.

[76] Spring Web MVC Framework. http://static.springsource.org/spring/docs/3.2.x/
spring-framework-reference/html/mvc.html. Accessed 16/05/2013.

[77] Student-Managed Access to Online Resources (SMART). http://www.jisc.ac.uk/
whatwedo/programmes/di_directions/accessandidentitymanagement/smart.aspx.
Accessed 16/05/2013.

[78] The ID-WSF Evolution Work Group. http://kantarainitiative.org/confluence/
display/idwsf. Accessed 29/06/2010.

[79] The Internet Engineering Task Force (IETF). http://www.ietf.org. Accessed
16/05/2013.

[80] The Locker Project. http://lockerproject.org/. Accessed 16/05/2013.

[81] The WSGIApplication Class. https://developers.google.com/appengine/docs/
python/tools/webapp/wsgiapplicationclass. Accessed 16/05/2013.

[82] Udacity. https://www.udacity.com/. Accessed 16/05/2013.

[83] UK Federation. http://www.ukfederation.org.uk/. Accessed 16/05/2013.

[84] UMA Requirements. http://kantarainitiative.org/confluence/display/uma/UMA+
Requirements. Accessed 29/06/2010.

[85] UMA Scenarios and Use Cases. http://kantarainitiative.org/confluence/display/
uma/UMA+Scenarios+and+Use+Cases. Accessed 29/06/2010.

[86] User-Managed Access Work Group. http://kantarainitiative.org/confluence/
display/uma. Accessed 16/08/2012.

330

http://pinterest.com
http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory
http://beebole.com/pure/
http://www.salesforce.com
https://s3portal.ncl.ac.uk
https://sites.google.com/site/streetidentitylmnop/workinggroup/demo1
https://sites.google.com/site/streetidentitylmnop/workinggroup/demo1
http://kantarainitiative.org/confluence/display/uma/cv_sharing_scenario
http://kantarainitiative.org/confluence/display/uma/cv_sharing_scenario
http://singly.com/
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-security
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/mvc.html
http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/mvc.html
http://www.jisc.ac.uk/whatwedo/programmes/di_directions/accessandidentitymanagement/smart.aspx
http://www.jisc.ac.uk/whatwedo/programmes/di_directions/accessandidentitymanagement/smart.aspx
http://kantarainitiative.org/confluence/display/idwsf
http://kantarainitiative.org/confluence/display/idwsf
http://www.ietf.org
http://lockerproject.org/
https://developers.google.com/appengine/docs/python/tools/webapp/wsgiapplicationclass
https://developers.google.com/appengine/docs/python/tools/webapp/wsgiapplicationclass
https://www.udacity.com/
http://www.ukfederation.org.uk/
http://kantarainitiative.org/confluence/display/uma/UMA+Requirements
http://kantarainitiative.org/confluence/display/uma/UMA+Requirements
http://kantarainitiative.org/confluence/display/uma/ UMA+Scenarios+and+Use+Cases
http://kantarainitiative.org/confluence/display/uma/ UMA+Scenarios+and+Use+Cases
http://kantarainitiative.org/confluence/display/uma
http://kantarainitiative.org/confluence/display/uma

BIBLIOGRAPHY

[87] User-Managed Access Work Group Participants. http://kantarainitiative.org/
confluence/display/uma/Participant+Roster. Accessed 16/08/2012.

[88] Web 2.0. http://en.wikipedia.org/wiki/Web_2.0. Accessed 16/05/2013.

[89] Web Server Gateway Interface. http://www.wsgi.org. Accessed 16/05/2013.

[90] Wordpress blogging platform. http://www.wordpress.org. Accessed 16/05/2013.

[91] Yahoo! Browser-Based Authentication. http://developer.yahoo.com/bbauth/. Ac-
cessed 16/05/2013.

[92] YouTube. https://www.youtube.com/. Accessed 16/05/2013.

[93] XML Encryption Syntax and Processing. http://www.w3.org/TR/xmlenc-core/, De-
cember 2002.

[94] Web Services Architecture. http://www.w3.org/TR/ws-arch/, February 2004.

[95] BS ISO/IEC 27001:2005 - Information technology - Security techniques - Information
security management systems - Requirements. British Standards Institution, 2005.

[96] BS ISO/IEC 27002:2005 - Information technology - Security techniques - Code of practice
for information security management. British Standards Institution, 2005.

[97] OASIS eXtensible Access Control Markup Language (XACML). Version 2.0. http://www.
oasis-open.org/committees/xacml/, 2005.

[98] SAML 2.0 profile of XACML v2.0. http://www.oasis-open.org/committees/xacml/,
February 2005.

[99] OASIS Reference Model for Service Oriented Architecture. Version 1.0. http://docs.oasis-
open.org/soa-rm/v1.0/soa-rm.pdf, October 2006.

[100] OpenID Authentication 1.1. http://openid.net/specs/openid-authentication-1_1.
html, May 2006.

[101] JSR-000154 JavaTM Servlet 2.5 Specification (Maintenance Release). http://www.jcp.
org/aboutJava/communityprocess/mrel/jsr154/, September 2007.

[102] OASIS Security Assertion Markup Language (SAML). Version 2.0. http://docs.
oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf, 2007.

[103] OpenID Attribute Exchange. http://openid.net/specs/
openid-attribute-exchange-1_0.html, Dec 2007.

[104] OpenID Authentication 2.0. http://openid.net/specs/openid-authentication-2_0.
txt, Dec 2007.

[105] OpenID Authentication 2.0. http://openid.net/specs/openid-authentication-2_0.
html, December 2007.

[106] Security Policy Assertion Language SecPAL. Version 2.0. http://research.microsoft.
com/projects/SecPAL/, 2007.

[107] Web Services Profile of XACML (WS-XACML). Version 1.0. http://www.oasis-open.
org/committees/xacml/, 2007.

331

http://kantarainitiative.org/confluence/display/uma/Participant+Roster
http://kantarainitiative.org/confluence/display/uma/Participant+Roster
http://en.wikipedia.org/wiki/Web_2.0
http://www.wsgi.org
http://www.wordpress.org
http://developer.yahoo.com/bbauth/
https://www.youtube.com/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/ws-arch/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html
http://www.jcp.org/aboutJava/communityprocess/mrel/jsr154/
http://www.jcp.org/aboutJava/communityprocess/mrel/jsr154/
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-authentication-2_0.txt
http://openid.net/specs/openid-authentication-2_0.txt
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://research.microsoft.com/projects/SecPAL/
http://research.microsoft.com/projects/SecPAL/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/

BIBLIOGRAPHY

[108] XACML 2.0 Interop Scenarios Working Draft. Version 0.12. http://www.oasis-open.
org/committees/download.php/24475/xacml-2.0-core-interop-draft-12-04.doc,
June 2007.

