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Abstract 

This work in this thesis reports fundamental studies on fuel cell electrocatalysis and 

membrane stability, and is primarily of relevance to direct ethanol alkaline fuel cells 

and proton-exchange membranes based on polybenzimidazole (PBI). During the first 

part of this project, in-situ FTIR spectroscopy was employed to investigate the 

electrochemical oxidation of ethanol at a polycrystalline Pt electrode in 0.1 M KOH 

at 25 and 50 
o
C. Initially, this part of the project was designed to provide a library of 

IR spectra of intermediates and products to facilitate the study of the electro-

oxidation of small organic molecules at novel, non-noble metal anodes. However, 

the work on Pt has provided some unexpected insights into this area of 

electrocatalysis, particularly with respect to the role of intermediates bonded through 

oxygen rather than carbon, as well as of adsorbed CO. Acetate was the only product 

observed at lower potentials. Above the transition potential, where at least some of 

the areas of the thin layer in the spectro-electrochemical cell become acidic, 

acetaldehyde, acetic acid and a small amount of CO2 are produced. The temperature 

dependence of the production of acetaldehyde and acetic acid strongly suggests that 

the rate determining step is the removal of the first proton from the initially-adsorbed 

ethoxide species, and it was tentatively suggested that this is also the rds under 

alkaline conditions.  

Ethanol oxidation in alkaline solution at a Pb-modified Pt electrode was also 

investigated using FTIR. This study provided some very interesting data which 

support the suggestion that the adsorption mechanism of ethanol is substantially 

modified in the presence of Pb, with a carbon-bonded intermediate being favoured 

leading to facile scission of the C-C bond in ethanol. Carbonate formation took place 

at potentials close to the thermodynamic value and at higher potentials, when Pb was 

lost to solution, the mechanism of oxidation of ethanol reverts to that found on a 

normal polycrystalline Pt surface, with the primary product being acetate.  

During the second part of this project, undoped, cast films of PBI were investigated 

as a function of humidity using both H2O and D2O, and as a function of temperature 

up to 100 °C in order to better understand the IR response of this polymer, as well as 

to provide benchmark data for subsequent studies on acid doped PBI. Marked 

changes across the mid-IR range were observed during the uptake of water and D2O. 
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The use of D2O proved extremely useful in terms of deconvoluting the complex IR 

response observed and allowed the IR data to be rationalised in terms of the 

disruption of the N-H…N inter-chain hydrogen bonded network and changes in the 

morphology of the polymer. 
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1. Introduction  

1.1 Hydrogen Fuel Cells 

1.1.1 The Fuel Cell Concept 

It is generally accepted that the environmental impact of the use of traditional energy 

sources such as fossil fuels, coupled with the global rise in energy demand, poses 

serious challenges in terms of energy sustainability, environmental protection and 

the search for alternative sources of energy in the future [1]. This has led to 

significant interest in the concept of a hydrogen-based economy, however it is not 

yet recognized as a viable alternative worldwide, and considerable advances in the 

science of sustainable hydrogen production and storage for fuel cell applications are 

required [1-2]. 

A fuel cell can be considered as an electrochemical energy converter, in which the 

chemical energy of a fuel is converted into direct current (DC) electric power in a 

single step, circumventing the conventional multi-step process of energy conversion 

associated with fuel combustion [3].  

The fundamental concept of the hydrogen fuel cell is very simple, and was first 

demonstrated by a lawyer and amateur scientist named William Grove in 1839 [4-6]. 

Figure 1.1(a) shows the experimental procedure employed by Grove, where 

electrolysis of water into hydrogen and oxygen is achieved via the application of an 

electric current. Replacing the power supply with an ammeter (see fig. 1.1(b)) allows 

for reversal of the electrolysis during which a small current flows, due to the 

recombination of hydrogen and oxygen at the Pt anode and cathode, producing an 

electrical current [6]. This process can also be considered as the electrochemical 

combustion of hydrogen [6], producing electrical energy as opposed to the liberation 

of heat, the overall fuel cell reaction being: 

2H2 + O2 → 2H2O                                                   (1.1) 

The experiment conducted by Grove provides a reasonable explanation of the 

fundamental concept of the fuel cell. However, due to the low contact area between 

the electrolyte, electrode and gas, as well as the large distance between the two 

electrodes (resulting in high electrolyte resistance), the current generated in this 
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process was considerably smaller than desired, such that five of Grove’s fuel cells 

were required to electrolyse water into H2 and O2 in a single electrolysis cell [6].  

 

Figure 1.1.  (a) The electrolysis of water to H2 and O2 via the application of an 

electric current. (b) The recombination of hydrogen and oxygen to generate a small 

current. Note: flow of electrons from – to + indicated by arrows. 

 

The reactions which take place at the anode depend on the fuel (the oxidant reduced 

at the cathode is typically oxygen), whilst the most common electrolyte employed is 

acidic, as utilised by Grove [6]. Considering the anodic reaction of an aqueous, acid-

electrolyte fuel cell, protons are produced via ionization of H2 gas, which releases 

electrons as follows [7]: 

2H2 → 4H
+
 + 4e

- 
                                        (1.2) 

At the cathode, oxygen reacts with the electrons and protons produced from the 

reaction at the anode to form water: 

   O2 + 4e
-
 + 4H

+
 → 2H2O                                       (1.3) 

In order for both of these reactions to occur continuously, a sufficient supply of 

electrons from the anode must be transferred to the cathode via an external load 

circuit. Furthermore, the protons must travel through the electrolyte from anode to 

cathode, hence the use of acidic electrolytes. As well as aqueous acidic electrolytes, 

H2 H2 O2 O2 

Dilute acid 

electrolyte 

Platinum 

electrodes 
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specific polymers can be employed which contain mobile protons, these materials 

being referred to as proton exchange membranes or polymer electrolyte membranes 

(PEM’s, see section 1.3) [5-7].   

 

Figure 1.2. Schematic depicting the basic fuel cell construction, showing the half-

cell reactions for an acidic electrolyte H2/O2 fuel cell. Note: electrons flow from 

anode to cathode, but conventional current flow is from the cathode to 

anode [6].  

 

1.1.2. Proton-exchange membrane H2/O2 fuel cells  

The development of proton-exchange membrane fuel cells (PEM-FCs), also referred 

to as polymer electrolyte membrane fuel cells, is considered to be one of the most 

promising routes to sustaining the proposed hydrogen economy [2]. PEM-FCs are 

based on the highly efficient (ca. 60% [1]) and low polluting conversion of chemical 

energy from hydrogen, low weight alcohols or formic acid fuel, into electrical energy 

[1].  

PEM-FCs are modular and of simple design, meaning that, in principle, scale-up is 

easily achieved to sizes suitable for applications such as transport, which currently 

accounts for approximately 60% of worldwide petroleum consumption [3][8]. In 

     Hydrogen 

                                    H+ ions through electrolyte 

                                        Anode:   2H2 → 4H+ + 4e- 

                          Cathode:   O2 + 4e- + 4H+ → 2H2O  

            Oxygen 

     e- 

     e- 
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addition to transport, the application of fuel cells in stationary power generation has 

the potential to reduce dependency on the electrical grid. 

1.1.3. The operation of polymer-electrolyte membrane fuel cells 

Central to the design of PEM-FCs is the proton conductive polymer membrane, 

which acts as the electrolyte, is impermeable to gases and electronically insulating 

[3]. The electrolyte membrane is sandwiched between the anode and cathode, both of 

which are porous and electronically conductive. The anode and cathode typically 

comprise two layers of very high surface area, porous carbon. The layer next to the 

PEM, the catalyst layer (CL), consists of porous carbon particles coated with 

particles of the catalyst (eg. Pt) [5][10]. The next layer out, the gas diffusion layer 

(GDL), is uncoated porous carbon which spreads the H2 and O2 gas evenly across the 

CL [9]. Finally, these layers may be pressed onto a carbon paper or carbon cloth to 

provide support [6]. Figure 1.3 shows a single H2/O2 PEM fuel cell, which yields a 

working voltage between 0.5 and 0.8 V [5] depending on the load. It should be noted 

that for practical purposes, individual fuel cells are combined in series to form a 

stack in order to provide sufficient cell voltage.  

A feed of hydrogen is supplied to the anodic side of the membrane electrode 

assembly (MEA, see section 1.1.4.), where it is oxidised to protons, releasing 

electrons (1.2). The protons travel through the proton conductive membrane, with the 

electrons passing from the anode around an external circuit to the cathode. As 

illustrated by Grove [6], the oxygen fed at the fuel cell cathode reacts with the 

protons and electrons to produce water (1.2). This water is then transported out of the 

cell with waste gas.  

Anode: H2 → H
+
 + e

-
    E

0
 = 0 V vs. SHE                      (1.4) 

Cathode: ½O2 + 2H
+
 + 2e

-
 → H2O    E

0
 = 1.229 V vs. SHE         (1.5) 

                              Overall: H2 + ½ → H2O    E
0
 = 1.229 V vs. SHE                          (1.6) 

The overall redox reaction results in a continuous current of electrons at the external 

load circuit, thus producing direct electrical current [3]. 
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Figure 1.3. Schematic representation of a single PEM-FC, showing the basic 

operating principles [3]. 

 

1.1.4. The membrane electrode assembly 

The electrochemical reactions (1.4) and (1.5) take place at the catalyst surface in the 

CL [4-5]. More specifically, the reaction occurs at an area of the catalyst which is 

accessible to gas (fuel at the anode and oxygen at the cathode), electrons and protons 

participating in the reaction (fig. 1.4). The electrons travel through electrically 

conductive solids (including the catalyst), whereas protons travel through the PEM. 

In addition, the electrodes must be porous due to the fact that reactant gases travel 

only through voids, thus allowing gas transport to the reaction sites. Hence, the fuel 

cell reactions take place at a three-phase boundary, specifically the PEM, solid and 

void phases [3]. A standard, free standing unit comprised of an anode, polymer-

electrolyte membrane and cathode hot-pressed together is called a MEA [11]. 

Polymer Electrolyte 

Membrane 

Anode Cathode 

e- e- 
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O2 

H2 
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Load 

Depleted 

Fuel and 

Product Gas 

out 

Depleted 
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H2O 
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Figure 1.4. Graphical representation of the three-phase boundary at which electrode 

reactions take place, redrawn from [3]. 

 

1.1.5. Hydrogen production for use in fuel cells 

One of the greatest challenges to the proposed hydrogen economy comes from the 

need for an efficient and environmentally friendly method of hydrogen production 

[12]. The dominant source for production of hydrogen is the steam reforming of 

hydrocarbon fuels; this is due to the current availability of methanol and propanol, as 

well as the abundance of natural gas [3][6][13]. Furthermore, steam reforming is the 

most cost efficient method of hydrogen generation as long as these fuels are cheaply 

accessible [5][6].  

Steam reforming, as the name suggests, is the reaction of hydrocarbons with steam at 

high temperature (>500 
o
C) [3][6][13], in the presence of a metal catalyst, such as 

nickel, to form carbon monoxide and hydrogen as follows:  

CH4 + H2O → CO + 3H2                                        (1.7) 

Carbon monoxide also reacts with water via the water gas-shift reaction to produce 

additional hydrogen: 

CO + H2O → CO2 + H2                                          (1.8) 

Catalyst 
Electrons 

Gas 

Void 

Carbon 

Ionomer 

Three-Phase Boundary 
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As shown in (1.8), steam reforming leads to the production of CO2 which is a 

disadvantage in terms of PEM-FC operation due to the fact that it dilutes the 

hydrogen feed to the anode. Another disadvantage associated with steam reforming 

is the poisoning of Pt-based catalysts at PEM-FC anodes by CO due to its strong 

adsorption, which leads to the requirement of complex and expensive CO-removal 

systems [5,13].  

Thus, although hydrogen is the most commonly employed fuel in PEM-FCs, 

production in its pure form is currently expensive, in addition, serious challenges are 

posed by its handling, transportation and storage [14-16]. As a result, interest has 

been shown in the use of hydrogen-rich liquid alcohols as fuels for direct alcohol 

fuel cells (DAFCs) due to their significantly higher energy density, as well as ease of 

storage, transport and handling [17].   

1.2. Direct Ethanol Fuel Cells 

1.2.1. Overview 

Considerable interest has been shown in the utilisation and development of fuel cells 

which use alcohols of low molecular weight, such as methanol, ethanol, ethylene 

glycol and propanol, as opposed to hydrogen [18]. Liquid fuelled PEM-FCs are 

especially advantageous in electrical vehicle applications [19] due to their low cost 

and compact nature, with no need for on-board reformers. 

Significant attention has recently been focussed on Direct Ethanol Fuel Cells 

(DEFCs) [20][21], which are based on the electrochemical oxidation of ethanol to 

produce carbon dioxide, one of the main advantages of which is the high theoretical 

energy density (8kWh.kg
-1

) [18] of ethanol. This energy arises from the complete 

oxidation of ethanol, via cleavage of its C-C bond, to CO2, carbonate or bicarbonate 

at the fuel cell anode, depending on the pH of the electrolyte used, coupled with O2 

reduction at the cathode [17][20]: 

               C2H5OH + 3H2O → 2CO2 + 12H
+
 + 12e

-
    E

0
 = 0.1 V                          (2.2) 

             C2H5OH + 5H2O → 2HCO3
-
 + 14H

+
 + 12e

-
    E

0
 = 0.18 V                       (2.3) 

            C2H5OH + 5H2O → 2CO3
2-

 + 16H
+
 + 12e

-
      E

0
 = 0.19 V                       (2.4) 
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                            O2 + 4H
+
 + 4e

-
 → 2H2O      E

0
 = 1.23 V                                     (2.5) 

Ethanol is also considered as a ‘green’ chemical which can be produced in large 

quantities as a biofuel via the fermentation of biomass, a process which already 

exists on the industrial scale [20]. Furthermore, ethanol and CO2 are considered to be 

of relatively low toxicity when compared to alternate alcohol fuels such as methanol 

[22][23]. As a fuel, methanol is the simplest organic alcohol, with faster 

electrochemical reaction kinetics compared to other alcohols. However, the 

widespread consumer use of methanol in fuel cells is limited by its toxicity, and 

ethanol has been recognised as a viable fuel alternative [24].  

1.2.2. Ethanol Electrochemical Oxidation Mechanism 

Figure 1.5 shows the “dual path” mechanism proposed throughout the literature for 

the electro-oxidation of ethanol at noble metal catalysts [20][21]: the C2 or indirect 

route involves cleavage of the C-C bond in ethanol to produce CO2 (steps 1 and 2) 

and is a 12 electron process with a high theoretical energy density. In contrast, the 

direct oxidation of ethanol does not lead to C-C bond cleavage and results in the 

production of acetic acid and/or acetaldehyde.  

The mechanism of ethanol electro-oxidation at Pt in acid electrolyte depends 

critically upon whether ethanol is removed from solution following chemisorption; if 

it is removed, oxidation of the chemisorbed fragments leads only to CO2 [25-27].  

However, in the presence of ethanol, CO2 is only a minor product (most likely due to 

the oxidation of initially adsorbed ethanol) with acetaldehyde and acetic acid as the 

major products (steps 3 and 4 in fig. 1.5), the distribution of the products depending 

upon ethanol concentration and potential [29-32]. 

The main reaction pathway for ethanol oxidation in acidic media proceeds with 

conservation of the C-C bond in ethanol, leading to unwanted, polluting products of 

acetic acid and/or acetaldehyde, this yielding only 2 and 4 electrons respectively 

[23][33][34]. Both of these products are stable with respect to further oxidation, 

which Shao and Adzic [29] suggest is due to the blocking of active sites at the 

catalyst by adsorbed acetate (CH3COO
-
). In addition, the intermediates in the 

formation of acetaldehyde and acetic acid remain unclear. 
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Figure 1.5. Schematic representation of the dual path mechanism proposed for the 

electrochemical oxidation of ethanol at a noble metal electrodes [20][21]. 

 

It is generally accepted that in acid solution, the desired route for ethanol oxidation, 

which is to produce CO2, is a complex multi-step process involving adsorption of 

single carbon fragment intermediates COads and CHx, ads [20, 35-37]. These fragments 

require a high overpotential for their oxidation, hence limiting the potential cell 

voltage as well as the subsequent total efficiency. Furthermore, for practical fuel cell 

purposes, the reaction rate for the electrochemical oxidation of ethanol at Pt, in 

acidic media, is too slow [20]. Hence, despite extensive research into catalysts for 

the ethanol oxidation reaction (EOR) at fuel cell anodes, the conversion to CO2 and 

kinetics of this reaction are simply too low when operating in acidic media, thus 

leading to poor fuel cell performance [17]. 

1.2.3. Direct ethanol fuel cells in alkali electrolyte 

The main advantage of operating fuel cells in an alkali electrolyte is that the kinetics 

of the oxygen reduction reaction (ORR) at the cathode are significantly increased 

[17][38], resulting in a higher cell voltage at a given current density when employing 

a Pt catalyst at both electrodes. In addition, the EOR reaction kinetics are 

significantly enhanced in DEFCs when an alkali electrolyte is used, thus allowing (in 

principle) for the use of less expensive, non-precious metal catalysts [17][38][39]. 

However, there are several key problems which arise from operation in alkaline 

media, the most serious of which arises from the precipitation of carbonate in the 

electrolyte when using alcohols (or reformate gas in H2/air fuel cells, see section 1.1) 

as a fuel and air as an oxidant [39-41]. Equation (2.6) shows this effect when 

operating in potassium hydroxide solution: 

                                  2K
+
 + 2OH

-
 + CO2 → K2CO3 + H2O                                   (2.6) 

1 2

 
 1 

3

 
 1 

5

 
 1 

4

 
 1 
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This reaction leads to dilution of the electrolyte as well as removal of OH
-
 anions 

from solution, thus decreasing electrolyte conductivity. This K2CO3 precipitate can 

also block catalyst sites and foul the catalyst surface pores, thus lowering the active 

surface area and species transport, respectively [17][39-41]. 

Another problem which can arise when employing liquid alkali electrolytes is 

leakage at the periphery of the fuel cell, as well as at the pores of the electrodes, the 

latter referred to as weeping, due to the fact that KOH is a very effective wetting 

agent [40][41].  

In light of the above factors, considerable effort has been invested into the 

development of Alkali Anion Exchange Membranes (AAEMs) [17][39][42-44]. 

AAEMs employ a polymeric framework, within which cation head groups (eg. –

NR3
+
) are immobilised. Furthermore, the membrane is ion-exchanged with OH

-
 thus 

providing a mobile network of conducting species. With respect to electrolyte 

carbonation, the absence of any free metal ions, such as K
+
, in the AAEM should 

prevent the precipitation of any carbonate species. Several studies [45-47] have 

shown that AAEMs operate successfully in the presence of carbonate species, at both 

neutral and alkaline pH. For example, Rahim et al [46] observed no membrane 

fouling or loss of electrolyte conductivity when investigating the electrochemical 

transport of HCO3
-
 and CO2

3-
 through an anion exchange membrane. 

The use of AAEMs also eliminates problems arising from the use of a caustic liquid 

electrolyte. In addition, the generation of OH
-
 at the cathode, and its subsequent 

movement to the anode, leads to an electro-osmotic drag [47] across the membrane 

[48]. This is advantageous in terms of DAFCs as it opposes crossover of methanol 

from anode to cathode in DMFCs, which has been reported as a major problem in 

PEMFCs [49].   

1.2.4. Typical set-up and operating procedure for an alkali anion-exchange 

membrane direct ethanol fuel cell 

Figure 1.6 illustrates a conventional liquid-feed DEFC based on an anion-exchange 

membrane (AEM), which consists of a MEA sandwiched between an anode and a 

bipolar cathode plate. As discussed previously (see section 1.1.3), the MEA is 

composed of both diffusion and catalyst layers at both the anode and cathode, placed 
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either side of the AEM. Similar to the function of the proton-exchange membrane in 

conventional hydrogen PEM-FCs, the AEM acts as a barrier to electrons at the anode 

and cathode [17]. Furthermore, the membrane facilitates the travel of hydroxyl ions 

from cathode to anode, and is typically composed of quaternised hydrocarbons [50].  

The catalyst layers at both the anode and cathode are generally composed of a 

catalyst/ionomer mix, thus providing a three-phase boundary for the ORR and 

Ethanol Oxidation Reactions (EOR). Furthermore, the diffusion layers take similar 

form to that in PEM-FCs (section 1.1.4) [50].  

 

Figure 1.6. Schematic of the conventional setup for a liquid-feed direct ethanol fuel 

cell, using an alkaline anion exchange membrane (AAEM). 

 

Considering the reaction at the anode, a stream of ethanol is supplied to the flow 

field where it is directed to the catalyst layer via the anode diffusion layer, before 

being oxidised to produce CO2, H2O and electrons as follows [17]: 

                       CH3CH2OH + OH
-
 → CO2 + H2O + 12e

-
                                        (2.7) 
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The water produced from ethanol oxidation is transported through the AEM to the 

cathode, along with the water in the aqueous ethanol feed, while the electrons are 

transported to the cathode via an external load circuit. The air/O2 feed at the cathode 

diffuses to the catalyst layer, where it subsequently reacts with the water diffusing 

from the anode, thus yielding hydroxyl ions [17]: 

                                      3O2 + 6H2O + 12e
-
 → 12OH

-
                                           (2.8) 

The hydroxyl ions then diffuse back to the anode where they react as in (2.7), with 

the overall cell reaction as follows: 

                                CH3CH2OH + 3O2 → 2CO2 + 3H2O                                      (2.9) 

It is important to note, however, that (2.8) is representative of the complete oxidation 

of ethanol to CO2, which to date, has not been observed using the catalysts currently 

under investigation, and only accounts for a small percentage of the total current 

produced. Further, it is generally accepted that the main reaction pathway is that 

which produces acetic acid [20], the direct pathway. 

1.2.5. Challenges to the development of alkali anion-exchange membranes 

Despite promising reports [51-54], highly conductive and durable AAEM’s remain 

commercially unavailable, largely due to issues surrounding alkaline stability, their 

durability under hydration and conductivity [41][55]. The main problem with 

durability is that a higher Ionic Exchange Capacity (IEC) is required for an AAEM 

than a PEM because the slower diffusion of OH
-
 relative to protons lowers ionic 

conductivity, hence requiring higher IEC and increasing water uptake which swells 

the polymer and leads to loss of mechanical integrity [56]. Thus, the anion exchange 

membrane must be able to take up sufficient water to form the interconnected 

domains required for the cathode reaction and the ion flux while retaining its 

integrity [57]. As yet the US target for AAEM durability of 1-3% loss after 5000 h 

has not been achieved [58]. 

In the context of membrane stability, PEMFC electrodes are formulated with a 

soluble Nafion ionomer, to ensure good ionic contact between membrane and the 

catalyst particles [41]. An ionomer is the ‘conducting glue’ that binds the MEA 

together and plays a major role in building up an effective three-phase boundary that 
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reduces interfacial resistance and facilitates the transport of ions, and electron 

transfer, across the catalyst interface [41][59][60]. Ideally, an ionomer should be 

solution processable, i.e. soluble in water miscible solvents, but should ultimately 

form a robust solid interface with a hydroxide conductivity that matches that of the 

membrane.  To date, the synthesis of analogous ionomeric solutions for AAEM’s has 

not been achieved [41][59][60] leading to considerable resistive losses in fuel cells 

based on AAEMs [61]. ‘Interfacial solutions’ have been tested using KOH and a 

polymer (eg. polyacrylic acid) [62] or by utilising KOH in the anode stream [63], 

both methods providing a short term solution, however, in terms of durability, the 

carbonate problem is still a major issue, hence the term, the ionomer problem. [41]. 

As a result of the challenges facing the development of AAEM’s, until recently, 

research on alkali direct alcohol fuel cells (ADAFCs) has been a very small fraction 

of that on the acidic analogues. However, following the work of Varcoe and Stade 

[42][43] and Thomas et al [44], for example, interest has again focussed on 

ADAFC’s. Hence, the next section will aim to provide a brief discussion of the 

current literature concerning the development of AAEMs.  

1.2.6. Recent developments in alkali anion-exchange membranes 

Varcoe and Slade [42] developed an AAEM formed by the radiation-grafting of 

vinylbenzyl Chloride onto poly-(tetrafluoroethylene-co-hexafluoropropylene), FEP, 

and observed conductivities between 0.010 – 0.035 S cm
-1

 from 20-80 
o
C, comparing 

favourably with Nafion (ca. 0.100 S cm
-1

 over the same temperature range, see 

section 1.3) [41][64][65]. Unfortunately, the AAEM lacked the physical strength 

required for fuel cell applications, leading the authors to turn their attention to an 

AAEM in which the FEP was replaced by poly-(ethylene-co-tetrafluoroethylene), 

ETFE [66]. Similar to the FEP-based AAEM, there is no β-hydrogen available for 

Hoffman elimination (see section 1.2.5) in ETFE-based AAEMs [40][41][59]. 

However, although results were initially promising (Ion-exchange capacity (dry 

polymer) of 1.42 x 10
-3

 mol(OH) g
-1

 compared to 0.92 x 10
-3

 mol(OH) g
-1

 for 

Nafion), by the summer of 2006, data on the performance of ETFE-based alkaline 

fuel cells (H2/O2) suggested that improvement beyond a fraction of that achieved 

with PEM-FCs was not possible [67]. Further, performance data for ETFE-based 

DMFCs was considerably worse (peak power densities < 10 mW cm
-2

). The authors 
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suggested that an insufficient amount of water was reaching the active sites of the 

cathode catalyst surface as a result of reduced back-transport [67][68]. However, this 

does not explain the extremely poor performance generally observed in AAEM-

based DAFCs [59][69][70]. In a private communication, Dr. Varcoe stated that the 

inability to develop an ionomer was responsible, and led to the Surrey Group 

abandoning their research on DAFCs.   

More recently, Hibbs et al [72] have demonstrated that AAEMs employing a 

poly(phenylene) backbone, prepared by a Diels-Alder reaction, may achieve ionic 

conductivities as high as 0.050 S cm
-1

 in liquid water, and are stable under highly 

basic conditions at elevated temperature (4 M NaOH at 60 
o
C). Moreover, several 

studies [73-77] have shown that polysulfones may undergo successive post-

polymerisation modification reactions, leading to highly conductive AAEMs [55]. 

For example, Xie et al [73] investigated the synthesis of a polysulfone AAEM with 

varied temperature and reaction time, both of which were found to have a significant 

impact upon membrane conductivity. The AAEMs were synthesized via the addition 

of a chloromethyl pendant group to polysulfone, followed by reaction with various 

amines (eg. ) to form quaternary pendant groups, which act as the counterion to OH
-
. 

The developed AAEMs showed a maximum ionic conductivity of 0.0310 S cm
-2

 at 

room temperature, which increased to a maximum of 0.0733 S cm
-2

 at 95 
o
C. 

Further, the membranes were stable in concentrated base (up to 8 M KOH) at room 

temperature; however, the authors did not investigate the stability at higher 

temperatures.  

In the context of AAEM durability and stability, Hickner et al [78] reported a highly 

relevant development that poly(2,6-dimethyl phenylene oxide) containing a 

quaternised nitrogen-centred side chain with a single C6-alkyl unit had highly 

conductive ionic domains, exhibited excellent long term stability and retained >90% 

of its performance after 60 h of fuel cell operation. The performance and stability of 

this system was attributed to the water uptake behaviour due to an appropriate 

balance of hydrophobicity and hydrophilicity, arising from the single C6-alkyl chain; 

polymers with longer alkyl chains exhibited very poor film forming capacity while 

polymers with multiple alkyl chains had lower hydroxide conductivities. 

Zhao et al [79] attained power densities up to 370 mW cm
-2

 at 50 ºC using pure H2 

and O2 , and conductivities up to 0.057 S cm
-1

 at 30 ºC.  However, no attempt was 
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made to develop an ionomer, the authors employing a commercial ionomer, and 

Holdcroft [80] highlights the critical importance of the chemical compatibility 

between ionomer and membrane.  Further, as stated above, it is primarily problems 

related to the ionomer that have, to date, precluded the use of small organic fuels 

such as alcohols [J. Varcoe, private communication]. Whilst durabilities of up to 

1000 hours in 1 M KOH were also reported by the authors, it is not clear from the 

paper whether immersion in KOH influences the subsequent measurements of 

conductivity. 

As stated previously (see section 1.2.5), the majority of potential AAEM materials 

are highly cross-linked polymers and are not amenable to solution processing, thus 

limiting their use as the ionomer. To this end, a tandem catalytic Ring Opening 

Metathesis Polymerisation (ROMP)/hydrogenation sequence has recently been used 

to prepare tetraalkylammonium-functionalised polyethylene with a conductivity of 

40 mS cm
-1

 [81][82], which could be used as both an AAEM and as an interfacial 

ionomer [83], however, the system exhibited poor durability in the fuel cell and for 

practical applications it will be necessary to improve both stability and conductivity 

while retaining mechanical integrity [58]. 

In light of the work discussed above, it is clear that the initial experiments by 

workers such as Varcoe and Slade [42][43] have inspired several recent 

developments in the search for AAEMs that are mechanically and chemically robust, 

display limited swelling and exhibit high ionic conductivity [55][84]. However, 

despite encouraging data on both stability and conductivity utilising variety of 

polymer backbones [74-77], the development of AAEM’s is still in its infancy 

compared to PEM technology, and hence new and encouraging materials continue to 

be reported [41][55]. Moreover, as a result of this recent attention, interest has again 

focussed on ADAFC’s and hence on the study of the mechanisms of the electro-

oxidation of alcohols at anode electrocatalysts under alkaline conditions (for a 

comprehensive review of this literature, see section 3.1). Thus, the primary aim of 

this project will be to investigate the mechanism of ethanol electro-oxidation in 

alkaline solution using a combination of in-situ FTIR spectroscopy and 

potentiometric and voltammetry measurements.  
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In addition to the growing interest in AAEMs and hence ADAFCs, recent 

developments in PEMs that are both mechanically robust and stable at temperatures 

above 80 
o
C [1] mean that significant attention has turned to the use of High 

Temperature Polymer-Electrolyte Fuel Cells (HT-PEMFCs) as an alternative to low 

temperature PEMFCs; and this will be discussed in the following section.  

