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Abstract 

 

 Animal scientists have been challenged to improve animal production systems with 

respect not only to competitiveness and efficiency but at the same time producing products 

which are healthy for the consumers and friendly to the environment. Plant secondary 

metabolites such as tannins, saponins, and essential oils have been investigated for their 

advantageous outcomes as ‘natural’ additives to manipulate rumen fermentation via 

decreased ammonia (NH3) and methane (CH4) production, improved animal health and 

vitality, and increased meat quality. Tea leaves is one of native plants being rich in 

secondary metabolites and widely known to have health benefits for human consumption. 

However, the information on chemical characteristics of tea leaves and their spent tea 

leaves (STL) as residues along with their prospective as additives for ruminants is still 

inadequate. Therefore, a series of four studies aimed to evaluate chemical characteristics of 

tea and their STL as additives for their use in ruminant diets through in-vitro and in-vivo 

experiments.   

 The first study aimed to (1) characterize chemical composition, plant secondary 

metabolites, minerals, and fatty acid profiles in green (GTL) and black (BTL) tea leaves as 

well as their STL, and to (2) test the hypothesis that a higher tea-to-water ratio would 

affect the extraction of the chemical compounds from tea leaves into water to yield a more 

nutrient-rich tea drink and STL. Green (SGTL) and black (SBTL) STL were  obtained 

following a 3 x 2 factorial arrangement by extracting 3 different amounts (T1= 2.8 g, T2= 

5.6 g and T3= 11.2 g) of the 2 tea types (green and black) in a fixed volume of 300 ml 

boiling water for 5 minutes. GTL and BTL had similar (g/kg DM or as stated otherwise) 

dry matter (DM, g/kg), organic matter (OM), crude protein (CP), ash, and total 

monounsaturated fatty acids (MUFA, %) but GTL had significantly higher ether extract 

(EE), total phenols (TP), total tannins (TT), condensed tannins (CT), total saponins (TS), 

alkaloids, catechins, and total polyunsaturated fatty acids (PUFA, %) with lower neutral 

(NDF) and acid (ADF) detergent fibres, theaflavins, and total saturated fatty acids (SFA, 

%) compared with BTL. There was no significant difference between GTL and BTL for 

most mineral components (mg/kg DM) except Mn, which was significantly higher in GTL, 

and Na and Cu which were significantly higher in BTL. Company SGTL (CSGTL) had the 

same CP, NDF, CT, alkaloids, SFA, MUFA, PUFA, Mg, Cu, and Cd but higher EE, ash, 

TP, TT, TS, catechins, Ca, K, P, Mn, Fe, Cr, and Pb with lower DM, OM, ADF, and 

theaflavins compared with company SBTL (CSBTL). In addition, a higher tea-to-water 

ratio during extraction significantly reduced the loss of soluble compounds into water and 

hence yielded a more nutrient-rich STL. Based on these analyses it appears that the GTL 

and BTL alongside their STL have the potential for use as sources of protein, fibre, 

secondary metabolites, and minerals in ruminant diets. The presence of high levels of plant 

secondary metabolites in either tea leaves or their STL suggests that they may have the 

potential for their use as feed additives in ruminant diets.  

 The second study examined the potential effect of tea products such as GTL, BTL, 

SGTL, SBTL, CSGTL, and CSBTL inclusions at different doses at 0 (control), 50, 100, 

and 200 g/kg DM into diets containing rice straws (RS) on rumen in-vitro dry matter 

degradability (IVDMD, g/kg DM), organic matter degradability (IVOMD, g/kg DM), NH3 

(mg/L), and VFA (mmol/L) concentrations during 5 different incubation times (0h, 6h, 

24h, 48h and 72h).  The experimental diets were also compared for total gas production 

(tGP, L/kg OM) and pH during 48h incubation. Across different incubation times, GTL 

inclusions significantly increased both IVDMD and IVOMD compared with the control 

diet but all BTL inclusions did not improve IVDMD and IVOMD. GTL inclusions 

significantly reduced rumen NH3 concentrations compared with the control diet with the 

greater NH3 concentration reduction at the higher doses. BTL inclusions at 100 and 200 
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g/kg DM were able to decrease NH3 concentrations from the control diet. Most GTL and 

BTL inclusions had no significant effect on VFA concentrations except increased acetate 

for GTL200, decreased iso-butyrate for BTL200, decreased iso-valerate for GTL100 and 

all BTL inclusions, and decreased n-valerate for BTL200 inclusion compared with the 

control diet. GTL or BTL inclusions did not significantly affect either tGP or pH although 

they tended to produce a higher tGP compared with the control diet. SGTL or SBTL and 

CSGTL or CSBTL inclusions at 50, 100 and 200 g/kg DM into RS-based diets 

significantly improved both IVDMD and IVOMD compared with the control diet with the 

optimum inclusions at up to 200 g/kg DM for SGTL and CSGTL and up to 100 g/kg DM 

for SBTL and CSBTL. All SGTL or SBTL inclusions significantly reduced rumen NH3 

concentrations compared with the control diet but a similar NH3 reduction was only 

achieved by CSGTL100, CSGTL200, and CSBTL100 inclusions. Moreover, all SGTL or 

SBTL and CSGTL or CSBTL inclusions had no significant effect on tVFA concentrations 

compared with the control diet. SGTL200 inclusion reduced pH significantly but other 

STL inclusions had the same pH as the control diet. In addition, all SGTL and SBTL 

inclusions increased tGP significantly compared with the control diet after 24h and beyond 

for up to 48h incubations. Most CSGTL and CSBTL inclusions had a minor effect on pH 

except being significantly higher for CSBTL200 compared with the control diet. Most 

CSGTL and CSBTL inclusions tended to increase tGP from the control diet after 24h and 

48h incubations and significantly so for CSGTL200 inclusion. The results suggest that 

most tea leaves and their STL inclusions into an RS-based diet could improve in-vitro 

degradability while reducing the potential excess of rumen NH3 concentrations except BTL 

which was able to reduce NH3 concentrations at greater doses but did not improve in-vitro 

degradability. The reduction of rumen NH3 concentrations could be a sign that the dietary 

protein was perhaps bound by tannins and protected from rumen digestion, and may then 

be available as by-pass proteins to be absorbed in the small intestine. However, this 

hypothesis cannot be verified in the in-vitro study carried out here alone. 

 The third study evaluated green and black teas alongside their spent leaves for in-

vitro degradability, fermentation, and gas profiles in different diet types. This evaluation 

was begun by comparing tea leaf products such as GTL, BTL, SGTL, SBTL, CSGTL, and 

CSBTL with different feed types such as concentrate (CON), ryegrass hay (RH), perennial 

ryegrass silage (PRS), rice straws (RS), barley straws (BS), and wheat straws (WS) on 

IVDMD, IVOMD, in-vitro crude protein degradability (IVCPD, g/kg DM), NH3, VFA, 

pH, tGP, and CH4, production (L/kg OM) after 28h incubation. After that, further 

investigations were conducted to examine the potential effect of the above tea leaf product 

inclusions at doses 0, 50, 100 g/kg DM for GTL and BTL or 0, 100, 200 g/kg DM for 

SGTL, SBTL, CSGTL, and CSBTL into 2 different total mixed diets containing either RS 

or RH on the same rumen in-vitro measurements as above after 24h incubation. There were 

no differences between tea leaf products on IVOMD and IVCPD but all tea leaf products 

had higher IVOMD and IVCPD than the straws. CON had the highest IVOMD and IVCPD 

in comparison with other feeds. GTL had the lowest NH3 concentrations, followed by BTL, 

SGTL, SBTL and the other feeds. There were no differences between most tea leaf 

products, RH, PRS, and all the straws on tVFA concentrations but RS and WS produced 

the lowest tVFA concentrations whereas CON produced the highest tVFA concentrations. 

Conversely, CON had the lowest pH levels than others but it was not significantly different 

to the pH of GTL, SGTL, and PRS. GTL, SGTL, and RH produced higher tGP than BTL, 

SBTL, and all the straws but less than CONC and PRS. GTL, BTL, and SBTL produced 

lower CH4 production than CON, PRS, and CSGTL but GTL and BTL produced a similar 

level of CH4 outputs as the straws. Across different diet types, most GTL and BTL 

inclusions had no significant effect on IVOMD, IVCPD, VFA, and tGP but GTL100 

inclusion significantly increased IVCPD compared with the control diet. Moreover, 

GTL50, GTL100 and BTL100 inclusions significantly decreased NH3 concentration 



ix 

 

compared with the control diet. Rumen pH could be decreased from the control diet by 

GTL50 and GTL100 inclusions only. In addition, most GTL and BTL inclusions tended to 

decrease CH4 production from the control diet and it was significant for BTL100 inclusion. 

Most STL inclusions had no significant effect on IVOMD, IVCPD, NH3, pH, and VFA 

profiles except higher IVCPD for CSGTL100 and CSGTL200, and lower pH for 

CSGTL200 compared with the control diet. SGTL100, SGTL200, and CSGTL200 

inclusions increased tGP significantly compared with the control diet but not for other STL 

inclusions. In addition, all STL inclusions produced a similar level of CH4 productions as 

the control diets. The results suggest that GTL and BTL inclusions into different diets 

decreased NH3 concentrations and CH4 outputs without any detrimental effects on in-vitro 

degradability and the rumen fermentation but the ability to do so by their STL was lower 

than the original tea leaves.   

 The final study was in-vivo to investigate the effect of GTL inclusions at 0, 10, and 

20% DM into either low (LoCON) or high (HiCON) concentrate supplementations on ad-

libitum silage intakes (SIL, g DM/d), total dry matter intakes (tDMI, g DM/d), average 

daily gain (ADG, g Lwt/d), feed conversion ratio (FCR), nutrient digestibility (g/kg DM), 

carcass percentages and grades, rumen fermentation, and subcutaneous fatty acid profiles 

(%) of growing lambs during a 10 week feeding trial. Across CON levels, the GTL 

inclusions had no significant effect on tDMI, SIL intakes, ADG, rumen pH, NH3 and tVFA 

concentrations, carcass percentages and grades, n3:n6 ratio, and some nutrient digestibility 

such as DM, OM, CP, EE, fibre, and TS but the GTL inclusions increased ash, TP, and TT 

digestibility significantly compared with the control diet. GTL inclusions had also 

significant increases in Ca, Mn, and Zn digestibility than the control diet but they had no 

effect on K digestibility and reduced Na digestibility at higher inclusion. Fe, Mg, and P 

digestibility tended to increase due to GTL inclusions although it did not reach 

significance. Moreover, GTL inclusions reduced SFA significantly with significant 

reduction in palmitic acid but increased MUFA significantly by increasing oleic acid,  c11 

C18:1, and c12 C18:1 compared with the control diet. GTL inclusions tended to increase 

PUFA although this increase did not reach significance. Across the GTL inclusions, the 

lambs on LoCON were able to compensate their tDMI by consuming significantly greater 

SIL than those on HiCON but HiCON lambs tended to have better ADG than those on 

LoCON. The lambs on HiCON had significantly higher DM, OM, and TP digestibility, and 

rumen tVFA concentrations but lower rumen pH and n3:n6 ratio in the fat samples than 

those on LoCON. In addition, there was no significant different between HiCON and 

LoCON on FCR, carcass percentages and grades, mineral digestibility, rumen NH3 

concentrations, SFA, MUFA, and PUFA. The results indicate that adding GTL into 

ruminant diets could increase mineral digestibility such as Ca, Mn, Zn Fe, Mg, P, and 

improve fatty acids quality in meat without affecting animal performance. The use of GTL 

as a feed additive should be mixed with highly palatable diet such as concentrate and its 

inclusion for growing lambs should not exceed 30 g DM/d/head to encourage consumption 

and avoid refusal. 

 It can be concluded that tea leaves can be potentially used as additives for 

ruminants to improve the degradability of low quality forage and to decrease in-vitro 

rumen NH3 and CH4 productions but their ability to do so by their STL depends upon their 

tannin and saponin contents. In addition, GTL can improve some mineral digestibility and 

meat fatty acids quality without affecting animal performance.  

 

Keywords: tea leaves, spent tea leaves, ruminant feed additives. 
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Chapter 1: General introduction 

 

Indonesia is a tropical archipelago country which lies along the equator and is 

situated between latitudes 6
o
 North and 11

o
 South and between 97

o
 and 141

o
 longitudes 

East. It is located between two continents of Asia and Australia/Oceania, with a total land 

area of about 1.9 million square kilometers. The country has only two seasons of wet and 

dry, and average daily temperatures are from 23
o 
to 28

o
C and the average humidity is about 

80%.  

The human population has been growing significantly from about 205 million in 

2000 to 238 million in 2010 and hence it is the 4
th

 largest populated country in the world 

(ISC, 2010). Although about 12.5% of Indonesians currently live below the poverty line, 

national income per capita is expected to rise as Indonesia has reached a worthy economic 

growth of 6.4% annual GDP in 2011 and it is expected to remain stable in 2012 and 2013 

(World Bank, 2012). The high population and favourable economic situation has lead to 

the increased demand for animal-derived food products including red meat from ruminants 

such as cattle, buffalo, sheep, and goat. The increased demand is due to the fact that more 

people are now aware of their benefits as high-quality protein sources. As the world’s 

largest Muslim country, it is common that this demand climbs significantly on the annual 

celebration days of Eidul Fitr
1
 and Eidul Adha

2
. Also, the obligation of aqiqah

3
 for Muslim 

parents increases the demand for slaughtering cattle, buffalo, sheep, or goats. However, 

this demand has not been followed by a significant increase of local ruminant production. 

It can be seen that there was nearly 100% rise in livestock food products importation, 

mainly beef from 50,250 tons in 2004 to 100,473 tons in 2008 and about 142% growth in 

the live feeder cattle import from 235 to 570 thousand head in the same years (Directorate 

General of Livestock and Veterinary Services, 2010). 

Aware of the current situation, the government has issued a national programme for 

self-sufficiency in red meat production that is targeted to be achieved in 2014 (Directorate 

General of Livestock and Veterinary Services, 2010). For this purpose, supporting funds 

and activities have been primarily directed to improve breeding systems. Traditional 

farmers have been developed through village breeding centre schemes while private sector 

breeders are subsidized. These works are conducted in order to supply a sufficient number 

of yearling ruminants with reasonable prices for the fattening sector.  

                                                 
1
 A religious Islamic day that marks the end of fasting month (Ramadan). 

2
 Religious Islamic days where Muslims are encouraged to sacrifice rams, bulls, buffaloes, or other 

alternative livestock and the meats are given to the poor and needy plus friends, relatives, and neighbours. 
3
 The obligation of parents to sacrifice rams or goats after having a newly born child. 
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As animal feeds contribute significantly the total cost of livestock production, 

careful attention to source affordable feeds is also important. The price of grains is likely to 

continue to increase due to their use not only for human consumption but also for 

alternative energy, bioethanol. Recently, the massive use of alternative feed by-products 

such as soybean meal, dried distillers grains, palm kernel meal, and rice bran etc. for 

poultry diets put their prices unreasonably high for ruminant production, particularly for 

traditional small-scale farmers. In addition, the availability of high quality forages is 

becoming limited because many pastures have changed into crops, housing, or industries. 

Only low quality forages such as rice straws are readily available. Unfortunately, these 

forages have poor palatability and nutritional values with low crude protein (CP) and 

organic matter (OM) but high in fibre, lignin, and silica contents (Eun et al., 2006; Khan 

and Chaudhry, 2010; Van Soest, 2006). Therefore, researchers are challenged to discover 

suitable rumen manipulation and feeding strategies for better and more economical 

ruminant production while considering health and safety aspects of animal-derived foods 

for both human consumption and the environment. Native tropical plants, such as tea 

leaves, have the potential to manipulate rumen fermentation through their chemical 

composition in particular their natural constituents such as plant secondary metabolites. 

Indonesia produced about 142,400 tons of tea leaves in 2011 and almost half of it 

was consumed locally (FAO, 2013). Tea consumption tends to increase as people are more 

aware of its benefits for health. Tea contains alkaloids, mainly caffeine and polyphenols 

such as catechins in green tea and theaflavins in black tea. Catechins are reported to cause 

chemo-prevention by inactivating potentially harmful free-radical oxygen in the body 

(Andlauer and Héritier, 2011; Chen et al., 2000; Higdon and Frei, 2003). These are also 

known for their anti-obesity (Maki et al., 2009) as well as anti-breast cancer (Shrubsole et 

al., 2009) properties. Also, theaflavins have similar potential antioxidant activities (Leung 

et al., 2001; Stewart et al., 2005) with decreased risk of coronary heart (Gardner et al., 

2007) and cardiovascular (Duffy et al., 2001) diseases. In moderate consumption, caffeine 

also contains beneficial antioxidants (Prasanthi et al., 2010; Vignoli et al., 2011). Price et 

al. (1998) reported that tea also contains quercetins, kaempferols and myricetin glycosides 

which are known for their potential antioxidant activities. Rutin, a flavonol quercetin 

glycoside is reported to have antioxidant and anti-inflammatory activities which can reduce 

the risk of cancer, coronary heart disease, and atherosclerosis (Alía et al., 2006; Kurisawa 

et al., 2003). Aware of the market opportunity, beverage industries have taken the initiative 

to produce a large quantity of ready-to-drink bottled and canned teas, with or without 

fruity-flavours. These instant drinks have been becoming popular among people in recent 
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years not only in tea-producing countries but also throughout the world. This increased tea-

drink production has resulted in large quantities of water insoluble residues as spent tea 

leaves (STL). Consequently, the tea beverage industry is facing a challenge of dealing with 

STL as a waste which currently is transported to landfills for dumping (Kondo et al., 2006; 

Xu et al., 2007). This not only leads to the additional cost for the company but also creates 

environmental problems. Hence, the utilization of STL as a feed additive for ruminant 

animals has been suggested and looks promising, but some research-based studies to 

support its use in ruminant diets is needed. 

The chemical composition of tea leaves are appropriately described by Chu and 

Juneja (1997). Tea leaves have a number of available compounds such as various amino 

acids, proteins, vitamins, minerals, and polyphenols including tannins (Chu and Juneja, 

1997), as described above. The main phenolic components in tea leaves are catechins in 

green tea (Chen et al., 2008; Chu and Juneja, 1997; Peng et al., 2008; Song and Chun, 

2008) and theaflavins in black tea (Subramanian et al., 1999; Turkmen and Veliooglu, 

2007). Several studies have reported that STL have the potential as a protein source for  

ruminants without any harmful effect as assessed by both in-vitro (Kondo et al., 2004a; 

Kondo et al., 2006) and in-vivo studies (Kondo et al., 2007b; Kondo et al., 2007a; Kondo 

et al., 2004b; Kondo et al., 2007c; Xu et al., 2008; Xu et al., 2007). Other plant secondary 

metabolites, called saponins, also have been found in both green and black tea leaves 

(Babayemi et al., 2006; Wina et al., 2005) and their STL (Babayemi et al., 2006).  

 Plant secondary metabolites such as tannins and saponins have the potential as 

natural additives for ruminants to manipulate rumen fermentation. These can enhance 

protein and/or energy utilization (Benchaar et al., 2008; Bodas et al., 2012; Hart et al., 

2008; Patra and Saxena, 2009a), mitigate methane (CH4) production (Beauchemin et al., 

2009; Bodas et al., 2012; Goel and Makkar, 2012; Patra and Saxena, 2009b), control bloat 

and nematodes (Hoste et al., 2006; Rochfort et al., 2008), and improve meat and milk 

qualities (Rochfort et al., 2008; Vasta and Luciano, 2011). Tannins can reduce the 

solubility and rumen degradability of most leaf proteins due to their potential binding with 

proteins. Consequently, they can reduce rumen ammonia (NH3) production and increase 

the availability of by-pass protein and non-ammonia nitrogen (N) supply to be absorbed in 

the small intestine (Makkar, 2003a; McSweeney et al., 2001; Min et al., 2003; Mueller-

Harvey, 2006). Although NH3 is an important source of N for rumen microbes, its over or 

fast production may exceed the ability of microbes to utilize it. This can lead to an 

excessive NH3 supply that, after absorption through the rumen wall, can enter the blood 

stream, liver, and eventually excreted in urine as an N waste (Attwood et al., 1998; 
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Szumacher-Strabel and Cieślak, 2010). Tannins can lower CH4 production by slowing the 

inter-species transfer of H2 into methanogenic bacteria and thus depress their growth 

(Boadi et al., 2004; Makkar, 2003a; Mueller-Harvey, 2006). Tannins also have the 

potential to improve animal health through their antioxidant properties to prevent bloat and 

break protein-rich cells of nematodes (Ishihara and Akachi, 1997; Ishihara et al., 2001; 

Mueller-Harvey, 2006). In addition, tannin supplementation has been reported to increase 

the rumenic acid and polyunsaturated fatty acids (PUFA), and decrease saturated fatty 

acids (SFA) in ruminant products such as meat and milk through altered bio-hydrogenation 

by changing the microbial population in the rumen (Vasta et al., 2009; Vasta et al., 2010; 

Wood et al., 2010). Similarly, several studies have shown that tea saponins have a 

suppressing effect on the release of CH4 and NH3 by rumen in-vitro (Hu et al., 2005) and 

in-vivo studies on growing lambs (Mao et al., 2010) by reducing protozoa and supposedly 

lowering the methanogenic activity of protozoa-related methanogens (Guo et al., 2008; 

Wina et al., 2005). CH4 and NH3 are energetically wasteful end products of rumen 

fermentation so that the reduction in production of the end product CH4 in the rumen is 

assumed to be the reflection of more efficient feed utilization (Hu et al., 2005). 

Agricultural activities are supposed to be responsible for 40 - 60% of the total 

anthropogenic CH4 production while 25 - 40% of this comes from the livestock sector, 

predominantly from ruminants through their eructation and manures (Attwood and 

McSweeney, 2008; Boadi et al., 2004; Moss et al., 2000). CH4 production is also 

associated with the loss of dietary gross energy by 2 - 12% (Johnson and Johnson, 1995). 

Hence, CH4 mitigation in ruminants is an aim, not only for environmental advantage, but 

also for feed utilization efficiency and researchers are challenged to mitigate CH4 without 

negatively affecting animal performance. Lastly, if the chemical properties of tea products 

are able to manipulate rumen fermentation, these products can be used as a natural 

alternative to replace growth-promoting antibiotics that have been banned in the European 

Union since 2003 (1831/2003; EC, 2003) and which may also be banned in other countries 

such as Indonesia in the future. 
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Chapter 2: Literature review 

 

This literature review provides a theoretical background to the study area on the 

chemical characterization and potential use of tea and spent tea leaves as ruminant feed 

additives. 

2.1 Tea leaves manufacturing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 There are three different types of tea leaves according to manufacturing process 

namely black, green, and Oolong tea leaves. Black tea is made by subjecting the fresh tea 

leaves to a complete oxidative process involving the enzymes from the leaves by rolling 

leaves under pre-determined temperature and humidity; green tea is not oxidized and 

Oolong tea is only partly subjected to this oxidative process (Figure 2.1, Chu, 1997). In 

general, black tea has the majority of production worldwide while green tea and Oolong 

tea represent about 20% and less than 2 % of production, respectively (Graham, 1992). 

However, in some Asian countries such as Japan and China, green tea is more popularly 

consumed than the black tea.   

Fresh tea leaves 

Withering (3 minutes = min., 90
o
C) 

  

Rolling (15 min.) 

1
st
 drying (25 min.) 

Inlet temp.  135
0
C 

Outlet temp. 55
0
C 

Water content 30-35% 

 

2
nd

 drying (90 min.) 

Temp.  <70
o
C 

Water content <5% 

 

Green tea leaves 

Fresh tea leaves 

Withering (16 h, 28
o
C) 

  

Rolling (15 min.) 

Oxidative fermentation 

(30-60 min) 

Humidity 90% 

Temp 22-24 
0
C 

 

drying (30 min.) 

Inlet temp.  70
o
C 

Black tea leaves 

Figure 2.1 Typical sequence of green and black tea manufacturing in Indonesia. 
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2.2 Chemical composition of tea leaves 

2.2.1  Protein, sugars, fibre, lipid, and vitamin  

 Tea leaves, after being manufactured to be black and green teas, have typically ≥ 

95% dry matter (DM) content and this assists this material to be durable for long-term 

storage. Also, tea leaves have considerable amount of crude protein (CP) (18.2 - 30.7%), 

sugars (28.6 - 39.2%), fibre (100 - 195%), and vitamin A (6,700 - 16,000 IU/100g DM) but 

are relatively low in fat and some vitamins (Table 2.1). 

 

Table 2.1 Protein, sugars, fibre, lipid, and vitamin compositions of tea leaves. 

Nutrients 
Tea leaves

1 

(g/kg DM)
 

DM (g/kg) 950 - 978 

Protein  182 - 307 

Free amino acids
  

2 - 58 

Total N 
 

34.6 - 63.6 

Sugars  286 - 392 

Fibre  100 - 195 

Lipid 35 - 53 

Vitamins A (IU/100g DM) 6,700 - 16,000 

Vitamin B1  0.001 - 0.006 

Vitamin B2  0.008 - 0.018 

Vitamin C    0.44 - 2.50 

Niacin  0.04 - 0.1 

1 
Various grades of black and green tea leaves. Adapted from Chu and Juneja (1997). 

2.2.2 Minerals 

 Table 2.2 shows minerals composition of tea leaves from various grades and 

brands. The contents of minerals in black and green teas are varied and likely to be 

dependent upon species, soil types, soil treatments, and manufacturing processes. 
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Table 2.2 Mineral composition (mg/kg DM) of tea leaves. 

Minerals Black tea
 

Green tea 

Essential elements   

Ca 3,609 - 4,278 
 

n.a 

Cu 23.21 - 49.39  0.20 - 0.90  

Co 0.06 - 0.40  0.40 - 1.20  

Fe 0.9 - 188.1  0.40 - 1.20  

Mg 105 - 2,029 
 

4.80 -  9.70  

Mn 488.8 - 608.3 
 

n.a 

Se 0.001 - 0.10  0.10 - 0.60  

Zn 6.30 - 24.10  4.80 - 9.70  

Toxic elements   

Al 891.2 - 1,143  n.a 

Ni 4.88 - 10.03 n.a 

Cd 0.07 - <0.76  n.d  

Pb 1.91 - 2.01  n.d - 0.2  

Cr <1.54 - 7.92  n.d. - 0.5  

As n.d - 0.01  n.d  

n.a, data not available; n.d, not detectable; Black and green tea samples were from various 

brands as adapted from Salahinejad and Aflaki (2009) and Shen and Chen (2008). 

 

 It can be seen that Ca, Cu, Mg, Mn, Zn, and Al are the most abundant minerals in 

tea leaves. These minerals are essential for ruminants and should be provided in the diet to 

meet their requirements for growth and formation of bones and teeth (McDonald et al., 

2011; Underwood and Suttle, 1999). Heavy metals such as Cr, although in minor amounts, 

are also useful for ruminants as Cr supplementation can have beneficial effects on 

livestock performance and health (Bernhard et al., 2012) by altering insulin sensitivity and 

lipid metabolism (Bernhard et al., 2012; Mallard et al., 1999). There are four general 

functions of minerals for livestock nutrition as follows (McDonald et al., 2011; 

Underwood and Suttle, 1999): (1) Structural:  Some organs and tissues are structurally 

formed by minerals, for example calcium, phosphorus, magnesium, fluorine, and silicon 

are essential components of bones and teeth while phosphorus and sulphur are a necessity 

for the synthesis of muscle proteins; (2) Electrochemical or physiological: Minerals such 

as sodium, potassium, and chlorine occur in body fluids and tissues as electrolytes to 

maintain osmotic pressure, acid-base balance, membrane permeability, and tissue 
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irritability; (3) Regulatory: minerals have been found to regulate cell replication and 

differentiation, for instance zinc has a role to influence the transcription process in which 

genetic information from the nucleotide sequence of DNA is transferred to that of an RNA 

molecule, and (4) Catalytic: Minerals can play a role as catalysts in enzyme and hormone 

systems, integral and specific components of the structure of metalloenzymes or less 

specific activators within those systems as described in the following table. 

 

Table 2.3 Several functions of minerals in enzymes (metalloenzymes) in animals. 

Metal Enzyme Function 

Fe Succinate dehydrogenase 

Cytochromes a,b and c catalase 

Aerobic oxidation of carbohydrates 

Electron transfer, protection against H2O2 

Co Cytochrome oxidase 

Lysyl oxidase 

Ceruloplasmin (ferroxidase) 

Superoxide dismutase 

Terminal oxidase 

Lysine oxidation 

Iron utilization: copper transport 

Dismutation of superoxide radical O2 

Zn Carbonic anhydrase 

Alcohol dehydrogenase 

Carboxy peptidase A 

Alkaline phosphatase 

Nuclear poly(A) polymerase 

Collagenase 

CO2
 
formation 

Alcohol metabolism 

Protein digestion 

Hydrolysis of phosphate esters 

Cell replication 

Wound healing 

Mg Pyruvate carboxylase 

Superoxide dismutase 

Glycosylaminotransferases 

Pyruvate metabolism 

Antioxidant by removing O2 

Proteoglycan synthesis 

Mo Xanthine dehydrogenase 

Sulphite oxidase 

Aldehyde oxidase 

Purine metabolism 

Sulphite oxidation 

Purine metabolism 

Se Glutathione peroxidases  

Type I and III deiodinases 

Removal of H2O and hydroperoxides 

Conversion of thyroxine to active form 

Source: Underwood and Suttle (1999).  

2.2.3 Plant secondary metabolites  

Tea leaves are rich in polyphenols mainly catechins such as (-)- epigallocatechin 

gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)- epicatechin 

(EC), (-)-gallocatechin (GC), (-)- gallocatechin gallate (GCG), and (-)-catechin (C) etc. 
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(Chen et al., 2008; Ishihara and Akachi, 1997; Ishihara et al., 2001; van het Hof et al., 

1998; Łuczaj and Skrzydlewska, 2005). These catechins are the monomeric units of 

condensed tannins (McSweeney et al., 2001). During the black tea manufacturing process, 

however, most catechins are converted into theaflavins which have more complex 

condensation structures (Łuczaj and Skrzydlewska, 2005; van het Hof et al., 1998) (see 

Figure 2.2 and Figure 2.3). 

 The other major secondary metabolites in tea leaves are alkaloids and saponins. 

Caffeine, theanine, and theobromine are reported to be the available alkaloids in tea leaves 

(Cabrera et al., 2003; Chen et al., 2008; Peng et al., 2008; Turkmen and Veliooglu, 2007). 

Meanwhile, theasaponin B, assamsaponin J, isotheasaponin B1-B3, foliatheasaponin I-V, 

and floratheasaponin A are the individual theasaponins which have also been identified in 

tea plants (Matsui et al., 2009; Yoshikawa et al., 2005) (see Figure 2.4). 

 

 

Figure 2.2 Chemical structures of major catechins in green tea (left) and theaflavins in 

black tea (right) leaves (Łuczaj and Skrzydlewska, 2005). 
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Figure 2.3 Possible mechanisms of theaflavin formations (Łuczaj and Skrzydlewska, 

2005). 

 

 

Figure 2.4 Chemical structures of different theasaponins (Yoshikawa et al., 2005). 

  

http://www.sciencedirect.com/science/article/pii/S0091743504005456#gr3
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 Table 2.4 summarizes the plant secondary metabolite concentrations in both green 

and black tea leaves. In green tea, EGCG, EGC, and ECG are the most abundant catechins, 

respectively, whilst in black tea, they are theaflavin-3,3’-digallate and theaflavin-3-gallate. 

Caffeine is the main alkaloid in both green and black tea leaves.   

 

Table 2.4 Secondary metabolite contents (g/kg DM) of tea leaves. 

Secondary metabolites Black tea 
 

Green tea  

(-)- gallocatechin n.a 16.1 
(4)

 

(-)- epigallocatechin 3.90 - 41.7 
(2)

 10.4 - 45.3 
(3,4)

 

(-)- catechin  n.a 1.00 - 11.4 
(3,4)

  

(-)- epicatechin 4.0 - 11.4 
(2)

 2.20 - 21.2 
(2,3,4)

 

(-)- epigallocattechin gallate 0.32 - 85.1 
(1,2)

 36.0 - 103.5  
(2,3)

 

(-)- gallocatechin gallate n.a 27.4 

(-)- epicatechin gallate 0.18 - 20.6 
(1,2)

 6.40 - 45.6 
(2,3,4)

 

(-)-catecthin gallate n.a 1.40
(4)

 

Theaflavin-free 1.30 - 1.64 
(1)

 n.a 

Theaflavin-3-gallate 2.49 - 3.12 
(1)

 n.a 

Theaflavin-3’-gallate 1.56 - 1.89 
(1)

 n.a 

Theaflavin-3,3’-digallate 4.31 - 5.01 
(1)

  n.a 

Rutin (quercetin-3-rhamnosylglucoside) 0.96 - 1.63 
(1)

 n.a 

Gallic acid 2.50 - 4.50 
(2)

 1.30 
(3)

 

Alkaloids   

Caffeine 17.8 - 67.4 
(1,2)

 25.1 - 38.3 
(2,3,4)

 
 
 

Theobromine 0.14 - 0.20 
(1)

 0.10 
(4)

 

Theanine n.a 6.90 
(4)

 

Theophylline n.a n.d 
(4)

 

n.a, not available; n.d, not detectable; Black and green tea leaves from various brands and 

grades as adapted from Turkmen and Veliooglu (2007)
 (1)

, Cabrera et al., (2003) 
(2)

, Chen et 

al., (2008) 
(3)

, Peng et al., (2008) 
(4)

. 

 

 In relation to human nutrition, catechins have been reported to have a chemo-

preventive effect to inactivate potentially harmful free-radical oxygen in the body systems 

(Andlauer and Héritier, 2011; Chen et al., 2000; Higdon and Frei, 2003). Also, they have 

been reported to have anti-obesity (Maki et al., 2009) and anti-breast cancer (Shrubsole et 

al., 2009) properties while theaflavins have similar potential antioxidant activities (Leung 
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et al., 2001; Stewart et al., 2005) to decrease the risk of coronary heart (Gardner et al., 

2007) and cardiovascular (Duffy et al., 2001) diseases. In moderate consumption, caffeine 

has also the potential to act as a beneficial antioxidant (Prasanthi et al., 2010; Vignoli et 

al., 2011). In addition, rutin, a flavonol quercetin glycoside, is reported to have antioxidant 

and anti-inflammatory activities which have the potential to reduce the risk of cancer, 

coronary heart disease, and atherosclerosis (Alía et al., 2006; Kurisawa et al., 2003). 

However, sufficient references are not currently available on the beneficial effects of 

specific tea-bioactive compounds for ruminants. 

 In China, tea saponins are commercially produced from tea seed meals obtained 

after tea oil extraction. This product has the characteristics of a light yellow powder, easily 

soluble in water, containing 60% of triterpenoid saponins, a foaming ability score of 160 - 

190 mm, and pH 5.0 - 6.5 (Guo et al., 2008; Hu et al., 2005). The use of this product at 1, 

2, 3, and 4%  in a mixed diet containing corn meal and grass meal (50:50) resulted in 

decreased CH4 production by 13, 22, 25, and 26%, respectively, and reduced protozoa 

counts by 19, 25, 45, and 79%, respectively, during 24h incubation in-vitro with rumen 

fluid (Hu et al., 2005). The use of similar product at 0.4 mg/ml rumen fluid with the same 

diet reduced protozoa and fungi significantly by 50 and 79%, respectively, and increased 

Fibrobacter succinogenes by 41% during an in-vitro serum bottle study (Guo et al., 2008). 

Moreover, Mao et al. (2010) reported that adding 3 g/d of the same tea saponins with or 

without soybean oil in the diet decreased daily CH4 production by 27.7 and 18.9 %, 

respectively, in line with the reduced protozoa population in growing lambs. 

2.2.4 Fatty acids 

 Although Chu and Juneja (1997) reported that tea leaves contained only 3.5 - 5.3% 

oil, their existence can be useful for ruminants. In other sources, linseed oil has the 

potential to depress ruminal methanogens (Marten et al., 2008) while fish oil 

supplementation could inhibit the bio-hydrogenation of fatty acids in the rumen through 

altering rumen microbial ecology (Kim et al., 2008). This lower bio-hydrogenation leads to 

more rumenic acid and polyunsaturated fatty acids (PUFA), as well as decreased saturated 

fatty acids (SFA) in ruminant products such as meat and milk (McKain et al., 2010; Vasta 

et al., 2009; Vasta et al., 2010; Wood et al., 2010). However, there is a lack of 

understanding on which specific fatty acids are responsible for inhibition of bio-

hydrogenation bacteria in the rumen and their mode of actions. 
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Table 2.5 Fatty acid composition (% total identified FA) of tea leaves. 

Fatty acids (FA) Composition References 

C16:0 Palmitic acid 7.72 - 30.0 1,2,3 

C16:1 Palmitoleic acid 0.63 - 4.97 2,3 

C18:0 Stearic acid 2.07 - 11.6 2,3 

C18:1 Oleic acid 3.36 - 9.21 2,3 

C18:2 Linoleic acid 6.87 - 26.1 1,2,3 

C18:3 α-linolenic acid 19.8 - 71.5 1,2,3 

C24:1 Nervonic acid 16.6 - 23.3 1 

C23:0 Tricosanoic acid 15.9 - 20.3 1 

Sources: 
1
Ercisli et al. (2008); 

2
Owuor (1990); 

3
Shen et al. (2007). 

 

Table 2.6 Products of metabolism of conjugated fatty acid (CLA) isomers and 18:1 fatty 

acids by Butyrivibrio spp and P. acnes. 

Bacterium Substrate Product 

B. fibrisolvents cis9, trans11 18:2 trans11 18:1 

 trans10, cis12 18:2 trans10 18:1 

 trans10, cis12 18:2 trans12 18:1 

 trans10, cis12 18:2 cis12 18:1 

 trans9, trans11 18:2 trans11 18:1 

B. proteoclasticus trans10 18:1 18:0 

 trans11 18:1 18:0 

 cis9 18:1 18:0 

P. acnes trans10 18:1 10-O 18:0 

 trans10 18:1 10-OH 18:0 

 cis9 18:1 10-O 18:0 

 cis9 18:1 10-OH 18:0 

Source: McKain et al. (2010). 

 

Table 2.5 describes fatty acid compositions in tea leaves. α-Linolenic, palmitic, 

stearic, linolenic, nervonic, and tricosanoic acids are the most abundant individual fatty 

acids identified in tea leaves. Although α-Linolenic acid (C18:3n3) has been found as one 

of the highest PUFA in tea leaves, its supplementation may not increase the availability of 

such fatty acids in the ruminant meat or milk because of potential bio-hydrogenation 

during fermentation in the rumen by some bacteria such as Butyrivibrio fibrisolvens, 
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Butyrivibrio proteoclasticus, and propionibacteriun acnes (McKain et al., 2010, Table 

2.6). Therefore, altering these bacterial populations to inhibit potential bio- hydrogenation 

is likely to be important in order to keep healthier rumenic acid and PUFA in both meat 

and milk.  

2.3 Spent tea leaves  

 The term ‘spent tea leaves’, or STL, is used to describe the insoluble residues of tea 

leaves after being brewing in the process of making a tea infusion. Green tea is popularly 

brewed in hot water at approximately 90 - 100˚C for 3 - 5 minutes depending upon the type 

of teas. Black tea commonly requires hotter water and longer brewing time in comparison 

with the green tea. 

2.3.1 Chemical composition of spent tea leaves 

 Table 2.7 describes the potential nutrients in STL for ruminant nutrition. It shows 

that STL is high in CP of about 19 - 35 % DM and plant secondary metabolites particularly 

total phenols (TP), total tannins (TT), and condensed tannins (CT). However, the 

information on saponins content in STL is not adequate. Babayemi et al. (2006) reported 

that STL contained saponins but their method of analysis was limited to qualitative 

measurement based on the extent of their foaming ability. 
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Table 2.7 Nutrient composition of green STL. 

Nutrients (g/kg DM) Green STL
 

DM ( g/kg) 192 - 250
 

OM 956 - 970 

CP 186 - 355 

    NDIP (% CP) 94 

    ADIP (% CP) 19 

WSC  6.1 - 8.8 

EE  57 - 58 

Ash  30 - 44 

NDF  410 - 460 

ADF  235 - 263.4 

TP  97.6 - 99.5 

TT  85 - 89.1 

CT  43.8 - 96.5 

Saponin Present
1 

STL, spent tea leaves; DM, dry matter; OM, organic matter; CP, crude protein; NDIP, 

Neutral detergent insoluble protein; ADIP, Acid detergent insoluble protein; WSC, water-

soluble carbohydrate; EE, ether extract; NDF, Neutral detergent fibre assayed with a heat 

stable amylase and expressed inclusive of ash residual; ADF, Acid detergent fibre; TP, 

Total phenols; TT, Total tannins; CT, Condensed tannins; 
1
 No exact value available; 

Sources: Babayemi et al., (2006); Kondo et al., (2004b); Kondo et al., (2004a); Kondo et 

al., (2006); Xu et al., (2003); Xu et al., (2007). 

2.3.2 The use of spent tea leaves for ruminant feeding 

 After brewing in hot water, fresh STL are usually wet with > 50% water. Hence, 

ensiling is a common and more favourable technique to be used in preserving STL than 

drying before being fed to ruminants. Practically, drying is costly because it requires 

electric dryers to evaporate the moisture from the wet material. In tropical countries, sun 

drying may become the method of choice but it is effective only in the dry season, not in 

the rainy season. Additionally, most research on the use of STL to feed ruminants has been 

conducted in the form of silage (Kondo et al., 2007b; Kondo et al., 2007a; Kondo et al., 

2004b; Kondo et al., 2006; Xu et al., 2003; Xu et al., 2007). 
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Table 2.8 Comparison of chemical composition and in-vitro and in-vivo measurements 

between ensiled and dried green STL, and two other feedstuffs. 

Nutrients 

(g/kg DM) 

STL  Soybean 

meal 

Alfalfa 

hay Ensiled
1 

Dried
2 

DM (g/kg) 194 953 901 901 

CP  326 319 483 166 

    BSP (% CP) 12.0 15.9 31.0 35.2 

    NDIP (% CP) 16.1 41.9 3.4 19.2 

    ADIP (% CP) 6.0 6.3 2.7 8.2 

Ash  30 30 56 86 

NDF 277 348 149 430 

TP  128 82.6 2.8 5.9 

TT  101 73.2 0.5 0.11 

CT  10.4 16.8 n.d 0.3 

In-vitro measurements     

Gas Production (ml/500 mg DM) 34.8
 

36.4
 

48.4 39.2 

NH3 (mg/L) 13.9 10.7 34.8 14.8 

Degradable protein (%)  43.5
 

45.3
 

80.9
 

59.4
 

In-vivo measurments
3 Ensiled Dried Control diet

4 

DM intake (g/kg M
0.75

) 44.5 44.5 44.0 

Apparent digestibility (%):    

    DM 73.1 73.5 73.4 

    CP 70.3 70.7 72.3 

    NDF 64.1 64.4 63.3 

    Eating time
5 

1.61 1.15 1.00 

Rumen characteristics:    

    pH 6.38 6.39 6.49 

   tVFA (mmol/L) 90.0 92.9 91.0 

   NH3 (mg/L) 17.2 17.4 18.6 

1
Ensiled

 
at ambient temperature (> 30 days); 

2
dried at 55 ˚C for 48 h; 

3
10% of ensiled or dried spent 

tea leaves (STL) to replace soybean meals and alfalfa hay in a mixed diet; 
4
Consisted of chopped 

timothy hay, corn, wheat bran, soybean meal, and alfalfa hay formulated to meet the nutrient 

requirements for goats (NRC, 1981); 
5
Time spent to eat the experimental diet in which the average 

ratio to control diet (control diet = 1); DM, dry matter, CP, crude protein; BSP, buffer soluble 

protein; NDIP, neutral detergent insoluble protein; ADIP, acid detergent insoluble protein; NDF, 

neutral detergent fibre; TP, total phenols; TT, total tannins; CT, condensed tannins; tVFA, total 

volatile fatty acids; NH3, ammonia; Source: Kondo et al., (2007c).
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 Table 2.8 compares ensiled and dried STL for chemical compositions and in-vitro 

and in-vivo measurements (Kondo et al., 2007c). It shows that both ensiled and dried STL 

have a similar CP. Although CT content of dried STL is higher, the TT is lower than the 

ensiled one. The ensiled and dried STL have the same in-vitro gas production, ammonia 

(NH3), and protein degradability. Meanwhile, an in-vivo study using goats by the same 

researchers showed that ensiled and dried STL at up to 10% inclusion in a mixed diet 

resulted in similar DM intakes, apparent digestibility of DM, CP, and NDF, ruminal pH, 

total volatile fatty acids (VFA) and NH3 although the animals spent more time to consume 

diet with the ensiled treatment in comparison with the dried treatment (Kondo et al., 

2007c). 

 Table 2.9 summarizes the effect of STL inclusion in various silage-based ruminant 

diets. The outcome of adding STL into silage-based ruminant diets on CP concentrations 

was likely to be varied depending upon the corresponding feeds in the diets. As an 

example, when STL was added to replace whole-crop oats (Kondo et al., 2004b) or 

brewer’s grain (Xu et al., 2008; Xu et al., 2007), the CP in the resulting silage increased. 

However, adding STL to replace tofu cake (Kondo et al., 2006) or a basal diet containing 

timothy hay and soybean meals (SBM) (Kondo et al., 2007b) had no effect on CP content 

of those diets. This was due to higher CP in STL than whole-crop oats or brewer’s grain 

but comparable CP to tofu cake and a mixed timothy hay-SBM diet.  

 STL inclusion into mixed silage diets generally increased TP, TT, CT, and lactic 

acid but decreased pH and NH3 (Kondo et al., 2006; Kondo et al., 2004c; Xu et al., 2008). 

It is apparent that STL provided a considerably higher amount of TP, TT, and CT than 

other common feedstuffs so that its inclusion can increase the consumption of plant 

secondary metabolites (see Table 2.7). Interestingly, the increased plant secondary 

metabolites consumption was followed by decreased pH resulting from a more lactic acid 

production whilst decreased NH3 was supposed to be due to a lower protein degradation in 

the rumen as a result of the formation of tannin-protein binding complexes. 

 In-vivo studies confirmed that the effect of STL addition into mixed-silage diets on 

nutrient digestibility and animal performance again showed inconsistent results depending 

upon the levels of inclusion and the composition of the diets. For instance, on a DM basis, 

adding 5% green STL (replacing SBM and alfalfa hay) (Kondo et al., 2004c), 10% green 

STL (replacing SBM and soybean hulls) (Theeraphaksirinont et al., 2009) and 15% green 

STL (replacing brewers’ grain) (Xu et al., 2007) had no effect on dry matter intake (DMI) 

but reduced CP digestibility and so may have reduced NH3 production. However, Xu et al. 

(2008) reported that adding 15% green STL to replace brewer’s grain decreased DMI and 
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reduced CP intake whilst Kondo et al. (2004b) showed that adding up to 20% green STL to 

replace whole-crop oats had no effect on DMI and DM digestibility but increased CP 

digestibility, nitrogen (N) intakes, and retained N. Moreover, adding 5% green STL to 

replace SBM and alfalfa hay (Kondo et al., 2007c) and 10% green STL to replace SBM 

and soybean hulls (Theeraphaksirinont et al., 2009) had no effect on milk yield in lactating 

cows but the milk protein percentage was increased. This variation suggests that each feed 

has its own nutrient characteristics and when they are mixed together, they give different 

responses depending upon their potential nutrient interactions. Hence, this leads to changes 

in a complex interaction between numerous species of microorganism during digestion in 

the rumen (Demeyer, 1981) resulting in variations in digestibility, fermentation profiles, 

and animal performance. However, the mechanism of changes in microbial ecosystems due 

to STL addition needs further investigation.   
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Table 2.9 Summarized effects of STL inclusion into various silage-based ruminant diets. 

STL inclusions Control diets Experimental conditions Outputs Suggestions Ref. 

Up to 20% fresh green 

STL ensiled with 

whole-crop oats 

 

 

Ensiled whole-crop oat 

(100%) 

- ambient temperature 

- 50d ensiling time 

- no inoculants 

- in-vivo goats study 

Increased CP, TP, TT, CT, and 

lactic acid but decreased pH and 

NH3 in silage; No effect on DMI 

and DM digestibility; Increased CP 

digestibility, N intake and retained 

N 

Up to 20% inclusion to 

replace whole-crop oat 

1 

5% (DM basis) ensiled 

green STL to replace 

partially SBM and 

alfalfa hay in a control 

diet (iso CP and ME). 

Mixed ration (alfalfa 

and Sudan grass hay in 

concentrate (corn, wheat 

brans, barley, SBM, 

soybean hulls, 

cottonseed, brewer’s 

grain, and dried beat 

pulp)  

-  ambient temperature 

- > 30d ensiling time 

-  no inoculants 

- in-vivo lactating cows  

  Study 

No effect on DM, CP intakes, pH, 

VFA, and milk production; 

increased TT and CT intakes; 

decreased rumen NH3  

 

Up to 5% inclusion to 

replace high quality 

feedstuffs such as SBM 

and alfalfa hay 

2 

10% green STL to 

replace tofu cake in 

control diet 

 

 

Ensiled Tofu cake 

(50%), rice straws 

(40%), and rice bran 

(10%) 

- 15
o
C temperature 

- 30d ensiling time  

- no inoculant 

 No effect on CP; increased TP, TT, 

and lactic acid; decreased pH, NH3, 

and DM loss in silage;  

Increased gas production during 3 

to 96h in-vitro incubation 

 

 

 

Up to 10 % inclusion to 

replace tofu cake 

3 
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STL inclusions Control diets Experimental conditions Outputs Suggestions Ref. 

5 % (DM basis) ensiled 

black STL added to 

control basal diet (iso-

CP) 

Timothy hay and 

soybean meals (90% and 

10%, respectively) 

-  ambient temperature 

- with and without PEG  

  (4000 MW) 

- 30d ensiling time 

- no inoculants 

- In-vivo goat study 

No effect on CP and TT in silage; 

Decreased CP digestibility;  

PEG effects: decreased DM and 

OM digestibility but increased CP 

and ADIN digestibility  

PEG improves CP and 

ADIN digestibility since 

PEG can bind tannins 

from tannin-protein 

complexes to release 

protein for rumen 

degradation 

4 

Up to 10% ensiled 

green STL to replace 

SBM and alfalfa hay 

cubes (iso CP) 

 

 

chopped timothy hay, 

corn, wheat brans, SBM, 

and alfalfa hay cubes 

formulated to meet the   

 nutrient requirements of 

the goats (NRC, 1981) 

- ambient temperature 

- 30d ensiling time 

- no inoculants 

- with and without PEG  

  (6000 MW) 

 

Decreased in-vivo CP digestibility 

and rumen VFA; increased NDF 

digestibility and eating time 

PEG effects (in-vitro): increased 

gas production, NH3, and CP 

degradability  

Up to 5% inclusion to 

replace high quality 

feedstuffs such as                                 

SBM and alfalfa hay 

 

5 

Up to 15% (DM basis) 

green STL to replace 

brewers grain in ensiled 

mixed control diet 

 

Brewers’ grain (15%), 

corn (8%), SBM (3%), 

oats hay (24%), alfalfa 

hay (10%), commercial 

compound feed (26.5%), 

and vitamin-mineral 

(1.5%) 

  

- 9.7 - 32.4◦C 

  temperature 

- 45d ensiling time 

- with inoculants  

   L. plantarum 

- In-vivo sheep study 

 

Increased CP, CT, and lactic acid; 

decreased pH, NH3 in silage; No 

effect on DMI and N retention; 

decreased CP and gross energy 

digestibility 

 

 

 

 

 

Inclusion up to 15% in 

this mixed diet is 

acceptable 

6 
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STL, spent tea leaves; CP, crude protein; ME, metabolisable energy; GE, gross energy; TP, total phenols; TT, total tannins; CT, condensed 

tannins, N, nitrogen; DM, dry matter, VFA, volatile fatty acid, SBM, soybean meals; PEG, polyethylene glycol; ADIN, acid detergen 

insoluble nitrogen; NDF, neutral detergent fibre; Sources: 
1
Kondo et al., (2004b), 

2 
Kondo et al., (2004c), 

3
Kondo et al., (2006), 

4
Kondo et al., 

(2007b), 
5
Kondo et al., (2007c), 

6
Xu et al., (2007), 

7
Xu et al., (2008), 

8
Theeraphaksirinont et al., (2009).         

STL inclusions Control diets Experimental conditions Outputs Suggestions Ref. 

Up to 15% (DM basis) 

green STL to replace 

brewers grain in ensiled 

mixed control diet 

 

 

Brewers’ grain (15%), 

corn (8%), SBM (3%), 

oats hay (24%), alfalfa 

hay (10%), dried beet 

pulps (12%), commercial 

compound feed (27.7%) 

salts, vitamins and 

minerals (0.3%)  

- 1.1 - 33.4
o
C 

  temperature 

- 120d ensiling time 

- with inoculants  

   Lactobacillus                           

   plantarum 

- In-vivo sheep study 

 

Increased CP and CT and lactic 

acid but decreased EE, GE, pH, 

NH3 in silage; decreased feed 

intakes, DM, OM, CP, EE,  GE 

digestibility, and urinary N; 

increased fecal N 

Less than 15% inclusion 

is preferable in this 

mixed diet  

7 

Up to 10 % (DM basis) 

green STL to replace 

both SBM and soybean 

hull in total mixed diet 

 

 

Corn silage (38.9%), 

cassava (26.4%), SBM 

(19.4%), soybean hull 

(11.4%), full fat soybean 

(1.2%), mineral and 

premix (2.7%) 

- In-vivo lactating  

  cows study 

No effect on DMI and milk yield; 

increased milk protein percentage 

Up to  10% inclusion in 

this mixed diet is 

acceptable 

8 



22 

 

2.4 Rumen fermentation  

 The rumen is about one-seventh of the body mass of the ruminants, maintained at 

relatively constant temperature (39
o
C), buffered by salivary secretion, and is an ideal 

fermentation site for the microbial ecosystems. During fermentation of feedstuffs by 

microorganisms; VFA, microbial cells, NH3, carbondioxide (CO2), CH4, adenosine 

triphosphate (ATP), and heat are formed. VFA and ATP are used as the available energy 

sources for the animal while microbial cells are the significant source of quality protein 

entering the small intestine (Demeyer, 1981; Russel and Hespell, 1981). Non-utilized NH3, 

CH4, and heat productions may represent the loss of energy and N for the ruminants 

(Demeyer, 1981). In order to obtain appropriate knowledge and strategies to manipulate 

rumen fermentation, it is important to understand the mechanisms of carbohydrate and 

protein metabolisms, methanogenesis, and acetogenesis in the rumen. 

2.4.1 Carbohydrate metabolism 

 Ruminant diets contain substantial amounts of carbohydrate polymers such as 

cellulose, hemicellulose, starch, pectin, xylan, and water-soluble carbohydrates mainly in 

the form of fructans (McDonald et al., 2011; Russel and Hespell, 1981). Figure 2.5 

describes the conversion of carbohydrate polymers to VFA in the rumen (McDonald et al., 

2011). Diets containing plant particles are attacked by microorganisms and carbohydrate 

polymers are then released from structural plant cell matrices. After this, the carbohydrate 

polymers are hydrolysed to simple sugars such as cellobiose, maltose, xylobiose, hexoses, 

and pentoses by extracellular microbial enzymes. Cellulose is catalyzed by β-1,4-

glucosidases to cellobiose and further converted either to glucose or glucose-1-phosphate. 

Starch is initially hydrolyzed by amylases to maltose and iso-maltose, and then by maltose 

phosphorylases or 1,6-glucosidases to either glucose or glucose-1-phosphate. Fructans are 

degraded by enzymes involving 2,1 and 2,6 linkages to form fructose. This may be 

produced, together with glucose by the degradation of sucrose naturally present in plant 

materials. In hemicellulose, xylan is broken down by enzymes attacking the β-1,4 linkages 

to give pentoses as the major product, xylose, and uronic acids. Uronic acids are also 

produced from pectins, which initially hydrolized to pectic acid and methanol by pectin 

esterase. The pectic acid is then converted by polygalacturonidases to galacturonic acids to 

further yield xylose. Xylose may also be obtained from hydrolysis of the xylans, which 

may be hugely available in forages.  
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 Simple sugars are mostly untraceable in the rumen fluid since they are 

instantaneously metabolized (intracellularly) by microorganisms and the main intracellular 

product of this is pyruvate. Pyruvate is the central intermediate that links the pathway from 

carbohydrate polymers and simple sugars to the major end products of carbohydrate 

metabolism in the rumen, which are VFA such as acetate, propionate, and butyrate and 

CO2 and CH4. Meanwhile, iso-butyrate, valerate, 2-methyl butyrate, and 3-methyl butyrate 

are the minor VFA formed in the rumen by deamination of amino acids, which are valine, 

proline, iso-leucine, and leucine, respectively. VFA are the main end products of 

carbohydrate fermentation and the major energy sources for ruminants. VFA are then 

readily absorbed into the blood stream and transported into different body tissues. 
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Figure 2.5 Conversion of carbohydrate polymers to VFA (McDonald et al., 2011). 
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Table 2.10 Effect of forage to concentrate ratio on VFA production in different ruminants. 

Animal Diet ratios 
tVFA 

(mmol/L) 

Individual VFA 

(Molar proportion) 
Ref. 

Acetate Propionate (iso-, n-) 

Butyrate 

(iso-, n-) 

Valerate 

Cattle Grass silage : concentrate 

80 : 20 

60 : 40 

40 : 60 

20 : 80 

 

86.5 

88.3 

92.8 

91.5 

 

0.62 

0.60 

0.60 

0.60 

 

0.22 

0.23 

0.23 

0.23 

 

0.13 

0.13 

0.13 

0.11 

 

0.04 

0.04 

0.04 

0.05 

 

1 

Cows Alfalfa hay : barley silage : 

concentrate 

14.5 : 77.2 : 8.3 

5.7   : 30.1 : 64.2  

 

 

113.7 

138.0 

 

 

0.69 

0.55 

 

 

0.17 

0.24 

 

 

0.11 

0.16 

 

 

0.24 

0.44 

 

 

2 

Sheep Hay : concentrate 

100 : 0 

80   : 20 

60   : 40 

40   : 60 

20   : 80  

 

 

97 

80 

87 

76 

70 

 

0.66 

0.61 

0.61 

0.52 

0.40 

 

0.22 

0.25 

0.23 

0.34 

0.40 

 

0.09 

0.11 

0.13 

0.12 

0.15 

 

0.03 

0.03 

0.02 

0.03 

0.05 

 

3 

tVFA, total volatile fatty acids; Sources: 
1 

Lee et al., (2006), 
2 

Penner et al., (2009), 
3
 

McDonald et al., (2011). 

 

 Total VFA (tVFA) productions along with individual proportions of VFA are 

greatly affected by feed composition, nutrient availability, the rate of depolymerization and 

microbial population (Dijkstra, 1994). There is a general agreement that feeding more 

concentrate leads to higher propionate and lower acetate productions. However, greater 

concentrate in the diet is not always identical with increasing tVFA. Penner et al. (2009) 

reported that increasing concentrate level from about 8% to 64% in cow diets resulted in 

higher tVFA produced from 113.7 to 138.0 mmol/L. Conversely, McDonald et al. (2011) 

reported a decrease in tVFA as sheep fed more concentrate in the diet. Lee et al. (2006) 

reported an increase in tVFA from 86.5 to 92.8 mmol/L as the concentrate fed to cattle 

increased from 20 to 60%; however, tVFA was decreased to 91.5 mmol/L when 

concentrate was further increased to 80% (see Table 2.10). This confirms that nutrient 

interaction from the different diets affects the rate of depolymerization and the microbial 
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ecosystems in the rumen responsible for fermentation resulting in variation in the end 

products of fermentation. 

2.4.2 Protein metabolism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.6 describes the metabolism of protein in the rumen. Protein metabolism in 

the rumen starts with the attachment of large numbers of different microorganisms to feed 

particles, acting symbiotically to degrade and ferment nutrients, including proteins (Bach 

et al., 2005). These proteins are hydrolyzed (extracellularly) by rumen proteolytic activities 

to peptides and free amino acids which are transported into the microbial cells. Peptides 

can be further degraded by peptidase into amino acids and the later can be incorporated 

into microbial protein or further deaminated to VFA, NH3, and CO2 (Bach et al., 2005; 
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Figure 2.6 Protein digestion and metabolism in the rumen (McDonald et al., 2011). 
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McDonald et al., 2011). The NH3, along with several small peptides and free amino acids, 

is then used by the rumen microorganisms to synthesise microbial proteins. Some 

microbial proteins are broken down in the rumen and their N is recycled but most of them 

have passed into the abomasum and small intestine where their cell proteins are digested 

and absorbed (McDonald et al., 2011). If the available energy is low, some of the amino 

acids will be deaminated and their carbon structure will be fermented into VFA (Bach et 

al., 2005). 

 Protein degradation in the rumen is influenced by the type of protein, ruminal 

dilution rate, ruminal pH, substrate, and nutrient interactions (Bach et al., 2005). Adding 

non-protein N such as urea into the diet may be helpful since urea can be rapidly 

hydrolysed to NH3 by bacterial urease, however, over or fast production of NH3 may 

exceed the ability of microbes to utilize it. This can lead to an excessive NH3 supply that, 

after absorption through rumen wall, can enter blood stream, liver, and eventually be 

excreted in urine (as urea) as an N waste (Attwood et al., 1998; Cieslak et al., 2012; 

Szumacher-Strabel and Cieślak, 2010). In this case, microorganisms should also have a 

more readily available source of energy to use it along with the NH3 for protein synthesis 

(Bochra et al., 2010; Lapierre and Lobley, 2001; McDonald et al., 2011). Therefore, diet 

formulation to feed ruminant animals should be developed in a model accounting rumen-

degradable (non-protein N, true protein N) and un-degradable proteins (Bach et al., 2005) 

in order to optimize the utilization of protein sources in the diet during its degradation in 

the rumen. Adding tannin-rich plants into the diet can also be an option to reduce excessive 

NH3 production in the rumen through its binding ability to plant proteins. This may be 

beneficial if the binding may result in the increased by-pass protein and non-NH3-N supply 

to be absorbed in the small intestine (Makkar, 2003a; McSweeney et al., 2001; Min et al., 

2003; Mueller-Harvey, 2006). 

2.4.3 Methanogenesis  

 It is clear that the rumen is an ideal home to billions of microbes including bacteria, 

methanogens, protozoa, and fungi. During fermentation of feedstuffs by the microbes; 

VFA, microbial cells, NH3, ATP, heat, and gases mainly CO2 and CH4 are formed. The 

latter gas (CH4), along with CO2 and nitrous oxide (N2O), is known to highly contribute to 

the so-called ‘greenhouse effect’. While CH4 is colourless and odourless, its potential 

contribution to global warming is over 21 times higher than CO2 as its atmospheric 

retention is far greater than CO2 (EPA, 2011). Agricultural activities are supposed to be 

responsible for 40 - 60% of the total anthropogenic CH4 production while 25 - 40% of it 
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comes from livestock sector, predominantly from ruminants through their eructation and 

manures (Attwood and McSweeney, 2008; Boadi et al., 2004; Moss et al., 2000). CH4 

production is also associated with the loss of dietary gross energy by 2 - 12% (Johnson and 

Johnson, 1995).  

 In ruminants, CH4 is mostly produced in the rumen (87%) and in the large intestine 

(13%) (Murray et al., 1976; Torrent and Johnson, 1994). In the rumen, CH4 formation is 

facilitated by the reaction between hydrogen (H2) and CO2 as shown by the following 

formula: 

 CO2 + 4 H2 → CH4 + 2 H2O 

where H2 is one of the major end products of fermentation by protozoa, fungi, and pure 

monocultures of several bacteria (Moss et al., 2000). H2 is released during fermentation 

since an oxidative process on reducing co-factor (NADH, NADPH, FADH) are re-oxidized 

(NAD
+
, NADP

+
, FAD

+
) through dehydrogenation reactions (Martin et al., 2010). This H2 

production is not accumulated in the rumen as it is instantaneously used by other H2-

utilising bacteria such as methanogens (Methanobrevibacter ruminantium, 

Methanbacterium formicicum, Methanosarcina Mazei, Methanosarcina barkeri, 

Methanomicrobium mobile). The collaboration between H2-producing microbes and H2-

utilizing bacteria is known as “interspecies hydrogen transfer” (some methanogens are 

attached to the external pellicle of protozoa). Furthermore, H2 along with CO2 and other 

substrates like formate, acetate, methylamines, dimethyl sulfide, and some alcohols are 

used by methanogens in the process of forming CH4 to generate energy for their own 

growth. The prevention of accumulating H2 is useful for H2-producing microbes to further 

degrade fibrous feed materials as low pressure of H2 in the rumen can be maintained 

(Boadi et al., 2004; Moss et al., 2000). However, CH4 has no nutritional value so that its 

production may represent dietary energy loss to the animals.   

 The other pathways of H2 production are through acetate and butyrate synthesis 

mainly during the fermentation of structural carbohydrate although some butyrate is 

produced from soluble carbohydrate (Boadi et al., 2004; Ellis et al., 2008): 

 C6H12O6 + 2H2O → 2C2H4O2 (acetate) + 2CO2 + 8H 

 C6H12O6 → C4 H8O2 (butyrate) + 2CO2 + 4H 

 Propionate is predominantly produced from the fermentation of non-structural 

carbohydrate and acts as a competitive pathway in H2 use in the rumen so that its formation 

is likely to be accompanied by the reduction of CH4 production (Boadi et al., 2004; Ellis et 

al., 2008; Moss et al., 2000): 

 C6H12O6 + 4H → 2C3H6O2 (propionate) + 2H2O 



28 

 

Therefore, manipulating rumen fermentation to reduce CH4 is commonly done by reducing 

either H2-producing microbes or methanogens, increasing propionate to acetate ratios, or 

finding more options for utilizing H2 as an alternative to metanogenesis such as 

acetogenesis. 

2.4.4 Acetogenesis 

 Another competitive pathway to CH4 formation or methanogenesis is reductive 

acetogenesis that converts H2 and CO2 into acetate by hydrogenotrophic acetanogens as 

explained in the following equation (Attwood and McSweeney, 2008; McAllister and 

Newbold, 2008; Moss et al., 2000): 

 CO2 + 4 H2 → CH4 + 2 H2O       ΔG = -135.6 KJ (Methanogenesis) 

 CO2 +  4 H2 → C2H4O2 + 2H2O  ΔG = -104.6 KJ (Acetogenesis). 

  Morvan et al., (1994) found that there was a predominant colonization of 

acetogenic bacteria in the rumen of newborn lambs before establishment of methanogens. 

After that, the methanogens appeared in the rumen in few days and they develop to be the 

major H2-utilizing bacteria as the lambs grow. Faichney et al. (1999) reported that isolated 

newborn lambs had 51 - 67% less CH4 production and higher acetate to propionate (A:P) 

ratio than the inoculated lambs with the rumen fluid from adult sheep. This was supposedly 

related to their 33 - 43% of unidentified H2 sinks that could be utilized along with CO2 by 

acetogens to produce acetate (Faichney et al., 1999).  

