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ABSTRACTThe 
urrent understanding of theoreti
al physi
s tells us that there exists a unique,nonperturbative quantum theory living in 11D spa
etime (M-theory), from whi
h�ve 10D superstring theories arise as perturbative limits. Finding the expli
itform of this M-theory is one of the greatest theoreti
al 
hallenges of the twenty�rst 
entury. In this thesis, we shed the light on some important aspe
ts, va
-uum energy, moduli stabilization and gaugino 
ondensates in the framework of5D heteroti
 M-theory. The 
entral question we are trying to answer in this the-sis is: what is the me
hanism for radion stabilization?. To answer this questionwe 
al
ulate the total bulk va
uum energy, whi
h is the di�eren
e between thetwisted and untwisted fermion va
uum energies, in both 
at and 
urved spa
es. Itis found that this bulk va
uum energy alone doesn't stabilize the radion �eld. Wethen try to add and investigate some non-perturbative e�e
ts su
h as the gaugino
ondensates and use the te
hnique of dimensional redu
tion to rea
h an e�e
tivesuperpotential. Dimensional redu
tion is a ne
essary step required to know howour real 4D world is des
ribed by a higher dimensional theory. After performingthe dimensional redu
tion, we have a look at the resulting e�e
tive superpotentialfor a 4D gravitino with ghost �elds. The importan
e of the ghost va
uum energyis in its positive sign whi
h is helpful in the stabilization proplem when added tothe total fermioni
 bulk va
uum energy with its ordinary negative sign.
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1. INTRODUCTION1.1 Extra dimensions and Brane-worldsMost theoreti
al physi
ists believe that at high enough energies, 
lassi
al GeneralRelativity fails to des
ribe gravity and must be uni�ed with quantum �eld theory.The supposed quantum gravity theory should 
ontain signi�
ant 
orre
tions asthe fundamental energy s
ale (the Plan
k s
ale) is approa
hed. Superstrings are agood 
andidate, where all parti
les in nature are just di�erent vibrations of stringsof the string s
ale (� 10�33
m).A 
lass of models has been inspired in the 
ontext of branes in string theory,
alled `brane-world models' (see [9℄ for a review). In su
h models, the observableuniverse is regarded as a 3 + 1�dimensional surfa
e (the brane) embedded in a3 + 1 + d�dimensional spa
etime (the bulk). Standard model parti
les and �eldsare trapped on the brane and only gravity is free to a

ess the bulk. At low energies,gravity is lo
alized at the 3+ 1�dimensional brane allowing General Relativity tobe re
overed. At high energies, gravity leaks into the higher dimensional bulk,behaving in a truly higher dimensional theory. These models may di�er fromtraditional Kaluza-Klein models in that the extra dimensions are not ne
essarilysmall 
ompared to the length s
ales a

essible to modern a

elerators.Although the idea that lower dimensional hypersurfa
es 
onstitute the visibleworld had been suggested before [4, 25℄, the idea only be
ame popular in 1998 whenthe model of Arkani-Hamed, Dimopoulos and Dvali (ADD)[11℄ was proposed. Thismodel is an attempt to atta
k the long standing hierar
hy problem (that is whygravity is mu
h weaker than all other for
es) through the idea of large extra-dimensions.



1. Introdu
tion 12An important 
ommon feature of all extra-dimensional models is that they haveadditional s
alar �elds. These s
alar �elds 
ouple to the 4D energy-momentum ten-sor modifying the 4D gravity (and so sometimes 
alled gravi-s
alars). However,there are strong experimental 
onstraints on su
h `s
alar-tensor theories' of grav-ity. For example, in the 
ase of only one 
ompa
t extra-dimension (5D bulk), by
al
ulating the slowing down of binary pulsars due to the radiation of these gravi-s
alars, it 
ould be shown that [87, 88℄ the presen
e of the gravi-s
alars leads to amodi�
ation of Einsteins quadrupole formula by 20%, but observations agree withthe quadrupole formula by better than 0:5%. For more extra-dimensions there willbe more gravi-s
alars and the problem gets worse.1.2 Kaluza-Klein basi
sIn 1919 (published only in 1921), Kaluza proposed that gravity and ele
tromag-netism 
ould be uni�ed by adding one extra dimension [90℄. His main aim was tounify the Hilbert-Einstein a
tion with the a
tion of ele
tromagnetism. He startedfrom a pure 5D gravitational a
tion. Then, after integrating out, he 
ould get theequations of General Relativity, Maxwell's equations and a s
alar �eld 
oupled tothe ele
tromagneti
 �eld tensor. This means that the additional part in the 5Dmetri
 gAB gives the Maxwell �eld and a s
alar �eld (the dilaton �eld).In 1926, Klein [91℄ suggested that the extra dimension has a 
ir
ular topologyso that the extra 
oordinate y is periodi
. The 
ompa
ti�
ation of the dire
tion ywith radius L means y and y + 2�L are identi�ed. The spa
e then has a topologyR4�S1, whi
h means that there is a little 
ir
le at ea
h point in four-dimensionalspa
etime [see Fig.1.1℄.The gravity a
tion in 5D 
ould be written asS(5) = M352 Z d4x Z 2�L0 dypg(5)R(5) (1.1)Where 1M35 � 8�G5 � �25 (1.2)



1. Introdu
tion 13The 5D metri
 
ould be expressed in 4 + 1 form asgAB = e�=p30BBB� g�� + e�p3�A�A� e�p3�A�e�p3�A� e�p3� 1CCCA (1.3)Where g��, A� and � are tensor, ve
tor and s
alar �elds respe
tively. The pe-riodi
ity in y means that the 
omponents of the �ve dimensional metri
 
an beexpanded in terms of Fourier series [92℄g��(x; y) = n=1Xn=�1 g(n)�� (x)e(2n�y=L) (1.4)A�(x; y) = n=1Xn=�1A(n)� (x)e(2n�y=L) (1.5)�(x; y) = n=1Xn=�1�(n)(x)e(2n�y=L) (1.6)So, the theory des
ribes an in�nite number of four-dimensional �elds. Themass of the mode n be
omes m2n = n2L whi
h means that the smaller the size Lthe higher the energy required to probe it. Only the zero (massless) mode (1.3) ise�e
tive at low energies and massive modes will be important at higher energies.After integrating out the extra dimension, the low-energy 5D a
tion (1.1) be-
omes S = (2�L)M352 Z d4xp�g[R� 12������� 14e�p3�F��F ��℄ (1.7)By 
omparing the above a
tion with the 4D a
tion we 
an get a relation betweenthe 4D Plan
k s
ale and the 5D one asM24 = (2�L)M35 (1.8)The additional s
alar �eld worried Kaluza and Klien, but now physi
ists expe
tto see new s
alar �elds in their theories. Modern higher dimensional theories don'timply the 
ompa
ti�
ation manifold to be a 
ir
le.In spite of the beautiful uni�
ation of gravity and ele
tromagnetism, Kaluza-Klein theory failed to in
lude other for
es. Also, it doesn't explain the weakness



1. Introdu
tion 14of gravity in 
omparison to ele
tromagnetism. The Kaluza-Klein theory was es-sentially abandoned until the advent of supergravity and string theory, where theidea of higher-dimensional theories was reintrodu
ed in physi
s.1.3 ADD model - large extra dimensions.The ADD model was proposed in 1998 [11, 23℄ to solve the hierar
hy problembetween the Plan
k s
ale and the weak s
ale. The basi
 idea is that large volume
ompa
t extra dimensions would lower the fundamental Plan
k s
ale to the weaks
ale, leaving a single s
ale Mew. We summarize this in the following equationMew � 1TeV � MP l(4+d): (1.9)As in Kaluza Klein theories, the geometry is fa
torized (meaning that the 4-dimensional part of the metri
 does not depend on extra-dimensional 
oordinates),and the metri
 reads: ds2 = g��(x�)dx�dx� + gij(x5)dxidxj: (1.10)The spa
e-time is R4 �Mn, where Mn is an n dimensional 
ompa
t manifoldof radius R and volume Rn. The Plank s
ale MP l(4+n) of this (4 + n) dimensionaltheory is taken to be �Mew.By Gauss law in 4 + n dimensions, for small separation r� R, the Newtonianpotential between two parti
les of masses m1 and m2 will be given byVr(r) � m1m2Mn+2P l(4+n) 1rn+1 ; r � R: (1.11)The usual 1=r 
ould be obtained when the masses are pla
ed at distan
es r� R,that is Vr(r) � m1m2Mn+2P l(4+n)Rn 1r ; (r� R): (1.12)We 
an write now the e�e
tive 4-dimensional Plan
k s
ale MP asM2P �Mn+2P (4+n)Rn (1.13)



1. Introdu
tion 15So, if we put MP (4+n) � Mew and demand that R be 
hosen to give the observedMP we get R � 10 30n �17
m� �1TeVMew �1+ 2n : (1.14)The 
ase for n = 1 is empiri
ally ex
luded as R � 1013
m whi
h implies mod-i�
ations for Newton's law over solar system distan
es. For n = 2, R � 10�2
mwhi
h suggests modi�
ations on the submillimeter s
ale. Sin
e the experimental
apabilities are limited, the knowledge of the validity of these laws of nature is lim-ited. For example, very little is known about the behaviour of gravity at distan
es< 10�4
m or > 1028
m [27℄.Unfortunately, while the ADD model solves the hierar
hy between the Plan
kand weak s
ale, it repla
es this with a hierar
hy between the fundamental Plan
ks
aleM4+n and the 
ompa
ti�
ation s
ale �
 = R�1 (�
 = 1=r
 for RS model) [35℄.As we will see, in the Randall-Sundrum model the hierar
hy between the Plan
kand weak s
ales 
ould be resolved without the need to introdu
e a large hierar
hybetween M4+n and �
.Redu
ing the fundamental s
ale to the weak s
ale gives some hope for theexperimental tests of quantum gravity. Theories of quantum gravity, string theoryfor example, might be a

essible at modern 
olliders su
h as the LHC.1.4 The hierar
hy problemDespite being in a very good agreement with experiments, the standard model ofelementary parti
les (based on the SU(3) � SU(2) � U(1) gauge group) su�ersseveral unattra
tive features. One of these unattra
tive features is the gauge hi-erar
hy problem, the standard model 
annot 
onsistently a

ommodate the weakenergy s
ale O(1TeV ) and a mu
h higher s
ale su
h as the Plan
k mass s
aleO(1019)GeV . This is why it has been suggested that the standard model is onlyan e�e
tive low energy theory embedded in some more fundamental high s
aletheory that 
ould 
ontain gravity.There are in fa
t two long standing �ne tuning problems, the hierar
hy problem
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Fig. 1.1: The orbifold S1=Z2 on whi
h the extra dimension y is 
ompa
ti�ed. It is justa 
ir
le with two �xed points 0 and � identi�ed and z2 symmetry imposed.and the 
osmologi
al 
onstant problem. In both of them there are two fundamentals
ales; an experimentally observed s
ale and a theoreti
ally expe
ted s
ale, whi
hare many orders of magnitude apart.In the hierar
hy problem, the observed s
ale is the energy s
ale at whi
h theele
tromagneti
 intera
tion uni�es with the weak intera
tion around 1TeV . Thetheoreti
al s
ale is set by quantum 
orre
tion to the Higgs mass.The Plan
k energy s
ale (at whi
h a theory of quantum gravity should berevealed) is theoreti
ally 
al
ulated to lie at 1019GeV or 10�35m. The hierar
hyof sixteen orders of magnitude between these two s
ales is 
alled the hierar
hyproblem. The model that solves the problem most `e
onomi
ally' is the RS modelwith a single extra dimension [2, 3℄.1.5 The prede
essors of brane-worldsThe idea of the universe as a domain wall was �rst proposed by Rubakov andShaposhnikov in 1983 [25℄, who imagined parti
les 
on�ned by a 3D potential wellat low energy. A system of two branes of equal and opposite tension boundinga �fth dimension whi
h 
ontains bulk s
alar �elds �rst re
eived serious attention



1. Introdu
tion 17after the 
ompa
ti�
ation of Horava-Witten theory to 5 dimensions [12℄.It is widely a

epted that the weakly 
oupled E8 � E8 heteroti
 string is oneof the most phenomenologi
ally viable of �ve superstring theories. Unfortunately,the predi
ted value for Newton's 
onstant in this theory is too large. Witten[17℄ has shown that this situation 
an be resolved in the strong 
oupling limit ofthe heteroti
 string, whi
h is believed to be equivalent at low energy to eleven-dimensional supergravity, with E8 Super-Yang-Mills gauge theories on two branes[4℄. This theory 
an be 
ompa
ti�ed to get a 5D theory. It is known that inorder for the theory to predi
t the 
orre
t values of Newton's 
onstant and granduni�
ation gauge 
ouplings, the orbifold radius must be an order of magnitudeor so larger than the 
ompa
ti�
ation s
ale. Hen
e, at some intermediate energys
ale, the theory has a 
onsistent �ve-dimensional des
ription.Lukas et al. [6, 12℄ have derived the �ve-dimensional e�e
tive a
tion fromHorava-Witten theory. They have shown that the resulting theory is a gaugedversion of N = 1 supergravity in �ve dimensions, with a non-abelian set of E8gauge �elds on one brane, and spontaneously broken to E6 on the other. Theva
uum solution for this theory has a 
urved bulk metri
. This was the trueprede
essor of most brane-world s
enarios.The 5D solution gives rise to an e�e
tive four dimensional theory in whi
h theseparation of the domain walls be
omes one of the moduli �elds. It is importantto identify e�e
ts whi
h 
an provide a potential for the brane separation and �xthis parti
ular modulus. This is dis
ussed further in 
hapter (2). One possibleme
hanism is that quantum 
u
tuations of the bulk �elds stabilise the branes atphenomenologi
ally a

eptable positions. This has been dis
ussed extensively inthe 
ontext of the Randall-Sundrum brane world s
enario (see for example [18℄).Previous work of this kind in �ve-dimensional heteroti
 M-theory has been donefor s
alar �elds by Garriga et al. [19℄.
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h a 4D e�e
tive theory on the brane is an important question thatshould be answered in any braneworld model. For a single brane system, Shi-romizu, Maeda and Sasaki rea
hed a useful set of equations by proje
ting thehigher dimensional Einstein equations onto a Z2 symmetri
 brane. That means,as in the original Horava-Witten theory [4℄, there exists a Z2 re
e
tion symmetryalong the extra dimension z ! �z.A

ording to [1℄, we live on 4D brane (M; q��) in a 5D spa
etime (V; g��) withthe indu
ed metri
 q�� = g�� � n�n� (1.15)Where n� is a unit ve
tor on M .To relate the 5D and 4D quantities we make use of Gauss' equation(4)R��
Æ =(5) R����q��q��q�
q�Æ +K�
K�Æ �K�Æ K�
; (1.16)and the Coda

i equation D�K�� �D�K =(5) R��n�q��: (1.17)In these equations,K�� = q��q��r�n� � extrinsi
 
urvature on M.K = K�� is the tra
e.D�=
ovariant derivative with respe
t to q�� .Contra
ting (1.16) and using the 5D Einstein equation (The idea here is thatthey are trying to eliminate the 5D quantities to an equation restri
ted to thebrane, but this will not be entirely su

essful),(5)R�� � 12g(5)��R = �25T�� (1.18)We get (4)G�� = 2�253 [T��q��q�� + (T��n�n� � 14T �� )q�� ℄ +KK�� (1.19)�K��K�� � 12q��(K2 �K��K��)� E��
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eless tensor given in terms of the 5D Weyl tensor C���� asE�� �(5) C����n�n�q��q�� and 
arries information about the gravitational �eld in the5D bulk. The 5D metri
 
an be put into the formds2 = d�2 + q��dx�dx�; (1.20)with the brane lo
ated at � = 0. The 5D energy momentum tensor isT�� = ��g�� + S��Æ(�) (1.21)Where S�� = ��q�� + ��� (1.22)The reason for in
luding �, a bulk 
osmologi
al 
onstant, will be explained inthe next se
tion. Clearly the Æ(�) fun
tion is introdu
ed to restri
t matter to thebrane. � is the brane va
uum energy (brane tension) and ��� is the brane energy-momentum tensor. This singular behaviour in the energy momentum tensor leadsto Israel's jun
tion 
onditions [108℄ i.e. a dis
ontinuity (a jump) in the extrinsi

urvature K�� a
ross a hypersurfa
e (embedded in a higher dimensional spa
e) isrelated to the energy momentum tensor on that hypersurfa
e. This reminds uswith what happens in ele
tromagnetism when the jump of the normal 
omponentof D a
ross two di�erent media is related to the 
harge density on the separationsurfa
e of the two media. These 
onditions 
ould then be written as[K�� ℄ = K+�� �K��� = ��25(S�� � 13q��S); (1.23)where K��� = limy!�0K�� . Applying Z2 symmetry allows us to writeK+�� = �K��� = �12�25(S�� � 13q��S) (1.24)Plugging this into the equation for the 4D Einstein tensor we get(4)G�� = ��4q�� + 8�GN��� + �45��� � E��; (1.25)
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tion 20where �4 = 12�25(� + 16�25�2) (1.26)GN = �45�48� (1.27)��� = �14������ + 112���� + 18q�������� � 124q��� 2 (1.28)The brane 
osmologi
al 
onstant �4 depends on the brane tension and the bulk
osmologi
al 
onstant. That means a �ne tuning is required to get viable solutions.The 4D Newton's 
onstant is dire
tly proportional to the brane tension. There isalso unusual term ��� whi
h is quadrati
 in the energy momentum tensor and 
anprodu
e a signi�
ant 
hange in the 
osmologi
al evolution.1.7 Randall-Sundrum models and the geometri
al origin of thehierar
hyRandall and Sundrum suggested a set up to solve the hierar
hy problem in whi
hthe extra dimensions are small, but the ba
kground metri
 is not 
at along theextra 
oordinate; it is a sli
e of Anti de Sitter (AdS5) spa
e. This 
urved spa
e
auses the energy s
ales on the two branes to be di�erent, one s
ale is exponentiallysuppressed on the negative tension brane. This exponential suppression 
an thennaturally explain why the physi
al s
ales observed are so mu
h smaller than thePlan
k s
ale [36℄.A

ording to arti
les [2, 3℄, the elementary parti
les ex
ept for the graviton arelo
alized on a 3+1 dimensional brane or branes. There are two popular models.The �rst one (RS1) [3℄ has a �nite size for the extra dimension with two braneswith positive and negative tensions respe
tively [see �g.1.2℄. It attempts to addressthe hierar
hy problem geometri
ally, where the warping of the extra dimensiongenerates a large ratio of energy s
ales so that the natural energy s
ale at one endof the extra dimension is mu
h larger than at the other end.In the se
ond model (RS2) [2℄, the negative tension brane has been pla
edin�nitely far away (the extra dimension is in�nite in size) so that there is only one
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Fig. 1.2: The topology in RS model is R4 multiplied by a line element whi
h is taken tobe a 
ir
le with Z2 symmetry in RS1 and an in�nite real line R+ in RS2. Thetopology in the 5D redu
ed heteroti
 M-theory is the same as that of RS1.brane left in the model. The generalized RS1 s
enario with radion stabilizationseems more realisti
 than the RS2 model. An important feature that has beenpointed out by the RS2 model is that there is an alternative to 
ompa
ti�
ation,meaning that we don't ne
essarily have to 
ompa
tify the extra dimension. Thea
tion of the RS1 model is given byS = Sgravity + Svis + ShidSgravity = Z d4x Z ��� d�p�Gf�� + 2M3RgSvis = Z d4xp�gvisfLvis � �visgShid = Z d4xp�ghidfLhid � �hidg: (1.29)Where � and M are the 5D 
osmologi
al 
onstant and Plan
k s
ale respe
tively.A 
onstant va
uum energy for both branes has been separated out whi
h 
an a
tas a gravitational sour
e. In order to obtain a Minkowiski brane, we have to set
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e is AdS. Sin
e AdS is 
onformally 
at, E�� = 0 in(1:25). Also, a Minkowiskian brane implies that ��� = 0 and that gives (4)G�� = 0.The above relation is the RS �ne tuning 
ondition whi
h ensures the zerovalue of the e�e
tive 
osmologi
al 
onstant on the brane so that the brane has theindu
ed geometry of Minkowski spa
etime. This 
ondition is the main unattra
tivefeature of the RS model [22℄ and it seems unlikely as a relation between twoindependent quantities, without a physi
al basis. The RS1 model is unstableunder small deviations from this �ne tuning between the brane tension and thebulk 
osmologi
al 
onstant. The bulk metri
 is given byds2 = e�2kr
j�j���dx�dx� + r2
d�2 (1.31)Where k is the 
urvature of the AdS. Noting that p�G = r
p�g(4) and R =e2kr
�R(4), the gravitational part Sgravity in (1:29) gives the 4D Plan
k s
ale asM2P l = M3k [1� e�2kr
�℄: (1.32)In order to investigate the physi
ally observed masses of matter �elds we assumea Higgs �eld with mass mH on the hidden brane. The metri
 on the visible braneis gvis�� = e�2kr
�g�� with g = ghid�� . To get the mass we normalize the Higgs �eld asfollows. The a
tion for the Higgs �eld on the visible brane isSvis = Z d4xp�gvisfg��visD�HyD�H � �(jHj2 �m2o)2g; (1.33)Where � is an arbitrary 
oupling 
onstant. We rede�ne the Higgs �eld to absorbthe warp fa
tor i.e. H ! ekr
�H, the a
tion be
omesSvis = Z d4xp�gfg��D� eHyD� eH � �(j eHj2 � e�2kr
�m2o)2g; (1.34)Where eH = e�kr
�H. So, the observer lo
ated on the visible brane will measure theHiggs mass as m = e�kr
�mo. This is a general result; i.e. any �eld on the visible
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almass m = e�kr
�mo. For example if m0 �MP l then kr
 ' 12 leads to m � mew.In order to get an appropriate hierar
hy between the Plan
k s
ale and theele
troweak s
ale in RS1 model, the distan
e between the two branes must beset to about 50 times the bulk 
urvature s
ale. Of 
ourse, this would be moresatisfa
tory if this value 
ould be explained by a dynami
al me
hanism [37℄.The massless degree of freedom in RS model 
alled the radion. Sin
e thegeometri
al interpretation of the radion is the distan
e between the two branes,this means that the radius of the extra dimension is not �xed.There have been several attempts in the literature to generate the radion mass,as we will see later on. The simplest radion stabilization me
hanism by Goldbergerand Wise [35, 93℄ stabilized the radion without any severe �ne-tuning of the pa-rameters in the full theory. It has been applied to the two brane RS model [53, 63℄to re
over gravity 
onsistent with observation. The 
ollider signatures for the RS1model have been studied in detail in [65℄.An interesting result was found in [119℄, where the higher KK modes of thegraviton in the RS1 model 
ouple to the standard model �elds on the brane witha mu
h larger strength (ekr
�M�1P l ) than the zero mode graviton (M�1P l ). It is mu
heasier then to observe the KK ex
itations in modern 
olliders than to observe thegraviton!. The supersymmetri
 extension of the Randall Sundrum s
enario hasbeen 
onsidered in [49{52℄.1.8 DGP model (braneworlds with in�nite volume extradimensions)RS2 [2℄ is an example of an in�nite size extra-dimension brane-world (VN �R dNypG!1). Another in�nite size extra-dimension model has been suggestedin [120℄ (GRS model) in whi
h gravity is �ve dimensional both at short and largedistan
e s
ales, but it is a 
onventional 4D-gravity at intermediate length s
ales.However, this last model is 
onsidered to be in
onsistent due to the existen
e of
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es therein).In the DGP model, a 3-brane is embedded in 5D Minkowiski bulk where gravityin the bulk is taken to be very strong. The Lagrangian for the model isS = M32 Z d5xp�g(5)R(5) � M2pl2 Z d4xp�g(4)R(4) (1.35)+ Z d4xp�g(4)Lm +M3 Z�M d4xp�g(4)KIn the above a
tion, be
ause of the di�erent mass s
ales M (the 5D Plan
ks
ale) and Mpl (4D Plan
k s
ale), gravity propagates di�erently on the brane andon the bulk. When M ! 0 and MP l is �nite, the above a
tion des
ribes 4Dgravity on the brane. When MP l ! 0 and M is �nite, it des
ribes 5D gravity inthe bulk. The two di�erent pre-fa
tors in front of the bulk and the brane a
tionsgive rise to a 
hara
teristi
 length s
ale r
 = M2P l=M3, 
alled 
rossover s
ale. Atdistan
e s
ales mu
h smaller than this 
hara
teristi
 distan
e, we have the usual4D gravitational physi
s. On s
ales larger than r
 the 5D physi
s is re
overed. Thebrane Ri

i s
alar is possibly generated by one loop 
orre
tions of massive s
alarsand fermions lo
alized on the brane [see �g.1.3℄.The higher dimensional Plan
k s
ale M in this model is mu
h smaller thanin other extra dimensional models. For example, we have seen before that (seeequation (1.13))M2P �Mn+2P (4+n)Vn, with Vn the volume of the extra dimension andn the number of the extra dimensions. But for the 
ase of Vn ! 1 this relationdoesn't hold, and M 
an be mu
h smaller than the TeV s
ale, making gravity inthe bulk mu
h stronger.The higher dimensional theory is assumed to be supersymmetri
, whilst SUSYis spontaneously broken on the brane. These breaking e�e
ts 
an be lo
alized onthe brane without a�e
ting the bulk, Only when the in�nite volume gives a largeenough suppression fa
tor. The in�niteness of the extra dimension means there'sno need to stabilize the size of the extra dimension as it is neither 
ompa
ti�ednor warped.The existen
e of a 
riti
al length s
ale r
 below whi
h 4D Newtonian gravityis re
overed on the brane and above whi
h modi�ed gravity dominates looks very
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Fig. 1.3: The one-loop diagram with massive s
alars and fermions (brane matter �elds)in the loop whi
h generates the brane Ri

i s
alar (Ri

i s
alar for 4D graviton).Matter �elds indi
ated by solid line and gravitons by wave lines. verti
al shortlines on matter �elds propagator indi
ate that they are massive.interesting for 
osmologists. Several attempts have been made to get a 
onsistentextension of general relativity that modi�es gravity at 
osmologi
al distan
es whileremains in an agreement with observations at shorter distan
es (example [120℄).One of the motivations of these models is to explain something that happens atvery large s
ales, i.e. the expansion of the universe is a

elerating! This is usu-ally explained by introdu
ing a 
osmologi
al 
onstant, or a form of mysterious darkenergy with negative pressure 
alled dark energy. The DGP model allows a 
osmo-logi
al solution in whi
h a

elerated expansion of the universe is realized withoutintrodu
ing a 
osmologi
al 
onstant [121℄. Based on this model, a me
hanism thatdilutes the 
osmologi
al 
onstant was also proposed [122℄.Cosmology in the DGP model is governed by the modi�ed Friedmann equation[121℄ H2 = �24�3 � Hr
 ; (1.36)Where H is the Hubble parameter and � is the matter density on the brane. Thetwo possible 
hoi
es of sign lead to two bran
hes of 
osmologi
al evolution. Thenegative sign 
orresponds to a de
elerating expanding universe (of 
ourse in theabsen
e of 
osmologi
al 
onstant on the brane). This bran
h of solutions is 
alledthe FRW bran
h. The positive sign 
orresponds to an a

elerating expandinguniverse, this bran
h of solutions is 
alled self-a

elerating bran
h.Be
ause the DGP model is very 
ompli
ated, it is often not easy to solve the