[109] Cross-Enterprise Security and Privacy Authorization (XSPA) Profile of XACML v2.0 for
Healthcare. Committee Draft. http://www.oasis-open.org/committees/xacml/, 2008.

[110] Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/xml/, November 2008.

[111] Identity Metasystem Interoperability Version 1.0. http://www.oasis-open.org/
committees/download.php/29979/identity-1.0-spec-cd-01.pdf, Nov 2008. Commit-
tee Draft 01.

[112] XACML 2.0 RSA 2008 Interop Scenarios Working Draft. Version
0.12. http://www.oasis-open.org/committees/download.php/28030/
XACML-20-RSA-Interop-Documents-V-01.zip, April 2008.

[113] XACML v3.0 Administration and Delegation Profile. Version 1.0. http://www.
oasis-open.org/committees/xacml/, 2008.

[114] XML Signature Syntax and Processing. http://www.w3.org/TR/xmldsig-core/, June
2008.

[115] Simple Web Token. http://oauth-wrap-wg.googlegroups.com/web/SWT-v0.9.5.1.
pdf, Nov 2009. Version 0.9.5.1.

[116] Extensible Resource Descriptor (XRD) Version 1.0. http://www.oasis-open.org/
committees/download.php/36473/xrd-1.0-wd14.html, Feb 2010. Working Draft 14.

[117] Leeloo - OAuth 2.0 Framework. https://bitbucket.org/smartproject/oauth-2.0, Au-
gust 2010.

[118] OAuth 2.0 support for the Kerberos V5 Authentication Protocol. http://tools.ietf.
org/html/draft-hardjono-oauth-kerberos-00, Jun 2010. (Work in Progress).

[119] OAuth WRAP - Web Resource Authorization Profiles. http://tools.ietf.org/html/
draft-hardt-oauth-01, Jan 2010. (Work in Progress).

[120] Apache Amber - OAuth 2.0 Framework. http://incubator.apache.org/amber/, 2011.

[121] Kantara Initiative Announces Winners of the 2011 IDDY Awards. http://
kantarainitiative.org/kantara-initiative-announces-winners-of-the-2011-iddy-award,
February 2011.

[122] The OAuth 1.0 Guide. http://hueniverse.com/oauth/guide/, July 2011.

[123] Puma: building a host application. http://smartjisc.wordpress.com/2012/04/20/
puma-building-a-host-application/, April 2012. Accessed 16/05/2013.

[124] Puma: building a requester application. http://smartjisc.wordpress.com/2012/06/
30/puma-building-a-requester-application/, June 2012. Accessed 16/05/2013.

[125] Request / Response Interface based on JSON and HTTP for XACML 3.0 Version 1.0
- Working Draft 09. https://www.oasis-open.org/committees/download.php/47775/
xacml-json-http-v1.0-wd09.doc, December 2012.

[126] Street Identity Code Repository. https://code.google.com/p/streetidentity, March
2012.

332

http://www.oasis-open.org/committees/download.php/24475/xacml-2.0-core-interop-draft-12-04.doc
http://www.oasis-open.org/committees/download.php/24475/xacml-2.0-core-interop-draft-12-04.doc
http://www.oasis-open.org/committees/xacml/
http://www.w3.org/TR/xml/
http://www.oasis-open.org/committees/download.php/29979/identity-1.0-spec-cd-01.pdf
http://www.oasis-open.org/committees/download.php/29979/identity-1.0-spec-cd-01.pdf
http://www.oasis-open.org/committees/download.php/28030/XACML-20-RSA-Interop-Documents-V-01.zip
http://www.oasis-open.org/committees/download.php/28030/XACML-20-RSA-Interop-Documents-V-01.zip
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://oauth-wrap-wg.googlegroups.com/web/SWT-v0.9.5.1.pdf
http://oauth-wrap-wg.googlegroups.com/web/SWT-v0.9.5.1.pdf
http://www.oasis-open.org/committees/download.php/36473/xrd-1.0-wd14.html
http://www.oasis-open.org/committees/download.php/36473/xrd-1.0-wd14.html
https://bitbucket.org/smartproject/oauth-2.0
http://tools.ietf.org/html/draft-hardjono-oauth-kerberos-00
http://tools.ietf.org/html/draft-hardjono-oauth-kerberos-00
http://tools.ietf.org/html/draft-hardt-oauth-01
http://tools.ietf.org/html/draft-hardt-oauth-01
http://incubator.apache.org/amber/
http://kantarainitiative.org/kantara-initiative-announces-winners-of-the-2011- iddy-award
http://kantarainitiative.org/kantara-initiative-announces-winners-of-the-2011- iddy-award
http://hueniverse.com/oauth/guide/
http://smartjisc.wordpress.com/2012/04/20/puma-building-a-host-application/
http://smartjisc.wordpress.com/2012/04/20/puma-building-a-host-application/
http://smartjisc.wordpress.com/2012/06/30/puma-building-a-requester-application/
http://smartjisc.wordpress.com/2012/06/30/puma-building-a-requester-application/
https://www.oasis-open.org/committees/download.php/47775/xacml-json-http-v1.0-wd09.doc
https://www.oasis-open.org/committees/download.php/47775/xacml-json-http-v1.0-wd09.doc
https://code.google.com/p/streetidentity

BIBLIOGRAPHY

[127] Welcome to the API Economy. http://www.forbes.com/sites/ciocentral/2012/08/
29/welcome-to-the-api-economy/, August 2012.

[128] Adobe Developed Connection - Flash Developer Centre. http://www.adobe.com/devnet/
flash.html, April 2013. Accessed 16/05/2013.

[129] Apache Oltu - OAuth 2.0 Framework. http://oltu.apache.org, 2013.

[130] Blogger. https://www.blogger.com/, April 2013.

[131] Google’s Internet Identity Research. https://sites.google.com/site/oauthgoog, May
2013. Accessed 16/05/2013.

[132] MySQL Relational Database. http://www.mysql.com/, April 2013. Accessed 16/05/2013.

[133] NIST Special Publication 800-162: Guide to Attribute Based Access Control (ABAC)
Definition and Considerations (Draft). http://csrc.nist.gov/publications/drafts/
800-162/sp800_162_draft.pdf, May 2013.

[134] C. Adams and S. Lloyd. Understanding public-key infrastructure: concepts, standards, and
deployment considerations. New Riders Pub, 1999.

