
An analysis of intrinsically disordered

proteins using hidden Markov models and

experimental design of stochastic kinetic

models

Nina Wilkinson

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

Institute for Cell & Molecular Biosciences

Newcastle University

Newcastle upon Tyne

United Kingdom

September 2014





Acknowledgements

To begin, I would like to express my gratitude to my supervisors Richard Boys and Colin

Gillespie for their patience, support and encouragement throughout the last three years. In

addition I would like to thank my supervisors Doug Gray and Viktor Korolchuk for their

biological expertise and Doug Gray’s laboratory (University of Ottawa) who completed all

laboratory experiments included in this thesis.

I would also like to thank my parents who always have more confidence in me than I

have in myself and have provided invaluable support during my education. I would like to

thank Kevin Wilson for putting up with me during a stressful period in my PhD and also

for proof reading my thesis.

I would like to express how grateful I am to those who have helped me to solve

computational issues, in particular Anthony Youd, Michael Beaty, George Stagg and Keith

Newman. I am also thankful to Holly Ainsworth for her discussions on Gaussian Processes

and her help and advice whenever it was needed. My time as a PhD student would not

have been that same without my office mates and the friends I have made and I would like

to thank them for making my PhD an enjoyable experience.

Finally I would like to acknowledge the financial support provided by the Biotechnology

and Biological Sciences Research Council.





Abstract

An intrinsically disordered protein (IDP) is a protein without a stable secondary or tertiary

structure and just over one third of human proteins can be described as IDPs. There has

been shown to be a link between neurodegenerative diseases, cancer and protein misfolding,

with many of these misfolded proteins being intrinsically disordered. These IDPs may be

cytotoxic by interacting and contributing to the aggregation process, which is why cells

need to regulate these proteins carefully. Research has shown that hydrophobicity and

charge may be important in determining if the amino acid sequence has unstructured

areas. We study the sequence structure by first recoding amino acid sequences according

to their hydrophobicity and charge and then fitting a hidden Markov model using Markov

chain Monte Carlo methods to analyse the sequence structure and use a power posterior

analysis to determine the number of distinct transition structures. The results show there

to be distinct segment types within the amino acid sequences of the FET proteins which

may have biological importance. The location of these segments can be used to guide

laboratory work which tests the biological significance of these segment types within cells.

One particular segment found in the FET proteins has been linked to oncogenic fusion

proteins and experimental analysis has shown a link between this segment and oncogenic

activity.

When conducting an experiment, an experimenter needs to determine when and under

what conditions they should take measurements. Often the choice of optimal design is

made with respect to some statistical criteria. The aim of this work is to determine, for a

stochastic kinetic model, the optimal location of the timepoints at which observations are

taken. Commonly the statistical criteria involves maximising a utility function over the

prior predictive distribution of possible experimental outcomes. Current methodologies

for experimental design for models with intractable likelihoods are very computationally

expensive as, within the iterative search for the optimal design, the calculation of the

utility function requires the determination of the parameter posterior distribution at each

iteration. We show how to use delta methods and a Gaussian process as an emulator for

the utility to reduce the computational cost and illustrate their application for the simple

death process and the Lotka–Volterra model.
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Chapter 1

Introduction

Using statistical models to guide biological experiments is important as optimising the

experimental design and analysis can save money and time. In this thesis we present

methodologies to guide two different types of experiment. The first is a sequence analysis

using hidden Markov models to identify segments of protein which may have biological

relevance. This can then be tested experimentally by biologists. The second aids in the

decisions of when to observe a system, maximising the information resulting from an

experiment.

This thesis consists of two components; the first investigates intrinsically disordered

proteins (IDPs) using hidden Markov models in order to determine biologically relevant

segments. The second part considers Bayesian experimental design, in the context of

stochastic kinetic models with intractable likelihoods (Wilkinson, 2011).

The aims of this thesis are:

• Part one: Using hidden Markov models analyse IDP sequences to find biologically

relevant segments. This can then be tested experimentally in the laboratory.

• Part two: Estimate the optimal design in the context of stochastic kinetic models

using a Gaussian process to approximate the utility.

1.1 Overview of thesis

As it is important to all methods developed, we begin with a general introduction to

Bayesian inference. In part one we have the advantage of being able to incorporate our

prior knowledge about the sequence structure into the analysis and for part two Bayesian

techniques are useful when the likelihood is intractable. In both parts of the thesis we

use Markov–chain Monte Carlo (MCMC) algorithms to learn about parameters and take

advantage of likelihood–free algorithms in Part two.
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Chapter 1. Introduction

Part one begins in Chapter 3 by introducing the biological problem, and discussing how

intrinsically disordered proteins (IDPs) are linked to diseases including neurodegenerative

diseases and cancer. We describe the properties of IDPs, and why we choose the properties

hydrophobicity and charge in our modelling. We introduce the proteins of interest and

describe why we are interested in analysing the amino acid sequences of these proteins. In

addition, we consider the existing tools used to predict the structure of IDPs.

Chapter 4 introduces the statistical techniques that we use to analyse amino acid

sequences. We use a hidden Markov model and simplify the sequences using two properties

of IDPs, hydrophobicity and charge. MCMC techniques are used to analyse the sequence

structure. We discuss how to determine the number of distinct transition structures.

Chapter 5 demonstrates the techniques described in Chapter 4. We analyse the

sequences of some intrinsically disordered proteins and describe how the results can be

used to guide laboratory experiments. We describe the laboratory experiments that can

be used to show the significance of the segment types discovered in the proteins. The

results of these experiments and the biological relevance of one of the segments found in

the Bayesian analysis are discussed.

We complete Part one of the thesis in Chapter 6 by discussing the advantages and

disadvantages of the work and possible future directions.

In Chapter 7 we introduce stochastic kinetic models and discuss simulation algorithms.

We focus on two particular models, namely the death model and the Lotka–Volterra (LV)

model.

Chapter 8 introduces Bayesian experimental design, its motivation and a solution using

utility functions. We illustrate recent work in this area by Drovandi and Pettitt (2013)

which uses an ABC method to find optimal designs in models with intractable likelihoods.

We illustrate this method for the death model and discuss a drawback of their solution,

namely that it can produce inaccurate results due to ignoring variability in the ABC

datasets.

Chapter 9 introduces Gaussian processes. The intention here is to find a fast and

accurate Gaussian process approximation to the utility function and thereby produce a

method which determines optimal designs both quickly and via an algorithm which scales

to larger models better than the ABC method. The chapter begins by describing how to

fit a Gaussian process to data and introduces some diagnostic tools that can be used to

determine whether the Gaussian process is a good fit. The Gaussian process approximation

we seek has timepoints and model parameters as inputs and the outputs are a utility. We

investigate methods to select training data (used for fitting the Gaussian process) when

the inputs are ordered timepoints. We show how these fitted Gaussian processes can be

used in Bayesian experimental design and we implement the methods for the death model.

The main aim of part two of the thesis is to show how Gaussian processes can be used
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in Bayesian experimental design for models with intractable likelihoods, and we illustrate

this by focussing on the Lotka–Volterra model. We discuss techniques to reduce the design

space and then fit a Gaussian process to this reduced design space, where the utility

is calculated using a linear noise approximation to the Lotka–Volterra model. We then

determine the optimal design using this Gaussian process via MCMC methods described

in Müller (1999). Finally we discuss our results, provide some conclusions and suggest

possible future work in Chapter 11.

3



Chapter 2

Introduction to Bayesian inference

In both parts of this thesis we are approaching the statistical analysis within a Bayesian

framework. In the first part we use Bayesian methods to find segments in intrinsically

disordered proteins and in the second part we use Bayesian methods to find optimal designs

for stochastic kinetic models, which will involve the need to perform parameter inference in

order to estimate a utility function. In this chapter we introduce the concept of Bayesian

statistics and introduce methods for parameter inference.

2.1 Bayesian Inference

Suppose we have a model which describes how likely different datasets y are to occur.

The model, written π(y|θ), is either a probability density function (if y is continuous), a

probability function (if y is discrete) or a mixture (if y has both continuous and discrete

components). Throughout this thesis we will refer to π(y|θ) as a density.

Given observed data y, the likelihood function for the parameters θ is π(y|θ) but now

this is regarded as a function in θ. Suppose our prior knowledge of θ is described via a

prior distribution, π(θ). Then, using Bayes Theorem, we can incorporate both pieces of

information to obtain the posterior distribution

π(θ|y) =
π(θ)π(y|θ)∫

θ π(θ)π(y|θ)dθ
. (2.1)

As the integral in the denominator is just a normalising constant that is not a function

of θ, we can write the posterior distribution as being proportional to the prior times the

likelihood, that is

π(θ|y) ∝ π(θ)π(y|θ).
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2.1.1 Prior elicitation

The prior distribution, with density π(θ), should encapsulate all information to hand

about the parameters θ. Optimally this information would be elicited from an expert with

considerable knowledge about the problem/context. In such situations, if there is only a

small amount of data available the prior distribution dominates the posterior distribution,

with π(θ|y) ∼ π(θ). However, one common problem with obtaining substantial prior

knowledge is that the prior distribution is often complex and results in an intractable

posterior distribution.

In situations when little information is available about θ, a practical approach is to use

a prior distribution that is conjugate to the likelihood in order to make the mathematics

simpler and to give the prior a large variance. This means that most of the information

about θ is from the data, and so as a function of θ the posterior density has a very similar

profile to that of the likelihood, π(θ|y) ∼ π(y|θ).

2.2 Markov chain Monte Carlo (MCMC)

Apart from trivial cases, finding the normalising constant is difficult as we need to evaluate

the integral given in the denominator of Equation (2.1) which can have multiple dimensions

and not produce a density function available in standard form. MCMC algorithms are

standard ways to sample the density of interest, π(θ|y), as the algorithm converges to this

distribution.

2.2.1 Gibbs sampling

We can use the Gibbs algorithm to sample from a multivariate density of interest by

simulating from the full conditional densities of the parameters (Turchin, 1971; Geman

and Geman, 1984). We define π(θ) to be the density of interest where θ = (θ1, . . . , θp)
′

and the full conditional densities to be π(θi|θ1, . . . , θi−1, θi+1, . . . , θp) for i = 1, . . . , p. The

algorithm works by alternatively sampling from the conditional density of each parameter

given the previous samples of the other parameters; see Algorithm 1. The Gibbs algorithm

is useful when the conditional densities are of a standard form and easy to sample from or

when it is not possible to sample from the marginal distribution (Gelman et al., 2013). This

algorithm produces a homogeneous Markov chain, as when we simulate a parameter value

it only depends on the previous parameter values and π(θ) is the stationary distribution of

the chain.
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Algorithm 1 Gibbs Sampling algorithm.

1. Set j = 1. Choose values of θ0 = (θ01, . . . , θ
0
p)
′ to initialise the chain.

2. Find a new value of θj from θj−1 by successively simulating from the conditional
densities:

θj1 ∼ π(θ1|θj−12 , . . . , θj−1d )

θj2 ∼ π(θ2|θj1, θ
j−1
3 , . . . , θj−1d )

...

θjd ∼ π(θd|θj1, . . . , θ
j
d−1).

3. Let j = j + 1 go back to step 2.

2.2.2 Metropolis–Hastings algorithm

The Metropolis–Hastings (MH) algorithm, given in Algorithm 2, was first introduced

by Metropolis et al. (1953) and then generalised by Hastings (1970). We can use this

method to obtain posterior samples from π(θ|y). It works by obtaining a stationary

distribution equivalent to the distribution of interest. The algorithm starts by initialising

the parameters, θ. Then at each iteration we propose a new value of the parameters, θ∗,

from the proposal distribution, q(θ∗|θi−1). This distribution will be chosen so that it is easy

to simulate values from the distribution. The proposal, θ∗ is then compared to the previous

θ or the initial θ when i = 1. This is done by calculating the acceptance probability,

α(θ∗|θ) which depends on q(θ∗|θi−1) and π(·|y). The proposal is either accepted or rejected

according to this probability. This means that the chain either moves to θ∗ or stays at θ.

The main advantage of using MCMC is that due to the acceptance probability being a

ratio of π(·|y), the normalising constants cancel, so we are not required to calculate them

and only need to know the target distribution up to the constant of proportionality.

The proposal distribution

The proposal distribution, q(θ∗|θi−1), proposes the next value of θ that the Markov chain

might take. The simplest proposal distribution to use is a symmetric proposal which cancels

in the acceptance probability as q(θ∗|θ) = q(θ|θ∗). Therefore the acceptance probability

simplifies to

α(θ∗|θ) = min

{
1,
π(θ∗)π(y|θ∗)
π(θ)π(y|θ)

}
.

Having a symmetric proposal distribution means that a proposal, θ∗, will always be

accepted if it moves the chain to an area of higher density. A proposal distribution can
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Algorithm 2 Metropolis–Hastings algorithm.

1. Set j = 1. Choose values of θ0 = (θ01, . . . , θ
0
p)
′ to initialise the chain.

2. Sample a proposed value of θ∗ ∼ q(·|θj−1) using the proposal distribution q.

3. Calculate the acceptance probability α(θ∗|θj−1) of the proposed value, θ∗

α(θ∗|θ) = min

{
1,

π(θ∗)π(y|θ∗)q(θj−1|θ∗)
π(θj−1)π(y|θj−1)q(θ∗|θj−1)

}
.

4. Let θj = θ∗ with probability α(θ∗|θ), otherwise θj = θj−1.

5. Let j = j + 1 go back to step 2.

also be chosen which is independent of the current position of the chain: q(θ∗|θ) = g(θ∗)

for some density, g. This gives the acceptance probability as

α(θ∗|θ) = min

{
1,
π(θ∗)π(y|θ∗)g(θ)

π(θ)π(y|θ)g(θ∗)

}
= min

{
1,
π(θ∗)π(y|θ∗)/π(θ)π(y|θ)

g(θ∗)/g(θ)

}
.

Here the acceptance probability is a ratio of π(·)π(y|·) to g(·). Therefore if π(·)π(y|·) is

similar to g(·) then the acceptance probability will be high. Another choice of proposal

distribution for θ is to use a random walk,

θ∗ = θ + ω,

where ω are independent and identically distributed random variables called innovations.

Often a zero mean Gaussian distribution or a symmetric uniform distribution is used for ω.

This case of the Metropolis–Hastings algorithm is also called a random walk sampler.

Tuning a random walk proposal

In MCMC the term mixing is used to describe how well a chain moves around the parameter

space and as a result of this the length of time until convergence of the chain. Mixing

depends on the distribution of ω and therefore the parameters of the distribution of ω. If

we choose ω to be a multivariate zero mean Gaussian distribution

ω ∼ Np(0, V ),
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then it is V that controls the mixing of the chain. If V is too big then the distribution will

not move much due to large moves being proposed to areas of low density. Thus many of

proposed moves are rejected. If V is chosen to be too small then small moves are proposed

which are often accepted but the space is not explored very fast or efficiently. Efficient

exploring of the space can be done by allowing for correlation in θ, which results in V

having non-zero covariance values. If ω has a Gaussian distribution, it has been shown that

0.234 is the optimal acceptance probability (Roberts et al., 1997; Roberts and Rosenthal,

2001). A common technique to tune a random walk is to use

V =
2.382ΣΠ

p
,

where ΣΠ is the variance–covariance matrix of the target distribution Π, and p is the

number of parameters, θ. In practice, ΣΠ is unknown but it can be approximated using

trial runs of the MCMC scheme (Roberts and Rosenthal, 2001; Roberts et al., 1997).