1.3. Polymer-Electrolyte Membranes  

1.3.1. Overview 

Critical to the design of PEM-FCs is the polymer electrolyte membrane (PEM), 

which separates the reactant gases and conducts protons (see fig. 1.3) [3]. Thus, 

PEMs must exhibit low electron conductivity and excellent proton conductivity, 

minimal water/fuel crossover (especially in DAFCs and Direct Formic Acid Fuel 

Cells (DFAFCs)), minimal swelling and shrinking, good mechanical strength, 

prolonged durability (ca. 5000 h for transport aplications [85]) at elevated 

temperatures and during freeze-thaw cycles [86], low cost and compatibility with 

electrode materials. However, the PEMs that are currently available do not meet all 

of these requirements [1].   

1.3.2 Nafion in Proton-Exchange Membrane Fuel Cells 

Nafion
®
,
 
which was developed in the late 1960s by DuPont Inc. [87], is the most 

widely used membrane in low temperature PEM-FCs due to its high proton 

conductivity (ca. 0.13 S cm
-1

 at 100% relative humidity and 75 
o
C [86-89]), 

moderate swelling in water [90-92], and potential long-term durability 

(> 60000 h [89]) under fuel cell conditions. Figure 1.7 shows the chemical structure 

of Nafion, which is based on the co-polymerisation of a hydrophobic perfluorinated 

polyethylene backbone and a highly hydrophilic sulfonic acid-terminated perfluoro 

vinyl ether pendant [86][92][93]. Within this structure exists nanoscale domains 

through which proton transport occurs [87][92]. However, Nafion is only functional 

in its highly hydrated state and therefore does not perform well at elevated 

temperature (> 80 
o
C) and low relative humidity (< 80%) [94]. Furthermore, in 

addition to being expensive, DMFCs using Nafion membranes suffer from methanol 

crossover which poisons the cathode catalyst [95].  
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Figure 1.7. Chemical structure of Nafion, redrawn from [85]. 

 

1.3.3. Polymer-electrolyte membranes for application at high temperatures and low 

humidity 

HT-PEMFCs have recently been recognised as a possible solution to the technical 

challenges which fuel cells encounter at low temperature (see section 1.1.4) due to 

enhanced reaction kinetics, ease of water and heat management and enhanced CO 

tolerance of the Pt catalyst [96-98]. Thus, the design of stable membranes which 

retain high proton conductivity and chemical and electrochemical stability under 

anhydrous conditions (>100 
o
C) [99] has been of major interest in recent years 

[100-107]. Several review papers [1][94][99] have summarized the PEMs currently 

under investigation for HT-PEMFCs which include: (i) modified perfluorosulfonic 

acid (PFSA) membranes [1][108-110]; (ii) sulfonated polyaromatic polymers and 

composite membranes (eg. polyetheretherketone (PEEK) and sulfonated 

polyetheretherketone (SPEEK)) [1][111-113]; (iii) membranes based polymer-acid 

complexes (eg. phosphoric acid-doped polybenzimidazole (PBI)) [114-118].    

Backbone 

Pendant 
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Figure 1.8(a) shows the chemical structure of PBI, which is considered as a 

promising membrane material for HT-PEMFCs due to its excellent thermal and 

chemical stability [119-123], mechanical robustness and high tolerance to CO [124]. 

PBI has a glass transition temperature of 420 °C and is generally believed to be 

completely amorphous [125].  

 

Figure 1.8. Chemical structure of PBI (a) before and (b) after protonation with 

H3PO4, redrawn from [114]. 

 

The conductivity of PBI is strongly dependent upon doping with strong acid [123], 

i.e. polymers bearing basic functional groups such as ether, alcohol, amide, imide or 

imine groups can act as proton acceptors in the presence of strong acids (see fig. 

1.8(b)) [94]. Further, it has been shown [126-127] that high conductivity may only 

be achieved when doping with amphoteric acids (eg. phosphoric or phosphonic 

(a) 

(b) 
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acid) [94]. An amphoteric species is one that has both proton donor and acceptor 

sites [128], which, as postulated by Kreuer et al [126-127][129], allows them to form 

dynamic hydrogen bonding networks that facilitate proton transfer via the formation 

and breaking of hydrogen bonds. In recent years, several studies [114-118] have 

focussed on improving proton conductivity in PBI-H3PO4 polymer acid complexes 

(PACs) at 120-180 
o
C [1]. For example, Xiao et al [116] demonstrated that the 

conductivity of PBI-H3PO4 PACs synthesised from the sol-gel process (to achieve a 

high level of acid doping) can reach ca. 0.25 S cm
-1

 at 180 
o
C [116][125]. The 

authors employed a thick PBI membrane (ca. 250 µm, H3PO4 doping level of 32) in 

a fuel cell at 160 
o
C for 1200 h in the absence of H2 or O2 humidification.  

Despite a number of molecular studies on both pristine and acid-doped PBI 

[125][130-136] (see section 6.1 for full discussion), the exact mechanism by which 

PBI facilitates proton transport remains controversial. Hence, another aim of this 

project will be to investigate the stability of PBI as a function of relative humidity 

and temperature using in-situ FTIR spectroscopy. I will then attempt to reconcile 

these data in terms of a mechanism for proton conduction in PBI (see section 6.2).      

1.4. In-Situ Infrared Spectro-electrochemistry 

1.4.1. Overview 

During the past 30 years, in-situ IR spectroscopy has become an increasingly utilised 

and powerful analytical tool in electrochemistry [137], and has developed strongly in 

terms of both the range of electrochemical systems that may be studied [138-141] 

and the sensitivity of the technique. As suggested by Christensen [137], this 

transition may be attributed to the ready availability of research grade, relatively 

inexpensive FTIR spectrometers. Consequently, the IR detection of organic 

monolayers is now standard procedure [142-144], and there is a diverse range of 

applications in fields such as the in-depth study of the double layer [145][146], 

organometallic electrochemistry [147-149], (photo)-electrocatalysis as a function of 

temperature [150-152], the semi-conductor interface [153][154] and time resolved 

studies [137][155][156].                      

Over the past 50 years, IR spectroscopy has proven to be a highly useful tool in the 

study of the gas-solid interface [157-159], and has been used to identify reaction 
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intermediates and products, in addition to the orientation of adsorbed 

species [160-162]. Consequently, electrochemists were eager to employ the method 

in conjunction with conventional current/voltage/time techniques, which were 

incapable of providing such molecular information [137]. Further, in contrast to 

other in-situ spectroscopic techniques (eg. UV-visible spectroscopy), IR spectro-

electrochemistry may be conducted at either smooth or rough electrode surfaces, and 

a wealth of information concerning both the identity and orientation of species at or 

near the electrode is obtainable [163]. However, in order to collect IR spectra of 

species in the near-electrode region, two major challenges had to be overcome [137]: 

(i) common solvents (eg. water) absorb IR light very strongly; (ii) at a time when 

conventional IR sources were weak, and detectors very noisy [164], sensitivity was a 

significant problem, as the amount of absorbing species of interest at/near the 

electrode surface is very small [137]. Hence, this will be discussed in the next 

section.  

1.4.2. The problem of strong solvent absorption in IR spectroelectrochemistry 

As discussed at length by Christensen [137], in order to solve the problem of strong 

solvent absorptions when collecting IR spectra, the path-length that the IR beam 

travels through the electrolyte must be minimized. Thus, there are three main 

approaches to minimizing the path-length: transmittance, internal reflectance and, 

most commonly, the external reflectance approach, which will be employed in this 

project to investigate both the electrochemical oxidation of ethanol (see Chapters 3-

5) and the stability of PBI membranes (see Chapter 6).            

1.4.2.1. The transmittance approach 

The IR transmittance approach is a method of minimizing the path-length of the 

spectro-electrochemical cell (see section 2.2 for full details of the spectro-

electrochemical cell developed in Newcastle, which was employed for solution-

based IR studies during this project) by using an Optically Transparent Thin-Layer 

Electrolyte (OTTLE) cell. An OTTLE cell employs a “transparent” working 

electrode (WE), such as a metal minigrid (eg. Au [165]), that is sandwiched between 

two IR transparent windows. The counter electrode (CE) and reference electrode 

(RE) are either embedded in a thin section of the cell wall between the two windows, 

or placed in the cell inlet/outlet tubes. Unfortunately, this approach is insensitive to 
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changes that occur at, or very close to, the electrode surface [137]. As a result, the IR 

transmittance approach is generally used for the study of solution species [165][166].                  

1.4.2.2. The internal reflectance approach 

An alternative technique used for minimizing the solution path-length is the Internal 

Reflectance approach, or Attenuated Total Reflectance (ATR). Figure 1.9 shows a 

schematic representation of the Kretschmann configuration [137][167][168], 

commonly used for ATR, which relies upon the total reflection of the IR beam at the 

internal surface of an IR transparent crystal or internal reflection element (IRE), n1 in 

fig. 1.9. IREs that are semiconductors (eg. Si, Ge, ZnSe or GaAs) may be employed 

as the WE [137][168][169], as was demonstrated first by Mark and Pons [169], who 

used a Ge IRE to investigate the electro-reduction of 8-quinolinol. However, the IRE 

is generally coated with a thin metal film (ca. 20 µm [137], n2 in fig. 1.9) that is in 

contact with the electrolyte (n3 in fig. 1.9) [137][167].   

Figure 1.9. Schematic of the Kretschmann configuration for the ATR approach, 

where: n1 is the refractive index of the single reflection (a) hemispherical or (b) dove 

prism, n2 is the thin metal coating and n3 is the electrolyte. Redrawn from [137]. 

 

At angles of incidence greater than the critical angle, θc, total internal reflection 

occurs on the inner surface of the IRE at the point of incidence [137][167], where the 

incident and reflected IR rays are then superimposed to form a standing, non-

propagating (or evanescent) wave that decays exponentially moving away from the 

crystal surface, through the metal layer and out into the electrolyte (see [137] or 

(a) (b) 
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[167] for full discussion). As a consequence, both the metal layer and the electrolyte 

will damp the evanescence by absorbing part of its energy. It is therefore crucial that 

the metal WE layer is sufficiently thick to achieve metallic conduction, but thin 

enough so that the evanescent wave may sample the electrode-electrolyte interface. 

Hence, as suggested by Christensen [137], the lack of interest in this method 

compared to the external reflectance approach (see below) may be attributed to the 

challenges associated with metal deposition, and with recycling the relatively 

expensive IREs once the metal coating needs to be replaced.        

1.4.2.3. The external reflectance approach 

The external reflectance approach is the most commonly exploited in-situ IR 

technique in spectro-electrochemistry [41][137][138][170-173], and was employed 

for the IR studies carried out in this project. Simply, it involves the trapping a thin 

layer of electrolyte (ca. 1-25 µm) between a polished, reflective WE and an IR 

transparent window, such as CaF2 or ZnSe (see section 2.2) [137][171][172]. Both 

prismatic and plate windows may be used, however, the former allows for 

significantly greater signal-to-noise ratios (S/N) [137].  

In contrast to ATR, the external reflectance and transmittance approaches are not 

suitable for the study of fast redox processes as they offer poor RC characteristics 

[137]. Further, despite the fact that solvent absorptions may be reduced to some 

extent by employing one of the techniques discussed in section 1.4.2, generally they 

are still strong and must be annulled in order to observe the weak absorptions of 

species at or near the electrode surface [137][138][174][175].  

1.4.3. Addressing sensitivity problems of in-situ infrared spectroscopy 

A “difference” protocol is generally employed to increase sensitivity to the weak 

absorptions of species at the near-electrode region, and the data manipulation method 

varies according the type of spectrometer used [137] (see section 2.3.2). The 

sensitivity problem was historically addressed, particularly in studies focussing on 

adsorbed species, by utilising the noise and instrumental drift-reducing features of 

the lock-in detection approach, which has been discussed in detail elsewhere 

[137][176][177]. Briefly, this approach involves modulating the potential of the WE, 

typically as a square wave at ca. 10 Hz [176], while the detector of a dispersive IR 
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spectrometer [177] is “locked-in” to the frequency of this modulation. Consequently, 

only the signal (and small amounts of noise) modulated at the preset frequency is 

measured. The wavelength of the light that reaches the detector is then scanned over 

a predetermined spectral range until the IR spectrum is complete [176][177]. The 

external reflectance component of this approach is known as Electrochemically 

Modulated InfraRed Spectroscopy (EMIRS) [137], and produces a signal that is 

proportional to the difference in the intensity of light reaching the detector between 

two fixed potentials at each wavelength increment [137][176][177].   

The instrumentation required for the EMIRS method is relatively complex compared 

to modern day Fourrier-Transform InfraRed (FTIR) methods, and the approach 

is limited to studies on electrochemical systems that are both fast and reversible 

[137]. Furthermore, the spectra obtained utilising in-situ FTIR methods are of a 

higher quality than those obtained using the lock-in detection approach [178]. 

Consequently, there has been a significant decrease in the use of the EMIRS method 

in recent years due to the development of techniques based upon the use of FTIR 

spectrometers [137][177].       

1.4.4. In-situ FTIR spectroscopy 

The development of relatively affordable, research grade FTIR spectrometers has led 

to a significant increase in the volume and diversity of in-situ IR studies, which may 

be attributed to their rapid collection times and inherently high sensitivity 

[164][179]. In addition to solving the sensitivity problem, FTIR spectrometers allow 

for simple data collection and manipulation methods, and as a result, have 

significantly diversified the range of experimental methods to which in-situ IR 

spectroscopy may be applied [137]. 

The operation of FTIR spectrometers may be described briefly as 

follows [137][164][179][180]: light covering the whole frequency range (typically 

5000-400 cm
-1

) leaves the source, S, and passes through a Michaelson Interferometer 

(MI) (see fig. 1.10). In the MI, the light is split into two beams at the beam-splitter, 

B, transmitting half of the light to a fixed mirror, and half to a moving mirror. Upon 

reflection, the beams recombine and interfere at the beamsplitter, producing an 

interference pattern proportional to the sum of interference patterns created by each 

wavelength in the beam. Systematically changing the difference between the two 
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path lengths causes the interference patterns to change, producing a detected signal 

that varies as a function of retardation, x, or distance the moving mirror is away from 

either side of the zero path difference [164][179][180].   

 

Figure 1.10. Schematic Representation of an FTIR spectrometer: S, IR source; D, 

Detector; B, Beam-splitter; RL, Reference Laser; LD, Laser Detector; FM, fixed 

mirror; MM, Moving Mirror; IR, infrared light; MI, Michaelson Interferometer. 

Redrawn from [137].     

 

A plot of signal intensity vs. retardation collected during smooth movement of the 

MM is known as an interferogram [137][166][179], and looks nothing like an IR 

spectrum. However, the spectrometer computer then deconvolutes all of the 

individual cosine waves that contribute to the interferogram using a mathematical 

function known as Fourier Transform. This produces a plot of intensity vs. 

wavelength, or more conventionally wavenumber, which resembles the conventional 

IR single beam spectrum [137][166]. Following recombination and interference at 

the beam-splitter, the light reaches the detector, D. The system also employs a 

FM 

MM 
B 

RL 

D 

S IR  

 

LD 
MI 



Chapter 1 

 

25 
 

reference laser (RL), which follows the same path through the MI before it is 

intercepted and directed to the laser detector (LD).  

The computational capacity of the FTIR spectrometer and its accurate laser 

referencing system [137][179] allow for individual scans to  rapidly be co-added and 

averaged, thus producing spectra with improved signal-to-noise ratio (S/N) [179]. In 

addition, higher energy throughput may be achieved in the interferometer than in 

dispersive spectrometers, which are restricted by slits, the monochrometer etc. 

Furthermore, each wavenumber does not need to be scanned successively as the 

interferometer measures all source wavelengths simultaneously [137][179-181], 

leading to rapid data collection times (ca. 10 ms). As a result, an entire FTIR 

spectrum, with sufficient sensitivity to detect species that are adsorbed at the 

electrode, may be collected in only a few seconds, representing a marked 

improvement on the collection times required by the EMIRS approach (up to several 

hours [137]).  

1.5. Project aim  

The overall aim of the project is two-fold: 

1. To investigate the reaction mechanism for the electro-oxidation of ethanol at 

Pt electrodes in alkaline solution. 

2. To investigate the stability of PBI membranes as a function of relative 

humidity and temperature in order to gain a better understanding mechanism 

by which it facilitates proton transport.     

Preliminary work will focus on the electro-oxidation of ethanol at polycrystalline Pt 

in 0.1 M KOH at room temperature in order to provide a library of IR spectra of 

intermediates and products, thus facilitating the studies detailed in (1). 
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2. Experimental  

2.1. Reagents 

Reagent Analysis Supplier 

Acetic Acid 

CH3COOH 

≥ 99.9% Sigma-Aldrich 

Cat No. A6283 

Ethanol absolute 

C2H5OH 

> 99.5% ACS Sigma-Aldrich  

Cat No. 459844 

Ethylene Glycol 

HOCH2CH2OH 

> 99+% Sigma-Aldrich 

Cat No. 10,246-6 

Potassium Hydroxide  

KOH 

> 85% Sigma-Aldrich 

Cat No. P1767 

Millipore Water 

H2O 

18.2 MΩ.cm Millipore 

Polybenzimidazole 

(PBI) 

>99% Between Lizenz GmbH, 

Germany 

Lead (IV) Acetate  

Pb(CH3COO)4 

Reagent Grade, 95% Sigma-Aldrich 

Cat No. 185191 

Bismuth (III) Acetate 

Bi(CH3COO)3 

≥99.99% Trace Metal 

Basis 

Sigma-Aldrich 

Cat No. 401587 

Platinum 

(polycrystalline) 

Pt 

99.99% Metals Crystals and Oxides 
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Sulfuric Acid 

H2SO4 

95.0 – 98.0 % Sigma-Aldrich 

Cat No. 258105 

Carbon Monoxide  

CO (g) 

Research Grade 

100% 

BOC 

 

Hydrochloric Acid 

HCl 

Research Grade 

37% 

Sigma-Aldrich 

Cat No. 43,316-0 

Nitric Acid 

HNO3 

69% Riedel de Haen 

Cat No. 30702 

Table 2.1. List of reagents employed in the work presented in this thesis. 

 

2.2. The electrochemical cell 

The glass cell employed in the cyclic voltammetry CV experiments (see section 2.5) 

was designed and constructed in-house, and comprised two halves (see figs. 2.1(a) 

and 2.1(b)). The bottom half of the cell was a 50 cm
3
 receptacle fitted with a 

heating/cooling jacket for temperature control (see section 2.3.1), and two SQ13 

screw-threaded joints through which the counter electrode, CE (Pt/Ti Mesh, see fig. 

2.2), and the luggin capillary of the reference electrode were directed. The top half of 

the cell was fitted with a B14 socket to house the N2 sparging inlet, which was 

retracted during measurements to maintain a N2 blanket over the electrolyte (see 

section 2.5) [1]. In addition, the top half of the cell was fitted with two SQ13 Screw-

threaded inlets. One of the inlets housed the N2 bubbler, which prevents oxygen 

entry and maintains a positive N2 pressure within the cell [1]. The second inlet was 

used for admitting the working electrode, WE (Pt foil, see fig. 2.2).  The CV 

experiments were carried out at 0, 25 and 50 
o
C and, in addition to the Pt WE and 

Pt/Ti CE, a mercury/mercury oxide (MMO) reference electrode was employed 

(E
o
 = +0.850 V vs. SHE) [2]. 
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Figure 2.1. (a) Schematic and (b) photograph of the two-piece electrochemical cell 

employed during the CV experiments in this study.  
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Figure 2.2. Photograph of the Pt foil working electrode and Pt/Ti counter electrode 

employed during the CV experiments on ethanol oxidation in 0.1 and 0.25 M KOH, 

at 0, 25 and 50 
o
C.  

 

2.3. The spectro-electrochemical cell 

2.3.1. Basic Design 

In-situ FTIR experiments in aqueous solution were carried out in a spectro-

electrochemical cell (see fig. 2.3) which was designed and constructed in-house. The 

glass cell was mounted on the lid of the sample compartment of the FTIR 

spectrometer via a specially designed base-plate, and a hemispherical calcium 

fluoride (CaF2, Medway Optics) prism was employed as the cell window. The cell 

contained the reflective polycrystalline Pt working electrode, a 3 cm
2
 Pt mesh 

counter electrode and a mercury/mercury oxide (MMO) reference electrode, RE, and 

was designed to allow electrolyte exchange under potential control. In order to 

minimise the electrolyte thickness between the working electrode and the CaF2 

window, the electrode was pushed against the window via a screw and pushed-rod 

arrangement (see fig. 2.5) [1], trapping an electrolyte layer ca. 1-3 µm thick.  
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Figure 2.3. (a) Photo and (b) schematic of the spectro-electrochemical FTIR cell 
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The spectro-electrochemical cell was fitted with a heating/cooling jacket, thus 

allowing for control of the electrolyte temperature within the cell, using a Grant 

GD120 R1 water bath. Insulated pipes running from the water bath were passed 

through the cell jacket and hollow cell base, allowing water to flow and maintain the 

required electrolyte temperature in the bulk of the cell and thin layer.  

2.3.2. Working Electrode 

A reflective ‘top hat’ constructed from polycrystalline Pt (see fig. 2.4) was employed 

as the WE in the in-situ FTIR tests, with a polished area of ca. 0.64 cm
2
 exposed to 

solution in the cell.  

              

Figure 2.4. (a) Photo and (b) schematic of the reflective Pt top hat disc used as a 

working electrode for catalysis of the Ethanol electro-oxidation reaction.  

 

Electrical contact to the potentiostat (Autolab PGSTAT12) was achieved via the use 

of a steel push-rod and screw which were connected to the top hat disc via a nylon 

screw-head and a PTFE body, as shown in figs. 2.3(a) and (b).  
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Figure 2.5. Photograph of (a) the electrode and steel push-rod in the PTFE body 

arrangement and (b) the spring connection from the Pt top hat to the steel rod body.  

 

2.4. In-situ FTIR spectroscopy 

The FTIR spectrometer was a Varian FTS-7000 model employing a liquid nitrogen 

cooled, mercury cadmium telluride (MCT) detector.  

2.4.1. FTIR sample compartment mirror setup 

Figures 2.6(a) and (b) shows the configuration of the optical bench employed for 

solution phase FTIR experiments during this project. The bench was designed by 

other workers in Newcastle [3] to fit to the bottom of the sample compartment of the 

FTIR spectrometer. Further, the mirrors were attached to the base plate and 

positioned to direct the IR beam towards the CaF2 prismatic window (E in fig 2.6(a)) 

via mirrors A and B, before subsequently being reflected towards mirrors C and D 

by the Pt working electrode, thus directing it to the MCT detector of the FTIR 

spectrometer.  
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Figure 2.6. (a) Schematic and (b) photograph of the mirror configuration within the 

FTIR sample compartment, thus allowing for reflectance of the IR beam at the Pt 

working electrode. 
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Figure 2.7(a) shows a schematic representation of arrangement of the mirrors and 

spectro-electrochemical cell with the WE pushed against the CaF2 window. As may 

be seen from the figure, the angle of incidence of the IR beam at the CaF2/electrolyte 

interface was 46
o
, (assuming 0 beam divergence, n = 1.41, k = 0

25
 [1][4]), giving an 

angle of incidence at the Pt electrode of 50
o
 [1][4]. Furthermore, for a beam 

divergence of ± 6
o
, the incidence on the inner side of the CaF2/electrolyte interface is 

well below the critical angle and thus precludes any enhancement due to total 

internal reflectance [1][4].   

2.4.2. Typical Spectro-electrochemical analysis procedure 

Prior to the addition of ethanol, a cyclic voltammogram was recorded with the cell 

containing only 0.1M KOH, after which the potential was then set to a reference 

potential of either -0.75 V or -0.85 V vs. MMO before addition of absolute ethanol 

to a concentration of 1 M. The solution was then mixed thoroughly and then left for 

ten minutes, thus allowing sufficient diffusion of ethanol throughout the KOH 

electrolyte, with the Pt electrode continuously under potential control. 

Following the addition of ethanol, the working electrode was carefully pushed 

against the CaF2 prism, before purging of FTIR sample compartment of water 

vapour and CO2 for approximately 70 minutes. With the potential held at the 

reference value, a reference spectrum, SR, was recorded (100 co-added and averaged 

scans, 8cm
-1

 resolution, 47s per scan set), before the potential was then increased 

from -0.75 to 0.4V vs. MMO in 0.1V steps, holding the cell at each potential for 2 

minutes.  

The spectra recorded at each potential during the potential sweep are presented in 

this report as: 

 Absorbance = -log10(SS/SR)                                  (2.10) 

the difference spectra resulting from this data manipulation show peaks pointing 

upwards which are representative of a gain in absorbing species at SS with respect to 

the reference spectrum at SR, and vice versa. Following the potential sweep, cyclic 

voltammograms were again recorded.  
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Figure 2.7. (a) Schematic representation and (b) photograph of the spectro-

electrochemical cell mounted to the sample compartment of the FTIR spectrometer, 

and the mirror configuration utilised within the sample compartment.(c) Photograph 

of the CaF2 prismatic window fixed to the bottom of the cell and base plate. 
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For the ethanol oxidation experiments in the presence of a Pb co-catalyst (see 

Chapter 4), Pb was deposited on the pc-Pt electrode, following the work of He et al 

[5], as follows: 1 mM Pb(IV) acetate (Aldrich, 95%) + 0.25 M KOH was admitted 

into the IR cell and the potential held at -0.85 V vs MMO for 15 minutes, after which 

half the electrolyte was replaced by 0.25 M KOH (still under potential control) eight 

times, reducing the Pb(IV) acetate concentration in solution to < 10
-6

 M.  Ethanol 

was then added to the electrolyte, via a pipette, to a final concentration of 1 M, and 

the solution agitated thoroughly to ensure effective mixing. Based on the seminal 

papers by Clavilier et al [6] and Feliu and co-workers [7] on Pb deposition on well-

defined Pt surfaces in acid and alkaline solution, the electrochemical response of the 

Pb shows that the metal is irreversibly adsorbed on the Pt, rather than having 

undergone underpotential deposition (upd). The Pb was removed from the Pt 

electrode by immersing the latter in aqua regia and washing with Millipore water, 

these repeated several times.   

2.4.3. The single beam reference spectrum 

Figure 2.8 shows a typical single beam reference spectrum recorded at a potential of 

-0.85 V vs. MMO, from which an approximation of the optical path length, and 

hence the thickness of the thin layer, may be calculated. As discussed previously, 

0.1 M KOH was employed as an electrolyte for ethanol electro-oxidation 

experiments. Consequently, absorptions for liquid water were to be expected in the 

FTIR spectra, and it is generally accepted that water is highly hydrogen bonded and 

exhibits three principle absorptions in the mid-IR range [8-11]: 1640cm
-1

 due to 

H-O-H deformation, 3450cm
-1

 due to the O-H asymmetric stretch and at 3615cm
-1

 

due to the O-H symmetric stretch. Considering the absorption band at ca. 1640cm
-1

 

in the single beam reference spectra (see fig 2.8), an approximation for the optical 

path length can be made using the Beer-Lambert law: 

Log10(I0/I) = ε c l                                     (1.2) 

Where: ε = extinction coefficient for water (M
-1

cm
-1

), c = concentration of water 

(M), l = optical path length (cm), I and Io are the intensities of the transmitted and 

incident light respectively.  
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Figure 2.8. Single beam reference spectrum recorded at -0.85V vs. MMO at 25
o
C, in 

N2 saturated 0.1M KOH + 1M EtOH (8cm
-1

 resolution, 100 scans, 47 seconds per 

scan set). 

 

Taking an approximation for ‘Io’ of 12.4 and ‘I’ of 6.7 from fig. 2.6, and using the 

extinction coefficient of 21.8 M
-1

cm
-1 

[12] and liquid water concentration of 55.56 

molL
-1

, an approximate optical path length of 2.2µm can be calculated.  

Figure 2.9 shows a schematic representation of the approximate relationship between 

the distance (d) of the prismatic window from the Pt electrode, and the optical path 

length. From the figure,  it may be seen that: 

Cos θ = d/(l/2)                                           (2.11) 

And hence:  

        d = (l/2) Cos θ                                      (2.12) 
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As discussed previously (see section 2.3), the angle of incidence of the IR beam was 

46
o
, giving an angle of incidence at the Pt electrode of 50

o
 [1][4]. Hence, taking θ as 

50 and l as 2.2 µm (fig. 2.8), an approximate value for the thin layer thickness of 1.8 

µm may be calculated using equation 2.12. 

 

Figure 2.9. Schematic showing the optical path length, l, and thin layer thickness, d. 

 

2.4.4. Alignment using the single beam reference spectrum 

Table 2.2 shows a summary of the preliminary in-situ FTIR experiments carried out 

to investigate the ethanol oxidation reaction at 25 
o
C. The large number of 

experiments allowed for the optimization of the spectro-electrochemical procedure, 

paying attention both to the presence and absence of specific IR features, as well as 

the effect imposed by the size of the optical path length and hence approximate thin 

layer thickness. Furthermore, by optimizing the position of the electrochemical cell 

when mounted to the FTIR sample compartment, and hence the alignment of the Pt 

top hat with respect to the IR beam, the signal observed in the FTIR single beam 

spectra were enhanced considerably. Griffiths & de Haseth [13] state that poor 

mirror alignment dramatically reduces the wavenumber at which the greatest 

intensity in the spectrum may be observed, i.e. spectral information at high 

wavenumbers may be lost. As may be seen from table 2.2, the maximum intensity of 

the major band at 1900 cm
-1

 in the single beam reference spectrum (see fig. 2.8) was 

significantly greater when using the alignment in runs 7 and 8 than in runs 1-6. Thus, 

despite the fact that I/I0 was greater in runs 3-6, the configuration of cell and mirrors 
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employed in run 8 was selected for the experiments discussed in this thesis due the 

greater amount of source energy and sufficiently low optical path length (< 3 µm).       