[135] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Frohner, A. Gianoli, K. Lõrentey,
and F. Spataro. VOMS, an Authorization System for Virtual Organizations. In F. Fernán-
dez Rivera, M. Bubak, A. Gómez Tato, and R. Doallo, editors, Grid Computing, volume
2970 of Lecture Notes in Computer Science, chapter 5, pages 33–40. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2004.

[136] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lőrentey, and
F. Spataro. From gridmap-file to voms: Managing authorization in a grid environment.
Future Gener. Comput. Syst., 21(4):549–558, Apr. 2005.

[137] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures
and Applications. Data-Centric Systems and Applications. Springer, 2003.

[138] Apache Software Foundation. Apache CXF: An Open-Source Services Framework. http:
//cxf.apache.org, April 2013. Accessed 16/05/2013.

[139] Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org, April 2013.
Accessed 16/05/2013.

[140] C. A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. A web service
architecture for enforcing access control policies. Electron. Notes Theor. Comput. Sci.,
142:47–62, Jan. 2006.

[141] D. Balfanz. Usable access control for the world wide web. In ACSAC ’03: Proc. of the
19th Annual Computer Security Applications Conference, page 406, Washington, DC, USA,
2003.

[142] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakrishnan,
B. Baker, M. Goode, and K. Keahey. Identity Federation and Attribute-based Authoriza-
tion through the Globus Toolkit, Shibboleth, Gridshib, and MyProxy. In 5th Annual PKI
R&D Workshop, Apr. 2006.

[143] L. Bauer, M. A. Schneider, and E. W. Felten. A general and flexible access-control system
for the web. In Proc. of the 11th USENIX Security Symposium, pages 93–108, Berkeley,
CA, USA, 2002.

333

http://www.forbes.com/sites/ciocentral/2012/08/29/welcome-to-the-api-economy/
http://www.forbes.com/sites/ciocentral/2012/08/29/welcome-to-the-api-economy/
http://www.adobe.com/devnet/flash.html
http://www.adobe.com/devnet/flash.html
http://oltu.apache.org
https://www.blogger.com/
https://sites.google.com/site/oauthgoog
http://www.mysql.com/
http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf
http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf
http://cxf.apache.org
http://cxf.apache.org
http://tomcat.apache.org

BIBLIOGRAPHY

[144] M. Benantar. Access Control Systems: Security, Identity Management and Trust Models.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[145] T. Berners-Lee. Information Management: A Proposal. Technical report, CERN, Mar.
1989.

[146] V. Berstis. Security and protection of data in the IBM System/38. In Proceedings of the
7th annual symposium on Computer Architecture, ISCA ’80, pages 245–252, New York,
NY, USA, 1980. ACM.

[147] E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web documents
with an XML-based language. In Proceedings of the sixth ACM symposium on Access
control models and technologies, SACMAT ’01, pages 57–65, New York, NY, USA, 2001.
ACM.

[148] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi. X-GTRBAC: an XML-based policy
specification framework and architecture for enterprise-wide access control. ACM Trans.
Inf. Syst. Secur., 8(2):187–227, May 2005.

[149] R. Botha and J. H. P. Eloff. Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal, 40(3):666–682, 2001.

[150] D. Brewer and M. Nash. The chinese wall security policy. In Security and Privacy, 1989.
Proceedings., 1989 IEEE Symposium on, pages 206 –214, may 1989.

[151] S. Cantor et al. Assertions and Protocols for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0. OASIS Standard, Mar. 2005.

[152] B. Carminati, E. Ferrari, and A. Perego. Rule-based access control for social networks. In
Proceedings of the 2006 international conference on On the Move to Meaningful Internet
Systems: AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO, MONET - Volume
Part II, OTM’06, pages 1734–1744, Berlin, Heidelberg, 2006. Springer-Verlag.

[153] I. Carter. A Research Study to Evaluate the Usability Of a Proposed User Managed Access
Service User Interface. Master’s thesis, School of Computing Science, Newcastle University,
October 2010.

[154] D. Catalano. Extending UMA Protocol to Support Trusted Claims Approach.
http://www.projectliberty.org/confluence/download/attachments/17301540/
Trusted+Claim+Model+in+UMA_v3.2.pdf, August 2010. Accessed 16/05/2013.

[155] D. Catalano. Extending UMA Protocol to Support Trusted Claims (tClaims). http:
//www.slideshare.net/domcat/uma-trusted-claims, July 2011. Accessed 16/05/2013.

[156] D. Catalano. UMA: Measuring elements of Trust. http://kantarainitiative.
org/confluence/display/uma/Measuring+elements+of+Trust, April 2011. Accessed
20/05/2014.

[157] D. Catalano. UMA Trust Model User guide. http://kantarainitiative.
org/confluence/display/uma/UMA+Trust+Model+User+guide, May 2012. Accessed
16/05/2013.

[158] A. Cavoukian. Privacy in the clouds. Identity in the Information Society, 1:89–108, 2008.

[159] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission Control Pro-
gram. RFC 675, Dec. 1974.

334

http://www.projectliberty.org/confluence/download/attachments/17301540/Trusted+Claim+Model+in+UMA_v3.2.pdf
http://www.projectliberty.org/confluence/download/attachments/17301540/Trusted+Claim+Model+in+UMA_v3.2.pdf
http://www.slideshare.net/domcat/uma-trusted-claims
http://www.slideshare.net/domcat/uma-trusted-claims
http://kantarainitiative.org/confluence/display/uma/Measuring+elements+of+Trust
http://kantarainitiative.org/confluence/display/uma/Measuring+elements+of+Trust
http://kantarainitiative.org/confluence/display/uma/UMA+Trust+Model+User+guide
http://kantarainitiative.org/confluence/display/uma/UMA+Trust+Model+User+guide

BIBLIOGRAPHY

[160] D. Chadwick. GFD.156 Functional Components of Grid Service Provider Authorisation
Service Middleware, October 2009.

[161] D. Chadwick and L. Su. GFD.157 Use of WS-TRUST and SAML to access a Credential
Validation Service, November 2009.

[162] D. W. Chadwick, G. Inman, and N. Klingenstein. A conceptual model for attribute ag-
gregation. Future Gener. Comput. Syst., 26(7):1043–1052, July 2010.

[163] D. W. Chadwick and S. F. Lievens. Enforcing "sticky" security policies throughout a
distributed application. In Proceedings of the 2008 Workshop on Middleware Security,
MidSec ’08, pages 1–6, New York, NY, USA, 2008. ACM.

[164] A. Chakrabarti. Grid Computing Security. Springer-Verlag Berlin Heidelberg, 2007.