1. Introdu
tion 26Einstein equations in the higher dimensional spa
etime. The model is 
ontroversialand its viability is in question [138, 139℄ .1.9 Extra time-like dimensionsThe extra dimensions in almost all extra dimensional models are assumed to bespa
e-like. This is be
ause several diÆ
ulties appear in the presen
e of more thanone time-like dire
tion. The main problem with time-like 
ompa
ti�ed dimensionsis the existen
e of ta
hyoni
 modes, whi
h implies violations of 
ausality. If we
onsider a �ve dimensional spa
e-time with a signature (1; 1;�1;�1;�1) and at-tempted to 
ompa
tify � (the extra time 
oordinate) on a 
ir
le of radius L, thestandard KK ex
itations be
ome ta
hyoni
 states with imaginary masses, quan-tized in units of i=L. Various issues arising in brane-world s
enarios with time-likeextra dimensions were dis
ussed in [89℄.1.10 M-theory story in a nutshellAround 1995, it was found that the �ve distin
t supersymmetri
 10-dimensionalstring theories: type I, type IIA, type IIB, SO(32) heteroti
, and E8 � E8 het-eroti
 are related to ea
h other via S, T and U duality transformations. Thesedualities express an exa
t quantum equivalen
e, whi
h means that the two dualtheories are just two di�erent des
riptions of a single theory.The S duality relates the weak 
oupling limit of one string theory with thestrong 
oupling limit of another string theory. Type I and SO(32) heteroti
 arerelated by S duality, where one of them evaluated at strong 
oupling is equivalentto the other one evaluated at weak 
oupling. The S duality is a symmetry oftype IIB string theory, and we say that it is self-dual. Be
ause of the existen
eof su
h duality, the strong 
oupling behaviour of type I, type IIB and SO(32)
an be determined by a weak 
oupling analysis. The behaviour of type IIA andE8�E8 heteroti
 at strong 
oupling is very di�erent. It is believed that they growan eleventh dimension [115℄.
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ompa
ti�
ations of di�erenttheories. If the 
ompa
t dimension is a 
ir
le, and there are two theories A and Bwith 
ompa
t dimension radius RA and RB, then they are T dual to ea
h other ifthey are equivalent and RARB = (ls)2 where ls is a fundamental length s
ale. Thisrelation means that shrinking the 
ompa
ti�ed dimension to zero in one theory
orresponds to de
ompa
ti�
ation of the dual theory. The two theories IIA andIIB are T dual and so are the two heteroti
 theories. Finally, there's a U dualitybetween two theories A and B if theory A 
ompa
ti�ed on a spa
e of large (orsmall) volume is equivalent to theory B at strong (or weak 
oupling) [116℄.The 10D string theories are 
onne
ted to the 11D supergravity as well. Carryingout a dimensional redu
tion of 11D supergravity to 10D gives type I, IIA or IIBsupergravity, whi
h are the low energy limits of I, IIA and IIB superstringsrespe
tively. In 
hapter 3 we will des
ribe the original 11D supergravity and theHorava-Witten theory in detail. Although Witten gave the name M -theory tothe unknown 11D quantum theory whose low energy e�e
tive des
ription is 11Dsupergravity, this term is used by many authors to refer to the single 11D theorythat gives the 5 superstring theories as spe
ial limits.1.11 Organization of the ThesisThe dissertation is organized as follows:Chapter One We give a review of di�erent extra-dimensional theories and illustratethe basi
 idea, advantages and disadvantages of all of them. Uni�
ation offundamental intera
tions and solution of the hierar
hy problem are the mainmotivations. In this 
ontext, we explained the meaning of the hierar
hyproblem and the moduli stabilization problem.Chapter Two We present a detailed review of the moduli stabilization problem and
lassify the attempts to atta
k it into four main me
hanisms: bulk massives
alars, va
uum energy, nonperturbative 
ontributions and non-zero 
ux 
on-tributions. We start this 
hapter with a se
tion about SUSY breaking whi
h
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essary step in any supersymmetri
 theory to rea
h a des
ription ofour SUSY-broken 4D world.Chapter Three We dis
uss the original 11D Horava-Witten theory and its redu
-tion to 5D. The study of the deeply ri
h stru
ture of the lower dimensionaltheory is an a
tive area. The useful te
hnique of moduli spa
e approximationis also illustrated and a BPS solution of a dilatoni
 brane-world is presented.We end the 
hapter by giving a summary for some possible moduli systemswe are going to use through the thesis.Chapter Four We 
al
ulate the total bulk Casimir energy by 
al
ulating the dif-feren
e between twisted and the untwisted fermion �elds. We do the 
ase of
at spa
e �rst and then the 
urved spa
e 
ase. We also prove the attra
tivityof the bulk Casimir energy.Chapter Five We start by deriving the gaugino 
ondensate potential in the frame-work of the improved heteroti
 M-theory suggested by Ian Moss in 2005. Inthe se
ond part of this 
hapter, we rea
h the gaugino 
ondensate superpo-tential by redu
ing the 11D Rarita-S
hwinger �eld to 4D. The form obtainedagrees with the standard known form of this superpotential in most theories.Chapter Six We add two terms to our gaugino 
ondensate superpotential derivedin 
hapter �ve, the 
ux term and another non-perturbative term that dependson the Calabi-Yau volumes V1 and V2. The two toy models have an AdSKKLT minimum. We then try to use the bulk va
uum energy to turn thisinto a dS minimum.Chapter Seven We perform a 5D redu
tion for the gravitino �eld. We review theBRST formalism and make use of it to remove the �I I term using a gauge�xing fun
tion. This will result in two new ghost �elds, whi
h are importantfor dealing with the stabilization topi
. The va
uum energy of the ghost �eldshas a (+ve) sign (that leads to a repulsive for
e) while for the real fermions(as we have got in 
hapter 4) it has a (-ve) sign. We end this 
hapter by
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tion 29expressing the SUSY breaking parameter � in terms of the 
ondensate usingthe twisted boundary 
onditions of the improved heteroti
 M-theory.Chapter Eight We 
al
ulate the va
uum energy of the ghost �elds obtained in
hapter 7 for the 
ase of 
at spa
e �rst and then the 
urved spa
e 
ase.Con
lusion and Further Work We summarize our results and point out variousways with whi
h one 
an pro
eed in future resear
h.



2. MODULI STABILIZATIONOne of the main theoreti
al issues in theories with extra dimensions is that ofdetermining their size. As we mentioned in the dis
ussion of the RS1 model,a solution to the hierar
hy problem has been proposed in whi
h the observableuniverse is a 3-brane at an orbifold �xed point of the non-fa
torizable geometrygiven by (1.31). The orbifold has �xed points at y = 0 and y = �r
. However,the dynami
s does not determine the value of r
, leaving it a free parameter. Thismeans there is no me
hanism to ensure the stability of the system.If we are interested only in one extra dimension, then the s
alar degree of free-dom governing the separation is 
alled radion. A solution to the so 
alled radionstabilization problem in the RS1 model has been found by adding a bulk s
alar�eld, whi
h has �ve-dimensional dynami
s, to the model [93℄. The me
hanism doesnot involve any �ne-tuning and it gives the radion a mass somewhat below the TeVs
ale. A 
omplete 
al
ulation of the radion mass has been given by Tanaka andMontes [53℄, where they obtained the TeV-s
ale. However, sin
e there is no knowl-edge about the origin and a
tual form of the stabilization potential, very little 
anbe said about radion masses without further assumptions. A phenomenologi
alguess for the radion potential has been dis
ussed in [54℄. In the literature, phe-nomenologi
al aspe
ts of the radion have been studied su
h as its de
ay modes(massive radions may de
ay into visible parti
les [54℄) [56, 57℄, its signatures atpresent and future 
olliders [58, 60℄ and its e�e
ts on ele
troweak pre
ision mea-surements [61, 62℄. The phenomenology of the radion depends on the strength ofits 
oupling to the brane �elds.Radion stabilization raises an important question in 
osmology, i.e. how do westabilize the large extra dimensions while keeping all the virtues and predi
tions
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ationary 
osmology? This has been dis
ussed in [64℄.2.1 SUSY and SUSY breakingAs it is well known, the Higgs s
alar in the standard model a
quires a non-vanishingva
uum expe
tation value and therefore breaks the ele
troweak symmetry. How-ever, the loop 
orre
tions to the masses of s
alar parti
les are quadrati
ally di-vergent and this makes the ele
troweak symmetry breaking s
ale unstable againstradiative 
orre
tions. Supersymmetri
 theories are free from quadrati
 divergen
esdue to 
an
ellations between boson and fermion loop 
orre
tions and this 
an sta-bilize the hierar
hy between the Plan
k s
ale and the ele
troweak s
ale.The uni�
ation of gauge 
ouplings is 
onsidered to be one of the most attra
tivefeatures of the supersymmetri
 extension of the standard model. If we plot thee�e
tive 
oupling 
onstants as a fun
tion of the energy s
ale, we �nd the three
ouplings in the standard model don't unify very pre
isely. However, after theaddition of SUSY i.e. within the supersymmetri
 extension of the standard model,they do approa
h a 
ommon value (see [123℄).Unfortunately, on the other hand, SUSY doesn't explain the origin of the ele
-troweak s
ale and the me
hanism of ele
troweak symmetry breaking is still mysteri-ous. The standard model explains the ele
troweak symmetry breaking by assumingthe existen
e of a s
alar �eld (Higgs �led) that gives masses to the ve
tor bosonsand fermions, but there is no answer as to why the Higgs �eld should have a non-zero va
uum expe
tation value. It is `too strong' to say that the standard modelexplains the ele
troweak s
ale.Another point is that SUSY introdu
es new parti
les whi
h are the supersym-metri
 partners of the standard model parti
les. As a requirement of parti
lephenomenology SUSY must be broken. In other words, if SUSY plays a role inlow energy physi
s, it must be broken. The resulting theory is a supersymmetri
extension of the standard model with SUSY broken a little above the ele
troweaks
ale.



2. Moduli stabilization 32SUSY breaking then is a ne
essary step in any supersymmetri
 theory to re
-on
ile SUSY with a
tual experiments. This 
ould be a
hieved by adding to theLagrangian, de�ned by the SU(3)� SU(2)� U(1) gauge symmetry and superpo-tential W , some extra terms whi
h respe
t the gauge symmetry but break super-symmetry in a spe
i�
 manner su
h that no quadrati
 terms appear. These extraterms are 
alled soft SUSY breaking terms. They may arise if SUSY is broken ina hidden high energy se
tor, but this a�e
ts the visible se
tor indire
tly. By thehidden se
tor we mean all �elds and parti
les whi
h don't dire
tly intera
t withthe standard model �elds and parti
les (gluons, photons, W+, W� and Z bosons).2.2 Me
hanisms for radion stabilization.There have been numerous studies of moduli stabilization in general and variousstabilization me
hanisms were suggested. We summarize some of these as follows:2.2.1 Introdu
ing a massive s
alar �eld to the bulk.This me
hanism has been proposed by Goldberger and Wise [93℄. In their arti
lethey introdu
ed a 5D s
alar �eld. The 5D bulk �eld appears to a 4D observeras an in�nite tower of s
alar �elds with masses mn, as in usual Kaluza Klein
ompa
ti�
ation. They started with the 5D a
tionS = 12 Z d4x Z ��� d�pG(GAB�A��B��m2�2); (2.1)where GAB is given by the RS metri
 (1.31) and m is of order of Mpl. Afterintegration by parts and performing Kaluza Klien de
omposition, this leads to the4D a
tion S = 12Xn Z d4x(���n���n �m2n�2n) (2.2)For a Randall Sundrum model, the masses mn are given by the solutions of thetrans
endental equationy�(axn)j�(xn)� j�(axn)y�(xn) = 0 (2.3)
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, mn = kaxn and xn is the n'th positive solution to (2.3). Thefun
tions j� and y� are given by the following 
ombinations of Bessel fun
tionsj�(z) = 2J�(z) + zJ 0�(z) (2.4)y�(z) = 2Y�(z) + zY 0� (z) (2.5)where the order � of the Bessel fun
tions is given by� =r4 + m2k2 (2.6)m is the mass of the 5D s
alar �eld.The introdu
tion of a s
alar �eld 
reates an attra
tive for
e between the twobranes whi
h would ensure equilibrium when the distan
e between them is pre
iselythe radius r
 required to generate the required hierar
hy. The potential has aminimum at r
 without �ne tuning of parameters. Examples of this trend are[38{48℄.The addition of s
alar �elds in the bulk is favorable from a string theory view-point be
ause in general a 
ompa
ti�
ation from 10 or 11 dimensions to 5 dimen-sions introdu
es many 5 dimensional s
alar �elds [37℄.2.2.2 Casimir energy approa
h.Instead of introdu
ing an ad-ho
 
lassi
al intera
tion between the branes (throughthe bulk s
alar �eld), one may ask whether the Casimir energy of bulk �elds may besuÆ
ient to stabilize the radion. In fa
t, before branes, Candelas and Weinberg in1984 [76℄ found that the quantum e�e
ts from matter �elds, or gravity, 
an be usedto �x the size of 
ompa
t extra dimensions. Other examples of this me
hanism are[18, 19, 30{32, 66, 68{75℄.In [30℄ it was shown that the 
ontributions of the Casimir energy of bulk gauge�elds depend logarithmi
ally on the radion. These 
ontributions stabilize the ra-dion and generate a large hierar
hy of s
ales without �ne tuning. The Casimire�e
t on the ba
kground of 
onformally 
at braneworld geometries has been in-vestigated in [74℄.



2. Moduli stabilization 34The Casimir e�e
t is a ma
ros
opi
 quantum e�e
t, i.e. it is a quantum e�e
twhi
h 
an be measured in the laboratory. It is an amazing su

ess of quantum�eld theory and 
omes from the half quanta of the harmoni
 os
illator ~!k=2. The�elds in QFT are an in�nite set of os
illators labelled by the wave number k. Then'th ex
itation of a single os
illator k 
orresponds to a state with n �eld quantaand energy Ekn = ~!k(n+ 1=2): (2.7)This means the state with no real quanta has a nonzero energyEko = ~!k2 ; (2.8)whi
h leads to an in�nite total energy of the va
uum,ECasimir = ~2Xk !k: (2.9)This divergent sum must be regularized to get a �nite expression. This resultsin the Casimir e�e
t [29℄, namely the dependen
e of the va
uum energy on theboundary 
onditions for the �eld. The famous attra
tive for
e between two ele
-tri
al 
ondu
tors in three dimensions isF (d) = �2240 ~
d4A; (2.10)where A is the area of the plates separated by a distan
e d. The ele
tri
 
harge edoes not appear in this expression, whi
h means that this is not an e�e
t of 
ouplingthe ele
tromagneti
 �eld to the material plates. Instead of that the attra
tive for
eis due to the 
hange in zero point or va
uum �eld energy (2.8). Va
uum energy isrelated to the 
on
ept of virtual parti
les 
oming from the un
ertainty prin
iple.This result was 
on�rmed and extended by many resear
hers who used di�erentapproa
hes to learn more about this for
e and related quantum phenomena [98℄.Casimir [29℄ and other authors [99℄ proposed that this for
e 
ould be regarded as aradiation pressure from the va
uum �eld. In general, this Casimir for
e arising fromva
uum radiation pressure 
an be either attra
tive or repulsive [100℄. As in [101℄,the subje
t of whether it is attra
tive or repulsive may depend on many fa
tors
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luding the spa
e-time dimensionality, the boundary 
onditions, the spa
e-timemetri
 and so on.In most pra
ti
al examples the Casimir e�e
t is 
onsidered for the ele
tromag-neti
 �eld just be
ause it is strong enough to produ
e measurable e�e
t. But, ingeneral, this e�e
t is not restri
ted to the ele
tromagneti
 �eld and 
an o

ur forany quantum �eld.In braneworld s
enarios the �elds obey boundary 
onditions on the boundarybranes and hen
e one expe
ts a Casimir-type e�e
t if we treat the �elds as quantum�elds. The for
e between the branes will vary a

ording to the separation of thebranes and the Casimir e�e
t will indu
e a potential for the radion in the dimen-sionally redu
ed theory. The Casimir e�e
t has been used for radion stabilizationin a number of models [19, 22, 30{32℄.2.2.3 Gaugino 
ondensation approa
h - nonperturbative e�e
ts.Gaugino 
ondensation is a non-perturbative e�e
t that may break supersymmetry.The la
k of understanding of the me
hanism by whi
h SUSY breaking happens isthe most important missing part of any supersymmetri
 uni�
ation theory, and
onstru
ting a realisti
 s
heme of SUSY breaking is one of the big 
hallengesto SUSY phenomenology. Consequently, we need a dynami
al me
hanism thatexplains naturally (without any ad-ho
 assumptions) the transition to the non-supersymmetri
 
ase. The dynami
al formation of Gaugino 
ondensates is a nat-ural sour
e of SUSY breaking, The original idea was suggested in Ref. [77℄.The gaugino 
ondensation me
hanism has been dis
ussed in many papers andit is believed to play a 
ru
ial role for moduli stabilization and SUSY breaking instring theory [77{82℄. The SUSY breaking s
ale 
ould then be set by the 
ondensates
ale. In the 
ontext of low energy heteroti
 M-theory, the most likely 
andidate forforming a fermion 
ondensate is the gaugino on the hidden brane, sin
e the e�e
tivegauge 
oupling on the hidden brane is larger and runs mu
h more rapidly into astrong 
oupling regime than the gauge 
oupling on the visible brane. Gaugino
ondensation gives a potential depending on the Calabi-Yau volume [128{131℄.
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ondensate potential is generally a fun
tion of several moduli �elds [82℄.The size of the moduli �elds should be determined upon the minimization of thepotential over the moduli spa
e. A typi
al gaugino 
ondensate potential is [142℄V (S; T ) � 1ST 3e�3S=4�b; (2.11)with b is the 
oeÆ
ient of the one-loop beta fun
tion of the hidden se
tor group.This potential has a runaway behaviour for both S and T where S and T aremoduli (taken here to be real). Some attempts have been made to avoid therunaway behaviour, su
h as multiple gaugino 
ondensate (or ra
etra
k) models oradding a non-perturbative 
orre
tion to K�ahler potential. In the multiple gaugino
ondensate 
ase, the superpotential is given as a sum of exponential terms whi
hgenerate a potential with a lo
al minimum.In 2003, Ka
hru, Kallosh, Linde and Trivedi (KKLT, [134℄) introdu
ed the �rstexpli
it model in whi
h all moduli are �xed within type IIB string theory. This wasdone by turning on 
uxes as a �rst step (see below), whi
h �x the 
omplex moduliand the dilaton S, and introdu
ing non-perturbative superpotentials in a se
ondstep to stabilise the K�ahler modulus T . For a detailed study of the phenomenologyof these models, see [141℄. Unfortunately, the resulting potential for T has an AdSva
uum whi
h needs to be uplifted and that means a third step is needed. We givesome details in the next se
tion.2.2.4 Flux 
ompa
ti�
ation approa
h.A partial solution to the moduli problem lies in turning on ba
kground 
uxes inthe va
uum [143{145℄. Turning on a non-vanishing 
ux warps the 
ompa
ti�
ationspa
e away from a pure Calabi-Yau threefold [94℄ and generates a superpotentialof the form [134℄ Wf = ZMG ^ 
 (2.12)where G is a three-form 
ux and 
 is the holomorphi
 three-form 
 of the Calabi-Yau threefold. In general, this 
ux superpotential is diÆ
ult to 
al
ulate ex
eptfor spe
ial 
ases. The idea here is that when the relevant moduli are stabilized, 
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onstant and then Wf 
an take any integer +ve or -ve (the di�erent 
hoi
es ofCalabi-Yau manifolds and the di�erent values of 
uxes leads to the string theorylands
ape, whi
h refers to the large number of false va
ua in string theory). As hasbeen pointed out in [146℄, the presen
e of ba
kground 
uxes in the 
ompa
ti�edspa
e (i.e. non-zero va
uum expe
tation values of 
ertain �eld strengths) leadsto �xing all 
omplex stru
ture moduli as well as the dilaton. Unfortunately, itwas found that this me
hanism doesn't apply to the modulus parametrizing thesize of the 
ompa
t manifold. The KKLT model used nonperturbative e�e
ts su
has gaugino 
ondensation on D7 branes to stabilize the remaining modulus. TheKKLT setup requires the presen
e of a number of D7=D3 branes and an anti D3brane. The major a
hievements are that all moduli are �xed and the 
osmologi
al
onstant is small and positive.The model starts with a 4D supergravity s
alar potential whi
h is given byVs =M�2P l eK �KIJDIWDJW � 3jW j2� : (2.13)Where DIW = �IW +W�IK is the K�ahler 
ovariant derivative of the superpo-tential and KIJ = (�I�JK)�1. The �rst term represents SUSY breaking and these
ond term represents the gravitino mass m3=2. After the minimization of thispotential, we 
an have SUSY broken in the va
uum (DiW 6= 0) or not.The total KKLT s
alar potential isVKKLT = Vs + Vu; (2.14)where Vu is the SUSY breaking 
ontribution required to uplift an AdS minimumto a de Sitter one. The 
orre
t K�ahler potentialK = � ln(S + S)� 3 ln(T + T ); (2.15)leaves the volume modulus T un-stabilized. To stabilize it, the following T -dependent superpotential is addedW = w0 � Ce�aT : (2.16)
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onstant indu
ed by the 
uxes and C is a model dependent 
oeÆ
ient anda is related to the beta fun
tion of gaugino 
ondensation on the D7 branes. T isstabilized with DTW = 0. The third step is the uplifting of the minimum. Theuplifting potential due to the presen
e of the anti D3 brane isVuplift = D(T + T )2 ; (2.17)where D is a tuning 
onstant allowing to obtain de Sitter va
uum. The e�e
t ofthe uplifting term is to 
hange the va
uum energy to a small positive or zero value.This is a
hieved with D � m23=2M2P l � 10�26M4P l. Sin
e the ba
kground geometryof the KKLT model is warped, the desired value of D 
an be obtained by pla
ingthe anti D3 brane at the appropriate point in the 
ompa
t spa
e.



