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ABSTRACT 

 

Blind Source Separation (BSS) attempts to automatically extract and track a signal of 

interest in real world scenarios with other signals present. BSS addresses the problem of 

recovering the original signals from an observed mixture without relying on training 

knowledge. This research studied three novel approaches for solving the BSS problem 

based on the extensions of non-negative matrix factorization model and the sparsity 

regularization methods. 

1) A framework of amalgamating pruning and Bayesian regularized cluster nonnegative 

tensor factorization with Itakura-Saito divergence for separating sources mixed in a stereo 

channel format: The sparse regularization term was adaptively tuned using a hierarchical 

Bayesian approach to yield the desired sparse decomposition. The modified Gaussian prior 

was formulated to express the correlation between different basis vectors. This 

algorithm automatically detected the optimal number of latent components of the 

individual source. 

2) Factorization for single-channel BSS which decomposes an information-bearing 

matrix into complex of factor matrices that represent the spectral dictionary and temporal 

codes: A variational Bayesian approach was developed for computing the sparsity 

parameters for optimizing the matrix factorization. This approach combined the advantages 

of both complex matrix factorization (CMF) and variational   -sparse analysis. 
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3) An imitated-stereo mixture model developed by weighting and time-shifting the 

original single-channel mixture where source signals can be modelled by the AR processes. 

The proposed mixing mixture is analogous to a stereo signal created by two microphones 

with one being real and another virtual. The imitated-stereo mixture employed the 

nonnegative tensor factorization for separating the observed mixture. The separability 

analysis of the imitated-stereo mixture was derived using Wiener masking. 

All algorithms were tested with real audio signals. Performance of source separation 

was assessed by measuring the distortion between original source and the estimated one 

according to the signal-to-distortion (SDR) ratio. The experimental results demonstrate 

that the proposed uninformed audio separation algorithms have surpassed among the 

conventional BSS methods; i.e. IS-cNTF, SNMF and CMF methods, with average SDR 

improvement in the ranges from 2.6dB to 6.4dB per source. 
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CHAPTER 1  

 

INTRODUCTION TO THE THESIS 

 

 

1.1 Background of Blind Source Separation 

Humans are very good at focusing their attention on the speech of a single speaker, 

even in the presence of other speakers and background noise. One classical problem of 

blind source separation (BSS) [1] is the so-called “cocktail party problem” is a 

psychoacoustic phenomenon that refers to the remarkable human ability to selectively 

attend to and recognize one source of auditory input in a noisy environment, where the 

hearing interference is produced by competing speech sounds or a variety of noises that 

are often assumed to be independent of each other. Although the human brain and 

auditory system can handle this everyday problem with ease it is very hard to solve with 

computational algorithms. There are attempt to imitate the human performance with a 

machine by simplifying the complex perceptual task as a learning problem for tractable 

computational solution.  

Speaker separation has conventionally been treated as a problem of Blind Source 

Separation. BSS [2] is an approach to unveil independent source signals from their 

mixtures without any prior information on the sources or the parameters of the mixed 

signal. Many methods for BSS have been proposed to reconstruct source signals for 
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example computational auditory scene analysis (CASA) relies on the development of a 

computational model of the auditory scene to automatically extract and track a sound 

signal of interest in a cocktail party environment, independent component analysis (ICA). 

ICA is a data driven method that makes good use of multiple inputs and relaxes the strong 

characteristic frequency structure assumptions. 

The ICA algorithms find the independent components by maximizing the statistical 

independence of the estimated components. However, ICA algorithms perform best when 

the number of observed signals is greater than or equal to the number of sources [3]. BSS 

is broadly applied in different disciplines such as in order to deploy automatic speech 

recognition (ASR) effectively in real world scenarios it is necessary to handle hostile 

environments with multiple speech and noise sources. Current state-of-the-art ASR 

systems are trained on clean single talker speech and therefore inevitably have serious 

difficulties when confronted with noisy multi-talker environments [4]. 

Non-negative Matrix Factorization (NMF) has been ubiquitously used in many 

applications with great success for recovering underlying source signals given by a single 

sensor. The NMF method was invented by two scientists Lee and Seung [5] for 

factorizing a matrix into a product of two non-negative matrices. NMF has been applied 

extensively with considerable success to various problem domains, such as monaural 

sound source separation [6], polyphonic music transcription [7], face detection [8] and 

other signal-processing applications. NMF can project all signals that have the 

homogeneous spectral shape on a single basis, allowing one to represent a variety of 

phenomena efficiently using a very compact set of spectrum bases and there has been a 
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plenty of work in modeling audio using non-negative matrix factorization and its 

probabilistic counterparts as they yield rich models that are very useful for source 

separation and automatic music transcription. Learning time-varying spectra with 

standard NMF would require using a large number of basis vectors, and some 

post-processing to group the basis vectors into a single spectral vector. NMF and its 

extension are the prominent methods for linear combination that algorithms have been 

applied to solve the practical problems of BSS in many applications. Existing approaches 

have been successful in different conditions but none of them are yet satisfactory for 

speech application. 

 

1.1.1 Blind Source Separation Problem using Nonnegative Matrix Factorization 

Nonnegative matrix factorization (NMF) is an unsupervised data decomposition 

technique with considerable research success in the fields of blind source separation (BSS) 

[6, 9], data classification [10], data mining [11], pattern recognition [12], object detection 

[13], and dimensionality reduction [14]. Conventional NMF starts with a data matrix 

              
   with       . NMF factorizes this matrix into a product of two 

nonnegative matrices i.e.     
    

 and     
    

 such that  

 

                                        (1.1) 

 

where F and T denote the total number of rows and columns in matrix  , respectively. 

Generally,   is arbitrary set to be smaller than F and T. Thus, matrix   is the output 

from the multiplication of the compressed matrix   weighted by the component of  . 



CHAPTER 1 

4 

As such, the   of   is important for approximating the data in  . Therefore, the 

matrix   is considered as a set of basis vectors. NMF was initially developed using the 

multiplicative update (MU) algorithm to solve its parametric optimization based on the 

least square (LS) distance and Kullback-Liebler (KL) divergence as a cost function 

[15-16]. Other families of cost functions have been proposed, such as the Beta divergence 

[17], Csiszar’s divergences [18], and Itakura-Saito (IS) divergence [19]. Additionally, 

iterative gradient update was presented [20] and a sparseness constraint can be included 

into the cost function by regularization using the   -norm based on minimizing penalized 

least squares [21] and using different sparsity constraints for   and   [22]. However, 

the sparsity parameter is manually determined the above proposed methods. Approximate 

sparsity is an important factor which represents significant information in  . Many sparse 

solutions have been proposed in the last decade. Nonetheless, the optimal sparse solution 

remains an open issue. 

 

1.1.2 Applications of BSS  

 

BSS has been a hot topic in signal processing during last few decades. Applications of 

BSS have been reported in many fields. Such is the case when a sensor array records 

acoustic or electronic communications signals emanating from a number of different 

sources. BSS is an important technique used in applications such as a front-end for robust 

automatic speech recognition (ASR) where many proposed methods are based on 

independent component analysis (ICA). However, the performances of these methods 

degrade seriously particularly under extreme reverberant conditions. The experimental 
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results reveal that the separation performance of the ICA method proposed in [23, 24] 

using subarray processing is improved as the number of microphones is increased. An 

automatic music transcription task involves extracting information from individual 

sources. This task becomes more challenging when a given musical recording has 

numerous parts by numerous instruments. The one solution based on NMF approach [25] 

is to analyze frequency spectra of music signals and perform instrument separation or 

note transcription. If each of the instruments in the mixture can be modelled, they can be 

transcripted individually. This application is useful for a musician attempting to practice a 

particular instrument of interest directly from a multiinstrument recording. 

Another example of the blind source separation application can be seen in medical 

applications where electrodes on the scalp record a mixture of signals generated by 

various sources of activity within the brain and are combined with sources of interference, 

such as signals generated by muscle activity. The BSS problem arises e.g. in analysis of 

the electric potentials on the scalp surface (electroencephalogram (EEG)), recording the 

magnetic fields near the surface of the head (magenetoencephalogram (MEG)). The 

analysis of the data is complex because it is possible that multiple neural generators are 

simultaneously active, and the potentials and magnetic fields from these sources overlap 

the footprint of the detectors [26]. In these cases, the BSS solution has been used to 

un-mix the data into signals representing the behaviors of the original individual 

generators. Recent research has also shown the feasibility of BSS techniques for various 

medical applications in [27, 28]. 

Blind source separation (BSS) has been attempted in robot audition, using a 
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microphone array. In these cases, the use of multiple sensors array improves significantly 

the performance of the source separation algorithm. Microphones that should be used for 

robot audition given a specified array geometry i.e. the microphones are located around 

the robot’s head [29]. 

 

1.1.3 Blind Audio Source Separation 

 

In this thesis, the special case of audio mixtures problem termed as blind channel source 

separation is focused. For blind audio source separation (BASS) methods, this denotes the 

separation of completely unknown sources without using additional training information. 

Most audio signals are mixtures of several audio sources (speech and music). This 

method consists in recovering one or several source signals from a given mixture signal. 

Figure 1.1 shows a general framework for BASS methods. 

 

 

 

 

 

 

 

 
 

Figure 1.1: Overview of BASS approach. 
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In Figure 1.1, the input to the separation system is only the audio mixture. The mixture 

is transformed into a suitable representation that directly through a signal reconstruction 

method to compute the estimates of the separated sources. 

 

1.2 Objectives of Thesis 

 

This thesis aims to investigate blind source separation methods in fundamental theories, 

assumptions, applications and limitations terms and further develop new algorithms of BSS 

for audio mixture. With this goal, the objectives are briefly explained in the following:  

 

i). To present a unified perspective of the widely used state-of-the-art nonnegative matrix 

factorization (NMF) approaches. The theoretical aspects of BSS are presented to 

provide sufficient background knowledge relevant to the thesis. 

ii). To develop rigorous new theories, mathematical derivations, and algorithms to recover 

the information about the original sources. 

iii). To carry out analysis and comparisons of the proposed algorithms performance with 

state-of-the-art BSS methods by using objective as well as perceptual evaluation of 

audio quality using metrics such as the Signal-to-Distortion ratio (SDR). 

 

1.3 Thesis Outline 

 

Three novel methods based on NMF constitute the main contribution of the thesis. The 

thesis outline is as follows: 
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Chapter 2 provides an overview of recent source separation methods based on NMF 

approach is given. This chapter begins with an introduction to NMF methods and includes 

hidden Markov model (HMM) and complex components. The extention of NMF which is 

known as nonnegative tensor factorization (NTF) method is also reviewed. 

 

Chapter 3 introduces a novel approach to Bayesian regularized cluster nonnegative 

tensor factorization under a parallel factor analysis (PARAFAC) structure. The basis for 

the proposed tensor factorization is developed under the framework of maximum a 

posteriori probability which is further adaptively fine-tuned using the hierarchical 

Bayesian approach. This chapter will show that this method enables: 1) a generalized 

criterion for variable sparseness to be imposed onto each element of the temporal code; 

and 2) modified multivariate rectified Gaussian prior information to be explicitly 

incorporated into the basis features. This chapter also addresses the important issue of 

efficiency by using a framework of model selection for pruning unnecessary components 

and a novel Bayesian regularized cluster nonnegative tensor factorization under a 

PARAFAC structure with Itakura-Saito divergence. The proposed method is demonstrated 

further via experiments on underdetermined linear instantaneous stereo mixtures. 

 

Chapter 4 covers a novel single-channel audio source separation (SCASS) which has 

been developed to extract better quality of audio separated signals. This chapter will 

introduce this approach that exploits the variational   -sparse complex matrix 

factorization (v  -SCMF) to offer the advantages of the CMF and a variational   -sparse 
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approach, simultaneously and decomposes an information-bearing matrix into complex 

factor matrices that represent the spectral dictionary and temporal codes. The derivation 

of a variational Bayesian approach to compute the sparsity parameters for optimizing the 

matrix factorization will be presented. The method is then demonstrated on separating 

audio mixtures recorded from a single channel and its performance is compared with 

other existing sparse factorization methods. The performance of the developed algorithms 

will be measured using real-time audio signals in terms of the signal-to-distortion ratio. 

 

Chapter 5 presents, a novel approach to solve the single-channel blind source 

separation (SCBSS) problem in which a new imitated-stereo mixture is formulated by 

weighting and time-shifting the original single-channel mixture. This chapter will show 

how paves the way to employ nonnegative tensor factorization applies to the 

monaural-channel problem by creating an artificial mixing system whose parameters can 

be estimated via a proposed nonnegative tensor factorization. The proposed tensor 

factorization is further developed under the framework of maximum a posteriori 

probability and is adaptively fine-tuned under a PARAFAC structure with Itakura-Saito 

divergence. In addition, the separability analysis of the proposed imitated-stereo mixture 

is derived. Experimental testing on real-audio sources has been conducted to verify the 

capability of the proposed method. 

 

Chapter 6 provides the closing remarks as well as future avenues for research. 
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1.4 Contribution 

 

This thesis contributes three novel solutions for the BSS problem which can be 

summarised as follows: 

 

i). A unified approach for the existing BSS methods based on nonnegative matrix 

factorization. 

 

ii). A novel framework for multichannel blind source separation is proposed: 

 Unlike the conventional NTF approach, the proposed framework assigns a 

probability distribution to each element of          and a sparsity parameter 

associated with each probability distribution. This sets up a platform to enable 

the sparsity parameter to be individually optimized for each element code. 

 It automatically detects the optimal number of components   of the individual 

source (i.e.   ,            where      is the maximum number of 

sources). It designates a prior distribution on   and determines the desirable 

   in   by pruning the irrelevant    from  . The term   with the proper 

   is used for estimating the source which renders the better separation 

performance than   without the proper   . 

 It incorporates prior information of the basis vectors using the modified 

multivariate rectified Gaussian. This benefits the overall algorithm in terms of 

better estimation accuracy and more meaningful feature extraction that pertain to 

the data. Since each pattern in the observed mixture has its own features, 
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designing the appropriate basis to match these features is imperative.  

 

iii). A novel algorithm to solve SCBSS based on CMF is proposed.  

 Unlike the CMF, the proposed model is assigned a probability distribution to 

each element of          and a sparsity parameter associated with each 

probability distribution. This sets up a platform to enable the sparsity parameter 

to be individually optimized for each element code.  

 The proposed algorithm enables the phase of constituent signals to be estimated 

more accurately for feature extraction. Since each pattern in   has its own 

features, designing the appropriate phase to match these features is imperative. 

Incorporating the phase parameter will give the better recovered sources than 

without using phase information. 

 Each sparsity parameter in our model is learned and adapted as part of the matrix 

factorization. 

 

iv). A novel method for single-channel blind source separation (SCBSS) based NTF is 

proposed.  

 The novel imitated-stereo mixture lights the way to reformulate NTF approaches 

into the single mixture. This relaxes the under-determined ill-conditions 

associated with monaural source separation. 

 The proposed solution separates sources from a single channel without relying 

on training information about the original sources. 
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CHAPTER 2  

 

OVERVIEW OF BLIND SOURCE SEPARATION  

 

The following sections will provide an overview of existing algorithms of the 

Single-channel Independent Component Analysis (SCICA), nonnegative matrix 

factorization (NMF) composed of single channel NMF [30-32] and multi-channel NMF 

which is known as Nonnegative Tensor Factorization (NTF). NTF is a multidimensional 

model with nonnegativity constraints. Generally, the term ‘tensor’ denotes multi-way 

arrays and the order of a tensor is the number of modes, also known as ways or 

dimensions. The details of these approaches are discussed in Sections 2.1, 2.2 and 2.3.  

 

2.1 Single-channel Independent Component Analysis 

 

The ICA-based methods [33 - 35] show very successful, and perhaps, the most widely 

used, for performing blind source separation in the general case. Single-channel 

independent component analysis (SCICA) is a BSS technique that extracts statistically 

independent sources from a single-channel recording. SCICA is an adaptation of the 

standard ICA algorithm to one observed sensor, which has already been proposed in [24, 

36, 37]. The mixtures can then be separated by only employing the standard ICA. The 

observation model is expressed as: 

                    (2.1) 

where the     matrix   is an unknown constant matrix called the mixing coefficient 
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matrix. The task is to identify the mixing coefficient matrix  , and separate the source 

signals   while only knowing a sample of observed vectors  . The term   represents 

independent signals. Generally, the original signals can be separated from   as shown in 

the following: 

               where            (2.2) 

For SCICA, the observed mixture   is broken up into a sequence of contiguous blocks 

  with length  . These are treated as a sequence of vector mixtures: 

 

                                   (2.3) 

 

where           is the block index   is a time delay, and          is the 

length of the original signal. The matrix   is then formed as a set of mixtures      as 

the following: 

 

                                (2.4) 

 

The FastICA algorithm [38-40] can then be applied to   to compute the mixing and 

unmixing matrix   and  . For a perfect reconstruction decomposition, the separation 

process must be performed in the mixture domain where each signal is discovered via   

and   as: 

  
   

                               (2.5) 

 

where   
   

 is the original    signal in the mixture domain i.e.      
   

 . The     

signal is consecutively estimated and subtracted from   one at a time where the 

subtracted   is redefined as a new obtained mixture  . The algorithm is repeated to 
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extract the second signal and so on which is presented in Table 2.1.  

 

Table 2.1: Algorithm of SCICA 

1. Break up an observed mixture   into a sequence of adjacent blocks   

2. Apply the FastICA algorithm to this matrix, to compute the unmixing matrix    

3. Extract the particular signal      of interest by filtering the mixture   with the 

corresponding row of the matrix    

4. Recover the original signal   
   

 by multiply the extracted signal      with the     

column of the matrix    

5. Subtract the recovered signal   
   

 from the mixture  , redefine the substracted 

mixture as  , and repeat the steps from 1 – 4 to further extract the remaining signals. 

 

However, SCICA has two major drawbacks: first, the algorithm assumes stationary 

sources, and second, the sources are assumed to be disjoint in the frequency domain. 

 

 

2.2 Nonnegative Matrix Factorization Approaches 

 

In recent years, there is growing interest in the field of BSS using factorization-based 

approaches [41–45]. Non-Negative Matrix factorization (NMF) is a data-adaptive linear 

representation method for 2-D matrices as presented in Figure 2.1. NMF decomposes a 

non-negative data matrix   into the product of two non-negative matrix factors   and 

 : 

 

                             (2.6) 
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Figure 2.1: Diagrame of NMF 

 

Where   plays the role of the basic matrix, while   represents the weight matrix. 

