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ABSTRACT

The current understanding of theoretical physics tells us that there exists a unique,
nonperturbative quantum theory living in 11D spacetime (M-theory), from which
five 10D superstring theories arise as perturbative limits. Finding the explicit
form of this M-theory is one of the greatest theoretical challenges of the twenty
first century. In this thesis, we shed the light on some important aspects, vac-
uum energy, moduli stabilization and gaugino condensates in the framework of
5D heterotic M-theory. The central question we are trying to answer in this the-
sis is: what is the mechanism for radion stabilization?. To answer this question
we calculate the total bulk vacuum energy, which is the difference between the
twisted and untwisted fermion vacuum energies, in both flat and curved spaces. Tt
is found that this bulk vacuum energy alone doesn’t stabilize the radion field. We
then try to add and investigate some non-perturbative effects such as the gaugino
condensates and use the technique of dimensional reduction to reach an effective
superpotential. Dimensional reduction is a necessary step required to know how
our real 4D world is described by a higher dimensional theory. After performing
the dimensional reduction, we have a look at the resulting effective superpotential
for a 4D gravitino with ghost fields. The importance of the ghost vacuum energy
is in its positive sign which is helpful in the stabilization proplem when added to

the total fermionic bulk vacuum energy with its ordinary negative sign.
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1. INTRODUCTION

1.1 Extra dimensions and Brane-worlds

Most theoretical physicists believe that at high enough energies, classical General
Relativity fails to describe gravity and must be unified with quantum field theory.
The supposed quantum gravity theory should contain significant corrections as
the fundamental energy scale (the Planck scale) is approached. Superstrings are a
good candidate, where all particles in nature are just different vibrations of strings
of the string scale (~ 107*3cm).

A class of models has been inspired in the context of branes in string theory,
called ‘brane-world models’ (see [9] for a review). In such models, the observable
universe is regarded as a 3 + 1—dimensional surface (the brane) embedded in a
3 + 1 4+ d—dimensional spacetime (the bulk). Standard model particles and fields
are trapped on the brane and only gravity is free to access the bulk. At low energies,
gravity is localized at the 3 + 1—dimensional brane allowing General Relativity to
be recovered. At high energies, gravity leaks into the higher dimensional bulk,
behaving in a truly higher dimensional theory. These models may differ from
traditional Kaluza-Klein models in that the extra dimensions are not necessarily
small compared to the length scales accessible to modern accelerators.

Although the idea that lower dimensional hypersurfaces constitute the visible
world had been suggested before [4, 25], the idea only became popular in 1998 when
the model of Arkani-Hamed, Dimopoulos and Dvali (ADD)[11] was proposed. This
model is an attempt to attack the long standing hierarchy problem (that is why
gravity is much weaker than all other forces) through the idea of large extra-

dimensions.
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An important common feature of all extra-dimensional models is that they have
additional scalar fields. These scalar fields couple to the 4D energy-momentum ten-
sor modifying the 4D gravity (and so sometimes called gravi-scalars). However,
there are strong experimental constraints on such ‘scalar-tensor theories’ of grav-
ity. For example, in the case of only one compact extra-dimension (5D bulk), by
calculating the slowing down of binary pulsars due to the radiation of these gravi-
scalars, it could be shown that [87, 88| the presence of the gravi-scalars leads to a
modification of Einsteins quadrupole formula by 20%, but observations agree with
the quadrupole formula by better than 0.5%. For more extra-dimensions there will

be more gravi-scalars and the problem gets worse.

1.2 Kaluza-Klein basics

In 1919 (published only in 1921), Kaluza proposed that gravity and electromag-
netism could be unified by adding one extra dimension [90]. His main aim was to
unify the Hilbert-Einstein action with the action of electromagnetism. He started
from a pure 5D gravitational action. Then, after integrating out, he could get the
equations of General Relativity, Maxwell’s equations and a scalar field coupled to
the electromagnetic field tensor. This means that the additional part in the 5D
metric g4p gives the Maxwell field and a scalar field (the dilaton field).

In 1926, Klein [91] suggested that the extra dimension has a circular topology
so that the extra coordinate y is periodic. The compactification of the direction y
with radius L means y and y + 2w L are identified. The space then has a topology
R* x S', which means that there is a little circle at each point in four-dimensional
spacetime [see Fig.1.1].

The gravity action in 5D could be written as

M3 2L
56 _ 75/6143;/ dyr/g® RO (1.1)
0

Where
— =87G5 = K (1.2)
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The 5D metric could be expressed in 4 + 1 form as

Guv + e*mAMAV e’\/%Au

gap = e/V? (1.3)

6_\/%14,/ e_\/%

Where g,,, A, and ¢ are tensor, vector and scalar fields respectively. The pe-
riodicity in y means that the components of the five dimensional metric can be

expanded in terms of Fourier series [92]

guu T y Z gl(; ery/L) (14)
Z A n) 2n7ry/L (15)
Z d) 2n7ry/L (].6)

So, the theory describes an infinite number of four-dimensional fields. The
mass of the mode n becomes m? = "TZ which means that the smaller the size L
the higher the energy required to probe it. Only the zero (massless) mode (1.3) is
effective at low energies and massive modes will be important at higher energies.

After integrating out the extra dimension, the low-energy 5D action (1.1) be-

comes
(27rL)M3

: /d“ \/_[R——a PO p — —e—fF Watd (1.7)

By comparing the above action with the 4D action we can get a relation between

the 4D Planck scale and the 5D one as
M} = (2rL)M; (1.8)

The additional scalar field worried Kaluza and Klien, but now physicists expect
to see new scalar fields in their theories. Modern higher dimensional theories don’t
imply the compactification manifold to be a circle.

In spite of the beautiful unification of gravity and electromagnetism, Kaluza-

Klein theory failed to include other forces. Also, it doesn’t explain the weakness
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of gravity in comparison to electromagnetism. The Kaluza-Klein theory was es-
sentially abandoned until the advent of supergravity and string theory, where the

idea of higher-dimensional theories was reintroduced in physics.

1.3 ADD model - large extra dimensions.

The ADD model was proposed in 1998 [11, 23] to solve the hierarchy problem
between the Planck scale and the weak scale. The basic idea is that large volume
compact extra dimensions would lower the fundamental Planck scale to the weak

scale, leaving a single scale M,,,. We summarize this in the following equation
Mew ~ 1TeV = Mpl(4+d). (19)

As in Kaluza Klein theories, the geometry is factorized (meaning that the 4-
dimensional part of the metric does not depend on extra-dimensional coordinates),

and the metric reads:
ds? = g, (2*)dz"dz” + gi;(2°)dz'dx?. (1.10)

The space-time is R* x M,,, where M, is an n dimensional compact manifold
of radius R and volume R". The Plank scale Mpj4n) of this (4 + n) dimensional
theory is taken to be ~ M,,,.

By Gauss law in 4 4+ n dimensions, for small separation » < R, the Newtonian

potential between two particles of masses m; and my will be given by

mimso 1
Vi)~ a2 <R (1.11)
MPZJEi-l-n) et

The usual 1/r could be obtained when the masses are placed at distances r > R,

that is
mimsy 1
Vi(r) ~ —— (r> R). (1.12)
MEid R

We can write now the effective 4-dimensional Planck scale Mp as

Mp ~ MEi2 R (1.13)
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So, if we put Mp44pn) ~ M., and demand that R be chosen to give the observed

Mp we get

1+2
1T6V> . (1.14)

30
R~ 10" Yem x < M

The case for n = 1 is empirically excluded as R ~ 103¢m which implies mod-
ifications for Newton’s law over solar system distances. For n = 2, R ~ 10 %cm
which suggests modifications on the submillimeter scale. Since the experimental
capabilities are limited, the knowledge of the validity of these laws of nature is lim-
ited. For example, very little is known about the behaviour of gravity at distances
< 107 *em or > 10%em [27].

Unfortunately, while the ADD model solves the hierarchy between the Planck
and weak scale, it replaces this with a hierarchy between the fundamental Planck
scale My, and the compactification scale g, = R™! (u. = 1/, for RS model) [35].
As we will see, in the Randall-Sundrum model the hierarchy between the Planck
and weak scales could be resolved without the need to introduce a large hierarchy
between My, and p,.

Reducing the fundamental scale to the weak scale gives some hope for the
experimental tests of quantum gravity. Theories of quantum gravity, string theory

for example, might be accessible at modern colliders such as the LHC.

1.4 The hierarchy problem

Despite being in a very good agreement with experiments, the standard model of
elementary particles (based on the SU(3) x SU(2) x U(1) gauge group) suffers
several unattractive features. One of these unattractive features is the gauge hi-
erarchy problem, the standard model cannot consistently accommodate the weak
energy scale O(1TeV) and a much higher scale such as the Planck mass scale
O(10'9)GeV. This is why it has been suggested that the standard model is only
an effective low energy theory embedded in some more fundamental high scale
theory that could contain gravity.

There are in fact two long standing fine tuning problems, the hierarchy problem
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Fig. 1.1: The orbifold S1/Z, on which the extra dimension y is compactified. It is just

a circle with two fixed points 0 and 7 identified and 2z symmetry imposed.

and the cosmological constant problem. In both of them there are two fundamental
scales; an experimentally observed scale and a theoretically expected scale, which
are many orders of magnitude apart.

In the hierarchy problem, the observed scale is the energy scale at which the
electromagnetic interaction unifies with the weak interaction around 17eV. The
theoretical scale is set by quantum correction to the Higgs mass.

The Planck energy scale (at which a theory of quantum gravity should be
revealed) is theoretically calculated to lie at 10*GeV or 107%m. The hierarchy
of sixteen orders of magnitude between these two scales is called the hierarchy
problem. The model that solves the problem most ‘economically’ is the RS model

with a single extra dimension [2, 3].

1.5 The predecessors of brane-worlds

The idea of the universe as a domain wall was first proposed by Rubakov and
Shaposhnikov in 1983 [25], who imagined particles confined by a 3D potential well
at low energy. A system of two branes of equal and opposite tension bounding

a fifth dimension which contains bulk scalar fields first received serious attention
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after the compactification of Horava-Witten theory to 5 dimensions [12].

It is widely accepted that the weakly coupled Eg x FEg heterotic string is one
of the most phenomenologically viable of five superstring theories. Unfortunately,
the predicted value for Newton’s constant in this theory is too large. Witten
[17] has shown that this situation can be resolved in the strong coupling limit of
the heterotic string, which is believed to be equivalent at low energy to eleven-
dimensional supergravity, with Fg Super-Yang-Mills gauge theories on two branes
[4]. This theory can be compactified to get a 5D theory. It is known that in
order for the theory to predict the correct values of Newton’s constant and grand
unification gauge couplings, the orbifold radius must be an order of magnitude
or so larger than the compactification scale. Hence, at some intermediate energy
scale, the theory has a consistent five-dimensional description.

Lukas et al. [6, 12] have derived the five-dimensional effective action from
Horava-Witten theory. They have shown that the resulting theory is a gauged
version of N = 1 supergravity in five dimensions, with a non-abelian set of Fjy
gauge fields on one brane, and spontaneously broken to Eg on the other. The
vacuum solution for this theory has a curved bulk metric. This was the true
predecessor of most brane-world scenarios.

The 5D solution gives rise to an effective four dimensional theory in which the
separation of the domain walls becomes one of the moduli fields. It is important
to identify effects which can provide a potential for the brane separation and fix
this particular modulus. This is discussed further in chapter (2). One possible
mechanism is that quantum fluctuations of the bulk fields stabilise the branes at
phenomenologically acceptable positions. This has been discussed extensively in
the context of the Randall-Sundrum brane world scenario (see for example [18]).
Previous work of this kind in five-dimensional heterotic M-theory has been done

for scalar fields by Garriga et al. [19].
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1.6 FEinstein Equations on The Brane

How to reach a 4D effective theory on the brane is an important question that
should be answered in any braneworld model. For a single brane system, Shi-
romizu, Maeda and Sasaki reached a useful set of equations by projecting the
higher dimensional Einstein equations onto a Z, symmetric brane. That means,
as in the original Horava-Witten theory [4], there exists a Z, reflection symmetry
along the extra dimension z — —z.

According to [1], we live on 4D brane (M, g,,) in a 5D spacetime (V) g,,,) with
the induced metric

Qv = Guv — Ny (1.15)

Where n® is a unit vector on M.

To relate the 5D and 4D quantities we make use of Gauss’ equation
(4>R§‘75 =) Ry, 45950505 + K3 Kpg; — K§ Kg,, (1.16)
and the Codacci equation
D,K! - D,K = R,,n°q’. (1.17)

In these equations,
K, = qz‘qfvanﬁ = extrinsic curvature on M.
K = K}, is the trace.
D, =covariant derivative with respect to g,,.
Contracting (1.16) and using the 5D Einstein equation (The idea here is that
they are trying to eliminate the 5D quantities to an equation restricted to the

brane, but this will not be entirely successful),

1
OR,, - 5gl()?f)R = K2T,, (1.18)
We get
(4) ZHE 0,0 0,0 1 P
G = ?[Tpaququ + (Tpen’n’ — ZTP)QW] + KKy (1.19)

a ]' o
K K,; — §qu,,(K2 ~ K%K,5) — E,
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«Q

G0 A8

where F,, is a traceless tensor given in terms of the 5D Weyl tensor
E. =(5) Cgpgnan”qﬁq,j' and carries information about the gravitational field in the

5D bulk. The 5D metric can be put into the form

ds* = dy* + qudx’dz”, (1.20)
with the brane located at y = 0. The 5D energy momentum tensor is

Tuw = =Aguw + Spwd(x) (1.21)

Where
Sul/ = _)\qul/ + Tuw (122)

The reason for including A, a bulk cosmological constant, will be explained in
the next section. Clearly the () function is introduced to restrict matter to the
brane. A is the brane vacuum energy (brane tension) and 7, is the brane energy-
momentum tensor. This singular behaviour in the energy momentum tensor leads
to Israel’s junction conditions [108] i.e. a discontinuity (a jump) in the extrinsic
curvature K, across a hypersurface (embedded in a higher dimensional space) is
related to the energy momentum tensor on that hypersurface. This reminds us
with what happens in electromagnetism when the jump of the normal component
of D across two different media is related to the charge density on the separation

surface of the two media. These conditions could then be written as

_ 1
[KMV] = K;—Ll—l/ - K;w = _KE(SMV o gqlﬂjs)7 (123)

where Kjl, = limy_,10 K,,. Applying Z, symmetry allows us to write

_ 1 1
K;LI—I/ = _Kuy = _5"{'%(5#1/ - gq;ujs) (124)

Plugging this into the equation for the 4D Einstein tensor we get

(4)GW = —Nyqu + 8TGNTY + Hgﬂw —E,., (1.25)
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where
A, = 1.2 A 1 252 1.26
4 = 2"‘55( +6"‘55 ) (1.26)
Ka\

Gy = 22 1.27
N 487 ( )

Ty — ——T, aTa + LTT v + 1q I/TCMBTQB - iq 11,7—2 (128)
g g meTy g T g 247

The brane cosmological constant A, depends on the brane tension and the bulk
cosmological constant. That means a fine tuning is required to get viable solutions.
The 4D Newton’s constant is directly proportional to the brane tension. There is
also unusual term 7, which is quadratic in the energy momentum tensor and can

produce a significant change in the cosmological evolution.

1.7 Randall-Sundrum models and the geometrical origin of the

hierarchy

Randall and Sundrum suggested a set up to solve the hierarchy problem in which
the extra dimensions are small, but the background metric is not flat along the
extra coordinate; it is a slice of Anti de Sitter (AdSs) space. This curved space
causes the energy scales on the two branes to be different, one scale is exponentially
suppressed on the negative tension brane. This exponential suppression can then
naturally explain why the physical scales observed are so much smaller than the
Planck scale [36].

According to articles [2, 3|, the elementary particles except for the graviton are
localized on a 341 dimensional brane or branes. There are two popular models.
The first one (RS1) [3] has a finite size for the extra dimension with two branes
with positive and negative tensions respectively [see fig.1.2]. It attempts to address
the hierarchy problem geometrically, where the warping of the extra dimension
generates a large ratio of energy scales so that the natural energy scale at one end
of the extra dimension is much larger than at the other end.

In the second model (RS2) [2], the negative tension brane has been placed

infinitely far away (the extra dimension is infinite in size) so that there is only one
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5D=R*Y« St/ Z,

v=10 y=r

Fig. 1.2: The topology in RS model is R* multiplied by a line element which is taken to
be a circle with Z, symmetry in RS1 and an infinite real line R* in RS2. The
topology in the 5D reduced heterotic M-theory is the same as that of RS1.

brane left in the model. The generalized RS1 scenario with radion stabilization
seems more realistic than the RS2 model. An important feature that has been
pointed out by the RS2 model is that there is an alternative to compactification,
meaning that we don’t necessarily have to compactify the extra dimension. The

action of the RS1 model is given by

S = Sgravity + Svis + Shid
Spravity = / d's / dov/—G{—A + 2M*R)
Svis - /d4x\/ _gvis{['m's - )\vis}
Shia = /d4$\/ —gnia{ Lhia — Mnid}- (1.29)

Where A and M are the 5D cosmological constant and Planck scale respectively.
A constant vacuum energy for both branes has been separated out which can act

as a gravitational source. In order to obtain a Minkowiski brane, we have to set
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A, = 0 and then (1.26) implies

2,2
MK

As = — o K= M. (1.30)

meaning that the bulk space is AdS. Since AdS is conformally flat, £,, = 0 in
(1.25). Also, a Minkowiskian brane implies that 7, = 0 and that gives VG, = 0.

The above relation is the RS fine tuning condition which ensures the zero
value of the effective cosmological constant on the brane so that the brane has the
induced geometry of Minkowski spacetime. This condition is the main unattractive
feature of the RS model [22] and it seems unlikely as a relation between two
independent quantities, without a physical basis. The RS1 model is unstable
under small deviations from this fine tuning between the brane tension and the

bulk cosmological constant. The bulk metric is given by
ds? = e~ %reldly | datda” + r2de? (1.31)

Where k is the curvature of the AdS. Noting that /—G = r.\/—¢® and R =
erTC¢R(4), the gravitational part Sg.quity in (1.29) gives the 4D Planck scale as

3

M
M3, = T[l — g 2krem], (1.32)

In order to investigate the physically observed masses of matter fields we assume

a Higgs field with mass mpy on the hidden brane. The metric on the visible brane

hid

(] —2krem—
g uv

is gl =e

s To get the mass we normalize the Higgs field as

L With g =g
follows. The action for the Higgs field on the visible brane is

Spis = /d4x\/—gvis{g,ﬁ‘i’;D#H*DyH — M|H|)? —m?)?}, (1.33)

Where A is an arbitrary coupling constant. We redefine the Higgs field to absorb

kre

the warp factor i.e. H — €"<"H, the action becomes

Syis = / d'e\/~g{g" D, H'D,H — N(|H|* — e~ %" m2)?}, (1.34)

Where H = e=krem | So, the observer located on the visible brane will measure the

Higgs mass as m = e *"<™m,. This is a general result; i.e. any field on the visible
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brane with a fundamental mass parameter m, will appear to have the physical
mass m = e ¥"<™m,. For example if mg ~ Mp; then kr, ~ 12 leads to m ~ m.,.

In order to get an appropriate hierarchy between the Planck scale and the
electroweak scale in RS1 model, the distance between the two branes must be
set to about 50 times the bulk curvature scale. Of course, this would be more
satisfactory if this value could be explained by a dynamical mechanism [37].