T        

/
o
C 

Run Date I1900  

/V 

I/I0 L  

/µm 

25 1 27/01/12 3.56 0.67 3.0 

25 2 03/02/12 2.84 0.70 3.0 

25 3 16/04/12 8.49 0.81 2.7 

25 4 17/04/12 6.14 0.85 4.2 

25 5 20/04/12 5.48 0.83 2.4 

25 6 20/04/12 5.26 0.87 2.4 

25 7 23/05/12 12.0 0.71 3.0 

25 8 31/05/12 14.2 0.72 2.6 

 

Table 2.2. Summary of the preliminary in-situ FTIR experiments carried out at 25 
o
C, 

where T = temperature (
o
C), L = optical path length (µm), I1900 = the maximum 

intensity of the major band at 1900 in the single beam reference spectrum (V).  

 

2.5. Cyclic Voltammetry 

Cyclic voltammetry (CV) is a technique employed by electrochemists to monitor the 

response in an electrochemical system when applying a large periodic potential 

change [14]. The conventional electrochemical cell used to carry out CV is sealed to 

prevent entry of air, and the electrolyte is usually purged with an inert gas (eg. N2). 

This is necessary so as to remove O2 from the system under study, reduction of 

which would interfere with the CV response.  

The conventional cell configuration is comprised of three electrodes (WE, CE and 

RE) immersed in an electrolyte [14]. As discussed previously, a Pt foil WE and Pt/Ti 

Mesh CE (see fig. 2.2), and a MMO RE were employed in the CV experiments 

carried out during this project. During a CV experiment, the potential of the WE with 

respect to the RE is cycled repeatedly between an anodic and cathode limit (see fig. 
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2.10) at a fixed scan rate while the current is monitored as a function of WE potential 

[14-16].  

 

Figure 2.10. Potential with respect to time during a CV experiment, where Ea and Ec 

are the respective anodic and cathodic potential limits. 

 

Ideally, the WE and CE are co-facially aligned at as small a distance as possible, 

without being in contact, to optimize electron transfer and hence minimize resistance 

between the two electrodes. However, the thin layer configuration employed during 

the FTIR experiments in this study does not allow for such positioning, leading to 

restricted diffusion and hence uncompensated resistance [15-17]. This can lead to a 

voltage drop between the reflective WE and RE [14]. 

2.6. Gas-Phase In-Situ FTIR Experiments 

2.6.1. FTIR spectrometer 

Gas-phase in-situ FTIR experiments were carried out using a Varian 670-IR 

spectrometer equipped with a ceramic, air-cooled infrared source and a cooled 

DLaTGS detector.  A Specac reflectance accessory with an environmental chamber 

(see fig. 2.11) allowed IR spectra to be collected from the sample under a controlled 

atmosphere from room temperature to 800 
o
C and pressures from vacuum to 34 atm. 

Further, N2 gas was admitted into the environmental chamber via a pipe network (see 

figs. 2.12(a) and (b)), allowing for control of both flow rate and relative humidity.  
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2.6.2. Relative Humidity 

Figure 2.12 shows a schematic of the apparatus used for the control of relative 

humidity during in-situ FTIR experiments. From the figure, it may be seen that N2 

was passed through a jacketed Dreschel bottle containing saturated aqueous NaCl 

(200 cm
3
). The temperature of the Dreschel bottle was maintained constant between 

4-40 
o
C using a Grant LTC1 Water Recycler. The relative humidity of the N2 exiting 

the Dreschel bottle was monitored using a Testo 605-H1 humidity meter, and 

fig. 2.13 shows the relative humidity of the N2 gas entering the environmental 

sample chamber as the temperature of the saturated NaCl (aq) was increased.  

2.6.3. Preparation of the PBI samples 

Ti discs of 0.95 cm
2
 were coated in PBI, by casting from dimethylacetamide 

(DMAc), and allowed to dry at room temperature for ca. 24h. The PBI was dissolved 

in the DMAc in a PTFE digestion vessel using microwave heating to a concentration 

typically of 5-10 wt%. Thus, ca. 0.1 cm
3
 PBI/DMAc was placed on the Ti disc using 

a pipette and allowed to dry. The mass of PBI was then calculated from the mass of 

the disc and disc+dry film. The density of the dry PBI was taken as 1.3 g cm
-3

 [18] 

and the loading of dry film calculated accordingly. 

 

Figure 2.11. The environmental chamber employed for the gas phase in-situ FTIR 

experiments at both varied temperature and relative humidity. 
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Figure 2.12. (a) Photograph of the FTIR spectrometer and pipelines used to control 

the flow rate and relative humidity of N2 entering the environmental chamber. (b) 

Enlarged photograph of the gas pipelines.   
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Fig. 2.13. (a) Schematic representation of the apparatus used to control the relative 

humidity in the environmental chamber during the in-situ FTIR experiments on PBI. 

(b) The relative humidity of the N2 gas entering the FTIR environmental chamber 

after passing through the jacketed Dreschel Bottle as a function of temperature. 

 

2.6.4. Typical In-Situ FTIR Analysis Procedure - Polybenzimidazole 

For absolute spectra, the PBI-coated Ti disc was placed in the sample attachment and 

mounted on the central, heated pillar of the chamber, which was then purged with N2 
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for approximately 50 minutes.  A spectrum (SS, 250 co-added scans and averaged 

scans at 4 cm
-1

 resolution, ca. 5 minutes per scanset) was collected and normalised to 

a reference spectrum (SR) collected from the uncoated Ti disc under the same 

conditions. 

For transmission spectra, a PBI-coated CaF2 disc was placed in a press-lock holder 

attachment in the sample compartment, which was then purged and a spectrum 

collected which was normalised to the uncoated CaF2 disc.     

During the experiments conducted as a function of  temperature and humidity, the 

reference spectrum (SR, 250 co-added scans and averaged scans at 4 cm
-1

 resolution, 

ca. 5 minutes per scanset) was collected and a second spectrum taken at the reference 

point (dry N2, 25 °C), after which spectra (SS) were collected with increasing relative 

humidity or temperature. The difference spectra were presented as in the solution-

phase experiments (see eqn. 2.10).  
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3. In-Situ FTIR studies on the oxidation of ethanol at polycrystalline Pt in 

aqueous 0.1M KOH at 25 
o
C 

3.1. Introduction  

3.1.1. Overview  

This chapter presents in-situ FTIR studies on the electrochemical oxidation of 

ethanol at polycrystalline Pt in 0.1M KOH; the data obtained with C2H5OH are 

compared to results obtained using C2D5OD under the same conditions.  The work 

continues earlier studies in Newcastle by other workers on methanol and formate 

oxidation [1][2], and supports the model formulated on the basis of these papers that, 

in contrast to acidic solution, under alkaline conditions intermediates are formed 

bonded through O rather than C, and that a number of mechanistic pathways are 

available differing very little in terms of activation energy.  

Initially, this project was designed to provide a library of IR spectra of intermediates 

and products to facilitate the study of the electro-oxidation of small organic 

molecules at novel, non-noble metal anodes by in-situ Fourier Transform InfraRed 

(FTIR) spectroscopy.  However, the work on Pt has provided some unexpected 

insights into this area of electrocatalysis, particularly with respect to the role of 

intermediates bonded through oxygen rather than carbon, as well as of adsorbed CO. 

The study of ethanol oxidation at Pt is timely given the current interest in ethanol as 

a sustainable fuel and since, in contrast to the in-situ FTIR literature on the electro-

oxidation of ethanol in acid solutions, studies in alkaline solution are far less 

frequent; in fact, only a few examples of ethanol oxidation at Pt electrodes in 

alkaline solution could be found, including FTIR the studies by López-Atalaya and 

co-workers [3] (see fig. 3.1), Lai et al. [4] (see fig. 3.2) and Feliu et al [5] (see fig. 

3.4).    

3.1.2. FTIR studies on ethanol oxidation in alkaline solution 

López-Atalaya and co-workers [3] employed the Subtractively Normalized 

Interfacial Fourier Transform Infra-Red Spectroscopy (SNIFTIRS) [6] approach to 

study ethanol electro-oxidation at Pt(110) and Pt(100) electrodes in aqueous NaOH 

and Na2CO3. 
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In the study by López-Atalaya, the potential was stepped back and forth in a square 

wave between 0.05V and 0.35V vs RHE, and the co-added and averaged scans 

collected at 0.35V normalized to those taken at 0.05V. The authors observed linearly 

bonded CO at Pt(110) and multibonded CO at Pt(100), and claimed to have also 

detected linearly adsorbed CO at both Pt (111) and Pt(100), but these bands were 

very weak. 

The SNIFTIRS approach is a method of increasing signal-to-noise, but is only 

suitable for absorptions that: (i) shift in frequency with potential and (ii) do so in a 

completely reversible manner as the potential is switched repeatedly. Any 

absorptions arising from species produced in an irreversible manner will be averaged 

out.  In addition, there is some concern that such potential modulation can influence 

the surface chemistry taking place [6][7]. 

 

Figure 3.1. In-situ FTIR spectra of Pt(110) and Pt(100) in 0.1M NaOH + 0.1M 

EtOH collected by Lopez-Atalaya and co-workers during a slow potential scan from 

0.05V to 1.00V vs. RHE at 1mVs
-1

 [3]. 
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López-Atalaya et al also collected in-situ FTIR spectra during a slow potential scan 

from 0.05 V vs. RHE to 1.00V at 1mVs
-1

 (see fig. 3.1).  The spectra were collected 

over small potential ranges, and were identified with the midpoint potential of the 

range, normalized to the reference spectrum collected at 0.05 V.   

Whilst the authors observed (very weak) bands due to linear COads at Pt(110) and 

multiply bonded CO at Pt(100), the spectra were dominated by features due to the 

loss of OH
-
 (which were not assigned by the authors) and to the gain of acetate ions 

in solution at 1550 cm
-1

 and 1415 cm
-1

, attributed to the symmetric and asymmetric 

stretches of COO
-
 (νs and νas respectively).  The authors did not attempt to place their 

data in the context of a model for ethanol oxidation at Pt. 

The more recent paper by Lai and co-workers [4] presents a comprehensive study of 

ethanol electro-oxidation at polycrystalline gold and platinum electrodes as a 

function of pH using cyclic voltammetry, in-situ external reflectance FTIR 

spectroscopy and SERS (see fig. 3.2).  

In 0.1 M NaOH, Lai et al. observe CO2 formation at 0.36V (a remarkably low onset 

potential), suggesting that the pH is dropping below the pKa,1 of H2CO3 (6.37) at 

least in some regions across the Pt surface [2]. In addition, the authors observe the 

oxidation of adsorbed CO at a similarly low potential and close to that observed in 

acidic solution.   Furthermore, the only band attributed to a solution species other 

than CO2 was a weak feature at 1381 cm
-1

, assigned by the authors to the CH3 bend 

of solution acetate based on a paper by Colmati and co-workers [8]. However, if the 

latter feature was apparent, then the far more intense absorptions due to the 

asymmetric and symmetric stretches of solution acetate ions [3] should also be 

present. Apart from the above, the authors observed bands due only to adsorbed 

species: CO, acetate and bicarbonate, all of which is very singular. The inappropriate 

assignment by the authors of a band at 1585 cm
-1

 to the asymmetric stretch of 

adsorbed acetate was made on the basis of IR studies on aqueous solutions of 

alkaline earth and copper acetates [9]; further, on the basis of the surface selection 

rule [10] (and references therein), the asymmetric stretch of bidentate acetate would 

not be observed.  
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Figure 3.2. In-situ FTIR spectra collected by Lai et al during a potential sweep at 10 

mVs
-1

 from 0 to 0.60V using 0.5M ethanol in (a) 0.1M HClO4 and (b) 0.1M NaOH 

[4]. 

 

To understand why the asymmetric stretch of bidentate acetate is not observed it is 

necessary to consider the Greenler effect, a critical aspect of in-situ FTIR 

spectroscopy [11]. Thus, when an unpolarized IR ray having an oscillating electric 

vector E (see fig. 3.3) is incident on an electrode surface, it may be assessed in terms 

of two limiting polarizations: s-polarized light which has the electric vector Es 

oscillating perpendicular to the plane of reflection, and p-polarized with an electric 

vector Ep oscillating parallel to the plane, the plane defined as containing both the 

incident and reflected rays. Furthermore, the p-polarized electric vector may be 

resolved into the Epx and Epz components which oscillate parallel and perpendicular, 

respectively, to the electrode surface. The incident and reflect rays interfere to 
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produce a standing wave at the point of incidence at surface, proportional to Ei
2
, 

where Ei is the electric vector of relevant polarization [11-12]. At all angles of 

incidence (θ in fig. 3.3), the standing wave intensities from s and px polarized light 

are zero, and very small over a distance commensurate with the wavelength of the 

incident IR ray, depending upon solvent absorptions and surface reflectivity [11-12]. 

 

Figure 3.3. Schematic representation of s- and p- polarized light incident at a 

reflective electrode surface (eg. Pt). θ is the angle of incidence. Redrawn from [11].  

        

In contrast, the intensity of pz depends upon the angle of incidence and rises to a 

maximum of 3-4 times that of the incident intensity at high angles of incidence [11]. 

Hence, the pz component of a p-polarized IR ray is sensitive to both solution and 

adsorbed species, providing the latter exhibits a significant dipole change during 

vibrations perpendicular to the surface [13-15]. However, the px and py components 

are “blind” to species near to, or adsorbed at the electrode surface. Thus, any 

vibrations having dipole changes that are parallel to the surface, such as that during 

the asymmetric stretch of bidentate acetate, will be invisible to both p and s-

polarized light [11].  

Returning to the work by Lai et al [4], in contrast to the IR data obtained in pH 

12 0.1 M NaOH, in pH 12 phosphate buffer, the authors observed no CO2 

or adsorbed species. Instead, only solution acetate was seen (strong bands due to the 
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Ep 

Es 
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Reflection θ 

Epx 

Epz 
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asymmetric stretch at 1550 cm
-1

 and symmetric stretch at 1415 cm
-1

, but no band 

was observed at 1385 cm
-1

 due to the CH3 bend).  The absence of adsorbed species 

was attributed by the authors to the strong inhibition of active sites by adsorbed 

phosphate.  

Solution acetate was observed at polycrystalline Pt in KOH during this project 

(see section 3.2.2.), similar to López-Atalaya and co-workers and, on the basis 

of straightforward electrochemical considerations, the complete lack of solution 

acetate ions observed by Lai et al [4] in the experiments in pH 12 NaOH is highly 

unlikely. In addition, there is no indication in their paper of the thin layer thickness 

in the various FTIR experiments.  Although the authors do not present the range 

above 2400 cm
-1

 in their spectra, there is clear water movement in the pH 1 spectra 

and in the spectra in pH 12 phosphate buffer, as may be judged from H-O-H 

deformation band near 1640 cm
-1

; however there is no such evidence for water 

movement in the pH 12 NaOH spectra.  These observations coupled with the very 

low onset potential for the oxidation of adsorbed CO (and the fact this is close to that 

observed in acid solution), and the formation of CO2 suggest that the thin layer in 

the experiment in NaOH was abnormally thin, such that the pH in the layer became 

acidic almost as soon as charge passed, and only adsorbed species were observed. 

Two papers have been published recently concerning in-situ FTIR studies of 

ethanol oxidation in alkaline solution at polycrystalline Pd electrodes [16][17] 

and hence are useful in providing band assignments for intermediates and products 

of ethanol oxidation.  In particular, Zhou et al obtained their assignments for 

acetate by comparison with the transmission spectrum of NaOOCH3. They also 

provide assignments for C2H5OH bands.  Their assignments are presented in table 

3.1. 

Most recently, Feliu and co-workers [5] investigated the EtOH oxidation reaction in 

alkaline electrolyte at Pt (100), Pt (110) and Pt(111) single crystal electrodes via 

cyclic voltammetry, chrono-amperometry and in-situ FTIR spectroscopy. Figure 3.4 

shows the FTIR spectra collected by the authors at Pt(100) during the oxidation of 

0.2 M EtOH + 0.1 M NaOH over the potential range from 0.2-0.95 V vs. RHE. As 

may be seen from the figure, the spectra are dominated by gain features at ca. 1550 

and 1415 cm
-1

 (similar to the spectra collected at Pt(110) and Pt(111)), attributed by 
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the authors to the symmetric and asymmetric stretching vibrations of solution COO
-
. 

Further, in contrast to the work by Lopez-Atalaya and co-workers [3] and Lai et al 

[4], the authors did not observe COads at low potentials (i.e. before the drop in thin-

layer pH due to the depletion of solution OH
-
). Feliu et al [5] suggested that acetate, 

and possibly acetaldehyde, were the main oxidation products at all three electrode 

morphologies, and postulated that acetaldehyde was not detected in the FTIR 

spectra (see fig 3.4) due to its polymerization via aldol condensation in alkaline 

medium.  

 

Figure 3.4. In-situ FTIR spectra collected by Feliu et al [5] during oxidation of 0.2 

M EtOH + 0.1 M NaOH at Pt(100) over the potential range from 0.2-0.95 V vs. 

RHE.  

 

In an earlier study, Feliu and co-workers [18] studied the ethanol oxidation 

mechanism at Au (110), Au (210) and polycrystalline Au electrodes in alkaline 

media. From their in-situ FTIR data collected in 0.1 M EtOH + 0.1 M NaOH (see 

fig. 3.5 for the spectra collected at polycrystalline Au), and similar to the 

work discussed above, the authors attributed bands at ca. 1415 and 1548 cm
-1 
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to the symmetric and asymmetric stretching vibrations of COO
-
 in solution, which 

they observed using all three electrode morphologies.   

Band / cm
-1

 Assignment 

1551 νs CH3COO
-
 

1415 νas CH3COO
-
 

1348 CH3COO
-
 

1018 CH3COO
-
 

1390 CO3
2-

 

1085 C-O stretch C2H5OH 

Table 3.1. The assignments of the spectral features observed by Zhou et al [16]. 

 

 

Figure 3.5. In-situ FTIR spectra collected by Feliu et al [18] at polycrystalline Au in 

0.1 M NaOH + 0.1 M EtOH, normalized to a reference spectrum collected at 0 V vs. 

RHE.  
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Returning to fig. 3.5, the authors assigned a band at ca. 1346 cm
-1

 to the symmetric 

C-H bend of the methyl group in acetate, and a loss feature at ca. 2383 cm
-1

 was 

attributed to the C-H stretch of the methyl group in ethanol.  

Feliu et al postulated that at low potentials, OHads facilitates the removal of the 

hydroxyl hydrogen from ethanol, thus promoting its dissociative adsorption at the 

electrode surface:  

            CH3CH2OH + Au(OH)ads → CH3CH2O
*
 + Au + H2O            (3.1) 

The authors state that the ethoxy species is an unstable radical (CH3CH2O*) which 

will rapidly react with solution OH
-
 (eq. 3.2) or OHads (eq. 3.3) depending on the 

electrode potential, explaining why no ethoxy species were detected during their 

FTIR measurements.  

     CH3CH2O* + OH
-
sol → CH3CHO + 2H2O + e

-
             (3.2) 

      CH3CH2O* + Au(OH)ads → CH3CHO + H2O                       (3.3) 

As may be seen from fig. 3.5, a broad loss feature was observed near 2700 cm
-1

 

which was attributed by the authors to the loss of solution OH
-
 in the thin layer 

due its reaction with adsorbed ethoxy. The peak at 2700 cm
-1

 was tracked by a 

loss feature at ca. 1870 cm
-1

, which may also be attributed to solution OH
-
, 

however, this was not assigned by Feliu et al. The authors concluded that, in 

alkaline media, acetate is the only product of ethanol oxidation at Au regardless 

of electrode morphology. Furthermore, they stated that in addition to facilitating 

the removal of the hydroxyl hydrogen from ethanol at low potentials, OHads most 

likely stabilizes the resulting adsorbed ethoxy species by controlling the surface 

charge density. At higher potentials the authors postulate that solution OH
-
 promotes 

the further oxidation of ethoxy and that acetaldehyde is a key intermediate that 

reacts with solution OH to form acetate. Hence, a weak band near ca. 1718 cm
-1

, 

only observed at polycrystalline Au, was attributed to the C=O vibration 

of acetaldehyde or acetic acid and grew in intensity with increasing potential. 

However, the latter is unlikely when considering that no features were observed 

near 1280 cm
-1

 [19][20] and 1390 cm
-1

 [16][21], which are characteristic of the O-H 

deformation and C-O stretching, respectively, in the COOH group of acetic acid. 

Furthermore, there is no band at ca. 2340 cm
-1

 due to CO2 and hence no evidence 
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CH3CH2OH CH3CHO CH3COOH 

CO + CO2 fragments 

1 2 

3 4 

5 

for a drop in the pH of the thin layer, or at least in some regions across the electrode 

surface [2] (a pH of ≤ 4.75 (the pKa of acetic acid [22]) would be required to 

facilitate the formation of acetic acid).  

3.1.3. The ethanol oxidation reaction mechanism in alkaline solution 

In terms of a model for ethanol oxidation at Pt in alkaline solution, the most 

often quoted is the Dual Path mechanism for ethanol oxidation in acid solution (see 

scheme 3.1 and section 1.1.1 for full discussion), which is generally taken as 

representative of  the alkaline case as well [3-4].  The presence of COads is taken 

as evidence for the “indirect path” (steps 1, 3, 5 and/or 1, 4, 5) resulting in 

bond cleavage and CO2 formation.  As discussed in section 1.1.1, the “direct 

path” (steps 1 and 2) produces acetic acid and acetaldehyde, both of which are 

 stable with respect to further oxidation due, it is generally believed, to the blocking 

of the Pt surface by some of the chemisorbed fragments [9][23]; Shao and Adzic [9] 

suggest that the blocking of active sites is due to adsorbed acetate.  In addition, the 

intermediates in the formation of acetaldehyde and acetic acid remain unclear 

[19][24-25].  Hence, whilst there is general agreement around the broad principles 

encapusulated in scheme 3.1, the exact details of the mechanism whereby solution 

ethanol is oxidised to acetic acid, acetaldehyde and small amounts of CO2 remains 

controversial [4][20]. 

 

 

 

 

 

 

Scheme 3.1. The dual path mechanism. 
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Given the dearth of experimental data available for EtOH oxidation in alkaline 

solution, it does not seem unreasonable to turn to the wealth of data available in acid 

solution for support. Thus, Iwasita and co-workers [26][27] postulated that the 

chemisorption of ethanol at Pt results in COads, Pt-OCH2CH3 (adsorbed ethoxy), 

Pt2COHCH3 and PtCOCH3, all of which are oxidised only to CO2. This work was 

supported by Ianniello [28] who studied the chemisorption of ethanol at porous Pt 

electrodes. Iwasita postulated that, apart from COads, > 60% of the chemisorbed 

fragments were due to C2 species, and hence that C-C bond cleavage occurs 

predominantly only at higher potentials (ie. 0.7V vs RHE), and thus after 

chemisorption. In contrast, other workers [29-31] postulate that chemisorption is 

primarily dissociative, resulting in COads and other C1 fragments, and Lai et al [4] 

suggest that C2H5O
-
 is the reactive form of ethanol in alkaline solution (pH > 11)  

and that this is adsorbed to form ethoxy on the Pt surface (see scheme 3.2 for Lai et 

al’s proposed mechanism). The adsorbed ethoxy then is oxidised to acetaldehyde: 

this can either react with adsorbed OH in a Langmuir-Hinshelwood [1-4] mechanism 

to form acetate, or undergo Aldol condensation [5][32] which deactivates it to 

further reaction.  

3.1.4. The role of adsorbed CO during oxidation of ethanol at platinum in alkaline 

solution 

Similar to the work by Iwasita and co-workers [26][27] and Ianniello [28] in acid 

solution, most studies on ethanol oxidation in alkaline electrolyte infer the 

existence of some form of adsorbed CO (COads) [33]. However, this is generally 

without any direct, molecular evidence for its formation.  For example, Jiang et al 

[34] observe two peaks in the forward sweep of cyclic voltammograms of carbon-

supported Pt particles in aqueous NaOH/ethanol. By comparison to the case in acid 

solution [35] the peak to lower potential was assigned primarily to the complete 

oxidation of ethanol, and the second to its partial oxidation to acetate ions. As 

carbonate was a product, then it followed that COads was the intermediate.  Similarly, 

López-Atalaya et al [3] attribute stripping peaks in the voltammogram of ethanol 

chemisorbed on single-crystal Pt surfaces to the oxidation of COads as the peaks were 

the same as observed when CO gas was adsorbed onto the electrodes (see section 

3.1.2). 
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Scheme 3.2. The reaction mechanism for the ethanol oxidation reaction proposed by 

Lai et al [4]. Solid arrows denote the reaction mechanism at low electrolyte pH, 

while dashed arrows denote the mechanism at high pH.  

 

Overall, under alkaline conditions, there is a heavy reliance on voltammetry to 

provide evidence for the dual path mechanism, despite the inability of the technique 

to provide molecular information. Further, there is some confusion with respect to 

the interpretation of the hysteresis generally observed in cyclic voltammogramms of 

Pt in ethanolic hydroxide solutions between the forward and reverse sweeps.  Thus, 

Dutta and Datta [33] employ the ratio of the ethanol oxidation peak currents in the 

forward and back (reverse) sweeps, IF/IB, as a measure of the efficacy of the 

stripping of the Pt oxide at removing adsorbed, carbonaceous fragments. The higher 

this ratio, the more effective the oxidation of adsorbed species. In an earlier paper 

[36], they postulated that the formation of surface oxides activated the Pt surface to 

the oxidation of adsorbed species.  However, in general, it is accepted that oxidation 

of adsorbed ethanol takes place via reversibly-adsorbed OHa, and the oxidation of 

the Pt to Pt-OH or Pt-O inhibits ethanol oxidation at higher potentials [34][37]. The 

higher IF/IB, the more effective OHads is at oxidising adsorbed species. The extent of 

the hysteresis between the forward and reverse scans in a cyclic voltammogram at 

potentials ≤ that of the anodic peak in the reverse scan is also taken as an indication 
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of the coverage by strongly adsorbed species [4][5][24][37]; the greater the 

hysteresis, the greater the influence of adsorbed species (such as COads). For 

example, Lai et al [38] observed very little hysteresis between the forward and 

reverse scans at potentials below the anodic peak in the reverse scan (ca. 0.6 V vs. 

RHE) in the CV’s of polycrystalline Pt in 0.1 M NaOH+0.5 M ethanol at room 

temperature (see fig. 3.6). The authors suggested that this may indicate that the 

oxidation of adsorbed species does not play a major role; and that surface species are 

formed but are stable up to 0.65 V vs. RHE. However, the authors also postulated 

that the oxidation of surface species may occur, but very slowly compared to the 

timescale of the CV experiment depicted in fig. 3.6. Similar behavior was observed 

by Dimos and Blanchard [39] in their CVs of planar Pt in 1 M EtOH+1 M KOH. 

A further example of the pitfalls of relying upon techniques incapable of providing 

molecular information to provide analytical data is provided by the work of Caram 

and Guitiérrez [40]. The authors employed polarization modulation reflectance 

spectroscopy (PMRS) to study methanol and ethanol chemisorption in acid and 

alkaline electrolyte at a polycrystalline Pt electrode.  A peak at 270 nm was observed 

for methanol and ethanol in 0.5M HClO4, and attributed to linearly-adsorbed C≡O 

(COL).  The same feature was observed for methanol chemisorption in 1M NaOH, 

but not observed in the PMRS spectrum of ethanol in 1M NaOH, despite the amount 

of adsorbed CO, as estimated from cyclic voltammetry via oxidative stripping, being 

the same as observed with methanol under the same conditions.  The authors could 

not explain the absence of the COL peak. It does not seem unreasonable to suppose 

that the stripping peak from ethanol chemisorption in NaOH was (primarily) due to 

adsorbed species other than COL. 
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Figure 3.6. CV’s of polycrystalline Pt in 0.5 M EtOH + 0.1 M NaOH (solid line) and 

0.1 M HClO4 (dashed line) collected by Lai et al [38], scan rate 10 mV s
-1

, arrows 

indicated scan direction.   

 

There are papers reporting molecular data to support the indirect path. Thus, 

Dutta and Datta [33]  analysed the products from 1M ethanol oxidation in 0.5M 

NaOH at carbon-supported Pt particles using ion exchange chromatography (IEC). 

The authors’ IEC data appeared to show carbonate production favoured over acetate 

at all the temperatures studied, 20 – 80 ºC, and increasing with increasing 

temperature. However, the ordinate axes on the relevant plots were unlabeled 

in terms of units, and no attempt appeared to have been made to render the IEC data 

quantitative. In the study which was discussed in section 3.1.2, Lai et al [4] 

also presented Surface Enhanced Raman (SER) spectra collected from a Pt electrode 

covered with chemisorbed ethanol in the absence of ethanol in solution. Bands were 
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observed at 440 and 515 cm
-1

, attributed to two different forms of linearly adsorbed 

CO, and at 1960 and 2035 cm
-1

 attributed to bridge-bonded  and linearly 

adsorbed CO, respectively. These were taken as evidence for the presence of 

adsorbed CO in the voltammetric experiments using single crystal Pt electrodes.  

However, it is not clear that the SERS electrode, consisting of electrochemically 

roughened gold on which Pt was electrodeposited a few monolayers thick, 

is representative of bulk Pt. The authors maintained that the thickness of 

the platinum layer was high enough to mask the electrochemical properties of 

the gold layer beneath.  In contrast, in previous studies of metallic multilayer 

nanostructured catalysts by other workers in Newcastle, it has been found 

that overlying layers even hundreds of monolayers thick are unable to mask 

the influence of the underlying layers [41][42].  Further, a correlation between the 

SERS band intensities and, for example, the observed Faradaic current, was not 

attempted.  