3. THE 5D REDUCTION OF HORAVA-WITTEN THEORY: 5DHETEROTIC M-THEORYAfter the dis
overy of the duality transformations whi
h relate the �ve distin
t10-dimensional superstring theories with ea
h other and with 11-dimensional su-pergravity theory, people started to think that all of these theories arise as di�erentlimits of a mother 11-dimensional theory known as M -theory. The size of the 11thdimension in M -theory is related to the string 
oupling strength and grows as the
oupling be
omes strong [9℄. Details of M-theory are unknown, but its low energylimit is thought to be 11-dimensional supergravity.3.1 Horava-Witten theory: the strong 
oupling behaviourIn the HoravaWitten formulation of M-theory [4, 5℄, the gauge �elds of the standardmodel are 
on�ned on two 9-branes lo
ated at the end points of an S1=Z2 orbifold.The 6 extra dimensions on the branes are 
ompa
ti�ed on a very small s
ale, 
loseto the fundamental s
ale, and their e�e
t on the dynami
s is felt through moduli�elds, i.e. 5D s
alar �elds. A 5D redu
tion of the HoravaWitten theory and the
orresponding brane-world 
osmology is given in [6{8℄.We 
an only speak about the low energy limit ofM -theory, whi
h is supergrav-ity plus two boundaries. Horava and Witten showed that M-theory on the orbifoldR10�S1=Z2 is dual to the strong 
oupling limit of the 10D E8�E8 heteroti
 string.This duality says that M-theory on R10 � S1=Z2 of radius R11 is equivalent to theE8 � E8 heteroti
 string with 
oupling 
onstant gs, where [4, 113℄R11 = g2=3s lP (3.1)This allows us to say that the low energy e�e
tive theory must approa
h 11D
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Fig. 3.1: Horava-Witten set up. The orbifold radius � is 
onne
ted via the string 
ouplinggs by � = g2=3s lP . The eleventh dimension is only a

essible in the strong
oupling limit.supergravity in the strong 
oupling limit. Relation (3.1) means that when R11 issmall, the string pi
ture is a good des
ription, and when R11 is large, supergravityis a good des
ription. This is also the same relation that one �nds between theM-theory on R10 � S1 and Type IIA superstring theory, in the low energy limit.Just like in the 
ase of the Randall-Sundrummodels, the orbifold S1=Z2 is equiv-alent to an interval, and so in Horava-Witten theory the spa
e is 11D bounded bytwo 10D orbifold planes with a Z2 re
e
tion symmetry in the eleventh dimension.The eleven dimensional supergravity lives in the bulk. Horava-Witten theory isusually redu
ed to a 5D world R4 � S1=Z2 via 
ompa
ti�
ation on a Calabi-Yauspa
e with the residual e�e
ts of the CY manifold being des
ribed by their moduli.In order to 
an
el the gauge and gravitational anomalies that arise and keepthe gauge and lo
al SUSY invarian
e, an E8 gauge group is required to a
t on ea
hof the two 10-dimensional planes at the orbifold �xed points x11 = 0; ��, where �is the length s
ale of the bulk.The 11D Yang-Mills gauge 
oupling 
onstant g is �xed in terms of the 11D
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 M-theory 41gravitational 
onstant �11 via g2 = 2�(4��211)2=3 (3.2)This leads to [17℄ GN = �21116�2V � ; �G = (2��211)2=32V (3.3)Where V is the CY volume and �G is the GUT s
ale 
oupling 
onstant. Note thathere �2=911 is the 11D Plan
k s
ale [124, 125℄. For V = 1=M6G with MG = 3� 1016GeV s the GUT mass and �G = 1=24, one �nds ��2=911 =MG and 1=�� �= 4:7�1015.This explains the Plan
k s
ale-Gut s
ale hierar
hy. In other words, this gives usa natural explanation for grand uni�
ation o

urring below the 4D Plan
k s
ale,sin
e it is the 11D Plan
k s
ale that is fundamental and its mass s
ale is 'MG.So, as one probes to higher energy, our 4-dimensional world �rst goes throughan intermediate regime where the orbifold dimension be
omes visible, the universethus appearing �ve dimensional with two boundary branes. Only at energies ofthe order of string s
ale would the universe look 11-dimensional.3.2 The 11D low energy a
tionAs we have des
ribed in the previous se
tion, the low energy limit of M -theoryis 11D supergravity with two boundaries, 11D supergravity, was 
onstru
ted 30years ago [117℄ and it 
ontains three kinds of �elds (that form the supergravitymultiplet): the graviton �eld or the metri
 g, the gravitino �eld  I and a threeindex antisymmetri
 gauge �eld CIJK with a �eld strength G.We have to mention that this theory is non-renormalizable. (This 
an be showneasily by 
al
ulating the mass dimension of its a
tion. It is not equal to 4). Thisdestroyed the hopes to be a fundamental theory!
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tion of Horava-Witten theory: 5D Heteroti
 M-theory 42The usual supergravity a
tion is:SSG = 2�2 ZM11 d11xpg ��12R� 12 I�IJKDJ K � 148GIJKLGIJKL (3.4)�p2192 � I�IJKLMN N + 12 J�KL M�GJKLM� p23456�I1I2:::I11CI1I2I3GI4:::I7GI8:::I11# ;where the 
apital indi
es I; J; ::: = 0; :::; 9; 11 are used for the 11D spa
eM11. Theorbifold S1=Z2 has radius � and the 
oordinate x11 is restri
ted to x11 2 [0; ��℄.The gamma matri
es satisfy f�I ;�Jg = 2gIJ and �I:::K = �[I :::�K℄. The spinorsare Majorana, and  =  T�0.The total 11D Horava-Witten a
tion then is the supergravity one plus a Yang-Mills a
tion des
ribing the two E8 Yang-Mills theories on the two boundaries. Thebosoni
 part of the boundary a
tion isSYM = �18��2 � �4��2=3 "ZM(1)10 p�g�tr(F (1))2 � 12trR2� (3.5)� ZM(2)10 p�g�tr(F (2))2 � 12trR2�#where the Yang-Mills 
oupling 
onstant is expressed in terms of � a

ording to [5℄and the boundary trR2 terms are required by supersymmetry [12℄. The a
tion ofthe low energy limit of M-theory also in
ludes extrinsi
 
urvature terms [33, 136℄.The bulk �elds in the total a
tion are the 11D metri
 gIJ , the three-form CIJKwith bulk �eld strength GIJKL = 24�[ICJKL℄ and the gravitino  I . The two E8gauge �elds AiI , i = 1; 2 with �eld strengths F iIJ and their gaugino superpartners�i live on the 10D hypersurfa
es Mi10.3.3 The 5D redu
ed Horava-Witten theoryThe question now is: how do we redu
e the 11 dimensional theory? The existen
eof 10 dimensions in string theory is in
ompatible with the observed dimensionalityof spa
e time, whi
h is 4. Therefore we have to hide the extra 6 dimensions.



3. The 5D redu
tion of Horava-Witten theory: 5D Heteroti
 M-theory 43When we do this in the 
ase of 11D M -theory, we end up with the interesting 5Dsystem of two branes (that be
ame so popular after the RS model) but with manyinteresting new parti
les arising from the redu
tion. We 
an get the 4D e�e
tivetheory easily by integrating out the 5'th dimension. The resulting 4D e�e
tivetheory is interesting from the point of view of parti
le physi
s phenomenology [6,12, 17, 97, 127℄. In 
hapter (5) we shall des
ribe the full redu
tion to 4 dimensions.The redu
tion of the 11D a
tion to 5 dimensions has been done in Ref. [6℄.In the 11D theory, the supergravity multiplet 
onsists of the graviton, gravitinoand the �eld C. The total bulk �eld 
ontent of this 5 dimensional theory is givenby the gravity multiplet (g��; A�;  i�) together with the universal hypermultiplet(V; �; �; ��). V is the Calabi-Yau volume. After the dualization, the three-formC��
 produ
es a s
alar �eld �. The 5 dimensional e�e
tive a
tion 
an be writtenas [7℄ S5 = Sbulk + Sbound (3.6)WhereSbulk = �12�25 ZM5 p�g �R + 32 �F�� �F �� + 1p2���
Æ�A� �F�
 �FÆ� + (3.7)12V 2��V ��V + 12V 2 �(��� � i(����� � �����)� 2��(x11)A�)�2+ 2V ������� + �23V 2�And Sbound = p2�25 "ZM(1)4 p�gV �1�� ZM(2)4 p�gV �1�# (3.8)� 116��GUT 2Xi=1 ZM(i)4 p�g �V trF (i)�� F (i)�� � �trF (i)�� eF (i)��� :where eF (i)�� = 12�����F (i)�� and the expansion 
oe�e
ients �i are�i = �p2 � �4��2=3 1v2=3�i; �i = � 18�2 ZCi tr(R^R): (3.9)with the Calabi-Yau volume V de�ned asV = 1v ZXpg(6) (3.10)where g(6) is the determinant of the Calabi-Yau metri
.



3. The 5D redu
tion of Horava-Witten theory: 5D Heteroti
 M-theory 443.3.1 BPS solution for a simple system of two branesThe spe
tra of string theories often 
ontain a spe
ial 
lass of states 
alled BPSstates (Bogomol'nyi-Prasad-Sommer�eld). BPS states are stable in the sense thatthey 
annot de
ay into other states [126℄. The 
orresponding solutions are BPSsolutions, des
ribed by a set of moduli.In the previous se
tion we have seen that there are a large number of �eldsin the 5D heteroti
 M -theory a
tion. It is almost not possible to �nd a generalsolution to all the resulting equations of motions. The simplest 
ase one 
an tryis the va
uum solution obtained by setting as many �elds as we 
an to zero. Thesystem then 
ontains only gravity and a s
alar �eld. The relevant part of thea
tion then is [8, 15, 16℄S = Z d5xpg�� 12�2R� 12g��������� V(�)� : (3.11)where the potential V(�) is an exponential potential of the formV(�) = �26�2 e�2p2�� (3.12)The dilaton � is related to the Calabi-Yau volume by V = e�, � = p2��. Thissimple model is 
alled the dilatoni
 braneworld [15℄ with the s
alar �eld 
alleddilaton. The 
onstant � has units of energy. We are not 
onsidering movingbranes; our branes are stationary and we will be looking for stati
 BPS solutions.Potentials of this form arise in many theories of the fundamental intera
tionsin
luding superstring and higher dimensional theories [37℄. The a
tion (3.11) leadsto the following �eld equations(5)R�� � 12g(5)��R = �2[�;��;� � g(5)�� (12�;��;� + V(�)℄ (3.13)where the energy-momentum tensor is given by(5)T�� = �;��;� � g(5)�� (12�;��;� + V(�)) (3.14)To �nd a solution for these equations, we make an ansatzds2 = e�2����dx�dx� + dez2 (3.15)



3. The 5D redu
tion of Horava-Witten theory: 5D Heteroti
 M-theory 45� = �(ez) and � = �(ez) are ansatz. With this ansatz, the Einstein equations give[see Appendix (C.1.1)℄ 6�02 � �22 �02 + �2V(�) = 0; (3.16)3�00 + 6�02 + �2(�022 + V(�)) = 0;where the prime denotes di�erentiation with respe
t to ez. We now need boundary
onditions for the s
alars � and �. The boundary 
ondition on the dilaton �eld
an be found from the variation of the a
tion (3.8) with respe
t to � and requiringthat the surfa
e variation vanishes. This gives�0 = ��e�p2�� (3.17)The boundary 
onditions for the radion 
an be found from the jun
tion 
onditions.For 
at branes, the tra
e of the extrinsi
 
urvatureK = 4�0 at z = z1 ; K = �4�0 at z = z2 (3.18)Tra
ing jun
tion 
ondition [K�� � g��K℄ = ��26 T�� givesK = �26 T (3.19)The 4-dimensional energy-momentum tensor 
an be 
al
ulated from the boundarya
tion (3.8), and after substituting in (3.19) we get the boundary 
ondition as�0 = �3p2e�p2k� (3.20)The solution to (3.16), (3.17) and (3.20) is� = �16 ln(1�p2�ez) (3.21)It is useful to have expressions for the metri
 in di�erent 
oordinate systems.For a 
onformally 
at metri
, Substitute ba
k in (3.15)ds2 = (1�p2�ez) 13 ���dx�dx� + dez2 (3.22)= (1�p2�ez) 13 ����dx�dx� + dz2� ;
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tion of Horava-Witten theory: 5D Heteroti
 M-theory 46where dez = dz �1�p2�ez� 16 : (3.23)This gives �1�p2�ez� = � 5�3p2z� 65 (3.24)� � zz1� 65 ; z1 = 3p25� :The metri
 (3.15) 
ould then be written in a 
onformally 
at form asds2 = e�2�(���dx�dx� + dz2) (3.25)= � zz1� 25 (���dx�dx� + dz2)The dilaton for the 
onformally 
at metri
 (3.25) (also found in [15℄) is�(z) = 3p25� ln zz1 + �o (3.26)The values of z on the two branes, z1 and z2 
an be used as the moduli parametersof the ba
kground solution as we will see in the next se
tion.The linear dependen
e of Calabi-Yau volume on the extra dimension ez makesit interesting to 
ompare the metri
 (3.40) with the one used by Curio and Krause[132℄ ds2 = � VV1�� 13 ���dx�dx� + � VV1� 13 �glm(xn)dxldxm + (dx11)2� (3.27)where V = (1� S1x11)2V1 (3.28)The quadrati
 dependen
e of V on x11 is be
ause of the de�nition of x11 is di�er-ent from the de�nition for ez due to the di�erent metri
 ba
kground. S1 
an beexpressed as a power series in �2=3, i.e. S1 = S(1)1 �2=3 + S(2)1 �5=3 + : : : and only forthe �rst term we get a linear volume dependen
eV (x11) = (1� 2S(1)1 �2=3x11)V1 +O(�4=3) (3.29)This was also found before in [140℄.
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tion of Horava-Witten theory: 5D Heteroti
 M-theory 473.4 The moduli spa
e approximationThe moduli spa
e approximation is an another approa
h (di�erent from the oneused in se
tion (1.6)) used to get a 4D e�e
tive theory from the higher dimensionalone. The moduli spa
e here 
ould be de�ned as the 
olle
tion of the va
uumexpe
tation values of massless s
alar �elds [114℄. In [14℄, a 4D low energy theorywas derived from a supergravity-inspired 5D theory using this approa
h. Themoduli spa
e approximation is a good approximation only when the time-variationof the moduli �elds is small (the low-velo
ity assumption). In the 
ontext ofbraneworlds, this approximation was also used in [106, 107℄.In the framework of 5-dimensional 
ompa
ti�
ation of M-theory [8, 12℄, themoduli spa
e approximation des
ribes, through a 4-dimensional e�e
tive a
tion,a system of two branes of opposite tension embedded in a 5-dimensional warpedspa
e-time. Besides the �elds living on the positive tension brane (assumed to beour universe), the moduli asso
iated with the position of the branes in the �fthdimension a
t as two s
alar �elds thereby leading to an e�e
tive bis
alar-tensortheory of gravity [13℄. This means that for an observer in 4D, the branes arerealized as moduli massless �elds.In RS1 there's a single modulus, 
alled the radion, related to the thi
kness ofthe AdS sli
e. In dilatoni
 brane-worlds (5D heteroti
 M-theory), there are twomoduli, one related to the distan
e between the branes and the another related tovolume of the Calabi-Yau spa
e.To rea
h a 4D e�e
tive theory using this approa
h, the following assumptionsare made:1. The brane positions z1 and z2 be
ome dependent on the 4D 
oordinates,z1(x�) and z2(x�). They are then non-
onstant brane-world moduli.2. The 4D Minkowiskian 
at metri
 ��� is promoted to 4D 
urved metri
 g(4)�� .3. Terms involving more than two derivatives of the brane positions are ignored(a good approximation if the branes are slowly moving). This means we
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 M-theory 48negle
t terms like (�z1)3 in 
onstru
ting the e�e
tive four-dimensional theory.4. Finally, the massive Kaluza Klein states are not in
luded.In Ref. [14℄, the ansatz was inserted into the 5D a
tionSbulk = 12�25 ZM d5xp�g(5)(R� 34[(� )2 + U ℄): (3.30)The ba
kground metri
 is ds2 = e�2����dx�dx� + dez2 (3.31)The bulk potential energy of the s
alar �eld  is related to the boundary super-potential UB by U = ��UB� �2 � U2B (3.32)The boundary potential is an exponential fun
tion of the �eld  UB = 16(b�2 � 1)k2e2b� (3.33)Comparing this potential with the potential for the heteroti
 M -theory in (3.12),we get b� = q32 and k = �3p2 whi
h we will be using. The positions of the �rstand the se
ond brane ez1 and ez2 are denoted by �(x�) and �(x�). After rede�ningthese two moduli by e�2 = (1� 6k�) 43 (3.34)e�2 = (1� 6k�) 43 ; (3.35)In Ref. [14℄ the 4D a
tion was given in terms of e� and e� in the Jordan frame.e� = Q 
osh R (3.36)e� = Q sinh R (3.37)The �nal e�e
tive a
tion given in [14℄ has the form of multis
alar tensor theorySbulk = 116�G Z d4xp�g(4) �R� 92 (�Q)2Q2 � 32(�R)2� : (3.38)where 16�G = 8�q23�25.
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tion of Horava-Witten theory: 5D Heteroti
 M-theory 49The moduli are massless at the 
lassi
al level, but quantum 
orre
tions willadd a potential term of the form [19℄S = � Z d4xp�g(4)V (Q;R) (3.39)generated at one loop. 3.5 Possible moduli systemsIn this se
tion we list some useful moduli systems whi
h we are going to use todes
ribe the brane positions for di�erent situations.1. The moduli (ez1; ez2) for the Einstein frame metri
ds2 = V 13���dx�dx� + dez2 (3.40)where V = (1�p2�ez) is the volume of Calabi-Yau spa
e.2. The moduli (V1; V2) with V1 and V2 are the Calabi-Yau volumes at z1 and z2respe
tively.3. The moduli (z1; z2) for the 
onformally 
at metri
ds2 = � zz1� 25 (dz2 + ���dx�dx�) (3.41)This system will be used in 
hapters 4.4. The moduli (Q;R), related to the 
onformally 
at 
oordinates z1 and z2 byz1 = Q sinh(R) (3.42)z2 = Q 
osh(R) (3.43)They are 
onne
ted with V1 and V2 byQ = qV 4=31 � V 4=32 (3.44)R = tanh�1�V2V1�2=3 (3.45)
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 M-theory 505. The K�ahler moduli (S; T ) whi
h are related to V1 and V2 byS = p24 �V 2=31 + V 2=32 �3=2 (3.46)T = 34� �V 2=31 + V 2=32 �1=2 �V 2=31 � V 2=32 � (3.47)Note that when V1 � V2 � V , S � V and T � ��1 (V1 � V2), i.e. S be
omesthe volume modulus and T be
omes the radion.



4. CASIMIR ENERGY FOR TWISTED FERMION FIELDSIn this 
hapter we 
al
ulate the di�eren
e in the Casimir potential for the 
aseof twisted and untwisted fermions in heteroti
 M�theory. Twisted fermions wereintrodu
ed by Antoniadis and Quiros as an expli
it means of SUSY breaking [153℄,and they 
al
ulated the va
uum energy in the 
at spa
e limit. The Casimir po-tential for untwisted fermions in the warped heteroti
 M�theory ba
kground was
al
ulated in [15℄. The work presented in this 
hapter is original resear
h done in
ollaboration with Prof. Ian G. Moss.4.1 Introdu
tionThe identity Yp (1� p�s)�1 = 1Xn=1 1ns ; s > 1; (4.1)whi
h holds for every prime number p 6= 1 (s is a real variable) was found by Eulerwhile investigating prime numbers [102℄. Later, Riemann realized that s shouldbe extended into a 
omplex variable and denoted the resulting fun
tion by �(s).Sin
e that time it is 
alled Riemann zeta fun
tion,�(s) = 1Xn=1 1ns ; s 2 C; <(s) > 1: (4.2)The series is 
onvergent only when the real part of s, <(s), is greater than one.Studies of 
omplex analyti
 manifolds led to the de�nition of a zeta fun
tionasso
iated with a type of Lapla
ian operator [102, 103℄. The zeta fun
tion for anellipti
 operator � is de�ned by the fun
tional tra
e,��(s) = tr(��s): (4.3)
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rete set of eigenvalues �n, we 
ould write��(s) = 1Xn=1 ��sn (4.4)For 4D spa
e time, this sum only 
onverges for <(s) > 2. This restri
tion 
ouldbe removed by analyti
 
ontinuation to values of s in the 
omplex plane.The va
uum energy in a stati
 ba
kground has been 
al
ulated in many ap-pli
ations [104℄, where the eigenvalues of � in these appli
ations are of the formk2 + !2n. If we used a 
ompa
ti�
ation length L and take the limit L!1 at theend we get for n-dimensional 
ase��(s) = Ln Z dnk(2�)n 1Xm=1(k2 + !2m)�s: (4.5)This gives ��(s) = Ln2n� n2 �(s� n2 )�(s) 1Xm=0!n�2sm (4.6)The va
uum energy then will beVC = �L�n� 0(0) (4.7)The minus sign is for bosons and the plus sign is for fermions. Note that for !n /l�1, where l is the �nite length s
ale in the problem, then VC / l�n. Casimir e�e
t
al
ulations are probably the most notable example for the use of Zeta fun
tionregularization to remove divergen
ies in quantum �eld theory.4.2 Twisted and untwisted fermions in �ve dimensionsIn this 
hapter, we will 
on
entrate on the boundary 
onditions 
ommon in su-persymmetri
 theories where the 5D fermions are usually represented as two four
omponent spinors,  a, a = 1; 2, related by a symple
ti
 transformation. Thesymple
ti
 Majorana 
ondition is  aTC =  a: (4.8)
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harge 
onjugation matrix. The index a is raised with the antisym-metri
 metri
 �ab, so that  1 = � 2;  2 =  1: (4.9)These two four spinors 
an be grouped into a single eight-
omponent Majoranaspinor 	 = 0�  1 2 1A (4.10)and eight-
omponent 
 matri
es 
an be formed� = 0� 
A 00 �
A 1A : (4.11)The Majorana 
ondition on the eight-
omponent fermion is	TC = 	; (4.12)where C = 0� 0 CC 0 1A : (4.13)and 	 = 	y�0 is the usual Dira
 adjoint. Assuming that SUSY is broken onlyon the hidden brane at z2, introdu
e proje
tion operators on both branes P+ =12(1 +�5) and P� = 12(1+��5) respe
tively, where the matrix � depends on a realparameter � so that � = 0� 
os � sin �� sin � 
os � 1A : (4.14)The twisted (antiperiodi
) boundary 
onditions for twisted bulk fermions arethen P+	 = 0 on M(1) (4.15)P�	 = 0 on M(2) (4.16)where the angle � determines how mu
h the fermions are twisted. Later, we willrelate � with the gaugino 
ondensate.



4. Casimir energy for twisted fermion �elds 54

Fig. 4.1: On the visible brane at z1 we have P+ = 0 and (�zz+ 12K +m)P� = 0. Onthe hidden brane at z2 we have P� = 0 and (�zz + 12K +m)P�� = 0.The aim of this 
hapter is to 
al
ulate the total Casimir energy, whi
h is equiv-alent to the di�eren
e between the twisted and untwisted fermion 
ases. This
an be illustrated as follows. SUSY implies that the total va
uum energy of theuntwisted fermions and untwisted bosons is zero. This means thatVC( untwisted bosons) = �VC(untwisted fermions):Now, the total va
uum energy �VC of the twisted �elds is equal to�VC = VC(twisted fermions) + VC(twisted bosons):But, sin
e there are no known bosons with twisted boundary 
onditions, the va
-uum energy of the twisted bosons is just the va
uum energy of the untwistedbosons. It then follows dire
tly from this dis
ussion that the total va
uum energyis equal to �VC = VC(twisted fermions)� VC(untwisted fermions):
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 eigenfun
tions are solutions toD2	 = �	; (4.17)where D is the Dira
 operator for mass m and D2 is a se
ond order Lapla
ian,D2 = ��2 + 14R +m2+ 6�m: (4.18)A

ording to Lukas et al. [12℄, the fermion masses in redu
ed heteroti
 M�theoryare typi
ally of the form m = � �p2
V �1; (4.19)where V is the Calabi-Yau volume and the value of 
 depends on whi
h fermionis being dis
ussed. We use the 
onformally 
at metri
ds2 = e�2�(dz2 + ���dx�dx�); (4.20)then �0 = ��2z + k2 +m20 + �5m00: (4.21)The 0 index is just a reminder that the operator has been res
aled from 
urved to
at spa
e. m0 is the res
aled fermion mass m and given bym0 = e��m = e�� 
�p2V �1 = 3
5 z�1; (4.22)using (3.26) in 
hapter 3, where the Calabi-Yau volume V was expressed in termsof z. The value of 
 depends on the 
hoi
e of the fermion �eld. Later in 
hapter7 we will give a detailed example for the gravitino and other fermion �elds withdi�erent values of 
.The eigenvalue equation is then���2z + k2 + 9
225 z�2 � 35
z�2�	 = �	 (4.23)for �5	 = �	 and m2n = �� k2. Hen
e,	00 +m2n	� �9
225 � 35
� z�2	 = 0: (4.24)



4. Casimir energy for twisted fermion �elds 56Comparing with Bessel's equation [20℄W 00 + ��2 � �2 � 14z2 �W = 0; (4.25)then 	 is a Bessel fun
tion with index is given by� = �12 � 35
� : (4.26)The hypermultiplet fermion, for example, has 
 = 16 . This means � = 25 or 35 . Thesolution gives the wave fun
tion for fermions in z dire
tion as [15℄ n(z) = pz �A�J 25 (mnz) +B�Y 25 (mnz) + A+J 35 (mnz) +B+Y 35 (mnz)� (4.27)where A� and B� are 
onstant spinors (integration 
onstants). We need the eigen-value equation whi
h de�nes impli
itly the dis
rete spe
trum mn. We apply thetwisted boundary 
onditions to the wave fun
tion above.Re
alling the twisted boundary 
onditions (4.15) and (4.16), we 
an write (4.16)as CP�	� iJSP+	 = 0 (4.28)where C = 
os �2 ; S = sin �2 ; J = 0� 0 11 0 1A : (4.29)The normal or z derivative (denoted by a prime) 
ips P+ and P�, as des
ribed inRef.[15℄ C(P+	)0 � iJS(P�	)0 = 0 (4.30)Applying these four boundary 
onditions on the wave fun
tion	(z) = pz �A�J�(mnz) +B�Y�(mnz) + A+J�(mnz) +B+Y�(mnz)� (4.31)where � = 1� � and P�A� = 0, we get a system of four equations,A+J�(mnz1) +B+Y�(mnz1) = 0 (4.32)A�Y�(mnz1) +B�J�(mnz1) = 0 (4.33)A�SJ�(mnz2)+B�SY�(mnz2)+ iJA+CJ�(mnz2)+ iJB+CY�(mnz2)) = 0 (4.34)