The massless degree of freedom in RS model called the radion. Since the
geometrical interpretation of the radion is the distance between the two branes,
this means that the radius of the extra dimension is not fixed.

There have been several attempts in the literature to generate the radion mass,
as we will see later on. The simplest radion stabilization mechanism by Goldberger
and Wise [35, 93] stabilized the radion without any severe fine-tuning of the pa-
rameters in the full theory. It has been applied to the two brane RS model [53, 63]
to recover gravity consistent with observation. The collider signatures for the RS1
model have been studied in detail in [65].

An interesting result was found in [119], where the higher KK modes of the
graviton in the RS1 model couple to the standard model fields on the brane with
a much larger strength (ef™<™ M) than the zero mode graviton (Mp,'). It is much
easier then to observe the KK excitations in modern colliders than to observe the
graviton!. The supersymmetric extension of the Randall Sundrum scenario has

been considered in [49-52].

1.8 DGP model (braneworlds with infinite volume extra

dimensions)

RS2 [2] is an example of an infinite size extra-dimension brane-world (Vy =
i ANy G — oc). Another infinite size extra-dimension model has been suggested
in [120] (GRS model) in which gravity is five dimensional both at short and large
distance scales, but it is a conventional 4D-gravity at intermediate length scales.

However, this last model is considered to be inconsistent due to the existence of
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ghost fields (see [86] and the references therein).
In the DGP model, a 3-brane is embedded in 5D Minkowiski bulk where gravity
in the bulk is taken to be very strong. The Lagrangian for the model is
s = M [aaymgmre 2 [y mmme
+ /d‘lx\/WLerw/ d'z/—g K
oM

In the above action, because of the different mass scales M (the 5D Planck
scale) and M, (4D Planck scale), gravity propagates differently on the brane and
on the bulk. When M — 0 and Mp,; is finite, the above action describes 4D
gravity on the brane. When Mp; — 0 and M is finite, it describes 5D gravity in
the bulk. The two different pre-factors in front of the bulk and the brane actions
give rise to a characteristic length scale r. = M3,/M3, called crossover scale. At
distance scales much smaller than this characteristic distance, we have the usual
4D gravitational physics. On scales larger than r. the 5D physics is recovered. The
brane Ricci scalar is possibly generated by one loop corrections of massive scalars
and fermions localized on the brane [see fig.1.3].

The higher dimensional Planck scale M in this model is much smaller than
in other extra dimensional models. For example, we have seen before that (see
equation (1.13)) M3 ~ M;zﬁrn)Vn, with V,, the volume of the extra dimension and
n the number of the extra dimensions. But for the case of V,, — oo this relation
doesn’t hold, and M can be much smaller than the TeV scale, making gravity in
the bulk much stronger.

The higher dimensional theory is assumed to be supersymmetric, whilst SUSY
is spontaneously broken on the brane. These breaking effects can be localized on
the brane without affecting the bulk, Only when the infinite volume gives a large
enough suppression factor. The infiniteness of the extra dimension means there’s
no need to stabilize the size of the extra dimension as it is neither compactified
nor warped.

The existence of a critical length scale r. below which 4D Newtonian gravity

is recovered on the brane and above which modified gravity dominates looks very
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Fig. 1.3: The one-loop diagram with massive scalars and fermions (brane matter fields)
in the loop which generates the brane Ricci scalar (Ricci scalar for 4D graviton).
Matter fields indicated by solid line and gravitons by wave lines. vertical short

lines on matter fields propagator indicate that they are massive.

interesting for cosmologists. Several attempts have been made to get a consistent
extension of general relativity that modifies gravity at cosmological distances while
remains in an agreement with observations at shorter distances (example [120]).
One of the motivations of these models is to explain something that happens at
very large scales, i.e. the expansion of the universe is accelerating! This is usu-
ally explained by introducing a cosmological constant, or a form of mysterious dark
energy with negative pressure called dark energy. The DGP model allows a cosmo-
logical solution in which accelerated expansion of the universe is realized without
introducing a cosmological constant [121]. Based on this model, a mechanism that
dilutes the cosmological constant was also proposed [122].

Cosmology in the DGP model is governed by the modified Friedmann equation
[121]

kip H
H>= 2" — 1.36
3 i r,’ ( )

Where H is the Hubble parameter and p is the matter density on the brane. The
two possible choices of sign lead to two branches of cosmological evolution. The
negative sign corresponds to a decelerating expanding universe (of course in the
absence of cosmological constant on the brane). This branch of solutions is called
the FRW branch. The positive sign corresponds to an accelerating expanding
universe, this branch of solutions is called self-accelerating branch.

Because the DGP model is very complicated, it is often not easy to solve the
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Einstein equations in the higher dimensional spacetime. The model is controversial

and its viability is in question [138, 139] .

1.9 FExtra time-like dimensions

The extra dimensions in almost all extra dimensional models are assumed to be
space-like. This is because several difficulties appear in the presence of more than
one time-like direction. The main problem with time-like compactified dimensions
is the existence of tachyonic modes, which implies violations of causality. If we
consider a five dimensional space-time with a signature (1,1, —1,—1,—1) and at-
tempted to compactify 7 (the extra time coordinate) on a circle of radius L, the
standard KK excitations become tachyonic states with imaginary masses, quan-
tized in units of /L. Various issues arising in brane-world scenarios with time-like

extra dimensions were discussed in [89).

1.10 M-theory story in a nutshell

Around 1995, it was found that the five distinct supersymmetric 10-dimensional
string theories: type I, type ITA, type I1B, SO(32) heterotic, and Fg x Eg het-
erotic are related to each other via S, T and U duality transformations. These
dualities express an exact quantum equivalence, which means that the two dual
theories are just two different descriptions of a single theory.

The S duality relates the weak coupling limit of one string theory with the
strong coupling limit of another string theory. Type I and SO(32) heterotic are
related by S duality, where one of them evaluated at strong coupling is equivalent
to the other one evaluated at weak coupling. The S duality is a symmetry of
type IIB string theory, and we say that it is self-dual. Because of the existence
of such duality, the strong coupling behaviour of type I, type IIB and SO(32)
can be determined by a weak coupling analysis. The behaviour of type I1A and
Es x Eg heterotic at strong coupling is very different. It is believed that they grow

an eleventh dimension [115].
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On the other hand, the T duality relates different compactifications of different
theories. If the compact dimension is a circle, and there are two theories A and B
with compact dimension radius R4 and Rp, then they are T dual to each other if
they are equivalent and Ry Rg = (ls)2 where [, is a fundamental length scale. This
relation means that shrinking the compactified dimension to zero in one theory
corresponds to decompactification of the dual theory. The two theories 1A and
IIB are T dual and so are the two heterotic theories. Finally, there’s a U duality
between two theories A and B if theory A compactified on a space of large (or
small) volume is equivalent to theory B at strong (or weak coupling) [116].

The 10D string theories are connected to the 11D supergravity as well. Carrying
out a dimensional reduction of 11D supergravity to 10D gives type I, ITA or IIB
supergravity, which are the low energy limits of I, IIA and IIB superstrings
respectively. In chapter 3 we will describe the original 11D supergravity and the
Horava-Witten theory in detail. Although Witten gave the name M-theory to
the unknown 11D quantum theory whose low energy effective description is 11D
supergravity, this term is used by many authors to refer to the single 11D theory

that gives the 5 superstring theories as special limits.

1.11 Organization of the Thesis

The dissertation is organized as follows:

Chapter One We give a review of different extra-dimensional theories and illustrate
the basic idea, advantages and disadvantages of all of them. Unification of
fundamental interactions and solution of the hierarchy problem are the main
motivations. In this context, we explained the meaning of the hierarchy

problem and the moduli stabilization problem.

Chapter Two We present a detailed review of the moduli stabilization problem and
classify the attempts to attack it into four main mechanisms: bulk massive
scalars, vacuum energy, nonperturbative contributions and non-zero flux con-

tributions. We start this chapter with a section about SUSY breaking which
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is a necessary step in any supersymmetric theory to reach a description of

our SUSY-broken 4D world.

Chapter Three We discuss the original 11D Horava-Witten theory and its reduc-
tion to 5D. The study of the deeply rich structure of the lower dimensional
theory is an active area. The useful technique of moduli space approximation
is also illustrated and a BPS solution of a dilatonic brane-world is presented.
We end the chapter by giving a summary for some possible moduli systems

we are going to use through the thesis.

Chapter Four We calculate the total bulk Casimir energy by calculating the dif-
ference between twisted and the untwisted fermion fields. We do the case of
flat space first and then the curved space case. We also prove the attractivity

of the bulk Casimir energy.

Chapter Five We start by deriving the gaugino condensate potential in the frame-
work of the improved heterotic M-theory suggested by Ian Moss in 2005. In
the second part of this chapter, we reach the gaugino condensate superpo-
tential by reducing the 11D Rarita-Schwinger field to 4D. The form obtained

agrees with the standard known form of this superpotential in most theories.

Chapter Six We add two terms to our gaugino condensate superpotential derived
in chapter five, the flux term and another non-perturbative term that depends
on the Calabi-Yau volumes V; and V5. The two toy models have an AdS
KKLT minimum. We then try to use the bulk vacuum energy to turn this

into a dS minimum.

Chapter Seven We perform a 5D reduction for the gravitino field. We review the
BRST formalism and make use of it to remove the I'/¢); term using a gauge
fixing function. This will result in two new ghost fields, which are important
for dealing with the stabilization topic. The vacuum energy of the ghost fields
has a (4ve) sign (that leads to a repulsive force) while for the real fermions

(as we have got in chapter 4) it has a (-ve) sign. We end this chapter by
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expressing the SUSY breaking parameter 6 in terms of the condensate using

the twisted boundary conditions of the improved heterotic M-theory.

Chapter Eight We calculate the vacuum energy of the ghost fields obtained in

chapter 7 for the case of flat space first and then the curved space case.

Conclusion and Further Work We summarize our results and point out various

ways with which one can proceed in future research.



2. MODULI STABILIZATION

One of the main theoretical issues in theories with extra dimensions is that of
determining their size. As we mentioned in the discussion of the RS1 model,
a solution to the hierarchy problem has been proposed in which the observable
universe is a 3-brane at an orbifold fixed point of the non-factorizable geometry
given by (1.31). The orbifold has fixed points at y = 0 and y = 7r.. However,
the dynamics does not determine the value of r., leaving it a free parameter. This
means there is no mechanism to ensure the stability of the system.

If we are interested only in one extra dimension, then the scalar degree of free-
dom governing the separation is called radion. A solution to the so called radion
stabilization problem in the RS1 model has been found by adding a bulk scalar
field, which has five-dimensional dynamics, to the model [93]. The mechanism does
not involve any fine-tuning and it gives the radion a mass somewhat below the TeV
scale. A complete calculation of the radion mass has been given by Tanaka and
Montes [53], where they obtained the TeV-scale. However, since there is no knowl-
edge about the origin and actual form of the stabilization potential, very little can
be said about radion masses without further assumptions. A phenomenological
guess for the radion potential has been discussed in [54]. In the literature, phe-
nomenological aspects of the radion have been studied such as its decay modes
(massive radions may decay into visible particles [54]) [56, 57|, its signatures at
present and future colliders [58, 60] and its effects on electroweak precision mea-
surements [61, 62]. The phenomenology of the radion depends on the strength of
its coupling to the brane fields.

Radion stabilization raises an important question in cosmology, i.e. how do we

stabilize the large extra dimensions while keeping all the virtues and predictions
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of the big bang and inflationary cosmology? This has been discussed in [64].

2.1 SUSY and SUSY breaking

As it is well known, the Higgs scalar in the standard model acquires a non-vanishing
vacuum expectation value and therefore breaks the electroweak symmetry. How-
ever, the loop corrections to the masses of scalar particles are quadratically di-
vergent and this makes the electroweak symmetry breaking scale unstable against
radiative corrections. Supersymmetric theories are free from quadratic divergences
due to cancellations between boson and fermion loop corrections and this can sta-
bilize the hierarchy between the Planck scale and the electroweak scale.

The unification of gauge couplings is considered to be one of the most attractive
features of the supersymmetric extension of the standard model. If we plot the
effective coupling constants as a function of the energy scale, we find the three
couplings in the standard model don’t unify very precisely. However, after the
addition of SUSY i.e. within the supersymmetric extension of the standard model,
they do approach a common value (see [123]).

Unfortunately, on the other hand, SUSY doesn’t explain the origin of the elec-
troweak scale and the mechanism of electroweak symmetry breaking is still mysteri-
ous. The standard model explains the electroweak symmetry breaking by assuming
the existence of a scalar field (Higgs filed) that gives masses to the vector bosons
and fermions, but there is no answer as to why the Higgs field should have a non-
zero vacuum expectation value. It is ‘too strong’ to say that the standard model
explains the electroweak scale.

Another point is that SUSY introduces new particles which are the supersym-
metric partners of the standard model particles. As a requirement of particle
phenomenology SUSY must be broken. In other words, if SUSY plays a role in
low energy physics, it must be broken. The resulting theory is a supersymmetric
extension of the standard model with SUSY broken a little above the electroweak

scale.
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SUSY breaking then is a necessary step in any supersymmetric theory to rec-
oncile SUSY with actual experiments. This could be achieved by adding to the
Lagrangian, defined by the SU(3) x SU(2) x U(1) gauge symmetry and superpo-
tential W, some extra terms which respect the gauge symmetry but break super-
symmetry in a specific manner such that no quadratic terms appear. These extra
terms are called soft SUSY breaking terms. They may arise if SUSY is broken in
a hidden high energy sector, but this affects the visible sector indirectly. By the
hidden sector we mean all fields and particles which don’t directly interact with

the standard model fields and particles (gluons, photons, W*, W~ and Z bosons).

2.2 Mechanisms for radion stabilization.

There have been numerous studies of moduli stabilization in general and various

stabilization mechanisms were suggested. We summarize some of these as follows:

2.2.1 Introducing a massive scalar field to the bulk.

This mechanism has been proposed by Goldberger and Wise [93]. In their article
they introduced a 5D scalar field. The 5D bulk field appears to a 4D observer
as an infinite tower of scalar fields with masses m,, as in usual Kaluza Klein

compactification. They started with the 5D action
1 ™
S = §/d4x/ AoV G(GABD DD — m>D?), (2.1)

where G 4p is given by the RS metric (1.31) and m is of order of M,. After
integration by parts and performing Kaluza Klien decomposition, this leads to the

4D action
1
S = 5 Z / d'z(0"¢"0,0" — m2p2) (2.2)

For a Randall Sundrum model, the masses m,, are given by the solutions of the

transcendental equation

Yo(an)j (T0) = ju(az,)y,(z,) = 0 (2.3)
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where a = e™"< m, = kaz, and z, is the n’th positive solution to (2.3). The

functions 7, and y, are given by the following combinations of Bessel functions
Ju(2) = 2J,(2) + 27, (2) (2.4)

y(2) =2Y,(2) + zYl,l(z) (2.5)

where the order v of the Bessel functions is given by

/ m?2

m is the mass of the 5D scalar field.

The introduction of a scalar field creates an attractive force between the two
branes which would ensure equilibrium when the distance between them is precisely
the radius r. required to generate the required hierarchy. The potential has a
minimum at r, without fine tuning of parameters. Examples of this trend are
[38-48|.

The addition of scalar fields in the bulk is favorable from a string theory view-
point because in general a compactification from 10 or 11 dimensions to 5 dimen-

sions introduces many 5 dimensional scalar fields [37].

2.2.2 (Casimir energy approach.

Instead of introducing an ad-hoc classical interaction between the branes (through
the bulk scalar field), one may ask whether the Casimir energy of bulk fields may be
sufficient to stabilize the radion. In fact, before branes, Candelas and Weinberg in
1984 [76] found that the quantum effects from matter fields, or gravity, can be used
to fix the size of compact extra dimensions. Other examples of this mechanism are
[18, 19, 30-32, 66, 68-75].

In [30] it was shown that the contributions of the Casimir energy of bulk gauge
fields depend logarithmically on the radion. These contributions stabilize the ra-
dion and generate a large hierarchy of scales without fine tuning. The Casimir
effect on the background of conformally flat braneworld geometries has been in-

vestigated in [74].
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The Casimir effect is a macroscopic quantum effect, i.e. it is a quantum effect
which can be measured in the laboratory. It is an amazing success of quantum
field theory and comes from the half quanta of the harmonic oscillator hwy /2. The
fields in QFT are an infinite set of oscillators labelled by the wave number k. The
n’th excitation of a single oscillator k& corresponds to a state with n field quanta
and energy

EF = hwi(n+1/2). (2.7)
This means the state with no real quanta has a nonzero energy

R
EF = %, (2.8)

E — E Wi . (2.9)
Casimair 2 k

This divergent sum must be regularized to get a finite expression. This results
in the Casimir effect [29], namely the dependence of the vacuum energy on the
boundary conditions for the field. The famous attractive force between two elec-

trical conductors in three dimensions is
2
F(d) = ;TO%A, (2.10)
where A is the area of the plates separated by a distance d. The electric charge e
does not appear in this expression, which means that this is not an effect of coupling
the electromagnetic field to the material plates. Instead of that the attractive force
is due to the change in zero point or vacuum field energy (2.8). Vacuum energy is
related to the concept of virtual particles coming from the uncertainty principle.
This result was confirmed and extended by many researchers who used different
approaches to learn more about this force and related quantum phenomena [98].
Casimir [29] and other authors [99] proposed that this force could be regarded as a
radiation pressure from the vacuum field. In general, this Casimir force arising from
vacuum radiation pressure can be either attractive or repulsive [100]. As in [101],

the subject of whether it is attractive or repulsive may depend on many factors
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including the space-time dimensionality, the boundary conditions, the space-time
metric and so on.

In most practical examples the Casimir effect is considered for the electromag-
netic field just because it is strong enough to produce measurable effect. But, in
general, this effect is not restricted to the electromagnetic field and can occur for
any quantum field.

In braneworld scenarios the fields obey boundary conditions on the boundary
branes and hence one expects a Casimir-type effect if we treat the fields as quantum
fields. The force between the branes will vary according to the separation of the
branes and the Casimir effect will induce a potential for the radion in the dimen-
sionally reduced theory. The Casimir effect has been used for radion stabilization

in a number of models [19, 22, 30-32].

2.2.3 Gaugino condensation approach - nonperturbative effects.

Gaugino condensation is a non-perturbative effect that may break supersymmetry.
The lack of understanding of the mechanism by which SUSY breaking happens is
the most important missing part of any supersymmetric unification theory, and
constructing a realistic scheme of SUSY breaking is one of the big challenges
to SUSY phenomenology. Consequently, we need a dynamical mechanism that
explains naturally (without any ad-hoc assumptions) the transition to the non-
supersymmetric case. The dynamical formation of Gaugino condensates is a nat-
ural source of SUSY breaking, The original idea was suggested in Ref. [77].