2.2.3 Analysing MCMC output

Once we have output from an MCMC scheme, it is important to check for convergence of

the chain. This can be done in an informal manner by plotting trace plots and checking

that the Markov chains look like they have converged. The samples that occur before

the chain has converged should be removed, this is called the burn–in. Autocorrelation

between the samples should also be checked.

There are more formal ways of checking for convergence. Gelman and Rubin (1992) check

that chains initialised in different places converge to the same distribution. Heidelberger

and Welch (1983); Geweke (1991) and Raftery and Lewis (1992) suggest a technique to

decide on the burn–in length, and the appropriate amount of thinning that is needed

dependent on how accurate we choose the posterior samples to be.

2.2.4 Likelihood free MCMC

If the likelihood function π(y|θ), is analytically intractable or time consuming computa-

tionally to evaluate, then we can use likelihood free methods. The basic likelihood free

algorithm starts by simulating a proposed parameter θ∗ then simulating a dataset from the

model, x ∼ π(x|θ∗). Next the simulated data x is compared to the observed data y. If x

is similar to y, then the proposed parameter θ∗ is accepted as a sample from the posterior

distribution π(θ|y). However, if x is not similar to y then it is rejected as it is not likely

that the value of θ would have created the observed dataset for that model (Beaumont

et al., 2002; Sisson and Fan, 2010). The algorithm is given in Algorithm 3. Therefore,

in likelihood free algorithms, evaluation of the likelihood is approximated by comparing

8
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Algorithm 3 Likelihood–free rejection sampling algorithm (Tavare et al., 1997).

1. Sample θ∗ ∼ π(θ) where π(θ) is the prior for θ.

2. Simulate data x ∼ π(x|θ∗) from the model.

3. Accept θ∗ if x ' y.

a simulated dataset to the observed data. It works by augmenting the target posterior

distribution

π(θ,x|y) ∝ π(y|x,θ)π(x|θ)π(θ)

where x is the simulated data. Note that if x = y, then πLF (θ,y|y) ∝ π(y|θ)π(θ) so

we sample from the target posterior exactly. We choose π(y|x,θ) so that when x and

y are very close it takes larger values. The aim is to evaluate the marginal posterior by

integrating out the simulated data x (Sisson and Fan, 2010).

πLF (θ|y) ∝ π(θ)

∫
x
π(y|x,θ)π(x|θ)dx.

The marginal posterior, πLF (θ|y), estimates the actual posterior, π(θ|y). There are

methods that target the marginal posterior, however, in general the MCMC scheme will

target πLF (θ,x|y). πLF (θ|y) is estimated by removing the simulated datasets, x, from

the results of the MCMC scheme. In order to decide how similar the simulated data x is

to the observed data y, we need to choose a function to measure this, πε(y|x,θ). This can

be a function of the distance between x and y, for example

πε(y|x,θ) =
1

ε
K

(
|x− y|

ε

)
where K is a kernel density and ε is a scale parameter. Another choice could compare x

and y using summary statistics, T (·), for example

πε(y|x,θ) =
1

ε
K

(
|T (x)− T (y)|

ε

)
.

If the summary statistics chosen are sufficient for θ, then it is identical to comparing the

actual datasets, and we do not introduce another approximation. Both of these functions

have high values when x is similar to y and low values when they are dissimilar. A common

choice for πε(y|x,θ) is the uniform kernel density (Marjoram et al., 2003; Tavare et al.,

1997),

πε(y|x,θ) ∝=

{
1 if ρ(T (x), T (y)) ≤ ε;
0 otherwise,
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Algorithm 4 Likelihood–Free Metropolis–Hastings algorithm.

1. Set j = 1. Choose values of θ0 and x0 to initialise the chain and choose ε. Let i = 0.

2. Sample θ∗ ∼ q(θ∗|θj−1) using the proposal distribution q.

3. Simulate x∗ ∼ π(x|θ∗) using the model.

4. Calculate the acceptance probability α(θ∗,x∗|θj−1,xj−1) of the proposed θ∗ and x∗

α(θ∗,x∗|θj−1,xj−1) = min

{
1,

πε(y|x∗,θ∗)π(θ∗)q(θj−1|θ∗)
πε(y|xj−1,θj−1)π(θj−1)q(θ

∗|θj−1)

}
.

5. Let θj = θ∗ and xj = x∗ with probability α(θ∗,x∗|θ,x), otherwise θj = θj−1 and
xj = xj−1.

6. Let j = j + 1 and go back to step 2.

where ρ is a distance measure between T (x) and T (y). It is possible to use a Metropolis–

Hastings algorithm which targets the augmented likelihood free posterior, πLF (θ,x|y).

The acceptance ratio in this algorithm is α = min(1, A), where

A =
πLF (θ∗,x∗|y)q(θ|θ∗)π(x|θ)

πLF (θ,x|y)q(θ∗|θ)π(x∗|θ∗)

=
πε(y|x∗,θ∗)π(x∗|θ∗)π(θ∗)q(θ|θ∗)π(x|θ)

πε(y|x,θ)π(x|θ)π(θ)q(θ∗|θ)π(x∗|θ∗)

=
πε(y|x∗,θ∗)π(θ∗)q(θ|θ∗)
πε(y|x,θ)π(θ)q(θ∗|θ)

.

We can see that evaluation of the likelihood is avoided. The Metropolis–Hastings algorithm

which targets πLF (θ,x|y) is given in Algorithm 4. A number of improvements have

been proposed to improve the accuracy and efficiency of the basic likelihood free method.

See Marin et al. (2012) for an overview.
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Chapter 3

Introduction

This chapter introduces part one of the thesis, giving important background information

which will be used throughout this part. It first defines intrinsically disordered proteins

(IDPs), describes their properties and discusses why they are important as well as their

links to many diseases. We consider computational tools for predicting protein disorder,

introduce the sets of IDPs that we will analyse and discuss the use of hidden Markov

models (HMMs) to analyse sequences.

3.1 Background

For many years it was believed that proteins require a set structure in order to complete

their function. This is known as the protein structure–function paradigm. However, more

recently it became apparent that there are proteins that do not fit this idea as they have

a flexible structure. These proteins became known as ‘intrinsically disordered proteins’

(IDPs). An IDP is a protein which is biologically active and does not have a stable

secondary or tertiary structure (Breydo and Uversky, 2011). Recently, researchers have

shown an increased interest in IDPs due to their important biological functions, making

research in this area very active (Dosztányi et al., 2010; Uversky, 2011; Uversky et al.,

2014; Cumberworth et al., 2013; Fuxreiter et al., 2014).

Just over one third of all human proteins contain long unstructured sections (arbitrarily

defined as greater than 30 amino acid residues in length) which allow IDPs to have flexible

functions and makes them ideal for signalling and regulation (Dunker and Kriwacki, 2011).

It has been found that IDPs have more hydrophobic amino acids when compared to

structured proteins so it is suggested that the levels of hydrophobic and hydrophilic amino

acids could predict whether a protein is fully folded, completely unfolded or has regions

which are unfolded (Dunker and Kriwacki, 2011).

Several algorithms have been created to predict disorder. For example Prilusky et al.
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Group 1 (the ‘FET’ proteins) Group 2

TATA–binding protein–associated Murine double minute protein (MDM2)
factor 2N (TAF15)

RNA–binding protein FUS (FUS) CREB–binding protein (CBP)
RNA–binding protein EWS (EWS) tumour protein 53 (p53)

Table 3.1: Proteins of interest: Group 1 are almost entirely unstructured and group 2 are partially
unstructured.

(2005) discuss an Internet tool called FoldIndex in which an amino acid sequence for a

protein can be inserted and the tool predicts if the protein is intrinsically unfolded using an

algorithm based on the hydrophobicity and net charge. This algorithm is useful to predict

which sections of a protein are disordered but can not identify similar structures between

proteins or within disordered regions. We hope to use a statistical analysis of the amino

acid sequences of IDPs to find segments of the sequence that may have biological reference

in order to guide laboratory experiments.

3.1.1 Description of the data

We are particularly interested in two groups of proteins as shown in Table 3.1. We are

interested in the first group of proteins (the ‘FET’ proteins) as they are almost entirely

unstructured according to available algorithms. An example algorithm is FoldIndex which

is an indicator algorithm that is based on a linear function acting as a boundary between

ordered and disordered proteins (Prilusky et al., 2005). This tool produces a graph in

which green areas correspond to ordered regions of an amino acid sequence and red areas

correspond to disordered regions as shown in Figure 3.1. These proteins are known to form

aggregates in neurodegenerative diseases and EWS has been linked to bone and soft tissue

cancer (Arvand, 2001). There may be hidden properties of the group one sequences that

are common to the FET proteins, which this project may reveal.

The second group are partially unstructured as shown in the FoldIndex graphs in

Figure 3.2, but less inclined to aggregate. However, CBP has been found in the inclusion

bodies of neurodegenerative diseases and p53 has also been linked to several cancers (Uversky

et al., 2014; McCampbell, 2000). These proteins physically and functionally interact through

their unstructured regions. We would like to find out if there is something that their

unstructured regions have in common, and whether this is different than the FET proteins.

We will use Hidden Markov models to investigate this.
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(a)

(b)

(c)

Figure 3.1: Structured and unstructured regions of the group 1 proteins according to the FoldIndex
algorithm (Prilusky et al., 2005) for (a) EWS, (b) FUS and (c) TAF15. Residue number is the
amino acid number in the protein amino acid sequence. The foldIndex is a number between −1
and 1. Positive values correspond to regions that are predicted to be folded (green) and negative
values correspond to regions that are predicted to be unfolded (red).
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(a)

(b)

(c)

Figure 3.2: Structured and unstructured regions of the group 2 proteins according to the FoldIndex
algorithm (Prilusky et al., 2005) for (a) p53, (b) MDM2 and (c) CBP. Residue number is the amino
acid number in the protein amino acid sequence. The foldIndex is a number between −1 and 1.
Positive values correspond to regions that are predicted to be folded (green) and negative values
correspond to regions that are predicted to be unfolded (red).
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3.1.2 Aims and objectives

The key aim of this work is to see whether Hidden Markov Models (HMMs) can be used

to reveal particular regions of IDPs that are of biological importance or common to these

proteins in order to address biological questions about their properties. This analysis will

be used to guide future experiments. The main aim of pre–existing algorithms is to predict

regions of order and disorder using the amino acid sequences. However, we would like

techniques which allow comparison of groups of proteins for similar or different structures

within these regions of disorder so that we can guide lab experiments to look at particular

segments and their biological importance.

3.2 Literature review of intrinsically disordered proteins

3.2.1 Introduction

Analysis of the amino acid sequences of IDPs is an area which is being actively researched.

It is the amino acid sequence which is responsible for the disorder as it leads to particular

properties which do not allow ordered proteins to form (Turoverov et al., 2010).

3.2.2 Why find disordered segments?

Disordered proteins are very common in eukaryotes. It is estimated that 30–50% of

eukaryotic proteins have a disordered section (Dosztányi et al., 2010). These proteins are

involved in important biological functions, for example regulation and cell signalling and

have links to diseases including cancer and neurodegenerative diseases. The disorder allows

one protein to bind to multiple partners with high specificity (Joerger and Fersht, 2008).

The importance of these proteins means that in order to discover how they work we need

to know about their structure and where the disordered segments are located (Dosztányi

et al., 2010). There are different types of disorder such as random coil, induced structure

after interaction and molten globules. The type of disorder could also be important in how

a protein functions (Dosztányi et al., 2010).

3.2.3 IDPs and disease

The cell cycle is maintained by proteins and therefore if a protein is not functioning

correctly, this can cause many serious diseases (Uversky et al., 2009). It could be that

the protein is not folded correctly, has lost its function, gained a toxic function or formed

a protein aggregate. Diseases caused by a protein not taking its correct functional form

are called protein–misfolding diseases. These diseases can be restricted to one organ

or spread through many tissues (Uversky et al., 2009, 2014). The proteins related to

protein–misfolding diseases tend to be part of important cellular processes, for example

16



Chapter 3. Introduction

cell signalling and regulation, and a great number of these proteins are IDPs. Examples

of protein–misfolding diseases linked to IDPs include neurodegenerative diseases, cancer,

prion diseases, cardiovascular diseases and Type II diabetes (Uversky et al., 2008, 2009,

2014).

IDPs and cancer

The IDP, p53, has strong links to cancer. p53 is important in cancer prevention due to it’s

role in apoptosis (programmed cell death). Therefore if p53 does not function correctly,

this can be one of the main factors leading to cancer developing (Uversky et al., 2014).

p53 is an important protein within cells as it is involved in many processes; for example

apoptosis, repairing DNA and in stress response (Uversky et al., 2014). It has been shown

that p53 either induces or inhibits 150 genes (Uversky et al., 2009). If p53 does not function,

the cell can become cancerous.

Many types of cancer, including breast, liver, colon, lung and brain cancer, have been

linked to p53 mutations (Uversky et al., 2008, 2009). It has been shown that 79% of

cancer–associated proteins have predicted disordered regions of 30 or more amino acids in

length (Uversky et al., 2008). Examples of cancer associated IDPs found experimentally

include p53 in several cancers, BRACA1 in breast cancer, AFP in foetal cancer, EWS in

bone and soft tissue cancer and HPV proteins in cervical cancer (Uversky et al., 2014).

IDPs and Neurodegenerative disease

Neurodegenerative diseases are associated with cell death in particular areas of the brain

which can cause numerous symptoms including movement problems and dementia. Several

neurodegenerative diseases have been linked to protein misfolding and the development of

protein aggregates and most of the proteins that do not fold correctly in neurodegenerative

diseases have been shown to be intrinsically disordered (Breydo and Uversky, 2011).

It has been suggested that overproduction of IDPs can be toxic to cells as particular

IDPs could interact and form inclusion bodies (IBs) which indicates that IDPs may play

a role in neurodegenerative diseases including Huntington’s Disease (HD), Parkinson’s

Disease (PD) and Alzheimer’s Disease (AD) (Dunker and Kriwacki, 2011). As a result

cells must regulate these proteins very carefully in comparison to folded proteins.

IDPs and aggregation

Aggregation is not restricted to the proteins associated with neurodegenerative diseases.

It has been shown that proteins not linked to neurodegeneration have shown aggregation

properties under the correct conditions (Turoverov et al., 2010). Aggregation has been

shown to be related to segments of high hydrophobicity, good β–sheet propensity and a
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low net charge (Linding et al., 2004). These areas are protected in folded proteins and

aggregation happens during times when the protein is not fully folded. Aggregation links

IDPs to neurodegenerative diseases. However, experiments have shown that in their native

state IDPs are not prone to aggregation. Under some conditions aggregation of IDPs

may be encouraged; for example at high temperatures. An analysis comparing IDPs to

structured proteins found more segments which are susceptible to aggregation are present

in structured proteins. This is thought to be because lack of structure and aggregation

resistance require the same properties (Linding et al., 2004).