4. Casimir energy for twisted fermion �elds 57A�CY�(mnz2)�B�CJ�(mnz2)� iJA+SY�(mnz2)+ iJB+SJ�(mnz2)) = 0 (4.35)Non-trivial solutions o

ur only when������������
J�(mnz1) Y�(mnz1) 0 00 0 Y�(mnz1) �J�(mnz1)CJ�(mnz2) CY�(mnz2) SJ�(mnz2) SY�(mnz2)�SY�(mnz2) SJ�(mnz2) CY�(mnz2) �CJ�(mnz2)

������������ = 0:
We then get the eigenvalue equation for the twisted fermions asJ�(mnz1)(CY�(mnz2)� SJ�(mnz2))� Y�(mnz1)(CJ�(mnz2)� SY�(mnz2)) = 0(4.36)Making use of the linear relationY�(x) = J�(x) 
os(��)� J��(x)sin(��) (4.37)(4.36) be
omesJ�(mnz1)(CJ��(mnz2)� SJ�(mnz2))� J��(mnz1)(CJ�(mnz2)� SJ��(mnz2)) = 0(4.38)Later we will 
onsider � = 2=5 and � = 3=5.4.3 Casimir potential in 
at spa
eFor 
at spa
e, the warping fa
tor e�2� = 1, and the metri
 isds25 = dz2 + ���dx�dx�: (4.39)The operator (4.18) in 
at spa
e with zero mass is� = �r2: (4.40)The Dira
 equation be
omes �2�z2un = (k2 �m2n)un; (4.41)
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h has the solutionun = A sin��nzl5 � +B 
os��nzl5 � : (4.42)For 
at spa
e and when the branes are very 
lose to ea
h other we 
ould 
hooserelevant masses mn su
h that mnz is very large. For untwisted fermions in 
atspa
e, sin(mnz1) 
os(mnz2)� sin(mnz2) 
os(mnz1) = 0: (4.43)This gives the fermion masses asmn = n�z1 � z2 ; n = 0; 1; 2; : : : (4.44)We now turn to the twisted bulk fermions where the eigenvalue equation is (4.38).We remember the following relation [20℄ when jzj ! 1J�(z) =r 2�z h
os(z � ��2 � �4 ) + e'zO(jz�1j)i ; (jarg zj < �): (4.45)For 
at spa
e, the eigenvalue equation 
ould now be simpli�ed tosin(mnz1) 
os��2 �mnz2�� 
os(mnz1) sin�mnz2 � �2� = 0: (4.46)This leads to two equations for fermion massesm(�)n = n� � �2z1 � z2 ; n = 0; 1; 2; ::: (4.47)m(+)n = n� + �2z1 � z2 ; n = 0; 1; 2; ::: (4.48)The � fun
tion in 
at spa
e with a volume 
 
ould now be written as�(s) = 
 Z d4k(2�)4 "Xn (m(+)2 + k2)�s +Xn (m(�)2 + k2)�s# : (4.49)This k integral diverges for s < 2 and was evaluated already in [105℄. Introdu
ingx = jk2j=m2 for both integrals we get�(s) = (4.50)Xn 
16�2 �m(+)4�2s Z 10 dx x(x + 1)�s +m(�)4�2s Z 10 dx x(x + 1)�s�= Xn 
16�2 m(+)4�2s(s� 2)(s� 1) +Xn 
16�2 m(�)4�2s(s� 2)(s� 1)
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an be analyti
ally 
ontinued to a fun
tion with poles at s = 1and s = 2. We still need to evaluate the sum, for this we use�(s; q) = 2�(1� s)(2�)(1�s) "sin �s2 1Xn=1 
os 2�nqn1�s + 
os �s2 1Xn=1 sin 2�nqn1�s # s < 0: (4.51)Then�(s) = 
4�2 1(s� 1)(s� 2) � �z1 � z2�4�2s �(5� 2s)(2�)5�2s sin�(s� 2) 1Xn=1 
osn�n5�2s : (4.52)The Casimir energy for twisted fermions, untwisted fermions and the di�eren
e arerespe
tively VC(�) = � 0(0) = 332�2 1l45 1Xn=1 
osn�n5 ; (4.53)VC(0) � � 0(0)j�=0 = 332�2 1l45 1Xn=1 1n5 ; (4.54)�VC = 332�2 1l45  1Xn=1 
osn�n5 � 1Xn=1 1n5! : (4.55)This means that in 
at spa
e the Casimir energy is de�nitely attra
tive, sin
e�V=�l5 < 0 implies FCasimir > 0 (attra
tive). We have to investigate this point aswell in 
urved spa
e. 4.4 Small � limit (small twist)Eq. (4.55) 
ould be written as�VC = 332�2 1l45  1Xn=1 1n5 (
osn� � 1)! (4.56)= � 3�(3)16�2l45 sin2(n�=2): (4.57)For � << 1, 
os n� � 1 ' �n2�2=2. We then have�VC = � 364�2 �2l45 �(3): (4.58)The small � limit here means small twist. Later we will relate � with the gaugino
ondensate on the hidden brane and the small � limit will be interpreted as a smallvalue of gaugino 
ondensate.
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urved spa
e4.5.1 A Review for the untwisted 
aseBefore we dis
uss the twisted fermions 
ase, we des
ribe the 
ase of untwistedfermions 
al
ulated in [15℄. This work was based on the method invented byGarriga et al [19, 66, 67℄ and by Fla
hi et al [32, 68℄.The zeta fun
tions we are interested in have the form,�(s) = Z d4x Z d4k(2�)4 Xn �k2 +m2n�2R ��s (4.59)Introdu
ing � = z1=z2 and de�ning �n = z2mn, then we have the impli
it equationfor �n from (4.36),Funtwisted(�n; �) = J2=5(�n�)Y2=5(�n)� J2=5(�n)Y2=5(�n�) = 0 (4.60)Performing the momentum k integrals by 
hanging to polar 
oordinates gives�(s) = �2sR Z d4x �(s� 2)(4�)2�(s)b�(2s� 4)z2s�42 (4.61)For the masses �n we have only an impli
it equation whi
h makes it 
ompli
atedto evaluate the sum over them. Fortunately, the residue theorem allows us to writethe sum over the positive zeros of F (z) as a 
ontour integral,b�(2s� 4) = ZC dzz4�2s ddz ln jF (z)j (4.62)Where the 
ontour C is any 
ontour en
loses the positive zeros of F (z) [see �gure(4.2)℄.For the impli
it eigenvalue equation (4.60) we must restri
t s to lie in the range5=2 < <(s) < 3. The 
ontribution to the integral (4:62) from the large semi 
ir
levanishes (just be
ause the fun
tion inside the 
ontour vanishes for large z), and weare left with the 
ontribution along the imaginary axis and the small semi 
ir
le.This results inb�(2s� 4) = sin(�s)� Z 1� dxx4�2s ddx ln ��P 0(x)�� + ZC� dz2�iz4�2s ddz ln jF (z)j (4.63)
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ir
le around the origin. Usingformulae for the analyti
 
ontinuation of Bessel fun
tions,P 0(x) = I�(�x)K�(x)� I�(x)K�(�x) (4.64)The leading order term for large x is denoted by P 0a ,P 0a (x) = I�(x)K�(�x): (4.65)The asymptoti
 expansion of the Bessel fun
tions for large x givesI�(x) � exp2�x; K�(x) �r �2xe�x; (4.66)so that P 0(x) � �P 0a (x) � ex(1��)2xp� : (4.67)We 
an now write the following equationZ 1� dxx4�2s ddx ln ��P 0(x)�� = (4.68)Z 1� dxx4�2s ddx ln ����P 0(x)P 0a (x) ����+ Z 1� dxx4�2s ddx ln ��P 0a (x)��We need these two integrals at s = 0. Analyti
 
ontinuation 
an provide �niteexpressions for divergent integrals. The main idea here is that the integral on theLHS 
annot be evaluated analyti
ally or numeri
ally at s = 0 as it diverges. Sowe divide it into two integrals the �rst one 
ould be evaluated numeri
ally and these
ond one 
ould be evaluated analyti
ally at s = 0. A
tually, for large x, the �rstterm on the RHS vanishes and we will have only the se
ond one, i.e.x4�2s ddx ln ��P 0(x)�� � x4�2s ddx ln ��P 0a (x)�� : (4.69)Unfortunately, one integral on the RHS still diverges and we still need to do moreto regularize it. If we 
an express I�(x) and K�(x) in terms of power series, byrede�ning them, then after substitution ba
k in the integral we will be able tosubtra
t o� the undesirable terms that leads to divergen
e.We de�ne new fun
tions �I�(x) and �K� (x) throughI�(x) = exp2�x�I�(x); K�(x) =r �2xe�x�K� (x); (4.70)
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onstants �n by ln ���I�(x)�� = 1Xn=1 �nx�n: (4.71)Note also that �I�(x) ' �K� (�x): (4.72)Expli
it expressions for the �n 
an be found in [68℄. Now regularized fun
tions 
anbe de�ned by subtra
ting o� the terms whi
h 
ause the integrand to diverge atlarge x, UI(x) = ddx ln ���I�(x)�� + 3Xn=0 n�nx�n�1 + 4�4x�5e�k=x (4.73)UK(x) = ddx ln ���K� (x)�� + 3Xn=0(�1)nn�nx�n�1 + 4�4x�5e�k=x (4.74)Now we 
an write the RHS of (4.69) using (4.73), (4.74),(4.71) and (4.72). Aftertaking the limit � = 0 we get �nally:b�(2s� 4) = �4 sin�s� �g�(s) + b�(s) + a�(s)� 2s�4 + �4k�2s�(2s)(1 + � 2s�4)	(4.75)where the fun
tions g�(s), b�(s) and a�(s) are de�ned asg�(s) = �14 Z 10 dxx4�2s ddx ln ����P o(x)P oa (x) ���� (4.76)b�(s) = �14 Z 10 dxx4�2sUI(x) (4.77)a�(s) = �14 Z 10 dxx4�2sUK(x): (4.78)At s = 0, the va
uum energy is given by� 0(0) = �18�2 �G�(�)z42 + B�z42 + A�z41 �� �48�2 � ln(z1�R)z41 + ln(z2�R)z42 � ; (4.79)where B� = b�(0), A� = a�(0), and G�(�) = g�(0). After integration by parts,G�(�) = Z 10 dxx3 ln�1� I�(�x)K�(x)K�(�x)I�(x)� ; (4.80)
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h has a negative numeri
al value. The � dependen
e in the va
uum energy(4.79) depends on the term � 0(0) � � 18�2 G�(�)z42 (4.81)whi
h has positive numeri
al value. The positive sign here 
ould be interpretedas a repulsive for
e whi
h is not useful for the stabilization problem. This justexpresses the fa
t that the untwisted bulk fermions don't produ
e the ordinaryattra
tive Casimir energy. However, the twisted bulk fermions do produ
e anattra
tive Casimir energy as we are going to �nd in the next se
tion.4.5.2 The 
ase of twisted fermionsIn this se
tion we would like to 
al
ulate the di�eren
e between the twisted anduntwisted bulk fermions 
ases. In other words, we require the di�eren
e betweenthe two � fun
tions b� 0twisted(0)� b� 0untwisted(0) (4.82)When 
al
ulating the di�eren
e (4.82), the 
ontribution to the integral (4.63) fromthe small semi 
ir
le in �gure (4.2) vanishes, as well as that from the large semi
ir
le, and then we are left with the 
ontribution along the imaginary axis only.Eq. (4.38) leads to two twisted fermion masses m+n and m�n whi
h, unfortu-nately, are given impli
itly. We denote the twisted version of Eq. (4.64) withpositive sign by P �+ and the one with negative sign by P ��. Sin
e P �� is just the
omplex 
onjugate P �+, we will get for the integral (4.62)Z 1� dxx4�2s ddx(ln ��P �+(x)��+ ln ��P ��(x)��) = (4.83)Z 1� dxx4�2s ddx ln ���P �+(x)P �+(x)��� = 2 Z 1� dxx4�2s ddx ln ��P �+(x)��From now on, we drop the (+) and the (�) and 
ontinue with P �. The zetafun
tion for the twisted 
ase has the form,b�(2s� 4) = sin(�s)�  Z 10 dxx4�2s ddx ln P �P �P �aP �a !+ Z 10 dxx4�2s ddx ln�P �aP �a�!(4.84)
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Fig. 4.2: Contour used for the 
ontour integral in (4.62)P �(x) denotes P (x) at � 6= 0 and is de�ned from (4.38) asP �(x) = C (I�(�x)K�(x)� I�(x)K�(�x)) (4.85)� iS(I�(�x)K�(x) + I�(x)K�(�x) + (2=�) sin(��)K�(�x)K�(x))P �a (x) is the most divergent part, de�ned asP �a (x) = I�(�x) (CK�(x)� iSK�(x)) : (4.86)The �rst integral in (4.84) is 
onvergent, but the se
ond one is divergent. Toregularize it we follow the same pro
edure used for the untwisted 
ase 
al
ulationswith a small di�eren
e due to the non-zero value of �. We setI�(x) = exp2�x�I�(x); K�(x) =r �2xe�x�K� (x); (4.87)where ln�K� (x) = ��K� x�n; ��n = C�Kn (�)� iS�Kn (�): (4.88)
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tionsU �K(x) = ddx ln �C�K� � iS�K� �+ 3Xn=1 n��nx�n�1 + 4��4x�5e�k=x (4.89)and UI(x) = ddx ln�I� + 3Xn=1 n�In + 4�I4x�5e�k=x (4.90)we get �nally,b�(2s� 4) = �4 sin(�s)� �g�(S) + b�� 2s�4 + a��(s) + k�2S�(2s)(�(�) + 2�4� 2s�4))�(4.91)where g�(s) = �18 Z 10 dx x4�2s ddx ln P �P �P �aP �a (4.92)b�(s) = �18 Z 10 dx x4�2s2UI(x)a��(s) = �18 Z 10 dx x4�2s(U �K + U �K)�(�) = ��4 + ��4 = 2�4C; C = 
os �The va
uum energy of the twisted fermions is then� 0(0; x) = �18�2 �g�(0)z42 + b�(0)z41 + a��(0)z42 �� �44�2 ln(�Rz2)z42 � �44�2 ln(�Rz1)z41 : (4.93)4.6 The 5D e�e
tive potentialWe now subtra
t the � = 0 
ase to 
al
ulate the di�eren
e and get the 5D e�e
tivepotential. Assuming that the SUSY breaking happens on the hidden brane lo
atedat z2 we 
an ignore the z1 terms and get the 5D e�e
tive potential as�VC = � 18�2 ��G�(�)z42 + B(�)z42 �� �4(C � 1)4�2 ln(�Rz2)z42 (4.94)Where �G�(�) = �18 Z 10 x4 ddx  ln P �P �P �aP �a � ln�P 0P 0a �2! (4.95)B(�) = �18 Z 10 x4 ddx ��U �K + U �K�� 2UI(x)� (4.96)
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e fun
tion �G�(�) 
ould now be written as (after integration byparts), �G��(�) = Z 10 dxx3 ln ����P �(x)P 0a (x)P �aP 0(x) ���� (4.97)whi
h has positive numeri
al value. The dependen
e on � is 
ontained in the term� 0(0) � � 18�2 �G�(�)z42 : (4.98)4.6.1 Numeri
al evaluation of �G�(�)At this point we would like to investigate the value of the integral (4.97) at di�erentvalues of � and �. The Bessel fun
tion orders � and � are 35 and 25 respe
tively.Clearly for the supersymmetri
 
ase (� = 0), the Casimir energy is zero and theintegral vanishes.For the non-supersymmetri
 
ase as � approa
hes 1, the two branes are gettingmore 
loser and the Casimir energy be
omes stronger. For example, for � =1:2 and � = � the value of the integral (evaluated numeri
ally using Maple) is466.0. For the same � and � = 1:8 the value is 1.79. For � = � and � = 1:01,�G�(1:01) = 7:52� 107. As one approa
hes supersymmetry, i.e. as � approa
heszero, the Casimir energy is getting lower and lower. In general, for � = n� and nis an integer, the Casimir energy is zero for even n and has the same value for oddn. The integral is large (and positive) for small brane separation means that theva
uum energy is large (and negative)and vise versa.The fun
tion �G��(�) is a part of the Casimir potential (4.94) that be
omesdominant at small brane separation (� ! 1), but it doesn't represent all of thephysi
s. To do that we have to take into 
onsideration the fun
tions A� and B�.The integrand (4.97) is plotted as a fun
tion of x for several values of � in�gures 4.3(a) - 4.3(f) to show that the integral we have got is well-behaved. Valuesof G�(�) and �G�(�) have been tabulated in table 4.1 for � = �; �=2 to show thee�e
t of the 
hange of the value of the SUSY parameter �. For the twisted 
ase,Fig. 4.4(a) shows that the fun
tion G�(�) de
reases as � de
reases and as theseparation between the two branes in
reases. For the di�eren
e 
ase, Fig. 4.4(b)
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tion �G�(�) de
reases as � de
reases and as the separationbetween the two branes in
reases. Figures 4.6 and 4.5 shows a 3D plot of the totalCasimir energy, approximated by (4.98), in both (z2; �) and (z1; z2) dire
tions. Thepotential goes to �1, it has no minimum. 2D plots of (4.98) in z2 dire
tion fordi�erent values of � has been shown in Fig.4.7.4.7 summaryWe have 
al
ulated the total bulk va
uum energy due to twisted fermion �elds,whi
h is the di�eren
e between the twisted and the untwisted 
ase, for 
at and
urved spa
e. The total 5D e�e
tive potential doesn't have a minimum and otherbulk e�e
ts need to be added to stabilize the radion.
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G�(�) �G�(�)� > 1 G�(�) G�=2(�) �G�(�) �G�=2(�)1.1 3600.725813 110.3501650 7489.713486 3999.3752671.15 707.1716823 21.41545529 1475.631231 789.88988631.2 222.6566867 6.6841251 465.9992946 250.02972531.25 90.7699894 2.719147221 190.4921799 102.38686501.3 43.61064998 1.315347407 91.70708754 49.427579981.35 23.44124127 0.7204989719 49.40907749 26.688289011.4 13.69962736 0.4342920396 28.91960127 15.653896011.45 8.530711681 0.2822211976 18.02691424 9.7746649171.5 5.585122742 0.1949612382 11.80896505 6.4194180041.55 3.809722071 0.1415799066 8.051331216 4.3847948381.6 2.687671769 0.1071208312 5.680682348 3.0995813831.65 1.950597487 0.08381729896 4.116361023 2.2504088301.7 1.450282869 0.06693527726 3.058630712 1.6751750901.75 1.101264244 0.05496962259 2.31789662 1.2718152911.8 0.8516970012 0.04591905370 1.788883642 0.98350053561.85 0.6692604758 0.03938748791 1.402156975 0.77207057721.9 0.5334835670 0.03356146523 1.114560720 0.61491695121.95 0.4306798501 0.02947137658 0.8967776417 0.4954818484Tab. 4.1: The numeri
al values of G�(�) and �G�(�) for di�erent values of � . all valueshave been evaluated with � = 35 and � = 25 .
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5. GAUGINO CONDENSATION IN AN IMPROVEDHETEROTIC M -THEORYThis 
hapter on gaugino 
ondensation 
ontains some new results for the e�e
tivepotential and the superpotential whi
h arise from gaugino 
ondensation. The workin this 
hapter was done in 
ollaboration with Prof. i.G. Moss.5.1 Improved heteroti
 M -theory and its new boundary 
onditionsWe start with a qui
k review of the improved heteroti
 M -theory [33, 136, 137℄whi
h we shall use as our framework. As we have seen in se
tion (3.2), the orig-inal formulation of Horava and Witten of Heteroti
 M�theory has the followingstru
ture (see eq. 3.4 and 3.5) S = SSG + SYM (5.1)SSG 
ontains a fa
tor ��211 , Whilst the matter a
tion SYM has a fa
tor ���211 , where� is a s
aling parameter. Anomaly 
an
ellation requires that � = O ��2=3� whi
hmeans that SYM is of order �2=311 
ompared to SSG. At order �211 singular termsdepending on the square of the delta-fun
tion start to arise. This problem has beenover
ome [33, 136, 137℄ by modifying the boundary 
onditions on the gravitino andthe supergravity 3-form, so that now an a
tion 
an be 
onstru
ted whi
h is non-singular and supersymmetri
 to higher orders.The theory is formulated on a manifold M with a boundary 
onsisting oftwo dis
onne
ted 
omponents M1 and M2 with identi
al topology. The eleven-dimensional part of the a
tion is the 
onventional a
tion for supergravity, withmetri
 gIJ , gravitino  I and antisymmetri
 tensor CIJK [117℄. The original for-



5. Gaugino 
ondensation in an improved heteroti
 M -theory 74mulation of Horava and Witten 
ontained an extra `���	' term, but it is notpresent in the new version.The spe
i�
ation of the theory is 
ompleted by boundary 
onditions. For thetangential anti-symmetri
 tensor 
omponents,CABC = �p212 � �!YABC � 12!LABC�� p248 � tr���ABC�: (5.2)where !Y and !L are the Yang-Mills and Lorentz Chern-Simons forms. Theseboundary 
onditions repla
e the modi�ed Bian
hi identity in the old formulation(see for example [12℄). For the gravitino,�AB (P� + ��P�)	A = ��JY A � 12JLA� ; (5.3)where P� are 
hiral proje
tors using the outward-going normals and� = 196tr(���ABC�)�ABC : (5.4)JY is the Yang-Mills super
urrent and JL is a gravitino analogue of the Yang-Mills super
urrent. The resulting theory is supersymmetri
 to all orders in theparameter �. The gauge, gravity and supergravity anomalies vanish if� = 14� ��114� �2=3 : (5.5)A useful relation for the 
ondensate on the boundary 
an be obtained by re
all-ing that in heteroti
M -theory, we 
an relate the spin 
onne
tion to the Yang-Mills�eld so that !Y = !L = ! on the hidden brane, and !Y = 0 on the visible brane.Then, CABC = p224 �!ABC � p248 ����ABC� on �M1 (5.6)CABC = p224 �!ABC + p248 ����ABC� on �M2 (5.7)Where the term ����� is non-vanishing for the gaugino 
ondensate.5.2 Ba
kground metri
 and 
uxThe 11D ba
kground metri
 ansatz is based on the produ
t M �S1=Z2�X whereX is a Calabi-Yau spa
e. In this metri
 there are two 
opies of the 4-dimensional
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ondensation in an improved heteroti
 M -theory 75manifold M , M1 and M2, separated by a distan
e l11. The value for the inverseradius of the Calabi-Yau spa
e is supposed to be of order the Grand Uni�
ations
ale 1016GeV and the inverse separation would be of order 1014 GeV. The expli
itform of the metri
 isds2 = V �2=3 �dez2 + V 1=3���dx�dx��+ V 1=3egABdxAdxB (5.8)Where ��� is the Minkowiski metri
 onM , gAB is the Calabi-Yaumetri
 onX whi
his independent of ez and V � V (z), z1 � z � z2. The tilde denotes quantities inEinstein frame.This ba
kground metri
 ansatz is similar to one used by Curio and Krause [132℄,ex
ept that we use a di�erent 
oordinate z in the S1=Z2 dire
tion. For simpli
ity,we will restri
t the 
lass of Calabi-Yau spa
es to those with only one harmoni
(1; 1) form (see appendix C.2.1). To allow for gravity in 4D, the metri
 is repla
edby ds2 = V �2=3 �dez2 + V 1=3Q�2eg��dx�dx��+ V 1=3egABdxAdxB (5.9)Where the fa
tor Q�2 is required to put the metri
 eg�� into the Einstein frame andis given by (3.44).The volume fun
tion V = (1 � 6kez) (see 3.40) is the exa
t solution of the zz
omponent of the Einstein equations 1. For the �eld strength G we use the ansatzGab
d = 13� (eg

egbd � egadegb
) (5.10)This ansatz solves the �eld equation r:G = 0.5.2.1 CondensatesThe ansatz for a gaugino 
ondensate on the boundary Mi is [129℄�i�ab
�i = �ie"ab
 (5.11)1 Our solution for V is equivalent to the one used by Lukas et al. in Ref. [12℄ when adaptedto our 
oordinate system. They express the solution as V = b0H3. It is also equivalent tothe ba
kground used by Curio and Krause in Ref. [132℄, V = (1 � S1x11)2, when their S1 =�V �2=31 =p2. See 
hapter 3
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ondensation in an improved heteroti
 M -theory 76This is the standard expression for 
ovariantly 
onstant 
ondensates [79, 112℄.�i is the spinor represents the gaugino �eld, �i is the 
ondensation s
ale and de-pends only on the modulus Vi, e"ab
 is a 
ovariantly 
onstant three-form on theCalabi-Yau spa
e (on any given Calabi-Yau three-fold X, we have a 
ovariantly
onstant holomorphi
 three-form "ab
 and its anti-holomorphi
 
omplex 
onjugate"ab
). The gaugino 
ondensate appears in the boundary 
onditions for the anti-symmetri
 tensor �eld and indu
es non-vanishing 
omponents Cab
.Let Cab
 = 16�e"ab
: (5.12)where � is a 
omplex s
alar �eld. The �eld strength asso
iated with these tensor
omponents is Gab
z = �(�z�)e"ab
: (5.13)The boundary 
onditions for the Cab
 �eld from Eqs. (5.6) and (5.7) isCab
 = 8>>><>>>: p248 ��ie"ab
 on z20 on z1 (5.14)and the �eld equation is r:G = 0 (5.15)Equation (5.15) 
ould be written expli
itly as�z �gaagbbg