The gaugino condensation mechanism has been discussed in many papers and
it is believed to play a crucial role for moduli stabilization and SUSY breaking in
string theory [77-82]. The SUSY breaking scale could then be set by the condensate
scale. In the context of low energy heterotic M-theory, the most likely candidate for
forming a fermion condensate is the gaugino on the hidden brane, since the effective
gauge coupling on the hidden brane is larger and runs much more rapidly into a
strong coupling regime than the gauge coupling on the visible brane. Gaugino

condensation gives a potential depending on the Calabi-Yau volume [128-131].
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The condensate potential is generally a function of several moduli fields [82].
The size of the moduli fields should be determined upon the minimization of the

potential over the moduli space. A typical gaugino condensate potential is [142]

1
V(S,T) ~ ﬁ«5—35/4””, (2.11)

with b is the coefficient of the one-loop beta function of the hidden sector group.
This potential has a runaway behaviour for both S and 7" where S and T are
moduli (taken here to be real). Some attempts have been made to avoid the
runaway behaviour, such as multiple gaugino condensate (or racetrack) models or
adding a non-perturbative correction to Kahler potential. In the multiple gaugino
condensate case, the superpotential is given as a sum of exponential terms which
generate a potential with a local minimum.

In 2003, Kachru, Kallosh, Linde and Trivedi (KKLT, [134]) introduced the first
explicit model in which all moduli are fixed within type IIB string theory. This was
done by turning on fluxes as a first step (see below), which fix the complex moduli
and the dilaton S, and introducing non-perturbative superpotentials in a second
step to stabilise the Kahler modulus 7. For a detailed study of the phenomenology
of these models, see [141]. Unfortunately, the resulting potential for T has an AdS
vacuum which needs to be uplifted and that means a third step is needed. We give

some details in the next section.

2.2.4 Flux compactification approach.

A partial solution to the moduli problem lies in turning on background fluxes in
the vacuum [143-145]. Turning on a non-vanishing flux warps the compactification
space away from a pure Calabi-Yau threefold [94] and generates a superpotential

of the form [134]
W; = / GASQ (2.12)
M
where G is a three-form flux and €2 is the holomorphic three-form Q of the Calabi-

Yau threefold. In general, this flux superpotential is difficult to calculate except

for special cases. The idea here is that when the relevant moduli are stabilized, €2
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is constant and then W, can take any integer +ve or -ve (the different choices of
Calabi-Yau manifolds and the different values of fluxes leads to the string theory
landscape, which refers to the large number of false vacua in string theory). As has
been pointed out in [146], the presence of background fluxes in the compactified
space (i.e. non-zero vacuum expectation values of certain field strengths) leads
to fixing all complex structure moduli as well as the dilaton. Unfortunately, it
was found that this mechanism doesn’t apply to the modulus parametrizing the
size of the compact manifold. The KKLT model used nonperturbative effects such
as gaugino condensation on D7 branes to stabilize the remaining modulus. The
KKLT setup requires the presence of a number of D7/D3 branes and an anti D3
brane. The major achievements are that all moduli are fixed and the cosmological
constant is small and positive.

The model starts with a 4D supergravity scalar potential which is given by
V, = Mp2e¥ <K17D1WD7W - 3\W\2> . (2.13)

Where D;W = 0;W 4+ W0;K is the Kahler covariant derivative of the superpo-
tential and K’/ = (8;8;K)". The first term represents SUSY breaking and the
second term represents the gravitino mass mg/ ;. After the minimization of this
potential, we can have SUSY broken in the vacuum (D;W # 0) or not.

The total KKLT scalar potential is

Vikrrr = Vs + Vi, (2.14)

where V,, is the SUSY breaking contribution required to uplift an AdS minimum

to a de Sitter one. The correct Kahler potential
K=—-In(S+S)-3Wn(T+T), (2.15)

leaves the volume modulus 7T un-stabilized. To stabilize it, the following T'-

dependent superpotential is added

W = wy— Ce . (2.16)
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wy is a constant induced by the fluxes and C' is a model dependent coefficient and
a is related to the beta function of gaugino condensation on the D7 branes. T is
stabilized with DyW = 0. The third step is the uplifting of the minimum. The

uplifting potential due to the presence of the anti D3 brane is

D

T (2.17)

Vuplift =

where D is a tuning constant allowing to obtain de Sitter vacuum. The effect of
the uplifting term is to change the vacuum energy to a small positive or zero value.
This is achieved with D ~ mj,, Mp, ~ 107 Mp,. Since the background geometry
of the KKLT model is warped, the desired value of D can be obtained by placing

the anti D3 brane at the appropriate point in the compact space.



3. THE 5D REDUCTION OF HORAVA-WITTEN THEORY: 5D
HETEROTIC M-THEORY

After the discovery of the duality transformations which relate the five distinct
10-dimensional superstring theories with each other and with 11-dimensional su-
pergravity theory, people started to think that all of these theories arise as different
limits of a mother 11-dimensional theory known as M-theory. The size of the 11th
dimension in M-theory is related to the string coupling strength and grows as the
coupling becomes strong [9]. Details of M-theory are unknown, but its low energy

limit is thought to be 11-dimensional supergravity.

3.1 Horava-Witten theory: the strong coupling behaviour

In the HoravaWitten formulation of M-theory [4, 5], the gauge fields of the standard
model are confined on two 9-branes located at the end points of an S'/Z, orbifold.
The 6 extra dimensions on the branes are compactified on a very small scale, close
to the fundamental scale, and their effect on the dynamics is felt through moduli
fields, i.e. 5D scalar fields. A 5D reduction of the HoravaWitten theory and the
corresponding brane-world cosmology is given in [6-8].

We can only speak about the low energy limit of AM-theory, which is supergrav-
ity plus two boundaries. Horava and Witten showed that M-theory on the orbifold
R' x S'/Z, is dual to the strong coupling limit of the 10D Eg x Ex heterotic string.
This duality says that M-theory on R!® x S'/Z, of radius Ry, is equivalent to the

Es x Eg heterotic string with coupling constant g,, where [4, 113]
Ry = gf/glp (3-1)

This allows us to say that the low energy effective theory must approach 11D
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11D=R" . 8§t/ Z,

Chservable sector Hidden sector

Fig. 3.1: Horava-Witten set up. The orbifold radius p is connected via the string coupling
gs by p = g§/3lp. The eleventh dimension is only accessible in the strong

coupling limit.

supergravity in the strong coupling limit. Relation (3.1) means that when Ry; is
small, the string picture is a good description, and when R, is large, supergravity
is a good description. This is also the same relation that one finds between the
M-theory on R x St and Type IIA superstring theory, in the low energy limit.

Just like in the case of the Randall-Sundrum models, the orbifold S; /7, is equiv-
alent to an interval, and so in Horava-Witten theory the space is 11D bounded by
two 10D orbifold planes with a Z; reflection symmetry in the eleventh dimension.
The eleven dimensional supergravity lives in the bulk. Horava-Witten theory is
usually reduced to a 5D world R* x S'/Z, via compactification on a Calabi-Yau
space with the residual effects of the CY manifold being described by their moduli.

In order to cancel the gauge and gravitational anomalies that arise and keep
the gauge and local SUSY invariance, an Fg gauge group is required to act on each
of the two 10-dimensional planes at the orbifold fixed points z!' = 0, 7p, where p
is the length scale of the bulk.

The 11D Yang-Mills gauge coupling constant ¢ is fixed in terms of the 11D
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gravitational constant k;; via

92 = 277'(477'/{%1)2/3 (32)
This leads to [17] ) (2m2,)2/3
K 2Tk
G — . _ Ehh) 3.3
N 1672V p’ G 2V @3)

Where V' is the CY volume and ag is the GUT scale coupling constant. Note that
here Hf{g is the 11D Planck scale [124, 125]. For V = 1/M¢, with Mg = 3 x 10'¢
GeV s the GUT mass and ag = 1/24, one finds k1,/° = Mg and 1/7p 2 4.7 x 105,
This explains the Planck scale-Gut scale hierarchy. In other words, this gives us
a natural explanation for grand unification occurring below the 4D Planck scale,
since it is the 11D Planck scale that is fundamental and its mass scale is ~ M.
So, as one probes to higher energy, our 4-dimensional world first goes through
an intermediate regime where the orbifold dimension becomes visible, the universe
thus appearing five dimensional with two boundary branes. Only at energies of

the order of string scale would the universe look 11-dimensional.

3.2 The 11D low energy action

As we have described in the previous section, the low energy limit of M-theory
is 11D supergravity with two boundaries, 11D supergravity, was constructed 30
years ago [117] and it contains three kinds of fields (that form the supergravity
multiplet): the graviton field or the metric g, the gravitino field ¢; and a three
index antisymmetric gauge field Cr;x with a field strength G.

We have to mention that this theory is non-renormalizable. (This can be shown
easily by calculating the mass dimension of its action. It is not equal to 4). This

destroyed the hopes to be a fundamental theory!
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The usual supergravity action is:

2 1 1— 1
SSG = ? dllx\/g |:_§R - §¢]FIJKD]'¢K . _GIJKLGIJKL (34)

My 48
2 /— _
_i (¢IFIJKLMN77/}N + 127,DJFKL1/}M) Gikim

192
. \/5 61112---111

3456 011]213GI4...I7GIg...111] )

where the capital indices I, .J,... = 0,...,9, 11 are used for the 11D space M1;. The
orbifold S'/Z, has radius p and the coordinate z'! is restricted to z'' € [0, 7p].
The gamma matrices satisfy {I';,[';} = 2g;; and I'/K = T/ K], The spinors
are Majorana, and ¢ = ¢ T9.

The total 11D Horava-Witten action then is the supergravity one plus a Yang-
Mills action describing the two Eg Yang-Mills theories on the two boundaries. The

bosonic part of the boundary action is

- 8wk2 \4r

-1 2/3 1
5”4-——(“) [ \ﬁ§<wwwf——wnﬁ (3.5)
iy 2

L V=7 <tr(F(2))2 — %ma?)]
where the Yang-Mills coupling constant is expressed in terms of x according to [5]
and the boundary trR? terms are required by supersymmetry [12]. The action of
the low energy limit of M-theory also includes extrinsic curvature terms [33, 136].

The bulk fields in the total action are the 11D metric g7, the three-form C7;x
with bulk field strength G xr = 240;/Ck1r) and the gravitino ¢;. The two Ejg
gauge fields A%, i = 1,2 with field strengths F}; and their gaugino superpartners

X' live on the 10D hypersurfaces M.

3.3 The 5D reduced Horava-Witten theory

The question now is: how do we reduce the 11 dimensional theory? The existence
of 10 dimensions in string theory is incompatible with the observed dimensionality

of space time, which is 4. Therefore we have to hide the extra 6 dimensions.
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When we do this in the case of 11D M-theory, we end up with the interesting 5D
system of two branes (that became so popular after the RS model) but with many
interesting new particles arising from the reduction. We can get the 4D effective
theory easily by integrating out the 5’th dimension. The resulting 4D effective
theory is interesting from the point of view of particle physics phenomenology |6,
12, 17,97, 127]. In chapter (5) we shall describe the full reduction to 4 dimensions.

The reduction of the 11D action to 5 dimensions has been done in Ref. [6].
In the 11D theory, the supergravity multiplet consists of the graviton, gravitino
and the field C'. The total bulk field content of this 5 dimensional theory is given
by the gravity multiplet (gag, Aa, %) together with the universal hypermultiplet
(V,0,(,(). V is the Calabi-Yau volume. After the dualization, the three-form

Cypy Produces a scalar field 0. The 5 dimensional effective action can be written

as [7]
S5 = Spuik + Shound (3.6)
Where
S = —L [ v=ilr + R ¢ et g By By 4 (3.7)
U 2/435 2 a \/5 al’ By L e
N 1 . S 2
2‘/_28 V@ V+ 2—‘/2 [(8a0 — z((@aC — C@OéC) - 20&6(1‘11)14&)}
2
—i— 8 Co*C + SVQ}
And

Sbound = 5 [ (1) A\ V a — ) V_gvla] (38)

M
2

1 o B
© 16racyr Z/ @) \/__g (VterSlu)F(Z)MU . O'trFlEfj)F(Z)lW> .
=1 M4l

where FO# — %e“””f’FfSZ) and the expansion coeffecients «a; are

™

2/3
with the Calabi-Yau volume V defined as

V:%/ Vg® (3.10)

where ¢ is the determinant of the Calabi-Yau metric.

tr(R AR). (3.9)
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3.3.1 BPS solution for a simple system of two branes

The spectra of string theories often contain a special class of states called BPS
states (Bogomol'nyi-Prasad-Sommerfield). BPS states are stable in the sense that
they cannot decay into other states [126]. The corresponding solutions are BPS
solutions, described by a set of moduli.

In the previous section we have seen that there are a large number of fields
in the 5D heterotic M-theory action. It is almost not possible to find a general
solution to all the resulting equations of motions. The simplest case one can try
is the vacuum solution obtained by setting as many fields as we can to zero. The
system then contains only gravity and a scalar field. The relevant part of the

action then is [8, 15, 16]

1 1
where the potential V(¢) is an exponential potential of the form
V(§) = 2 o-avamo 3.12
(¢) = 6t (3.12)

The dilaton ¢ is related to the Calabi-Yau volume by V = €®, & = /2k¢. This
simple model is called the dilatonic braneworld [15] with the scalar field called
dilaton. The constant a has units of energy. We are not considering moving
branes; our branes are stationary and we will be looking for static BPS solutions.

Potentials of this form arise in many theories of the fundamental interactions
including superstring and higher dimensional theories [37]. The action (3.11) leads
to the following field equations

1
O Ry~ 508 R = K166, — ofl (36,067 + VI(6) (3.13)

where the energy-momentum tensor is given by

T = bt g,w( ¢, +V(9)) (3.14)

To find a solution for these equations, we make an ansatz

ds* = e ", datdx” + dz° (3.15)
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o =o0(z) and ¢ = ¢(2) are ansatz. With this ansatz, the Einstein equations give
[see Appendix (C.1.1)]

2
60’2 — %¢>’2 +K2V(6) = 0, (3.16)
" ! ¢l2
30 +60°+ /{2(7 +V(p)) = 0,

where the prime denotes differentiation with respect to z. We now need boundary
conditions for the scalars ¢ and o. The boundary condition on the dilaton field
can be found from the variation of the action (3.8) with respect to ¢ and requiring
that the surface variation vanishes. This gives

g = LemV2re (3.17)
K

The boundary conditions for the radion can be found from the junction conditions.

For flat branes, the trace of the extrinsic curvature

! !

K=40 atz=2z , K=-40 atz=2 (3.18)
Tracing junction condition [K,, — ¢, K| = —%TW gives
2
K =T (3.19)

The 4-dimensional energy-momentum tensor can be calculated from the boundary

action (3.8), and after substituting in (3.19) we get the boundary condition as

o = L emVake (3.20)

3v2
The solution to (3.16), (3.17) and (3.20) is

o= —é In(1 — v2aZ2) (3.21)

It is useful to have expressions for the metric in different coordinate systems.

For a conformally flat metric, Substitute back in (3.15)

ds* = (1— \/io&)%nu,,dx“dx” + dz* (3.22)

= (1—+2a3)s (Muwdadz” + d2?)
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where

45 = dz (1 - \/50[5)% . (3.23)

This gives
(1 - \/ia’z“) - <35%z>g (3.24)
Q). o2t

2 Sa

The metric (3.15) could then be written in a conformally flat form as

ds® = e (nudrtdz” + dz2?) (3.25)
2\ :
1

The dilaton for the conformally flat metric (3.25) (also found in [15]) is

6(2) = Y Z 4 4, (3.26)

The values of z on the two branes, z; and 25 can be used as the moduli parameters
of the background solution as we will see in the next section.

The linear dependence of Calabi-Yau volume on the extra dimension z makes
it interesting to compare the metric (3.40) with the one used by Curio and Krause

[132]

ds? = <—> Nuwdat dx” + <—> (gum (z™)da'dz™ + (dz'")?) (3.27)

V=(1-38a")V (3.28)

The quadratic dependence of V on z!!' is because of the definition of z'! is differ-
ent from the definition for 2z due to the different metric background. &; can be
expressed as a power series in k2/3, i.e. S = 51(1):%2/3 + 8§2)/<55/3 + ... and only for

the first term we get a linear volume dependence
V(e = (1 - 2816222V + Ok (3.29)

This was also found before in [140].
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3.4 'The moduli space approximation

The moduli space approximation is an another approach (different from the one
used in section (1.6)) used to get a 4D effective theory from the higher dimensional
one. The moduli space here could be defined as the collection of the vacuum
expectation values of massless scalar fields [114]. In [14], a 4D low energy theory
was derived from a supergravity-inspired 5D theory using this approach. The
moduli space approximation is a good approximation only when the time-variation
of the moduli fields is small (the low-velocity assumption). In the context of
braneworlds, this approximation was also used in [106, 107].

In the framework of 5-dimensional compactification of M-theory [8, 12], the
moduli space approximation describes, through a 4-dimensional effective action,
a system of two branes of opposite tension embedded in a 5-dimensional warped
space-time. Besides the fields living on the positive tension brane (assumed to be
our universe), the moduli associated with the position of the branes in the fifth
dimension act as two scalar fields thereby leading to an effective biscalar-tensor
theory of gravity [13]. This means that for an observer in 4D, the branes are
realized as moduli massless fields.

In RS1 there’s a single modulus, called the radion, related to the thickness of
the AdS slice. In dilatonic brane-worlds (5D heterotic M-theory), there are two
moduli, one related to the distance between the branes and the another related to
volume of the Calabi-Yau space.

To reach a 4D effective theory using this approach, the following assumptions

are made:
1. The brane positions z; and z, become dependent on the 4D coordinates,
z1(z#) and 2z9(z*). They are then non-constant brane-world moduli.

2. The 4D Minkowiskian flat metric 7, is promoted to 4D curved metric gff,lj).

3. Terms involving more than two derivatives of the brane positions are ignored

(a good approximation if the branes are slowly moving). This means we
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neglect terms like (921)? in constructing the effective four-dimensional theory.
4. Finally, the massive Kaluza Klein states are not included.

In Ref. [14], the ansatz was inserted into the 5D action

Sy = — / Pry/~gP(R ~ [(00)" + U)). (3.30)
M

2
2Kz

The background metric is
ds* = e *n,, dxtdx” + dz° (3.31)

The bulk potential energy of the scalar field v is related to the boundary super-

potential Ug by

2
U= <aa%> — U2 (3.32)

The boundary potential is an exponential function of the field
Up = 16(a% — 1)k (3.33)

Comparing this potential with the potential for the heterotic M-theory in (3.12),

we get a = \/g and k£ = ﬁ which we will be using. The positions of the first

and the second brane z; and z; are denoted by ¢(z#) and o(x*). After redefining

these two moduli by

¢? = (1 — 6ko)

02 = (1 — 6ko)?, (3.35)

Wl

(3.34)

In Ref. [14] the 4D action was given in terms of & and ¢ in the Jordan frame.
¢ =Q cosh R (3.36)

0 =@ sinh R (3.37)

The final effective action given in [14] has the form of multiscalar tensor theory

1 9(0Q)* 3
Shulk = m/d%\/ —g (R - 5( QQ) - 5(8R)2> : (3.38)

where 167G = 8()4\/%/4%.
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The moduli are massless at the classical level, but quantum corrections will

add a potential term of the form [19]

S=— / 22/~ OV (O, R) (3.39)

generated at one loop.

3.5 Possible moduli systems

In this section we list some useful moduli systems which we are going to use to

describe the brane positions for different situations.
1. The moduli (27, z3) for the Einstein frame metric
ds? = Vin,,detdz” + dz? (3.40)
where V = (1 — v/2aZ) is the volume of Calabi-Yau space.

2. The moduli (V;,V3) with V; and V5 are the Calabi-Yau volumes at z; and 2,

respectively.