[165] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service Definition
Language (WSDL). http://www.w3.org/TR/wsdl, March 2001.

[166] D. Crockford. JavaScript Object Notation (JSON). http://www.json.org, 2006.

[167] D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).
RFC 4627 (Informational), July 2006.

[168] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA Architec-
ture. RFC 2903 (Experimental), Aug. 2000.

[169] Y. Demchenko, O. Koeroo, C. de Laat, and H. Sagehaug. Extending xacml authorisation
model to support policy obligations handling in distributed application. In Proceedings of
the 6th international workshop on Middleware for grid computing, MGC ’08, pages 5:1–5:6,
New York, NY, USA, 2008. ACM.

[170] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, pages 581–590,
New York, NY, USA, 2006. ACM.

[171] V. Dhankhar, S. Kaushik, and D. Wijesekera. XACML Policies for Exclusive Resource
Usage. pages 275–290. 2007.

[172] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878, 6176.

[173] F. Dillema, S. Lupetti, and T. Stabell-Kulo. A decentralized authorization architecture. In
Advanced Information Networking and Applications Workshops, 2007, AINAW ’07. 21st
International Conference on, volume 1, pages 497 –504, may 2007.

[174] M. Driver, R. Valdes, and G. Phifer. Rich internet applications are the next evolution of
the web. Gartner Research, 2005.

[175] T. Erl. Service-Oriented Architecture: Concepts, Technology, And Design. Pearson Edu-
cation, 2006.

[176] Eve Maler. ProtectServe draft protocol flows. http://www.xmlgrrl.com/blog/2009/04/
02/protectserve-draft-protocol-flows/, Mar 2009. Accessed 29/06/2010.

[177] Eve Maler. To protect and to serve. http://www.xmlgrrl.com/blog/2009/03/23/
to-protect-and-to-serve/, Mar 2009. Accessed 29/06/2010.

[178] Eve Maler. UMA Lexicon. http://kantarainitiative.org/confluence/display/uma/
Lexicon, April 2010. Accessed 16/05/2013.

335

http://www.w3.org/TR/wsdl
http://www.json.org
http://www.xmlgrrl.com/blog/2009/04/02/protectserve-draft-protocol-flows/
http://www.xmlgrrl.com/blog/2009/04/02/protectserve-draft-protocol-flows/
http://www.xmlgrrl.com/blog/2009/03/23/to-protect-and-to-serve/
http://www.xmlgrrl.com/blog/2009/03/23/to-protect-and-to-serve/
http://kantarainitiative.org/confluence/display/uma/Lexicon
http://kantarainitiative.org/confluence/display/uma/Lexicon

BIBLIOGRAPHY

[179] Eve Maler. A new venn of access control for the API economy. http://blogs.forrester.
com/eve_maler/12-03-12-a_new_venn_of_access_control_for_the_api_economy,
March 2012. Accessed 16/05/2013.

[180] Eve Maler. Distributed Authorization . . . as conceived by UMA. http:
//kantarainitiative.org/confluence/download/attachments/17760302/UMA+
and+XACML+2012-10-18.pdf, October 2012. Accessed 16/05/2013.

[181] S. Farrell and R. Housley. An Internet Attribute Certificate Profile for Authorization. RFC
3281 (Draft Standard), June 2002.

[182] S. Farrell, J. Vollbrecht, P. Calhoun, L. Gommans, G. Gross, B. de Bruijn, C. de Laat,
M. Holdrege, and D. Spence. AAA Authorization Requirements. RFC 2906 (Informa-
tional), Aug. 2000.

[183] M. S. Ferdous and R. Poet. Analysing attribute aggregation models in federated identity
management. In Proceedings of the 6th International Conference on Security of Informa-
tion and Networks, SIN ’13, pages 181–188, New York, NY, USA, 2013. ACM.

[184] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-Based Access Control. Artech House
Computer Security Series. Artech House, 2003.

[185] A. Field and G. Hole. How to Design and Report Experiments. SAGE Publications, 2003.

[186] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard),
June 1999. Updated by RFC 2817.

[187] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[188] J. Fontana. OAuth quickly moves into maturity cycle. https://www.pingidentity.com/
blogs/pingtalk/2013/05/oauth-quickly-spins-into-maturity-cycle-1.html, May
2013. Accessed 16/05/2013.

[189] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222, Aug. 2001.

[190] F. Fowler. Survey research methods. Applied social research methods series. Sage Publi-
cations, 2002.

[191] M. Fowler. Inversion of Control Containers and the Dependency Injection pattern. http:
//martinfowler.com/articles/injection.html, January 2004.

[192] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stew-
art. HTTP Authentication: Basic and Digest Access Authentication. RFC 2617 (Draft
Standard), June 1999.

[193] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol Version
3.0. RFC 6101 (Historic), Aug. 2011.

[194] C. Gates. Access control requirements for web 2.0 security and privacy. In W2SP ’07:
Proc. of the Workshop on Web 2.0 Security and Privacy, Oakland, CA, USA, May 2007.

[195] R. Geambasu et al. Organizing and sharing distributed personal web-service data. In
WWW ’08: Proc. of the 17th Intl. Conference on World Wide Web, pages 755–764, New
York, NY, USA, 2008.

336

http://blogs.forrester.com/eve_maler/12-03-12-a_new_venn_of_access_control_for_the_api_economy
http://blogs.forrester.com/eve_maler/12-03-12-a_new_venn_of_access_control_for_the_api_economy
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA+and+XACML+2012-10-18.pdf
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA+and+XACML+2012-10-18.pdf
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA+and+XACML+2012-10-18.pdf
https://www.pingidentity.com/blogs/pingtalk/2013/05/oauth-quickly-spins-into-maturity-cycle-1.html
https://www.pingidentity.com/blogs/pingtalk/2013/05/oauth-quickly-spins-into-maturity-cycle-1.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

BIBLIOGRAPHY

[196] R. Geambasu, S. D. Gribble, and H. M. Levy. Cloudviews: communal data sharing in
public clouds. In Proceedings of the 2009 conference on Hot topics in cloud computing,
HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[197] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992.

[198] R. Gupta. Security in a SOA. SOA World Magazine 7, 2007.

[199] Y. Gurevich and I. Neeman. DKAL: Distributed-Knowledge Authorization Language. In
CSF ’08: Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium,
volume 0, pages 149–162, Washington, DC, USA, 2008. IEEE Computer Society.

[200] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational), Apr. 2010.
Obsoleted by RFC 6749.