The   parameter indicates the number of basis used to represent the original matrix. The 

basis can be considered as spectral patterns which are frequently observed. NMF is an 

additive model which does not allow subtraction. To find such a pair of   and   

which minimizes the error of the approximation in (2.6), two alternative cost functions 

are defined: Euclidean distance,  , and Divergence,  : 

 

                            
 

                                            (2.7) 

             
     

       
                                                        (2.8) 

 

NMF aims to calculate the factor of the matrix   in the form of the product of matrix 

 .   is any positive integer which is less than   or   [46] chosen for finding 

components. For the problem of sound separation at any position,        of the matrix   

is the amplitude of each frequency   at different time   when           and    

       presented in spectrogram as shown in (2.6) and can be explained by using linear 
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algebra. Figure 2.1 shows the matrix   as column vector of length F with T vectors. The   

columns of   consists of F-dimensional data vectors. The   columns of   contains 

basis vectors of dimension F. Each T-dimensional column vector of the approximation   

as (2.6) is a linear combination of all basis vectors, whereby the coefficients are the 

entries of the corresponding Z-dimensional column vector of  . 

After estimating the matrix   and   in a source separation, the next step is to select 

only the basis vector of the sound source from both of the matrices such as column at   

and row at   of the matrix   and   respectively. Next, multiplication of   and   

yields a new matrix size F× T to be used in calculating the spectrum of the target sound 

with various methods to follow. 

Thus, NMF algorithms aim to find a local minimum of the divergences. Commonly 

used cost functions for NMF are the generalized Kullback-Leibler (KL) divergence and 

Least Square (LS) distance which have been introduced in [5], respectively, as: 

 

   
           

 
            

 
   

      
 

       
        

 
        

 
 

   

 

 

             
           

 
    

 
        

 
        

 
 

 

                                            (2.9) 

   

where        is the power TF representation of mixture      which can be further 

factorized as the product of two nonnegative matrices   and   and     
 

   . From 

the above equations,     is equivalent to an assumed Poisson noise model for the data 

and     is equivalent to the maximum likelihood estimation of   and   in additive 

independent and identically distributed (i.i.d.) Gaussian noise. The widely used estimation 
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algorithms of Lee and Seung [5] minimize the chosen cost function by initializing the 

entries of   and   with random positive values, and then update those iteratively 

using multiplicative rules. Each update decreases the value of the cost function until the 

algorithm converges. The update rule for KL divergence is given by: 

 

    
     

          

   
                          (2.10) 

and 

                          
              

                            (2.11) 

 

where ‘  ’ and ‘   ’ denote the element-wise product multiplication and division, 

respectively. ‘ ’ is an all-one    by    matrix. The update rule for LS distance is given 

by: 

    
          

                                   (2.12) 

and 

 

                              
        

    
                                (2.13) 

 

On the one hand, the following are advantages of NMF: The mixing model is defined in 

the magnitude spectrum domain. Because of the phase-invariant nature of magnitude 

spectra, NMF is able to project all signals that have the same spectral shape onto a single 

basis. This allows us to represent a variety of acoustic phenomena efficiently using a very 

compact set of spectrum bases. On the other hand, NMF cannot estimate the phase spectra 

of underlying constituent signals, which certainly limits its range of applications.  



CHAPTER 2 

18 

2.2.1 NMF using Hidden Markov Model 

 

 
 

Figure 2.2: Overview of N-HMM method. 

 

This section presents a model of single source sounds, Non-negative hidden Markov 

model (N-HMM) [47], which combines the rich spectral representative power of NMF 

1. Input Sources 

3. N-HMM Parameters 

Initializations 

2. Pre-processing 

 

Source Separation 

4. EM Parameters 

Update 

Models of Sound Mixture 

N-FHMM 

Iterative 

Input Sound Mixture 

N-FHMM Parameters 

Initializations 

Pre-processing 

(STFT) 

STFT 

 

 

Magnitude 

 

Histogram 

 

  ,    

 

  ,    
  

 

  ,    

    

  ,    

    ,     

   
 ,    

  

   ,     

 
N-HMM 

 

 

Windowing 

 

 

Reconstruction 

  ,    

       

   
 ,    

  

 



CHAPTER 2 

19 

and the temporal structure modeling of traditional HMMs [48]. The overview of the 

N-HMM method is presented in Figure 2.2. N-HMM is consistent with the non-stationary 

nature of audio as a multiple learning small dictionaries of spectral components to 

describe different features of the sound source. Furthermore, it can be used to model the 

temporal dynamics of the sound source between dictionaries by learning a Markov chain.  

 

Table 2.2 Average SDR results for 3 types of mixtures in difference model N-HMM & N-FHMM 

and NMF.  

 

Mixture Method SDR (dB) 

Music and Music 

N-HMM & N-FHMM 7.42 

NMF 5.17 

Music and Speech 

N-HMM & N-FHMM 5.73 

NMF 3.55 

Male Speech and Female 

Speech 

N-HMM & N-FHMM 2.56 

NMF 2.06 

 

The overall comparison results between the N-HMM & N-FHMM and NMF methods 

have been summarized in Table 2.2. According to the table, the N-HMM& N-FHMM 

tends to yield better result than NMF method. The average performance improvement of 

the N-HMM& N-FHMM method against the NMF method: 1) for the music and music 

mixtures, the improvement SDR per source is 2.25dB. 2) For the music and speech 

mixtures, the improvement per source in term of SDR is 2.18dB. 3) For the male speech 

and female speech mixtures, the improvement per source in term of SDR is 0.5dB.  
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The results demonstrate that this approach is applicable to model the individual sources 

by learning several small dictionaries using NMF method and a Markov chain. Sources 

have been modeled via HMM in time-frequency domain obtain prior information of the 

original signals. Good separation performance with high SDR has been obtained using 

the method. However, the mixing model implicitly assumes the added magnitude spectra 

which only approximately hold, although attempts are made to mitigate the non-additive 

problem with respect to NMF. NMF cannot estimate the phase spectra of underlying 

constituent signals, which certainly limits its range of applications. Moreover, the phase 

coherence between frequency components can be easily destroyed as a result of many 

factors. It is difficult to capture high-level structural elements from observations through 

the use of complex-spectrum bases.  

 

2.2.2 Bayesian Non-negative Matrix Factorization 

 

Bayesian NMF [49] assumes a Gaussian likelihood, independent exponential priors on 

  and   with scales     ,      and derive an efficient Gibbs sampler to approximate 

the posterior density of the NMF factors. It is assumed that the residuals are i.i.d. zero 

mean normal with variance   , which gives rise to the likelihood 

                        
                          (2.14) 

 

                                              (2.15) 

and  

                                                (2.16) 
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where θ = {    ,   } denotes all parameters in the model. The prior for the noise 

variance is chosen as an inverse gamma density with shape   and scale  , 

       
  

    
             

 

                      (2.17) 

According to Bayes' rule, the posterior distribution of all parameters in the model is 

given by 

                                                    (2.18) 

The joint posterior density is approximated in a sampling scheme by iteratively 

sampling one parameter while keeping all others fixed. Expressions are derived for the 

conditional posterior densities of the model parameters 

 

                                                                     (2.19) 

 

                  
                                                   (2.20) 

 

 

and                                                                                                     (2.21) 

 

 

where the index –f,k depicts all entries of a matrix except entry f,k. 

 

A Gibbs sampler is used to maximize the posterior density of the parameters by 

iteratively drawing samples from these conditional posterior distributions which converge 

towards the joint posterior distribution. Fortunately, there are closed forms of the 

densities to be drawn from and hence no samples need to be stored and the normalization 

constant can be computed. The authors demonstrate that the procedure is able to 

determine the correct number of components in a toy example and in a chemical shift 

imaging (CSI) dataset. 



CHAPTER 2 

22 

2.2.3 NMF with Automatic Relevance Determinant 

 

In [62] presented automatic relevance determination for KL-NMF for model order 

selection which does not need to evaluate the evidence by formulating a MAP criterion: 

            

                                                                                                                                       

                                           (2.22) 

using KL-divergence log likelihood and independent half-normal priors on each column 

of   and row of   with precision parameter    

         
 

   
     

 

 
      

                         (2.23) 

          
 

   
     

 

 
      

                          (2.24) 

 

The precision parameters    are provided with a Gamma prior 

              
  

  

     
   

    
                                (2.25) 

 

with fixed hyperparameters   and  . 

A multiplicative algorithm optimizes      in (2.22) by iteratively updating  ,   

and  . The data automatically determines the optimal values of the hyperparameters  . 

The algorithm is initialized with a relatively large value   of components and 

successively drives unnecessary components to extinction. This property results from 

Bayesian inference: a subset of the precision parameters will be driven to an upper bound 

which corresponds to a sharp peak at zero for the priors on      and row      and leads 

to an effective extinction of column      and row     . The effective number of 

components is determined by the number parameters    which are not driven to an 

upper bound during the iterations. 
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2.3 Complex Non-negative Matrix Factorization 

 

This section presents a mixture model defined in the complex time-frequency domain. 

Complex Non-Negative Matrix Factorization model (CMF) [50-52, 80] is a sparse 

representation for acoustic signals which offers the advantages of the sparse coding (SC) 

[81-83] and non-negative matrix factorization (NMF) [5] concurrently. It can extract the 

recurrent patterns of magnitude spectra and the phase estimates of constituent signals, and 

can be performed with an efficient iterative algorithm. CMF shares with NMF the ability 

to generate non-negative matrices   and  , while the input matrix   is assumed to be a 

complex matrix and the algorithm also generates a third-rank complex-valued tensor as 

the following 

 

      
   

     
   

                 (2.26) 

 

It is assumed that the short-time Fourier transform (STFT) of an audio signal,          

in frequency bin   and time frame  , is composed of   complex-valued elements 

 

             
   

    
     

 

                 (2.27) 

 

Each     
   is assumed to have a magnitude spectrum which is constant up to the gain 

over time: 

     
      

   
         

            
            (2.28) 

 

and a time-varying phase spectrum 

 

        
   

    
   
 

                (2.29) 
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The CMF model can be expressed as  

 

        
   

 
   

     
   

          
            

         (2.30) 

 

where   
  corresponds to recurring magnitude spectral pattern,   

  to time-varying 

activation coefficients and  
   
  to time-varying phase spectra and assume  

 

   
 

                             (2.31) 

 

in order to eliminate an indeterminacy in the scaling between   
  and   

 . 

 

The CMF method in [50] can be summarized as follows: 

(1) Transform the single channel mixture of two sources:                   

form the time domain to the time-frequency domain using STFT. 

(2) Initialize     and  . 

(3) Update     
   

  
   

 

   
   

 
 

. 

(4) Stabilize the algorithm by running NMF at the beginning of the iteration, which 

can be performed simply by fixing the value of   at  
     

 

   
     

      
. 

(5) The iterative algorithm is summarized as follows: 

1. Update              by computing      
    

   
   

     
 

      
            , 

and    
    

 . 

2. Update             by computing  

  
     

 
  

 

    
         

  
  

     
 

  

 
  

  

    
  

,   
   

 
  

 

    
         

  
  

     
 

  

 
  

  

    
         

  
   

, and  
     

 

    
      

 

      
  

. 

3. Update     
  according to the equation     

  
  

   
 

   
   

 
 

 and return to Step 1. 



CHAPTER 2 

25 

(6) Obtain the estimation of each source   1 and   2 by applying two different 

methods 

(6.1) Atom selection method 

The magnitude of atomic spectrum closest to the true spectrum was selected for 

each frame, and the framewise signals, each of which constructed using the 

selected atom and the corresponding activation coefficient and phase spectrum, 

were concatenated to synthesize the whole signal stream [50]. 

(6.2)  Reconstruction 

The reconstruction is calculated by multiplying the row of the spectral components 

  
   

 with the corresponding column of the mixture weights   
   

 and 

time-varying phrase spectrum  
     

   

. Then, convert the time-frequency represented 

sources back into time domain. 

 

An experimental results of the CMF method showed that reasonably good separation 

performance on the single-channel audio source separation can be obtained. 

 

 

2.4 Nonnegative Tensor Factorization Approach 

 

In this case, the extension of NMF for solving multichannel mixtures has been regarded 

by stacking up the spectrograms of each channel into a single matrix [53]. This approach 

is considered as nonnegative tensor factorization (NTF), also called nonnegative parallel 

factor analysis (PARAFAC), where the channel spectrograms are jointly modeled by a 

3-valence tensor [54]. NTF was introduced by Shashua and Hazan in [55] and has 
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become a popular technique for data analysis and dimensionality reduction, parts-based 

representation of nonnegative data. Algorithms for NTF such as PARAFAC have been 

used for audio source separation in [54, 56]. Regardless of the cost function used, in order 

to achieve audio source separation, some methods require grouping of the basis functions 

according to the sources or instruments. Different grouping methods have been proposed 

by Casey [57] and Virtanen [6], but in practice, if the sources overlap in the 

time-frequency (TF) domain, it is difficult to obtain the correct clustering. This issue is 

discussed in [58]. Clustering of the spatial cues to group the NTF components (cNTF) [56] 

was developed for multichannel audio source separation. In most applications, it is crucial 

that the “right” model order   is selected. If   is too small, the data does not fit the 

model well. Conversely, if   is too large, then overfitting occurs. It is aimed to find an 

elegant solution for this dichotomy between data fidelity and overfitting. Choosing the 

right model is in particular challenging in the PARAFAC model as the number of 

components is specified for each modality separately. This delivers heuristics such as the 

Bayesian information criterion (BIC) [59] and Akaike information criterion (AIC) [60]. 

Both techniques cannot account for additional constraints such as non-negativity. 

Furthermore, a Bayesian approach of automatic relevance determination (ARD) was 

introduced by Mackay [61] to determine the relevant number of explanatory variables in 

the context of regression. This technique was used in [62 - 64] based on NMF model and 

multi-way models as in [65]. The spectral dictionary obtained via NMF-ARD [66] 

methods is not adequate to capture the temporal dependency of the frequency patterns 

within the audio signal. In addition, the NMF-ARD does not model musical notes but 
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rather unique events only. Thus, if two notes are always played simultaneously they will 

be modeled as one component. Also, some components might not correspond to notes but 

rather to the model, e.g., background noise. 

Nonnegative tensor factorization (NTF) has been proven to be a very useful tool in a 

variety of signal processing fields. Recently, NTF methods have successfully been 

exploited for data mining, dimensionality reduction, pattern recognition, object detection, 

gene clustering, sparse nonnegative representation and coding, and blind source 

separation (BSS) [67–75]. 

Given a data tensor     
      and the positive index  , the goal is to find 

three-component matrices, also called loading matrices,                
   , 

              
    and               

    which performs the following 

approximate factorization.    is the        tensor with coefficient          

          
 and     is estimated       tensor with coefficient 

                     

 
   . The NTF under PARAFAC structure can be formulated in 

the element-wise form as follows  

 

     
             

 
          

           (2.32) 

 

A PARAFAC model is given by the matrices of  ,  , and   with elements    ,     

and     , respectively. The trilinear model is found to minimize the sum of squares of 

the residuals,      
 in the model. Figure 2.3 illustrates the principle of the PARAFAC 

model. 
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Figure 2.3: A graphical representation the principle of the decomposition of a 3-way data cube 

according to the PARAFAC model. 

 

2.5 Summary  

 

The state-of the art blind source separation method have been explained in this chapter. 

Generally speaking, more sparseness of the constructing components yields the better 

approximation. The NMF method is a flexible approach which can be developed as a new 

cost function, sparsity updating, and a new factorization for quantity analyzing of data to 

render better separation performance. Solving the BSS problem by using NMF approach 

has drawn huge interest from researchers in last two decades. However, the qualities of 

the reconstructed sources are not enough to launch the NMF solution in a real application.  

Y 
= 

E 
+  + 
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CHAPTER 3  

 

MAP-BASED REGULARIZED NONNEGATIVE TENSOR 

FACTORIZATION FOR MULTICHANNEL SOURCE SEPARATION 

 

 

In this chapter, a novel approach to Bayesian regularized cluster nonnegative tensor 

factorization under a PARAFAC structure is presented. The proposed tensor factorization 

is developed under the framework of maximum a posteriori probability and is adaptively 

fine-tuned using the hierarchical Bayesian approach. The method enables: 1) a 

generalized criterion for variable sparseness to be imposed onto each element of the 

temporal code; and 2) modified multivariate rectified Gaussian prior information to be 

explicitly incorporated into the basis features. Underlying all factorization algorithms is 

the principal difficulty in estimating the adequate number of latent components for each 

source. This method takes the advantage of the combination of the automatic detection of 

the optimal    through both the pruning technique and the prior information on   to 

estimate the signature parameter of the original sources. This chapter addresses this 

important issue by using a framework of model selection for pruning unnecessary 

components and a novel Bayesian regularized cluster nonnegative tensor factorization 

under a PARAFAC structure with Itakura-Saito divergence. The experiments were 

designed to demonstrate on underdetermined linear instantaneous stereo mixtures of 

musical sources. The proposed method gives an average performance improvement of at 
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least twice better than the state-of-art Itakura-Saito Nonnegative Tensor Factorization 

(IS-NTF) and Itakura-Saito with Cluster Nonnegative Tensor Factorization (IS-cNTF) 

methods, respectively. 

The chapter is organized as follows: Section 3.1 introduces the background of NTF 

with IS Divergence. Section 3.2 describes the generative model of the proposed method, 

and the formulation of the NTF algorithm. Experimental results with a series of 

performance comparison with other NTF techniques are presented in Section 3.3. Finally, 

Section 3.4 concludes the chapter. 

 

 

3.1 Background   

 

3.1.1 NTF with Itakura-Saito Divergence 

 

A statistical IS-NTF model of the observation       can be expressed as 

 

                 
                       (3.1) 

 

where     is defined as         if and only if      . The     corresponds to 

mixing coefficient        in a        mixing matrix. The components        will be 

characterized by a spectral shape    and a vector of activation coefficient    through a 

statistical model and 

                       
                      (3.2) 

 

where       denotes the proper complex Gaussian distribution and        
 is the 

variance. 
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The factorization [15] is usually achieved through the minimization problem 

 

                                     
      

                            

(3.3) 

where         is a scalar cost function.  

In this section, the term          is exploited to be the IS divergence which is defined 

as [19] 

 

          
 

 
    

 

 
                        (3.4) 

 

Thus, log-likelihood of the factor  ,   and   can be written as 

 

                                                          

                 

                              
  

 

  
        

         
    

    
        

         
                 (3.5) 

 

where      is the matrix with entries       
 

and “  ” denotes equality up to constant.  