3. The moduli (2, 29) for the conformally flat metric

2
5
ds® = <i> (d2® + ny,dztdz”) (3.41)

21
This system will be used in chapters 4.
4. The moduli (@, R), related to the conformally flat coordinates z; and zy by
z1 = @ sinh(R) (3.42)
29 = @ cosh(R) (3.43)
They are connected with V; and V5 by
Q = V-’ (3.44)

B (N 2/3
R = tanh v (3.45)

1
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5. The Kéhler moduli (S, T) which are related to V; and V5 by

2 3/2
S = i(ﬁ/i”ﬂffﬁ”) (3.46)
4
3 2/3 o3\ 2 (23 23
T = E(V1 +V; ) (V1 v, ) (3.47)

Note that when Vi ~x Vo=V, S~V and T ~ a~! (V1 = V3), i.e. S becomes

the volume modulus and 7" becomes the radion.



4. CASIMIR ENERGY FOR TWISTED FERMION FIELDS

In this chapter we calculate the difference in the Casimir potential for the case
of twisted and untwisted fermions in heterotic M —theory. Twisted fermions were
introduced by Antoniadis and Quiros as an explicit means of SUSY breaking [153],
and they calculated the vacuum energy in the flat space limit. The Casimir po-
tential for untwisted fermions in the warped heterotic M —theory background was
calculated in [15]. The work presented in this chapter is original research done in

collaboration with Prof. Ian G. Moss.

4.1 Introduction

The identity

H(1 —p7*) 7 = Z %, s> 1, (4.1)

p n=1
which holds for every prime number p # 1 (s is a real variable) was found by Euler
while investigating prime numbers [102]. Later, Riemann realized that s should
be extended into a complex variable and denoted the resulting function by ((s).

Since that time it is called Riemann zeta function,

o

()= ni seC, R(s)> 1. (4.2)

n=1
The series is convergent only when the real part of s, R(s), is greater than one.
Studies of complex analytic manifolds led to the definition of a zeta function
associated with a type of Laplacian operator [102, 103]. The zeta function for an

elliptic operator A is defined by the functional trace,

Cals) = tr(A7), (4.3)
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When the operator has a discrete set of eigenvalues ),, we could write
NOEDPP™ (4.4)

For 4D space time, this sum only converges for R(s) > 2. This restriction could
be removed by analytic continuation to values of s in the complex plane.

The vacuum energy in a static background has been calculated in many ap-
plications [104], where the eigenvalues of A in these applications are of the form
k* + w?. Tf we used a compactification length L and take the limit L — oc at the

end we get for n-dimensional case

o

d"k
Cals) = L7 / (R +u2). (4.5)
27 2
This gives
" T(s—2) = .0
= - noes 4.6
CA(S) onrh F(S) n;wm ( )
The vacuum energy then will be
Ve = FL7"C(0) (4.7)

The minus sign is for bosons and the plus sign is for fermions. Note that for w, o
7!, where [ is the finite length scale in the problem, then Vi oc [=". Casimir effect
calculations are probably the most notable example for the use of Zeta function

regularization to remove divergencies in quantum field theory.

4.2 Twisted and untwisted fermions in five dimensions

In this chapter, we will concentrate on the boundary conditions common in su-
persymmetric theories where the 5D fermions are usually represented as two four
component spinors, ¥,, a = 1,2, related by a symplectic transformation. The

symplectic Majorana condition is

YC =, (4.8)
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where C'is the charge conjugation matrix. The index a is raised with the antisym-

metric metric €4, so that

b= —P? Py = (4.9)
These two four spinors can be grouped into a single eight-component Majorana
spinor
1
U= v (4.10)
w2
and eight-component « matrices can be formed
0
r—| . (4.11)
0 —7a

The Majorana condition on the eight-component fermion is

v'c =9, (4.12)
where
0 C
C= . (4.13)
C 0

and U = UTY is the usual Dirac adjoint. Assuming that SUSY is broken only
on the hidden brane at z;, introduce projection operators on both branes P, =
%(1 +TI'5) and P, = %(1 + xI'5) respectively, where the matrix y depends on a real

parameter 6 so that

cosf) sinf
X = : (4.14)
—sinf cosf
The twisted (antiperiodic) boundary conditions for twisted bulk fermions are

then

P¥U =0 on MW (4.15)

PY =0 on M®P (4.16)

where the angle  determines how much the fermions are twisted. Later, we will

relate xy with the gaugino condensate.
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yd

FY=0 FlIr=0

4

Fig. 4.1: On the visible brane at z; we have P14 = 0 and (8,2 + 3K +m)P_1) = 0. On
the hidden brane at z, we have Pyt = 0 and (0,2 + $K + m)P_,1) = 0.

Zy

The aim of this chapter is to calculate the total Casimir energy, which is equiv-
alent to the difference between the twisted and untwisted fermion cases. This
can be illustrated as follows. SUSY implies that the total vacuum energy of the

untwisted fermions and untwisted bosons is zero. This means that
Ve ( untwisted bosons) = —V(untwisted fermions).
Now, the total vacuum energy AVg of the twisted fields is equal to
AVe = Ve (twisted fermions) 4+ Vi (twisted bosons).

But, since there are no known bosons with twisted boundary conditions, the vac-
uum energy of the twisted bosons is just the vacuum energy of the untwisted
bosons. It then follows directly from this discussion that the total vacuum energy

is equal to

AVe = Vi (twisted fermions) — Vo (untwisted fermions).
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4.2.1 Fermion modes

The Dirac eigenfunctions are solutions to
D*¥ = )\, (4.17)
where D is the Dirac operator for mass m and D? is a second order Laplacian,
2 2 1 2
D =-0 —l—ZR—l—m + Jdm. (4.18)

According to Lukas et al. [12], the fermion masses in reduced heterotic M —theory

are typically of the form
!

"

where V' is the Calabi-Yau volume and the value of v depends on which fermion

YV (4.19)

is being discussed. We use the conformally flat metric

ds® = e 7 (dz* + n,da*dz”), (4.20)
then

Ao =~ + k> +m2+Tomy. (4.21)
The 0 index is just a reminder that the operator has been rescaled from curved to
flat space. my is the rescaled fermion mass m and given by

a 3
mog=-¢e ‘m= 6707—‘/71 — T

V2 5

using (3.26) in chapter 3, where the Calabi-Yau volume V' was expressed in terms

(4.22)

of z. The value of v depends on the choice of the fermion field. Later in chapter
7 we will give a detailed example for the gravitino and other fermion fields with
different values of ~.

The eigenvalue equation is then

92 3
<—8§ + k% + %2_2 + 572_2> U=\ (4.23)

for T°0 = +0 and m?2 = X\ — k?. Hence,

, 992 3
Um0 — <2—75 + 57> 22y = 0. (4.24)
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Comparing with Bessel’s equation [20)]

2 1
W'+ <)\2 Y 4> W =0, (4.25)

22

then W is a Bessel function with index is given by

v = (% 4 §7> | (4.26)

. . _ 1 . _ 2 3
The hypermultiplet fermion, for example, has v = z. This means v = ¢ or ¢. The

solution gives the wave function for fermions in z direction as [15]
In(z) = V7 (A‘J% (mn2) + B™Y2 (my2) + A Ja(m,2) + B*Ya (mnz)> (4.27)

where AT and BT are constant spinors (integration constants). We need the eigen-
value equation which defines implicitly the discrete spectrum m,,. We apply the
twisted boundary conditions to the wave function above.

Recalling the twisted boundary conditions (4.15) and (4.16), we can write (4.16)

as
CP_U — iJSP, ¥ =0 (4.28)
where
0 0 0 1
C=cos=, S=sin-, J= : (4.29)
2 2 1 0

The normal or z derivative (denoted by a prime) flips P, and P_, as described in
Ref.[15]
C(P.W) —iJS(P_W) =0 (4.30)

Applying these four boundary conditions on the wave function
U(z) = vz (A" Jy(myz) + B7Y,(my2) + At Jz(mnz) + BYYy(m,2))  (4.31)
where 7 =1 — v and Py A* = 0, we get a system of four equations,
AT T (mpz) + BYY,(mpz) =0 (4.32)

A7Yy(mn21) + B- Jp(mpz1) =0 (4.33)

A"S T, (myze) + B SY,(my2s) +iJAYC Jy(my20) +iJ BT CYi(myze)) = 0 (4.34)
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A" CYy(myzy) — B~ CJy(mpze) — iJAYSY,(my2e) +1JBY ST, (mp20)) = 0 (4.35)
Non-trivial solutions occur only when
J7(my21) Yo (mp,21) 0 0
0 0 Yo(mpz1)  —Jz(myz)

CJz(mpzy)  CYs(myze) SJ,(mpza)  SY,(my,20)
=SY,(mpze) ST, (mpza) CYy(mpzy) —CJz(mpzs)

We then get the eigenvalue equation for the twisted fermions as

J7(mp21) (CYz(mp2) £ ST, (mp22)) — Ya(mp21)(CJz(my20) F SY,(my29)) =0
(4.36)
Making use of the linear relation

J,(x) cos(vm) — J_,(x)

sin(v)

Y, (x) =

(4.37)

(4.36) becomes

Jr(mp21) (CJ_p(my29) £ ST, (Mp22)) — J_p(myz1)(CJz(my2ze) F SJT_,(mp22)) =0
(4.38)
Later we will consider v = 2/5 and ¥ = 3/5.
4.3 Casimir potential in flat space
For flat space, the warping factor e=2° = 1, and the metric is
ds? = d2* + n,,dztdz”. (4.39)
The operator (4.18) in flat space with zero mass is
A= -V (4.40)
The Dirac equation becomes
82
—u, = (k* — m2)uy, (4.41)
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— Asin [ Z2) + Beos [ 22 . (4.42)
s s

For flat space and when the branes are very close to each other we could choose

which has the solution

relevant masses m,, such that m,z is very large. For untwisted fermions in flat
space,

sin(mpz1) cos(mpze) — sin(my,2s) cos(myz1) = 0. (4.43)

This gives the fermion masses as

My = —2— n=0,1,2,... (4.44)
21— %2

We now turn to the twisted bulk fermions where the eigenvalue equation is (4.38).

We remember the following relation [20] when |z| — oo

J,(2) = \/z [cos(z - % . Z) + e 0|2 \)} o (larg 2| < 7). (4.45)

For flat space, the eigenvalue equation could now be simplified to

6 6
sin(myz1) cos <§ F mnz2> — cos(my21) sin (ngQ F 5) = 0. (4.46)

This leads to two equations for fermion masses

mr—g

mD=—2 n=0,1,2,.. (4.47)
Z1 — 29
nm+ 2

m =—2 n=0,1,2,.. (4.48)
21 — 22

The ( function in flat space with a volume {2 could now be written as

C(s) = 0 / (;lﬁ’; [Z( (412 4 g2y~ Z 2 4 k2)- ] (4.49)

This k integral diverges for s < 2 and was evaluated already in [105]. Introducing

x = |k?|/m? for both integrals we get

(s) = (4.50)
Q oo o
Z 5 [m(+)4_25 / de z(z+1)7° + m(_)4_25/ dr x(r + 1)_5}
~ 16m 0 0

m(+)4—2s —)4=2s

Q Q  mbH)
- ;16#(5—2)(3—1)+;167r2(s—2)(5—1)
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The last expression can be analytically continued to a function with poles at s =1

and s = 2. We still need to evaluate the sum, for this we use

((s,q) = e s s 5 et s <0. (4.51)

2
n=1 n=1

2I'(1 — s) [ . TS i cos 2ng +eos ™ = sin 27mng

Q 1 T 25— 2s) >, cosnb
C(s) = PPy P Y <Z1 — 22> Wsmﬂ(s —2) ; - (4.52)

The Casimir energy for twisted fermions, untwisted fermions and the difference are

respectively
3 1 <= cosnf
Va(0) = '0:——57 4.53
C( ) C( ) 3271'2 lé - n5 ) ( )
3 11
= ! - —
Vel®) = (oo = g3 Do (1.5

3 1 cos nd
AVe = o i (Z - Z n5) . (4.55)

This means that in flat space the Casimir energy is definitely attractive, since
OV /0ls < 0 implies Feusimir > 0 (attractive). We have to investigate this point as

well in curved space.

4.4 Small 0 limit (small twist)

Eq. (4.55) could be written as

3 1 (1
AVe = EoriT (ng_l ﬁ(cos nf — 1)) (4.56)
3¢(3) .,
162 sin®(nd/2). (4.57)
For § << 1, cosnf — 1 ~ —n?6?/2. We then have
3 62
AVe = 4.
VC 64 2l4 C( ) ( 58)

The small € limit here means small twist. Later we will relate # with the gaugino
condensate on the hidden brane and the small § limit will be interpreted as a small

value of gaugino condensate.
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4.5 Casimir potential in curved space

4.5.1 A Review for the untwisted case

Before we discuss the twisted fermions case, we describe the case of untwisted
fermions calculated in [15]. This work was based on the method invented by
Garriga et al [19, 66, 67] and by Flachi et al [32, 68].

The zeta functions we are interested in have the form,

o[ BEEE

1%

Introducing 7 = z1 /2, and defining p,, = z9my,, then we have the implicit equation

for p, from (4.36),

Funtwisted(,un; T) = JQ/S(MnT)}/é/S(Mn) - J2/5(/Ln)}/é/5(“n7) =0 (460)

Performing the momentum £ integrals by changing to polar coordinates gives

['(s—2)

C(s) = i / oo L2 = 4 (4.61)

For the masses j,, we have only an implicit equation which makes it complicated

to evaluate the sum over them. Fortunately, the residue theorem allows us to write

the sum over the positive zeros of F(z) as a contour integral,

-~

((2s—4) = /Cdzz425diz In|F(2)] (4.62)

Where the contour C' is any contour encloses the positive zeros of F(2) [see figure
(4.2)].

For the implicit eigenvalue equation (4.60) we must restrict s to lie in the range
5/2 < R(s) < 3. The contribution to the integral (4.62) from the large semi circle
vanishes (just because the function inside the contour vanishes for large z), and we
are left with the contribution along the imaginary axis and the small semi circle.

This results in

- i > d d d
(25 — 4) = sin(ms) / drz*2——In|P°(z)| + / 22 42 Z 0| F(2)] (4.63)
. dz c dz

7 2w
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Where P°(x) = F(iz) and C, is a small semi circle around the origin. Using

formulae for the analytic continuation of Bessel functions,
Pz) = I,(t2)K,(7) — I,(2) K, (77) (4.64)
The leading order term for large x is denoted by P2,
PY(z) = I,(2)K,(Tx). (4.65)

The asymptotic expansion of the Bessel functions for large x gives

I,(z) ~ , () ~ [ —e ", 4.66
@)~ = Kale) (4.60)
so that
P Py~ 4.67
(#) ~ ~P2a) ~ (1.67)
We can now write the following equation
/00 clxx4*2si In |P°(z)| = (4.68)
. dz
> d P°(x) > d
4-2s 4—2s 0
/6 dxx %ln Pi(a) +/E dxx e In ‘Pa (x)‘

We need these two integrals at s = 0. Analytic continuation can provide finite
expressions for divergent integrals. The main idea here is that the integral on the
LHS cannot be evaluated analytically or numerically at s = 0 as it diverges. So
we divide it into two integrals the first one could be evaluated numerically and the
second one could be evaluated analytically at s = 0. Actually, for large x, the first

term on the RHS vanishes and we will have only the second one, i.e.

e d . d
zt? %ln‘PU(x)‘ ~ zt? %m\Pg(Q:)\. (4.69)

Unfortunately, one integral on the RHS still diverges and we still need to do more
to regularize it. If we can express [,(x) and K,(x) in terms of power series, by
redefining them, then after substitution back in the integral we will be able to
subtract off the undesirable terms that leads to divergence.

We define new functions ¥ (z) and $X(z) through

La) = —=%l(o) m:gmm, (4.70)
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and define constants (3, by

In |S)(z)] =) Buz™" (4.71)
n=1
Note also that
Y(x) ~ 2K (). (4.72)

Explicit expressions for the 3, can be found in [68]. Now regularized functions can
be defined by subtracting off the terms which cause the integrand to diverge at

large x,

d 3
Ur(z) = o In |S)(z) + Z nfnx " 4 4B 0k (4.73)

Uk(z) = — ln =0 (2)] + Z ) Bz 4 4B e THE (4.74)

Now we can write the RHS of (4.69) using (4.73), (4.74),(4.71) and (4.72). After
taking the limit € = 0 we get finally:

~ 4 1
{25 = 4) = =22 {0, () + b(s) + au8)7 " Bk T (28) (14 7))
(4.75)
where the functions g,(s), b,(s) and a,(s) are defined as
L[~ o, d | P(x)
¥ — __ d 4 25_1 4
9v(s) 4/0 L e (4.76)
1 > 4—2s
b,(s) = = 0 dex***Ur(z) (4.77)
1 > 4—-2s
a,(s) = -1/ dex* Uk (z). (4.78)

At s = 0, the vacuum energy is given by

oy 1 (G,,(T) B, Au> _ b (ln(zlﬂff) +IH(ZQ“R)>, (4.79)

0 -
¢(0) 872 872 23 25

1 ] 1
29 %9 21

where B, = b,(0), A, = a,(0), and G,(7) = g,(0). After integration by parts,

Go(r) = /UOO dzz* In <1 - %) | (4.80)
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which has a negative numerical value. The 7 dependence in the vacuum energy

(4.79) depends on the term
1 Gu(7)

T2 L4
812 25

¢'(0) ~ (4.81)

which has positive numerical value. The positive sign here could be interpreted
as a repulsive force which is not useful for the stabilization problem. This just
expresses the fact that the untwisted bulk fermions don’t produce the ordinary
attractive Casimir energy. However, the twisted bulk fermions do produce an

attractive Casimir energy as we are going to find in the next section.

4.5.2 The case of twisted fermions

In this section we would like to calculate the difference between the twisted and
untwisted bulk fermions cases. In other words, we require the difference between

the two ¢ functions

-~

thw’isted(o) - C’untw’isted(o) (482)

When calculating the difference (4.82), the contribution to the integral (4.63) from
the small semi circle in figure (4.2) vanishes, as well as that from the large semi
circle, and then we are left with the contribution along the imaginary axis only.
Eq. (4.38) leads to two twisted fermion masses m; and m, which, unfortu-
nately, are given implicitly. We denote the twisted version of Eq. (4.64) with
positive sign by Pfr and the one with negative sign by P?. Since P’ is just the

complex conjugate P_ﬁ, we will get for the integral (4.62)
> d
/ d:vx4_25d—(1n |P{(z)| +In|Pl(z)]) = (4.83)
. x
/OO d:c:1:4’25i In ‘Po (x)ﬁ(a:)‘ = 2/0O dxx‘l’%i In ‘Po (z)]
. dz + + . dz +

From now on, we drop the (+) and the (—) and continue with P’. The zeta

function for the twisted case has the form,

S0 gy L Sin(ms) X amas A p’p? X a4 00
((2s —4) = - (/0 drx o In pipD + i drx o In (Pa Pa)
(4.84)
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cc

e INC¢

Fig. 4.2: Contour used for the contour integral in (4.62)
P%(x) denotes P(z) at § # 0 and is defined from (4.38) as

Pl(z) = C(I(t2)Ky(z) — L(z) Ky(1x)) (4.85)

— iS(Iy(rx)K,(x) + I,(x) Ky(tx) 4+ (2/7) sin(vr) Ky(12) K, (x))
P?(z) is the most divergent part, defined as
P(z) = I(rz) (CKy(z) — iSK,(z)). (4.86)

The first integral in (4.84) is convergent, but the second one is divergent. To
regularize it we follow the same procedure used for the untwisted case calculations

with a small difference due to the non-zero value of 6. We set

) Ky<x>=\/§efz§<x>, (4.87)

where

¥} (v) = 8627, B, = CB, () —iSBy (v). (4.88)
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Then, defining the two regularized functions

d
0 EK EK 0 -n—1 4 0,..—5 7k/z 4.
Uk(2) = — In (C iS +;n6 + 480z (4.89)
and
d I I_-5 —k/a:
Ur(w) = ——In ¥y Znﬁ + 48!z (4.90)
we get finally,
~ 4
s — ) = ) g 6) 4 byr 1 al(s) + KST(8)(3(6) + 2807 )]
(4.91)
where
L[ d PPl
o(s) = —¢ | doa'— 4.92
) 8/0 " a R .
1 o
by(s) = ——/ dz 172U ()
8 Jo
1 oo
a’(s) = _g/o do x*2(UY + UY)
BO) = B+ pl=28C, C=cosh
The vacuum energy of the twisted fermions is then
! —1 (9,(0) | b,(0) GG(U) Ba In(pg2,) By In(przr)
Sl B e el S N €
¢0.2)=¢5 ( ottt T B B (4.93)

4.6 The 5D eftective potential

We now subtract the § = 0 case to calculate the difference and get the 5D effective
potential. Assuming that the SUSY breaking happens on the hidden brane located

at zo we can ignore the z; terms and get the 5D effective potential as

1 (AG(r)  B(0)\  Ba(C —1)In(ug2)
AVe = 8r2 ( 25 + 25 > 42 25 (4.94)
Where
pPopo Po\?