Linding et al. (2004) found that segments of the amino acid sequence with high

hydrophobicity and a low net charge are more likely to aggregate. We would expect that

these segments are hidden within a protein to prevent aggregation, which has been shown

to be the case when tested experimentally (Linding et al., 2004). Experiments also revealed

that aggregation tends to occur during folding (Linding et al., 2004).

3.2.4 Properties of disordered proteins

Amino acid sequence

The properties of a protein originate from the amino acids. A list of amino acids and

the corresponding FASTA IDs are given in Table 3.2. Previous studies have reported that

disordered regions tend to lack W, F, I, Y, V and L and are enriched with G, S and P

which suggests that the first set of amino acids are ‘order promoting’ and the second

set are ‘disorder promoting’ amino acids (Dunker et al., 2001; Ferron et al., 2006). H

and T are thought to be unbiased in regards to disorder. Although there is evidence to

suggest amino acid frequencies can be used to predict disordered segments (Weathers et al.,

2004), there are cases which suggest that using the frequencies is not sufficient without

additional information. For example, RNA cap 2’–O–methyltransferase domain of dengue

virus polymerase is structured but has high levels of disorder promoting amino acids and a

lack of order promoting amino acids (Ferron et al., 2006).

Disordered regions have been associated with low hydrophobicity. That is, whether a

protein can easily interact in an aqueous environment. Disordered regions are associated

with a high net charge which means they are repulsive (Uversky, 2011). Charge is important

in disordered proteins for the extended structure to occur. A previous study has reported

that nucleoporins have large disordered domains and if they have a low net charge they

have a more structured arrangement than if they have a high net charge (Uversky, 2011;

Yamada et al., 2010). Both of these factors are thought to be important for a protein to

lack order (Uversky, 2011). This has been shown by an indicator algorithm FoldIndex,

which is based on a linear function acting as a boundary between ordered and disordered

proteins. Sample output of FoldIndex is shown in Figures 3.1 and 3.2 (Prilusky et al.,

18



Chapter 3. Introduction

FASTA ID Amino Acid Charge Hydrophobicity

1 A Alanine Neutral Hydrophobic
2 C Cysteine Neutral Hydrophobic
3 D Aspartic acid Negative Hydrophilic
4 E Glutamic acid Negative Hydrophilic
5 F Phenylalanine Neutral Hydrophobic
6 G Glycine Neutral Hydrophobic
7 H Histidine 10% Positive, 90% Neutral Hydrophilic
8 I Isoleucine Neutral Hydrophobic
9 K Lysine Positive Hydrophilic
10 L Leucine Neutral Hydrophobic
11 M Methionine Neutral Hydrophobic
12 N Asparagine Neutral Hydrophilic
13 P Proline Neutral Hydrophobic
14 Q Glutamine Neutral Hydrophilic
15 R Arginine Positive Hydrophilic
16 S Serine Neutral Hydrophilic
17 T Threonine Neutral Hydrophilic
18 V Valine Neutral Hydrophobic
19 W Tryptophan Neutral Hydrophobic
20 Y Tyrosine Neutral Hydrophobic

Table 3.2: List of amino acids.

2005).

Other factors

Other factors used to discriminate between ordered and disordered regions include hydropa-

thy, flexibility, coordination number, β-sheet propensity, volume and bulkiness (Uversky,

2011). Low complexity is associated with disorder. However, this complexity alone is

not sufficient, since certain ordered proteins share this property. For example, fibrous

proteins (Dosztányi et al., 2010). Evolution speed can also be used to differentiate between

disordered and ordered proteins as disordered proteins evolve at a faster rate since it is less

important for the sequence to remain the same to conserve function. However, exceptions

to this rule can be found as there are some IDPs which are conserved. This is particu-

larly true of those which form complexes (Dosztányi et al., 2010). It has been suggested

that posttranslational modification sites and proteolytic attack sites occur frequently in

disordered segments (Uversky, 2009).
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3.2.5 Predicting protein disorder

Numerous algorithms exist to predict protein disorder. We have already discussed FoldIndex

which is based on charge and hydrophobicity. Other algorithms are described in Table 3.3.

The predictions from algorithms of protein disorder are used to guide many laboratory

experiments and these experiments reveal other segments of disorder which influences the

disorder predictors. This creates a cycle of improvement of knowledge (Turoverov et al.,

2010).

Protein prediction algorithms depend on various physiochemical properties. Specific

predictors are better at predicting certain types of disorder (Ferron et al., 2006). For

example, the PONDR algorithm labels disordered regions as those that contain random coils,

partially unstructured regions and molten gobules, whereas using charge and hydrophobicity

detects fully disordered regions which consist of random coils (Ferron et al., 2006).

Some algorithms use machine learning techniques in which a list of disordered proteins

or regions are used to train the algorithms. The databases on disordered proteins are small.

For example, Disprot contains only 694 proteins (http://www.disprot.org/). There are

problems with these protein selection methods as the datasets are not always consistent

and are biased due to the difficulty in crystallising proteins with long disordered segments

(Ferron et al., 2006). Therefore, algorithms that exist fall into two categories; those which

use propensities of the amino acids to predict disorder such as FoldIndex and IUPred and

machine learning techniques based on neural networks such as PONDR and DisPro (Ferron

et al., 2006). The first category does not have the problem of bias so they can make better

predictions for proteins different to the training proteins used in the machine learning

techniques (Ferron et al., 2006).

3.2.6 Structure of the Group 1 and 2 proteins

Group 1 proteins: EWS, TAF15 and FUS

FUS, EWS and TAF15 are members of the FET protein family and have similar structures.

The amino acid terminus of the FET proteins is intrinsically disordered and can act as

a trans–activating domain (TAD) when bound to a DNA binding domain. It contains

many Q, G, S and Y amino acids but EWS has many P and T and many repeats of

S–Y–G–Q–Q–S (Tan and Manley, 2009). The C–terminal domain consists of a conserved

RNA recognition motif with disordered RGG domains either side which contribute to the

RNA binding of the FET proteins (Kovar, 2011).

Group 2 proteins: p53, MDM2 and CBP

The protein p53 has an intrinsically disordered N–Terminal region and this has a transacti-

vation domain (TAD) which can bind many partners including CBP and MDM2 (Joerger
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Predictor Information used Technique

PONDR Amino acid sequence,various
propensities.

FoldIndex Hydrophobicity and charge. Moving average.

GlobPlot Russell/Linding scale (propen-
sities of an amino acid to be
part of a random coil structure
or regular secondary struc-
ture).

Running sum of propensities
for residues.

DISpro Secondary structure, relevant
solvent accessibility.

Machine learning process with
1D–recursive neural networks.

IUPred Inter–amino acid interactions
(negative free energy).

NORSp Transmembrane helices and
coiled–coil.

Defines disorder as sections
with less than 12% in a helix
or coil.

DISOPRED/2 High resolution X–ray crystal
structures.

Support vector machine learn-
ing algorithm.

RONN Sequence alignment. Bio–basis function neural net-
work trained on a set of disor-
dered proteins.

SEG Trigger complexity and exten-
sion complexity.

Disembl Areas lacking secondary struc-
ture, mobile loops, regions de-
void of electron density when
crystallised.

Neural networks (trained with
X–ray structure data).

Table 3.3: List of disorder predictors (Liu and Rost, 2003; Ward et al., 2004; Dosztányi et al., 2010;
Prilusky et al., 2005; Ferron et al., 2006).

and Fersht, 2008). Short segments of about 20 amino acids change from disordered to

ordered when they form a complex. For example amino acids 15–29 form an α–helix

when they interact with the N–terminal domain of MDM2 (Joerger and Fersht, 2008).

The MDM2 binding section also forms a helix. This section of MDM2 covers part of the

binding area for CBP which is required for transcription to be activated (Joerger and

Fersht, 2008). When CBP binds to p53 it is believed to relax the chromatin form of p53.

CBP and MDM2 are in competition to bind to the same area of p53 (Joerger and Fersht,

2008). If CBP binds, then MDM2 can not also bind and so p53 is not degraded by the

proteasome (Joerger and Fersht, 2008). Conversely, if MDM2 binds, CBP can not also
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bind and activation of transcription can not occur. It is thought that posttranslational

alterations, for example phosphorylation, affects the binding of MDM2 or CBP (Joerger

and Fersht, 2008).

The extreme C terminus is also disordered, however small areas may change from

disordered to ordered when interactions occur (Joerger and Fersht, 2008). For example,

CBP takes a β–turn form when lysene 382 is acetylated and it is bound to the bromodomain

of CBP. The PGGS motif (amino acids 359–362) is extended and it binds to peptides

derived from MDM2 (Joerger and Fersht, 2008).

3.3 Statistical review

A considerable amount of literature has been published using hidden Markov models

(HMMs) to analyse sequences. For example, HMMs have been used to detect homogeneous

segments in DNA sequences (Boys et al., 2000; Boys and Henderson, 2002, 2004). Boys

et al. (2000) show that using Markov chain Monte Carlo (MCMC) techniques for an HMM

may be used to segment intron 7 of the chimpanzee α–fetoprotein gene. These techniques

are particularly useful to combine prior knowledge about particular quantities, such as

segment length with the information provided by the data. The authors found 3 segments

which approximately agreed with other analyses of the sequence (Churchill, 1989). The

analysis did not identify the Xba target site, but this was incorporated in a segment

with similar structure (Churchill, 1989). This analysis also produced segment type and

changepoint probability plots and found these ideal to identify homogeneous segments.

The methodology assumes that the number of segments is known. However, techniques

are available to find the most appropriate number of segments which involve finding the

posterior probability function for the number of segments (Boys and Henderson, 2001a).

Boys and Henderson (2001a) use reversible jump MCMC to find the posterior probability

function for the number of segments. These techniques have been successfully applied

to the genome of the bacteriophage lambda (Boys and Henderson, 2001a). Further work

on the bacteriophage lambda genome used MCMC methods to determine the order of

dependence of the Markov chain which produced results which agreed with other analyses

(Boys and Henderson, 2004, 2002, 2001a). A description of how to apply these methods is

outlined in Chapter 5.

Other approaches to analyse DNA sequences include multiple changepoint methods

where the changepoints determine the edges of the segments. Examples include Braun

et al. (2000) who use quasi–likelihood techniques and Liu and Lawrence (1999) who use

Bayesian methods. For a review on methods for DNA segmentation see Braun and Müller

(1998).

HMMs have been used on protein sequences for sequence alignment, motif detection and
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classification. These methods involve using training datasets to estimate the parameters

for the HMM (Baldi et al., 1994; Schmidler et al., 2000).

3.4 Summary

In this chapter we have discussed what IDPs are and why they are biologically important.

We have stated the aims of this part of the thesis which is to find biologically important

segments in IDPs in order to guide laboratory experiments. We have described the

properties of IDPs and their amino acid sequences as we will use this information to

simplify the amino acid sequence of the IDPs. Finally, we described examples in the

literature that have used HMMs in sequence analysis.
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Bayesian analysis using hidden

Markov models

This chapter introduces hidden Markov models and describes how they can be used for

modelling the amino acid sequence of IDPs. We introduce Bayesian techniques to obtain

the number of segment types within a sequence and to find where these segment types are.

An important step in the analysis is evaluating the marginal likelihood which is defined in

Section 4.2.7. We suggest using the power posterior method to do this (Friel and Pettitt,

2008).

4.1 Introduction

Extensive work has been carried out on DNA base sequences to look for a hidden structure

using HMMs (Boys et al., 2000; Boys and Henderson, 2002, 2004). We use this methodology

to investigate the structure of amino acid sequences of IDPs.

4.1.1 First order Markov chain model

Suppose the observed sequence is Y1, Y2, . . ., Yn. This might be a sequence of amino acids

in which case Yt is the amino acid present at position t. In general we assume that Yt

takes values 1, 2, . . . , f , so that, in the amino acid case we have f = 20, as there are 20

possible amino acids. The reason we describe this for the general case f is that we relabel

the amino acids according to their properties (Table 3.2).

The observed sequence is modelled using a first order Markov chain model. That is,

the probability of, for example, an amino acid being present at a certain position is only

dependent on the previous amino acid. Hence

Pr(Yt = j|Yt−1 = i, Yt−2, Yt−3, . . . , Y1) = Pr(Yt = j|Yt−1 = i) = pij (4.1)
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for i, j = 1, 2, . . . , f . We can collate these transition probabilities in a transition matrix

P =


p11 p12 . . . p1f

p21 p22 . . . p2f
...

...
. . .

...

pf1 pf2 . . . pff

 .

The rows represent the probabilities of having each of the f amino acids at position t,

given that there is a particular amino acid at position t− 1. As the elements in a row add

up to one, P is called a stochastic transition matrix. We assume that the transition matrix

does not change along the sequence, that is, P does not depend on t.

4.1.2 Extension to the HMM

In a hidden Markov model (HMM), the observed sequence develops at a particular position

according to one of r different transition matrices. Of course, we also need to determine a

sensible value for r which can be based on the marginal posterior probability function for r.

This is described in Section 4.2.7. We denote P = (P (1), P (2), . . . , P (r)) where P (k) = (p
(k)
ij )

for k = 1, . . . , r. These transitions structures are unknown and must be inferred. We define

the sequence S = (S1, S2, . . . , Sn) to identify which transition structure is used at each

point in the sequence, where n is the length of the sequence: here, at position t, St is an

integer from 1 to r identifying the transition structure used when moving from position t

to position t+ 1. For example, given a sequence of ten amino acids and r = 2, one possible

transition structure is S = (1, 1, 1, 1, 2, 2, 2, 1, 1, 1).

In reality, we only observe the amino acids at each position and do not observe the

sequence S. This is why the model is called a hidden Markov model (HMM). The different

transition structures P1, . . . , Pr are also unknown. We call the sequence S our segmentation

process and will assume it follows a first order Markov chain with transition matrix

Λ =


λ11 λ12 . . . λ1r

λ21 λ22 . . . λ2r
...

...
. . .

...

λr1 λr2 . . . λrr

 .

This transition matrix Λ describes the probability of changing between transition structures

along the sequence. Therefore a probabilistic description of the HMM is given by the

observed system equation

Pr(Yt = j|Y1, Y2, . . . , Yt−1 = i, S1, S2, . . . , St = k) = Pr(Yt = j|St = k, Yt−1 = i) = p
(k)
ij
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Figure 4.1: DAG to represent the HMM.

for i, j = 1, 2, . . . , f and k = 1, 2, . . . , r and the unobserved system equation

Pr(St = k|S1, S2, . . . , St−1 = j) = Pr(St = k|St−1 = j) = λjk

for j, k = 1, 2, . . . , r. Another way to represent the model is to use a directed acyclic

graph (DAG). The DAG for this model is given in Figure 4.1. In a DAG, due to the local

Markov property, node N is conditionally independent of nodes which are not descendents

of N given the parents of N. In terms of our model, this means that Yt+1 and St+1 are

conditionally independent given Yt and St. See Spiegelhalter (1998) for more details on

DAGs.