 

 

3.2 Proposed APBNTF Method  

 

3.2.1 Generative Model 

 

Under the linear instantaneous mixing and the point-sources assumption, the 

multichannel audio mixtures       can be generated by several unknown sources        

such that 
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                          (3.6) 

 

where          denotes the channel number,            denotes the source 

number,           denotes time index, and          are assumed to share a 

certain “resemblance”, as modelled by being two different realizations of the same random 

process, characterizing their time-frequency behavior, as opposed to be the same 

realization. In this work, the source can be further modeled as a sum of elementary 

components themselves, so that 

 

                  
                     (3.7) 

 

where     represents the number of latent components associated with the     source,   

         where      is the maximum number of sources and            
  denotes a 

nontrivial partition of        . Thus, the observation       can be expressed as 

 

                 
                       (3.8) 

 

where     is defined as         if and only if      . The TF representation of the 

mixture in (3.8) is given by  

 

                      
 
                        (3.9) 

 

where          and            denote the TF components which are obtained by 

applying the linearity of short time Fourier transform (STFT) to the mixture. The time 
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slots are given by             while frequencies by           . Since each 

component is a function of    and   , the 3-valence tensor of mixture STFT    

                     

         
, of size       , is modeled as a sum of    complex-valued latent 

tensor components                           

         
. In this case, the power spectrograms     

  

are approximated by a linear combination of nonnegative spectrograms            
  

       
  such that 

          
                    

                                                    
         

                       

                  
  

                                                               

                       

            

 
                          (3.10)   

where           . Denoting the non-negative matrices        ,        
   and 

       , the problem to solve is to separate the sources        given by           
  in 

(3.10).  

 

 

 

 

 

 

 

 

Figure 3.1:  Illustration of the proposed method by using PARAFAC model for two channels 

(   ) source separation.  
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Figure 3.1 show the proposed method based on PARAFAC model for two channels 

source separation. The proposed method focuses on the estimate the three parameters  , 

  and   from two sub-tensors     and    . 

The proposed method focuses on the estimation of unknown parameters  ,   and   of 

each sources. The estimates of  ,   and   are used to reconstruct the original sources 

which are presented in Section 3.2.2. 

 

 

3.2.2 Formulation of the Proposed Algorithm 

 

In order to formulate the proposed algorithm, the parameters are firstly defined:   is the 

       tensor with coefficients                   
 ,    is estimated the        

tensor with coefficients                      

 
   ,             is the        

mixing matrix,         is the        “labelling matrix” with only one nonzero 

value per column, i.e., such that 

 

     
           
           

                       (3.11) 

 

and nonnegative vector        
 . The term   can be expressed as follows:  

 

                                   (3.12) 
 

Thus, a prior distribution        is chosen over the factors      . It shows a that 

the following optimization problem needs to be solved 

 

                                                        (3.13) 
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The posterior can be found by using Bayes’ theorem as 

 

             
                  

    
                     (3.14) 

 

where the denominator is a constant and therefore, the log-posterior can be expressed as 

 

                                                    (3.15) 

Thus, log-likelihood of the factor  , H and   can be written as 

 

                                            
  

 

        
        

         
    

    
        

         
             (3.16) 

 

The second term on the right hand side of (3.15) consists of the prior distribution of   

and   where it is assumed that they are jointly independent. In our proposed model, the 

prior over   is assumed to be distributed as            i.e. zero-mean modified 

multivariate Gaussian with covariance matrix    which will be developed. Since   is 

nonnegative, it is natural to assume that it satisfies the multivariate rectified Gaussian 

unlike other research which use the exponential distribution or the normal Gaussian 

distribution. However, the exponential distribution gives poorer sparseness than the 

Gaussian distribution. For a likelihood method based on Gaussian distribution, this is a 

simple Bayesian criterion for NMF. The Gaussian distribution causes the NMF many 

locally optimal solutions. Furthermore, it does not fit with the multiplicative NMF 

algorithm. On the other hand, the rectified Gaussian, where priors are conjugated to the 
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Gaussian likelihood, provides more flexible shapes of prior distribution. This benefits the 

distribution model to better suit the signals. Therefore, we propose the multivariate 

rectified Gaussian defined as 

 

                                    
        

     
 

 
         

              

(3.17) 

where             
     

      
   ,       

   
     

     
   

, ‘ ’ denotes matrix 

transpose,         represents the column vectorization,       
     
     

 , and      

denotes the multivariate Gaussian cumulative distribution function. Considering the zero 

mean of the rectified Gaussian distribution (i.e. set     ) on the latent variable would 

better suit most of the real world data and can enable the induction of sparse positive 

factors, the expression (3.17) results in 

 

                       
        

     
 

 
          

              (3.18) 

 

In applications,   represents the basis vectors that span the domain of the input 

matrix   . Although the exact values of   are case specific, one is almost warranted 

that in most cases the probability of having zero-valued basis vectors i.e.        is 

very rare. Thus, the above takes the form of 

 

      
     

 

 
    

      

                                     

    
    

              (3.19) 
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where     

         

   
         

  is the covariance matrix of           and 

           
   is the cross-correlation matrix between the basis vectors    and   , 

“    ” denotes the statistical expectation operator. The covariance matrix    can be 

partitioned as 

 

   

 
 
 
 
 
    

 
 
 
 

 
    

 
 
 

 
 
 
 
 

 
 
  
     
 

 
 
 
 

     
 
 
 
 

             
     

 

+

 
 
 
 
 

 
    

 
 

    

    

 
    

 
 

 
    

 
 
 

 
 
  
     

      

    

 
 

      

  
 
 
 
 

                   
    

 

       (3.20) 

 

In the above,   is a     matrix with zero elements. The inverse covariance matrix 

can be approximated as 

 

  
         

      
                              

 

      
     

      
     

    
      

     
                  

 

      
      

                         (3.21) 

 

where      
     

 is the inverse covariance matrix of       
 ,      

       
     

 and 

    
       

     
    

      
     

. The         sub-matrix of     
  is given by  

 

        
      

     
    

     
     

           (3.22) 

 

It can be shown that when the elements within the same basis vector are uncorrelated, 

the above matrices simplify to     
    

  ,     
    

   and     
        where   

  is 
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the variance of the basis vector    and      is the cross-covariance between    and 

  . Thus,         
  can be simplified to 

 

        
                       (3.23) 

where  

 

    
   

     
          

    

     
          (3.24) 

 

Using the above, (3.19) can be cast into two terms: 

 

          
 

 
       

   
 

 
      

   

 

   
 

 
      

                (3.25) 

 

The first term    
 

 
       

    relates only to the power of     while the second 

term  
 

 
      

   
 

 
      

             measures the sum of weighted correlation 

between     and     for al           . Hence, the interesting information is actually 

contained in the second term which represents the prior information of the basis vectors. 

By including this term, the underlying correlation between the different basis vectors can 

be incorporated into the matrix factorization to yield results that reflect on this prior 

information. Therefore, with the factorial model in (3.25) the desired constraint assumes 

the following form:  

 

                 
 

 
      

                   (3.26) 
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In this section, the probabilistic framework is used for the purpose of developing a 

platform to incorporate the statistical correlation between    and    into the matrix 

factorization as part of the regularization. In feature extraction, such constraint is required 

in order to fully extract the basis especially in the situation where the patterns contain 

overlapping features. Despite of the proposed prior model for   stems from the 

modified Gaussian distribution, it is a combination of constrained and unconstrained 

parameterization of the inverse covariance matrix. 

In order to turn off excess components thereby optimizing for  , the component-wise 

exponential distribution prior is imposed on   , namely, 

 

             
          

    
               (3.27) 

 

Following (3.27), the negative log prior on   is defined as  

 

                           
     

    
      

 

              
        

                            (3.28) 

 

By substituting (3.16), (3.19) and (3.27) into (3.14), the negative log posterior of   

and   is given by the following: 

 

                                                      (3.29) 

 

From (3.16), (3.26) and (3.28), the above can be written as  
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(3.30) 

 

The sparsity term       
        forms the L1-norm regularization to resolve the 

permutation ambiguity by forcing all structure in   onto   Therefore, the sparseness of 

the solution in (3.30) is highly dependent on the regularization parameter     
. 

 

3.2.2.1 Estimation of the mixing, basis and code  

 

In this section, the estimations of  ,   and            are presented. The 

derivative of (3.30) with respect to   of the proposed model is given by: 
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                    (3.31) 

 

Similarly, the derivative of (3.30) with respect to   is given by 
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           (3.32) 

 

The derivative of (3.30) with respect to            is given by 
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From (3.31), (3.32) and (3.33), these then obtain 

    
         

   
                         

 
 

 
                

     
           

                             
         (3.34) 

    
               

   
                         

       

 

The term   is defined as        tensor with entries 

     
    

                     , namely 

 

   
                      

 

         
 

        

          
        (3.35) 

 

Generally, the multiplicative algorithms is importantly for updating  . Each parameter 

  is estimated by multiplying its value at previous iteration by the ratio of the negative 

and positive part of the derivative criterion with respect to this parameter as, 

 

   
           

 

           
 
 
                         (3.36) 

 

where  

 

                     
 

            
 

          (3.37) 

 

and the terms in the right hand side of (3.37) are both positive [59]. Here, the term    

follows the multiplicative update (MU) rule that denotes the negative part of the 

derivative of the criterion e.g.        
                      

 
 

        

          
 and    

denotes its positive part of the derivative of the 

criterion,         
                      

 
 

 

         
. The term     denotes 
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       tensor with elements        

 . Similarly,     denotes        tensor 

with elements        and     denotes         tensor with elements        

 .  

Notice that               
 denotes the contracted product between tensors    with size 

                and    with size                  and     and 

    are the sets of mode indices over which the summation take place. The contracted 

product                        is a tensor of size                 given by 

 

                         
  
                      

                 

  
  

    (3.38) 

 

The contracted tensor product is a form of a generalized dot product of two tensors 

along common modes of same dimensions. For example, in this chapter the contracted 

tensor product along the mode       of a tensor           and the mode       of a 

tensor              returns a tensor                         as in Figure 3.2. 

 
 

 

 

 

Figure 3.2: Illustration of mode 2 multiplications for the case of 3
rd

 order tensor   and     

results in a 2-way tensor (a matrix)        . 
 

Using (3.30), (3.32), (3.33) and (3.38) the MU rule for    is obtained as 

 

      
                    

 

                    
 
                       

 

        
                      

 

                      
                  (3.39) 
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Similarly, the MU rule for   is 

 

       
                   

                                            

 

       
                 

                         
            (3.40) 

 

and   is updated by using 

 

       
                   

                                              

 

     
                  

                         
              (3.41) 

  

where ‘ ’ is element-wise product and    is a     matrix whose         element is 

given by     except its diagonal elements being zeros. 

 

3.2.2.2 Estimation of the adaptive sparsity parameter 

 

The update of    follows by solving 
  

     

  , this gives  

 

      
  

     

  
 

  
     

  

 

    
 

 

    

                (3.42) 

 

Note that the sparsity term       
        forms the sparse NTF objectives while the 

normalization term          
     is given to learn the degree of regularization from 
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data, i.e. tune the pruning parameter,     
. The concept introduced in [63] based on the 

assumption that the factorization in (3.10) has been used for an approximation error of 

             
   

    
 
   

 
        . The pruning will turn off excess components thereby 

optimizing    by following component-wise exponential prior on   and the model 

parameters based on the MAP estimation. As a result of inference in (3.30), a subset of the 

    
 will be driven to a large upper bound, with the corresponding columns of   and rows 

of   driven to small values. The effective dimensionality can be deduced from the 

distribution of the     
 such that, it has been found in practice, two clusters clearly emerge: 

A group of values in same order of magnitude corresponding to relevant components on 

columns of   and rows of  , and a group of similar values of much higher magnitude 

corresponding to irrelevant components. Furthermore, for components which had become 

zero or close to zero, the term     
 is set equal to  

  

 
 where   =    . Thus the pruning 

parameter can be determined by the following: 

 

  
  

 

  
     

  
          

              
  
    

 
   

 
   

    
     (3.43) 

 

Eq. (3.43) is a threshold defining which     row of   (equivalently     column of 

 ) is to be removed. This allows us to estimate the effective number of component. If the 

prior assumptions are slightly violated or even if the likelihood function differs from the 

model assumption, the correct factorization rank can be determined by either evaluating 

the above bound by the pruning parameter. 
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3.2.2.3 Estimation of sound sources 

 

For every algorithm of the proposed method, given the estimates of  ,   and   

that yield the smallest cost value, the reconstruction is executed in the time domain 

component by using the Wiener filtering [56]. The Short Time Fourier Transform (STFT) 

estimate of a            of the component   in channel   is reconstructed through 

 
 

                                 

 

                                
          

           
 
   

                             

 

       
          

         
                          (3.44) 

 

where           =            

 
   . The decomposition is conservative in the sense that 

it satisfies 

 

                
 
                         (3.45) 

 

The estimated sources are reconstructed by using inverse-STFT of            for all   

and   leads to a set of time-domain components                  , with 

 

         
       

     
       

                           (3.46) 

 

and sources estimates can be obtained as 

 

                     
                     (3.47) 
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The proposed algorithm is summarized in Table 3.1. 

 

Table 3.1: Overview proposed algorithm of APBNTF. 

 

1) Initialize  ,   and   with nonnegative random values.  

2) Define     . 

3) Compute           using STFT on the audio mixture,  from power spectrogram 

                    
 ,  and compute                      

 
   . 

4) Compute    and    according to (3.35). Update model parameters     and    

as follows: 

         
                      

 

                      
             

         
                  

                         
   

           
                 

                         
   

 

5) Update    
 

 
,     

 

  
  

      

6) Prune the irrelevant components of   and   using the criteria  

 

    
 

  
     

  
          

              
  
    

 
   

 
   

    
 . 

 

7) Repeat steps 3 to 6 until it converges or reaches the predefine number of iteration. 

8) Reconstruct components and sources using  

                 

    

 

where                            and            
          

         
        .  
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3.3 Results and Analysis 

 

3.3.1 Toy Examples 

 

In this section, the proposed APBNTF method will be tested in their ability to extract 

the basis and code from a simulated mixed data. The simulated data is generated to have a 

high degree of pattern overlap. To investigate the effects of the pruning technique and 

prior on       on the performance of feature extraction, the following three 

experiments have been developed. 

1) Without pruning and without prior on  , i.e.,     = 0. 

2) With pruning and without prior on  . 

3) With pruning and with prior on  ,           

 

Figure 3.3 shows the real basis (i.e., vertical panels) and code (i.e., horizontal panels) of 

the simulated mixed pattern. The basis   consists of one circle and one cross features. 

These features are convolved with the code   given at the top panels to yield the data 

matrix Y which is a mixture of both patterns. 

 

 

 

Figure 3.3: Real basis and code of the simulated mixed data. 
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Figure 3.4: Estimated results based on the proposed method without pruning and without prior on 

 . 

 

 

 

Figure 3.5: Estimated results based on the proposed method with pruning and without prior on  . 

 

 

 

Figure 3.6: Estimated results based on adaptive sparsity factorization and with prior on  , i.e., 

   = 0.50. 
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Figures 3.3 – 3.6 show the matrix factorization results corresponding to each of the 

above experiments. It is seen that the proposed method without pruning and without prior 

on   has failed to identify the correct basis and code. The major reason stems from the 

high degree of pattern overlap between the circle and the cross features in the mixed 

dataset. Since the sparseness is uncontrolled, the larger parts of the pattern overlap will 

cause more errors in estimating the basis while the code tends to be more ambiguous. 

This decreases the possibility of correct assignment of the basis to each feature, and 

subsequently results in poorer extraction and reconstruction performance as shown in 

Figures 3.4 and 3.5. For example, one could see the extracted codes (i.e., upper panels of 

Figure 3.4) are almost identical and thereby cause parts of the circle and the cross features 

missing from the figure. On the other hand, Figure 3.5 shows a better extraction result by 

using only the pruning (without prior on  ), while Figure 3.6 shows the best result when 

both regularizations (i.e., pruning and modified Gaussian prior) are used. However, if 

only the pruning is adopted, this may yield a sub-optimal performance, which is evident 

from Figure 3.5, where the cross feature has not been fully extracted. Nonetheless, the 

performance of feature extraction also depends on the correlation between the real bases 

of the mixed pattern. Visual inspection of Figure 3.3 shows that the real basis shares some 

degree of commonality and therefore induces correlation. Thanks to the modified 

Gaussian prior, this correlation is explicitly modeled by     in the proposed method. 

This enables the estimated basis vectors W1 and W2 to take advantage of the correlation 

in learning the real basis directly from the mixed pattern. This explains the reason as to 

why Figure 3.6 shows better performance than Figure 3.5. Therefore, the analysis results 
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have unanimously indicated the importance of selecting the correct sparseness     
 for 

each element code and of incorporating the correlation     between the different basis 

vectors in order to arrive at the optimal performance of feature extraction. In the next 

section, the proposed method will be further tested on real application of multi-channel 

BSS. A series of performance comparison with other matrix factorization methods will 

also be presented. 

 

3.3.2 Real Application 

 

The performance of proposed method is demonstrated by separating music sources. 

Several experimental simulations under different conditions have been designed to 

investigate the efficacy of the proposed method. All experiments are conducted using a PC 

with Intel® Core™ i5 CPU 650 at 3.2 GHz and 4 GB RAM. MATLAB is used as the 

programming platform. The TF representation is computed by using the STFT of 

1024-point Hanning window with 50% overlap. the proposed method has been evaluated 

and compared with IS-cNTF and IS-NTF method [56] where 3 linear instantaneous stereo 

mixtures of 3 sources taken from the Signal Separation Evaluation Campaign (SiSEC 2010) 

“Underdetermined speech and music mixtures” task development dataset [76]. Three types 

of mixture have been considered and are described as: 1) wdrums, a linear instantaneous 

stereo mixture (with positive mixing coefficients) of 2 drum sources and 1 bass line. 2) 

nodrums, a linear instantaneous stereo mixture (with positive mixing coefficients) of 1 

rhythmic acoustic guitar, 1 electric lead guitar and 1 bass line. Both datasets correspond to 

the test data for the 2007 Stereo Audio Source Separation Evaluation Campaign 



CHAPTER 3 

52 

(SASSEC’07) [77]. It also coincides with development dataset dev2 of SiSEC’08 

“underdetermined speech and music mixtures” task. All mixtures are 10 seconds-long and 

sampled at 16 kHz. The instantaneous mixing is characterized by static positive gains. The 

STFT has been applied with sine bell of length 64 ms (1024 samples) leading to      . 3) 

Shannonsongs Sunrise, a linear instantaneous stereo mixture of          musical 

sources (drums, lead vocals and piano) created using 17 seconds-excerpts of original 

separated tracks from the song “Sunrise” by S. Hurley, available under a Creative 

Commons License at [78] and downsampled to 16 kHz. The mixing parameters 

(instantaneous mixing matrix) were taken from the 2008 Signal Separation Evaluation 

Campaign (SiSEC’08) “underdetermined speech and music mixtures” task development 

datasets [77].  