g55Gab
5� = 0 (5.16)where the �fth dimension z is real and �xed. This implies that Gab
z / V 1=3 whi
hmeans Cab
 / V 4=3, we then haveCab
 = Ae"ab
V 4=3 +Be"ab
 (5.17)where A and B are 
onstants that 
ould be determined easily using the two bound-ary 
onditions (5.14). We getA = p248 �� 1V 4=31 � V 4=32 (5.18)
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ondensation in an improved heteroti
 M -theory 77B = �p248 �� V1V 4=31 � V 4=32 (5.19)So Cab
 = p248 ��e"ab
V 4=3 � V 4=31Q2 (5.20)where Q2 = V 4=31 � V 4=32 . For the �eld strength, we getGab
z = p2��k12Q2 e"ab
V 1=3: (5.21)The non-zero 
ux depends on V1 and V2 through the Q term and through �, whi
hdepends on the volume fa
tors V1 and V2 in the gaugino 
ouplings.We now 
onsider the 11D a
tionS = � 12�211 ZM11 G2qjg(11)jd11x (5.22)The relation between the 11D and the 4D metri
 follows dire
tly from (5.9) asqjg(11)j =qjeg(4)jQ�4 (5.23)The a
tion (5.22) then 
ould be written in 5D asS = � 12�2 ZM5 �2k2�236Q8 V 1=3(z)qjeg(4)jdx4dz (5.24)After integrating out the extra dimension we get the 4D a
tion asS = � 12�2 ZM4 �2k2�248Q6 qjeg(4)jdx4 (5.25)So, the G2 term in the a
tion (5.22) redu
es to a potential VG in the Einsteinframe, where VG = ��2k2�248Q6 (5.26)In se
tion 5.2.4 we shall attempt to �nd the potential by a better method, usinga redu
tion of the fermion se
tor.5.2.2 Condensate s
aleWe now try to evaluate the 
ondensate s
ale �. After the redu
tion to 5D, theYang-Mills a
tion be
omes [12℄SYM =Xi 14g2 ZM4 ViF 2dV (5.27)
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 M -theory 78where F is the Yang-Mills �eld strength and g is the Yang-Mills 
oupling if V = 1.If V 6= 1, we 
an absorb it into g su
h that V2=g2 = 1=g2eff . The 
oupling geff
hanges with energy. Assume the 
ondensates happen at a s
ale � =M3, whereMis the mass s
ale at whi
h geff(M) � 1. From the renormalization group equation,we have dgeffdt = �(geff) � �1g3eff : (5.28)This gives g�2eff = �1t+ 
onst:; (5.29)where t = ln(E=�) and � is the renormalization s
ale. We have theng�2eff � g�2(0)eff = �1 ln(E=�): (5.30)If � = E, then geff = g(0)eff . If E =M then (5.30) leads dire
tly toM = �e�(�1g2)�1V2 : (5.31)The 
ondensate s
ale is just M3, hen
e� = �3e�3(�1g2)�1V2 : (5.32)5.2.3 SuperpotentialSin
e any supergravity Lagrangian is expe
ted to 
ontain the Einstein-Hilbert La-grangian and the Rarita-S
hwinger Lagrangian for the gravitino �eld, we try toredu
e the 11D Rarita-S
hwinger LagrangianLRS = 12�211 � I�IJKDJ K� : (5.33)In 
hapter 7, we shall see that this 
an be re-written in a form that is more suitablefor the redu
tion asLRS = 12�211�I  6r � p296 GPQRS�PQRS!�I: (5.34)We use the notation I; P; : : : for eleven{dimensional indi
es, �; �; : : : for four-dimensional ones, and a; b; : : : for Calabi-Yau spa
e. �I = �+I (
0 
 11). The11-dimensional gamma matri
es satisfy f�M ;�Ng = 2gMN .
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 M -theory 795.2.4 E�e
tive superpotential from the 11D theory.When redu
ing on a metri
 with no warp fa
tor, the higher dimensional gammamatri
es are de
omposed as�� = 
� 
 11; �a = 
5 
 
a and �11 = 
5 
 
7 (5.35)Where 
5 = i
1
2
3
4 is the 4D 
hirality operator.It is useful to 
onsider a parti
ular representation for the Dira
 matri
es 
�. Auseful 
hoi
e of these matri
es is given by Majorana representation in whi
h the 
matri
es are either purely real 
� or purely imaginary (
5 and 
a). The Majorana
ondition on the spinor then is just a reality 
onstraint.When redu
ing on a warped metri
 of the general formds2 = e2bds2(4) + e2fds2(6) + e2k(dx11)2; (5.36)in order to retain f
�; 
�g = 2g(4)�� et
., (5.35) be
omes�� = eb
� 
 11; �a = 
5 
 ef
a and �11 = 
5 
 ek
7 (5.37)So, for the metri
 (5.9), we have�� = V �1=6Q�1
� 
 11; �a = 
5 
 V 1=6
a and �11 = 
5 
 V �1=3
7: (5.38)For the raised indi
es,�� = V 1=6Q
� 
 11; �a = 
5 
 V �1=6
a and �11 = 
5 
 V 1=3
7: (5.39)See also appendix (C.3).To perform the dimensional redu
tion we need the metri
 ansatz given in (5.9)and a spinor ansatz for the embedding of the 4D gravitino  � in the 11D one ��with the help of the internal spinors (the 6D Calabi-Yau spinors in appendix B.4).This 
ould be written in general as�� = �+� 
 u+ + 
5��� 
 u� (5.40)
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 M -theory 80Where �� � ��(x� ; z) and u� are 
ovariantly 
onstant 6D spinors. A spe
i�
 
hoi
eof the fun
tion ��� gives�� = a �(x�)V �1=6 
 u+ + a� ��(x�)V �1=6 
 u� (5.41)Where a is a 
omplex number used for normalization. Then,�� = (a � � � �+ a� �� : : : )yQ2V 1=3 (
0 
 11) eg�� (5.42)Now, the 
ovariant derivative transforms to the Einstein frame as6r ! QV 1=6 (
� 
 11) er; (5.43)and we have �zab
Gzab
 = 4V 1=6(11
 
7)
ab
Gzab
 (5.44)= 4V 1=6(11
 
7)
ab
p2��36Q2 e"ab
V 1=3;where �zab
 = (
5 
 
7) (
5 
 
a) (
5 
 
b) (
5 
 

) (5.45)= (11
 
7
ab
):Inserting all that into (5.33) with the help of the relations (B.15) appendix (B) Weget the 5D LagrangianL(5)RS = a2 � V 1=6�V 4=31 � V 4=32 �1=2 6r� � + i��a2V 1=63�V 4=31 � V 4=32 �2 � (5.46)� � �� +  �� ��+ a2V 1=6�V 4=31 � V 4=32 �1=2 �� 6r� ��Integrating out the extra dimension, we get the 4D LagrangianLRS = 6a27 �V 7=61 � V 7=62 ��V 4=31 � V 4=32 �1=2 � � 6r� � +  �� 6r� ��� (5.47)+ i��a23 �V 7=61 � V 7=62 ��V 4=31 � V 4=32 �2 � � �� +  �� ��
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 M -theory 81To get the superpotential we just 
ompare (5.47) with the general form of the RSLagrangian in 4D LRS = 12�2P eK=2 � � 6r � +W � �� (5.48)For the 
orre
t normalization of the kineti
 term we have to pi
k a2 su
h thata2 = 76 �V 4=31 � V 4=32 �1=2�V 7=61 � V 7=62 � (5.49)From the mass term, using (5:32) for �,W = i�3 �3e�3(�1g2)�1V2 (5.50)This �nal superpotential 
ontains no surprises as it takes the standard formexpe
ted for a gaugino 
ondensate in any supersymmetri
 theory [135℄. It be
omes
lear also that the 
ondensate superpotential 
ontains no 
orre
tions due to thewarping of the metri
 in higher dimensions.Most dis
ussions of the 
ondensate indu
ed superpotential do not take thewarping of the metri
 into a

ount. We have found that the warping of the metri
ba
kground has had no e�e
t on the superpotential as none of the three warpingfa
tors of the metri
 appears in (5.50). Krause [133℄ also �nds that the warpingdoes not a�e
t the 
ondensate 
ontribution to the superpotential, but he 
laims awarping dependen
e in the 
ux term. In [148℄, Anguelova and Zoubos extra
tedthe 
ux-indu
ed superpotential from the gravitino mass term of the 4D e�e
tivetheory after the dimensional redu
tion of the fermioni
 terms in the 11D a
tion.5.3 summaryWe have 
al
ulated the Gaugino 
ondensate potential in the framework of theimproved heteroti
M�theory after introdu
ing a metri
 ansatz and a 
ux ansatz.The 
ondensate s
ale has been evaluated using the renormalization group equation.We then derived the gaugino 
ondensate superpotential from the redu
tion of the11D Rarita-S
hwinger Lagrangian. We then start in the next 
hapter to make useof this superpotential to 
al
ulate the potential in two models.



6. KKLT ADS VACUUM AND CASIMIR ENERGY.Moduli stabilisation 
an be a
hieved by following a similar pattern to moduli sta-bilisation in type IIB string theory [134℄. The �rst stage involves �nding a suitablesuperpotential whi
h �xes the moduli but leads to an Anti-de Sitter va
uum. Thenegative energy of the va
uum state is then raised by adding a non-supersymmetri

ontribution to the energy. The potential is given in terms of the K�ahler potentialK and the superpotential W ,V = ��24 eK �KijDiWDjW � 3 jW j2� ; (6.1)With DiW = e�K�Vi �eKW � : (6.2)Minima of the potential o

ur when DiW = 0. If these minima exist, theirlo
ation is �xed under supersymmetry transformations. However, the boundary
onditions at the potential minima are not generally preserved by supersymmetryand the theory at a supersymmetri
 minimum is not ne
essarily supersymmetri
.We shall examine the supersymmetri
 minima of the potential for two toy models
on
entrating on general features rather than obtaining a pre
ise �t with parti
lephenomenology. 6.1 Model A: Double-
ondensateFollowing the type IIB route, we assume the existen
e of a 
ux term Wf in thesuperpotential whi
h stabilises the (2; 1) moduli, and then remains largely inertwhilst the other moduli are stabilised.The gauge 
oupling on the hidden brane runs to large values at moderateenergies and this is usually taken to be indi
ative of the formation of a gaugino
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ondensate. Lo
al supersymmetry restri
ts the form of this 
ondensate to [135℄�2 = B2V �1=2CY e��V2 (6.3)where B2 is a 
onstant and � is related to the renormalization group �-fun
tionby � = 6�b0�GUT ; �(g) = � b016�2g3 + : : : : (6.4)The gauge 
oupling on the visible brane is supposed to run to large values only atlow energies to solve the hierar
hy problem, and a low energy 
ondensate wouldhave a negligible e�e
t on moduli stabilisation. There might, however, be a sep-arate gauge 
oupling from part of the E6 symmetry on the visible brane whi
hbe
omes large at moderate energies with a signi�
ant 
ondensate term. The re-quirement for this to happen is a large �-fun
tion, possibly arising from 
hargeds
alar �eld 
ontributions. The total superpotential for su
h a model isW = be��V2 + 
e��V1 � d; (6.5)where d = �Wf and b, 
 are 
onstants, whi
h we assume to be real but notne
essarily positive.The �elds at the minimum of the potential 
ould be 
omplex, and we thereforeseparate real and imaginary parts,Vi = ui + ivi: (6.6)With the K�ahler potentialK = �3 ln �(V1 + V1)4=3 � (V2 + V2)4=3� (6.7)The super derivatives of the potential areDV1W = �
�e��V1 � 2�u4=31 � u4=32 ��1 u1=31 W; (6.8)DV2W = �b�e��V2 � 2�u4=31 + u4=32 ��1 u1=32 W: (6.9)Solving for the values of V1 and V2 at the minimum of the potential is not veryinformative. Instead, we express the parameters b, 
 and d in terms of the values
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mu*V1=1                 Fig. 6.1: The values of the volume moduli V1 and V2 at the minimum of the potentialwith two 
ondensates and �=� = 1:2. Here X = b=d and Y = 
=d. The leftpanel shows values of V1 and the right panel shows values of V2.of V1 and V2 at the supersymmetri
 minimum by solving (6.5), (6.8) and (6.9),bd = �2u1=32 e�V2��1u4=31 � u4=32 � 2��1u1=32 + 2��1u1=31 ; (6.10)
d = 2u1=31 e�V1��1u4=31 � u4=32 � 2��1u1=32 + 2��1u1=31 : (6.11)We 
on
lude from these expressions that, if b=d and 
=d are real, then V1 and V2are both real. (If b and 
 are not real, then it be
omes diÆ
ult to satisfy theba
kground �eld equations on the antisymmetri
 tensor �eld with the resulting
omplex boundary 
onditions).Supersymmetri
 minima exist for b < 0 and 
 > 0. The values of V1 and V2 atthe minima are shown in Fig. 6.1. At the minima of the potential, the 
ux termjWf j is larger than the gauge 
ondensate terms. This is 
onsistent with the ideathat we 
onsider the stabilisation of the (2; 1) moduli independently of the othermoduli.
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24 � 2(2V1)2=3 �(2V1)4=3 + 3(2V2)4=3��(6.12)e�2�V1 +14(2V2)2=3 �3(2V1)4=3 + (2V2)4=3� (��be��V2)2�8
��V1V2e�(�V1+�V2) + 4W (
�e��V1 + be��V2) +W 2� :This potential has AdS minimum and is plotted in �gure (6:2) for the followingvalues of the parametrs: 
=�=�=5 and b=d=1.6.2 Model B: Other non-perturbative termsIf there are no high energy 
ondensates on the visible brane, then we 
an repla
e the
ondensate with another non-perturbative e�e
t. The usual 
andidate for this is amembrane whi
h stret
hes between the two boundaries. The area of the membrane/ V1 � V2 and the type of 
ontribution this gives to the superpotential isWnp = 
e��(V1�V2): (6.13)
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uum and Casimir energy. 86The total superpotential for this model is given byW = be��V2 + 
e��(V1�V2) � d (6.14)= Wg +Wnp +Wf : (6.15)Where Wg is the 
ondensate potential on the 'hidden' brane.The supergravity KKLT potential with AdS minimum isVKKLT2 = �(2V1)4=3 � (2V2)4=3��3 �14
2� 2(2V1)2=3 �(2V1)4=3 + 3(2V2)4=3�� (6.16)e�2�(V1�V2) +14(2V2)2=3 �3(2V1)4=3 + (2V2)4=3� (��be��V2 � 
�e��(V1�V2))2�8
�V1V2e��(V1�V2) (��be��V2 � 
�e��(V1�V2))+4W (
�V1e��(V1�V2) + V2(�be��V2 + 
�e��(V1�V2))) +W 2� :This potential has AdS minimum and is plotted in �gure 6.3(
), 6.3(d) for
=�=5, � = 0:5 and b=d=1.Re
alling that for a supersymmetri
 minimum, �KV = 0 if DiW = 0. whereDi is the K�ahler 
ovariant derivative, the value of the minimum of the potentialenergy V = eK(KijDiWDjW � 3 jW j2) (6.17)is Vmin: = �3eK jW j2 (6.18)The system of equations DiW = 0 (6.19)should have a solution in the 
orre
t phenomenologi
al range for V1 and V2. Thesuperderivatives areDV1W = �
�e��(V1�V2) � 2u1=31 �u4=31 � u4=32 ��1W; (6.20)DV2W = �b�e��V2 + 
�e��(V1�V2) + 2u1=32 �u4=31 � u4=32 ��1W: (6.21)This time the parameters b, 
 and d given in terms of the values of V1 and V2 at
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on
lude from these expressions that V1 and V2 are both real.The values of the moduli at the supersymmetri
 minima of the potential areshown in Fig.(6.4), where we have taken � = �. Other values of � give a qualita-tively similar �gure.Adding an extra term to the KKLT potential (6.16) 
an uplift the AdS mini-mum to a stable dS one. In the next 
hapter, we try the ghost va
uum energy asthis extra potential.
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uum and Casimir energy. 896.3 Uplifting the KKLT dS va
uumIn this se
tion we try to see how mu
h the dS minimum, we have got in the previousse
tion, 
an be raised via Casimir energy. Re
all the 5D metri
 (5.8),ds2 = V 1=3Q�2eg��dx�dx� + dez2; V = 1� �p2ez (6.24)The warping fa
tor is equal to one for 
at spa
e, but when the spa
e is approxi-mately 
at we have the 5D distan
e between the branesl5 = 1�p2(V1 � V2) (6.25)So, when V1 � V2, the bulk Casimir energy is (re
all Eq. (4.58))�VC(V1; V2) = C�4 (V1 � V2)�4 (6.26)The 
onstant C is going to be determined in the following 
hapters. This expressionneeds to be expressed in the 4D Einstein frame. We do that by 
omparing thevolumes, we have �eVC = �VCpjg(4)jpjeg(4)j (6.27)That means that the Casimir energy in the 4D Einstein frame is(�eVC) = (�VC)V 2=31 Q�4 (6.28)In the limit of small warping, Q2 � 43V 131 (V1 � V2) (6.29)Adding that to (6.16) we haveVtotal = VKKLT + 916C�4 (V1 � V2)�6 (6.30)Fig. 6.5 shows the total potential (6.30) for the gaugino 
ondensate model.Unfortunately, it is 
lear from the plots (6.5(a)-6.5(d)) that the 
ontribution of theghost va
uum energies is only enough to rise the AdS minimum to dS one when Cis large. We get the same result for the non-perturbative model (see Fig. 6.6). In
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uum and Casimir energy. 90the next se
tion we investigate this analyti
ally by 
omparing the AdS minimumof the potential with the va
uum energy. However, when the branes are very 
loseto ea
h other the Casimir energy is overwhelming. In the following 
hapter we willevaluate C and �nd it is 
onne
ted with the 
ondensates. This is not surprisingbe
ause the Casimir energy depends on broken SUSY and it vanishes if there areno 
ondensates. 6.4 Comparing Vmin and VC .We now would like to 
ompare the minimum of the potential with the Casimirenergy 5D expression to see the possible values that the 
onstant C must have tobe able to uplift the AdS minimum to a dS one. The minimum of the potential interms of the 4D Plan
k s
ale is (see (6.18))Vmin = �3eKjW j2 (6.31)In model B, from (6.20) and (6.21),jW j = 12Q2 �V 1=31 � V 1=32 ��1 �Wg (6.32)Hen
e Vmin = �323 �2Q�2 �V 1=31 � V 1=32 ��2 �2P�2�2�2 (6.33)So �eVCjVminj � V �11 (V1 � V2)�3�2�2P�2�2 C (6.34)But �2�2P is related to �2GUT by (see [12℄)�2�2P = 43��2�2GUT (6.35)�GUT = 1=40. For VC to be 
omparable to Vmin we need C to be of order ��2GUT orthe two branes are very 
lose to ea
h other. Alternatively, we have to 
onsider the
ase of large warping.
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uum and Casimir energy. 936.5 summaryWe made use of the gaugino 
ondensate superpotential 
al
ulated in the previ-ous 
hapter and 
onstru
ted two models. In ea
h of them we add another non-perturbative term with a 
ux term. Both models lead to AdS minima whi
h needto be raised to dS minima by some extra e�e
t. The ghosts asso
iated to thegravitino �eld have a positive va
uum energy whi
h may be helpful in obtainingdS minima. We start 
al
ulating these positive va
uum energy of the ghost �eldsin the next 
hapters.



7. 5D REDUCTION OF THE GRAVITINO7.1 Introdu
tionThis 
hapter and the next one dis
uss the Casimir energy 
ontribution for thegravitino �eld. In this 
hapter we make a 5D redu
tion to the gravitino �eldstarting by performing the gauge �xing and applying the BRST transformation.This gives two new ghost �elds [150, 151℄. We then perform the dimensionalredu
tion for these three �elds and express the boundary 
onditions in terms ofthe gaugino 
ondensates. In the next 
hapter we 
al
ulate the Casimir energy
ontribution from the gravitino and ghost �elds in 
at and 
urved spa
es.The subje
ts of Gauge �xing and dimensional redu
tion for the gravitino �eldare interesting on their own. Dimensional redu
tion is a ne
essary step that mustbe performed to rea
h the e�e
tive theory, while gauge �xing is required whenquantizing a �eld theory with gauge symmetry. Previous work on gauge �xing forthe 11D gravitino has been done by Luki
 and Moore [152℄, but most of the workpresented in this 
hapter is original resear
h done in 
ollaboration with Prof. IanG. Moss.We now start from the 11D gravitino a
tion (5.33) and try at �rst to simplifyit by making the following rede�nition I = �I � 19�I ��J�J� (7.1)Then  I = �I + 19 ��J�J��I (7.2)This means �I I = �29�I�I ;  I�I = 29�I�I (7.3)



7. 5D redu
tion of the gravitino 95With the help of the identities derived in appendix (B) for the produ
ts of gammamatri
es, we �nally getLRS = 12�211 ��I�JDJ�I + 94( I�I)(�JDJ)(�K K)� : (7.4)This agrees with Luki
 and Moore [152℄. For the terms 
ontaining the �eld strengthGPQRS, using the same rede�nition for  I , we get the total Lagrangian asL = �I  �JDJ � p296 GPQRS�PQRS!�I + p24 GPQRS�P�QR�S (7.5)�94( I�I) �JDJ + p232 GPQRS�PQRS! (�K K):The full result does not agree with Luki
 and Moore [152℄. We would like to removethe �I I term using a gauge �xing fun
tion. In order to a
hieve this task, we aregoing to use the BRST me
hanism whi
h will result in two new ghost �elds.7.2 A review to the BRST formalism for the 
ase ofele
tromagnetismWhen using the path integral formalism to generate propagators, one fa
es a dif-�
ulty due to gauge freedom. For example, for the generating fun
tionalZ = Z DA�ei R Ldx; (7.6)with L invariant under gauge transformations A� ! A� +r��, the integration istaken over all A� in
luding those that are related only by a gauge transformation.This gives an in�nite fa
tor in Z and problems for the Green's fun
tions obtainedby the fun
tional di�erentiation of Z. The simplest solution is to �x a parti
ulargauge su
h that the integral over A� doesn't in
lude values related by the gaugetransformation. This 
an be done simply by imposing a Lorentz gauge 
onditionr�A� = 0, and in
luding the gauge �xing term (for general �)Lgf = ��2 (r�A�)2 (7.7)



7. 5D redu
tion of the gravitino 96The total Lagrangian now be
omesL = Lg + Lgf ; (7.8)where Lg = �14F��F ��. The 
ase for � = 1 is 
alled Feynman gauge.Ensuring that the physi
s of any gauge theory doesn't depend on the 
hoi
e ofthe gauge �xing terms is a basi
 requirement that must be ful�lled. To 
on�rm thatthe addition of the gauge �xing terms doesn't 
hange the theory we 
an follow theBRST approa
h and ensure that the BRST symmetry is not broken. The BRSTapproa
h is based on the addition of extra �elds, 
alled ghosts, to the theory whi
h
an
el any extra degrees of freedom introdu
ed by the gauge �xing. We obtainthe BRST transformation by repla
ing the gauge parameter with a new �eld andadding extra terms to the a
tion. So, under BRST symmetry, the variation of thewave fun
tion  and A� iss = ig
 sA� = r�
; (7.9)where 
 an anti
ommuting s
alar. However, the variation of the gauge �xing termwill not vanish sLgf = ��(r�A�)r2
: (7.10)We 
an 
an
el it by adding another term for the ghost �eld,Lgh = 
r2
: (7.11)where s 
 = 0; s
 = �(r�A�): (7.12)The total a
tion then will beI = � Z d�(x)(Lg + Lgh + Lgf ): (7.13)The BRST transformations must satisfy the nilpoten
y restri
tion s2 = 0. Thisonly happens when the ghost �elds satisfy r2
 = 0. We 
an remove this restri
tion(r2
 = 0) by introdu
ing a new ghost �eld (
alled an antighost) b. The 
ompleteset of transformations then issA� = r�
 s 
 = 0 s 
 = ib s b = 0: (7.14)



7. 5D redu
tion of the gravitino 97The gauge �xing Lagrangian whi
h is invariant under this symmetry isLgf = �ib(r�A�)� 12�b2: (7.15)In the Landau gauge (�!1), b resembles a Lagrange multiplier. We 
an integrateb out of the theory to re
over (7.13).7.3 BRST symmetry for 11D Rarita-S
hwinger FieldNow we are going to 
arry out the same pro
edure for the 11D Rarita-S
hwinger La-grangian (7.5). While, for the 
ase of ele
tromagnetism, the gauge �xing term de-pended on r�A� and the BRST transformation of the ve
tor �eld was sA� = r�
,the gauge �xing 
ondition here depends on �I I and the BRST transformation ofthe fermion �eld is s I = DI�, with � a ghost. An extra 
ompli
ation in this 
aseis that the gauge �xing Lagrangian is not simply the square of the gauge �xingterm, sin
e now we pla
e an operator in between to mat
h (7.5), i.e.LGF � 94( I�I) �JDJ + p232 GPQRS�PQRS! (�K K): (7.16)As we will see, this will lead to two ghost �elds, instead of one. To illustrate thiswe start by re
alling the usual supersymmetry transformation for the 11D super-gravity (BRST transformations are the same as supersymmetry transformationsbut with the parameter � refers to a ghost �eld)ÆeÎ J = 12 ���Î J (7.17)Æ I = DI(
̂)� + p2288 ��IJKLM � 8ÆIJ�KLM� �ĜJKLM (7.18)ÆCIJK = �p28 ���[IJ K℄: (7.19)where CIJK is a three-form whi
h 
an be dualized to a s
alar. The total La-grangian is Ltotal = L + LGF + L� and we require sLtotal = 0. Similar to (7.15),