4.2 Bayesian analysis

The aim is to determine the posterior distribution of the parameters in the model, the

segmentation and the number of segment types. Following the Bayesian paradigm allows

us to combine prior knowledge about the proteins with our sequence data. For example, if

the amino acid at a given position results from an update from the transition structure of

a particular segment type then it is very likely that the next amino acid will also be an

update from this same transition structure.

Using Bayes Theorem, we construct the posterior distribution for the unknown transition

structures and the unknown segmentation. However the posterior distribution is complex

and only known up to a constant. Therefore we will resort to computationally intensive

Bayesian methods to simulate realisations from this posterior distribution.

In this model, if the segmentation was known then the likelihood function is a product
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of multinomials as it is a product of the conditional probabilities of the observed and

unobserved process as shown in Section 4.2.2. Therefore we can take independent Dirichlet

prior distributions for each row of our transition matrices P1, . . . , Pr and Λ as these are

conjugate and can be used for a range of prior beliefs due to their flexibility (Boys et al.,

2000; Boys and Henderson, 2004). Thus we incorporate our prior knowledge into the

analysis by an appropriate choice of the parameters of these Dirichlet distributions.

Let p
(k)
i be the ith row of the kth transition matrix, with i = 1, 2, . . . , f and k =

1, 2, . . . , r so p
(k)
i is a vector with f elements (p

(k)
i,j ), j = 1, 2, . . . , f . Let θ = (P, Λ) where

P =
{
P (1), P (2) . . . , P (r)

}
. Take π(y|θ, s, r) to be the likelihood of the parameters θ given

the observed data y = (y1, . . . , yt) and π(θ|r) to be the prior for the parameters. We

assume a priori independence

π(θ|r) = π(P|r)π(Λ|r) (4.2)

and take independent Dirichlet distributions for each row of the transition matrices in P
and Λ, with

p
(k)
i ∼ D(a

(k)
i ), λk ∼ D(bk), (4.3)

where i = 1, . . . , f , and k = 1, . . . , r. Therefore the prior density is

π(θ|r) =

r∏
k=1

{
π(λk)

f∏
i=1

π(p
(k)
i )

}

=

r∏
k=1


{
Γ (
∑r

`=1 bk`)∏r
`=1 Γ (bk`)

r∏
`=1

λbk`−1k`

}
f∏
i=1

Γ (
∑f

j=1 a
(k)
ij )∏f

j=1 Γ (a
(k)
ij )

f∏
j=1

(p
(k)
ij )a

(k)
ij −1


 .

It is possible to use other flexible prior distributions, for example the logistic normal dis-

tribution. However, this distribution is not conjugate to the multinomial distribution (Boys

et al., 2000). A mixture of Dirichlet distributions is another option, but this would require

many extra parameters to be specified (Boys et al., 2000).

4.2.1 Specification of prior parameters

At this stage we have very little idea about the values taken by the transition structures P
and this is expressed through the choice of the prior parameters, a

(k)
i . This can be achieved

by choosing parameters which give each transition probability the same mean. As each

row must sum to one, the transition probability means become 1/f . We also want to

express our lack of knowledge about these probabilities by giving them a reasonably large

standard deviation. We can achieve this by taking a
(k)
i = (1, 1, . . . , 1)′ ∀ i, k where ai is a

vector of length f . As the marginal distribution of the Dirichlet distribution is the Beta

distribution then pki,j ∼ Beta(1, f − 1), giving us a mean of 1/f and standard deviation
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of
√

(f − 1)/{f2(f + 1)}. For each row, a
(k)
i , the prior represents a theoretical sample

of length f + 1. As we have fr rows this is equivalent to observing a sequence of length

(f + 1)fr. Due to the increasing computational complexity of Bayesian techniques for large

values of r, it is unlikely that we will use a value for r greater than 10 and the maximum

value for f we consider is 4. This means that the prior is at most equivalent to observing a

sequence of length 200. This represents weak prior knowledge as we will use the techniques

on sequences over 1500 amino acids in length.

We have stronger prior knowledge for the hidden state transition matrix Λ. This

is because we would expect segments to be quite long so if a particular residue is in

one segment type we expect it to be highly likely that the next residue is in the same

segment type. Therefore, we assume that the diagonal elements λkk have a mean value

of approximately but less than one and the off–diagonal elements λkj have a very small

mean value which is very close to zero. Our beliefs about these off–diagonal elements are

exchangeable and so we take bk to be of the form bk = (d, . . . , d, c, d, . . . , d) where the c

is in the kth position in the vector of length r. Therefore, to give λkk prior mean m and

standard deviation s we take

d =
c(1−m)

(r − 1)m
and c =

m2(1−m)

s2
−m.

These equations can be derived since the marginal distributions of the Dirichlet distribution

are Beta and so λkk ∼ Beta(c, (r − 1)d). Note that if we also take the prior parameters

a
(k)
i to be the same, with

a
(k)
i = a1, and


b1

b2
...

br

 = cIr×r + d(11T − Ir×r), (4.4)

then
∑r

`=1 bk` = c+ (r − 1)d, and
∑f

j=1 a
(k)
ij = fa. Therefore the prior for π(θ|r) is

π(θ|r) =

r∏
k=1

Γ (c+ (r − 1)d)

Γ (c)Γ (d)r−1
λc−1kk

r∏
`=1,` 6=k

λd−1k`

×
r∏

k=1

f∏
i=1

Γ (fa)

Γ (a)f

f∏
j=1

(p
(k)
ij )a−1


=
Γ (c+ (r − 1)d)rΓ (fa)fr

Γ (c)rΓ (d)r(r−1)Γ (a)f2r

{
r∏

k=1

λkk

}c−1
r∏

k=1;`=1,` 6=k
λk`


d−1

r∏
k=1

f∏
i,j=1

p
(k)
ij


a−1

.

This prior is equivalent to c+ (r − 1)d transitions per row of Λ. Therefore the prior for θ

is the equivalent to a sequence of length r{c+ (r − 1)d}+ 1.
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4.2.2 Likelihood

The complete data likelihood, π(y, s|θ, r) is the joint probability function of the observed

data, y, and the segmentation process, s. In the following it will be useful to drop

dependence on r for simplicity. The complete data likelihood can be written as

π(y, s|θ) = π(y|s,θ)π(s|θ)

= π(y|s,P)π(s|Λ)

= Pr(Y1 = y1|S1 = s1)Pr(S1 = s1)

×
n∏
t=2

Pr(Yt = yt|St = st, Yt−1 = yt−1)Pr(St = st|St−1 = st−1)

= Pr(Y1 = y1|S1 = s1)Pr(S1 = s1)

n∏
t=2

pstyt−1,ytλst−1,st .

We will assume that the first amino acid, Y1 and segmentation S1 are independent and

take

Pr(S1 = k) =
1

r
and Pr(Y1 = i) =

1

f
for k = 1, . . . , r and i = 1, . . . , f.

This means that each amino acid has equal chance of occurring as the first amino acid, Y1,

and each segment type is equally likely in the first position of the segmentation, S1. Thus

the complete data likelihood is

π(y, s|θ) =
1

fr

n∏
t=2

pstyt−1,ytλst−1,st .

Further

n∏
t=2

pstyt−1,yt =
r∏

k=1

f∏
i=1

f∏
j=1

(
p
(k)
ij

)n(k)
ij

and
n∏
t=2

λst−1,st =
r∏

k=1

r∏
l=1

(λkl)
mkl ,

where n
(k)
ij is the number of transitions from state i to state j in segment type k and mkl

is the number of transitions from segment type k to segment type l, and so

π(y, s|θ) =
1

fr


r∏

k=1

f∏
i=1

f∏
j=1

(
p
(k)
ij

)n(k)
ij


{

r∏
k=1

r∏
l=1

(λkl)
mkl

}
.
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The observed data likelihood, π(y|θ), can be written as the sum of the complete data

likelihood over all possible segmentations, that is

π(y|θ) =
∑
s

π(y, s|θ).

This can also be written as

π(y|θ) = Pr(Y1 = y1)
n∏
t=2

Pr(Yt = yt|yt−1), (4.5)

where yt = (y1, . . . , yn). In Section 4.2.4 we describe an algorithm in which one step

calculates the observed data likelihood. Essentially, Equation (4.5) can easily be calculated

as it is a product of the normalising constants from the forward filter in the forward–

backward algorithm (Baum and Eagon, 1966; Baum and Petrie, 1966; Baum et al., 1970).

4.2.3 The posterior distribution

Using Bayes theorem, we can determine the posterior density as

π(θ|y) ∝ π(θ)π(y|θ)

where π(θ) is the prior density and π(y|θ) is the observed data likelihood. When this density

cannot be found analytically we can obtain realisations from the posterior distribution via

Markov chain Monte Carlo methods. In this hidden Markov model, the most efficient way

to determine the posterior distribution is to use data augmentation, that is, include the

segmentation process s but treat it as missing data: we sample the hidden states as part

of the MCMC scheme and thereby obtain their posterior distribution. The joint posterior

density for the model parameters and segmentation process is

π(s,θ|y) ∝ π(y|s,θ)π(s|θ)π(θ).

Note that π(s,θ|y) is actually not strictly a density as, although θ is continuous, the hidden

states s are discrete. We can sample from this distribution easily via MCMC by alternating

between sampling the segmentation process s from π(s|θ,y), and the parameters θ from

π(θ|s,y). The MCMC algorithm is straightforward as we use a conjugate prior for θ and

we can simulate realisations of s using a forward-backward algorithm (Baum and Eagon,

1966; Baum and Petrie, 1966; Baum et al., 1970). We can obtain a posterior sample for θ

by averaging over the uncertainty of the segmentation s. These techniques have been used

by Albert and Chib (1993) and Boys and Henderson (2004). Due to the assumption of
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prior independence for the parameters θ we have that

π(θ|s,y) = π(P|s,y)π(Λ|s)

where

π(P|s,y) ∝ π(P)π(y|s,P)

∝
r∏

k=1

f∏
i=1

f∏
i=1

(p
(k)
ij )a

(k)
ij −1 ×

r∏
k=1

f∏
i=1

f∏
i=1

(p
(k)
ij )n

(k)
ij

∝
r∏

k=1

f∏
i=1

f∏
i=1

(p
(k)
ij )a

(k)
ij +n

(k)
ij −1

and

π(Λ|s) ∝ π(Λ)π(s|Λ)

∝
r∏

k=1

r∏
l=1

(λkl)
bkl ×

r∏
k=1

r∏
l=1

(λkl)
mkl

∝
r∏

k=1

r∏
l=1

(λkl)
bkl+mkl

therefore we recognise that the (full) conditional posterior distribution for (P, Λ) has

independent components

p
(k)
i |s, r,y ∼ D(a

(k)
i + n

(k)
i ) (4.6)

and

λk|s, r ∼ D(bk +mk) (4.7)

where i = 1, 2, . . . , f , k = 1, 2, . . . , r, n
(k)
i = (n

(k)
ij ), mk = (mkl), n

(k)
ij is the number of

transitions from state i to state j in segment type k and mkj is the number of transitions

from segment type k to segment type l.

We will describe the Gibbs sampling algorithm that can be used to obtain samples

from the conditional posterior distributions for θ and s in the next section.

4.2.4 Gibbs sampling

The Gibbs sampler is an MCMC technique used when the joint distribution is unknown

or difficult to sample from but the conditional distributions of the parameters are known

and easy to sample from. This technique is useful in our case as we can not estimate P
and Λ, since we do not know s, but we do know their full conditional distributions. We

use the Gibbs sampler to obtain realisations of the model parameters P and Λ and of the
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Algorithm 5 Gibbs sampling.

1. Simulate θ(0) from the prior distribution. Set counter j = 1.

2. Simulate the segmentation s(j) from π(s|θ = θ(j−1), r,y) using the forward–backward
algorithm (Algorithm 6).

3. Simulate the transition parameters θ(j) from π(θ|s = s(j), r,y) using Equations (4.6)
and (4.7).

4. If j = N stop, otherwise set j = j + 1 and return to step 2.

segmentation s given a particular value for r. Let θ = (P, Λ) and N be the number of

iterations of the Gibbs sampler. The Gibbs sampler is shown in Algorithm 5.

We check for convergence and remove the ‘burn–in’ period from our realisations of s

and θ. As realisations from consecutive iterations can be correlated we have the option

to reduce this autocorrelation by thinning the realisations, that is, taking only every M

iterates for some integer M .

Simulation of the transition parameters

In step 3 of the Gibbs sampler given in Algorithm 5, we simulate realisations of the

transition structures. We have shown in Section 4.2.3 that the (full) conditional posterior

distribution for (P, Λ) has independent components

p
(k)
i |s, r,y ∼ D(a

(k)
i + n

(k)
i )

and

λk|s, r ∼ D(bk +mk)

where i = 1, 2, . . . , f , k = 1, 2, . . . , r, n
(k)
i = (n

(k)
ij ), mk = (mkl), n

(k)
ij is the number of

transitions from state i to state j in segment type k and mkj is the number of transitions

from segment type k to segment type l (Boys et al., 2000).

The forward–backward algorithm

During Gibbs sampling we need to simulate a hidden sequence s from π(s|θ, r,y). We can

do so using the forward–backward algorithm (Baum and Eagon, 1966; Baum and Petrie,

1966; Baum et al., 1970; Boys and Henderson, 2002). This algorithm works be simulating

the whole hidden sequence s in a single component block from π(s|θ,y, r). As s follows a
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Algorithm 6 The forward–backward algorithm.

1. Calculate the forward probabilities, fk(t), using the forward filter given in Algorithm 7,
for k = 1, . . . , r and t = 1, . . . , n.

2. Calculate the backward probabilities, bj(k, t), using the backward filter given in
Algorithm 8, for j = 1, . . . , r, k = 1, . . . , r and t = 1, . . . , n.

3. Sample from 1, . . . , r with probabilities fk(n) for k = 1, . . . , r to obtain sn.

4. For i = n−1, . . . , 1 and j = 1, . . . , r sample from 1, . . . , r with probabilities bj(k, i−1)
to obtain sn−1, . . . , s1.

first order Markov chain we have

π(s|θ,y) = π(sn|y,θ)
n−1∏
t=1

π(st|st+1,y
t,θ),

where yt = (y1, y2, . . . , yt). This algorithm works by first determining filtered probabilities

through a forward sweep through the sequence (t = 1, . . . , n), sampling sn from its marginal

posterior distribution, then sampling the remainder of the st through a backward sweep

(t = n − 1, . . . , 1) in which st is sampled from it’s conditional distribution given st+1.

Dropping the explicit dependence on r and θ for notational simplicity, the forward part

of the algorithm calculates the filtered probabilities fk(t) = Pr(St = k|yt), t = 1, . . . , n.

The backward part of the algorithm calculates the conditional probabilities bj(k, t) =

Pr(St = j|St+1 = k,yt) using the filtered probabilities. A more detailed description of the

forward–backward algorithm is given in Algorithm 6.