All experiments have used the linear instantaneous stereo mixture of wdrums, 

nodrums and Shannonsongs Sunrise datasets and set the number of components per each 

source to       with      = 3 sources. An initial NTF decomposition is computed 

from the power spectrograms using the Kullback-Leibler (KL) divergence [19]. The 

number of iterations was set to 50 for initialization parameters, and 400 for updating the 

parameters. The separation performance has been evaluated in terms of the 

Signal-to-Distortion Ratio (SDR) which is a global measure unifying the 

Source-to-Interference Ratio (SIR) and the Sources-to-Artifacts Ratio (SAR) criteria 

expressed in decibels (dB),  defined as 

     
         

 

                
         

         
 

         
   and      

                 
 

        
        (3.48) 
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where         is the actual source estimate,         represent the interference from other 

sources and        is the artifacts of the separation algorithm.   MATLAB routines for 

computing these criteria are obtained from the SiSEC’08 webpage [77, 79].  

 

 

3.3.3 Effects on audio mixtures separation with/without pruning 
 

In this section, the performance of the proposed method has been investigated with and 

without the pruning technique and with and without the prior information on the basis   

for separating audio mixtures. It is hypothesized that with the pruning, the audio source 

separation will be significantly enhanced. Figures 3.7 (a)-(c) show the performance of the 

proposed algorithm with 1) pruning, 2) without pruning and 3) without pruning + without 

prior on   (e.g.,          for wdrums, nodrums and Shannonsongs Sunrise datasets 

respectively, under various     parameters.  

Using     
   

     
 leads to very close between the optimal performances and that 

estimated using above. This is verified by Figure 3.7. As the basis   also depended on 

whether pruning is activated or not, the estimate of the optimal prior on   (which 

inherently depends on the basis) will likewise change depending on whether pruning is 

activated or not.  

The wdrums, nodrums and Shannonsongs Sunrise datasets have been used for the above 

cases. 
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(a) 

 

(b) 

 

    (c) 

Figure 3.7: Separation results of the proposed method with pruning, without pruning and without 

pruning + without prior on   e.g.,      : (a) wdrums mixture, (b) nodrums mixtures, (c) 

Shannonsongs Sunrise mixtures.  
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Figures 3.7(a)-(c) illustrates that with the pruning yields better separation performance 

than without the pruning for all mixtures across all    . The reason is that in the case of 

without the pruning, the term    is constant at 20 which may be either too small or too 

large for each source. The constant    leads to the accumulation of unsuitable dictionary of 

the source which resulted in poor re-constructed source. In the case of with the pruning, the 

number of    is approximately determined for each source. The proper    corresponding 

to each source will avoid under- or over-fit. If setting    too low,    is selected to be 

under-fit. This means that the model is too simplistic and the data does not fit the model well. 

In this case, it can result in a factorization where multiple basis from different sources are 

approximated by a single factor, which in turn leads to incorrect separation.  Conversely, if 

   too large, over-fit occurs when the model has too many parameters relative to the 

number of the mixtures which will causes excessive computational complexity. In this case, 

if any of the input points are varied slightly, it could result in an extremely different model 

and this can cause problems at the grouping stage. Hence, the over-fit model will generally 

have poorer predictive performance. 

The separation results in terms of the SDR are given in Figures 3.7(a)-(c). According 

to the figures, the proposed method with pruning tends to yield the best overall 

performance, where the average improvement over the without pruning in three cases can 

be summarized as follows: 1) for wdrums mixture, the average SDR improvement is 0.89 

dB per source; 2) for nodrums mixture, the average SDR improvement is 1.49dB per 

source; and 3) for mixtures of music and vocal (Shannonsongs Sunrise), the improvement 

is 1.28dB per source. The results have also clearly indicated that there are certain values 
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of     where the algorithm performs the best. In the case of wdrums mixture, the best 

performance is obtained when     ranges from 0.41 to 0.93 (within 5% from highest 

SDR) with the highest SDR of 13.25dB. As for nodrums mixture, the best performance is 

obtained when     ranges from 0.52 to 0.87 with the highest SDR of 10.94dB and in the 

case of music and vocal mixture, the best performance is obtained when     ranges from 

0.04 to 0.42 with the highest SDR of 9.85dB. Of the above findings, we can conclude that 

for music mixtures, the best performance is obtained when     ranges from 0.41 to 0.93 

and in the case of music and vocal mixture, the best performance is obtained when     

ranges from 0.04 to 0.42. On the contrary, it is noted that when     is set either too low 

or high, the separation performance tends to degrade. It is also worth pointing out that the 

separation results are rather coarse when the factorization is nonregularized (i.e., without 

prior on  ) and without pruning. Here, the average SDR of the proposed method without 

prior on   and without pruning is the lowest among the three methods across      . 

As evidence, Figure 3.7 shows the SDR of the without prior on   and without pruning 

method as for wdrums mixture: 11.73dB per source, for nodrums: 4.95dB per source, and 

for Shannonsongs Sunrise: 6.78dB per source. It can be summarized that the average 

improvement of the proposed method (with prior on   and with pruning) against the 

case of without pruning and without prior on  : 1) For wdrums mixture, the 

improvement per source in terms of the SDR is 1.88dB. 2) For nodrums mixture, the 

improvement per source in terms of the SDR is 5.27dB. 3) For Shannonsongs Sunrise 

mixture, the improvement per source in terms of the SDR is 2.72dB. 

Figure 3.8 shows the original hi-hat, drum and bass music and its separation results. 
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The mean square errors (MSE) between the original and estimated sub-sources are 0.04, 

0.81 and 0.01 for hi-hat, drum and bass music, respectively. On dataset wdrums, the 

highest separation result in terms of SDR is obtained with the proposed method. The 

average SDR are 12.79dB, 10.04dB and 9.92dB for wdrums, nodrums and Shannonsongs 

Sunrise, respectively. Additionally, it is found that hi-hat and bass give high separation 

performance with SDR of 14.33dB and 20.01dB, respectively. 

 

 

 

 

 

Figure 3.8: Original sources and the estimated sources from left microphone using the proposed 

method with         . 
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(a) 

 

(b) 

 

(c) 

Figure 3.9: Time-domain representation of (a) the original source (Lead Guitar.) of nodrums 

mixture, (b) and the estimated Lead Guitar from left microphone using the proposed method 

without pruning and (c) with pruning. 

 

 

(a) 

 

(b) 

 

(c)  

Figure 3.10: Time-domain representation of (a) the original sources (Bass) of nodrums mixture ,(b) 

the estimated Bass signal from left  microphone using the proposed method without pruning and 

(c) with pruning. 
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Figures 3.9 and 3.10 show the separated results of the proposed algorithm with and 

without pruning for lead guitar and bass, respectively. In both figures, panel (a) shows the 

original sub-sources, panels (b) shows the estimated sub-sources by using the proposed 

method without pruning while panel (c) shows the estimated sub-sources by exploiting 

the hybrid pruning and the proposed method. The mean square error (MSE) between the 

original and estimated source of Lead Guitar from nodrums separation is 0.18 and 0.72 

for the proposed method with pruning and the proposed method without pruning, 

respectively. Also the MSE between the original and estimated source of bass from 

nodrums separation is 0.01 and 0.04 for the proposed method with pruning and the 

proposed method without pruning, respectively. 

 

 

3.3.4 Comparison with Other NTF-Based Multichannel Source Separation Methods 

 

The separation performance of the proposed method has been evaluated by comparing 

with the NTF-based unsupervised multichannel audio source separation methods i.e. 

IS-cNTF [9] and IS-NTF [56] method. The numbers of latent components for the three 

methods have been set for three mixtures as the following: 1)    = 20 and    = 3 for 

the proposed method, 2)    = 20 and    = 3 for IS-cNTF, and 3)   = 60 and   = 9 

for IS-NTF . 

Each of the six algorithms was run 20 times from 50 random initializations for 400 

iterations. The separation performance of the proposed method has also been presented in 

this section. The separation performance is calculated from the average of 10 experiments 

under the same mixture. The IS-cNTF and IS-NTF parameters are set as follows [9, 56]: 
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numbers of components per each source are 3 and 20, respectively for all datasets. The TF 

domain used in IS-cNTF and IS-NTF are based on the log-frequency spectrogram. Cost 

function of IS-cNTF and IS-NTF are based on the Itakura-Saito divergence.  

  

Figure 3.11: Comparison of average SDR performance on wdrums, nodrums, and Shannonsongs 

Sunrise of three audio sources between IS-NTF, IS-cNTF, and the proposed method (APBNTF) 

with      per source and 

                                                            . 

 

In Figure 3.11,    was set to 3 according to [56], shows negative results for nodrums 

and low separation performance for Shannonsongs Sunrise when using IS-cNTF and 

IS-NTF. The proposed method, on the other hand, has led to better separation 

performance as it takes the advantages of the more meaningful feature extraction that 

pertain to the data through prior information on basis vectors   and the unique sparsity 

that has been individually optimized for each element code with automatic pruning. 

However, it should be noted that setting      does not necessarily guarantee that this 

is the optimal number of components associated with each source. To further investigate 

this, the initial    has been increased to 20 and allow the pruning technique to determine 

the appropriate number of components. The final results in term of SDR are shown in 
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Figure 3.12. 

From Figure 3.12, when the initial    is set to 20, it is seen that the proposed method 

yields superior separation performance among all three methods.    is determined based 

on pruning which is optimally selected for each source i.e. for wdrums: {          , 

         ,         }, for nodrums: {        ,            ,              

  }, and for Shannonsongs Sunrise: {        ,          ,         }. The 

average SDR improvement of the proposed method with   =20 over IS-cNTF and 

IS-NTF method are 11.8dB, 10.1dB, and 7.8dB per source for wdrums, nodrums, and 

Shannonsongs Sunrise, respectively.  Hence, setting      is not adequate for 

modeling the components of the sources. To sum up, combining prior information on   

and the pruning technique benefit the proposed method with better separation 

performance than using either only one of them.  

 

Figure 3.12: Comparison of average SDR performance on wdrums, nodrums, and 

Shannonsongs Sunrise of three audio sources between IS-NTF, IS-cNTF, and the proposed 

method (APBNTF) with       per source and 

                                                         . 
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Figure 3.13 shows the Comparison of average SDR performance of estimated Hihat, 

Drum and Bass from the wdrums dataset. It is clearly shown that, the proposed method 

can separate the sources from the wdrums mixture more efficiently than the two methods. 

The average SDR improvements of the proposed method over the IS-NTF and IS-cNTF 

methods are 2.5dB per source and 1.9dB per source, respectively. 

 
Figure 3.13: Comparison of average SDR performance of estimated Hi-hat, Drum and Bass from 

wdrums dataset between IS-NTF, IS-cNTF, and proposed method (APBNTF). 
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ambiguous estimation of each source spectrum and thereby discarding the temporal 

information. When the temporal structure and the pitch change are not properly estimated 

in the model, the mixing ambiguity is still contained in each separated source. 

 
 

 

(a) (b) (c) 

 
  

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

  
 

(m) (n) (o) 

Figure 3.14 Separated signals of nodrums in time-domain. (a)-(c): original bass, Lead Guitar and 

Rhythmic Guitar music. (d)- (e): estimated sources using the proposed method (initial   =3 and 

         for all sources). (g)- (i): estimated sources using IS-cNTF. (j)- (l): estimated sources 

using IS-NTF. (m)- (o): estimated sources using the proposed method (initial   =20 and 

                   for bass, lead guitar and rhythmic guitar, respectively). 
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Table 3.2: Performance comparison between other NTF based multichannel audio source 

separation methods and the proposed method. 

 

Mixtures Methods SDR (dB) SIR (dB) SAR (dB) 

wdrums 

(Hi-hat/drums/bass) 

Proposed method (APBNTF) 12.8 38.1 12.8 

Proposed method (APBNTF) 

without pruning 

11.8 37.2 11.8 

IS-cNTF 10.9 18.1 11.3 

IS-NTF 10.4 17.8 10.1 

nodrums 

(bass/lead G /rhythmic G) 

Proposed method (APBNTF) 10.0 34.4 10.1 

Proposed method (APBNTF) 

without pruning 

4.9 31.5 4.9 

IS-cNTF 3.7 27.9 3.9 

IS-NTF -1.7 -0.3 3.5 

Shannonsongs Sunrise 

(drum/vocal/piano) 

Proposed method (APBNTF) 10.1 31.8 10.1 

Proposed method without pruning 8.2 29.9 8.2 

IS-cNTF 0.1 19.4 0.2 

IS-NTF 1.3 20.7 1.4 

 

Table 3.2 further gives the SDR, SIR, and SAR comparison results between our 

proposed method and the other NTF methods. The improvement of our method compared 

with the proposed method without pruning, IS-cNTF and IS-NTF can be summarized as 

follows: 1) for the mixture of wdrums, the average improvement per source in terms of 

the SDR is 1.0dB, 1.9dB, and 2.4dB per source, respectively; 2) for the mixture of 
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nodrums, the average improvement per source in terms of SDR is 5.1dB,  6.3dB, and 

11.7dB per source, respectively; 3) for the Shannonsongs Sunrise mixture, the average 

improvement per source in terms of SDR is 1.9dB, 10.0dB, and 8.8dB per source, 

respectively. In a nutshell, the proposed method gives an average performance 

improvement of at least twice better than the state-of-art IS-NTF and IS-cNTF methods, 

respectively. Analyzing the separation results, the proposed method leads to the best 

separation performance for all recovered sources. The IS-cNTF method performs with 

poorer results whereas the separation performance by the proposed method without 

pruning is slightly better than the IS-NTF and IS-cNTF methods. Our proposed method 

gives significantly better performance than the proposed method without pruning, 

IS-cNTF and IS-NTF methods. The spectral dictionary obtained via the proposed method 

without pruning, IS-cNTF and IS-NTF methods are not adequate to capture the temporal 

dependency of the frequency patterns within the audio signal. 

 

3.3.5 Determination of Optimal     and     of the Proposed Method 

In this section, the proposed method which described in the previous section has been 

applied to determine the optimal    and     of each source for separating mixtures of 

wdrums, nodrums and Shannonsongs Sunrise. The proposed method has been tested by 

using three mixtures with various     values from 0 to 1 with every increment of 0.05 

and retained the value of    and     associated with the best SDR for each estimated 

source. The results are tabulated in Table 3.3. 

Table 3.3 shows that the pruned numbers of    and     values for each source are 

different. Analyzing the results, the proposed method with the pruned numbers of    and 

    are compared to the method with fixed        . The average SDR improvement of 
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the proposed method with pruned    and     over the fixed     method are as follow: 

1) for wdrums mixtures, the average SDR improvement is 0.57dB per source; and 2) for 

nodrums mixtures, the average SDR improvement is 1.39dB per source; and 3) for 

Shannonsongs Sunrise mixtures, the average SDR improvement is 0.97dB per source. The 

results have also clearly indicated that the proposed method yields superb separation 

performance when the value of     for each source is properly selected. Moreover, it can 

be seen that the optimal values of     for each source consistent with the inference in 

Section 3.3.2 i.e. in the case of music mixture, the best performance is obtained when  

     ranges from 0.41 – 0.93 and for music and vocal mixtures, the best performance is 

obtained when       ranges from 0.04 – 0.42. This should be made feasible using 

automatic selection for the appropriate value of      for each source in the future work. 

 

Table 3.3: Optimal number of    and      of wdrum, nodrum and Shannonsongs Sunrise. 

 

Mixtures 

SDR (dB) No. Comp. (  )     

x1 x2 x3 Avg x1 x2 x3 x1 x2 x3 

wdrums 

(Hi-hat/ drum/ bass) 

15.9 4.0 20.1 13.4 13 11 12 0.8 0.4 0.6 

nodrums 

(bass/ lead G./ rhythmic G.) 

19.0 9.9 5.4 11.4 12 16 19 0.5 0.8 0.7 

Shannonsongs Sunrise 

(drum/ vocal/ piano) 

15.2 5.8 10.4 10.4 17 18 15 0.4 0.2 0.7 
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3.4 Summary  

 

This chapter has presented a new framework of amalgamating pruning and Bayesian 

regularized cluster NTF under a PARAFAC structure with Itakura-Saito divergence for 

multichannel audio source separation. The impetus behind the proposed work is that 

sparseness achieved by the conventional NTF is not efficient enough; in source separation, 

it is very necessary to yield control over the degree of sparseness explicitly for each 

element code       . In addition, it does not incorporate correlation information between 

different basis vectors into the factorization process. Underlying all factorization 

algorithms is the principal difficulty in estimating the adequate number of latent 

components for each source. The proposed method addresses this issue by using the 

principle of pruning. The proposed method offers at least four advantages: First, the 

sparse regularization term is adaptively tuned using a hierarcs hical Bayesian approach. 

This yields the desired sparse decomposition, thus the proposed method is enable more 

efficient estimation of the spectral dictionary and temporal codes of nonstationary audio 

signals. Second, the modified Gaussian prior is formulated to express the correlation 

between different basis vectors. Third, the proposed algorithm can automatically detect 

the optimal number of latent components of the individual source. Finally, it avoids the 

strong constraints of separating blind source without training knowledge. Hence, the work 

is a step forward to realizing optimal BASS. This has been verified concretely based on 

experiments which is very promising results. In addition, the separation performance of 

the proposed method yields significant improvement of SDR on multichannel audio 

separation compared with other NTF-based source separation methods.   
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CHAPTER 4  

 

SINGLE-CHANNEL AUDIO SEPARATION USING VARIATIONAL 

   SPARSE COMPLEX MATRIX FACTORIZATION 

 

 

In Chapter 4, an extreme case of blind source separation was regarded when a sole 

recording is available. A novel single-channel blind source separation (SCBSS) has been 

developed to extract better quality of audio separated signals. This approach will exploit 

the variational   -sparse complex matrix factorization (v  -SCMF) which offers the 

advantages of the CMF and a variational   -sparse approach simultaneously. CMF is 

based on a mixing model defined in the complex-spectrum domain and estimates 

recurring patterns in the observed magnitude spectra, their activations and their phases. 

The proposed factorization decomposes an information-bearing matrix into complex 

factor matrices that represent the spectral dictionary and temporal codes. A variational 

Bayesian approach was derived for computing the sparsity parameters for optimizing the 

matrix factorization. The method is demonstrated on separating audio mixtures recorded 

from a single channel that it yields superior performance compared with other existing 

sparse factorization methods. The performance of the developed algorithms will be 

measured using real-time audio signals in terms of the signal-to-distortion ratio. 

This chapter is organized as follows: The formulation of the proposed Variational 

  -sparse CMF are articulated in Section 4.1. Experimental source separation results and 
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a series of performance comparison with other existing BSS methods are presented in 

Section 4.2. Finally, Section 4.3 concludes the work of this chapter. 

 

4.1 The Proposed Method  

 

4.1.1 Generative Model 
 

In this section, the problem is now, given an observed complex spectrum,          , to 

estimate the optimal parameters             of the model. We derive a new 

factorization method termed as the variational   -sparse complex non-negative matrix 

factorization (vL1-SCMF). The generative model is given by 

 

        
   

     
       

 
               (4.1) 

where     
        

 

and the reconstruction error               , is assumed to be 

independently and identically distributed (i.i.d.) as complex Gaussian distribution with 

white noise having mean 0 and variance    which  used to denote a modeling error for 

each source.  