[201] E. Hammer-Lahav and B. Cook. Web Host Metadata. RFC 6415 (Proposed Standard),
Oct. 2011.

[202] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Standard),
Oct. 2012.

[203] M. Hart, R. Johnson, and A. Stent. More content - less control: Access control in the web
2.0. In WOSP ’08: Proc. of the first workshop on Online social networks, pages 43–48,
New York, NY, USA, 2008.

[204] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and N. Ramani. Please permit me: State-
less delegated authorization in mashups. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual, pages 173–182, 2008.

[205] A. Herzberg and A. Jbara. Security and identification indicators for browsers against
spoofing and phishing attacks. ACM Trans. Internet Technol., 8(4):16:1–16:36, Oct. 2008.

[206] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. RFC 2459 (Proposed Standard), Jan. 1999. Obsoleted by
RFC 3280.

[207] F. Hsu and H. Chen. Secure File System Services for Web 2.0 Applications. In CCSW ’09:
Proc. of the 2009 ACM Workshop on Cloud Computing Security, pages 11–18, New York,
NY, USA, 2009. ACM.

[208] P. Hudak. Conception, evolution, and application of functional programming languages.
ACM Comput. Surv., 21(3):359–411, Sept. 1989.

[209] R. Johnson, E. Gamma, J. Vlissides, and R. Helm. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[210] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
RFC 6750 (Proposed Standard), Oct. 2012.

[211] J. Joshi. Access-control language for multidomain environments. Internet Computing,
IEEE, 8(6):40 – 50, nov.-dec. 2004.

[212] J. Joshi, A. Ghafoor, W. G. Aref, and E. H. Spafford. Digital government security infras-
tructure design challenges. Computer, 34(2):66–72, Feb. 2001.

[213] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko. Comparison of perfor-
mance of web services, ws-security, rmi, and rmi-ssl. J. Syst. Softw., 79(5):689–700, May
2006.

337

BIBLIOGRAPHY

[214] H. Kamoda, A. Hayakawa, M. Yamaoka, S. Matsuda, K. Broda, and M. Sloman. Policy
conflict analysis using tableaux for on demanc vpn framework. In Proceedings of the First
International IEEE WoWMoM Workshop on Trust, Security and Privacy for Ubiquitous
Computing - Volume 03, WOWMOM ’05, pages 565–569, Washington, DC, USA, 2005.
IEEE Computer Society.

[215] R. Kanneganti and P. Chodavarapu. SOA Security. Manning Pubs Co Series. Manning
Publications Company, 2008.

[216] A. H. Karp, H. Haury, and M. H. Davis. From ABAC to ZBAC: the evolution of access
control models. Hewlett-Packard Development Company, LP, 21, 2009.

[217] A. H. Karp and M. Stiegler. Making policy decisions disappear into the user’s workflow.
In CHI ’10 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’10,
pages 3247–3252, New York, NY, USA, 2010. ACM.

[218] Y. Keleta, M. Coetzee, J. Eloff, and H. Venter. Proposing a Secure XACML architecture
ensuring privacy and trust. In ISSA: Information Security South Africa, Sandton, South
Africa, 2005.

[219] F. Kerschbaum and P. Robinson. Security architecture for virtual organizations of business
web services. Journal of Systems Architecture, 55(4):224–232, Apr. 2009.

[220] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). RFC 1510
(Historic), Sept. 1993. Obsoleted by RFCs 4120, 6649.

[221] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authenti-
cation. RFC 2104 (Informational), Feb. 1997. Updated by RFC 6151.

[222] S. Krug. Don’t make me think!: a common sense approach to Web usability. Voices That
Matter Series. New Riders, 2006.

[223] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed sys-
tems: Theory and practice. ACM Transactions on Computer Systems, 10:265–310, 1992.

[224] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974.

[225] B. Laurie. OpenID: Phishing Heaven. http://www.links.org/?p=187, January 2007.
Accessed 16/05/2013.

[226] A. Lee and M. Winslett. Towards standards-compliant trust negotiation for web services.
In Y. Karabulut, J. Mitchell, P. Herrmann, and C. Jensen, editors, Trust Management
II, volume 263 of IFIP – The International Federation for Information Processing, pages
311–326. Springer US, 2008.

[227] A. J. Lee, M. Winslett, and et al. Traust: A trust negotiation-based authorization service
for open systems. In IN SACMAT ’06: PROCEEDINGS OF THE ELEVENTH ACM
SYMPOSIUM ON ACCESS, pages 39–48. ACM Press, 2006.

[228] H. Lee. Unraveling decentralized authorization for multi-domain collaborations. In Col-
laborative Computing: Networking, Applications and Worksharing, 2007. CollaborateCom
2007. International Conference on, pages 33 –40, nov. 2007.

[229] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. Access control policy
combining: theory meets practice. In Proceedings of the 14th ACM symposium on Access
control models and technologies, SACMAT ’09, pages 135–144, New York, NY, USA, 2009.
ACM.

338

http://www.links.org/?p=187

BIBLIOGRAPHY

[230] W. Lin. A Scope Attack against OAuth 2.0. http://www.ietf.org/mail-archive/web/
oauth/current/msg08409.html, February 2012. Accessed 16/05/2013.

[231] J. Linn. Practical authentication for distributed computing. In Research in Security and
Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on, pages 31–40,
May 1990.

[232] M. Liu, W. Zhang, and H.-L. Liu. Specification of access control policies for web services.
In Computational Intelligence and Security Workshops, 2007. CISW 2007. International
Conference on, pages 472 –475, dec. 2007.

[233] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model and Security Con-
siderations. RFC 6819 (Informational), Jan. 2013.

[234] M. Lorch, B. Cowles, R. Baker, L. Gommans, P. Madsen, A. McNab, L. Ramarkrishnan,
K. Sankar, D. Skow, and M. Thompson. GFD.38 Conceptual grid authorization framework
and classification, 2004.

[235] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First experiences using xacml for
access control in distributed systems. In Proceedings of the 2003 ACM workshop on XML
security, XMLSEC ’03, pages 25–37, New York, NY, USA, 2003. ACM.

[236] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE Trans. Softw. Eng., 25(6):852–869, Nov. 1999.

[237] M. P. Machulak. OAuth Dynamic Binding. http://kantarainitiative.org/
confluence/download/attachments/17301540/dynamic_registration.pdf, July 2010.
Accessed 16/05/2013.

[238] M. P. Machulak, E. L. Maler, D. Catalano, and A. van Moorsel. User-Managed Access to
Web Resources. In Proceedings of the 6th ACM workshop on Digital identity management,
pages 35–44. ACM, 2010.