An alternative way to sample from the conditional distribution π(s|θ,y) is to use Gibbs

sampling with n univariate component blocks, one for each st. In each block we sample

from π(st|s−t,θ,y) for t = 1, 2, . . . , n where s−t is the sequence s with st omitted. This

univariate conditional distribution can be shown to be

π(st|s−t,θ,y) = π(st|st−1, st+1, yt, yt−1,P, Λ)

=
λst−1,stλst,st+1P

(st)
yt−1,yt∑r

k=1 λst−1,kλk,st+1P
(k)
yt−1,yt

.

Unfortunately this one-at-a-time algorithm usually suffers from high dependence between

the large number of component blocks, and so does not converge to the posterior distribution

as efficiently as when using the single block method. Therefore we will use the single block

method, that is, use the forward–backward algorithm (Boys et al., 2000; Germain, 2010).
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Algorithm 7 The forward filter.

1. Initialise the forward probabilities

fk(1) = Pr(S1 = k|y1) =
Pr(Y1 = y1|S1 = k)Pr(S1 = k)
r∑
l=1

Pr(Y1 = y1|S1 = l)Pr(S1 = l)

=
π
(k)
y1 πk

r∑
l=1

π
(l)
y1 πl

,

where Pr(S1 = k) = πk and Pr(Y1 = y1|St = k) = π
(k)
y1 .

2. Calculate the forward probabilities using forward recursions

fk(t) = Pr(St = k|yt) =
Pr(Yt = yt, St = k|yt−1)

Pr(Yt = yt|yt−1)
=

Pr(Yt = yt, St = k|yt−1)
r∑

k′=1

Pr(Yt = yt, St = k′|yt−1)

=
Pr(Yt = yt|St = k,yt−1)Pr(St = k|yt−1)

r∑
k′=1

Pr(Yt = yt|St = k′,yt−1)Pr(St = k′|yt−1)

=

p
(k)
yt−1,yt

r∑
l=1

λlkfl(t− 1)

r∑
k′=1

{
p
(k′)
yt−1,yt

r∑
l=1

λlk′fl(t− 1)

} ,
where

Pr(St+1 = k|yt) =

r∑
l=1

Pr(St = l, St+1 = k|yt)

=

r∑
l=1

Pr(St+1 = k|St = l)Pr(St = l|yt)

=

r∑
l=1

λlkfl(t).

4.2.5 Label switching

Label switching occurs when the likelihood of a model’s parameters are symmetric and this

is true in our case as the likelihood is invariant under permutations of r (Stephens, 2000;

Giles, 2001). For example, if r = 2 all of the subscripts equal to 1 could switch with the

subscripts 2. This means in general there are r! combinations. If we look at trace plots of

the parameters of the model and can see jumps after convergence then this is an indication

that the labels have switched. We can implement an online process to help prevent label

switching (Stephens, 2000; Giles, 2001) which attempts to avoid the problem by identifying

how the labels have switched and changing them back (relabelling). This is done as shown
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Algorithm 8 The backward filter.

1. Calculate the backward probabilities using backward recursions

bj(k, t) = Pr(St = j|St+1 = k,y) = Pr(St = j|St+1 = k,yt)

=
Pr(St+1 = k|St = j)Pr(St = j|yt)

Pr(St+1 = k|yt)

=
λjkfj(t)
r∑
l=1

λlkfl(t)

,

where

Pr(St+1 = k|yt) =
r∑
l=1

Pr(St = l, St+1 = k|yt)

=
r∑
l=1

Pr(St+1 = k|St = l)Pr(St = l|yt)

=

r∑
l=1

λlkfl(t).

Algorithm 9 Label switching algorithm.

At iteration i

1. Simulate the new segmentation s(i).

2. Calculate all r! permutations of s(i) and the number of matches between each
permutation of s(i) and the previous segmentation s(i−1).

3. Apply the permutation which provides the maximum number of matches to s(i−1) to
s(i). Also apply this permutation to P(i) and Λ(i).

in Algorithm 9. Richardson and Green (1997) and Robert et al. (2000) use an alternative

approach where they choose an order (ascending order) so that the parameters can be

identified. However, Stephens (2000) and Celeux et al. (2000) have shown that this may

cause problems with inference.

4.2.6 Parameter reduction

As there are f = 20 amino acids, we have 20× 20 matrices for P which will be difficult

to estimate if the sequences we are analysing are not long enough to provide sufficient

information. The large matrices will also slow down the algorithm. To help reduce this

problem we consider three different recodings of the amino acids – these are based on

35



Chapter 4. Bayesian analysis using hidden Markov models

f = 2 f = 3 f = 4

Hydrophobic = 1 Neutral = 1 Neutral, Hydrophobic = 1
Hydrophilic = 2 Positive = 2 Neutral, Hydrophilic = 2

Negative = 3 Positive, Hydrophilic =3
Negative, Hydrophilic = 4

Table 4.1: Properties used to convert amino acid sequences.

the properties of hydrophobicity and charge as these have been shown to be important

predictors of disorder (Prilusky et al., 2005).

1. hydrophobic or hydrophilic (f = 2) giving 2× 2 matrices,

2. positive, negative or neutral (f = 3) giving 3× 3 matrices,

3. hydrophobic and neutral, or hydrophilic with either a positive, neutral or negative

charge (f = 4) giving 4× 4 matrices.

These recodings are shown in Table 4.1.

4.2.7 Calculating the posterior probability function for r

In order to infer an appropriate number of segment types (r) we need to be able to

determine the posterior distribution for r, through its probability function π(r|y). Using

Bayes theorem we have that

π(r|y) ∝ π(y|r)π(r).

To make use of this formulation we need the prior for r, π(r), and the marginal likelihood

π(y|r). Using Bayes Theorem, the posterior density for the parameters θ given r is

π(θ|r,y) =
π(θ|r)π(y|θ, r)

π(y|r)
, (4.8)

where π(y|θ, r) is the observed data likelihood and can be determined from the forward

filter (of the forward–backward scheme) as described in Section 4.2.2. Integrating both

sides with respect to θ and rearranging gives

π(y|r) =

∫
π(θ|r)π(y|θ, r) dθ = Eθ|r{π(y|θ, r)}. (4.9)

This expectation can sometimes be well approximated using realisations {θ(i); i = 1, . . . , N}
from the prior distribution, as

π(y|r) ' 1

N

N∑
i=1

π(y|θ(i), r). (4.10)
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Unfortunately calculating the marginal likelihood directly by averaging the likelihood over

the prior distribution usually gives numerical problems due to the (very) small values taken

by the likelihood. However, this can be overcome by using the log-sum-exp trick in which

rescaling constants are used to make the calculation more numerically stable. Lets define a

rescaling constant

kr = max
i=1,...,N

log π(y|θ(i), r)

so that
ekr

N
≤ π(y|r) ≤ ekr .

Let

π∗(y|r) ≡ e−krπ(y|r) =
1

N

N∑
i=1

exp[−kr + log π(y|θ(i), r)}]. (4.11)

The largest value taken by the summand is one and so

1

N
≤ π∗(y|r) ≤ 1.

Noting that π(r|y) ∝ π(y|r)π(r), a numerically stable calculation of the posterior proba-

bility function for r is found using the log-sum-exp trick. We define

k∗ = max
r

log π(y|r) = max
r
{kr + log π∗(y|r)} ,

as

π(r|y) = kekr−k
∗
π∗(y|r)π(r),

where

k−1 =
∑
r

ekr−k
∗
π∗(y|r)π(r).

There are several alternative methods for determining this marginal likelihood; for example,

using the power posterior method (Friel and Pettitt, 2008) or Chib’s method (Chib, 1995).

We review these methods in the next two sections.

4.2.8 Calculating the marginal likelihood exactly

We can write the marginal likelihood as

π(y|r) =
∑
s

π(y|s, r)π(s|r), (4.12)

where the sum is over all rn possible segmentations for a sequence of length n. It is possible

to evaluate Equation (4.12) exactly as in our HMM, we have conditional independence
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of P and Λ and the use of conjugate priors. However this calculation can be very time

consuming as the number of possible segmentations is very large for most sequences. For

example if n = 100 and r = 2 there are 2100 ' 1.27× 1030 combinations, and this makes

direct evaluation unfeasible in reality. However, for short sequences we can easily compute

the marginal likelihood; for example when n = 10 and r = 2 there are only 210 = 1024

possible segmentations. The marginal likelihood is calculated using π(s|r) and π(y|s, r).
These are determined as follows:

π(s|r) =

∫
π(s|Λ, r)π(Λ|r)dΛ

=

∫
Pr(S1 = s1|r)

n∏
t=2

Pr(St = st|St−1 = st−1, Λ, r)π(Λ|r)dΛ

=

∫
1

r

{
r∏

k=1

r∏
l=1

(λkl)
mkl

}{
r∏

k=1

{
Γ (
∑r

l=1 bkl)∏r
l=1 Γ (bkl)

r∏
l=1

λbklkl

}}
dΛ

=
1

r

r∏
k=1

{
Γ (
∑r

l=1 bkl)∏r
l=1 Γ (bkl)

∫ r∏
l=1

λmkl+bkl−1
kl dλk

}

=
1

r

r∏
k=1

Γ (
∑r

l=1 bkl)
∏r
l=1 Γ (mkl + bkl)∏r

l=1 Γ (bkl)Γ {
∑r

l=1(mkl + bkl)}

and

π(y|s, r) =

∫
π(y|s,P, r)π(P|r)dP

=

∫
Pr(Y1 = y1|S1 = s1,P)

n∏
t=2

Pr(Yt = yt|St = st, Yt−1 = yt−1,P)π(P|r)dP

=

∫
1

f

r∏
k=1

f∏
i=1

f∏
j=1

(pkij)
n
(k)
ij

r∏
k=1

f∏
i=1

Γ (
∑f

j=1 a
(k)
ij )∏f

j=1 Γ (a
(k)
ij )

f∏
j=1

(p
(k)
ij )a

(k)
ij −1

 dp
(k)
ij

=
1

f

r∏
k=1

f∏
i=1

Γ (
∑f

j−1 a
(k)
ij )∏f

j=1 Γ (a
(k)
ij )

∫ f∏
j=1

(p
(k)
ij )n

(k)
ij +a

(k)
ij −1dp

(k)
ij


=

1

f

r∏
k=1

f∏
i=1

{
Γ (
∑f

j=1 a
(k)
ij )

∏f
j=1 Γ (n

(k)
ij + a

(k)
ij )∏f

j=1 Γ (akij)Γ (
∑f

j=1(n
(k)
ij + a

(k)
ij ))

}
.

4.2.9 Power posterior method and application to HMMs

The power posterior method is another way of determining the marginal likelihood (Friel

and Pettitt, 2008). This method works by sampling from

πT (θ|y, r) ∝ π(y|θ, r)Tπ(θ|r) (4.13)
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Algorithm 10 The power posterior method.

1. Initialise θ
(0)
0 . Typically we set θ

(0)
0 to be the prior mean, so convergence occurs

immediately to the power posterior with T = 0.

2. Sample θ
(j)
i for j = K + 1, . . . R using MCMC sampling from πTi(θ|y, r).

3. Approximate the expectation in expression (4.14) by using Monte Carlo integration

Eθ|y,T [log π(y|θ, r)] ≈ 1

R−K

R∑
j=K+1

log π(y|θ(j)i , r).

4. While i<n start the next chain with

θ
(0)
i+1 =

1

R−K

R∑
j=K+1

θ
(j)
i .

5. Calculate the log π(y|r) approximately using Equation 4.15.

where T ∈ [0, 1] is known as the temperature parameter. Expression (4.13) is known as the

power posterior. This method uses ideas from path sampling (Gelman and Meng, 1998) to

show that the log marginal likelihood can be written in terms of an integral with respect

to T , namely

log π(y|r) =

∫ 1

0
Eθ|y,T [log π(y|θ, r)]dT. (4.14)

Here the integrand is the expectation of the half mean deviance is taken with respect to the

power posterior at temperature T . The integral can be estimated by discretising T over its

interval and using the trapezoidal rule. Thus if we take 0 = T0 < T1 < . . . < Tn−1 < Tn = 1,

then the log marginal likelihood can be estimated by using

log π̂(y|r) =
n−1∑
i=0

(Ti+1 − Ti)
Eθ|y,r,Ti+1

[log π(y|θ, r)] + Eθ|y,r,Ti [log π(y|θ, r)]
2

. (4.15)

In turn these expectations can be estimated by using the output {θ(j)i , j = 1, . . . , R} of an

MCMC sampler targeting the power posterior for temperature Ti. The power posterior

method is described in detail in Algorithm 10.

To calculate the Monte Carlo standard error of the log marginal likelihood we follow

the techniques described by Friel and Pettitt (2008). Let Xi = Êθ|y,Ti [log π(y|θ, r)] denote

this expectation estimated using the MCMC output. Then we can rewrite equation (4.15)
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as

log π̂(y|r) =

n−1∑
i=0

(
Ti+1 − Ti

2

)
(Xi+1 +Xi)

=
1

2

n−1∑
i=0

(Ti+1Xi+1 − TiXi + Ti+1Xi − TiXi+1)

=
1

2

{
n∑
i=0

TiXi −
n−1∑
i=0

TiXi +
n−1∑
i=0

Ti+1Xi −
n∑
i=1

Ti−1Xi

}

=
1

2

{
TnXn − T0X0 +

n−1∑
i=1

(Ti+1 − Ti−1)Xi

}
.

Therefore

V ar{log π̂(y|r)} =
(T1 − T0)2

4
Var(X0) +

(Tn − Tn−1)2

4
Var(Xn)

+

n−1∑
i=1

(Ti+1 − Ti−1)2

4
Var(Xi). (4.16)

Thus we can estimate V ar{log π̂(y|r)} by using estimates of the V ar(Xi) = MCSE2
i ,

where the MCSEi are simply the individual Monte Carlo standard errors (Roberts, 1996).

We will use the batch means method to estimate these individual Monte Carlo standard

errors, as this is a straightforward method to implement. Essentially, the batch means

method estimates the standard error by looking at the variability of a collection of mean

values, where these means are obtained after splitting the data into a collection of batches.

Suppose we have N = ab iterations of a Markov chain {Zi}, where b is the batch size and a

is the number of batches. We can estimate µ = E[g(Z)] using µ̂ =
∑N

i=1 g(Zi)/N (Flegal,

2008). Consider the a batch means

Yk =
1

b

kb∑
i=(k−1)b+1

g(Zi), k = 1, . . . , a.

If the batch size b is chosen so that the Yk are (almost) independent then the Yk can

be thought of as a random sample with variance V ar{g(Z)}/b and so we can estimate

V ar{g(Z)} using

V̂ ar{g(Z)} =
b

a− 1

a∑
k=1

(Yk − µ̂)2.

We use b =
√
N as suggested in Alexopoulos et al. (1997). Thus we can estimate the Monte
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Carlo error of µ̂ using

M̂CSE(µ̂)2 =
V̂ ar{g(Z)}

N
.