The likelihood of             is thus written as  

 

        
 

        
            

 

                  (4.2) 

 

We assume that the prior distributions for     and    are statistically independent, 

which yields  
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                                    (4.3) 

       corresponds to the sparsity cost, for which a natural choice is a generalized 

Gaussian prior:  

 

         
    

 

       
         

  
 
   

                    (4.4) 

 

where   
  and   are the shape parameters of the distribution.  

In this section, we assume that          promotes sparsity when     and the norm 

of   is bounded. The posterior density defined as  

 

                                (4.5) 

 

Maximum a posteriori (MAP) estimation problem leads to solve the following 

optimization problem:  

 

                             
 

            
  

 
           (4.6)  

 

subject to     
 

                    

The CMF model parameters have been optimized by using an efficient iterative 

algorithm relied on an auxiliary function which its detail presents in [50]. Auxiliary 

function for      is given as follow: for any auxiliary variables with        
       , for 

any      
     ,      

    , for any   
         

    and      We can illustrate 

that                 with an auxiliary function defined as 
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      (4.7)  

 

and            
     

                                is minimized w.r.t.    

when 

 

     
     

   
   

     

   

      
                   (4.8) 

 

   
    

                         (4.9) 

 

4.1.2 Formulation of the Proposed Variational L1-sparse CMF 

 

To facilitate such spectral dictionaries with adaptive sparse coding, we first define W = 

           , H =              , and   λ =            . Hence, the negative 

log likelihood serves as the cost function in (4.6) defined as 

 

   
 

         
   

  
     

 

      
 

 

       
  

 
       

 

 
 

   
       

   
  

     
 

      
 

 

       
      

   
 

             (4.10) 

 

when    , we assume that      promotes sparsity so that  

 

            
      

   
 

                 (4.11) 
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The sparsity term      forms the   -norm regularization which is used to resolve the 

ambiguity by forcing all structure in   onto  . Therefore, the sparseness of the solution 

in (4.11) is highly dependent on the regularization parameter   
 .  

 

4.1.2.1 Estimation of the Dictionary and Temporal Code  

 

In [50], the update rule for   is derived by differentiating          partially w.r.t. 

  
  and   

 , and setting them at zero then the updates for   and   ,respectively, 

become: 
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Setting the above to zero leads to 
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           (4.12) 

 

Similarly, 
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Setting the above to zero yields  

 

  
   

  
  

    
          

  
   

    
  

         
  

  
     

 
 

    
    

 

  
  

 
  

 

    
         

  
  

     
 

  

 
  

  

    
           

  
   

            (4.13) 

 

The update rule for the phase,  
   
 

, are derived by using (4.7) that can be simply written 

as follows  
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                         (4.14) 

 

where   denotes the terms that irrelevant with     
  

  
   

      
 

    
 ,        

  
        

  

      
  

, 

        
   

        
  

      
  

 and     
 . The auxiliary function,          in (4.7) is minimized when 

        
      

          
        

         
        

    , namely, 
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   and        
         

 . The update formula for       
 

 leads 

eventually to 

 

      
 

        
          

                                                                                      

               

        
          

    

 

  
        

           
  

      
  

   

 

  
     

 

      
  

                      (4.15) 

 

As in [50], the update formula for     
   and   

 , for projection onto the constraint 

space, is set to 

 

    
   

  
   

 

   
   

 
 

                  (4.16) 

 

  
    

  
 

   
 

 
                   (4.17) 

 

 

4.1.2.2 Estimation of the Sparsity Parameter  

 

It suffices to compute   
   just for the regularization parameters associated with   

 . 

Therefore, we can set the cost function in (4.10) as 

 

       
 

                               
 

 

  

 

         
       

                   (4.18) 
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with        represents the column vectorization, “ ” is the Kronecker product, “   ” is 

the Hadamard product, and   is the identity matrix. Defining the following terms: 
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            (4.19) 

 

Thus, (4.18) can be rewritten in terms of   as 

 

       
 

           
 

 

           
 
         (4.20) 

 

Note that   and   are vectors of dimension     where        . To 

determine   , we use the Expectation-Maximization (EM) algorithm and treat   as the 

hidden variable where the log-likelihood function can be optimized with respect to  . 

Using the Jensen’s inequality, it can be shown that for any distribution     , the 

log-likelihood function satisfies the following: 

 

                               
               

    
          (4.21) 
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One can easily check that the distribution that maximizes the right-hand side of (4.21) 

is given by                       which is the posterior distribution of  . In this 

section, we represent the posterior distribution in the form of Gibbs distribution as 

follows: 

 

      
 

  
           where                           (4.22) 

 

The functional form of the Gibbs distribution in (4.22) is expressed in terms of      

and this is crucial as it will enable us to simplify the variational optimization of  . The 

maximum-likelihood estimation of   
  can be expressed by 

 
 

           
 

                

 

                                                            

 

                                             

 

                                         (4.23) 

Similarly, 

 

  
          

  
                

 

        
  

                          

 

        
  

                                  

      

                                           (4.24) 
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Since each element of   is constrained to be exponential distributed with independent 

decay parameters, this gives                         and therefore, (4.23) 

becomes 

 

                                      (4.25) 

 

The Gibbs distribution      treats   as the dependent variable while assuming all 

other parameters to be constant. As such, the functional optimization of   in (4.25) is 

obtained by differentiating the terms within the integral with respect to    and the end 

result is given by  

 

   
 

          
  for                     (4.26) 

 

where   is the    element of  .  

Since                                              
 

 where       , 

the iterative update rule for   
   is given by 

 

  
                  

   

 
        

 

           
 

     

 

 
 

  
              

 

                    (4.27) 

 

Despite the simple form of (4.26) and (4.27), the integral is difficult to compute 

analytically and therefore, we seek an approximation to      . We note that the solution 
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  naturally partition its elements into distinct subsets    and    consisting of 

components       such that     0, and components       such that      0. 

Thus, the      can be expressed as follows: 

 

       
 

             
 

   
          

 

 
                               

        

    

 

   
 

             
 
   

          
 

 
                             

        

  
 

            
 
           

 
 

                     
  

    

 

                                        (4.28) 

 

In (4.28), the term    
 

 in   is a constant and the cross-term        
 
        

measures the orthogonality between       and      , where      is the sub-matrix of  

   that corresponds to   ,     is the sub-matrix of    that corresponds to   . In this 

section, we intend to simplify the expression in (4.28) by discounting the contribution 

from these terms and let      be approximated as                         . 

Given this approximation,      can be decomposed as 

 

         
 

  
             

 

  
 

  
                           

 

   
 

  
                              

 

   
 

  
               

 

  
               

 

                               (4.29) 
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where                         , and                      . In order to 

characterize       , we need to allow some positive deviation to    (any negative 

values of    will be rejected since NMF only allow nonnegative values). Hence,    

must take on zero and positive values in       . The distribution       can be 

approximated by using the Taylor expansion about the maximum a posterior (MAP) 

estimate,      given in (4.13) 

 

                   
   

  
  

    
 

 

 

   
 

 
  

                    

 

                
 

          
 

 

   
 

 
  

           (4.30) 

 

where    
 

     
      and   

 

       . Although        is obtained in the form of 

(4.30), its integral is difficult to evaluate and does not yield closed form analytical 

expression of the moments, which subsequently prohibits inference of the sparsity 

parameters. Alternatively, we may variationally approximate        by using a fixed 

form distribution that can yield a closed analytical expression of the moments. Since    

takes on zero and positive values only, a suitable fixed form distribution is to use the 

factorized exponential distribution given by 

 

 

             
 

  
    

   

  
                (4.31) 

 

The variational parameters          for        are obtained by minimizing the 

Kullback–Leibler divergence between    and     
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                                   (4.32) 

 

Solving (4.32) for    leads to the following update [84]: 

 

     

         
   

       

   

       
 

               (4.33) 

 

The approximate distribution for components    can be obtained substituting 

         into        as follows: 

 

       
 

  
                

 

         
 

 
  

      
 

                      (4.34) 

 

In (4.34),        has the functional form equivalent to a multivariate Gaussian 

distribution. Therefore,        can be represented as the unconstrained Gaussian with 

mean   
    and covariance   

  
, where    is the sub-matrix of  . 

Substituting (4.29), (4.31), (4.34) into (4.26), the sparsity parameter can be inferred as 

 

     

 

             
 

 

  
            

 

              
 

 

  
          

         (4.35) 

 

and its covariance X is given by 

       
   

  
 

  
           

  
                   

             (4.36) 
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Similarly, the inference for    can be computed from (4.27) as 

 

   
 

  
               

 

              (4.37) 

 

where      
   

            

                
 . 

Table 4.1 presents the main steps of the proposed method. We term the above algorithm 

as the variational L1-sparse CMF (vL1-SCMF). The proposed algorithm for single-channel 

blind separation is summarized in Table 4.1. 

 

Table 4.1: Overview the proposed vL1-SCMF algorithm. 

1. Compute                . 

2. Initialize    
 ,   

  and     
  with nonnegative random values.  

3. Update      
  according to (4.16) and fixing the value of    at  

     
 

  
     

       
    and 

update    using (4.33).  

4. Calculate    and    using (4.35) and (4.37).  

5. Update              according to (4.8), (4.9), update        
    

      
    

according to (4.12), (4.13), (4.15) and Update      
  and   

  according to (4.16) and 

(4.17). 

6. Repeat steps 3 to 5 until convergence is reached.  

7. Obtain an estimation of each source by multiplying the respective rows of the 

spectral components   
  with the corresponding columns of the mixture weights 

  
  and time-varying phase spectrum       

 

. Convert the time-frequency represented 

sources into time domain to obtain the separated sources. 
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4.2 Experimental Results and Analysis 

4.2.1 Experimental Environments 

 

In this section, the proposed single channel sources separation method vL1-SCMF is 

tested with the real audio sources gen. We erated mixed signal from 30 music signals 

including 10 drum, 10 jazz, 10  and 10 piano signals are selected from the RWC [85] 

database and 20 sentences of the target speakers (10 male and 10 female sentences from 8 

male and 8 female subjects) are selected from the TIMIT speech database. The sources are 

randomly chosen from the database and the mixed signal is generated by adding the chosen 

sources. In all cases, the sources are mixed with equal average power over the duration of 

the signals. As an example, the mixtures are generated i.e. piano + jazz, piano + drum, 

jazz + drum, piano + male speech, jazz + male speech, drum + male speech and male 

speech + female speech. Three types of mixture can be summarized as follows: 1) Music 

mixed with Music, 2) speech mixed with music, and 3) speech mixed with speech. The TF 

representation is computed by normalizing the time-domain signal to unit power and 

computing the STFT using 1024 point Hanning window with 50% overlap. The parameter 

corresponding to the number of components   is set as 4.  All experiments are 

conducted using a PC with Intel® Core™ i5 CPU 650 at 3.2 GHz and 4 GB RAM.  

4.2.2 Source Separation Results of the proposed method 

 

In this section, we have generated the mixtures of two sources which select from piano, 

drum, jazz, male speech and female speech. Both sources are mixed with equal power to 

generate the mixture. This is shown in the first three panels of Figure 4.1.  
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Figure 4.1: Time-domain representation of the original sources, single channel mixture, and 

estimated sources of music mixture between piano and drum using the proposed method. 

 

 

 

 

Figure 4.2: TF domain representation of the original piano and drum music (top panels), mixed 

signal (middle panels), and separated signal piano and drum (bottom panels) using the proposed 

method. 
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Figures 4.1 and 4.2 shows of the original piano, drum music, the single channel mixture 

and the separated sources using the proposed method in terms of spectrogram and 

time-domain representation, respectively. The estimated sources are plotted in the last two 

panels of Figure 4.1. From the plots in both Figures 4.1 and 4.2, they are visually evident 

that the estimated sources resemble closely to the original sources. The mean square error 

(MSE) between the original and the estimated music is 0.11dB and 0.07dB for piano and 

drum, respectively. 

 

 

(a) 

 

(b) 

Figure 4.3: Estimated  . (a) piano (b) drum. 

time-frames

k

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

11

time-frames

k

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

11



CHAPTER 4 

86 

In this section, seven types of mixture have been generated: 1) piano mixed jazz; 2) 

piano mixed drum; 3) jazz mixed drum; 4) piano mixed male speech; 5) jazz mixed male 

speech; 6) drum mixed male speech and 7) male mixed female speech. All separation 

results have been summarized in Figure 4.3. The separation of piano + drum music 

mixture is much better than those of other types of mixtures where the average SDR has 

approached to 14.6dB, 13.5dB for recovered piano music and 15.8dB for recovered drum 

music. Figure 4.3 shows the matrix factorization results in term of the temporal codes   in 

the case of “optimally-sparse” based on the proposed method.  

 

 

 

Figure 4.4: Overall separation results of different types of mixtures using the proposed method. 

 

Figure 4.4 summarizes the separation results of the proposed method. It is worth 

pointing out that because the piano music and drum music have different basis components. 

Hence, it is easier to separate these signals by using the vL1-SCMF. Thus, Figure 4.4 

shows the better separation results over all the mixtures when audio mixture contains 
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piano and drum music. On the other hand, the frequency range of male speech is very 

similar to female speech sources and this particular mixture is very difficult to separate 

which explains the reason why the SDR is relatively low. For separating the male speech 

and female speech mixture, the vL1-SCMF yields an average SDR of 3.72dB. However, 

this performance is still substantially better than using the CMF alone. 

 

4.2.3 Effect on Source Separation with Variational L1-Sparse and Fixed Sparsity 

 

 

 

 

 

     (a)      (b) 

 

 

 
 

     (c)      (d) 

 

 

 

 

     (e)      (f) 

 

 

 

 

     (g)      (h) 

 

Figure 4.5: Time-domain representation of (a)–(b): the original piano and drum music. (c)–(d) and 

(e)–(f) denote the recovered piano and drum music using uniform sparsity factorization with 

        and       , respectively. (g)–(h) denote the recovered piano and drum music using 

the proposed method. 
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      (a)       (b) 

    

     (c)      (d) 

    

     (e)      (f) 

 
 

  

     (g)      (h) 

 

Figure 4.6: Spectrogram of (a)–(b): the original piano and drum music. (c)–(d) and (e)–(f) denote 

the recovered piano and drum music using uniform sparsity factorization with         and 

      , respectively. (g)–(h) denote the recovered piano and drum music using the proposed 

method. 

 

In this implementation, we have conducted several experiments to compare the 

performance of the proposed method with unsupervised CMF under different sparsity 

regularization. To investigate the effect of sparsity regularization on source separation 

performance, we evaluated and compared the proposed variational L1-sparse with the case 

of 1) Uniform constant sparsity with low sparseness e.g.,   
        and 2) Uniform 
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constant sparsity with high sparseness e.g.,   
     . We use an example mixture of 

piano music and drum music as shown in Figures 4.5 and 4.6. And set the number of 

components per each source to      with   = 2 sources. An initial CMF decomposition 

is random. The number of iterations was set to 200 for updating the parameters. The 

hypothesized is set that the proposed variational L1-sparse will significantly yield 

improvement of the audio source separation compare with fixed sparsity.  

 

 

 

 

     (a)      (b) 

 

 

 
 

     (c)      (d) 

 
 

 
 

     (e)      (f) 

 

 

 

 

     (g)      (h) 

 

Figure 4.7: Time-domain representation of (a)–(b): the original male speech and piano music. 

(c)–(d) and (e)–(f) denote the recovered male speech and piano music using uniform sparsity 

factorization with         and       , respectively. (g)–(h) denote the recovered male speech 

and piano music using the proposed method. 
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Figsures 4.7 and 4.8 show the separated source in term of time-domain representation 

and spectrogram, respectively. Panels (a)-(b) show the original sources of the speech and 

music mixture which are the male speech and piano, respectively. Panels (c)-(h) shows 

the estimated sources using uniform constant sparsity factorization with low 

sparseness     
        , high sparseness    

       and the proposed variational 

L1-sparse parameters. 

    

      (a)       (b) 

    

     (c)      (d) 

 
 

  

     (e)      (f) 

    

     (g)      (h)   
 

Figure 4.8: Spectrogram of (a)–(b): the original male speech and piano music. (c)–(d) and (e)–(f) 

denote the recovered male speech and piano music using uniform sparsity factorization with 

        and       , respectively. (g)–(h) denote the recovered male speech and piano music 

using the proposed method. 
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Table 4.2: Comparison of average SDR and SIR performance on three types of mixtures between 

uniform regularization methods and the proposed method (vL1-SCMF). 

 

Mixtures Methods SDR (dB) SIR (dB) 

Music and Music 

Proposed method 

(vL1-SCMF) 
12.32 14.87 

(Best)Uniform regularization 

sparsity 
10.89 14.68 

Music and Speech 

Proposed method 

(vL1-SCMF) 
8.55 9.54 

(Best)Uniform regularization 

sparsity 
7.15 7.36 

Male Speech and Female 

Speech 

Proposed method 

(vL1-SCMF) 
3.72 5.58 

(Best)Uniform regularization 

sparsity 
2.81 4.53 

 

The overall comparison results between the proposed variational L1-sparse and uniform 

sparsity methods have been summarized in Table 4.2. According to the table, CMF with 

variational L1-sparse tends to yield better result than the uniform sparsity-based methods. 

We may summarize the average performance improvement of our method against the 

uniform constant sparsity method: 1) for the music and music mixtures, the improvements 

per source in terms of the SDR are 1.4dB and SIR 0.2dB. 2) For the music and speech 

mixtures, the improvements per source in terms of SDR are 1.4dB and SIR 2.2dB. 3) For 

the male speech and female speech mixtures, the improvements per source in terms of 

SDR are 0.9dB and SIR 1.1dB. On a point of interest, the analyses for the case of 1) 

Uniform constant sparsity with low sparseness e.g.,   
        and 2) Uniform constant 

sparsity with high sparseness e.g.,   
       in Figures. 4.5 and 4.6 are based on the 

single fixed uniform sparsity parameter where is set to be too high and too low, 
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respectively. From these results, it could be argued that such settings of uniform sparsity 

parameter are unrealistic for source separation. To investigate this further, the impact of 

sparsity regularization on the separation results in terms of the SDR under different 

uniform regularization has been undertaken and the results are plotted in Figure 4.9. In 

this implementation, the uniform regularization for all sparsity parameters e.g., 

  
             . The best result is retained and tabulated in Table 4.2. 