 Under normal circumtances, methanogenesis is likely to be the major pathway for 

H2 utilization in the rumen compared with acetogens because of the following reasons 

(Attwood and McSweeney, 2008; Ellis et al., 2008; Le Van et al., 1998; McAllister and 

Newbold, 2008): (a) the conversion of CO2 and H2 into CH4 produces more energy and is 

thermodynamically more favourable than their conversions to acetate, (2) ruminal 

acetogens can utilize other substrates such as simple sugars to yield energy so that they 

seem not to be obligate hydrogenotrophic, and (3) the partial pressure of H2 is commonly 

under the threshold for acetogens although some acetogens grow at the thresholds below 1 

µmol H2/L. However, acetogens can use H2 and CO2 to form acetate in the rumen when 

methanogens are inhibited for example by using 2-bromoethanesulfonic acid (Lopez et al., 

1999). A similar situation occurs in the hindgut fermentation where acetogenesis is more 

dominant over methanogenesis resulting in predominant utilization of H2 and CO2 by 

acetogens to form acetate (Attwood and McSweeney, 2008; Leadbetter et al., 1999; Moss 

et al., 2000). Here, acetogenesis seems to be more favourable to compete for the H2 

utilization by methanogens since acetate produced is absorbed into the blood and used as 
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the main sources of carbon and energy by animals while CH4 is wasted (Moss et al., 2000). 

Acetitomaculum ruminis, Eubacterium limosum and other strains of acetogens have been 

recognized to have acetogenic activity (Le Van et al., 1998; Lopez et al., 1999) while 

Actinomyces ruminicola, Desulfovibrio desulfuricans, Ruminobacillus xylanolyticum, and 

Succiniclasticum ruminis were successfully identified on acetogen enrichment media with 

a methanogen inhibitor but isolates or DNA from these bacteria need further assessment to 

investigate whether they have reductive acetogenic acitvity or not (Attwood and 

McSweeney, 2008). 

2.5 Potential effect of plant secondary metabolites on ruminants 

 Public awareness on health and safety concerns in using antibiotics for livestock 

production has led some countries such as EU to ban any growth-promoting antibiotics 

such as ionophores in animal feeding (Boadi et al., 2004; Hart et al., 2008; Martin et al., 

2010). The chemical residues of antibiotics in animal-derived foods such as meat and milk 

due to the increased level of antibiotics is thought to be responsible in the occurrence of 

antibiotic resistant bacteria and their possible transmission to humans (Benchaar et al., 

2008; Patra and Saxena, 2009a). Nowadays, researchers have been challenged to identify 

alternative products as ‘natural’ growth-promoters such as plant secondary metabolites. 

Secondary metabolites are produced by many plants as bioactive compounds to protect 

them against bacterial, fungal, or insect predators and they are not primarily involved in the 

main biochemical processes such as plant growth and reproduction (Patra and Saxena, 

2009a). The use of natural additives for livestock production is always preferable since 

increasing public awareness to consume more healthy foods creating wider market share 

for organic foods, for example. Generally, plant secondary metabolites such as essential 

oils, phenolics, tannins, and saponins are possibilities as natural additives for ruminants to 

manipulate rumen fermentation by enhancing protein and/or energy utilizations (Benchaar 

et al., 2008; Bodas et al., 2012; Hart et al., 2008; Patra and Saxena, 2009a), mitigating CH4 

production  (Beauchemin et al., 2009; Bodas et al., 2012; Goel and Makkar, 2012; Patra 

and Saxena, 2009b), controlling bloat and nematodes (Brogna et al., 2011; Hoste et al., 

2006; Rochfort et al., 2008), and improving meat and milk qualities (Hoste et al., 2006; 

Vasta and Luciano, 2011).  

2.5.1 Essential oils 

 Essential oils (EO), also known as volatile oils are commonly derived from edible, 

medicinal, herbal, or spices plants. The main plant tissues for EO deposition vary across 

the plants. It can be the leaves, flowers, stem, seeds, roots, rhizomes, or barks. EO deposits 
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are mostly extracted by using either steam distillation, hydro distillation, or organic solvent 

extractions (Benchaar et al., 2008; Patra and Saxena, 2009a). EO are chemically a mixture 

of terpenoids, mainly monoterpenes (C10, about 90% EO content) and sesquiterpenes 

(C15) but they may also contain diterpenes (C20) and various low molecular weight 

aliphatic hydrocarbons, acids, alcohols, aldehydes, acyclic esters, or lactones, and non-

nitrogenous and sulphur containing compounds (Benchaar et al., 2008; Bodas et al., 2012; 

Dorman and Deans, 2000). Monoterpenes comprise of several functional radical 

constituents such as carbures, alcohol (i.e. menthol, geraniol, and limomene), aldehydes, 

ketones, esters, ethers, peroxide, and phenols whilst sesquiterpenes have almost the same 

structure and role to monoterpenes and broadly accumulate together with monoterpenes 

(Bodas et al., 2012). Diterpenes are acid components of resins of gymnosperms such as 

abeitic acid and other compounds for example phytol, tocopherol, and retinol (Bodas et al., 

2012). Chemical constituents of EO in each plant may vary depending upon the plant 

tissue such as stems, leaves, fruits, flowers (Liang et al., 2012), genotypes, cultivars (Bailer 

et al., 2001; Gil et al., 2002), maturity, environment, and regions (Bochra et al., 2010; Gil 

et al., 2002; Orav et al., 2008). Table 2.11 summarises the chemical constituents of EO 

from selected plants.  
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Table 2.11 Chemical constituents of some essential oils. 

Essential oils Scientific names Main parts Major compounds References 

Anise oil  Pimpinella anisum 

L. 

Fruits trans-anethole (76.9-93.7%), γ-

himachalene (0.4-8.2%), trans-

pseudoisoeugenyl 2-methylbutyrate (0.4-

6.4%), p-anisaldehyde (trace-5.4%) and 

methylchavicol (0.5-2.3%). 

(Orav et al., 

2008) 

Basil oil Ocimum basilicum 

L. 

Leaves, 

flowers 

Estragole (52.6-58.3%), limonene (13.6-

19.4%), fenchone (5.7-10.1%), exo-

fenchyle acetate (1.2-11.0%),  α-

phellendrene (4.2-4.4%), (Z)-β-ocimene 

(0.31-1.6%), myrcene (0.8-1.3%) 

(Chalchat 

and Özcan, 

2008) 

Black cumin 

seed oil 

Nigella sativa L. Seeds para-Cymene (37.3%), thymoquinone 

(13.7%), linalool (9.9%), α-thujene 

(9.9%), longifolene (6.4%), β-pinene 

(3.4%) and α-pinene (3.1%) 

(Hajhashemi 

et al., 2004) 

Caraway oil Carum carvi L. Seeds Carvone (76.8-80.5%), limomene (13.1-

16.2%), γ-cadinene (0.30-0.46%) 

(Bochra et 

al., 2010) 

Cinnamon oil Cinnamomum 

zeylanicum 

Barks (E)-Cinnamaldehyde (97.7%), γ-codinene 

(0.9%),   α-copaene (0.8%), α-amorphene 

(0.5%) 

(Singh et al., 

2007) 

  Leaves Eugenol (76.6-87.3%), linalool (8.5%), 

bicyclogermacrene (3.6%), piperitone 

(3.3%), eugenyl acetate (2.7%), (Z) 

cinnamyl acetate (2.6%), α-phellandrene 

(1.9%), β-Caryophyllene (1.9%) 

(Raina et al., 

2001; Singh 

et al., 2007) 

Clove oil  Eugenia 

Caryophyllata  

(S. aromaticum L.) 

Buds Eugenol (88.6%), eugenyl acetate (5.6%), 

β-caryophyllene (1.4%), 2-heptanone 

(0.93%) 

(Chaieb et 

al., 2007) 

Coriander oil Coriandrum 

sativum L. 

Fruits  Linalool (72.2 - 87.5%), α-pinene (2.1-

5.9%),  γ-terpinene (2.7-5.6%), camphor 

(3.0-4.9%), geraniol (1.9-3.9%), geranyl 

acetate (0.8-2.9%) 

(Gil et al., 

2002; 

Msaada et 

al., 2007) 

Cumin oil Cumimum cyminum 

L. 

Seeds Cuminal (36.3%), cuminic alcohol 

(16.9%), γ-terpinene (11.1%), safranal 

(10.9%), P-cymene (9.9%) 

 

 

 

 

 

(Li and 

Jiang, 2004) 
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Essential oils Scientific names Main parts Major compounds References 

Dill oil Anethum 

graveolens L. 

Top  

plant 

Phellandrene (33.0-37.9%), carvone (25.5-

32.5%), limomene (14.1-18.1%), dill ether 

(3,9-epoxy-1-P-menthene; 7.5-10.8%), and 

α-pinene (0.85-1.15%)  

(Callan et 

al., 2007) 

Eucalyptus oil Eucalyptus globulus 

L. 

Leaves 1,8-Cineol (63.8%),  α-pinene (14.0%), 

limomene (3.6%), terpinen-4-ol (3.1%), 

globulol (3.0%), aromadendrene (2.0%), 

C15H24 (1.7%), and geranyl acetate (1.4%) 

(Silvestre et 

al., 1997) 

Fennel oil Foeniculum vulgare Seeds (E)-Anethole (72.3-74.2%), fenchone 

(11.3-16.4%), methyl chavicol (3.8-5.3%),  

α-pinene (2.1-2.8%), and limomene (1.8-

2.5%) 

(Mimica-

Dukić et al., 

2003) 

Garlic oil Allium sativum Bulb Diallyl disulfide (53.0%), diallyl trisulfide 

(11.5%), diallyl monosulfide (10.6%), 

methyl allyl trisulfide (7%), methyl allyl 

disulfide (4.4%), diallyl tetrasulfide 

(4.3%), and methyl allyl tetrasulfide 

(2.5%)  

(O'Gara et 

al., 2000) 

Laurel oil Laurus nobilis L. Leaves 1,8-Cineole (23.5%),  α-terpinyl acetate 

(10.8%), linalool (10.6%), methyl eugenol 

(9.4%), sabinene (4.2%), α-terpineol 

(3.9%), terpin-4-ol (3.3%),  α –pinene 

(3.2%),  and β-pinene (2.7%)   

(Caredda et 

al., 2002) 

Lavender oil Lavandula 

angustifolia 

Flowers Linalool (21.7-44.5%), linalyl acetate 

(32.7-43.1%), terpinen-4-ol (3.1-6.9%), 

caryopyllene (5.0%), 1,8-cineole (4.8%), 

borneol (3.9%), and  α-terpineol (3.5%) 

(Daferera et 

al., 2000; 

D'Auria et 

al., 2005) 

Lemon oil Citrus Limon Fruits Limonene (65.6-69.9%), sabinene (11.2-

13.0%), γ-terpinene (1.9-2.1%), myrcene 

(1.7%), geranial (1.4-1.7%), and neral 

(0.8-1.0%) 

(Verzera et 

al., 2004) 

Mountain 

pride oil 

Heracleum 

persicum 

Fruits Hexyl butyrate (56.5%), octyl acetate 

(16.5%), hexyl 2-methylbutanoate (5.2%), 

n-octanol (1.4%), p-cymene (1.3%), n-

octyl 20methylbutyrate (1.5%), n-hexyl 

hexanoate (1,3%), n-hexyl butyrate (1.3%) 

(Hajhashemi 

et al., 2009) 

Nutmeg oil Myristica fragaans Fruits α-pinene (22.2%), sabinene (20.2%), β-

pinene (15.1%), myristicin (9.6%), 

terpinen-4-ol (4.2%),  and γ-terpinene 

(4.1%), safrole (1.7%) 

(Tomaino et 

al., 2005) 



33 

 

Essential oils Scientific names Main parts Major compounds References 

Oregano oil Origanum vulgare Aerial  

(Flowers, 

leaves) 

Thymol (63.3%), γ-terpinene (12.7%), P-

Cymene (9.9%), carvacrol (7.8%), and α-

terpinene (1.0%)   

(Daferera et 

al., 2000) 

Peppermint oil Mentha piperita L. Leaves Menthone (18.4-27.9%), menthol (27.5-

42.3%), pulegone (1.0-14.4%), 1,8-cineol 

(3.4-5.3%), menthofuran (1.3-5.5%), 

linalool (2.5-4.8%),  β-caryophyllene (1.5-

4.2%), terpinen-4-ol (1.2-3.8%), α-

terpineol (0.7-2.4%), and limonene (1.0-

2.1%)   

(İşcan et al., 

2002) 

Pistachio oil Pistacia vera L. Fruits a-Pinene (54.6%), terpinolene (31.2%), 3-

carene (2.7%), limonene (2.5%),  β-pinene 

(1.6%),  α-terpinene (1.0%), and  β-

myrcene (1.0%) 

(Tsokou et 

al., 2007) 

Rosemary oil Rosmarinus 

officinalis L. 

Whole 

plant 

1,8-cineol (31.9-52.4%), camphor (12.6-

19.7%), borneol (3.4-12.1%),  α-terpineol 

(2.1-12.8%),  β-caryophyllene (3.0-4.2%), 

linalool (1.1-3.9%)  bornyl acetate (1.1-

3.1%),  β-pinene (0.3-5.7%),   α-pinene 

(0.3-5.2%), and camphene (0.3-3.0%)  

(Boutekedjir

et et al., 

2003) 

Basil oil Ocimum basilicum 

L. 

Leaves, 

flower 

Estragole (52.6-58.3%), limonene (13.6-

19.4%), fenchone (5.7-10.1%), exo-

fenchyle acetate (1.2-11.0%),  α-

phellendrene (4.2-4.4%), (Z)-β-ocimene 

(0.31-1.6%), and myrcene (0.8-1.3%) 

(Chalchat 

and Özcan, 

2008) 

Turmeric oil  Curcuma longa L. Rhizomes 1,8-cineole (11.2%),  α-turmerone 

(11.1%),  β-caryophyllene (9.8%),  α-

phellandrene (8.0%), ar-turmerone (7.3%),  

β-sesquiphellandrene (7.1%), zingiberebe 

(5.6%),  β-turmerone (5.0%), ar-

curcumene (4.4%),  β-curcumene (4.2%), 

caryophyllene oxide (3.4%), and β-

bisabolene (2.8%) 

(Raina et al., 

2002) 

Thyme oil Thymus vulgaris Aerial 

(Leaves, 

flowers 

Thymol (19.4-54.1%), P-cymene (11.6-

32.2%),  γ-terpinene (1.1-23.3%),  β-

caryophyllene (2.0-5.3%), carvacrol 

methyl ether (1.6-5.0%), carvacrol (1.4-

4.0%), , α-terpinene (0.6-3.5%), linalool 

(0.7-2.2%), 1,8-cineol(0.9-2.5%), myrcene 

(0.2-2.3%),  and α-thujene (0.15-2.9%).  

(Hudaib et 

al., 2002) 
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Table 2.12 Effect of essential oils on ruminants. 

No Essential oils  Basal control diets Test systems Outputs References 

1 

 

Clove oil (CLO), eucalyptus oil 

(EUC), garlic oil (GAR), origanum oil 

(ORI), and peppermint oil (PEP) at 

0.25, 0.50, and 1.0 g/L in-vitro 

fermentation medium 

 

Ground alfalfa and 

dairy concentrate 

mixture (50:50) 

In-vitro  

dairy cows 

Increasing doses of all EO reduced tGP (10.4-79.4% at 1 g/L) and CH4 

(17.6-86.9% at 1 g/L) but reduced IVDMD except GAR; reduced NH3 for 

CLO and ORI; increased pH; increased VFA for EUC, GAR, and PEP but 

reduced VFA for ORI; increased A:P ratio for CLO, ORI, and PEP but 

decreased A:P for EUC and GAR. Increased butyrate; decreased archea, 

protozoa, and major cellulolytic bacteria 

(Patra and Yu, 

2012) 

2 Experiment 1: Ground cinnamon bark 

(CIN), clove buds (CLO), coriander 

seeds (COR), cumin seeds (CUM), and 

turmeric roots (TUR) 

Experiment 2: COR, CUM, TUR, and 

combination between COR, CUM, and 

TUR (MIX)  

(at 30 mg/g substrate) 

Experiment 1: 

wheat-based 

mixture substrate  

Experiment 2: 

Ryegrass hay-based 

mixture substrate 

In-vitro 

Sheep 

Exp. 1: no effect on IVDMD except being lower for CIN; no effect on pH; 

increased NH3 for COR and CUM; increased tVFA except for COR and 

TUR; decreased acetate for CLO and COR but no effect on A:P; decreased 

CH4 by 21.5-44.8% except for CIN. 

Exp. 2: no effect on IVDMD except being lower  for MIX; no effect on pH; 

decreased NH3 except for CUM; no effect on tVFA but A:P decreased for 

COR and CUM; decreased CH4 production by 22.0-67.0% for all spices 

addition 

(Chaudhry and 

Khan, 2012) 

3 Oregano vulgare (ORV), black seed 

(BLS), laurel (LAU), cumin (CUM), 

garlic (GAR), anise (ANI), and 

cinnamon (CIN) at 50, 100, and 150 

ppm 

Either barley, SBM, 

or wheat straws 

In-vitro 

dairy cows 

Across incubation hours, all doses of CUM increased tGP while ORV (at 

100 or 150 ppm) decreased tGP in all substrate basal diets; GAR (150 ppm) 

decreased tGP in barley and wheat straws based diet; ANI (almost all doses) 

decreased tGP in all substrates.  

 

 

 

 

 

 

 

(Kilic et al., 

2011) 
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No Essential oils  Basal control diets Test systems Outputs References 

4 Garlic oil (GAR), cinnamon oil (CIN), 

thyme oil (THY), coriander oil (COR), 

caraway oil (CAR), cumin oil (CUM), 

nutmeg oil (NUT), dill oil (DIL), 

rosemary oil (ROS), red basil oil 

(RBA), oregano (ORM) majorana oil, 

oregano vulgare oil (ORV), mountain 

pride oil (MOP), clove oil (CLO), 

lemon oil (LEM), black pepper oil 

(BLP), fennel oil (FEN), Peppermint 

oil (PEP), and pistachio oil (PIS) at 1 

µL/50 ml rumen-buffered fluid each 

Ground alfalfa hay 

and concentrate 

(80:20) 

In-vitro 

Sheep 

Almost all the EO decreased tGP by 25.2-95.5% except for FEN, BLP, PEP, 

ROS, PIS, DIL, and CLO; decreased IVDMD and IVCPD except for BLP, 

ROS, and DIL; increased pH but decreased pH for only BLP, ROS, DIL, 

and no effect for FEN, ORM, CIN, and GAR; decreased NH3 except for 

FEN, and MOP; decreased CH4 for COR, CIN, REB, ORV, CUM, CAR, 

and DIL by 11.6-76.7% but no effect for ROS and BLP while others EO 

were not examined for CH4.  

(Azizabadi et 

al., 2011) 

5 400 mg blend of EO (266 mg 

Cinnamaldehyde [CIN] and eugenol  

[EUG] + 133 mg capsium oleoresin 

[CAO]) per steer added to a mineral 

mixture with Monensin (46.7 mg/kg 

dietary DM) as a control 

Corn grain based 

concentrate (ad-

libitum) + 200g as-

fed alfalfa/steer/d 

 

In-vivo  

feedlot cattle  

No effect on DMI, FCR, and VFA profiles but decreasing NH3 compared to 

control (0-84d). However, EO had higher ADG between 45 and 84d. 

 

 

 

 

(Geraci et al., 

2012) 

6 A mixture EO consisting of thymol, 

eugenol, vanillin, guaiacol, and 

limonene (Crina Ruminants, 

Switzerland) at 50, 100, and 150 

mg/kg DM of concentrate 

 

Lucerne hay and 

dairy concentrate 

mixture (50:50) 

In-vivo 

Dairy ewes 

Increased milk production (L/ewe/d) from 1.565 (control) to 1.681, 1.876, 

and 2.119 (50, 100, and 150 mg EO/kg concentrate, respectively) but no 

effect on milk composition; reduced urea concentration and somatic cell 

count at the greatest dose; no effect on cellulolytic bacteria and protozoa but 

decreased hyper-NH3-producing bacteria; no effect on pH; reduced NH3 and 

increased tVFA at the highest dose; decreased A:P. 

 

 

(Giannenas et 

al., 2011) 
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No Essential oils  Basal control diets Test systems Outputs References 

7 CE Lo (0.5 g/d, 85 mg 

Cinnamaldehyde + 140 mg eugenol), 

CE Hi (10 g/d, 1,700 mg 

Cinnamaldehyde + 2,800 mg eugenol), 

CAP (0.25 g/d, 50 mg Capsium) 

Forage and dairy 

concentrate mixture 

(48:52) (DM basis) 

In-vivo 

Dairy cows 

No effect on DMI, VFA, A:P, NH3, milk yield (tended to decrease with CE 

Hi), fat, and protein compositions in milk (kg/d). However, NDF and ADF 

disappearances reduced with CE Hi.  

(Tager and 

Krause, 2011) 

8 A mixture of EO (7% eucalyptus oil, 

6.6% menthol cristal, 2% mint, 22.5% 

ethanol, 15.3% emulsifiers, and 

demineralized water up to 100%, 

Kanters Special Product Co, 

Netherland) at 16, 32, and 48 mg/L of 

drinking water 

Berseem hay and 

dairy concentrate 

mixture (50:50) 

In-vivo 

dairy cows 

No effect on feed intake (likely to decrease); Increased water intake for dose 

48 mg/L; no effect on DM, OM, CP digestibility, milk production, and fat 

contents but increased protein composition in milk; no effect on pH and NH3 

but increased tVFA for doses 16 and 32 mg/L; decreased A:P for 16 and 32 

mg/L but increased A:P for 48 mg/L; no effect on total viable bacteria, 

cellulolytic and protozoa counts for all doses of EO 

(Soltan et al., 

2010) 

9 Cinnamaldehyde (CIN) (>98% purity), 

garlic oil (GAR) (1.5% allicin), or 

Junipper berry (JUN) (35% α-pinene) 

(Pancosma S.A, France) at 200 mg/kg 

DM of diet.  

Barley-based 

concentrate and 

alfalfa hay (84:16)  

In-vivo 

Lambs 

No effect on DMI but CIN and JUN had higher ADG and less blood 

glycerol than GAR and the control; No different on pH, NH3, tVFA, nor 

A:P; only CIN had higher total blood triglycerides; all additives gave higher 

liver weight than the control but no different on hot dress weight , weight of 

cuts, and saleable meat yield; all additives had minor effect on the overall 

fatty acid compositions (back fat and liver) and meat flavour characteristics 

(Chaves et al., 

2008a) 

10 Cinnalmadehyde (CIN) (>99% purity) 

and carvacrol (CAR) (>98% purity) 

(Phodé S.A., France) at 200 mg/kg 

DM diet.  

 

 

Either barley-based 

or corn-based diets 

In-vivo 

Lambs 

No different on DMI, ADG, and NH3; CIN and CAR increased tVFA in both 

barley-based and corn-based diets but no different in A:P; no different on 

carcass characteristics, meat yield, and sensory evaluations. 

 

 

 

 

 

(Chaves et al., 

2008b) 
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No Essential oils  Basal control diets Test systems Outputs References 

11 Oregano oil (carvacrol 83.1%, thymol 

2.1%, γ-terpinene 4.0%, p-cymene 

3.8%, β-caryophyllene 0.9%) at 1 

ml/kg diet 

Maize-based diet 

and alfalfa hay 

(55:45) 

In-vivo 

Lambs 

No effect on DMI, ADG, Hot carcass weight, carcass yield, and tenderness; 

increased pH and colour of meat; decreased lipid oxidation during 

refrigerated and long-term frozen storage 

(Simitzis et 

al., 2008) 

12 Eucalyptus staigeriana oil 

(Dierberguer óleos essenciais Ltd, 

Brazil) at 1.35 and 5.4 mg/ml 

Sheep infected with  

Haemonchus 

contortus 

In-vivo 

Goats 

Both doses reduced faecal egg hatching and larval development of 

Haemonchus contortus by 99.3 and 99.2%, respectively. The efficacy of the 

EO against gastrointestinal nematodes was 76.6% at 15
th

 day after treatment 

(Macedo et 

al., 2010) 

13 Lippia sidoides oil (LIP) (Pronat, 

Brazil) at 230 and 283 mg/kg animal.  

naturally infected 

sheep 

Positive control: 

Ivermectin at 200 

µg/kg 

In-vivo 

Sheep 

Increased the efficacy against gastrointestinal nematodes by 38% (230 

mg/kg), 45.9% (283 mg/kg), and 40.2% (Ivermectin) 7 days after treatment, 

and 30%, 54% and 39.6%, respectively, 14 days after treatment; LIP oil 

(283 mg/kg) and Ivermectin increased the respective efifacy by 56.9% and 

34.4% against Haemonchus spp, and 39.3% and 63.6% against 

Trichostrongylus spp. 

(Camurça-

Vasconcelos 

et al., 2007) 

EO, essential oils; IVDMD, in-vitro dry matter degradability; tVFA, total volatile fatty acids; A:P, acetate to propionate ratio; tGP, in-vitro total gas 

production; IVCPD, in-vitro crude protein degradability; SBM, soybean meals; NDF, neutral detergen fibre; ADF, acid detergent fibre; DMI, dry matter 

intake; FCR, feed conversion ratio; ADG, average daily gain. 
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2.5.1.1 Effect of essential oils on ruminants 

 It has been well known that EO addition into ruminant diets can have advantageous 

effects. In some reviews, EO can manipulate rumen fermentation resulting in: (a) potential 

improvement in protein and/or energy utilizations by reducing deamination of amino acids 

and NH3 that may be mediated through changes in the pattern of microbial colonization or 

direct impact on hyper-NH3 producing bacteria; and (b) possible decrease in CH4 

production through suppressing effect on methanogenesis by ruminal archea (Benchaar et 

al., 2008; Bodas et al., 2012; Hart et al., 2008; Patra and Saxena, 2009a; Patra and Yu, 

2012). However, the above responses are likely to work appropriately only at high doses of 

EO inclusion which may be inhibiting the process of ruminal fermentation and leading to a 

decline in VFA production (Benchaar et al., 2008). Also, the effect of EO on CH4 

mitigation is still not persistent especially in long term in-vivo studies. This is probably due 

to the degradation, neutralization, or the development of resistance by microorganisms 

against the bio-active components in EO following a long term feeding system (Benchaar 

et al., 2008; Bodas et al., 2012). In addition, inconclusive research about the effect of EO 

on rumen fermentation is understandable since naturally, there are many sources of EO and 

each of them may have different chemical constituents. The interaction among the 

chemical structures of EO, doses, nutrient composition in diets, and microbial population 

in the rumen need to be well understood in planning future experiments (Hart et al., 2008; 

Patra and Saxena, 2009a). Table 2.12 reviews various findings regarding the effect of EO 

either in the form of extracts or whole plants on rumen fermentation profiles, gas and CH4 

productions, and animal performance.  

 Recently, Patra and Yu (2012) reported that either clove, eucalyptus, garlic, 

oregano, or peppermint EO additions at up to 1.0 g/L of in-vitro medium with concentrate 

and alfalfa hay (50:50) as a substrate decreased rumen in-vitro total gas production (tGP, 

10.4 - 79.4%), CH4 (17.6 - 86.9%) (for all EO), and NH3 productions (for clove and 

oregano EO), followed by increasing pH (for all EO), tVFA (for all EO except oregano), 

butyrate, and acetate to propionate (A:P) ratio (for all EO except eucalyptus and garlic) 

compared with the control diet. However, they also found that their degradability was 

mostly reduced (except for garlic EO) in line with decreasing archea, protozoa, and 

cellulolytic bacteria. Reduced protozoa and cellulolytic bacteria may be the reason for 

decreasing degradability, tGP, and CH4 production. Protozoa and the majority of 

cellulolytic bacteria produced H2 as their end product of fermentation which is mainly 

utilized by methanogens (archea) to form CH4 in the rumen (Martin et al., 2010; Moss et 

al., 2000). Meanwhile, decreased CH4 that was followed by increasing A:P ratio (for clove, 
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oregano and peppermint EO) and butyrate (for all EO additions) in the above report is still 

questionable since more H2 is commonly produced during acetate and butyrate synthesis 

(Boadi et al., 2004; Ellis et al., 2008). Less CH4 can be produced in the situation where H2 

is largely available if more H2 can be competitively converted along with CO2 to form 

acetate by hydrogenotrophic acetogens as discussed previously (Attwood and McSweeney, 

2008; McAllister and Newbold, 2008; Moss et al., 2000). However, acetogens can use H2 

and CO2 to form acetate in the rumen when methanogens are greatly inhibited (Lopez et 

al., 1999). A similar situation occurs in the hindgut fermentation where acetogenesis is 

more dominant over methanogenesis resulting in the predominant utilization of H2 and CO2 

by acetogens to form acetate (Attwood and McSweeney, 2008; Leadbetter et al., 1999; 

Moss et al., 2000). Similarly, Azizabadi et al. (2011) reported that the additions of EO of 

either coriander, cinnamon, red basil, oregano, cumin, caraway, or dill at 1 µL into 50 ml 

into in-vitro medium with alfalfa hay and concentrate (50:50) as the substrate reduced CH4 

productions by 11.6 - 76.7% compared with the control diet except for rosemary and black 

pepper EO. Chaudhry and Khan (2012) also found that cinnamon bark, clove bud, 

coriander seed, cumin seed, and turmeric root inclusions into either wheat or ryegrass hay 

based diets decreased CH4 concentrations (in-vitro) by 21.5 - 67.0% in comparison with 

the control diet without EO.  

 Based on the above discussion, EO as additives to mitigate CH4 by in-vitro 

evaluation may be nearly conclusive but not yet for the other parameters such as tGP, VFA 

profiles, NH3, pH, and feed degradability. Clove, eucalyptus, garlic, oregano, peppermint 

(Patra and Yu, 2012), anise (Kilic et al., 2011), basil, cinnamon, cumin, coriander, 

caraway, clove, eucalyptus, lemon, nutmeg, and thyme (Azizabadi et al., 2011) EO 

supplementations were reported to decrease tGP. However, clove, peppermint, fennel, 

rosemary, pistachio, and dill EO supplementations failed to decrease tGP in the experiment 

of Azizabadi et al., (2011) whereas Kilic et al. (2011) even reported increased tGP for 

cumin EO supplementation. Moreover, Kilic et al. (2011) found that garlic EO additions to 

either barley or wheat straws-based diets decreased tGP but it had no effect when it was 

added to SBM-based diets. 

 It was reported from in-vitro studies that eucalyptus, garlic, and peppermint EO 

(Patra and Yu, 2012) and cinnamon barks, clove buds, and cumin seeds (Chaudhry and 

Khan, 2012) supplementations increased tVFA with increased A:P ratio for clove, oregano, 

and peppermint EO but decreased A:P ratio for eucalyptus and garlic EO 

supplementations. Reduction in tVFA for oregano EO and minor effect on tVFA for clove 

EO (Patra and Yu, 2012), coriander seeds, cumin seeds, turmeric roots, and their mixed 
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combination (Chaudhry and Khan, 2012) were also reported in-vitro. Moreover, Chaudhry 

and Khan (2012) observed a decrease in A:P ratio for coriander and cumin seed additions 

in hay-based diets but no differences in A:P ratio for those spices in wheat-based diets. An 

in-vivo study on dairy cows by Giannenas et al. (2011) reported that a mixture of selective 

EO containing thymol, eugenol, vanillin, guaiacol, and limonene increased tVFA at the 

highest dose (150 mg/kg DM concentrate) while decreased A:P ratio. Similarly, Soltan et 

al. (2010) reported that additions of a mixture containing eucalyptus oil, menthol crystal, 

mint, ethanol, and emulsifiers to a diet of dairy cows increased tVFA with decreased A:P 

ratio at the dose of 16 and 32 mg/ L of the drinking water with a minor effect on tVFA and 

increased A:P ratio at 48 mg/L compared with the control diet. A minor effect on both 

tVFA and A:P ratio as the results of adding mixtures of selective EO containing either 

cinnamaldehyde, eugenol, and capsicum oleoresin for feedlot cattle (Geraci et al., 2012) or 

cinnamaldehyde and eugenol  for dairy cows (Tager and Krause, 2011) were also reported. 

Moreover, Chaves et al. (2008a) reported that either cinnamaldehyde, garlic, or juniper 

berry EO additions at 200 mg/kg DM to barley-based diets had no effect on either tVFA or 

A:P ratio of growing lambs. However, another study by Chaves et al. (2008b) reported that 

cinnamaldehyde and carvacrol additions at 200 mg/kg DM to either barley or corn based 

diets increased tVFA without affecting A:P ratio in growing lambs. 

 It was also reported that in-vitro NH3 was decreased by the supplementations of 

clove and oregano EO but it was similar to the control diet for eucalyptus, garlic, and 

peppermint EO (Patra and Yu, 2012). Similarly, Azizabadi et al. (2011) described a 

decrease in NH3 concentrations as a result of garlic, cinnamon, thyme, coriander, caraway, 

cumin, nutmeg, dill, rosemary, red basil, oregano, clove, lemon, black pepper, peppermint, 

and pistachio EO additions  in a diet with no effect on NH3 concentrations  for fennel and 

mountain pride EO compared with the control diet. Moreover, Chaudhry and Khan (2012) 

reported in-vitro that some spice supplementations such as coriander seeds and turmeric 

roots decreased NH3 concentrations in hay-based diets although they also reported an 

increase in NH3 concentrations due to either coriander or cumin seed additions in wheat-

based diets. In-vivo studies by Geraci et al., (2012) and Giannenas et al. (2011) using a 

mixture of EO as additives for feedlot cattle or dairy ewes, respectively, reported reduced 

NH3 productions. However, minor changes in NH3 productions due to supplementation of 

mixtures or individual EO were also reported in dairy cows (Soltan et al., 2010; Tager and 

Krause, 2011) and growing lambs (Chaves et al., 2008a). The mechanism of decreasing 

NH3 productions in the rumen as the result of EO supplementation seems to be caused by 

the direct effect of EO on hyper-NH3 producing bacteria (Benchaar et al., 2008; Bodas et 
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al., 2012; Hart et al., 2008; Patra and Saxena, 2009a; Patra and Yu, 2012), not by binding 

the plant protein since, in contrast with tannins, EO may not have binding ability to plant 

proteins.  

 Patra and Yu (2012) reported in-vitro that clove, eucalyptus, garlic, oregano, and 

peppermint EO additions in a diet increased pH of the rumen fluid from the control diet. 

Azizabadi et al. (2011) also reported that in-vitro caraway, cumin, thyme, nutmeg, 

mountain pride, red basil, clove, lemon, peppermint, and pistachio EO additions in a diet 

increased ruminal pH but ruminal pH was decreased for black pepper, rosemary, and dill 

EO with no effect on the ruminal pH for fennel, cinnamon, and garlic EO compared with 

the control diet. A minor effect on ruminal pH was also reported by Chaudhry and Khan 

(2012) for cinnamon barks, clove buds, coriander seeds, cumin seeds, and turmeric roots in 

wheat-based diets or coriander seeds, cumin seeds, turmeric roots, and their mixed 

combination in hay-based diets. Similarly, in-vivo studies by Giannenas et al. (2011), 

Soltan et al. (2010), and Chaves et al. (2008a) showed that mixtures or individual EO 

supplementations did not have any effect on ruminal pH neither in dairy ewes, dairy cows, 

nor growing lambs, respectively. 

 However, the advantageous effects of EO supplementation in ruminants as 

discussed above is mostly followed by reduction or minor effect on DM degradability. 

Azizabadi et al. (2011) reported reduced in-vitro dry matter degradability (IVDMD) as the 

result of EO supplementations for all of their EO samples. Patra and Yu (2012) reported a 

similar decrease in IVDMD for most of their samples except for garlic EO. Meanwhile, 

Chaudhry and Khan (2012) reported minor effects on IVDMD for most of their spice 

samples except reduced IVDMD for cinnamon in wheat-based diets. In-vivo studies by 

Geraci et al. (2012), Tager and Krause (2011), Chaves et al. (2008a), Chaves et al. 

(2008b), and Simitzis et al. (2008) reported that EO additions in diets had no effect on 

DMI of dairy ewes, dairy cows, nor growing lambs, respectively, whilst Soltan et al. 

(2010) reported that it tended to decrease feed intake of dairy cows. Geraci et al. (2012) 

reported that EO addition in a diet increased milk production in dairy ewes but had no 

effect on milk composition such as fats and protein while Soltan et al. (2010) and Tager 

and Krause (2011) reported that EO supplementations had no effect on milk yields, milk 

fats, and protein compositions in dairy cows. Chaves et al. (2008a) observed that 

cinnamaldehyde and juniper berry EO additions in diets increased average daily gain 

(ADG) but in other experiments, it was reported that cinnamaldehyde, carvacrol (Chaves et 

al., 2008b), and oregano (Simitzis et al., 2008) EO supplementations had no effect on 

ADG in growing lambs.   
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 It was reported that EO additions in diets of growing lambs had no effect on carcass 

weight, meat yield (Chaves et al., 2008a; Chaves et al., 2008b; Simitzis et al., 2008), 

sensory parameters (Chaves et al., 2008b), tenderness (Simitzis et al., 2008), meat flavour, 

and overall fatty acid compositions (Chaves et al., 2008a). However, Simitzis et al. (2008) 

reported an increase in pH and the colour of meat lambs as the result of EO 

supplementation and a decrease in lipid oxidation during refrigeration and long-term 

frozen storage. Karabagias et al. (2011) reported that adding 0.1% of thyme EO into lamb 

meat during packaging extended product shell life by 2 - 3 days. In addition, EO 

supplementation is also beneficial to improve animal health by combating parasites. 

Adding both Eucalyptus staigeriana (Macedo et al., 2010) and Lippia sidoides (Camurça-

Vasconcelos et al., 2007) EO in diets for goats and sheep, respectively, were effective to 

help animals against gastrointestinal nematodes such as Haemonchus spp and 

Trichostrongylus spp. 

2.5.2 Tannins 

 Tannins are polyphenolic substances with variable molecular weight and 

complexity, and they have the ability to bind to dietary protein in aqueous solution 

(Makkar, 2003a; Mueller-Harvey, 2006; Patra and Saxena, 2009a). Although some pure 

plant polyphenols may be rarely soluble in water, their interactions naturally ensure that 

minimally some have solubility in aqueous media (Haslam and Cai, 1994). Tannins have 

multiple phenolic hydroxyl groups which can form complexes mainly with proteins and to 

a lesser extent with metal ions, amino acids, and polysaccharides (Makkar, 2003a). 

Broadly, tannins can be divided into two major groups: hydrolysable tannins and 

condensed tannins. 

 Hydrolysable tannins, known as gallotannins and ellagitannins, have a structure 

based on a gallic acid unit and are commonly found as polyesters with D-glucose 

(gallotannins) while derivatives of hydroxydiphenic acid (ellagitannins) are derived from 

oxidative coupling of contiguous gallolyl ester groups in a polygallolyl D-glucose ester 

(Figure 2.7, Haslam, 2007). Haslam (2007) suggested two pathways of gallic acid 

biosynthesis: (a) from direct dehydrogenation of an intermediate in the shikimate pathway 

and the retention of oxygen atoms of the alicyclic precursor, (b) from a derivatives of the 

end-product of the pathways as explained in Figure 2.8.  
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Figure 2.7 Derivation of ellagitannins by oxidative coupling (Haslam, 2007). 

 

 

Figure 2.8 Biosynthesis of gallic acid (Haslam, 2007). 

 

 Condensed tannins, or proanthocyanidins, are structured by a nucleophilic flavanyl 

unit, often a flavan-3-ol (‘catechin’) that is generated from an electrophilic flavanyl unit, 

flavan-4-ol, or flavan-3,4-diol (Bruyne et al., 1999). Proanthocyanidins occur as water-

soluble oligomers containing two to ten or more ‘catechin’ units and water-insoluble 

polymers (Haslam, 2007). Due to differences in hydroxylation pattern, Bruyne et al. (1999) 

have classified proanthocyanidins into a number of subgroups: propelargonidins (3,4’,5,7-

OH), procyanidins (3,3’,7-OH), prodelphinidins (3,3’,4’,5,5’,7-OH), proguibourtinidins 

(3,4’,7-OH), profisetinidins (3,3’,4’,7-OH), prorobinetinidins (3,3’,4’,5’,7-OH), 

proteracacidins (4’,7,8-OH; only synthetical), promelacacidins (3’,4’,7,8-OH), 

proapigennidins (4’,5,7-OH), and proluteolinidins (3’,4’,5,7-OH). They reported that 

procyanidins mostly appear in barks or woody plants, are the commonest whilst the 

Bisgalloyl ester 

(gallotannin) 

Hexahydroxydiphenoyl ester 

(ellagitannin) 

Gallic acid 
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prodelphinidins are the major substances of the leaves and conifers. Figure 2.9 describes 

the general biosynthetic pathways of flavan-3-ol and proanthocyanidins. 

 

Figure 2.9 Biosynthetic pathways of flavan-3-ol and proanthocyanidins (Bruyne et al., 

1999). 
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Table 2.13 Major bioactive compounds of some tannin-rich plants. 

Plants Scientific names Main parts Major bioactive compounds References 

Lingonberry Vaccinium vitis-

idaea  

Fruits (µg/g fresh weight) Cyanidin 3-galactoside 

(486.9); quercetin 3-galactoside (86.1); 

quercetin 3-rhamnoside (82.3); caffeic acid 

(61.6); cyanidin 3-arabinoside (62.7); β-

coumaric acid (61.6); quercetin derivates 

(48.7); peonidin 3-glucoside (41.3); 

quercetin 3-arabinoside (29.9) 

(Zheng and 

Wang, 2002) 

 

Pistachio Pistachia 

lentiscus 

Leaves (mg/L) Chlorogenic acid (17.4); 3,4,5 tri-

O-galloyquinic acid (15.9); rutin (13.6); 

3,5 di-O-galloyquinic acid (10.8); 

myricetin-3-O-rutinoside (6.8); catechin 

(5.6) 

(Azaizeh et 

al., 2013) 

 

 

 Phillyrea latifolia  (mg/L) Oleuropein (167.0); tyrosol (78.2); 

quercetin-7-O-rutinoside (42.5); apigenin-

7-O-glucoside (20.0); quercetin (14.7); 

luteolin-7-O-glucoside (8.6); luteoline 

(7.6) 

(Azaizeh et 

al., 2013) 

 

Quebracho 

extract 

Schinopsis 

lorentzii, 

Schinopsis 

balansae 

heartwoods Catechin, ent-fisentinidol-4-ol (Venter et 

al., 2012b) 

 

Sainfoin Onobrychis 

viciifolia 

Whole plant 

(bud stage) 

(mg/g DM) Quercetin 3-rutinoside (6.15); 

arbutin (2.69); kaempferol 3-rutinoside 

(1.87); quercetin 3-rhamnosylrutinoside 

(1.00); isorhamnetin 3-rutinoside (0.38); 

3’-caffeoylquinic acid (0.33); kaempferol 

3-rhamnosylrutinoside (0.29); 5’-

caffeoylquinic acid (0.28); epicatechin 

(0.26) 

(Regos and 

Treutter, 

2010) 

 

  Young 

leaves 

(mg/g DM) Rutin (19.9); isorhamnetin 3-

O-rutinoside (3.56); nicotiflorin (2.82); 

quercetin 3-O-rhamnosylrutinoside (2.14);  

(Regos et 

al., 2009) 

 

  Young 

petiols 

(mg/g DM) Arbutin (17.7); rutin (9.14); 

isorhamnetin 3-O-rutinoside (3.56); 

catechin (3.46); 8-β-

glucopyranosyloxycinnamic acid (1.94); 

quercetin 3-O- rhamnosylrutinoside (1.52); 

epicatechin (1.23)   
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Plants Scientific names Main parts Major bio-active compounds References 

  Stems (mg/g DM) Arbutin (4.90); rutin (2.57); 8-

β-glucopyranosyloxycinnamic acid (1.80) 

 

  Flower 

stalks 

(mg/g DM) Arbutin (8.71); rutin (6.63); 8-

β-glucopyranosyloxycinnamic acid (2.03); 

isorhamnetin 3-0-rutinoside (1.48);  

quercetin 3-0- rhamnosylrutinoside (1.19); 

catechin (1.10) 

 

  Flower buds (mg/g DM) Rutin (5.78); nicotiflorin 

(1.31) 

 

Wattle  

(extract) 

Acacia mearnsii Barks  (% from extract) Robinetinidol-catechin-

robinetinidol (32), robinetinidol-

gallocatechin- 

robinetinidol (27), robinetinidol-catechin-

fisetinidol (20), robinetinidol- 

gallocatechin-fisetinidol (13), fisetinidol-

catechin-fisetinidol (5), and fisetinidol-

gallocatechin-fisetinidol (3) 

(Venter et 

al., 2012a) 

 

Wattle Acacia mangium, 

A. auriculiformis 

Heartwoods 2,3-trans-3,4
’
,7,8-tetrahydroxyflavanone, 

teracidin, 4’,7,8-trihydroxyflavanone 

(Barry et al., 

2005) 
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Table 2.14 Effect of tannins on ruminants. 

No Tannins  Basal control diets Test systems Outputs References 

1 Chrysanthemun coronarium at 20 

mg/ 0.4 g control substrate 

Concentrate + grass hay 

(70:30) 

In-vitro  

Sheep 

Increased tVFA and slightly increased acetate but decreased 

propionate 

(Wood et al., 

2010) 

2 Whole purple prairie clover 

(legume, Dalea purpurea Vent.) at 

either vegetative (VEG) or 

flowering (FLO) stages 

VEG contained (g/kg DM) 

916 OM, 166.9 CP, 333.8 

NDF and 58.6 CT while 

FLO had 935 OM, 133.8 

CP, 481.6 NDF and 94.0 CT  

In-vitro 

Dairy cows 

VEG had higher DM and NDF digestibility, and N in residue than 

FLO; generally no different on VFA profiles and NH3 

(Jin et al., 

2012) 

3 CT extract, from Leucaena 

leucephala at 20, 30, 40, and 50 

g/kg DM  

Panicum maximum In-vitro 

Cattle 

 

(linearly) reduced tGP, CH4 (40 g/kg DM as the lowest), and IVDMD 

(only for 50 g/kg DM); no different in pH 

(Huang et al., 

2010) 

4 Sainfoin hay (Onobrychis viciifolia 

Scop.) (SH) at 4 different growth 

rates with CT content ranging from 

63.5-114 mg/g DM  

Alfalfa hay (AH) as low-

tannins counterpart  

In-vitro 

Cows 

(Across the growth rates) SH had higher OM digestibility, tGP, CH4, 

tVFA, and acetate but being lower in NH3 than AH; no different on 

propionate and A:P 

(Guglielmelli 

et al., 2011) 

5 5 different accessions and 2 

different harvesting of Sainfonin  

(Onobrychis viciifolia Scob) 

representing different CT content 

(from 48.4 to 78.5 g/kg DM) 

Concentrate, hay, and corn 

silage (30:35:35) 

In-sacco 

Dairy cows 

Reduced DM and CP degradability (roughly linear) at increased CT 

contents 

(Azuhnwi et 

al., 2012) 

6 Either Acacia pennatula or 

Enterolobium cyclocarpum (ground 

pods) at 45% of each diet (iso-

protein and energy) 

Sorghum-based concentrate 

and hay (B. brizantha) 

(95:5)  

In-vivo 

Sheep 

Increased DMI, especially with A. pennatula but decreased DM and 

OM digestibility; no effect on conversion efficiency from hexose to 

calculated VFA and calculated CH4 

 

 

 

(Briceño-Poot 

et al., 2012) 
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No Tannins  Basal control diets Test systems Outputs References 

7 Tannins extract (from Acacia 

mearnsii, Weibull Black, Tanac 

S.A. Montenegro, Brazil) at 20, 40, 

or 60 g/kg of DM intakes 

(intraruminal inclusion) 

Ryegrass (ad-libitum) In-vivo 

Wethers 

 

 

DMI, digestibility of DM, OM, NDF, and N, and urinary N excretion 

linearly decreased at increased levels of tannins; No effect on 

retained N and duodenal flow of α-amino N but rumen microbial N 

entering the duodenum tended to decrease linearly at increased levels 

of tannins.  

(Kozloski et 

al., 2012) 

 

 

8 Tannins extract (from bark of 

Acacia mearnsii, Mimosa Central 

Cooperative Ltd, South Africa) at 

163 g/d (TAN-1) and 326 g/d 

(TAN-2) or 0.9 and 1.8% CT DMI, 

respectively)  

 Ryegrass supplemented 

with cracked triticle grain at 

4.5 kg DM/cow/d 

In-vivo 

Dairy cows 

Reduced CH4 by 14-29% but decreased DMI and milk yield 

(especially in TAN-2); TAN-2 decreased fats (19%) and protein (7%) 

contents in the milk; no effect on protein and lactose contents; 

decreased digestible energy and N lost in urine 

(Grainger et 

al., 2009) 

 

 

9 Sericea lespedeza (Lespedeza 

cuneata) (SER), either fresh  

(20.2% CT) or hay forms (15.3% 

CT) 

Alfalfa (ALF), sorghum-

sudangrass (GRASS) (both 

low in CT, ≥ 0.03%) 

In-vivo 

goats 

(short term) 

 

Fresh forages: 

SER had higher DMI, GE intakes but lower in DM digestibility, CH4, 

and ciliate protozoa than ALF and GRASS; SER had higher N 

intakes than GRASS but lower than ALF; No difference for BW, 

ruminal pH, NH3, bacteria, and cellulolytic bacteria. 

Hay forages: 

SER had higher DMI, GE intakes but lower DM and N digestibility, 

CH4, and ciliate protozoa than ALF and GRASS; SER had higher N 

intakes and pH than GRASS but the same as ALF. SER had lower 

NH3 than ALF but similar to GRASS; no difference for BW, bacteria 

and cellulolytic bacteria count. 

 

 

 

 

 

(Puchala et 

al., 2012b) 
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No Tannins  Basal control diets Test systems Outputs References 

10 

 

Quebracho tannins extract (45.6% 

tannins from Schinopsis lorentzii, 

Figli di Guido Lapi S.pA, Italy) at 

95.7-104 g/kg diet (DM basis) 

Barley-based concentrate  In-vivo 

Lambs 

Increased vaccenic acid (VA, C18:1 t11) but no effect on stearic acid 

(SA, C18:0) compositions in rumen fluid; Lowered SA/VA ratio; 

decreased Butyrivibrio proteoclasticus and increased Butyvibrio 

fibrisolvens, and protozoa; increased rumenic acid (cis-9, trans-11 

CLA) (2-fold) and increased PUFA but reduced SFA from 

longissimus muscle 

(Vasta et al., 

2010) 

 

(Vasta et al., 

2009) 

  

11 Quebracho tannins extract (from 

Aspidosperma quebracho, Tannin 

Co., Peabody, MA, USA) at 80 

g/kg diet  

Beet-pulps based diet 

containing alkaloids either 

gramine at 2g/kg diet or 

methoxy-N,N-

dimethyltryptamine at 

0.03g/kg diet  

In-vivo 

Lambs 

 

(across the diet) No effect on total DMI; total digested DM, energy or 

NDF but increased N digestibility, retained N, and digested N  

 

 

 

(Owens et al., 

2012) 

 

12 Quebracho tannins (Unitan SAICA, 

Chaco, Argentina) (11%) + wheat 

bran (89%) at 400-500 g to obtain 

4% tannins in the diet  

Either high-degradable 

protein diet (HP) (22% CP 

and 17% RDP) or low-

degradable protein diet (LP) 

(11% CP and 8% RDP) 

In-vivo 

Wethers 

Minor effect on intakes although tannins addition tended to decrease 

intakes in HP diet; decreased NH3 and blood-urea N especially in HP 

diet. 

(Fernández et 

al., 2012) 

 

 

13 Tannins extract (from Vaccinium 

vitis idaea, Herbapol Poznan, 

Poland) at 140g or 2g tannins /kg 

diet DM 

Lucerne and corn silages, 

meadow hay, and 

concentrate 

(forages:concentrate ~ 

60:40) 

In-vivo 

Dairy cows 

Decreased pH, NH3, calculated CH4, protozoa; no effect on tVFA but 

reduced A:P; no effect on milk yield, fats, CP, lactose, and energy 

contents in milk, DM, OM, and NDF digestibility. 

(Cieslak et al., 

2012) 

 

 

14 Havardia albicans (71.5 g/kg DM 

CT) and basal diet (40:60, DM 

basis) 

Grain-based concentrate and 

pennisetum purpureum 

grass (90:10, DM basis) 

In-vivo 

Sheep 

No different on DMI but lower in DM digestibility; decreased 

Haemonchus contortus (from 2477 to 1575 eggs/g faeces) and 

females fecundity (eggs in utero, from 400 to 325)  

 

(Galicia-

Aguilar et al., 

2012) 
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No Tannins Basal control diets Test systems Outputs References 

14 Pistachia lentiscus and Phillyrea 

latifolia extracts (100% ethanol, 

70% ethanol, or water extractions) 

at 1200 µg/ml of Phosphate-

buffered saline solution (PBS) 

incubated with gastro-intestinal 

nematodes  

PBS incubated with gastro-

intestinal nematodes 

including Teladorsagia 

circumcincta, T. 

colubriformis and Chabertia 

ovina (originally cultured 

from a donor goat) 

Larval 

exsheathment 

inhibition 

assays 

Inhibited the exsheathment of gastro-intestinal nematode larvae at all 

extraction methods. 

 

(Azaizeh et 

al., 2013) 

 

 

IVDMD, in-vitro dry matter degradability; tGP, in-vitro total gas production; IVCPD, in-vitro crude protein degradability; tVFA, total volatile fatty acids; 

A:P, acetate to propionate ratio; CH, carbohydrate; NDF, neutral detergen fibre; ADF, acid detergent fibre; DMI, dry matter intake; FCR, feed conversion 

ratio; ADG, average daily gain; OM, organic matter, CP, crude protein; CT, condensed tannin; GE, gross energy. 
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Table 2.15 Nutrient content, in-vitro gas, CH4, and ruminal fermentation at 24 h incubation of some tropical tannins-containing leaves. 

Tree leaves  Nutrient content (g/kg DM) Gas production 

(ml/200mg DM) 

CH4 

(ml) 

Total protozoa 

(10
5
) 

tVFA (mmol/L) NH3  

(mg/L) 

CP NDF TP TT -PEG +PEG -PEG +PEG -PEG +PEG -PEG +PEG -PEG +PEG 

Autocarpus integrifolia 123 362 76.6 66.8 32.2 32.8 3.67 6.51 0.256 0.227 12.6 14.3 6.3 6.5 

Azardirachta indica 145 395 108 99.9 18.1 32.3 3.16 6.13 0.244 0.317 12.7 13.8 4.6 7.7 

Ficus bengalensis 140 409 103 90.3 2.38 15.6 0.43 3.86 0.119 0.110 11.4 12.5 13.8 14.7 

Ficus mysoriensis 136 396 40.2 36.7 19.2 22.8 3.08 4.45 0.271 0.288 12.4 13.9 4.2 5.7 

Ficus racemosa 132 384 38.3 31.6 29.2 29.8 5.90 5.86 0.223 0.235 13.6 15.3 15.6 17.5 

Ficus religiosa 143 439 28.3 23.1 30.8 31.4 5.47 7.62 0.048 0.072 10.4 14.6 18.2 19.4 

Gliricidia maculate 153 386 21.6 12.4 29.9 30.2 7.73 7.77 0.099 0.100 10.9 11.2 21.2 22.4 

Jatropha curcus 172 444 11.5 7.20 21.2 22.2 3.83 7.26 0.469 0.450 10.4 14.9 19.6 19.8 

Leucena leucocephala 147 391 34.5 22.0 31.2 35.2 8.61 8.12 0.299 0.354 13.2 15.7 22.2 23.8 

Moringa oleifera 145 432 20.7 13.2 37.0 39.6 9.15 10.17 0.333 0.437 12.7 14.1 25.4 25.6 

Morus alba 123 371 12.4 7.46 25.2 28.2 5.19 4.72 0.245 0.206 15.8 15.9 15.6 16.5 

Semaroba glauca 132 352 111 107 28.7 32.7 3.55 3.93 0.244 0.311 9.6 16.3 4.9 6.5 

Sesbania grandiflora 136 423 21.2 13.2 36.8 39.8 4.45 10.51 0.327 0.307 13.5 14.1 24.7 26.1 

CP, crude protein; NDF, neutral detergent fibre; TP, total phenols; TT, total tannins; tVFA, total volatile fatty acid; PEG, polyethylene glycol.  

Source: Bhatta et al., (2012).
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2.4.2.1 Effect of tannins on ruminants 

 Generally, tannins can reduce the solubility and rumen degradability of most leaf 

proteins due to their ability to bind proteins. Consequently, they can reduce the rumen NH3 

production and increase the availability of by-pass protein and non-NH3-N supply to be 

absorbed in the small intestine (Bodas et al., 2012; Makkar, 2003a; McSweeney et al., 

2001; Min et al., 2003; Mueller-Harvey, 2006). Although NH3 is an important source of N 

for rumen microbes, its over or fast production may exceed the ability of microbes to 

utilize it. This can lead to an excessive NH3 supply that, after absorption through rumen 

wall, can enter blood stream, liver, and eventually be excreted in urine as an N waste 

(Attwood et al., 1998; Szumacher-Strabel and Cieślak, 2010). Tannins can lower CH4 

production by slowing the inter-species transfer of H2 into methanogenic bacteria and thus 

depressing their growth (Boadi et al., 2004; Bodas et al., 2012; Makkar, 2003a; Mueller-

Harvey, 2006). Tannins also have the potential to improve animal health through their 

antioxidant properties to prevent bloat and break protein-rich cells of nematodes (Ishihara 

and Akachi, 1997; Ishihara et al., 2001; Mueller-Harvey, 2006). Tannin addition in diets 

has also been reported to increase the rumenic acid and polyunsaturated fatty acids (PUFA) 

and decrease saturated fatty acids (SFA) in ruminant products such as meat and milk 

through altered bio-hydrogenation by changing the microbial population in the rumen 

(Vasta et al., 2009; Vasta et al., 2010; Wood et al., 2010). Tannin supplementation, 

however, is thought to be associated with reduced feed intake resulting in possible reduced 

nutrient intakes, digestibility, animal performance, and in higher concentration, it may be 

toxic to animals (Makkar, 2003a; Mueller-Harvey, 2006; Mueller-Harvey et al., 2007). 

 Table 2.14 describes more findings on the effect of tannins on ruminants. 

Guglielmelli et al. (2011) reported in-vitro that Sainfoin hay (Onobrychis viciifolia Scop.) 

at different growth stages, containing 63.5 - 114 g condensed tannins (CT)/kg DM resulted 

in a lower NH3 production than alfalfa hay as the low tannins counterpart. It was also 

reported in-vivo that wethers fed either high or low degradable protein diets containing 4% 

tannins from quebracho extract produced a lower NH3 and had lower blood urea N 

concentrations in comparison with those fed the control diet (Fernández et al., 2012). 

Similarly, adding 2 g tannins/kg diet from Vaccinium vitis idaea extract decreased NH3 

production in-vivo of dairy cows (Cieslak et al., 2012). In addition, adding tannins extract 

from Acacia mearnsii barks at 0.9 - 1.8% CT of DMI reduced urinary N loss in dairy cows 

(Grainger et al., 2009). A similar decrease in urinary N excretion was reported on wethers 

fed ad-libitum ryegrass containing tannins extract from Acacia mearnsii at 20 - 60 g/kg 
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DMI (Kozloski et al., 2012). Meanwhile, Puchala et al. (2012a) reported that there was no 

difference for NH3 productions between goats fed fresh Sericea lespedeza (Lespedeza 

cuneata) (SER) containing 20.2% CT and either those fed alfalfa (ALF) or sorghum 

sudangrass (GRASS) (both containing ≤ 0.03% CT). However, when SER was given to 

goats in the form of hay (15.3% CT), the NH3 of SER was lower than ALF but similar to 

GRASS. An in-vitro study comparing the growth stage of purple prairie clover (Dalea 

purpurea Vent.) between vegetable and flowering stages (58.6 and 94.0 g CT/kg DM, 

respectively) showed that they were not different in NH3 productions (Jin et al., 2012).  

  Huang et al. (2010) reported in-vitro that adding CT extract from Leucaena 

leucephala  at 20, 30, 40, and 50 g CT/kg DM into Panicum maximum as the substrate 

reduced tGP and CH4 productions with the lowest for both at 40 g CT/kg DM. Moreover, 

tannins extract additions from Acacia mearnsii (barks) at 0.9 - 1.8% CT of DMI of dairy 

cows reduced in-vivo CH4 production by 14 - 29% (Grainger et al., 2009). It was similarly 

reported that goats fed either fresh SER or its hay with 15.3 - 20.2 CT contents produced 

less CH4 in comparison with either those fed ALF or GRASS (Puchala et al., 2012a). 

However, Guglielmelli et al. (2011) reported in-vitro that Sainfoin hay released higher CH4 

than alfalfa hay.  

 It was reported in-vitro that Sainfoin hay produced higher tVFA and acetate but no 

difference in A:P ratio compared with alfalfa hay (Guglielmelli et al., 2011). Wood et al. 

(2010) reported in-vitro that adding Chrysanthemun coronarium at 20 mg/0.4 g of the 

control diet containing concentrate and grass hay (70:30) increased tVFA, and tended to 

increase acetate but decreased propionate. However, an in-vivo study on dairy cows by 

Cieslak et al. (2012) reported that tannins extract supplementation from Vaccinium vitis 

idaea at 2 g tannins/kg DM diet (forages:concentrate ~ 60:40) had no effect on tVFA 

production but reduced the A:P ratio of the rumen fluid.  

 Huang et al. (2010) observed in-vitro that adding CT extract from Leucaena 

leucephala into Panicum maximum as the control diet had no effect on the ruminal pH. 

Puchala et al. (2012a) also reported that there was no difference in ruminal pH between 

goats fed fresh SER and those fed either ALF or GRASS but when SER was given to goats 

in the form of hay, then ruminal pH of SER was lower than ALF but similar to GRASS. 

Cieslak et al. (2012) reported that tannin extract supplementation from Vaccinium vitis 

idaea at 2 g tannins/kg DM of diet decreased pH in dairy cows. 

 It was reported in-vitro that adding CT extract from Leucaena leucephala at 20, 30, 

40, and 50 g/kg DM into Panicum maximum as the control diet had no effect on IVDMD 

except being lower at 50 g/kg DM inclusion compared with Panicum maximum alone  
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(Huang et al., 2010). An in-vitro study comparing the growth stage of purple prairie clover 

(Dalea purpurea Vent.) between vegetative (VEG) and flowering (FLO) stages (58.6 and 

94.0 g CT/kg DM, respectivly) showed that VEG had higher IVDMD than FLO (Jin et al., 

2012). An in-sacco study on dairy cows by Azuhnwi et al. (2012) showed that adding 

sainfoin with a CT content ranging from 38.4 - 78.5 g/kg DM into the control diet 

(concentrate, hay and corn ~ 30:35:35) reduced DM and CP degradability. Meanwhile, 

Guglielmelli et al., (2011) reported in-vitro that Sainfoin hay resulted in higher IVOMD 

than alfalfa hay. Kozloski et al. (2012) reported in-vivo that wethers fed ad-libitum 

ryegrass with tannins extract from Acacia mearnsii at doses of 20, 40, and 60 g/kg DMI 

resulted in a lower DMI and reduced the digestibility of DM, OM, NDF, and N compared 

with those fed the control diet. Grainger et al. (2009) also showed a decrease in DMI and 

milk yield in dairy cows supplemented with tannins extracted from Acacia mearnsii at 0.9 

- 1.8% CT DMI. However, Briceño-Poot et al. (2012) reported that sheep fed iso-protein 

and iso-energy sorghum-based concentrate and hay (95:5) diets containing 45% of either 

Acacia pennatula or Enterolobium cyclocarpum (ground pods) had higher DMI especially 

those supplemented with A. pennatula but lower DM and OM digestibility than those fed 

the control diet. It was similarly reported that goats fed either fresh SER or its hay had 

higher DMI but lower DM and N digestibility in comparison with those fed either ALF or 

GRASS (Puchala et al., 2012a). Owens et al. (2012) reported that adding quebracho 

tannins extracted from Aspidosperma quebracho into a beet pulps-based diet containing 

alkaloids either gramine at 2 g/kg diet or methoxy-N,N-dimethyltryptamine at 0.03 g/kg 

diet had no effect on DMI, digested DM, digested energy, and digested NDF but increased 

N digestibility in lambs. Galicia-Aguilar et al. (2012) reported that sheep fed either 

Havardia albicans (71.4 g CT/kg DM) in grain-based diet had a similar DMI but lower 

DM digestibility in comparison with those fed the control diet. Cieslak et al. (2012) 

observed that adding tannins extract from Vaccinium vitis idaea into a diet of dairy cows 

had no effect on milk yield and its fat, CP, lactose, and energy contents as well as DM, 

OM, and NDF digestibility. 

 In addition, it was reported that adding quebracho tannins extract into a barley-

based diet increased cis9, trans11 CLA (rumenic acid) and PUFA but reduced SFA in the 

longissimus muscle of sheep (Vasta et al., 2009), and increased vaccenic acid (trans11 

C18:1) with no effect on stearic acid (C18:0) compositions in the rumen fluid (Vasta et al., 

2010). Moreover, Azaizeh et al. (2013) reported that Pistachia lentiscus and Phillyrea 

latifolia extracts inhibited the exsheathment of gastro-intestinal nematode larvae (in-vitro) 
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while sheep supplemented with Havardia albicans (71.4 g CT/kg DM) in the diet had less 

Haemonchus contortus in their faeces (Galicia-Aguilar et al., 2012). 

2.5.3 Saponins 

 Saponins are widely distributed in the plants and are a diverse group of low-

molecular weight of plant secondary metabolites. Saponins have the ability to form stable 

soap-like foams in aqueous solution. Chemically, saponins comprise of a sugar moiety 

commonly containing glucose, galactose, glucuronic acid, xylose, rhamnose, or methyl 

pentose which is glycosidically linked to a hydrophobic aglycone (sapogenin) in the form 

of either triterpenoids or steroids (Francis et al., 2002; Oakenfull, 1981; Patra and Saxena, 

2009b; Wina et al., 2005). Triterpenoids are more widely distributed in the nature in 

comparison with steroids (Patra and Saxena, 2009b). The usual form of triterpenoid 

aglycone is a derivative of oleanane while the main forms of steroid aglycones are mostly 

in the spirostanol and furostanol derivatives (Figure 2.10) (Patra and Saxena, 2009b; Wina 

et al., 2005). The aglycone may consist of one or more unsaturated C-C bonds (Patra and 

Saxena, 2009b). The chain of oligosaccharide is commonly attached at the C3 position 

(monodesmosidic) but there are many saponins found to have an additional sugar moiety at 

the C26 or C28 positions (bidesmosidic) (Patra and Saxena, 2009b). Wina et al. (2005) 

also reported that there were two general types of triterpenoid saponins, neutral and acidic. 

Neutral saponins have their sugar components attached to sapogenin while acidic saponins 

have their sugars moiety containing uronic acid, or one or more carboxylic groups attached 

to the sapogenin (Wina et al., 2005). 