7. 5D redu
tion of the gravitino 98the gauge �xing Lagrangian whi
h is invariant under BRST symmetry isLGF = 92b �JDJ + p232 GPQRS�PQRS! (�K K) (7.20)� 94b �JDJ + p232 GPQRS�PQRS! b:For the ghost �eld, L� = � �JDJ � p2288GPQRS�PQRS! �: (7.21)The variation givessLGF = 92b �JDJ + p232 GPQRS�PQRS! (�Ks K) (7.22)= 92b �JDJ + p232 GPQRS�PQRS! �JDJ � p2288GPQRS�PQRS! �sL� = �92b �JDJ + p232 GPQRS�PQRS! �JDJ � p2288GPQRS�PQRS! �:Where we used s(�K K) =  �JDJ � p2288GPQRS�PQRS! (7.23)s� = �92b �JDJ + p232 GPQRS�PQRS!sb = sb = s� = 0:Note s2 = 0, and sLGF + sL� = 0 (7.24)Equation (7.20) 
ould be rewritten asLGF = �94 �b� � � �JDJ + p232 GPQRS�PQRS! (b� � ) (7.25)+ 94 � �JDJ + p232 GPQRS�PQRS!� 



7. 5D redu
tion of the gravitino 99The new theory now has extra �elds (antighosts or anti�elds) b and b whi
h are
ommuting variables, so we shall integrate these �elds out in the path integral,Z db db ei R (L+LGF+L�) = det1=2 �JDJ + p232 GPQRS�PQRS!� (7.26)ei R L+L�+ 94 ���JDJ+p232 GPQRS�PQRS�� Repla
e the determinant by a new �eld 
,det1=2 �JDJ + p232 GPQRS�PQRS! = Z d
 d
 ei R 
��JDJ+p232 GPQRS�PQRS�
 (7.27)The � terms in (7.25) 
an
el the � terms in L . ThereforeLtotal = L� + L� + L
; (7.28)where L� = �I  �JDJ � p296 GPQRS�PQRS!�I + p24 GPQRS�P�QR�S (7.29)L
 = 
 �JDJ � p232 GPQRS�PQRS! 
 (7.30)L� = � �IDI � p2288GPQRS�PQRS! � (7.31)The additional ghost terms (7:30) and (7:31) here make very important 
on-tributions to Casimir energy stabilization. The importan
e of the `ghost' part isthat they give a positive sign for the va
uum energy (whi
h leads to a repulsivefor
e) while the real fermions (as we have seen before) give a negative sign for theva
uum energy. 7.4 Redu
tion to 5 dimensionsRedu
tion to 5D means that we are going to use the 5D Einstein frame. Themetri
 (5.9) will then be written asds2 = V �2=3 �eg��dx�dx��+ V 1=3 �egabdxadxb + egabdxadxb� : (7.32)



7. 5D redu
tion of the gravitino 100where egab is the Calabi-Yau metri
. The gamma matri
es are given by�� = V �1=3e
� 
 11; �a = V 1=6e
5 
 e
a and �5 = V �1=3e
5 
 e
7 (7.33)For raised indi
es,�� = V 1=3e
� 
 11; �a = V �1=6e
5 
 e
a and �5 = V 1=3e
5 
 e
7 (7.34)The metri
 (7.32) also impliesqjg(11)AB j = V �2=3qjeg(5)�� j: (7.35)Here, we will in
lude some ba
kground values of the �eld strength G, so that theterm �PQRSGPQRS is�PQRSGPQRS = 4V �1=611
 e
7e
ab
Gab
z + 6V �2=311
 e
ab
dGab
d; (7.36)where Gab
d = �3 (ega
egbd � egadegb
) : (7.37)We use the ansatz for the gravitino�� = V �1=6�+� 
 u+ + V �1=6
5��� 
 u� (7.38)where u� are 
ovariantly 
onstant spinors on the Calabi-Yau spa
e. The 
onjugatespinor is �� = (V �1=6�+� 
 uy+ � V �1=6
5��� 
 uy�)V 2=3 (7.39)The 
ovariant derivative a
ting on spinors of the form (7.38) redu
es to�JDJ ! V 1=3 (
� 
 11) �J eDJ : (7.40)The fa
tor V �1=6 in (7:38) has been 
hosen to 
an
el the V 's in the kineti
 termsin the �eld equations. All other terms will have V 's raised to some power, as wewill see.



7. 5D redu
tion of the gravitino 101After making use of the identities in appendix B.4, the Lagrangian (7.28) re-du
es to the 5D LagrangianL� = 12�11 ���+��JDJ�+� � ����JDJ��� �+ V �1=3 ��+��+� � �������+p224 V �1=6 ��+�
5��� + ���
5�+� �� ie"ab
Gab
z�p248 V �1 ��+��+� � ������ � ega
egbdGab
d# (7.41)L
 = 12�11 ��
+��JDJ
+� � 
���JDJ
�� �+ V �1=3 �
+�
+� � 
��
���+p28 V �1=6 �
+�
5
�� + 
��
5
+� �� ie"ab
Gab
z�p216 V �1 �
+�
+� � 
��
�� � ega
egbdGab
d# (7.42)L� = 12�11 ���+��JDJ�+� � ����JDJ��� �+ V �1=3 ��+��+� � �������+p272 V �1=6 ��+�
5��� + ���
5�+� �� ie"ab
Gab
z�p2144V �1 ��+��+� � ������ � ega
egbdGab
d# (7.43)where  =  y
0. From the Lagrangian, we 
an derive the �eld equations for the�elds ���,
��,��� as�JDJ�+� + V �1=3�+� + p224 V �1=6
5���ie"ab
Gab
z � p248 V �1�+�ega
egbdGab
d = 0(7.44)�JDJ��� + V �1=3��� + p224 V �1=6
5�+�ie"ab
Gab
z � p248 V �1���ega
egbdGab
d = 0(7.45)�JDJ
+� + V �1=3
+� + p28 V �1=6
5
��ie"ab
Gab
z � p216 V �1
+�ega
egbdGab
d = 0(7.46)�JDJ
�� + V �1=3
�� + p28 V �1=6
5
+�ie"ab
Gab
z � p216 V �1
��ega
egbdGab
d = 0(7.47)�JDJ�+� + V �1=3�+� + p272 V �1=6
5���ie"ab
Gab
z � p2144V �1�+�ega
egbdGab
d = 0(7.48)



7. 5D redu
tion of the gravitino 102�JDJ��� + V �1=3��� + p272 V �1=6
5�+�ie"ab
Gab
z � p2144V �1���ega
egbdGab
d = 0(7.49)These equations 
ould be greatly simpli�ed by removing the `mass' term 
ontaininge"ab
Gab
z by a 
ertain res
aling, as we will see later.7.4.1 Boundary 
onditionsWe now need boundary 
onditions for the modes. We take the following boundary
onditions on the hidden brane (see se
tion 5.1)(P� � ��P+)�� = 0; (7.50)where P� = 12 (11
 11� e
5 
 e
7) : (7.51)We assume ��ABC� / e"ab
, then� = 196��ABC��ABC = 12CI; (7.52)where I = � i48
5 
 �e"ab
e
ab
 + e"ab
e
ab
� (7.53)The 
onstant C is related to the gaugino 
ondensate � = CV �1=22 (see 
hapter 6).Substituting from (7.38), ( 7.51) and (7.52) into (7.50), taking "ab
"ab
 = 48, weget the boundary 
onditions P (4)� �+� � iC�2 P (4)+ ��� = 0 (7.54)P (4)+ ��� � iC�2 P (4)� �+� = 0 (7.55)where P (4)� = (1�
5). We assume that the boundary 
onditions on the visible braneare untwisted (C = 0), while they are twisted on the hidden brane where there isa gaugino 
ondensate. We would like to 
ompare these boundary 
onditions withthe one we used for the twisted fermions 
al
ulations in 
hapter 4,P�	 = 0; (7.56)
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Fig. 7.1: The twisted boundary 
onditions on the visible and hidden brane with thedire
tion of n taken outward.where P� = 12 (1 + ��5). Let11 = 0� 1 00 1 1A ; I = 0� 0 11 0 1A ; J = 0� 0 �ii 0 1A ; (7.57)then � 
ould be expressed as � = 
os � 11 + iJ sin � (7.58)De�ne P (5)� = 12(1� 
5), then (7:56) be
omes12 (1 + 
os � 11 + iJ sin � )P (5)� 	+ 12 (1� 
os � 11� iJ sin � )P (5)+ 	 = 0 (7.59)Then�
os2 �2 11 + iJ sin �2 
os �2�P (5)� 	+�sin2 �2 11� iJ sin �2 
os �2�P (5)+ 	 = 0 (7.60)Multiplying both sides by 
os2 �2 � i sin �2 
os �2 , noting that J2 = 1 we �nally rea
hP (5)�  � i�tan �2� JP (5)+  = 0 (7.61)



7. 5D redu
tion of the gravitino 104Comparing with (7.54), we get the relationship between the angle � in the twoboundary 
onditions as tan �2 = C�2 (7.62)This allows us to express � in terms of the 
ondensates,� = 2 tan�1�C�2 � (7.63)This equation tells us that the Gaugino 
ondensates on the hidden brane leadsto a non-vanishing � whi
h breaks supersymmetry. When C vanishes, � vanishesand supersymmetry is retained.7.5 SummaryWe have reviewed the BRST formalism and made use of it to remove the �I Iterm using a gauge �xing fun
tion. This pro
ess gave two ghost �elds whi
h areimportant for dealing with the stabilization topi
. We then performed a dimen-sional redu
tion for the total 11D Lagrangian to 5D and got the 5D �eld equationswhi
h 
an be simpli�ed by eliminating the mass term whi
h we do in the next
hapter. We ended by expressing the SUSY breaking parameter � in terms ofthe 
ondensate using the twisted boundary 
onditions of the improved heteroti
M-theory.



8. GRAVITINO AND GHOST FIELD VACUUM ENERGIES8.1 Eliminating the `mass' termGoing ba
k to se
tion (7.4), we would like to �nd eigenmodes for the �elds ���,
�� and ��+�. This would be easier if we 
ould omit the `mass' term 
ontaininge"ab
Gab
z. We 
an do this by res
aling �� in the gravitino Lagrangian, but therewill be a pri
e be
ause we will have a modi�ed boundary 
ondition, as we will see.Before we do this, we re
all the two ansatz�e for the 
uxGab
d = �3 (ega
egbd � egadegb
) ; (8.1)Gzab
 = �(�z�)e"ab
: (8.2)We now start from L� = �I  �JDJ � p296 GPQRS�PQRS!�I (8.3)The mass term 
ould be written asGPQRS�PQRS = 4 G�ABC���ABC + 6 Gab
d�ab
d (8.4)where G�ABC and Gab
d are 5D and 6D obje
ts respe
tively. The fa
tor 4 
omesbe
ause we have four equal terms with four di�erent arrangements for the index�, and the fa
tor 6 for the six equal terms with six di�erent arrangements for theholomorphi
 indi
es a and b. The following res
aling 
an 
an
el the G�ABC termin the �eld equations �JDJ � 4p296 G�ABC���ABC � 6p296 Gab
d�ab
d!�� (8.5)= S�1 �JDJ � 6p296 Gab
d�ab
d!S��:



8. gravitino and ghost �eld va
uum energies 106This means we res
ale �� into �0� = S��, withS = ei� (8.6)The derivative of the res
aled �0� givesS�1�JDJ(S��) = i(�JDJ�)�� + �JDJ�� (8.7)Whi
h means that we require for (8.5) that�4p296 G�ABC���ABC = i(�JDJ�) (8.8)To satisfy this with (8.2) and (7.53), we 
hoose� = 2p2�I: (8.9)Using the expression for Cab
 in (5.20), the value of � on the hidden brane is� = ��C2 I: (8.10)Note that I2 = 1. This a
hieves the required simpli�
ation of (8.5). However, theboundary 
ondition (7:50) be
omes(P� � ��P+)S�1�0� = 0: (8.11)To obtain the new boundary 
onditions we substitute from (8.6) and (8.9) into(8.11) with � = C2 I. This �nally givesP� 1� itan �tan�1( �C2 )� �C2 �1 + �C2 tan( �C2 ) I!�0� = 0: (8.12)For small C�, the twist part in (8.12) will be 
an
elled up to order (C�)3 and weget the untwisted boundary 
onditions P��0� = 0. This means, that after res
alingthe gravitino mass, the Casimir energy for the graviton multiplet is given by theuntwisted value VC = 0. The situation, however, is expe
ted to be di�erent forthe ghost �elds be
ause of the di�erent 
oeÆ
ients in the mass term. We nowuse the same res
aling in (7.30) and (7.31), but for the 
 and � �elds we have to
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uum energies 107take � = 3�CI=2 and � = �CI=6 respe
tively. This gives the twisted boundary
onditions P��1 + i 4�C4 + 3�2C2 I� 
0 = 0 (8.13)P��1 + i 4�C12 + �2C2 I� �0 = 0 (8.14)to leading order in �C. Comparing with (7:61) we get the va
uum energy for the
��eld and ���eld, 
al
ulated as the di�eren
e between the twisted and untwisted
ases, as (re
all eq. (4.58)) �V
 = 3C2�216�2l45 �(3) (8.15)�V� = C2�2192�2l45 �(3) (8.16)with �(3) = 1:2020569032.We now have a formula for the 
onstant C whi
h appeared in the dis
ussion ofradion stabilization in se
tion 6.3. So far, we have 
al
ulated the Casimir energyfor the twisted fermions between the two branes. In 
hapter 5 we wrote down theformula for the gaugino 
ondensate potential energy. The aim now is to see if theaddition of the va
uum energy of the ghosts 
 and � 
an help in stabilization. Cis related to the 
ondensates, though C � e��V2 . This means we have the ghostva
uum energies in terms of l5 and V2 as�V
(l5; V2) = 3e�2�V2�216�2l45 �(3) (8.17)�V�(l5; V2) = e�2�V2�2192�2l45 �(3) (8.18)So, in 
at spa
e, the twisted ghost �elds lead to a positive va
uum energy whi
hleads to a repulsive for
e. In the following se
tion we turn to the 
ase of warpedbulk and 
al
ulate the ghost va
uum energies in 
urved spa
e.8.2 Warped bulk 
aseFor warped bulk, the distan
e l5 is given byl5 = Z z2z1 � zz1�(1=5) = 56z2�� 15 (1� � 6=5): (8.19)
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(b)Fig. 8.1: (a) 3D plot of the sum of the ghosts potential shows l5 and V2 dire
tions. (b)The sum of the ghosts potential at 
onstant V2 (V2 = 2).We use the 
onformally 
at metri
ds2 = � zz1�2=5 (dz2 + ���dx�dx�); (8.20)For the twisted bulk fermions we hadJ�(mnz1)(CJ��(mnz2)�SJ�(mnz2))�J��(mnz1)(CJ�(mnz2)�SJ��(mnz2)) = 0;(8.21)where � + �� = 1, C = 
os �=2, S = sin �=2 and � is now related to the 
ondensateby (8.12). We re
all the expression (4.26) for the Bessel fun
tion index� = ��12 + 35
�� (8.22)We determine the value of 
 for the ��, 
� and �� �elds from their mass terms.For the gravitino we havep248 V �1�+�ega
egbdGab
d = �p224 V �1�+�; (8.23)where we made use of (8:1). For the ghost �elds we have respe
tivelyp216 V �1
+�ega
egbdGab
d = �p28 V �1
+� (8.24)p2144V �1�+�ega
egbdGab
d = �p272 V �1�+� (8.25)
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uum energies 109Comparing the RHS of these equations with the fermion mass M = 
�V �1=p2 in(4.22), we get 
 = 1=6;�13=2;�1=2 for the ��, 
� and �� �elds respe
tively. Thisleads to the following values for the Bessel fun
tion index�� = ��25 ; 35� ; �
 = ���45 ; 95� ; �� = ��15 ; 45� : (8.26)The va
uum energy 
an then be 
al
ulated for those �elds using� 0�(0) � � 18�2 �G�(�)z42 ; � 0C(0) � + 18�2 �G
(�)z42 ; � 0�(0) � + 18�2 �G�(�)z42 ;(8.27)where �G�(�) = Z 10 dxx3 ln ����P �� (x)P 0a (x)P ��aP 0(x) ���� (8.28)�G
(�) = Z 10 dxx3 ln ����P �
 (x)P 0a (x)P �
aP 0(x) �����G�(�) = Z 10 dxx3 ln �����P �� (x)P 0a (x)P ��aP 0(x) �����The fun
tions P 0a and P 0 are de�ned in 
hapter 4, and���� P ��(x)P ��a(x) ���� = hC �I 35 (�x)K 35 (x)� I 35 (x)K 35 (�x)� � iS �I 35 (�x)K 25 (x) (8.29)+I 25 (x)K 35 (�x) + 2� sin�25��K 35 (�x)K 35 (x)�� = h�CI 35 (x)K 35 (�x)iSI 25 (x)K 35 (�x)�i���� P �
 (x)P �
a(x) ���� = hC �I 95 (�x)K 95 (x)� I 95 (x)K 95 (�x)� � iS �I 95 (�x)K� 45 (x) (8.30)+I� 45 (x)K 95 (�x) + 2� sin��45��K 95 (�x)K 95 (x)�� = h�CI 95 (x)K 95 (�x)iSI� 45 (x)K 95 (�x)�i����� P �� (x)P ��a(x) ����� = hC �I 45 (�x)K 45 (x)� I 45 (x)K 45 (�x)�� iS �I 45 (�x)K 15 (x) (8.31)+I 15 (x)K 45 (�x) + 2� sin��5�K 45 (�x)K 45 (x)�� = h�CI 45 (x)K 45 (�x)iSI 15 (x)K 45 (�x)�i



8. gravitino and ghost �eld va
uum energies 110where the regularization pro
ess goes as has been done in 
hapter 4.The integrals (8.28) for the gravitino and its ghosts are exa
tly the same integral(4.97) we have got in 
hapter 4 for the spin 1=2 twisted fermion 
ase. A

ordingto what we found in this 
hapter, the gravitino integral vanishes. For the ghostintegrals, the values of these two integrals are tabulated in table (8.1) and plot-ted in Fig.(8.3). The analysis following from Fig.(8.3) is similar to the spin 1=2twisted 
ase where the ghost Casimir energy be
omes stronger as the two branesare getting 
loser. For small brane separation, the integral is large and positive andthe e�e
tive va
uum energy is large and positive as well. The total ghost va
uumenergy then is � 0gh(0) � + 18�2 �G
(�) + �G�(�)z42 ; (8.32)Fig. (8.2(
)) shows no minimum for (8.32). The 5D e�e
tive potentials for theghosts 
 and � are�V
 = 18�2 ��G�
(�)z42 + B
(�)z42 �� �4(C � 1)4�2 ln(�Rz2)z42 (8.33)�V� = 18�2  �G��(�)z42 + B�(�)z42 !� �4(C � 1)4�2 ln(�Rz2)z42 (8.34)where B(�) is de�ned as in 
hapter 4.In terms of z2 and � , Eqs. (8.17) and (8.18) 
an be expressed as�V
(z2; �) = 3�2�(3)16�2 e��5�3p2 z2��1=5z42(1� �)4 (8.35)�V�(z2; �) = �2�(3)192�2 e��5�3p2 z2��1=5z42(1� �)4 (8.36)The sum of (8.35) and (8.36) is shown in Fig. 8.2(a). The warped 
ase tends tothe 
at 
ase as � tends to 1. 8.3 SummaryThe mass term we have got in the �eld equations in the previous 
hapter 
an beeliminated by res
aling the gravitino �eld. However, this res
aling modi�es the
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)Fig. 8.2: (a) A 3D plot of the sum of the 
at ghost potentials expressed in terms of z2and � . (b) A 3D plot of the sum of the 
at ghost potentials expressed in termsof V1 and V2. (
) A 3D plot of the warped total ghost Casimir energy (8.32)showing z2 and � dire
tions.
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 (�) �G�� (�)1.1 6980.571826 7407.4665381.2 405.9747437 456.49549221.3 74.904937707 89.079937961.4 22.19804089 27.878351471.5 8.543430981 11.305321871.6 3.880314033 5.404059961.7 1.977367300 2.8926615161.8 1.097112055 1.6830172331.9 0.6495109547 1.043306447Tab. 8.1: The total va
uum energy �G�(�) for the two ghosts 
 and � evaluated numer-i
ally at di�erent � .
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uum energies 113boundary 
onditions and leads to zero va
uum energy of the gravitino but notfor the ghost �elds. We then 
al
ulated the ghost va
uum energy for the 
at and
urved spa
e making use of our general 
al
ulations in 
hapter 4.



9. CONCLUSION AND FURTHER WORK9.1 Con
lusionThe �nal 
on
lusion of the work done in this thesis 
an be summarized in thefollowing main points:� The total bulk Casimir potential, 
al
ulated in the framework of the improved5D heteroti
 M -theory, does not have a minimum and it is unable alone tostabilize the radion �eld. Other bulk 
ontributions must be 
onsidered toget a stabilization.� Considering some non-perturbative e�e
ts, like gaugino 
ondensates and oth-ers, an AdS supersymmetri
 minimum 
an be obtained whi
h has to be raisedto a dS stable minimum by adding a non-supersymmetri
 
ontribution. Thenon-supersymmetri
 
ontribution we 
onsidered in this thesis was the ghost�eld va
uum energy.� The dimensional redu
tion of the gravitino �eld to 5D gives rise to two newghost �elds. The boundary 
onditions of the 5D redu
ed gravitino �eld 
anbe expressed in terms of the gaugino 
ondensate on the hidden brane.� The gravitino �eld � gives a zero 
ontribution to the Casimir energy whenthe warping is small, and only its ghosts 
ontribute to the Casimir energy.The twisted ghost �elds lead to a positive va
uum energy.� The 
ontribution of the ghosts va
uum energy was too small to uplift theAdS minimum to a dS one in the 
ase we examined and when the warpingis small.



9. Con
lusion and Further Work 1159.2 Further WorkThe following work is re
ommended as a follow-up to this study:� We 
an make more use of the deeply ri
h stru
ture of the 5D redu
ed theoryby studying the 
ontributions from other hypermultiplets and the gravipho-ton to the bulk Casimir energy.� For the gravitino and moduli masses, more 
an be done regarding the phe-nomenology. The MSSM soft masses are 
ontrolled by the F-terms, and thenone expe
ts the soft masses to be of the order of the gravitino mass. Themoduli masses are found from derivatives of VSUGRA at the minimum andare also within one-two orders of magnitude from m3=2 [147℄. . .� In 
hapter 5, it remains to be seen how the other ingredients of low energyheteroti
M -theory, whi
h we have negle
ted, enter into the mix, for example�ve-branes and anti �ve-branes may play a role in a realisti
 model. Somefeatures of the present 
al
ulation may be helpful in these generalisations.Expressing the superpotential in terms of other moduli systems like the �vedimensional S and T super�elds or the Calabi-Yau volumes V1 and V2 may behelpful. The in
lusion of �ve-branes in the improved formalism for heteroti
M -theory still remains to be developed.� It really looks interesting to investigate the possible relation that might existsbetween the gaugino 
ondensates we have studied in this thesis and the BoseEinstein 
ondensates, this 
an shed more light on the 
onne
tion betweensuper
uidity and high energy physi
s; for example super Yang-Mills theory[149℄. . .



APPENDIX



A. ENERGY, SCALES AND DIMENSIONSeV (ele
tron-Volt): The amount of energy gained by an ele
tron dropping througha potential di�eren
e of one volt, whi
h is 1:6� 10�19 joules.MeV (megaele
tron-Volt): 106eV .GeV (gigaele
tron-Volt) s
ale: 109eV .TeV (teraele
tron-Volt) s
ale : 1012eV .Plank s
ale: 1:22� 1019GeV .Ele
troweak s
ale: 102GeV .GUT s
ale: 1016GeV .Dimensions:Brane 
harge �: L�1.�24 = 8�G: L2.�25 = 8�G5: L3.�2n = 8�Gn: Ln�2.Bulk length s
ale �: L.Energy: L�1.ds2: L2.dnxpjgj:Ln, n is the number of dimensions.Ri

i s
alar R: L�2.
osmologi
al 
onstant �: L�2.Potential (energy/unit volume): 1=L4.Moduli �elds: All moduli �elds are dimensionless and measure the form of theinternal manifold relative to the dimensionful quantities � and �.