In Figure 4.9, the results have clearly indicated that there are certain values of where the 

unsupervised CMF performs with exceptionally good results. In the case of music and 

music mixtures, the best performance is obtained when ranges from 0.5 to 2 where the 

highest SDR is 10.9dB. As for music and speech mixtures, the best performance is 

obtained when ranges from 1.0 to 3.5 where the highest SDR is 7.2dB and for male 

speech and female speech mixtures, the best performance is obtained when ranges from 1 

to 4 where the highest SDR is 2.8dB. On the contrary, when is set too high, the separation 

performance tends to degrade. It is also worth pointing out that the separation results are 

coarse when the factorization is non-regularized. Here, we see that 1) for music and music 

mixtures, the SDR is only 7.8dB, 2) for music and speech mixtures, the SDR is only 

5.7dB, and 3) for male speech and female speech mixtures, the SDR is only 1dB. From 

above, it is evident that uniform sparsity scheme gives varying performance depending on 

the value of which in turn depends on the type of mixture. Hence, this poses a practical 

difficulty in selecting the appropriate level sparseness necessary for matrix factorization 

to resolve the ambiguity between the sources in the TF domain. 

For comparison purposes, we have summarized the average performance improvement 
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of our proposed method against the case of the uniform constant sparsity    
  

             and the case of non-regularized    
      based on Figure 4.9 as follows: 1) 

for mixture of music signals, the average improvements are 4.4dB and 4.5dB per source, 

respectively 2) for mixture of music and speech signal, the average improvements are 

2.7dB and 2.9dB per source, respectively, and 3) for mixture of speech signals, the average 

improvements are 1.7dB and 2.7dB per source, respectively. The above results clearly 

indicate that the performances of source separation have been undermined when the 

uniform constant sparsity scheme is used. On the contrary, improved performances can be 

obtained by allowing the sparsity parameters to be individually adapted for each element 

code. This is evident based on source separation performance as indicated in Table 4.2. 

 
Figure 4.9: Separation results of vL1-SCMF by using different uniform regularization. 

 

4.2.4 Comparison With Other SCBSS Methods 

 

In this evaluation, we compare the proposed method with similar class of matrix 
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[11], NMF with Itakura-Saito divergence (NMF-ISD) [19], and single-channel ICA 

(SCICA) [24].  

 

Table 4.3: Comparison of average SDR and SIR performance on three types of mixtures between 

SCICA, NMF-ISD, SNMF, CMF and the proposed method (vL1-SCMF). 

 

Mixtures Methods SDR (dB) SIR (dB) 

Music and Music 

Proposed method  

(vL1-SCMF) 
12.72 14.87 

CMF [50] 6.11 7.53 

SNMF [11] 5.23 7.14 

NMF-ISD [19] 5.17 6.31 

SCICA [24] 3.85 4.86 

Music and Speech 

Proposed method  

(vL1-SCMF) 
8.92 9.84 

CMF [50] 6.06 6.64 

SNMF [11] 4.52 6.11 

NMF-ISD [19] 3.55 6.62 

SCICA [24] 1.43 3.12 

Male Speech and Female 

Speech 

Proposed method  

(vL1-SCMF) 
4.53 5.78 

CMF [50] 3.89 5.65 

SNMF [11] 1.62 3.23 

NMF-ISD [19] 2.06 4.27 

SCICA [24] -0.56 1.25 

 

Table 4.3 further gives the SDR and SIR comparison results between our proposed 

method and the above four methods. The improvement of our method compared with 
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CMF, SNMF, NMF-ISD and SCICA can be summarized as follows: 1) for the music and 

music, the average improvement per source in SDR is 7.6dB and in SIR 8.4dB; 2) for 

music and speech, the average improvement per source in SDR is 5.0dB and in SIR 4.2dB; 

3) for male speech and female speech, the average improvement per source in SDR is 

2.8dB and in SIR 3.5dB. Analyzing the separation results and SDR performance, the 

proposed method leads to the best separation performance for both recovered sources. In 

the case of the SCICA method performs with poorer results, we note that the recovered 

sources have not been clearly separated and the mixing ambiguity region is still large 

when compared with the original speeches. The SCICA models the sources as sparse 

combination of a set of time-domain basis functions which are initially derived using the 

ICA methods. The sources are subsequently estimated by maximizing the log-likelihood 

with the ICA-derived basis functions. This method renders optimal separation when the 

ICA basis functions corresponding to each source have minimal time-domain overlap. In 

the case where the basis functions have significant overlap with each other e.g. mixture of 

two speech sources where the basis functions for two sources are very similar, this 

method performs very poorly. Of note is that the CMF method exploits the phase 

information of the sources which is inherently ignored by SNMF and NMF-ISD and this 

has led to improved performance about 2dB in SDR. In addition, by carefully adapting 

the sparsity parameter for each temporal code using the proposed variational L1-norm 

method, a considerable interference rejection level has been achieved. This is ostensibly 

apparent in the SIR criterion. On the other hand, the parts decomposed by the SNMF and 

NMF-ISD method are not adequate to capture the phase spectra and the temporal 
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dependency of the frequency patterns within the audio signal. Additionally, the CMF and 

NMF-ISD are not unique if the data does not span the positive octant adequately since a 

rotation of   and opposite   can give the same results. In CMF, the sparsity parameter is 

set manually and therefore it is difficult to avoid under or over sparse resolution of the 

factorization. 

 

4.3 Summary  

 

This chapter has presented a novel framework of amalgamating variational L1-sparse with 

complex matrix factorization for single channel source separation.  The impetus behind 

the proposed work is that NMF cannot estimate the phase spectra of underlying constituent 

signals, and sparseness achieved by the conventional CMF is not efficient enough. The 

proposed method addresses the above and enjoys at least two significant advantages: first, 

the sparse regularization term is adaptively tuned to obtain the desired sparse 

decomposition, and second, the proposed method can extract recurrent patterns of 

magnitude spectra that underlie observed complex spectra and the phase estimates of 

constituent signals, thus enabling the features of the components to be extracted more 

efficiently. In addition, we derived analytical update equations through an auxiliary 

function approach and an experimental evaluation showed that reasonably good separation 

was obtained with the present method. 
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CHAPTER 5  

 

SINGLE CHANNEL BLIND SOURCE SEPARATION USING 

IMITATED STEREO AUDIO MIXTURE WITH REGULARIZED 

NONNEGATIVE TENSOR FACTORIZATION 

 

 

In this chapter, nonnegative matrix factorization given by a single observed mixture is 

extended to multiple-array mixtures. A novel approach for solving the SCBSS problem is 

developed. The proposed mixing mixture is an analogy of a stereo signal concept given 

by two microphones, one being the real and another is virtual. An “imitated-stereo” 

mixture model is developed by weighting and time-shifting the original single-channel 

mixture. This leads to an artificial mixing system of dual channels which gives rise to a 

new form of temporal correlation diversity of the sources. The imitated-stereo mixture 

has further culminated to a new development of the parallel factor analysis (PARAFAC) 

model. The PARAFAC model yields a time-frequency representation of an artificial dual 

channels information despite the mixture is a single-channel recording. Underlying all 

factorization algorithms in SCBSS problems are the principal difficulties in estimating the 

adequate number of latent components for each source and in preventing the same source 

from being extracted more than once at the output. This chapter addresses these issues by 

developing a framework for pruning unnecessary components and incorporating a 

modified multivariate rectified Gaussian prior information into the spectral basis features. 
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The parameters of the imitated stereo model are estimated via the proposed PARAFAC 

regularized nonnegative tensor factorization with Itakura-Saito divergence. In addition, 

we have derived the separability conditions of the proposed mixture model and 

demonstrated that the proposed method can indeed separate mixtures of real-audio 

sources. Experimental testing on real-audio sources has been conducted to verify the 

capability of the proposed method.  

The chapter is organized as follows: Section 5.1 summarizes the imitated-stereo mixing 

model. The proposed algorithm is fully developed in Section 5.2. Experimental results 

coupled with a series of performance comparison with other SCBSS method are presented 

in Section 5.3. Finally, Section 5.4 concludes this chapter. 

 

 

5.1 Single Channel Mixing Model  

 

5.1.1 Imitated – Stereo Mixture Model 

 

The single-channel blind source separation problem can be expressed as  

 

                       
              (5.1) 

 

where       denotes the single observed mixture,       denotes the  th source signal, 

  , is the total number of source signals and           denotes the time index. To 

recover the original signals       given only by the sole observed mixture      , we 

compose another mixture based on the autoregressive (AR) process of the sources. This 

idea has been motivated by the most of audio signals that can be modeled by the AR 
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process. This enables us to propose the imitated mixture by time-shifting and weighting 

the observed mixture as 

 

      
 

     
                              (5.2) 

 

where     is the weight parameter, and   is the time-delay. The AR process of the 

signal can be expressed [86] as 

 

           
            

  

                 (5.3) 

 

where    is the maximum AR order, z is the number of AR order,    
      denotes the 

 th order AR coefficient of the  th source signal at time   and       is an independent 

identically distributed (i.i.d.) random signal with variance    and zero mean. We establish 

a ‘imitated-stereo’ term in the mixing model in (5.1) and (5.2) since the mixing model 

resembles a stereo signal where the attenuation of the sources differs but the sources have 

identical time delay because given by one location. By using the AR process in (5.3), the 

imitated mixture can be rewritten in terms of the sources, its coefficients and time-delay as 

 

       
     

              

     
 

     
                  

  
   
   

     

  
           (5.4) 

 

The proposed mixing model in terms of the sources can now be expressed concisely as a 

function of time  

 

            
  
                                                                                                                                                       

                  
                             (5.5) 
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where           and           represent the mixing attenuation and residue of the     

source, respectively. 

 

          
    

       

     
                   (5.6) 

 

      
     

                  
  
   
   

     
              (5.7) 

 

Note that the parameterization of       and       depends on   and   although this is 

not shown explicitly. By comparing with the single channel mixture, the imitated stereo 

mixture       contains extra information i.e.               which are used for estimating 

the sources. For time-frequency (TF) representation, the mixing model can be expressed 

for         as 

 

                  
  
                                                                                                                                                              

 

                  
                  

   
      

     
                 

  

   
   

 
  
      (5.8) 

 

where          and          are obtained using the STFT of       and      , 

respectively. The term          is the j
th
 source in time-frequence domain. In (5.8), we use 

the fact that            , and hence the TF of       in (5.7) becomes 

 

           
   

            

     

  

   
   

                       (5.9) 
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From (5.8), it can be seen that the imitated-stereo mixture comprises of        
       

and           . A careful analysis of (5.8) will reveal that even if          is unknown, 

the signature of each source can be extracted directly from          using only 

information of        
      . Care must be exercised in selecting the time-delay   in the 

imitated-stereo (5.2). The factor         is only uniquely specified if         , 

otherwise this would cause phase-wrap. Selecting improper time-delay   will lead to 

phase-wrap if the maximum frequency of the source is exceeded. In order to avoid phase 

ambiguity, we must satisfy  

 

                         (5.10) 

 

where      is the maximum time delay,      is the maximum frequency present in the 

sources and    is the sampling frequency. Hence,      can be determined from (5.10) 

according to 

 

     
  

     
                        (5.11) 

 

As long as the delay parameter is less than     , there will not be any phase ambiguity. 

For example, for a maximum frequency             , and a sampling frequency 

         , one obtains           using (5.11). Therefore, phase ambiguity can be 

avoided provided   is selected to be either 1 or 2. Additionally, for a maximum frequency 

           the maximum delay      is limited to   only. This condition will be used 

to determine the range of   in formulating the pseudo-stereo mixture. 
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In the proposed framework, the excitation signal for each source is filtered by a 

different AR filter. By comparing with the observed mixture      , the imitated-stereo 

mixture       has extra information of the sources i.e.      ,  , and       . This results 

in a form of temporal correlation diversity of the sources in terms of the AR coefficients. 

It is noted in (5.7) and (5.8) that the second channel (      or equivalently         ) is a 

mixture of the original sources and weighted by the source’s temporal correlation. Thus 

our method in constructing the model enables this diversity to be manifested in the pair of 

imitated-stereo mixture as noted in       and      . In addition, the residue       can 

be minimized by selecting the appropriate   and  . This is the time temporal correlation 

diversity is proposed for solving the SCBSS problem. Our novelty of the imitated-stereo 

mixture has been the emergence of a new diversity in the form of sources temporal 

correlation within the context of SCBSS. Furthermore, the concept of temporal 

correlation admits a tensor representation which is then evolved into a statistical 

estimation problem. This enables us to treat the single-channel recording as multiple 

channels and subsequently allow us to develop a NTF approach for estimating the 

sources. 

 

5.1.2 Method Assumptions 

 

The proposed method focuses on separating sources from one mixture using the Wiener 

filtering [56]. To achieve this, the following assumptions will be used: 

Assumption 1: The sources satisfy the W-disjoint orthogonality (WDO) [87] condition: 
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                  ,                         (5.12) 

 

where          is the Short-Time Fourier Transform (STFT) of       defined as  

 

                         

 

 
 

   
        

 

  
      

             (5.13) 

 

and      is the window function. The STFT is performed on the signal frame-by-frame 

and thus,    represents the window shift.  

 

Assumption 2: The sources satisfy the local stationarity of the time-frequency 

representation. This refers to the approximation of                     where   is 

the maximum time-delay (shift) associated with       with an appropriate window 

function     . If   is small compared with the length of      then             

[88]. Hence, the Fourier transform of a windowed function with shift   yields 

approximately the same Fourier transform without  . For the proposed method, the 

imitated-stereo mixture is shifted by   and by invoking the local stationarity this leads to 

 

       
    
                      

 

                   ,                (5.14) 
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Thus, the STFT of         where        is approximately                 

according to the local stationarity property. 

 

5.1.3 Separability of the Imitated-Stereo Mixture Model 

 

In this section, the imitated-stereo mixture will be examined the separability of the 

proposed method by considering       and      . To achieve this, we assumed that the 

sources satisfy the WDO [87] condition: 

 

                  ,                            (5.15) 

 

The imitated-stereo mixtures of different cases based on       and       are evaluated 

by the selected minimum function   . Motivated by the separation step of the proposed 

algorithm, the minimum-selecting function is derived from the estimated signals in TF 

domain. This can be expressed by assuming that the     source dominates at a particular 

TF unit as 

 

           
               

                 
          

 

    
             

       

              
                

 

    
                   

       

                    
    

         
                

 

    
                   

        

                    
    

         
                

 

 
                       

           

      
 

                
                         (5.16) 

If    , we then obtain                     . 
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In this light, we formulate the proposed minimum-selecting function which can be 

expressed as: 

 

                  
               

                
 
   

         
 

  

 

                           
 
                (5.17) 

 

By evaluating the minimum-selecting function, each TF unit is mark to the     argument 

that yields the minimum value. Hence, the TF units of the mixture are classified into   

groups of        units. The minimum-selected function is further analyzed in the cases of 

the     mixture. In the first case where     i.e.                     
 
    

                   , the function    can be expressed as 

 

      
 

           
               

                
 
   

         

 

 

 

                
               

                
 
   

   
    

       
 

    (5.18) 

 

Secondly, when     i.e.                     
 
                          , the 

function    can be expressed as 

 

       
 

             
               

                
 
   

         

 

 

 

                   
               

                
 
   

           
 
    

 

     (5.19) 
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The functions     and    will then be used for evaluating the separability of the 

proposed imitated-stereo mixture by considering       and       in the following three 

scenarios. 

 

I: If                and           , then        
      

     
              . 

 

The first scenario presents a situation where two identical sources are mixed in the single 

channel. By a weighted and time-shifting of the observed mixture, the imitated mixture is 

only gained the time-delayed and scalar of the first mixture. This achieves no advantage of 

the imitated mixture at all. The separability of this case is presented by substituting the 

imitated-stereo mixture of Scenario I into the functions    and   . Since both sources are 

identical, the minimum-selecting function of each mixture can be evaluated as follow: For 

   ,                    , the    function then becomes 

 

                
             

              
         

 

  

 

                       
                                                                   

  

    for                                   (5.20) 

 

For    ,       and       are related to the source via   , thus            

            . Thus the    function becomes:  

 

                   
             

              
           

 

  

                           
                                                                         

        for                                          (5.21) 
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As a result, the both minimum-selecting function are zero for all     arguments i.e. 

       . In this case, the function cannot discriminate the  th arguments, the mixture 

is not separable.  

 

II: If   :            and             for     then        
      

     
         

           . 

 

Scenario II represents different sources but setting   and   for the imitated-stereo 

mixture such that            
   . By following the steps in Case 1, the separability 

of this mixture can be analyzed using the functions    and    as  

 

                  
               

                

  
   

  
  
    

       

 

  

 

                               
 
                            (5.22) 

 

Since             thus                       for    , we then obtain 

 

      
 

              
               

                

  
   

           

  

   

 

 

 

 

                              
 
                (5.23) 

 

As a result of    , the both    and    functions yields a zero value. The 

minimum-selecting functions are capable to separate the  th arguments although the 

sources have the same mixing attenuation;            
        . Therefore, the 

mixture of Scenario II is separable.  
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III: If             and             for     then  

        
       

     
              

  
      

 

This scenario corresponds to the most general case where the sources are distinct, and   

and   are determined arbitrarily such that the mixing attenuations and residues are also 

different. The    function is firstly treated where the original signals differ i.e.          

         . Hence, the    function of Scenario III obtains the same as Scenario II in (5.22) 

i.e.                            
 
.  

Since the mixing attenuations        and        correspond respectively to       and 

     , thus                       and             . By following similar line of the 

   function in Scenario II, we then have 

 

                                
 
     (5.24) 

 

For    , the    and    functions in Scenario III render a non-zero value. Hence, this 

mixture can be separated by the minimum-selecting function. 

 

 

5.2 Proposed Separation Method  

 

5.2.1 Separation Model 

 

The proposed method aim to estimate the original signals                
    

 
 by 

formulating an imitated stereo mixture and using the proposed method given only one 

observed mixture,      . The process of the proposed method is illustrated in Figure 5.1.  
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Figure 5.1: The process of the proposed method for     . 