 

 

Figure 2.10 Chemistry of sapogenins: (a) oleanane (triterpenoid), (b) spirostanol, and (c) 

furostanol (steroids) (Patra and Saxena, 2009b). 
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Table 2.16 Chemical characteristics of saponins in some saponins-rich plants. 

Plants Scientific names Main parts Major bio-active compounds References 

Agave Agave Americana 

E. and H. 

Leaves Agavasaponin E structures: 3-O-[β-D-

xylopyranosyl-(1→2glc1)-α-L 

rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→3glc1)-β-D-

glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1

→4)-α-D-galactopyranosyl]-(25R)-5α-

spirostan-12-on-3β-ol, whereas agavasaponin 

H: 3-O-[β-D-xylopyranosyl-(1→2 glc 1)-α-l-

rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→3 glc1)-β-D-

glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1

→4)-β-D-galactopyranosyl]-26-O-[β-D 

glucopyranosyl]-(25R)-5α-furostan-12-on-3β

,22α,26-triol. 

(Wilkomirski 

et al., 1975) 

 

Chinese 

chive 

Allium tuberosum Seeds 26-O-β-D-glucopyranosyl-(25S,20R)-20-O-

methyl-5α-furost-22(23)-en-2α,3β,20,26-tetraol 

3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-

rhamnopyranosyl-(1→4)]-β-D-glucopyranoside; 

26-O-β-D-glucopyranosyl-(25S,20R)-5α-furost-

22(23)-en-2α,3β,20,26-tetraol 3-O-α-L-

rhamnopyranosyl-(1→2)-[α-L- 

rhamnopyranosyl-(1→4)]-β-D-glucopyranoside; 

26-O-β-D-glucopyranosyl-(25S,20S)-5α-furost-

22(23)-en-2α,3β,20,26-tetraol 3-O-α-L-

rhamnopyranosyl-(1→2)-[α-L- 

rhamnopyranosyl-(1→4)]-β-D-glucopyranoside; 

26-O-β-D-glucopyranosyl-(25S,20S)-5α-furost-

22(23)-en-3β,20,26-triol 3-O-α-L-

rhamnopyranosyl-(1→2)-[α-L-

rhamnopyranosyl-(1→4)]-β-D-glucopyranoside. 

 

 

 

 

 

 

 

(Sang et al., 

2001) 
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Plants Scientific names Main parts Major bio-active compounds References 

Tea Camelia sinensis 

var. Assamica 

Roots Triterpenoid saponin structures: methyl esters of 

3-O-α-L-arabinopyranosyl (1→3)-β-D-

glucuronopyranosyl-21, 22-di-O-angeloyl-R1-

barrigenol-23-oic acid; 3-O-α-L-

arabinopyranosyl (1→3)-β-D-

glucuronopyranosyl-21-O-angeloyl-22-O-2-

methylbutanoyl-R1-barrigenol-23-oic acid; 3-O-

α-L-arabinopyranosyl, (1 →3)-β-D-

glucuronopyranosyl-16α-O-acetyl-21-O-

angeloyl-22-O-2-methylbutanoyl-R1-barrigenol-

23-oic acid. 

(Lu et al., 

2000) 

 

Yam  Dioscorea 

pseudojaponica 

Yamamoto 

Tubers (Steroidal sapoinins) methyl protodioscin and 

methyl protogracillin (furostanol glycosides); 

dioscin, and gracillin (spirostanol glycosides). 

Their structures: 26-O-β-D-glucopyranosyl-22α-

methoxyl-(25R)-furost-5-en-3β,26-diol; 3-O-α-

L-rhamnopyranosyl-(1→2)-O-[[α-L 

rhamnopyranosyl-(1→4)]-O-[α-L-

rhamnopyranosyl-(1→4)]]-β-D-

glucopyranoside;  (25R)-spirost-5-en-3β-ol 3-O-

α-L-rhamnopyranosyl-(1→2)-O-[[α-L-

rhamnopyranosyl-(L→4)]-O-[α-L-

rhamnopyranosyl-(1→4)]]-β-d-

glucopyranoside. 

(Yang et al., 

2003) 

 

Quillaja Quillaja 

saponaria 

Barks Triterpenoid saponin sturctures:  3-O-[β-D-

galactopyranosyl-(1 → 2)-[3-O-

glucopyranosiduronic acid]; 3- 

O-[α-L-rhamnopyranosyl-(1→3)-[β-D-

galactopyranosyl-(1→2)]-β-D-

glucopyranosiduronic acid]; 3-O-[[β- 

D-xylopyranosyl-(1→3)-[β-D-

galactopyranosyl-(1→2)]-[3-O-

glucopyranosiduronic acid]. 

(Guo et al., 

1998) 
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Table 2.17 Effect of saponins on ruminants. 

No Saponins  Basal control diets Test systems Outputs References 

1 Saponins extract from Achyranthus 

aspara, Tribulus terrestris and 

Albizia lebbeck at 3, 6, or 9 % in 

the substrate (DM basis) 

Wheat straws and 

concentrate (50:50) 

In-vitro 

Buffalo  

Decreased CH4 from (ml/mg DM) 37.5 (control) to 19.2-24.5; 

decreased protozoa and NH3; almost no effect on IVDMD and 

tVFA but A:P ratio tended to decrease 

(Goel et al., 

2012) 

 

2 Saponins extract from Gynostemma 

pentaphyllum (98% gynosaponin, 

Kangwei Bioengineering Ltd., 

China) at 50, 100, or 200 mg/L 

medium 

Medium of a mixed co-

culture of anaerobic fungi 

and methanogens from goat 

rumen contents 

In-vitro 

goat 

Reduced tGP, CH4, tVFA (without affecting its proportion), fungi, 

and methanogens but increased pH at the increased levels of 

saponins addition  

(Wang et al., 

2011) 

 

3 Waru leaf (Hibiscus tiliaceus) at 5, 

10, 15, or 20 % saponins in the 

substrate to equally substitute 

Napier grass  

Napier grass (Pennisetum 

purpureum) 

In-vitro 

Cattle 

Decreased tGP in line with increased saponin levels; tended to 

increase tVFA at 5 and 10% saponin levels; no different on A:P but 

it tended to decrease linearly at the increased saponin levels; no 

effect on pH and NH3; reduced protozoa at any levels but the lowest 

at 5%. 

(Istiqomah et 

al., 2011) 

 

4 Saponins extract from Agave aloe 

(AE, Agave Americana) at 120, 

240, or 360 mg saponins/kg DMI 

and Quillaja saponaria (QS) at 120 

mg saponins/kg DMI 

Oaten hay (ad-libitum), 

barley-based concentrate 

(400g/sheep/d) 

In-vivo  

Lambs 

No effect on DMI, nutrient intakes, OM, CP, and NDF digestibility, 

N balance but reduced protozoa number in RF, blood cholesterol 

and glucose; tended to increase ADG (g/d) (59.6 for control vs 77.8, 

77.2, 79.0 and 76.6 for AE at 120, 240, 360 and QS at 120 mg 

saponins/kg DMI 

(Nasri and 

Ben Salem, 

2012) 

5 Tea saponins extract from green tea 

leaves (Ilex kudingcha C.J. Tseng, 

>70% triterpenoid saponins) at 0.4, 

0.6, and 0.8 g total saponins/kg DM 

Maize stover (forage) and 

concentrate (50:50) 

In-vivo 

goats 

No effect on DM, N, and ADF intakes; no effect on DM, N, and 

ADF digestibility either in rumen or small intestines; no effect on 

amino acid digestibility in small intestine; no effect on rumen pH, 

VFA, A:P, and NH3 

 

 

(Zhou et al., 

2012) 
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No Saponins  Basal control diets Test systems Outputs References 

6 Saponins extract from Quillaja 

saponaria (Sigma-Aldrich Inc., 

USA) at 20 g saponins /kg diet  

Beet-pulps-based diet 

containing alkaloids either 

gramine at 2g/kg diet or 

methoxy-N,N-

dimethyltryptamine at 

0.03g/kg diet  

In-vivo 

Lambs 

 

No effect on tDMI, total digested DM, energy, N, nor NDF 

 

 

 

 

 

(Owens et al., 

2012) 

 

 

7 Yucca schidigera steroidal-rich-

saponins extract (YS) (from stems, 

8.5% saponins, Desert King 

International, San Diego, USA), 

Quillaja saponaria triterpenic-rich-

saponin extract (QS) (from barks 

tree, 3.6% saponins, Desert King 

International, USA) or Camellia 

sinensis triterpenic-rich saponin 

extract (TS) (from whole plant, 

21.6% saponins, Ningbo Good 

Green Sci. & Tech., China) at 1.5, 

0.64, or 0.25% saponins in the DM 

of diets, respectively 

 

 

 

 

 

Corn and corn silage based 

diet 

In-vivo 

Steers 

YS and QS had no different to control on DMI and ADG but N 

intake of YS was lower than control and QS; TS had higher DMI 

and N intake but having a similar ADG than control; no effect on 

DM, NH3, and N of daily manure excretion; TS had lower NH3 than 

control; No effect on CH4 in general but increased TS inclusion 

from 0.25% to 0.5% resulted in decreased CH4 by 31% although 

reducing DMI and ADG 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Li and 

Powers, 2012) 
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No Saponins  Basal control diets Test systems Outputs References 

8 Tea saponins extract (> 60% 

triterpenoid saponins, Zhejiang 

Orient Tea Development Co., Ltd, 

China) at 3 g/lamb/d 

Chinese wild rye grass and 

concentrate (60:40)  

In-vivo 

Lambs 

No effect on feed intake and daily gain; reduced CH4 (L/kg DMI); 

increased tVFA but no effect on A:P; decreased ruminal pH and 

reduced NH3; no effect on methanogens, fungi, R. flavefaciens, and 

F succinogenes but decreased protozoa populations 

Reduced SFA, cis9, trans11 CLA/ vaccenic acid ratio; increased 

MUFA but no effect on PUFA (in longissimus dorsi muscle) 

(Mao et al., 

2010) 

 

 

(Mao et al., 

2012) 

9 Saponins extract from barks of 

Quillaja saponaria (Sigma Batch: 

024K2505, Santiago, Chile, USA) 

at 6, 12, and 18 mg sapogenin/ kg 

DMI 

 

 

Oat hay (ad-libitum) and 

barley-based concentrate 

(400 g/lamb/d) 

 

 

 

 

In-vivo  

Lambs 

 

 

 

 

 

No effect on the intakes of DM, OM, CP, and NDF, the digestibility 

of DM, OM, and CP but decreased NDF digestibility; no effect on 

N balance, N supply, pH, and NH3 but decreased protozoa numbers 

and glucose on plasma metabolites; no effect on ADG, cooking 

loss, meat pH (24h post mortem) but  decreased carcass weight 

Reduced the concentration of cis9 C14:1 (longissimus dorsi muscle) 

and its desaturation index; 12 mg had higher C20:4n6 than control 

and 6 mg; 12 mg had lower α-linolenic:linoleic ratio than control; 

no effect on muscle cholesterol levels. 

(Nasri et al., 

2011) 

 

 

 

(Brogna et al., 

2011) 

10 Sisal waste extract (SWE) (Agave 

sisalana, containing saponins in the 

form of sapogenins hecogenin and 

tigogenin) at 1.7 g/goat/d; 

levamisole phosphate (LEP) (6.3 

mg/ kg) as a positive control. 

Grass hay. In-vivo 

Goats. 

Reduced faecal eggs count by max. 50.3% (SWE) and 93.6 (LEP); 

LEP reduced the recovered parasites from the digestive tract by 

74% but a low decrease of those parasites for SWE. No toxicity 

effect from both treatment assessed by histological analysis of the 

liver and kidney. 

(Botura et al., 

2011). 

IVDMD, in-vitro dry matter degradability; tGP, in-vitro total gas production; RF, rumen fluid; tVFA, total volatile fatty acids; A:P, acetate to propionate 

ratio; NDF, neutral detergen fibre; ADF, acid detergent fibre; tDMI, total dry matter intake; ADG, average daily gain; OM, organic matter, CP, crude 

protein; CT, condensed tannin; SFA, saturated fatty acids; MUFA, mono unsaturated fatty acids; PUFA, polyunsaturated fatty acids; CLA, conjugated 

linoleic acids. 
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2.5.3.1 Effect of saponins on ruminants 

 Several studies have shown that tea saponins have a suppressing effect on the 

release of CH4 and NH3 in-vitro (Hu et al., 2005) and in-vivo by using growing lambs 

(Mao et al., 2010). The CH4 reduction was supported by the reduction in protozoa and 

particularly the protozoa related methanogens (Guo et al., 2008; Wina et al., 2005). 

Saponins can act as a defaunation agent via a sterols-saponin interaction in the protozoal 

cell membrane, and hence affecting the methanogenic protozoa (Wina et al., 2005). Since 

protozoa can be a predator for bacteria, at an appropriate level, defaunation may improve 

the population of bacteria and may increase N utilization leading to an improved animal 

growth and meat or milk productions (Wina et al., 2005). Less protozoa in the rumen is 

also likely to result in less acetate production since most fermentation end product of 

protozoa is acetate (Bodas et al., 2012; Hart et al., 2008; Wina et al., 2005). 

   Table 2.17 shows more findings on the effect of saponins for ruminants. Goel and 

Makkar (2012) reported in-vitro that adding saponins extract from either Achyranthus 

aspara, Tribulus terrestris, or Albizia lebbeck at 3, 6, or 9 % dietary DM (wheat straws and 

concentrate ~ 50:50) decreased CH4 production by 34 - 48%. Wang et al. (2011) reported 

in-vitro that adding saponins extract from Gynostemma pentaphyllum (98% gynosaponin) 

at 50, 100, or 200 mg/L medium of a mixed co-culture of anaerobic fungus and 

methanogens from goat rumen contents, reduced tGP, and CH4 production. It was also 

reported that waru leaf (Hibiscus tiliaceus) additions at 5, 15, or 20% saponin levels into 

grass diet (Navier grass, Pennisetum purpureum) decreased tGP linearly (Istiqomah et al., 

2011). Similarly, an in-vivo lamb study by Mao et al. (2010) found that adding tea 

saponins extract (> 60% triterpenoid saponins) at 3 g/lamb/d into the diet of ryegrass and 

concentrate (60:40) reduced CH4 production by about 27%. However, Li and Powers 

(2012) reported in-vivo that adding either Yucca schidigera, Quillaja saponaria, or 

Camellia sinensis extracts at 1.5, 0.64, or 0.25% saponins, respectively (DM basis) into  a 

corn and corn silage based diet generally had no effect on CH4 production per unit of DMI.  

 Goel et al. (2012) reported in-vitro that adding saponin extracts from either 

Achyranthus aspara, Tribulus terrestris, or Albizia lebbeck at 3, 6, or 9 % DM in the 

substrate (wheat straws and concentrate ~ 50:50) reduced NH3 production but Istiqomah et 

al. (2011) found in-vitro that waru leaf supplementation had no effect on NH3 production. 

Although Mao et al. (2010) reported that adding tea saponins extract into a diet tended to 

reduce NH3 production (143.0 vs control, 167.5 mg/L), Zhou et al. (2012) reported in-vivo 

that green tea saponins extract additions at 0.4, 0.6, or 0.8 g total saponins/kg DM of a diet 
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(Maize stover and concentrate ~50:50) had no effect of NH3 production of goats. Similarly, 

Nasri et al. (2011) reported in-vivo that adding saponins extract from Quillaja saponaria at 

6, 12, or 18 mg sapogenin/ kg DMI of oat hay and barley based diets had no effect on NH3 

production of the lambs. 

 It was reported in-vitro that waru leaf inclusions into Napier grass-based diet was 

likely to increase tVFA but Wang et al. (2011) reported in-vitro that saponin extracts 

supplementation from Gynostemma pentaphyllum reduced tVFA without affecting VFA 

proportions. Mao et al. (2010) reported in-vivo that adding tea saponins extract into a diet 

increased tVFA with no effect on A:P ratio while Zhou et al. (2012) observed that green 

tea saponins extract inclusions had no effect on either tVFA or A:P ratio in the rumen fluid 

of goats. 

 Wang et al. (2011) reported in-vitro that adding saponins extract from Gynostemma 

pentaphyllum increased ruminal pH but Istiqomah et al. (2011) found in-vitro that waru 

leaf addition in Napier grass had no effect on ruminal pH. In-vivo study using lambs by 

Mao et al. (2010) reported that adding tea saponins extract into a diet decreased ruminal 

pH but Zhou et al. (2012) reported in-vivo that green tea saponins extract supplementation 

had no effect on ruminal pH in goats. Similarly, Nasri et al. (2011) found in-vivo that 

saponins extract supplementation from Quillaja saponaria into oat hay and barley based 

diets had no effect on ruminal pH in lambs.  

 It was reported in-vitro that saponins extract inclusions from either Achyranthus 

aspara, Tribulus terrestris or Albizia lebbeck had no effect on IVDMD (Goel et al., 2012). 

Meanwhile, in-vivo study by Nasri and Ben Salem (2012) reported that adding saponin 

extract from Agave Americana at 120, 240, or 360 mg saponins/kg DMI, and Quillaja 

saponaria at 120 mg saponins/kg DMI into a diet containing ad-libitum oaten hay and 

barley based concentrate (400g/sheep/d) had no effect on DMI and nutrient intakes as well 

as OM, CP, and NDF digestibility of lambs. Similarly, Owens et al. (2012) reported that 

adding saponins extract from Quillaja saponaria at 20 g saponins/ kg diet (Beet pulps- 

based diet containing alkaloids either gramine at 2g/kg or methoxy-N,N-

dimethyltryptamine at 0.03g/kg diets) had no effect on DMI and total digested DM, 

energy, N, and NDF by lambs. Mao et al. (2010) found in-vivo that tea saponins extract 

inclusions had no effect on feed intakes and daily gain of lambs.  Zhou et al. (2012) 

reported in-vivo that green tea saponins extract supplementation had no effect on the 

intakes and the digestibility of DM, N, and ADF of goats. Li and Powers (2012) added 

either Yucca schidigera (YS), Quillaja saponaria (QS) or Camellia sinensis extracts (TS) 

into a corn and corn silage based diet found that QS and YS had no different compared 



63 

 

with the control diet in DMI and ADG but the N intake of YS was lower than the control 

diet and QS; TS had higher DMI and N intake but having a similar ADG to the control 

diet. In addition, it was reported in-vivo that adding saponins extract from Quillaja 

saponaria at 6, 12, and 18 mg sapogenin/ kg DMI of oat hay and barley based diet had no 

effect on the intakes of DM, OM, CP, and NDF, the digestibility of DM, OM, and CP as 

well as ADG, cooking loss, and meat pH but decreased NDF digestibility of lambs (Nasri 

et al., 2011). Brogna et al. (2011) also reported a reduction in the concentration of C14:1 

cis-9 from longissimus dorsi muscle and its desaturation index, increased C20:4n-6, and 

decreased α-linolenic:linoleic ratio at a saponin level of 12 mg with no effect on muscle 

cholesterol concentrations. Meanwhile, Mao et al. (2012) reported that adding tea saponins 

extract (> 60% triterpenoid saponins) into a diet of ryegrass and concentrate (60:40) 

reduced SFA, rumenic:vaccenic acids ratio and increased MUFA but it had no effect on 

PUFA in longissimus dorsi muscle. 

 Botura et al. (2011) reported in-vivo that supplementing either sisal waste extract 

(SWE) (Agave sisalana, containing hecogenin and tigogenin) at 1.7 g/goat/d or levamisole 

phosphate (LEP) (6.3 mg/ kg) as a positive control into grass hay-fed goats reduced faecal 

eggs count by a maximum of 50.3% (SWE) and 93.6 (LEP). In this study, LEP reduced the 

recovered parasites from the digestive tract by 74% but a small decrease of parasites was 

reported for SWE. There was no toxicity effect reported from both treatments assessed by 

the histological analysis of the liver and kidney. 

2.6 Other feeding strategies to mitigate methane  

 As previously discussed, plant secondary metabolites have the potential to reduce 

methanogenic activities in the rumen resulting in lower CH4 release. However, each plant 

has different secondary metabolite characteristics to others leading to their differences in 

activity to mitigate CH4 production. The overall type of diets also affects these differences 

in activity since the nutrient interaction between specific secondary metabolites and other 

nutrients from the diets are varied. Further effects of different diets on CH4 mitigation are 

summarized in the following sections. 

2.6.1 Concentrate vs. forage based diets 

 It is generally known that increasing levels of concentrate in diets and their intakes 

may result in reduced CH4 release as a proportion of energy intake or unit of animal 

products such as meat and milk (Martin et al., 2010). Boadi et al. (2004) summarized that 

feeding more concentrates at high levels of intake has the potential to reduce CH4 

production by 25% or more. Similarly, as reviewed by Martin et al. (2010), CH4 
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production was relatively constant at 6 - 7% of dietary gross energy (GE) intake for diets 

containing 30 - 40% concentrate but it was then considerably reduced to 2 - 3% of GE 

intake when the concentrate was increased up to 80 - 90%. Benchaar et al. (2001) also 

predicted that increasing DMI and the proportion of concentrates in the diets decreased 

CH4 production by 7 - 40% while replacement of fibrous concentrate with the starchy 

concentrate reduced CH4 production by 22%. Feeding higher levels of concentrate than 

forages is associated with replacing structural carbohydrates such as cellulose and 

hemicellulose with non-structural carbohydrate such as starch and sugars mostly contained 

in energy-rich concentrates. This replacement may result in higher rates of ruminal 

fermentation, increased rate of passage, and lower ruminal pH which may favour a higher 

propionate production than acetate and can decrease the release of CH4 in the rumen 

(Boadi et al., 2004; Johnson and Johnson, 1995; Martin et al., 2010; Moss et al., 2000). 

Lower ruminal pH also can inhibit the growth of methanogens and protozoa (Hegarty, 

1999).  

 The types of concentrate also influence the methanogenesis activity. For example, 

starch-rich concentrates such as barley, wheat, and maize have more chance to reduce CH4 

production than fibrous concentrates such as beet pulps (Martin et al., 2010). However, 

Beauchemin and McGinn (2005) reported that finishing feedlot cattle fed diet containing 

maize (slowly degraded starch) had less CH4 emission than those fed diet containing barley 

(rapidly degraded starch). Interestingly, the VFA produced from a maize containing diet 

tended to have more acetate (mol/100mol) (43.6 vs 42.6) and less propionate (44.3 vs 45.7) 

than a barley containing diet although they were not significantly different (Beauchemin 

and McGinn, 2005). In a modelling approach, Benchaar et al. (2001) also predicted that 

substitution of barley with maize can depress CH4 production by 14%. The theory behind 

this decrease in CH4 when barley was substituted with maize in the diets is unclear but 

Beauchemin and McGinn (2005) suggested that it was due to lower ruminal pH in maize-

fed cattle than the barley fed cattle, rather than their VFA profiles, or a shift in the site of 

digestion from the rumen to the intestines.    

 Due to more digestibility and faster fermentation than fibre in the rumen, the use of 

higher concentrate in ruminant diets may be cheaper per unit of available energy than 

roughages (Bartle et al., 1994) and this is favourable to reduce CH4 production. However, 

this strategy should be applied carefully since lower ruminal pH as a result of feeding high 

levels of concentrate can lead the animals to become more vulnerable to acidosis (Galyean 

and Rivera, 2003; Owens et al., 1998). The increased use of concentrates, particularly 

grains may also be accompanied with the high use of fossil fuels requiring greater use of 
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chemical fertilizer and machinery. This in turn can cause greater N2O and fossil carbon 

which also contribute to the increased greenhouse gas emission (Boadi et al., 2004). 

Recently, the price of grains is also likely to increase due to their decreased production 

(drought and climate change) and their competitive uses for poultry feed, food, and fuel.  

2.6.2 Forage species, maturity, processing, and preservation 

 The other strategies to reduce CH4 production through increased rate of passage, 

lowered pH or decreased A:P ratio in forage-based diets can be done by altering forage 

species and maturity, forage processing, and forage preservation (Benchaar et al., 2001; 

Boadi et al., 2004; Johnson and Johnson, 1995; Martin et al., 2010). For example, it was 

predicted that Timothy hay replacement with alfalfa hay could decrease CH4 production by 

21% of GE intake (Benchaar et al., 2001). McCaughey et al. (1999) reported that lactating 

beef cows grazed on alfalfa and grass (78% alfalfa : 22% meadow bromegrass) had a 

greater potential to reduce CH4 release in comparison with those grazed on grass only 

(100% meadow bromegrass) (0.74 vs 0.81 L CH4/ kg BW/d or 7.1 vs 9.5 % GE intake). 

Meanwhile, van Dorland et al. (2007) found that red or white clover supplementations in 

ryegrass were not able to reduce CH4 production in dairy cows. The lower CH4 emission in 

alfalfa-grass grazed cows was likely due to the higher intake in those cows which may be 

associated with their higher rates of passage and digestibility compared with those that 

grazed grass only (McCaughey et al., 1999). However, not all legumes have similar 

characteristics and may cause different nutrient interaction in the rumen when they are 

supplemented to different grass-based ruminant diets.  In addition, early grazing of steers 

on alfalfa-grass pastures produced 29 - 45% (GE intake) less CH4 production in 

comparison with those in mid and late seasons confirming that pasture maturity also has an 

impact on CH4 releases from the animals  (Boadi et al., 2002). 

 At higher intakes, grinding and pelleting of forages can decrease CH4 loss per unit 

diet by 20 - 40% (Johnson and Johnson, 1995). Similarly, Benchaar et al. (2001) predicted 

that processing alfalfa hay can depress CH4 loss as much as 13% (GE intake). Again, this 

CH4 reduction can be explained by the ability of processed forages to increase rate of 

digesta passage, lowering pH, or decreasing A:P ratio of ruminal fluid. However, the 

appropriate size of processed forages should be taken into account since too fine grinding 

can lead to increased incidence of acidosis due to less chewing and saliva buffer 

production as well as lower milk fats content in dairy production (Boadi et al., 2004). 

 In addition, forage preservation such as ensiling has the potential to reduce CH4 

production in ruminants. Based on a modeling approach, Benchaar et al. (2001) reported 
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that alfalfa silage had the potential of 33% (GE intake) CH4 reduction compared with 

alfalfa hay. A more recent study by Cao et al. (2010) also showed that sheep fed fermented 

total mixed ration containing whole-crop rice and rice brans produced significantly 

lowered CH4 compared with those fed the control diet (39.8 vs. 30.0 L/kg DMI). They 

claimed that the conversion of lactic to propionic acids in the rumen was responsible for 

CH4 reduction in sheep fed the fermented diets.   

2.6.3 Fat supplementation 

 Fat addition, to increase the energy density, is commonly applied in order to obtain 

a balanced diet for the animals. Fat addition also has the potential to depress CH4 

production in ruminants. From summarizing a total of 67 lipid-supplemented ruminant 

diets (from 28 publications), Martin et al. (2010) estimated that for each 1% of 

supplemented fat addition, a 3.8% depression in CH4  output was predicted, and the 

reductions were clearly dependent on their fatty acids (FA) composition. More CH4 

depression (7.3 % per 1% of supplemented fats) was predicted from medium-chain FA 

(C12 – C14) that were mainly provided by coconut oil (see Figure 2.11).  

 

Figure 2.11 The effect of fat supplementation on CH4 release in ruminants (Martin et al., 

2010). 

 

 Similarly, it was reported that sheep fed diets containing 3.5 and 7% (as fed) of 

coconut oil released less CH4 by 28 and 78%, respectively, than those fed control diet 

(Machmüller and Kreuzer, 1999). In another trial, Machmüller et al. (2000) reported that 

the additions of either coconut (DM basis) (25g/kg), rapeseed (59 g/kg), sunflower seed 

(57 g/kg), or linseed (67 g/kg) oils in a diet (54 - 59 g lipid/kg) were able to decrease CH4 

production in lambs by 26, 19, 27, and 10% per kg LW, respectively, in comparison with 
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the control diet (31 g lipids /kg). In feedlot cattle, McGinn et al. (2004) found that beef 

steers fed diets containing sunflower oil (about 5% DMI) produced 22% less CH4 

compared with those fed the control diet whilst Jordan et al. (2006) observed that soybean 

oil had a suppressing effect on CH4 production at up to 40% in young bulls. It was also 

reported that crude linseed, extruded linseed, and linseed oils supplementations (at 5.7% 

DMI) could decrease CH4 productions in dairy cows by 12, 38, and 64%, respectively 

(Marten et al., 2008). In contrast, oilseed supplementation has been found to be ineffective 

to reduce CH4 production in sheep (Cosgrove et al., 2008) and in dairy cows (Johnson et 

al., 2002). 

 Although fat addition can reduce CH4 release from ruminants, its use can also be 

associated with decreased fibre degradability (Machmüller et al., 2000; Marten et al., 

2008; McGinn et al., 2004), especially at high levels of supplementation. This decline in 

fibre degradability is likely due to the inhibiting effect of oils on protozoa and some 

cellulolytic bacteria (Machmüller and Kreuzer, 1999; Martin et al., 2010). Diets with high 

levels of fat are also not preferable for long time storage especially in tropical countries 

where fat containing diets are prone to oxidative damage and to rot easily. In addition, 

oilseed supplementation was reported to increase DMI and milk yields in dairy cows but in 

this situation their CH4 release was not reduced (Johnson et al., 2002).   

2.6.4 Ionophores  

 Ionophores are categorized as polyethers antibiotics (lipophilic) produced by soil 

microorganisms and synthetically that modify the movement of cations such as Na, K, and 

Ca across cell membranes (Iqbal et al., 2008). Monensin is the commonest ionophore 

utilized to manipulate rumen fermentation along with other commercially available ones 

such as lasalocid, tetronacin, lysocellin, narasin, salinomycin, and laidomycin (Boadi et al., 

2004; Iqbal et al., 2008).  Sauer et al. (1998) found that monensin supplementation at 24 

ppm reduced CH4 release while increasing milk production in dairy cows. In beef cattle, 

McGinn et al. (2004) reported that monensin addition at 33 ppm had no effect on CH4 

production but the GE loss to CH4 was slightly reduced by 9%. However, public awareness 

of health and safety concerns in using antibiotics for livestock production has led some 

countries such as the EU to ban the use of growth-promoting antibiotics such as ionophores 

in animal feeding. It is likely that a more global ban on their use will be forthcoming. 

2.7 Conclusion  

 Based on the above reviews, it can be concluded that plant secondary metabolites 

including those in tea leaves have the potential as feed additives for ruminant animals. 
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Both green and black teas, as well as their STL could be good sources of protein, fibre, 

plant secondary metabolites, and minerals. The existing information in the literature on the 

use of tea leaves as a ruminant feed additive is still limited whilst the utilization of STL to 

feed ruminants has been suggested for years. Generally, plant secondary metabolites such 

as essential oils, tannins, and saponins have the potential to improve protein and/or energy 

utilization, reduce CH4 production, control parasites and bloat, and increase the quality of 

meat and milk produced by the animals. However, each plant has its unique characteristic 

of plant secondary metabolite properties and each specific bioactive constituent may have 

its particular function related to manipulation of rumen ferementation and feed digestion. 

Worldwide, there are various qualities, brands, and grades of both green and black teas that 

are bound to affect the chemical composition of different tea types. These differences in 

chemical composition also reflect the differences in varieties, soil types, and 

manufacturing process that different tea leaves have been exposed to during their different 

phases of growth and processing. In addition, the variation in tea-to-water ratios during tea 

drink preparation is likely to affect the chemical composition in the STL. Therefore, 

carrying out chemical characterization of the relevant samples is becoming important to be 

done before further testing the tea and their STL potential to manipulate rumen 

fermentation, mitigate CH4 production, and improve animal performance by in-vitro and 

in-vivo studies. 

2.8 Hypotheses  

1. Both green and black teas, and their STL can be good sources of protein, fibre, 

plant secondary metabolites and minerals. Black tea is likely to have less nutritional 

values than the green tea since some of vulnerable nutrients are degraded by 

‘maillard browning’ processes during black tea manufacturing 

2. A higher tea-to-water ratio during tea drink preparation would affect the extraction 

of soluble compounds into water to yield a more nutrient-rich STL 

3. Green and black teas, and their STL can improve the utilization of low quality 

forages such as rice straws since they have more nutrient contents than the rice 

straws 

4. Green and black teas, along with their STL inclusions into ruminant diets can 

manipulate rumen fermentation resulting in less rumen NH3 and CH4 productions 

but they may have a minor effect on pH, VFA profiles, and CO2 production. Also, 

their inclusion is likely to improve nutrient utilization and animal performance. To 
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what extent the teas and their spent leaves can manipulate rumen fermentation and 

improve animal performance will depend upon inclusion dose and the type of diets. 

2.9 Study objectives  

1. To characterize chemical composition, plant secondary metabolites, minerals, and 

fatty acids profiles in green and black tea leaves as well as their STL, and to test the 

hypothesis that a higher tea-to-water ratio would affect the extraction of the 

chemical compounds from tea leaves into water to yield a more nutrient-rich STL 

2. To evaluate the potential use of green and black teas, and their spent leaves on in-

vitro degradability, fermentation profiles and total gas production from rice straws-

based ruminant diets   

3. To compare green and black teas, along with their STL with other feed types and to 

evaluate their potential use to modify in-vitro degradability, fermentation profiles, 

total gas, CH4, and CO2 productions from either rice straws or ryegrass based 

ruminant diets   

4. To evaluate the potential use of green tea leaves in ruminant diets to improve feed 

intake, weight gain, nutrient digestibility and fatty acid profiles of meat of growing 

lambs. 
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Chapter 3: Chemical composition, plant secondary metabolites, minerals, and fatty 

acids of green and black teas and the effect of different tea-to-water ratios during 

their extraction on the composition of their spent leaves as potential additives in 

ruminant diets 

Some contents of this chapter have been published in Journal of Agricultural and Food 

Chemistry, 2013, 61(20): 4961-4967. 

3.1 Introduction 

 The Literature review (Chapter 2) has concluded that plant secondary metabolites 

including those in tea leaves have the potential to be used as additives for ruminant 

animals. Tea is one of the most popular drinks in the world and is perceived as being 

healthy. Tea drinks are obtained from dried leaves that contain considerable amounts of 

crude protein (CP), fibre, lipids, vitamins, minerals (Chu and Juneja, 1997), plant 

secondary metabolites such as alkaloids (e.g. caffeine) and polyphenols such as catechins 

in green tea (Cabrera et al., 2003; Chen et al., 2008; Peng et al., 2008), theaflavins in black 

tea (Turkmen and Veliooglu, 2007), and saponins (Guo et al., 2008; Hu et al., 2005; Wina 

et al., 2005). Many researchers have found potential antioxidant and cancer prevention 

activities in caffeine  (Prasanthi et al., 2010; Vignoli et al., 2011), catechins (Andlauer and 

Héritier, 2011; Chen et al., 2000; Higdon and Frei, 2003; Shrubsole et al., 2009), and 

theaflavins (Duffy et al., 2001; Gardner et al., 2007; Leung et al., 2001; Stewart et al., 

2005) for humans . However, the existing information in the literature on the advantages of 

tea leaves for ruminant animals is limited. 

 In ruminant animals, plant secondary metabolites such as phenols and tannins may 

increase the availability of rumen by-pass protein and non-ammonia nitrogen (non-NH3 N) 

supply which can be absorbed in the small intestine due to their binding ability to plant 

proteins (Makkar, 2003a; McSweeney et al., 2001; Min et al., 2003; Mueller-Harvey, 

2006). Tannins have the potential to reduce rumen methane (CH4) production (Makkar, 

2003a; Mueller-Harvey, 2006). Similarly, tea saponins can reduce CH4 and NH3 

productions (Guo et al., 2008; Hu et al., 2005; Mao et al., 2010) by reducing protozoa and 

the methanogenic activity of relevant microbes (Guo et al., 2008; Hu et al., 2005). Tannins 

supplementation can improve animal health by reducing gastro-intestinal nematodes 

(Azaizeh et al., 2013; Galicia-Aguilar et al., 2012) and improve the quality of ruminant 

products such as milk and meat by increasing the contents of rumenic acid and 

polyunsaturated fatty acids (PUFA) but decreasing saturated fatty acids (SFA) through 

altered bio-hydrogenation by changing the microbial population in the rumen (Vasta et al., 
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2009; Vasta et al., 2010; Wood et al., 2010).  Moreover, tea leaves have considerable 

amount of minerals such as Ca, Cu, Fe, Mg, Mn, and Zn (Salahinejad and Aflaki, 2009; 

Shen and Chen, 2008) which must be provided in the diets of ruminants to meet their 

requirements for optimum rumen function and animal growth (McDonald et al., 2011; 

Underwood and Suttle, 1999). Moreover, tea leaves contain several fatty acids that may be 

useful for human health (Ercisli et al., 2008; Owuor, 1990; Shen et al., 2007) but there is 

scant information on their advantages for ruminants. In ruminant studies, fish oil 

supplementation could inhibit the bio-hydrogenation of fatty acids in the rumen through 

altering the rumen microbial ecology (Kim et al., 2008) while linseed oil has the potential 

to depress ruminal methanogenesis (Marten et al., 2008).  

 During the commercial preparation of bottled or canned tea drinks, the spent tea 

leaves (STL) of both green and black tea types are collected as insoluble residues or waste 

products. While most soluble components of tea leaves are released into the bottled tea 

drinks, the STL are known to retain reasonable amounts of proteins, fibre, lipids, minerals, 

and phenolic compounds and so their potential use as ruminant feedstuffs has been 

suggested for years (Jayasuriya et al., 1978; Kondo et al., 2007b; Kondo et al., 2007a; 

Kondo et al., 2004b; Kondo et al., 2004a; Kondo et al., 2006; Kondo et al., 2007c; Kondo 

et al., 2004c; Theeraphaksirinont et al., 2009; Xu et al., 2008; Xu et al., 2007). The use of 

STL to feed ruminants is encouraging for a zero waste agricultural system, safer 

environment, and feed cost efficiency. However, the solubility of compounds in the tea 

leaves during water extraction is likely to be influenced by tea-to-water ratios. The tea 

beverage industries may prefer to apply higher tea-to-water ratios during extraction to 

obtain more concentrated tea drinks and consequently nutrient-rich STL.  

 Unfortunately, information on chemical characteristics especially plant secondary 

metabolites in these by-products is still limited.  Each plant has its unique characteristic 

and function of its secondary metabolite properties to manipulate rumen fermentation. 

Worldwide, there are various qualities, brands, and grades of both green and black tea 

leaves that are bound to affect the chemical composition of different tea types. These 

differences in chemical composition also reflect the differences in varieties, soil types, and 

manufacturing processes that different tea leaves have been exposed to during their 

different phases of growth and processing. In addition, the variation in tea-to-water ratios 

during tea drink preparation is likely to affect the chemical composition in the STL. It is 

important that chemical characterization is obtained before further testing the tea and their 

STL to manipulate rumen fermentation and mitigate CH4 in in-vitro and in-vivo studies. 

Therefore, the objectives of this study were (1) to characterize chemical composition, plant 
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secondary metabolites, minerals, and fatty acids profiles in green and black tea leaves as 

well as their STL and (2) to test the hypothesis that a higher tea-to-water ratio would affect 

the extraction of the chemical compounds from tea leaves into water to yield a more 

nutrient-rich tea drink and STL. 

3.2 Material and Methods 

3.2.1 Sample collection 

3.2.1.1 Green and black tea leaves 

 Green (GTL) and black (BTL) tea leaves were obtained from a tea processing 

company (PT. Kabepe Chakra), located in Bandung, West Java, Indonesia. GTL was 

graded as Sow Mee (Code: SM #315) and BTL was graded as Broken Orange Pekoe 

Fanning (Code: BOPF #355). Each tea batch has been always tested for its standard 

quality before it is marketed on the basis of its quality. The above mentioned tea grades 

were selected for sampling in this study because these were the most consistent grades 

being used by the local tea beverage industries. The fresh tea leaves were initially plucked 

from Camellia sinensis var. Assamica tea plants from the same farm. The farm has its land 

elevation of 1,350 - 1,500 meters above the sea level with soil type of andosol. Plucked 

leaves were then subjected to either GTL or BTL processing in the company as illustrated 

in Figure 2.1 (Chapter 2). After withering, GTL is made by subjecting the fresh tea leaves 

to only the rolling and drying process. BTL, however, is made by withering, rolling, and 

the oxidative fermentation process before drying. Representative samples of GTL and BTL 

were collected from three different batches as replicates (n = 3).   

3.2.1.2 Company green and black STL 

 Company green (CSGTL) and black (CSBTL) STL were referred as collected STL 

from a tea beverage company, PT. Coca-Cola Amatil Indonesia, located in Bekasi city, 

West Java, Indonesia. CSGTL and CSBTL were the waste products from ready-to-drink 

tea bottles of ‘frestea’ (http://coca-colaamatil.co.id/products/index/40.44.107/frestea). Just 

after collection, fresh CSGTL and CSBTL were dried at 55
o
 C while the representative 

samples of about 5 g of each sample in duplicate were weighed before and after drying 

process to determine their DM contents. These samples were initially processed in The 

Laboratory of Animal Nutrition, The Faculty of Animal Husbandry, Universitas 

Padjadjaran, Indonesia from August to September 2010. All tea samples were then brought 

to the Laboratory of Animal Nutrition, School of Agriculture, Food, and Rural 

Development, Newcastle University, UK for further analysis. 
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3.2.1.3 Green and black STL 

 Green (SGTL) and black (SBTL) STL were referred as STL that were made in the 

Laboratory from the above original GTL and BTL samples following a 3 x 2 factorial 

arrangement by extracting 3 different amounts (T1= 2.8 g, T2= 5.6 g, and T3= 11.2 g) of 

the 2 tea types (green and black) in a fixed volume of 300 ml boiling water for 5 minutes, 

in triplicate. Each tea leaf sample was weighed into a beaker to which about 300 ml of 

boiling water was poured and mixed with the tea leaves by using a glass rod stirrer for 5 

minutes. Afterwards, the contents were filtered through Whatman filter paper no. 541 to 

separate insoluble residues as STL from the soluble tea drink. The wet STL representing 

green and black along with their tea drinks were collected. The samples of SGTL and 

SBTL were oven dried at 55
o
C for about 48h whereas about 100 ml of each tea extract 

liquid was stored at -20
o
C until further analysis. Here, the T2 ratio was chosen to represent 

the ratio that is commonly used by the company to prepare tea drinks whereas T1 and T3 

ratios were selected to test how lower (T1) and higher (T3) ratios can affect the tea 

extraction process to obtain variable qualities of STL. These changed ratios could, in 

principle, be adopted by the industry to obtain tea drinks with modified organoleptic 

properties for humans and consequently STL with better nutrients for ruminants. After the 

tea extractions, each of the 18 STL (3 x 2 factorial, in triplicate) alongside GTL, BTL, 

CSGTL and CSBTL were analysed, in duplicate, for their chemical compositions as 

described below. 

3.2.2 Proximate analysis 

 Before chemical analysis, both tea leaves and their dried STL were ground through 

1 mm sieve using a sample mill (Cyclotec 1093, Tecator, Sweden). Standard methods 

(AOAC, 2005) were used to determine dry matter (DM), ash, organic matter (OM) and 

ether extract (EE) while total nitrogen (N) (N x 6.25 = Crude Protein, CP) and sulphur (S) 

were simultaneously analyzed by Elementar Vario Macro Cube (Elementar, Hanau 

Germany). The detail of each proximate analysis is described in Appendix 1. 

3.2.3 Fibre fraction analysis 

 The neutral detergent fibre (NDF) content was determined according to Van Soest 

et al. (1991) without amylase, sodium sulphite, and dekalin while acid detergent fibre 

(ADF) and acid detergent lignin (ADL) were determined as reported by Van Soest (1963). 

Neutral detergent insoluble protein (NDIP), acid detergent insoluble protein (ADIP), 

neutral detergent insoluble carbon (NDIC), and acid detergent insoluble carbon (NDIC) 
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were analyzed according to Licitra et al. (1996). The detail of each fibre fraction analysis 

method is described in Appendix 2. 

3.2.4 Total plant secondary metabolites analysis 

  Total phenols (TP) and total tannins (TT) were analysed by using the Folin 

Ciocalteu method as described by Makkar (2003b) with tannic acid (Fisher scientific, 

Loughborough UK) as the reference standard. Condensed tannins (CT) were also analysed 

according to Makkar (2003b) with epigallocatechin gallate (Sigma Aldrich, Gillingham 

UK) as the reference standard. The procedure of Makkar et al. (2007) was used for total 

saponins (TS) analysis by using diosgenin (Molekula Ltd, Gillingham UK) as a standard. 

A UV/VIS-spectrophotometer (Libra S12, Biochrom Ltd, Cambridge UK) was utilized in 

these total plant secondary metabolites analysis. The detail of each plant secondary 

metabolite analysis method is described in Appendix 3.  

3.2.5 Simultaneous analysis of alkaloid and phenolic components 

3.2.5.1 Chemicals  

 Theobromine (≥99%), caffeine (purum, anhydrous ≥99%), rutin (quercetin 3 ᵦ-D 

rutinoside approx. 95%), (+)- catechin  (C) (≥99%), (-)- epicatechin (EC) (extracted from 

green tea,  ≥98%), (-) epicatechin gallate (ECG) (extracted from green tea, ≥98%),  (-)- 

epigallocatechin (EGC) (extracted from green tea ≥95%), (-)- epigallocatechin gallate 

(EGCG) (extracted from green tea ≥95%), (-)- gallocatechin (GC) (extracted from green 

tea  ≥98%),  (-)- gallocatechin gallate (GCG) (extracted from green tea  ≥98%),  and black 

tea extract  (free-theaflavin, theaflavin-3-gallate, theaflavin-3’-gallate and theaflavin-3,3’-

digallate basis, ≥80%) were purchased from Sigma-Aldrich (Gillingham, UK). Acetonitrile 

(99.9+%, HPLC grade) was purchased from Fisher scientific (Loughborough, UK).  

 About 0.1% orthophosphoric acid (w/v) was obtained by dissolving 1 g 

orthophosphoric acid (85%, BDH chemicals UK) in 1 L purified water in a volumetric 

flask. Aqueous methanol (80%, v/v) was obtained by adding 200 ml of purified water into 

800 ml methanol in 1 L volumetric flask. Purified water used in this analysis was initially 

subjected to purification by Barnstead nano-pure water system (Thermoscientific, UK).  

3.2.5.2 Sample extraction 

 About 200 mg (± 1) of each dried and ground sample was weighed into a centrifuge 

tube (20 ml capacity) to which 10 ml of 80% aqueous methanol was added and the 

contents mixed overnight by using an automatic mixer (Karl Hecht ‘Assistant 348’, 

Germany) being placed in the dark. Meanwhile, frozen tea extract liquids (see section 
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3.2.1.3) were freeze dried before 10 ml of 80% aqueous methanol was added and mixed. 

All extracts were then centrifuged at 4
o
C (Baird & Tatlock Ltd., UK) at 3000 rpm for 10 

minutes and each supernatant transferred into a screw-cap brown vial (0.3 ml 

gewindflasche fixed insert-amber, VWR UK) which were stored at -20
o
C before 

performing HPLC analysis.  

3.2.5.3 Standard preparation 

 As EGC, EC, and CG were bought in 1 mg vial packages; 1 ml of methanol was 

directly added into each vial and mixed. About 0.1 ml of each mixture was transferred into 

another vial and diluted with 80% aqueous methanol to reach the concentration of 0.1, 

0.01, and 0.01 mg/ml, respectively. Meanwhile, GC, GCG, ECG, and EGCG were 

purchased in 5 - 50 mg packages and about 1 mg of each of these standards was weighed 

and dissolved in 80% of aqueous methanol to meet the concentration of 0.05, 0.025, 0.05, 

and 0.5 mg/ml, respectively. As the amounts of theobromine, caffeine, rutin, and C were 

plenty, 10 mg of each of these were weighed and dissolved in 80% of aqueous methanol to 

reach the concentration of 0.01, 0.1, 0.01, and 0.01 mg/ml. Only theobromine and rutin had 

to be dissolved on a magnetic stirrer with gentle heating to speed up their solubility. 

Finally, each standard solution was transferred into a screw-cap brown vial before the 

HPLC analysis along with the extracted samples.  The standard solutions were freshly 

prepared immediately before their analysis. Each standard was analysed in duplicate by 

using their following prepared concentrations: Theobromine: 0.01 mg/ml, GC: 0.05 mg/ml, 

EGC: 0.1mg /ml, C: 0.01mg/ml, caffeine: 0.1 mg/ml, EC: 0.01 mg/ml, EGCG: 0.5 mg/ml, 

GCG: 0.025 mg/ml, ECG: 0.05 mg/ml, CG: 0.01 mg/ml, Rutin: 0.01 mg/ml, and black tea 

extract at 0.1 mg/ml. 

3.2.5.4 HPLC analytical condition 

 A set of HPLC system (Shimadzu, Kyoto, Japan) with auto sampler (SIL-20AC), 

liquid chromatogram (LC-20AD), degasser (DGU-20AD), column oven (CTO-20AC), 

photo diode array detector (SPD-M20A) and communication bus module (SBM-20A) was 

connected to Shimadzu LC solution software. A C18 reverse phase column, 250mm x 4.6 

mm x 5 µm (Phenomenex, Cheshire, UK) fitted with a guard column (Spherisorb ODS2, 5 

µm x 4.6mm x 10 mm, Waters UK) was used with the column oven set at 40
o
C. The eluate 

UV spectra were recorded from 227 - 550 nm but 270 nm chosen as the optimum 

wavelength to identify all peaks. Two mobile phases, (A) orthophosphoric acid (1%, w/v) 

and (B) acetonitrile (≥99.9%), were utilized for gradient elution at 1 ml/minute using the 

gradient profile described by Turkmen and Veliooglu (2007) as follows: 8% B for 10 
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minutes increasing to 18% B at 57 minutes; 24% B at 78 minutes; 26% B at 80 minutes; 

28% B at 92 minutes; 80% B at 98 minutes; 8% B at 108 minutes. The gradient profile was 

set on a liquid chromatogram (LC) time programme as described in Table 3.1. Column 

equilibration was done by switching on the pump manually for about 20 minutes to let the 

two mobile phase solvents flow to the column appropriately with the constant pressure and 

temperature before executing the batch run. An automatic batch run started and operated 

by Shimadzu LC solution software integrated to a computer where the injection volume 

was 20 µl. Each compound was identified and quantified according to the retention time 

and spectrum view of the corresponding standard.  

 

Table 3.1 LC programme setting with two mobile phases as a gradient profile. 

Time 

(minutes) 

Module Action 

(mobile phase) 

Value 

(%) 

10 pumps A 92 

10 pumps B 8 

57 pumps A 82 

57 pumps B 18 

78 pumps A 76 

78 pumps B 24 

80 pumps A 74 

80 pumps B 26 

92 pumps A 72 

92 pumps B 28 

98 pumps A 20 

98 pumps B 80 

108 pumps A 92 

108 pumps B 8 

123 controller Stop  

 

3.2.6 Mineral analysis 

3.2.6.1 Chemicals  

 Nitric acid (technical grade) and perchloric acid (>60%) were purchased from 

Fisher scientific (Loughborough, UK).  
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3.2.6.2 Standard preparation 

 Commercially available standards were used to prepare solutions of Ca, Zn, Ni, Cu 

(May and Baker Ltd, Dagenham UK), Mg (NO3)2, Mn (NO3)2, Fe (NO3)2, Pb (NO3)2, Cd 

(Cadmium coarse powder), Cr (chromium (III) chloride 95%), Na (sodium chloride 99.5%) 

(BDH chemicals, UK), P (sodium phosphate ≥99%) (Sigma-Aldrich, Gillingham, UK), 

and K (potassium chloride, 99.8%) (Fisher Scientific, Loughborough, UK) at either 0 to 

1.0 mg/kg to represent lower, or 0 to 50 mg/kg for higher ranges of sample mineral 

concentrations. After determining the concentration of each standard by ICP-OES machine 

(Varian Inc., Australia), calibration standard curves were prepared by using the ICP Expert 

software being integrated with the machine.  

3.2.6.3 Sample preparation 

 All activities regarding sample preparation were done in a fume cupboard. About 

0.5 g sample was weighed in a beaker to which 9 ml of nitric acid added and kept 

overnight before adding 1 ml of perchloric acid. The mixture was then heated gradually up 

to 150
o
C on a hot plate until red NO2 fumes were turned colourless and the volume 

reduced to around 1 ml. After cooling, the digested contents were dissolved in distilled 

water, filtered (Whatman paper no. 541), and transferred into a 25 ml volumetric flask. 

Further dilutions were made with demineralised water as required to suit the standard 

curve calibrations. 

3.2.6.4 ICP- atomic emission spectroscopy (ICP-OES) procedure 

 Minerals were analysed on a Varian Vista-MPX CCD by simultaneous Inductively 

Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (Varian Inc., Australia). This 

machine was integrated to ICP Expert software installed on a computer. Through this 

software most of the setting (see Table 3.2), calibration, and data collection were operated. 

 

Table 3.2 The setting of the ICP-OES machine. 

 Plasma 

(L/min) 

Auxiliary 

gas 

(L/min) 

Mass flow 

controller 

(L/min) 

Power 

(kW) 

Pump 

(RPM) 

Time 

(Sec) 

Purge 22.5 2.25 0.9 0.0 0 15 

Delay 22.5 2.25 0.0 0.0 0 10 

Ignite 1.5 1.50 0.0 2.0 50 5 

Run 15.0 1.50 0.9 1.2 7 5 
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3.2.7 Fatty acid profiling analysis 

3.2.7.1 Chemicals 

 A 52 FAME standard (GLC-463, 100mg) was purchased from Nu-Check Prep, Inc. 

Minnesota, USA. The ampoule containing 100 mg of 52 FAME standards was centrifuged 

to ensure the recovery of the standard and 1ml of hexane added. This gave the 

concentration of individual FAME in the standard ranging from 1 - 4%. Next, 100 µl of the 

standard in hexane was transferred into a screw-cap brown GC vial (0.3 ml gewindflasche 

fixed insert-amber, VWR UK) and dried under nitrogen to remove the hexane. After this, 

200 µl of toluene was added into the vial and the standard in toluene used for standard 

analysis. Meanwhile, a 37 FAME standard (FAME mix C4-C24, 100 mg) was purchased 

from Supelco, Sigma-Aldrich UK. The vial containing 100 mg of 37 FAMES standard was 

centrifuged to ensure the recovery of the standard and 1ml of toluene added. This gave the 

concentration of individual FAME in the standard ranging from 2 - 6 %.  

 Methanol:toluene (4:1 v/v) was prepared by measuring 400 ml methanol (≥ 99.8 %, 

Fisher Scientific Loughborough,UK) and 100 ml toluene puriss (≥ 99.5%, Riedel de Haen, 

Sigma-Aldrich, Gillingham,UK) in separate cylinders. After this, the measured solvents 

were transferred into a glass Duran bottle which was screw capped. Potassium chloride 

(5% w/v) was prepared by mixing 50 g potassium chloride (KCL; >99%; Sigma-Aldrich, 

Gillingham, UK) with 1 L pure distilled water in a volumetric flask on a magnetic stirrer 

for 30 minutes at room temperature. Acetyl chloride (>99%) was purchased from fisher 

Scientific, Loughborough, UK. 

3.2.7.2 Sample preparation 

 About 1 - 3 g of each dried sample was subjected to ether extraction with the aid of 

Soxhlet apparatus by using the AOAC official Method 920.39 as described in Appendix 

1.3 to yield about 20 - 40 mg of lipids (EE) in a quick-fit flask. Each lipid sample was then 

dissolved in about 10 ml of toluene before transferring the mixture as two equal portions of 

5ml each into two screw-caped glass tubes for further analysis. Each glass tube containing 

lipid mixture was dried at 50
o
C in a dry hot block (Techne Dri-block DB3D, Techne, 

Staffordshire, UK) under nitrogen pressure to remove toluene and then the dried lipid in 

the glass tube was re-dissolved with 0.5 ml of toluene. To this lipid mixture, 1.7 ml of 

methanol:toluene (4:1 v/v) mixture was added and vortex mixed (Rotamixer, Hook & 

Tucker Instrument Ltd, Croydon, UK) before adding 0.25 ml acetyl chloride in the fume 

cupboard, vortex mixing and then heating the contents at 100
o
C for one hour in the same 

dry hot block. After cooling the contents for around 30 minutes, 5 ml of 5% KCL was 
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added, vortex mixed, and the contents centrifuged at 1000 g for 5 minutes (Accu Spin
TM

 

3R, Fisher Scientific, Germany). Finally, the top (toluene) layer of supernatant was 

removed and transferred into a screw-cap brown vial (0.3 ml gewindflasche fixed insert-

amber, VWR UK) for storage at -20
0
C until the samples were analysed by using a Gas 

Chromatograph (GC). 

3.2.7.3 GC analytical procedure 

 A set of GC, Shimadzu GC-2014 (Kyoto, Japan) with A SGS forte BPX 70 column 

(30m x 0.25 mm i.d. 0.25 µm film thickness) (SGE Europe Ltd. Milton Keynes, UK) and 

an auto injector (Shimadzu, AOC-20i) was connected to Shimadzu GC solution software 

which controlled almost all operations in this analysis of fatty acid methyl esters (FAME). 

Purified helium was utilized as a carrier gas with a head pressure of approximately 109.9 

kPa and a column flow of 0.31 ml/minute. FAME peaks were detected by flame ionization 

detection (FID). A split injection system on an auto sampler was used with a split ratio of 

89.9 and an injector temperature of 250
o
C while the detector temperature was 275

o
C. 

About 1µl sample was injected when the initial column temperature was at 50
o
C which 

was held for 1 minute. It was then raised at 2
o
C/minute to 188

o
C which was held for 10 

minutes. The temperature was increased again at a similar rate to 240
o
C and held for 44 

minutes to give a final gradient with the total runtime of 150 minutes as shown in Table 

3.3. The data, including peak areas and chromatogram pictures were extracted by using the 

Shimadzu GC solution software. The peaks were then identified by using the combination 

of 37 and 52 FAME standards, and individual fatty acids were quantified by comparing 

their peaks with the relevant peak areas of the corresponding standards where each 

individual fatty acid was reported as a percentage of the total identified fatty acids. 

 

Table 3.3 Setting up of a gradient profile of GC running temperature. 

Rate (
o
C /minute) Temperature (

o
C) Holding time (minute) 

- 50 1 

2 188 10 

2 240 44 

Total runtime: 150 minutes 

 

3.3 Statistical analysis 

 Minitab 16 software was utilized in all the statistical analysis. One-way analysis of 

variance (ANOVA) was used to compare either green and black tea leaves as well as their 
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company STL for their chemical components. Meanwhile, two-way ANOVA using the 

General Linear Model procedure was used to examine the statistical effects of tea types 

and tea-to-water ratios alongside their interactions on the chemical components of the 

SGTL and SBTL from each extraction. Differences were considered significant at P < 

0.05. Tukey’s test was applied to compare means and statistical significance was assumed 

at P < 0.05. The data were analysed for normality by passing the Anderson-Darling 

normality test at P > 0.05. The data were also used to derive means and standard deviations 

to examine variations within data for each tea compound being tested in this study. 

3.4 Results 

3.4.1 Green and black tea leaves 

3.4.1.1 Proximate composition of GTL and BTL 

 Table 3.4 shows that the GTL and BTL had similar DM, OM, S, CP, ash, and S 

contents but GTL had a significantly higher EE content than BTL. 

 

Table 3.4 Mean (g /kg DM ± SD, n = 6) proximate composition of GTL and BTL with 

pooled standard error of the mean (SEM) and significances. 

Composition 

(g/kg DM) 
GTL BTL 

Pooled SEM with  

Significances 

DM  937 ± 3.56 942 ± 5.61 2.31
NS 

OM 938 ± 1.67 939 ± 1.73 1.54
NS 

C 510 ± 1.24 510 ± 1.80 0.89
NS 

CP 240 ± 1.02 242 ± 1.38 0.92
NS 

EE
 

20.8 ± 3.29 12.6 ± 4.06 2.80
** 

Ash 61.8 ± 1.67 61.4 ± 1.73 1.54
NS 

S 2.74 ± 0.15 2.53 ± 0.22 0.11
NS 

Mean values were significantly different at P<0.01(**); NS, non-significant; SD, standard 

deviation; n, number of replicates; GTL and BTL, green and black tea leaves; DM, dry 

matter (g DM/kg sample); OM, organic matter; C, carbon; CP, crude protein; EE, ether 

extract; S, sulphur. 

3.4.1.2 Fibre fraction of GTL and BTL 

 Table 3.5 shows that the GTL had significantly lower NDF, ADF, NDIP, NDIC, 

and ADIP contents but higher ADL and ADIC contents than BTL. 
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Table 3.5 Mean (g/kg DM ± SD, n = 6) fibre fraction of GTL and BTL with pooled 

standard error of the means (SEM) and significances. 

Composition 

(g/kg DM) 
GTL BTL 

Pooled SEM with 

significances 

NDF 254 ± 12.0 323 ± 15.6 6.21
*** 

ADF 211 ± 7.80 309 ± 9.02 3.82
***

 

ADL 37.6 ± 2.30 27.4 ± 0.26 0.94
**

 

NDIP
 

35.6 ± 2.77 56.6 ± 0.25 1.14
***

 

NDIC
 

125 ± 1.16 148 ± 3.49 1.50
***

 

ADIP
 

26.5 ± 1.86 45.9 ± 3.14 1.49
** 

ADIC
 

163 ± 4.55 107 ± 5.72 2.98
*** 

Mean values were significantly different at P<0.01 (**) or P<0.001 (***); SD, standard 

deviation; n, number of replicates ; GTL and BTL, green and black tea leaves; NDF, 

neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin; NDIP, 

neutral detergent insoluble protein (g/kg DM NDF); NDIC, neutral detergent insoluble 

carbon (g/kg DM NDF); ADIP, acid detergent insoluble protein (g/kg DM ADF); ADIC, 

acid detergent  insoluble carbon (g/kg DM ADF). 

3.4.1.3 Total plant secondary metabolite contents of GTL and BTL 

 Table 3.6 shows that the GTL had significantly greater TP, TT, CT, and TS 

contents than BTL. 

 

Table 3.6 Mean (g/kg DM ± SD, n = 6) plant secondary metabolite contents of GTL and 

BTL with pooled standard error of the means (SEM) and significances. 

Composition 

(g/kg DM) 
GTL BTL 

Pooled SEM with  

significances 

TP 231 ± 17.0 151 ± 9.61 7.98
**

 

TT 204 ± 12.1 133 ± 6.79 5.69
**

 

CT 176 ± 4.73 101 ± 22.8 9.49
**

 

TS 276 ± 15.6 86.1 ± 3.69 6.56
***

 

Mean values were significantly different at P<0.01 (**) or P<0.001 (***); SD, standard 

deviation; n, number of replicates; GTL and BTL, green and black tea leaves; TP, total 

phenols; TT, total tannins; CT, condensed tannins; TS, total saponins. 
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3.4.1.4 Alkaloid and phenolic components of GTL and BTL 

 Figure 3.1 illustrates the peaks of fifteen compounds that were identified by the 

HPLC analysis as 1:Theobromine, 2: GC, 3: EGC, 4: C, 5: Caffeine, 6: EC, 7: EGCG, 8: 

GCG, 9: ECG, 10: CG, 11:Rutin, 12: TF, 13: TF-3-G, 14: TF-3’-G  and 15: TF-3,3’-DG in 

GTL and BTL.   

 

 

 

Figure 3.1 Example chromatograms of GTL (above) and BTL (below) samples. 

 

Table 3.7 shows that the GTL had significantly higher total alkaloid and total 

catechin but less total theaflavin contents than BTL whereas GTL did not differ from BTL 

for their rutin contents. All individual catechins in GTL were significantly higher than 

those in BTL. Conversely, all individual theaflavins in GTL were significantly lower than 

those in BTL. Caffeine was the major alkaloid in both tea leaves where the caffeine content 

in GTL was significantly greater than BTL. 
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Table 3.7 Mean (g/kg DM ± SD, n = 3) alkaloid and phenolic components of GTL and 

BTL with pooled standard error of the means (SEM) and significances. 

Compounds 

(g/kg DM)  
GTL BTL 

Pooled SEM with 

significances 

Theobromine 2.58 ± 0.048 1.37 ± 0.026 0.022
*** 

Caffeine 28.9 ± 0.302 27.4 ± 0.248 0.159
** 

Total alkaloids 31.5 ± 0.311 28.7 ± 0.249 0.163
***

 

GC  4.93 ± 0.022 n.d. n.d. 

EGC 22.4 ± 0.168 3.51 ± 0.101 0.080
***

 

C  1.30 ± 0.028 0.40 ± 0.003 0.011
***

 

EC 2.13 ± 0.082 0.28 ± 0.004 0.034
***

 

EGCG  94.6 ± 0.611 4.45 ± 0.222 0.266
***

 

GCG 1.15 ± 0.085 0.60 ± 0.097 0.053
**

 

ECG  25.5 ± 0.513 5.41 ± 0.099 0.214
***

 

CG 3.10 ± 0.101 1.33 ± 0.007 0.041
***

 

Total catechins 155 ± 0.343 16.0 ± 0.459 0.233
***

 

TF 0.28 ± 0.032 2.33 ± 0.237 0.016
***

 

TF-3-G 0.22 ± 0.004 4.57 ± 0.048 0.020
***

 

TF-3’-G   0.35 ± 0.004 2.80 ± 0.046 0.080
***

 

TF-3,3’-DG 0.38 ± 0.018 6.98 ± 0.123 0.051
***

 

Total theaflavins 1.24 ± 0.054 16.7 ± 0.241 0.101
***

 

Rutin 2.11 ± 0.052 2.03 ± 0.013 0.022
NS 

Mean values were significantly different at P<0.01 (**) or P<0.001 (***); NS, non-

significant; SD, standard deviation; n, number of replicates; n.d., not detected; GTL and 

BTL, green and black tea leaves; GC, gallocatechin; EGC, epigallocatechin; C, catechin; 

EC, epicatechin; EGCG, epigallocatechin gallate; GCG, gallocatechin gallate; ECG, 

epicatechin gallate; CG, catechin gallate;  TF, theaflavin;  TF-3-G, theaflavin-3-gallate; 

TF-3’-G,  theaflavin-3’-gallate; TF-3,3’-DG, theaflavin-3,3’-digallate.  

3.4.1.5 Mineral components of GTL and BTL 

 Table 3.8 shows that there was no difference between GTL and BTL for most 

mineral components except Mn content which was significantly higher in GTL than BTL, 

and Na and Cu contents which were significantly lower in GTL compared with BTL. 
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Table 3.8 Mean (mg/ kg DM ± SD, n = 6) mineral components of GTL and BTL with 

pooled standard error of the means (SEM) and significances. 