As discussed earlier (see section 3.1.2), Lopéz-Atalaya et al [3] observed weak 

features due to linearly adsorbed and multiply-bonded COads, but the only 

product observed using all three electrodes was acetate. They concluded that 

adsorbed CO was responsible for poisoning the Pt(111) electrode (the other 

electrodes deactivated primarily due to structural modifications). The conclusions of 

Lopéz-Atalaya and co-workers [3] are in direct contrast to the theory of Lai 

and Koper [38] based on the latter’s studies of ethanol oxidation at single crystal 

Pt electrodes in 0.1 M NaOH. Lai and Koper postulate that adsorbed CO is the 

only strongly adsorbed intermediate at co-ordinately unsaturated surfaces such as 

Pt(110), whilst CHx is responsible for poisoning surfaces with long terraces, such as 

Pt(111). 

Overall, the evidence in favour of adsorbed CO as a key intermediate in the 

oxidation of ethanol in aqueous alkaline electrolyte, and the postulate that 

chemisorption of ethanol at Pt under such conditions takes places via cleavage of C-

H bonds, are not convincing.    
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3.1.5. Summary 

Based on the previous work in Newcastle on methanol oxidation [1][2] and on the 

considerations above, it is likely that the oxidation of ethanol in alkaline solution 

proceeds through initial adsorption of ethanol itself through oxygen and not through 

C1. It is postulated that this adsorption is extensive, even at quite low potentials, and 

the initial process is: 

EtOH + OH
-
 + Pt(s) → Pts-O-CH2CH3  (I)             (3.4) 

Subsequent oxidation gives rise to removal of successively one and then two 

hydrogens attached to C1 yielding: 

Pts-O-CH2CH3  (I) → Pts-O-CH(OH)CH3 (II) → Pts-O-C(=O)CH3 (III)   (3.5) 

and acetaldehyde can be desorbed from the surface after the first two-electron 

oxidation and acetate after the second, both desorptions being driven by 

the excess  ethanol in solution which adsorbs and replaces the oxidised 

intermediates.  

Further, it may be postulated that once acetate has formed, if it is not desorbed then 

provided the entire surface is not covered with strongly adsorbed ethanol it may form 

a bidentate adsorbate. In principle there are two possible forms of ligation: the first is 

to coordinate through the carbonyl oxygen to give Pts-O-C(CH3)-O-Pts (IV) and the 

second is for proton abstraction to occur from the CH3 moiety followed by ligation 

through the carbon as Pts-O-C(=O)-CH2-Pts (V); as will be seen below, there is some 

IR evidence for the second of these species (V), but the first (IV) presents problems 

for the in situ IR technique since the main carbonyl type absorptions will not be seen 

owing to the surface selection rule. The fate of these two adsorbates will be different: 

the first (IV) will prove difficult to oxidise further; proton abstraction might lead, in 

the case of substantial coverage, to polymer formation, but no evidence for this was 

observed. However the second bidentate intermediate (V) can be further oxidised by 

C-C scission, which is known to be a minority process on Pt under ordinary 

operating conditions [43], but which leads to the formation of both carbonate and Pt-

C≡O, both of which have been observed by previous workers in Newcastle and 

others. Hence, C-C bond scission most probably involves the presence of this 



Chapter 3 

 

72 
 

second intermediate (V), and IR has been used to try to establish a signature band for 

it. 

3.2. Results 

3.2.1. Cyclic voltammetry of ethanol at polycrystalline Pt in 0.1 M KOH 

Figure 3.7 shows the cyclic voltammogram of the Pt (foil, 1 cm x 1 cm) electrode 

recorded in 0.1M KOH in the absence of ethanol at 25 
o
C. As there are no redox-

active couples present in solution, the current-potential behavior observed in 

fig. 3.7 corresponds to the formation and removal of chemisorbed hydride and 

oxide layers at the Pt surface [44]. Thus, the hydrogen underpotential 

deposition/stripping (Hupd) region below ca. -0.45V vs. MMO may be seen  

[44-47], this due to the formation and stripping of reversibly adsorbed H at the Pt 

electrode.  

 

Figure 3.7. CV of the polycrystalline Pt (foil, 1 cm
2
) working electrode recorded in 

0.1M KOH, in the absence of ethanol, at 22
o
C (-0.85 to 0.4V; scan rate of 

100mVs
-1

). 
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Furthermore, compared to Pt in acidic electrolyte, there is an additional wave which 

immediately follows hydrogen desorption in the anodic scan at -0.5V vs. MMO, with 

maximum at ca. -0.20V; this may be assigned to the reversible chemisorption of OH 

at Pt via the hydroxide discharge process [1][44][46]: 

     Pt + OH
-
 → Pt-OH + e

-
                                           (3.6) 

The wave with an onset under the OHads peak and a peak near 0.1 V can be 

assigned to the irreversible formation of an oxide layer (Pt-O) during the anodic scan 

[1][44]:  

    Pt-OH + OH
-
 → Pt-O + H2O + e

-
                      (3.7) 

Above 0.4 V, oxygen evolution takes place, and at even higher potentials, a phase 

oxide of thickness significantly larger than a monolayer may form at the Pt surface 

[44]. As the potential sweep is reversed in direction, the chemisorbed oxide layer at 

the electrode surface is reduced/stripped, as shown by the wave near -0.1 V, together 

with any oxygen gas in proximity to the electrode. [4][44][48]. At ca. -0.5 V during 

the cathodic scan, there is a small double layer region followed by the deposition of 

hydride [44] as:  

Pt + H2O + e
-
 → P-H + OH

-
           (3.8) 

At potentials below -0.85 (i.e. close to the thermodynamic potential for the H2/H2O 

couple), hydrogen evolution occurs and can be re-oxidised as the potential direction 

is again reversed [44]. 

Figure 3.8 shows cyclic voltammograms of the Pt electrode collected in 0.1 M KOH 

in the presence of 1M ethanol, demonstrating the typical behavior for oxidation of 

small organic molecules at a Pt electrode [49]. As can be seen from the figure, the 

hydrogen adsorption region is blocked by chemisorbed fragments of ethanol 

[34][37][38]. The onset of ethanol oxidation was observed at ca. -0.60 V and 

commences with OHads formation [37]. This oxidation ceases once appreciable 

coverage of the Pt by oxide has taken place [35][38].  

On the cathodic scan, oxidation of ethanol only commences once the oxide starts to 

strip from the surface. Due to phase oxide formation on the anodic scan [45], 

stripping the oxide leaves a highly active surface hence the large anodic 
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currents [45][48][50]. In contrast to the CV’s reported by Lai et al [38] (see section 

3.1.3) and Dimos and Blanchard [39], there is considrable hysteresis between the 

forward and reverse scans at potentials below the anodic peak in the reverse scan, ie. 

-0.13 V vs MMO, suggesting coverage by strongly adsorbed species [4][24][37]. As 

discussed earlier (see section 3.1.3), the greater the hysteresis, the greater the 

influence of adsorbed species (such as COads). The CVs collected by both Lai et al 

and Dimos and Blanchard were carried out at 10 mV s
-1

 scan rate. However, Chen 

and Schell [51] collected their CV’s at 100 mV s
-1

 (as in this study) and observed 

similar hysteresis to that shown in fig 3.8.   

 

Figure 3.8. (a) CVs of the Pt (foil)working electrode recorded in 0.1M KOH, in the 

presence of 1 M ethanol at 25 
o
C (-0.85 to 0.4V; scan rate of 100mVs

-1
). Scan 

direction indicated by arrows. 
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3.2.2. In-situ FTIR studies at 25 °C up to -0.1V  

Figure 3.9 shows the current/time profile observed during the in-situ FTIR 

experiment depicted in figs. 3.10(a) and (b).  The current transients observed 

declined sharply at potentials where appreciable coverage by platinum oxide occurs, 

i.e. at potentials greater than -0.1V.   Features due to the oxidation of ethanol were 

only observed at potentials > -0.7V vs MMO, i.e. from the onset of the formation of 

adsorbed OH, in agreement with the cyclic voltammetry data on polycrystalline Pt in 

aqueous base, see [1][2] and references therein (and fig. 3.8). However, as may be 

seen from fig. 3.9, anodic current flows at -0.8V and -0.7V, as well as at higher 

potentials.  

 

Figure 3.9. The current observed during the FTIR experiment in N2 saturated 0.1 M 

KOH + 1.0 M EtOH.  The potential was stepped from -0.85V to +0.4V vs MMO.  

 

Figure 3.10(a) shows spectra collected at 25 °C from -0.6V to -0.1V vs MMO 

normalised to the spectrum collected at -0.85V, and fig. 3.10(b) spectra collected at -

0.7V to -0.5V in the same experiment.  
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Figure 3.10. Spectra (8 cm
-1

 resolution, 100 scans, 47 s per scan set) collected from 

(a) -0.85 to -0.1 V and (b) -0.7 to -0.5 V vs. MMO as the potential of the 

polycrystalline Pt electrode was stepped up from -0.85V vs MMO in N2 saturated 

0.1M KOH + 1M EtOH. 
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As may be seen from fig. 3.10(a), the spectra are dominated by the solution OH
-
 loss 

feature [1][2][51] with peaks near 2750 cm
-1

 and 1870 cm
-1

, and gain features due to 

water (O-H stretch 3270 cm
-1

 and HOH deformation near 1635 cm
-1

). The 

assignment of the solution OH
-
 features was confirmed by performing a separate 

experiment in which 0.1 M KOH was diffused into the thin later containing 

deionized water only, over a period of 10 minutes, the spectra from which are 

presented in fig. 3.11. As may be seen from the figure, two broad gain features near 

2700 and 1890 cm
-1

 were observed and increased as a function of time as KOH 

entered the thin layer.  

 

Figure 3.11. Spectra (8 cm
-1

 resolution, 100 scans, 47 s per scan set) collected 

during a separate experiment in which 0.1 M KOH was diffused into the thin layer 

containing deionized water only. 

 

Figure 3.12 shows the IR spectra of (a) aqueous NaOH and (b) bulk water collected 

by Stangret and Smeichowski [53] during their study of the hydration of hydroxide 

anions in aqueous solution by FTIR ATR spectroscopy.  
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Figure 3.12. Deconvoluted affected H2O spectrum presented by Stangret and 

Smeichowski [56] for (a) NaOH and (b) bulk H2O.  

 

As may be seen from fig. 3.12, the deconvoluted, “affected H2O” spectrum 

for NaOH clearly shows a significant contribution from two broad features near 

2800 and 2000 cm
-1

, similar to those observed in fig. 3.11 at ca. 2700 and 

1890 cm
-1

. Thus, the loss features at ca. 2750 cm
-1

 and 1870 cm
-1

 in 

2800  

2000  
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fig. 3.10(a) were unambiguously attributed to the loss of solution OH
-
 from the thin 

layer.  

Returning to fig. 3.10, there is also the gain of features at -0.6V near 1554 cm
-1

, 

1415 cm
-1

 and 1348 cm
-1

 (weak) which may be attributed unambiguously to 

acetate ions in solution (see for example [3][16][17][21][54]).  The weak 1274 cm
-1

 

loss feature which may be seen in figs. 3.10(a) and (b) growing in at potentials 

> -0.6V to -0.1V was observed in all the experiments at 25 ºC in this potential 

region.  

The intensities of the 3270 cm
-1

 (O-H stretch of water), 1870 cm
-1

 (solution OH
-
), 

1554 & 1415 cm
-1

 (solution acetate) and 1274 cm
-1

 bands, normalised to their 

maximum values, are plotted as a function of potential in fig. 3.13.    

 

Figure 3.13. Plots of the band intensities of the features in fig. 3.10(a) normalised to 

their maximum values (at -0.1V): (i) 3270, (ii) 1870, (iii) 1554, (iv) 1415 cm
-1

 and 

(v) 1274 cm
-1

. 
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From figs. 3.10(a) and (b) it can be seen that the 1554, 1415 & 1348 cm
-1

 and 1274 

cm
-1

 bands increase steadily in intensity up to -0.1V; from fig. 3.13 it is clear that the 

as (1554 cm
-1

) and s (1415 cm
-1

) bands of the AcO
-
 track each other, as expected, 

and also track the 1870 cm
-1

 & 1274 cm
-1

 features, suggesting that the loss of 

solution OH
-
 may reflect the formation of adsorbed OH followed by the latter’s 

subsequent reaction with adsorbed ethanol fragments to give the acetate product.  

The 3270 cm
-1

 band shows a markedly different potential dependence. The possible 

species responsible for the 1274 cm
-1 

absorption are limited, by the chemical 

simplicity of the system, to C, H and O –containing fragments of ethanol.  It does 

appear that the species is an intermediate in the formation of acetate.  Figures 3.14(a) 

& (b)  show an analogous experiment to that depicted in figs. 3.10(a) & (b) using 

1.0 M C2D5OD.   

As may be seen from the figure, whilst the bands due to solution acetate 

are observed, at 1539 cm
-1

 and 1409 cm
-1

 (shifted to lower frequencies by the 

deuteration [55]), the 1274 cm
-1

 feature is absent, suggesting the presence of 

C-D bonds, and hence its absorption has shifted below the cut-off of the CaF2 

window.   

Figure 3.15 compares the transmittance spectra of pure C2D5OD and C2H5OH, from 

which it may be seen that the 2238, 2104, 1175, 1112 and 1064 cm
-1

 bands are due 

to the loss of solution C2D5OD.   Bands between 1220 cm
-1

 and 1257 cm
-1

 observed 

during studies on the oxidation of methanol and ethanol in acidic solution have been 

attributed [26][56] to species of the form MxCH3-xOH (M = Ir or Pt, x = 1 or 2).  On 

the basis of the postulated mechanism in equations (1) to (10), the 1274 cm
-1

 band 

may be tentatively assigned to CH3(OH)CHOPt (II) as a key intermediate in the 

direct path to acetate.  

Interestingly, the amount of solution acetate present at -0.2V was 17% higher using 

C2D5OD than C2H5OH, suggesting the kinetic isotope effect, and supporting 

the postulate raised in previous studies in Newcastle [1][2] that a number of 

mechanistic pathways are available during the electro-oxidation of small organic 

molecules under alkaline conditions at polycrystalline Pt which differ very little in 

activation energy. 
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Figure 3.14. Repeat of the experiment depicted in fig. 3.10(a) using 1M C2D5OD 

from -0.85 to -0.2 over the spectral range from (a) 4000-1050 cm
-1

 and (b) 2000-

1050 cm
-1

. 
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Figure 3.15. Transmission spectra of pure (i) C2D5OD and (ii) C2H5OH.  The 

alcohols were pressed between two 25 mm diameter CaF2 plates held in a Specac 

Presslok holder (see section. 2.5.1). 

 

The water band near 3270 cm
-1

 in fig. 3.10(a) dominates the spectra and hence 

warrants some explanation.  Firstly, it is important to try and assess whether this is 

an artifact as it appears in the region between 2750 cm
-1

 and 3750 cm
-1

; i.e. the 

spectral range in which the ν1 and ν3 O-H (symmetric and asymmetric respectively) 

stretches absorb strongly [57].  However, from fig. 3.16 it is clear that there is 

significant source energy in the O-H stretching region.  Bertie and Whalley [58] 

attribute a strong absorption near 3200 cm
-1

 to “ice like” water; i.e. water 

tetrahedrally co-ordinated by hydrogen bonds [59][60].  In the paper by Bertie and 

Whalley, the H-O-H deformation (δ) band is very broad and weak, and barely 

discernible in the spectrum.  The 3270 cm
-1

 band in fig. 3.10(a) is accompanied by a 

weak  H-O-H absorption near 1635 cm
-1

, much weaker than that of bulk water (see 

fig. 3.12).  Hence, it appears that highly hydrogen-bonded, ice-like water is being 
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gained as the oxidation of ethanol to acetate proceeds, or perhaps as 

CH3CH(OH)OPt (II) is being removed from the surface. 

 

Figure 3.16. The single beam (reference) spectrum (8 cm
-1

 resolution, 100 co-added 

and averaged scans) taken at -0.85V during the experiment conducted at 25 °C.   

 

There are no other gain features apparent in figs. 3.10(a) and (b), suggesting that the 

Pt electrode is selective for AcO
-
 production from ethanol.  Apart from very weak 

absorptions due to multiply-bonded, adsorbed CO,  López-Atalaya et al [3] also 

observed only solution acetate in the FTIR spectra obtained during the electro-

oxidation of ethanol at Pt(100), Pt(111), and Pt(110) in 0.1 M NaOH; they claim also 

to observe a feature near 1350 cm
-1

 they ‘tentatively attributed’ to HCO3
-
, but this 

was not evident in the spectra presented in the paper, and the potential at which the 

species is observed was not specified. 

Fang et al [17] and Zhou and co-workers [16] infer the production of HCO3
-
 and 

CO3
2-

, respectively, from the asymmetry of the 1415 cm
-1

 acetate band, Fang refers 

to this band being present in the spectra in figs. 2(e) and (f) in the paper; 

unfortunately, these figures are omitted from the paper.  Zhou et al postulate that 
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CO3
2-

 is produced at higher potentials, i.e. ≥ +0.2 V vs SCE (approximately +0.14 V 

vs MMO).   

In order to determine whether carbonate and/or bicarbonate was formed during the 

experiment depicted in figs. 3.10(a) and (b), fig. 3.17 compares the spectrum 

obtained at -0.1 V in fig. 3.10(a) to the spectrum obtained by diffusing 0.1 M 

KOH+0.1 M sodium acetate into the spectro-electrochemical cell containing 0.1 M 

KOH [1][2].  As may be seen from the figure, the frequencies of the various AcO
-
 

bands are the same as are the full widths at half peak height (ca. 32 cm
-1

) suggesting 

that very little, if any, carbonate is produced in this potential region, and there is no 

evidence for COL. 

From fig. 3.17 it may be seen that the ‘valley’ between the as and s acetate bands is 

deeper and structured in fig. 3.10(a) compared to  the spectrum of the solution 

acetate, suggesting the presence of loss features in the former.  In addition, there 

appears to be shoulders on the low frequency side of the 1554 cm
-1

 band in fig. 

3.10(a) and features in the C-H stretching region.  Close inspection of fig. 3.10(b), 

showing the spectra at low potentials, suggests that the distortion of the acetate gain 

features is due to loss features that appear at potentials as low as -0.7V, and these are 

accompanied by loss features in the C-H stretching region.  This is explored further 

in section 3.2.3. 
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Figure 3.17. (i) The spectrum collected at  -0.1V in fig. 3.10(a), compared to (ii) a 

spectrum of 0.1M sodium acetate in 0.1M KOH, see text for details.  The acetate 

spectrum has been reduced and offset to facilitate comparison, and has had its 

baseline adjusted to match that of (i). 

 

In order to investigate the effect of ethanol in solution, an experiment was carried 

out in which 1M ethanol+0.1M KOH was admitted into the IR cell containing 

0.1M KOH at -0.65V vs MMO and the potential held for 30 minutes, after which 

the electrolyte was replaced by 0.1M KOH (still holding the potential at -0.65V), 

reducing the ethanol concentration in solution to < 10
-7

 M.  The electrode 

was then pushed against the prismatic cell window and the FTIR instrument 

flushed with nitrogen for 60 minutes; a reference spectrum was collected after 

which the potential of the Pt electrode was stepped up, further spectra taken and 

normalised to the reference spectrum according to the manipulation in equation 

(2.11).   
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Figure 3.18 shows the IVt data observed during the FTIR data collection; there 

appears to be two distinct regions of behaviour: ≤ -0.1V and > -0.1V vs MMO.  

From the IR spectra collected up to -0.1V, apart from the gain of ice-like water and 

the loss of solution OH
-
, the only clear absorption was due to the gain of solution 

carbonate at 1395 cm
-1 

[1]; the intensity of this feature as a function of potential is 

shown in fig. 3.19(a).   

 

Figure 3.18. Current/time response during an experiment in which ethanol 

(1M ethanol in 0.1M KOH) was chemisorbed at -0.65V vs MMO and the 

solution replaced with 0.1M KOH, after which the potential was stepped up to 

+0.4V and spectra (8 cm
-1

 resolution, 100 scans, 47 s per scan set) collected at each 

step.   

 

On the basis of fig. 3.19 it was decided to normalise the spectra collected at 

potentials > -0.1V to that taken at -0.1V and the result is shown in fig. 3.19(b).  

Apart from the H-O-H deformation of ice-like water (accompanied by the O-H 

stretch, not shown) and the CO3
2-

 gain feature, loss features near 2985, 2913 and 

2846 cm
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 may be observed.  From fig. 3.19(b), the loss features near 2985, 2913 and 
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2846 cm
-1

 in fig. 3.19(b) do not appear to be due to solution ethanol. Iwasita and 

Pastor [26][27] attributed bands at 2960 cm
-1

, 2920 cm
-1

 and 2850 cm
-1

 to the C-H 

absorptions of adsorbed ethoxy following ethanol chemisorption at Pt in 

aqueous HClO4 & H2SO4, and we also attribute the bands in fig. 3.19(b) to adsorbed 

ethoxy.   

 

Figure 3.19. (a) Plot of the absorbance of the CO3
2-

 band at 1395 cm
-1

 vs potential 

from the experiment in fig. 3.18. 

 

The data in figs. 3.18, 3.19(a) and 3.19(b) is a most interesting result. From these 

data, it appears that ethanol (probably as ethoxy) strongly adsorbs on Pt; it is evident 

that in the absence of competing solution ethanol, the initial oxidation product(s) 

does/do not desorb to give solution acetate, but remains on the surface and is/are 

subject to further oxidation. It is also evident that the reason this does not happen 

under normal circumstances is that ethanol adsorbs more strongly than acetate and 

this is displaced from the surface more rapidly than it can be further oxidized; this 

postulate is supported by the work of Morin and co-workers [49] in their study of 
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ethanol oxidation at Pt single crystal electrodes as a function of pH. It is not, 

therefore, the case that the Pt surface is inactive for the complete oxidation of 

ethanol, but rather that the partial oxidation product is lost before complete oxidation 

can take place. The peak at 2168 cm
-1

 is, as yet, unassigned and is under further 

investigation.  

 

Figure 3.19.(b) The spectra collected at potentials > -0.1V normalised to that taken 

at -0.1V in the experiment depicted in fig. 3.18.  

 

3.2.3. In-situ FTIR studies at 25 °C up to 0.4V  

As shown in fig. 3.20, the loss of absorbing species postulated in the preceding 

section was confirmed by normalising the spectra collected at higher potentials to 

that taken at 0V.   
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Figure 3.20. The spectra collected at 0.1V to 0.4V in the experiment depicted in fig. 

3.10(a) normalised to that taken at 0V. 

 

Figure 3.21 shows the spectra collected in fig. 3.20 enlarged over the spectral 

range from (a) 4000 – 2050 cm
-1

 and (b) 2050 – 1000 cm
-1

. As may be seen from 

the figures, the water bands near 3310 cm
-1

 and 1635 cm
-1

 shift to ca. 3250 

and 1650 cm
-1

, respectively, and continue to increase; there are no gain features 

due to AcO
-
, but a new band grows in at 2340 cm

-1
 due to CO2 suggesting that 

the pH in the thin layer is ≤ 6.37 [1][2][61]. There is also the gain of a 

broad structure between 3000 and 1750 cm
-1

 which tracks new bands at 1715, 

1378 and 1280 cm
-1

 suggesting these features are all due to a single species. 

Under acidic conditions, it would be expected that the oxidation of ethanol at 

Pt-based electrocatalyst would result in a mixture of acetaldehyde, acetic 

acid and CO2 [16][39][51]. At this point, it is useful to refer back to the 

work presented by Feliu and co-workers [18] (see section 3.1.2), who attributed 

a band at ca. 1715 cm
-1

 to the presence of either acetaldehyde or acetic acid. 

As discussed earlier, the authors did not observe any features at ca. 1738 or 

1280 cm
-1

.  
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Figure 3.21. The spectra depicted in fig. 3.20 over the spectral range from (a) 2050 

– 1050 cm
-1

 and (b) 3300 – 2000 cm
-1

. 
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To obtain an in-situ FTIR spectrum of acetic acid, a diffusion experiment was carried 

out in which 0.1M acetic acid in water was diffused into the spectroelectrochemical 

cell containing water, and the entry of the acid into the thin layer monitored, and a 

typical spectrum so obtained is shown in fig. 3.22 and the principal features listed in 

table 3.2, along with their assignments.  It is clear that the principal gain features in 

fig. 3.20 are due to acetic acid, and hence the pH in the thin layer is ≤ 4.75 (the pKa 

of acetic acid[22]). 

 

Figure 3.22. Spectrum (8 cm
-1

 resolution, 100 co-added and averaged 

scans) collected 10 minutes after diffusing an aqueous solution of 0.1 M 

CH3COOH into the spectro-electrochemical cell initially containing water.   

 

In addition to the gain features discussed above, a number of loss features are 

present in fig. 3.20 that increase in intensity as the potential is increased, and these 

are listed in table 3.3.  In order to assign the various loss features in fig. 3.20, it 

proved helpful to assess spectra from across all the preliminary experiments carried 
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out during the optimization the system.  Thus, fig. 3.23(a) shows the spectra 

collected at 0.1V and 0.4V in fig. 3.20 with the former enhanced and offset to allow 

direct comparison.  

Band /cm
-1

 Assignment Reference 

1283 O-H deformation in 

COOH group. 

[19][20][21][62][63]  

1369 - 1375 Acetaldehyde, possible 

contribution of formate 

or CO3
2-

 in alkaline 

solution. 

[17][20][64][65]  

1390 - 1392 C-O stretching in 

COOH group. 

[16][21]  

1715 Acetic acid [19][20][21][62][63][64] 

 

2616 - 2625 O-H stretch broad band [20][62][63] 

 

 

Table 3.2. The assignment of the bands attributable to CH3COOH in figs. 3.20 and 

3.21. 

 

Figures 3.23(b) and 3.24 show spectra taken at room temperature, the 

same potentials and normalised in the same manner as those in fig. 3.23(a) 

during preliminary experiments under varied thin layer thickness. Figure 3.25 

shows spectra obtained at 0.1 to 0.4V during the experiment depicted in 

fig. 3.20 normalised to the spectrum collected at 0 V, at 50 ºC. Figure 3.25 

clearly shows that the C-H stretches, 1573 and 1475 cm
-1

 bands are not due to 

the same species as responsible for the 1554, 1540 and 1415 cm
-1

  features as the 
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former absorptions are all absent (the effect of temperature will be detailed in 

chapter 5).  

Band /cm
-1

 Assignment 

2985, 2913, 2846 C-H stretches of adsorbed ethoxy  

1573  s adsorbed unidentate acetate, Pts-O-

C(=O)CH3 

1475 C-H deformation ofadsorbed unidentate 

acetate, Pts-O-C(=O)CH3 

1554 as solution acetate 

1415/1418 s solution acetate 

1540 Uncoordinated C=O stretch of bidentate 

adsorbed carbonate or C=O stretch of 

PtCH2COOPt  

 

Table 3.3. The assignment of the loss features observed at higher potentials. See text 

for details. 

 

Curvature of the baseline in the region of the C-H stretches gives the impression 

of bipolar bands, see fig. 3.24, but where pronounced curvature is absent, see fig. 

3.23, there is no evidence of bipolarity.  Figure 3.25 clearly shows that the 1554 cm
-1

 

and 1418 cm
-1

 are due to the same species, actually solution acetate with the latter 

band distorted by underlying absorption(s).  Figure 3.25 also suggests that the 1540 

cm
-1

 band does not have any attendant features, at least at frequencies down to 

1150 cm
-1

.   
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Figure 3.23. The spectra collected at 0.4V and 0.1V in (a) fig. 3.20 and (b) a repeat 

of the experiment in fig. 3.20. The spectrum at 0.1 V has been enhanced by a factor 

of 5 and 6, respectively, and offset for clarity.  

-0.005

-0.003

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

10501550205025503050

In
te

n
si

ty
 

Wavenumber (cm-1) 

0.1 V

0.4 V

1573 

1554 1540 

1475 
1418 

(a) 

-0.01

-0.005

0

0.005

0.01

0.015

10501550205025503050

In
te

n
si

ty
 

Wavenumber (cm-1) 

0.1V

0.4V

2020 

1573 

1554 
1540 

2846 

2913 

2982 

1415 
1475 

(b) 



Chapter 3 

 

95 
 

 

Figure 3.24. Spectra collected at 0.4V and 0.1V in a second repeat of the experiment 

in fig. 3.20, normalized to 0 V.  The spectrum at 0.1 V has been enhanced by a factor 

of 3.3 and offset. 

 

Taking the 1540 cm
-1

 band first, Iwasita and co-workers [66-68] observed a feature 

at 1530 – 1540 cm
-1

 during studies on the electrochemical reduction of CO2 at 

Pt(111) in perchloric acid which they attributed to the uncoordinated C=O stretch of 

bidentate carbonate (ie adsorbed through both O atoms), and this does not seem 

unreasonable; however, an alternative, possible assignment is that it is due to the 

C=O stretch of Pts-O-C(=O)-CH2-Pts (V). 

The most likely explanation for the 1573 cm
-1

 feature is the asymmetric stretch 

 of bidentate acetate [69][70]; but, as Shao and Adzic [9] state, such a vibration 

should not be IR active according to the Surface Selection Rule [71], in contrast to 

the assignment of Lai et al [4].  Thus, the 1573 cm
-1

 band  is tentatively assigned to 

acetate adsorbed through one O atom (Pts-O-C(=O)CH3) (V), and the 1475 cm
-1

  

feature to the C-H deformation of the same species[69][70]. 
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Figure 3.25. Spectra collected during a repeat of the experiment in fig. 3.20 

except at 50 °C at 0.2V, 0.3V and 0.4V, normalised to the spectrum taken at 

0.1V. 

 

Linearly adsorbed CO (COL) was often observed at higher potentials in repeats of 

the experiment in figs. 3.10 & 3.17, see figs. 3.23(b), 3.24 and 3.25, but only 

in conjunction with the loss of the adsorbed C-O species and gain of CO2. 