Using this method we can determine estimates for the V ar(Xi) = MCSE2
i and thereby

estimate the standard error of the estimate of log marginal likelihood as√√√√{(T1 − T0)2
4

M̂CSE
2

0 +
n−1∑
i=1

(Ti+1 − Ti−1)2
4

M̂CSE
2

i +
(Tn − Tn−1)2

4
M̂CSE

2

n

}
.

Application to our hidden Markov model

In order to use to power posterior method on HMMs we can use data augmentation or

we can marginalise over the hidden segmentation, s. If we use data augmentation, we

have the advantage that π(y|θ, s, r) follows an exponential family as it is a multinomial

distribution with a fixed sequence length. This means that when we take this distribution

to the power of t, it is still a member of the same exponential family. Therefore sampling

from the power posterior πT (θ, s|y, r) is simple when a conjugate prior is used. In order to

simulate realisations from the power posterior πT (θ, s|y, r) for the HMM at temperature

T we construct an MCMC scheme with two blocks: θ and s. Now

πT (θ, s|y, r) ∝ π(y|θ, s, r)Tπ(θ, s|r)

= π(y|θ, s, r)Tπ(s|Λ, r)π(Λ|r)π(P|r)

=


r∏

k=1

f∏
i=1

f∏
j=1

(p
(k)
ij )n

(k)
ij T (p

(k)
ij )a

(k)
ij −1


{

r∏
k=1

r∏
l=1

(λkl)
mkl(λkl)

bkl

}
.

Therefore the full conditional power posterior distributions for θ are

p
(k)
i |s, r,y, T ∼ D(a

(k)
i + Tn

(k)
i ) and λk|s, r,y ∼ D(bk +mk),

and so iterates from the θ block are straightforward to obtain. Also iterates from the s

block can be obtained by using an adapted version of the forward–backward algorithm; see

Algorithm 11.

4.2.10 Chib’s method and application to HMMs

A further method for estimating the marginal likelihood using parameter samples from

the posterior distribution can be found in Chib (1995). This approach is based on a

rearrangement of Bayes theorem:

π(y|r) =
π(y|θ, r)π(θ|r)

π(θ|y, r)
. (4.17)
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Algorithm 11 The adapted forward–backward algorithm.

1. Calculate the forward probabilities, fk(t), using the adapted forward filter given in
Algorithm 12, for k = 1, . . . , r and t = 1, . . . , n.

2. Calculate the backward probabilities, bj(k, t), using the backward filter given in
Algorithm 8, for j = 1, . . . , r, k = 1, . . . , r and t = 1, . . . , n.

3. Sample from 1, . . . , r with probabilities fk(n) for k = 1, . . . , r to obtain Sn.

4. For i = n−1, . . . , 1 and j = 1, . . . , r sample from 1, . . . , r with probabilities bj(k, i−1)
to obtain Sn−1, . . . , S1.

Here the numerator is the likelihood multiplied by the prior and the denominator is the

posterior density for θ. A key point to note is that this equality holds for all values

of θ. Also the observed data likelihood π(y|θ, r) can be obtained from the forward filter

(Algorithm 7). Further the marginal posterior density π(θ|y, r) = Es|y,r[π(θ|s,y, r)] can

be approximated by using the output of the standard HMM MCMC scheme (Algorithm 5)

as, marginally, this gives realisations from s|y, r, that is, use the approximation

π(θ|y, r) ' 1

M

M∑
p=1

π(θ|y, s(p), r). (4.18)

We note that Chib recommends that a value θ∗ is used in Equation (4.17) which is a

point with high posterior density as this produces a more accurate value of the marginal

likelihood. The rationale here is that for an MCMC run of a given length, we can expect

the posterior density to be more accurate at high density points as there are more samples

at high density points in comparison to low density points in the tails of the distribution.

The algorithm is given in Algorithm 13. In our case we use

π̂(θ|y, r) =
1

M

M∑
p=1

π(P, Λ|y, s(p), r)

=
1

M

M∑
p=1

{
r∏

k=1

f∏
i=1

D(p
(k)
i |a

(k)
i + n

(k)
i )D(λk|bk +mk)

}
,

where n
(k)
i and mk depend on s(p). Thus, using Equation (4.17), the estimate of log

marginal likelihood is

log π̂(y|r) = log

{
π(y|θ∗, r)π(θ∗|r)

π̂(θ∗|y, r)

}
= log {π(y|θ∗, r)π(θ∗|r)} − log π̂(θ∗|y, r).
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Algorithm 12 The adapted forward filter.

1. Initialise the forward probabilities

fk(1) = Pr(S1 = k|y1) =
Pr(Y1 = y1|S1 = k)TPr(S1 = k)
r∑
l=1

Pr(Y1 = y1|S1 = l)TPr(S1 = l)

=
π
(k)T
y1 πk

r∑
l=1

π
(l)T
y1 πl

,

where Pr(S1 = k) = πk and Pr(Y1 = y1|St = k) = π
(k)
y1 .

2. Calculate the forward probabilities using forward recursions

fk(t) =
Pr(Yt = yt|St = k,yt−1)TPr(St = k|yt−1)

r∑
k′=1

Pr(Yt = yt|St = k′,yt−1)TPr(St = k′|yt−1)

=

{
p
(k)
yt−1,yt

}T r∑
l=1

λlkfl(t− 1)

r∑
k′=1

[{
p
(k′)
yt−1,yt

}T r∑
l=1

λlk′fl(t− 1)

] ,
where

Pr(St+1 = k|yt) =
r∑
l=1

Pr(St = l, St+1 = k|yt)

=
r∑
l=1

Pr(St+1 = k|St = l)Pr(St = l|yt)

=
r∑
l=1

λlkfl(t).

The Monte Carlo variability of this estimate is

V ar{log π̂(y|r)} = V ar{log π̂(θ∗|y, r)} =
V ar{π̂(θ∗|y, r)}
π̂(θ∗|y, r)2

using a delta method approximation (Chib, 1995). Let h(p) = π(θ∗|y, s(p), r) so that our

estimate is ĥ =
∑M

p=1 h
(p)/M . We can determine an estimate of the Monte Carlo variability
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Algorithm 13 Chib’s method.

1. Run Gibbs sampling (Algorithm 5) to obtain samples from π(θ, s|r,y).

2. Choose θ∗ to be a point with high density.

3. Approximate π(y|θ∗, r) from the forward filter (Algorithm 7).

4. Evaluate log π(y|r) = log π(y|θ∗, r)− log π(θ∗|r) + log π(θ∗|y, r).

of the estimate of log marginal likelihood using

V̂ ar{π̂(θ∗|y, r)} =
1

M

γ̂(0) + 2

2δ+1∑
p=1

γ̂(p)

 (4.19)

where

γ̂(k) =
1

M

M−k∑
p=1

(h(p) − ĥ)(h(p+k) − ĥ)

is the estimated autocovariance at lag k and δ is the smallest positive integer satisfying

γ̂(2δ) + γ̂(2δ+ 1) > 0. This latter condition provides an effective way of truncating the sum

of the lagged autocovariances in Equation (4.19) as, beyond lag 2δ+ 1, the autocovariances

are negligible.

4.2.11 Choosing a method to determine r

Chib’s method is fairly straightforward to implement as it uses existing (and simple)

algorithms for inference conditional on r. That said, the power posterior method has been

shown to perform more accurately for this type of HMM than Chib’s method (Germain,

2010). However the power posterior method has slightly longer computation times though

it also is simple to implement.

Yet another strategy to obtaining the (marginal) posterior distribution for r is to use a

reversible jump MCMC algorithm in which r is treated as an unknown parameter of the

model; see Boys and Henderson (2001b). However, these authors have also shown that

such algorithms mix very poorly and are very computationally inefficient.

In the next chapter we compare the performance of the three approaches described

above using simulated data.
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Chapter 5

Application of methodology

In this chapter we will apply the methods described in Chapter 4 to sequence data. We

begin by showing that the methods are accurate on a simulated data example before

moving on to apply the techniques to the two groups of proteins identified in Chapter 3.

All computer codes used in this chapter are available in an R package we have developed

at https://github.com/nina88/HMMs.

5.1 Gibbs sampling using simulated data

We now examine the performance of the Gibbs sampling algorithm (Algorithm 5) by

examining the results when using simulated data. We also use the label switching algorithm

(Algorithm 9) so that the thinned MCMC output (after convergence) can be used to

(i) estimate the transition matrices for P and Λ; (ii) plot the probability of being in each

segment type for each amino acid and (iii) plot the probability of changing segment types.

Space restrictions prevent this thesis from listing the results for all simulated datasets; here

we only include example output which is typical of the full set of results.

We begin by simulating a sequence with a f = 4 letter alphabet (four states) and of

length 5k. There are r = 3 different types of segment and the transition matrices are

P (1) =


0.35 0.15 0.25 0.25

0.35 0.20 0.05 0.40

0.35 0.20 0.20 0.25

0.25 0.15 0.20 0.40

 , P (2) =


0.25 0.30 0.15 0.30

0.05 0.45 0.05 0.45

0.15 0.25 0.25 0.35

0.05 0.40 0.05 0.50

 ,

P (3) =


0.30 0.10 0.55 0.05

0.30 0.25 0.15 0.30

0.35 0.20 0.35 0.10

0.10 0.10 0.75 0.05

 , Λ =

0.9990 0.0005 0.0005

0.0010 0.9980 0.0010

0.0050 0.0050 0.9900

 .
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The analysis for the ‘typical’ sequence (after correcting for label switching) gives the

posterior means

P (1) =


0.35 0.14 0.25 0.26

0.35 0.21 0.05 0.40

0.34 0.23 0.19 0.24

0.23 0.17 0.21 0.39

 , P (2) =


0.21 0.34 0.15 0.30

0.06 0.39 0.08 0.48

0.11 0.29 0.18 0.42

0.05 0.40 0.05 0.49

 ,

P (3) =


0.28 0.09 0.57 0.06

0.26 0.25 0.15 0.34

0.42 0.19 0.27 0.11

0.12 0.04 0.81 0.03

 , Λ =

0.9995 0.0004 0.0001

0.0018 0.9964 0.0018

0.0044 0.0016 0.9940



and (element-wise) posterior standard deviations

P (1) =


0.0136 0.0098 0.0126 0.0125

0.0181 0.0156 0.0080 0.0188

0.0173 0.0152 0.0142 0.0154

0.0117 0.0101 0.0113 0.0135

 , P (2) =


0.0574 0.0646 0.0481 0.0624

0.0138 0.278 0.0151 0.0286

0.0402 0.0565 0.0474 0.0626

0.0115 0.0257 0.0115 0.0268

 ,

P (3) =


0.0481 0.0312 0.0522 0.0263

0.0697 0.0667 0.0538 0.0744

0.0466 0.0385 0.0433 0.0305

0.0574 0.0351 0.0701 0.0310

 , Λ =

0.0004 0.0003 0.0002

0.0015 0.0021 0.0015

0.0036 0.0022 0.0041

 .

These summary statistics show that the algorithm provides good and accurate estimates

for the transition matrices.

Figure 5.1 shows the probability of being in a particular segment type, the probability

of changing segment type and the actual segmentation. Figure 5.1(a) shows the probability

of being in segment type one. The areas where the probability is almost one corresponds

to the actual segmentation given in Figure 5.1(e). This is also the case for segment type

two in Figure 5.1(b) and segment type three in Figure 5.1(c). The change point plot

given in Figure 5.1(d) corresponds to the positions that the actual segmentation changes

between segments in Figure 5.1(e). Therefore the MCMC scheme provides a accurate

indication of where the segment types and the changepoints are when compared to the

actual segmentation.

We now look at the effect of increasing the sequence length to 10k. The analysis of a
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Figure 5.1: (a)–(c) are the probability plots of being in each segment type, (d) is the probability of
changing segment type and (e) is the actual segmentation using simulated data of length 5k.
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‘typical’ sequence gives posterior means

P (1) =


0.33 0.17 0.26 0.25

0.35 0.21 0.05 0.39

0.34 0.22 0.19 0.25

0.25 0.16 0.20 0.39

 , P (2) =


0.28 0.31 0.12 0.29

0.05 0.45 0.05 0.44

0.14 0.27 0.25 0.34

0.05 0.40 0.06 0.50

 ,

P (3) =


0.33 0.12 0.50 0.06

0.25 0.27 0.16 0.32

0.38 0.18 0.33 0.11

0.11 0.21 0.62 0.06

 , Λ =

0.9989 0.0006 0.0006

0.0016 0.9973 0.0011

0.0024 0.0042 0.9934



and (element-wise) posterior standard deviations

P (1) =


0.0105 0.0083 0.0101 0.0100

0.0144 0.0120 0.0065 0.0145

0.0141 0.0118 0.0116 0.0125

0.0098 0.0084 0.0087 0.0112

 , P (2) =


0.0331 0.0340 0.0243 0.0327

0.0068 0.0154 0.0067 0.0152

0.0248 0.0321 0.0314 0.0343

00064 0.0142 0.0066 0.0145

 ,

P (3) =


0.0286 0.0202 0.0315 0.0143

0.0339 0.0354 0.0283 0.0358

0.0258 0.0209 0.0250 0.0158

0.0295 0.0399 0.0472 0.0236

 , Λ =

0.0004 0.0003 0.0003

0.0009 0.0011 0.0007

0.0019 0.0022 0.0027

 .

The posterior means again show that the algorithm provides a good estimate for the

transition matrices. Also, as expected, the longer sequence provides a smaller posterior

standard deviation due to it providing more information and thereby reducing uncertainty.

In Figure 5.2 we see the probability plots of being in each segment type, the probability

of changing segment type and the actual segmentation. Again the method provides a good

indication of where the segment types and the changepoints are when compared to the

actual segmentation. We note that there is one small section of segment type 3 which is

not picked up at position 3425–3437.

5.2 Comparing methods to calculate the marginal likelihood

for r

We investigate the performance of averaging the observed data likelihood over the prior,

the power posterior method and Chib’s method in order to estimate the marginal like-

lihood. In order to determine which method to use we compare each approximation of

the marginal likelihood to the exact marginal likelihood. As the exact marginal likelihood

given subsection 4.2.8 is a sum over all possible segmentation sequences, we use a short
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Figure 5.2: (a)–(c) are the probability plots of being in each segment type, (d) is the probability of
changing segment type and (e) is the actual segmentation using simulated data of length 10k.
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simulated sequence of length 10 for this simulation study. We fix the number of segment

types to be r = 2 and so there are 210 = 1024 possible segmentations. The transition

matrices we use for this comparison are

P (1) =

(
0.35 0.65

0.30 0.70

)
, P (2) =

(
0.05 0.95

0.70 0.30

)
, Λ =

(
0.9 0.1

0.2 0.8

)
.

In the simulation study, we simulate 100 different sequences of length 10 for the observed

data y with a f = 2 letter alphabet (two states). The marginal likelihood is then calculated

exactly by averaging the observed data likelihood over the prior, via Chib’s method and

using the power posterior method. Note that when averaging the observed data likelihood

over the prior we used 10k realisations from the prior.