Composition 

(mg/kg DM) 
GTL BTL 

Pooled SEM with  

significances 

Ca 6,699 ± 179.6 6,441 ± 648.6 274.8
NS

 

K 8,095 ± 744.3 7,808 ± 233.7 318.5
NS

 

P 2,521 ± 55.0 2,413 ± 241.8 101.2
NS

 

Mg 1,993 ± 49.6 1,726 ± 169.6 72.2
NS

 

Mn 663 ± 17.6 527 ± 50.9 22.0
* 

Fe 119 ± 5.31 116 ± 11.9 5.32
NS

 

Na 78.2 ± 4.87 150  ± 11.4 5.05
** 

Cu 16.9 ± 0.54 23.8 ± 3.96 1.63
* 

Zn 21.2 ± 0.57 21.7 ± 2.45 1.03
NS

 

Ni 1.58 ± 0.07 1.69 ± 0.22 0.09
NS

 

Cr 1.32 ± 0.26 1.22 ± 0.12 0.12
NS

 

Pb 0.51 ± 0.12 0.59 ± 0.18 0.09
NS

 

Cd 0.04 ± 0.03 0.04 ± 0.02 0.01
NS

 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**); NS, non-

significant; SD, standard deviation; n, number of replicates; GTL and BTL, green and 

black tea leaves. 

3.4.1.6 Fatty acid profiles of GTL and BTL 

 Table 3.9 shows that the GTL had significantly lower total SFA contents but higher 

total PUFA contents and ω-3:ω-6 ratio than BTL. In contrast, the GTL and BTL did not 

significantly differ for total MUFA contents. Individually, the GTL had significantly 

higher lauric acid, pentadecanoic acid, dodecenoic acid, palmitoleic acid, linolenic acid, 

and α-linolenic acid contents but lower myristic acid, palmitic acid, stearic acid, arachidic 

acid, behenic acid, lignoceric acid, oleic acid, eicosenoic acid, nervonic acid, ɣ-linolenic 

acid, eicosatrienoic acid, and docosadienoic acid contents than BTL. Both GTL and BTL 

had the same heptadecanoic acid and linoelaidic acid contents. 
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Table 3.9 Mean (± SD, n = 3) fatty acid profiles of GTL and BTL with pooled standard 

error of the means (SEM) and significances. 

Compounds  

(% from total identified FA) 
GTL BTL 

Pooled SEM with 

significances 

C12:0 Lauric Acid 0.47 ± 0.050 0.22 ± 0.030 0.024
** 

C14:0 Myristic Acid 0.41 ± 0.061 0.77 ± 0.084 0.042
**

 

C15:0 Pentadecanoic Acid 0.64 ± 0.077 0.35 ± 0.024 0.033
**

 

C16:0 Palmitic Acid 28.1 ± 0.036 37.1± 0.432 0.177
*** 

C17:0 Heptadecanoic Acid 0.30 ± 0.030 0.34 ± 0.10 0.015
NS

 

C18:0 Stearic Acid 5.39 ± 0.076 6.94 ± 0.112 0.055
***

 

C20:0 Arachidic Acid 0.71 ± 0.055 1.11 ± 0.004 0.031
**

 

C22:0 Behenic Acid 0.54 ± 0.088 0.96 ± 0.033 0.038
**

 

C24:0 Lignoceric Acid 1.28 ± 0.08 2.04 ± 0.10 0.082
**

 

Total SFA 37.8 ± 0.099 49.9 ± 0.649 0.271
***

 

C12:1 Dodecenoic Acid 4.13 ± 0.343 2.83 ± 0.114 0.152
**

 

C16:1 Palmitoleic Acid 0.74 ± 0.040 0.52 ± 0.095 0.042
*
 

C18:1n9c Oleic Acid 7.52 ± 0.03 9.69 ± 0.24 0.125
***

 

C20:1n11c  cis-11-Eicosenoic Acid 0.33 ± 0.021 0.40  ± 0.062 0.027
***

 

C22:1n9 Erucic Acid n.d. 0.031  ± 0.009 n.d. 

C24:1 Nervonic Acid 0.34 ± 0.018 0.47  ± 0.034 0.016
**

 

Total MUFA 13.1
 
± 0.433 13.9  ± 0.558 0.250

NS
 

C18:2n 6t Linoelaidic Acid ω-6 0.28 ± 0.095 0.46  ± 0.01 0.043
NS

 

C18:2n6c Linoleic Acid (LA)  ω-6 17.8 ± 0.046 15.8 ± 0.268 0.111
*** 

C18:3n6 ɣ-linolenic Acid (GLA) ω-6 1.14 ± 0.069 1.39 ± 0.074 0.041
* 

C18:3n3 α-linolenic Acid (ALA) ω-3 25.7 ± 0.335 11.2 ± 0.188 0.157
*** 

C20:2 cis-11,14-Eicosadienoic Acid ω-6 n.d. 0.24 ± 0.065 n.d. 

C20:3n6 cis-8,11,14-Eicosatrienoic Acid ω-6 3.93 ± 0.052 6.59 ± 0.163 0.070
*** 

C22:2 cis-13,16-Docosadienoic Acid ω-6 0.22 ± 0.017 0.33 ± 0.018 0.010
** 

Total PUFA 49.1 ± 0.407 36.1 ± 0.337 0.215
*** 

ω-3:ω-6 ratio 1.10 ± 0.015 0.45 ± 0.006 0.006
*** 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; SD, standard deviation; n, number of replicates; n.d., not detected; 

GTL and BTL, green and black tea leaves; FA, fatty acids; SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. 
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3.4.2 Green and black company STL 

3.4.2.1 Proximate composition of CSGTL and CSBTL 

 Table 3.10 shows that the CSGTL had significantly higher EE and ash contents but 

lower DM, OM, and C contents than CSBTL. Conversely, the CSGTL and CSBTL did not 

significantly differ for CP and S contents.  

 

Table 3.10 Mean (g/kg DM ± SD, n = 6) proximate compositions of CSGTL and CSBTL 

with pooled standard error of the means (SEM) and significances. 

Composition 

(g/kg DM) 
CSGTL CSBTL 

Pooled SEM with 

significances 

DM 170 ± 1.06 205 ± 1.46 0.74
*** 

OM 955 ± 1.27 959 ± 1.19 0.71
*** 

C 515 ± 1.19 520 ± 1.93 0.92
* 

CP 261 ± 2.15 253 ± 5.55 2.43
NS 

EE
 

17.8 ± 0.86 12.6  ± 0.43 0.39
** 

Ash 44.9 ± 0.84 41.3 ± 1.73 0.25
*** 

S 1.71 ± 0.15 1.69 ± 0.22 0.06
NS 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; SD, standard deviation; n, number of replicates; CSGTL and CSBTL, 

company spent green and black tea leaves; DM, dry matter (g DM/kg sample); OM, 

organic matter; C, carbon; CP, crude protein; EE, ether extract; S, sulphur. 

3.4.2.2 Fibre fraction of CSGTL and CSBTL 

 Table 3.11 shows that the CSGTL had significantly lower ADF, NDIP, NDIC, 

ADIP, and ADIC contents than CSBTL but they had similar NDF and ADL contents. 
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Table 3.11 Mean (g/kg DM ± SD, n = 6) fibre fraction of CSGTL and CSBTL with pooled 

standard error of the means (SEM) and significances. 

Composition 

(g/kg DM) 
CSGTL CSBTL 

Pooled SEM with 

significances 

NDF 560 ± 19.2 576 ± 6.47 8.28
NS 

ADF 334 ± 1.57 449 ± 5.81 2.46
***

 

ADL 42.7 ± 1.25 48.8 ± 5.72 2.39
NS

 

NDIP
 

136 ± 2.77 149 ± 3.07 1.26
**

 

NDIC
 

269 ± 1.11 296 ± 4.07 1.72
***

 

ADIP
 

33.4
 
± 0.75 56.6

 
± 7.19 2.95

** 

ADIC
 

169 ± 0.75 213 ± 19.0 7.75
* 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

SD, standard deviation; n, number of replicates; CSGTL and CSBTL, company spent green 

and black tea leaves; NDF, neutral detergent fibre; ADF, acid detergent fibre; ADL, acid 

detergent lignin; NDIP, neutral detergent insoluble protein (g/kg DM NDF); NDIC, 

neutral detergent insoluble carbon (g/kg DM NDF); ADIP, acid detergent insoluble 

protein (g/kg DM ADF); ADIC, acid detergent insoluble carbon (g/kg DM ADF). 

3.4.2.3 Plant secondary metabolite contents of CSGTL and CSBTL 

 Table 3.12 shows that the CSGTL had significantly higher TP, TT, and TS contents 

than CSBTL but they had a similar CT content.  

 

Table 3.12 Mean (g/kg DM ± SD, n = 6) plant secondary metabolite contents of CSGTL 

and CSBTL with pooled standard error of the means (SEM) and significances. 

Composition 

(g/kg DM) 

CSGTL CSBTL Pooled SEM with 

significances 

TP 44.7 ± 5.92 34.4 ± 0.24 2.42
*
 

TT 39.8 ± 2.88 31.7
 
± 1.05 1.25

*
 

CT 36.5 ± 11.3 32.6 ± 3.22 4.82
NS

 

TS 26.8
 
± 2.23 12.4 ± 1.78 1.17

**
 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**); SD, standard 

deviation; n, number of replicates; CSGTL and CSBTL, company spent green and black 

tea leaves; TP, total phenols; TT, total tannins; CT, condensed tannins; TS, total saponins. 
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3.4.2.4 Alkaloid and phenolic components of CSGTL and CSBTL 

 Table 3.13 shows that the CSGTL had significantly higher total catechin but lower 

total theaflavin contents than CSBTL. Both CSGTL and CSBTL had the same total 

alkaloid contents. Individually, the CSGTL had significantly higher theobromine, GC, 

EGC, C, EC, EGCG, GCG, ECG, and CG contents but lower TF, TF-3-G, TF-3’-G, and 

TF-3,3’-DG contents than CSBTL. Both CSGTL and CSBTL had a similar caffeine 

content. In addition, rutin was not detected in neither CSGTL nor CSBTL.  

 

Table 3.13 Mean (g/kg DM ±SD, n = 3) alkaloid and phenolic components of CSGTL and 

CSBTL with pooled standard error of the means (SEM) and significances. 

Compounds 

(g/kg DM)  
CSGTL CSBTL 

Pooled SEM with 

significance 

Theobromine 0.11 ± 0.003 0.03 ± 0.001 0.001
*** 

Caffeine 0.91 ± 0.009 0.93 ± 0.045 0.020
NS

 

Total alkaloids 1.02 ± 0.008 0.96 ± 0.047 0.019
NS

 

GC  0.81 ± 0.043 n.d. n.d. 

EGC 3.22 ± 0.107 0.07 ± 0.001 0.044
***

 

C  0.14 ± 0.004 0.03 ± 0.004 0.002
***

 

EC 0.25 ± 0.014 0.08 ± 0.004 0.004
***

 

EGCG  10.7 ± 0.102 3.69 ± 0.064 0.049
***

 

GCG 0.75 ± 0.009 0.16 ± 0.008 0.051
***

 

ECG  4.23 ± 0.039 1.90 ± 0.020 0.018
***

 

CG 0.68 ± 0.010 0.39 ± 0.009 0.005
***

 

Total catechins 20.8 ± 0.235 6.31 ± 0.083 0.102
***

 

TF 0.07 ± 0.001 0.33 ± 0.009 0.004
***

 

TF-3-G 0.03 ± 0.001 0.77 ± 0.036 0.015
***

 

TF-3’-G   0.09 ± 0.008 0.49 ± 0.013 0.006
***

 

TF-3,3’-DG 0.08 ± 0.020 1.19 ± 0.024 0.013
***

 

Total theaflavins 0.28 ± 0.030 2.77 ± 0.047 0.023
***

 

Rutin n.d. n.d.  

Mean values were significantly different at P<0.001 (***); SD, standard deviation; n, number of 

replicates; CSGTL and CSBTL, company spent green and black tea leaves; n.d., not detected; GC, 

gallocatechin; EGC, epigallocatechin; C, catechin; EC, epicatechin; EGCG, epigallocatechin 

gallate; GCG, gallocatechin gallate; ECG, epicatechin gallate; CG, catechin gallate;  

TF,theaflavin;  TF-3-G, theaflavin-3-gallate; TF-3’-G,  theaflavin-3’-gallate; TF-3,3’-DG, 

theaflavin-3,3’-digallate.   
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3.4.2.5 Mineral components of CSGTL and CSBTL 

 Table 3.14 shows that the CSGTL had significantly greater most minerals except 

significantly lower Zn and Ni contents compared with CSBTL. Both CSGTL and CSBTL 

had similar Mg, Cu, and Cd contents. 

 

Table 3.14 Mean (mg/kg DM ± SD, n = 6) mineral components of CSGTL and CSBTL 

with pooled standard error of the means (SEM) and significances. 

Composition 

(mg/kg DM) 
CSGTL CSBTL 

Pooled SEM with 

significances 

Ca 10,753 ± 86.4 10,374 ± 164.3 75.6
*
 

K 906 ± 18.6 632 ± 4.81 7.85
***

 

P 2,183 ± 24.0 2,013 ± 27.1 14.8
**

 

Mg 1,864 ± 25.5 1,726 ± 169.6 15.3
NS

 

Mn 804 ± 11.9 536 ± 7.35 5.71
*** 

Fe 346 ± 16.0 182 ± 4.89 6.82
***

 

Na 1,303 ± 15.7 1,789  ± 21.2 10.7
*** 

Cu 23.8 ± 2.68 26.9 ± 0.21 1.10
NS 

Zn 20.4 ± 0.35 23.7 ± 0.18 0.16
***

 

Ni 0.40 ± 0.14 0.69 ± 0.06 0.05
*
 

Cr 2.37 ± 0.43 1.24 ± 0.13 0.18
*
 

Pb 1.48 ± 0.49 0.65 ± 0.12 0.20
*
 

Cd 0.09 ± 0.03 0.07 ± 0.02 0.02
NS

 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; SD, standard deviation; n, number of replicates; CSGTL and CSBTL, 

company spent green and black tea leaves. 

3.4.2.6 Fatty acid profiles of CSGTL and CSBTL 

 Table 3.15 shows that both CSGTL and CSBTL had similar total SFA, total 

MUFA, total PUFA, and most of the individual fatty acid contents except linoelaidic acid, 

linoleic acid, α-linolenic acid, and ω-3:ω-6 ratio which were significantly lower for 

CSGTL  in comparison with CSBTL. 
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Table 3.15 Mean (± SD, n = 3) fatty acid profiles of CSGTL and CSGTL with pooled 

standard error of the means (SEM) and significances. 

Compounds  

(% from total identified FA) 

CSBTL 

 

CSGTL 

 

Pooled SEM with 

significance 

C12:0 Lauric Acid 0.26 ± 0.060 0.28 ± 0.061 0.035
NS 

C15:0 Pentadecanoic Acid 0.46 ± 0.143 0.43 ± 0.043 0.061
NS 

C16:0 Palmitic Acid 48.8 ± 1.323 47.7 ± 0.575 0.589
NS

 

C17:0 Heptadecanoic Acid 0.53 ± 0.023 0.48 ± 0.047 0.021
NS 

C18:0 Stearic Acid 9.78 ± 0.416 9.34 ± 0.114 0.176
NS

 

C20:0 Arachidic Acid 1.49 ± 0.125 1.41 ± 0.260 0.052
NS

 

C22:0 Behenic Acid 1.34 ± 0.133 1.41 ± 0.127 0.075
NS

 

C24:0 Lignoceric Acid 2.89 ± 0.102 3.09 ± 0.152 0.075
NS

 

Total SFA 65.5 ± 1.781 64.1 ± 0.426 0.748
NS

 

C12:1 Dodecenoic Acid 3.63 ± 0.510 3.33 ± 0.087 0.211
NS

 

C16:1 Palmitoleic Acid 0.80 ± 0.118 0.66 ± 0.080 0.058
NS

 

C18:1n9c Oleic Acid 9.86 ± 0.186 9.90 ± 0.219 0.117
NS

 

C20:1n11c  cis-11-Eicosenoic Acid 0.37 ± 0.061 0.43 ± 0.034 0.028
NS 

C22:1n9 Erucic Acid 0.67 ± 0.195 0.58  ± 0.080 0.086
NS

 

Total MUFA 15.3 ± 0.568 14.9  ± 0.176 0.242
NS

 

C18:2n 6t Linoelaidic Acid ω-6 0.21 ± 0.047 0.47  ± 0.065 0.033
**

 

C18:2n6c Linoleic Acid (LA)  ω-6 3.20 ± 0.210 4.34 ± 0.115 0.098
** 

C18:3n6 ɣ-linolenic Acid (GLA) ω-6 2.20 ± 0.283 1.81 ± 0.280 0.162
NS 

C18:3n3 α-linolenic Acid (ALA) ω-3 1.27 ± 0.218 1.82 ± 0.051 0.091
* 

C20:3n6 cis-8,11,14-Eicosatrienoic Acid ω-6 11.8 ± 0.835 12.1 ± 0.502 0.398
NS 

C22:2 cis-13,16-Docosadienoic Acid ω-6 0.45 ± 0.041 0.048 ± 0.003 0.017
NS 

Total PUFA 19.1 ± 1.483 21.0 ± 0.602 0.653
NS 

ω-3 : ω-6 ratio 0.07 ± 0.009 0.09 ± 0.004 0.004
* 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**); NS, non-

significant; SD, standard deviation; n, number of replicates; CSGTL and CSBTL, company 

spent green and black tea leaves; FA, fatty acids; SFA, saturated fatty acids; MUFA, 

monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. 

3.4.3 Green and black STL 

3.4.3.1 Effect of different tea-to-water ratios on mean proximate composition of 

SGTL and SBTL 

 Table 3.16 presents the mean proximate composition for only the main effect of 

STL types and tea-to-water ratios that were mostly significant but not the effect of their 
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interactions. The SGTL, averaged over all the ratios, had significantly higher DM, CP, EE, 

ash, and S contents but lower water-holding capacity (WHC) and OM content than SBTL. 

Increasing tea-to-water ratio from T1 to T3 caused a significant increase in DM, CP, and 

ash contents and a minor effect on EE content but resulting in a significant decrease in 

WHC, OM, and S contents.  

 

Table 3.16 Mean proximate composition (g/kg DM) of SGTL and SBTL for the main 

effect of tea types (STL) and tea-to-water ratios (Ratio, T1= 2.8 g, T2= 5.6 g and T3= 11.2 

g/300 ml) with pooled standard error of the mean (SEM) and significances. 

Composition  

(g/kg DM) 

STL (n=18) Ratio (n=12) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STLxRatio 

DM
 

141
 

131 130
b 

137
ab 

141
a 

1.72
**

 2.10
* 

2.97
NS 

WHC
 

6.11 6.64 6.70
a 

6.32
ab

 6.12
b 

0.09
**

 0.11
**

 0.16
NS

 

OM 955
 

959
 

959
a 

956
b 

955
b 

0.57
*** 

0.90
** 

0.99
NS 

CP 252
 

240
 

240
b 

248
a 

249
a 

0.89
*** 

1.09
*** 

1.54
NS 

EE 23.0
 

14.4
 

18.3 18.1 19.7 0.56
*** 

0.69
NS 

0.98
NS 

Ash 45.4
 

41.4
 

41.0
b 

43.8
b 

45.4
a 

0.57
***

 0.70
**

 0.99
NS

 

S 2.90
 

2.58
 

2.90
a 

2.73
ab 

2.58
b 

0.06
**

 0.07
*
 0.10

NS
 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; n, number of replicates; SGTL and SBTL, spent green and black tea 

leaves; DM, dry matter (g/kg sample); WHC, water-holding capacity (gH2O/kg DM); OM, 

organic matter; CP, crude protein; EE, ether extract; S, sulphur. 

3.4.3.2 Effect of tea types and tea-to-water ratios on mean fibre fraction of SGTL and 

SBTL 

 Table 3.17 presents the means of fibre fraction for only the main effect of STL 

types and tea-to-water ratios as these were significant but not the effect of their 

interactions. The SGTL, averaged over all the ratios, had significantly lower NDF, ADF, 

NDIC, ADIP, and ADIC contents but higher NDIP content compared with SBTL. Both 

SGTL and SBTL had a similar ADL content. There was a significant decrease in NDF, 

ADF, and NDIC due to the increased tea-to-water ratios from T1 to T3 but not from T1 to 

T2. However, increasing tea-to-water ratios from T1 to T3 had no significant effect on 

ADL, NDIP, ADIP, and ADIC contents.  
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Table 3.17 Mean fibre fraction (g/kg DM) of SGTL and SBTL for the main effect of tea 

types (STL) and tea-to-water ratios (Ratio, T1= 2.8 g, T2= 5.6 g and T3= 11.2 g/300 ml) 

with pooled standar error of the mean (SEM) and significances. 

Composition  

(g/kg DM) 

STL (n=18) Ratio (n=12) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STL x Ratio 

NDF 394
 

461
 

440
a 

430
a 

413
b 

2.92
*** 

3.57
** 

5.05
NS 

ADF 283
 

410
 

357
a 

352
a 

331
b 

4.19
***

 5.13
**

 7.26
NS

 

ADL  38.9 43.6 42.03 40.2 41.6 2.26
NS 

2.77
NS 

3.91
NS 

NDIP  96.5
 

68.9
 

84.4 82.3 81.3 1.49
*** 

1.82
NS 

2.58
NS 

NDIC 196 230
 

217
a
 216

a
 206

b
 1.35

*** 
1.66

** 
2.34

NS 

ADIP  34.2
 

53.1
 

42.3 44.1 44.6 1.35
*** 

2.30
NS 

3.25
NS 

ADIC  169
 

209
 

181 185 201 4.06
*** 

4.10
NS 

7.04
NS 

Mean values were significantly different at P<0.01 (**) or P<0.001 (***); NS, non-

significant; n, number of replicates; SGTL and SBTL, spent green and black tea leaves; 

NDF, neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin; 

NDIP, neutral detergent insoluble protein (g/kg DM NDF); NDIC, neutral detergent 

insoluble carbon (g/kg DM NDF); ADIP, acid detergent insoluble protein (g/kg DM ADF); 

ADIC, acid detergent insoluble carbon (g/kg DM ADF). 

3.4.3.3 The effect of tea types and tea-to-water ratios on mean total plant secondary 

metabolites of SGTL and SBTL 

 Table 3.18 presents the means of total plant secondary metabolites for only the 

main effect of STL types and tea-to-water ratios as these were significant but not the effect 

of their interactions. The SGTL, averaged over all the ratios, had significantly greater TP, 

TT, CT, and TS (g/kg DM) than SBTL. The increase of tea-to-water ratio from T1 to T3 

significantly increased TP, TT, CT, and TS. However, there was no significant difference 

between T1 and T2 for most secondary metabolite components except CT.  
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Table 3.18 Mean total plant secondary metabolites (g/kg DM) of SGTL and SBTL for the 

main effect of tea types (STL) and tea-to-water ratio (Ratio, T1= 2.8 g, T2= 5.6 g and T3= 

11.2 g/300 ml) with pooled standar error of the mean (SEM) and significances. 

Composition  

(g/kg DM) 

STL (n=18) Ratio (n=6) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STL x Ratio 

TP 130
 

98.8
 

108
b 

113
b 

122
a 

1.76
*** 

2.16
** 

3.05
NS 

TT 126
 

90.2
 

102
b 

107
b 

115
a 

1.74
*** 

2.13
** 

3.01
NS 

CT 105
 

77.3
 

64.0
b 

93.8
a 

116
a 

4.96
** 

6.07
*** 

8.59
NS 

TS 70.1
 

39.3
 

46.0
b 

53.0
b 

65.1
a 

2.13
*** 

2.61
** 

3.68
NS 

Mean values were significantly different at P<0.01 (**) or P<0.001 (***); NS, non-

significant; n, number of replicates; SGTL and SBTL, spent green and black tea leaves; 

TP, total phenols; TT, total tannins; CT, condensed tannins; TS, total saponins. 

3.4.3.4 The effect of tea types and tea-to-water ratios on mean alkaloid and phenolic 

components of SGTL and SBTL 

 Table 3.19 presents the means of alkaloid and phenolic components for only the 

main effect of STL types and tea-to-water ratios that were mostly significant but not the 

effect of their interactions. The SGTL, averaged over all the ratios, had significantly more 

total alkaloid, total catechin, and rutin contents but lower total theaflavin contents than 

SBTL. Similar to the original tea, caffeine was found to be the highest alkaloid in both 

SGTL and SBTL which were not significantly different from each other. All individual 

catechins in SGTL were significantly higher than those in SBTL. In SGTL, EGCG was the 

greatest catechin followed by ECG, EGC, CG, GC, and EC, respectively, whilst in SBTL 

the largest catechin was EGCG.  Conversely, all theaflavins in SGTL were significantly 

lower than those in SBTL. The highest theaflavin in SBTL was TF-3,3’-DG followed by 

TF-3-G, TF-3’-G, and TF. In addition, increasing tea-to-water ratio during tea extraction 

from T1 to T3 had a significant effect in increasing the concentration of total alkaloid, total 

catechin, total theaflavin, and rutin contents in the STL. 
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Table 3.19 Mean alkaloid and phenolic components (g/kg DM) of SGTL and SBTL for the 

main effect of tea types (STL) and tea-to-water ratios (Ratio, T1= 2.8 g, T2= 5.6 g and T3= 

11.2 g/300 ml) with pooled standard error of the mean (SEM) and significances. 

Composition  

(g/kg DM) 

STL (n=9) Ratio (n=6) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STL x Ratio 

Theobromine 0.79
 

0.42
 

0.44
c 

0.58
b 

0.80
a 

0.011
***

 0.014
*** 

0.019
NS 

Caffeine 10.2
 

9.84
 

7.16
c 

9.68
b 

13.3
a 

0.152
NS

 0.186
***

 0.263
NS

 

Tot. alkaloids 11.0
 

10.2
 

7.60
c 

10.3
b 

14.1
a 

0.162
** 

0.198
*** 

0.281
NS 

GC  1.63 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

EGC
 

9.04
 

0.75
 

4.12
b 

4.91
a 

5.65
a 

0.122
*** 

0.150
*** 

0.212
NS 

C  0.41
 

0.14
 

0.22
c 

0.27
b 

0.34
a 

0.007
***

 0.008
**

 0.012
**

 

EC 1.36
 

0.03
 

0.66
b 

0.70
b 

0.74
a 

0.009
**

 0.011
*
 0.016

NS
 

EGCG  51.6
 

2.32
 

24.3
c 

27.0
b 

29.5
a 

0.350
*** 

0.429
*** 

0.607
NS 

GCG 0.85
 

0.17
 

0.46
c 

0.50
b 

0.58
a 

0.009
*** 

0.011
*** 

0.015
* 

ECG  14.4
 

0.85
 

7.62
c 

8.35
b 

9.05
a 

0.096
*** 

0.118
*** 

0.167
*** 

CG 1.95
 

0.53
 

1.13
c 

1.24
b 

1.35
a 

0.011
*** 

0.013
*** 

0.019
* 

Tot. catechins
 81.2

 
6.27

 
39.2

c 
43.8

b 
48.2

a 
0.626

*** 
0.767

*** 
1.085

NS 

TF
 

0.18
 

1.38
 

0.70
b 

0.81
a 

0.82
a 

0.022
*** 

0.027
** 

0.038
NS 

TF-3-G
 

0.13
 

3.15
 

1.50
b 

1.70
ab 

1.72
a 

0.049
*** 

0.060
* 

0.084
NS 

TF-3’-G 0.22
 

2.02
 

1.03
b 

1.15
a 

1.17
a 

0.020
*** 

0.024
** 

0.035
NS 

TF-3,3’-DG 0.24
 

5.61
 

2.73
b 

3.02
a 

3.03
a 

0.074
*** 

0.091
* 

0.129
NS 

Tot. theaflavins
 0.76

 
12.2

 
5.97

b 
6.67

a 
6.74

a 
0.173

*** 
0.212

** 
0.299

NS 

Rutin 1.12
 

0.82
 

0.86
c 

0.96
b 

1.09
a 

0.012
*** 

0.014
*** 

0.020
NS 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; n, number of replicates; SGTL and SBTL, spent green and black tea 

leaves; n.d., not detected; GC, gallocatechin; EGC, epigallocatechin; C, catechin; EC, 

epicatechin; EGCG, epigallocatechin gallate; GCG, gallocatechin gallate; ECG, 

epicatechin gallate; CG, catechin gallate;  TF, theaflavin;  TF-3-G, theaflavin-3-gallate; 

TF-3’-G,  theaflavin-3’-gallate; TF-3,3’-DG, theaflavin-3,3’-digallate.    

3.4.3.5 The effect of tea types and tea-to-water ratios on mean alkaloid and phenolic 

components of tea extract liquid (TEL) 

 Table 3.20 presents the mean alkaloid and phenolic components for only the main 

effect of TEL types and tea-to-water ratios that were mostly significant but not the effect of 

their interactions. The green TEL (GTEL), averaged across all the ratios, had significantly 

more total alkaloid, total catechin, and rutin contents but lower total theaflavin contents in 

comparison with black TEL (BTEL).  
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Table 3.20 Mean alkaloid and phenolic components (mg/100 ml) of GTEL and BTEL for 

the main effect of tea types (TEL) and tea-to-water ratios (Ratios, T1= 2.8 g, T2= 5.6 g and 

T3= 11.2 g/300 ml) with pooled standard error of the mean (SEM) and significances. 

Composition 

 (mg/100ml) 

TEL (n=9) Ratio (n=6) Pooled SEM with significances 

GTEL  BTEL T1 T2 T3 TEL Ratio TEL*Ratio 

Theobromine
 

3.93
 

2.07
 

1.42
c 

2.39
b 

5.20
a 

0.199
*** 

0.088
*** 

0.124
NS 

Caffeine
 

46.2
 

40.5
 

29.9
c 

39.9
b 

69.3
a 

2.405
* 

2.946
*** 

4.166
NS 

Tot. alkaloids
 50.1

 
42.6

 
22.3

c 
42.2

b 
74.5

a 
2.574

** 
3.152

*** 
4.458

NS 

GC 7.01
 

 n.d.
 

 n.d.  n.d.  n.d.  n.d.  n.d.  n.d. 

EGC
 

44.3 4.92 10.9
c
 20.4

b
 42.5

a
 1.037

***
 1.270

***
 1.796

NS
 

C 1.89
 

0.65
 

0.62
c 

1.02
b 

2.18
a 

0.079
*** 

0.097
*** 

0.137
NS 

EC 2.04
 

0.69
 

0.63
b 

1.11
b 

2.35
a 

0.206
*** 

0.252
** 

0.356
NS 

EGCG  104
 

3.18
 

26.0
c 

41.6
b 

93.1
a 

3.127
*** 

3.830
*** 

5.417
NS 

GCG
 

1.68
 

0.49
 

0.42
c 

0.98
b 

1.86
a 

0.058
*** 

0.071
*** 

0.010
*** 

ECG 26.5
 

4.69
 

7.69
c 

12.8
b 

26.3
a 

0.797
*** 

0.976
*** 

1.381
NS 

CG
 

2.94
 

1.35
 

1.04
c 

1.75
b 

3.63
a 

0.195
*** 

0.239
*** 

0.338
NS 

Tot. catechins
 190

 
16.0

 
48.8

c 
82.8

b 
178

a 
4.889

*** 
5.988

*** 
8.468

NS 

TF
 

0.12
 

1.22
 

0.27
c 

0.65
b 

1.09
a 

0.095
*** 

0.117
*** 

0.165
NS 

TF-3-G
 

0.16
 

2.06
 

0.48
c 

1.02
b 

1.84
a 

0.129
*** 

0.156
*** 

0.221
NS 

TF-3’-G  0.21
 

1.14
 

0.30
c 

0.61
b 

1.12
a 

0.060
*** 

0.073
*** 

0.103
NS 

TF-3,3’-DG
 

0.13
 

2.29
 

0.55
c 

1.10
b 

1.98
a 

0.101
*** 

0.124
*** 

0.175
NS 

Tot. theaflavins
 0.62

 
6.72

 
1.60

c 
3.38

b 
6.03

a 
0.375

*** 
0.459

*** 
0.650

NS 

Rutin
 

6.97
 

3.45
 

2.39
c 

4.36
b 

8.88
a 

0.343
*** 

0.420
*** 

0.595
NS 

pH 5.64
 

5.24
 

5.46 5.44 5.41 0.012
*** 

0.015
NS 

0.021
NS 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

n, number of replicates; n.d., not detected; GTEL and BTEL, green and black tea extract 

liquids; GC, gallocatechin; EGC, epigallocatechin; C, catechin; EC, epicatechin; EGCG, 

epigallocatechin gallate; GCG, gallocatechin gallate; ECG, epicatechin gallate; CG, 

catechin gallate;  TF, theaflavin;  TF-3-G, theaflavin-3-gallate; TF-3’-G,  theaflavin-3’-

gallate; TF-3,3’-DG, theaflavin-3,3’-digallate. 

 

 Caffeine was found to be the highest alkaloid in both GTEL and BTEL with GTEL 

had a significantly higher caffeine content than BTEL. All catechins in GTEL were present 

at significantly higher concentrations than those in BTEL. In GTEL, EGCG was the most 

concentrated catechin followed by EGC, ECG, GC, CG, EC, C, and GCG whilst in BTEL 

the most concentrated catechin was EGC followed by ECG, EGCG, and CG, respectively. 

Conversely, all theaflavins in GTL were at significantly lower concentrations compared 
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with those in BTEL. The most concentrated theaflavin in BTEL was TF-3,3’-DG followed 

by TF-3-G, TF and TF-3’-G. In addition, it was clear that increasing the tea-to-water ratio 

from T1 to T3 had a significant effect in increasing the concentration of total alkaloid, total 

catechin, total theaflavin, and rutin contents in TEL. 

3.4.3.6 The effect of tea types and tea-to-water ratios on mineral components of SGTL 

and SBTL 

 Table 3.21 presents the mean mineral contents for only the main effect of STL 

types and tea-to-water ratios that were mostly significant but not the effect of their 

interactions.  

 

Table 3.21 Mean mineral components (mg/kg DM) of SGTL and SBTL for the main effect 

of tea types (STL) and tea-to-water ratios (Ratio, T1= 2.8 g, T2= 5.6 g and T3= 11.2 g/300 

ml) with pooled standard error of the mean (SEM) and significances. 

Composition 

(mg/kg DM) 

STL (n=18) Ratio (n=12) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STLxRatio 

Ca 8,860
 

8,339
 

8,799
a 

8,581
ab 

8,418
b 

59.5
***

 72.8
* 

103
NS 

K 2,644 2,642 1,913
c 

2,532
b
 3,485

a 
27.0

NS 
33.1

***
 46.8

** 

P 2,211
 

1,908
 

2,028
 

2,058
 

2,092
 

13.6
*** 

16.7
NS 

23.6
NS 

Mg 1,846
 

1,638 1,785
a 

1,744
ab 

1,696
b 

11.9
***

 14.6
**

 20.7
NS

 

Mn 742
 

535
 

639
 

642
 

636
 

5.29
*** 

6.48
NS 

9.16
NS 

Fe 141
 

160
 

152 156 142 3.71
** 

4.54
NS 

6.43
NS 

Na 98.6
 

190
 

118
 

137
 

177
 

14.8
***

 18.1
NS 

25.7
NS

 

Cu 16.4
 

23.9
 

20.2
 

20.3
 

20.1
 

0.41
***

 0.50
NS 

0.71
NS

 

Zn 19.2
 

22.2
 

20.8
 

20.9
 

20.3
 

0.16
*** 

0.20
NS 

0.28
NS 

Ni 0.49
 

1.17
 

0.78
 

0.83
 

0.89
 

0.04
***

 0.05
NS

 0.07
NS

 

Cr 1.12
 

1.42
 

1.36 1.26 1.17 0.04
**

 0.06
NS

 0.08
NS

 

Pb 0.47
 

0.66
 

0.53
 

0.56
 

0.61
 

0.05
* 

0.06
NS 

0.09
NS 

Cd 0.04
 

0.04
 

0.04
 

0.05
 

0.04
 

0.00
 NS 

0.00
NS 

0.00
NS 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); 

NS, non-significant; n, number of replicates; SGTL and SBTL, spent green and black tea 

leaves. 

 

 The SGTL, averaged over all the ratios, had significantly higher concentrations of 

Ca, P, Mg, and Mn but lower concentrations of Fe, Na, Cu, Zn, Ni, Cr, and Pb than SBTL. 

There was no significant difference between SGTL and SBTL for K and Cd contents. 
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Increasing tea-to-water ratio from T1 to T3 had no significant effect on most mineral 

components of STL except for an increase in K concentration and a decrease in Ca and Mg 

in STL.  Changing the tea-to-water ratio from T1 to T2 had no significant effect on most 

mineral contents in STL except K. 

3.4.3.7 The effect of tea types and tea-to-water ratios on fatty acid profiles of SGTL 

and SBTL 

 Table 3.22 presents the mean fatty acid constituents for only the main effect of STL 

types and tea-to-water ratios that were mostly significant but not the effect of their 

interactions. The SGTL, averaged over all tea-to-water ratios, had significantly lower total 

SFA but higher total PUFA contents than SBTL. However, both SGTL and SBTL had 

similar total MUFA contents. Within SFA, palmitic acid was the most concentrated fatty 

acids for both SGTL and SBTL followed by stearic acid and lignoceric acid, respectively, 

whereas oleic and dodecenoic acid were the two most concentrated MUFA. α-Linolenic 

acid, linoleic acid, eicosatrienoic acid, and ɣ-linolenic acid were the most concentrated 

PUFA, respectively, in SGTL whereas in SBTL; linoleic acid, α-linolenic acid, 

eicosatrienoic acid, and ɣ-linolenic acid were among the most concentrated PUFA, 

respectively. Moreover, the ω-3:ω-6 ratio was higher in SGTL than in SBTL. Changing the 

tea-to-water ratio from T1 to T3 decreased total SFA significantly but it had no significant 

effect on total MUFA and total PUFA. 
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Table 3.22 Mean fatty acid constituens of SGTL and SBTL for the main effect of tea types (STL) and tea-to-water ratios (Ratio, T1= 2.8 g, 

T2= 5.6 g and T3= 11.2 g/300 ml) with Pooled standard error of the mean (SEM) and significances. 

Composition 

(% from total identified FA) 

STL (n=9) Ratio (n=6) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STLxRatio 

C12:0 Lauric Acid 0.28
 

0.22
 

0.22
 

0.27
 

0.26
 

0.029
NS

 0.036
NS 

0.051
NS 

C14:0 Myristic Acid 0.77
 

0.87
 

0.84
 

0.84
 

0.79
 

0.060
NS 

0.073
NS

 0.103
NS

 

C15:0 Pentadecanoic Acid 0.44
 

0.30
 

0.35
 

0.32
 

0.45
 

0.043
* 

0.052
NS 

0.074
NS 

C16:0 Palmitic Acid 39.8
 

45.4
 

44.1
a 

42.9
a 

40.7
b 

0.289
*** 

0.353
*** 

0.500
*** 

C17:0 Heptadecanoic Acid 0.49
 

0.51
 

0.54
 

0.52
 

0.44
 

0.061
NS 

0.075
NS 

0.106
NS 

C18:0 Stearic Acid 8.30
 

9.15
 

9.06
a 

8.72
ab 

8.40
b 

0.094
***

 0.115
**

 0.162
*
 

C20:0 Arachidic Acid 1.16
 

1.26
 

1.13
b 

1.27
ab 

1.21
a 

0.028
*
 0.035

*
 0.049

NS
 

C22:0 Behenic Acid 1.17
 

1.34
 

1.28
a 

1.39
ab 

1.11
b 

0.051
* 

0.062
* 

0.088
NS 

C24:0 Lignoceric Acid 2.10
 

2.73
 

2.46
a 

2.17
ab 

1.95
b 

0.038
*** 

0.046
* 

0.065
NS 

Total SFA 54.6
 

61.7
 

60.0
a 

58.8
a 

55.6
b 

0.356
*** 

0.436
*** 

0.617
*** 

C12:1 Dodecenoic Acid 3.41
 

2.17
 

2.64
 

2.68
 

3.05
 

0.169
***

 0.207
NS 

0.293
NS 

C16:1 Palmitoleic Acid 0.39
 

0.39
 

0.37
 

0.35
 

0.45
 

0.026
NS

 0.032
NS

 0.045
NS

 

C18:1n9c Oleic Acid 9.34
 

10.1
 

9.72
 

9.57
 

9.84
 

0.165
** 

0.202
NS 

0.286
NS 

C20:1n11c  cis-11-Eicosenoic Acid 0.34
 

0.45
 

0.40 0.39 0.36 0.039
* 

0.043
NS 

0.063
NS 

C22:1n9 Erucic Acid n.d.
 

0.31
 

n.d. n.d. n.d. n.d. n.d. n.d.
 

C24:1 Nervonic Acid 1.07 1.12 1.05 1.20 0.96 0.085
NS 

0.104
NS 

0.146
NS 

Total MUFA 14.6 14.5
 

14.4
 

14.4
 

14.8
 

0.240
NS

 0.294
NS

 0.415
NS
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Composition 

(g/kg DM) 

STL (n=9) Ratio (6) Pooled SEM with Significances 

SGTL SBTL T1 T2 T3 STL Ratio STLxRatio 

C18:2n6t Linoelaidic Acid ω-6 0.20
 

0.32
 

0.25
 

0.24
 

0.30
 

0.016
***

 0.019
NS 

0.027
NS 

C18:2n6c Linoleic Acid (LA)  ω-6 10.2
 

7.27
 

7.96
b 

8.32
b 

9.98
a 

0.183
***

 0.225
***

 0.318
***

 

C18:3n6 ɣ-linolenic Acid (GLA) ω-6 2.90
 

3.09
 

2.95
 

3.35
 

2.68
 

0.177
NS 

0.217
NS 

0.307
NS 

C18:3n3 α-linolenic Acid (ALA) ω-3 8.16
 

2.94
 

4.48
b 

4.84
b 

7.34
a 

1.137
*** 

0.168
*** 

0.237
*** 

C20:2 cis-11,14-Eicosadienoic Acid ω-6 0.16
 

0.28
 

0.21
 

0.22
 

0.22
 

0.022
** 

0.026
NS 

0.037
NS 

C20:3n6 cis-8,11,14-Eicosatrienoic Acid ω-6 8.71
 

9.18
 

9.35
a 

9.46
a 

8.02
b 

0.168
NS 

0.206
**

 0.291
NS

 

C22:2 cis-13,16-Docosadienoic Acid ω-6 0.38 0.49 0.45 0.42 0.42 0.022
** 

0.027
NS 

0.038
NS 

Total PUFA 30.8 23.6 25.6
b 

26.9
b 

29.0
a 

0.281
*** 

0.344
*** 

0.486
*** 

ω-3:ω-6 ratio 0.36 0.14 0.21
b 

0.22
b 

0.33
a 

0.007
*** 

0.009
*** 

0.012
*** 

Mean values were significantly different at P<0.05 (*) or P<0.01 (**) or P<0.001 (***); NS, non-significant; n, number of replicates; SGTL 

and SBTL, spent green and black tea leaves; n.d., not detected; FA, fatty acids; SFA, saturated fatty acids; MUFA, monounsaturated fatty 

acids; PUFA, polyunsaturated fatty acids. 
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3.5 Discussion 

 The GTL and BTL were commercially prepared as dried powdered materials with 

more than 90% DM. This is not only for preserving the leaves for their long-term storage 

but also making their solubles easy to be dissolved during water extraction. Generally, both 

GTL and BTL can be categorized as potential good sources of protein, fibre, plant 

secondary metabolites, and minerals for ruminant diets, and minor sources of SFA, MUFA 

and PUFA. The chemical differences between tea types, for example, the lower EE and 

plant secondary metabolites in BTL over GTL were likely due to the degradation of these 

components during the oxidative fermentation of the BTL manufacturing process. Despite 

the reduction of some components in the tea leaves, this process of tea preparation is 

intended to improve extrinsic qualities such as the colour, flavour, brightness, and taste of 

the tea drinks (Muthumani and Kumar, 2007; Owuor and Obanda, 1998).  

 According to Chu and Juneja (1997), the CP contents of BTL and GTL ranged 

from 182 to 307 g/kg DM, respectively, which were in line with the CP contents reported 

in this study. However, the TP composition of GTL (231 g/kg DM) of this study was 

higher than the range of 143 - 210 g/kg DM from studies by Anesini et al. (2008 ) and 

much higher than the range of 87.0 - 106 g/kg DM by Khokhar and Magnusdottir (2002) 

while the TP in BTL measured in this study (151 g/kg DM) was also higher than that 

reported by Khokhar and Magnusdottir (2002)  of 80.5 - 135 g/kg DM  but was within the 

range of 84.2 - 176 g/kg DM of the study by Anesini et al. (2008 ).   

 Previous studies have reported that caffeine was the major alkaloid (g/kg DM) in 

both GTL (25.2 - 31.8) (Cabrera et al., 2003; Chen et al., 2008; Peng et al., 2008) and BTL 

(17.2 - 23.8) (Turkmen and Veliooglu, 2007). The caffeine content of GTL in the current 

study (28.9) was within this range but the value of 27.4 g/kg DM was higher for BTL 

compared with previous studies. Furthermore, Cabrera et al. (2003) and Chen et al. (2008) 

reported that their GTL (g/kg DM) had ECG ranging from 10.4 to 45.6 and the ECG of 

GTL in this study (25.5) was within this range. Conversely, Peng et al. (2008) showed 

lower ECG in GTL (only 6.4) but much higher GCG than found in this study (27.4 vs. 1.2). 

The EGC of GTL in this study (22.4) was lower than the range of the previous study (24.3 

- 45.3) by Cabrera et al. (2003) but higher than (6.90) the study by Peng et al. (2008) 

although the latter study had higher GC content than this study (16.1 vs 4.9). Moreover, the 

C (1.30) and EC (2.13) contents of GTL in this study were lower than those (8.5 - 11.4 and 

9 - 9.8) from study by Chen et al. (2008) but almost comparable (1 - 2.2) with the study by 

Peng et al. (2008). Unfortunately, there were no data available on GC, EGC, GCG, and CG 
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in the study of Chen et al., (2008) and GC, C, GCG, and CG in the study of Cabrera et al. 

(2003). In addition, the BTL in this study was not only higher in TF-3, 3’-DG but also 

higher in TF-3-G (4.6 vs. 2.5 - 4.2) and TF-3’-G (2.8 vs. 1.6 - 2.3) in comparison with the 

study by Turkmen and Veliooglu (2007). However, the TF in this study was within the 

range of the similar previous study (2.3 vs. 1.3 - 3) (Turkmen and Veliooglu, 2007).  

 The BTL in this study had higher concentrations of Ca but lower concentrations of 

Cu, Fe, Mn, Mg, Zn, Ni, Cr, Pb, and Cd than those reported in the study by Salahinejad 

and Aflaki (2009).  However, Shen and Chen (2008) reported lower concentrations of Fe, 

Mg, and Zn in BTL and lower concentrations of Cu, Fe, Mg, and Zn in GTL compared 

with those found for the BTL and GTL of this study. These chemical differences could be 

expected since worldwide there are various qualities, brands, and grades of both green and 

black tea leaves that are bound to affect the chemical composition of different tea types. 

These differences in mineral compositions also reflect the differences in varieties, soil 

types and manufacturing processes that different tea leaves have been exposed to during 

their different phases of growth and processing. For example, the samples of this study 

were obtained from Camellia sinensis var. Asamica cultivated in the Java island of 

Indonesia while samples of Anesini et al. (2008 ) were from Camellia sinensis (L.) O. 

Kuntze cultivated in the northern part of Argentina and Salahinejad and Aflaki (2009) used 

some local commercial teas cultivated in the northern part of Iran as well as imported 

samples from India and Ceylon.     

 Studies on the individual fatty acid content of tea leaves are rare. Previously, about 

8 individual fatty acids in tea leaves have been identified and reported (% from total fatty 

acids). These were palmitic acid (7.72 - 30.0), linoleic acid (6.87 - 26.1), α-linolenic acid 

(19.8 - 71.4) (Ercisli et al., 2008; Owuor, 1990; Shen et al., 2007), palmitoleic acid (0.63 - 

4.97), stearic acid (2.07 - 11.6), oleic acid (3.36 - 9.21) (Owuor, 1990; Shen et al., 2007) , 

nervonic acid (16.5 - 23.3) and tricosanoic acid (15.9 - 20.3) (Ercisli et al., 2008). 

However, using the highly sensitive approaches in this study it was possible to identify and 

quantify 20 to 22 individual fatty acids in either GTL or BTL, respectively. The total SFA 

accounted for 37.8% or 49.9% of the total identified fatty acids in either GTL or BTL, 

respectively, while total MUFA were 13.1% or 13.9% and total PUFA were 49.1% or 

36.1%. Palmitic acid (28.1% or 37.1%), stearic acid (5.39% or 6.94%) and lignoceric acid 

(1.28% or 2.04%) were the greatest for SFA, respectively, whilst oleic acid (7.52% or 

9.69%) and dodecenoic acid (4.13% or 2.83%) were the highest for MUFA. Amongst 

PUFA, α-linolenic acid (25.7% or 11.2%), linoelaidic acid (17.8% or 15.8%), 

eicosatrienoic acid (3.93% or 6.59%) and ɣ-linolenic acid (1.14% or 1.39%) were the 
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greatest, respectively. However, relatively low content of total lipid contents (EE, g/kg 

DM) in either GTL (20.8) or BTL (12.6) means that they could not be considered as a rich 

source of fatty acids for the diet, and that their contribution to fatty acid metabolism in 

ruminats is likely to be pretty low.  

 STL are usually collected as wet materials. It was reported that SGTL, obtained 

from tea beverage companies, were low in DM content, ranging from 190 to 250 g/kg 

sample (Kondo et al., 2004b; Kondo et al., 2006; Xu et al., 2003; Xu et al., 2007), which 

on average was slightly higher than the DM of either SGTL or CSGTL in this study. This 

difference may be due to the variations that might have existed in processing methods, 

temperatures, volumes of water, filtration, storage, and sampling of STL at different 

factories and laboratories. The previous authors have also reported slightly greater CP (276 

- 311 g/kg DM) and lipid contents (57.0 g/kg DM) in their SGTL than the SGTL or 

CSGTL in this study which may be related to higher OM content (970 g/kg DM) of 

material in their study (Xu et al., 2007). Conversely, the SGTL from this study had lower 

NDF but higher ADF contents than SGTL reported by Xu et al. (2007) (410 and 261 g/kg 

DM, respectively) and Kondo et al. (2004b) (439 and 263 g/kg DM, respectively). 

However, the CSGTL in this study had higher ADF and NDF than those reported in both 

previous studies (Kondo et al., 2004b; Xu et al., 2007). Furthermore, previous studies 

reported that (g/kg DM) TP (99.5 - 97.3), TT (89.1 - 85.0) and CT (23.7 - 96.5) values 

(Kondo et al., 2004b; Kondo et al., 2006; Xu et al., 2007) were lower than those of SGTL 

but higher in those of CSGTL of the current study. These differences could be attributed to 

the variation in tea-to-water ratios and other unknown processing methods that were used 

for the processing of tea leaves and extraction of tea drinks in different studies. 

Unfortunately, there are no data available from the previous studies on alkaloid, phenolic, 

and fatty acid constituents in neither SGTL nor SBTL to be compared to those in either 

SGTL or SBTL in the current study.  In the current study, the DM, CP, and fibre fractions 

of SGTL and SBTL were on average lower than those in CSGTL and CSBTL but SGTL 

had higher EE, S, and plant secondary metabolites such as TP, TT, CT, and TS than 

CSGTL. Similarly, SBTL had also greater EE, S, and plant secondary metabolites than 

CSBTL. 

 Along with CP and ash, plant secondary metabolite components such as TP, TT, 

CT, TS, alkaloids, catechins, theaflavins, and rutin were significantly increased as the tea-

to-water ratios were increased which could be linked to the significant decreases in the 

water-holding capacity (WHC) resulting in more nutrient-rich STL. The CP and ash 

contents appeared to be less soluble than secondary metabolites in water since the 
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concentration of these two chemicals were almost unchanged compared with the plant 

secondary metabolites in both SGTL and SBTL.   

 It appeared that the GTL and BTL along with their STL had relatively high protein, 

fibre, plant secondary metabolite and mineral components that can be useful as additives 

for ruminant diets. The information on the use of GTL and BTL as a ruminant feed 

additive is still limited, perhaps due to the competition for their uses for human beings. 

However, the utilization of STL as a potential source of protein and fibre for ruminants has 

been suggested for many years (Jayasuriya et al., 1978; Kondo et al., 2007b; Kondo et al., 

2007a; Kondo et al., 2004b; Kondo et al., 2004a; Kondo et al., 2006; Kondo et al., 2007c; 

Kondo et al., 2004c; Theeraphaksirinont et al., 2009; Xu et al., 2003; Xu et al., 2008; Xu 

et al., 2007). Some authors associated the presence of plant secondary metabolites such as 

tannins in STL as anti-nutrients that could reduce the solubility and rumen degradability of 

most plant protein due to their ability to form un-degradable protein complexes and hence 

reduced rumen NH3 production (Kondo et al., 2007b; Kondo et al., 2007a). However, 

Guglielmelli et al. (2011), Makkar (2003a), McSweeney et al. (2001), Min et al. (2003), 

Mueller-Harvey (2006) argued that these un-degradable protein can be useful as by-pass 

protein along with the non-NH3-N supply to be absorbed in the small intestine of ruminant 

animals. Also, over or fast NH3 production may exceed the ability of microbes to utilize it 

leading to an excessive NH3 supply that after absorption through rumen wall can enter the 

blood stream, liver, and eventually excreted in urine as N waste (Attwood et al., 1998; 

Szumacher-Strabel and Cieślak, 2010). 

 Dietary proteins are important for the growth of rumen microorganisms that are 

then available as microbial protein for their post-rumen utilisation. Along with by-pass 

protein, these microbial proteins are digested and absorbed in the small intestine 

(McDonald et al., 2011) while fibre is useful for ruminants to maintain a desirable rate of 

passage, increased saliva production, and prevent metabolic disorders such as acidosis 

(Galyean and Rivera, 2003; Owens et al., 1998). Plant secondary metabolites can also be 

potentially advantageous for ruminants. Babayemi et al. (2006) estimated that the rumen 

CH4 production from original tea leaves was lower than their STL counterparts, and this 

was related to the presence of higher secondary metabolites in tea leaves than their STL. 

Hu et al. (2005), Mao et al. (2010), and Zhou, et al. (2011) reported that tea saponins 

extract could reduce rumen CH4 production. Ishihara et al., (2001) also reported that green 

tea extract could improve intestinal microflora balance and inhibit digestive and respiratory 

diseases in ruminants. Other studies reported that tannins extract additions into ruminant 

diets from either Leucaena leucephala (Huang et al., 2010), Acacia mearnsii (Grainger et 
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al., 2009), and Lespedeza cuneata (Puchala et al., 2012a; Puchala et al., 2012b) had the 

potential to reduce CH4 production. Similarly, it was reported that the addition of saponin 

extracts from Achyranthus aspara, Tribulus terrestris, Albizia lebbeck (Goel et al., 2012), 

and Gynostemma pentaphyllum (Wang et al., 2011) into diets could decrease CH4 release 

from ruminants. It was also reported that tannin extract from Pistachia lentiscus, Phillyrea 

latifolia (Azaizeh et al., 2013), and Havardia albicans (Galicia-Aguilar et al., 2012) could 

inhibit gastro-intestinal nematodes in ruminants. Botura et al. (2011) reported that saponins 

extract from Agave sisalana waste reduced total parasite egg counts in lamb faeces without 

causing any toxicity as assessed by histological analysis of the liver and kidneys. 

Moreover, tannins supplementation has been reported to improve the quality of ruminant 

products such as meat and milk by increasing the rumenic acid and PUFA but decreasing 

SFA through altered bio-hydrogenation via changed microbial population in the rumen 

(Vasta et al., 2009; Vasta et al., 2010; Wood et al., 2010). In addition, minerals such as Ca, 

K, P, Mg, Mn, Fe, Na, Cu, and Zn which were available in reasonable amounts in tea 

leaves are essential for ruminants and should be provided in the diet to meet their 

requirements for growth and formation of bones and teeth (McDonald et al., 2011; 

Underwood and Suttle, 1999). Other heavy metals, such as Cr, although in minor amounts, 

are also useful as Cr supplementation can have beneficial effect on the performance and 

health of ruminants by altering insulin sensitivity and lipid metabolism (Bernhard et al., 

2012; Mallard et al., 1999). 

 Due to the potential advantageous effect of plant secondary metabolites such as 

tannins and saponins along with CP, mineral, and other soluble nutrients in STL for 

ruminants, tea beverage industries may consider increasing the tea-to-water ratios during 

their tea drink preparation to obtain a concentrated tea drink and consequently nutrient-rich 

STL but less ADF and NDF contents as found in this study. Reducing water during tea 

drink preparation can also be beneficial for tea beverage companies since there will be less 

requirement of space to store tea drink, less energy for heating smaller volumes during 

extraction, and less water containing STL with longer shelf life.  

 It has been reported that feeding STL or other tannin-rich plants have been 

associated with reduced feed intake due to their low palatability (Kondo et al., 2007c; 

Mueller-Harvey, 2006; Po et al., 2012) that may affect animal performance. This obstacle 

can be solved by mixing the STL with other palatable diets in the form of total mixed 

rations. Ensiling can be a preferable option to improve the quality and to preserve the STL 

with its high water content. In ensiled total mixed rations for ruminants, green STL could 

substitute about 5% of soybean meals and alfalfa hay (Kondo et al., 2004c), 10% of 
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soybean meals and soybean hulls (Theeraphaksirinont et al., 2009), 15% of brewer’s grain 

(Xu et al., 2007) and 20% of whole-crop oats (Kondo et al., 2004b) without affecting feed 

intake and animal productivity. 

3.6 Conclusion 

 It can be concluded that GTL and BTL along with their STL and CSTL are good 

sources of protein, fibre, plant secondary metabolites, and minerals for their inclusion in 

ruminant diets. Since the concentration of CP and plant secondary metabolites can be 

enhanced in STL by increasing a tea-to-water ratio during preparation of tea drinks, this 

approach may be adopted by the tea industry to obtain more nutrient-rich STL for their 

later use as feed additives for ruminant animals, providing a market for what is otherwise a 

waste product. Also, by using such increased tea-to-water ratios the tea beverage 

companies can produce less volumes of more concentrated drinks which will require less 

storage and heating and hence less overall cost of tea production. The presence of high 

levels of plant secondary metabolites in original tea leaves and their nutrient-rich STL 

suggests that they may have the potential for their use as natural additives in ruminant 

diets. Further animal trials are needed to test the suitability of tea products for their use to 

formulate nutritious diets to improve not only animal health and vitality but also to produce 

environment friendly ruminant-derived foods. However, in-vitro studies to test the effects 

of adding various levels of GTL and BTL along with their STL and CSTL on 

degradability, fermentation, and gas production profiles would be needed to identify the 

most appropriate type and amount of a tea product for their use to prepare ruminant diets 

for subsequent animal trials. 
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Chapter 4: In-vitro evaluation of green and black teas alongside their spent leaves 

on degradability, fermentation profiles, and total gas production from rice straws 

based ruminant diets 

 

4.1 Introduction 

 Previous experiments in Chapter 3 have characterized chemical components of 

GTL, BTL, and their residues such as SGTL, SBTL CSGTL, and CSBTL. The results have 

shown that these tea leaf products are potentially good sources of protein, minerals, and 

plant secondary metabolites for ruminants. In developing countries such as Indonesia, 

ruminants such as cattle and sheep are mainly fed with forages either with a traditional cut 

and carry or grazing based systems. However, the availability of good quality pasture lands 

is now becoming limited because many have changed into crop production, housing, or 

industries. In this situation, rice straws (RS), a by-product from rice plants, are often the 

only roughages widely available. Unfortunately, RS has poor palatability and nutritional 

values being low in CP and OM but high in fibre, lignin, and silica contents (Eun et al., 

2006; Khan and Chaudhry, 2010; Van Soest, 2006). Many attempts have been tried to 

improve the quality of cereal straws for ruminants by using chemical, biological, or 

physical treatments (for example, Chaudhry, 1998; Van Soest, 2006) but these treatments 

are not always successful in a field application especially at a small-scale farming situation 

(Khan and Chaudhry, 2010; Van Soest, 2006). This situation has encouraged farmers to 

consider a simple alternative to improve the utilization of RS such as concentrate 

supplementation. In Indonesia, there are many feed ingredients that can be used to 

formulate a concentrate mainly from the by-product of agro industries such as cassava 

meals, palm kernel meals, rice brans, tofu meals, coffee husks, chocolate skins, and STL 

which are economically affordable. 

 Large-scale farmers have applied an intensive fattening system especially for their 

livestock at a finishing stage. Here, the diets are formulated in the form of a nutrient-rich 

concentrate to enhance animal growth and performance, and to hit a favourable slaughter 

weight for the market in a shorter period of time. Of course, along with the concentrate, 

roughages including RS are also important as part of the diet for ruminants to enhance 

saliva-buffer production and to slow down the rate of passage in the rumen which can be 

then able to decrease the risk of acidosis which could be more prevalent in concentrate-fed 

animals (Galyean and Rivera, 2003; Owens et al., 1998). Concentrate-based diets are 

typically more digestible and fermented faster in the rumen than fibre so that this high CP 
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and energy diet may be cheaper per unit of available energy than roughages (Bartle et al., 

1994) especially in situations lacking high quality forages. As concentrates are often high 

in CP, their faster fermentation in the rumen may lead to over or fast production of NH3 

that may exceed the ability of microbes to utilize it. This can lead to an excessive NH3 

supply that, after absorption through rumen wall, can go to the blood stream, liver, and 

eventually be excreted in urine as an N waste (Attwood et al., 1998; Szumacher-Strabel 

and Cieślak, 2010). Adding tannin-rich plants into the diet could therefore be helpful to 

bind and protect the plant protein from its rapid degradation in the rumen and make it then 

available as by-pass protein to be digested and absorbed in the small intestine (Bodas et al., 

2012; Makkar, 2003a; McSweeney et al., 2001; Min et al., 2003; Mueller-Harvey, 2006). 

In this case, the results of Chapter 3 have shown the potential of tea leaf products as good 

sources of protein, fibre, and secondary metabolites as promising feed ingredients to 

improve the utilization of RS in the concentrate-based diet. Therefore, the aim of this in-

vitro study was to evaluate the potential use of tea leaf products such as GTL, BTL, SGTL, 

SBTL, CSGTL, and CSBTL as feed additives to beneficially affect degradability, 

fermentation profiles, and total gas production (tGP) in a mixed ruminant diet containing 

RS. 

4.2 Material and methods 

 This study was divided into three separate rumen in-vitro experiments: (1) in-vitro 

evaluation of different tea leaf inclusions in a ruminant diet containing rice straws (RS) on 

degradability and fermentation profiles, (2) in-vitro evaluation of STL inclusions in a 

ruminant diet containing RS on degradability and fermentation profiles, and (3) in-vitro 

evaluation of different tea leaf product inclusions in a ruminant diet containing RS on tGP 

and pH. Diets were formulated from the sheep mixed concentrate (CON), RS, and different 

tea leaf product samples as described in the following sections. 

4.2.1 Experiment 1: in-vitro incubation with GTL and BTL 

 A 7 x 5 factorial arrangement with 6 replicates was applied to examine the effects 

of 7 different tea leaf inclusions in a ruminant diet (Table 4.1) on rumen in-vitro dry matter 

digradability (IVDMD), organic matter degradability (IVOMD), NH3 concentrations, and 

VFA profiles during 5 different incubation times  (0h, 6h, 24h, 48h, and 72h). 
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Table 4.1 The proportions of CON, RS, and different tea leaves in the diets (g/kg DM) for 

in-vitro Experiment 1. 

Diets CON RS GTL BTL 

T0 700 300 0 0 

GTL50 700 250 50 0 

GTL100 700 200 100 0 

GTL200 700 100 200 0 

BTL50 700 250 0 50 

BTL100 700 200 0 100 

BTL200 700 100 0 200 

CON, sheep mixed concentrate; RS, rice straws, GTL, green tea leaves; BTL, black tea 

leaves. 

4.2.2 Experiment 2: in-vitro incubation with SGTL, SBTL, CSGTL, and CSBTL 

 A 13 x 5 factorial arrangement with 3 replicates was applied to examine the effects 

of 13 different STL inclusions into a ruminant diet (Table 4.2) on rumen IVDMD, 

IVOMD, NH3 concentrations, pH, and VFA profiles during 5 different incubation times  

(0h, 6h, 24h, 48h, and 72h). 

 

Table 4.2 The proportions of CON, RS, and different STL in the diets (g/kg DM) for in-

vitro Experiment 2. 

Diets CON RS SGTL/ CSGTL SBTL/ CSBTL 

 T0 700 300 0 0 

SGTL50 700 250 50 0 

SGTL100 700 200 100 0 

SGTL200 700 100 200 0 

SBTL50 700 250 0 50 

SBTL100 700 200 0 100 

SBTL200 700 100 0 200 

CSGTL50 700 250 50 0 

CSGTL100 700 200 100 0 

CSGTL200 700 100 200 0 

CSBTL50 700 250 0 50 

CSBTL100 700 200 0 100 

CSBTL200 700 100 0 200 

CON, sheep mixed concentrate; RS, rice straws; SGTL and SBTL, spent green and black 

tea leaves; CSGTL and CSBTL, company spent green and black tea leaves.  
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4.2.3 Experiment 3: in-vitro incubation with all tea leaf product samples 

 A randomized experimental arrangement with 3 replicates was applied to examine 

the effects of 13 different tea leaf product inclusions into a ruminant diet (Table 4.3) on 

rumen in-vitro tGP and pH over 48h. 

 

Table 4.3 The proportions of CON, RS, and different tea leaf products in the diets (g/kg 

DM) for in-vitro Experiment 3. 

Diets CONC RS GTL/ SGTL/ CSGTL BTL/ SBTL/ CSBTL 

T0 700 300 0 0 

GTL50 700 250 50 0 

GTL100 700 200 100 0 

BTL50 700 250 0 50 

BTL100 700 200 0 100 

SGTL100 700 200 100 0 

SGTL200 700 100 200 0 

SBTL100 700 200 0 100 

SBTL200 700 100 0 200 

CSGTL100 700 200 100 0 

CSGTL200 700 100 200 0 

CSBTL100 700 200 0 100 

CSBTL200 700 100 0 200 

CON, sheep mixed concentrate; RS, rice straws, GTL and BTL, green and black tea leaves; 

SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent 

green and black tea leaves. 

4.2.4 Diet ingredients 

 The same diet mixture, with the exception of tea leaf samples, was used for all 

three incubation experiments. All diet ingredients were ground to pass 1 mm sieve in a 

sample mill (Cyclotec 1093, Tecator, Sweden). The ground samples of GTL and BTL, 

SGTL and SBTL (T1 ratio), and CSGTL and CSBTL used in these in-vitro experiments 

were similar to those utilized in Chapter 3. Meanwhile, the ingredients of CON consisted 

of (g/kg DM) sugar beet pulps (260), soybean meal (220), maize distillers’ grain (150), 

cereal mixtures of barley and wheat (260), molasses (80), and mineral mix (30). This 

concentrate was prepared at Cockle Park farm, Newcastle University in spring 2012 while 

RS (variety IR50) was obtained from Bangladesh in a dried form. The chemical 
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composition for all tea leaf and their STL samples were reported in Chapter 3 whilst the 

chemical composition for the CON and RS can be seen in Table 4.4.  

 

Table 4.4 Chemical composition of the diet ingredients (g/kg DM). 