This supports the mechanism postulated in the introduction, and suggests that COL 

is only observed when the pH in the thin layer has become neutral or acidic. 

In a previous paper by Christensen et al [2], significant variations in pH across 

the electrode surface in in-situ FTIR cells was predicted and confirmed 

experimentally. 

3.3. Conclusions 

The arguments leading to Tables 3.2 and 3.3 are critical to the identification of a 

plausible mechanism and these arguments are summarised below. Before going into 
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detail, however, we would want to emphasise that at higher potentials, with the 

passage of considerable charge, there is a substantial change in pH in the electrolyte 

immediately above the electrode and trapped in the thin layer. Other workers in 

Newcastle have already signaled this in earlier work [2] and have shown that this 

swing in pH arises from the relatively slow diffusion of OH
-
 ions across the 

electrode surface. The timescale for this diffusion is tens of minutes for an electrode 

of the radius that we use. A second effect is the exhaustion of reactant in the thin 

electrolyte layer, which leads to further changes in the ambient conditions at the 

electrode surface; the impact of this second effect is the greater the thinner the 

electrolyte, since exhaustion proceeds more rapidly. As we have already seen above, 

this is also a serious problem since under normal circumstances ethanol 

preferentially drives the desorption of acetate, whereas under ethanol starvation 

conditions, further ligation of acetate occurs with C-C bond scission taking place.  

Turning to the data presented in this study, it is clear that the IR spectra strongly 

support the acetaldehyde-acetate route, and also support the idea that even at -0.85V 

the surface is substantially covered with adsorbed ethanol, since we only see this as a 

loss feature at higher potentials (where ethanol starvation and inhibition of ethanol 

adsorption by Pt-OH species both operate). With regard to acetaldehyde and acetate, 

Table 3.2 shows that there is IR evidence for both, and there are loss features in 

Table 3.3 that can plausibly be assigned to absorbed ethoxy formed at low potentials. 

We are confident, therefore, that the initial low-potential chemistry involves 

primarily adsorption through O and successive two-electron oxidations to CH3CHO 

and CH3COO
-
. An interesting observation is the possible presence of formate; 

assuming this arises from C-C bond scission of the Pts-CH2-C(=O)-O-Pts 

intermediate, then this suggests that the bond scission may be initiated by OH
-
 attack 

on the –CH2- group leading to C-adsorbed methanol and adsorbed formate, the latter 

of which will desorb in the presence of ethanol rather than undergo further oxidation 

to carbonate. 

A critical experiment, described above, was the oxidation of adsorbed ethanol 

species in the absence of solution ethanol. This clearly leads to carbonate, and there 

is no evidence for adsorbed CO;  the obvious conclusion being that under ethanol 

starvation conditions, acetate is not desorbed but forms some intermediate that 

undergoes C-C bond scission. 
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At higher potentials, the pH decreases very markedly and the spectra show strong 

loss features as carbonate is replaced by CO2 and acetate by acetic acid. However, 

there is also a band at 1573 cm
-1

; there is no obvious solution species to account to 

this band, and we now believe that it arises from a carbonyl species adsorbed on the 

surface. It is important to re-emphasise that this cannot be the symmetric bidentate 

O,O bonded acetate species, since the carbonyl absorptions here would be parallel to 

the surface and therefore not visible in the IR. We believe that this is the  Pts-CH2-

C(=O)-O-Pts species; the assignment is a plausible one, and would certainly fit the 

other suggestions above. What is more difficult to determine is whether the 

formation of this species does occur only at lower pH values. However, this does not 

appear to be the case: formation of carbonate takes place from species derived from 

the partial oxidation of adsorbed ethoxy even at higher pH values.  

Finally, the results in this chapter may be summarized as follows: there is good 

evidence that the Pt surface is extensively covered with adsorbed ethoxy even at low 

potentials, since only loss features and no gain features were seen. There is good 

evidence also that oxidation of this adsorbed species gives rise to solution acetate 

species which is the predominant product under conditions of ethanol excess in 

solution. It has been established that under conditions of ethanol starvation, the 

adsorbed acetate species can form a further intermediate that we have tentatively 

identified at Pts-CH2-C(=O)-O-Pts on the basis of IR and chemical likelihood, and 

this is the dominant route under ethanol starvation conditions. This analysis 

demonstrates that Pt is intrinsically capable of fully oxidising ethanol to carbonate in 

alkaline solution but that under normal fuel-cell operating conditions this is unlikely 

to be the dominant route, a fact that has serious implications for the operation of 

ethanol-based fuel cells. 
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4. An in-situ FTIR spectroscopic study of the electrochemical oxidation of 

ethanol at a Pb-modified polycrystalline Pt electrode immersed in aqueous 

KOH. 

4.1. Introduction 

4.1.1. Overview 

This chapter details the study of the mechanism of ethanol oxidation in alkaline 

solution at a platinum electrode modified with an irreversibly-deposited layer of lead 

using in situ FTIR spectroscopy. This study provides support for the suggestion that 

the adsorption mechanism of ethanol is substantially modified in the presence of Pb, 

with a carbon-bonded intermediate being favoured leading to facile scission of the 

ethanol C-C bond. Furthermore, the formation of carbonate takes place at potentials 

close to the thermodynamic value. At higher potentials, where Pb has desorbed, the 

mechanism of oxidation of ethanol reverts to that found at a normal polycrystalline 

Pt surface, with the primary product being acetate. 

As discussed in section 1.7, there has been a resurrection of interest in recent years in 

the use of alkaline fuel cells [1-4], because both alcohol oxidation and oxygen 

reduction are more facile under alkaline conditions than acid [5]. It has been 

suggested that the enhanced kinetics in alkaline solution may arise from the readier 

availability of ‘active oxygen’ in the form of reversibly adsorbed OH [6], and it is 

certainly true that there is a wider range of moderately active catalysts available: eg. 

Pd is inactive towards ethanol oxidation under acid conditions, but is more active 

than Pt in alkali [7].  However, whilst the selective oxidation of ethanol to CO3
2-

 at 

Pt in alkaline media has been reported at high overpotentials (see [8] and references 

therein), the problem of incomplete oxidation at the lower, commercially significant, 

potentials still remains. The work on ethanol oxidation presented in Chapter 3 

supports this postulate in terms of oxidation in alkaline media, with clear evidence of 

ethanol adsorption at Pt through O rather than through C, and with evidence that it is 

adsorption through the latter of which is necessary for C-C cleavage.  

4.1.2. Significantly enhanced C-C bond cleavage in ethanol using a Pb co-catalyst 

Recently, He and co-workers [8] reported a marked enhancement in the cleavage of 

the C-C bond of ethanol at Pt nanocrystals supported on carbon in 0.25 M KOH in 



Chapter 4 

 

105 
 

the presence of Pb(OAc)4 as co-catalyst. The extent of this enhancement appears to 

depend critically on the conditions of the experiment, possibly owing to the 

hydrolysis of the lead tetra-acetate itself to PbO3
2-

 in alkaline solution; but all 

experiments show an enhancement. Figure 4.1(a) shows the cyclic voltammograms 

collected by He et al [8] at Pt/C in 0.25 M KOH + 1 M EtOH in the absence and 

presence (1 and 3 mM) of Pb(IV) acetate in solution. From the figure, it may be seen 

that there are two distinct peaks near 0.7 and 0.9 V during the forward-going scan of 

the CV in the absence of Pb(IV). This is in contrast to the CVs at Pt in 0.1 M KOH + 

1 M EtOH presented in this thesis (see fig. 3.7), and the typical behaviour for 

oxidation of ethanol at Pt at 25 
o
C in alkaline solution demonstrated across the 

literature [9]. However, this was not acknowledged by the authors.   

 

Figure 4.1. (a) Cyclic Voltammograms collected by He et al [8] at Pt/C (E-TEK, 

30%) in 0.25 M KOH + 1 M EtOH with 0, 1 and 3 mM Pb(IV) acetate in solution. 

 

As may be seen from figure 4.1(a), the authors observed a 3-fold increase in current 

density upon addition of Pb(IV). Furthermore, although no significant difference in 

the ethanol oxidation rate was observed between the CVs collected in the presence of 
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1 mM and 3 mM Pb(IV), the potential window available for ethanol oxidation was 

increased from ca. 0.55-0.9 V to 0.45-0.9 V, which He et al attributed to a change in 

surface chemistry. 

The authors postulated the mechanism shown in scheme 4.1; in this, the presence of 

upd Pb on the Pt surface and Pb(IV) in solution could facilitate the formation of a 

C-C bonded intermediate that could, in turn, be oxidised completely to carbonate (C1 

and C2∏  pathways in scheme 4.1). Complete oxidation of ethanol was postulated 

over the potential range which the upd Pb (deposited at potentials below 0.4V vs 

RHE) was oxidised to adsorbed HPbO2
-
 at ca. 0.46V to 0.77V vs RHE, the latter 

providing the necessary ‘active oxygen’ (see scheme 4.2 and discussion below). 

 

Scheme 4.1.  The mechanism proposed by He et al. for the oxidation of ethanol at Pt.  

Redrawn from [8]. 

 

Figure 4.1(b) shows the chronoamperometry data collected from Pt/C in 0.25 M 

KOH in the presence of 1 mM Pb(IV) acetate and pre-deposited Pb. As may be seen 

from the figure, without the solution Pb(IV), the activity was observed to decline and 

the authors postulated that this was due to poisoning by adsorbed CO or other 

intermediates from the chemisorption of ethanol, and that the Pb(IV) solution species 
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plays a major role in activating the C-C bond in conjunction with the Pb on the 

surface. An alternative possible explanation is that adsorbed CO displaces the Pb as 

was observed in acidic solution for Pb adlayers on Pt(100) and Pt(111) [10][11]. For 

example, Lucas et al [10] investigated the structural effects of CO adsorption at Pt-

bimetallic surfaces (Pt(100)) by a combination of voltammetry and in-situ surface 

X-ray scattering (SXS) using a rotating ring disk electrode (RRDE). The authors 

monitored the flux of Pb
2+

 to and from the RRDE during the electro-oxidation of CO 

at PtPbupd and PtCuupd and demonstrated that as the potential was stepped positively 

from the point of upd (0.22 V and 0.2 V vs. SCE for Pb and Cu respectively), the 

onset for CO oxidation was identical the that obtained at normal Pt, indicating that 

Pb and Cu adatoms can be displaced by COads. Hence, returning to the study by He 

et al [8], it does not seem unreasonable to suggest that, if CO is an intermediate in 

the oxidation of EtOH at PtPb in the absence of solution Pb(IV) acetate, it displaces 

upd Pb, thus causing the decline in activity depicted in fig. 4.1(b).  

 

Figure 4.1(b) Chronoamperometry data collected by He et al Pt/C in 0.25 M KOH in 

the absence and presence of 1 mM Pb(IV) acetate and upd Pb.  
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Figure 4.1(b) also shows the chronoamperometry data collected at Pt4Pb/C and 

PtRuPb0.3/C, however, no attempt was made by the authors to compare these data to 

that collected at Pt/C in the presence of solution Pb(IV) acetate and upd Pb.   

As stated previously, it was suggested by the authors that the presence of solution 

Pb(IV) acetate plays a major role in the catalytic enhancement observed in figs. 

4.1(a) and 4.1(b). Thus, scheme 4.2 shows the reaction mechanism presented by He 

et al for enhanced C-C bond breaking in the presence of Pb(IV) both at the Pt surface 

and in solution.  

 

Scheme 4.2  The mechanism for the enhancement C-C bond cleavage in ethanol at Pt 

in the presence of both solution Pb(IV) acetate and upd Pb.  Redrawn from [8]. 

OHads 

Pt-OCH2CH3 

(a) E = 0.1 – 0.3 V vs. RHE (b) E = 0.4 – 0.8 V vs. RHE 

(c) E = 0.6 – 0.8 V vs. RHE 

O C 

CH3COO- 

+ 

CH3CHO 
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As may be seen from scheme 4.2(a), it was postulated by the authors that both a Pb-

acetate-chelate complex and Pb adatoms (at Pt) are formed simultaneously at 

potentials < 0.3 V, thus isolating ethanol from Pt whilst modifying the Pt surface (a 

process not realised in the presence of upd Pb only). As shown by scheme 4.2(b), 

He et al suggest that ethanol then bonds to the Pt surface through carbon, as opposed 

to oxygen (OH pathway in scheme 4.1), where it then reacts with OH adsorbed on 

Pb adatoms, leading to C-C bond breaking and hence CO2 production. As may be 

seen from scheme 4.2(c), the authors propose that at higher potentials (ca. 0.6-0.8 

V), as the Pb adatoms leave the Pt surface, the mechanism returns to that which is 

expected at normal Pt (C2 pathway in scheme 4.1), thus yielding C2 oxidation 

products.      

The postulated mechanism for enhancement of C-C bond breaking at Pt in the 

presence of Pb by He et al was supported only by the Differential Electrochemical 

Mass Spectrometry (DEMS) data at 0.67 V and 0.77 V, and the actual potential 

range over which this occurs was not verified by experiment and no other molecular, 

analytical data were presented. In addition, the authors stated that the DEMS 

experiments were problematic, with no multi-electron products (eg. acetate) detected 

below 700 mV. Thus, the mechanism presented in scheme 4.2 should be treated with 

caution, as significantly more molecular analysis on this complex system is required.   

In order to provide molecular information as a function of potential, this chapter 

presents an initial, in-situ FTIR spectroscopic study of the effect of the presence of 

Pb on the oxidation of ethanol at polycrystalline Pt in 0.25M KOH. For this study, a 

polycrystalline Pt electrode was employed with Pb pre-deposited, to avoid optical 

problems due to deposition taking place during spectral data collection. No lead 

solution species were thus present at the commencement of the FTIR experiments 

discussed below. 

4.2. Results and Discussion 

4.2.1. Voltammetry 

Figure 4.1(a) shows cyclic voltammograms of a Pt mesh electrode with and without 

the Pb layer in 0.25M KOH.   
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Figure 4.1. Cyclic voltammograms of the Pt mesh electrode in (a) 0.25M KOH and 

(b) 0.25M KOH + 1M EtOH, in the absence and presence of an irreversibly-

adsorbed Pb layer, scan rate 100 mV s
-1
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The CV in the presence of the Pb is very similar to that presented by He et al [8], 

allowing for the different morphologies of the Pt electrodes, and the peak potentials 

of the oxide stripping features (and the hydride features in the absence of Pb) were 

employed to confirm the conversion between the MMO reference electrode 

employed and the RHE scale. Hence, all potentials in this chapter will be quoted vs. 

RHE, thus simplifying the discussion of the data presented in this chapter when 

comparing it to the work presented by He et al. 

As may be seen from fig. 4.1(a), the deposition of Pb suppresses the adsorption of 

hydrogen completely (on the timescale of the experiment), and the anodic region of 

the voltammogram is enhanced due to the oxidation of Pb initially to adsorbed oxo-

hydroxide species of lead [12] and to HPbO2
- 
in solution, a process that commences 

at about 0.46V [13], but which is very irreversible [12][14]: 

Pb + 2OH
-
 → [Pb(OH)2]ads + 2e

-
     (1) 

Further oxidation continues both of the lead layer and the underlying Pt in the region 

0.70 - 1.20V vs. RHE, and certainly at the higher potentials in this range, oxidation 

of the lead to Pb(IV) is possible.  

The thermodynamic potential for oxidation of HPbO2
-
 to PbO3

2-
 at pH 13.3 is given 

by Carr and Hampson [13] as E
0
 (NHE) = 1.40 - 0.0886pH; converting this to RHE 

gives 1.00V, and this would therefore account for the obvious rise in current at the 

most positive potentials (≥ ca. 1.00 V) in fig. 4.1(a) compared to Pt itself. Thus, it is 

postulated that at potentials above 1.00 V, Pb(II) is oxidised to Pb(IV) as follows: 

[Pb(OH)2]ads + 2OH
-
 → PbO2 + 2e

-
      (2) 

He et al [8] suggest that the current above 0.80 V (ie. below the thermodynamic 

potential for oxidation of HPbO2
-
 to PbO3

2-
) could be due to this oxidation process, 

however, this seems improbable on the basis of Carr and Hampson’s article. 

Furthermore, oxidation of Pb(II) to Pb(OAc)4 is known to occur at about 1.40 V vs. 

RHE in dilute acetic acid [15], and in alkaline solution, the E
0
 value vs. RHE will be 

given approximately as 2.20  – 0.0886pH ≈ 1.00V, which does account for the 

increasing current beyond 1.00 V in fig. 4.1(a), as compared to Pt.  
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The considerable irreversibility in the anodic current associated with the oxidation of 

the lead layer is interesting: lead adsorbed on single-crystal Pt surfaces is known to 

attain essentially complete coverage on all low index faces [12][16], a result entirely 

consistent with the disappearance of the hydride structure. However, polycrystalline 

and nanocrystalline Pt will have micro-regions of well-defined surface structure 

interspersed with less regular arrangements of Pt atoms at the interfaces between 

these regions: the lead will probably adsorb to lower coverage in these interfacial 

areas of the surface, leading to a surface structure at low potentials consisting of 

well-defined lead islands and gaps between these islands where there is a lower lead 

coverage.  Oxidation of such a structure will then begin at the edges of the island 

superstructures, presumably initially by formation of adsorbed Pb-OH, and will 

progress at different rates on different Pt surface structures, accounting for the 

obvious broadness of the oxidation process. In addition, the oxidation may well 

proceed in two stages on each surface region, the first oxidation creating a still 

adsorbed oxo-hydroxide Pb surface and the second step being further oxidation and 

removal of this as HPbO2
-
. Further oxidation of this as a solution species to 

Pb(OAc)4 and PbO3
2-

 in solution then taking place at more positive potentials. 

Figure 4.1(b) shows the voltammograms in the presence of 1 M ethanol. In 

agreement with the work of He and co-workers, there is a significant enhancement in 

the currents of both the peak in the anodic sweep and the anodic (auto-oxidation) 

peak on the return (cathodic) sweep due to oxidation of the ethanol at the freshly-

exposed Pt following oxide stripping.  The former is enhanced by a factor of > 4 in 

the presence of Pb (compared to the threefold enhancement observed by He et al).  

However, there are also some differences: thus, He et al observe a marked shift in 

onset potential of 150 mV to more negative potentials, such a shift is not evident in 

fig. 4.1(b) (but is in the IR data, see below).  Furthermore, He and co-workers 

observed that the auto-oxidation peak observed as the Pt oxide starts to strip in the 

cathodic sweep was very sharp and twice that of the anodic peak current; in contrast, 

as can be seen in fig. 4.1(b), both features are broad, the auto-oxidation feature is 

lower than the anodic peak and clearly comprises two distinct processes, at 0.74V 

and 0.66V. It is likely that these differences probably reflect the difference in 

morphology between the polycrystalline Pt electrode employed in this work and the 

nanoparticulate Pt employed by He et al. 
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4.2.2. Infrared data 

Figure 4.2 shows the current/potential response observed during FTIR experiments 

with (i) and without (ii) Pb in which the potential of the reflective Pt working 

electrode was stepped up from 0.10 V, spectra collected at each step and normalised 

to the reference taken at 0.10 V.   

 

Figure 4.2.  The current/time profile observed during the FTIR experiment in figure 

4.3, compared to that observed without Pb. 

 

The spectra collected from the Pb-modified electrode are shown in in figs. 4.3(a)-(c).  

The spectra in fig. 4.3(a) show: the growth of water gain features near 3335 cm
-1

 and 

1647 cm
-1

, the loss of OH
-
 (broad bands near 2700 and 1875 cm

-1 
[17-19]), the gain 

of a band due to bridge-bonded CO (COB) at 1862 cm
-1

 [20][21], the gain of a band 

near 1395 cm
-1

 with a small gain feature at ca. 1300 cm
-1

.  The COB and 1300 cm
-1

 

features may be seen more clearly in fig. 4.3(b) which shows only the spectrum 

collected at 0.25 V.   
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Figure 4.3. (a) Spectra (8 cm
-1

 resolution, 100 scans, 47 s per scan set) collected 

from 0.1 to 0.55 V vs. RHE at Pb-modified Pt (see section 2.3) in N2-saturated 0.25 

M KOH + 1 M EtOH (b) Spectrum collected at 0.25V in fig. 4.3(a) from 

2000-1150 cm
-1

.  
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The 1395 cm
-1

 band  was unequivocally assigned to solution carbonate by adding 

Na2CO3 dissolved in 0.1M KOH into the FTIR cell containing 0.1M KOH and 

following the diffusion of the CO3
2-

 ions into the thin layer with time.  The spectrum 

of CO3
2-

 so obtained is shown in fig. 4.4; also shown is the spectrum collected at 

0.45V in fig. 4.3(a) for comparison.   
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Figure 4.4.  The spectrum of (i) aqueous carbonate compared to (ii) that collected at 

0.45V in fig. 4.3(a).  See text for details. 

 

The COB feature appears at 0.10V, increases in intensity to 0.35V after which it 

decreases and is absent at 0.45V, see fig. 4.5 which shows plots of the intensities of 

the various features observed in fig. 4.3(a) as a function of potential.  The 1300 cm
-1

 

feature appears at the same potential, its intensity increases to a maximum at 0.25V 

before decreasing.  On the basis of the potential dependence of the intensities of the 

latter feature and the carbonate band, it is clear that the two features are associated 

with different processes; the 1300 cm
-1

 feature may tentatively be attributed to 

HCO3
-
 associated with water molecules in the Inner Helmholtz Plane [22-24].  The 

frequency of this feature is postulated as being strongly dependent upon the 
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electrolyte [23] and has been observed at 1319 cm
-1

 in alkaline electrolyte [24].  The 

presence of COB (as opposed to linearly-adsorbed C≡O) is noteworthy as CO in 

bridging and threefold sites on Pt is generally believed to be a poison, blocking the 

active sites and reducing catalytic activity [25].  The 1862 cm
-1

 band is only present 

at low potentials and its potential dependence does not appear to suggest it is 

intermediate in the formation of CO3
2-

.  Hence, COB may only be a product from the 

initial chemisorptions of ethanol, blocking the surface until a sufficiently high 

potential is attained for it to be oxidised. 
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Figure 4.5.  Plots of the band intensities of the features in fig. 4.3 and in an 

analogous experiment in the absence of Pb (see figs. 4.7 and 4.8): (i) CO3
2-

 Pb/Pt, 

(ii) 1554 cm
-1 

Pb/Pt, (iii) 1554 cm
-1

 Pt, (iv) 3680 Pt-OH and (v) COB x 1000.   

 

Figure 4.3(c) shows the spectra collected from -0.4 to -0.1 V vs. MMO during the 

experiment depicted in figs. 4.3(a) and (b). As may be seen from the figure, the 

spectra are dominated by features due to solution acetate (1554 and 1415 cm
-1

[3]), 

with an inflexion (arrowed) to the low wavenumber side of the latter feature.  This, 

and the fact that the 1554 cm
-1

 band appears less intense than the feature at 
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1415 cm
-1 

[19], suggest the continuing growth of the carbonate band. The variation 

in intensity of the carbonate feature between 0.65V and 0.85V was estimated by 

increasing the intensity of the 1395 cm
-1

carbonate band in the spectrum taken at 

0.45V by factors sufficient to annul its contribution following subtraction from the 

spectra taken at these potentials.  Thus, it was found that increasing the absorbance 

of the 1395 cm
-1 

band taken at 0.45V by factors of 1.58, 2.18 and 2 and subtracting 

the resultant spectra from those collected at 0.65V, 0.75V and 0.85V, respectively, 

resulted in spectra showing no carbonate features and the 1554 & 1415 cm
-1

 bands of 

acetate in the correct intensity ratios, see fig. 4.6.  Plots of the 1554 cm
-1

 acetate and 

1395 cm
-1

 carbonate bands are plotted as a function of potential in fig. 4.5, which 

also shows the corresponding plot of the 1554 cm
-1

 band in the absence of Pb.  No 

carbonate was observed in the latter experiment (nor in the work in 0.1 M KOH 

[19]).     

 

Figure 4.3(c) Spectra collected at (i) 0.55, (ii) 0.65, (iii) 0.75 and (iv) 0.85V during 

the experiment depicted in (a).    

 

Returning to fig. 4.3(c), it can be seen that, at potentials > 0.45V, ie around the onset 

of oxidation of the lead layer and the production of acetate (see fig. 4.5), a relatively 
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sharp peak appears at ca. 3680 cm
-1

 and grows in intensity up to 0.95V, after which 

it decreases, see figs. 4.5 and 4.7(a) and (b). Intriguingly, if the IR response of 

acetate oxidation on Pt alone with no lead is studied, then a similar peak is seen at 

3680 cm
-1

 but referenced to the spectrum at -0.85 V, this peak is now a loss feature 

(see fig. 4.8), and a similar loss feature is observed for the oxidation of ethanol on Pt 

without Pb present (see figs. 4.9 and 4.10; fig. 4.9 is taken from the earlier work in 

0.1 M KOH [19] and fig. 4.10 shows a repeat of the experiment in fig. 4.9 except 

using 0.25 M KOH). The presence of this sharp band at such a high frequency was 

ascribed in Chapter 3 to the presence of ‘isolated’ Pt-OH species, isolated in the 

sense that they are not part of any extended H-bonded structure. This is well 

established as an idea in the literature: in the limit, as hydrogen bonding is reduced, 

one would expect a narrow high-frequency band to reflect an O-H stretch free from 

hydrogen-bonding [26], and this concept has found application in the study of the IR 

absorptions of the water of hydration and O-H stretches in ionic crystals [27].  

Certain ionic crystals have OH
-
 ions essentially free from hydrogen bonding, and 

frequencies as high as 3700 cm
-1

 have been observed, e.g. Mg(OH)2 [28].   
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underlying carbonate absorption at 1395 cm
-1
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multiplied by 1.58, 2.18 and 2 and the resulting spectra subtracted from those 
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Figure 4.7.  The spectra collected from 0 to 0.4 V in the experiment depicted in fig. 

4.2 over (a) the full spectral range and (b) showing the Pt-OH spectral region. 
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Figure 4.8.  Spectra (100 co-added and averaged scans at   8 cm
-1

 resolution, ca. 35 

s per scanset) collected at (i) 0.75V, (ii) 0.85V, (iii) 0.95V and (iv) 1.05V from a 

polycrystalline Pt electrode immersed in 0.25M KOH and 0.5M sodium acetate 

during an experiment in which the potential was held at 0.1V, the reference spectrum 

collected, a second spectrum taken at the same potential, and then the potential 

stepped to 0.15V, and increased in 100 mV increments, with further spectra collected 

at each step. 

 

Physically, ‘isolated’ O-H, ie adsorbed OH species without extensive hydrogen 

bonding to water molecules, could arise if, for example, they formed in small islands 

or domains, or were in some other way ‘protected’ from H-bonding. Given that 

acetate adsorbs extensively at lower potentials on Pt in the presence of both ethanol 

and acetate ions in solution, and that O-O adsorbed acetate will present a relatively 

hydrophobic outer Helmholtz layer, this high frequency OH stretch may be 

tentatively ascribed to adsorbed OH occupying single sites in regions where 

otherwise the dominant adsorbate is acetate itself. Some further support for this 

comes from the fact that the higher the concentration of KOH used as the supporting 

electrolyte, the larger this loss feature in the spectra derived from the Pt surfaces 
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without Pb present for both acetate and ethanol oxidation (compare figs. 4.9 and 

4.10). 

 

Figure 4.9.  Spectra (100 co-added and averaged scans at   8 cm
-1

 resolution, ca. 35 

s per scanset) collected at (i) 0.10V, (ii) 0.15V, (iii) 0.25V, (iv) 0.35V and (v) 0.45V 

from a polycrystalline Pt electrode immersed in 0.10M KOH and 1.0M ethanol 

during an experiment in which the potential was held at 0.1V, the reference spectrum 

collected, a second spectrum taken at the same potential, and then the potential 

stepped to 0.15V, and increased in 100 mV increments, with further spectra collected 

at each step. 

 

However, the 3680 cm
-1

 feature is present as a gain when lead is present on the 

surface. Furthermore, this gain feature grows steadily with potential above the point 

at which the surface begins to lose Pb. If this band is due to OH associated with 

adsorbed acetate, then its behaviour is understandable: there is evidently very little 

adsorbed acetate on the Pb-covered surface, and only once the Pb starts to be 

removed does sufficient co-adsorption of acetate and OH take place.  

This then raises a further point: if there is no adsorbed acetate, then conversion of 
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evident that at low potentials the route taken by the ethanol during oxidation must be 

quite different from that observed on pure Pt surfaces. Support for this comes not 

only from the clear evidence for the formation of carbonate at astonishingly low 

potentials, but also the appearance of a bridged CO species, which was not seen on 

normal Pt. This bridged CO species vanishes at potentials lower than those 

associated with the oxidation of the adsorbed Pb, and there is no obvious correlation 

with the formation of carbonate.  

 

Figure 4.10.  Repeat of the experiment in fig. 4.9, except the electrolyte was 0.25M 

KOH. (i) 0.10V, (ii) 0.15V, (iii) 0.25V and (iv) 0.35V.  Current/time profile shown in 

fig. 2(ii). 

 

We therefore have the following observations: (i) there is little adsorbed acetate on 

the Pt-Pb surface; (ii) the Pt-Pb surface has a high coverage of Pb at low potentials; 

(iii) the coverage of Pb on Pt begins to decrease above about 0.45 V; (iv) bridge-

bonded CO forms at low potentials on Pt-Pb but disappears above 0.40 V; (v) 

carbonate is observed, even at the reference potential (0.1 V), as a product of the 

oxidation of ethanol on Pt.  
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To reconcile these observations, the Pt-Pb can be pictured with the structure 

discussed above: much of the surface is formed from well-ordered microcrystalline 

low-index surfaces (A), but with regions between them where the coverage of the 

lead is lower (B). Ethanol does not adsorb on lead itself, so oxidation of ethanol must 

take place by adsorption on those areas of the surface not covered with Pb. 