For Chib’s algorithm we run the Gibbs sampling algorithm twice, once to choose a high

density point and another to estimate the posterior ordinate at the high density point. To

estimate a high density point, we run Gibbs sampling without correcting for label switching

and use the posterior means of P and Λ to be the high density points. We then run Gibbs

sampling again, correcting for label switching and use the segmentation samples along with

the observed data y to evaluate the posterior ordinate at the high density point. For both

runs of Gibbs sampling we use 6k samples, after removing a burn–in of 2k and thinning by

20.

In the power posterior method, we use 10k iterations for each value of T after removing

a burn in of 4k iterations. We also use Ti =
(
i
40

)4
, i = 1, . . . , 40, recommended by Friel

and Pettitt (2008), which gives T0 = 0 and T40 = 1 and also uses more values of T near

zero to improve the estimate of the marginal likelihood for r.

We can investigate the accuracy of these estimates of log–marginal likelihood by

calculating the variability of the estimation error for the 100 different simulated datasets,

this variability being measured as the deviation from the correct value log π̂(y|r = 2)−
log π(y|r = 2). Figure 5.3 shows box–and–whisker plots of the empirical distribution of

each estimator off the log–marginal likelihood. It shows that all three methods perform

very well as the estimation errors (on the log scale) are close to zero. The square root

deviations are 0.0116 for the power posterior method, 0.1356 for Chib’s method and 0.2742

when averaging the observed data likelihood over the prior. It is clear that the power

posterior algorithm has a much smaller error and so, from this limited simulation study,

appears to be the most accurate of the three methods. We note that the power posterior

method has been shown to perform well for HMMs of a similar type (Germain, 2010).
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Figure 5.3: Boxplots showing the distribution of the estimation error, log π̂(y|r = 2)− log π(y|r = 2)
for three methods to approximate the marginal likelihood which are averaging the observed data
likelihood over the prior, the power posterior method and Chib’s method.

5.2.1 The power posterior method

We now investigate the performance of the power posterior method to determine the correct

value for r using a simulated dataset. Essentially this method works by obtaining the

marginal likelihood for r and then calculating the posterior probability function using

Bayes theorem. Full details of the power posterior method are given in Section 4.2.9. Here

we illustrate the method by using a simulated dataset of length 10 for the observed data

y. We use r = 2 segment types, f = 2 possible states for each element of the sequence,

and the same transition matrices for P and Λ as used in Section 5.2. We assume a prior

distribution for r which is based on a truncated version of a Poisson distribution with mean

a, where the distribution is truncated above to have largest value u. We will adopt the

notation Pois(a, u) for this distribution. Our chosen prior is r ∼ 1 + Pois(1, 4), with sample

space {1, 2, 3, 4, 5}, as our analysis is an attempt to find a segmentation with relatively few

transition structures and is one chosen in agreement with Prof. Doug Gray.

In this section we present two independent analyses of the simulated dataset using the

power posterior method. The independent analyses use different seeds for the stochastic

elements and so give an indication of the accuracy and stability of the method. In the

power posterior method, we use 10k iterations for each value of T after removing a burn in

of 4k iterations. We also use Ti =
(
i
40

)4
, i = 1, . . . , 40, recommended by Friel and Pettitt

(2008), which gives T0 = 0 and T40 = 1 and also uses more values of T near zero to improve

the estimate of the marginal likelihood for r. Table 5.2 shows the results for the simulated

dataset. Each repeat (independent run) gives a similar value for log π(y|r) and hence for
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r log π(y|r) π(r|y)

1 -5.703782 0.3763
2 -5.733802 0.3652
3 -5.734157 0.1825
4 -5.734276 0.0608
5 -5.734336 0.0152

Table 5.1: Exact calculations of the log–marginal likelihood for r and the posterior probability
function for r.

Repeat 1 Repeat 2

r log π(y|r) SE{log π(y|r)} π(r|y) log π(y|r) SE{log π(y|r)} π(r|y)

1 -5.704 - 0.3749 -5.704 - 0.3749
2 -5.734 0.005 0.3637 -5.731 0.005 0.3646
3 -5.719 0.005 0.1847 -5.722 0.005 0.1840
4 -5.723 0.005 0.0613 -5.724 0.005 0.0612
5 -5.717 0.005 0.0154 -5.725 0.005 0.0153

Table 5.2: This table shows two repeats of the log marginal likelihood estimated using the power
posterior approach, the standard error of this approximation and the posterior probability for r for
r = 2, . . . , 5. Note that the exact value is used for r = 1.

π(r|y). Also the posterior probability for r = 1 is the largest (at over 0.37), although

this is not r = 2 which is the value we used to simulate the data we can see that this

matches the exact calculation as shown in Table 5.1 which also gives the highest posterior

probability to r = 1. The reason that even the exact calculation picks r = 1 is due to the

lack of information provided by such a short sequence. The standard error of the estimate

of log π(y|r) is close to 0.005 for both runs. Note that we have used the exact value for

r = 1 as this is easily calculated for any length sequence so we will use the exact value

throughout this chapter.

5.2.2 Chib’s method

We also implement Chib’s method to calculate the marginal likelihood and therefore the

posterior probability function for r. We use the same simulated sequences as used in

Section 5.2.1. We use M = 6k in Equation (4.17) in order to approximate the posterior

distribution π(θ|y, s, r). The results are given in Table 5.3. We can see that this method

gives r = 2 the highest posterior probability in each repeat which does not match the r = 1

value given by the exact method in Table 5.1 and the standard error of log π(y|r) is larger

than the power posterior method at values over 0.1.
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Repeat 1 Repeat 2

r log π(y|r) SE{log π(y|r)} π(r|y) log π(y|r) SE{log π(y|r)} π(r|y)

1 -5.704 - 0.3643 -5.704 - 0.3617
2 -5.657 0.148 0.3816 -5.654 0.164 0.3803
3 -5.730 0.142 0.1775 -5.704 0.132 0.1809
4 -5.693 0.145 0.0614 -5.679 0.138 0.0618
5 -5.704 0.127 0.0152 -5.698 0.133 0.0152

Table 5.3: This table shows two repeats of the log marginal likelihood estimated using Chib’s
method, the standard error of this approximation and the posterior probability for r for r = 2, . . . , 5.
Note that the exact value is used for r = 1.

Repeat 1 Repeat 2

r log π(y|r) SE{log π(y|r)} π(r|y) log π(y|r) SE{log π(y|r)} π(r|y)

1 -5.704 - 0.3540 -5.704 - 0.3621
2 -5.634 1.699 0.3795 -5.675 1.707 0.3725
3 -5.648 1.568 0.1872 -5.679 1.573 0.1856
4 -5.635 1.480 0.0632 -5.651 1.516 0.0636
5 -5.818 1.431 0.0161 -5.635 1.423 0.0162

Table 5.4: This table shows two repeats of the log marginal likelihood estimated using the forward
filter approach, the standard error of this approximation and the posterior probability for r for
r = 2, . . . , 5. Note that the exact value is used for r = 1.

5.2.3 Using the forward filter

This method estimates the posterior probability function for r using the observed data

likelihood which can be determined from the forward filter (of the forward-backward

scheme) as described in Section 4.2.7. Table 5.4 gives the results for the same dataset to

those used for the power posterior method in Section 5.2.1. We can see that using this

method the posterior probability for r = 2 is the highest in both repeats which does not

match the exact calculation and the standard error is over 280 times larger in comparison

to the standard error of the power posterior method. Therefore we will use the power

posterior method to find the marginal likelihood for r for the real data as it is the most

accurate of the three methods we have investigated.

5.3 Applying the power posterior method to the group 1

and group 2 proteins

The simulation study indicates that the Gibbs sampling techniques work to segment

sequences and the power posterior method is accurate at approximating the marginal
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Figure 5.4: Plot of the posterior probability functions π(r|y) for group 1 and group 2. Plot (a)
is a plot of the posterior probability functions for the group 1 proteins for f = 2 (black), f = 3
(red) and f = 4 (green) respectively. Plot (b) is a plot of the posterior probability functions for
the group 2 proteins with f = 2 (black), f = 3 (red) and f = 4 (green) respectively. The prior
distribution is given in blue.

likelihood and hence choosing a value of r. We now apply the power posterior method

and the Gibbs sampling techniques to the two groups of proteins of interest. We are

interested to find whether there are common patterns within each group of proteins and so

we analyse separately a concatenated sequence of the three proteins in each group. Note

that we must also make a slight change in the transition counts to remove any counts of

transitions over protein boundaries. These analyses will study patterns in relation to the

hydrophobicity and charge of the amino acids. Thus we will have either f = 2 when we

use hydrophobicity, f = 3 when we use charge or f = 4 when we use a combination of the

two. The appropriate codings are given in Table 4.1. Throughout this section we assume

the prior r ∼ 1 + Pois(1, 9), with sample space {1, 2, . . . , 10}. We begin by applying the

power posterior method to find the posterior probability distribution of r for the different

codings (f = 2, 3, 4) for the group 1 and group 2 proteins.

5.3.1 Group 1: TAF15, FUS and EWS

In Figure 5.4(a) we can see that for coding using hydrophobicity (f = 2) the power posterior

method gives the highest probability to r = 3, when coding via charge (f = 3), the highest

posterior probability is when r = 3 and coding via both charge and hydrophobicity (f = 4)

finds that r = 5 is most plausible a posteriori. We will examine these three cases more

closely by determining the transition matrices and segmentation for r = 3 when f = 2 and

f = 3 and r = 5 for f = 4.
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5.3.2 Group 2: p53, MDM2 and CBP

In Figure 5.4 (b), we can see that for coding using hydrophobicity (f = 2) the power

posterior method gives the highest probability to r = 2, when coding via charge (f = 3),

r = 3 has the highest posterior probability and coding via both charge and hydrophobicity

(f = 4) finds that r = 3 has the highest posterior probability. We therefore investigate the

transition structures by using the Gibbs algorithm with values of r = 2 when f = 2, r = 3

when f = 3 and r = 3 when f = 4.

5.4 Inference for the transition structures in the group 1

and group 2 proteins

5.4.1 Group 1

The power posterior method identified r = 3 as the model with the highest posterior

probability when f = 2 and f = 3 and r = 5 when f = 4. We use the Gibbs sampling

algorithm to estimate the segmentations as shown in Figures 5.5, 5.6 and 5.7 for 100k

iterations. Even though convergence occurs almost immediately we use a burn in of 10k and

we thin by 20. In Figure 5.5(a) we see that the proteins all tend to be in segment type one

for roughly the first half of the protein with a probability of almost one, Figure 5.5(b) and

Figure 5.5(c) show that with probability of almost one all three proteins are a combination

of segment type 2 and 3 in the second half. In Figure 5.6(a) we see that the proteins all

tend to be in segment type one at the beginning of the proteins with a probability of almost

one, Figure 5.6(b) shows that the majority of the rest of the proteins are in segment type

two and Figure 5.6(c) shows that with probability of almost one TAF15 is in segment type

3 at the end of the protein. Figure 5.7(a) we see that the proteins all tend to be in segment

type one at the beginning of the proteins with a probability of almost one, Figure 5.7(b)

and Figure 5.7(d) show that the middle of the proteins mostly consist of segment type two

with a small section of segment type 4 in TAF15 and FUS and Figure 5.7(c) shows that

with probability of almost one the proteins FUS and EWS are in segment type 3 at the

end of the protein, where as TAF15 is in segment type 5 as shown in Figure 5.7(e).

This segmentation is interesting as each protein has a very similar segmentation towards

the start of the proteins. As f = 4 essentially encodes the information for f = 2 and f = 3,

we will concentrate on f = 4 for the Group 1 proteins. The posterior mean transition
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matrices for P and Λ when f = 4 and r = 5 are

P (1) =


0.5035 0.4497 0.0080 0.0387

0.4015 0.5434 0.0134 0.0418

0.3804 0.2754 0.1335 0.2106

0.1912 0.6865 0.0531 0.0693

 , P (2) =


0.4377 0.2449 0.1805 0.1369

0.6504 0.1375 0.1342 0.0779

0.6032 0.1515 0.1288 0.1165

0.5892 0.1657 0.0952 0.1499

 ,

P (3) =


0.6964 0.0398 0.1713 0.0926

0.3609 0.1263 0.3350 0.1777

0.8311 0.0587 0.0698 0.0404

0.1137 0.1607 0.6606 0.0650

 , P (4) =


0.4190 0.2165 0.1848 0.1797

0.2368 0.2037 0.1946 0.3649

0.2256 0.4725 0.1224 0.1796

0.2362 0.5686 0.1203 0.0749

 ,

P (5) =


0.7042 0.0675 0.0334 0.1948

0.5685 0.1756 0.1585 0.0974

0.5524 0.3075 0.0657 0.0744

0.0641 0.1117 0.7656 0.0585

 , Λ =


0.993 0.003 0.002 0.002 0.001

0.001 0.984 0.012 0.002 0.001

0.002 0.007 0.980 0.008 0.003

0.015 0.011 0.003 0.970 0.002

0.002 0.002 0.003 0.003 0.990

 ,

and the (element–wise) posterior standard deviations are

P (1) =


0.0315 0.0315 0.0058 0.0155

0.0284 0.0286 0.0072 0.0124

0.1764 0.1582 0.1123 0.1359

0.0853 0.1033 0.0526 0.0502

 , P (2) =


0.0577 0.0386 0.0311 0.0277

0.0586 0.0406 0.0412 0.0325

0.0846 0.0620 0.0440 0.0413

0.0837 0.0650 0.0497 0.0491

 ,

P (3) =


0.0390 0.0230 0.0383 0.0270

0.1605 0.0853 0.1351 0.1199

0.0654 0.0476 0.0337 0.0285

0.0905 0.0881 0.1319 0.0530

 , P (4) =


0.1739 0.1145 0.1213 0.1142

0.1590 0.1229 0.1201 0.1584

0.1495 0.1611 0.0851 0.1103

0.1099 0.1324 0.1006 0.0622

 ,

P (5) =


0.1923 0.1144 0.0730 0.0738

0.1922 0.1470 0.1126 0.1087

0.1574 0.1129 0.0857 0.1051

0.0841 0.1809 0.2611 0.0696

 , Λ =


0.004 0.004 0.002 0.003 0.001

0.002 0.007 0.007 0.004 0.001

0.003 0.006 0.009 0.007 0.004

0.015 0.011 0.005 0.015 0.004

0.005 0.004 0.004 0.005 0.009

 .

The standard deviations for the transition matrices for segment types 1–3 are generally lower

than the transition matrices for segment types 4 and 5 which indicates more uncertainty

around segment types 4 and 5.
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Figure 5.5: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group one proteins. The proteins are joined together with TAF15 first,
FUS second and EWS last. The separation between the proteins is shown by the vertical red lines.
On the changepoint plot the position of the most probable changepoints are labelled.