Feeds DM OM Ash CP EE NDF ADF ADL 

RS  945 818 182 60.4 9.90 787 684 598 

CONC 864 921 78.9 176 56.6 271 144 134 

RS, rice straws; CONC, sheep mixed concentrate. 

4.2.5 Collection of rumen fluid 

 All rumen fluid samples (RF) were collected from a local slaughterhouse (Linden 

Foods, Ltd.) located at Buradon, Newcastle upon Tyne UK. For Experiment 1, RF was 

collected on 23 January 2012 from 3 freshly slaughtered Mule Suffolk lambs that were fed 

a grass-based diet and supplemented with Red Clover silage, bread, and beans for the last 3 

weeks before slaughtering while for Experiment 2, RF was collected on 9 April 2012 from 

4 freshly slaughtered lambs that had been fed grass-based diet throughout their post-

weaning period. Two freshly slaughtered grass-fed lambs (Texel cross) were used as a 

source of RF for Experiment 3 on 19 July 2013. The pre-slaughter history about the 

respective animals was gathered from the respective farmers via the administrative staff of 

the slaughterhouse (see Appendix 4). In addition, the rumen contents from each sheep were 

collected and visually examined as an additional source of confirmation for the feeding 

history of these sheep. Immediately after slaughtering, the rumen was cut and RF was 

directly filtered through two layers of muslin cloth on a large funnel connected to pre-

warmed insulated thermos flasks (Thermos Ltd, UK) until fully filled and closed tightly 

allowing anaerobic conditions to be maintained inside the flasks, and then transported 

directly to the Laboratory for immediate use within 1 hour of collection.   

4.2.6 Buffer solution 

 Each experiment had a similar procedure for preparing buffer solution which was 

prepared based on the synthetic saliva procedure of McDougall (1948). The chemicals in 

Table 4.5 were dissolved in distilled water on a hot magnetic stirring plate (at about 50
o
C). 

Usually, the pH of this solution was 8 or higher so that HCl was added dropwise to reach a 

pH between 7 - 7.5. Before starting the experiment, the solution was then transferred into 

dark bottles, flushed with CO2, screw capped, and kept in a water-bath at 39
o
C ready to be 

mixed with RF as described in the following section: 
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Table 4.5 The ingredients of McDougall buffer solution (McDougall, 1948). 

Ingredients g/L distilled water g/5 L distilled water 

NaHCO3 9.8 49.0 

Na2HPO4. 12 H2O 9.3 46.5 

NaCl 0.47 2.35 

KCl 0.57 2.85 

CaCl2 anhydrous 0.04 0.2 

MgCl2 anhydrous 0.06 0.3 

 

4.2.7 Buffered inoculum 

 Each experiment had the same procedure in preparing each buffered inoculum. 

After returning from the slaughterhouse, RF was mixed, quantified, and transferred quickly 

under two layers of muslin cloth filtration into the pre-warmed dark bottles (2.5 L 

capacity) containing buffer solution at 1:2 ratio (RF:buffer solution) while kept in a water-

bath (39
o
C). The bottles containing buffered RF were purged with CO2 to remove oxygen 

and tightly closed with a dispenser (50 ml capacity, Fisher Scientific UK). The pH of each 

buffered inoculum was adjusted around 7 ± 0.2. 

 4.2.8 In-vitro incubation 

 Experiments 1 and 2 had a similar procedure of in-vitro incubation. About 0.4 g 

each of ground sample was put into 50-ml polypropylene tubes and 40 ml of the buffered 

inoculum dispensed into each tube, purged with CO2 to maintain anaerobic conditions, 

sealed with rubber stoppers fitted with gas pressure release valves, and incubated in a 

temperature controlled water bath (39
o
C). During incubations, each tube was manually 

mixed for few seconds, three times a day (morning, afternoon, and night). The tubes were 

then collected at 0h, 6h, 24h, 48h, and 72h from the water bath and placed into an ice box 

to stop further fermentation. After that, the liquids and residues were separated by 

centrifuging each tube at 2500 rpm for 10 min. The supernatant of each tube was collected 

to determine NH3 and VFA concentrations while residues were dried for IVDMD and 

IVOMD determinations. Samples for NH3 determination were prepared by pipetting 2 ml 

of each supernatant into a capped-container (5 ml capacity) and acidifying them with 2 ml 

of 1 (N) HCl before keeping them in a freezer (-20
o
C). A separate 2 ml sample of each 

supernatant was also pipetted into a capped-container and mixed with 0.5 ml of 

deproteinising solution containing 10 mmol/L of crotonic internal standard solution for 

VFA determination added and kept in a freezer (-20
o
C). 
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4.2.9 Measurements 

4.2.9.1 In-vitro degradability  

 DM was measured by drying the residues in the tubes at 80
o
C while OM was 

measured by collecting these dried residues and transferring them into porcelain crucibles 

for ashing in the furnace at 550
o
C. The calculation for IVDMD and IVOMD of each 

sample was carried out by deducting the weight of DM and OM residues from the initial 

DM and OM weights of the incubated samples. It was expected that the residues from 

buffered inoculum were degraded along with the diet samples during incubation. However, 

only IVDMD and IVOMD values at 0h and 6h were further corrected for the average DM 

and OM weights of the residues from three representative buffered inoculum blanks. 

4.2.9.2 NH3 analysis 

 NH3 was analysed by Pentra 400 (Horriba Ltd, Kyoto, Japan) with calibrated 

standards of NH3-N at 25, 50, and 100 µg/ml in pure distilled water. Sample dilution with 

pure distilled water was applied to keep unknown NH3 concentration within the range of 

the standards.  This NH3 determination is based on a colorimetric method in which a blue-

green colour is formed by the reaction of NH3, sodium salicylate, sodium nitroprusside, 

and sodium hypochlorite in a buffered alkaline solution, pH 12.8 - 13.0. The resulting 

colour due to the NH3-salycylate complexes was tested for absorbance at 660 nm. 

4.2.9.3 VFA analysis 

4.2.9.3.1 Standard preparation 

 Deproteinising solution with 10 mmol/L of crotonic acid internal standard was used 

to preserve the supernatants from inoculum samples for VFA quantification. About 200 g 

of metaphosporic acid (H2PO3) (Fisher Scientific, Loughborough, UK) was dissolved in 

about 800 ml of distilled water in a 1 L volumetric flask and 8.609 g of crotonic acid (98%, 

Acros Organics, New Jersey, USA) added with few drops of acetone to facilitate the 

solubility of organic acids. The solution was mixed thoroughly and made up to the volume 

(1 L) with distilled water to produce crotonic acid at 100 mmol/L. Meanwhile, a stock 

individual VFA standard was prepared by dissolving the amount of individual VFA (see 

Table 4.6) in a 100 ml volumetric flask with distilled water.  
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Table 4.6 Quantification of the individual standard of VFA. 

VFA Amount (g) Concentration (mmol/L) 

Acetate 3.0025 500 

Propionate 1.4816 200 

iso-Butyrate 0.8812 100 

n-Butyrate 0.8812 100 

iso-Valerate 1.0213 100 

n-Valerate 1.0213 100 

Acetic (acid glacial 99.8%), propionic (>98%), and n-Butyric (>99%) were purchased 

from Fisher Scientific (Loughborough, UK) while iso-Butyric (99%), iso-Valeric (99%) 

and n-Valeric (99%) from Sigma-Aldrich (Gillingham, UK). 

 

 Finally, a working VFA standard mixture was obtained by transferring 10 ml of 

each of the individual standard solution into a 100 ml volumetric flask, mixing, and 

making up to the volume with distilled water. This gave a mixture of VFA standard 

solution containing 50, 20, 10, 10, 10, and 10 mmol/L of the above VFA, respectively, 

with 10 mmol/L of crotonic acid as the internal standard. 

4.2.9.3.2 Sample preparation 

 The screw-capped containers containing preserved samples as described in section 

4.2.8 were defrosted overnight and thoroughly mixed before re-centrifuging them at 2500 

rpm for 10 min. About 2 ml of each sample was then transferred into 2 ml GC vial 

(Chromacol, VWR, UK) ready for VFA analysis along with the mixed VFA standard by a 

gas chromatograph (GC). 

4.2.9.3.3 GC analysis  

 A set of GC, Shimadzu GC-2014 (Kyoto, Japan) with a capillary GC column (15m 

x 0.53 mm x 1.20 µm film thickness) (Econo-Cap EC-1000, Altech, Lancashire, UK) and 

an auto injector (Shimadzu, AOC-20i) was connected to Shimadzu GC solution software 

which controlled almost all the operations of this VFA analysis. Purified helium was 

utilized as a carrier gas with a head pressure of approximately 3.4 kPa and a column flow 

of 0.85 ml/min. Peaks were detected by flame ionization detection (FID). A split injection 

system on an auto sampler was used with a split ratio of 34.5:1 and an injector temperature 

of 250
o
C while the detector temperature was 275

o
C. A 1µl sample injection was applied 

when the initial temperature of the column was at 120
o
C. It was then raised at 10

o
C/minute 

to 240
o
C in 12 minutes. The temperature was then decreased at 60

o
C/minute back to 120

o
C 
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in 2 minutes to give a final gradient with the total runtime of 17 minutes as shown in Table 

4.7. The data, including peak areas and chromatograms were extracted from Shimadzu GC 

solution software after the analysis.  

 

Table 4.7 Setting up of the gradient profile on GC. 

Rate (
o
C/minute) Temperature (

o
C) Holding time (minute) 

- 120 - 

10 240 12 

-60 120 2 

Total runtime: 17 minutes 

 

4.2.9.3.4 Calculation  

 The sample peaks were identified by comparing sample VFA with their 

corresponding standards in the VFA mixture, and their concentrations estimated using the 

following calculation: Firstly, the response factor (ResF) for each VFA in the mixture 

standard was calculated with the following formula: 

ResF  
            

            
 

Secondly, the concentration of each VFA in the sample was calculated as follows: 

Concentration of VFA (mmol/L)  
                  

     
 

Here, ResF = response factor; Pa.Cr = peak area of crotonic acid (internal standard) in each 

sample; Pa.VFA = peak area of eachVFA in each sample, and C.Cr = concentration of the 

crotonic acid (mmol/L). Total VFA (tVFA) concentration was calculated as the sum of 

acetate, propionate, iso-butyrate, n-butyrate, iso-valerate, and n-valerate concentrations. 

4.2.9.4 Total gas production  

 About 200 ± 3 mg sample of each sample diet was transferred into a 50 ml glass 

syringe (SAMCO, UK), lubricated  with Vaseline, and  fitted with a 4 way-male-slip 

stopcock (Cole Palmer Instrument, UK) before 20 ml buffered inoculum were added and 

the syringes placed in a shaking water-bath at 39
o
C. Here, tGP in each syringe was 

measured every two hours up to 48h whereas pH of the inoculum was measured at the end 

of 48h incubation by using a calibrated pH meter (Hanna Instrument, Portugal).  
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4.3 Statistical analysis 

 Two-way ANOVA using General Linear Model procedure on Minitab 16 software 

was used to examine the statistical effects of different tea leaf inclusions in diets and 

incubation times alongside their interaction on IVDMD, IVOMD, NH3, VFA profiles, and 

pH. Meanwhile, One-way ANOVA was utilized to analyze the statistical effect of different 

tea leaf inclusions in a diet on tGP at either 24 or 48h of incubation along with their pH. 

Differences were considered significant if P < 0.05. 

4.4 Results 

4.4.1 Degradability, fermentation profiles, and total gas production for GTL and BTL 

4.4.1.1 IVDMD and IVOMD  

 Table 4.8 and Table 4.9 show the effects of GTL and BTL inclusions into a diet at 

0, 50, 100, and 200 g/kg DM on IVDMD and IVOMD at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions and incubation times had significant effects on IVDMD 

and IVOMD but not their interaction. Across incubation times, all GTL inclusions 

significantly increased both IVDMD and IVOMD but no differences between the GTL50, 

GTL100, and GTL200 inclusions on neither IVDMD nor IVOMD. Conversely, all BTL 

inclusions had no significant effect on neither IVDMD nor IVOMD. Moreover, the 

IVDMD and IVOMD of diets were significantly affected by their incubation times. The 

longer the incubation time was the higher IVDMD and IVOMD in all diet samples. 
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Table 4.8 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

IVDMD (g/kg DM) at different incubation times. 

Diets 0 h 6 h 24 h 48 h 72 h Means SEM 

T0 55.4 113 316 422 472 276
b 

4.87 

GTL50 65.7 146 391 433 506 308
a 

5.15 

GTL100 60.5 141 386 451 521 312
a
 5.12 

GTL200 77.1 157 418 471 511 327
a 

5.36 

BTL50 35.9 110 353 413 479 278
b 

5.12 

BTL100 49.3 125 341 407 479 280
b 

5.15 

BTL200 37.1 121 364 407 459 277
b 

5.17 

Means 54.4
E
 130

D 
367

C 
429

B 
489

A 
 P<0.001 

SEM 4.60 4.44 4.24 4.22 4.26 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

 

Table 4.9 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

IVOMD (g/kg DM) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 142 207 432 514 550 369
b 

4.60 

GTL50 157 257 480 526 584 401
a 

4.66 

GTL100 151 263 474 542 594 405
a 

4.66 

GTL200 139 280 496 562 587 413
a 

4.98 

BTL50 106 234 445 505 561 370
b 

4.76 

BTL100 125 253 424 502 554 372
b 

4.78 

BTL200 117 248 455 500 541 372
b 

4.85 

Means 134
E 

249
D 

458
C 

522
B 

567
A 

 P<0.001 

SEM 4.20 4.05 3.96 3.94 3.94 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.2 NH3 concentrations 

 Table 4.10 shows the effects of GTL and BTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on NH3 concentrations (mg/L) in the inoculum at 0h, 6h, 24h, 48h, and 
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72h of incubations. Different inclusions, incubation times, and their interaction had 

significant effects on NH3 concentrations. Most GTL or BTL inclusions, averaged over all 

the incubation times, significantly decreased NH3 concentrations except the BTL50 

inclusion which being similar to the T0 diet. The GTL200 inclusion had the lowest NH3 

concentration than other inclusions. Across the inclusions, the NH3 concentrations were 

increased as the incubation times increased from 0h to 72h with a peak concentration at 

24h. There was no difference between 0h and 6h, and between 48h and 72h on NH3 

concentrations. 

 

Table 4.10 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

NH3 concentrations (mg/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 73.4
hijk 

98.5
f 

172
a 

147
bcde 

140
bcde 

126
a 

1.61 

GTL50 72.1
hijk 

82.2
fghij 

156
abc 

130
de 

134
cde 

115
b 

1.95 

GTL100 58.5
jk 

61.1
jk 

126
e 

128
e 

128
e 

100
c 

1.99 

GTL200 56.5
kl 

34.4
l 

95.1
fgh 

98.6
f 

96.8
fg 

76.3
d 

1.95 

BTL50 80.3
fghijk 

87.9
fghi 

161
ab 

146
bcde 

154
abcd 

126
a 

2.03 

BTL100 74.1
ghijk 

74.8
fghijk 

155
abc 

142
bcde 

140
bcde 

117
b 

1.99 

BTL200 68.3
ijk 

64.4
ijk 

141
bcde 

135
cde 

137
bcde 

109
b 

1.99 

Means 69.0
C 

71.9
C 

144
A 

132
B 

133
B 

 P<0.001 

SEM 1.63 1.68 1.62 1.61 1.63 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (Italic small 

letters) are significantly different; SEM, standard error of mean; GTL and BTL, green and 

black tea leaves. 

4.4.1.3 VFA profiles 

 Figure 4.1 presents the typical chromatogram pictures of VFA mixed standard 

(above) and an example chromatogram of sample inoculum from GTL100 at 24h (below). 

The peaks are (1) Acetate, (2) propionate, (3) iso-butyrate, (4) n-butyrate, (5) iso-valerate, 

(6) n-valerate, (7) crotonic acid internal standard. 

 

 

 

 



118 

 

 

Figure 4.1 Typical chromatogram pictures of VFA mixed standard (above) and an example 

chromatogram of sample inoculum from GTL100 at 24h (below). 
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4.4.1.3.1 Total VFA 

 Table 4.11 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on tVFA concentrations (mmol/L) in the inoculum at 0h, 6h, 

24h, 48h, and 72h of incubations. Different inclusions and incubation times had significant 

effects on tVFA concentrations but not their interaction. Most GTL and BTL inclusions, 

averaged over all the incubation times, had no significant effects on tVFA concentrations 

except the GTL200 inclusion had significantly greater tVFA concentrations than BTL200 

inclusion. Across the inclusions, the tVFA concentrations were significantly increased as 

the incubation times increased from 0h to 72h.  

 

Table 4.11 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

tVFA concentrations (mmol/L) at different incubation times. 

Diets        0h      6h     24h     48h     72h Means SEM 

T0 20.1 38.2 53.6 62.5 64.8 47.8
ab 

0.54 

GTL50 20.2 39.1 54.3 61.5 64.6 47.9
ab 

0.64 

GTL100 19.9 37.8 54.8 60.9 64.1 47.5
ab 

0.66 

GTL200 20.3 39.1 56.9 62.9 65.3 48.9
a 

0.66 

BTL50 20.3 38.1 51.5 59.6 61.9 46.3
ab 

0.66 

BTL100 20.3 38.4 54.7 59.0 61.6 46.8
ab 

0.63 

BTL200 20.5 37.6 52.3 58.6 59.7 45.8
b 

0.66 

Means 20.2
E 

38.3
D 

54.0
C 

60.7
B 

63.1
A 

 P<0.05 

SEM 0.55 0.55 0.53 0.53 0.54 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.2 Acetate 

 Table 4.12 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on acetate concentrations (mmol/L) in the inoculum at 0h, 6h, 

24h, 48h, and 72h of incubations. Different inclusions and incubation times had significant 

effects on acetate concentrations but not their interaction. The GTL200 inclusion, averaged 

over the incubation times, had significantly higher acetate concentration than the T0 diet 

but other inclusions were not different from the T0 diet. Although the GTL50 and GTL100 

inclusions had a similar acetate concentration to that seen at the T0 diet, these two diets 

were not, on average, difference from the GTL200 inclusion. Across the inclusions, the 
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acetate concentrations were significantly increased as the incubation times increased from 

0h to 72h. 

 

Table 4.12 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

acetate concentrations (mmol/L) at different incubation times. 

Diets      0h      6h     24h     48h     72h    Means SEM 

T0 12.4 22.1 30.2 34.5 36.4 27.1
b 

0.23 

GTL50 12.2 22.9 30.9 34.7 36.7 27.5
ab 

0.28 

GTL100 12.2 22.3 31.6 34.8 37.2 27.6
ab 

0.29 

GTL200 12.2 23.1 33.2 36.4 37.3 28.4
a 

0.29 

BTL50 12.5 22.2 29.3 33.7 35.4 26.6
b 

0.29 

BTL100 12.4 22.3 31.3 33.5 34.7 26.8
b 

0.28 

BTL200 12.5 22.1 30.4 34.0 36.0 27.0
b 

0.28 

Means 12.3
E 

22.4
D 

31.0
C 

34.5
B 

36.2
A 

 P<0.001 

SEM 0.24 0.24 0.23 0.23 0.23 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.3 Propionate 

 Table 4.13 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on propionate concentrations (mmol/L) in the inoculum at 0h, 

6h, 24h, 48h, and 72h of incubations. Different inclusions had no significant effect while 

different incubation times had significant effects and their interaction had no significant 

effect on propionate concentrations. Across the inclusions, propionate concentrations were 

increased as the incubation times increased from 0h to 72h but there was no significant 

difference between 48h and 72h in propionate concentrations.  
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Table 4.13 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

propionate concentrations (mmol/L) at different incubation times. 

Diets         0h      6h     24h      48h      72h    Means SEM 

T0 4.14 9.39 12.6 14.7 14.9 11.1 0.16 

GTL50 4.23 9.58 12.9 14.3 14.8 11.2 0.20 

GTL100 4.10 9.28 13.1 14.3 14.6 11.1 0.20 

GTL200 4.25 9.57 13.1 14.1 14.5 11.1 0.20 

BTL50 4.14 9.44 12.5 14.3 14.5 11.0 0.20 

BTL100 4.21 9.67 12.8 13.7 14.3 10.9 0.19 

BTL200 4.28 9.39 12.3 13.7 13.6 10.7 0.20 

Means 4.19
D 

9.47
C 

12.7
B 

14.2
A 

14.4
A 

 P>0.05 

SEM 0.17 0.17 0.16 0.16 0.16 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.4 iso-Butyrate 

 Table 4.14 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on iso-butyrate concentrations (mmol/L) in the inoculum at 0h, 

6h, 24h, 48h, and 72h of incubations. Different inclusions and incubations times had 

significant effects on iso-butyrate concentrations but not their interaction. All GTL and 

BTL inclusions did not significantly affect the iso-butyrate concentration except being 

significantly lower for the BTL200 inclusion compared with the T0 diet. Across the 

inclusions, the iso-butyrate concentrations were significantly increased as the incubation 

times increased from 0h to 72h. 
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Table 4.14 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

iso-butyrate concentrations (mmol/L) at different incubation times. 

 Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.36 0.52 0.88 1.20 1.27 0.85
a 

0.01 

GTL50 0.37 0.50 0.87 1.15 1.27 0.83
a 

0.02 

GTL100 0.36 0.48 0.86 1.09 1.20 0.80
ab 

0.02 

GTL200 0.37 0.49 0.86 1.13 1.29 0.83
a 

0.02 

BTL50 0.37 0.50 0.82 1.06 1.19 0.79
ab 

0.02 

BTL100 0.36 0.51 0.86 1.05 1.22 0.80
ab 

0.02 

BTL200 0.37 0.48 0.77 0.97 1.12 0.74
b 

0.02 

Means 0.37
E 

0.50
D 

0.84
C 

1.09
B 

1.22
A 

 P<0.001 

SEM 0.01 0.01 0.01 0.01 0.01 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.5 n-Butyrate 

 Table 4.15 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on n-butyrate concentrations in the inoculum at 0h, 6h, 24h, 

48h, and 72h of incubations. Different inclusions had no significant effect while different 

incubation times had significant effects and their interaction had no significant effect on n-

butyrate concentrations. Across the inclusions, n-butyrate concentrations were increased as 

the incubation times increased from 0h to 72h with no significant difference between 48h 

and 72h. 
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Table 4.15 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

n-butyrate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 2.39 4.83 7.08 8.34 8.29 6.19 0.16 

GTL50 2.46 4.79 6.98 7.82 7.95 6.00 0.20 

GTL100 2.42 4.46 6.76 7.48 7.45 5.71 0.20 

GTL200 2.51 4.73 7.18 7.85 8.25 6.10 0.20 

BTL50 2.41 4.59 6.45 7.37 7.34 5.63 0.20 

BTL100 2.42 4.63 7.15 7.49 7.77 5.89 0.19 

BTL200 2.48 4.40 6.56 7.08 6.78 5.46 0.20 

Means 2.44
D 

4.63
C 

6.88
B 

7.63
A 

7.69
A 

 P>0.05 

SEM 0.17 0.17 0.16 0.16 0.16 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.6 iso-Valerate 

 Table 4.16 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on iso-valerate concentrations (mmol/L) in the inoculum at 0h, 

6h, 24h, 48h, and 72h of incubations. Different inclusions and incubation times had 

significant effects on iso-valerate concentrations but not their interaction. The GTL100 and 

all BTL inclusions, averaged over all the incubation times, significantly decreased iso-

valerate concentrations compared with the T0 diet. There were mostly no significant 

differences among all GTL and BTL inclusions on iso-valerate concentration except being 

the lowest for the BTL200 inclusion than the T0 diet. Across the inclusions, the iso-

valerate concentrations were significantly increased as the incubation time increased from 

0h to 72h. 
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Table 4.16 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

iso-valerate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.55 0.84 1.60 2.21 2.46 1.53
a 

0.03 

GTL50 0.57 0.78 1.54 2.11 2.35 1.47
ab 

0.03 

GTL100 0.56 0.75 1.45 1.96 2.18 1.38
bc 

0.03 

GTL200 0.58 0.75 1.47 2.03 2.44 1.45
ab 

0.03 

BTL50 0.59 0.78 1.41 1.90 2.15 1.37
b 

0.03 

BTL100 0.55 0.75 1.51 1.95 2.28 1.41
b 

0.03 

BTL200 0.56 0.72 1.29 1.71 2.04 1.26
c 

0.03 

Means 0.56
E 

0.77
D 

1.47
C 

2.00
B 

2.27
A 

 P<0.001 

SEM 0.03 0.03 0.02 0.03 0.03 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.3.7 n-Valerate 

 Table 4.17 shows the effects of GTL and BTL inclusions into a diet at doses of 0, 

50, 100, and 200 g/kg DM on n-valerate concentrations (mmol/L) in the inoculum at 0h, 

6h, 24h, 48h, and 72h of incubations. Different inclusions and incubation times had 

significant effects on n-valerate concentrations but not their interaction. Most GTL or BTL 

inclusions, averaged over all the incubation rimes, had no significant effect on n-valerate 

concentration except being significantly lower for the BTL200 inclusion than the T0 diet. 

Across the inclusions, the n-valerate concentrations were increased as the incubation times 

increased from 0h to 72h with not significant difference between 48h and 72h. 
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Table 4.17 Effect of GTL or BTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on 

n-valerate concentrations (mmol/L) at different incubation times. 

Diets        0       6      24      48      72 Means SEM 

T0 0.29 0.57 1.14 1.50 1.52 1.00
a 

0.03 

GTL50 0.31 0.55 1.11 1.42 1.46 0.97
ab 

0.03 

GTL100 0.30 0.50 1.07 1.35 1.39 0.92
ab 

0.03 

GTL200 0.33 0.52 1.11 1.39 1.53 0.98
ab 

0.03 

BTL50 0.29 0.55 1.02 1.31 1.36 0.91
ab 

0.03 

BTL100 0.29 0.56 1.07 1.32 1.41 0.93
ab 

0.03 

BTL200 0.30 0.54 0.95 1.17 1.28 0.85
b 

0.03 

Means 0.30
D 

0.54
C 

1.07
B 

1.35
A 

1.42
A 

 P<0.05 

SEM 0.03 0.03 0.03 0.03 0.03 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) are significantly different; SEM, standard 

error of mean; GTL and BTL, green and black tea leaves. 

4.4.1.4 Total gas production and pH  

 Table 4.18 presents the effects of different GTL and BTL inclusions into a diet at 

doses of 0, 50, and 100 g/kg DM on total gas production (tGP) for up to 48h of incubation.  

Based on the incubation times, the most significant increase in tGP (L/kg OM) was within 

24h, particularly from 6h (24.4 - 28.2) to 20h (131 - 137). After that, tGP tended to rise 

slowly reaching between 185 and 192 at 48h. All SGTL and SBTL inclusions, especially 

the GTL100 inclusion, tended to have higher tGP at either 24h or 48h although they were 

not significantly different to the T0 diet. All SGTL or SBTL inclusions had also no 

significant effect on pH after 48h incubation.  
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Table 4.18 Effect of GTL or BTL inclusions at 0, 50, and 100 g/kg DM of the diets on tGP (L/kg OM) at different incubation times and the 

pH at 48h. 

Diets 0h 2h 4h 6h 20h 22h 24h 26h 28h 30h 44h 46h 48h pH 

T0 0 2.79 17.5 24.4 131 141 145 152 155 159 181 184 185 6.74 

GTL50 0 2.74 16.5 26.5 134 136 148 154 156 161 181 185 187 6.75 

GTL100 0 4.55 16.4 26.4 134 137 154 159 164 168 187 190 192 6.73 

BTL50 0 3.63 16.4 28.2 137 138 153 157 160 164 184 187 188 6.74 

BTL100 0 3.66 16.4 25.6 132 136 149 156 162 165 183 186 187 6.75 

SEM       3.73      4.15 0.58 

P value       P>0.05      P>0.05 P>0.05 

Means without letters in the same column are not significantly different (P>0.05); SEM, standard error of mean; GTL and BTL, green and 

black tea leaves. 
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4.4.2 Degradability, fermentation profiles, and total gas production for SGTL and 

SBTL 

4.4.2.1 IVDMD and IVOMD  

 Table 4.19 and Table 4.20 show the effects of SGTL or SBTL inclusions into a diet 

at 0, 50, 100, and 200 g/kg DM on IVDMD and IVOMD at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions, incubation times, and their interaction had significant 

effects on both IVDMD and IVOMD. All SGTL or SBTL inclusions, averaged over all the 

incubation times, significantly increased both IVDMD and IVOMD compared with the T0 

diet. The SGTL200 and SBTL100 inclusions had the highest IVDMD but were not 

significantly different from the SGTL50, SGTL100 and SBTL200 inclusions. The SBTL50 

had the greatest IVOMD but this was not significantly different to the SGTL200 and 

SBTL100 inclusions. Across the inclusions, both IVDMD and IVOMD were increased as 

the incubation times increased from 0h to 72h except being similar between 0h and 6h for 

IVDMD. 

 

Table 4.19 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on IVDMD (g/kg DM) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0    25.6
j 

37.4
ij 

224
h 

447
cde 

544
ab 

256
c 

5.79 

SGTL50  53.5
ij 

49.2
ij 

410
ef 

497
bcd 

566
ab 

315
ab 

5.79 

SGTL100 74.7
ij 

106
i 

307
g 

443
cdef 

577
a 

302
ab 

5.52 

SGTL200 65.1
ij 

67.6
ij 

419
ef 

454
cde 

583
a 

318
a 

5.79 

SBTL50  54.3
ij 

65.6
ij 

375
efg 

406
ef 

556
ab 

291
b 

6.05 

SBTL100 59.8
ij 

46.7
ij 

414
ef 

505
bc 

575
a 

320
a 

5.79 

SBTL200 59.1
ij 

70.2
ij 

377
f 

424
def 

561
ab 

298
ab 

5.70 

Means 56.0
D 

63.2
D 

353
C 

454
B 

566
A 

 P<0.001 

SEM 4.67 5.14 4.99 4.99 4.67 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves.  
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Table 4.20 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on IVOMD (g/kg DM) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0    137
m 

209
ijk 

341
h 

587
bcd 

669
a 

389
d 

4.86 

SGTL50  146
lm 

236
i 

530
def 

622
abc 

672
a 

441
a 

4.86 

SGTL100 162
jklm 

247
i 

449
g 

546
def 

667
a 

414
bc 

5.09 

SGTL200 144
klm 

220
ij 

538
def 

544
def 

659
a 

421
abc 

5.32 

SBTL50  157
klm 

145
klm 

531
def 

565
cde 

667
a 

413
bc 

5.32 

SBTL100 154
klm 

206
ijkl 

525
ef 

616
abc 

670
a 

434
ab 

4.86 

SBTL200 167
jklm 

186
ijklm 

502
fg 

517
efg 

637
ab 

402
c 

5.09 

Means 152
E 

207
D 

488
C 

571
B 

663
A 

 P<0.001 

SEM 4.25 4.25 4.52 4.39 4.10 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves.   

4.4.2.2 NH3 concentrations 

 Table 4.21 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on NH3 concentrations (mg/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions, incubation times, and their interaction had significant 

effects on NH3 concentrations. All SGTL and SBTL inclusions, averaged over all the 

incubation times, significantly decreased NH3 concentrations compared with the T0 diet 

with the SGTL200 inclusion being the lowest. Across the inclusions, the NH3 

concentrations were increased as the incubation times increased from 0h to 72h with not 

significantly difference between 48h and 72h. 
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Table 4.21 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on NH3 concentrations (mg/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0    45.5
gh 

80.1
cdefg 

184
ab 

200
a 

206
a 

143
a 

2.74 

SGTL50  47.7
fgh 

82.2
cdef 

112
c 

190
ab 

188
ab 

124
bc 

2.74 

SGTL100 47.5
gh 

63.7
defgh 

103
c 

173
ab 

186
ab 

115
c 

2.74 

SGTL200 42.2
h 

51.9
efgh 

89.4
cde 

158
b 

158
b 

99.9
d 

2.87 

SBTL50  51.4
efgh 

90.8
cd 

112
c 

194
a 

199
a 

129
b 

2.74 

SBTL100 40.8
h 

67.9
defgh 

113
c 

179
ab 

194
a 

119
bc 

2.74 

SBTL200 40.8
h 

64.9
defgh 

101
cd 

173
ab 

192
ab 

114
c 

2.87 

Means  45.1
D 

71.6
C 

116
B 

181
A 

189
A 

 P<0.001 

SEM 2.32 3.32 2.48 2.32 2.32 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves.    

4.4.2.3 VFA profiles 

4.4.2.3.1. Total VFA  

 Table 4.22 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on tVFA concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions, incubation times, and their interaction had significant 

effects on tVFA concentrations. All SGTL and SBTL inclusions, averaged over all the 

incubation times, had similar tVFA concentrations to the T0 diet. There were mostly no 

significance differences among the SGTL and SBTL inclusions on tVFA concentrations 

except being significantly higher for the SGTL200 inclusion compared with other 

inclusions. Across the inclusions, the tVFA concentrations were significantly increased as 

the incubation times increased from 0h to 72h, reaching a peak at 48h. 
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Table 4.22 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of diets on 

tVFA concentrations (mmol/L) at different incubation times. 

 Diets 0h 6h 24h 48h 72h Means SEM 

T0 10.3
j 

20.9
i 

43.0
abcd 

42.5
abcde 

42.1
abcde 

31.7
ab 

0.45 

SGTL50 10.1
j 

22.0
i 

34.8
gh 

42.0
abcde 

40.3
bcdefg 

29.8
b 

0.45 

SGTL100 10.3
j 

21.5
i 

35.0
gh 

47.6
a 

38.5
cdefgh 

30.6
b 

0.45 

SGTL200 9.85
j 

22.5
i 

40.7
bcdef 

45.8
ab 

44.1
abc 

32.6
a 

0.45 

SBTL50 9.65
j 

22.6
i 

35.1
fgh 

42.0
abcde 

41.4
bcde 

30.2
b 

0.45 

SBTL100 10.3
j 

21.0
i 

34.2
h 

43.6
abc 

42.2
abcde 

30.3
b 

0.44 

SBTL200 9.70
j 

21.1
i 

37.1
efgh 

44.2
ab 

37.3
defgh 

29.9
b 

0.45 

Means 10.0
E 

21.7
D 

37.1
C 

44.0
A 

40.8
B 

 P<0.001 

SEM 0.38 0.38 0.37 0.38 0.38 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves. 

4.4.2.3.2 Acetate 

 Table 4.23 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on acetate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72 h of 

incubations. Different inclusions, incubation times, and their interaction had significant 

effects on acetate concentrations. The SGTL50, BSTL100, and SBTL200 inclusions, 

averaged over all the incubation times, significantly decreased acetate concentrations but 

the SGTL100, SGTL200, and SBTL50 inclusions had no significant effect on acetate 

concentrations compared with the T0 diet. Across the inclusions, the acetate concentrations 

were significantly increased as the incubation time increased from 0h to 72h, reaching a 

peak at 48h 
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Table 4.23 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on acetate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 6.44
i 

13.7
h 

29.1
bcde 

30.1
abcd 

30.6
abcd 

22.0
ab 

0.34 

SGTL50 6.27
i 

14.0
h 

23.3
g 

28.9
bcde 

28.9
bcde 

20.3
c 

0.34 

SGTL100 6.12
i 

13.8
h 

24.4
fg 

34.0
a 

28.3
cdef 

21.3
abc 

0.34 

SGTL200 5.94
i 

14.6
h 

26.7
defg 

32.9
ab 

31.4
abc 

22.3
a 

0.34 

SBTL50 5.80
i 

14.3
h 

24.4
fg 

29.7
bcd 

29.7
bcd 

20.8
bc 

0.34 

SBTL100 6.04
i 

13.2
h 

23.6
g 

29.6
bcd 

30.0
abcd 

20.5
c 

0.33 

SBTL200 5.75
i 

13.0
h 

24.9
efg 

31.4
abc 

26.9
defg 

20.4
c 

0.34 

Means 6.05
E 

13.8
D 

25.2
C 

30.9
A 

29.4
B 

 P<0.001 

SEM 0.29 0.29 0.29 0.29 0.29 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves. 

4.4.2.3.3 Propionate 

 Table 4.24 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on propionate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect while different incubation times 

had significant effects and their interaction had no significant effect on propionate 

concentrations. Across the inclusions, the propionate concentrations were significantly 

increased as the incubation time increased from 0h to 72h, reaching a peak at 48h. 
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Table 4.24 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on propionate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 1.99 4.64 8.62 8.22 7.58 6.21 0.19 

SGTL50 1.97 4.88 7.79 8.44 7.29 6.07 0.19 

SGTL100 2.04 4.96 7.42 8.57 6.91 5.98 0.19 

SGTL200 1.94 5.08 8.20 8.27 7.78 6.25 0.19 

SBTL50 1.89 5.06 8.03 8.11 7.77 6.17 0.19 

SBTL100 2.07 4.97 7.30 8.95 8.08 6.27 0.18 

SBTL200 1.93 5.07 7.93 8.21 6.65 5.96 0.19 

Means 1.98
D 

4.95
C 

7.87
AB 

8.40
A 

7.44
B 

 P>0.05 

SEM 0.16 0.16 0.16 0.16 0.16 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; SGTL and SBTL, spent green and black tea 

leaves. 

4.4.2.3.4 iso-Butyrate 

 Table 4.25 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on iso-butyrate concentrations (mmol/L) in the inoculum at 0h, 6h, 24h, 

48h, and 72h of incubations. Different inclusions had no significant effect while different 

incubation times had significant effects and their interaction had no significant effect on 

iso-butyrate concentrations. Across the inclusions, the iso-butyrate concentrations were 

significantly increased as the incubation time increased from 0h to 72h. 
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Table 4.25 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on iso-butyrate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.32 0.33 0.68 0.49 0.57 0.48 0.03 

SGTL50 0.34 0.42 0.44 0.59 0.68 0.49 0.03 

SGTL100 0.37 0.37 0.36 0.61 0.71 0.49 0.03 

SGTL200 0.36 0.38 0.55 0.56 0.64 0.50 0.03 

SBTL50 0.36 0.44 0.50 0.52 0.66 0.50 0.03 

SBTL100 0.37 0.38 0.38 0.64 0.49 0.45 0.03 

SBTL200 0.37 0.42 0.54 0.59 0.73 0.53 0.03 

Means 0.36
D 

0.39
CD 

0.49
BC 

0.57
AB 

0.64
A 

 P>0.05 

SEM 0.03 0.03 0.03 0.03 0.03 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; SGTL and SBTL, spent green and black tea 

leaves. 

4.4.2.3.5 n-Butyrate 

 Table 4.26 shows the effects of SGTL or SBTL inclusions into diets at 0, 50, 100, 

and 200 g/kg DM on n-butyrate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect while different incubation times 

had significant effects and their interaction had no significant effect on n-butyrate 

concentrations. Across the inclusions, the n-butyrate concentrations were significantly 

increased as the incubation time increased from 0h to 72h with a peak concentration at 48h. 
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Table 4.26 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on n-butyrate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.95 1.56 3.19 2.63 2.36 2.13 0.09 

SGTL50 0.94 1.83 2.37 2.84 2.38 2.07 0.09 

SGTL100 1.02 1.67 2.13 3.13 2.25 2.04 0.09 

SGTL200 0.96 1.75 2.80 2.90 2.55 2.19 0.09 

SBTL50 0.94 1.90 2.51 2.61 2.37 2.07 0.09 

SBTL100 1.04 1.73 2.17 3.09 2.58 2.12 0.09 

SBTL200 0.96 1.82 2.69 2.89 2.15 2.10 0.09 

Means 0.97
D 

1.75
C 

2.55
B 

2.87
A 

2.37
B 

 P>0.05 

SEM 0.08 0.08 0.08 0.08 0.08 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; SGTL and SBTL, spent green and black tea 

leaves. 

4.4.2.3.6 iso-Valerate 

 Table 4.27 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on iso-valerate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect while different incubation times 

had significant effects and their interaction had no significant effect on iso-valerate 

concentrations. Across the inclusions, the iso-valerate concentrations were significantly 

increased as the incubation time increased from 0h to 72h with a peak concentration at 48h. 
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Table 4.27 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on iso-valerate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.44 0.41 0.92 0.65 0.59 0.60 0.05 

SGTL50 0.47 0.56 0.52 0.79 0.61 0.59 0.05 

SGTL100 0.54 0.46 0.42 0.84 0.60 0.57 0.05 

SGTL200 0.50 0.48 0.74 0.74 0.63 0.62 0.05 

SBTL50 0.52 0.58 0.62 0.67 0.58 0.59 0.05 

SBTL100 0.56 0.48 0.42 0.88 0.66 0.60 0.04 

SBTL200 0.53 0.55 0.67 0.74 0.51 0.60 0.05 

Means 0.51
B 

0.50
B 

0.62
AB 

0.76
A 

0.59
B 

 P>0.05 

SEM 0.04 0.04 0.04 0.04 0.04 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; SGTL and SBTL, spent green and black tea 

leaves. 

4.4.2.3.7 n-Valerate 

 Table 4.28 shows the effects of SGTL or SBTL inclusions into a diet at 0, 50, 100, 

and 200 g/kg DM on n-valerate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect while different incubation times 

had significant effects and their interaction had no significant effect on n-valerate 

concentrations. Across the inclusions, the n-valerate concentrations were increased as the 

incubation time increased from 0 to 72h with a peak concentration at 48h although there 

was no significant difference in n-valerate concentrations between 24h and 72h. 
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Table 4.28 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on n-valerate concentrations (mmol/L) at different incubation times. 

 Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.14 0.26 0.53 0.41 0.37 0.34 0.02 

SGTL50 0.13 0.30 0.35 0.48 0.39 0.33 0.02 

SGTL100 0.16 0.26 0.30 0.49 0.37 0.32 0.02 

SGTL200 0.15 0.28 0.41 0.46 0.39 0.34 0.02 

SBTL50 0.15 0.34 0.38 0.41 0.39 0.33 0.02 

SBTL100 0.18 0.29 0.29 0.49 0.41 0.33 0.02 

SBTL200 0.15 0.29 0.37 0.44 0.33 0.32 0.02 

Means 0.15
D 

0.29
C 

0.37
B 

0.46
A 

0.38
B 

0.33 P>0.05 

SEM 0.02 0.02 0.02 0.02 0.02 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; SGTL and SBTL, spent green and black tea 

leaves. 

4.4.2.4 pH and total gas production  

 Table 4.29 shows the effects of SGTL or SBTL inclusions into diets at 0, 50, 100, 

and 200 g/kg DM on pH levels at 0h, 6h, 24h, 48h, and 72h of incubations. Different 

inclusions, incubation times, and their interaction had significant effects on pH levels. The 

SGTL100 and SGTL200 inclusions, averaged over all the incubation times, had 

significantly lower pH but the SGTL and SBTL inclusions had a similar pH level to the T0 

diet. The SGTL200 inclusion had the lowest pH in comparison with the other inclusions. 

Across the inclusions, the pH levels were significantly decreased as the incubation times 

increased from 0h to 72h with the lowest pH at 24h. In addition, there was no difference 

among the inclusions on pH even though the SGTL inclusions tended to have lower pH 

than the SBTL inclusions. 

 Table 4.30 presents the effects of different SGTL or SBTL inclusions into a diet at 

0, 100, and 200 g/kg DM on tGP (L/kg OM) for up to 48h of incubation. Based on the 

incubation times, the most significant increase in tGP was within the first 24h, particularly 

from 6h (21.4 - 27.3) to 20h (131 - 148). After that, tGP tended to rise more slowly 

reaching between 185 and 193 at 48h. At 24h, all SGTL inclusions had significantly higher 

tGP than the T0 diet but not for All SBTL inclusions which being not significantly 

different to the T0 diet. A similar trend was also found at 48h although they were not 
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significantly different from the T0 diet for all the inclusions. Generally, the SGTL 

inclusions seemed to result in higher tGP than the SBTL inclusions.  

 

Table 4.29 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets 

on pH at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 7.01
a 

6.71
bc 

6.59
hijk 

6.61
ghijk 

6.62
efghi 

6.71
abc 

0.004 

SGTL50 7.00
a 

6.72
b 

6.60
ghijk 

6.61
ghij 

6.63
efgh 

6.71
ab 

0.004 

SGTL100 7.02
a 

6.68
bcd 

6.57
ijk 

6.59
hijk 

6.62
efghi 

6.70
c 

0.004 

SGTL200 7.02
a 

6.66
def 

6.56
k 

6.58
ijk 

6.58
ijk 

6.68
d 

0.004 

SBTL50 7.01
a 

6.72
b 

6.62
efghi 

6.60
hijk 

6.66
cde 

6.72
a 

0.004 

SBTL100 7.00
a 

6.69
bcd 

6.60
hijk 

6.60
hijk 

6.61
fghij 

6.70
bc 

0.004 

SBTL200 7.03
a 

6.67
cde 

6.57
jk 

6.59
hijk 

6.65
defg 

6.70
bc 

0.004 

Means 7.01
A 

6.69
B 

6.59
D 

6.60
D 

6.62
C 

 P<0.001 

SEM 0.003 0.003 0.003 0.003 0.003 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves. 
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Table 4.30 Effect of SGTL or SBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on tGP (L/kg OM) at different incubation times 

and the pH at 48h. 

Diets 0h 2h 4h 6h 20h 22h 24h 26h 28h 30h 44h 46h 48h pH 

T0 0 2.79 17.5 24.4 131 141 145
b 152 155 159 181 184 185 6.79 

SGTL100 0 2.73 13.7 27.3 148 159 163
a 166 169 172 190 192 193 6.78 

SGTL200 0 3.57 14.3 21.4 134 151 157
a 159 164 169 184 188 188 6.77 

SBTL100 0 3.62 12.7 27.2 136 144 151
ab 155 161 164 180 184 185 6.81 

SBTL200 0 3.59 16.1 24.2 138 151 154
ab 162 165 169 182 186 187 6.82 

SEM       2.73      3.54 0.05 

P value       P<0.05      P>0.05 P>0.05 

Means with different letters in the same column are significantly different; SEM, standard error of mean; SGTL and SBTL, spent green and 

black tea leaves. 
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4.4.3 Degradability, fermentation profiles, and total gas production for CSGTL and 

CSBTL 

4.4.3.1 IVDMD and IVOMD  

 Table 4.31 and Table 4.32 show the effects of CSGTL or CSBTL inclusions into  a 

diet at 0, 50, 100, and 200 g/kg DM on IVDMD and IVOMD at 0h, 6h, 24h, 48h, and 72h 

of incubations. Different inclusions, incubation times, and their interaction had significant 

effects on both IVDMD and IVOMD. The CSGTL100, CSGTL200, and CSBTL100 

inclusions, averaged over all the incubation times, had significantly greater IVDMD and 

IVOMD compared with the T0 diet but the CSGTL50, CSBTL50, and CSBTL200 

inclusions had similar IVDMD and IVOMD to the T0 diet. Across the inclusions, both 

IVDMD and IVOMD were increased as the incubation times increased from 0h to 72h 

except being similar between 0h and 6h for IVDMD.   

 

Table 4.31 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on IVDMD (g/kg DM) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 25.6
j 

37.4
j 

172
hij 

447
abcdef 

544
abcd 

245
c 

12.3 

CSGTL50 54.5
j 

47.5
j 

284
ghi 

426
cdefg 

579
ab 

278
abc 

12.3 

CSGTL100 49.3
j 

52.0
j 

420
defg 

423
cdefg 

569
abc 

303
ab 

12.3 

CSGTL200 68.4
j 

98.4
j 

420
bcdefg 

431
bcdefg 

578
ab 

319
a 

11.8 

CSBTL50 52.4
j 

67.7
j 

326
fgh 

375
efg 

594
a 

283
abc 

11.8 

CSBTL100 59.6
j 

80.5
j 

418
bcdefg 

506
abcde 

558
abcd 

324
a 

12.3 

CSBTL200 69.9
j 

81.8
j 

145
ij 

474
abcdef 

518
abcde 

258
bc 

11.8 

Means 54.2
D 

66.5
D 

312
C 

440
B 

563
A 

 P<0.001 

SEM 9.93 10.3 10.9 9.93 9.93 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; CSGTL and CSBTL, 

company spent green and black tea leaves. 
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Table 4.32 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on IVOMD (g/kg DM) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0    137
j 

 209
ij 

 252
hi 

 587
abcd 

 669
ab 

 371
b 

8.51 

CSGTL50    152
ij 

 182
ij 

 442
g 

 570
bcdef 

 688
a 

 407
ab 

8.93 

CSGTL100    153
ij 

 186
ij 

 529
defg 

 538
cdefg 

 666
ab 

 414
a 

8.93 

CSGTL200    151
ij 

 221
ij 

 514
defg 

 574
abcdef 

 657
ab 

 423
a 

8.71 

CSBTL50    139
j 

 211
ij 

 471
efg 

 532
defg 

 684
ab 

 407
ab 

8.93 

CSBTL100    163
ij 

 196
ij 

 458
fg 

 618
abcd 

 643
abc 

 416
a 

8.51 

CSBTL200    147
ij 

 190
ij 

 332
h 

 576
bcde 

 610
abcd 

 371
b 

8.51 

Means    149
E 

 199
D 

 428
C 

 571
B 

 660
A 

 P<0.001 

SEM 7.45 7.45 7.45 7.45 7.45 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; CSGTL and CSBTL, 

company spent green and black tea leaves.  

4.4.3.2 NH3 concentrations 

 Table 4.33 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on NH3 concentrations (mg/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions, incubation times, and their interaction had significant 

effects on NH3 concentrations. The CSGTL100, CSGTL200, and CSBTL100 inclusions, 

averaged over all the incubation times, had significantly lower NH3 concentrations than the 

T0 diet but the CSGTL50, CSBTL50, and CSBTL200 inclusions had a similar NH3 

concentration to the T0 diet. Across the inclusions, the NH3 concentrations were 

significantly increased as the incubation time increased from 0h to 72h. 
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Table 4.33 Effect of CGSTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on NH3 concentrations (mg/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 45.5
ijk 

80.1
gh 

184
abc 

200
a 

206
a 

143
a 

2.65 

CSGTL50 48.5
hijk 

75.8
ghi 

163
bcd 

189
abc 

201
a 

135
ab 

2.65 

CSGTL100 39.2
jk 

83.7
fg 

117
ef 

181
abc 

189
abc 

122
c 

2.65 

CSGTL200 38.8
jk 

60.1
ghijk 

140
de 

182
abc 

188
abc 

122
c 

2.65 

CSBTL50 58.1
ghijk 

79.3
gh 

156
cd 

192
ab 

205
a 

138
a 

2.65 

CSBTL100 32.5
k 

75.7
ghi 

138
de 

182
abc 

195
ab 

125
bc 

2.65 

CSBTL200 37.1
jk 

66.2
ghij 

192
ab 

185
abc 

198
a 

136
ab 

2.65 

Means 42.8
E 

74.4
D 

156
C 

187
B 

197
A 

 P<0.001 

SEM 2.34 2.34 2.34 2.34 2.34 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; CSGTL and CSBTL, 

company spent green and black tea leaves. 

4.4.3.3 VFA Profiles 

4.4.3.3.1 Total VFA  

 Table 4.34 shows the effect of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on tVFA concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect but incubation times and their 

interaction had significant effects on tVFA concentrations. All CSGTL or CSBTL 

inclusions, averaged over all the incubation times, had a similar tVFA concentration to the 

T0 diet.  Across the inclusions, the tVFA concentrations were significantly increased as the 

incubation times increased from 0h to 72h, reaching a peak at 48h. 
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Table 4.34 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on tVFA concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 10.3
h 

20.9
g 

43.0
abcde 

42.5
abcde 

42.1
abcde 

31.7 0.49 

CSGTL50 10.1
h 

21.2
g 

37.7
def 

45.8
a 

40.1
abcdef 

31.0 0.49 

CSGTL100 10.3
h 

23.8
g 

34.2
f 

45.1
abc 

39.5
bcdef 

30.6 0.49 

CSGTL200 9.86
h 

21.0
g 

38.0
def 

45.5
ab 

41.5
abcde 

31.2 0.49 

CSBTL50 10.2
h 

21.7
g 

37.2
ef 

43.5
abcd 

38.7
def 

30.3 0.52 

CSBTL100 10.5
h 

21.1
g 

38.3
def 

42.4
abcde 

41.4
abcde 

30.8 0.49 

CSBTL200 10.3
h 

21.0
g 

42.9
abcde 

43.7
abcd 

41.2
abcde 

31.8 0.49 

Means 10.2
E 

21.5
D 

38.8
C 

44.1
A 

40.6
B 

 P>0.05 

SEM 0.42 0.42 0.43 0.42 0.42 P<0.001  

Means with different letters either in the same row for the incubation times (capital letters) 

or for the inclusions and incubation times interaction (italic small letters) are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black tea leaves. 

4.4.3.3.2 Acetate 

 Table 4.35 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on acetate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h of 

incubations. Different inclusions had no significant effect but incubation times had 

significant effects and their interaction had no significant effect on acetate concentrations. 

The CSGTL and CSBTL inclusions, averaged over all the incubation times, had a similar 

acetate concentration to the T0 diet.  Across the inclusions, the acetate concentrations were 

significantly increased as the incubation times increased from 0h to 72h, reaching a peak at 

48h. 
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Table 4.35 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on acetate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 6.44 13.7 29.1 30.1 30.6 22.0 0.62 

CSGTL50 5.96 13.8 26.6 32.4 28.5 21.4 0.62 

CSGTL100 6.16 15.7 23.7 32.3 28.2 21.2 0.62 

CSGTL200 5.94 12.8 26.9 32.4 30.2 21.6 0.62 

CSBTL50 6.29 14.0 26.0 30.0 28.0 20.9 0.62 

CSBTL100 6.12 13.6 26.8 28.9 29.95 20.1 0.65 

CSBTL200 6.30 13.9 30.1 30.6 29.8 22.1 0.62 

Means 6.17
D 

13.9
C 

27.0
B 

31.0
A 

29.3
AB 

 P>0.05 

SEM 0.53 0.53 0.54 0.53 0.53 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company speen green and 

black tea leaves. 

4.4.3.3.3 Propionate 

 Table 4.36 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on propionate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h 

of incubations. Different inclusions had no significant effect but incubation times had 

significant effects and their interaction had no significant effect on propionate 

concentrations. All CSGTL and CSBTL inclusions, averaged over all the incubation times, 

had a similar propionate concentration to the T0 diet. Across the inclusions, the propionate 

concentrations were significantly increased as the incubation times increased from 0h to 

72h with a peak concentration at 48h. 
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Table 4.36 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on propionate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 1.99 4.64 8.62 8.22 7.58 6.21 0.17 

CSGTL50 2.05 4.76 7.40 8.63 7.68 6.10 0.17 

CSGTL100 2.10 5.08 7.34 8.33 7.37 6.04 0.17 

CSGTL200 1.90 5.15 7.51 8.51 7.46 6.11 0.17 

CSBTL50 1.99 4.87 7.50 8.49 7.04 5.98 0.17 

CSBTL100 2.16 4.85 7.55 8.64 7.44 6.13 0.18 

CSBTL200 2.08 4.63 8.07 8.39 7.41 6.12 0.17 

Means 2.04
D 

4.85
C 

7.71
B 

8.46
A 

7.43
A 

 P>0.05 

SEM 0.14 0.14 0.15 0.14 0.14 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black tea leaves. 

4.4.3.3.4 iso-Butyrate 

 Table 4.37 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on iso-butyrate concentrations (mmol/L) in the inoculum at 0h, 6h, 

24h, 48h, and 72h of incubations. Different inclusions had no significant effect but 

incubation times had significant effects and their interaction had no significant effect on 

iso-butyrate concentrations. The CSGTL or CSBTL inclusions, averaged over all the 

incubation times, had a similar iso-butyrate concentration to the T0 diet.  Across the 

inclusions, the iso-butyrate concentrations were significantly increased as the incubation 

times increased from 0 to 72h but were not significantly different between 0h and 6h, 

between 24h and 48h, and between 48 and 72h.  
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Table 4.37 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on iso-butyrate concentrations (mmol/L) at different incubation times. 

Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.32 0.33 0.68 0.49 0.57 0.48 0.03 

CSGTL50 0.37 0.36 0.43 0.60 0.66 0.48 0.03 

CSGTL100 0.35 0.39 0.36 0.55 0.62 0.46 0.03 

CSGTL200 0.37 0.41 0.42 0.55 0.58 0.46 0.03 

CSBTL50 0.33 0.36 0.43 0.67 0.67 0.49 0.03 

CSBTL100 0.38 0.36 0.47 0.62 0.59 0.48 0.04 

CSBTL200 0.33 0.31 0.57 0.56 0.62 0.48 0.03 

Means 0.35
C 

0.36
C 

0.48
B 

0.58
AB 

0.61
A 

 P>0.05 

SEM 0.03 0.03 0.03 0.03 0.03 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black tea leaves. 

4.4.3.3.5 n-Butyrate 

 Table 4.38 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on n-butyrate concentrations (mmol/L) in the inoculum at 0h, 6h, 

24h, 48h, and 72h of incubations. Different inclusions had no significant effect but 

incubation times had significant effects and their interaction had no significant effect on n-

butyrate concentrations. The CSGTL and CSBTL inclusions, averaged over all the 

incubation times, had a similar n-butyrate concentration to the T0 diet.  Across the 

inclusions, the n-butyrate concentrations were significantly increased as the incubation 

times increased from 0 to 72h with a peak concentration at 48h. 

 

 

 

 

 

 

 

 

 



146 

 

Table 4.38 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on n-butyrate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.95 1.56 3.19 2.63 2.36 2.13 0.07 

CSGTL50 1.01 1.61 2.42 2.93 2.48 2.09 0.07 

CSGTL100 1.03 1.81 2.18 2.81 2.34 2.03 0.07 

CSGTL200 0.97 1.80 2.41 2.90 2.32 2.08 0.07 

CSBTL50 0.95 1.72 2.39 2.98 2.16 2.04 0.07 

CSBTL100 1.07 1.64 2.55 2.96 2.45 2.13 0.08 

CSBTL200 1.00 1.55 2.91 2.91 2.37 2.15 0.07 

Means 1.00
D 

1.67
C 

2.58
B 

2.87
A 

2.35
B 

 P>0.05 

SEM 0.06 0.06 0.07 0.06 0.06 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black spent tea leaves.  

4.4.3.3.6 iso-Valerate 

 Table 4.39 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on iso-valerate concentrations (mmol/L) in the inoculum at 0h, 6h, 

24h, 48h, and 72h of incubations. Different inclusions had no significant effect but 

incubation times had significant effects and their interaction had no significant effect on 

iso-valerate concentrations. The CSGTL and CSBTL inclusions, averaged over all the 

incubation times, had a similar iso-valerate concentration to the T0 diet.  Across the 

inclusions, the iso-valerate concentrations were significantly increased as the incubation 

times increased from 0h to 72h with a peak concentration at 48h, and there was no 

difference between 6h, 24h, and 72h for iso-valerate concentrations. 
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Table 4.39 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on n-butyrate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.44 0.41 0.92 0.65 0.59 0.60 0.04 

CSGTL50 0.54 0.43 0.54 0.79 0.66 0.59 0.04 

CSGTL100 0.53 0.49 0.41 0.70 0.58 0.54 0.04 

CSGTL200 0.53 0.53 0.51 0.73 0.55 0.57 0.04 

CSBTL50 0.46 0.45 0.53 0.89 0.51 0.57 0.04 

CSBTL100 0.56 0.45 0.59 0.86 0.61 0.61 0.04 

CSBTL200 0.47 0.37 0.77 0.73 0.61 0.59 0.04 

Means 0.50
C 

0.45
BC 

0.61
B 

0.76
A 

0.59
BC 

 P>0.05 

SEM 0.04 0.04 0.04 0.04 0.04 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black spent tea leaves. 

4.4.3.3.7 n-Valerate 

 Table 4.40 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on n-valerate concentrations (mmol/L) at 0h, 6h, 24h, 48h, and 72h 

of incubations. Different inclusions had no significant effect but incubation times had 

significant effects and their interaction had no significant effect on n-valerate 

concentrations. The CSGTL and CSBTL inclusions, averaged overall the incubation times, 

had a similar n-valerate concentration to the T0 diet. Across the inclusions, the n-valerate 

concentrations were increased as the incubation times increased from 0h to 72h with a peak 

concentration at 48h although there was no significant difference between 24h and 72h on 

n-valerate concentration. 
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Table 4.40 Effect of CSGTL or CBSTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on n-valerate concentrations (mmol/L) at different incubation times. 

  Diets 0h 6h 24h 48h 72h Means SEM 

T0 0.14 0.26 0.53 0.41 0.37 0.34 0.02 

CSGTL50 0.17 0.26 0.35 0.47 0.42 0.33 0.02 

CSGTL100 0.16 0.29 0.30 0.45 0.37 0.31 0.02 

CSGTL200 0.16 0.29 0.34 0.44 0.36 0.32 0.02 

CSBTL50 0.14 0.28 0.34 0.52 0.34 0.32 0.02 

CSBTL100 0.17 0.27 0.36 0.51 0.39 0.34 0.02 

CSBTL200 0.16 0.22 0.45 0.46 0.37 0.33 0.02 

Means 0.16
D 

0.27
C 

0.38
B 

0.47
A 

0.38
B 

 P>0.05 

SEM 0.01 0.01 0.02 0.01 0.01 P<0.001  

Means with different letters in the same row for the incubation times are significantly 

different; SEM, standard error of mean; CSGTL and CSBTL, company spent green and 

black tea leaves. 

4.4.3.4 pH and total gas production  

 Table 4.41 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 50, 

100, and 200 g/kg DM on pH levels at 0h, 6h, 24h, 48h, and 72h of incubations. Different 

inclusions, incubation times, and their interaction had significant effects on pH levels. 

Most CSGTL or CSBTL inclusions, averaged over all the incubation times, had a similar 

pH to the T0 diet except being lower for the CSBTL200 inclusion. Across the inclusions, 

the pH levels were significantly decreased as the incubation times increased from 0h to 72h 

with being the lowest pH for 24h.  

 Table 4.42 shows the effects of CSGTL or CSBTL inclusions into a diet at 0, 100, 

and 200 g/kg DM on tGP (L/kg OM) up to 48h incubation times. Based on the incubation 

times, the most significant increase in tGP was within 24h, particularly from 6h (24.4 - 

27.8) to 20h (131 - 147). After that, the tGP tended to rise more slowly reaching between 

184 and 185 at 48h. At 24h, the CSGTL200 inclusion had a significantly higher tGP than 

the T0 diet but was not different from the other inclusions. A similar trend was also found 

at 48h where the CSGTL200 inclusion had a significantly greater tGP than the T0 diet 

only.  
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Table 4.41 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the 

diets on pH at different incubation times. 

  Diets 0h H6 24h 48h 72h Means SEM 

T0 7.01
ab 

6.71
c 

6.59
gh 

6.61
fgh 

6.62
efgh 

6.71
a 

0.004 

CSGTL50 7.00
ab 

6.72
c 

6.60
fgh 

6.59
gh 

6.62
efgh 

6.71
ab 

0.004 

CSGTL100 7.02
ab 

6.71
c 

6.58
gh 

6.58
h 

6.61
fgh 

6.70
ab 

0.004 

CSGTL200 7.03
a 

6.68
cd 

6.57
h 

6.61
fgh 

6.62
efgh 

6.70
ab 

0.004 

CSBTL50 7.01
ab 

6.71
c 

6.59
gh 

6.60
fgh 

6.64
defg 

6.71
a 

0.004 

CSBTL100 6.99
ab 

6.69
cd 

6.59
gh 

6.59
fgh 

6.65
def 

6.70
ab 

0.004 

CSBTL200 6.97
b 

6.67
cde 

6.57
h 

6.60
fgh 

6.63
defg 

6.69
b 

0.004 

Means 7.00
A 

6.70
B 

6.58
D 

6.60
D 

6.63
C 

 P<0.05 

SEM 0.004 0.004 0.004 0.004 0.004 P<0.001  

Means with different letters either in the same column for the inclusions (small letters) or 

row for the incubation times (capital letters) or both for their interaction (italic small 

letters) are significantly different; SEM, standard error of mean; CSGTL and CSBTL, 

company spent green and black tea leaves.       
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Table 4. 42 Effect of CSGTL or CSBTL inclusions at 0, 50, 100, and 200 g/kg DM of the diets on tGP (L/kg OM) at different incubation 

times and the pH at 48h. 

Diets 0h 2h 4h 6h 20h 22h 24h 26h 28h 30h 44h 46h 48h pH 

T0 0 2.79 17.5 24.4 131 141 145
b 152 155 159 181 184 185

 
6.76 

CSGTL100 0 2.71 15.4 25.3 140 151 154
ab 157 161 166 184 188 189

 
6.75 

CSGTL200 0 3.58 17.0 27.8 147 162 163
a 166 166 176 191 191 195

 
6.80 

CSBTL100 0 2.73 15.4 25.4 135 147 153
ab 158 159 167 181 184 184

 
6.82 

CSBTL200 0 2.69 16.1 26.0 143 153 157
ab 150 158 161 183 185 188

 
6.71 

SEM       3.78      3.31 0.06 

P value       P<0.05      P>0.05 P>0.05 

Means with different letters in the same column are significantly different; SEM, standard error of mean; CSGTL and CSBTL, company spent 

green and black tea leaves. 
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4.5 Discussion 

 This current study has shown that GTL inclusions at 50, 100, or 200 g/kg DM into 

an RS-based ruminant diet significantly improved both IVDMD and IVOMD from the 

control diet (T0) but not for all BTL inclusions. GTL had higher nutritional values such as 

CP, OM, EE, minerals but less fibre fractions than RS and this is likely to be the main 

reason for in-vitro degradability improvement due to GTL inclusions. RS is categorized as 

a poor nutritional forage with low CP and OM but high fibre, lignin, and silica contents 

(Eun et al., 2006; Khan and Chaudhry, 2010; Van Soest, 2006). Interestingly, BTL had 

higher OM, CP, and less fibre fractions than RS but the IVDMD and IVOMD could not be 

improved through BTL inclusions. This may be related to nutrient degradation or 

modification via ‘maillard browning’ reaction during the BTL manufacturing process 

resulting in more insoluble organic components including its polyphenols. During BTL 

processing, most phenolic catechins in fresh tea leaves are converted into theaflavins 

(Muthumani and Kumar, 2007; Owuor and Obanda, 1998). Theaflavins had greater 

retention times on chromatogram during HPLC analysis than catechins confirming their 

altered polarity and consequently, lower solubility.  