0

AGI(r) = —/ = ( i <P—£> ) (4.95)
L d

B() = ? 0 . ((UK+U9>—2U,(x)) (4.96)
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The difference function AGY(7) could now be written as (after integration by

parts),
P’(z) P ()
P P%(x)

which has positive numerical value. The dependence on 7 is contained in the term

AGY (1) :/ dzz® In (4.97)
0

, 1 AGY
CO)~ =25 23(7)- (4.98)

4.6.1 Numerical evaluation of AG’(7)

At this point we would like to investigate the value of the integral (4.97) at different
values of 7 and #. The Bessel function orders v and 7 are % and % respectively.
Clearly for the supersymmetric case (f = 0), the Casimir energy is zero and the
integral vanishes.

For the non-supersymmetric case as 7 approaches 1, the two branes are getting
more closer and the Casimir energy becomes stronger. For example, for 7 =
1.2 and # = 7 the value of the integral (evaluated numerically using Maple) is
466.0. For the same € and 7 = 1.8 the value is 1.79. For § = 7m and 7 = 1.01,
AG™(1.01) = 7.52 x 10”. As one approaches supersymmetry, i.e. as f approaches
zero, the Casimir energy is getting lower and lower. In general, for § = n7 and n
is an integer, the Casimir energy is zero for even n and has the same value for odd
n. The integral is large (and positive) for small brane separation means that the
vacuum energy is large (and negative)and vise versa.

The function AGY(7) is a part of the Casimir potential (4.94) that becomes
dominant at small brane separation (7 — 1), but it doesn’t represent all of the
physics. To do that we have to take into consideration the functions 4, and B,.

The integrand (4.97) is plotted as a function of z for several values of 7 in
figures 4.3(a) - 4.3(f) to show that the integral we have got is well-behaved. Values
of GY(7) and AG’(7) have been tabulated in table 4.1 for § = 7, 7/2 to show the
effect of the change of the value of the SUSY parameter . For the twisted case,
Fig. 4.4(a) shows that the function G’(7) decreases as 6 decreases and as the

separation between the two branes increases. For the difference case, Fig. 4.4(b)
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also shows that the function AG?(7) decreases as  decreases and as the separation
between the two branes increases. Figures 4.6 and 4.5 shows a 3D plot of the total
Casimir energy, approximated by (4.98), in both (29, 7) and (z1, 22) directions. The
potential goes to —oo, it has no minimum. 2D plots of (4.98) in z, direction for

different values of 7 has been shown in Fig.4.7.

4.7 summary

We have calculated the total bulk vacuum energy due to twisted fermion fields,
which is the difference between the twisted and the untwisted case, for flat and
curved space. The total 5D effective potential doesn’t have a minimum and other

bulk effects need to be added to stabilize the radion.
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G(1) AG(1)
T>1 G™ (1) G™%(7) AG™ (1) AG™?(T)
1.1 3600.725813 | 110.3501650 7489.713486 | 3999.375267
1.15 707.1716823 | 21.41545529 1475.631231 | 789.8898863
1.2 222.6566867 | 6.6841251 465.9992946 | 250.0297253
1.25 90.7699894 2.719147221 190.4921799 | 102.3868650
1.3 43.61064998 | 1.315347407 91.70708754 | 49.42757998
1.35 23.44124127 | 0.7204989719 || 49.40907749 | 26.68828901
1.4 13.69962736 | 0.4342920396 | 28.91960127 | 15.65389601
1.45 8.530711681 | 0.2822211976 18.02691424 | 9.774664917
1.5 5.585122742 | 0.1949612382 11.80896505 | 6.419418004
1.55 3.809722071 | 0.1415799066 || 8.051331216 | 4.384794838
1.6 2.687671769 | 0.1071208312 5.680682348 | 3.099581383
1.65 1.950597487 | 0.08381729896 | 4.116361023 | 2.250408830
1.7 1.450282869 | 0.06693527726 | 3.058630712 | 1.675175090
1.75 1.101264244 | 0.05496962259 || 2.31789662 1.271815291
1.8 0.8516970012 | 0.04591905370 || 1.788883642 | 0.9835005356
1.85 0.6692604758 | 0.03938748791 || 1.402156975 | 0.7720705772
1.9 0.5334835670 | 0.03356146523 || 1.114560720 | 0.6149169512
1.95 0.4306798501 | 0.02947137658 || 0.8967776417 | 0.4954818484

Tab. 4.1: The numerical values of G?(7) and AG?(7) for different values of 7. all values

have been evaluated with v = 3 and 7 = 2

5

g.
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Fig. 4.3: Different plots of the integrand used to evaluate AGY(7) for different 6 and 7.

These show that the integral is well-behaved.
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(a) A plot of InG™(r) (red) and InG™/%(7)
(green). This shows that G?(7) decreases as
decreases, i.e. as we approaches SUSY, and as

the separation between the two branes increases.
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tau
(b) A plot of In AG™(7) (red) and In AG™?(7)
(green) shows that AGY(r) decreases as SUSY is
approached (f decreases) and as the separation

between the two branes increases.

Fig. 4.4:
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(a) A 3D plot of AV (eq. 4.98) showing no

minimum in z, or 7 directions.

Fig. 4.5:
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(a) A 3D plot of AV (eq. 4.98) showing no

minimum in z; or zs directions.

Fig. 4.6:
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Fig. 4.7: The potential (4.98) for different 7 and 6 = 7.
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5. GAUGINO CONDENSATION IN AN IMPROVED
HETEROTIC M-THEORY

This chapter on gaugino condensation contains some new results for the effective
potential and the superpotential which arise from gaugino condensation. The work

in this chapter was done in collaboration with Prof. i.G. Moss.

5.1 Improved heterotic M-theory and its new boundary conditions

We start with a quick review of the improved heterotic M-theory [33, 136, 137]
which we shall use as our framework. As we have seen in section (3.2), the orig-
inal formulation of Horava and Witten of Heterotic M —theory has the following

structure (see eq. 3.4 and 3.5)
S =S5q+ Syu (51)

Sge contains a factor /iff, Whilst the matter action Sy ;s has a factor e/fff, where
€ is a scaling parameter. Anomaly cancellation requires that ¢ = O (k*?) which
means that Sy, is of order mf{3 compared to Ssg. At order x?, singular terms
depending on the square of the delta-function start to arise. This problem has been
overcome [33, 136, 137] by modifying the boundary conditions on the gravitino and
the supergravity 3-form, so that now an action can be constructed which is non-
singular and supersymmetric to higher orders.

The theory is formulated on a manifold M with a boundary consisting of
two disconnected components M; and My with identical topology. The eleven-

dimensional part of the action is the conventional action for supergravity, with

metric gry , gravitino ¢; and antisymmetric tensor Cr;x [117]. The original for-
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mulation of Horava and Witten contained an extra ‘yxyxW¥’ term, but it is not
present in the new version.
The specification of the theory is completed by boundary conditions. For the

tangential anti-symmetric tensor components,

V2 1 V2
Capc = T5¢ Wipc — 5”530 + 4—86t1"XFABCX- (5.2)

where wY and w” are the Yang-Mills and Lorentz Chern-Simons forms. These
boundary conditions replace the modified Bianchi identity in the old formulation

(see for example [12]). For the gravitino,

1
TAB (P4 el PL) Uy = (JYA — 5Jﬂ‘) : (5.3)
where P, are chiral projectors using the outward-going normals and
1
r = %tr(XFAch)FABC : (5.4)

Jy is the Yang-Mills supercurrent and .Jy is a gravitino analogue of the Yang-
Mills supercurrent. The resulting theory is supersymmetric to all orders in the

parameter €. The gauge, gravity and supergravity anomalies vanish if

(= (“”)2/3. (5.5)

~ar \dr
A useful relation for the condensate on the boundary can be obtained by recall-
ing that in heterotic M-theory, we can relate the spin connection to the Yang-Mills
field so that w¥ = w’ = w on the hidden brane, and w¥ = 0 on the visible brane.
Then,
V2 V2

Cuapc = QGWABC — 4—86>_(FABCX on OM; (56)
V2 V2
Capc = QGWABC + 4—86XFABCX on OM, (57)

Where the term eIy is non-vanishing for the gaugino condensate.

5.2 Background metric and flux

The 11D background metric ansatz is based on the product M x S;/Z5 x X where

X is a Calabi-Yau space. In this metric there are two copies of the 4-dimensional
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manifold M, M; and M,, separated by a distance [1;. The value for the inverse
radius of the Calabi-Yau space is supposed to be of order the Grand Unification
scale 10GeV and the inverse separation would be of order 10'* GeV. The explicit

form of the metric is
ds® = V2 (a2 + Vi, datda”) + V3G pdatda® (5.8)

Where 1,,, is the Minkowiski metric on M, g4p is the Calabi-Yau metric on X which
is independent of Z and V = V(2), 21 < z < 2z9. The tilde denotes quantities in
Einstein frame.

This background metric ansatz is similar to one used by Curio and Krause [132],
except that we use a different coordinate z in the S'/Z, direction. For simplicity,
we will restrict the class of Calabi-Yau spaces to those with only one harmonic
(1,1) form (see appendix C.2.1). To allow for gravity in 4D, the metric is replaced
by

ds? = V23 (d22 + V3Q g, datda”) + Vi Gapdatda® (5.9)

Where the factor =2 is required to put the metric g, into the Einstein frame and
is given by (3.44).
The volume function V' = (1 — 6kz) (see 3.40) is the exact solution of the zz

component of the Einstein equations '. For the field strength G we use the ansatz

1
Gotea = 3@ (9csa — Jaa9re) (5.10)

This ansatz solves the field equation V.G = 0.

5.2.1 C(Condensates

The ansatz for a gaugino condensate on the boundary M; is [129]

Yirachi = Aigabc (511)

! Our solution for V is equivalent to the one used by Lukas et al. in Ref. [12] when adapted

to our coordinate system. They express the solution as V = bgH?>. It is also equivalent to
the background used by Curio and Krause in Ref. [132], V = (1 — S12!!)?, when their S; =
an2/3/\/§. See chapter 3
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This is the standard expression for covariantly constant condensates [79, 112].
Xi is the spinor represents the gaugino field, A; is the condensation scale and de-
pends only on the modulus V;, 4. is a covariantly constant three-form on the
Calabi-Yau space (on any given Calabi-Yau three-fold X, we have a covariantly
constant holomorphic three-form £, and its anti-holomorphic complex conjugate
g

7). The gaugino condensate appears in the boundary conditions for the anti-

symmetric tensor field and induces non-vanishing components Cl,.

Let

1
Cabc = 656,11)0. (5.12)

where £ is a complex scalar field. The field strength associated with these tensor

components is

Gabcz — _(azf)gabc- (513)

The boundary conditions for the Cy, field from Egs. (5.6) and (5.7) is

%e/\ﬁabc on 2
Clpe = (5.14)

0 on 2z

and the field equation is
V.G=0 (5.15)

Equation (5.15) could be written explicitly as
82 ( aangQCEg55Gabc5> =0 (516)

where the fifth dimension z is real and fixed. This implies that G g, o V'/3 which

means Cype o V43, we then have
C’abc = Agabcv4/3 + Bgabc (517)

where A and B are constants that could be determined easily using the two bound-

ary conditions (5.14). We get

A=Y2en— — (5.18)
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B= _4\/§CA 4/3‘/1 7 (5.19)
S R ¢
So s
2 . VY-V,
Cape = Z—S_eAgabch (520)
where Q% = V;** — V;'/*. For the field strength, we get
2\ek
Gabcz = \/_ ‘ V1/3- (521)

TQQELII)C
The non-zero flux depends on V; and V5 through the ) term and through A, which
depends on the volume factors V; and V; in the gaugino couplings.

We now consider the 11D action

1

T 5,2
2611 J my,

S = G*y/]gM|d" x (5.22)

The relation between the 11D and the 4D metric follows directly from (5.9) as
V0g=/gwiQ (5.23)
The action (5.22) then could be written in 5D as

1 [ k2N -
5= o /M segr 7 (A)Y[50datdz (5.24)

After integrating out the extra dimension we get the 4D action as

1 e2k*\?
S=—= [ —ac\/19W]da* 5.25

So, the G? term in the action (5.22) reduces to a potential Vi in the Einstein

frame, where

€2k?A?
48Q)°
In section 5.2.4 we shall attempt to find the potential by a better method, using

Vo = (5.26)

a reduction of the fermion sector.

5.2.2 Condensate scale

We now try to evaluate the condensate scale A. After the reduction to 5D, the

Yang-Mills action becomes [12]

1 2
Sym = Z yoe /M V,F2dV (5.27)



5. Gaugino condensation in an improved heterotic M-theory 78

where F'is the Yang-Mills field strength and g is the Yang-Mills coupling if V = 1.
If V. # 1, we can absorb it into g such that V5/¢g* = 1/gZ;;. The coupling gesy
changes with energy. Assume the condensates happen at a scale A = M?, where M

is the mass scale at which g.;f(M) ~ 1. From the renormalization group equation,

we have
YeI1 = Blgers) ~ Broly (5.28)
This gives
geff = [t + const., (5.29)

where t = In(E/pu) and p is the renormalization scale. We have then
et = 90ress = B In(E/p). (5.30)
If p = E, then geps = goyess. If E = M then (5.30) leads directly to
M = pe P19V, (5.31)
The condensate scale is just M3, hence

A = P30V (5.32)

5.2.3 Superpotential

Since any supergravity Lagrangian is expected to contain the Einstein-Hilbert La-
grangian and the Rarita-Schwinger Lagrangian for the gravitino field, we try to
reduce the 11D Rarita-Schwinger Lagrangian

1 _
Lrs = 55 (¢, TED k) . (5.33)
K11

In chapter 7, we shall see that this can be re-written in a form that is more suitable

for the reduction as

1 1 V2
LRS = W)\ <X7 — —GPQRSFPQRS> )\[. (534)
11

We use the notation I, P,... for eleven—dimensional indices, u,v,... for four-

dimensional ones, and a,b,... for Calabi-Yau space. \; = A (o ® 1). The

11-dimensional gamma matrices satisfy {T'y, Tn} = 2gumn-
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5.2.4 Effective superpotential from the 11D theory.

When reducing on a metric with no warp factor, the higher dimensional gamma

matrices are decomposed as

Fp=7%®1L, Ti=7%®7% and T'u=7%&77 (5.35)

Where 75 = iy'92y3~* is the 4D chirality operator.

It is useful to consider a particular representation for the Dirac matrices v#. A
useful choice of these matrices is given by Majorana representation in which the
matrices are either purely real v or purely imaginary (7° and 7). The Majorana
condition on the spinor then is just a reality constraint.

When reducing on a warped metric of the general form

ds* = egbdsa) + egfdsai) + e*F(dz")?, (5.36)

in order to retain {v,,7,} = 2g,(f,1,) etc., (5.35) becomes

r, = eb% L, T,=v%Qev and Ty =0y, (5.37)
So, for the metric (5.9), we have
T,=VQ Yy, ell, T,=3%aVYy, and T, =3V Py (538
For the raised indices,
TH=VYQy @1, T'=v@V %% and TH =~ VY3,  (5.39)

See also appendix (C.3).

To perform the dimensional reduction we need the metric ansatz given in (5.9)
and a spinor ansatz for the embedding of the 4D gravitino v, in the 11D one A,
with the help of the internal spinors (the 6D Calabi-Yau spinors in appendix B.4).

This could be written in general as

Ay =0 @ug + 750, @ u_ (5.40)
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Where 0, = 6,(z", z) and uy are covariantly constant 6D spinors. A specific choice

of the function 6} gives

Ay = a, (2 )V @ uy + a*zbZ(x”)V_l/G ® u_ (5.41)
Where a is a complex number used for normalization. Then,

M= (apy, - +a . )V QWY (@ 1) g™ (5.42)

Now, the covariant derivative transforms to the Einstein frame as

¥ = QV/S (v @1)V, (5.43)
and we have
T*Gape = 4V @ 7)™ Gt (5.44)
AVO (1L @ 1)y ;/655; a3,
where
> = (5@ 77) (%5 ® 7a) (15 ® %) (15 ® ) (5.45)

= (1 ® ¥7Y450)-
Inserting all that into (5.33) with the help of the relations (B.15) appendix (B) We
get the 5D Lagrangian
Ve ieAa?V1/6
4/3 473\ /2 Fotu+ 4/3 4/3\ 2 X
(=) (- w)

B . 2771/6
(w”w:; +9 “%) + (W/:VV;B)

L) = a?y" (5.46)

0 WA

Integrating out the extra dimension, we get the 4D Lagrangian

/6 1,7/6

R
1 TV

ieAa? <V17/6 _V27/G>

3 <V14/3_V24/3>2

(V"0 + 0" )
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To get the superpotential we just compare (5.47) with the general form of the RS
Lagrangian in 4D

1 — _
Lis = 57" (0" ®etu + W) (5.48)
P
For the correct normalization of the kinetic term we have to pick a? such that
4/3 43\ /2
,_ (W)
— 6 7/6 7/6 (549)
(=)
From the mass term, using (5.32) for A,
W= peseet 5.50
= g# € (5.50)

This final superpotential contains no surprises as it takes the standard form
expected for a gaugino condensate in any supersymmetric theory [135]. Tt becomes
clear also that the condensate superpotential contains no corrections due to the
warping of the metric in higher dimensions.

Most, discussions of the condensate induced superpotential do not take the
warping of the metric into account. We have found that the warping of the metric
background has had no effect on the superpotential as none of the three warping
factors of the metric appears in (5.50). Krause [133] also finds that the warping
does not affect the condensate contribution to the superpotential, but he claims a
warping dependence in the flux term. In [148], Anguelova and Zoubos extracted
the flux-induced superpotential from the gravitino mass term of the 4D effective

theory after the dimensional reduction of the fermionic terms in the 11D action.