Adsorption must take place either through the O or C1 atoms of the ethanol; the 

former would be the normal route on Pt in KOH, and it has been postulated (see [19] 

and section 3.3) that in the absence of solution ethanol, the adsorbed ethoxide can 

bond through the C2 carbon giving rise to a cyclic intermediate for which C-C bond 

cleavage is reasonably facile. However, it is also possible that the small areas of 

exposed Pt between the Pb islands are appreciably more hydrophobic, and actually 

favour adsorption through C1; cyclisation as postulated by He et al. could then take 

place as shown in scheme 4.1.  

 

Scheme 4.3. Schematic representation of the proposed structure for the Pb-modified 

polycrystalline Pt electrode ((A) shows the well-ordered microcrystalline low-index 

surfaces and (b) the regions of lower Pb Coverage). 

 

It is clear that ethanol is oxidised to carbonate even at 0.10V at the Pb-modified 

electrode; in fact, two spectra were recorded at 0.10V, one 2 minutes after the first, 

which clearly showed oxidation taking place even at this low potential, see fig. 4.11.  

This is a remarkable result, as the standard potential is close to 0 V.  Interestingly, 

Lai and Koper [29] observed adsorbed CO at a Pt/roughened gold anode from 
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ethanol chemisorptions in alkaline solution at ca. 1960 cm
-1

 using SERS at potentials 

as low as 0.10V vs RHE; thus it appears that the surface of Pt can be engineered 

either physically (as Lai and Koper did) or chemically (as in this study) to allow the 

generation of adsorbed ethanol fragments at very low potentials. Whatever the 

details of the intermediate adsorbate, it is clear that the actual oxidation process is 

extremely facile once the ethanol is adsorbed, and this suggests the existence of 

some form of adsorbed OH at very low potentials. This is not an impossibility: 

Schmidt and co-workers [30] have reported that OH adsorption takes place in the 

Hupd region at Pt in alkaline solution, such that the coverage of these species cannot 

be determined by simple coulometry. In addition, this OH must be adsorbed on Pt 

and not on Pb; there is no evidence for the latter at these very low potentials. One 

possibility is that the OH is actually adsorbed on the Pt adjacent to adsorbed Pb sites, 

and the picture becomes one of Pb islands on the surface surrounded by OHads 

species (see scheme 4.4). Adsorbed ethanol forming next to such a site would be 

oxidised easily, and the site could continually recharge, permitting a catalytic cycle 

to develop.  

 

Figure 4.11. Spectra collected at 0.10 V vs. RHE after (i) 1 and (ii) 2 minutes during 

the experiment depicted in fig. 4.3. 
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At higher potentials, the Pb islands start to become oxidised, and also shrink as the 

Pb is lost to solution as HPbO2
-
. As the islands shrink, the Pt surface exposed 

becomes more and more similar to normal Pt, giving rise to a transition from 

carbonate to acetate formation. It would appear that only at the lowest potentials, 

with rather small regions of exposed Pt between Pb islands, is the behaviour such 

that carbonate is the main product. 

Despite the fact that the current passed during the FTIR experiment using the Pb-

modified electrode is higher (see figs. 4.1 & 4.3), significantly more acetate is 

produced using the unmodified electrode, (see figs. 4.5 and 4.12), supporting the 

observation of appreciable carbonate as an additional product in the former 

experiment.  It can be seen from fig. 4.5 that the intensity of the 1554 cm
-1

 acetate 

band in the absence of Pb is ca. 2.5x that in its presence, in approximate agreement 

with the threefold increase in charge required to produce carbonate over acetate. 

 

Scheme 4.4. The proposed mechanism for the formation of OHads on the Pt adjacent 

to adsorbed Pb islands, thus facilitating complete oxidation of EtOH which is 

adsorbed next to such sites.   

 

In order to investigate whether the mechanism discussed above depends upon the 

presence of ethanol in solution (as in the absence of Pb(IV), see figs. 3.16, 3.17(a) 

and 3.17(b)), an experiment was carried out in which Pb(IV) was pre-deposited at 

the Pt surface as in the experiment depicted in fig.4.3(a), and then 1 M ethanol + 

Pb Island 

Exposed Pt 
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0.25 M KOH was admitted into the IR cell containing 0.25 M KOH at 0.1 V and the 

potential held for 30 minutes. The electrolyte was then replaced by 0.25 M KOH 

(still holding the potential at 0.1 V), reducing the ethanol concentration in solution to 

< 10
-7

 M.  The electrode was then pushed against the prismatic cell window and the 

FTIR instrument flushed with nitrogen for 60 minutes; a reference spectrum was 

collected after which the potential of the Pt electrode was stepped up, further spectra 

taken and normalised to the reference spectrum according to the manipulation in 

equation (2.11). 

 

Figure 4.12. Comparison of the spectra collected at 0.75 V during the experiments 

depicted in figs. 4.3 and 4.9, over the spectral range from 1740-1280 cm
-1

.  

 

Figure 4.13 shows the spectra collected from 0.1 to 0.55 V. From the figure, it may 

be seen that a gain feature at ca. 1365 cm
-1

 was observed with an onset of 0.15 V. 

This feature was tracked by loss features at ca. 2960, 2913 and 2840 cm
-1

, which, 

following my studies on ethanol oxidation at unmodified Pt (see section 3.2) and the 

work by Iwasita and Pastor [31][32], may be assigned to the loss of adsorbed ethoxy 

(Pt-OC2H5).  
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Figure 4.13. Spectra collected from 0.1 to 0.55 V vs. MMO during an experiment in 

which Pb(IV) was pre-deposited at the Pt electrode from 1 mM Pb(IV) acetate + 

0.25 M KOH at 0.1 V vs. RHE, after which ethanol (1 M ethanol in 0.25 M KOH) 

was chemisorbed at 0.1 V and the solution replaced with 0.25 M KOH. The potential 

was stepped up to 1.35 V and spectra collected at each step.    

 

During an analogous experiment carried out in the absence of Pb(IV), the loss of 

adsorbed ethoxy was tracked by a gain of solution carbonate, as indicated by a strong 

gain feature at ca. 1395 cm
-1

 (see fig. 3.17(b)). In addition, as presented in this 

chapter, formation of solution carbonate was observed at potentials as low as 0.1 V 

during the experiment carried out in the presence of pre-adsorbed Pb(IV) and 

competing EtOH in solution (see fig. 4.3(a)). However, no solution CO3
2-

 was 

observed at potentials below 0.65 V in the presence of pre-adsorbed Pb and in the 

absence of competing EtOH in solution, as may be seen more clearly from fig. 4.14, 

which shows the spectra collected at 0.1 V and 0.55 V during the experiment 

depicted in fig. 4.13 enlarged over the spectral range from 2000-1150 cm
-1

.  
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Figure. 4.14. Spectra collected at 0.1 V and 0.55 V during the experiment depicted in 

fig. 4.14 over the spectral range from 2000 – 1150 cm
-1

.  

 

The features at ca. 1860 and 1365 cm
-1

 may also be seen more clearly in fig. 4.14. 

With respect to the 1365 cm
-1

 feature, it is generally accepted [33-37] that a feature 

in the region of 1370-1300 cm
-1

 is characteristic of the asymmetric C-O stretch of 

adsorbed unidentate carbonate. Further, a feature between 1860-1850 cm
-1

 has been 

assigned by several authors [38-44] to bridge-bonded COads at Pt. Hence, the bands 

at 1860 and 1365 cm
-1

 are tentatively assigned, respectively, to the formation of 

bridge-bonded CO and adsorbed unidentate carbonate. Therefore, it would appear 

that under conditions of ethanol starvation, C-C bond cleavage at Pb modified Pt is 

still facile but is not enhanced with respect to the reaction at PtPb when solution 

ethanol is present. Concerning the latter, it has been postulated previously that the 

reaction takes place at Pt domains in between Pb islands, where adsorbed ethanol can 

be oxidised easily, and the site is continually recharged, permitting a catalytic cycle 

to develop. Based on this, it is not surprising that under conditions of ethanol 

starvation, significantly less carbonate is produced. In fact, at lower potentials, only 

adsorbed carbonate is observed, and it is possible that in the absence of competing 
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ethanol in solution, carbonate is not displaced from the Pt surface once it is formed 

(and the site is not recharged), as indicated by the feature at 1365 cm
-1

 in fig. 4.13.  

Figure 4.15 shows the intensities of the features in fig. 4.13 plotted as a function of 

potential, from which it may be seen clearly that the loss of ethoxy species is tracked 

by the gain feature at 1365 cm
-1

 due to adsorbed carbonate. However, the feature at 

1860 cm
-1

, due to COads, is present at the reference potential and does not track the 

ethoxy features as strongly as the feature at 1365 cm
-1

. It is therefore unclear whether 

the role of COads during the experiment depicted in fig. 4.13 is, in agreement with 

Lai and Koper’s [29] study of EtOH oxidation at Pt single crystals in 0.1 M NaOH, 

as an intermediate in the oxidation of ethanol to CO3
2-

, or conversely, as suggested 

by Lopez-Atalaya [45] (see section 3.2) during their study of ethanol oxidation at 

Pt(111) in aqueous NaOH, as a poisoning species at the Pt surface.    

 

Figure 4.15. Plots of the ethoxy (2960, 2912 and 2840 cm
-1

), bridge-bonded CO 

(1860 cm
-1

) and unidentate carbonate (1365 cm
-1

) band intensities as a function of 

potential vs. MMO during the experiment depicted in fig. 4.14.    
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Figure 4.16 shows the spectra collected from 0.65 to 1.35 V during the experiment in 

fig. 4.13. As may be seen from the figure, at potentials > 0.55 V, a peak at 

ca.1395 cm
-1

, which may be unambiguously attributed to solution CO3
2
,
 
grows under 

the feature at 1365 cm
-1

. As discussed previously, at higher potentials, the Pb islands 

start to become oxidised, and also shrink as the Pb is lost to solution as HPbO2
-
. As 

the islands shrink, the Pt surface exposed becomes more and more similar to normal 

Pt, giving rise to a transition from carbonate to acetate formation under conditions of 

ethanol excess. The observations from figs. 4.16(a) and (b) suggest that similar 

behaviour is observed under conditions of ethanol starvation, giving rise to a 

transition from adsorbed carbonate to solution CO3
2-

, the latter being observed in an 

analogous experiment at normal Pt (see fig. 3.17(b)). Thus, in contrast to EtOH 

oxidation at Pt in alkaline solution, there appears to be no benefit from removing 

solution ethanol during oxidation at PtPb. In fact, significantly more carbonate is 

observed under conditions of ethanol excess, where a catalytic cycle develops at Pt 

domains and ethanol is continuously oxidised at ‘recharged’ sites.   

4.3. Conclusions 

This chapter presents a study of the oxidation of ethanol at a Pb-modified, 

polycrystalline Pt anode in 0.25M KOH. Very surprisingly, significant carbonate 

formation was observed at very low potentials (ie. 0.10V vs RHE); in order to 

explain these data, a model has been postulated, the essence of which is that 

carbonate formation takes place at atypical Pt domains between Pb islands. As the Pb 

is stripped from the surface, the Pt domains become increasingly similar to ‘normal’ 

Pt, resulting in increasing acetate formation. If this model is correct, the extent of 

catalysis is restricted, since only at the particular edges of Pb islands will appropriate 

conditions exist for oxidation. If this catalysis is to be developed, it will be essential 

to fabricate a surface in which the formation of Pb islands is carefully controlled so 

as to leave exposed Pt in regions large enough to act as efficient catalytic centres, but 

sufficiently small that the highly unusual properties seen in the results presented 

above can be retained.  
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Figure 4.16. Spectra collected from 0.65 to 1.35 V during the experiment depicted in 

fig. 4.13 (a) over the full spectral range and (b) from 2100-1100 cm
-1

.  
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V. C.; Koning, J.; Rodriguez, P.; Koper, M. T. M., Catalysis Today., 2010, 154, 

92-104. 

25. Casado-Rivera, E.;  Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-

Alvarez,T.; Angelo, A. C. D.; DiSalvo, F. J. and Abruña, H., Journal of the 

American Chemical Society, 2004, 126, 4043 – 4049. 

26. Dreesen, L.; Humbert, C.; Hollander, P.; Mani, A. A.; Ataka, K.; Thiry, P. A. 

and Peremans, A., Chemical Physics Letters, 2001, 333, 327 - 331. 

27. Lutz, H. Bonding and structure of water molecules in solid hydrates. 

Correlation of spectroscopic and structural data. In Solid Materials; Springer 

Berlin / Heidelberg, 1988; Vol. 69; pp 97. 

28. Stanek, T. and Pytasz, G., Acta Physica Polonica 1977, A52, 119. 

29. Lai, S. C. S and Koper, M. T. M., Physical Chemistry Chemical Physics, 2009, 

11, 10446 – 10456 

30. Schmidt, T. J.; Ross, P. N. and Marković, N. M., Journal of Physical Chemistry 

B, 2001, 105, 12082 – 12086. 

31. Iwasita, T. and Pastor, E., Electrochimica Acta. 1994, 39 (4), 531-537. 

32. Iwasita, T.; Dalbeck, R.; Pastor, E.; Xia, X. Electrochimica Acta, 1994, 39 (11-

12), 1817-1823. 



Chapter 4 

 

134 
 

33. Fottinger, K.; Schlogl, R.; Rupprechter, G., Chemistry Communications, 2008, 

320-322 

34. Chernyshova, I. V.; Ponnurangam, S.; Somasundaran, P., Physical Chemistry 

Chemical Physics, 2013, 15, 6953-6964 

35. Amonette, A. E.; Rai, D., Clays and Clay Minerals, 1990, 38(2), 129-136 

36. Bollinger, M. A.; Vannice, M. A.; Applied Catalysis B: Environmental 8., 1996, 

417-443  

37. Davydof, A. A. and Rochester, C. H. (editors), Infrared Spectroscopy on the 

Surface of Transition Metal Oxides, Wiley, Chichester, 1984.   

38. Yoshida, H.; Narisawa, S.; Fujita, S.; Ruixia, L.; Arai, M., Physical Chemistry 

Chemical Physics., 2012, 14, 4724–4733. 

39.  Ruiz-Martinez, J.; Rodriguez-Reinoso, F.; Sepulvida-Escribano, A.; Anderson, 

J. A., Physical Chemistry Chemical Physics, 2009, 11, 917-920. 

40.  Rodriguez, J. A.; Truong, C. M.; Goodman, D. W., Journal of Chemical 

Physics, 1992, 96(10), 7814-7825 

41.  Smith, G. W. and Carter, E. A., Journal of Physical Chemistry, 1991, 95, 2327-

2339 

42.  Steininger, H.; Lehwald, S.; Ibach, H., Surface Science., 1982, 123, 264. 

43.  Meiher, W. D.; Whitman, L. J.; Ho, W. J.; Journal of Chemical Physics, 1989, 

91, 3228 

44.  Kasza, R. V.; Shapter, J. G., Griffiths, K.; Norton, P. R.; Sloan, J. J., Surface 

Science, 1994, 321, L239-L243  

45. Lopez-Atalaya, M.; Morallon, E.; Cases, F.; Vazquez, J. L.; Perez, J. M., 

Journal of Power Sources., 1994, 52(1), 109-117. 



Chapter 5 

 

135 
 

5. An in-situ FTIR Study on the Effect of Temperature on the Oxidation of 

Ethanol at Polycrystalline Pt in Alkaline Solution 

5.1. Introduction  

5.1.1. Overview 

The electrochemical oxidation of ethanol at a polycrystalline Pt electrode was 

studied using in-situ Fourier Transform InfraRed (FTIR) spectroscopy in 0.1M KOH 

at 25 °C and 50 °C. It was found that the equilibrium between Pt and reversibly-

adsorbed OH shifts to favour the latter at 50 °C compared to 25 °C, and this was 

reflected in the higher oxidation currents observed in the voltammetry, as well as 

increased production of acetate in the FTIR spectra. Acetate is the only product 

observed at lower potentials. Above the transition potential, where at least some of 

the areas of the thin layer in the spectro-electrochemical cell become acidic, 

acetaldehyde, acetic acid and a small amount of CO2 are produced. This transition 

potential depends strongly on temperature: -0.1V at 25 °C and -0.4V at 50 °C.  The 

temperature dependence of the production of acetaldehyde and acetic acid strongly 

suggests that the rate determining step is the removal of the first proton from the 

initially-adsorbed ethoxide species, and it is tentatively suggested that this is also the 

rate determining step under alkaline conditions.   

Chapter 3 reported in-situ FTIR studies on the electro-oxidation of ethanol at 

polycrystalline Pt in 0.1M KOH and concluded that the mechanism of ethanol 

oxidation was as depicted in Scheme 5.1. Thus, initial adsorption of ethanol gives 

the adsorbed ethoxy intermediate (I). Oxidation of this by adsorbed OH [1] generates 

(II) and further oxidation by OHads yields monodentate acetate (III).  The presence of 

ethanol in solution and hence ethanol adsorption replaces (II) at the surface, 

releasing acetaldehyde; similarly, displacement of (III) releases acetate, which is the 

predominant product.   

Under conditions of ethanol starvation, the bidentate adsorbate (IV) is formed which 

can undergo further oxidation to give carbonate.  The bands attributed to (I) to (IV) 

are summarized in table 5.1. The work reported in this chapter is an extension of the 

ethanol studies reported in chapter 3 by considering the effect of temperature, and 

provides supporting evidence for the model outlined in scheme 1.  
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Scheme 5.1.  The mechanism of ethanol oxidation at polycrystalline Pt in alkaline 

solution proposed in chapter 3. 

 

 

Band /cm
-1

 Assignment 

2985, 2913, 2846 C-H stretches of adsorbed ethoxy (I) 

1573  s adsorbed unidentate acetate,  

Pts-O-C(=O)CH3 (III) 

1475 C-H deformation ofadsorbed unidentate 

acetate, Pts-O-C(=O)CH3 (III) 

1554 as solution acetate 

1415/1418 s solution acetate 

1540 Uncoordinated C=O stretch of bidentate 

adsorbed carbonate or C=O stretch of  

Pts-CH2COOPt (IV) 

1274 Pts-CH(OH)CH3 (II) 

 

Table 5.1. The assignment of the various features attributed to adsorbed C and O 

containing species, and bands due to solution acetate.  See chapter 3 and references 

therein. 

(I) (III) 

(IV) 

(II) 
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5.1.2. Ethanol oxidation as a function of temperature in acid solution 

Only a few studies were found in the literature concerning the electro-oxidation of 

ethanol at Pt in alkaline media as a function of temperature [2-6] and, to my 

knowledge, no studies have been published which report the application in-situ FTIR 

spectroscopy. In light of this, and the drop in pH observed at higher potentials during 

the experiments reported in chapter 3, it seems reasonable to discuss some of work 

published on ethanol oxidation as a function of temperature in acid solution. Thus, 

Behm et al [7] investigated the kinetics of the ethanol oxidation reaction over the 

temperature range from 30 to 60 
o
C on a carbon-supported Pt nanoparticle catalyst 

using cyclic voltammetry and potential-step measurements in conjunction with mass 

spectroscopy via Differential Electrochemical Mass Spectroscopy (DEMS) (see [7] 

and references therein). Figure 5.1(a) shows the CVs collected by during oxidation 

of 0.01 M EtOH in 0.5 M H2SO4 at atmospheric pressure. From the figure, it may be 

seen that the Faradic current for EtOH oxidation increased 4-fold upon increasing the 

temperature from 30 
o
C (dotted line) to 60 

o
C (solid line). In order to quantify the 

distribution of ethanol oxidation products at different temperatures, the authors 

integrated the Faradaic current (see fig. 5.1(a)) and ion currents for CO2, 

acetaldehyde and acetic acid (see figs. 5.1(b)-(d)) over a complete cycle (0.06 to 1.16 

V vs. RHE). Thus, upon increasing the temperature from 30 to 60 
o
C, the authors 

calculated a decrease in current efficiency from 8% to 5% for CO2 and from 66% to 

60% for acetic acid production. However, the current efficiency for acetaldehyde 

formation was calculated to have increased from 26% to 35% upon heating. 

Consequently, Behm et al postulated that for temperatures < 60 
o
C, the current 

efficiency for complete oxidation of ethanol to CO2 decreases slightly due to a 

greater increase in acetaldehyde formation with increasing temperature.  

In work presented in an open access journal, Wang et al [6] studied the electro-

oxidation of 0.25 M ethanol in a weak acidic medium at Pt decorated with a Nd-Fe-

Mo hybrid-metallic cyano-bridged coordination polymer. From their results, the 

authors proposed a reaction mechanism in which acetaldehyde was generated via the 

diffusion-controlled dehydrogenation of ethanol at Pt-(COB)ads induced reaction 

points. The cyclic voltammetry data presented by the authors showed that the peak 

current of the wave attributed to diffusion-controlled acetaldehyde formation 

increased upon raising the temperature from 25-75 
o
C. In addition, the wave was 
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observed to move to more positive potentials at higher temperature. However, it 

should be noted that although an increase in acetaldehyde production from ethanol 

oxidation at elevated temperatures agrees with the findings by Behm et al in acid 

solution, the diffusion-controlled mechanism proposed by Wang et al should be 

treated with caution as no molecular analysis was presented in their study to confirm 

the electrode morphologies/compositions they claim to have employed.    

 

Figure 5.1. Simultaneously recorded (a) CVs and Mass Spectrometric Cyclic 

Voltammograms (MSCVs) for (b) m/z = 22, (c) m/z = 29 and (d) m/z = 15, collected 

by Behm et al [7] during oxidation of 0.01M EtOH  at Pt/C in 0.5M H2SO4.  
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5.1.2 Ethanol oxidation as a function of temperature in alkaline solution 

Figure 5.2 shows the linear sweep voltammograms (LSVs) collected by Dutta and 

Datta [2] during their study of 1 M ethanol electro-oxidation at Pt/C and PtPd/C in 

0.5 M NaOH from 20-80 
o
C. From the figure, and in contrast to our work on ethanol 

oxidation at polycrystalline Pt at room temperature (see section 3.2), Dutta and Datta 

[2] suggest that at Pt/C at low temperature, significant carbonate formation occurs 

via dissociative adsorption of ethanol. In addition, the authors observed considerably 

larger currents when using the PtPd catalyst as opposed to Pt. However, fig. 5.2 

clearly shows that ethanol oxidation at Pt/C exhibits a greater proportional increase 

in current from 20 to 80 
o
C than at PtPd/C, although at significantly lower current 

values. Hence, paying attention specifically to the results presented in this chapter, 

which focus on ethanol oxidation at unloaded, polycrystalline Pt, it appears that the 

kinetics of the Ethanol Oxidation Reaction (EOR) are significantly enhanced at such 

a surface with increasing temperature.  

Dutta and Datta [2] obtained Arrhenius plots of the ethanol oxidation current 

densities from the data in fig. 5.2 and observed a linear relationship, stating that this 

indicates the EOR mechanism does not change at higher temperature. Further, the 

oxidation products were qualitatively analyzed by ion-exchange chromatography 

(IEC) during oxidation of ethanol at PtPd/C at -0.3 V from 20 to 80 
o
C. Thus, at 

temperatures > 60 
o
C, the authors observed a significantly greater increase in the 

product efficiency for acetate production at PtPd/C (15 x greater than that at 

unloaded Pt) than for carbonate production (2.5 x greater). In the case of unloaded 

Pt, it was stated that the reaction, although exhibiting sluggish kinetics when 

compared to PtPd, proceeded via a single pathway that favors carbonate formation 

over acetate at all the temperatures studied, 20-80 ºC, and increasing with increasing 

temperature. However, as discussed previously (see section 3.1.4), the ordinate axes 

on the relevant plots were unlabelled in terms of units, and no attempt appeared to 

have been made to render the IEC data quantitative.  

Figure 5.3 shows the CVs collected by Datta et al [3] during an earlier study which 

investigated ethanol electro-oxidation under identical conditions to those discussed 

above. From the figure, it may be seen that in contrast to the LSVs collected in the 

author’s more recent study (see fig. 5.2), the ethanol oxidation current during the 
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anodic scan was only slightly enhanced (x 1.3) upon increasing the temperature from 

20 to 80 
o
C. Moreover, the peak currents observed at 40 and 60 

o
C were of very 

similar values (ca. 40 mA cm
-2

) and decreased by ca. 10 mA cm
-1

 upon heating to 

80 
o
C. 

 

Figure 5.2. Linear sweep voltammetry data collected by Datta and Dutta [2] during 

their study of the electro-oxidation of 1 M EtOH at Pt/C and PtPd/C in 0.5 M NaOH 

from 20 to 80 
o
C.  
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As discussed previously (see section 3.1.4), the ratio of the ethanol oxidation peak 

currents in the forward and back (reverse) sweeps, IF/IB, was employed by the 

authors as a measure of the efficacy of the stripping of the Pt oxide at removing 

adsorbed, carbonaceous fragments. Figure 5.3 clearly shows that IF/IB decreases with 

increasing temperature, from which the authors postulated that surface activation of 

Pt/C by OHads was more facile at higher temperature. However, as discussed in 

section 3.1.4, it is generally accepted that the oxidation of adsorbed ethanol takes 

place via reversibly-adsorbed OHads, and the oxidation of the Pt to Pt-OH or Pt-O 

inhibits ethanol oxidation at higher potentials [4][8]. Hence, following the work by 

Lai et al [9] and Dimos and Blanchard [10] (see section 3.1.4), the decrease in IF/IB 

observed by Datta et al [3] most likely indicates a decrease in the influence of 

strongly adsorbed carbonaceous fragments (such as COads) at higher temperatures.  

 

Figure 5.3. Cyclic voltammogramms collected by Datta et al [3] during the 

oxidation of 1 M EtOH at Pt/C in Ar saturated 0.5 M NaOH as a function of 

temperature.  



Chapter 5 

 

142 
 

With respect to the importance of OHads in the context of the electro-oxidation of 

organic molecules in alkaline solution, Ureta-Zanartu et al [11], from their CV study 

of 27.3 mM benzyl alcohol oxidation at Au in pH 11 buffer electrolyte, suggested 

that Au-OH coverage was very low at room temperature; and that OHads formation 

was significantly enhanced upon elevating the temperature to 40 
o
C, thus facilitating 

enhanced benzyl alcohol oxidation.  

Returning to the study by Datta et al [3], the authors further investigated the 

oxidation of 1 M ethanol in 0.5 M KOH at Pt/C via chronoamperometry at -0.16 V 

vs. SHE and the amounts of carbonate and acetate produced were estimated by IEC. 

Similar to the authors’ recent study [2], it was found that significantly more 

carbonate was formed than acetate at unloaded Pt across all temperatures 

investigated. In addition, Datta et al [3] found that the ratio of carbonate to acetate 

formation increased significantly upon raising the temperature. It is important to note 

that in both studies presented by Datta and co-workers, it was stated that significant 

carbonate formation occurs at temperatures as low as 20 
o
C. This is in contrast to the 

general view in the literature (see the discussion in section 3.1.1), which is that at 

room temperature, acetate is the predominant oxidation product under conditions of 

ethanol excess in solution, with carbonate formation having only a minor 

contribution to the overall oxidation process.  

More recently, Ma et al [4] investigated the EOR kinetics as a function of 

temperature at thin film Pt/C and Pd/C electrodes (20 wt% metal on carbon). Figure 

5.4 shows the CVs collected by the authors during the oxidation of 1 M EtOH at 

Pt/C in 0.1 M NaOH. From figure 5.4 it may be seen that upon increasing the 

temperature to ca. 60 
o
C (333 K), the authors observed a significant decrease in the 

current density at potentials > 0.58 vs. RHE during the positive-going scan. 

Furthermore, a well-defined shoulder near 0.6 V vs. RHE was observed at 60 
o
C in 

addition to the conventional single ethanol oxidation peak, similar to that observed 

by Behm et al [7] in acid solution (see fig. 5.1(a)). 

Ma and co-workers [4] stated that C-C bond cleavage is more facile at Pt/C at 

elevated temperature, leading to a significant increase in the peak current density 

during the negative-going scan upon increasing the temperature from 298 to 333 K. 

On the other hand, the authors also postulated that the formation of strongly 
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adsorbed, poisoning C1 species (eg. COads and CHx, ads) is enhanced at elevated 

temperature, leading to a decrease in the number of active sites available for the 

formation of active intermediates and OHads. 

   

Figure 5.4. Cyclic voltammogramms observed by Ma et al [4] during their study of 1 

M EtOH oxidation at Pt/C in Ar saturated 0.1 M NaOH as a function of temperature.  

 

Ma et al concluded that since the total current density for ethanol oxidation in 

alkaline media reflects both carbonate and acetate formation, a decrease in the total 

current density at potentials > 0.58 V was understandable. This is in contrast to the 

CVs collected by Behm et al [7] in acid solution (see fig. 5.1), where a significant 

increase in current density was observed during the forward-going scan upon 

increasing the temperature from 30 to 60 
o
C. Furthermore, these findings are in 

disagreement with the LSVs and CVs presented by Datta and co-workers [2][3] in 

alkaline media (see figs. 5.2 and 5.3), which for temperatures < 60 
o
C, showed an 

increase in current density upon heating.  
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Pierozynski et al [5] observed a significant increase in the recorded voltammetric 

oxidation current densities upon increasing the temperature from 23-60 
o
C during 

their study of the electro-oxidation of 0.25 M EtOH at polycrystalline Pt in 0.1 M 

NaOH. The authors stated that the kinetics of ethanol electro-oxidation reaction at Pt 

increase significantly at elevated temperature. However, no mechanistic explanation 

was provided to support their work.  