B. SPINOR IDENTITIESB.1 Gamma matri
esFlat spa
e Gamma matri
es satisfy��A;�B	 = 2�AB: (B.1)B.1.1 Identities for the produ
ts of gamma matri
es�I1:::In�J1:::Jm = min(n;m)Xr=0 �nr��mr �(�1)nr�rr!Æ[I1[J1 : : : ÆIrJr�Ir+1:::In℄Jr+1:::Jm℄; (B.2)�I1:::In�J1:::Jm�I1:::In = min(n;m)Xr=0 �d�mn� r��mr �(�1)r+(m�1)n�n�J1:::Jm: (B.3)where �r = (�1)r(r+1)=2 = +;�;�;+ for r = 0; 1; 2; 3. In our 11D 
ase, this givesfor example �I�K = �IK + ÆIK; (B.4)�IJ�K = �IJK � 2ÆK [I�J℄;�K�IJ = �IJK + 2ÆK [I�J℄;�IJK�L = �IJKL + 3ÆID�JK℄;�L�IJK = �LIJK + 3Æ[IL�JK℄;Results for 
ontra
tions depend on the number of dimensions. In 11 dimensions,�IJK�K = 9�IJ ; (B.5)�L�LJK = 9�JK;�IJ�J = 10�I ;�J�J = 11:



B. Spinor identities 119B.2 Other 11D identities
�I�IJKLMP = 6�JKLMP ; (B.6)�IJKLMP�P = 6�IJKLM ;�I�IJKLMP�P = 7�JKLM ;�I�IJKLMP = ���JKLMP � �P�JKLM � 4�J�KLMP ;�I�IJKLM = ���JKLM � 4�J�KLM ;�JKLMP�P = �JKLM�� 4�JKL�P ;�KLMP�P = �KLM�� 3�KL�M :with � � �I�I . B.3 Rarita-S
hwinger equationB.3.1 The pure fermioni
 termIn this appendix we derive Eq. (7.4) from (5.33). With the help of the 11D gammamatri
es identities (B.4), we 
an write I�IJKDJ K = �I�IJKDJ�K � 19�I�IJKDJ�K ��L�L� (B.7)+ 19 ��M�M��I�IJKDJ�K � 181 ��M�M��I�IJKDJ�K ��L�L�where we used (7.3). Using (B.4) and (B.5), we get19�I�IJKDJ�K ��L�L� = ��L�L� ��JDJ� ��K�K�� �JDJ ��K�K� ; (B.8)19 ��M�M��I�IJKDJ�K = ��I�I� ��JDJ� ��K�K�� ��I�I�DJ�J ; (B.9)181 ��M�M��I�IJKDJ�K ��L�L� = 109 ��I�I� ��JDJ� ��L�L� ;Inserting that in (B.7) yields I�IJKDJ K = �I�JDJ�I + 94( I�I)(�JDJ)(�K K): (B.10)



B. Spinor identities 120B.3.2 The term 
ontaining  with GThe Lagrangian isLG = p2192GJKLM � I�IJKLMP P + 12 J�KL M� (B.11)Making use of the identities (B.6), the �rst term is I�IJKLMP P = ��I + 19��I��IJKLMP ��P � 19�P�� (B.12)= ����JKLMP � �P�JKLM � 4�J�KLMP��P+ 23��JKLMP�P � 23�I�IJKLM�� 1427��JKLM�= �13� ��JKLM�� 4�JKL�M�� �P�JKLM�P� 4�J ��KLM�� 3�KL�M�+ 23��JKLM�+ 83�J�KLM�� 1427��JKLM�= ��P�JKLM�P � 527��JKLM�+ 12�J�KL�M :and the se
ond term is12 J�KL M = 12��J + 19��J��KL��M � 19�M�� (B.13)= 12�J�KL�M + 43��JKL�M � 43�J�KLM�� 427��JKLM�= 12�J�KL�M � 427��JKLM�:The Lagrangian then be
omesLG = p2192GJKLM ���P�JKLM�P � 13��JKLM�+ 24�J�KL�M� : (B.14)B.4 Six dimensional identitiesThe 
ovariantly 
onstant spinors are denoted by u�uy�u� = 0; uy�u� = 1; ru� = 0; uy�
ab
u� = 0; (B.15)uy�
ab
u� = �i"ab
; 
7u� = �u�:



B. Spinor identities 121uy�
ab
du� = 16(ga
gbd � gadgb
); uy�
ab
du� = 0; (B.16)uy�
abu� = �gab; 
au+ = 0;
abu� = �gabu�; 
ab
u+ = i"ab
u�; 
ab
u� = i"ab
u+;
ab
u+ = 0; 
ab
u� = 0;
ab
u+ = 2ga[b

℄u+; 
a
a = 6P+; 
a
a = 6P�;P�u� = u�; P�u� = 0;Iu� = u�; Ju� = �iu�; Ku� = �u�:where "��
Æ�
��
Æ� = i5!; "��
Æ�
��
Æ = i4!
�: (B.17)B.5 Five dimensional identitiesA useful anti
ommutation relation for the 5-dimensional �5 where �5 = N
5 andN is 5D normal, f6N;6rg = �A�BNArB + �B�ANArB (B.18)= �2�rN + K2 � :



C. GEOMETRICAL CONVENTIONSC.1 Di�erential FormsA di�erential form of order r is a totally antisymmetri
 tensor of type (0; r). If vis a p�form and w is a q�form, thenv = 1p!va1:::apdxa1 ^ : : : dxap : (C.1)The wedge produ
t is de�ned as(v ^ w)a1:::abb1:::bq = (p+ q)!p!q! v[a1:::abwb1:::bq ℄: (C.2)This implies (v ^ w) = (�1)pqw ^ p: (C.3)The exterior derivative operator d is de�ned asd = dxa ^ �a (C.4)Then (dv)a1:::ap+1 = (p+ 1)�[a1va2 :::ap+1℄ (C.5)d(v ^ w) = dv ^ w + (�1)pv ^ dw (C.6)A p�form ! is 
losed if d! = 0 and exa
t if ! = d� = 0 for some globally de�nedp� 1 form �.C.1.1 Cartan equations and the 
urvature tensor formThe 
urvature 
omponents of the metri
 (3.15) has been 
al
ulated using Cartan'sstru
ture equations whi
h are T a = d�a + !ab ^ �b (C.7)



C. Geometri
al 
onventions 123
ab = d!ab + !a
 ^ !
b (C.8)For the torsion and 
urvature 2-form respe
tively. For the metri
ds2 = e�2����dx�dx� + dez2 (C.9)we get R5�5� = (�00 � (�0)2)g��; (C.10)R�� = (�00 � 4(�0)2)g��;R55 = 4(�00 � (�0)2);R = 8�00 � 20(�0)2:C.2 A review of 
omplex manifolds and K�ahler geometryIn analogy to the notion of a real 2k-dimensional manifold M whi
h is de�nedas a set of points that behaves lo
ally like R2k, su
h that 2k real parameters(x1; :::; x�; :::; x2k) are 
oordinates on M [34℄, we 
an de�ne a 
omplex q- dimen-sional manifold as a set of points that behaves lo
ally like Cq. A 
omplex manifoldalways admits a hermitian metri
 [118℄. A Hermitian manifold is a 
omplex man-ifold with a preferred 
oordinate systems su
h thatgab = g�a�b = 0: (C.11)The line element then be
omes ds2 = 2ga�bdzadz�b: (C.12)On any Hermitian manifold, a real 2-form 
an be de�ned su
h that! = iga�bdza ^ dz�b: (C.13)where !� is de�ned to be a set of 2k 
omplex 
oordinates where the index runsthrough the k holomorphi
 (unbarred) indi
es, then through the antiholomorphi
(barred) indi
es. Now we 
an 
ome to the de�nition of a K�ahler manifold whi
h is



C. Geometri
al 
onventions 124a Hermitian manifold whose 2-form is 
losed, i.e. d! = 0. In this 
ase ! is 
alledthe K�ahler form. That leads to the 
ondition�agb�� � �bga�� = 0; (C.14)whi
h is used also to de�ne a K�ahler manifold. Now, suppose that a Hermitianmetri
 g��� is given in terms of a s
alar fun
tion K byga�b = �a��bK (C.15)This metri
 
learly satis�es the 
ondition (C.14) and hen
e it is K�ahler. It
an be shown that any K�ahler metri
 is lo
ally expressed as (C.15). The s
alarfun
tion K is 
alled the K�ahler potential of a K�ahler metri
.Now, given a Ri

i tensor R�� of a K�ahler manifold, the Ri

i form is de�ned by< = Rabdza ^ dzb (C.16)The Ri

i form is 
losed and de�nes a non-trivial element 
1(M) � <=2� whi
his 
alled the �rst Chern 
lass. A 
ompa
t K�ahler manifold with vanishing �rstChern 
lass is 
alled a Calabi-Yau manifold. Equivalently, Calabi-Yau manifold isa K�ahler manifold with Ri

i 
at metri
.C.2.1 Calabi-Yau spa
e and Hodge numbersCalabi-Yau manifolds have a 
ohomology groups stru
ture that may be summedup by the so 
alled Hodge diamond 10 00 h1;1 01 h1;2 h2;1 10 h1;1 00 01
(C.17)



C. Geometri
al 
onventions 125The Hodge numbers hp;q are the equivalent to Betti numbers for a real mani-fold. Formally, they are the dimensions of the respe
tive 
ohomology groups themanifold admits, i.e. hp;q = dim Hp;q: (C.18)So this diamond simply says that for a Calabi-Yau manifold we have:� A single (3; 0) Hodge number h3;0 = dim H3;0 = 1, This is the holomorphi
volume form 
, and h3;0 = h0;3 = h0;0 = h3;3 = 1.� h1;0 = h0;1 = h0;2 = h2;0 = h2;3 = h3;2 = h3;1 = h1;3 = 0.� The values of the remaining Hodge numbers h1;1 and h2;1 depends on theparti
ular 
hoi
e of the Calabi-Yau manifold.C.3 The tetrad formalismThe des
ription of gravity in terms of a metri
 tensor g�� is suÆ
ient when thematter �elds, to whi
h gravity is 
oupled, are restri
ted to s
alars, ve
tors andtensors. But when gravity is 
oupled to spinor �elds, then the tetrad formulationof gravity is more 
onvenient. The tetrad eba� is 
onne
ted to the metri
 byg�� = �babb eba� ebb� (C.19)Where the indi
es �, �,... label general 
oordinates with basis dx� and ba, bb,::: label
oordinates in a lo
ally inertial 
oordinate system whi
h we take as orthonormalframe. The Lorentz metri
 �babb = diag(+1;+1; :::;�1). We have then orthonormalbasis �eba = eba� dx�	 
onstru
ted by the vielbein �eld. The vielbein dual e�ba is itsinverse so that eba� e�bb = Æbabb; (C.20)eba� e�ba = Æ��: (C.21)For the Calabi Yau metri
 in (5.9), we havegab = V 1=3egab: (C.22)



C. Geometri
al 
onventions 126Hen
e eaba = V 1=6 eeaba; eaba = V �1=6 eeaba: (C.23)Sin
e, �a = eaba �ba: (C.24)we arrive at Eqs. (5.38) and (5.39) for the fa
tors of V in the redu
tion formulaefor the gamma matri
es.C.4 Embedding hypersurfa
es and ADM (3 + 1) formalism in anutshell.For the sake of 
ompleteness, we summarize here the mathemati
al basi
s of theembedding hypersurfa
es.A hypersurfa
e is an (n�1) dimensional (
o-dimension one) submanifold � of ann dimensional manifoldM . In the ADM (Arnowitt, Deser and Misner) formalism,spa
etime is de
omposed into layers of three-dimensional spa
e-like hypersurfa
es(sli
es), threaded by a time-like normaln� = (1;���)� : (C.25)where � and �� are the lapse fun
tion (de�nes the proper time between 
onse
utivelayers of spatial hypersurfa
es) and shift ve
tor (propagates the 
oordinate systemfrom 3-surfa
e to 3-surfa
e) respe
tively. The general spa
etime metri
 is writtenas ds2 = (��2 + ����)dt2 + 2��dx�dt+ 
��dx�dx�: (C.26)With 
�� is the indu
ed spatial 3-metri
 on the hypersurfa
e. It is related to the4-metri
 via 
�� = g�� + n�n� . Another 
on
ept that is 
losely related to theindu
ed metri
 is 
alled the proje
tion tensor ?�� and de�ned asg��
�� = Æ�� + n�n� � ?�� : (C.27)



C. Geometri
al 
onventions 127Given any ve
tor V � 2 TP (M), the proje
tion tensor 
an proje
t it tangent tothe hypersurfa
e (that means orthogonal to n�):(?��V �)n� = 0: (C.28)Using n�,and assuming that the integral 
urves of n� are not geodesi
s ,we 
ande�ne a quantitiy 
alled 'the a

eleration' asa� = n�r�n�: (C.29)Another quantity 
an be de�ned using n� whi
h is the extrinsi
 
urvatureK�� . If the embedded slide is bent, the normal ve
tor n� 
hanges along ea
h
oordinate. This is expressed by the non-vanishing of the 
ovariant four derivativer�n�. Then, the proje
tion of this derivative is the 
hange of the normal ve
tor foran in�nitesimal displa
ement within the surfa
e and de�nes the extrinsi
 
urvaturetensor K�� = �?��?��n�;� (C.30)Proje
ting all indi
es of the 4D Riemann tensor onto the sli
e gives the Gaussequation (? denotes proje
tion over all free indi
es)?R(n+1)���� = Rn���� +K��K�� �K��K�� (C.31)Contra
ting of one index with the normal ve
tor and then subsequent proje
tionof the remaining indi
es gives the Coda

i equation?R(n+1)���� = D�K�� �D�K�� (C.32)Finally, Einstein equations 
ould be written as Hamiltonian and momentum
onstraints:R(n) +K2 �K��K�� = 16�� Hamiltonian 
onstraint (C.33)r� (K�� � 
��K) = 8�ja momentum 
onstraint (C.34)Where � and ja are matter terms given by proje
tions of the stress energy tensorT��.



C. Geometri
al 
onventions 128Glossary of Terms
(Anti)de Sitter (AdS) a 
onstant-
urvature spa
etime with maximal symmetry de-s
ribing a positive (negative) 
osmologi
al 
onstant.AdS/CFT the 
onje
ture of the equivalen
e between the gravity (string theory)on an AdS spa
e and a CFT on its boundary.Axion the RR s
alar �eld of type IIB string theory that 
ombines with the dilatoninto a 
omplex s
alar 
ontrolling the Sl(2; R) symmetry of the theory.�-fun
tion a fun
tion giving the running of the 
oupling 
onstant with the s
aleof the theory.BPS solution a spe
ial type of supersymmetri
 solution.Braneworld s
enarios models in whi
h matter �elds are 
on�ned to a hypersurfa
ewithin a higher-dimensional geometry.BRST transformations (Be

hi-Rouet-Stora-Tyutin) a fermioni
 invarian
e of theextended a
tion. It is usually represented by a di�erential s.Calabi-Yau a geometri
al spa
e with spe
ial properties (ie, a 
omplex stru
tureand vanishing Ri

i tensor) normally used for 
ompa
ti�
ation of string/M-theory down to four/�ve dimensions.CFT (Conformal Field Theory) a 
onformally-invariant �eld theory.Chern-Simons forms arise in gauge theories, although they are not themselvesgauge invariant.Compa
ti�
ation a pro
edure to redu
e the number of dimensions by 
onsideringsome of them to be 
ompa
t and very small.



C. Geometri
al 
onventions 129Conformal symmetry the group of transformations that leaves angles invariant.D = 11 SUGRA eleven-dimensional supergravity theory 
onsidered as low-energylimit of M-theory.D-brane a spe
ial 
ase of a p-brane on whi
h open strings 
an end.Dilaton a s
alar �eld in string theory whose va
uum expe
tation value 
ontrolsthe string 
oupling 
onstant gS.Domain wall topologi
al defe
t of 
o-dimension one, ie, an obje
t separating thespa
e (along one 
oordinate) into two disjoint regions.Duality the property of two (apparently) di�erent theories whi
h des
ribe the samephysi
s for di�erent values of their parameters.Ele
troweak theory a theory uni�es the ele
tromagnetism and the weak intera
-tions. The the uni�
ation energy is of order of 102 GeV above whi
h theymerge into a single ele
troweak for
e. Its gauge group is SU(2)� U(1).Fixed-point solution SUGRA solution with 
onstant s
alars.Gaugino the superpartner of the gauge boson.Gaugino 
ondensate Non-zero va
uum expe
tation value of the gaugino.Gauged SUGRA theory of SUGRA 
ontaining (at least) some gauge ve
tors thatserve to gauge some rigid symmetry of the ungauged version.Gauge �xing pro
edure followed when eliminating undesired gauge degrees of free-dom from a theory.Ghost 
ommutative fermion or spin 12 boson.Grand uni�
ation theory (GUT) theory that would in
orporate the strong andele
troweak for
e within on single theory.Hadrons strong intera
ting parti
les (e.g., quarks, protons, neutrons, et
.).
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al 
onventions 130Heteroti
 string 
onsistent 
losed string theory supporting 16 super
harges andgauge group SO(32) or E8 � E8.Hidden brane the brane at whi
h SUSY breaking happens.IR region (infrared) des
ribes the behavior of a theory at large distan
es (smallenergies).Israel Jun
tion 
ondition the dis
ontinuity in the extrinsi
 
urvature a
ross a hy-persurfa
e is related to the energy momentum tensor on that hypersurfa
e.M2-brane fundamental obje
t of M-theory extended in two spatial dire
tions.M5-brane the magneti
 dual of a M2-brane.Moduli spa
e the spa
e parametrized by the s
alars (moduli) of the theory.Modulus stabilization getting a minimum for the modulus potential.Majorana spinors spinors 
onstrained by a reality 
ondition.Majorana-Weyl spinors spinors with both Majorana and Weyl properties.M-theory a quantum theory believed to des
ribe all �ve string theories and D = 11SUGRA as di�erent limits.Orbifold The resultant quotient spa
e � � M=G with M is a manifold and G isa dis
rete group a
ts on M . The resultant spa
e � has some singular pointsat whi
h we lo
ate the brane with matter (re
all israel jun
tion 
ondition).p-form a �eld des
ribed by a skew-symmetri
 tensor of rank p.QCD (Quantum Chromodynami
s) quantum �eld theory of the strong intera
-tions, based on the gauge group SU(3).QED (Quantum Ele
trodynami
s) unifying theory of weak and ele
tromagneti
intera
tions, based on the gauge group SU(2)� U(1).



C. Geometri
al 
onventions 131R-symmetry automorphism group of extended SUSY that rotates super
hargesinto ea
h other.RS s
enario (Randall-Sundrum) a parti
ular realization of braneworlds with one(or two) 3-brane(s) embedded in a �ve-dimensional spa
e.S-duality a duality relating the strong 
oupling regime of a theory with the weak
oupling des
ription of another, or the same, theory.Self-duality property of some p-forms of having self-dual (under Hodge duality)�eld strength, realized in D = 2, D = 6 and D = 10 (for spa
es withMinkowski signature).Standard Model (still in
omplete) a theory unifying all non-gravitational for
es(strong and ele
tro-weak). Its symmetry group is U1 � SU(2) � SU(3) andit is still in
omplete.String theory a theory of elementary parti
les where the fundamental 
onstituents(e.g., the ele
tron, the photon, et
.) are des
ribed as di�erent vibrationmodes of a fundamental string.Supergravity a supersymmetri
 version of general relativity (lo
al supersymmetryin
ludes gravity).Superpotential fun
tion whose square and derivative squared determines the po-tential of a theory.Supersymmetry a symmetry 
onne
ting bosons to fermions and vi
e versa. Itimplies the existen
e of a superpartner for ea
h known elementary parti
le.Susy breaking a ne
essary step from whi
h a non-supersymmetri
 theory is ob-tained from a supersymmetri
 theory.Type I string string theory of 
losed and open strings supporting 16 super
harges.Type IIA string string theory of 
losed strings 
ontaining N = 2 MW spinors (32super
harges) of opposite handedness.



C. Geometri
al 
onventions 132Type IIB string string theory of 
losed strings 
ontaining N = 2 MW spinors (32super
harges) with the same handedness.UV region (ultraviolet) des
ribes the behavior of a theory at small distan
es (largeenergies).Visible brane The brane on whi
h we are living, also 
alled the TeV brane.weak nu
lear for
e one of the four fundamental for
es, best known for mediatingradioa
tive de
ay.Weyl spinors spinors restri
ted via a 
hirality proje
tion.Yang-Mills theory Non-abelian Gauge theory based on the SU(N) group. In otherwords, if the gauge group of the theory is non-
ommutative then the gaugetheory is 
alled Yang-Mills theory.
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onventions 133Notation
A
tion S, SEH, SYM , et
.Antisymmetri
 rank-3 �eld C���.Bessel fun
tions J�, Y�, I� and K�.Beta fun
tion �(g).BRST di�erential s.Calabi-Yau metri
 
AB or gab.Calabi-Yau volumes V , V1 and V2.
hirality operator P� (untwisted) and P�� (twisted).Condensate s
ale �.Cosmologi
al 
onstant �.Coupling 
onstants g, gs, �G (for GUT) and �(in RS Svis)Covariant derivative r�, D�.Covariantly 
onstant spinors u�, A� and B�.Dilaton �.Dira
 operator D.Energy-momentum tensor T�� .Einstein tensor G��Extrinsi
 
urvature K�� .
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onventions 134Field strength G����Gamma matri
es � and 
.SUSY breaking parameters � and �.Ghosts 
 and �.Gravitino �� and  �.Graviton ea�, g�� , h�� .K�ahler metri
 KIJ .K�ahler potential K.Lagrangian density L.ele
tromagneti
 ve
tor A�.Plan
klength lp � 10�33 
mmass Mp � 1019 GeVRadion �.Renormalization s
ale �R.Ri

i s
alar R.S
alar potential V (�).Superpotential W .Super�elds S and T .Va
uum energy VC(0), VC(�) �V
 and �V�.Vielbeins e�a.
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tion 	 and  .Zeta fun
tion �.



BIBLIOGRAPHY[1℄ Tetsuya Shiromizu, Kei-i
hi Maeda, Misao Sasaki. The Einstein Equationson the 3-Brane World. Phys. Rev. D62 (2000) 024012 [gr-q
/9910076℄.[2℄ Lisa Randall, Raman Sundrum. An Alternative to Compa
ti�
ation.Phys.Rev.Lett. 83 (1999) 4690-4693 [hep-th/9906064℄.[3℄ Lisa Randall, Raman Sundrum. A Large Mass Hierar
hy from a SmallExtra Dimension. Phys. Rev. Lett. 83 (1999) 3370-3373 [hep-ph/9905221℄.[4℄ Horava, P., and Witten, E. Heteroti
 and Type I string dynami
s fromeleven dimensions. Nu
l. Phys. B 460 (1996) 506524 [hep-th/9510209℄.[5℄ Horava, P., and Witten, E. Eleven-Dimensional Supergravity on a Mani-fold with Boundary. Nu
l. Phys. B475 (1996) 94-114 [hep-th/9603142℄.[6℄ Lukas, A., Ovrut, B.A., Stelle, K.S., and Waldram, D. The Universe as adomain wall. Phys. Rev. D, 59 (1999) 08600119 [hep-th/9803235℄.[7℄ Lukas, A., Ovrut, B.A., and Waldram, D. Cosmologi
al solutions of Ho-ravaWitten theory. Phys. Rev. D, 60 (1999) 086001111 [hep-th/9806022℄.[8℄ Lukas, A., Ovrut, B.A., and Waldram, D. Boundary in
ation. Phys. Rev.D, 61 (2000) 023506 118.[9℄ Maartens. R. Brane World Gravity. Living Rev. Rel. 7 (2004) [gr-q
/0312059℄.[10℄ C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Freeman,San Fran
is
o (1973).



BIBLIOGRAPHY 137[11℄ N. Arkani-Hamed, S. Dimopoulos and G. Dvali. The Hierar
hy Problemand New Dimensions at a Millimeter. Phys. Lett. B 429 (1998) 263 [hep-ph/9803315℄.[12℄ Lukas, A., Ovrut, B.A., Stelle,K.S., Daniel Waldram. Heteroti
 M-theoryin Five Dimensions. Nu
l. Phys. B552 (1999) 246-290 [hep-th/9806051℄.[13℄ Ringeval, C., Brax, Ph., van de Bru
k, C., Davis, A. Boundary In
ationand the WMAP Data. Phys. Rev. D73 (2006) 064035 [astro-ph/0509727℄.[14℄ Brax, Ph., van de Bru
k, C., Davis, A., and Rhodes, C.S. Cosmologi
alEvolution of Brane-World Moduli. Phys. Rev. D67 (2003) 023512 [hep-th/0209158℄.[15℄ Ian G. Moss and James P. Norman. One loop e�e
tive potential in het-eroti
 M-theory. JHEP 0409 (2004) 020 [hep-th/0401181℄.[16℄ W. de Paula, T. Frederi
o, H. Forkel, M. Beyer. Solution of the 5D Ein-stein equations in a dilaton ba
kground model. [0810.2710℄.[17℄ E. Witten, Nu
l. Phys. strong 
oupling expansion from Calabi-Yau 
om-pa
ti�
ation. B471 (1996) 135 [hep-th/9602070℄.[18℄ W. D. Goldberger and I. Z. Rothstein. quantum stabilization of 
ompa
t-i�ed AdS5. Phys. Lett. B491 (2000) 339 [hep-th/0007065℄.[19℄ J. Garriga, O. Pujolas, and T. Tanaka. moduli e�e
tive a
tion inwarped brane-world 
ompa
ti�
ations. Nu
l. Phys. B655 (2003) 127 [hep-th/0111277℄.[20℄ Abramowitz, M. and Stegun, I.A. Handbook of Mathemati
al Fun
tions:with Formulas, Graphs, and Mathemati
al Tables, Dover 1965.[21℄ C. D. Hoyle et al. Sub-millimeter tests of the gravitational inverse squarelaw: A sear
h for large extra dimensions. Phys. Rev. Lett. 86 (2001)14181421.



BIBLIOGRAPHY 138[22℄ Timon Boehm, Ruth Durrer and Carsten van de Bru
k. Dynami
al In-stabilities of the RandallSundrum Model. Phys. Rev. D64 (2001) 063504[hep-th/0102144℄.[23℄ I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali. Newdimensions at a millimeter to a Fermi and superstrings at a TeV. Phys.Lett. B436 (1998) 257263 [hep-ph/9804398℄.[24℄ N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali. Phenomenology,astrophysi
s and 
osmology of theories with sub-millimeter dimensionsand TeV s
ale quantum gravity. Phys. Rev. D59 (1999) 086004 [hep-ph/9807344℄.[25℄ V.A. Rubakov and M. E. Shaposhnikov. Do we live inside a domain wall?.Phys. Lett. B125 (1983) 136.[26℄ V.A. Rubakov and M. E. Shaposhnikov. Extra spa
e-time dimensions:towards a solution to the 
osmologi
al 
onstant problem. Phys. Lett. B125(1983) 139.[27℄ G. Gabadadze. ICTP le
tures on large extra dimensions. [hep-th/0308112℄.[28℄ M.Bordag, U.Muhideen and V.M. Mostepanenko. New developments inthe Casimir e�e
t. Phys. Rep. 353 (2001) 1-205 [quant-ph/0106045℄.[29℄ H.B. Casimir, Kon. Ned. Akad. Wetens
h.Pro
. 51 (1984) 793.[30℄ J.Garriga and A.Pomarol. A stable hierar
hy from Casimir for
es and theholographi
 interpretation. Phys. Lett. B560 (2003) 91 [hep-th/0212227℄.[31℄ D.J. Toms. Quantized bulk Fields in Randall Sundrum Compa
ti�
ationModel. Phys. Lett. B484 (2000) 149 [hep-th/0005189℄.