 Conversely, all GTL inclusions significantly reduced rumen NH3 concentrations 

from the control diet with the greater NH3 decrease at the higher doses while only BTL 

inclusions at 100 and 200 g/kg DM were able to decrease NH3 concentrations. The reduced 

NH3 concentration could be a sign that the dietary protein was perhaps bound by tannins 

and protected from rumen digestion. Tannins can bind and protect plant proteins from 

degradation in the rumen leading to lower NH3 production but these protected proteins 

may be then available as by-pass proteins to be absorbed in the small intestine (Bodas et 

al., 2012; Makkar, 2003a; McSweeney et al., 2001; Min et al., 2003; Mueller-Harvey, 

2006). All tannins are categorized as polyphenols but not all pholyphenols are tannins 

whereas catechins are the monomeric units of condensed tannins (McSweeney et al., 

2001). Moreover, only the BTL inclusions at higher doses of 100 and 200 g/kg DM caused 

decreased NH3 concentrations may suggest that theaflavins in BTL have lower protein 

binding capacity and offer less protection to plant proteins from rumen digestion than 

catechins in GTL. Most GTL and BTL inclusions had no significant effect on total and 

individual VFA except for a significant increase in acetate for the GTL200 inclusion, 

decreased iso-butyrate for the BTL200 inclusion, decreased iso-valerate for the GTL100 

and all BTL inclusions, and decreased n-valerate for the BTL200 inclusions from the 

control diet. Increased acetate for the GTL200 inclusion could suggest that as an additive 
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this would be favourable for better milk fat production and to reduce low-fat milk 

syndrome (Bauman and Griinari, 2003; Popjak et al., 1951). The GTL or BTL inclusions 

did not significantly affect either tGP or pH although there tended to be a higher tGP 

compared with the control diet. 

 The SGTL or SBTL inclusions improved both IVDMD and IVOMD with the 

optimum inclusions of up to 200 g/kg DM for SGTL or up to 100 g/kg DM for SBTL 

whereas SGTL or SBTL inclusions reduced rumen NH3 concentrations with a greater 

reduction at the higher doses. Similarly, CSGTL or CSBTL inclusions improved both 

IVDMD and IVOMD along with reducing NH3 concentrations but only for the higher 

inclusion rates of CSGTL100, CSGTL200, and CSBTL100. All SGTL and SBTL 

inclusions had no significant effect on tVFA concentrations but among STL inclusions, the 

SGTL200 inclusion had significantly higher tVFA concentration than the other inclusions. 

Similarly, the CSGTL and CSBTL inclusions had a minor effect on total and individual 

VFA concentrations.  

 The SGTL200 inclusion reduced pH significantly but not at either of the lower 

SGTL or all SBTL inclusions which their pH levels were similar to the control diet. In 

addition, all SGTL and SBTL inclusions increased tGP significantly compared with the 

control diet at 24h and beyond for up to 48h. At the same time, most CSGTL and CSBTL 

inclusions had only minor effect on pH except being significantly higher for the 

CSBTL200 inclusion compared with the control diet. All CSGTL and CSBTL inclusions 

tended to increase tGP from the control diet at 24h and 48h, significantly so for the 

CSGTL 200 inclusion. The results suggest that that both IVDMD and IVOMD could be 

improved while the rumen NH3
 
production could be decreased by all SGTL and SBTL 

inclusions in a diet but these results could only be seen for the higher inclusion rates of the 

CSGTL (100 and 200 g/kg DM) or CSBTL (100 g/kg DM). This may be due to higher 

fibre but low plant secondary metabolite components in CSGTL or CSBTL compared with 

SGTL or SBTL, as reported in Chapter 3.     
 
     

 It appeared that adding tea leaves and their residues in the straws-based ruminant 

diets improved in-vitro degradability and decreased rumen NH3 production. Higher 

nutritional values such as CP, OM, EE, minerals, and less fibre contents in tea leaves and 

their residues might have contributed to the enhanced in-vitro degradability of the straws-

based diets that otherwise were deficient in these nutrients (Eun et al., 2006; Khan and 

Chaudhry, 2010; Van Soest, 2006). It is known that the rumen microbes grow and degrade 

the substrates better from nutrient-rich diets than poorer quality diets. Increasing in-vitro 

degradability by the addition of tea leaves and their residues to the poor quality straws-
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based diets is in line with the relatively higher tGP for those diets compared with the 

control diet alone.  

 Guglielmelli et al. (2011) reported that adding sainfoin hay (63 - 114 g CT/kg DM) 

increased IVOMD and tGP compared with an alfalfa hay-based diet whilst Huang et al. 

(2010) found that adding a condensed tannin (CT) extract from Leucaena leucephala at up 

to 50 g/kg DM decreased IVDMD and tGP. However, associating in-vitro degradability 

improvement with greater content of plant secondary metabolites in tea leaves and their 

residues than rice straws needs further investigation. In particular this should include 

comparison of these results with measurements made in-vivo to relate potential decreases 

in rumen NH3 to the higher content of plant secondary metabolites, particularly tannins in 

tea leaves and their residues. This is critical to establish the relevance of the tannins in the 

tea leaves to support the hypothesis that these tannins can bind to, and protect the plant 

protein from rumen degradation, and the lower NH3 production resulting from this 

protection of proteins may then increase the availability of by-pass proteins to be absorbed 

in the small intestine (Bodas et al., 2012; Makkar, 2003a; McSweeney et al., 2001; Min et 

al., 2003; Mueller-Harvey, 2006). This cannot be verified in the in-vitro studies carried out 

here alone. 

 Guglielmelli et al. (2011) reported lower rumen in-vitro NH3 production for 

tannins-rich sainfoin hay compared with alfalfa hay as the low tannins comparator. 

Similarly, Fernández et al. (2012) reported that wethers fed diet containing 4% of tannins 

from quebracho extract produced lower NH3 and had lower blood urea N than those fed the 

low-tannins control diet. Cieslak et al. (2012) also reported that dairy cows fed diets 

containing 2 g tannins/kg from Vaccinium vitis idaea extract produced lower NH3 than 

those fed the control diet. Meanwhile, Puchala et al. (2012a)  observed no difference in 

NH3 production between goats fed fresh Sericea lespedeza (SER, 20.2% CT) and those 

either fed alfalfa (ALF) or sorghum-sudangrass (GRASS) (both containing ≤ 0.03% CT). 

However, when SER was given to goats in the form of hay (15.3% CT), the NH3 of SER 

was lower than ALF but similar to GRASS. An in-vitro study comparing the effect of 

growth stage of purple prairie clover between vegetable and flowering stages (58.6 and 

94.0 g CT/kg DM, respectively) showed that they did not affect in NH3 differently (Jin et 

al., 2012). In addition, dairy cows fed diets containing 0.9 - 1.8 % CT from Acacia 

mearnsii extract had lower N loss in their urine than those fed the control diet (Grainger et 

al., 2009). A similar decrease in urinary N excretion was reported from wethers fed ad-

libitum ryegrass with tannin extract from Acacia mearnsii at 20 - 60 g/kg DMI (Kozloski et 

al., 2012). In addition, Kondo et al. (2007c) reported that adding SGTL at 10% into a 
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soybean meals plus alfalfa based diet had a minor effect on in-vitro tVFA concentrations. 

A study in dairy cows by Cieslak et al. (2012) reported that tannin extract supplementation 

from vaccinium vitis idaea at 2 g tannins/kg DM of the diet had no effect on tVFA 

production but reduced A:P ratio. It was reported that Sainfoin hay produced higher in-

vitro tVFA and acetate concentrations in particular but no difference in A:P ratio than 

alfalfa hay (Guglielmelli et al., 2011). Similarly, Wood et al. (2010) reported that adding 

Chrysanthemun coronarium at 20 mg/0.4g diet containing concentrate and grass hay 

(70:30) increased the in-vitro tVFA concentrations, and was likely to increase acetate but 

decreased propionate concentrations. In addition, Huang et al. (2010) reported in-vitro that 

adding CT extract from Leucaena leucephala into Panicum maximum as the substrate had 

no effect on pH. Puchala et al. (2012a) also reported that there was no difference on 

ruminal pH between goats fed fresh SER and those either fed ALF or GRASS. Conversely, 

when SER was given to goats in the form of hay (15.3% CT), ruminal pH of SER was 

lower than ALF but similar to GRASS. Meanwhile, Cieslak et al. (2012) reported that 

tannins extract supplementation from vaccinium vitis idaea at 2 g tannins/kg DM of diet 

(forage:concentrate ~ 60:40) decreased the ruminal pH in dairy cows. 

4.6 Conclusion 

 Most tea leaves and their residue inclusions into RS-based ruminant diets can 

improve in-vitro degradability while reducing the potential excess of rumen NH3 

production except BTL which was able to reduce NH3 production at greater doses but did 

not improve in-vitro degradability. Decreased NH3 production is likely due to the binding 

and protecting activities of tea tannins on plant proteins and these effects may be beneficial 

to increase the availability of by-pass proteins. In this in-vitro study, SGTL and CSGTL, as 

the residues, could be included into diets at up to 200 g/kg DM to improve the degradation 

of RS-based diets. Although GTL, as original tea leaves, could be included into a similar 

diet at up to 200 g/kg DM, a 50 g/kg DM inclusion is suggested for cost efficiency. 

Meanwhile, SBTL and CSBTL are better used at 100 g/kg DM. Further studies are needed 

to link the in-vitro degradability improvement and the reduced NH3 concentration with the 

gas profiles of CH4 and CO2. N determination in the residue of substrates after in-vitro 

incubation can also be estimated to quantify CP degradability in the next experiment. 
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Chapter 5: Evaluation of green and black teas alongside their spent leaves for in-

vitro degradability, fermentation, and gas production in different diets 

 

5.1 Introduction 

 Previous experiments described in Chapter 4 showed that inclusion of different tea 

leaves such as GTL, BTL, SGTL, SBTL, CSGTL, and CSBTL into rice straws (RS) based 

ruminant diets had the potential to improve in-vitro degradability and reduce NH3 

concentrations.  This necessitates the need to investigate the effects of these leaves on total 

gas and its components such as CH4 and CO2 concentrations, and the effect on CP 

degradability. CH4, along with CO2 and N2O, is known to highly contribute to the 

greenhouse gas effect. Characteristically, CH4 is colourless and odourless but it potentially 

contributes more to global warming than CO2 as it is 21 times better at retaining heat in the 

atmosphere than CO2 (EPA, 2011). Agricultural activities are known to be responsible for 

40 - 60% of the total anthropogenic CH4 production, with 25 - 40% from the livestock 

sector, predominantly from ruminants via their eructation and manures (Attwood and 

McSweeney, 2008; Boadi et al., 2004; Moss et al., 2000). CH4 production is also 

associated with the loss of gross energy of feedstock by 2 - 12% (Johnson and Johnson, 

1995). 

 Plant secondary metabolites such as essential oils, phenolic tannins, and saponins 

have the potential as natural additives to mitigate CH4 production in ruminants 

(Beauchemin et al., 2009; Bodas et al., 2012; Goel and Makkar, 2012; Patra and Saxena, 

2009b). Reduced rumen NH3 production in different diet types due to tannin inclusions 

from tea leaves (Cammelia Sinensis var. Asamica) (as demonstrated in Chapter 4), 

Onobrychis viciifolia Scop (Guglielmelli et al., 2011),  Vaccinium vitis idaea (Cieslak et 

al., 2012), and Acacia mearnsii (Grainger et al., 2009; Kozloski et al., 2012) has been 

consistently reported. However, the value of plant secondary metabolites to reduce the 

methanogenic activities in the rumen is variable as it depends upon their chemical 

structures, doses, diet compositions, and rumen microbial population (Hart et al., 2008; 

Patra and Saxena, 2009a). Tannin extract from Leucaena leucephala  (Huang et al., 2010) 

and Acacia mearnsii (Grainger et al., 2009) have been shown to have the potential to 

reduce CH4 release but Guglielmelli et al. (2011) contradicted this observation by reporting 

that tannin-rich sainfoin hay (Onobrychis viciifolia Scop) produced higher CH4 production 

than alfalfa hay as a low tannin counterpart. The addition of saponin extract from either 

Achyranthus aspara, Tribulus terrestris, Albizia lebbeck (Goel and Makkar, 2012), 
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Gynostemma pentaphyllum (Wang et al., 2011), and Camellia Sinensis (Mao et al., 2010) 

separately into different diets reduced CH4 production. Li and Powers (2012), however, 

reported that adding Yucca schidigera, Quillaja saponaria, and Camellia sinensis extracts 

into a diet had no effect on CH4 production per unit DMI. 

 Therefore the objectives of this study were (1) to compare GTL, BTL, and their 

respective STL with different type of feeds on rumen in-vitro degradability, fermentation, 

and gas characteristics and (2) to investigate the effect of adding GTL and BTL alongside 

their STL into either rice straws (RS) or ryegrass hay (RH) based ruminant diets on rumen 

in-vitro degradability, fermentation, and gas profiles. Here, RS and RH were used as 

examples representing low and moderate quality forages, respectively, that may be 

available to the ruminants in different production situations. 

5.2 Material and methods 

 The study was conducted as three separate rumen in-vitro experiments by using the 

following arrangements: 

1) Completely randomized design experiment, with 4 replicates, comparing GTL, BTL, 

SGTL, SBTL, CSGTL, and CSBTL with different type of feeds such as concentrate 

(CON), ryegrass hay (RH), perennial ryegrass silage (PRS), rice straws (RS), barley 

straws (BS), and wheat straws (WS) for chemical composition, IVDMD, IVOMD, in-

vitro crude protein degradability (IVCPD), NH3, VFA, pH, total gas production (tGP), 

and gas compositions such as CH4 and CO2. 

2) A 5 x 2 factorial design experiment, with 4 replicates, testing the effects of 5 different 

tea leaf inclusions at (g/kg DM) 0 (T0), 50 (GTL50), and 100 (GTL100) of green tea 

leaves; 50 (BTL50) and 100 (BTL100) of black tea leaves  into 2 different total mixed 

diets containing either  rice straws (RS) or ryegrass hay (RH) on IVDMD, IVOMD, 

IVCPD, NH3, VFA profiles, pH, tGP,CH4, and CO2. 

3) A 9 x 2 factorial design experiment, with 4 replicates, testing the effects of 9 different 

STL inclusions at (g/kg DM) 0 (T0), 100 (SGTL100), and 200 (SGTL200) of spent 

green tea leaves; 100 (SBTL100) and 200 (SBTL200) of spent black tea leaves; 100 

(CSGTL100) and 200 (CSGTL200) of company spent green tea leaves; 100 

(CSBTL100) and 200 (CBSTL200) of company spent black tea leaves  into 2 different 

total mixed diets containing either RS or RH on IVDMD, IVOMD, IVCPD, NH3, VFA 

profiles, pH, tGP,CH4, and CO2. 
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5.2.1 Diets 

 Samples of CONC, RH, PRS, BS, and WS were collected from Cockle Park Farm, 

Newcastle University during April 2012 whereas the samples of RS and tea leaf products 

were the same as those being described in Chapter 4. Proximate and fibre fraction analyses 

were carried out using the same methods as those described in Chapter 3 while 

metabolisable energy (ME) was calculated by the following formula (Menke and 

Steingass, 1988; Krishnamoorthy et al., 1995): 

(1) Concentrate or cereals 

 ME = 1.06 + (0.1570*tGP24h) + (0.0084*CP) + (0.022*EE) – (0.0081*Ash) 

(2) Roughages 

 ME = 2.2 + (0.1357*tGP24h) + (0.0057*CP) + (0.0002859*EE)
2 

with     ME, metabolizable energy (MJ/ kg DM) 

 tGP, total gas production (ml/ 200mg, at 24h) 

 CP, crude protein (g/kg DM  

 EE, ether extratct (g/kg DM) 

 Ash, ash (g/kg DM). 

  

 Table 5.1 and Table 5.2 present the diet formulations that were used for the second 

and third in-vitro incubation experiments: 

 

Table 5.1 Experiment 2: Ingredient compositions of different experimental diets containing 

tea leaves (g/kg DM). 

Diets CON RS/RH GTL BTL 

T0 700 300 0 0 

GTL50 700 250 50 0 

GTL100 700 200 100 0 

BTL50 700 250 0 50 

BTL100 700 200 0 100 

CON, sheep mixed concentrate; RS, rice straws, RH, ryegrass hay; GTL and BTL, green 

and black tea leaves. 
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Table 5.2 Experiment 3: Ingredient compositions of different experimental diets containing 

STL (g/kg DM). 

Diets CON RS/RH SGTL SBTL CSGTL CSBTL 

T0 700 300 0 0 0 0 

SGTL100 700 200 100 0 0 0 

SGTL200 700 100 200 0 0 0 

SBTL100 700 200 0 100 0 0 

SBTL200 700 100 0 200 0 0 

CSGTL100 700 200 0 0 100 0 

CSGTL200 700 100 0 0 200 0 

CSBTL100 700 200 0 0 0 100 

CSBTL200 700 100 0 0 0 200 

CON, sheep mixed concentrate; RS, rice straws, RH, ryegrass hay; SGTL and SBTL, spent 

green and black tea leaves; CSGTL and CSBTL, company spent green and black tea 

leaves. 

5.2.2 In-vitro incubation 

 The procedures to prepare rumen fluid (RF), buffer solution, and buffered inoculum 

were similar to those described in Chapter 4 (Sections 4.2.5, 4.2.6, and 4.2.7, respectively). 

All RF samples were obtained from freshly slaughtered lambs at a Linden Foods abbatoir, 

Burradon, Newcastle upon Tyne, UK. The RF for the first experiment was collected on 5 

June 2013 from two freshly slaughtered grass-fed lambs (Texel cross). The RF collection 

for the second experiment was done on 30 August 2012 from two freshly slaughtered 

grass-fed lambs (Texel cross). The RF collection for the third experiment was done on 15 

May 2013 from two freshly slaughtered lambs (Cheviot) fed grass with cereal 

supplementation. 

 About 200 mg (± 4) of each sample diet was transferred into a 50 ml glass syringe 

(SAMCO, UK), lubricated with Vaseline and fitted with a 4 way-male-slip stopcock (Cole 

Palmer Instrument, UK). About 20 ml buffered inoculum was added to each syringe which 

was closed and placed in a shaking water bath at 39
o
C. Total gas produced in each syringe 

was measured every two hours for up to either 24h or 28h incubations. After incubation, 

most of the warm water in the water bath was replaced with sufficient ice to stop further 

fermentation in the syringes. About 15 ml gas from each incubated syringe was then 

transferred into another clean syringe from where the gas was transferred to a 12 ml 

evacuated gas tube (Labco Exetainer, Labco Ltd, Lampeter UK) by using a needle attached 
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to the stopcock.  All the contents in each syringe (inoculum and the residues) were then 

transferred into a pre-weighted tube (polyethylene, 50 ml capacity) for the pH, NH3, VFA, 

and degradability measurements. The pH was measured directly by a pH meter (pH 309, 

Hanna Instruments Ltd, UK) after its calibration with buffer tablets (BDH chemicals, UK) 

in 100 ml distilled water of either pH 7.00 ± 0.02 or pH 4.00 ± 0.02. All tubes were then 

centrifuged and subjected to sample preparations for further VFA and NH3 analyses using 

the same procedures as those described in Chapter 4 (Sections 4.2.8, 4.2.9.3 and 4.2.9.3). 

All the remaining residual particles in the syringes were water washed into the 

corresponding tubes containing the residues. These undigested residues were dried at 80
o
C 

for IVDMD and IVOMD measurements following the methods described in Chapter 4 

(Section 4.2.9.1). About 0.1 g of each dried residue was weighed for N analysis as 

described in Chapter 3 (Section 3.2.2) to estimate IVCPD. Two to three blank 

representatives were run alongside the samples in each trial and the blank values were used 

to correct the degradability and tGP estimations.  

5.2.3 CH4 and CO2 determinations 

 CH4 and CO2 determinations were performed using a GC-MS (Fisons 8060 GC, 

Milano, Italy) using split injection (150
o
C) linked to a Fisons MD 800 MS (electron 

voltage 70 eV, emission current 150 µA, source current 600 µA, source temperature 

200
o
C, multiplier voltage 300V, interface temperature 150

o
C). The acquisition was 

controlled by a Compaq Deskpro computer using Xcalibur software (Xcalibur Inc. 

Arlington, USA) in a full scan mode (1.0 - 151.0 amu/second). A headspace gas sample of 

100µl using a 100µl GC syringe (SGE Europe Ltd, Milton Keynes, UK) was injected in 

duplicate in a split mode into the HP-PLOT-Q capillary column (30m x 0,32mm i.d) 

packed with 20µm Q phase (J&W Scientific, USA) of the GC. The GC was held 

isothermally at 35
o
C with Helium as the carrier gas (flow 1 ml/minute, pressure of 65kPa 

and open split at 120 ml/minute). The chromatograms of the separated gases (CH4 and 

CO2) were integrated and quantified. A calibrated mixture gas of 60% CH4 in CO2 (40%) 

(Scientific & Technical gases Ltd, Staffordshire, UK) and pure CO2 (BOC industrial gases, 

UK) were run along with the samples at 20, 40, 60, 80, and 100 µl injections to suit the 

standard curve calibrations. 
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5.3 Statistical analysis 

 For experiment 1, chemical compositions of various types of feed were calculated 

from triplicate analyses. One-way analysis of variance (ANOVA) on Minitab 16 software 

was used to compare different tea leaf products and other feed types for their in-vitro 

degradability, fermentation, and gas profiles. A similar software was used to run two-way 

ANOVA using the General Linear Model (GLM) procedure examining the statistical 

effects of 5 different original tea leaf inclusions to 2 different diets alongside their 

interaction on in-vitro degradability, fermentation, and gas profiles in experiment 2. For 

experiment 3, two-way ANOVA using the GLM procedure in the same software was also 

used to investigate the statistical effects of 9 different STL inclusions into 2 different diets 

alongside their interaction on in-vitro degradability, fermentation, and gas profiles. 

Differences were considered significant if P < 0.05. 

5.4. Results 

5.4.1 Experiment 1: Comparison between different tea leaf products and other types 

of feed for chemical composition, in-vitro degradability, fermentation, and gas 

profiles 

 Chemical composition (g/kg DM) of various tea leaf products and other feed types 

are described in Table 5.3. The tea leaf products had greater CP than CON, RH, PRS, and 

all the straws (RS, BS, and WS). The tea leaf products also had higher ME but lower fibre 

fractions than all the straws. Conversely, the tea leaf products had a lower ME but greater 

NDF and ADF in comparison with CON. All the straws had the lowest CP and ME but 

they had higher fibre fractions than all the other feeds. The GTL and BTL had less fibre 

fractions and higher ash but almost the same EE and ME contents than their corresponding 

STL.   
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Table 5.3 Chemical composition of various tea leaf products and other feeds (g/kg DM). 

Feeds DM OM Ash CP EE NDF ADF ADL ME
1 

CON 864 921 78.9 176 56.6 271 144 134 10.1 

GTL 937 938 61.8 240 20.8 254 211 37.6 7.08 

BTL 942 939 61.4 242 12.6 323 309 27.4 6.40 

SGTL 134 957 43.3 246 23.1 405 294 40.3 7.39 

SBTL 126 961 38.7 234 13.5 474 410 44.5 6.59 

CSGTL 170 955 44.9 261 17.8 560 334 42.7 7.49 

CSBTL 205 959 41.3 253 12.6 576 449 48.8 6.87 

RH  840 908 92.4 200 20.2 649 507 435 6.79 

PRS 325 917 83.4 136 14.0 595 427 379 7.60 

RS  944 818 182 60.4 9.9 787 684 598 4.01 

BS 866 948 51.6 49.1 18.1 846 672 594 4.34 

WS 903 938 62.5 38.1 46.1 843 590 530 4.43 

1
ME (MJ/ kg DM) was calculated by the formula of Menke and Steingass (1988); CON, 

sheep mixed concentrate; GTL and BTL, green and black tea leaves; SGTL and SBTL, 

spent green and black tea leaves; CSGTL and CSBTL, company spent green and black tea 

leaves; RH, ryegrass hay; PRS, perennial ryegrass silage; RS, rice straws; BS, barley 

straws; WS, wheat straws. 

 

Table 5.4 shows in-vitro degradability (g/kg DM) of various tea leaf products and 

other feeds after 28h of incubation. There were no significant differences between the tea 

leaf products, RH, PRS, and all the straws for IVDMD and IVOMD although BTL, 

CSGTL, CSBTL, RS, and WS had lower IVDMD and IVOMD than other feeds. There 

were no significant differences among the tea leaf products for IVCPD but all the tea leaf 

products had significantly higher IVCPD than all the straws and lower IVCPD than RH 

and PRS. As expected, CONC had significantly higher IVDMD, IVOMD, and IVCPD in 

comparison with all other feeds. 

 Table 5.5 presents tGP (L/kg OM) for various tea leaf products and other feeds 

after 28h of in-vitro incubation. Among the tea leaf products, there were no significant 

differences between GTL, SGTL, SBTL, CSGTL, and CSBTL for tGP except BTL that 

had significantly lower tGP than other feeds but it was similar to SBTL. All the tea leaf 

products had a similar tGP to RH but significantly lower tGP than PRS and significantly 

higher tGP than all the straws. CON had significantly higher tGP than all other feeds. 

Moreover, GTL had the lowest CH4 concentration (% of total gas) followed by BTL, RH, 
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PRS, and CON while all the straws, along with CSGTL, SBTL, and CSBTL produced 

significantly the highest CH4 concentration in the gas samples. Conversely, GTL produced 

the highest CO2 concentration followed by SGTL, BTL, CSGTL, RH, and PRS whereas all 

the straws, along with SBTL and CSBTL produced the lowest CO2 concentration in the gas 

sample. 

 In term of CH4 production as L/kg OM, GTL and BTL released a similar CH4 

production to all the straws. GTL had a similar CH4 production to SGTL, SBTL, CSBTL, 

and RH but significantly lower CH4 production than CSGTL, PRS, and CON. BTL also 

had a similar CH4 production to SBTL but significantly less CH4 production than SGTL, 

CSGTL, CSBTL, RH, PRS, and CON. Here, CON released the highest CH4 production 

than other feeds. Most tea leaf products had a similar CO2 production (L/kg OM) except 

SBTL that had a significantly lower CO2 production than GTL and CSGTL. Most tea leaf 

products also had the same CO2 production as for RH except that it was significantly lower 

for SBTL than RH. All the tea leaf products had a less CO2 production than PRS and CON 

but all of them, along with RH, PRS, and CON had higher CO2 production than all the 

straws where CON had significantly the highest CO2 production (see Table 5.6).  

  Table 5.6 also shows pH and NH3 levels (mg/L) for various tea leaf products 

alongside other feeds after 28h of in-vitro incubation. There were no significant differences 

among the tea leaf products for pH which was similar to RH and PRS. GTL had a 

significantly lower pH than most the straws except WS while SGTL and CSGTL had 

significantly lower pH than RS. CON had a similar pH to GTL, SGTL, and PRS but it had 

a significantly lower pH than other feeds. Furthermore, GTL had significantly the lowest 

NH3 levels while BTL and SBTL had significantly higher NH3 levels than GTL but BTL 

and SBTL had significantly lower NH3 levels than other feeds. 

 Table 5.7 presents VFA profiles (mmol/L) for various tea leaf products and other 

feeds after 28h of in-vitro incubation. There were no significant differences between most 

tea leaf products, RH, PRS, and all the straws for tVFA levels except for SBTL and PRS 

which had significantly higher tVFA levels compared with RS and WS. CON had the 

highest tVFA levels than other feeds although it was not significantly different to SBTL 

and PRS. CON had significantly higher acetate, propionate, iso-butyrate, n-butyrare, iso-

valerate, and n-valerate levels than other feeds although it was not statistically different to 

GTL, BTL, SBTL, CSGTL, RH, and PRS for acetate, to SGTL, SBTL, and PRS for iso-

butyrate, to SGTL, SBTL, CSGTL for n-butyrate, to SGTL, SBTL, CSGTL, RH, and PRS 

for iso-valerate, and to RH and PRS for n-valerate levels. Moreover, there were no 

significant differences among the tea leaf products for acetate, propionate, iso-butyrate, n-
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butyrare, iso-valerate, and n-valerate levels but GTL had significantly greater A:P ratio 

than the other tea leaf products and other feeds except for being similar to SGTL. CON and 

PRS had a significantly lower A:P ratio than the other feeds. All the tea leaf products had 

similar acetate levels to those of RH, RS, and BS but higher acetate levels than RS and 

WS. All the tea leaf products had mostly similar propionate, iso-butyrate, n-butyrare, iso-

valerate, and n-valerate levels to the other feeds but tended to have higher propionate than 

RS and WS. SGTL, SBTL, CSGTL, RH, and PRS had significantly higher iso-butyrate 

levels than WS whilst SGTL, SBTL, and CSGTL had significantly higher levels of n-

butyrate than was seen for RS and WS. Moreover, SBTL, CSGTL, RH, and PRS had 

significantly higher iso-valerate and n-valerate levels than WS.  

 

Table 5.4 Mean (± SD) in-vitro degradability (g/kg DM) of various tea leaf products and 

other feeds after 28h of incubation. 

Feeds IVDMD IVOMD IVCPD 

CONC 812
a
 ± 26.5 902

a
 ± 23.3 942

a
 ± 30.5 

GTL 429
bc

 ± 81.2 679
bc

 ± 80.0 642
c
 ± 38.9 

BTL 355
bc

 ± 43.0 623
bc

 ± 40.8 602
c
 ± 74.2 

SGTL 419
bc

 ± 60.5 670
bc

± 53.0 649
c
 ± 36.4 

SBTL 429
bc

 ± 77.4 641
bc

 ± 26.3 630
c
 ± 55.4 

CSGTL 357
bc

 ± 45.7 635
bc

 ± 32.0 677
bc

 ± 22.4 

CSBTL 306
c
 ± 49.5 601

bc
 ± 27.7 653

c
 ± 36.5 

RH 458
b
 ± 66.4 709

b
 ± 39.2 780

b
 ± 32.5 

PRS 456
b
 ± 69.7 705

b
 ± 42.6 718

bc
 ± 49.6 

RS 294
c
 ± 38.0 534

c
± 69.1 230

d
 ± 77.6 

BS 348
bc

 ± 34.4 575
bc

 ± 60.9 296
d
 ± 62.0 

WS 318
c
 ± 29.6 573

bc
 ± 40.2 130

e
 ± 25.5 

SEM 31.7 32.6 27.0 

P Value P<0.001 P<0.001 P<0.001 

Means with different letters in the same column are significantly different; SD, standard 

deviation; SEM, standard error of mean; IVDMD, in-vitro dry matter degradability; 

IVOMD, in-vitro organic matter degradability; IVCPD, in-vitro crude protein 

degradability; CON, sheep mixed concentrate; GTL and BTL, green and black tea leaves; 

SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent 

green and black tea leaves; RH, ryegrass hay; PRS, perennial ryegrass silage; RS, rice 

straws; BS, barley straws; WS, wheat straws.  



164 

 

Table 5.5 Mean in-vitro tGP (L/kg OM) of tea leaf products and other feeds after 28h of incubation. 

Feeds 0h 2h 4h 6h 8h 10h 20h 22h 24h 26h 28h 
CH4 

(%) 

CO2 

(%) 

CON 0 43.8 84.8 132 170 191 237 242 245 249 253
a 

14.1
bc 

72.9
ab 

GTL   0 23.7 33.9 53.3 73.4 90.0 137 142 146 151 156
c 

11.6
e 

76.3
a 

BTL  0 18.9 24.9 34.0 42.3 54.2 108 113 118 121 124
de 

12.9
d 

71.9
ab 

SGTL    0 14.1 24.1 43.7 62.7 87.1 141 145 149 153 158
c 

13.8
bcd 

73.6
ab 

SBTL    0 15.9 19.2 30.8 44.7 59.7 112 129 119 123 126
de 

15.2
a 

65.4
bcd 

CSGTL 0 17.4 23.6 34.7 61.8 84.1 147 151 156 159 162
c 

15.0
ab 

68.4
abc 

CSBTL 0 16.1 21.2 31.4 45.1 62.2 122 125 130 133 138
cd 

15.6
a 

66.9
bcd 

RH    0 22.3 29.0 40.4 50.3 63.8 128 136 144 156 163
c 

13.6
cd 

68.8
abc 

PRS 0 24.3 35.5 50.6 64.7 82.7 170 177 199 207 212
b 

13.6
cd 

70.6
abc 

RS    0 18.5 21.7 24.1 23.7 27.3 57.8 64.3 69.1 77.9 86.0
f 

15.9
a 

59.6
d 

BS   0 14.9 19.0 21.7 22.7 26.4 60.3 68.5 74.2 82.0 88.8
f 

15.7
a 

62.9
cd 

WS      0 17.1 20.5 23.2 32.2 28.0 68.3 75.8 80.9 91.5 98.3
ef 

15.5
a 

64.9
bcd 

SEM           5.79 0.26 1.96 

P-value           P<0.001 P<0.001 P<0.001 

Means with different letters in the same column are significantly different; SEM, standard error of mean; tGP, total gas production; CON, 

sheep mixed concentrate; GTL and BTL, green and black tea leaves; SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, 

company spent green and black tea leaves; RH, ryegrass hay; PRS, perennial ryegrass silage; RS, rice straws; BS, barley straws; WS, wheat 

straws.
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Table 5.6 Means (± SD) CH4 (L/kg OM), CO2 (L/kg OM), pH, and NH3 (mg/L) for 

different tea leaf products and other feeds after 28h incubation. 

Feeds CH4 CO2 pH NH3 

CON  35.7
a
 ± 2.41 185

a
 ± 17.5 6.52

d
 ± 0.07 139

a
 ± 2.44  

GTL 18.1
def

 ± 2.36 119
c
 ± 13.4 6.63

cd
 ± 0.09 51.5

c
 ± 10.7 

BTL 16.5
ef

 ± 2.48 91.9
cd

 ± 12.4 6.74
abc

 ± 0.09 89.3
b
 ± 9.18 

SGTL 22.4
cd

 ± 2.34 119
bc

 ± 13.9 6.66
bcd

 ± 0.03 104
b
 ± 11.0 

SBTL 19.1
de

 ± 1.85 82.1
de

 ± 7.02 6.77
abc

 ± 0.03 127
a
 ± 8.62 

CSGTL 24.4
bc

 ± 0.59 111
c
 ± 4.11 6.70

bc
 ± 0.06 134

a
 ± 3.47 

CSBTL 21.5
cd

 ± 1.33 92.3
cd

 ± 6.27 6.75
abc

 ± 0.04 136
a
 ± 1.72 

RH 22.1
cd

 ± 0.62 112
c
 ± 5.38 6.69

bc
 ± 0.10 129

a
 ± 4.00 

PRS 27.7
b
 ± 3.37 144

b
 ± 14.5 6.64

cd
 ± 0.03 130

a
 ± 5.77 

RS 13.7
f
 ± 1.13 51.2

f
 ± 2.66 6.86

a
 ± 0.03 142

a
 ± 4.40 

BS 13.9
f
 ± 0.35 55.6

f
 ± 3.48 6.80

ab
 ± 0.07 142

a
 ± 3.47 

WS 15.2
ef

 ± 1.11 63.9
ef

 ± 7.09 6.77
abc

 ± 0.02 138
a
 ± 1.91 

SEM 0.93 5.00 0.03 3.24 

P Value P<0.001 P<0.001 P<0.001 P<0.001 

Means with different letters in the same column are significantly different; SD, standard 

deviation; SD, standard deviation; SEM, standard error of mean; CON, sheep mixed 

concentrate; GTL and BTL, green and black tea leaves; SGTL and SBTL, spent green and 

black tea leaves; CSGTL and CSBTL, company spent green and black tea leaves; RH, 

ryegrass hay; PRS, perennial ryegrass silage; RS, rice straws; BS, barley straws; WS, 

wheat straws. 

 

 



166 

 

Table 5.7 Means (± SD) VFA profiles (mmol/L) for various tea leaf products and other feeds after 28h incubation. 

Feeds Acetate Propionate  iso-Butyrate  n-Butyrate  iso-Valetare  valetare  tVFA  A:P ratio  

CON 29.2
a
 ± 4.55 16.8

a
 ± 2.87  0.72

a
 ± 0.09 5.36

a
 ± 0.75 1.01

a
 ± 0.14 1.00

a
 ± 0.15  54.1

a
 ± 8.44 1.75

f
 ± 0.06 

GTL 24.7
abc

 ± 4.43 8.96
cd

 ± 1.14 0.48
bcd

 ± 0.11 3.75
bcd

 ± 0.67 0.66
bcd

 ± 0.17 0.56
def

 ± 0.12 39.1
bc

 ± 6.61 2.75
a
 ± 0.17 

BTL 22.8
abcd

 ± 3.01 9.32
cd

 ± 0.95 0.43
bcd

 ± 0.09 3.32
bcde

 ± 0.55 0.57
bcd

 ± 0.15 0.52
def

 ± 0.10 36.9
bc

 ± 4.78 2.44
bc

 ± 0.08 

SGTL 24.5
abcd

 ± 4.14 9.64
cd

 ± 1.31 0.52
abc

 ± 0.08 4.18
abc

 ± 0.75 0.71
abcd

 ± 0.13 0.62
bcde

 ± 0.09 40.2
bc

 ± 6.47 2.54
ab

 ± 0.11 

SBTL 25.1
ab

 ± 1.31 10.5
bcd

 ± 0.60 0.56
ab

 ± 0.10 4.35
ab

 ± 0.30 0.81
ab

 ± 0.22 0.67
bcd

 ± 0.08 41.9
ab

 ± 2.01 2.39
bc

 ± 0.02 

CSGTL 22.9
abcd

 ± 3.17 9.39
cd

 ± 1.15 0.51
bc

 ± 0.10 4.11
abc

 ± 0.62 0.73
abc

 ± 0.15 0.61
cde

 ± 0.09 38.3
bc

 ± 5.25 2.44
bc

 ± 0.04 

CSBTL 21.4
bcd

 ± 2.04 9.04
cd

 ± 0.96 0.46
bcd

 ± 0.04 3.75
bcd

 ± 0.33 0.63
bcd

 ± 0.07 0.56
cdef

 ± 0.05 35.8
bc

 ± 3.47 2.36
bcd

 ± 0.03 

RH 23.7
abcd

 ± 1.41 11.3
bc

 ± 0.81 0.50
bc

 ± 0.03 3.45
bcde

 ± 0.20 0.70
abcd

 ± 0.05 0.84
ab

 ± 0.06 40.5
bc

 ± 2.53 2.11
e
 ± 0.04 

PRS 24.1
abcd

 ± 1.94 13.2
b
 ± 1.27 0.54

abc
 ± 0.06 3.89

bc
 ± 0.53 0.75

abc
 ± 0.13 0.78

abc
 ± 0.11 43.3

ab
 ± 3.78 1.82

f
 ± 0.03 

RS 16.9
d
 ± 1.91 7.79

d
 ± 0.98 0.35

cd
 ± 0.04 2.51

de
 ± 0.28 0.48

cd
 ± 0.06 0.40

ef
 ± 0.05 28.5

c
 ± 3.30 2.18

de
 ± 0.04 

BS 21.5
bcd

 ± 2.38 9.45
cd

 ± 0.81 0.40
bcd

 ± 0.04 2.99
cde

 ± 0.23 0.51
bcd

 ± 0.08 0.45
def

 ± 0.05 35.3
bc

 ± 3.15 2.28
cde

 ± 0.14 

WS 17.4
cd

 ± 3.70 7.61
d
 ± 1.67 0.31

d
 ± 0.08 2.30

e
 ± 0.58 0.40

d
 ± 0.12 0.35

f
 ± 0.09 28.4

c
 ± 6.20 2.30

cde
 ± 0.07 

SEM 1.73 0.77 0.04 0.30 0.08 0.05 2.88 0.05 

P Value P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 

Means with different letters in the same column are significantly different; SD, standard deviation; SEM, standard error of mean; VFA, 

volatile fatty acid, tVFA, total VFA; A:P ratio, acetate to propionate ratio; CON, sheep mixed concentrate; GTL and BTL, green and black 

tea leaves; SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent green and black tea leaves; RH, ryegrass 

hay; PRS, perennial ryegrass silage; RS, rice straws; BS, barley straws; WS, wheat straws.  
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5.4.2 Experiment 2: The effect of GTL and BTL inclusions into RS and RH based 

diets on in-vitro degradability, fermentation, and gas profiles 

5.4.2.1 IVDMD, IVOMD, and IVCPD   

 Table 5.8 shows that the diets differed significantly for IVDMD (g/kg DM) after 

24h incubation but not the tea leaf inclusions or their interaction with the diets. The RH-

based diet, averaged over all the tea leaf inclusions, had significantly higher IVDMD than 

the RS-based diet. Table 5.9 shows that the main effects of both the tea leaf inclusions and 

diets were significant for IVOMD (g/kg DM) after 24h incubation but not their interaction. 

Across the diets, there were no significant differences between all the tea leaf inclusions 

and the T0 containing no tea leaves for IVOMD but the GTL50 and GTL100 inclusions 

had significantly greater IVOMD compared with the BTL100 inclusion. The RH-based 

diets, averaged over all the tea leaf inclusions, had significantly higher IVOMD than the 

RS-based diets.  

 

Table 5.8 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on IVDMD (g/kg DM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 535 536 557 513 506 529
b 

10.5 

RH-based 658 649 614 606 550 615
a 

11.1 

Means 597 593 585 559 528  P<0.001 

SEM 16.5 16.5 17.9 16.5 17.9 P>0.05  

Means with different letters in the same column for the diets are significantly different; 

SEM, standard error of mean; IVDMD, in-vitro dry matter degradability; GTL and BTL, 

green and black tea leaves; RS, rice straws; RH, ryegrass hay.  
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Table 5.9 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on IVOMD (g/kg DM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 719 725 744 705 701 719
b 

5.91 

RH-based 814 809 793 782 752 790
a 

6.29 

Means 766
AB 

767
A 

768
A 

743
AB 

727
B 

 P<0.001 

SEM 9.34 9.34 10.1 9.34 10.1 P<0.05  

Means with different letters either in the same column for the diets (small letters) or row 

for tea leaf inclusions (capital letters) are significantly different; IVOMD, in-vitro organic 

matter degradability; GTL and BTL, green and black tea leaves; RS, rice straws; RH, 

ryegrass hay.  

        

 Table 5.10 shows that both the tea leaf inclusions and diets had significant effects 

on IVCPD (g/kg DM) after 24h incubation but not for their interaction. Across the diets, 

there were mostly no significant differences between the the T0 containing no tea leaves 

and most the tea leaf inclusions on IVCPD except being significantly higher for the 

GTL100 inclusion compared with the T0. The RH-based diets, averaged over all the tea 

leaf inclusions, had significantly higher IVCPD than the RS-based diets.  

 

Table 5.10 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on IVCPD (g/kg DM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 610 670 721 689 692 677
b 

8.88 

RH-based 696 720 747 713 705 716
a 

9.12 

Means 653
B 

695
AB 

734
A 

701
AB 

699
AB 

 P<0.01 

SEM 14.8 14.8 13.8 13.8 13.8 P<0.05  

Means with different letters either in the same column for the diets (small letters) or row 

for the tea leaf inclusions (capital letters) are significantly different; SEM, standard error 

of mean; IVCPD, in-vitro crude protein degradability; GTL and BTL, green and black tea 

leaves; RS, rice straws; RH, ryegrass hay.  
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5.4.2.2 NH3 concentrations  

 According to Table 5.11, both the tea leaf inclusions and diets had significant 

effects on NH3 concentrations (mg/L) after 24h incubation but not their interaction. Across 

the diets, almost all the tea leaf inclusions had significantly lower NH3 concentrations than 

the T0 without tea leaves except for the BTL50 inclusion.  

 

Table 5.11 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on NH3 concentrations (mg/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 158 140 124 150 140 142
a 

1.71 

RH-based 146 133 108 139 133 132
b 

1.77 

Means 152
A 

137
B 

116
C 

145
AB 

136
B 

 P<0.001 

SEM 2.71 2.71 2.93 2.71 2.71 P<0.001  

Means with different letters either in the same column for the diets (small letters) or row 

for the tea leaf inclusions (capital letters) are significantly different; SEM, standard error 

of mean; GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay.  

5.4.2.3 VFA profiles 

5.4.2.3.1 Total VFA  

  According to Table 5.12, the tea leaf inclusions, diets, and their interaction had no 

significant effect on tVFA concentrations (mmol/L) after 24h incubation. 

 

Table 5.12 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on tVFA concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 47.3 52.3 53.0 47.6 50.2 50.1
 

1.15 

RH-based 50.0 46.7 49.7 47.3 48.0 48.3
 

1.18 

Means 48.6 49.5 51.3 47.4 49.1  P>0.05 

SEM 1.81 1.81 1.96 1.81 1.81 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  
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5.4.2.3.2 Acetate 

  According to Table 5.13, the tea leaf inclusions, diets, and their interaction had no 

significant effect on acetate concentrations (mmol/L) after 24h incubation. 

 

Table 5.13 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on acetate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 27.4 31.2 31.9 27.6 29.8 29.6 0.80 

RH-based 29.1 27.3 29.3 27.3 28.1 28.2 0.83 

Means 28.2 29.2 30.6 27.4 29.0  P>0.05 

SEM 1.27 1.38 1.27 1.27 1.27 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  

5.4.2.3.3 Propionate 

 According to Table 5.14, the tea leaf inclusions, diets, and their interaction had no 

significant effect on propionate concentrations (mmol/L) after 24h incubation. 

 

Table 5.14 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on propionate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 10.1 11.0 11.0 10.2 10.6 10.6 0.24 

RH-based 10.7 9.53 10.4 10.0 10.1 10.1 0.25 

Means 10.4 10.2 10.7 10.1 10.3  P>0.05 

SEM 0.38 0.38 0.41 0.38 0.38 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  

5.4.2.3.4 iso-Butyrate 

 According to Table 5.15, the tea leaf inclusions, diets, and their interaction had no 

significant effect on iso-butyrate concentrations (mmol/L) after 24h incubation. 
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Table 5.15 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on iso-butyrate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 0.83 0.85 0.85 0.83 0.82 0.84 0.01 

RH-based 0.85 0.81 0.81 0.82 0.80 0.82 0.01 

Means 0.84 0.83 0.83 0.82 0.81  P>0.05 

SEM 0.02 0.02 0.02 0.02 0.02 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  

5.4.2.3.5. n-Butyrate 

 According to Table 5.16, the tea leaf inclusions, diets, and their interaction had no 

significant effect on n-butyrate concentrations (mmol/L) after 24h incubation. 

 

Table 5.16 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on n-butyrate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 6.55 6.91 6.91 6.63 6.74 6.75 0.09 

RH-based 6.86 6.57 6.76 6.74 6.65 6.72 0.09 

Means 6.70 6.74 6.84 6.69 6.70  P>0.05 

SEM 0.14 0.14 0.15 0.14 0.14 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  

5.4.2.3.6. iso-Valerate 

 According to Table 5.17, the tea leaf inclusions, diets, and their interaction had no 

significant effect on iso-valerate concentrations (mmol/L) after 24h incubation. 
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Table 5.17 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on iso-valerate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 1.41 1.42 1.38 1.38 1.33 1.38 0.01 

RH-based 1.43 1.37 1.36 1.38 1.32 1.37 0.02 

Means 1.42 1.39 1.37 1.38 1.32  P>0.05 

SEM 0.03 0.02 0.03 0.02 0.02 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay.  

5.4.2.3.7 n- Valerate 

 According to Table 5.18, both tea leaf inclusions and diets had significant effects 

on n-valerate concentrations (mmol/L) after 24h incubation but not for their interaction. 

Across the diets, there were mostly no differences between the most tea leaf inclusions and 

the T0 without tea leaves except being significantly lower for the BTL100 inclusion 

compared with the T0 and GTL50 inclusions. The RH-based diets, averaged over all the 

tea leaf inclusions, had significantly higher n-valerate concentrations than the RS-based 

diets. 

 

Table 5.18 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on n-valerate concentrations (mmol/L) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 0.97 1.01 0.96 0.97 0.92 0.97
b 

0.01 

RH-based 1.11 1.08 1.02 1.04 0.99 1.05
a 

0.01 

Means 1.04
A 

1.04
A 

0.99
AB 

1.00
AB 

0.96
B 

 P<0.05 

SEM 0.02
 0.02 0.02 0.02 0.02 P<0.05  

Means with different letters either in the same column for the diets (small letters) or row 

for the tea leaf inclusions (capital letters) are significantly different; SEM, standard error 

of mean; GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay.  

5.4.2.4 pH levels 

 According to Table 5.19, both tea leaf inclusions and diets had significant effects 

on pH of the incubation fluids after 24h incubation but not for their interaction. Across the 

diets, all the GTL inclusions reduced pH significantly compared with the T0 without tea 
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leaves but all the BTL inclusions had no significant effects on pH compared with the T0. 

The incubations for RH-based diets, averaged over all the tea leaf inclusions, had 

significantly lower pH than the incubations for RS-based diets. 

 

Table 5.19 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on pH levels after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 6.71 6.68 6.68 6.70 6.70 6.69
a 

0.002 

RH-based 6.66 6.64 6.63 6.66 6.67 6.65
b 

0.002 

Means 6.69
A 

6.66
B 

6.65
B 

6.67
A 

6.68
A 

 P<0.001 

SEM 0.003 0.003 0.003 0.003 0.004 P<0.001  

Means with different letters either in the same column for the diets (small letters) or row 

for the tea leaf inclusions (capital letters) are significantly different; SEM, standard error 

of mean; GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.2.5 Gas profiles 

5.4.2.5.1 Total gas production 

  According to Table 5.20, both the tea leaf inclusions and diets had significant 

effects on tGP (L/kg OM) but not for their interaction. The RH-based diets, averaged over 

all the tea leaf inclusions, had significantly higher tGP than the RS-based diets (See also 

Figure 5.1) while across the diets, the GTL50 inclusion tended to result in higher tGP than 

T0 without tea leaves although they were not significantly different. The GTL50 inclusion 

also had a significantly higher tGP than the BTL100 inclusion. 
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Table 5.20 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on tGP (L/kg OM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 235 241 239 234 233 236
b 

1.17 

RH-based 252 253 254 249 246 251
a 

1.21 

Means 243
AB 

247
A 

246
AB 

241
AB 

239
B 

 P<0.001 

SEM 1.85 1.85 2.00 1.85 1.85 P<0.05  

Means with different letters either in the same column for the diets (small letters) or row 

for tea leaf inclusions (capital letters) are significantly different; SEM, standard error of 

mean; GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

 

Figure 5.1 Comparison between rice straws (RS) and ryegrass hay (RH) based diets across 

different tea leaf inclusions for tGP (L/kg OM) over 24h incubation. 

5.4.2.5.2 CH4 percentage in gas samples 

 Table 5.21 shows that CH4 percentage in the gas samples was significantly affected 

by the tea leaf inclusions but not the diets while their interaction was significant after 24h 

incubation. The tea leaf inclusions, averaged over all the diets, were likely to result in a 

lower percentage of CH4 in the gas sample compared with the T0 without tea leaves and it 

was significant for the GTL100 inclusion. Here, the GTL100 inclusion significantly 

reduced CH4 concentration in the gas sample in the RH-based diet but not in the RS-based 

diet. 
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Table 5.21 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CH4 percentage (%) in the gas sample after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 14.0
a 

13.2
ab 

13.9
a 

13.4
ab 

13.3
ab 

13.55 0.16 

RH-based 14.2
a 

13.3
ab 

12.0
b 

13.1
ab 

13.2
ab 

13.15 0.16 

Means 14.1
A 

13.3
AB 

12.9
B 

13.2
AB 

13.2
AB 

 P>0.05 

SEM 0.24 0.24 0.26 0.26 0.24 P<0.05  

Means with different letters in the same row for the diets (capital letters) or the 

combination between column and row for the interaction between the diets and tea leaf 

inclusions (italic small letter) are significantly different; SEM, standard error of mean; 

GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

 Table 5.22 shows that the tea leaf inclusions had no significant effect but the diets 

and their interaction had significant effects on CH4 production (L/kg DM) after 24h 

incubation. The tea leaf inclusions, averaged over all the diets, had no significant effect on 

CH4 compared with T0 without tea leaves. However, the GTL100 inclusion in the RH-

based diet significantly reduced CH4 production from the corresponding T0 without tea 

leaves but not in the RS-based diet. Across the inclusions, fermentation of the RH-based 

diet resulted in significantly greater CH4 production than fermentation of the RS-based 

diet.  

 

Table 5.22 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CH4 production (L/kg DM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 27.9
ab 

27.2
b 

28.6
ab 

26.7
b 

27.5
b 

27.4
b 

0.36 

RH-based 31.2
a 

29.4
ab 

26.8
b 

28.5
ab 

28.5
ab 

28.9
a 

0.36 

Means 29.6 28.3 27.7 27.6 27.5  P<0.01 

SEM 0.55 0.55 0.60 0.60 0.55 P>0.05  

Means with different letters in the same column for the diets (small letters) or the 

combination between column and row for the interaction of the diets and tea leaf 

inclusions (italic small letter) are significantly different; SEM, standard error of mean; 

GTL and BTL, green and black tea leaves; RS, rice straws; RH, ryegrass hay. 
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 Table 5.23 shows that the tea leaf inclusions had significant effects on CH4 

production (L/kg OM) after 24h incubation but not for the diets and their interactions. The 

tea leaf inclusions, averaged over all the diets, tended to reduce CH4 production from T0 

without tea leaves and it was significant for the BTL100 inclusion whereas across tea leaf 

inclusions, the RH-based diet had no significant difference to the RS-based diet in CH4 

production. 

 

Table 5.23 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CH4 production (L/kg OM) after 24h incubation. 

Diets 
Tea leaves inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 29.9 28.9 30.2 28.4 27.9 32.0 0.41 

RH-based 32.4 30.6 30.2 29.6 29.5 33.0 0.41 

Means 34.3
A 

32.7
AB 

31.9
AB 

31.9
AB 

31.6
B 

 P>0.05 

SEM 0.63 0.63 0.69 0.69 0.63 P<0.05  

Means with different letters in the same row for the tea leaf inclusions are significantly 

different; SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, 

rice straw; RH, ryegrass hay. 

5.4.2.5.3 CO2 percentage in gas samples 

 Table 5.24 shows that the tea leaf inclusions, diets, and their interaction had no 

significant effect on the percentage of CO2 in the gas samples after 24h incubation. 

 

Table 5.24 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CO2 percentage (%) in the gas sample after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 62.9 67.8 70.7 68.6 67.4 67.5 1.61 

RH-based 72.0 63.9 66.8 66.3 64.6 66.7 1.57 

Means 67.5 65.8 68.7 67.4 66.0  P>0.05 

SEM 2.59 2.40 2.59 2.59 2.40 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay. 

  

 Table 5.25 shows that the diets had a significant effect on CO2 production (L/kg 

DM) after 24h incubation but it was not affected by the tea leaf inclusions and there was no 
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significant interaction. The RH-based diets, averaged over all the tea leaf inclusions, 

resulted in significantly higher CO2 production than the RS-based diets. 

 

Table 5.25 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CO2 production (L/kg DM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 126 139 146 137 135 137
b 

3.54 

RH-based 159 142 149 144 139 146
a 

3.43 

Means 142 140 147 141 137  P<0.05 

SEM 5.68 5.26 5.68 5.68 5.26 P>0.05  

Means with different letters in the same column for the diets are significantly different; 

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay. 

 

 Table 5.26 shows that the tea leaf inclusions, diets, and their interaction had no 

significant effect on CO2 production (L/kg OM) after 24h incubation. 

 

Table 5.26 Effect of GTL and BTL inclusions at 0, 50, and 100 g/kg DM into RS or RH 

based diets on CO2 production (L/kg OM) after 24h incubation. 

Diets 
Tea leaf inclusions 

Means SEM 
T0 GTL50 GTL100 BTL50 BTL100 

RS-based 148 163 169 160 157 159 4.09 

RH-based 181 162 170 165 159 167 3.97 

Means 165 162 170 162 158  P>0.05 

SEM 6.56 6.08 6.56 6.56 6.08 P>0.05  

SEM, standard error of mean; GTL and BTL, green and black tea leaves; RS, rice straws; 

RH, ryegrass hay. 

5.4.3 Experiment 3: The effect of different STL inclusions into RS and RH based diets 

on in-vitro degradability, fermentation, and gas profiles  

5.4.3.1 IVDMD, IVOMD, and IVCPD 

 Tables 5.27 and 5.28 present that the diets had a significant effect on IVDMD and 

IVOMD (g/kg DM) after 24h incubation but not for the STL inclusions and their 

interaction. The RH-based diets, averaged over all the STL inclusions, had significantly 

higher IVDMD and IVOMD than the RS-based diets.  
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Table 5.27 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on IVDMD (g/kg DM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      571 643 607 14.9 

SGTL100 597 649 623 14.9 

SGTL200 592 646 619 14.9 

SBTL100 569 622 596 13.8 

SBTL200 590 622 606 14.9 

CSGTL100 595 661 628 13.8 

CSGTL200 604 651 628 13.8 

CSBTL100 556 656 606 13.8 

CSBTL200 580 640 610 13.8 

Means    584
B 

643
A 

 P>0.05 

SEM 6.61 6.89 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

Table 5.28 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on IVOMD (g/kg DM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      775 819 797 9.07 

SGTL100 778 822 800 9.07 

SGTL200 772 817 795 9.07 

SBTL100 767 802 784 8.40 

SBTL200 772 786 779 8.40 

CSGTL100 780 840 810 8.40 

CSGTL200 791 837 814 8.40 

CSBTL100 765 837 801 8.40 

CSBTL200 782 827 805 8.40 

Means    776
B 

821
A 

 P>0.05 

SEM 4.03 4.10 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 
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 Table 5.29 shows that the diets had no significant effect on IVCPD (g/kg DM) after 

24h incubation but it was significantly affected by STL inclusions and their interaction 

with diets. Across the diets, there were no significant differences among the STL 

inclusions but the CSGTL100 and CSGTL200 inclusions increased IVCPD significantly 

from T0 without STL. The RS-based diets, averaged over all the STL inclusions, had a 

similar IVCPD to the RH-based diets. 

 

Table 5.29 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on IVCPD (g/kg DM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      696
c 

802
ab 

749
c 

12.7 

SGTL100 782
abc 

799
ab 

790
abc 

13.8 

SGTL200 806
ab 

793
abc 

780
abc 

13.8 

SBTL100 793
abc 

764
abc 

778
abc 

12.7 

SBTL200 803
ab 

752
abc 

778
abc 

12.7 

CSGTL100 805
ab 

821
ab 

813
ab 

12.7 

CSGTL200 836
a 

822
ab 

829
a 

12.7 

CSBTL100 805
ab 

802
ab 

803
abc 

12.7 

CSBTL200 742
bc 

798
ab 

770
bc 

12.7 

Means    785 795  P<0.01 

SEM 6.00 6.22 P>0.05  

Means with different letters in the same column for the STL inclusions (small letter) or 

column and row combination for the interaction between the diets and STL inclusions 

(Italic small letter) are significantly different; SEM, standard error of mean; SGTL and 

SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent green and 

black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.2 NH3 concentrations 

 According to Table 5.30, the STL inclusions, diets, and their interaction had 

significant effects on NH3 concentrations in incubation fluids (mg/L) after 24h incubation. 

The SGTL200 inclusion, averaged over all the diets, tended to decrease NH3 

concentrations compared with T0 without STL although it was not significantly different. 

Across the STL inclusions, the RS-based diets produced significantly higher NH3 

concentrations than the RH-based diets. 



180 

 

Table 5.30 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on NH3 concentrations (mg/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      156
abc 

153
abc 

154
ab 

1.32 

SGTL100 154
abc 

148
b 

151
ab 

1.32 

SGTL200 149
bc 

149
bc 

149
b 

1.42 

SBTL100 157
abc 

149
bc 

153
ab 

1.32 

SBTL200 153
abc 

150
bc 

151
ab 

1.32 

CSGTL100 158
ab 

151
bc 

155
ab 

1.32 

CSGTL200 157
abc 

154
abc 

155
ab 

1.42 

CSBTL100 163
a 

151
bc 

157
a 

1.42 

CSBTL200 155
abc 

155
abc 

155
ab 

1.32 

Means    156
A 

151
B 

 P<0.01 

SEM 0.63 0.64 P<0.001  

Means with different letters in the same column for STL inclusions (small letter) or row for 

diets (capital letters) or column and row combination for their interaction (Italic small 

letter) are significantly different; SEM, standard error of mean; SGTL and SBTL, spent 

green and black tea leaves; CSGTL and CSBTL, company spent green and black tea 

leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3 VFA profiles 

5.4.3.3.1 Total VFA  

 Table 5.31 shows that diets had a significant effect on tVFA concentrations 

(mmol/L) after 24h incubation but not for the STL inclusions and their interaction. The 

RH-based diets, average over all the STL inclusions, had significantly higher tVFA 

concentrations than the RS-based diets. 
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Table 5.31 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on tVFA concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      38.1 43.3 40.7 1.38 

SGTL100 36.6 45.5 41.1 1.38 

SGTL200 39.1 42.2 40.7 1.38 

SBTL100 36.4 40.0 38.2 1.38 

SBTL200 35.6 40.1 37.9 1.38 

CSGTL100 39.6 43.1 41.3 1.38 

CSGTL200 38.0 43.7 40.9 1.38 

CSBTL100 35.3 42.7 39.0 1.38 

CSBTL200 37.7 42.3 40.0 1.38 

Means    37.4
B 

42.6
A 

 P>0.05 

SEM 0.65 0.65 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.2 Acetate 

 Table 5.32 shows that the diets had a significant effect on acetate concentrations 

(mmol/L) after 24h incubation but not for the STL inclusions and their interaction. The 

RH-based diets, averaged over all the STL inclusions, had significantly higher acetate 

concentrations than the RS-based diets. 
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Table 5.32 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on acetate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      20.5 23.9 22.2 0.75 

SGTL100 20.1 25.3 22.7 0.75 

SGTL200 21.9 23.7 22.8 0.75 

SBTL100 19.9 22.2 21.0 0.75 

SBTL200 19.7 22.3 21.0 0.75 

CSGTL100 21.5 23.7 22.6 0.75 

CSGTL200 21.0 24.1 22.6 0.75 

CSBTL100 19.2 23.6 21.4 0.75 

CSBTL200 20.6 23.3 21.9 0.75 

Means    20.5
B 

23.6
A 

 P>0.05 

SEM 0.35 0.35 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.3 Propionate 

 Table 5.33 shows that the diets had significant effects on propionate concentrations 

(mmol/L) after 24h incubation but not for the STL inclusions and their interaction. The 

RH-based diets, averaged over all the STL inclusions, had significantly higher propionate 

concentrations than the RS-based diets. 
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Table 5.33 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on propionate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      12.2 13.1 12.7 0.41 

SGTL100 11.2 13.7 12.5 0.41 

SGTL200 11.7 12.4 12.1 0.41 

SBTL100 11.2 12.2 11.7 0.41 

SBTL200 10.9 12.0 11.4 0.41 

CSGTL100 12.3 13.1 12.7 0.41 

CSGTL200 11.6 13.0 12.3 0.41 

CSBTL100 11.0 12.9 11.9 0.41 

CSBTL200 11.6 12.7 12.1 0.41 

Means    11.5
B 

12.8
A 

 P>0.05 

SEM 0.19 0.19 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.4 iso-Butyrate 

 Table 5.34 shows that the diets had significant effects on iso-butyrate 

concentrations (mmol/L) after 24h incubation but not for the STL inclusions and their 

interaction. The RH-based diets, averaged over all the STL inclusions, had significantly 

higher iso-butyrate concentrations than the RS-based diets. 
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Table 5.34 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on iso-butyrate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      0.53 0.58 0.56 0.02 

SGTL100 0.48 0.60 0.54 0.02 

SGTL200 0.49 0.56 0.52 0.02 

SBTL100 0.50 0.53 0.51 0.02 

SBTL200 0.46 0.56 0.51 0.02 

CSGTL100 0.56 0.57 0.57 0.02 

CSGTL200 0.50 0.61 0.56 0.02 

CSBTL100 0.49 0.59 0.54 0.02 

CSBTL200 0.52 0.60 0.56 0.02 

Means    0.50
B 

0.58
A 

 P>0.05 

SEM 0.01 0.01 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.5 n-Butyrate 

 Table 5.35 shows that the diets had significant effects on n-butyrate concentrations 

(mmol/L) at 24h incubation but not for the STL inclusions and their interaction. The RH-

based diets, averaged over all the STL inclusions, had significantly higher n-butyrate 

concentrations than the RS-based diets. 
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Table 5.35 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on n-butyrate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      3.23 3.65 3.44 0.13 

SGTL100 3.19 3.86 3.53 0.13 

SGTL200 3.35 3.62 3.49 0.13 

SBTL100 3.16 3.37 3.27 0.13 

SBTL200 3.06 3.48 3.27 0.13 

CSGTL100 3.43 3.69 3.56 0.13 

CSGTL200 3.28 3.85 3.56 0.13 

CSBTL100 3.08 3.67 3.38 0.13 

CSBTL200 3.24 3.76 3.50 0.13 

Means    3.23
B 

3.66
A 

 P>0.05 

SEM 0.06 0.06 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.6 iso-valerate 

 Table 5.36 shows that the diets had significant effects on iso-valerate 

concentrations (mmol/L) after 24h incubation but not for the STL inclusions and their 

interaction. The RH-based diets, averaged over all the STL inclusions, had significantly 

higher iso-valerate concentrations than the RS-based diets. 
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Table 5.36 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on iso-valerate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      0.64 0.73 0.69 0.04 

SGTL100 0.67 0.73 0.70 0.04 

SGTL200 0.65 0.69 0.67 0.04 

SBTL100 0.66 0.64 0.65 0.04 

SBTL200 0.59 0.71 0.65 0.04 

CSGTL100 0.75 0.72 0.74 0.04 

CSGTL200 0.65 0.78 0.72 0.04 

CSBTL100 0.65 0.76 0.70 0.04 

CSBTL200 0.66 0.79 0.72 0.04 

Means    0.66
B 

0.73
A 

 P>0.05 

SEM 0.02 0.02 P<0.01 P>0.05 

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.3.7 n-Valerate 

 Table 5.37 shows that the diets had significant effects on n-valerate concentrations 

(mmol/L) after 24h incubation but not for the STL inclusions and their interaction. The 

RH-based diets, averaged over all the STL inclusions, had significantly higher valerate 

concentrations than the RS-based diets. 
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Table 5.37 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on n-valerate concentrations (mmol/L) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      0.99 1.32 1.15 0.04 

SGTL100 0.97 1.32 1.15 0.04 

SGTL200 0.96 1.17 1.07 0.04 

SBTL100 0.95 1.20 1.08 0.04 

SBTL200 0.90 1.15 1.03 0.04 

CSGTL100 1.06 1.30 1.18 0.04 

CSGTL200 0.10 1.30 1.15 0.04 

CSBTL100 0.94 1.30 1.12 0.04 

CSBTL200 0.99 1.29 1.14 0.04 

Means    0.98
B 

1.26
A 

 P>0.05 

SEM 0.02 0.02 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.4 pH levels 

 Table 5.38 shows that the STL inclusions, diets, and their interaction had 

significant effects on pH levels in incubation fluids after 24h incubation. The STL 

inclusions, averaged over all the diets, tended to decrease pH from the T0 without STL and 

this was significant for the CSGTL200 inclusion. Across the STL inclusions, the 

incubations with the RS-based diets had a significantly higher pH than incubations with the 

RH-based diets. 
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Table 5.38 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on pH after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      6.77
a 

6.68
bcdef 

6.72
a 

0.01 

SGTL100 6.70
abcdef 

6.69
abcdef 

6.70
ab 

0.01 

SGTL200 6.76
ab 

6.65
ef 

6.70
ab 

0.01 

SBTL100 6.74
abc 

6.62
f 

6.68
ab 

0.01 

SBTL200 6.73
abcde 

6.66
cdef 

6.70
ab 

0.01 

CSGTL100 6.74
abcd 

6.67
bcdef 

6.71
ab 

0.01 

CSGTL200 6.68
bcdef 

6.66
def 

6.67
b 

0.01 

CSBTL100 6.74
abc 

6.72
abcde 

6.73
a 

0.01 

CSBTL200 6.72
abcde 

6.72
abcde 

6.72
ab 

0.01 

Means    6.73
A 

6.68
B 

 P<0.01 

SEM 0.01 0.01 P>0.001  

Means with different letters either in the same column for the STL inclusions (small letters) 

or row for the diets (capital letters) or column and row combination for their interaction 

(italic small letter) are significantly different; SEM, standard error of mean; SGTL and 

SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent green and 

black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.4.3.5 Gas profiles  

5.4.3.5.1 Total gas production  

 Table 5.39 shows that the STL inclusions, diets, and their interaction had 

significant effects on tGP (L/kg OM) after 24h incubation. Across the diets, all the STL 

inclusions had no significant difference on tGP to T0 without STL but the SGTL100 

inclusion had significantly greater tGP than the SBTL100 and CSBTL200 inclusions. The 

RH-based diets, averaged over all the STL inclusions, had significantly greater tGP than 

the RS-based diets (see also Figure 5.2). Here, all the STL inclusions in the RH-based diets 

had the same tGP but conversely, all STL inclusions in the RS-based diet tended to have 

higher tGP than T0 and this was significant for the SGTL100 and CSGTL200 inclusions. 
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Table 5.39 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on tGP (L/kg OM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      153
d 

197
a 

175
abc 

2.17 

SGTL100 171
bc 

197
a 

184
a 

2.17 

SGTL200 168
bcd 

196
a 

180
abc 

2.34 

SBTL100 163
cd 

190
a 

176
abc 

2.17 

SBTL200 160
cd 

184
ab 

172
c 

2.17 

CSGTL100 165
cd 

188
a 

177
abc 

2.17 

CSGTL200 172
bc 

193
a 

183
ab 

2.17 

CSBTL100 163
cd 

192
a 

177
abc 

2.17 

CSBTL200 161
cd 

184
ab 

171
bc 

2.34 

Means    164
A 

191
B 

 P<0.01 

SEM 1.02 1.06 P<0.001  

Means with different letters either in the same column for the STL inclusions (small letters) 

or row for the diets (capital letters) or column and row combination for their interaction 

(italic small letter) are significantly different; SEM, standard error of mean; SGTL and 

SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent green and 

black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

 

Figure 5.2 Comparison between rice straws (RS) and ryegrass hay (RH) based diets across 

different STL inclusions for tGP (L/kg OM) over 24h incubation. 
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5.4.3.5.2 CH4 percentage in gas samples  

 Table 5.40 shows that both the STL inclusions and diets had significant effects on 

the percentage of CH4 in gas samples after 24h incubation but not for their interaction. 