5.1.3. Summary 

From the literature presented in this section, it is clear that the kinetics of the EOR in 

alkaline medium are enhanced at higher temperature. However, there is much 

confusion surrounding the products that are generated and the mechanism by which 

this occurs. More specifically, the literature suggests that there are two possible 

scenarios: (i) C-C bond cleavage is enhanced upon increasing temperature, thus 

leading to an increase in complete oxidation of ethanol to form carbonate; (ii) no 

change in the EOR mechanism occurs at higher temperature, but the kinetics of the 

EOR via retention of the C-C bond are enhanced, subsequently producing more 

acetate. The characteristic IR features for the oxidation products suggested in (i) and 

(ii) have been well established both from the literature [12-15] and the results 

presented in chapter 3 (see table 5.1). Hence, this chapter will focus on the 

application of in-situ FTIR spectroscopy to the analysis of the EOR mechanism at 25 

and 50 
o
C.    

5.2. Results and Discussion 

5.2.1. Cyclic Voltammetry 

Figure 5.5 shows cyclic voltammograms of a Pt (foil, 1cm x 1cm) electrode 

immersed in 0.1 M KOH in the absence of ethanol at 25 and 50 
o
C. From the figure, 

it may be seen that features corresponding to the formation of reversibly-adsorbed 

OH (OHads, peak near -0.19V) [4][8] and the formation and stripping of chemisorbed 

hydride and oxide layers on the Pt surface [16] were observed.  The charge under the 

OHads peak in the anodic scan is higher at 50 
o
C than at 25 

o
C suggesting that the 

equilibrium: 

Pt + OH
-
 ↔ PtOH + e

-
     (2) 
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shifts to the right at the higher temperature, in agreement with the postulate by Datta 

and co-workers [2][3] that OHads formation is more facile at higher temperature in 

alkaline solution, and hence ethanol oxidation faster. Figure 5.5 also shows that the 

maximum of the peak due to reduction of the phase oxide, formed at Pt during the 

anodic sweep of the CV, shifts from ca. -0.16 to -0.10 V upon increasing the 

temperature from 25 to 50
o
C. 

 

Figure 5.5. CVs of the Pt foil working electrode collected in 0.1M KOH, in the 

absence of ethanol, at 25 and 50 
o
C (-0.85 to 0.4 V vs. MMO; scan rate of 

100 mVs
-1

). 

 

Figure 5.6 shows the corresponding cyclic voltammogramms collected in the 

presence of 1M ethanol. As can be seen from the figure, the hydrogen adsorption 

region is blocked by chemisorbed fragments of ethanol [4][8][9], and the oxidation 

of ethanol commences with OHads formation [4] at both 25 and 50 
o
C. Both anodic 

peaks in the forward and reverse sweeps of the CV in fig. 5.6 increase in current with 

temperature, in contrast to Ma et al [4] who have reported a decrease in current 

density during the forward scan upon increasing the temperature from 40 to 60
o
C 
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(see fig. 5.4). As discussed previously (see section 5.1.2), the authors attributed this 

to an increase in carbonate formation, indicated by an additional peak at ca. 0.5 V vs. 

RHE in the CV. Datta and co-workers [2][3] have also suggested that the ratio of 

carbonate to acetate formation increases with increasing temperature.  It is difficult 

to discern from fig. 5.6 whether the anodic peak in the forward scan of the 

voltammogram is comprised of two waves, as per the work of Jiang et al [8] and Ma 

and colleagues [4]. In the absence of molecular information, the possible production 

of carbonate cannot be resolved, hence the in-situ FTIR studies reported below. 

 

Figure 5.6. CVs of the Pt foil working electrode collected in 0.1M KOH + 1 M EtOH 

at 25 and 50 
o
C (-0.85 to 0.4 V vs. MMO; scan rate of 100 mVs

-1
). 

 

Returning to fig. 5.6, there appears to be no difference in onset potential for ethanol 

oxidation in the forward sweep, in agreement with Jiang et al [8] and Ma and co-

workers [4]; the latter reported that the onset potential depended on the ethanol 

concentration. However, it is clear that the peak in the forward sweep moves to 
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higher potentials with increasing temperature; from -0.13V at 25ºC to -0.08V at 

50ºC.   

As may be seen from fig. 5.6, at all temperatures, the oxidation of ethanol during the 

forward sweep was suppressed due to the oxidation of the Pt to Pt-OH or Pt-O 

[8][9]. The potential at which the current falls to ca. 5% of its value at the anodic 

peak in the forward scan was +0.14V and +0.17V as the temperature was increased 

from 25 to 50ºC.  From fig. 5.5, it can be seen that the onset of formation of the Pt-

OH does not seem to vary with temperature, although the coverage of the 

oxide/hydroxide layer (ie. at potentials > -0.1V) is significantly higher at 50ºC than 

at the lower temperatures, suggesting that the higher temperature facilitates oxidation 

of ethanol at the oxidized Pt, as is observed in acid solution [13]. 

In the reverse sweep in fig. 5.6, the increasing anodic potential of the onset of 

ethanol oxidation peak appears to follow the temperature dependence of the oxide 

stripping peak, see fig. 5.5. The data in fig. 5.6 at 50ºC resemble the CV’s reported 

by Lai et al [9] for polycrystalline Pt in 0.1M NaOH+0.5M ethanol at room 

temperature, in that there is very little hysteresis between the forward and reverse 

scans at potentials below the anodic peak in the reverse scan, ie. -0.18V vs MMO, 

suggesting that the steady state coverage of the Pt by carbonaceous fragments is 

achieved more rapidly at 50 °C compared to 25 °C  . 

5.2.2. In-situ FTIR Spectroscopy 

5.2.2.1. Overview  

As described in chapter 3 and in previous papers by other workers in Newcastle 

[12][17][18], at higher potentials during the in-situ FTIR experiments in alkaline 

solution there is a substantial change in pH in the electrolyte immediately above the 

electrode and trapped in the thin layer. The swing in pH was ascribed to a 

combination of: (a) relatively slow diffusion of OH
-
 ions across the electrode surface 

[19][20] over a timescale of tens of minutes for an electrode of the radius that we 

use; and (b) the exhaustion of reactant in the thin electrolyte layer, which leads to 

further changes in the ambient conditions at the electrode surface [19-20]. Thus, the 

data presented in this section will be discussed in two sections, i.e. the spectra 

collected (i) below and (ii) above the transition point.  
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5.2.2.2. Potentials below the transition point 

Figure 5.7 shows the spectra collected during an experiment carried out at 50 °C in 

0.1 M KOH + 1 M ethanol. The potential was stepped from -0.85 V to +0.4 V vs 

MMO, but the figure shows only the spectra collected up to the transition potential 

of -0.4 V. At 25 °C, this transition occurred at -0.1 V (see section 3.2). The spectra in 

fig. 5.7 are representative of the data observed at both temperatures, in that the only 

features observed were due to solution acetate and hydroxide ions, and water. As 

may be seen from the figure, the spectra are dominated by bands due to the loss of 

solution hydroxide ions at 1870 and 2750 cm
-1

, and gain of solution acetate at 1554, 

1415 and 1348 cm
-1

 [12][17][18][21][22]. In agreement with López-Atalaya et al 

[23] and in contrast to the postulated carbonate formation in the various papers 

reporting IVt data on ethanol oxidation at Pt/C in alkaline solution [2-4][8], there is 

no evidence for CO3
2-

 in fig. 5.7. 

 

Figure 5.7. Spectra (8 cm
-1

 resolution, 100 scans, 47 s per scan set) collected during 

the electro-oxidation of 1M ethanol in 0.1M KOH at 50 
o
C, before the transition 

point, from -0.85 to -0.4 V. 
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Figure 5.8 shows the spectra collected at the transition potentials of -0.1V (25 °C) 

and -0.4V (50 °C) normalized to the respective reference spectra collected at -0.85V.  

As can be seen from the figure, the intensities of the acetate features are comparable, 

despite the 50 °C spectrum having been taken at a potential 300 mV lower than that 

collected at 25 °C.  There is also a difference in terms of the behaviour of the water 

features (see below).  These may be clearly seen in figs. 5.10 (a) and (b) which show 

plots of the intensities of the various key features in the spectra collected during the 

experiments depicted in fig. 5.7 as a function of potential (the spectra employed to 

determine these intensities were all normalized to -0.85V); the arrows in fig. 5.10 (b) 

mark the transition potentials above which CO2 and acetic acid were observed.   

Figure 5.10 (b) shows the plots in fig. 5.10 (a) normalised to their maximum values 

to highlight concomitant behaviour.  

 

Figure 5.8. Spectra collected during the experiment depicted in fig. 5.7 at the 

transition potential of -0.4 V, and during the experiment detailed in chapter 3, at the 

transition potential of -0.1 V at 25 
o
C.  

 

Figure 5.9 shows the spectra collected at -0.6 V vs. MMO in the experiments at 25 
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o
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ca. 3670 cm
-1

, which may be attributed to isolated OH (ie Pt-O-H free from 

hydrogen bonding [24][25]), is significantly greater at 50 
o
C than at 25 

o
C; if this is 

OHads, then the data in fig. 5.9 are in agreement with the voltammetry data in figs. 

5.5 and 5.6 showing enhanced current for OHads formation at 50 °C .  

 

 

Figure 5.9. In-Situ FTIR spectra collected at -0.6 V vs. MMO during the ethanol 

oxidation experiments carried out in fig. 2.  

 

Similar to the experiment carried out at 25 
o
C (see figs. 3.9(a) and 3.9(b)), the 

spectra in fig. 5.7 are dominated by the solution OH
-
 loss feature [12][17][18] with 

peaks near 2750 cm
-1

 and 1870 cm
-1

 due  to its reaction with adsorbed ethanol 

species to form acetate. The intensities of these features increase more rapidly with 

potential in the spectra collected at 50 
o
C than at 25 

o
C, see figs 5.10(a) and (b). As 

can be seen from fig. 5.10(b), at both temperatures, the 1870 cm
-1

 OH
-
 loss and 1415 

cm
-1 

acetate gain features track each other, reflecting the role of the former as a 

reactant in the oxidation of ethanol: 

C2H5OH + 5 OH
-
 → CH3COO

-
 + 4H2O + 4e

-
     (3) 
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It is also clear from figs. 5.10(a) and (b) that the intensities of the water O-H stretch 

features do not track the acetate bands, lagging some 300 mV behind at each 

temperature (and the water features at 50 °C appear as losses); this suggests that the 

processes responsible for the change in water absorptions are associated with events 

taking place at higher potentials.  It appears that the slopes of the two plots in fig. 

5.10 both increase at potentials above transition. From fig. 5.10(b) it can be seen that 

at 50 
o
C, the onset potential for acetate production (≥ -0.6V) corresponds to that for 

the formation of adsorbed OH [1][12][17][18], which then oxidizes the adsorbed 

ethoxy species to acetate, as was the case at 25 
o
C (see section 3.2). Above the 

transition potentials, the acetate bands cease growing and are replaced by the gain 

features due to acetic acid [12]. From fig. 5.10(a) it is clear that there is a significant 

increase in acetate formation at all potentials below transition at 50 °C compared to 

25 °C. This marked difference in behavior between the IR response at 50 °C on the 

one hand, and 25 °C on the other, is reflected in the behavior of the O-H stretches 

near 3300 cm
-1

, see fig. 5.11. At 25°C, there is a steady, gain of an O-H stretch 

feature due to water at 3250 cm
-1

 and an attendant, weaker band near 1635   cm
-1

 due 

to the H-O-H deformation.  In contrast, at 50°C, both the O-H stretch and H-O-H 

deformation appear as loss features, growing steadily in intensity as the potential is 

increased.  There is no explanation for this behaviour at this time. 

From fig. 5.7 it may be seen that the valley between the 1554 and 1415 cm
-1

 acetate 

absorptions is structured (arrowed) and, in addition, was shown in our previous work 

[25] to be deeper than that in the spectrum of aqueous sodium acetate. This was 

attributed to the loss of absorptions in this spectral region, even at potentials as low 

as -0.7V (at 25 °C), and these losses are described in the next section.    
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Figure 5.10. (a) Plotted intensities of the features in figs. 5.7 and 2 (b) the intensities 

of the bands in (a) normalised to their maximum values.  
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Figure 5.11. Plots of the intensities of the 3300 cm
-1

 water features in fig. 5.7 at 25 

and 50 
o
C as a function of potential.  

 

5.2.3. In-Situ FTIR spectroscopy: Potentials Above Transition 
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temperature (lower transition potential) gave more data points for analysis, and the 
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 acetate band facilitated a more 
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 bands [12]. 
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-1

, the latter two of which appear to be bipolar. These bands were previously 

attributed to adsorbed ethoxy species (see section 3.2 and references therein). As 

discussed in section 3.2.3, loss features observed after the transition potential are 

representative of species that were present before the drop in pH, and hence under 

alkaline conditions. 
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Figure 5.12. Spectra collected  above -0.3 V, normalised to that collected at -0.3 V, 

during the experiment depicted in fig. 1 over the range from (a) 4000-1050 cm
-1

 and 

(b) below 2000 cm
-1

.  
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The gain of CO2 (band at 2340 cm
-1

) clearly shows that the pH, at least in some 

regions of the thin layer, has fallen below the pKa of carbonic acid, 6.4 [12][17][18]. 

The gain features at 1715 cm
-1

, 1378 cm
-1

 and 1280 cm
-1

 may be attributed to acetic 

acid, but with a contribution to the 1715 cm
-1

 band from acetaldehyde [12], see 

below. The formation of acetic acid clearly shows that the pH in the thin layer at 

these potentials is ≤ 4.7, the pKa of acetic acid [14]; this value varies very little 

between 14 ºC and 45 ºC [15].  The substantial drop in pH in thin-layer FTIR 

spectroscopic experiments has been modelled by Christensen et al [17][18] in terms 

of the slow diffusion of OH
-
 ions across the electrode surface coupled with the 

exhaustion of reactant. 

Figure 5.13 shows the spectra collected at 0.4V vs. MMO normalised to the 

transition potentials of -0.1 and -0.4 V during the ethanol oxidation experiments 

carried out at 25 and 50 
o
C respectively.  

 

Figure 5.13. In-Situ FTIR spectra collected at 0.4 V during the experiments carried 

out at 25 and 50 
o
C, normalised to the spectra collected at -0.1 V (25 

o
C) and -0.3 V 

(50 
o
C). 
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As may be seen from figs 5.12(a) and 5.13, intense loss features near 3600, 3400 and 

1650 cm
-1

 appear and grow after the transition point during the experiment carried 

out at 50 
o
C.  In order to determine whether the water loss features observed at 50 °C 

were associated with the oxidation of ethanol at this temperature, spectra were 

collected during experiments analogous to those depicted in fig. 5.7 but in the 

absence of 1 M ethanol, and the results are shown in fig. 5.14.  

 

Figure 5.14. In-Situ FTIR spectra collected during experiments analogous to those 

depicted in fig. 5.7 at 0.4 V, in the absence of 1 M EtOH. 
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ethanol compared to in the presence, with the gain of various water-related bands in 

the absence of ethanol being replaced by a significant loss, potentially showing a 
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Christensen et al [17] on methanol oxidation in 0.1 M KOH (see fig. 5.15) and 

attributed to the loss of highly hydrogen-bonded bulk water [28] from the thin layer 

due to CO2 gas bubble formation, and this does not seem an unreasonable 

explanation, particularly given the fact that the other loss features (see table 5.1) and 

gain features are observed at both temperatures, suggesting a single mechanism. 

 

Figure 5.15. In-Situ FTIR spectra collected at -0.6 V vs. MMO by Christensen et al 

[31] during their study of 1 M MeOH oxidation in 0.1 M KOH.   

 

Taking the gain features in figs. 5.12 and 5.13 first, fig. 5.16 shows the spectra 

depicted in fig. 5.13 over the range 2050 – 1050 cm
-1

. As was stated in section 3.2.3, 

the gain features at 1715 cm
-1

, 1378 cm
-1

 and 1280 cm
-1

 may be attributed to acetic 

acid [12][21][29-31]. However, the ratio of the band intensity at 1715 cm
-1

 to that at 

1280 cm
-1

 is significantly greater in the spectrum collected at 50 
o
C, indicating a 

contribution to the 1715 cm
-1

 band from (an)other species. It is generally accepted 

that the carbonyl stretch of acetaldehyde occurs in the same spectral region as the 

1715 cm
-1

 carbonyl stretch of acetic acid [30][32], rendering any quantitative 

assessment of these compounds using these absorptions highly challenging.  
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However, the 1280 cm
-1

 band of acetic acid is not obscured by any absorptions due 

to the aldehyde and is the same intensity as the carbonyl feature at 1715 cm
-1 

(see 

section 3.2 and [12]); hence the difference between the intensities of the 1715 cm
-1

 

and 1280 cm
-1

 bands in fig. 5.16 may be taken as a (crude) estimation of the 

acetaldehyde carbonyl absorption. Close inspection of all the experiments carried out 

reveals a trend in that the greater the difference between the 1712 cm
-1

 and 

1280 cm
-1

 bands, ie. the more acetaldehyde produced, the more pronounced is the 

bipolar nature of the C-H bands, suggesting that acetaldehyde formation is actually 

responsible for the bipolar nature of these bands. 

 

Figure 5.16. In-Situ FTIR spectra collected during the experiments depicted in fig. 

2.1 over the spectral range from 2050 – 1050 cm
-1

. 

 

Figure 5.17 shows plots of the intensities of the various features in figs. 5.12(a) and 

(b) as a function of potential.  As can be seen, the amount of acetic acid in the thin 

layer increases steadily with increasing potential, whilst the acetaldehyde reaches a 

maximum value at ca. 0.3V.  The CO2 increases relatively slowly as the potential is 

increased. The intensities of the acetaldehyde C=O band (calculated from the 

difference in intensities of the 1280 and 1715 cm
-1

 absorptions) and the 1280 cm
-1
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feature of acetic acid at 0.4 V are presented in table 5.2; as can be seen the ratio of 

the former to the latter at both temperatures is ca. 1.4:1, with ca. twice as much 

acetaldehyde and acetic acid produced at 50 °C as at 25 °C.  

Temperature 

/°C 

C=OAcid 

/10
-3

 

C=OAld 

/10
-3

 

25 2.0 2.7 

50 4.0 5.8 

 

Table 5.2.  The intensities of the acetic acid (C=OAcid) and acetaldehyde (C=OAld) 

absorptions in fig. 7(a) (see text for details). 
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Figure 5.17. The plotted intensities for the various features in figs. 5.12(a) and (b) as 

a function of potential. 

 

Hence both acetaldehyde and acetic acid are produced faster at the higher 

temperature, but this increase is the same, maintaining the ratio of the products. This 

is a crucial result as it strongly suggests that the rate-determining step in the 
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oxidation of ethanol under the acidic conditions in fig. 5.17 is the removal of the first 

proton from the adsorbed ethoxy species (I), and that the desorption of acetaldehyde 

and the further oxidation of species (II) to acetate must take place at comparable 

rates and with similarly low activation energies. It does not seem unreasonable to 

postulate that this first removal of hydrogen is also the rate determining step in 

alkaline electrolyte. 

Returning to the loss features in figs. 5.12, 5.13 and 5.16, it may be seen that the loss 

feature at ca. 1540 cm
-1

, which is attributed to the C=O stretch of bidentate carbonate 

(see table 5.1), was significantly more intense in the spectra collected at 50 ºC
 
 than 

at 25 ºC. Thus, this suggests that C-C bond scission is enhanced at higher 

temperature under alkaline conditions. However, the intensity of this feature is very 

low when compared to the acetate features observed before the transition point and 

there is no obvious solution carbonate band in the spectra in fig. 5.7, suggesting that 

even at 50 
o
C, complete oxidation of EtOH to carbonate has only a minor 

contribution to the overall oxidation process.  

The 1573 cm
-1

 band was previously assigned (see section 3.2.3 and [12]) to the C=O 

stretch of acetate adsorbed through one O atom (Pts-O-C(=O)CH3)), and the 

1475 cm
-1

 feature to the C-H deformation of the same species [12]; both bands were 

more intense in the spectra collected at 50 
o
C compared to those at 25 ºC. In 

addition, fig. 5.18 shows the spectra depicted in fig. 5.13 enlarged over the range 

from 3050 – 2700 cm
-1

. As may be seen from the figure, the loss features at ca. 2956, 

2915 and 2850 cm
-1

, previously assigned to adsorbed ethoxy (see section 3.2 and 

[12]), are of much greater intensity in the spectra collected at 50 
o
C than those 

collected at 25 
o
C.  

Hence, it is clear from fig. 5.18 that increasing the temperature to 50 
o
C significantly 

enhances ethanol adsorption (as Pt-O-C2H5) at Pt at low potentials, and its 

subsequent oxidation to produce acetaldehyde and acetate.   

5.3. Conclusions 

The surface of the polycrystalline Pt electrode is extensively covered with adsorbed 

ethoxy at both 25 and 50 
o
C even at low potentials in aqueous KOH, with the (non-

dissociatve) chemisorption of ethanol enhanced upon increasing the temperature. 
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Oxidation of the ethoxy species results in acetate, which is the predominant product 

under conditions of ethanol excess in solution at both temperatures investigated. The 

oxidation of adsorbed ethanol to form acetate at lower potentials ( ≤ -0.1V at 25 ºC 

and ≤ -0.4V at 50 ºC) is enhanced significantly upon heating from 25 ºC to 50 
o
C, 

which is associated with the increased coverage of OHads.   

 

Figure 5.18. In-Situ FTIR spectra collected during the experiments depicted in fig. 

2.1 over the spectral range from 3050 – 2700cm
-1

. 

 

In contrast to some reports in the literature, there is no evidence of carbonate 

production in the spectra collected below the transition potentials at 25 or 50 ºC. 

However, the loss feature at ca. 1540 cm
-1

 observed at both 25 and 50 
o
C after the 

transition point may indicate small amounts of carbonate formation under alkaline 

conditions, with the C1 route having only a minor contribution to the overall 

oxidation process even at 50 
o
C. Small quantities of carbon dioxide are produced at 

potentials above transition, where the electrolyte in the thin layer is acidic, and acetic 

acid and acetaldehyde are also produced; the temperature dependence of this process 

strongly suggesting that the rate determining step in the oxidation is the removal of 

the first hydrogen atom from adsorbed ethoxide.   
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Journal of Power Sources., 1994, 52 (1), 109-117. 

24. Dreesen, L.; Humbert, C.; Hollander, P.; Mani, A. A.; Ataka, K.; Thiry, P. 

A.;Peremans, A., Chemical Physics Letters. 2001, 333, 327. 

25. Berná, A.; Delgado, J. M.; Orts, J. M.; Rodes, A.; Feliu, J. M., 

Electrochimica Acta, 2008, 53, 2309. 

26. CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, 74
th

 Edition, 

1993-1994, Boca Raton, p8-47. 

27. Brescia, F., LaMer, V. K. and Nachod, F. C., Journal of the American 

Chemical Society, 1940, 62, 614–617. 

28. Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D., Electrochimica Acta., 

2004, 49, 1233. 

29. Camara, G. A.; Iwasita, T., Journal of Electroanalytical Chemistry, 2005, 

578 (2), 315-321. 

30. Xia, X. H.; Liess, H. D.; Iwasita, T., Journal of Electroanalytical Chemistry, 

1997, 437 (1-2), 233-240. 

31. Wang, Q.; Sun, G. Q.; Jiang, L. H.; Xin, Q.; Sun, S. G.; Jiang, Y. X.; Chen, 

S. P.; Jusys, Z.; Behm, R. J., Physical Chemistry Chemical Physics, 2007, 9 

(21), 2686-2696. 

32. Colmatti, F.; Tremiliosi-Filho, G.; Gonzalez, E. R.; Berna, A.; Herrero, E.; 

Feliu, J. M., Faraday Discussions, 2008, 140, 379−397. 



Chapter 5 

 

164 
 

33. Caram, J. A. and Gutiérrez, C., Journal of Electroanalytical Chemistry, 1992, 

323, 213-230. 

34. Freitas, R. G.; Pereira E. C.; Christensen, P. A., Electrochemistry 

Communications., 2011, 13, 1147-1150. 

35. Freitas, R. G.; Antunes, E. P.; Christensen, P. A.; Pereira, E. C., Journal of 

Power Sources, 2012, 214, 351-357. 



Chapter 6 

 

165 
 

6. An in-situ FTIR study of undoped PolyBenzoImidazole as a function of 

relative humidity 

6.1. Introduction 

6.1.1. Overview 

Undoped, cast films of PolyBenzoImidazole (PBI) were investigated as a function of 

humidity using both H2O and D2O, and as a function of temperature up to 100 °C in 

order to better understand the infrared response of this polymer, as well as to provide 

benchmark data for subsequent studies on acid doped PBI.  Marked changes across 

the mid-IR range were observed during the uptake of water and D2O.  The use of 

D2O proved extremely useful in terms of deconvoluting the complex IR response 

observed and allowed the IR data to be rationalised in terms of the disruption of the 

N-H…N inter-chain hydrogen bonded network and changes in the morphology of 

the polymer. 

As discussed in section 1.6, PBI is considered as a promising membrane material for 

High Temperature Polymer-Electrolyte Membrane Fuel Cells (HT-PEMFCs) due to 

its excellent thermal and chemical stability [1-5], mechanical robustness and high 

tolerance to CO [6]. PBI has a glass transition temperature of 420 °C and is generally 

believed to be completely amorphous [7]. The conductivity of the polymer is 

strongly dependent upon doping with strong acid and can reach 0.25 S cm
-1

 at 

180 °C[5]. 

It is generally believed that there is significant hydrogen bonding between the chains 

of undoped PBI [8][9][10], see scheme 6.1. Thus, Ramondo et al [11] studied the 

effect of intermolecular hydrogen bonding on the structure of imidazole.  They found 

that the N…..H separation is unusually short (ca. 2.86 Å compared with ca. 3.21-

3.29 Å in p-diaminobenzene for example), and hence particularly strong for such a 

hydrogen bond. This is supported by the high boiling point of imidazole (256 
o
C) 

and high degree of its association in non-polar solvents [12]. Scheme 6.2 shows the 

two canonical forms of imidazole described by Ramondo and co-workers as the 

principal contributors to the electronic structure of the molecule. They postulated 

that hydrogen bonding is associated with an increased contribution of state (II) with 

respect to state (I) and that the former is a better proton donor and acceptor than the 
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latter. Furthermore, the authors stated that an increased contribution from (II) leads 

to a stronger N-H….N interaction, thus explaining the unusually short hydrogen 

bonds in crystalline imidazole polymers.  

 

Scheme 6.1. Self-associated PBI, redrawn from [8] 

 

 

                              (I)                                                      (II) 

Scheme 6.2. Two canonical forms of imidazole, redrawn from [11]. 

 

From their ab initio molecular orbital modelling, Ramondo and co-workers 

calculated a lengthening of the N1-H bond upon hydrogen bonding. They also 

predicted changes in the bonds within the heterocyclic ring, stating that an increase 

in hydrogen bond strength leads to the shortening of the N1-C2 bond by ca. 0.03 Å, 

and a complimentary increase in the length of C2-N3 bond.   Hence, when exposed to 

water vapour, if the uptake of water by PBI does result in the disruption of the inter-

chain hydrogen bonds and the formation of hydrogen bonds to water, as shown in 

scheme 3, this would be expected to have a significant effect upon the IR response of 

the polymer. 
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Scheme 6.3.  Uptake of water by PBI: (i) 4 and (ii) 2 water molecules per repeat 

unit, redrawn from [10].  

 

Zielinski and co-workers [13] observed pressure-induced phase transitions in their 

study of the hydrogen bonding in compressed benzimidazole polymorphs, with the 

NH….N bonded chains extending along the [011] and [01̅1] lattice planes in phase 

() and along [100] in phases () and () (see scheme 6.4). Furthermore, they state 

that in phase (), the planes of neighbouring molecules are rotated about the 

direction of the chain as opposed to phases () and (), within which molecules are 

rotated perpendicular to the chain. The consequence of this with respect to the work 

discussed below is that these phase transitions affect the dimensions and energy of 

the NH….N bond, with Zielinski and co-workers stating that the shortest and hence 

strongest of these bonds have angles closest to 180
o
. Thus, the strength of the 

NH….N interactions are strongly dependent on the orientation of the H-accepting 

molecule in the hydrogen bond, the orientation of adjacent PBI chains and thus the 

structure and morphology of the PBI. 

(ii) 
(i) 
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Scheme 6.4. The pressure induced phase-transitions of compressed benzimidazole 

polymorphs observed by Zielinski et al, parsed from [13].  

 

6.1.2. FTIR Studies on Polybenzimidazole 

There are a number of IR studies of PBI as a function of doping [7][14-16], 

blend composition [5][8-9][17-19] and temperature [5][8][14], and investigating 

hydrogen bonding in the polymer [8][9][10]. However, with one exception [9], 

spectral subtraction was not employed and hence small changes in spectral response 

due to, for example, increasing temperature could not be elucidated.  In the work by 

Musto and colleagues [9] spectral subtraction was employed, but only over the 

spectral range covering the N-H absorptions of PBI.  In fact, discussion of the IR 

spectra of PBI has largely been confined to the latter region due to the simplicity of 

the absorptions [14][19] which have, as a consequence, been fully assigned. Figure 

6.1 shows the spectrum of PBI collected by Musto et al [9] during their study of the 

hydrogen bonding in thin film (ca. 2-5 µm) PBI/poly(ether imide) blends. As may be 

seen from the figure, the authors separated the complex N-H absorption of PBI into 

three distinguishable features at ca. 3415, 3145 and 3063 cm
-1

. The relatively sharp 

3415 cm
-1 

feature was attributed to isolated, non-hydrogen bonded N-H, the broad 

feature at 3145 cm
-1

 to the asymmetric stretch of self-associated, hydrogen bonded 

N-H (see scheme 6.1), and 3063 cm
-1

 feature to the stretching modes of aromatic 

C-H.   
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Figure 6.1. FTIR spectrum (200 co-added and averaged scans at 2 cm
-1

 resolution) 

of the PBI film (ca. 2-5 µm), collected in the study by Musto et al [9]. 

  

In a separate study, Musto et al [8] used FTIR spectroscopy to investigate the 

hydrogen bonding in the thin-film PBI samples as a function of temperature. Thus, 

fig. 6.2 shows the spectra of PBI collected by the authors at 30, 150, 200 and 250 
o
C. 