5.3 summary

We have calculated the Gaugino condensate potential in the framework of the
improved heterotic M —theory after introducing a metric ansatz and a flux ansatz.
The condensate scale has been evaluated using the renormalization group equation.
We then derived the gaugino condensate superpotential from the reduction of the
11D Rarita-Schwinger Lagrangian. We then start in the next chapter to make use

of this superpotential to calculate the potential in two models.



6. KKLT ADS VACUUM AND CASIMIR ENERGY.

Moduli stabilisation can be achieved by following a similar pattern to moduli sta-
bilisation in type IIB string theory [134]. The first stage involves finding a suitable
superpotential which fixes the moduli but leads to an Anti-de Sitter vacuum. The
negative energy of the vacuum state is then raised by adding a non-supersymmetric
contribution to the energy. The potential is given in terms of the Kahler potential

K and the superpotential W,
V = k2K (KﬁDiWDjW _3 |W\2) , (6.1)

With
D;W = e "oy, ("W). (6.2)
Minima of the potential occur when D;WW = 0. If these minima exist, their
location is fixed under supersymmetry transformations. However, the boundary
conditions at the potential minima are not generally preserved by supersymmetry
and the theory at a supersymmetric minimum is not necessarily supersymmetric.
We shall examine the supersymmetric minima of the potential for two toy models
concentrating on general features rather than obtaining a precise fit with particle

phenomenology.

6.1 Model A: Double-condensate

Following the type IIB route, we assume the existence of a flux term Wy in the
superpotential which stabilises the (2,1) moduli, and then remains largely inert
whilst the other moduli are stabilised.

The gauge coupling on the hidden brane runs to large values at moderate

energies and this is usually taken to be indicative of the formation of a gaugino
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condensate. Local supersymmetry restricts the form of this condensate to [135]
Ay = ByVPe v (6.3)

where Bj is a constant and p is related to the renormalization group [-function

by
67 bg

The gauge coupling on the visible brane is supposed to run to large values only at

3
- , 4o 6.4
boacur g (6.4)

low energies to solve the hierarchy problem, and a low energy condensate would
have a negligible effect on moduli stabilisation. There might, however, be a sep-
arate gauge coupling from part of the Eg symmetry on the visible brane which
becomes large at moderate energies with a significant condensate term. The re-
quirement for this to happen is a large -function, possibly arising from charged

scalar field contributions. The total superpotential for such a model is
W =be "> +ce ™ —d, (6.5)

where d = —W; and b, ¢ are constants, which we assume to be real but not
necessarily positive.
The fields at the minimum of the potential could be complex, and we therefore

separate real and imaginary parts,
Vi = u; + ;. (6.6)
With the Kéhler potential
K ==3In((Vi + )Y? — (Vo + Tp)*/?) (6.7)
The super derivatives of the potential are

-1
Dy W = —cre™ —2 <uéi/3 — u;w) ui*w, (6.8)

1
Dy,W = —bue "> —2 (ui/g + u;%) uy *W. (6.9)

Solving for the values of V; and V5, at the minimum of the potential is not very

informative. Instead, we express the parameters b, ¢ and d in terms of the values
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Fig. 6.1: The values of the volume moduli V; and V5 at the minimum of the potential
with two condensates and 7/u = 1.2. Here X = b/d and Y = ¢/d. The left

panel shows values of Vi and the right panel shows values of V5.

of V1 and V5 at the supersymmetric minimum by solving (6.5), (6.8) and (6.9),

é _ _2Ué/36”V2/L71 (6 10)
d uil/B — ug/B - 2,u*1u;/3 + 27'*11&/3, .
c 2uy/PeVir ! (6.11)
d uil/B — ug/B - 2,u*1u;/3 + 27'*11&/3. .

We conclude from these expressions that, if b/d and ¢/d are real, then V; and V5
are both real. (If b and ¢ are not real, then it becomes difficult to satisfy the
background field equations on the antisymmetric tensor field with the resulting
complex boundary conditions).

Supersymmetric minima exist for b < 0 and ¢ > 0. The values of V; and V5 at
the minima are shown in Fig. 6.1. At the minima of the potential, the flux term
|Wy| is larger than the gauge condensate terms. This is consistent with the idea
that we consider the stabilisation of the (2,1) moduli independently of the other

moduli.
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Fig. 6.2: Plots for model A showing the minimum of the potential (6.12).

The supergravity KKLT potential with AdS minimum is
2
-3 |c
Viewrm = ((2V1)*"? — (215)"?) 172(2‘/1)2/3 ((2V2)" + 3(215)"?) x (6.12)

1
e +2(2V2)%7 (3(2V1) 1" + (202) V%) (—pube )2

—8eruViVoe TV L AT (cre ™ 4 be V) + WP

This potential has AdS minimum and is plotted in figure (6.2) for the following

values of the parametrs: c=p=7=>5 and b=d=1.

6.2 Model B: Other non-perturbative terms

If there are no high energy condensates on the visible brane, then we can replace the
condensate with another non-perturbative effect. The usual candidate for this is a
membrane which stretches between the two boundaries. The area of the membrane

x Vi — V5 and the type of contribution this gives to the superpotential is

W,y = ce "V, (6.13)
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The total superpotential for this model is given by

W = be " fce ™M) g (6.14)

= W, +W,, + W;. (6.15)

Where W, is the condensate potential on the ’hidden’ brane.
The supergravity KKLT potential with AdS minimum is

-3 (1
Vikire = ((211)"77 = (215)"%) 1627'2(2‘/1)2/3 ((2v)*2 +3(215)"3) x  (6.16)
1
e TR 2 (21)7F (3(21) "7 + (2V2)17) (—pbe ™ — ere T2
—8erViVae TV (_ yhe Ve — cremT(VimTR))
HAW (erVieT ™M) LV, (ube™Y> + cre T VITV)) W
This potential has AdS minimum and is plotted in figure 6.3(c), 6.3(d) for
c=p=>5, 7 = 0.5 and b=d=1.
Recalling that for a supersymmetric minimum, 0V = 0 if D;/W = 0. where

D, is the Kahler covariant derivative, the value of the minimum of the potential

energy
V = eX(KID,WD,W — 3|W|?) (6.17)
is

The system of equations

D;W =0 (6.19)

should have a solution in the correct phenomenological range for V; and V5. The

superderivatives are

—1
Dy W = —cre " 17%2) _ 2u}/3 (u?‘3 - u;w) w, (6.20)

-1
Dy,W = —bue 2 4 cre ™V17V2) 4 2u;/3 (zfll/3 — u;l/3> W. (6.21)

This time the parameters b, ¢ and d given in terms of the values of V; and V5 at
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(a) 3D plot of (6.16) for c = u =7 =5 and (b) Contour plot of (6.16) forc=u=7=15
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Fig. 6.3: Plots of (6.16).
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Fig. 6.4: The values of the volume moduli V; and V5 at the minima of the potential with
Wyp and 7 = p. X =b/d and Y = ¢/d. The left panel shows values of V; and

the right panel shows values of V5.

the supersymmetric minimum are

é _ —2Ué/3e“v2;fl (6 22)
d wl® —ud® 2wl — ud/?) 4+ 201w/ '
¢ _ 2u}/3eTV17"1 (6.23)
d wl —ud® o (ul? — ud®) 4 201l '

Again we conclude from these expressions that V; and V5 are both real.

The values of the moduli at the supersymmetric minima of the potential are
shown in Fig.(6.4), where we have taken 7 = u. Other values of 7 give a qualita-
tively similar figure.

Adding an extra term to the KKLT potential (6.16) can uplift the AdS mini-
mum to a stable dS one. In the next chapter, we try the ghost vacuum energy as

this extra potential.
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6.3 Uplifting the KKLT dS vacuum

In this section we try to see how much the dS minimum, we have got in the previous

section, can be raised via Casimir energy. Recall the 5D metric (5.8),
ds* = V'3Q2g,da"da” +dz?, V =1—aV2z (6.24)

The warping factor is equal to one for flat space, but when the space is approxi-

mately flat we have the 5D distance between the branes

1
= o
So, when V; & V4, the bulk Casimir energy is (recall Eq. (4.58))

5 (Vi = V3) (6.25)

AVe(Vi,Va) = Cat (V; — Vy) (6.26)

The constant C' is going to be determined in the following chapters. This expression
needs to be expressed in the 4D Einstein frame. We do that by comparing the

volumes, we have

= g
AVe = AVe (6.27)
Vi)
That means that the Casimir energy in the 4D Einstein frame is
(AVg) = (AVe)VPQ (6.28)
In the limit of small warping,
U TE
Q"= Vit (Vi = 13) (6.29)
Adding that to (6.16) we have
9 4 _6
Viotar = Vk kLT + ECQ (V1= V) (6.30)

Fig. 6.5 shows the total potential (6.30) for the gaugino condensate model.
Unfortunately, it is clear from the plots (6.5(a)-6.5(d)) that the contribution of the
ghost vacuum energies is only enough to rise the AdS minimum to dS one when C

is large. We get the same result for the non-perturbative model (see Fig. 6.6). In
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the next section we investigate this analytically by comparing the AdS minimum
of the potential with the vacuum energy. However, when the branes are very close
to each other the Casimir energy is overwhelming. In the following chapter we will
evaluate C' and find it is connected with the condensates. This is not surprising
because the Casimir energy depends on broken SUSY and it vanishes if there are

no condensates.

6.4 Comparing Vi, and V.

We now would like to compare the minimum of the potential with the Casimir
energy 5D expression to see the possible values that the constant C' must have to
be able to uplift the AdS minimum to a dS one. The minimum of the potential in

terms of the 4D Planck scale is (see (6.18))
Vinin = —3eX [W|? (6.31)

In model B, from (6.20) and (6.21),

1 -1
‘W‘ — §Q2 (‘/—11/3 _ ‘/—21/3> /LWg (632)
Hence
32 —-2
Vin = =2Q 72 (V* = 15%) " ha?eta? (6.33)
So _
AVe N N
W.‘NVH(W—VQ) S0 (6.34)

But a?k% is related to oy by (see [12])
4
a’kp = %BQO‘QGUT (6.35)

agur = 1/40. For Vi to be comparable to V,,;,, we need C' to be of order a7 or
the two branes are very close to each other. Alternatively, we have to consider the

case of large warping.
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Fig. 6.5: Plots of (6.30) for model A: Positive Casimir energy of the ghost fields can

uplift the AdS vacuum to dS one only at an undesirably large values of C.
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6.5 summary

We made use of the gaugino condensate superpotential calculated in the previ-
ous chapter and constructed two models. In each of them we add another non-
perturbative term with a flux term. Both models lead to AdS minima which need
to be raised to dS minima by some extra effect. The ghosts associated to the
gravitino field have a positive vacuum energy which may be helpful in obtaining
dS minima. We start calculating these positive vacuum energy of the ghost fields

in the next chapters.



7. 5D REDUCTION OF THE GRAVITINO

7.1 Introduction

This chapter and the next one discuss the Casimir energy contribution for the
gravitino field. In this chapter we make a 5D reduction to the gravitino field
starting by performing the gauge fixing and applying the BRST transformation.
This gives two new ghost fields [150, 151]. We then perform the dimensional
reduction for these three fields and express the boundary conditions in terms of
the gaugino condensates. In the next chapter we calculate the Casimir energy
contribution from the gravitino and ghost fields in flat and curved spaces.

The subjects of Gauge fixing and dimensional reduction for the gravitino field
are interesting on their own. Dimensional reduction is a necessary step that must
be performed to reach the effective theory, while gauge fixing is required when
quantizing a field theory with gauge symmetry. Previous work on gauge fixing for
the 11D gravitino has been done by Lukic and Moore [152], but most of the work
presented in this chapter is original research done in collaboration with Prof. Ian
G. Moss.

We now start from the 11D gravitino action (5.33) and try at first to simplify
it by making the following redefinition

1
vy =\ — §r, (T7X)) (7.1)
Then
_ 1
vr=Ar+ 9 (A7) Ty (7.2)

This means

2 _ 2
Iy, = —§r’A,, Y, I = §A,rf (7.3)
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With the help of the identities derived in appendix (B) for the products of gamma
matrices, we finally get

2
11

1 < 9 —
Lis =5 [AIF‘]DJ)\I + Z(wlr’)(FJDJ)(F%() : (7.4)
This agrees with Lukic and Moore [152]. For the terms containing the field strength

Gpors, using the same redefinition for 7, we get the total Lagrangian as

— 2 2 —
Ld) = )‘I (FJDJ - 9—\/6_GPQRSFPQRS> )\I + %GPQR_Q)\PFQR)\S (75)

—g@frl) <FJDJ + gGPQRSFPQRS) (TFyg).

The full result does not agree with Lukic and Moore [152]. We would like to remove
the T'7¢); term using a gauge fixing function. In order to achieve this task, we are

going to use the BRST mechanism which will result in two new ghost fields.

7.2 A review to the BRST formalism for the case of

electromagnetism

When using the path integral formalism to generate propagators, one faces a dif-

ficulty due to gauge freedom. For example, for the generating functional
Z = /DAueide’”, (7.6)

with L invariant under gauge transformations A, — A, + VA, the integration is
taken over all A, including those that are related only by a gauge transformation.
This gives an infinite factor in Z and problems for the Green’s functions obtained
by the functional differentiation of Z. The simplest solution is to fix a particular
gauge such that the integral over A, doesn’t include values related by the gauge
transformation. This can be done simply by imposing a Lorentz gauge condition

VA" =0, and including the gauge fixing term (for general «)

(6]
Loy = = 5(V, 4 (7.7)
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The total Lagrangian now becomes
L=1Ly+ L. (7.8)

where L, = —%F”VF“”. The case for « = 1 is called Feynman gauge.

Ensuring that the physics of any gauge theory doesn’t depend on the choice of
the gauge fixing terms is a basic requirement that must be fulfilled. To confirm that
the addition of the gauge fixing terms doesn’t change the theory we can follow the
BRST approach and ensure that the BRST symmetry is not broken. The BRST
approach is based on the addition of extra fields, called ghosts, to the theory which
cancel any extra degrees of freedom introduced by the gauge fixing. We obtain
the BRST transformation by replacing the gauge parameter with a new field and
adding extra terms to the action. So, under BRST symmetry, the variation of the

wave function 1 and A, is
st = igcy sA, =V, (7.9)

where ¢ an anticommuting scalar. However, the variation of the gauge fixing term

will not vanish

sLyp = —a(V, A"V (7.10)

We can cancel it by adding another term for the ghost field,

Ly = Ve (7.11)
where
sc=0, sc=a(V,A"). (7.12)
The total action then will be
[=— / dp(2)(Ly + Lo + Loy)- (7.13)

The BRST transformations must satisfy the nilpotency restriction s? = 0. This
only happens when the ghost fields satisfy V¢ = 0. We can remove this restriction
(V2c = 0) by introducing a new ghost field (called an antighost) b. The complete

set of transformations then is

sA,=Vu,c sc=0 sc=ib sb=0. (7.14)
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The gauge fixing Lagrangian which is invariant under this symmetry is

1
Ly = —ib(V,A") — 2—62. (7.15)

«

In the Landau gauge (o« — oc), b resembles a Lagrange multiplier. We can integrate

b out of the theory to recover (7.13).

7.3 BRST symmetry for 11D Rarita-Schwinger Field

Now we are going to carry out the same procedure for the 11D Rarita-Schwinger La-
grangian (7.5). While, for the case of electromagnetism, the gauge fixing term de-
pended on V, A" and the BRST transformation of the vector field was sA4, = V¢,
the gauge fixing condition here depends on I''¢); and the BRST transformation of
the fermion field is si¢o; = D;n, with n a ghost. An extra complication in this case
is that the gauge fixing Lagrangian is not simply the square of the gauge fixing

term, since now we place an operator in between to match (7.5), i.e.

9 — 2
Lgp ~ Z(ZDIFI) (FJDJ + 3—\/2_GPQRSFPQRS> (M), (7.16)

As we will see, this will lead to two ghost fields, instead of one. To illustrate this
we start by recalling the usual supersymmetry transformation for the 11D super-
gravity (BRST transformations are the same as supersymmetry transformations

but with the parameter 7 refers to a ghost field)

~ 1 ~
se'; = —nal'yy (7.17)

2
_ O Q JKLM o5 JPKLMY , /A

2

Crix = —?ﬁr[uwm- (7.19)

where Cryx is a three-form which can be dualized to a scalar. The total La-

grangian is Lyye = L + Lgr + L, and we require sL;p = 0. Similar to (7.15),
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the gauge fixing Lagrangian which is invariant under BRST symmetry is

9_ V2
Lor = b (FJDJ+—GPQRSFPQRS> (M) (7.20)

b (rJDJ + £GPQRSFPQRS> b.

=] ©

For the ghost field,

L,=7(1'D, - iGPQ sTPQRs ) (7.21)
288
The variation gives
9 V2
SLGF = §b <FJDJ + §GPQ35FPQRS> (FKSlDK) (7.22)
9 V2 V2
= §b <FJDJ + —GPQRSFPQRS> (FJDJ - 2—88GPQRSFPQRS> n
9 V2 V2
sLy = —3b (rJDJ + —GPQRSFPQRS) (rJDJ 288GPQRSF QRS) U
Where we used
S(FKwK) = <FJDJ Q\QQGPQ&QFPQRS) (7.23)
9- 2
Sﬁ = —=b FJDJ+£GPQRSFPQRS
2 32
sb = sb=sn=0.
Note s2 = 0, and
sLgp + sL, =0 (7.24)
Equation (7.20) could be rewritten as
9 - V2
LGF = _Z (b - Fw) <FJDJ + ﬁGPQR_gFPQRS) (b — F’Lﬂ) (725)

+ iwr (FJDJ + £GPQRSFPQRS> Ty
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The new theory now has extra fields (antighosts or antifields) b and b which are

commuting variables, so we shall integrate these fields out in the path integral,

o 2
/ db db e/ F+lartla) = (etl/? (rJDJ+ 3—\/2_GPQRSFPQRS> x  (7.26)

K [ L4+Ly+29T (FJDJ+§GPQRSFPQRS)F¢

Replace the determinant by a new field ¢,

2 ile V2 c
det!/? (FJDJ + 3_\/2_GPQRSFPQRS) = /dc de e/ (R D453 GransT ) (7.27)

The 'y terms in (7.25) cancel the I'Y terms in L,. Therefore

Ltotal - L,\ + LT) + LC, (728)

where

V2 V2

2 —
GPQRSFPQRS> )\I + TGPQRs)\PFQR)\S (7.29)

Ly = )\ (rJD

7 06
2
L. = ¢ (FJDJ - 3—\/2_GPQ35FPQRS> c (730)
_ V2
L, =7 (FIDI - @GPQRSFPQRS n (7.31)

The additional ghost terms (7.30) and (7.31) here make very important con-
tributions to Casimir energy stabilization. The importance of the ‘ghost’ part is
that they give a positive sign for the vacuum energy (which leads to a repulsive
force) while the real fermions (as we have seen before) give a negative sign for the

vacuum energy.