Across the diets, the STL inclusions tended to decrease the percentage of CH4 in gas 

samples although it was significant for the SGTL200 inclusion only. The RS-based diets, 

averaged over all the STL inclusions, had a significantly greater percentage of CH4 in gas 

samples than the RH-based diets.  

 Table 5.41 and Table 5.42 present that the diets had a significant effect on CH4 

production (L/kg DM or L/kg OM) after 24h incubation but not for the STL inclusions and 

their interaction. In contrast to the percentage of CH4 in gas samples, the RS-based diets, 

averaged over all the STL inclusions, had a significantly lower CH4 production than was 

seen for the RH-based diets.  

 

Table 5.40 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CH4 percentage (%) in the gas samples after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      14.0 13.6 13.8
a 

0.16 

SGTL100 13.4 13.2 13.3
ab 

0.16 

SGTL200 13.1 13.0 13.1
b 

0.16 

SBTL100 13.7 13.8 13.8
ab 

0.16 

SBTL200 13.2 13.3 13.3
ab 

0.16 

CSGTL100 14.0 13.0 13.5
ab 

0.17 

CSGTL200 13.2 13.5 13.4
ab 

0.17 

CSBTL100 13.8 12.8 13.3
ab 

0.16 

CSBTL200 13.7 13.3 13.5
ab 

0.17 

Means    13.6
A 

13.3
B 

 P<0.05 

SEM 0.08 0.08 P<0.05  

Means with different letters either in the same column for the STL inclusions (small letters) 

or row for the diets (capital letters) are significantly different; SEM, standard error of 

mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, company 

spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 
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Table 5.41 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CH4 production (L/kg DM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      19.7 25.5 22.6 0.38 

SGTL100 21.1 24.9 23.0 0.38 

SGTL200 20.6 24.6 22.3 0.41 

SBTL100 20.7 25.0 22.8 0.38 

SBTL200 19.8 23.4 21.6 0.38 

CSGTL100 21.1 23.6 22.6 0.41 

CSGTL200 21.4 25.5 23.1 0.41 

CSBTL100 20.7 23.7 22.4 0.41 

CSBTL200 21.0 23.9 22.2 0.41 

Means    20.7
B 

24.5
A 

 P>0.05 

SEM 0.19 0.19 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

Table 5.42 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CH4 production (L/kg OM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      21.5 26.8 24.2 0.40 

SGTL100 22.9 26.0 24.4 0.40 

SGTL200 22.1 25.6 23.8 0.43 

SBTL100 22.4 26.2 24.3 0.40 

SBTL200 21.2 24.4 22.8 0.40 

CSGTL100 22.9 24.4 23.6 0.43 

CSGTL200 22.7 26.1 24.4 0.43 

CSBTL100 22.2 24.5 23.3 0.43 

CSBTL200 22.2 24.6 23.4 0.43 

Means    22.2
B 

25.4
A 

 P>0.05 

SEM 0.20 0.20 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 
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5.4.3.5.3 CO2 percentage in gas samples 

 Table 5.43 shows that diets had a significant effect on the percentage of CO2 in the 

gas samples after 24h incubation but not for the STL inclusions and their interaction. The 

RH-based diets, averaged over all STL inclusions, had a significantly higher percentage of 

CO2 in gas samples than the RS-based diets. 

 

Table 5.43 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CO2 percentage (%) in the gas samples after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      64.3 73.0 68.7 1.67 

SGTL100 61.7 72.2 67.0 1.67 

SGTL200 68.7 69.1 68.9 1.67 

SBTL100 64.3 73.5 68.9 1.67 

SBTL200 61.0 66.7 63.8 1.67 

CSGTL100 67.2 66.4 66.8 1.81 

CSGTL200 62.8 71.1 66.9 1.81 

CSBTL100 63.3 64.6 64.0 1.81 

CSBTL200 65.4 66.4 65.9 1.67 

Means    64.3
B 

69.2
A 

 P>0.05 

SEM 0.82 0.80 P<0.001  

Means with different letters in the same row for the diets are significantly different; SEM, 

standard error of mean; SGTL and SBTL, spent green and black tea leaves; CSGTL and 

CSBTL, company spent green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

 

 Table 5.44 shows that the main effects of both the STL inclusions and diets on CO2 

production (L/kg DM) after 24h incubation were significant but not their interaction. 

Across the diets, all the STL inclusions had a similar CO2 production compared with T0 

without STL. There were mostly no significant differences among the STL inclusions 

except that SGTL200 inclusion had a significantly higher CO2 production than the 

SBTL200 inclusion. The RH-based diets, averaged over all the STL inclusions, had a 

significantly higher CO2 production than the RS-based diets.  
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Table 5.44 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CO2 production (L/kg DM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      90.3 137 114
ab 

3.18 

SGTL100 97.3 137 117
ab 

3.18 

SGTL200 108 131 120
a 

3.44 

SBTL100 97.1 133 115
ab 

3.18 

SBTL200 91.0 118 104
b 

3.18 

CSGTL100 101 121 111
ab 

3.44 

CSGTL200 102 134 118
ab 

3.44 

CSBTL100 95.0 120 107
ab 

3.44 

CSBTL200 100 120 110
ab 

3.44 

Means    98.0
B 

128
A 

 P<0.05 

SEM 1.50 1.53 P<0.001  

Means with different letters in the same column for the STL inclusions or row for the diets 

are significantly different; SEM, standard error of mean; SGTL and SBTL, spent green and 

black tea leaves; CSGTL and CSBTL, company spent green and black tea leaves; RS, rice 

straws; RH, ryegrass hay. 

  

 Table 5.45 shows that the STL inclusions, diets, and their interaction had a 

significant effect on CO2 production (L/kg OM) after 24h incubation. Across the diets, all 

the STL inclusions had a similar CO2 production compared with T0 without STL. There 

were mostly no significant differences among the STL inclusions except that SGTL200 

inclusion had a significantly higher CO2 production than the SBTL200 inclusion. The RH-

based diets, averaged over all the STL inclusions, had significantly higher CO2 production 

than the RS-based diets.  
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Table 5.45 Effect of different STL inclusions at 0, 100, and 200 g/kg DM into RS or RH 

based diets on CO2 production (L/kg OM) after 24h incubation. 

STL inclusions 
Diets 

Means SEM 
    RS-based     RH-based 

T0      98.6
 

144
 

121
ab 

3.35 

SGTL100 105
 

142
 

124
ab 

3.35 

SGTL200 116
 

137
 

126
a 

3.62 

SBTL100 105
 

139
 

122
ab 

3.35 

SBTL200 98.0
 

123
 

110
b 

3.35 

CSGTL100 110
 

125
 

117
ab 

3.35 

CSGTL200 108
 

137
 

123
ab 

3.62 

CSBTL100 102
 

124
 

113
ab 

3.62 

CSBTL200 106
 

123
 

114
ab 

3.62 

Means    105
B 

133
A 

 P<0.05 

SEM 1.64 1.67 P<0.001  

Means with different letters in the same column for the STL inclusions (small letter) and 

row for the diets (capital letter) are significantly different; SEM, standard error of mean; 

SGTL and SBTL, spent green and black tea leaves; CSGTL and CSBTL, company spent 

green and black tea leaves; RS, rice straws; RH, ryegrass hay. 

5.5 Discussion 

5.5.1 Experiment 1: Individual comparison between tea leaf products and the other 

type of feeds 

 Based on the in-vitro assessment, the mean IVOMD of tea leaf products was higher 

than the straws but slightly lower than the RH and PRS. This suggests that tea leaf 

products would be more degraded in the rumen than the straws. The rate of tea leaf 

products degradation was close to that of high quality forages such as RH and PRS. This 

higher degradability was in line with the higher CP and ME but lower fibre contents in the 

tea leaf products alongside RH and PRS compared with the straws. This observation also 

confirmed that GTL were more degradable in the in-vitro rumen fermentation than the 

BTL counterpart which might have acquired more resistant components due to the 

‘Maillard browning reactions’ during the black tea manufacturing process. There were no 

significant differences among tea leaf products for IVCPD while tea leaf products had a 

significantly lower IVCPD than RH and PRS but higher IVCPD than the straws. Lower 

IVCPD and NH3 concentrations for most tea leaf products than RH and PRS could be 
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attributed to their higher tannin contents that have the ability to modify the microbial 

activity in the rumen. Tannins can bind and protect plant proteins from rumen digestion 

and thus reduce NH3 production (Makkar, 2003a; McSweeney et al., 2001; Min et al., 

2003; Mueller-Harvey, 2006). Interestingly, higher IVCPD for tea leaf products than the 

straws was followed by lower NH3 concentrations for GTL, BTL, and SGTL than the 

straws confirming that not all the degraded CP was converted into NH3.   

 The CON diet had not only the highest IVOMD and IVCPD compared with the 

other feeds but it also had the highest individual VFA concentrations such as acetate, 

propionate, iso-butyrate, n-butyrate, iso-valerate, and n-valerate. This was expected since 

the CON diet contained high protein and energy but low fibre contents which would have 

resulted in high rates of fermentation and be the reason for the lowest incubation pH 

values. The highest A:P ratio for fermentations with GTL and SGTL in comparison with 

the lowest A:P ratio for fermentations of CON and PRS confirmed that GTL and SGTL 

were favourable for acetate production while CON and PRS were favourable for 

propionate production. More acetate production for GTL and SGTL implies that these tea 

products could be used as an additive for dairy cattle feeds since elevated acetate 

availability could increase milk fat synthesis and reduce low-fat milk syndrome (Bauman 

and Griinari, 2003; Popjak et al., 1951).  

 The higher nutritive values of tea leaf products than the straws resulted in 

significant greater tGP of tea leaf products in comparison with the straws. It has been 

reported that tGP was positively correlated with ME content in the diet, and ME was 

positively correlated with the CP and EE contents (Krishnamoorthy et al., 1995; Menke 

and Steingass, 1988). Although the straws contained lower tGP, they produced 

significantly higher percentage of CH4 in the gas samples compared with GTL, BTL, 

SGTL, RH, PRS, and CON but the straws were similar to SBTL, CSGTL, and CSBTL. 

The lower CH4 concentration for CON than straws is in agreement with the theory that 

concentrate feeding will result in higher rates of ruminal fermentation and lower ruminal 

pH which favour higher propionate production than acetate which can decrease the release 

of CH4 in the rumen (Boadi et al., 2004; Johnson and Johnson, 1995; Martin et al., 2010; 

Moss et al., 2000). Lower ruminal pH also can inhibit the growth of methanogens and 

protozoa (Hegarty, 1999). In the rumen, CH4 formation is facilitated by the reaction 

between hydrogen (H2) and CO2 as shown by the following formula: CO2 + 4 H2 → CH4 + 

2 H2O, where H2 is one of the major end products of fermentation by protozoa, fungi, and 

pure monocultures of several bacteria (Moss et al., 2000). The other pathways of H2 

production are through acetate and butyrate synthesis mainly during the fermentation of 
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structural carbohydrate as presented in the following equations (Boadi et al., 2004; Ellis et 

al., 2008):  

 C6H12O6 + 2H2O → 2C2H4O2 (acetate) + 2CO2 + 8H 

 C6H12O6 → C4 H8O2 (butyrate) + 2CO2 + 4H 

 On the other hand, propionate is predominantly produced from the fermentation of 

non-structural carbohydrates and it acts as a competitive pathway in H2 use in the rumen so 

that its formation is likely to be accompanied by a reduction of CH4 production as can be 

explained by the following equation (Boadi et al., 2004; Ellis et al., 2008; Moss et al., 

2000):  

 C6H12O6 + 4H → 2C3H6O2 (propionate) + 2H2O 

 However, the lower CH4 concentrations observed for GTL, BTL, and SGTL than 

the straws cannot be entirely explained by the above theory. GTL, BTL, and SGTL had 

significantly greater degradability than the straws confirming their higher rate of 

fermentation. GTL, BTL, and SGTL also were likely to have lower pH than the straws. 

However, GTL, BTL, and SGTL fermentations resulted in a significantly greater A:P ratio. 

In this case, the lower CH4 concentrations from GTL, BTL, and SGTL than the straws 

might be primarily due to their higher tannin and saponin contents. Lower tannin and 

saponin contents of STL such as SBTL, CSGTL, and CSBTL than the original tea leaves 

and SGTL, have resulted in CH4 concentrations which were close to those produced by 

fermentation of the straws. Tannins can lower CH4 production by slowing the inter-species 

transfer of H2 into methanogenic bacteria and thus depressing their growth (Boadi et al., 

2004; Bodas et al., 2012; Makkar, 2003a; Mueller-Harvey, 2006) while saponins reduce 

CH4 production by suppressing the protozoa population, particularly the protozoa-related 

methanogens (Guo et al., 2008; Wina et al., 2005). Interestingly, SGTL had significantly 

lower CH4 concentration than the straws but this was not seen for SBTL which may be 

related to lower tannin and saponin contents of SBTL than SGTL. This implies that 

catechins in green tea leaf products are better able to mitigate CH4 production in ruminants 

than theaflavins in black tea leaf products. Moreover, lower CH4 concentration in GTL, 

BTL, and SGTL fermentations than the straws was also associated with their significantly 

lower NH3 concentrations. As NH3 is one of the N sources for rumen microbes, its 

reduction may be associated with suppression of some particular microbes which might be 

linked to the CH4 reduction in this study. 

 In addition, tackling CH4 production in ruminants is not only based on the 

reduction in CH4 concentration but also to decrease tGP. For instance, GTL, BTL, and 

SGTL had lower CH4 concentration (%, in total gas) than the straws but they released 
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slightly higher CH4 production (L/kg OM) compared with the straws due to their higher 

tGP. However, higher tGP is often associated with greater rumen fermentation and nutrient 

degradation in the rumen leading to improved animal performance.  

5.5.2 Experiments 2 and 3: The effect of different tea leaf and their STL inclusions on 

in-vitro degradability, fermentation, and gas profiles from RS and RH based diets 

 In this study, GTL inclusions resulted in slightly increased IVOMD, IVCPD, and 

decreased NH3 concentrations as well as lower pH but for BTL, only inclusion at 100 g/kg 

DM could decrease NH3 concentrations compared with T0 values. The decreased NH3 

concentrations for the GTL inclusions confirmed that catechins in GTL were more 

favourable to protect plant protein from rumen digestion than theaflavins in BTL. 

However, relating increased protein bindings and decreased rumen NH3 concentration with 

the decreased pH due to the GTL inclusions needs further investigation. Lower pH in 

response to the GTL than the BTL inclusions might be due to the faster fermentation of 

GTL as explained by greater IVOMD for GTL than BTL. As explained previously, higher 

rates of rumen fermentation and increased rate of passage might have resulted in the lower 

ruminal pH previously observed (Boadi et al., 2004; Johnson and Johnson, 1995; Martin et 

al., 2010; Moss et al., 2000). 

 As expected, the RH-based diets had significantly higher IVOMD and IVCPD but 

significantly lower NH3 concentrations and pH than the RS-based diets. Greater IVOMD 

and IVCPD for the RH-based diet were expected since RH had greater nutritive values 

with less fibre content than RS. Again, lower pH for the RH than the RS-based diets might 

be due to faster fermentation as explained by greater IVOMD for the RH than the RS-

based diets. The tea leaf inclusions and diets had no significant effect on most VFA 

profiles but in RS-based diets, the GTL50 and GTL100 inclusions were likely to increase 

acetate production compared with the T0 fermentation. The tea leaf inclusions averaged 

over all the diets, had no significant effects on tGP but across tea leaf inclusion, the RH-

based diets had significantly higher tGP than the RS-based diets. This greater tGP for the 

RH-based diets was in line with the higher IVOMD of the RH than the RS-based diets.  

 Furthermore, original tea leaf inclusions, averaged over all the diets, were likely to 

reduce CH4 concentration (%, in the gas sample) and CH4 production (L/kg OM) and it 

was significant for the GTL100 inclusion. Significantly lower CH4 concentration and CH4 

production for the GTL100 inclusion than the T0 fermentation was achieved for the RH-

based diet but not for the RS-based diet, where the GTL100 inclusion had the same CH4 

concentration and CH4 production as the T0 fermentation. This was likely due to the higher 
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fibre content of RS than RH. Higher fibre content in the diet mostly slows down the rate of 

rumen fermentation but increases the rumen pH which favours higher CH4 production in 

the rumen (Boadi et al., 2004; Johnson and Johnson, 1995; Martin et al., 2010; Moss et al., 

2000).  On the other hand, both the tea leaf inclusions and diets had no significant effect on 

CO2 concentration but the RH-based diets had significantly greater CO2 production than 

the RS-based diets. 

 The studies of Chapter 4 reported that the addition of original tea leaves, especially 

GTL, to substitute RS as a low quality forage in the diet could improve in-vitro rumen 

degradability and reduce rumen NH3 production. Besides reducing NH3 production, 

original tea leaves could also substitute RH as a high quality forage in the diet without 

affecting in-vitro rumen degradability. Furthermore, this study reported that original tea 

leaves were able to reduce rumen CH4 production. The STL inclusions, to substitute RS in 

a diet could also improve in-vitro rumen degradability while their inclusions, to substitute 

RH in the diets did not show any change when compared with the T0 without tea leaves. 

However, the ability of STL inclusions, as the residues from the tea making process, into 

diet to reduce NH3 and CH4 production from T0 seemed to be lower than the original tea 

leaves. This is likely to be due to less secondary metabolites such as tannins and saponins 

in STL than in their original leaves. As explained above, tannins can protect plant proteins 

from rumen digestion and thus reduce NH3 production (Makkar, 2003a; McSweeney et al., 

2001; Min et al., 2003; Mueller-Harvey, 2006). This action can reduce CH4 production by 

slowing the inter-species transfer of H2 into methanogenic bacteria and thus depressing 

their growth (Boadi et al., 2004; Bodas et al., 2012; Makkar, 2003a; Mueller-Harvey, 

2006). Also, saponins can reduce CH4 production by suppressing protozoa population, 

particularly the protozoa related methanogens (Guo et al., 2008; Wina et al., 2005). 

5.6 Conclusion 

 Original tea leaves, particularly GTL and their STL as the residues have the 

potential to improve the in-vitro rumen degradability of RS. However, both original teas 

and their STL had little or no effect on rumen VFA profiles. Furthermore, original tea 

leaves could reduce NH3 and CH4 productions but the ability to do so by their STL was 

lower since STL had lower secondary metabolite contents than the original leaves due to 

their possible degradation during the tea making process. During quantification, CH4 

production (L/kg OM) was not only affected by CH4 concentration (%, in the gas sample) 

but also by the amount of tGP. Therefore, the effort to mitigate CH4 production in 

ruminants is not only by minimizing CH4 concentration in the gas sample but also by 
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reducing tGP. Unfortunately, reduced tGP may be always followed by lower rumen 

fermentation and degradability which may affect animal performance. In-vitro studies have 

shown that GTL were always better on degradability, reducing NH3, and CH4 productions 

than BTL. Therefore, further animal experiments are needed to test the potential use of 

GTL as additive for ruminants at a farm scale.  
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Chapter 6: Feeding green tea leaves in high or low amounts of a concentrate to 

grass silage consuming lambs on their growth, nutrient digestibility, rumen 

fermentation, and carcass quality  

 

6.1 Introduction 

 The experiments covered in Chapters 4 and 5 have reported that green tea leaf 

(GTL) inclusions into ruminant diets caused more reduction in rumen ammonia (NH3) and 

methane (CH4) levels than the black tea leaf (BTL) and all spent tea leaf (STL) inclusions. 

This was perhaps due to significantly higher plant secondary metabolites such as tannins 

and saponins in GTL than those in BTL and all STL due to the ‘Maillard browning 

reactions’ during BTL manufacturing and loss of significant amounts of secondary 

metabolites during hot water extractions in STL (Chapter 3). These experiments also found 

that the GTL inclusions in diets resulted in higher in-vitro degradability and total gas 

production than the BTL inclusions. The reason suggested for the lower effect of BTL on 

in-vitro rumen parameters was due to their modified nutrient and secondary metabolite 

contents occurring as a result of the oxidative fermentation during BTL manufacturing. 

During this process, most phenolic catechins in fresh tea leaves are converted into less 

soluble phenolics, called theaflavins (Turkmen and Veliooglu, 2007).  

 In animal experiments, reduced CH4 emissions and NH3 concentrations due to 

supplementation of tannin-containing extracts from Acacia mearnsii (Grainger et al., 2009) 

and Vaccinium Vitis Idaea (Cieslak et al., 2012) have also been reported. In addition to this 

suggested ‘nutritional’ effect, tannins supplementation could potentially improve animal 

health and the quality of animal-derived food products by other mechanisms. For example, 

tannin extracts from Pistachia lentiscus, Phillyrea latifolia (Azaizeh et al., 2013), and 

Havardia albicans (Galicia-Aguilar et al., 2012) could inhibit gastro-intestinal nematodes 

in ruminants confirming their beneficial effect to improve the health status of animals and 

their vitality. Furthermore, quebracho tannins extract supplementation has also been found 

to increase the rumenic acid (RA) and other polyunsaturated fatty acids (PUFA) but 

decrease saturated fatty acids (SFA) in ruminant products such as meat and milk through 

altered bio-hydrogenation by changing the microbial population in the rumen (Vasta et al., 

2009; Vasta et al., 2010; Wood et al., 2010; Andrés  et al., 2014).  SFA is the major fat 

content in ruminant meat and it is widely known to cause health problems such as cancers 

and coronary heart disease (Wood et al., 2003). In contrast, RA, other conjugated linoleic 

acids (CLA), and PUFA have the potential to improve human health through  variety of 
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mechanisms including enhancing antibody formation and reduce the risk of various 

cancers, arteriosclerotic vascular disease, and obesity (McGuire and McGuire, 2000; Wood 

et al., 2003; Wahle et al., 2004; Bhattacharya et al., 2006; Jenkins et al., 2008). However, 

tannins in ruminant diets are thought to be associated with reduced feed intake resulting in 

possible reduced digestibility, animal performance, and in extreme situations these may be 

toxic to animals (Makkar, 2003; Mueller-Harvey, 2006; Mueller-Harvey et al., 2007; Po et 

al., 2012).  

 Previous in-vitro experiments reported in Chapters 4 and 5 have shown the 

beneficial effects of the dietary inclusion of GTL to improve rumen fermentation by 

reducing rumen NH3 concentrations but increasing potential by-pass protein, and 

decreasing CH4 production in-vitro. However, further farm scale experiments are needed to 

investigate the palatability of GTL-containing diets and their effects on animal growth, 

nutrient digestibility, rumen fermentation, and carcass quality of lambs. Therefore, this 

study aimed to examine the effect of feeding different levels of GTL in high or low 

amounts of a concentrate alongside ad-libitum grass silage (SIL) on feed intake, weight 

gain, nutrient digestibility, carcass weight, and subcutaneous fatty acid profiles of meat in 

growing lambs. 

6.2 Materials and methods 

 These in-vivo studies were conducted at Cockle Park Farm, Newcastle University, 

UK from 31
st
 July to 16

th 
October 2013. This trial was conducted under the non-regulated 

procedures of animal experiments as approved by the Newcastle University’s Ethics 

Review Committee. The researchers involved in this trial held their personal licenses being 

granted by the Home Office under the Animal Scientific Procedures Act 1986. 

6.2.1 Animals and housing 

 Thirty castrated lambs (Suffolk/Texel x Mule) were weaned off their mothers at the 

age of around 4 months on 31
st
 July 2013. The lambs weighing around 29.5 kg (SD 1.52 

kg) were selected and housed in individual pens on a concrete floor that was covered by 

sawdust. Each pen (2.8 m long x 1 m wide x 0.9 m high) was separated by steel panels 

through which they had visual and part-physical contacts. Each pen was equipped with a 

feeder and a water bucket. All lambs were adapted to their individual housing and feeding 

routines for one week while receiving daily ad-libitum ryegrass silage, 200 g of a 

concentrate (CON) and free access to clean drinking water. Each lamb was drenched with 

a single dose of 8 ml Albenil wormer (Virbac Ltd. UK) after the adaptation period. 
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6.2.2 Experimental diets 

 Samples of GTL, CON, and SIL were the main components of the experimental 

diets. GTL was graded as Sow Mee (Code: SM #315) and it was imported in July 2013 

from PT. Kabepe Chakra, Indonesia while CON was formulated by using sugar beet pulp 

(38.7%), soybean meal (16.2%), molasses (9.7%), barley (32.2%), and sheep minerals 

(Scotmin Nutrition UK, 3.2%). SIL was produced from perennial ryegrass as a typical 

forage for ruminant feeding at the Cockle Park Farm of Newcastle University.  

 The experimental diets were offered to lambs following a 3 x 2 factorial 

arrangement to investigate the effect of 3 doses of GTL in 2 levels of CON on ad-libitum 

SIL intakes, animal growth, nutrient digestibility, carcass quality, rumen fermentation, and 

subcutaneous fatty acid profiles of growing lambs. Throughout the remainder of this 

Chapter the abbreviations HiCON and LoCON are used to represent the high concentrate 

and low concentrate combinations. The diets were formulated to meet the nutrient 

requirements of growing castrated lambs to gain daily above 100 g live-weight according 

to AFRC (1993). Each dietary combination, as shown in Table 6.1, was offered to 5 

individually housed lambs as 5 replicates per treatment. The amount of the same 

concentrate was increased during 57 to 70 days of this study, as indicated in Table 6.1, to 

match the increased live-weight of the experimental lambs. 
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Table 6.1 Daily feeding plans for each lamb involving experimental diets. 

Diets 
CON with or without GTL (g DM) 

SIL 
GTL  CON  

 0 to 56 days  

HiCON-T0 0 300 ad-libitum 

HiCON-GTL10 30 270 ad-libitum 

HiCON-GTL20 60 240 ad-libitum 

LoCON-T0 0 150 ad-libitum 

LoCON-GTL10 15 135 ad-libitum 

LoCON-GTL20 30 120 ad-libitum 

 57 to 70 days  

HiCON-T0 0 450 ad-libitum 

HiCON-GTL10 45 405 ad-libitum 

HiCON-GTL20 90 360 ad-libitum 

LoCON-T0 0 225 ad-libitum 

LoCON-GTL10 22.5 202.5 ad-libitum 

LoCON-GTL20 45 180 ad-libitum 

GTL, green tea leaves; CON, concentrate; SIL, grass silage; LoCON-T0, low concentrate 

without GTL; LoCON-GTL10, low concentrate with 10% of GTL; LoCON-GTL20, low 

concentrate with 20% of GTL; HiCON-T0, high concentrate without GTL; HiCON-GTL10, 

high concentrate with 10% of GTL; HiCON-GTL20, high concentrate with 20% of GTL. 

6.2.3 Animal feeding 

 All lambs were fed daily at about 10.00 am. Appropriate amounts of GTL and CON 

in Table 6.1 for each lamb were hand mixed in a bucket before offering this as the 

experimental CON to each lamb. Most lambs were able to finish their CON allowances 

within an hour except some lambs on HiCON-GTL20 diet. During CON feeding, the water 

bucket in each pen was cleaned and re-filled with clean water to ensure continuous ad-

libitum access of drinking water for all lambs. After that, each lamb was offered SIL ad-

libitum in the feeder. The SIL was collected daily from the SIL bunker before it was 

offered to the lambs and samples were analysed daily to determine its DM content. Every 

afternoon, appropriate amounts of GTL and CON were mixed in separate buckets for the 

next day feeding. The buckets containing SIL were weighed once but topped up twice 

daily to ensure that all lambs had ad-libitum access to SIL. Each morning, SIL refusal for 
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each lamb was collected, weighed, and sampled for DM analysis. Small refusals of 

HiCON-GTL20 diet were also collected, weighed, and sampled for further analysis. 

6.2.4 Data collection and measurements  

 Data collection and measurements in this in-vivo study were divided into 3 phases 

of (1) measuring palatability and growth via feed intake and live-wight gain (1 - 49 days), 

(2) determining nutrient digestibility (50 - 56 days), and (3) quantifying feed intake and 

live-weight gain for finishing lambs at increased CON intakes (57 - 70 days) before their 

slaughter to obtain carcass data, rumen fluid, and abdominal fat for futher measurements as 

described in the later sections.  

6.2.4.1 Phase 1: Feed intake and live-weight gain during 49 days 

 Daily intakes of SIL and CON for each lamb during 49 days were calculated by 

difference between the corresponding amounts of offered and refused CON and SIL in g 

DM during 49 days feeding trial. The lambs were weighed weekly while restrained in a 

sheep crush connected to a digital weighing scale (Pharmweigh, UK).  

6.2.4.2 Phase 2: Nutrient digestibility 

 At 49 days of the feeding trial, 4 lambs out of 5 in each treatment group were 

randomly selected for digestibility measurements. The lambs continued to receive their 

allocated diets in Table 6.1 according to the daily feeding routine as described earlier. The 

daily collection of feed samples was also continued as previously described. Total faeces 

were collected daily in zipped synthetic bags from each lamb for 5 days. Separate bags 

were attached to the rears of selected lambs by using appropriate sheep harnesses. The 

lambs were adapted to these bags for two days during which the bags were emptied to 

discard the faeces. From day 3 onwards, the total faeces from each lamb was collected, 

weighed, and 10% retained daily for 5 days. The retained samples were dried daily at 60
o
 C 

in an oven (Unitherm, Russel-Lindsey Engineering Ltd UK). The dried subsamples of 

faeces from 5 days collection alongside the feed offered and refused samples of each 

treatment were pooled and ground to pass through a 1mm sieve in a bench-mounted 

hammer mill (Christy & Norris, UK). These ground samples were then subjected to 

various nutrient analyses such as proximate, fibre fractions, total secondary metabolites, 

and minerals using the same methods as described in Chapter 3. These analyses were then 

used to estimate nutrient digestibility by calculating the difference between total nutrient 

intake from the diets and total nutrient out in the faeces. The estimated values were then 

expressed as g/kg. 
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6.2.4.3 Phase 3: Feed intake and live-weight gain during 70 days, carcass quality, 

rumen fluid, and abdominal fat 

6.2.4.3.1 Feed intake and live-weight gain during 70 days and carcass quality 

 After the digestibility trial, the 24 lambs continued to receive the same feeds for 

another 2 weeks (57 - 70 days). However, their concentrate allowance was increased by 

50% (Table 6.1) to improve their body conditions before their slaughter at a local abattoir 

(Linden Foods, Burradon, UK). Daily intakes of SIL and CON for each lamb during 70 

days were calculated by difference between the corresponding amounts of offered and 

refused CON and SIL in g DM during 70 days feeding trial. The lambs received their last 

CON and SIL feeding offers at 70 days of the trial and they were transported to the local 

slaughter house (Linden Foods Ltd, Buradon) for slaughtering in the next day (71 days) at 

about 8 o’clock in the morning. The lambs were weighed weekly while restrained in a 

sheep crush connected to a digital weighing scale (Pharmweigh, UK). The lambs were 

finally weighed about 18 hours before their slaughter after which each carcass was 

weighed and graded according to the MLC scoring system. MLC carcass grades for 

conformation levels are E or excellent (5), U or very good (4), R or good (3), O or Fair (2), 

and P or poor (1) whereas for fatness levels are low (1), slight (2), average low (2.75), 

average (3), average high (3.25), high (4), and very high (5).  

6.2.4.3.2 Collection of abdominal fat and rumen fluid 

 About 50 g of abdominal fat was collected from each carcass and stored in a pre-

labelled self-sealed polyethylene bag. In the same time, rumen fluid (RF) of each lamb was 

also obtained by squeezing rumen digesta through 4 layers of cotton cheesecloth into two 

50 ml tubes per lamb. The tubes were then screw-capped and stored in an ice box before 

their transport to the laboratory. Immediately after arriving at the laboratory, the RF 

samples were tested for pH before their preservation in 1N HCl for NH3 determination and 

in deproteinising solution for VFA analysis as described in Chapter 4. Meanwhile, the fat 

samples were stored at -20
o
C until their fatty acid analysis. 



206 

 

6.2.5 Chemical analysis 

6.2.5.1 Analysis of feed and faecal samples 

 All the feed, refusal, and faecal samples were analysed in duplicate for proximate, 

fibre, and mineral compositions using the same procedures as those previously described in 

Chapter 3.  

6.2.5.2 Analysis of rumen fluid for pH, ammonia, and volatile fatty acids 

 All the rumen fluid (RF) samples were subjected to pH, NH3, and VFA analysis 

using the same methods as described in Chapter 4.  

6.2.5.3 Analysis of feed and abdominal fat for long chain fatty acids 

 Total fats in each feed sample were extracted into petroleum ether using a soxhlet 

apparatus. The extracted fats were then subjected to methyl esterification as described in 

Chapter 3 following the direct method of O’Fallon et al. (2007) with some modifications 

as described below: 

6.2.5.3.1 Reagents and methyl esterification  

 Most chemicals and reagents were purchased from Fisher Scientific or Sigma 

Aldrich UK. The C13:0 methyl ester (0.5 mg C13:0/ml MeOH) was prepared by adding 25 

mg of C13:0 (Sigma Aldrich, UK) in 50 ml MeOH while 10N KOH was prepared by 

mixing 19.64 g KOH with distilled water. The 24N H2SO4 solution was obtained by slowly 

mixing 20 ml of 95% (36N) H2SO4 into 10 ml distilled water in a cooled container.

 Each of the frozen fat samples was thawed for several hours. About 60 mg of each 

fat sample was weighed into screw-cap glass tubes to which about 1 ml of C13:0 methyl 

ester as an internal standard and 0.7ml of 10N KOH were added and the contents were 

vortex mixed (Rotamixer, Hook & Tucker Instrument Ltd, Croydon, UK). Then, 5.3 ml 

MeOH was added and vortex mixed. After that, the samples were put on a hot block at 

55
o
C Techne Dri-block DB3D, UK) for 1.5h and vortex mixed for 5 seconds at full speed 

every 20 minutes. After that, the samples were removed from the hot block and put in a 

freezer at -20
o
C for 10 minutes before 3 ml of hexane were added and vortex mixed. 

Finally, the samples were centrifuged for 5 minutes at 1,160xg at 5
o
C before transferring 

about 400 μl of the upper layer into a GC vial and stored at -20
o
C until the GC analysis. 

6.2.5.3.2 GC analytical procedure 

 The esterified feed and abdominal fat samples were analysed for long chain fatty 

acids by using a Shimadzu GC-2014 (Kyoto, Japan) with Varian CP-SIL 88 containing 
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100m x 0.25mm ID x 0.20μm FT column (Supelco, UK) and an auto injector (Shimadzu, 

AOC-20i). The GC was operated by a Shimadzu GC solution software for the analysis of 

fatty acid methyl esters (FAME). Purified helium was utilized as a carrier gas with a head 

pressure of approximately 212 kPa and a column flow of 1.0 ml/minute. The FAME peaks 

were detected by flame ionization detection (FID) where a split injection system on an auto 

sampler was used with a split ratio of 50.0 and an injector temperature of 255
o
C while the 

detector temperature was kept at 260
o
C. Linear velocity was 17.6 cm/second while purge 

flow was at 2.0 ml/minute. About 1 µl sample was injected when the initial column 

temperature was reached at 70
o
C which was held for 1 minute and then raised at 

5
o
C/minute to 100

o
C which was held for 2 minutes. The temperature was increased again 

at 10
o
C/minute to 160

o
C and held for 71 minutes. Finally, the temperature was raised at 

5
o
C/minute to 240 and held for 19 minutes giving a final gradient with the total runtime of 

121 minutes as shown in Table 6.2. The data, including peak areas and chromatograms 

were extracted by using the Shimadzu GC solution software. The peaks were then 

identified by using the combination of a 52 FAME standard (Nu-Check Prep Inc., USA) 

and an identified milk sample (Stergiadis et al., 2012). Individual fatty acids were 

quantified by comparing sample peaks with the relevant peak areas of the corresponding 

standards and the internal standard, and each individual fatty acid was reported as a 

percentage of the total identified fatty acids. 

 

Table 6.2 Setting up of a gradient profile of GC running temperature. 

Rate (
o
C/min) Temperature (

o
C) Hold time (min) 

     - 70 1 

     5 100 2 

    10 160 71 

     5 240 19 

 

6.3 Calculation and Statistical analysis 

 Nutrient composition of experimental feeds was calculated as the average from the 

results of duplicate analysis and expressed on a DM basis. Daily intakes of SIL and CON 

for each lamb were calculated by difference between the corresponding amounts of daily 

offered and refused CON and SIL in g DM whereas total DMI was calculated as the sum 

of SIL and CON intakes. Feed conversion ratio (FCR) was estimated by dividing total 

DMI of each lamb by its average daily gain (ADG) over the experimental period. Nutrient 

digestibility was estimated by calculating the difference between total nutrient intake from 
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the diets and total nutrient out in the faeces as expressed as g/kg. Two-way ANOVA using 

the General Linear Model procedure was used to examine the statistical effects of 3 doses 

of GTL in 2 levels of CON alongside their interaction on ad-libitum SIL intakes, animal 

growth, nutrient digestibility, carcass quality, rumen fermentation, and subcutaneous fatty 

acid profiles of growing lambs. Differences were considered significant if P < 0.05. 

6.3 Results 

6.3.1 Nutrient composition of experimental diets 

 On average, GTL had greater CP, TP, TT, TS, and Mn but lower Na than CON and 

SIL. GTL had almost the same calculated ME and Ca with SIL but lower than those in 

CON whereas SIL had higher K content than GTL and CON. Palmitic (C16:0) and α-

linolenic (c9c12c15 C18:3 n3) acids were the majority of fatty acids in GTL followed by 

oleic (c9 C18:1), stearic (C18:0), and linoleic (c9c12 C18:2 n6) acids, respectively. In SIL, 

α-linolenic acid accounted for more than half of the total fatty acids followed by palmitic, 

linoleic, stearic, and oleic acids, respectively. Linoleic was the main fatty acid in CON, 

followed by oleic, palmitic, stearic, and α-linolenic acids, respectively. Further information 

on the nutritive values of experimental feeds can be seen in Table 6.3. 
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Table 6.3 Nutrient composition of the experimental feeds. 

Nutrients (g/kg DM) GTL CON SIL 

DM (g/kg) 938 857 261 

OM  940 893 882 

Ash  59.7 107 118 

CP  205 163 164 

EE  22.7 16.8 43.9 

ME  7.08 12.1 7.60 

NDF  313 283 501 

ADF  272 145 343 

ADL  215 140 277 

TP  211 5.56 19.3 

TT  181 1.61 5.60 

TS  276 33.2 22.4 

Minerals (mg/kg DM)    

Ca  7,101 13,103 7,468 

Co  0.04 2.69 0.05 

Cu 18.1 11.6 9.2 

Fe 124 317 210 

K  10,164 8,607 22,916 

Mg  2,545 2,918 2,482 

Mn  502 127 16.2 

Mo  0.17 1.32 1.10 

Na  32.0 4,266 1,625 

P   2,499 3,157 3,544 

Zn  41.5 160 55.5 

Major fatty acids (%)    

C14:0  2.65 2.00 0.79 

C16:0  25.0 21.7 16.4 

C18:0  12.2 9.62 3.78 

t11 C18:1  1.51 1.35 0.33 

c9 C18:1  16.1 22.1 3.44 

c11 C18:1  0.53 1.09 0.23 

c9c12 C18:2 n6  11.3 33.0 11.6 

c9c12c15 C18:3 n3  22.5 4.50 54.2 

C22:0  0.37 0.26 1.38 

C22:6 n3  0.06 0.02 1.72 

C24:0  0.73 0.21 1.05 

GTL, green tea leaves; CON, concentrate; SIL, grass silage; DM, dry matter; OM, organic matter; 

CP, crude protein; EE, ether extract; ME, metabolisable energy; NDF and ADF, neutral and acid 

detergent fibre; ADL, acid detergent lignin; TP, total phenols; TT,total tannins; TS, total saponins. 
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6.3.2 Weekly data on feed intake and live-weight of lambs throughout the study   

 Figure 6.1 shows the CON intakes (means ± SE) for each week by lambs 

throughout the study (1-70 days). After week 8, all CON offers were increased by 50% 

giving rise to the increased CON intakes by the lambs in weeks 9 and 10. Almost all 

LoCON and HiCON could be finished by lambs daily from week 1 to 10 except for the 

HiCON-GTL20. Intake of HiCON-GTL20 was consistently lower than the other diet 

combinations throughout the study.  

 Figures 6.2 and 6.3 present the relationship between CON intakes and SIL intakes, 

and CON intakes and total DMI, respectively. Regression analysis showed that the CON 

intakes by lambs had a significant effect on SIL intakes although the R
2
 was not strong 

(34.9%) whereas the CON intakes by lambs had no significant effect on total DMI with the 

R
2
 = 9.0%. 

 

 

Figure 6.1 Weekly CON intakes (means ± SEM) by lambs throughout the study (1-70d). 
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Figure 6.2 The relationship between CON intakes and SIL intakes (g DM/d) throughout the 

study (1-70d). 
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Figure 6.3 The relationship between CON intakes and total DMI (g DM/d) throughout the 

study (1-70d). 

 

 Figure 6.4 presents the weekly SIL intakes (means ± SE) by lambs throughout the 

study (1 - 70 days). Generally, the SIL intakes for all diets increased slightly between week 

1 and week 5, followed by significant rises from week 5 to 7. After that, the SIL intakes 

reduced slightly during the digestibility trial between week 7 and week 8 but continued to 

increase again until the end of the study (week 10). Most lambs on LoCON consumed 

greater SIL intakes than those on HiCON except for LoCON-GTL20 which had the same 

SIL intakes as the average of lambs on HiCON. 
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Figure 6.4 Weekly SIL intakes (means ± SEM) by lambs throughout the study (1-70 d). 

 

 Figure 6.5 shows weekly total DMI (means ± SE) by lambs throughout the study (1 

- 70 days). In general, the trends of weekly total DM intakes for all diets were similar to 

SIL intakes. However, most lambs on LoCON had almost the same total DMI as those on 

HiCON except LoCON-GTL20 which had lower total DMI intakes than all the other diets.  

  Figures 6.6 and 6.7 present the relationship between total DMI and ADG, and total 

DMI and FCR, respectively. Regression analysis reported that total DMI by lambs had a 

significant effect on ADG although the R
2
 was not strong (45.7%) whereas total DMI by 

lambs had no significant effect on FCR with R
2
 = 8.4%. 
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Figure 6.5 Weekly total DMI (means ± SEM) by lambs throughout the study (1-70d). 
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Figure 6.6 The relationship between total DMI (g DM/d) and ADG (g Lwt/d) throughout 

the study (1-70d). 
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Figure 6.7 The relationship between total DMI (g DM/d) and FCR (DMI/ADG) throughout 

the study (1-70d). 

  

 Figure 6.4 presents weekly live-weights (means ± SEM) of lambs throughout the 

study (1 - 70 days). The live-weights of lambs increased gradually during the experiment 

as expected. It seems that animal growths for all diets were faster after week 4 onward than 

that before week 4. Lambs on LoCON-T0 had an average lower live-weight gain over the 

study than the other diets whereas those on LoCON-GTL20 had an average lower live-

weight gain in the first 5 weeks than the other diets but then these animals gained weight 

faster to be the same weight as those on HiCON-T0 at the end of the study. 

 

Figure 6.8 Weekly live-weights (means ± SEM) of lambs throughout the study (1-70d). 
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6.3.3 Effect of different GTL inclusions and CON levels on animal performance 

during 49 days and nutrient digestibility  

 Table 6.4 presents the means of DMI and ADG of lambs during 49 days for only 

the main effect of GTL inclusions and CON levels as these were significant for some 

measurements but not their interaction. Table 6.5 shows the means of only CON intakes 

for the main effect of GTL inclusions, CON levels, and their interaction as all of these 

factors had significant effects. Across the CON levels, GTL inclusions had no significant 

effect on the SIL intakes and tDMI but the GTL20 inclusion reduced CON intakes 

significantly when the GTL addition was increased from T0 to GTL20 inclusion. However, 

Table 6.5 confirms that reduced CON intakes due to the GTL20 inclusion was only in 

HiCON while the GTL20 inclusion in combination with LoCON did not affect intakes in 

those lambs. Lambs on HiCON, averaged over all the GTL levels, had significantly higher 

CON intakes and tDMI than those on LoCON. Nevertheless, lambs on LoCON 

compensated their tDMI to be similar to those on HiCON by consuming significantly 

higher amounts of SIL. The GTL inclusions, averaged over all the CON levels, had no 

significant effect on ADG and FCR although lambs on the GTL20 inclusion tended to have 

lower FCR than those on the T0 containing no GTL. Across the GTL inclusions, lambs on 

HiCON had significantly higher ADG than those on LoCON.   
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Table 6.4 DMI (g DM/day), ADG (g/day), and FCR (tDMI/ADG) of lambs fed diets 

containing GTL in different amounts of CON during 49 days feeding trial. 

Measurement 
GTL (n=10) CON (n=15) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

Feed intakes    
     

  CON (g DM /day) 224
A 

224
A 

210
B 

289
a 

150
b 

211
*** 

1.73
*** 

2.99
*** 

  SIL (g DM /day) 591 582 549 543
b 

605
a 

18.3
NS 

14.9
** 

25.9
NS 

tDMI (g DM/day) 815 806 759 832
a 

755
b 

23.8
NS 

19.4
* 

33.6
NS 

  Initial LW (kg) 28.9 29.4 29.2 29.0 29.3 0.53
NS 

0.43
NS 

0.75
NS 

  Final LW (kg) 34.6 35.3 34.9 35.4 34.3 0.61
NS 

0.50
NS 

0.87
NS 

ADG (g/day)        115 119 116 131
a 

103
b 

10.4
NS 

8.48
* 

14.7
NS 

FCR (tDMI/ADG) 7.52 7.24 6.85 6.69 7.74 0.61
NS 

0.50
NS 

0.87
NS 

Here *, ** and *** represent significant differences between means  at P<0.05 or P<0.01 

or P<0.001, respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replicates; tDMI, total dry matter intakes; LW, live-weight; ADG, average daily gain; 

FCR, feed cnversion ratio; GTL, green tea leaves; CON, concentrate; SIL, grass silage; 

T0, diet without GTL; GTL10, diet with 10% GTL in CON; GTL20; diet with 20% GTL in 

CON; HiCON, higher level CON; LoCON, lower level CON. 

 

Table 6.5 CON intakes (g DM/d) of lambs fed diets containing GTL in different amounts 

of CON during 49 days feeding trial. 

   Diets T0 GTL10 GTL20 Mean SEM 

HiCON 298
a 

298
a
 270

b 
289

 a 1.73 

LoCON 150
c 

150
c
 150

c 
150

 b 1.73 

Mean 224
A
 224

A
 210

B
  P<0.001 

SEM 2.11 2.11 2.11 P<0.001  

SEM, standard error od mean; T0, diet without GTL; GTL10, diet with 10% GTL in CON; 

GTL20; diet with 20% GTL in CON; HiCON, higher level CON; LoCON, lower level 

CON. 

 

 Tables 6.6 and 6.7 present the means of nutrient, total secondary metabolite, and 

mineral digestibility of lambs for only the main effect of GTL inclusions and CON levels 

after 49 days feeding trial as these were significant for some measurements but not their 

interactions. Across the CON levels, the GTL inclusions significantly increased ash and 

secondary metabolite digestibility such as TP and TT but not for DM, OM, CP, EE, fibre, 

and TS digestibility. The higher GTL inclusions resulted in the highest TP and TT 
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digestibility. Meanwhile, the lambs on HiCON, averaged over all the GTL inclusions, had 

significantly higher DM, OM and TP digestibility than those on LoCON. Increased ash 

digestibility due to the GTL inclusions was also accompanied by significant increases in 

Ca, Mn, and Zn digestibility compared with the T0 containing no GTL but it had no effect 

on K digestibility, and Na digestibility was reduced at the GTL20 inclusion. Furthermore, 

Fe, Mg, and P digestibility tended to increase due to the GTL inclusions although it was 

not significant. For lambs on HiCON, averaged over all the GTL inclusions, there were no 

significant differences for any mineral digestibility compared with those on LoCON but 

the HiCON lambs were likely to have lower Ca, Fe, P, Zn, and higher Mn digestibility in 

comparison with the LoCON lambs. 

 

Table 6.6 Mean values of nutrient digestibility (g/kg) in lambs fed diets containing GTL in 

different amounts of CON after 49 days feeding trial. 

Digestibility 

(g/kg) 

GTL (n=8) CON (n=12) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

DM  708 703 717 718
A 

700
B 

6.33
NS 

5.17
* 

8.95
NS 

CP 604 605 614 609 607 13.6
NS 

11.1
NS 

19.2
NS 

EE 587 569 582 586 573 15.5
NS 

12.7
NS 

22.0
NS 

Ash 489
B 

497
AB 

530
A 

501 509 10.9
* 

8.91
NS 

15.4
NS 

NDF  553 507 536 539 525 15.1
NS 

12.4
NS 

21.4
NS 

ADF 699 653 667 672 673 15.2
NS 

12.4
NS 

21.4
NS 

ADL 722 689 708 705 708 12.6
NS 

10.3
NS 

17.8
NS 

TP 741
C 

794
B 

835
A 

797
a 

784
b 

4.96
* 

4.05
*** 

7.02
* 

TT 865
C 

923
B 

964
A 

921 914 8.08
*** 

6.60
NS 

11.4
NS 

TS 563 606 660 638 581 44.7
NS 

36.5
NS 

63.2
NS 

Here *, ** and *** represent significant differences between means  at P<0.05 or P<0.01 

or P<0.001 respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replications; DM, dry matter; OM, organic matter; CP, crude protein; EE, ether extract; 

NDF, neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin, TP, 

total phenols; TT, total tannins; TS, total saponins; GTL, green tea leaves; CON, 

concentrate; SIL, grass silage; T0, diet without GTL; GTL10, diet with 10% GTL in CON; 

GTL20; diet with 20% GTL in CON; HiCON, higher level CON; LoCON, lower level 

CON. 
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Table 6.7 Mean values for the mineral digestibility (g/kg DM) in lambs fed diets 

containing GTL in different CON levels after 49 days feeding trial. 

Digestibility 

(g/kg DM) 

GTL (n=8) CON (n=12) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

Ca 106
B 

164
AB 

203
A 

153 162 20.6
** 

16.4
NS 

27.0
NS 

Fe 129 189 245 152 224 40.3
NS 

32.1
NS 

61.0
NS 

K 933 942 937 935 939 11.6
NS 

9.43
NS 

16.3
NS 

Mg 78.9 120 124 113 103 28.2
NS 

22.1
NS 

34.5
NS 

Mn 56.7
B 

73.8
B 

148
A 

108 77.7 21.6
* 

16.9
NS 

26.5
NS 

Na 913
A 

945
A 

860
B 

914 898 10.3
*** 

8.38
NS 

15.5
NS 

P 166 189 227 189 202 29.9
NS 

23.4
NS 

36.7
NS 

Zn 105
B 

141
AB 

239
A 

155 170 34.4
* 

27.4
NS 

45.0
NS 

Here *, ** and *** represent significant differences between means at P<0.05 or P<0.01 

or P<0.001 respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replications; GTL, green tea leaves; CON, concentrate; SIL, grass silage; T0, diet without 

GTL; GTL10, diet with 10% GTL in CON; GTL20; diet with 20% GTL in CON; HiCON, 

higher level of CON; LoCON, lower level of CON. 

6.3.4 Animal performance during 70 days, rumen fermentation, carcass quality, and 

subcutaneous fatty acid profiles 

 Tables 6.8 presents the means of feed DMI, ADG, and carcass percentages and 

grades of lambs after 70 days of feeding trial for only the main effect of GTL inclusions 

and CON levels as these were significant for some measurements but not their interaction 

for most measurements. Across the CON levels, the GTL inclusions had no significant 

effect on tDMI and SIL intakes but the GTL20 inclusion reduced CON intake significantly 

when compared with T0 containing no GTL. However, Table 6.9 confirms that reduced 

CON intake due to the GTL20 inclusion was solely due to its HiCON while LoCON 

containing GTL20 caused no intake issue for the lambs. The lambs on HiCON, averaged 

over all the GTL inclusions, had significantly higher tDMI and CON intakes than those on 

LoCON. However, the lambs on LoCON were able to compensate their tDMI by 

consuming significantly greater SIL than those on HiCON. ADG was not significantly 

affected by the GTL inclusions but the HiCON lambs tended to have better ADG than the 

LoCON lambs. Across the CON levels, the GTL inclusions had no significant effect on 

FCR and carcass percentages and grades. Similarly, there was no different between lambs 

fed HiCON or LoCON on FCR, and carcass percentages and grades over all the GTL 

inclusions. 
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Table 6.8 Mean values for DMI (g DM/d), ADG (g/d), and carcass percentage (%) of 

lambs fed diets containing GTL in different amounts of CON after 70 days feeding trial. 

Measurement 
GTL (n=10) CON (n=15) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

Feed intakes      
   

   CON(g DM /day) 247
A 

245
A 

231
B 

317
a 

165
b 

2.72
** 

2.22
*** 

3.84
** 

   SIL (g DM /day) 646 630 622 579
b 

686
a 

25.9
NS 

21.2
** 

36.7
NS 

tDMI (g DM/d) 893 875 853 896 851 26.1
NS 

21.3
NS 

37.0
NS 

   Initial LW (kg) 28.9 29.4 29.2 29.0 29.3 0.53
NS 

0.43
NS 

0.75
NS 

   Final LW (kg) 38.4 38.6 38.7 38.7 38.4 0.89
NS 

0.72
NS 

1.26
NS 

ADG (g/day)        132 136 139 141 129 9.50
NS 

7.76
NS 

13.4
NS 

FCR (tDMI/ADG) 6.94 6.56 6.44 6.52 6.77 0.37
NS 

0.30
NS 

0.53
NS 

Hot carcass (%) 47.7 48.0 46.9 47.3 47.7 0.75
NS 

0.61
NS 

1.05
NS 

Cold carcass (%) 46.4 46.7 45.6 46.0 46.4 0.74
NS 

0.60
NS 

1.04
NS 

Carcass grades         

   Conformation 3.00 2.75 2.75 2.92 2.75 0.13
NS 

0.16
NS 

0.22
NS 

   Fatness 2.78 2.91 2.63 2.79 2.75 0.13
NS 

0.16
NS 

0.22
NS 

Here *, ** and *** represent significant differences between means  at P<0.05 or P<0.01 

or P<0.001 respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replications; tDMI, total dry matter intakes; LW, live-weight; ADG, average daily gain; 

FCR, feed conversion ratio; GTL, green tea leaves; CON, experimental CON; SIL, grass 

silage; T0, diet without GTL; GTL10, diet with 10% GTL in CON; GTL20; diet with 20% 

GTL in CON; HiCON, higher level CON; LoCON, lower level CON. 

 

Table 6.9 Mean values for CON intake (g DM/d) of lambs fed diets containing GTL in 

different CON levels during 70 days feeding trial. 

   Diets T0 GTL10 GTL20 Mean SEM 

HiCON 328
a 

326
a 

297
b 

317
a 2.22 

LoCON 165
c 

165
c 

165
c 

165
b 2.22 

Mean 247
A 

245
A 

231
B 

 P<0.001 

SEM 2.72 2.72 2.72 P<0.01  

SEM, standard error of means; T0, diet without GTL; GTL10, diet with 10% GTL in CON; 

GTL20; diet with 20% GTL in CON; HiCON, higher level of CON; LoCON, lower level of 

CON 
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 Tables 6.10 presents the means of rumen pH, NH3 concentrations (mg/L), and VFA 

concetrations (mmol/L) of lambs after 70 days feeding trial for only the main effect of 

GTL inclusions and CON levels as these were significant for some measurements but not 

all their interaction. Across the CON levels, the GTL inclusions had no significant effect 

on the rumen pH, NH3, and tVFA but the GTL inclusions increased the A:P ratio 

significantly. The HiCON lambs, averaged over all the GTL inclusions, had significantly 

lower rumen pH but higher tVFA, acetate, and n-butyrate concentrations than the LoCON 

lambs. 

 

Table 6.10 Mean values for rumen pH, NH3 concentrations (mg/L), and VFA 

concentrations (mmol/L) of lambs fed diets containing GTL in different amounts of CON 

levels after 70 days feeding trial. 

Measurements 
GTL (n=10) CON (n=15) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

Rumen profiles         

pH 6.60 6.56 6.65 6.54
b 

6.67
a 

0.04
NS 

0.04
* 

0.06
NS 

NH3 (mg/L) 103 103 102 101 104 5.54
NS 

4.52
NS 

7.83
NS 

tVFA (mmol/L) 44.0 48.0 40.2 47.1
a 

41.0
b 

2.23
NS 

1.82
* 

3.15
NS 

Acetate (mmol/L) 30.2
AB 

34.0
A 

28.1
B 

32.9
a 

28.6
b 

1.57
* 

1.28
* 

2.21
NS 

Propionate (mmo/L) 7.85 7.89 6.50 7.74 7.08 0.45
NS 

0.37
NS 

0.64
NS 

iso-Butyrate (mmol/L) 0.60 0.56 0.56 0.60 0.55 0.03
NS 

0.03
NS 

0.05
NS 

n-Butyrate (mmol/L) 4.25 4.49 4.02 4.75
a 

3.76
b 

0.32
NS 

0.26
* 

0.45
NS 

iso-Valerate (mmol/L) 0.73 0.67 0.68 0.74 0.65 0.05
NS 

0.04
NS 

0.07
NS 

n-Valerate (mmol/L) 0.36 0.34 0.31 0.36 0.31 0.03
NS 

0.02
NS 

0.04
NS 

A:P ratio 3.87
B 

4.36
A 

4.32
A 

4.29 4.08 0.11
* 

0.09
NS 

0.16
NS 

Here *, ** and *** represent significant differences between means  at P<0.05 or P<0.01 

or P<0.001 respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replications; NH3, ammonia; tVFA, total volatile fatty acids; A:P ratio, acetate to 

propionate ratio; GTL, green tea leaves; CON, experimental CON; SIL, grass silage; T0, 

diet without GTL; GTL10, diet with 10% GTL in CON; GTL20; diet with 20% GTL in 

CON; HiCON, higher level CON; LoCON, lower level CON. 

 

 Based on Table 6.11, subcutaneous fat of lambs contained large amount of total 

SFA (60.6%) and total MUFA (34.5%) but small amount of total PUFA (4.9%). Palmitic 

(C16:0) and stearic (C18:0) acids were the most dominant SFA followed by myristic acid 

(C14:0) whereas oleic acid (c9 C18:1) was the highest MUFA followed by vaccenic (t11 
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C18:1) and palmitic (c9 C16:1) acids, respectively. In PUFA, rumenic acid (c9t11 C18:2) 

was the greatest followed by α-linolenic (c9c12c15 C18:3 n3) and linoleic (c9c12 C18:2 

n6) acids, respectively. 

 Table 6.11 presents also the means of fatty acids of lambs after 70 days feeding 

trial for only the main effect of GTL inclusions and CON levels as these were significant 

for some measurements but not their interaction for some measurements. The GTL 

inclusions, averaged over all the CON levels, reduced total SFA significantly with 

significant reduction in palmitic acid but increased total MUFA significantly by increasing 

oleic acid,  c11 C18:1, and c12 C18:1 significantly when compared with T0 containing no 

GTL. Although the GTL inclusions did not increase total PUFA significantly, the GTL20 

inclusion tended to increase total PUFA contents compared with T0 although this increase 

did not reach significance (4.60 vs. 5.12%, P ≤ 0.1). There was no difference between the 

GTL10 and GTL20 inclusions for total SFA, total MUFA, and total PUFA. On the other 

hand, the CON levels, across the GTL inclusions, had no significant effect on total SFA, 

total MUFA, and total PUFA but the HiCON lambs had significantly lower c11 C18:1, c15 

C24:1, and  c13c16 C22:2 n6 but higher c13 C18:1 than the LoCON lambs. Lambs on 

HiCON-T0 had a significantly greater palmitic acid than those on LoCON-T0 but the GTL 

inclusions in HiCON significantly reduced the palmitic acid content to reach the same 

level with those in the LoCON lambs (Table 6.12). GTL inclusions, averaged over all the 

CON levels, had no significant effect on n3:n6 ratio of body fat but across GTL inclusions, 

lambs on LoCON had a significantly greater n3:n6 ratio than those on HiCON. 
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Table 6.11 Mean values for the subcutaneous fatty acid profiles (%) of lambs fed diets 

containing GTL in different amounts of CON after 70 days feeding trial. 