 

 

5.2.2 Formulation of the Proposed Algorithm 

 

In order to formulate the proposed algorithm, we choose a prior distribution        

over the factors      . It can be shown that the following optimization problem needs to 

be solved 

 

                                               (5.25) 

 

where 

                                                        

and                               
        

         
    

    
        

         
            (5.26) 

 

Similarly (3.1) to (3.24), the negative log prior on   is defined as  
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Analyzing the above, the second term        
      

   
      where   

   is a 

Toeplitz matrix corresponding to the  th diagonal sub-matrix of      
 . Since the source 

signals are modelled as AR processes, it is natural that    assumes the AR 

autocorrelation matrix of the following form
1
: 

 

     
  

 
  

 
  

   

  

 
 
 

 
 
 
  

  
   

 
  

 

               (5.28) 

where    is the first-order correlation of   . For the third term, we note that 

        
      

     
    

     
     

   
      

   
  . Since the elements in    are 

exponentially decaying, we can make a crude approximation that   
      

   
        

where       
    

       and       is the correlation between the     and     basis 

vectors. Thus the term       
         

             measures the sum of weighted 

correlation between    and    for all          . Hence, by including both of these 

terms, the underlying statistical correlation within and between the basis vectors can be 

incorporated into the matrix factorization to yield results that reflect on prior information 

of the AR sources. Therefore, with the factorial model in (5.27) the desired constraint 

assumes the following form:  

 

                            
 

 
   

   
      

 

 
      

             

 (5.29) 

 

The use of multivariate rectified Gaussian prior      enables the matrix factorization 

                                                        
1
 In practice,        and the terms associated with   

  (   ) in    decay exponentially. Thus, in 

implementation    can assume a symmetric tri-diagonal matrix and the explicit inverse of such matrix is 

well documented in the literature. 
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to leverage on the statistical first order AR correlation within and between the basis 

vectors. Once the basis    has successfully extracted a particular spectral basis 

associated with a source signal, subsequent basis vectors        will leverage on    to 

extract other spectral components of the same source. However, care must be exercised in 

order that the basis vectors do not extract the same spectral component. Thus this 

necessitates us to monitor the correlation between the basis vectors i.e.    , and as this 

value gets larger, the more imperative it is to introduce pruning to prevent the basis 

vectors from extracting the same spectral component. This will be elaborated in Section 

5.2.2. 2). In order to turn off excess components thereby optimizing  , we choose a 

component-wise exponential distribution prior is imposed on   , namely, 

 

             
          

    
           (5.30) 

 

Following (5.30), the negative log prior on   is defined as  

 

                           
     

    
                                                  

 

            
        

                       (5.31) 

 

By substituting (5.26) and (5.30) into (5.25), the negative log posterior of   and   is 

given by the following: 

 

                                                        (5.32) 
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From (5.29) and (5.31), the above can be written as  

 

                               
                                                                  

 

  
        

         
    

    
        

         
             

 

 
   

   
                                 

                                                        

 
 

 
      

                      
        

                  (5.33) 

 

The sparsity term       
        forms the L1-norm regularization to resolve the 

permutation ambiguity by forcing all structure in   onto  . Therefore, the sparseness of 

the solution in (5.33) is highly dependent on the regularization parameter     
. 

 

5.2.2.1 Estimation of the mixing coefficient, basis and code  

 

In this section, we will derive the estimation of  ,   and         
 
 . The 

derivative of (5.33) with respect to   of the proposed model is given by: 

 

   

     
         

   
             

                      
                  

                                                           (5.34) 

 

where       is the         component of the   
   matrix. 

 

Similarly, the derivative of (5.33) with respect to   is given by 

 

   

      

           
             

           
      

        (5.35) 
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The derivative of (5.33) with respect to         
 
  is given by 

 

   

     
              

   
             

            
                         (5.36) 

 

We define the term   is        tensor with entries 

     
    

                     , namely 

 

   
                      

 

         
 

        

          
         (5.37) 

 

We note               
 the contracted product between tensors    with size      

           and    with size                  and     and     are 

the sets of mode indices over which the summation take place. The contracted product 

                       is a tensor of size                 given by 

 

                         
  
                      

                 

  
  

     (5.38) 

 

The contracted tensor product is a form a generalized dot product of two tensors along 

common modes of same dimensions. Using (5.38), the multiplicative (MU) learning rules 

in matrix notation for  ,  , and   become 

 

    
                   

                                                                                       

 

    
                   

                         

 

    
                     

 

                     
                                                  (5.39) 
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which has a strikingly similar form with the conventional NMF update rules. In (5.39), ‘ ’ 

is element-wise product and    is a     matrix whose         element is given by 

      and    . Here    follows the MU rule that denotes the negative part of the 

derivative of the criterion e.g.        
                      

 
 

        

          
 and    

denotes its positive part. The term     denotes        tensor with elements 

       
. Similarly,     denotes       tensor with elements        and     

denotes         tensor with elements        
. 

 

 

5.2.2.2 Estimation of the Adaptive Sparsity Parameter  

 

The update of    follows by solving 
  

     

  , this gives  

 

  

     

  
 

  
     

  

 

               
 

 

    

                       (5.40) 

 

However, this may cause abrupt changes in the level of sparsity. An adaptive first-order 

implementation that smooth over time can be obtained as follows: 

 

    
         

           
 

      
    (5.41) 

 

where   is the smoothing parameter and is normally set to     , and        is a 

small number to prevent division by zero. As mentioned in Section 5.2.2., pruning is 

exercised to prevent the basis vectors from extracting the same spectral component. First, 
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note that the sparsity term       
        forms the sparse NTF objectives while the 

normalization term          
     are given to learn the degree of regularization from 

data, i.e. tune the pruning parameter,     
. Second, let us assume that the factorization in 

(5.29) has an approximation error of              
   

    
 
   

 
        . As a result of 

inference in (5.33), a subset of the     
 will be driven to a large upper bound, with the 

corresponding columns of   and rows of   driven to small values. The effective 

dimensionality can be deduced from the distribution of the     
. We have found in practice, 

two clusters clearly emerge: A group of values in same order of magnitude corresponding 

to relevant components on columns of   and rows of  , and a group of similar values of 

much higher magnitude corresponding to irrelevant components. Furthermore, for 

components which had become to zero or close to zero we set     
 = 

  

 
. Thus, based on 

the above empirical observation, we propose the following pruning threshold: Let 

  
  

 

  
     

  
     be the average sparseness value associated with the     row of  . If  

 

         
              

  
    

 
   

 
   

    
       (5.42) 

 

then the  th row of   (equivalently  th column of  ) is to be removed. This method 

allows us to estimate the effective number of component. If the prior assumptions are 

slightly violated or even if the likelihood function differs from the model assumption, the 

correct factorization rank can be determined by evaluating the above bound by the 

pruning threshold.  
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5.2.2.3 Estimation of Source Signals  

 

For the proposed method, we obtain the estimates of W, H and P that yield the smallest 

cost value. To reconstruct the source signals, the term            of the component   in 

channel   is reformulated by using the Wiener filtering [56] as  

 

                                
 

 
          

           
 
   

         

 

 
          

         
                    (5.43) 

 

where           =            

 
   . The decomposition is conservative in the sense that 

it satisfies 

 

                
 
                  (5.44) 

 

The estimated sources are reconstructed by using inverse-STFT of            for all   

and   leads to a set of time-domain components                  , with 

 

         
       

     
       

                   (5.45) 

 

and sources estimates can be obtained as 

 

                    
                (5.46) 
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The proposed algorithm is summarized in Table 5.1. 

 

Table 5.1: Overview proposed algorithm of ISM-RNTF. 

1. Generate the mixture       from (5.2) and compute the STFT of          and 

        . 

2. Apply spectral subtraction on           
           . 

3. Initialize W, H and P with nonnegative random values and define        ,  

     
           

           
  and     . 

4. Compute the followings: 

 power spectrogram                     
 ,  

                      

 
    

    and    according to (5.46).  

    and     

5. Update model parameters as follows: 

    
                   

                                     
 

    
                   

                       
 

    
                    

 

                     
 

          
 

   
   ,       

 

  
  

      

6. Prune the irrelevant components of   and   using the criteria (5.42). Normalize 

  and  . 

7. Repeat steps 5 to 7 until it converges or reaches the predefine number of iteration. 

8. Formulate            
          

         
        . 

9. Convert           from TF domain into time domain         and reconstruct 
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components and sources using                     
. 

 

 

5.3 Results and Analysis  

 

5.3.1 Experiment Setup 

 

The proposed ISM-RNTF method is demonstrated by separating real-audio sources. The 

real-audio sources which are inherently non-stationary include vocal and music signals. All 

experiments are conducted using a PC with Intel® Core™ i5 CPU 650 at 3.2 GHz and 4 

GB RAM. MATLAB is used as the programming platform. The TF representation is 

computed by using the STFT of 1024-point Hanning window with 50% overlap. The 

experiments consist of 7 type of mixtures are generated i.e. male speech + female speech, 

male speech + jazz, male speech + drum, male speech + piano, jazz + drum, and drum + 

piano. The male speech, female speech and music sources are selected from the RWC [85] 

database and 3 linear instantaneous stereo mixtures of 3 sources taken from the Signal 

Separation Evaluation Campaign (SiSEC 2010) “Underdetermined speech and music 

mixtures” task development dataset [76]. Three audio datasets have been considered and 

are described as: 1) wdrums, a linear instantaneous stereo mixture (with positive mixing 

coefficients) of 2 drum sources and 1 bass line. 2) nodrums, a linear instantaneous stereo 

mixture (with positive mixing coefficients) of 1 rhythmic acoustic guitar, 1 electric lead 

guitar and 1 bass line. It also coincides with development dataset dev2 of SiSEC’08 

“underdetermined speech and music mixtures” task. Both mixtures are 10 seconds-long 

and sampled at 16 kHz. The instantaneous mixing is characterized by static positive gains. 

We applied a STFT with sine bell of length 64 ms (1024 samples) leading to      . 3) 
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Shannonsongs Sunrise, a linear instantaneous stereo mixture of          musical 

sources (drums, lead vocals and piano) created using 3.12 seconds-excerpts of original 

separated tracks from the song “Sunrise” by S. Hurley and downsampled to 16 kHz. We 

have evaluated our separation performance by measuring the distortion between original 

source and the estimated one according to the signal-to-distortion ratio (SDR), 

signal-to-interference ratio (SIR) and source-to-artifacts ratio (SAR). MATLAB routines 

for computing these criteria are obtained from the SiSEC’08 webpage [77 79]. The 

proposed method will be compared with 1) the other SCBSS method as the sparse 

nonnegative matrix 2-dimensional factorization (SNMF2D) [91] and the single-channel 

independent component analysis (SCICA) [24]. The SNMF2D parameters are set as 

follows [92]: number of factors is 2, sparsity weight of 1.1, number of phase shift and time 

shift is 31 and 7, respectively for music. As for speech, both shifts are set to 4. The TF 

domain used in SNMF2D is based on the log-frequency spectrogram. Cost function of 

SNMF2D is based on the Kullback-Leibler divergence. As for the SCICA, the number of 

block is 10 with time delay set to unity, 2) the other NTF-based multichannel method and 

NTF-based SCBSS.  

 

 

5.3.2 Single Channel Mixture 

 

5.3.2.1 Single Channel Sources 

 

In this section, Audio sources can be characterized as non-stationary AR processes 

since their AR coefficients vary with time [93]. We have generated the mixtures of two 

sources which select from male speech, female speech, jazz, piano and drum. Both 
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sources are mixed with equal power to generate the mixture. This is shown in the first 

three panels of Figure 5.2. Figure 5.2 shows the time-domain separation results of jazz 

and drum mixtures. We have investigated the separation performance by using      

and    . The estimated sources are plotted in the last two panels of Figure 5.2. 

Visually, the estimated sources resemble closely to the original sources. The mean square 

error (MSE) between the original and the estimated music is 0.08dB and 0.16dB for jazz 

and drum, respectively.  

 

 

 

 

 

 

Figure 5.2: Original sources, single channel mixture, and estimated sources of music mixture 

between jazz and drum using the proposed method with     and    . 
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Figure 5.3 illustrates the results between the SCICA and the SNMF2D method and the 

proposed method. In comparison, the average performance improvement of the proposed     

music mixture, the average SDR improvement is 2.6dB and 9.2dB per source, 

respectively; 2) for mixture of speech and music signal, the SDR improvement 4.6dB and 

7.9dB per source, respectively; and 3) for speech mixture, the average SDR improvement 

is 2.1dB and 3.4dB per source, respectively. Figure 5.3 shows separation performance of 

different types of mixtures. Compared with the SNMF2D and the SCICA method, the 

proposed method renders a more optimal part-based factorization. The factorization is 

unique under certain conditions (e.g., adaptive sparse and nonnegative component), 

making it unnecessary to impose constrains in the form of statistical independence 

between original sources. Furthermore, the proposed method can automatically detect the 

optimal number of components of the individual source, thus leading to more robust 

separation results compared to the SNMF2D and the SCICA method. 

 

 
 

Figure 5.3: Comparison of average SDR performance on mixture of two audio sources with 

SNMF2D, SCICA, and the proposed method (ISM-RNTF) with     and    . 
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5.3.2.2 Real Stereo Signal (left channel only) 

 

In this evaluation, three stereo signals wdrums, nodrums and Shannonsongs Sunrise are 

used to demonstrate the effectiveness of the proposed method in dealing with having one 

signal from left channel of stereo signals.       is a “left channel mixture” of stereo 

signal.       is a imitated-stereo mixture which was generated from (5.3) for  a “right 

channel mixture”.  

 

 

 

 

Figure 5.4: Original sources, single channel mixture, and estimated sources of Shannonsongs 

Sunrise mixture using the proposed method with      and    . 
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Figure 5.4 shows the three original sources, the single channel mixture and the 

separated sources using the proposed method with     and    . From the plots, it 

is visually evident that the mixture has been clearly separated comparing with the original 

sources. 

 

 

5.3.3 Impact of weight (   and time-delay     parameters on Matrix Factorization 

and Source Separation 

 

The imitated stereo mixture is formulated via determining the weight   and the 

time-delay   parameters. The weight   parameter acts as a controlling factor to 

maintain the difference of the sources’ AR coefficients and to control the amount of the 

residues          .  

The impact of determination of values for   and   parameters will be investigated in 

this section. In this implementation, the selection of values for   and   parameters will 

depend on the type of sources and require manual setting. A set of experiments has been 

conducted to determine the   and   pairs by using wdrums, nodrums and 

Shannonsongs Sunrise mixtures. A finite range of   and    is selected to be [-4, 4] 

(excluding    ) and [1, 2] , respectively. The reason is in the extreme case of    , 

this leads to             where the imitated stereo mixture cannot be formulated. In 

practice, the AR coefficients of sources are generally unknown. However, if one knows 

the source category then   and   can be chosen from   . Moreover, if specific 

information of the sources such as piano or drum is known in advance then the AR 

coefficients can be determined by randomly sample the signals that belong to those 

groups. Hence, this enables the algorithm to estimate   and   for the specific type of 

sources.  
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Figure 5.5: Separation results of the proposed method by using different weight (   and 

time-delay     parameters. 

 

Figure 5.5 shows the separation results in terms of the SDR for the mixtures of wdrums, 

nodrums and Shannonsongs Sunrise with 16 pairs of   and   defined as    

  
                                                    
                                                   

 . As a result in Figure 5.5, it 

can be seen that there are certain values of   and    where the algorithm performs the 

best. In the case of wdrums mixture, the best performance is obtained when  the pairs of 

        ranges are (1,1), (1,-2) and (2,-2) (within 5% from highest SDR) with the 

highest average SDR is 13.63dB which         is (1,1). As for nodrums mixture, the 

best performance is obtained when the pairs of         ranges are (1,1) and (2,-1) 

(within 5% from highest SDR) with the highest average SDR is 7.85dB which         

is (1,1) and in the case of Shannonsongs Sunrise mixture, the best performance is 

obtained when the pairs of         ranges are (1,1), (2,-2) and (2,-3) (within 5% from 

highest SDR) with the highest average SDR is 6.46dB which         is (1,1). In the 

case where the type of sources is unknown, then choosing             will yield the 
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best possible SDR since this particular pair overlaps with all the three categories. The 

results indicate that only the low order AR coefficients i.e.     are beneficial for 

separation. This is not surprising since speech and music are mainly characterized by the 

initial few AR coefficients and these coefficients tend to vary for different sources. 

 

5.3.4 Impact of     on Separation Performance 

 

 
(a) 

 

(b) 

 

(c) 

Figure 5.6: SDR results as a function of    .(a) wdrums. (b) nodrums. (c) Shannonsongs 

Sunrise. 
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In this section, the impact of     will be investigated. In practice, the actual statistics 

for computing the prior on   (   ) given in (5.34) is unknown. In this case, the 

selection of    will depend on the type of sources and require estimation. Hence, we 

investigate the effects of     in conjunction with the pruning method on the separation 

performance. Firstly, we estimate         
     

        using         
     and 

   
        

 
  for      . We then compare the estimated      with manual setting. 

The following two cases are considered: Case 1) with pruning and     is varied from 0, 

0.05, 0.1,…, 1.0 Case 2) without pruning and     is varied from 0, 0.05, 0.1,…, 1.0. The 

wdrums, nodrums and Shannonsongs Sunrise datasets have been used for the above cases. 

The separation results in terms of the SDR are given in Figures 5.6(a)-5.6(c). 

According to Figures 5.6(a)-5.6(c), Case 1 yields the best overall performance, where the 

average improvement over Case 2 can be summarized as follows: 1) for wdrums mixture, 

the average SDR improvement is 0.96dB per source; 2) for nodrums mixture, the average 

SDR improvement is 1.26dB per source; and 3) for mixtures of music and vocal 

(Shannonsongs Sunrise), the improvement is 1.29dB per source. The results have also 

clearly indicated that there are certain values of     where the algorithm performs the 

best. In the case of wdrums mixture, the best performance is obtained when     ranges 

from 0.33 to 0.64 (within 2% from highest SDR) with the highest average SDR is 

13.71dB. The      rendered from data estimation is 0.47 which very closely approaches 

the optimum SDR, which is at      0.52. As for nodrums mixture, the best 

performance is obtained when     ranges from 0.17 to 0.72 with the highest average 

SDR is 7.85dB. The      rendered from data estimation is 0.39 which very closely 
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approaches the optimum SDR, which is at      0.34. In the case of Shannonsongs 

Sunrise which is a music and vocal mixture, the best performance is obtained when     

ranges from 0.13 to 0.46 with the highest average SDR is 5.84dB. The      rendered 

from data estimation is 0.23 which very closely approaches the optimum SDR, which is at 

     0.21.  

From the above findings, we can conclude that for music mixtures, the best 

performance is obtained when     ranges from 0.17 to 0.72 and in the case of music and 

vocal mixture, the best performance is obtained when     ranges from 0.13 to 0.46. On 

the contrary, it is noted that when      is set either too low or high, the separation 

performance tends to degrade. It is also worth pointing out that the separation results are 

rather coarse when the factorization is non-regularized (i.e., without prior on  ) and 

without pruning. Here, we can see that the average SDR of without prior on   and 

without pruning is the lowest among the three methods across      . As evidence, 

Figure 5.6 shows the SDR of the without prior on   and without pruning method as for 

wdrums mixture: 8.13dB per source, for nodrums: 3.28dB per source, and for 

Shannonsongs Sunrise: 1.22dB per source. We may summarize the average improvement 

of the proposed method (with prior on   and with pruning) against the case of without 

pruning and without prior on  : 1) For wdrums mixture, the improvement per source in 

terms of the SDR is 4.26dB. 2) For nodrums mixture, the improvement per source in 

terms of the SDR is 3.60dB. 3) For Shannonsongs Sunrise mixture, the improvement per 

source in terms of the SDR is 3.38dB. 