7.4 Reduction to 5 dimensions

Reduction to 5D means that we are going to use the 5D Einstein frame. The

metric (5.9) will then be written as

ds? =V % (Gapda®da®) + V12 (ﬁazdﬂf“dxg + %bdfcad“’”b) ' (7:32)
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where g ; is the Calabi-Yau metric. The gamma matrices are given by
r,=V'"*3,e1, T,=VY%®75, and T5;=V "% o7 (7.33)
For raised indices,
Mm=v"55,01, TI*=V"Y%®73 and I°=V"33% 0% (7.34)
The metric (7.32) also implies

VIghs| = V=15 (7.35)

Here, we will include some background values of the field strength G, so that the

term FPQRSGPQRS is

TR G pors = 4V Y01 © 737Gy, + 6V 231 @ 390G (7.36)
where
(6 ~ o~
GabEE = g (gaégba - gaagbé) . (7.37)

We use the ansatz for the gravitino
Aa =V V50 @uy +V Vo0, @u_ (7.38)

where u. are covariantly constant spinors on the Calabi-Yau space. The conjugate
spinor is
(0]

X' = (Vg @l — Vo /Sgma @l )12/ (7.39)

The covariant derivative acting on spinors of the form (7.38) reduces to
I'D; - VY3 (v @ 1) D;. (7.40)

The factor V='/¢ in (7.38) has been chosen to cancel the Vs in the kinetic terms
in the field equations. All other terms will have Vs raised to some power, as we

will see.
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After making use of the identities in appendix B.4, the Lagrangian (7.28) re-
duces to the 5D Lagrangian
1

Ly =5 — [(07°T/ D07 —07°T7D,6,) + V12 (0700t —§op7°)
K11
2 S _
2 . o
_Z_e;vl (0+20F — 0-20,) §G"G yea|  (7.41)
1 _ _ _
L.= Y. [(cteT/ Dyt — 0T Dyey ) + V3 (eFact™ — cmac™)
K11
2 — -
—i—%V‘l/6 (c+a75c; + c—a%c;’) X 2% G gpes
2 - o
—1—\€v—1 (ctocg = c707) 59" Gopea | (7-42)
_1 nta —C - - T Ta,ta o —a
LT) = S [(77-1-041"JDJ77(-1|- _ n_aFJDJT]a) +V 1/3 (77-I—a77+ —non )
\/5 - nta, - 1 - ~abc
+oo VIO (s + 07 sd) X B Gapes
V20— b L\ aeid
—1aV " ey =g ) 57" G | (T43)

where 1) = ¥'7,. From the Lagrangian, we can derive the field equations for the
fields 6+, c*t® nt® as

V2 e para V2 anaebi
ﬂv 1/6,}/50 23 bCGabcz - EV 19+agacgbdGabEE =0
(7.44)

2 2
/D,0% + V=139~ 4 % V2

T7D,;0% + V3% 4

V_1/6’759+aigachabcz _ V—lg—agaEEbEGabEE =0

48
(7.45)
2 - 2 ~ae~bd
/Djcte 4 V=13¢te 4 %V_l/ﬁ%c_ai&achabcz - \{—(;V_chragachdGabcE =0
(7.46)
2 2 ~ac~bd
FJDJcia + V71/3C7a + £Vvi1/6'.}/5C+OLZ‘,‘C~mbCGabc2 - \{_(;VlcagacgbdGade =0
(7.47)
2 2 ~at~bd
T/ Dypte + V- Hepte 4 V2 S5 2" G ape — iV*lnmg“g”dGabza =0

72 144

(7.48)
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V2

FJD —a V71/3 —a Ve
amn o+ ot

¥

Vfl/ﬁ +a "ucha Y —
51 b 144

7a~ac~bd
— V" ! Gabca =0
(7.49)
These equations could be greatly simplified by removing the ‘mass’ term containing

£%¢G e, by a certain rescaling, as we will see later.

7.4.1 Boundary conditions

We now need boundary conditions for the modes. We take the following boundary

conditions on the hidden brane (see section 5.1)
(P_— TPy \, =0, (7.50)

where

Pr=-(1®LF% Q7). (7.51)

MI»—A

We assume X' 4pcx X Egpe, then

1 1
I =—xT [48¢ — _Or 7.52
96X ABCX 9 ; ( )
where
I = —4—8’}/5 X (gabc;?abc + gagéaa%) (7.53)

The constant C is related to the gaugino condensate A = C’VQ_U2 (see chapter 6).
Substituting from (7.38), ( 7.51) and (7.52) into (7.50), taking £,,.2%¢ = 48, we

get the boundary conditions

PWeor — ZCTGP 0. = (7.54)
C
PWe- — ZTGP ) (7.55)
where P{Y) = (1£y5). We assume that the boundary conditions on the visible brane

are untwisted (C' = 0), while they are twisted on the hidden brane where there is
a gaugino condensate. We would like to compare these boundary conditions with

the one we used for the twisted fermions calculations in chapter 4,

P =0, (7.56)
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Fu=10 Ew—itangf.ﬁw:lj
g by
—_— _—
Visibla Hidden
brane brane

Fig. 7.1: The twisted boundary conditions on the visible and hidden brane with the

direction of n taken outward.

where P, = £ (1 + xT'5). Let

1= o J=| , (7.57)

then y could be expressed as
X =cosf 1 +iJsinf (7.58)
Define P{”) = (1 £+ 5), then (7.56) becomes
1 . G o L - 5) —
5(1+cos9 1+iJsinf )P" \If+§(1—c059 1—iJsing )P,"U =0 (7.59)
Then
(cos2 g 1 +¢Jsin g cos g) PPy 4 <sin2 g 1 —4Jsin g cos g) PJ(FS)\II =0 (7.60)

20 0 0

Multiplying both sides by cos® 5 — isin 5 cos 5, noting that J? = 1 we finally reach

9
POy — i (tan 5) TPy =0 (7.61)
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Comparing with (7.54), we get the relationship between the angle 6 in the two
boundary conditions as
0 Ce

tan 2 = C€ 62
ang = (7.62)

This allows us to express 6 in terms of the condensates,
C
0 =2tan"! <76> (7.63)

This equation tells us that the Gaugino condensates on the hidden brane leads
to a non-vanishing # which breaks supersymmetry. When C' vanishes, 6 vanishes

and supersymmetry is retained.

7.5 Summary

We have reviewed the BRST formalism and made use of it to remove the I''¢);
term using a gauge fixing function. This process gave two ghost fields which are
important for dealing with the stabilization topic. We then performed a dimen-
sional reduction for the total 11D Lagrangian to 5D and got the 5D field equations
which can be simplified by eliminating the mass term which we do in the next
chapter. We ended by expressing the SUSY breaking parameter § in terms of
the condensate using the twisted boundary conditions of the improved heterotic

M-theory.



8. GRAVITINO AND GHOST FIELD VACUUM ENERGIES

8.1 Eliminating the ‘mass’ term

Going back to section (7.4), we would like to find eigenmodes for the fields ¢,
c¢*® and £n*®. This would be easier if we could omit the ‘mass’ term containing
E% G pe,. We can do this by rescaling )\, in the gravitino Lagrangian, but there
will be a price because we will have a modified boundary condition, as we will see.
Before we do this, we recall the two ansatzé for the flux

«

G opea = 3 (Gaz G4 — 94207 » (8.1)
Gabe = —(0:€)Zape- (8.2)
We now start from
Ly=\ (FJDJ - gam,{srp@“) A (8.3)
The mass term could be written as
GporsT TR = 4 Gaupcl°TAPC 46 G, T (8.4)

where G,apc and G5 are 5D and 6D objects respectively. The factor 4 comes
because we have four equal terms with four different arrangements for the index
a, and the factor 6 for the six equal terms with six different arrangements for the
holomorphic indices @ and b. The following rescaling can cancel the Gypc term

in the field equations
4/2 612 o
(FJDJ - 9—\2_GQABCF“FABC - 9—‘6[Gab53rabcd> A (8.5)

2 _,
= g1 (FJDJ — %Gabzdrabcd) S)\H
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This means we rescale ), into X# = S\, with
S =e?® (8.6)
The derivative of the rescaled Xﬂ gives
ST'T7Ds(SN\,) = i(T'D; @)\, + T/ D)\, (8.7)

Which means that we require for (8.5) that

42
—9—\2_GQABCF“FABC = i(T7 D;®) (8.8)

To satisfy this with (8.2) and (7.53), we choose
d = 2v/2¢1. (8.9)

Using the expression for Cy. in (5.20), the value of ® on the hidden brane is

b = —gl. (8.10)

Note that I? = 1. This achieves the required simplification of (8.5). However, the

boundary condition (7.50) becomes

!

(P_—ePy)S™'N, = 0. (8.11)

7

To obtain the new boundary conditions we substitute from (8.6) and (8.9) into

(8.11) with ' = %]. This finally gives

tan (tan 1 (<) — < ,
P 1—ian(anc(2)c 2 X, =0, (8.12)
1+ Stan(%)

For small Ce, the twist part in (8.12) will be cancelled up to order (Ce¢)? and we
get the untwisted boundary conditions P—)"u = (0. This means, that after rescaling
the gravitino mass, the Casimir energy for the graviton multiplet is given by the
untwisted value Vi = 0. The situation, however, is expected to be different for
the ghost fields because of the different coefficients in the mass term. We now

use the same rescaling in (7.30) and (7.31), but for the ¢ and 7 fields we have to
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take ® = 3eC'I/2 and & = eCI/6 respectively. This gives the twisted boundary

conditions
460 ’
P l14+1———""roI =0 8.13
( +Z4+362C2 )C (8.13)
460 ’
P (14+i——1T = 14
( +212+6202>n 0 (8.14)

to leading order in eC'. Comparing with (7.61) we get the vacuum energy for the
c—field and n—field, calculated as the difference between the twisted and untwisted

cases, as (recall eq. (4.58))

3C%¢?

AV, = mC@) (8.15)
C?e?

AV, = mC(?’) (8.16)

with {(3) = 1.2020569032.

We now have a formula for the constant C' which appeared in the discussion of
radion stabilization in section 6.3. So far, we have calculated the Casimir energy
for the twisted fermions between the two branes. In chapter 5 we wrote down the
formula for the gaugino condensate potential energy. The aim now is to see if the
addition of the vacuum energy of the ghosts ¢ and 7 can help in stabilization. C
is related to the condensates, though C' ~ e #'2. This means we have the ghost

vacuum energies in terms of /5 and V5 as

Je2mV2¢?

AVe(l5, Vo) = WC(?)) (8.17)
672uV262

AVy(ls, Vo) = mﬁ@) (8.18)

So, in flat space, the twisted ghost fields lead to a positive vacuum energy which
leads to a repulsive force. In the following section we turn to the case of warped

bulk and calculate the ghost vacuum energies in curved space.

8.2 Warped bulk case

For warped bulk, the distance [5 is given by

# am g
l5:/ <i> =6227—%(1—76/5). (8.19)

21
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4E-114
3E-111

2E-114

1E-11

(a) (b)

Fig. 8.1: (a) 3D plot of the sum of the ghosts potential shows /5 and V5 directions. (b)

The sum of the ghosts potential at constant Vo (V5 = 2).

We use the conformally flat metric

21

2/5
ds? = <i> (d2? + nydztdz”), (8.20)
For the twisted bulk fermions we had

J7(mp21)(CJ _5(myze) £ ST, (mp22)) — J 5(my21) (CJz(my2e) F ST, (mpz2)) =0,

(8.21)
where v+ v =1, C = cosf/2, S =sinf/2 and 6 is now related to the condensate
by (8.12). We recall the expression (4.26) for the Bessel function index

1 3
=+ (=42 8.92
v <2 + 57><> (8.22)

We determine the value of v for the §%, ¢ and n* fields from their mass terms.

For the gravitino we have

V2 i a2
—SV GGG g = VO 8.23
48 g9 abcd 24 s ( )
where we made use of (8.1). For the ghost fields we have respectively
2 S 2
£V710+agacgbdGabEE — valc—}-a (824)
16 8
\/§ oz\/i

NV ey, 1 _+ta=acsbd P -1, +a 9
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Comparing the RHS of these equations with the fermion mass M = yaV~'/{/2 in
(4.22), we get v =1/6,—13/2, —1/2 for the 0, ¢* and n® fields respectively. This

leads to the following values for the Bessel function index

2 3 49 14
Vg = + (g, g) s Ve = + <—g, g) s Un =+ <g, g) . (826)

The vacuum energy can then be calculated for those fields using

’ 1 AG/\(T) ’ 1 AGC(T) ’ 1 AGn(T)
G(0) 872 z3 Ce(0) +87r2 2y 6 (0) +87r2 2y
(8.27)
where
o Po(x)PO(x)
= 3y |22 7 e\
AGyL(T) = /0 dzz’ In PUPO(a) (8.28)
o Po(x)PO(x)
= 3 Ze\al)
AG (1) = /0 dzz® In PI D0 (x)
) Pﬂ(x)pO(x)
_ 3 n a
AG,(r) = /0 dzz® In PIPO(x)

The functions P? and P° are defined in chapter 4, and

‘in((?) = [c (Gn)Ks(@) = @)Ky (r)) FiS (T () K (1) (8.29)
T (@)K (o) + %sin @n) Ky (72) K (:1:))] /[(er@K; )
ST (2) K (m))}
‘ ]]j:((?) = [0 (12(r) Ky (2) = Ts() s (7)) 7 i (T2(ra) K_s(2)  (8.30)
+1 4($)K%(7'x) + %sm <—g7r> K%(TLE)K% (x))} / {(Clg (LE)K%(TZE)
z’SLg(:c)K%(m)ﬂ
%((Z)) = [C (Ig(m)Kg(fv) — I (SE)K%(m)> ¥ iS (1% (r2)Ki(x)  (8.31)
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where the regularization process goes as has been done in chapter 4.

The integrals (8.28) for the gravitino and its ghosts are exactly the same integral
(4.97) we have got in chapter 4 for the spin 1/2 twisted fermion case. According
to what we found in this chapter, the gravitino integral vanishes. For the ghost
integrals, the values of these two integrals are tabulated in table (8.1) and plot-
ted in Fig.(8.3). The analysis following from Fig.(8.3) is similar to the spin 1/2
twisted case where the ghost Casimir energy becomes stronger as the two branes
are getting closer. For small brane separation, the integral is large and positive and
the effective vacuum energy is large and positive as well. The total ghost vacuum
energy then is

(0~ + gy AT 261

Fig. (8.2(c)) shows no minimum for (8.32). The 5D effective potentials for the

: (8.32)

ghosts ¢ and 7 are

1 [(AGY%T) B.(0) B4(C — 1) In(prze)
AV, = — - — 8.33
872 ( 25 * 25 > 472 25 (8:33)
1 AGQ(T) B (9) 64(0 — 1) ln(,uRzg)
AV, = — ? L — .34
Vi 82 ( 23 * 25 472 25 (8:34)
where B(#) is defined as in chapter 4.
In terms of z; and 7, Egs. (8.17) and (8.18) can be expressed as
—uba - —1/5
3€2((3) e w3 7
AVe(29, = .
Veleor™) = Hgor a0 = 7y (8:35)
—uSa -1/5
2 3 2T
AV (g, 7) = S (8.36)

T 19272 Zi(1 - 1)t
The sum of (8.35) and (8.36) is shown in Fig. 8.2(a). The warped case tends to

the flat case as 7 tends to 1.

8.3 Summary

The mass term we have got in the field equations in the previous chapter can be

eliminated by rescaling the gravitino field. However, this rescaling modifies the
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Fig. 8.2: (a) A 3D plot of the sum of the flat ghost potentials expressed in terms of zy
and 7. (b) A 3D plot of the sum of the flat ghost potentials expressed in terms
of V1 and V5. (c) A 3D plot of the warped total ghost Casimir energy (8.32)

showing z9 and 7 directions.
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T

AGT(7)

AG;;(T)

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

6980.571826
405.9747437
74.904937707
22.19804089
8.543430981
3.880314033
1.977367300
1.097112055
0.6495109547

7407.466538
456.4954922
89.07993796
27.87835147
11.30532187

5.40405996
2.892661516
1.683017233
1.043306447

Tab. 8.1: The total vacuum energy AG™(7) for the two ghosts ¢ and n evaluated numer-

ically at different 7.

10

[uy

(a) The plot of In AG7 () (red) and In AGT(7) (green).

tau

Fig. 8.3:

1.2 1.4 1.6 1.8

2
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boundary conditions and leads to zero vacuum energy of the gravitino but not
for the ghost fields. We then calculated the ghost vacuum energy for the flat and

curved space making use of our general calculations in chapter 4.



9. CONCLUSION AND FURTHER WORK

9.1 Conclusion

The final conclusion of the work done in this thesis can be summarized in the

following main points:

e The total bulk Casimir potential, calculated in the framework of the improved
5D heterotic M-theory, does not have a minimum and it is unable alone to
stabilize the radion field. Other bulk contributions must be considered to

get a stabilization.

e Considering some non-perturbative effects, like gaugino condensates and oth-
ers, an AdS supersymmetric minimum can be obtained which has to be raised
to a dS stable minimum by adding a non-supersymmetric contribution. The
non-supersymmetric contribution we considered in this thesis was the ghost

field vacuum energy.

e The dimensional reduction of the gravitino field to 5D gives rise to two new
ghost fields. The boundary conditions of the 5D reduced gravitino field can

be expressed in terms of the gaugino condensate on the hidden brane.

e The gravitino field A gives a zero contribution to the Casimir energy when
the warping is small, and only its ghosts contribute to the Casimir energy.

The twisted ghost fields lead to a positive vacuum energy.

e The contribution of the ghosts vacuum energy was too small to uplift the
AdS minimum to a dS one in the case we examined and when the warping

is small.



9. Conclusion and Further Work 115

9.2 Further Work

The following work is recommended as a follow-up to this study:

e We can make more use of the deeply rich structure of the 5D reduced theory
by studying the contributions from other hypermultiplets and the gravipho-

ton to the bulk Casimir energy.

e For the gravitino and moduli masses, more can be done regarding the phe-
nomenology. The MSSM soft masses are controlled by the F-terms, and then
one expects the soft masses to be of the order of the gravitino mass. The
moduli masses are found from derivatives of Vsiygra at the minimum and

are also within one-two orders of magnitude from mg, [147]...

e In chapter 5, it remains to be seen how the other ingredients of low energy
heterotic M-theory, which we have neglected, enter into the mix, for example
five-branes and anti five-branes may play a role in a realistic model. Some
features of the present calculation may be helpful in these generalisations.
Expressing the superpotential in terms of other moduli systems like the five
dimensional S and T superfields or the Calabi-Yau volumes V; and V, may be
helpful. The inclusion of five-branes in the improved formalism for heterotic

M-theory still remains to be developed.

e [t really looks interesting to investigate the possible relation that might exists
between the gaugino condensates we have studied in this thesis and the Bose
Einstein condensates, this can shed more light on the connection between
superfluidity and high energy physics; for example super Yang-Mills theory
[149]. ..
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A. ENERGY, SCALES AND DIMENSIONS

eV (electron-Volt): The amount of energy gained by an electron dropping through
a potential difference of one volt, which is 1.6 x 107 joules.
MeV (megaelectron-Volt): 108V .

GeV (gigaelectron-Volt) scale: 10%V.

TeV (teraelectron-Volt) scale : 102V .

Plank scale: 1.22 x 10GeV.

Electroweak scale: 10°GeV .

GUT scale: 10'5GeV.

Dimensions:

Brane charge a: L7,

k1= 8rG: L.

k= 8rG5: L.

k2 =8nG,: L"2

Bulk length scale p: L.

Energy: L1

ds?: L2

d"xz+/|g|:L™, n is the number of dimensions.

Ricci scalar R: L2

cosmological constant A: L2,

Potential (energy/unit volume): 1/L*.