BIBLIOGRAPHY 139[32℄ A. Fla
hi, I.G. Moss and D.J. Toms. Quantized bulk fermions in theRandall-Sundrum brane model. Phys. Rev. D64 (2001) 105029 [hep-th/0106076℄.[33℄ I.G. Moss. boundary terms for supergravity and low energy heteroti
 M-theory. Nu
. Phys. B729 (2005) 179-202 [hep-th/0403106℄.[34℄ R.M. Wald. General Relativity. University of Chi
ago Press (Chi
ago,1984).[35℄ W.D. Goldberger and M. B. Wise. Modulus Stabilization with Bulk Fields.Phys. Rev. Lett. 83, 4922 (1999) [hep-ph/9907447℄.[36℄ C. Csaki, M. Graesser, L. Randall and J. Terning. Cosmology of BraneModels with Radion Stabilization. Phys. Rev. D62 (2000) 045015 [hep-ph/9911406℄;[37℄ Shinji Mukohyama, Alan Coley. S
aling solution, radion stabilization,and initial 
ondition for brane-world 
osmology. Phys. Rev. D 69 (2004)064029 [hep-th/0310140℄.[38℄ Walter D. Goldberger, Mark B. Wise. Phenomenology of a StabilizedModulus. Phys. Lett. B475 (2000) 275-279 [hep-ph/9911457℄.[39℄ Julien Lesgourgues, Lorenzo Sorbo. Goldberger-Wise variations: stabi-lizing brane models with a bulk s
alar. Phys. Rev. D69 (2004) 084010[hep-th/0310007℄.[40℄ Markus A. Luty, Raman Sundrum. Hierar
hy Stabilization in WarpedSupersymmetry. Phys. Rev. D64 (2001) 065012 [hep-th/0012158℄.[41℄ Felix Bruemmer, Arthur Hebe
ker, Enri
o Trin
herini. The Throat as aRandall-Sundrum Model with Goldberger-Wise Stabilization. Nu
l. Phys.B738 (2006) 283-305 [hep-th/0510113℄.



BIBLIOGRAPHY 140[42℄ Debaprasad Maity, Soumitra SenGupta, Sourav Sur. Stability analysis ofthe Randall-Sundrum braneworld in presen
e of bulk s
alar. Phys. Lett.B643 (2006) 348-353 [hep-th/0604195℄.[43℄ B. Grzadkowski, J.F. Gunion. Bulk S
alar Stabilization of the Radionwithout Metri
 Ba
k-Rea
tion in the Randall-SundrumModel. Phys. Rev.D68 (2003) 055002 [hep-ph/0304241℄.[44℄ N. Maru, N. Okada. Gravitational Radius Stabilization in Supersymmet-ri
 Warped Compa
ti�
ation. [hep-th/0508113℄.[45℄ N. Maru and N. Okada. Warped Supersymmetri
 Radius Stabilization.Phys. Rev. D70 (2004) 025002 [hep-th/0408182℄.[46℄ James M. Cline and Hassan Firouzjahi. Brane-World Cosmology of Mod-ulus Stabilization with a Bulk S
alar Field. Phys. Rev. D64 (2001) 023505[hep-ph/0005235℄.[47℄ C. Csaki et al. Cosmology of Brane Models with Radion Stabilization.Phys. Rev. D62 (2000) 045015 [hep-ph/9911406℄.[48℄ Debaprasad Maity, Soumitra SenGupta, Sourav Sur. The role of higherderivative bulk s
alar in stabilizing a warped spa
etime. [hep-th/0609171℄.[49℄ Ri
hard Altendorfer, Jonathan Bagger, Dennis Nemes
hansky. Supersym-metri
 Randall-Sundrum S
enario. Phys. Rev. D63 (2001) 125025 [hep-th/0003117℄.[50℄ Jonathan Bagger, Dennis Nemes
hansky, Ren-Jie Zhang. Supersymmetri
Radion in the Randall-Sundrum S
enario. JHEP 0108 (2001) 057 [hep-th/0012163℄.[51℄ N. Alonso-Alber
a, P. Meessen, T. Ortin. Supersymmetri
 Brane-Worlds.Phys. Lett. B482 (2000) 400-408 [hep-th/0003248℄.



BIBLIOGRAPHY 141[52℄ Markus A. Luty, Raman Sundrum. Hierar
hy Stabilization in WarpedSupersymmetry. Phys. Rev. D64 (2001) 065012 [hep-th/0012158℄.[53℄ Takahiro Tanaka, Xavier Montes. Gravity in the brane-world for two-branes model with stabilized modulus. Nu
l. Phys. B582 (2000) 259-276[hep-th/0001092℄.[54℄ Anupam Mazumdar, R. N. Mohapatra, A. Prez-Lorenzana. Radion Cos-mology in Theories with Universal Extra Dimensions. JCAP 0406 (2004)004 [hep-ph/0310258℄.[55℄ Anindya Datta, Katri Huitu. Hunting Radions at Linear Colliders. Phys.Lett. B578 (2004) 376-383 [hep-ph/0306241℄.[56℄ S. B. Bae, P. Ko, H. S. Lee and J. Lee. Phenomenology of the radionin Randall-Sundrum s
enario at 
olliders. Phys. Lett. B487, 299 (2000)[hep-ph/0002224℄.[57℄ G. F. Giudi
e, R. Rattazzi and J. D. Wells. Nu
l. Phys. Gravis
alars fromhigher-dimensional metri
s and 
urvature-Higgs mixing. B595 (2001) 250[hep-ph/0002178℄.[58℄ U. Mahanta and S. Rakshit. Some low energy e�e
ts of a light stabilizedradion in the Randall-Sundrum model. Phys. Lett. B480 (2000) 176 [hep-ph/0002049℄.[59℄ K. Cheung. Phenomenology of Radion in Randall-Sundrum S
enario.Phys. Rev. D63 (2001) 056007 [hep-ph/0009232℄.[60℄ S. C. Park, H. S. Song and J. Song. Z boson pair produ
tion at LHCin a stabilized Randall-Sundrum s
enario. Phys. Rev. D65 (2002) 075008[hep-ph/0103308℄.[61℄ C. Csaki, M. L. Graesser and G. D. Kribs. Radion Dynami
s and Ele
-troweak Physi
s. Phys. Rev. D63 (2001) 065002[hep-th/0008151℄.



BIBLIOGRAPHY 142[62℄ Jihn E. Kim, Bumseok Kyae, Jong Dae Park. The radion 
ontributionto the weak mixing angle. J. Korean Phys. So
.39:736-740,2001 [hep-ph/0007008℄.[63℄ O. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Kar
h. Modeling the�fth dimension with s
alars and gravity. Phys. Rev. D 62 (2000) 046008[hep-th/9909134℄.[64℄ Anupam Mazumdar, A. Prez-Lorenzana. A dynami
al stabilization of theradion potential. Phys.Lett. B508 (2001) 340-346 [hep-ph/0102174℄.[65℄ For an overview of RS phenomenology, see H. Davoudiasl, J. L. Hewettand T. G. Rizzo. Experimental Probes of Lo
alized Gravity: On and O�the Wall. Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041℄; Bulk GaugeFields in the Randall-Sundrum Model. Phys. Lett. B 473 (2000) 43 [hep-ph/9911262℄; Warped Phenomenology. Phys. Rev. Lett. 84 (2000) 2080[hep-ph/9909255℄.[66℄ Jaume Garriga, Oriol Pujolas, Takahiro Tanaka. Radion e�e
tive potentialin the Brane-World. Nu
l. Phys. B605 (2001) 192-214 [hep-th/0004109℄.[67℄ Antonino Fla
hi, Jaume Garriga, Oriol Pujolas, Takahiro Tanaka. Modulistabilization in higher dimensional brane-models. JHEP 0308 (2003) 053[hep-th/0302017℄.[68℄ A. Fla
hi, D.J. Toms. Quantized bulk s
alar �elds in the Randall-Sundrumbrane-model. Nu
l. Phys. B610 (2001) 144-168 [hep-th/0103077℄.[69℄ Eduardo Ponton, Eri
h Poppitz. Casimir Energy and Radius Stabiliza-tion in Five and Six Dimensional Orbifolds. JHEP 0106 (2001) 019 [hep-ph/0105021℄.[70℄ Ian G. Moss et al. Fermion Casimir energy for a de Sitter brane in AdS(5).Talk given at the 12th Workshop on General Relativity and Gravitation,



BIBLIOGRAPHY 143University of Tokyo, Tokyo, Japan, 25-28 Nov 2002 [hep-th/0303003 ℄;Ian G. Moss et al. Bulk quantum e�e
ts for de Sitter branes in AdS(5).Phys. Rev. D67 (2003) 125010 [hep-th/0302143℄.[71℄ Wade Naylor, Misao Sasaki. Casimir energy for de Sitter branes in bulkAdS(5). Phys. Lett. B542 (2002) 289-294 [hep-th/0205277℄.[72℄ Ralf Hofmann, Panagiota Kanti, Maxim Pospelov. (De)Stabilization of anextra dimension due to a Casimir for
e. Phys. Rev. D63 (2001) 124020.[hep-ph/0012213℄.[73℄ Antonino Fla
hi, Ian G. Moss, David J. Toms. Fermion va
uum energiesin brane-world models. Phys. Lett. B518 (2001) 153-156 [hep-th/0103138℄.[74℄ A. A. Saharian, M. R. Setare. The Casimir E�e
t on Ba
kground of Con-formally Flat Brane{World Geometries. Phys. Lett. B552 (2003) 119-126[hep-th/0207138℄.[75℄ Emilio Elizalde, et al. Casimir e�e
t in de Sitter and Anti-de Sitterbraneworlds. Phys. Rev. D67 (2003) 063515 [hep-th/0209242℄.[76℄ P. Candelas and S. Weinberg, Nu
l. Phys. B237 (1984) 397.[77℄ H. P. Nilles. Dynami
ally broken supergravity and the hierar
hy problem.Phys. Lett. B115 (1982) 193; "Supergravity generates hierar
hies " B217(1983) 366.[78℄ M. Dine, et al. Gluino 
ondensation in superstring models. Phys. Lett.B156 (1985) 55-59.[79℄ Andre Lukas, Burt A. Ovrut, Daniel Waldram. Gaugino Condensation inM-theory on S1=Z2. Phys. Rev. D57 (1998) 7529-7538 [hep-th/9711197℄.[80℄ I. Antoniadis, M. Quiros. On the M-theory des
ription of gaugino 
on-densation. Phys. Lett. B416 (1998) 327-333 [hep-th/9707208℄.



BIBLIOGRAPHY 144[81℄ A. de la Ma
orra, G. G. Ross. Gaugino 
ondensation in 4-D superstringmodels. Nu
l. Phys. B404 (1993) 321-341 [hep-ph/9210219℄.[82℄ Z. Lalak and S. Thomas. Gaugino Condensation, Moduli Potential andSupersymmetry Breaking in M�theory Models. Nu
l. Phys. B515 (1998)55-72 [hep-th/9707223℄.[83℄ A.C. Davis, Ph. Brax, C. van de Bru
k. Brane World Cosmology, theCMB and the Radion. Nu
l. Phys. B148 Pro
eedings Supplements (2005)64-74 [astro-ph/0503467℄.[84℄ Ph. Brax, A. C. Davis. Cosmologi
al Solutions of Supergravity in SingularSpa
es. Phys. Lett. B497 (2001) 289-295 [hep-th/0011045℄.[85℄ Ph. Brax, A. C. Davis. Cosmologi
al Evolution on Self-Tuned Branes andthe Cosmologi
al Constant. JHEP 0105 (2001) 007 [hep-th/0104023℄.[86℄ G. R. Dvali, G. Gabadadze and M. Porrati. 4D gravity on a brane in 5DMinkowski spa
e. Phys. Lett. B 485 (2000) 208 [hep-th/0005016℄.[87℄ C. M. Will. The 
onfrontation between general relativity and experiment.Living Rev. Rel. 4 (2001) 4 [gr-q
/0103036℄.[88℄ R. Durrer and P. Ko
ian. Testing braneworlds with the binary pulsar.Class. Quant. Grav. 21 (2004) 21272138 [hep-th/0305181℄.[89℄ G. Dvali, G. Gabadadze and G. Senjanovi
. Constraints on extra timedimensions. [hep-ph/9910207℄.[90℄ T. Kaluza. Zum Unitatsproblem der Physik. Sitz. Preuss. Akad. Wiss.Phys. Math. K1 (1921) 966.[91℄ O. Klein, Z. F. Physik 37 (1926) 895.[92℄ M. J. Du�. Kaluza-Klein Theory in Perspe
tive. [hep-th/9410046℄.



BIBLIOGRAPHY 145[93℄ W. D. Goldberger and Mark B. Wise. Bulk Fields in the Randall Sun-drum 
ompa
ti�
ation s
enario. Phys. Rev. D60 (1999) 107505, [hep-ph/9907218℄.[94℄ Evgeny I. Bu
hbinder, Burt A. Ovrut. Va
uum Stability in Heteroti
 M-Theory. Phys.Rev. D69 (2004) 086010, [hep-th/0310112℄.[95℄ Evgeny I. Bu
hbinder. Raising Anti de Sitter Va
ua to de Sitter Va
ua inHeteroti
 M-Theory. Phys.Rev. D70 (2004) 066008, [hep-th/0406101℄.[96℄ E. Witten. Strong Coupling Expansion Of Calabi-Yau Compa
ti�
ation.Nu
l.Phys. B471 (1996) 135-158 [hep-th/9602070℄.[97℄ T. Banks and M. Dine. Couplings and S
ales in Strongly Coupled Het-eroti
 String Theory. Nu
l.Phys. B479 (1996) 173-196 [hep-th/9605136℄.[98℄ As a review, see for example: V M Mostepanenko et al. The Casimir e�e
tand its appli
ations. Sov. Phys. Usp. (1988) 31 965-987.[99℄ A. Gonzalez. On Casimir pressure, the Lorentz for
e and bla
k body ra-diation. Physi
a A131 (1985) 228236; P. Milonni, R. Cook, and M. Gog-gin. Radiation pressure from the va
uum: Physi
al interpretation of theCasimir for
e. Phys. Rev. A38 (1988) 16211623.[100℄ V. Hushwater. Repulsive Casimir for
e as a result of va
uum radiationpressure. Am. J. Phys. 65(5) 1997.[101℄ F. Caruso, N.P.Neto, B.F. Svaiter and B.F. Svaiter. Attra
tive or repulsivenature of Casimir for
e in D-dimensionalMinkowski spa
etime. Phys. Rev.D43 (1991) 1300 - 1306.[102℄ Elizalde .E, Romeo .A. Zeta regularization te
hniques with appli
ations.World S
ienti�
 Publishing 
ompany (1994).[103℄ D. Ray and I. Singer. Analyti
 Torsion for Complex Manifolds. Ann.Math. 98 (1973) 154.



BIBLIOGRAPHY 146[104℄ Ian G. Moss. Zeta fun
tions, anomalies and stable branes. in (The futureof theoreti
al physi
s and 
osmology) Edited by G. W. Gibbons, E. P. S.Shellard and S. J. Rankin. Cambridge, UK: Cambridge University Press,p. 373 - 383[105℄ I. G. Moss. Quantum Theory, Bla
k Holes and In
ation. Wiley, New York,1996.[106℄ P. Steinhardt and N. Turok "Cosmi
 evolution in a 
y
li
 universe"Phys.Rev.D 65, 126003 (2002).[107℄ Gonzalo A. Palma, Anne-Christine Davis. Moduli Spa
e Approximationfor BPS Brane-Worlds. Phys. Rev. D70 (2004) 106003 [hep-th/0407036v1℄.[108℄ W. Israel. Singular hypersurfa
es and thin shells in general relativity.Nuovo Cimento B44, 1 (1966).[109℄ K. Behrndt and S. Gukov. Domain Walls and Superpotentials from M -theory on Calabi- Yau Three-Folds. Nu
l.Phys. B580 (2000) 225-242 [hep-th/0001082℄.[110℄ M. Be
ker and D. Constantin. A Note on Flux Indu
ed Superpotentialsin String Theory. JHEP 0308 (2003) 015 [hep-th/0210131℄.[111℄ Filipe Pa

etti Correia, Mi
hael G. S
hmidt. Moduli stabilization in het-eroti
 M-theory. Mod. Phys. Let. A, Vol. 14, 02 (1999) 125-133 [hep-th/0708.3805℄.[112℄ H.P. Nilles, M. Ole
howski, M. Yamagu
hi. Supersymmetry Breaking andSoft Terms in M-Theory. Phys. Lett. B415 (1997) 24-30 [hep-th/9707143℄.[113℄ E. Witten. String Theory Dynami
s in Various Dimensions. Nu
l. Phys.B443 (1995) 85 [hep-th/9503124℄.[114℄ Miao Li. Introdu
tion to M -theory. [hep-th/9811019℄.



BIBLIOGRAPHY 147[115℄ John H. S
hwarz. Introdu
tion to Superstring Theory. [hep-ex/0008017℄.[116℄ John H. S
hwarz. Introdu
tion toM -theory and AdS/CFT Duality. [hep-th/9812037℄.[117℄ E. Cremmer, B. Julia, and J. S
herk. Supergravity Theory in 11 Dimen-sions. Phys. Lett. 76B (1978) 409.[118℄ M. Nakahara. Geometry, Topology, and Physi
s. 2nd edition, Taylor andFran
is, 2003.[119℄ H.Davoudiasl, J.L. Hewett, T.G. Rizzo. Warped Phenomenology. Phys.Rev. Lett. 84 (2000) 2080 [hep-ph/9909255℄.[120℄ R. Gregory, V.A. Rubakov, S.M. Sibiryakov. Opening up Extra-dimensions at Ultra-large S
ales. Phys. Rev. Lett. 84 (2000) 5928-5931[hep-th/0002072℄.[121℄ C. De�ayet, g. R. Dvali, G. Gabadadze. A

elerated Universe from Grav-ity Leaking to Extra dimensions. Phys. Rev. D 65 (2002) 044023 [hep-ph/0105068℄.[122℄ G. Dvali, G. Gababadze and M. Shifman. Diluting Cosmologi
al Constantin In�nite Volume Extra Dimensions. Phys. Rev. D67 (2003) 044020[hep-th/0202174℄.[123℄ S.F.King, S. Moretti, R. Nevzorov. Gauge Coupling Uni�
ation in theEx
eptional supersymmetri
 Standard Model. Phys. Lett. B 650 (2007)57-64 [hep-ph/0701064℄.[124℄ R. Arnowitt, B. Dutta. Yukawa Textures in Heteroti
 M-Theory. [hep-th/0011181℄.[125℄ Lukas, A., Ovrut, B.A., and Waldram, D. On the Fourth-DimensionalE�e
tive A
tion of Strongly Coupled Heteroti
 String Theory. Nu
l. Phys.B532 (1998) 43-82 [hep-th/9710208℄.



BIBLIOGRAPHY 148[126℄ Ashoken Sen. Stable non-BPS states in string Theory. Int. J. Mod. Phys.A15(2000) 771-820 [hep-th/9803194℄.[127℄ John Ellis, Zygmunt Lalak, Stefan Pokorski, Witold Pokorski. Five-Dimensional Aspe
ts of M-Theory Dynami
s and Supersymmetry Break-ing. Nu
l. Phys. B540 (1999) 149-186 [hep-ph/9805377℄.[128℄ J. Gray, A. Lukas, and B. Ovrut. Flux, Gaugino Condensation and Anti-Branes in Heteroti
 M-theory. Phys. Rev. D76, 126012 (2007) [0709.2914℄.[129℄ M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett. B156, 55(1985).[130℄ A. Lukas, B. A. Ovrut, and D. Waldram. Gaugino Condensation in M-theory on S1=Z2. Phys. Rev. D57 (1998) 7529 [hep-th/9711197℄.[131℄ P. Horava. Gluino Condensation in Strongly Coupled Heteroti
 StringTheory. Phys. Rev. D54 (1996) 7561 [hep-th/9608019℄.[132℄ G. Curio and A. Krause. Four-Flux and Warped Heteroti
 M-TheoryCompa
ti�
ations. Nu
l. Phys. B602 (2001) 172 [hep-th/0012152℄.[133℄ A. Krause. Supersymmetry Breaking with Zero Va
uum Energy in M-Theory Flux Compa
ti�
ations. Phys. Rev. Lett. 98 (2007) 241601 [hep-th/0701009℄.[134℄ S. Ka
hru, R. Kallosh, A. Linde, and S. P. Trivedi. de Sitter Va
ua inString Theory. Phys. Rev. D68 (2003) 046005 [hep-th/0301240℄.[135℄ C. P. Burgess, J. P. Derendinger, F. Quevedo, and M. Quiros. On GauginoCondensation with Field-Dependent Gauge Couplings. Annals Phys. 250(1996) 193 [hep-th/9505171℄.[136℄ I. G. Moss. Boundary terms for eleven-dimensional supergravity and M-theory. Phys. Lett. B577 (2003) 71 [hep-th/0308159℄.



BIBLIOGRAPHY 149[137℄ I. G. Moss. A new look at anomaly 
an
ellation in heteroti
 M -theoryPhys. Lett. B637 (2006) 93 [hep-th/0508227℄.[138℄ Alberto Ni
olis, Ri

ardo Rattazzi. Classi
al and Quantum Consisten
yof the DGP Model. JHEP 0406 (2004) 059 [hep-th/0404159℄.[139℄ M. A. Luty, M. Porrati and R. Rattazzi. Strong intera
tions and stabilityin the DGP model. JHEP 0309, 029 (2003) [hep-th/0303116℄.[140℄ E.Witten. Strong Coupling Expansion of Calabi-Yau Compa
ti�
ation.Nu
l. Phys. B471 (1996) 135 [hep-th/9602070℄.[141℄ K. Choi, A. Falkowski, H. P. Nilles, M. Ole
howski and S. Pokorski, JHEP0411 (2004) 076 [hep-th/0411066℄ ; K. Choi, A. Falkowski, H. P. Nilles andM. Ole
howski, Nu
l. Phys. B 718 (2005) 113 [hep-th/0503216℄; M. Endo,M. Yamagu
hi and K. Yoshioka, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036℄; K. Choi, K. S. Jeong and K. i. Okumura, JHEP 0509 (2005)039 [hep-ph/0504037℄. A. Falkowski, O. Lebedev and Y. Mambrini, JHEP0511 (2005) 034 [hep-ph/0507110℄; K. Choi, K. S. Jeong, T. Kobayashiand K. i. Okumura, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029℄.[142℄ Fernando Quevedo. Gaugino Condensation, Duality and SupersymmetryBreaking. Nu
l. Phys.Pro
.Suppl. 46 (1996) 187-197 [hep-th/9511131v1℄.[143℄ S. Gukov, C. Vafa and E. Witten. CFTs from Calabi-Yau Fourfolds. Nu
l.Phys. B584 (2000) 69 [hep-th/9906070℄.[144℄ T. Taylor and C. Vafa. RR 
ux on Calabi-Yau and partial supersymmetrybreaking. Phys. Lett. B474 (2000) 130 [hep-th/9912152℄.[145℄ G. Curio, A. Klemm, D. Lust and S. Theisen. On the Va
uum Stru
tureof Type II String Compa
ti�
ations on Calabi-Yau Spa
es with H Fluxes.Nu
l. Phys. B609 (2001) 3 [hep-th/0012213℄.



BIBLIOGRAPHY 150[146℄ S. B. Giddings, S. Ka
hru and J. Pol
hinski. Hierar
hies from Fluxesin String Compa
ti�
ations. Phys. Rev. D 66 (2002) 106006 [hep-th/0105097℄.[147℄ A. Falkowski, O. Lebedev and Y. Mambrini. SUSY Phenomenology ofKKLT Flux Compa
ti�
ations. JHEP 0511 (2005) 034 [hep-ph/0507110℄.[148℄ L. Anguelova and K. Zoubos. Flux Superpotential in Heteroti
 M-theory.Phys. Rev. D74 (2006) 026005 [hep-th/0602039℄.[149℄ I. G. Moss. Super
uidity in Super-Yang-Mills Theory. [hep-th/0712.2568v1℄.[150℄ N. K. Nielsen. Ghost 
ounting in supergravity. Nu
l. Phys. B140, 400(1978).[151℄ R. E. Kallosh. Modi�ed Fyenmann Rules in Supergravity. Nu
l. Phys.B141, 141 (1978).[152℄ Sergio Luki
 and Gregory W. Moore. Flux Corre
tions to Anomaly Can-
ellation in M -theory on a manifold with boundary. [hep-th/0702160v1℄.[153℄ I. Antoniadis, M. Quiros. Supersymmetry breaking in M-theory and gaug-ino 
ondensation. Nu
l.Phys. B505 (1997) 109-122 [hep-th/9705037v2℄.