[239] M. P. Machulak, Ł. Moreń, and A. van Moorsel. Design and Implementation of User-
managed Access Framework for Web 2.0 Applications. In Proceedings of the 5th Interna-
tional Workshop on Middleware for Service Oriented Computing, pages 1–6. ACM, 2010.

[240] M. P. Machulak, S. Parkin, and A. van Moorsel. Architecting Dependable Access Control
Systems for Multi-domain Computing Environments. Architecting Dependable Systems VI,
pages 49–75, 2009.

[241] M. P. Machulak and A. van Moorsel. A Novel Approach to Access Control for the Web.
Technical Report CS-TR-1157, Newcastle University, July 2009.

[242] M. P. Machulak and A. van Moorsel. A Novel Approach to Access Control for the Web.
IEEE SSP’09: Proceedings of the 2009 IEEE Symposium on Security and Privacy, 2009.
Poster Abstract.

[243] M. P. Machulak and A. van Moorsel. Use Cases for User-Centric Access Control for the
Web. Technical Report CS-TR-1165, Newcastle University, August 2009.

[244] M. P. Machulak and A. van Moorsel. Architecture and Protocol for User-Controlled Access
Management in Web 2.0 Applications. Proceedings of the 2010 IEEE 30th International
Conference on Distributed Computing Systems Workshops, pages 62–71, 2010.

[245] E. Maler. The ProtectServe and Relationship Manager Proposition. http://xmlgrrl.
com/publications/ProtectServe-IIW8-19May2009.pdf, May 2009.

339

http://www.ietf.org/mail-archive/web/oauth/current/msg08409.html
http://www.ietf.org/mail-archive/web/oauth/current/msg08409.html
http://kantarainitiative.org/confluence/download/attachments/17301540/dynamic_registration.pdf
http://kantarainitiative.org/confluence/download/attachments/17301540/dynamic_registration.pdf
http://xmlgrrl.com/publications/ProtectServe-IIW8-19May2009.pdf
http://xmlgrrl.com/publications/ProtectServe-IIW8-19May2009.pdf

BIBLIOGRAPHY

[246] E. Maler and T. Hardjono. Binding Obligations on User-Managed Access (UMA) Partici-
pants. http://tools.ietf.org/html/draft-maler-oauth-umatrust-00, January 2013.
Work in Progress.

[247] E. L. Maler and P. C. Bryan. Claims 2.0. http://kantarainitiative.org/confluence/
display/uma/Claims+2.0. Accessed 29/06/2010.

[248] L. Martin. Usability analysis and visualization of web 2.0 applications. In Web Site
Evolution, 2008. WSE 2008. 10th International Symposium on, pages 121 –124, October
2008.

[249] D. Mashima, D. Bauer, M. Ahamad, and D. M. Blough. User-centric identity manage-
ment architecture using credential-holding identity agents. Digital Identity and Access
Management: Technologies and Frameworks, 2011.

[250] E. e. Michiels. ISO/IEC 10181-3:1996 Information technology Open Systems Interconnec-
tion Security frameworks for open systems: Access control framework. ISO/IEC, Geneva,
Int. Standard Edition, 1996.

[251] S. Murugesan. Understanding Web 2.0. IT Professional, 9(4):34–41, 2007.

[252] A. Nadalin, M. Goodner, M. Gudgin, D. Turner, A. Barbir, and H. Granqvist. WS-Trust
1.4. OASIS Standard, Feb. 2009.

[253] M. Naedele. Standards for XML and Web Services Security. Computer, 36(4):96–98, 2003.

[254] B. Neuman. Proxy-based authorization and accounting for distributed systems. In Dis-
tributed Computing Systems, 1993., Proceedings the 13th International Conference on,
pages 283–291, May 1993.

[255] C. Neuman, S. Hartman, and K. Raeburn. The Kerberos Network Authentication Service
(V5). RFC 4120 (Draft Standard), 2005.

[256] J. Nielsen and H. Loranger. Prioritizing Web usability. Voices Series. New Riders, 2006.

[257] J. Nielsen and H. Loranger. Usability 101. http://www.useit.com/alertbox/20030825.
html, 2006.

[258] J. Nielsen and R. Mack. Usability inspection methods. Tutorial / Interact ’95. Wiley, 1994.

[259] J. Nielsen and K. Pernice. Eyetracking Web Usability. Voices That Matter. Pearson Edu-
cation, 2010.

[260] M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform Resource Identifiers
(URIs). RFC 5785 (Proposed Standard), Apr. 2010.

[261] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. Comparison of json and xml data
interchange formats: A case study. Computer Applications in Industry and Engineering
(CAINE), pages 157–162, 2009.

[262] N. I. of Standards and Technology. FIPS PUB 180-1: Secure Hash Standard. http:
//www.itl.nist.gov/fipspubs/fip180-1.htm, April 1995.

[263] OpenID Foundation. Account Chooser. https://www.accountchooser.net/. Accessed
16/05/2013.

[264] OpenID Foundation. OpenID Connect Dynamic Client Registration. http://openid.
net/specs/openid-connect-registration-1_0.html, May 2012.

340

http://tools.ietf.org/html/draft-maler-oauth-umatrust-00
http://kantarainitiative.org/confluence/display/uma/Claims+2.0
http://kantarainitiative.org/confluence/display/uma/Claims+2.0
http://www.useit.com/alertbox /20030825.html
http://www.useit.com/alertbox /20030825.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
https://www.accountchooser.net/
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

BIBLIOGRAPHY

[265] A. Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement. Blooms-
bury Academic, 1992.

[266] T. O’Reilly. What Is Web 2.0. Design Patterns and Business Models for the Next Genera-
tion of Software. http://oreilly.com/web2/archive/what-is-web-20.html, Sep 2005.
Accessed 29/06/2010.

[267] R. Paul. OAuth and OAuth WRAP: defeating the password anti-
pattern. http://arstechnica.com/open-source/guides/2010/01/
oauth-and-oauth-wrap-defeating-the-password-anti-pattern.ars, Jan 2010.
Accessed 29/06/2010.

[268] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community autho-
rization service for group collaboration. In Proceedings of the 3rd International Workshop
on Policies for Distributed Systems and Networks (POLICY’02), POLICY ’02, pages 50–,
Washington, DC, USA, 2002. IEEE Computer Society.

[269] S. Pearson and M. C. Mont. Sticky policies: An approach for managing privacy across
multiple parties. Computer, 44(9):60–68, Sept 2011.

[270] D. J. Power, E. A. Politou, M. A. Slaymaker, and A. C. Simpson. Towards secure grid-
enabled healthcare: Research articles. Softw. Pract. Exper., 35(9):857–871, July 2005.