Moduli fields: All moduli fields are dimensionless and measure the form of the

internal manifold relative to the dimensionful quantities o and p.



B. SPINOR IDENTITIES

B.1 Gamma matrices

Flat space Gamma matrices satisfy

{T4, TP} = 2p"B, (B.1)

B.1.1 Identities for the products of gamma matrices

n m
FIl...Inrjl...Jm — E <T> , ) (—I)MO'TT'(S[[LI,II e 6§:FIT+1.“IH}JT.+1..-Jm}7 (B2)
0

r=

min(n,m)
d—m m —1)n
FIlmInFJl---JmFIL..In = < ) < >(_1)r+(m 1) UnFJ1---Jm' (Bg)

- n—r r
where ¢, = (—=1)70+D/2 = 4 — — 4 for r = 0,1,2,3. In our 11D case, this gives
for example
I'T = Tl +6k, (B.4)
T, = T — 25,017,
L' = TV 420,17,
DK, — DK, 4 35T 77K,
r,TE = 1 7K 4 361, PIK]
Results for contractions depend on the number of dimensions. In 11 dimensions,
75T, = or'’, (B.5)
r,r% — gpiK
r’r, = 1or!,

r’'r; = 11.
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B.2 Other 11D identities

[, D//KLMP . GPIKLMP (B.6)
pIJKLMPp - —  pIJKLM
FIFI]KLMPFP — 71-\JKLM
N DIKLMP R pJKLMP _ XPFJKLM . 4XJFKLMP,
N DIKLM R pIKLM _ 4XJ1—‘KLM,
FJKLMP)\P — F]KLM)\_41‘\JKL)\P
FKLMP)\p — FKLM)\_?)FKL)\M
with A = I'T);.

B.3 Rarita-Schwinger equation

B.3.1 The pure fermionic term

In this appendix we derive Eq. (7.4) from (5.33). With the help of the 11D gamma

matrices identities (B.4), we can write

_ _ 1—
O D ED e = MNITED A — §A1FUKDJFK (T"Ar) (B.7)

n é (XMFM) FIFIJKDJ)\K _ 81_1 (XMFM) F[FIJKDJFK (FL)\L)

where we used (7.3). Using (B.4) and (B.5), we get

éXIF”KDJFK (T"2,) = (T (T7D,) (TFAk) =X Dy (TF k) (B.8)
% (A T") DDA = (M) (T7Dy) (TFAk) — (ATT) DA, (B.9)
1 10

T A" T TED Ty (TFAL) = > (M) (T7Dy) (ThAL),

Inserting that in (B.7) yields

U TED e = M T DA + %(EJFI)(FJDJ)(FKW()- (B.10)
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B.3.2 The term containing v with G

The Lagrangian is

V2 _J
Lo = 2= Gk (¢IFIJKLMP¢p+12¢ FKLsz) (B.11)

Making use of the identities (B.6), the first term is

B 1
b TTEEMP Y = (X + = )\F ) pITKLMP <Ap — —FPA> (B.12)

(> ;

_ ( )\FJKLMP XPFJKLM_LLXJFKLMP) Ap
2
3

)\FJKLMP)\ gXIFIJKLM)\_ ;_jXFJKLM)\

= —5)\ (D7KEM ) — 4TI KIAMY _XIpIRIM ),

— 2_
— 4N (DKEM ) _ gTKLAMY 4 AT

+ §XJFKLM)\—EXFJKLM)\
3 27
— _pIUELM), %XP’KWA + 120 TKEAM
and the second term is
—J KT, ~ 1<y KT v low
120 T™ by = 12 A +§)\F r A —§F A (B.13)

- — 4 _
= 12X TR | g)\FJKL)\M ;X’FKLM)\ — AT

_ 4 —
— 19N KM _ 2—7)\FJKLM)\.

The Lagrangian then becomes

2 — 1— _
Lo = r\;;GJKLM (—)\PF"KLMAP — GADTREM ) 24)\JFKL)\M> . (B.14)
B.4 Six dimensional identities

The covariantly constant spinors are denoted by u4

uluqE = 0, ului =1, Vuy =0, ul*yabcui =0, (B.15)

T — : —
Uy YabcUs = izgabca Yru+ —:I:U:I:-
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abed 1 at .bd ad be abed
uly s = (97"~ g"g"), uly™ s = 0, (B.16)
UL’YaEUi = :Fgagi 'YaUJr = 07
’Yaguj: — :I:gagui’ ,YEEEu_i_ — ZEEEEU_, ,yabcu_ — ieabcu+,

abce

¥ uy = 0, VEEEU_:Q

,yaBEu+ — 290[576}u+, ,}/af)/a = 6P+, ,-YE,-YE = 6P7,

Piui = Uy, Piu:FZO;
Tuy = ug, Juy = Fiugy, Kuyp= Fug.
where
%ﬁwe,yaﬁvée = 45, 504,4375670‘%6 = i4ly,. (B.17)

B.5 Five dimensional identities

A useful anticommutation relation for the 5-dimensional I'® where I'> = N~° and

N is 5D normal,

{N.¥} = TTPN,Vp +TPTAN Vg (B.18)

K
- (v )



C. GEOMETRICAL CONVENTIONS

C.1 Differential Forms

A differential form of order r is a totally antisymmetric tensor of type (0,7). If v
is a p—form and w is a ¢—form, then

1

V= Vg, 2 AL AT (C.1)
p!

The wedge product is defined as

(»+9)!
('U A w)al...abbl...bq = Wv[al...abwbl...bq}' (02)
This implies
(v Aw) = (=1)Mw A p. (C.3)

The exterior derivative operator d is defined as

d=dz" N0, (C4)

Then
(dv)a1---ap+1 = (p + 1)a[alva2...ap+1} (CE))
dlv Aw) =dvAw+ (—=1)Pv A dw (C.6)

A p—form w is closed if dw = 0 and exact if w = da. = 0 for some globally defined
p — 1 form a.
C.1.1 Cartan equations and the curvature tensor form

The curvature components of the metric (3.15) has been calculated using Cartan’s

structure equations which are

T = df* +wl N (C.7)
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Qp = dwy + wi A wy (C.8)

For the torsion and curvature 2-form respectively. For the metric
ds® = e~ datdx” + dz° (C.9)
we get

R5u5u = (J _(UI)Q)QMVa (ClO)

C.2 A review of complex manifolds and Kahler geometry

In analogy to the notion of a real 2k-dimensional manifold M which is defined

as a set of points that behaves locally like R?*, such that 2k real parameters

(z', ..., 2%, ...,2%) are coordinates on M [34], we can define a complex ¢- dimen-

sional manifold as a set of points that behaves locally like C'?. A complex manifold
always admits a hermitian metric [118]. A Hermitian manifold is a complex man-

ifold with a preferred coordinate systems such that
ab = Jap = 0. (C.11)
The line element then becomes
ds® = 2g,5d2d2". (C.12)
On any Hermitian manifold, a real 2-form can be defined such that
w = iggdz® A dz. (C.13)

where w® is defined to be a set of 2k complex coordinates where the index runs
through the k& holomorphic (unbarred) indices, then through the antiholomorphic

(barred) indices. Now we can come to the definition of a K&hler manifold which is
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a Hermitian manifold whose 2-form is closed, i.e. dw = 0. In this case w is called

the Kahler form. That leads to the condition
Dby — Opgap = 0, (C.14)

which is used also to define a Kahler manifold. Now, suppose that a Hermitian

metric g, is given in terms of a scalar function K by
9ab = OaOp K (C.15)

This metric clearly satisfies the condition (C.14) and hence it is Kahler. Tt
can be shown that any K#hler metric is locally expressed as (C.15). The scalar
function K is called the Kahler potential of a Kahler metric.

Now, given a Ricci tensor R, of a Kdhler manifold, the Ricci form is defined by
R = R dz" A d2’ (C.16)

The Ricci form is closed and defines a non-trivial element ¢; (M) = R /27 which
is called the first Chern class. A compact Kahler manifold with vanishing first
Chern class is called a Calabi-Yau manifold. Equivalently, Calabi-Yau manifold is

a Kahler manifold with Ricci flat metric.

C.2.1 Calabi-Yau space and Hodge numbers

Calabi-Yau manifolds have a cohomology groups structure that may be summed

up by the so called Hodge diamond

1
0 0
0 it 0
1 Kl p2t (C.17)
0 ! 0
0 0



C. Geometrical conventions 125

The Hodge numbers hP? are the equivalent to Betti numbers for a real mani-
fold. Formally, they are the dimensions of the respective cohomology groups the
manifold admits, i.e.

hP = dim HP. (C.18)

So this diamond simply says that for a Calabi-Yau manifold we have:

e A single (3,0) Hodge number h*" = dim H*° = 1, This is the holomorphic
volume form €, and A0 = h03 = p00 = p33 = 1.

° hl,O — hO,l — hO,Q — hQ,O — h2,3 — h3,2 — h3,1 — h1,3 =0.

e The values of the remaining Hodge numbers A'! and h?!' depends on the

particular choice of the Calabi-Yau manifold.

C.3 The tetrad formalism

The description of gravity in terms of a metric tensor g, is sufficient when the
matter fields, to which gravity is coupled, are restricted to scalars, vectors and
tensors. But when gravity is coupled to spinor fields, then the tetrad formulation

of gravity is more convenient. The tetrad eau is connected to the metric by

G = 5 ea,L 63,, (C.19)
Where the indices p, v,... label general coordinates with basis dz* and @, E, label
coordinates in a locally inertial coordinate system which we take as orthonormal
frame. The Lorentz metric 1. = diag(+1,+1, ..., —1). We have then orthonormal
basis {ea = eau dx"} constructed by the vielbein field. The vielbein dual e#; is its
inverse so that

66“ 6“3 = 563, (C.QO)
e, el =" (C.21)

For the Calabi Yau metric in (5.9), we have

gag = V1/3§a5. (0.22)
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Hence

Eaa = Vl/G gaaa 6aa = V_l/ﬁ g%' (023)

Since,

Fa == ea“ Fa. (C.24)

we arrive at Eqgs. (5.38) and (5.39) for the factors of V' in the reduction formulae

for the gamma matrices.

C.4 Embedding hypersurfaces and ADM (3 + 1) formalism in a
nutshell.

For the sake of completeness, we summarize here the mathematical basics of the
embedding hypersurfaces.

A hypersurface is an (n—1) dimensional (co-dimension one) submanifold ¥ of an
n dimensional manifold M. In the ADM (Arnowitt, Deser and Misner) formalism,
spacetime is decomposed into layers of three-dimensional space-like hypersurfaces

(slices), threaded by a time-like normal

nt — % (C.25)

where o and S* are the lapse function (defines the proper time between consecutive
layers of spatial hypersurfaces) and shift vector (propagates the coordinate system
from 3-surface to 3-surface) respectively. The general spacetime metric is written

as

ds* = (=a” + B,B")dt* + 2, dz"dt + 7, da*dz” . (C.26)

With v, is the induced spatial 3-metric on the hypersurface. It is related to the
4-metric via v,, = gu + nyn,. Another concept that is closely related to the

induced metric is called the projection tensor L# and defined as

9"V = 05 +nfny, = LY. (C.27)
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Given any vector V* € Tp(M), the projection tensor can project it tangent to

the hypersurface (that means orthogonal to n”):
(L, VH)n” =0. (C.28)

Using n*,and assuming that the integral curves of n* are not geodesics ,we can

define a quantitiy called 'the acceleration’ as
a' =n"V,n". (C.29)

Another quantity can be defined using n* which is the extrinsic curvature

K

u- 1f the embedded slide is bent, the normal vector n* changes along each

coordinate. This is expressed by the non-vanishing of the covariant four derivative
V,n,. Then, the projection of this derivative is the change of the normal vector for
an infinitesimal displacement within the surface and defines the extrinsic curvature

tensor

Ky = — L8 L0ngg (C.30)

Projecting all indices of the 4D Riemann tensor onto the slice gives the Gauss

equation (L denotes projection over all free indices)

n+1 n
LR — Ros + KuaKup — KupKya (C.31)

wap

Contracting of one index with the normal vector and then subsequent projection

of the remaining indices gives the Codacci equation

LR™Y = D, K0 — DKo (C.32)

pvaf

Finally, Einstein equations could be written as Hamiltonian and momentum

constraints:
R™ + K? — K,,K" = 167p Hamiltonian constraint (C.33)
V(K" —5,K) = 8rj* momentum constraint (C.34)

Where p and j° are matter terms given by projections of the stress energy tensor

Tos.



C. Geometrical conventions 128

Glossary of Terms

(Anti)de Sitter (AdS) a constant-curvature spacetime with maximal symmetry de-

scribing a positive (negative) cosmological constant.

AdS/CFT the conjecture of the equivalence between the gravity (string theory)
on an AdS space and a CFT on its boundary.

Axion the RR scalar field of type IIB string theory that combines with the dilaton

into a complex scalar controlling the SI(2, R) symmetry of the theory.

B-function a function giving the running of the coupling constant with the scale

of the theory.
BPS solution a special type of supersymmetric solution.

Braneworld scenarios models in which matter fields are confined to a hypersurface

within a higher-dimensional geometry.

BRST transformations (Becchi-Rouet-Stora-Tyutin) a fermionic invariance of the

extended action. It is usually represented by a differential s.

Calabi-Yau a geometrical space with special properties (ie, a complex structure
and vanishing Ricci tensor) normally used for compactification of string/M-

theory down to four/five dimensions.
CFT (Conformal Field Theory) a conformally-invariant field theory.

Chern-Simons forms arise in gauge theories, although they are not themselves

gauge invariant.

Compactification a procedure to reduce the number of dimensions by considering

some of them to be compact and very small.
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Conformal symmetry the group of transformations that leaves angles invariant.

D =11 SUGRA eleven-dimensional supergravity theory considered as low-energy

limit of M-theory.
D-brane a special case of a p-brane on which open strings can end.

Dilaton a scalar field in string theory whose vacuum expectation value controls

the string coupling constant gg.

Domain wall topological defect of co-dimension one, ie, an object separating the

space (along one coordinate) into two disjoint regions.

Duality the property of two (apparently) different theories which describe the same

physics for different values of their parameters.

Electroweak theory a theory unifies the electromagnetism and the weak interac-
tions. The the unification energy is of order of 10> GeV above which they

merge into a single electroweak force. Its gauge group is SU(2) x U(1).
Fixed-point solution SUGRA solution with constant scalars.
Gaugino the superpartner of the gauge boson.
Gaugino condensate Non-zero vacuum expectation value of the gaugino.

Gauged SUGRA theory of SUGRA containing (at least) some gauge vectors that

serve to gauge some rigid symmetry of the ungauged version.

Gauge fixing procedure followed when eliminating undesired gauge degrees of free-

dom from a theory.
Ghost commutative fermion or spin % boson.

Grand unification theory (GUT) theory that would incorporate the strong and

electroweak force within on single theory.

Hadrons strong interacting particles (e.g., quarks, protons, neutrons, etc.).
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Heterotic string consistent closed string theory supporting 16 supercharges and

gauge group SO(32) or Eg x FEg.
Hidden brane the brane at which SUSY breaking happens.

IR region (infrared) describes the behavior of a theory at large distances (small

energies).

Israel Junction condition the discontinuity in the extrinsic curvature across a hy-

persurface is related to the energy momentum tensor on that hypersurface.
M2-brane fundamental object of M-theory extended in two spatial directions.
Mb5-brane the magnetic dual of a M2-brane.
Moduli space the space parametrized by the scalars (moduli) of the theory.
Modulus stabilization getting a minimum for the modulus potential.
Majorana spinors spinors constrained by a reality condition.
Majorana-Weyl spinors spinors with both Majorana and Weyl properties.

M-theory a quantum theory believed to describe all five string theories and D = 11
SUGRA as different limits.

Orbifold The resultant quotient space I' = M /G with M is a manifold and G is
a discrete group acts on M. The resultant space I has some singular points

at which we locate the brane with matter (recall israel junction condition).
p-form a field described by a skew-symmetric tensor of rank p.

QCD (Quantum Chromodynamics) quantum field theory of the strong interac-
tions, based on the gauge group SU(3).

QED (Quantum Electrodynamics) unifying theory of weak and electromagnetic

interactions, based on the gauge group SU(2) x U(1).
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R-symmetry automorphism group of extended SUSY that rotates supercharges

into each other.

RS scenario (Randall-Sundrum) a particular realization of braneworlds with one

(or two) 3-brane(s) embedded in a five-dimensional space.

S-duality a duality relating the strong coupling regime of a theory with the weak

coupling description of another, or the same, theory.

Self-duality property of some p-forms of having self-dual (under Hodge duality)
field strength, realized in D = 2, D = 6 and D = 10 (for spaces with

Minkowski signature).

Standard Model (still incomplete) a theory unifying all non-gravitational forces
(strong and electro-weak). Its symmetry group is U; x SU(2) x SU(3) and

it is still incomplete.

String theory a theory of elementary particles where the fundamental constituents
(e.g., the electron, the photon, etc.) are described as different vibration

modes of a fundamental string.

Supergravity a supersymmetric version of general relativity (local supersymmetry

includes gravity).

Superpotential function whose square and derivative squared determines the po-

tential of a theory.

Supersymmetry a symmetry connecting bosons to fermions and vice versa. It

implies the existence of a superpartner for each known elementary particle.

Susy breaking a necessary step from which a non-supersymmetric theory is ob-

tained from a supersymmetric theory.
Type I string string theory of closed and open strings supporting 16 supercharges.

Type IIA string string theory of closed strings containing N =2 MW spinors (32

supercharges) of opposite handedness.
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Type IIB string string theory of closed strings containing N = 2 MW spinors (32

supercharges) with the same handedness.

UV region (ultraviolet) describes the behavior of a theory at small distances (large

energies).
Visible brane The brane on which we are living, also called the TeV brane.

weak nuclear force one of the four fundamental forces, best known for mediating

radioactive decay.
Weyl spinors spinors restricted via a chirality projection.

Yang-Mills theory Non-abelian Gauge theory based on the SU(N) group. In other
words, if the gauge group of the theory is non-commutative then the gauge

theory is called Yang-Mills theory.
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Notation

Action S, Sgu, Sywm, etc.

Antisymmetric rank-3 field C,,,.

Bessel functions J,,Y,, I, and K,.

Beta function ((g).

BRST differential s.

Calabi-Yau metric Q4p or g,;.

Calabi-Yau volumes V', Vi and V5.

chirality operator Py (untwisted) and Py, (twisted).
Condensate scale A.

Cosmological constant A.

Coupling constants g, gs, ag (for GUT) and A(in RS S,;5)
Covariant derivative V,, D,,.

Covariantly constant spinors uy, AT and B*.
Dilaton ¢.

Dirac operator D.

Energy-momentum tensor T),,,.

Finstein tensor G,

Extrinsic curvature K, .
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Field strength G,
Gamma matrices T' and 7.
SUSY breaking parameters 6 and .
Ghosts ¢ and .

Gravitino A, and ,.
Graviton ey, guy, by
Kahler metric K.
Kahler potential K.
Lagrangian density L.
electromagnetic vector A,.
Planck

length 1, ~ 10733 cm

mass M, ~ 10" GeV
Radion o.
Renormalization scale pg.
Ricci scalar R.
Scalar potential V().
Superpotential W.
Superfields S and T'.
Vacuum energy Ve (0), V() AV, and AV,

Vielbeins e,“.
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Wave function ¥ and 1.

Zeta function (.
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