From the figure, it may be seen that Musto et al observed an increase in the intensity 

of the 3415 cm
-1

 feature and a decrease in the intensity of the 3145 cm
-1

 feature, both 

of which the authors stated to be reversible. However, no spectral evidence was 

presented to support the latter statement. It was postulated that the observations in 

fig. 6.2 indicated the existence of an equilibrium between free and self-associated N-

H in PBI; and that upon heating, a significant number of hydrogen bonds in PBI are 

broken, leading to an increase in the intensity of the free N-H feature at 3415 cm
-1

 

and a decrease in the self-associated N-H feature at 3145 cm
-1

. Based on their model 

for hydrogen bonding in PBI chains (see scheme 6.1), Musto et al [8] suggested that 

both completely unnassociated N-H groups and terminal N-H groups of the 

hydrogen bonded chains contribute to the 3415 cm
-1

 feature. Furthermore, the 
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authors stated that the beadth of the 3145 cm
-1

 feature was related to, among other 

effects, the presence of hydrogen bonding between chains of different lengths within 

PBI, each absorbing at a slightly different frequencies. The authors again attributed 

the feature at ca. 3063 cm
-1

 to the aromatic C-H stretching modes of PBI and 

stated that this feature was only slightly effected by temperature. However, 

in contrast to the previous study, no spectral subtraction method was employed 

with the data shown in fig. 6.2 and hence small changes in the absorbance at 

3063 cm
-1

, and indeed the entire region for N-H absorption, could not be identified. 

The 3620 cm
-1

 feature was not discussed by the authors in context of the data 

presented in fig. 6.2, but was attributed later in the paper [8] to the O-H stretch of 

free water.         

 

Figure 6.2. Spectra (200 co-added and averaged scans at 2 cm
-1

 resolution) of thin-

film PBI collected by Musto et al [8] at 30, 150, 200 and 250 
o
C, over the spectral 

range from 4000-2100 cm
-1

. 
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Figure 6.3 shows the FTIR spectra of wet and dry PBI collected by Brooks and co-

workers [10] during their study of water uptake in thin PBI films (ca. 10 µm, cast 

from DMAc). The dry films were prepared by drying in a vacuum for 24 hours at 

180 
o
C and the wet films by immersing in a beaker of water overnight. As may be 

seen from the figure, the feature at ca. 3620 cm
-1

 (3 on figure 6.3), attributed by the 

authors to the O-H stretch of free water, was present in the spectra of both the dry 

and wet samples. Brooks et al stated that the former was due to the uptake of water 

in the dry PBI film during its transfer from the oven to the spectrometer. A similar 

feature was observed in the spectra presented by Musto et al [8] (see fig. 6.2), 

suggesting that water uptake in dry PBI occurs in air at ambient temperature and 

humidity. This seems reasonable given that PBI is able to absorb up to ca. 15 wt.% 

H2O at 100% RH [10][15].  

 

Figure 6.3. FTIR spectra of wet and dry PBI films (ca. 10 µm, cast from DMAc 

solution) collected by Brooks et al [10]. The authors assigned the spectral features 

as follows: (1) aromatic C-H stretch, (2) free N-H stretch of imidazole and (3) the O-

H stretch of water. 
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Returning to fig. 6.3, it may be seen that the intensities of all of the features in the 

spectrum of the wet film were significantly greater than those in the spectrum of the 

dry film. Furthermore, the intensity of 3415 cm
-1 

feature relative to the feature at 

3145 cm
-1

 was significantly greater in the wet sample, although this was not 

discussed by the authors. In fact, the authors stated that no specific information about 

the PBI hydrogen-bonding network in both the dry and wet samples could be 

elucidated from the spectra presented in fig. 6.3. This does not seem unreasonable 

when considering the fact that, as stated by Musto et al [8-9], the breadth of the 

complex N-H absorption region is due to hydrogen-bonded PBI chains of different 

lengths, thus producing a broad band with contributions from several absorptions. As 

discussed previously, employing a difference protocol would have again proved 

highly useful in elucidating small changes in the N-H absorptions and hence would 

have revealed more information about the differences in the hydrogen-bonding 

network between the wet and dry PBI films.       

Figure 6.4 shows the spectra of a hydrated PBI film (ca. 20 µm, 1 g PBI cast 

from 10 ml DMSO) collected by Glipa et al [14] during their study of the 

conduction properties in H3PO4 and H2SO4 doped PBI membranes. The 

authors assigned the peaks in the N-H absorption region in fig. 6.4 according to 

the work by Musto et al [8-9] (see figs. 6.1 and 6.2). From the figure, it may be 

seen that the spectra are of very poor quality, making it difficult to discern many of 

the features in the spectral region below 2000 cm
-1

. Nonetheless, the authors stated 

that the features in the region from 1600-1500 cm
-1

 were characteristic of 

benzimidazoles. More specifically, a feature at ca. 1612 cm
-1

 was attributed to the 

C=C/C=N stretch and two intense features at ca. 1543 and 1443 cm
-1

 to the 

in-plane deformation of the benzimidazole group in PBI. Further, a broad absorption 

at ca. 1240 cm
-1

 was attributed by the authors to the breathing mode of the 

imidazole ring and two features at ca. 1230 and 1090 cm
-1

 were assigned to 

C-H deformation vibrations, which the authors stated to be characteristic of 

substituted benzimidazoles such as PBI. From the data presented in fig. 6.4, 

Glipa and co-workers [14] suggested that upon heating the PBI film, the only 

significant spectral changes observed were in the region above 2000 cm
-1

. However, 

due to the poor quality of the spectra and the fact that, again, no spectral subtraction 
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was employed, it is not clear that the authors could be certain that the region below 

2000 cm
-1

 is not significantly affected upon heating to 230 
o
C.   

Another example of not utilising a subtraction method when collecting spectra as a 

function of temperature comes from a more recent study by Li et al [6]. Hence, the 

authors could not discern any significant changes in the ATR-FTIR spectra of PBI 

films (20-80 µm, cast from DMAc solution (5 wt.% PBI)) upon heating to 

400 
o
C in an Ar atmosphere. The authors only presented absolute spectra and omitted 

the 4000-2400 cm
-1

 region for clarity. This seems confusing given that, 

as established throughout the literature [8-9][10][14], this region contains 

key information about the hydrogen bonding within, and hence stability of, the 

PBI chains. In a more recent study [15], Li and co-workers presented FTIR spectra 

of PBI films (4-6 µm) over the spectral range from 3800 – 2000 cm
-1

 but 

summarised the features of the PBI spectrum across the full spectral range (see table 

6.1).  

Returning to the study by Glipa et al [14], and with respect to the features above 

2000 cm
-1

, the authors observed a decrease in the broad feature near ca. 

3145 cm
-1

, attributed by the authors to hydrogen-bonded N-H, upon heating the 

PBI film from 30 to 230 
o
C. This is similar to the behaviour observed in the 

spectra of PBI presented by Musto et al [8] (see fig. 6.2) during heating from 30 to 

250 
o
C.   
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Figure 6.4. FTIR spectra of a hydrated PBI film (ca. 20 µm, 1 g PBI cast from 10 ml 

DMSO) collected by Glipa et al [14] at (a) 25, (b) 50, (c) 80, (d) 120 and (e) 230 
o
C. 

 

6.1.3. Summary 

In light of the literature discussed above, and despite the significant number 

of studies on the IR response of PBI under various conditions, there are none 

to my knowledge seeking to study in detail the absorptions in the fingerprint region 

of the polymer.  Hence, the aim of this chapter is to study the effect of 

humidity on the mid-IR spectrum of undoped PBI using in-situ difference 

spectroscopy to provide benchmark spectral data for a planned FTIR study on 

acid doped PBI. This study was carried out using 4 PBI films: PBI1 had a 

thickness of ca. 4.4 µm and PBI2, PBI3 and PBI4 had thicknesses of ca. 

7.9  µm. 
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6.2. Results and Discussion 

6.2.1. Absolute spectra 

Figure 6.5(a) shows absolute reflectance spectra (ie using an uncoated Ti disc as the 

reference) of 4.4 and 7.9 m thick PBI films (PBI1 & PBI2, respectively) over the 

range from 4000 to 500 cm
-1

, and fig. 6.5(b) the same spectra over a restricted range.   

The absolute spectra were collected as difference spectra according to the data 

manipulation in eq. 2.10 (see section 2.3.2). The frequencies of the various features 

are presented in table 6.1, along with those reported by Li et al [15] and 

Musto et al [19]. 

The 3620 cm
-1

 band has been attributed to the O-H stretch of free water within 

 the film, which as discussed previously (see section 6.1.2), can be absorbed 

during the exposure to air of dry films [10][14], and hence the shoulders near 

3620 cm
-1

 on both spectra in fig. 6.5(a) suggest that “free” water is present. 

It is important to be careful with respect to what is meant by “free” water here, 

as it is unclear from the literature what form of water is being referred to. Such a 

high stretching frequency, and narrow bandwidth, is generally associated with 

O-H stretches free from hydrogen bonding[21][22], rather than liquid/bulk 

water. 

The 3145 cm
-1

 (ca. 3200 cm
-1

 in the spectrum of the thicker film) and 3413 cm
-1

 

bands have been studied in detail, and as discussed previously (see section 6.1.2), 

there is general agreement with respect to their assignment[8-10][15][17– 19] to the 

stretching of self-associated and free N-H bonds (unassociated and terminal), 

respectively. The former are due to hydrogen bonding between PBI chains, as shown 

in scheme 6.1.   
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Figure 6.5. Spectra (250 co-added and averaged scans at 4 cm
-1

 resolution, ca. 5 

minutes per scanset) of films (i) PBI1 (4.4 µm) and (ii) PBI2 (7.9 µm); (a) full 

spectral range, (b) 500 – 2000 cm
-1

.  The films were cast on a polished, 0.95 cm
2
 Ti 

disc.  The spectra were ratioed to the reference spectrum of the uncoated disc as 

according to equation (1).    
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This 

work 

Li  

et al[15] 

Musto 

 et al[19] 

Assignment[19] 

690 701 vs 705 m Heterocyclic ring vibration 

760 760 w   

800 797 vs 801 s Heterocyclic ring vibration or C-H out-of-plane 

bend of 3 adjacent H in substituted benzene ring. 

850 840 w 846 m C-H out-of-plane bend of 2 adjacent H in 

substituted benzene ring. 

906 897 m 902 w C-H out-of-plane bend of single H in substituted 

benzene ring. 

957 943 m   

987  980 w Benzene ring vibration 

1018 1012 w 1011 w Benzene ring vibration 

1172 1170 m   

1230 1230 w 1226 w In-plane C-H deformation of 2,6-disubstituted 

benzimidazole 

1290 1285 vs 1286 m Imidazole ring breathing 

1366    

1410 sh  1410 m,sh C-C stretching 

1443 1440 vs 1443 vs In-plane ring vibration characteristic of 2,6-

disubstituted benzimidazole 

1460 sh    

1480 sh    

1534 1530 s 1534 m In-plane ring vibration characteristic of 2-

substituted benzimidazole 

1590 1599 w 1590 m Ring vibration characteristics of conjugation 

between benzene and imidazole rings 

1620 1621 vs 1612 m C=C/C=N stretching 

3065 3065 m 3063 w Aromatic C-H stretching 

3145 3145 br 3145 br Self-associated N-H stretching 

3413 3410 s 3415 s Free, non-hydrogen bonded N-H stretching 

3620 3620 m  O-H stretch of free water 

Table 6.1. The features observed in the spectra in figs. 6.5(a) and (b) and those 

observed by Li et al[6] and Musto et al[19]. 

 

The breadth of the 3145 cm
-1

 feature is due to the variation in hydrogen-bonded 

‘chain length’ [8][17] and the form of the absorptions in the N-H region is highly 

dependent upon the structure and composition,  and in all likelihood, the 

morphology, of the polymer, as was discussed above.  Evidence for the potential 

variability of the structure/morphology of the PBI between films nominally produced 

by the same method may be found by comparing figs. 6.5(a) and (b) to comparable 

spectra in the literature; this reveals marked variation in the ratio of the intensity of 
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the C=C/C=N band at 1620 cm
-1 

to the 1443 cm
-1

 in-plane benzimidazole ring 

vibration, suggesting a concomitant wide variation in polymer morphology.  Thus, 

from the figures, it can be seen that the intensity of the 1620 cm
-1 

feature in the 

spectrum of PBI1 is ca. 56% of the intensity of the 1443 cm
-1

 feature; in the 

spectrum of PBI2, this same ratio is ca. 79%.  In contrast, in all but one of the papers 

reporting mid-IR data on PBI [5][7-9][15][17-18], the 1620 cm
-1

 band is 

considerably (5 – 8x) weaker than the 1443 cm
-1

 feature.  The exception is the paper 

by Pu and co-workers[16], where the C=C/C=N band is of comparable intensity to 

the 1443 cm
-1

 feature.  There is also some variability in the frequency of the former.  

The only clear difference between the study of Pu et al and the other studies is the 

source of the PBI: Pu et al obtained their PBI sample from Aldrich, whereas all the 

other groups sourced their material from Celanese.  The PBI employed in the work 

reported in this study was sourced from Between Lizenz, Stuttgart, Germany.  

Further, as can be seen from fig. 2(b), whilst the features of both films in the range 

1000 – 1800 cm
-1

 are of similar intensity, the 800 cm
-1

 band in the spectrum of PBI1 

is 2.4x the intensity of that of PBI2, yet the N-H absorptions of PBI2 are ca. 3.2x 

more intense than those of PBI1.   It is not unreasonable to postulate that the 

structure and morphology of the PBI polymer chains are encoded in the IR spectra, 

rather as the amide I C=O absorptions contain information about the secondary 

structure of proteins [23]. 

As may be seen from fig. 6.5(b), the 1443 band is accompanied by shoulders near ca. 

1410, 1460 and 1480 cm
-1

; this complex group also appears in the spectra reported 

by other workers, with the relative intensities of the component peaks varying from 

group to group, (although the frequencies of the shoulders are generally not 

specified) see for example [7].  Thus, the variation in the relative intensities and, in 

some cases, frequencies of the IR bands of undoped PBI across the 

literature suggests that the IR response of such films is dependent upon their 

structure and morphology and, most likely, their synthesis method and thus the 

supplier/source of the polymer.  Further, the fact that the relative intensities of the 

various features change suggests that the IR spectrum of a particular sample is a 

composite of the IR responses of the component chains of varying 

length/packing/etc. 
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6.2.2. The effect of humidity 

Figure 6.6(a) shows spectra collected from PBI1 as a function of relative humidity 

up to ca. 90% ratioed to the reference spectrum collected in pure, dry N2, according 

to the data manipulation in eq. 2.10 (see section 2.3.2).  The spectra show a broad 

gain in intensity across the spectral range from 2600 to 3700 cm
-1

, ie the 

range covering absorption by self-associated N-H, with increasing humidity, 

along with broad gains with maxima between 2000 and 2500 cm
-1

, and near 

716 cm
-1

, the intensities of which appear to track that of the higher frequency 

feature.    

Figure 6.6(b) shows the spectrum taken at 90% RH subtracted from that collected 

at 32% in order to ameliorate the effect of the features due to water vapour, 

over a restricted spectral range.  On replacing the 90% RH atmosphere in the cell 

by pure, dry N2, the spectra in figs 6.6(a) and (b) returned to baseline after 30 

minutes, showing that the processes responsible for the changes in the spectra were 

reversible. 

It is clear from figs. 6.6(a) and (b) that increasing humidity has a marked effect on 

the IR absorptions of the PBI, presumably due to the incorporation of water 

in the polymer structure: the key question is then where is the water incorporated?  

Musto et al[8] state that the spectrum of (undoped) PBI below 2000 cm
-1 

is characterized by narrow peaks attributable to ring vibrations, and the work 

of Ramondo et al [11] on imidazole  and Zelinski and co-workers [13] on 

benzoimidazole suggest that the disruption of the N-H…..N hydrogen bonding 

(N-H self-association) by the incorporation of hydrogen-bonded water between 

the PBI chains (see scheme 6.2) would be expected to have a significant effect 

upon  these ring vibration absorptions due to the impact on C-N  and C-C bond 

lengths. Scheme 6.2 is redrawn from the paper by Brooks et al [10] who studied the 

uptake of water into dry, undoped PBI using, among other techniques, FTIR and 

NMR.   
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Figure 6.6. (a) Spectra of film PBI1 collected during an experiment in which the 

relative humidity (RH)  was varied from 32% to 90%. A spectrum in N2 was taken to 

check the stability of the system after the reference spectrum was collected.  (b) The 

spectrum collected at 32% RH in fig. 6.2(a) subtracted from that taken at 90% RH in 

the same figure. 
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With respect to the FTIR data presented by Brooks et al [10], unfortunately, the 

authors only considered the IR spectral range between 2500 cm
-1

 and 3700 cm
-1

; 

apart from commenting on seeing an increase in the free water band at 3620 cm
-1

, 

they concluded that the data was inconclusive with respect to the formation 

of H-bonded water.  In contrast, the NMR data, rate of water uptake and equilibrium 

water content vs RH were all interpreted in terms of the incorporation of the 

water into the polymer matrix without interaction, ie. without H-bonding between 

water and the PBI chains.  However, this conclusion is in direct conflict with the 

generally-held view that incorporation of water is via hydrogen bonding; see for 

example [15].   

The broad, relatively featureless gain between 2600 and 3700 cm
-1

 in fig. 6.6(a) 

suggests the gain of hydrogen bonded N-H….H-O-H with varying degrees 

of association (hence the breadth). The broad gain feature between ca. 1850 

and 2750 cm
-1

 may be attributed to the combination band of bulk water [24]. 

The broad band centred near 720 cm
-1

 is featureless, but has sharp loss and gain 

bands superimposed upon it, and may be due to the gain of librational 

absorptions [25] associated with the incorporated water; however, the intensity of the 

latter feature seems disproportionately large, and further work is required to clarify 

its assignment. 

Figure 6.6(b) clearly shows the presence of weak gain and loss features across 

the spectral range from ca. 1700 to 500 cm
-1

; however, they are too weak to 

discern clearly.  Thus, fig. 6.7 shows the spectrum in fig. 6.6(a) collected at 90% RH 

and also spectra collected at ca. 90% RH at the end of two repeats of the 

experiment in figs. 6.6(a) and (b) using films PBI3 & PBI4 which were both ca. 7.9 

m thick (0.9 mg cff 0.5 mg loading of PBI1).  The broad gain feature having a 

maximum between 2000 and 2500 cm
-1

 in fig. 6.7 may again be attributed to 

the combination band of bulk or liquid water; this, along with the clear gain feature 

near 1670 cm
-1

 (the exact frequency of which is obscured by the loss feature near 

1620 cm
-1

) lending support to the postulated existence of this form of water in the 

film. 
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Figure 6.7. Spectra collected at 90% RH during repeats of the experiment depicted 

in fig. 6.6(a): (i) film PBI3 (7.9 µm) and (ii) PBI4 (7.9 µm) and (iii) the spectrum of 

PBI1 collected at 90% RH in fig. 2(a).   

 

As may be seen from the figure, the loss and gain features below 2000 cm
-1

 are clear; 

in fact, the increase in the intensities of these bands is disproportionately large 

compared to the ca. 80% increase in PBI loading.  These features may be seen more 

clearly in fig. 6.8 which shows the spectral range from 2000 to 500 cm
-1

 and omits 

the spectrum from PBI1.  As can be seen, there are a plethora of sharp features, both 

gain and loss, which bear little resemblance to the spectrum in fig. 6.5(b).   Again, 

the disparity between the intensities of the N-H absorptions relative to the sharp 

features below 2000 cm
-1

 suggests differences in morphology, although detailed 

analysis is hindered by the highly structured nature of the absorptions above 2500 

cm
-1

, possibly suggesting that this region is dominated by loss features due to the N-

H absorptions superimposed upon which are gain features due to water as the N-H 

hydrogen-bonded networks are disrupted by the incoming water.  In order to test the 

validity of this theory, the experiment represented by figs. 6.6, 6.7 and 6.8 was 

repeated using saturated NaCl in D2O to produce the humid atmosphere, and the 

results are discussed in the next section. 
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Figure 6.8. The spectra of (i) PBI3 and (ii) PBI4 in fig. 3(a) over the range 500 – 

2000 cm
-1

. 

 

 

6.2.3. The effect of D2O 

The effect of D2O vapour on PBI2 is shown in figs. 6.9 - 6.11. Figure 6.9 shows the 

spectra collected as a function of D2O RH from 30 to 90% and figures 6.10 and 6.11 

show the spectrum collected at 90% D2O RH and the spectrum collected at 90% H2O 

RH using PBI4 in figs. 6.7(a) and (b).  Both films were nominally 7.9 m thick, and 

the spectra ratioed to reference spectra collected in dry N2. 

Figure 6.10(b) clearly shows the gain of a broad feature giving a maximum near 

2386 cm
-1

 attributable to the O-D stretch[26], and the loss of a well-defined, broad 

feature having a maximum near 3200 cm
-1

.  A comparison of figs. 6.5(a) and 6.10(a) 

clearly shows that the latter is due to H-bonded N-H moieties and a shoulder near 

3413 cm
-1

 due to the “free” N-H stretch.  Thus, the absorption due to the gain of the  

O-H stretch of bulk water is overlain by the N-H loss features in fig. 6.7(a); by using 

D2O instead of water, the gain absorption due to the O-D stretch now appears very 

clearly, and the loss features due to the N-H bands are now also very clear: hence the 

use of D2O rather than H2O has clearly separated the water features from the changes 
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in the N-H region.  This can also be seen from the absence of the gain feature near 

1672 cm
-1

 (the precise frequency of which is obscured by the C=C/C=N loss feature) 

in the spectrum of PBI2 that is present in the spectra of PBI1, 3 and 4, and may be 

attributed to the H-O-H deformation associated with the O-H stretch of free water.  

The broad gain feature with a maximum near 720 cm
-1

 in the spectra obtained using 

H2O is also absent when D2O was employed.  It is clear from the data in fig. 6.10(a) 

that, as well as water being hydrogen bonded between the polymer chains, it is also 

incorporated as bulk water, presumably in pores in the polymer.  It is also clear that 

the incorporation of hydrogen bonding-free water is relatively minor. 

 

Figure 6.9. Spectra of film PBI2 collected during an experiment in which the D2O 

RH was varied from 32 to 90%. 

     

It may be seen from figs. 6.10(b) and 6.11 that there are more loss features in the 

D2O spectrum than in the H2O spectrum (although these bands may be attributed to 

the PBI, see table 6.1), with most being bipolar, with the bands shifting to lower 

frequency, suggesting that the uptake of D2O has perturbed the PBI significantly 

more than the uptake of H2O.   
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Figure 6.10. Spectra collected at 90%RH in (i) D2O (PBI2) and (ii) H2O (PBI4, 

spectrum from fig. 3(a)): (a) full spectral range, (b) 1250 – 2000 cm
-1

.  
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Figure 6.11. Spectra depicted in fig. 6.10(a) enlarged over the spectral range from 

1250-500 cm
-1

.  

 

Given the postulated marked dependence of the ring vibrations on the degree of 

hydrogen bonding between the PBI chains discussed above, then it does not seem 

unreasonable to postulate that the uptake of D2O results in the exchange of the N-H 

for N-D, with concomitant changes in the IR ring absorptions over and above those 

observed with water uptake.  Thus, in contrast to the conclusions of Brooks and co-

workers [10], the uptake of water by PBI, as well as resulting in regions of ‘free’ 

water, also disrupts the N-H…..N hydrogen bonded network due to the formation of 

hydrogen-bonded water as in scheme 6.2. 

6.2.4. The effect of temperature 

Figure 6.12 shows the effect of heating PBI4 to 100 °C in dry N2.  This experiment 

was carried out prior to that depicted in figs. 6.6(a) and (b). The film had been 

exposed to air during the drying process following casting.  It is clear that significant 

water uptake took place during this time; this is not surprising given that the relative 

humidity in the UK does not fall below 70% and that, as discussed previously, PBI is 

able to absorb up to ca. 15 wt.% H2O at 100% RH [10][15].  Figure 6.13 shows the 
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90% RH PBI4 spectrum in fig. 6.6(a) and that taken at 100 °C in fig. 6.12; from the 

figures, it is clear that the two spectra are essentially mirror images, as would be 

expected if water uptake was reversible. 

 

Figure 6.12. Spectra collected at (i) 25 °C (second spectrum), (ii) 50 °C and (iii) 100 

°C from PBI4.  The spectra were ratioed to the reference spectrum taken at 25 °C 

(first spectrum).  The experiment was conducted prior to the humidity experiment 

depicted in figs. 6.6(a) and (b).   

 

6.3. Conclusions 

The absorption of water from the atmosphere by freshly-cast films of PBI is 

appreciable and relatively rapid.  The two primary models of water uptake are either: 

(1) incorporation without disruption of the interchain hydrogen bonding, as bulk 

water in pores or as hydrogen bonding-free water or (2) incorporation of water 

between the polymer chains with the formation of hydrogen bonds and consequent 

disruption of the interchain hydrogen bonds. The data clearly show that all of these 

processes take place: some small incorporation of “free” water, as well as more 

significant incorporation of bulk or liquid water, and also clear and marked 

disruption of the interchain, N-H….H hydrogen bonds due to the insertion of water 
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between the chains with the formation of hydrogen bonds between these water 

molecules and the PBI chains. 

 

Figure 6.13. (i) The spectrum of PBI4 collected at 90% RH during the experiment 

depicted in fig. 6.6(a) and (ii) that taken at 100 °C in fig. 6.10(a).     

 

Finally, the structure and morphology of the PBI films appear to vary between 

samples, even between samples prepared by nominally identical procedures, as 

evinced by changes in the relative intensities of various features in the IR spectra.  

The possible consequence of this is that significant information on the structure of 

PBI films is encoded in their IR spectra, but further work is required to elucidate 

this. 
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7. Conclusions and Future Work 

The in-situ FTIR studies on the electro-oxidation of ethanol at Pt in 0.1 M KOH 

have shown that the reaction involves primarily adsorption through O and successive 

two-electron oxidations to CH3CHO and CH3COO
-
. It has been established that 

under conditions of ethanol starvation, the adsorbed acetate species can form a 

further intermediate that we have tentatively identified at Pts-CH2-C(=O)-O-Pts on 

the basis of IR and chemical likelihood, and this is the dominant route under ethanol 

starvation conditions. Hence, Pt is intrinsically capable of fully oxidising ethanol to 

carbonate in alkaline solution, but under normal fuel-cell operating conditions this is 

unlikely to be the dominant route. The investigation of ethanol electro-oxidation at 

50 
o
C revealed that the production of acetaldehyde and acetic acid is temperature 

dependent, strongly suggesting that the rate determining step in this process is the 

removal of the first proton from the initially-adsorbed ethoxide species, and it was 

tentatively suggested that this is also the rate determining step under alkaline 

conditions.    

The FTIR studies at a Pb-modified, polycrystalline Pt anode in 0.25 M KOH have 

shown, surprisingly, that significant carbonate may be formed at very low potentials, 

and it was postulated that this takes place at Pt domains between Pb islands. The 

extent of catalysis is restricted since only at the particular edges of Pb islands will 

appropriate conditions exist for oxidation. Hence, if this catalysis is to be developed 

further, a surface must be fabricated in which the formation of Pb islands is carefully 

controlled, thus leaving exposed Pt in regions large enough to act as efficient 

catalytic centres, but sufficiently small that the highly unusual properties seen in the 

results presented in Chapter 4 can be retained. Future work may also include the 

application of FTIR to the analysis of EtOH electro-oxidation at PtPb with Pb in 

solution. However, optical problems due to Pb deposition taking place during 

spectral data collection must be overcome in order to obtain reliable data.  

Bi is generally accepted as a facile source of OH, and hence would be interesting to 

investigate as adatoms on polycrystalline Pt to supplement the studies on 

Pb.  Preliminary experiments should focus on the voltammetry of Bi-modified Pt in 

the absence and presence of ethanol, both pre-adsorbed and in solution, supported by 

appropriate in-situ FTIR experiments.   
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The preliminary FTIR studies on PBI as a function of humidity and temperature have 

shown that water uptake by PBI is appreciable and relatively rapid.  The two primary 

models of water uptake are either: (1) incorporation without disruption of the 

interchain hydrogen bonding, as bulk water in pores or as hydrogen bonding-free 

water or (2) incorporation of water between the polymer chains with the formation of 

hydrogen bonds and consequent disruption of the interchain hydrogen bonds. The 

data presented in Chapter 6 clearly show that all of these processes take place. 

Further, the structure and morphology of the PBI films appear to vary between 

samples, causing changes in the relative intensities of various features in the IR 

spectra. It is therefore likely that significant information on the structure of PBI films 

is encoded in their IR spectra, but further work is required to elucidate this. 

Unfortunately, time did not allow for FTIR studies of acid-doped PBI films (eg. 

H3PO4), and it does not seem unreasonable to suggest this as the next stage of 

research. As a first step, absolute spectra of the doped films should be collected in 

order to elucidate changes in the hydrogen bonding network caused by the uptake of 

acid by the polymer, before progressing to studies as a function of humidity and 

temperature. 

A potential application of the in-situ FTIR experimental system employed in the PBI 

studies, which has not yet been realized, is to the analysis of HT-PEMFC anodes as a 

function of temperature and gas composition (eg. CO, H2). This was originally 

included as part of the Supergen project but, due to the intriguing nature of the work 

on ethanol oxidation and PBI, it was not possible to commence these studies. 

Another potential application is to the analysis of porous Pt catalyst/electrode films 

interfaced with yttria-stabilised-zirconia (YSZ) solid electrolyte membranes, which 

have found application in solid oxide fuel cells. Initial research should be focussed 

on the fundamental IR studies of Pt-YSZ under open circuit potential as a function of 

temperature and gas composition within the environmental chamber.      

 

 

 

 