[271] J. C. Process. JSR 311: JAX-RS: The JavaTM API for RESTful Web Services. http:
//jcp.org/en/jsr/detail?id=311, November 2009. Accessed 16/05/2013.

[272] D. Recordon and D. Reed. Openid 2.0: a platform for user-centric identity management.
In Proceedings of the second ACM workshop on Digital identity management, pages 11–16.
ACM, 2006.

[273] F. Ricciardi. Kerberos protocol tutorial. http://www.kerberos.org/software/
tutorial.html, November 2007. Accessed 16/05/2013.

[274] J. Richer, J. Bradley, M. Jones, and M. P. Machulak. OAuth Dynamic Client Registration
Protocol. http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg, December 2012. Work in
Progress.

[275] P. Samarati and S. Vimercati. Access control: Policies, models, and mechanisms. In
R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of Lecture Notes in Computer Science, pages 137–196. Springer Berlin Heidelberg,
2001.

[276] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models.
Computer, 29(2):38 –47, feb 1996.

[277] R. Sandhu and P. Samarati. Access control: principle and practice. Communications
Magazine, IEEE, 32(9):40–48, 1994.

[278] R. Sandhu and P. Samarati. Authentication, access control, and audit. ACM Computing
Surveys (CSUR), 28(1):241–243, 1996.

[279] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The emperor’s new security indica-
tors. In Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages 51–65, 2007.

[280] J. Sermersheim. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC 4511
(Proposed Standard), June 2006.

341

http://oreilly.com/web2/archive/what-is-web-20.html
http://arstechnica.com/open-source/guides/2010/01/oauth-and-oauth-wrap-defeating-the-password-anti-pattern.ars
http://arstechnica.com/open-source/guides/2010/01/oauth-and-oauth-wrap-defeating-the-password-anti-pattern.ars
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=311
http://www.kerberos.org/software/tutorial.html
http://www.kerberos.org/software/tutorial.html

BIBLIOGRAPHY

[281] A. Simpson. On the need for user-defined fine-grained access control policies for social net-
working applications. In SOSOC ’08: Proc. of the Workshop on Security in Opportunistic
and SOCial networks, pages 1–8, New York, NY, USA, 2008.

[282] A. C. Simpson, D. J. Power, D. Russell, M. A. Slaymaker, G. Kouadri-Mostefaoui, X. Ma,
and G. Wilson. A healthcare-driven framework for facilitating the secure sharing of data
across organisational boundaries. In Proceedings of HealthGrid 2008, 2008.

[283] M. Slaymaker, D. Power, D. Russell, and A. Simpson. On the facilitation of fine-grained
access to distributed healthcare data. In W. Jonker and M. Petković, editors, Secure Data
Management, volume 5159 of Lecture Notes in Computer Science, pages 169–184. Springer
Berlin Heidelberg, 2008.

[284] D. K. Smetters. Building Secure Mashups. In W2SP ’08: Proc. of the Workshop on Web
2.0 Security and Privacy, Oakland, CA, USA, May 2008.

[285] K. Smith. SOA Access Control Policy Management. Approaches, Common Pitfalls, and
Best Practices. http://soa.sys-con.com/node/284576, October 2006.

[286] S.-T. Sun, K. Hawkey, and K. Beznosov. Secure web 2.0 content sharing beyond walled
gardens. In ACSAC ’09: Proc. of the 25th Annual Computer Security Applications Con-
ference, pages 409–418, Dec 2009.

[287] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor. Crying wolf: an em-
pirical study of ssl warning effectiveness. In Proceedings of the 18th conference on USENIX
security symposium, SSYM’09, pages 399–416, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

[288] The Stationery Office Limited. Data Protection Act 1998, 1998.

[289] A. Tootoonchian et al. Lockr: social access control for web 2.0. In WOSP ’08: Proc. of
the First Workshop on Online Social Networks, pages 43–48, New York, NY, USA, 2008.

[290] M. S. Torsten Lodderstedt, Stefanie Dronia. Token Revocation. http://tools.ietf.
org/html/draft-lodderstedt-oauth-revocation-04, March 2012. (Work in Progress).

[291] P. van Schaik and J. Ling. Design parameters of rating scales for web sites. ACM Trans.
Comput.-Hum. Interact., 14(1), May 2007.

[292] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat,
M. Holdrege, and D. Spence. AAA Authorization Application Examples. RFC 2905
(Informational), Aug. 2000.

[293] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat,
M. Holdrege, and D. Spence. AAA Authorization Framework. RFC 2904 (Informational),
Aug. 2000.

[294] W3C. SOAP. Technical Reports. Version 1.2. http://www.w3.org/TR/soap/, April 2007.

[295] P. Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’92, pages
1–14, New York, NY, USA, 1992. ACM.

[296] G. Wang. Improving data transmission in web applications via the translation between xml
and json. In Communications and Mobile Computing (CMC), 2011 Third International
Conference on, pages 182–185, 2011.

342

http://soa.sys-con.com/node/284576
http://tools.ietf.org/html/draft-lodderstedt-oauth-revocation-04
http://tools.ietf.org/html/draft-lodderstedt-oauth-revocation-04
http://www.w3.org/TR/soap/

BIBLIOGRAPHY

[297] U. WG. UMA 1.0 Core Protocol. http://kantarainitiative.org/confluence/
display/uma/UMA+1.0+Core+Protocol. Accessed 17/08/2012 (Work in Progress).

[298] D. Winer. XML-RPC Specification. http://xmlrpc.scripting.com/spec.html, June
1999.

[299] W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. In DARPA
Information Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, vol-
ume 1, pages 88 –102 vol.1, 2000.

[300] T. Woo and S. Lam. Designing a distributed authorization service. In INFOCOM ’98. Sev-
enteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 2, pages 419 –429 vol.2, March - April 1998.

[301] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually prevent phishing
attacks? In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’06, pages 601–610, New York, NY, USA, 2006. ACM.

[302] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admission
Control. RFC 2753 (Informational), Jan. 2000.

[303] Y. Zhang, S. Egelman, L. Cranor, and J. Hong. Phinding phish: Evaluating anti-phishing
tools. In In Proceedings of the 14th Annual Network and Distributed System Security
Symposium (NDSS), 2007.