Fatty acids 

(% of total) 

GTL (n=10) CON (n=15) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

C8:0 0.01 0.01 0.01 0.01 0.01 0.001
NS 

0.001
NS 

0.001
NS 

C10:0 0.23 0.26 0.24 0.25 0.23 0.014
NS 

0.014
NS 

0.014
NS 

C11:0 0.005 0.006 0.005 0.005 0.005 0.001
NS 

0.001
NS 

0.001
NS 

C12:0 0.41 0.42 0.44 0.42 0.43 0.041
NS 

0.034
NS 

0.059
NS 

C14:0 4.80 4.73 4.61 4.65 4.78 0.246
NS 

0.200
NS 

0.347
NS 

C15:0 0.82 0.81 0.89 0.83 0.86 0.040
NS 

0.033
NS 

0.057
NS 

C16:0 26.3
A 

24.6
B 

24.6
B 

25.7 24.7 0.435
* 

0.355
NS 

0.615
*
 

C17:0 1.57 1.60 1.59 1.56 1.60 0.049
NS 

0.040
NS 

0.070
NS 

C18:0 27.7 26.7 28.1 27.3 27.6 0.963
NS 

0.786
NS 

1.36
NS 

C20:0 0.16 0.16 0.19 0.16 0.17 0.011
NS 

0.009
NS 

0.015
NS 

C22:0 0.03
AB 

0.02
B 

0.04
A 

0.03 0.03 0.003
* 

0.003
NS 

0.004
NS 

C23:0 0.01
A 

0.01
B 

0.01
A 

0.01 0.01 0.001
* 

0.001
NS 

0.002
NS 

C24:0 0.01 0.01 0.01 0.01 0.01 0.001
NS 

0.001
NS 

0.001
NS 

Total SFA 62.0
A 

59.3
B 

60.6
AB 

60.9 60.4 0.718
* 

0.586
NS 

1.02
NS 

C14:1 0.06 0.07 0.06 0.06 0.07 0.006
NS 

0.005
NS 

0.009
NS 

t9 C16:1 0.53 0.57 0.58 0.56 0.56 0.023
NS 

0.018
NS 

0.032
NS 

c9 C16:1 1.60 1.69 1.59 1.65 1.61 0.038
NS 

0.031
NS 

0.054
NS 

C17:1 0.35 0.39 0.37 0.38 0.36 0.016
NS 

0.013
NS 

0.022
NS 

t6t7t8 C18:1 0.20 0.21 0.21 0.20 0.21 0.010
NS 

0.008
NS 

0.014
NS 

t11 C18:1  4.14 4.19 4.29 4.12 4.30 0.278
NS 

0.227
NS 

0.278
NS 

c9 C18:1  24.5
B 

26.6
A 

25.0
AB 

25.4 25.4 0.544
* 

0.444
NS 

0.765
* 

c11 C18:1 0.95
B 

1.00
AB 

1.05
A 

0.96
b 

1.04
a 

0.027
* 

0.022
* 

0.038
** 

c12 C18:1 0.05
B 

0.08
A 

0.08
A 

0.06 0.07 0.008
* 

0.007
NS 

0.012
NS 

c13 C18:1 0.03 0.02 0.03 0.03
a 

0.02
b 

0.003
NS 

0.003
* 

0.004
NS 

c14t16 C18:1 0.36 0.40 0.42 0.38 0.41 0.021 0.017 0.030 

c15 C18:1 0.14 0.15 0.16 0.14 0.16 0.007
NS 

0.006
NS 

0.011
NS 

c8 C20:1 0.003 0.002 0.003 0.003 0.003 0.000
NS 

0.001
NS 0.000NS 

c13 C22:1 0.01 0.01 0.02 0.01 0.02 0.001
NS 

0.001
NS 

0.002
NS 

c15 C24:1 0.02 0.03 0.03 0.02
b 

0.03
a 

0.002
NS 

0.002
* 

0.003
NS 

Total MUFA 33.3
B 

35.8
A 

34.3
AB 

34.3 34.6 0.613
* 

0.501
NS 

0.868
NS 
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Fatty acids 

(% of total) 

GTL (n=10) CON (n=15) SEM and Significances 

T0 GTL10 GTL20 HiCON LoCON GTL CON GTLxCON 

t11t15 C18:2 n3 0.12 0.12 0.13 0.12 0.13 0.007
NS 

0.006
NS 

0.010
NS 

t10t14 C18:2 0.07 0.08 0.08 0.07 0.08 0.007
NS 

0.006
NS 

0.010
NS 

c9t13 C18:2 0.04 0.04 0.04 0.05 0.04 0.004
NS 

0.003
NS 

0.005
NS 

t8c13 C18:2 0.10 0.12 0.12 0.12 0.12 0.008
NS 

0.008
NS 

0.008
NS 

c9t12 C18:2 n6 0.09 0.11 0.01 0.10 0.10 0.006
NS 

0.005
NS 

0.008
NS 

t9c12 C18:2n6 0.04 0.04 0.04 0.04 0.04 0.006
NS 

0.005
NS 

0.009
NS 

ct mix 10,14+12,16 18:2  0.04 0.04 0.04 0.04 0.04 0.004
NS 

0.003
NS 

0.005
NS 

t11c15 C18:2 n3 0.40 0.41 0.45 0.39 0.45 0.031
NS 

0.025
NS 

0.043
NS 

c9c12 C18:2 n6  0.71 0.75 0.75 0.76 0.71 0.035
NS 

0.028
NS 

0.049
NS 

unknown LA1 0.10 0.10 0.11 0.10 0.11 0.005
NS 

0.004
NS 

0.007
NS 

unknown LA2 0.12 0.12 0.12 0.12 0.12 0.004
NS 

0.003
NS 

0.005
NS 

c9c15 C18:2 n3 0.03 0.04 0.04 0.04 0.04 0.002
NS 

0.002
NS 

0.003
NS 

c12c15C18:2 n3 0.01 0.01 0.01 0.01 0.01 0.002
NS 

0.001
NS 

0.003
NS 

c9t11 C18:2  1.20 1.33 1.30 1.22 1.33 0.109
NS 

0.089
NS 

0.155
NS 

c13t11 C18:2 0.20 0.19 0.20 0.19 0.20 0.021
NS 

0.017
NS 

0.030
NS 

unknown CLA1 0.03 0.03 0.03 0.02 0.03 0.002
NS 

0.001
NS 

0.002
NS 

unknown t,t  CLA2 0.03 0.03 0.03 0.03 0.03 0.002
NS 

0.002
NS 

0.003
NS 

unknown t,t CLA3 0.08 0.07 0.09 0.08 0.08 0.005
NS 

0.004
NS 

0.008
NS 

unknown t,t CLA4 0.04 0.03 0.04 0.03 0.04 0.001
NS 

0.001
NS 

0.002
NS 

c6c9c12 C18:3 n6  0.01 0.01 0.01 0.01 0.01 0.001
NS 

0.001
NS 

0.002
NS 

c9c11c15 C18:3 n3 0.21 0.22 0.21 0.21 0.21 0.013
NS 

0.010
NS 

0.018
NS 

c9c12c15 C18:3 n3  0.77 0.83 0.89 0.79 0.86 0.047
NS 

0.038
NS 

0.066
NS 

c9c13c15 C18:3 n3 0.03 0.04 0.04 0.03 0.04 0.003
NS 

0.003
NS 

0.004
NS 

c11c14 C20:2 n6 0.01 0.01 0.01 0.01 0.01 0.001
NS 

0.001
NS 

0.002
NS 

c8c11c14 C20:3 n6 0.01 0.01 0.01 0.01 0.01 0.001
NS 

0.001
NS 

0.001
NS 

c11c14c17 C20:3 n3 0.001 0.001 0.002 0.002 0.001 0.000
NS 

0.000
NS 

0.001
NS 

c5c8c11c14 C20:4 n6 0.03 0.03 0.04 0.04 0.03 0.003
NS 

0.003
NS 

0.005
NS 

c13c16 C22:2 n6 0.03
AB 

0.03
B 

0.04
A 

0.03
b 

0.04
a 

0.002
* 

0.002
* 

0.003
* 

C20:5 n3  0.03 0.02 0.03 0.03 0.03 0.004
NS 

0.003
NS 

0.005
NS 

c7c10c13c16 C22:4 n6 0.001 0.001 0.001 0.001 0.001 0.001
NS 

0.000
NS 

0.001
NS 

C22:5 n3  0.09 0.09 0.11 0.10 0.10 0.012
NS 

0.010
NS 

0.017
NS 

C22:6 n3  0.04 0.05 0.04 0.05 0.03 0.007
NS 

0.006
NS 

0.010
NS 

Total PUFA 4.69 4.98 5.12 4.83 5.03 0.150
NS 

0.122
NS 

0.212
NS 

n3:n6 ratio 1.86 1.89 1.97 1.78
b 

2.03
a 

0.089
NS 

0.073
* 

0.126
NS 

Here *, ** and *** represent significant differences between means at P<0.05 or P<0.01 or 

P<0.001 respectively; SEM, standard error of mean; NS, non-significant; n, number of 

replications; GTL, green tea leaves; CON, experimental CON; SIL, grass silage; T0, diet without 

GTL; GTL10, diet with 10% GTL in CON; GTL20; diet with 20% GTL in CON; HiCON, higher 

level CON; LoCON, lower level CON. 
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Table 6.12 Mean values for the subcutaneous palmitic acid (C16:0, %) of lambs fed diets 

containing GTL in different CON levels after 70 days feeding trial. 

   Diets T0 GTL10 GTL20 Mean SEM 

HiCON 27.8
a 

24.9
b
 24.3

b 
25.7

 0.355 

LoCON 24.9
b 

24.2
b
 24.9

b 
24.7

 0.355 

Mean 26.3
A
 24.6

B
 24.6

B
  P>0.05 

SEM 0.345 0.435 0.435 P<0.001  

SEM, standard error of mean; T0, diet without GTL; GTL10, diet with 10% GTL in CON; 

GTL20; diet with 20% GTL in CON; HiCON, higher level CON; LoCON, lower level 

CON. 

6.4 Discussion 

6.4.1 Animal performance, fermentation profile, and nutrient digestibility 

 The results of previous experiments in Chapters 4 and 5 showed that the tea leaf 

products, especially GTL could reduce rumen NH3 and CH4 levels without any harmful 

effect on rumen fermentation in-vitro and perhaps improved rumen productive efficiency 

by increasing potential by-pass proteins (Makkar, 2003a; McSweeney et al., 2001; Min et 

al., 2003; Mueller-Harvey, 2006), and reducing gross energy loss for CH4 releases 

(Johnson and Johnson, 1995). The GTL inclusions significantly improved in-vitro DM and 

OM degradability from rice straws-based diet (Chapter 4) and it had the same DM and OM 

degradability as with the control from ryegrass-based diet (Chapter 5). In previously 

published animal trials, however, reduced feed intake was commonly associated with the 

high tannin content of diets resulting in possible reduced nutrient intakes, digestibility and 

animal performance and in extreme situations, high tannin diets may be toxic to animals 

(Makkar, 2003; Mueller-Harvey, 2006; Mueller-Harvey et al., 2007; Po et al., 2012). 

Kozloski et al. (2012) reported that the lambs fed ad-libitum ryegrass with tannin extract 

(Acacia mearnsii) supplementation at up to 60 g/kg DMI resulted in lower DMI and 

reduced digestibility of DM, OM, NDF, and N than lambs fed a low-tannin control diet. 

Grainger et al. (2009) also reported a decrease in DMI and milk yield in dairy cows 

supplemented with tannin extracts from Acacia mearnsii at 0.9 - 1.8% DMI of condensed 

tannins, although goats fed either a high tannin diet with fresh Lespedeza cuneata or its hay 

had higher DMI but lower DM and N digestibility in comparison with those fed either 

alfalfa or grass (Puchala et al., 2012). Meanwhile, Cieslak et al. (2012) reported that 

adding tannin extract from Vaccinium vitis idaea in a diet had no effect on milk yield and 
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its fat, CP, lactose, and energy contents as well as the digestibility of DM, OM, and NDF 

in dairy cows. 

 The GTL inclusions in this study did not reduce animal performance such as tDMI, 

live-weight gain, carcass percentages and grades, and rumen fermentation profiles as 

measured by pH, NH3, and VFA. Although tVFA was not changed, the A:P ratio was 

increased confirming that GTL inclusion would be favourable for milk production as 

acetate plays an important role in the milk fat synthesis and the reduction of low milk fat 

syndrome (Bauman and Griinari, 2001; Bauman and Griinari, 2003). In Chapter 4, the 

GTL inclusions, especially at higher dose of 20% dietary DM also increased the in-vitro 

acetate production when compared with the control diet. Moreover, the GTL inclusions did 

not change the DM, OM, CP, EE, and fibre compositions or TS digestibility but it 

increased the ash, TP, and TT digestibility significantly.  

 One of the successful strategies to maintain animal performance in the current in-

vivo study was to maintain GTL intake by mixing GTL with highly palatable CON before 

feeding, avoiding diet selection by the animals. Nevertheless, giving a higher level of 

concentrate in the diet (≥ 300 g DM/d) supplemented with 20% GTL (60 g DM/d) should 

be avoided since at this level a reduction in concentrate intake was observed and this 

would be undesirable. On the other hand, adding 20% GTL (30 g DM/d) alongside a lower 

concentrate intake (150 g DM/d) or 10% GTL (30 g DM/d) at the higher concentrate intake 

(300 g DM/d or more) would be acceptable as animals were able to consume the full 

amount of their offered concentrates.  

 The lambs on LoCON feeding consumed more SIL than the HiCON fed lambs. 

This enabled the lambs to compensate their tDMI requirements by increasing their SIL 

intakes resulting in almost the same level of tDMI as that of the lambs consuming HiCON. 

Also, this study showed that the lambs on HiCON feeding had better ADG and 

digestibility of DM and OM than those on LoCON. This was due to the higher nutritive 

values of CON over SIL such as greater ME, EE, and most minerals (except K, Mg, and P) 

but less fibre contents for CON in comparison with SIL (Table 6.2). The HiCON fed lambs 

also had higher tVFA in particular acetate and n-butyrate but they had a lower rumen pH in 

comparison with the LoCON fed lambs. The concentrate feeding may be cheaper per unit 

of available energy than roughages due to its higher digestibility and faster fermentation in 

the rumen (Bartle et al., 1994). However, the lower rumen pH as a consequence of feeding 

high levels of concentrate should be monitored as this can make the animals more 

vulnerable to acidosis (Owens et al., 1998; Galyean and Rivera, 2003). However, no 

symptoms of acidosis were observed in this study as the rumen pH at the end of the 
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experiment remained above 6.5 indicating that the consumption of up to 317 g DM of 

CON diet along with ad-libitum roughages was acceptable.  

 Interestingly, the TP and TT digestibility in this study were significantly higher for 

lambs consuming diets containing GTL than the control diet. The higher GTL inclusion 

caused greater TP and TT digestibility. This confirms that tea polyphenols, mainly catechin 

derivatives, can be degraded either in the rumen or small intestine or both. Mueller-Harvey 

(2006) and Patra and Saxena (2010) reported that simple phenolics and tannins can be 

degraded by rumen microbes depending upon their types and structures (Mueller-Harvey, 

2006; Patra and Saxena, 2010). Perez-Maldonado and Norton (1996) also reported that the 

condensed tannins from Desmodium intortum and Calliandra calothyrsus could be 

substantially degraded in the rumen and post-rumen of sheep and goats. Murdiati et al. 

(1992) found that gallic and tannic acids at dose < 0.4 g/kg sheep LW per day were not 

toxic and could be significantly degraded in the rumen via decarboxylation and 

dehydroxylation. They also reported that the main urinary metabolites derived from tannic 

acid were resorcinol glucuronide and the glucuronide of 2-carboxy-2'4'4,6,-tetrahydroxy 

diphenyl 2, 2'-lactone where resorcinol glucuronide was the highest  metabolite from gallic 

acid metabolism. However, biochemical processing and the metabolism of tea phenolic 

compounds in the rumen and post rumen is still not well understood.  In a rat study, it was 

reported that catechin and epigallocatechin can be absorbed in the small intestine and is 

accompanied by glucuronidation, O-methylation: 3-O-Methyl- and 4-O-methyl- and O-

methyl-glucuronidations before entering the portal vein (Kuhnle et al., 2010). 

 Significantly increased TP and TS digestibility for the GTL containing diets in this 

study was accompanied by a significant increase in ash, Ca, Mn, and Zn digestibility. Also 

the Fe, Mg, and P digestibility tended to increase but not K, whereas Na digestibility was 

significantly decreased at the GTL20 inclusion. Waghorn et al. (1987) reported that 

condensed tannins in Lotus corniculatus could decrease apparent absorption of K, Mg, and 

S in sheep and a further study by Waghorn et al. (1994) found that condensed tannins 

increased the net absorption of P and Zinc but decreased rumen degradation and absorption 

of S in sheep fed Lotus pedunculatus. However, the information on the effect of tea 

polyphenols on mineral digestion and absorption in ruminants is still limited and so it is 

difficult to compare the effects of similar studies with the past research. In humans, tea 

consumption may affect Fe status since polyphenol contents in beverages can decrease the 

non-haem Fe bioavailability by establishing insoluble complexes (Temme and Van 

Hoydonck, 2002; Nelson and Poulter, 2004; Mennen et al., 2007). Zembayashi et al. 

(1999) found that beef from cattle fed diet containing GTL had lower muscle Fe status than 
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those fed a control diet. However, the Fe digestibility in this study tended to be higher in 

lambs consuming diets containing GTL (GTL10 = 189 and GTL20 = 245 g/kg DM) than 

the control lambs (T0 = 129 g/kg DM) but the Fe status of the lamb meat in this study was 

not measured. Interestingly, this study found that the P digestibility values of lambs fed 

diets containing GTL (GTL10 = 189 and GTL20 = 227 g/kg DM) tended to be higher 

compared with the control lambs (T0 = 166 g/kg DM). This suggests that GTL inclusions 

perhaps have the potential to reduce P loss in manure. High P loss into the environment is 

now becoming a major issue since it is associated with the surface water pollution and 

eutrophication (Correll, 1998; Sims et al., 1998; Knowlton et al., 2004). In this way, GTL 

inclusion may help reduce the impact of ruminant diets on the environment. 

6.4.2 Fatty acid profiles  

 This study reported that the majority of fatty acids in ruminant diets were PUFA 

such as linoleic acid in CON (c9c12 C18:2 n6, 33.0%) and α-linolenic acid in SIL 

(c9c12c15 C18:3 n3, 54.2%). However, SFA such as palmitic acid (C16:0, 25.2%) and 

stearic acid (C18:0, 27.5%) were the predominant fatty acids in the tested samples of 

subcutaneous fat, followed by MUFA: oleic acid (c9 C18:1, 25.4%) and vaccenic acid (t11 

C18:1, 4.2%), respectively. Meanwhile, PUFA such as rumenic acid (c9t11 C18:2, 1.3%) 

and α-linolenic acid (0.83%) were found to be in small amounts. It is recognised that after 

entering the rumen, dietary fats are subjected to lipolysis by microbial lipases to release 

fatty acids (Jenkins et al., 2008). It is possible that the majority of PUFA in diets of CON 

and SIL such as linoleic acid and α-linolenic acid, respectively, were converted to SFA 

through isomerization to trans fatty acid intermediates and hydrogenation of the double 

bounds (Jenkins et al., 2008; Vasta et al., 2010). The biohyrogenation process of (1) 

linoleic acid, (2) α-linolenic acid, and (3) oleic acid can be described as follow (Jenkins et 

al., 2008): 

(1)  c9c12 C18:2        c9t11 C18:2       t11 C18:1        C18:0 

(2) c9c12c15 C18:3       c9t11c15 C18:3       t11c15 C18:2        t11 C18:1          C18:0 

                                                                                                 c15t15 C18:1 

(3) c9 C18:1        t C18:1  C18:0 

 

 Linoleic acid is converted to rumenic acid by Butyrivibrio fibrisolvens and the same 

bacteria also convert rumenic acid to vaccenic acid. Vaccenic acid, an intermediate of 

ruminal biohydrogenation, is further hydrogenated to stearic acid by Butyrivibrio 

proteoclasticus (Jenkins et al., 2008; Vasta et al., 2010). Conversely, rumenic acid or 
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c9t11 CLA can be formed in muscle and mammary glands from the saturation of vaccenic 

acid involving a Δ
9
-desaturase enzyme (Griinari et al., 2000; Santora et al., 2000; Piperova 

et al., 2002).  

 This study found that the GTL inclusions reduced total SFA significantly, with a 

reduced amount of palmitic acid, but increased total MUFA significantly with increased 

oleic acid, c11 C18:1, c12 C18:1, and vaccenic acid in the subcutaneous fat of lambs 

although the later was not significant. The GTL inclusions also tended to increase total 

PUFA. This significant decrease in SFA, as a major fat content in meat, is useful since it is 

widely known to cause health problems such as cancers and coronary heart disease (Wood 

et al., 2003). In addition, the significant increase of total MUFA, as a consequence of 

decreased total SFA, is also beneficial because some MUFA such as vaccenic acid can act 

as a substrate for the formation of rumenic acid. Rumenic acid, other CLA, and PUFA 

have potential health advantages such as enhanced antibody formation and reduced risk of 

various cancers, arteriosclerotic vascular disease and obesity, although this is an area 

which still requires research (McGuire and McGuire, 2000; Wood et al., 2003; Wahle et 

al., 2004; Bhattacharya et al., 2006; Jenkins et al., 2008). Similar results have been 

reported by Vasta et al. (2009) who showed that quebracho tannins addition in a 

concentrate-based diet decreased stearic acid and increased vaccenic acid in the rumen 

fluid of sheep.  This resulted in higher PUFA, in particular rumenic acid, and less SFA in 

longissimus muscle of sheep fed the diet containing tannins than in those fed on a control 

low-tannin diet (Vasta et al., 2009). A recent study by Andrés et al. (2014) also 

demonstrated that quercetin extract addition (Sophora Japonica. L) along with linseed in a 

diet not only improved n3 PUFA content but also increased the rumenic acid content in 

longissimus muscles of lambs. 

 In muscle, phospholipids are the major lipid proportion whereas neutral lipids 

(triacylglycerol) are the main lipid contents in the subcutaneous adipose fat. Neutral lipids 

in subcutaneous fat have relatively higher SFA and lower PUFA than the muscle 

phospholipids since PUFA in muscle acts as a constituent of cellular membranes (Wood et 

al., 2008). Therefore, the finding in this study is important because the GTL inclusions 

could reduce SFA significantly and increase healthier MUFA and PUFA in the 

subcutaneous fat of ruminant meats. In developing countries, ruminant meats containing 

high amount of fat could be considered preferable for low income customers due to their 

high energy value at lower prices in comparison with the prime lean meat cuts. Meat fat 

can also improve extrinsic qualities such as taste, aroma, juiciness, and tenderness (Scollan 

et al., 2006). Furthermore, some oriental foods such as kebabs, curries and sausages also 
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contain relatively high amounts of subcutaneous fat. For such situations, adding tannins 

containing GTL into ruminant diets may help improve the nutritive values of ruminant 

meats. 

6.5 Conclusion 

 The GTL inclusions into ruminant diets showed no detrimental effects on animal 

performance as measured by tDMI, weight gain, carcass percentages and grades, and 

rumen fermentation profiles such as pH, NH3, and VFA. Instead, it increased ash, Ca, Mn, 

and Zn digestibility. It also tended to improve the digestibility of Fe, Mg and P but not K 

digestibility whereas Na digestibility may be decreased by GTL inclusions. The GTL 

inclusions decreased SFA mainly palmitic acid and consequently increased the proportion 

of MUFA such as oleic acid, vaccenic acid, and other C18:1 isomers in the subcutaneous 

fat of lambs. PUFA such as rumenic acid in muscle tended to increase as well because 

more MUFA such as vaccenic acid can be converted to form rumenic acid by involving Δ
9
-

desaturase enzyme. The lambs fed LoCON can compensate tDMI requirement to the 

similar level as those fed HiCON by consuming more SIL ad-libitum but higher CON 

resulted in better ADG. It appeared that the GTL inclusion in a lamb diet at around 30g 

DM/d/head would be more acceptable to encourage consumption and avoid refusal of a 

concentrate mixture and may help improving the nutritive values of ruminant meats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



230 

 

Chapter 7: General discussion, conclusion, and future studies 

 

7.1 General discussion 

 The demand for ruminant-derived foods in many Asian countries including 

Indonesia has been increasing significantly due to recent economic growth and high 

population. In contrast, the ruminant livestock population is likely to decrease as massive 

clearance of grazing lands for housing and industries continues. Animal nutritionists are 

therefore challenged to increase animal production with respect to competitiveness and 

efficiency but at the same time produce products which are healthy for the consumers and 

friendly to the environment. Plant secondary metabolites such as tannins, saponins, and 

essential oils can be beneficial as ‘natural’ additives to manipulate rumen fermentation and 

improved animal health and vitality through decreased rumen NH3 production and increase 

the potential amount of by-pass protein to be absorbed in the the small intestine (Makkar, 

2003a; McSweeney et al., 2001; Min et al., 2003; Mueller-Harvey, 2006), decreased CH4 

production (Guo et al., 2008; Hu et al., 2005; Mao et al., 2010), improved meat and milk 

fatty acid qualities by altering rumen biohydrogenation (Vasta et al., 2009; Vasta et al., 

2010; Wood et al., 2010), not to mention improving animal health via diminishing 

nematodes (Azaizeh et al., 2013; Galicia-Aguilar et al., 2012). One of the native plants 

being rich in plant secondary metabolites is tea which is widely grown by both small and 

large scale farmers in many Asian countries.  

 Each secondary metabolites-rich plant has its own unique characteristic of bio-

active constituents and better understanding of this is important to investigate their 

effectiveness to manipulate rumen fermentation. Characterizing the secondary metabolites 

along with other chemical components in tea and their spent leaf samples then becomes 

necessary before testing their potential to manipulate rumen fermentation and improve 

animal vitality by in-vitro and in-vivo studies. Therefore, a series of studies have been done 

to (1) characterize the chemical compositions, plant secondary metabolites, minerals, and 

fatty acids profiles in green (GTL) and black (BTL) tea leaves as well as their spent leaves 

(STL), (2) evaluate the potential use of GTL, BTL, and their STL on rumen in-vitro 

degradability, fermentation profiles, and total gas production from rice straws-based 

ruminant diet, (3) compare GTL and BTL, along with their STL with other feed types, and 

to evaluate their potential use to modify rumen in-vitro degradability, fermentation 

profiles, total gas, CH4, and CO2 productions from either rice straws or ryegrass hay based 

diets, and  (4) evaluate the potential use of GTL in ruminant diets to improve feed intake, 
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weight gain, nutrient digestibility, and  fatty acid profiles of meat in sheep. The overall aim 

of this series of experiments was to provide a comprehensive evaluation of the potential 

use of tea leaves, or STL from tea drink manufacturing industry, as diet ingredients for 

ruminant animals. 

 The first study reported that tea leaves were rich in CP, fibre, minerals, and plant 

secondary metabolites in particular phenolic tannins and saponins. Along with saponins 

and caffeine, GTL contained considerable amounts of polyphenols predominantly catechin 

derivatives such as EGCG, ECG, EGC, GC, CG, EC, C, and GCG, respectively. In 

general, BTL had less total secondary metabolites than GTL as the result of the oxidative 

fermentation process during black tea manufacturing where most secondary metabolites, in 

particular the catechins, are degraded and converted into theaflavin derivatives such as TF, 

TF-3-G, TF-3’-G, and TF-3,3’-DG.  BTL had also less saponins and caffeine than GTL. 

Despite the reduction of some components in BTL, this oxidative fermentation process is 

intended to improve extrinsic qualities of the tea such as the colour, flavour, brightness, 

and taste of the black tea drinks (Muthumani and Kumar, 2007; Owuor and Obanda, 1998).  

 Similar to original tea leaves, STL, and company STL as residues from tea water 

extraction were also plentiful in CP, fibre, and minerals but contained significantly lower 

amounts of secondary metabolites due to their solubility and loss during water extraction. 

Chemical composition, in particular the CP and secondary metabolites of STL such as 

alkaloids, catechins and theaflavins, was affected as expected by tea-to-water ratio used 

during extraction where a higher tea-to-water ratio would yield a more nutrient-rich STL 

and more concentrated tea extract liquids. Since the concentration of CP and plant 

secondary metabolites can be enhanced in STL by increasing a tea-to-water ratio during 

preparation of tea drinks, this approach may be adopted by the tea industry to obtain more 

nutrient-rich STL for their later use as feed additives for ruminant animals. Reducing water 

during tea drink preparation can also be beneficial for tea beverage companies to obtain 

more concentrated tea extract liquid and there will be less requirement of space to store tea 

drink, less energy for heating smaller volumes during extraction, and less water containing 

STL. In addition, the use of STL for ruminant feeding can help companies to deal with 

potential environmental problems caused by STL as a waste which is currently transported 

to landfills for dumping (Kondo et al., 2006; Xu et al., 2007). Understanding the 

characteristics of tea secondary metabolites, in particular alkaloids, polyphenols, and 

saponins as reported in this first study, is important for future research and to decide 

careful balanced-diet formulation when tea leaves and their corresponding STL are added 

so that their beneficial effects can be achieved effectively without causing any detrimental 
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outcome to the animals. Of course, this will need further in-vitro and in-vivo assessments 

by formulating carefully structured experiments.  

 The second study found that GTL inclusions into a rice straws-based diet could 

improve in-vitro degradability of the mixed diet while reducing the potential excess of 

rumen NH3 production. This was less effective for BTL inclusions which were only able to 

reduce NH3 production at greater doses but overall had no effect on in-vitro degradability. 

The reduced NH3 concentrations found in the in-vitro fermentations could be a sign that 

dietary proteins were perhaps bound by phenolic tannins and protected from rumen 

microbial digestion, and these protected proteins may then be available as by-pass proteins 

to be absorbed in the small intestine (Bodas et al., 2012; Makkar, 2003a; McSweeney et 

al., 2001; Min et al., 2003; Mueller-Harvey, 2006). Although NH3 is an important source 

of N for  rumen microbes, its over or fast production may exceed the ability of microbes to 

utilize it. This can lead to an excessive NH3 supply that, after absorption through the rumen 

wall, can enter the blood stream, liver, and eventually be excreted in urine as an N waste 

(Attwood et al., 1998; Szumacher-Strabel and Cieślak, 2010). However, catechin 

derivatives in GTL seemed to be stronger in binding dietary proteins in comparison with 

theaflavin derivatives in BTL if NH3 production is used as an indicator. Improving in-vitro 

degradability due to the GTL inclusions into rice straws-based diets was previously 

predicted since the nutritive values of GTL were higher than those in the rice straws. 

Lower degradability of diets containing BTL than those containing GTL could be caused 

by greater nutrient degradation during manufacturing of BTL compared with GTL. Also, 

the chromatogram peaks of theaflavins during HPLC analysis had longer retention time 

than those of catechins confirming their altered polarity, and consequently, lower 

solubility. In addition, most GTL and BTL inclusions had no significant effect on VFA 

profiles except for an increase in acetate concentrations at the higher GTL inclusion level. 

Higher amount of GTL inclusion may be favourable for milk production as acetate plays 

an important role in the milk fat synthesis and reduces the occurrence of low milk fat 

syndrome (Bauman and Griinari, 2001; Bauman and Griinari, 2003). However, it may not 

be economically preferable since there was no different between higher and lower GTL 

inclusions on in-vitro degradability.  

 Green and black STL produced experimentally in the laboratory, as well as those 

provided by a commercial company, when included into rice straws-based diets increased 

in-vitro degradability but decreased NH3 production with no significant effect on total 

VFA concentrations. Again, green STL had a greater ability to decrease NH3 

concentrations than black STL. Interestingly, BTL inclusions could not improve in-vitro 
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degradability from the control diet while black STL inclusions could. Perhaps, this was due 

to higher theaflavins in BTL than those in the black STL as the residue affecting feed 

degradadion by rumen microbes. In addition, improved in-vitro degradability for GTL, 

green and black STL as well as company green and black STL inclusions seemed to be 

followed by increased gas production confirming the positive correlation between in-vitro 

degradability and total gas production (Menke and Steingass, 1988; Krishnamoorthy et al., 

1995). Here, green STL and company green STL, as the residues, could be included into 

diets at levels up to 200 g/kg DM to improve the degradation of rice straws-based diets. 

Although GTL, as original tea leaves, can be included into a similar diet up to 200 g/kg 

DM, 50 g/kg DM inclusion is suggested since they had no difference in in-vitro 

degradability. Meanwhile, black STL and company black STL are better used at 100 g/kg 

DM because above this level they potentially decreased in-vitro degradability. 

 The third study confirmed that original tea leaves, in particular GTL, as well as 

their STL as the residues, could improve in-vitro degradability of rice straws giving the 

same rumen degradation quality as ryegrass hay in the diets. Meanwhile, both original teas 

and their STL had a little effect on rumen VFA profiles. Interestingly, GTL and BTL 

inclusions not only decreased rumen NH3 but also reduced CH4 production. pH was also 

reduced by the GTL inclusions but not for the BTL inclusions. However, the ability to do 

so by their STL was lower. Again, this is likely to be due to lower secondary metabolite 

contents in STL than the original tea leaves due to their degradation during the tea making 

process. Mitigating CH4
 
production in ruminants

 
is desirable since CH4, along with CO2 

and N2O, is known to highly contribute to the greenhouse gas effect. Characteristically, 

CH4 is colorless and odorless but it potentially contributes more to global warming than 

CO2 as it is 21 times higher at retaining heat in the atmosphere than CO2 (EPA, 2011). 

Unfortunately, agricultural activities are estimated to be responsible for 40 - 60% of the 

total anthropogenic CH4 production while 25 - 40% comes from the livestock sector, 

predominantly from ruminants via their eructation and manures (Attwood and 

McSweeney, 2008; Boadi et al., 2004; Moss et al., 2000). CH4 production is also 

associated with the loss of dietary gross energy by 2 - 12% (Johnson and Johnson, 1995). It 

appears in-vitro that GTL was more preferable over BTL as an additive to manipulate 

rumen fermentation by decreased NH3 and CH4 but improved degradability of rice straws 

and giving the same rumen degradation quality with ryegrass hay in the diets.  

 In animal experiments, however, reduced feed intake is commonly associated with 

the high tannin content in diets resulting in possible reduced nutrient intakes, digestibility, 

and animal performance whereas in extreme situations, high tannin intakes may be toxic to 
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animals (Makkar, 2003; Mueller-Harvey, 2006; Mueller-Harvey et al., 2007; Po et al., 

2012). Therefore, in addition to these in-vitro studies, a further in-vivo experiment using 

growing lambs was conducted to test the potential use of GTL as an additive for ruminants 

at a farm scale.    

 The final in-vivo study reported that GTL inclusions into ruminant diets had no 

detrimental effects on animal performance measured by tDMI, weight gain, carcass 

percentages and grades, and rumen fermentation profiles such as pH, NH3, and VFA 

profiles. Unexpectedly, the in-vivo study found that GTL inclusion had no effect on rumen 

NH3 while previous in-vitro studies suggested that NH3 production was significantly 

reduced by GTL inclusions. While in-vitro studies were finished between 24 to 72h 

incubations, the rumen fluid collection for NH3 determination in the in-vivo study was done 

after 70 days feeding trial. It seems that proteolitic bacteria in the rumen could adapt and 

degrade proteins in the substrates containing GTL during a prolonged experimental period. 

This explanation is supported by the result of crude protein digestibility measurements 

which were not affected by the GTL inclusions during the in-vivo trial. It was reported that 

the condensed tannins from Desmodium intortum and Calliandra calothyrsus could be 

substantially degraded in the rumen and post-rumen of sheep and goats (Perez-Maldonado 

and Norton 1996). Murdiati et al. (1992) also found that gallic and tannic acids 

supplementations into sheep diets were safe and could be significantly degraded in the 

rumen via decarboxylation and dehydroxylation. In a rat study, it was reported that 

catechin and epigallocatechin can be absorbed in the small intestine resulting in 

glucuronidation, O-methylation: 3-O-Methyl- and 4-O-methyl- and O-methyl- 

glucuronidations before entering the portal vein (Kuhnle et al., 2010).  Furthermore, total 

phenols and total saponins digestibility in this in-vivo study were increased by GTL 

inclusions into the diets confirming that they were degraded by rumen microbes and/or 

absorbed in the small intestine of the lambs. Along with increased ash, Ca, Mn, and Zn 

digestibility, the GTL inclusions also potentially improved Fe, Mg, and P digestibility but 

not K digestibility.  Increased P digestibility has the potential to reduce P loss in manure 

leading to less surface water pollution and eutrophication (Correll, 1998; Sims et al., 1998; 

Knowlton et al., 2004).  

A key finding of the feeding experiment was that GTL addition into diets decreased 

SFA, mainly palmitic acid, and consequently increasing the proportion of MUFA such as 

oleic acid, vaccenic acid, and other C18:1 isomers in subcutaneous fat of lambs. Also, 

beneficial PUFA such as rumenic and α-linolenic acid contents in meat was potentially 

increased since such PUFA can be formed in muscle from the desaturation of MUFA such 
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as vaccenic acid by involving Δ
9
-desaturase enzyme (Griinari et al., 2000; Santora et al., 

2000; Piperova et al., 2002). SFA is the major fat content in meat and it is widely known to 

cause health problems such as cancers and coronary heart disease (Wood et al., 2003) 

whereas rumenic acid, other CLA, and PUFA have the potential to enhance antibody 

formation and reduce the risk of various cancers, arteriosclerotic vascular disease, and 

obesity (McGuire and McGuire, 2000; Wood et al., 2003; Wahle et al., 2004; Bhattacharya 

et al., 2006; Jenkins et al., 2008). 

 The first in-vitro study found that GTL can be added into diets up to 200 g/kg DM 

but 50 g/kg DM inclusion was suggested for cost efficiency since both doses resulted in a 

similar degradability. However, reduced feed intake was commonly reported in animal 

studies by previous researchers due to high tannin content in diets (Makkar, 2003; Mueller-

Harvey, 2006; Mueller-Harvey et al., 2007; Po et al., 2012). The current in-vivo study 

reported that the GTL inclusions should be mixed with a highly palatable concentrate diet 

to maintain their intakes by lambs and it was found that 30 g DM/d/head in either high or 

low concentrate diets was accepted by the lambs. Meanwhile, GTL inclusion at 60 g 

DM/d/head in concentrate left some refusals.   

7.2 General conclusion 

 Increased human population, climate change, health, and environmental issues, 

along with the competition for use of grains for food, feed, and fuel has led animal 

scienties to improve animal production system efficiency but at the same time being 

friendly to the environment and healthy for consumers. Tea leaves and their STL as 

residues are good sources of protein, fibre, plant secondary metabolites, and minerals for 

their inclusion in ruminant diets. Besides saponins and caffeine, GTL is rich in 

polyphenols such as catechin derivatives. During BTL fabrication, most catechin 

derivatives in fresh leaves are degraded and converted into less soluble polyphenols called 

theaflavins. Increasing tea-to-water ratio during preparation of tea drinks can produce more 

concentrated tea extract liquid and obtain more nutrient-rich STL.  Most tea leaves and 

their residue inclusions into ruminant diets can improve in-vitro degradability while 

reducing the potential excess of rumen NH3 production except, BTL which were not able to 

improve in-vitro degradability and reduced NH3 production at greater doses only. 

Improved degradability due to some tea leaf product inclusions was also followed by 

increased total gas production but lower percentage of CH4 concentrations. Decreased NH3 

production is likely to be due to the binding and protecting activities of tea tannins to plant 

protein and these may be beneficial to increase the availability of by-pass protein and 
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reduce N loss to the environment. Moreover, both GTL and BTL can reduce CH4 

production but the ability to do so by their STL was lower since STL had much less 

secondary metabolite contents than the original leaves due to their possible degradation 

during the tea making process. GTL in the current studies are generally more preferable as 

additives for ruminants than BTL since they have stronger ability to manipulate rumen 

fermentation via decreased in-vitro NH3 and CH4 productions, and were able to improve 

in-vitro degradability of the straws but having the same degradability as moderate quality 

forages such as ryegrass. In an in-vivo lamb trial, GTL inclusions had no detrimental effect 

on performance and rumen fermentation profiles. Instead, it increased ash, Ca, Mn, and Zn 

digestibility. The digestibility of Fe, Mg, and P are also potentially improved by GTL 

inclusion. In addition, GTL inclusion decreases SFA such as palmitic acid and 

consequently increases the proportion of beneficial MUFA such as oleic acid and vaccenic 

acid as well as PUFA such as rumenic acid in meats. It appears that tea leaves and their 

STL as residues can be utilized as additives for ruminants but the effect of GTL to improve 

ruminant production with respect to efficiency, friendy to the environment, and healthy for 

customers is superior than other tea leaf products. GTL inclusion at 30 g DM/d/head is 

suggested.  

7.3 Future studies 

 Based on in-vitro and in-vivo studies which have been done so far, it is 

recommended that future works should address the following objectives: 

1. To investigate the microbial changes due to the presence of tea polyphenols, in 

particular catechin derivatives, in the rumen. This investigation is the key to 

understand the rumen mechanism in relation to decreased NH3 and CH4 

productions, altered mineral digestibility as well as altered fatty acid profiles in 

meat due to the GTL inclusions. 

2. To initially characterize particular polyphenol, saponin, or essential oil contents if 

investigation on the use of plant secondary metabolites to manipulate rumen 

fermentation and improved animal production would be carried out. This is 

important to decide an appropriate balanced-diet formulation when they are added 

to avoid any detrimental effects to the animals. 

3. Future work to mitigate CH4 production should not only focus on reducing the 

concentration of CH4 in the gas but also reducing total gas production. In this case, 

the challenge is how to reduce total gas production without affecting feed 

degradability. 
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APPENDICES 

 

Appendix 1 Proximate analysis 

1.1 Dry matter (DM, AOAC official method 934.01) 

Apparatus: 

1. Alumunium foils and porcelain crucibles  

2. Oven drier 

3. Sample mill (Tecator Cyclotec 1093, Sweden) 

4. A desiccator 

5. Analytic weighing scale (Salter N&D, Japan) 

Procedures: 

 Samples were oven dried at 60
0
C for 48h. For fresh and wet STL, it was initially 

dried at 40
0
C overnight before increasing the temperature to 60

0
C to avoid any nutrient 

damage during drying. Dried samples were then ground to pass 1 mm sieve in a sample 

mill. DM was determined by oven drying representative samples in triplicate (about 1 g 

each in porcelain crucible) at 100
0
C for 24 h. A desiccator was used to cool samples after 

being taken off the oven drier before weighing.   

Equation: 

C     : Wt. of crucible (g) 

CS0  : Wt. of crucible with fresh sample (g) 

S0    : Wt. of fresh sample (g), S0 = CS0-C 

CS1  : Wt. of crucible with dried sample (g) 

S1     : Wt. of dried sample (g), S1 = CS1 - C 

 

                         S1 

DM (g DM/ kg fresh sample) =   ---------- x 1000  

                                                         S0 

1.2 Ash and Organic matter (AOAC official method 942.05)  

Apparatus: 

1. Furnace (Carbolite, AAF11/18, England) 

2. Analytic weighing scale (Salter N&D, Japan) 

3. Desiccator 
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Procedures:  

 The samples from DM analysis were then placed and ignited in a furnace at slowly 

rise temperature to 550
o
C for 5 h. There were then removed and cooled in a desiccator 

before weighing them. Both ash and OM were expressed as g/kg DM. 

Equations: 

C    : Wt. of crucible (g) 

CS   : Wt. of crucible with dried sample (g) 

S     : Wt. of dried sample (g), S = CS-C 

CA   : Wt. of crucible with ash (g) 

A      : Wt. of ash (g), A = CA-C 

                                 A 

Ash (g/kg DM) = ----------X 1000  

                                 S 

          

                                S - A 

OM (g/kg DM) =   --------- X 1000  

                                  S 

1.3 Ether extraxct (EE, AOAC official Method 920.39)  

Apparatus:   

1. A set of soxhlet extractor (thimbles, flasks , soxhlet extractors, heating mantles, and 

condensers) 

2. Analytic weighing scale (Salter N&D, Japan) 

3. Cotton wools 

Reagent:   

(a) Solvent (petroleum ether 40-60
o
C) 

Procedures:   

 Adequate petroleum ether was placed into a pre-oven dried flask (overnight at 

60
o
C). About 1.5 g of each dried ground sample was placed into thimble and plug the top 

with cotton wools. It was then placed into the extractor and fitted to the flask. The next 

step was to fit the extractor and flask into the heating mantle and condenser. The flask was 

heated until the solvent gently boiled and allowing this extraction process for 6 h before 
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removing. Finally, the residual solvent containing oils (EE) was oven dried for over the 

night at 60
o
C and stored in a desiccator to cool before weighing. 

Equations: 

T   : Wt. of thimble (g) 

F   : Wt. of flask (g) 

TS : Wt. of thimble with dried sample (g) 

S   : Wt. of dried sample (g), S = TS - T 

FE : Wt. of flask with ether extract 

E   : Wt. of ether extract (g), E = FE - F 

                                  E 

EE (g/kg DM) =   ------------ X 1000 

                                  S 

1.4 Crude Protein (CP), Carbon, and sulphur  

Apparatus:  

1. Elementar Vario Macro Cube (Germany). This machine can determine Nitrogen, 

carbon, and sulphur in three-in-one process for a similar sample. 

2. Analytic weighing scale (Salter N&D, Japan) 

3. Thin foil cups 

Procedures:   

 About 0.1 g of each dried ground sample was placed into a pre-tarred tin foil cup. It 

was then carefully folded and squashed into a pellet to expel the air and this was done by 

using a tool provided by Elementar. In particular to carbon (C) and nitrogen (N) 

determinations, the analysis was carried out in CN mode; this involved using a 

combustion, post combustion and reduction tube in the furnace of the analyzer. The 

combustion tube was at 930
o
C and a sample was dropped into this via a carousel and ball 

valve. Oxygen was used to burn the sample and the gas was carried off in helium through 

both the post combustion and reduction tubes, which were also heated, to the detectors 

housed within the analyzer. Regarding to sulphur analysis, the combustion and reduction 

tubes were at 1150
o
C and 850

o
C, respectively.

 
Before each run a set of standards was run 

which ensured that the analyzer was working correctly. Standards were also run halfway 

through a sample run as well. To check that the analyzer has performed correctly there was 

a Daily Factor figure which was worked out after each run and this should lie between 0.9 

and 1.1.  Runs that did not meet these criteria were discarded. Each element was analyzed 



264 

 

separately and a % figure was then obtained.  CP content was calculated by multiplying N 

content with 6.25 and expresses CP in g/kg DM. 

Equation: 

Fc   : Wt. of foil cup (g) 

FcS : Wt. of foil cup with sample (g) 

 S   : Wt. of sample (g) 

 Np : N content in percent (%) 

 N  : N in gram (g), N = Np/100 x 1000                           

CP (g/kg DM) = 6.25 X N 

Appendix 2 Fibre fraction analyses 

2.1 Neutral detergent fibre (NDF) (Van Soest et al., 1991), neutral detergent insoluble 

protein (NDIP), and neutral detergent insoluble carbon (NDIC) 

Apparatus:  

1. 100 ml tubes fit to the racks of the digestion chamber 

2. A set of digestion chamber (Gerhardt Kjeldaterm, Germany) 

3. Sintered glass crucibles (porosity no. 1). They were  initially washed and ashed at 

550
0
 C for 3 hours, cooled in a desiccator, weighed, and put back in a desiccator 

until ready to use 

4. A set of Buchner flask and vacuum pump 

5. Glass rod stirrer 

6. Elementar Vario Macro Cube (Germany), to analyze Nitrogen and Carbon for 

NDIP and NDIC analyses 

7. pH metre.  

Reagents: 

(a) Neutral detergent solution (ND); About 30 g Sodium dodecyl Sulphate, 18.61 g Di 

sodium dihydrogen EDTA, 6.81 g Di sodium tetraborate, 4.56 g Disodium hydrogen 

orthophoshphate, 10.0 ml tryethilene glycol and distilled water in 1 L of ND solution 

with the range of pH 6.9 - 7.1 

(b) Acetone. 

Procedures: 

 About 0.5 g each of dried ground sample was placed into the tubes. Then, 50 ml 

ND was added into it. After this, the tubes were placed on the racks of digestion chamber. 
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The temperature was set at 120
o
C and it was reduced if rapid foaming happened to avoid 

splashing out. This extraction was lasted for 1 hour from a starting boiling. Next, tubes 

were taken out and each of them was swirled. The solution was then filtrated into a pre-

weighed sintered glass crucible and completed the filtration using light vacuum suction. 

After this, the fibre residue on crucible was washed by filling two third of the crucible with 

hot (90-100
o
C) water, stirred, soaked for few minutes, and drained with the aid of vacuum 

suction. The sides of crucible were also rinsed. This washing was performed twice. It was 

then continued by having the same wash twice with acetone. The stirring rod was also 

rinsed before removing. Crucible with its content of fibre residual was oven dried at 100
o
C 

overnight, cooled in a desiccator and weighed. About 0.1 g of dried fibre residue was taken 

for N and C analysis using Elementar Vario Macro Cube analyzer as described previously 

in order to get NDIP and NDIC. Finally, the remaining residual fibre content was ashed at 

550
○
C in a furnace for 5 h, cooled in a desiccator and weighed. 

Equations: 

F   : Wt. of tube (g) 

FS : Wt. of tube with dried sample (g) 

S   : Wt. of dried sample (g); S = FS - F 

C : Wt. of sintered glass crucible (g) 

CR : Wt. of sintered glass crucible with dried fibre residue (g) 

R   : Wt. of dried fibre residue (g); R = CR - C 

CA : Wt. of crucible with ash (g) 

A   : Wt. of ash (g) (after being corrected with the amount of fibre residue taken for N and 

C analysis) 

Np : N content in percent (%); N (g) = Np/100 x 1000 

Cp : Carbon in percent (%); C (g) = Cp/100 x 1000 

    

                                    R - A 

NDF (g/kg DM) =   -------------- x 1000 

                      S              

 

                                            (6.25 x N) 

NDIP (g/kg DM NDF)  =   -------------- x NDF 

                                 S   
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                                               C 

NDIC (g/kg DM NDF) = -------------- x NDF 

                               S              

2.2 Acid detergent fibre (ADF) (Van Soest, 1990), acid detergent insoluble protein 

(ADIP), acid detergent insoluble carbon (ADIC) 

Apparatus:  

1. 100 ml tubes fit to the rack on digestion chamber 

2. A set of digestion chamber (Gerhardt Kjeldaterm, Germany) 

3. Sintered glass crucibles (porosity no. 1). They were initially washed, ashed at 550
0
 

C for 3 hours, cooled in desiccators, pre-weighed and put them back into the 

desiccator until ready to use 

4. A set of Buchner flask and vacuum pump 

5. Glass rod stirer 

6. Elementar Vario Macro Cube (Germany), to analyze Nitogen and Carbon for ADIP 

and ADIC analyses. 

Reagents: 

(a) Acid detergent solution (AD); Add 20 g cetyl trimethylammonium bromide (CTAB, 

technical grade) to 1 L 0.5M H2SO4  (added 27.7 ml H2SO4 (95-98%) to  972.3 ml 

H2O) 

(b) Acetone.  

Procedures: 

 About 0.5 g each of dried ground sample was placed into the tubes. Then, 50 ml 

ND was added into it. After this, the tubes were placed on the racks of digestion chamber. 

The temperature was set at 120
o
C and it was reduced if rapid foaming happened to avoid 

splashing out. This extraction was lasted for 1 hour from a starting boiling. Next, tubes 

were taken out and each of them was swirled. The solution was then filtrated into a pre-

weighed sintered glass crucible and complete filtration using light vacuum suction. After 

this, the fibre residue on crucible was washed by filling two third of the crucible with hot 

(90-100
0
C) water, stirred, soaked for a few minutes and drained with the aid of vacuum 

suction. The sides of crucible were rinsed. This washing was performed twice. It was then 

continued by having the same wash twice with acetone. Stirring rod was also rinsed before 

removing. Crucible with its content of fibre residual was oven dried at 100
0
C overnight, 

cooled in a desiccator and weighed. About 0.1 g of dried fibre residue was taken for N and 
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C analysis using Elementar Vario Macro Cube analyzer as described previosusly in order 

to get ADIP and ADIC. Finally, the remaining residual fibre content was ashed at 550
○
C in 

furnace for 5 h, cooled in a desiccator and weighed. 

Equations: 

F   : Wt. of tube (g) 

FS : Wt. of tube with dried sample (g) 

S   : Wt. of dried sample (g); S = FS - F 

C   : Wt. of sintered glass crucible (g) 

CR : Wt. of sintered glass crucible with dried fibre residue (g) 

R   : Wt. of dried fibre residue (g); R = CR - C 

CA : Wt. of crucible with ash (g) 

A   : Wt. of ash (g) (after being corrected with the amount of fibre residue taken for N and 

C analysis) 

Np : N content in percent (%); N (g) = Np/100 x 1000 

Cp : Carbon in percent (%); C (g) = Cp/100 x 1000 

 

                                   R - A 

ADF (g/kg DM) =   -------------- x 1000 

                      S  

             

                                           (6.25 x N) 

ADIP (g/kg DM ADF)  =   -------------- x ADF 

                                 S              

 

                                               C 

ADIC (g/kg DM ADF) = -------------- x ADF 

                                                S     

2.3 Acid detergent lignin (ADL) 

Apparatus: 

1. See the apparatus used for ADF 

Reagents 

(a) Sulfuric acid (72 %) standardized to m.w. 1.64 (Added  420 ml H2SO4 (95-98% m.w. 

1.834) to 580 ml H2O )  in a 2 L volumetric flask put on ice in a fume cupboard 
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(b) Acetone. 

Procedures: 

 The initial procedure was similar to ADF determination in which after obtaining 

dried residual from the last step of ADF determination’s procedures, sulfuric acid (72%) 

was added to about half full of crucible, stirred with glass rod and allowed it to drain 

(natural gravity filtration). The crucible was then re-filled with the same sulfuric acid, 

stirred hourly intervals for 3 times (3 h) and filtered with the aid of vacuum suction to 

fasten draining. Next, the residual content was washed with hot (90-100
o
C) water until 

acid-free and re-washed again with acetone. The sides of crucible were rinsed and stirring 

rod removed after being rinsed. After this, the crucible and its content was dried at 100
o
C 

in the oven overnight, cooled in a desiccator, and weighed. Finally, the residual content 

was ashed at 550
○
C in furnace for 5 h, cooled in a decicator and weighed. 

Equations: 

S   : Wt. of dried sample (g) (obtained from ADF determination)  

C   : Wt. of sintered glass crucible (g) (obtained from ADF determination) 

CR : Wt. of sintered glass crucible with dried residue (g) 

R   : Wt. of dried residue (g); R = CR - C 

CA : Wt. of crucible with ash (g) 

A   : Wt. of ash (g)  

   

                                 R - A 

ADL (g/kg DM) =   ---------- X 1000 

                                    S 

Appendix 3 Secondary metabolites analysis 

3.1 Total phenols and total tannins  

 These measurements were based on Folin-Ciocalteu method with using tannic acid 

as equivalent standard as described by Makkar (2003b). 

Apparatus:  

1. 20 ml and 10 ml test tubes 

2. Gilson pipettes (0.02 ml, 0.1 ml, 1 ml, and 5 ml) (Gilson Inc, USA) 

3. Vortex (whirly) mixer (Nikel Elector, UK) 

4. Ultrasonic waterbath (Fisher scientific, UK)  
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5. Refrigerated centrifuge (Baird & Tatlock Ltd., UK)  

6. Plastic UV cuvette 

7. Spectrophotometre (Libra S12, Biochrom, UK). 

Reagents: 

(a) 70 % aquaeous acetone (v/v) 

(b) An ultrasonic water bath (Fisher scientific, UK) 

(c) Folin-Ciocalteu reagent (1N). Commercial Folin-Ciocalteu reagent (2N) (Fisher 

Scientific, UK) was equally diluted with distilled water, kept in a brown bottle and 

stored in cold room (4
o
C). The colour should not be olive green. 

(d) Sodium carbonate (20%): 40 g Sodium bicarbonate decahydrate (x10 H2O) was 

dissolved in 200 ml of distilled water. 

(e) (insoluble) Polyvinyl polypyrrolidone (PVPP) (Sigma Aldrich, UK) 

(f) Standard tannic acid solution (0.1 mg/ml); 25 mg tannic acid (Fisher scientific, UK) 

was dissolved in 250 ml of distilled water (1:10). Fresh solution should be always 

used. 

(g) Adjusted distilled water with pH 3. This was obtained by slowly adding HCL 

dropwise into distilled water until the pH 3 reached.   

Procedures: 

Standard calibration 

 Initially, calibration of the standard was prepared by analyzing standard tannic acid 

solution up to 3 times and the tabulated results described as follow: 

 

Table 3.1 Calibration standard of tannic acid.  

Tubes 

Tannic acid 

solution 

(0.1 mg/ml) 

(ml) 

Distilled 

water 

(ml) 

Folin-

Ciocalteu 

reagent 

(ml) 

Sodium 

carbonate 

solution 

(ml) 

Absorbance 

at 725 nm 

Tannic 

acid 

(mg) 

To 0.00 0.50 0.25 1.25 0.000 0.000 

T1 0.04 0.46 0.25 1.25 0.193 0.004 

T2 0.08 0.42 0.25 1.25 0.365 0.008 

T3 0.12 0.38 0.25 1.25 0.557 0.012 

T4 0.16 0.34 0.25 1.25 0.713 0.016 
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Regression equation (r
2 

= 0.998) of tannic acid standard (mg): 

(                            )           . 

Extract preparation 

 About 200 mg each of dried ground sample was put into a tube of about 20 ml 

capacity and 10 ml acetone (70%) added. After that, the tubes were then suspended in an 

ultrasonic water bath (without heating) and subjected to ultrasonic treatment for 2x10 

minutes with 5 minutes break in between. The content of the tube was centrifuged using 

refrigerated centrifuge set at 4 
o
C at 3000 rpm for 10 minutes, and the supernatant was then 

collected for the analyses. 

Total phenols analysis 

 About 0.02 ml of each tannin-containing sample extract was transferred to the test 

tube of around 10 ml capacity and 0.48 distilled water added to make the volume up to 0.5 

ml. It was then to add 0.25 ml of Folin-Ciocalteu reagent and 1.25 ml of sodium carbonate 

solution into the tube, respectively. After that, the tube was vortexed, kept on the rack for 

40 minutes and adequate solution in the tube transferred into cuvettes (usually in 

duplicate). Finally, each cuvette was put into spectrophotometer and the absorbance at 725 

nm was recorded against the blank solution (T0). Total phenols (tannic acid equivalent) 

was calculated from the above calibration standard and if the value of absorbance reached 

higher than the range of calibration standard, the extract sample should be appropriately 

diluted.  

Equation: 

A: mg tannic acid   

      A =  (                            )           

B: mg tannic acid in 1 ml extract sample  

      B = 
 

    
 

C: As 200 mg dried ground sample was extracted in 10 ml solvent, it was equivalent to 100 

mg dried ground sample was extracted in 5 ml solvent. 

 Thus, 100 mg dried ground sample =       mg tannic acid (or) 

                   1 kg dried ground sample =    (     ) g tannic acid 

                                                         C =    (     ) g tannic acid 

    Total phenols (g/kg DM tannic acid equivalent) =  
                  

       
       

    If the extract sample was not diluted, the dilution factor should be 1 (one). 
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Total tannins analysis 

 In this procedure, PVPP (a tannins binding agent) was used in order to remove 

tannins form extract sample. About 100 mg PVPP was put into a test tube (10 ml capacity) 

and 1 ml of adjusted distilled water (pH 3) as well as 1 ml of each extract sample added, 

respectively. It was then to vortex the tubes and to keep them in cold room (4
o
C) for 15 

minutes. Next, each tube was vortex and subjected to refrigerated centrifugation (at 3000 

rpm and 4
o
C) for 10 minutes. After that, supernatant was collected and subjected to total 

phenols analysis. This supernatant had only simple phenols other than tannins since it had 

been precipitated along with PVPP. About 0.1 or 2.0 ml of supernatant was transferred to 

the test tube of around 10 ml capacity and 0.4 distilled water added to make the volume up 

to 0.5 ml. It was then to add 0.25 ml of Folin-Ciocalteu reagent and 1.25 ml of sodium 

carbonate solution into the tube, respectively. After that, the tube was vortexed, kept on the 

rack for 40 minutes and adequate solution in the tube transferred into cuvettes (usually in 

duplicate). Finally, each cuvette was put into spectrophotometer and the absorbance at 725 

nm recorded against blank solution (T0). Total simple phenols (tannic acid equivalent) was 

calculated from the previous calibration standard and if the value of absorbance reached 

higher than the range of calibration standard, the extract sample should be appropriately 

diluted.  

Equation 

A: mg tannic acid   

      A =  (                            )           

B: mg tannic acid in 1 ml extract sample  

      B = 
 

          
 

C: As 200 mg dried ground sample was extracted in 10 ml solvent, it was equivalent to 100 

mg dried ground sample was extracted in 5 ml solvent. 

 Thus, 100 mg dried ground sample =       mg tannic acid (or) 

                   1 kg dried ground sample =    (     ) g tannic acid 

       Due to equal dilution of extract sample with adjusted distilled water (pH3)  (1 ml extract 

sample : 1 ml adjusted distilled water pH 3) during tannins removal by PVPP                                                    

Therefore, 1 kg dried ground sample  = (   )    (     ) g tannic acid 

                                                             C  =     (     ) g tannic acid 

 

    Total simple phenols (g/kg DM tannic acid equivalent) =  
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   Total tannins (g/kg DM tannic acid equivalent) = total phenols - total simple phenols 

3.2 Condensed tannins 

 This procedure was basically referred to Porter et al. (1986) as described by 

Makkar (2003b) with using (-)- epigallocatechin gallate (Sigma, UK) as standard 

equivalency. This particular catechin is known to be the most abundant one in green tea.  

Apparatus:  

1. 20 ml test tubes with loose lids 

2. Gilson pipettes (0.02 ml, 0.1 ml, 1 ml, and 5 ml) (Gilson Inc, USA) 

3. Vortex (whirly) mixer (Nikel Elector, UK) 

4. Ultrasonic waterbath (Fisher scientific, UK)  

5. Refrigerated centrifuge (Baird & Tatlock Ltd., UK)  

6. Heating mantle (Barnstead electrothermal, UK) 

7. 100 ml flasks (Quickfit, UK) 

8. Plastic UV cuvette 

9. Spectrophotometre (Libra S12, Biochrom, UK)  

Reagents: 

(a) 70% aqueous acetone  (v/v) 

(b) Standard solution of (-)- epigallocatechin gallate (Sigma, UK). 2 mg (-)- 

epigallocatechin was dissolved in 2 ml 70% aqueous acetone  (v/v) (1mg : 1 ml) 

(c) Butanol-HCL reagent (butanol-HCL 95:5 v/v): 950 ml n-butanol and 50 ml HCL 

(36-37%) were mixed 

(d) Ferric reagent (2% ferric ammonium sulfate in 2 N HCL): 16.6 ml of HCL (36-

37%) was transferred into a 100 volumetric flask and distilled water added to make 

the volume up to 100 ml (2 N HCL). After that, 2 g ferric ammonium sulfate was 

dissolved into it. The final reagent was then stored in a dark bottle. 

Procedures: 

Standard calibration 

Initially, calibration of the standard was prepared by analyzing (-)-epigallocatechin gallate 

standard solution up to 3 times and the tabulated results described as follow: 
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Table 3.2 Calibration standard of (-)-epigallocatechin gallate.  

Tubes 

(-)- 

epigallocatechin 

solution 

(1mg/ml) 

(ml) 

Acetone 

70% 

(v/v) 

(ml) 

Butanol-

HCL 

reagent 

(ml) 

Ferric 

reagent 

(ml) 

Absorbance 

at 550 nm 

(-)- 

epigallocatechin 

(mg) 

To 0.00 0.50 3.0 0.1 0.000 0.00 

T1 0.10 0.40 3.0 0.1 0.052 0.10 

T2 0.20 0.30 3.0 0.1 0.116 0.20 

T3 0.30 0.20 3.0 0.1 0.166 0.30 

T4 0.40 0.10 3.0 0.1 0.215 0.40 

T5 0.50 0.00 3.0 0.1 0.285 0.50 

Regression equation (r
2 

= 0.997) of (-)-epigallocatechin gallate (mg): (        

                            )  

Extract preparation 

 A 100 mg each of dried ground sample was put into a tube of about 20 ml capacity 

and 5 ml acetone (70%) added. After that, the tubes were then suspended in an ultrasonic 

water bath (without heating) and subjected to ultrasonic treatment for 2x10 minutes with 5 

minutes break in between. The content of the tube was centrifuged using refrigerated 

centrifuge set at 4 
o
C at 3000 rpm for 10 minutes and the supernatant collected for the 

analyses. 

Condensed tannins analysis 

 A 0.1 ml each of sample extract was transferred in to a tube of about 20 ml capacity 

and 0.4 of 70% aqueous acetone added to make the volume up to 0.5 ml. Next, 3.0 ml of 

butanol-HCL reagent and 0.1 ml ferric reagent were added, respectively. The tube was then 

vortexed and loosely closed with a lid before putting it in boiling water (around 100
o
C) for 

60 minutes. Boiling water was obtained by heating flask with water in it using heating 

mantle. After that, the tube was cooled in cool water for 3 - 5 minutes, vortexed, and 

adequate solution transferred into cuvettes (in duplicate).  Finally, each cuvette was put 

into spectrophotometer and the absorbance at 550 nm recorded against a suitable blank 

solution.  
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Equation:  

A: mg (-)-epigallocatechin gallate   

      A =  (        (                        ) 

B: mg (-)-epigallocatechin gallate in 1 ml extract sample  

      B = 
 

   
 

C: As 100 mg dried ground sample was extracted in 5 ml solvent, 

 Thus, 100 mg dried ground sample =       mg (-)-epigallocatechin gallate (or) 

                   1 kg dried ground sample =    (     ) g (-)-epigallocatechin gallate   

                                                         C =    (     ) g (-)-epigallocatechin gallate   

    Condensed tannins (g/kg DM (-)-epigallocatechin gallate equivalent =  
  

       
       

3.3 Total saponin  

 This total saponin procedure was basically referred to Makkar et al., (2007) 

Apparatus: 

1. 10 ml test tubes 

2. 100 ml Quickfit flask (Quickfit, UK) 

3. Gilson pipettes (0.02 ml, 0.1 ml, 1 ml, and 5 ml) (Gilson Inc, USA) 

4. A set of magnetic stirrer (Kika Werke, Germany) 

5. Vortex (whirly) mixer (Nikel Elector, UK) 

6. Whatman paper no 541 

7. Rotary evaporator (Rotavopor Buchi, Switzerland) 

8. A set of Freeze drier   

9. Waterbath (Grant, UK)  

10. centrifuge  

11. Plastic UV cuvette 

12. Spectrophotometre (Libra S12, Biochrom, UK)  

Reagents: 

(a) 80 % aqueous methanol (v/v): 80 ml methanol (99.9 %) was mixed with 20 ml of 

distilled water 

(b)  Chloroform (> 99%) 

(c) Vanillin reagent (8%): 800 mg of vanillin (Merck, USA) was dissolved in 10 ml of 

ethanol (99.5%) 

(d) 72 % sulfuric acid (v/v): 72 ml of sulfuric acid (95-98%) was added to 28 ml of 

distilled water 
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(e) Standar saponin solution: 10 mg of diosgenin (molekula, UK) was dissolved in 20 

ml of 80 % aqueous methanol 

Procedures: 

Table 3.3 Calibration standard of diosgenin. 

Tubes 

Diosgenin 

(0.5mg/ml) 

(ml) 

80% 

aqueous 

methanol   

(ml) 

Vanillin 

reagent 

(ml) 

72% 

sulphuric 

acid 

(ml) 

Absorbance 

at 544 nm 

Diosgenin 

 (mg) 

To 0 0.25 0.25 2.5 0.000 0 

T1 0.05 0.20 0.25 2.5 0.125 0.025 

T2 0.1 0.15 0.25 2.5 0.234 0.05 

T3 0.15 0.10 0.25 2.5 0.341 0.075 

T4 0.2 0.05 0.25 2.5 0.445 0.1 

T5 0.25 0.00 0.25 2.5 0.545 0.125 

Regression equation (r
2 

= 0.998) of diosgenin standard (mg): 

(                            )            

Extract preparation 

 0.5 g each of dried ground sample on a lid-supported beaker of about 25 ml 

capacity was added by 5 ml of 80% of aqueous methanol and kept on a magnetic stirrer for 

5 hours. After that, the content was centrifuged at 3000 rpm for 10 minutes and supernatant 

collected. The residues both on beaker and centrifugation tube were repeatedly extracted 

with similar procedure and the two supernatants combined. Next, the supernatant was 

filtrated by Whatman paper (541) into quickfit flask (100 ml capacity) and the flask fitted 

to a set of rotary evaporator (at approximately 30
o
C and under vacuum) to evaporate 

methanol. It was then to centrifuge the aqueous phase on the flask at 3000 rpm for 10 

minutes to remove water insoluble materials and the aqueous phase transferred into 

separating funnel to be extracted with chloroform in equal volume three times to remove 

pigments. Finally, the aqueous solution was freeze dried (at -25
o
C) for 3 days and the dried 

purified sample extracted again with 5 ml of 80% of aqueous methanol for total saponin 

analysis. 

Total saponin analysis 

 About 0.01 - 0.05 ml each of sample extract was transferred into a test tube and 

adequate 80% of aqueous methanol added to make the volume up to 0.25 ml. Next, 0.25 ml 



276 

 

of vanillin reagent and 2.5 ml of 72% sulfuric acid added respectively. The later was added 

slowly on the inner side of the wall. After that, the solution was vortexed and the tube 

transferred to a heated waterbath (60
o
C) for 10 minutes.  Next, the tube was cooled in cool 

water for around 5 minutes and vortexed. It was then to transfer adequate solution into 

cuvettes (in duplicate). Finally, each cuvette was put into spectrophotometer and the 

absorbance at 544 nm recorded against blank solution (T0). Total saponin (diosgenin 

standard equivalent) was calculated from the previous calibration standard and if the value 

of absorbance reached higher than the range of calibration standard, the extract sample 

should be appropriately diluted.  

Equation 

A: mg diosgenin   

      A =  (                         )            

B: mg diosgenin in 1 ml extract sample  

      B = 
 

            
 

C: As 500 mg dried ground sample was extracted in 5 ml solvent, it was equivalent to 100 

mg dried ground sample was extracted in 1 ml solvent. 

 Thus, 100 mg dried ground sample =       mg diosgenin (or) 

                   1 kg dried ground sample =    (     ) g diosgenin 

                                                         C =    (     ) g diosgenin 

    

 Total saponin (g/kg DM tannic acid equivalent) =  
                  

       
       

 If the extract sample was not diluted, the dilution factor should be 1 (one). 
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Appendix 4 The example of the questionnaire form used for rumen fluid collection in 

the slaughterhouse 

 

 

 

 