By incorporating regularization (i.e., using       and pruning), the performance 
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increases significantly for all types of mixture. This is clearly evident in Figures 5.6 

(a)-5.6(c) where the average SDR result for separation three mixtures scales up to 9.1dB 

while for the case of without regularization the average SDR result is only 7.6dB. This 

amounts to a significant 1.5dB performance improvement using the proposed 

regularization than that without regularization. Thanks to the modified Gaussian prior, 

this correlation is explicitly modeled by     in the proposed method. This enables the 

estimated basis vectors    and   to take advantage of the correlation in learning the 

real basis directly from the mixed pattern. This explains the reason as to why that the 

proposed method with pruning and with prior on   shows better performance than the 

proposed method with pruning and without prior on  . Therefore, the analysis have 

unanimously indicated the importance of selecting the correct number of components and 

of incorporating the correlation     between the different basis vectors in order to arrive 

at the optimal performance of feature extraction. 

 

 

5.3.5 Comparison With Other NTF-Based BSS Methods 

 

In this section, comparison of the proposed method with other NTF-based source 

separation methods will be undertaken. These consist of the following methods. 1) The 

proposed method based on multichannel source separation using stereo source mixture. 2) 

The proposed method without pruning. 3) ISM with NTF (ISM-NTF) is based on 

factorizing the power spectrogram of the mixed signal into a sum of components given by 

ISM. 
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Table 5.2: Comparison of average SDR, SIR and SAR performance on three mixtures between the 

proposed method (ISM-RNTF), the proposed method (ISM-RNTF) without pruning, and the 

ISM-NTF. 

 

Mixtures Methods SDR (dB) SIR (dB) SAR (dB) 

wdrums 

(Hi-hat/drums/bass) 

Proposed method 

(ISM-RNTF) 

13.63 37.95 13.65 

Proposed method 

(ISM-RNTF) 

without pruning 

13.13 37.44 13.15 

ISM-NTF 12.40 36.63 12.41 

nodrums 

(bass/lead G. /rhythmic G.) 

Proposed method 

(ISM-RNTF) 

7.85 30.85 7.84 

Proposed method 

(ISM-RNTF) 

without pruning 

6.58 30.74 6.60 

ISM-NTF 6.28 28.40 6.27 

Shannonsongs Sunrise 

(drum/vocal/piano) 

Proposed method 

(ISM-RNTF) 

5.79 25.83 5.85 

Proposed method 

(ISM-RNTF) 

without pruning 

4.77 25.12 4.83 

ISM-NTF 4.32 24.36 4.39 
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The comparison results are tabulated in Table 5.2. In general, the above methods 

deliver good competitive results, especially in terms of the SDR. However, the best 

overall separation performance is still wielded by the proposed method. By analyzing the 

results, we may summarize the average improvement of the proposed method over the 

proposed method without pruning and ISM-NTF method as follows: 1) for wdrums 

mixture, the average improvements are 0.5 and 1.2 dB per source, respectively; 2) for 

nodrums mixture, the improvements are 1.3 and 1.6 dB per source, respectively; and 3) 

for mixture of Shannonsongs Sunrise, the improvements are 1.0 and 1.5 dB per source, 

respectively. This clearly shows that the factorization coupled with the adaptive 

assignment of the sparsity parameters and the inclusion of the correlation among the 

different basis vectors as in the proposed method which enforces the uniqueness of the 

factorization leading to higher accuracy in estimating the temporal information and 

frequency patterns of the audio signals. 

 

 

5.3.6 Comparison With Other SCBSS Methods 

 

Table 5.3 further gives the SDR, SIR, and SAR comparison results between our 

proposed method and the other SCBSS methods. In comparison, the average performance 

improvement of the proposed method over the the sparse nonnegative matrix 

2-dimensional factorization (SNMF2D) and the single-channel independent component 

analysis (SCICA) methods can be summarized as follows: 1) for the mixture of wdrums, 

the average improvement per source in terms of the SDR is 9.0dB, and 10.2dB per source, 

respectively; 2) for the mixture of nodrums, the average improvement per source in terms 
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of SDR is  3.4dB, and 6.4dB per source, respectively; 3) for the Shannonsongs Sunrise 

mixture, the average improvement per source in terms of SDR is 2.9dB, and 9.3dB per 

source, respectively.  

 

Table 5.3: Comparison of average SDR, SIR and SAR performance on three mixtures of three 

audio sources between SNMF2D, SCICA and the proposed method (ISM-RNTF).  

 

Mixtures Methods SDR (dB) SIR (dB) SAR (dB) 

wdrums 

(Hi-hat/drums/bass) 

Proposed method 

(ISM-RNTF) 

13.63 37.95 13.65 

SNMF2D 
4.62 11.90 6.45 

SCICA 
3.47 12.28 4.03 

nodrums 

(bass/lead G. /rhythmic G.) 

Proposed method 

(ISM-RNTF) 

7.85 30.85 7.84 

SNMF2D 
4.45 12.15 6.13 

SCICA 
1.43 13.50 2.57 

Shannonsongs Sunrise 

(drum/vocal/piano) 

Proposed method 

(ISM-RNTF) 

5.79 25.83 5.85 

SNMF2D 
2.86 7.24 6.14 

SCICA 
-3.50 8.31 -0.62 

 

Analyzing the separation performance and SDR results, the proposed method yields the 

best separation performance for all recovered sources. The SCICA method performs with 
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poorer results whereas the separation performance by the SNMF2D method is slightly 

better than the SCICA method. Our proposed method gives significantly better 

performance than the SNMF2D and SCICA methods. The reasons are the spectral 

dictionary obtained via SNMF2D methods are not pruning for estimating adequate 

number of latent components for each the audio source. In addition, the SNMF2D and 

SCICA methods have been separated individual sources from only single channel mixture. 

On the other hand, our proposed method can be created the two channels mixture from a 

single mixture by using ISM technique which provides the separation process with more 

information than the SNMF2D and SCICA methods. This lead to robust separation 

method from just a single channel mixture signal is possible. 

 

5.4 Summary  

 

A novel solution for the single channel blind source separation problem has been 

presented. An imitated stereo mixture is proposed by weighting and delaying the observed 

mixture where the source signals can be modelled by the AR processes. Experiments have 

been conducted successfully to separate real-audio mixtures. In this work, the separability 

analysis of the imitated stereo mixture has been derived based on Wiener masking. The 

proposed method has demonstrated high level separation performance for real-audio 

sources. The proposed method enjoys at least three advantages: Firstly, it can be employed 

to separate individual sources from the imitated stereo mixture by using a single channel 

mixture. Secondly, the modified Gaussian prior is formulated to express the correlation 

between different basis vectors. Finally, our proposed algorithm can automatically detect 
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the optimal number of latent components of the individual source, thus enabling the 

spectral dictionary and temporal codes of the individual source to be estimated more 

efficiently. 
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CHAPTER 6  

 

CONCLUSION OF THE THESIS 

 

The work in this thesis has fulfilled all the aims and objectives set out in Chapter 1. In 

Chapter 2, an overview of the BSS of linear instantaneous mixtures was presented. Both 

SCBSS and multi-CBSS methods that aim to increase the accuracy of the separated 

signals through various techniques were summarised and organised into a unifying 

framework. However, the practicality of these approaches still has several unresolved 

challenges which therefore limit the applications in reality. These problems have been 

summarised in Chapter 2. Hence, this requires the development of reliable solutions for 

the BSS of single channel and multi-channel mixtures to improve the performance at both 

theoretical and practical issues. This fact is the impetus behind the three proposed method 

of this thesis, which is to develop novel algorithms for retrieving single channel and 

muli-channel mixed sources. 

 

 

6.1 Proposed BSS Methods  

 

In Chapter 3, the novel framework of amalgamating pruning and Bayesian regularized 

cluster nonnegative tensor factorization under a PARAFAC structure with Itakura-Saito 

divergence has been proposed for multichannel audio source separation. The impetus 

behind the proposed work is that sparseness achieved by the conventional NTF is not 
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efficient enough in source separation, it is necessary to yield control over the degree of 

sparseness explicitly for each element code      . In addition, it does not incorporate 

correlation information between different basis vectors into the factorization process. 

Underlying all factorization algorithms is the principal difficulty in estimating the 

adequate number of latent components for each source. The proposed method addresses 

this issue by using the principle of pruning. The proposed method offers at least four 

advantages: first, the sparse regularization term is adaptively tuned using a hierarchical 

Bayesian approach to yield the desired sparse decomposition, thus enabling the spectral 

dictionary and temporal codes of nonstationary audio signals to be more efficient estimate, 

second, the modified Gaussian prior is formulated to express the correlation between 

different basis vectors , third, our proposed algorithm can automatically detect the optimal 

number of latent components of the individual source, and finally, it avoids the strong 

constraints of separating blind source without training knowledge. Hence, the work is a 

step forward to realizing optimal BASS. This has been verified concretely based on 

experiments which produced very promising results. In addition, the separation 

performance of the proposed method yields significant improvement of SDR on 

multichannel audio separation compared with other NTF-based source separation 

methods.  

 

Chapter 4 introduced a novel framework of amalgamating variational L1-sparse with 

complex matrix factorization for single channel source separation.  The impetus behind 

the proposed work is that NMF cannot estimate the phase spectra of underlying constituent 
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signals, and sparseness achieved by the conventional CMF is not efficient enough. The 

proposed method addresses the above and enjoys at least two significant advantages: first, 

the sparse regularization term is adaptively tuned to obtain the desired sparse 

decomposition, and second, the proposed method can extract recurrent patterns of 

magnitude spectra that underlie observed complex spectra and the phase estimates of 

constituent signals, thus enabling the features of the components to be extracted more 

efficiently. In addition, the analytical update equations were derived through an auxiliary 

function approach and an experimental evaluation showed that reasonably good separation 

was obtained with the present method.  

 

In Chapter 5, a novel solution for the single channel blind source separation problem has 

been presented. An imitated stereo mixture is proposed by weighting and delaying the 

observed mixture where the source signals can be modelled by the AR processes. 

Experiments have been conducted successfully to separate real-audio mixtures. In this 

work, the separability analysis of the imitated stereo mixture has been derived based on 

Wiener masking. The proposed method has demonstrated high separation performance for 

real-audio sources. The proposed method enjoys at least three advantages: Firstly, it can be 

employed to separate individual sources from the imitated stereo mixture by using a single 

channel mixture. Secondly, the modified Gaussian prior is formulated to express the 

correlation between different basis vectors. Finally, our proposed algorithm can 

automatically detect the optimal number of latent components of the individual source, 

thus enabling the spectral dictionary and temporal codes of the individual source to be 
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estimated more efficiently. 

In conclusion, the three proposed methods are summarized in Table 6.1.  

 

Table 6.1: Summary of the proposed BSS methods. 

 

Methods Type of BSS 

TF 

representation 

Cost 

function 

Regularization Update 

method 
W H 

APBNTF 

Multi-Channel 

BSS 

Spectrogram ISD  

Correlation 

of the basis 

Adaptive 

sparsity 

(MAP) 

MU 

vL1-SCMF SCBSS Spectrogram LS - 

Adaptive 

sparsity 

(VB) 

MU 

ISM-RNTF  SCBSS Spectrogram ISD 

Correlation 

of the basis 

Adaptive 

sparsity 

(MAP) 

MU 

 

 

6.2 Comparison of the Proposed SCBSS Methods  

 

In this section, the proposed BSS methods will be tested across all types of mixture and 

compared in terms of SDR, SAR and SIR. The following table summarises the 

comparison results. In comparison, the ISM-RNTF leads to the best separation 

performance for the music & music mixtures and music & speech mixtures. The reasons 
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of using ISM model for SCBSS have been described in Chapter 5. However, it is 

interesting to point out that the big advantage of using ISM-RNTF with temporal 

correlation is that this method is more meaningful features extraction that pertains to the 

data than vL1-SCMF method and analogous to the stereo signal concept given by one 

microphone, thus simultaneously retain a high level of the separation performance. On the 

other hand, the vL1-SCMF does not have prior on   such that the frequency patterns of 

each source may not be estimated as well as ISM-RNTF. Additionally, the vL1-SCMF is 

separated individual sources by using the single channel. However, the vL1-SCMF 

performs good results for male speech and female speech as compared with ISM-RNTF 

owing to incorporating the phase parameter will give the better recovered sources than 

without using phase information.  

 

Table 6.2: Separation results using different SCBSS methods. 

 

Mixtures TF methods SDR (dB) SAR (dB) SIR (dB) 

music and music 

vL1-SCMF 12.7 12.8 14.9 

ISM-RNTF  14.4 14.3 16.8 

music and speech 

vL1-SCMF 8.9 8.5 9.8 

ISM-RNTF  9.8 10.1 12.2 

male speech and female speech 

vL1-SCMF 4.5 6.6 7.8 

ISM-RNTF  2.4 2.5 13.3 
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The overall comparison results between the APBNTF and ISM-RNTF methods where 

proposed in Chapter 3 and Chapter 5, respectively, have been summarized in Table 6.3.  

 

Table 6.3: Separation results using different Proposed ISM-RNTF and APBNTF methods based 

on NTF. 

 

Mixtures TF methods SDR (dB) SAR (dB) SIR (dB) 

wdrum 

APBNTF 12.8 12.8 38.1 

ISM-RNTF  13.6 13.7 37.9 

nodrum 

APBNTF 10.0 10.1 34.4 

ISM-RNTF  8.9 8.8 31.9 

Shannonsongs Sunrise 

APBNTF 10.1 10.1 31.8 

ISM-RNTF  3.8 3.9 12.8 

 

According to the table, the overall results indicate that the APBNTF method gives the 

outstanding separation performance over the ISM-RNTF method at the average SDR 

6.6dB per source. The APBNTF achieves the good results for nodrum and Shannonsongs 

Sunrise as compared with ISM-RNTF. While ISM-RNTF yield better results than the 

APBNTF methods for the wdrum mixtures. This may because: Firstly the selecting the   

and   parameters for the imitated stereo mixture causes the coefficients of the j
th

 sources 

   of ISM-RNTF differ from one another than the natural coefficients given by the real 

stereo mixture. Secondly, the wdrums signal consists of Hi-hat, drum and bass which their 

coefficients are more distinguish than the musical instruments in the nodrum (i.e. bass, 

lead guitar, and rhmthmix guitar) and Shannonsongs Sunrise (i.e. drum, vocal and piano). 

Thus, this allows some space that the estimated coefficients of the  th
 sources can be 
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diveraged from its actual value. On the other hands, the nodrum and Shannonsongs 

Sunrise requires the accurate coefficients of the  th 
sources that available in the APBNTF 

method.            

 

6.3 Future Work  

 

6.3.1 Development of BSS Method for Noisy Mixture Enhancement 

 

As described in Chapter 5, the proposed BSS algorithms are derived for noise-free 

condition. Hence, The method may not able to solve the BSS problem in noisy 

environments since the presence of noise seriously degrades the performance. In a realistic 

scenario of audio applications, desired signals will be corrupted by additive background 

noise. In the future work, a novel framework to solving BSS based on ISM-RNTF in noisy 

environments [94] will be developed. In an instantaneous linear problem of source 

separation, the unknown source signals and the observed data are related to the single 

observed mixing model in terms of the sources and a noise in time domain is considered as 

 

            

  

   

                                                        

 

For the virtual mixture by weighting and time-shifting the single channel mixture 

     , it gives as follows:                                                                          

 

                  
                                    (6.2) 
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where       denotes the  th source signal,          and           represent the 

mixing attenuation and residue of the     source, respectively and       is additive 

noise of the     source. This method will be considered a wide class of the cost functions 

and efficient NTF algorithms with only single parameter to tune. The optimal choice of 

the parameter in the cost function depends and on a statistical distribution of data and 

additive noise, thus an updating rules algorithm should be applied for estimating the basis 

matrix and the source matrices, depending on a priori knowledge about the statistics of 

noise. 

The aim of the developed SCBSS based on ISM-RNTF method is to estimate the original 

signals from the noisy mixture by including a preprocess to eliminate noise components 

from the observed signal and then performing the separation process. 

 

6.3.2  Development of a BSS method for non-stationary mixing model  

 

Most of the algorithms for the BSS approach are based on a model of stationary sources. 

Non-stationary Blind Separation (NBS) represents the separation of independent source 

signals with non-stationary mixing from the single sensor or multi-sensor and 

time-varying temporally correlated sources. The speakers or equivalently, the 

microphones can move. The problem is cast in terms of the mixing proportions of sources 

which can be tracked by using particle filter [95, 96]. 

Future works will consider of the generalization of the proposed estimator for the 

non-stationary blind source separation problem. It addresses the problem of separating the 

sources when speakers or microphones are moving, and developing a generative model 
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for analysis of non-stationary multivariate time series. The objective of this future work is 

to perform BSS in time-varying mixing process of linear instantaneous mixture of 

independent temporally correlated, non-stationary sources.  

The BSS method to separate non-stationary mixing model based on ISM-RNTF will be 

developed. The non-stationary mixing model has not been solved by using current BSS 

methods. For instantaneous non-stationary single observed mixing model, it gives as 

follows:  

 

                 

  

   

                                                                

  

where       denotes the j
th

 source mixing parameters at   time, and       is additive 

noise. Thus, the power TF representation of matrix representation is given by      

     
 
     

 
  

  
   . The matrix    is a mixing parameter in TF domain (it is assumed 

that the mixing parameter is stationary within a short period. The aim of the developed 

BSS method is to estimate nonstationary mixing model    and the sources     
 
. 

 

6.3.3 Development of Informed Speech Separation based on a Cochleagram TF 

Representation  

 

The cochleargram modelled by using the gammatone filterbank was proposed in [92, 97- 

99] to decompose the time-domain input into the frequency domain. It produces a 

non-uniform time-frequency resolution while it is more balanced between the high and 

low frequency areas when compared to the classic spectrogram and log-frequency 
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spectrogram (constant-Q transform).The impulse response of a gammatone filter centered 

at frequency f is given by: 

 

        
                     

      
            (6.4) 

 

where   represents the order of filter,   denotes the rectangular bandwidth which 

increases with the center frequency f. The filter output response        can be expressed 

with regards to a particular filter channel   as: 

 

                                   (6.5) 

 

where    denotes the center frequency, and ‘*’ indicates a convolution operator.  

The development will construct the audio signal TF representation using the 

gammatone filterbank. It produces a non-uniform TF domain termed as the cochleagram 

whereby each TF unit has different resolution unlike the classic spectrogram which deals 

only with uniform resolution. The mixed audio signal is more separable in the 

cochleagram. This property befits to an NTF method which requires sparsity.  Moreover, 

in the separating process, an exemplar masking will be provided to turning the masking of 

the original sources. Therefore, the development of imitated-stereo mixing informed 

speech separation using Cochleagram will improve the accuracy of the speech separation 

performance.  
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