343

http://kantarainitiative.org/confluence/display/uma/ UMA+1.0+Core+Protocol
http://kantarainitiative.org/confluence/display/uma/ UMA+1.0+Core+Protocol
http://xmlrpc.scripting.com/spec.html

	Acknowledgements
	Abstract
	Publications
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Scenario
	Shortcomings
	Requirements

	Goal
	Approach
	Novelty of Approach
	Contributions
	Thesis Outline

	Background
	Introduction
	Distributed Environments
	Multi-Domain Computing Environments
	Web Environment

	Access Control in Distributed Environments
	Policies

	Delegated Authorisation
	Interactions

	Access Control Mechanisms
	Capability-Issuing Security Architecture
	Decision-Issuing Security Architecture

	Access Control Challenges
	Policy Challenges
	Heterogeneity and Distribution of Subjects and Objects
	Context and Content-Based Access to Resources
	Policy Heterogeneity Management
	Policy Conflict Resolution

	Architectural Challenges
	Interoperability Between Access Control Components
	Location of Policy Decision Points
	Management of Access Control Systems
	Communication Performance
	Autonomy of Administration Domains
	Access Control Delegation
	Attribute Aggregation
	Authorisation Credential Issuing and Validation
	Assignment of Arbitrary Authorisation Attributes to Users
	Security of Access Control Systems

	Chapter Summary

	Related Technologies
	Introduction
	XACML
	XACML in Multi-domain Computing Environments

	SAML
	Kerberos
	OAuth 1.0
	OAuth 2.0
	OpenID Connect
	Street Identity
	Architecture
	Protocol
	Discussion

	Sticky Policies
	VOMS
	Locker Project
	Menagerie
	Secure Web 2.0 Sharing Beyond Walled Gardens
	Secure File System for the Web
	Fine-grained Access Control Policies for Social Networking Applications
	Chapter Summary

	User-Managed Access Control
	Introduction
	Initial Proposal
	Architecture
	Interactions
	Discussion

	Refined Proposal
	Architecture
	Protocol
	Implementation
	Advantages
	Extensions
	Limitations

	Chapter Summary

	User-Managed Access
	Introduction
	Requirements Analysis
	Architecture
	Delegation Protocol
	User introduces host to AM
	Host learns the location of the user's preferred AM
	Host discovers AM's functionality
	Host registers dynamically at AM
	User authorises the Host for their AM
	Host obtains initial authorisation in form of a code.
	Host exchanges the code for an access token for AM.

	User registers resources for protection at AM
	User defines access control policies at AM
	Requester gets access token from AM
	Access request did not contain an RPT
	Requester authorisation at AM.
	Requester obtains a new RPT for a Host at AM.

	Access request contained an invalid RPT

	Requester wields access token at Host to gain access

	Trust Model
	Subject Registration
	Host Registration at AM
	Trusted Claims Gathering
	Trust Delegation and Trust Chain

	Credentials
	Claims
	Claims 2.0
	Trusted Claims
	OpenID Connect Claims

	Protected Information
	Evaluation
	Limitations
	Chapter Summary

	Host and Requester Frameworks
	Introduction
	UMA/j
	UMA/j Common
	Discovery
	Dynamic Registration
	OAuth 2.0
	UMA/j Host
	Resource Registration
	Request Filter
	Token Validation
	Core

	Requester
	Requester Filter
	Token Retrieval
	Core

	Limitations

	Puma
	Framework Structure
	Puma.UMA.*
	Puma.OAuth.*
	Puma.Util.*
	Puma.Storage.*
	Puma.Pouches.*

	Common
	Discovery
	Dynamic Registration
	OAuth 2.0-based Authorisation

	Host
	Data Model
	Resource registration
	Resource Registration Handler.
	Share button iframe.

	Token status validation
	The Warden.

	Requester
	Data Model
	Protected Resource Access
	Obtaining Requester Access Token
	Obtaining Requester Permission Token

	Limitations

	Chapter Summary

	Authorisation Managers
	Introduction
	SMART Authorisation Manager V1
	Architecture
	Security
	Support for User-Managed Access
	Authorisation tokens
	Support for host applications
	Support for requester applications

	Policy Model
	Policy Evaluation
	Claims
	Authorisations

	User Interface
	Integration with Applications
	Implementation
	Limitations

	Evaluation of SMARTAM V1 User Interface
	Research
	Usability Factors
	Research Method
	User Scenario
	Data Collection

	Research Results
	Feedback from the respondents
	Interpretation of the results
	Interface inconsistencies
	UMA-protocol understanding

	Shortcomings and Recommendations
	Analysis of usability factors
	Shortcomings
	Recommendations

	SMART Authorisation Manager V2
	Architecture
	Persistence and Services Layer
	API Layer
	Presentation Layer

	Security
	Support for User-Managed Access
	Authorisation Tokens
	Support for Host Applications
	Resource Registration
	Support for Requester Applications

	Federated Authentication
	Policy Model
	Database Implementation of Policies

	Policy Evaluation
	Issuing empty RPTs to Requesters
	Registering Permissions
	Obtaining Authorisation
	Authorising User acting as Requesting Party.
	Requesting Party added manually by Authorising User.
	Any Requesting Party.

	Validating Tokens from Requesters

	Access History
	User Interface Description
	Scenario
	Login at Host and AM.
	Register a document for protection at AM using host application.
	Choose contacts to share the document with.
	Choose applications to be used by contacts for accessing the document.
	Setup permissions for contacts and applications.
	Share the document.

	Main User Interface
	Comparison

	Implementation Details
	Presentation Layer
	Services Layer
	Persistence Layer
	Application Programming Interface
	Security

	Limitations

	Chapter Summary

	Conclusions
	Thesis Summary
	Future Work
	Deployment and acceptance of user managed access control approaches
	Development of improvements to UMA protocol
	Optimised integration with client applications
	Schema for protected resources
	Protected resources discovery support
	User's preferred AM discovery support

	Development of improvements to SMARTAM implementation
	Extended audit with support for arbitrary events
	Extended policy support
	Visualisation of complex policies
	User studies of the newly implemented AM
	Integration of AM with federated authentication proposals
	Mobile applications support

	Concluding Remarks

	Appendices
	Appendix Graphical representation of UMA/j module dependencies
	Appendix Example UMA/j Host configuration file
	Appendix UMA/j Implementation and Evaluation
	Implementation
	Evaluation

	Appendix Puma Implementation and Evaluation
	Implementation
	Evaluation
	Host application
	Requester application

	Appendix SMARTAM V1 Data Model
	Appendix SMARTAM V2 Data Model
	Appendix Example UMA Authorisation Manager Configuration Data
	Appendix Questionnaire for SMARTAM V1 UI Research Study
	Appendix Sharing Trustworthy Personal Data with Future Employers Scenario
	Appendix Mind map of access control for the open Web
	Bibliography