5.4.2 TDP–43

TDP–43 has similar functions and pathologies to FUS but the sequence is very different. It

would be interesting to see if these structures are in TDP–43. We have used the forward–

backward algorithm with the transition matrices (f = 4 case) estimated for the group 1

proteins to estimate a segmentation for TDP–43 to see if these transition structures exist

in TDP–43. The plot of the segmentation is given in Figure 5.8 showing that segment

type one is present at the end of TDP–43 and segment type 2 at the start until roughly
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Figure 5.6: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group one proteins. The proteins are joined together with TAF15 first,
FUS second and EWS last. The separation between the proteins is shown by the vertical red lines.
On the changepoint plot the position of the most probable changepoints are labelled.

two thirds of the way along the length of the protein. There is a small section of segment

type four around amino acids 101 − 119. Segment types 3 and 5 are not present in the

protein. We use the same methods on the concatenated proteins as shown in Figure 5.9

and a similar pattern for the segmentation of TDP–43 occurs.

If we run the power posterior analysis with a concatenation of the group one proteins

with TDP–43 for f = 2, 3 and 4, then r = 3, 4 and 6 are chosen to be the best models

respectively. This is shown in Figure 5.10 as r = 3, 4 and 6 have the highest posterior

probabilities for r.
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Figure 5.7: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group one proteins. The proteins are joined together with TAF15 first,
FUS second and EWS last. The separation between the proteins is shown by the vertical red lines.
On the changepoint plot the position of the most probable changepoints are labelled.

If we run the Gibbs sampling algorithm with the 4 proteins concatenated with f = 2 and

r = 3 and predict transition structures we obtain the segmentation shown in Figure 5.11.

We see that there is a difference in the segmentation for TDP–43 as this only consists of

segment type 1. For f = 3 and f = 4 in Figures 5.12 and 5.13 respectively have a majority

of TDP–43 in one segment type (labelled segment type two) and one section towards the

end of the protein in a different segment type (labelled segment type one). From this

analysis it does not look like the structure of TDP–43 is similar to the group one proteins.
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Figure 5.8: Plots of (a)–(e): the probability of being in each segment and (f) the probability
of changing segments for TDP–43. On the changepoint plot the position of the most probable
changepoints are labelled.

5.4.3 Are the group 1 segment types in the group 2 proteins?

We simulate segmentations using the forward–backward algorithm for the group 2 proteins

using the posterior mean transition matrices found for the group 1 proteins when f = 4.

We want to see if a similar segmentation pattern occurs and which sections of the group 2

proteins are similar to the group 1 proteins. Figure 5.14 shows that all of p53 is in segment

type 2, MDM2 is a mixture of segment types 2 and 4 and in CBP segment types 1 and 2 are

favoured with small sections of 4. Segment type 5 is not present. The segmentation of the

group two proteins does not look similar to the group 1 segmentation given in Figure 5.7.
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Figure 5.9: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group 1 proteins and TDP–43. The proteins are joined together with
TAF15 first, FUS second, EWS third and TDP–43 last. The separation between the proteins
is shown by the vertical red lines. On the changepoint plot the position of the most probable
changepoints are labelled.

5.4.4 Are these structures found in the homologues of FUS?

Protein homologues are proteins that are derived from a common ancestor. They may be

in different species. We are going to look at two FUS homologues which are Cabeza from

Drosophila (fruit fly) and FUST–1 from the nematode worm. We first look for the group 1

mean transition structures in Cabeza and FUST–1 using the forward–backward algorithm.

In Figures 5.15 and 5.16 we can see that segment type 1 appears at the beginning and a
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Figure 5.10: Plot of the posterior probability functions for r, π(r|y) for the group 1 proteins and
TDP–43 for f = 2 (black), f = 3 (red) and f = 4 (green) respectively. The prior distribution is
given in blue.

mixture of segment types 2,3 and 4 in the second half which is a similar pattern to the

group 1 proteins. As we are forcing Cabeza and FUST–1 to choose between the 5 segment

types we wanted to check that no other structures exist. Therefore, suppose we have r = 7

segment types, 5 similar to those in group 1 and 2 other possible structures. For the

structures similar to those in group 1 we take the independent priors, p
(k)
i ∼ D(ckp

(k)∗
i )

which gives

E(p
(k)
ij ) = p

(k)∗
ij and V ar(p

(k)
ij ) =

1

ck + 1
p
(k)∗
i,j

{
1− p(k)∗ij

}
.

where p
(k)∗
i is the mean posterior transition matrices for the group 1 proteins. Here we

take ck = 50. For the other structures, we use our previous weak independent priors

p
(k)
i ∼ D(1, 1, 1, 1). Figure 5.17 shows that segments similar to those in group 1 are

favoured.

We can concatenate all 5 proteins (group 1 proteins with Cabeza and FUST–1) and

perform a power posterior analysis. The results are given in Figure 5.18 which are that the

highest posterior probabilities are for r = 3 when f = 2, r = 3 when f = 4 and r = 7 when

f = 4 therefore we run the Gibbs sampling algorithm for these values. The results for

f = 2 and f = 3 are shown in Figure 5.19 and 5.20 respectively. We can see that in both

cases Cabeza and FUST–1 favour other segment types to the group 1 proteins at the start

of the proteins. Figure 5.21 shows the results for f = 4 and r = 7. These graphs show that

Cabeza and FUST–1 follow a similar segmentation structure to the group one proteins.

We have run the Gibbs sampling algorithm with f = 4 and r = 5 and the results are in
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Figure 5.11: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group 1 proteins and TDP–43. The proteins are joined together with
TAF15 first, FUS second, EWS third and TDP–43 last. The separation between the proteins
is shown by the vertical red lines. On the changepoint plot the position of the most probable
changepoints are labelled.

Figure 5.22. This figure shows that Cabeza and FUST–1 follow a similar segmentation

pattern to the group 1 proteins.

5.4.5 How could this information be used to guide experiments?

The hypothesis to come from the segmentation of the group one proteins is that the

segments have biological importance. There is little information about the natural function
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Figure 5.12: Plots of (a)–(d): the probability of being in each segment and (e) the probability of
changing segments for the group 1 proteins and TDP–43. The proteins are joined together with
TAF15 first, FUS second, EWS third and TDP–43 last. The separation between the proteins
is shown by the vertical red lines. On the changepoint plot the position of the most probable
changepoints are labelled.

of the FET proteins making this difficult to test experimentally. Therefore, we test the

hypothesis on the abnormal role of the FET proteins following choromosomal translocations

as oncogenic fusions.

A fusion protein is a protein that is made when two or more genes from different

proteins join together. If this fusion gene is translated, then polypeptides are made which

can have properties from all of the original proteins. Cancer cells often contain fusion

proteins and these fusion proteins may function as oncoproteins. An oncoprotein is a
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Figure 5.13: Plots of (a)–(f): the probability of being in each segment and (g) the probability of
changing segments for the group 1 proteins and TDP–43. The proteins are joined together with
TAF15 first, FUS second, EWS third and TDP–43 last. The separation between the proteins
is shown by the vertical red lines. On the changepoint plot the position of the most probable
changepoints are labelled.

protein that can cause a cell to transform into a tumour cell. The fusion gene that encodes

the oncoprotein is therefore called an oncogene.

The main abnormality in FET genes are fusions to transcription factor genes (Kovar,

2011). In this fusion the RNA–binding domain of FET is replaced with the transcription

factor DNA binding domain (Kovar, 2011). FET oncoproteins have been shown to transform

cells in culture. An example that has been extensively researched is EWS–FLI1 in Ewing’s

sarcoma family tumours (Kovar, 2011).
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Figure 5.14: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group 2 proteins. The proteins are joined together with p53 first, MDM2
second and CBP last. The separation between the proteins is shown by the vertical red lines. On
the changepoint plot the position of the most probable changepoints are labelled.

Ewing’s family tumours are a type of cancer found in bone or nearby soft tissues. This

type of cancer is usually found in young adults (Arvand, 2001). It has been found that 85%

of these tumours have a chromosome translocation that is detectable. There have been

several different transcription factors found fused with EWS which are linked to Ewing’s

family of tumours. In three of these fusions the location of the break in EWS is very close

to the position of the end of segment 1 as shown in Table 5.5.

Another fusion involving TAF15 has been linked to acute myelogenous leukemia which

is a cancer of the bone and blood marrow. The point of this fusion is very close to the end
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Paper Protein With Location Segment 1 ends

Delattre et al. (1992) EWS FLI1 265 266
Sorensen et al. (1994) EWS ERG 264 266
Urano et al. (1996) EWS EIA–F 264 266
Martini et al. (2002) TAF15 TAF15 162 161

Table 5.5: Comparison of where segment type 1 ends and where the FET proteins are cut when
oncogenic fusion proteins are made.

of the segment 1 in TAF15 as shown in Table 5.5.

Therefore, regarding oncogenic fusion proteins, see Table 5.5, it appears that segment

type 1 is linked, within about 1 or 2 amino acids, to the section of the FET proteins that

is involved in an oncogenic fusion.

We use this information to guide experiments which have fusions with and without

segment one and compare the oncogenic activity. The prediction is that the strongest

oncogenic activity will occur when segment one of a FET protein is used in a fusion.

5.4.6 Group 2

The power posterior method gave r = 2, 3 and 3 the highest posterior probabilities when

f = 2, 3 and 4 respectively. Therefore we chose to investigate the structure of these

proteins for these choices of r and f and see whether these analyses provided any insights.

Figure 5.23 shows the results when f = 2. From this plot we can see that CBP and p53

almost entirely consist of segment type one (Figure 5.23(a)) apart from a small section

of segment type 2 in CBP (Figure 5.23(b)). MDM2 is a mixture of both segment types.

Figures 5.24(a)–(c) show the results for f = 3. The protein p53 is a mixture of all three

segment types, MDM2 consists only of segment type two and three and CBP consists

of segment type one and two. In the f = 4 case (Figures 5.25(a)–(c)) p53 contains only

segment type two and three, MDM2 contains one and two only and CBP is a mixture

of segment types two and three with a very small section of segment type one. From

these plots it is often the case that more than 50% of p53 and/or MDM2 are within one

segment type with only small sections in other segment types. There also seems to be no

similarity between the segmentations between the group 2 proteins. It is likely that this is

due to CBP dominating the analysis due to its size (length 2442) in comparison to p53

and MDM2 (lengths 393 and 490 respectively). Unfortunately our biological expert (Prof.

Doug Gray) could not ascribe any biologically interesting features to the different locations

of the segment types within the segmentations.
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5.5 Experimental methods and results

The experiments resulting from the analysis in this chapter have been completed by Prof.

Doug Gray’s Laboratory (University of Ottawa) and have used fusions of the FET protein,

FUS and the transcription factor, CHOP. They have also used a fusion with Cabeza to see

if segment one of Cabeza fused to CHOP will produce the same transforming activity in

mouse cells.

The first experiment involves transfecting NIH3T3 cells (introducing DNA into cells)

to give cells expressing each of the CHOP fusions shown in Figure 5.26(a), (b), (c) and

(e). Figure 5.26(a) represents a construct with the entire sequence of FUS fused to CHOP,

Figure 5.26(b) has segment one of FUS fused to CHOP, Figure 5.26(c) have segment one

of Cabeza fused to CHOP and Figure 5.26(e) is the control which consists only of CHOP.

Six fields from each of three dishes of cells were captured for each construct to obtain

microscope images similar to those shown in Figure 5.27. The dark spots in these images

are the colonies of cells. These thresholded images were quantified using ImagePro software

as shown in Figure 5.28. This software detects the dark spots, counts them and calculates

the area of the spots. The results of this analysis are shown in Figure 5.29(a)–(c). We

compared each construct to the control (CHOP) using a two–sided two sample t–test.

The first segment identified in FUS by the statistical analysis shows enhanced trans-

forming activity when fused to the CHOP transcription factor (SEGCHOP in Figure 5.26)

relative to CHOP alone as shown in Figure 5.29. It is statistically significant in terms of

total area, mean area and number of colonies which means the SEGCHOP fusion generates

more colonies and there are significantly more cells in a colony. As expected the full

length FUSCHOP fusion has transforming activity. The surprise is that segment 1 from

the Drosophila Cabeza protein (labelled CABCHOP) shows the strongest transforming

activity in mammalian cells as it is statistically significant in terms of total area and

number of colonies. This probably relates to expression levels. From a western analysis

the CABCHOP protein had the highest level of expression.

Another set of experiments compare the FUSCHOP fusion, segment one of FUS fused

to CHOP and a randomised segment one fused to CHOP. These three constructs are shown

in Figure 5.26 (a), (b) and (d). The randomised segment one is generated by randomly

reordering the amino acids present in segment one of FUS. The resulting fusion is generated

commercially. The constructs are transfected into NIH3T3 cells and 15 images of random

fields for each fusion is captured. Colony counts and size are determined using ImagePro

software.

The results are shown in Figure 5.29 (d)–(f). We compared the constructs to the

control (CHOP) using a two–sided two sample t–test. We find that FUSCHOP generate

slightly more colonies than SEGCHOP and RCHOP but the colonies are roughly the
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same size. This indicates that most of the transforming activity in FUS is in the first

segment, but the actual sequence is not important. It is the frequency of amino acids that

is important. This matches the computational analysis as when a segmentation is found

for the sequence for FUS with a randomised segment one, this is still classified as segment

type one as shown in Figure 5.30(a) as the first part of each protein is in segment type one

with probability of almost one. The transition structures found are very similar to those

found when the segment is not randomised. This could be because the segment still has

the same proportion of amino acid types as segment one has roughly equal proportions of

ones and twos. This represent amino acids that are neutral and hydrophobic or neutral

and hydrophilic respectively. The posterior mean transition matrices for r = 5 are

P (1) =


0.5042 0.4647 0.0047 0.0264

0.3961 0.5565 0.0099 0.0374

0.4206 0.2025 0.1539 0.2230

0.2892 0.5780 0.0735 0.0593

 , P (2) =


0.3642 0.2758 0.2047 0.1552

0.6933 0.1026 0.1418 0.0623

0.6437 0.1160 0.1253 0.1150

0.6592 0.1357 0.0600 0.1450

 ,

P (3) =


0.7078 0.0505 0.1438 0.0978

0.4416 0.1597 0.2578 0.1408

0.8283 0.0833 0.0584 0.0300

0.1274 0.0971 0.7001 0.0754

 , P (4) =


0.4674 0.2375 0.1251 0.1699

0.3834 0.2385 0.1239 0.2542

0.1351 0.5081 0.1428 0.2140

0.1936 0.6438 0.1018 0.0608

 ,

P (5) =


0.5710 0.1052 0.1120 0.2117

0.3837 0.1687 0.2644 0.1833

0.5681 0.2417 0.0855 0.1047

0.1573 0.2245 0.5391 0.0791

 , Λ =


0.994 0.001 0.002 0.002 0.001

0.001 0.978 0.015 0.002 0.004

0.002 0.005 0.982 0.007 0.004

0.007 0.016 0.002 0.973 0.002

0.007 0.003 0.003 0.005 0.981

 ,

69



Chapter 5. Application of methodology

and the (element–wise) posterior standard deviations are

P (1) =


0.0295 0.0280 0.0040 0.0122

0.0257 0.0255 0.0057 0.0103

0.1742 0.1393 0.1201 0.1411

0.0982 0.1159 0.0720 0.0440

 , P (2) =


0.0625 0.0395 0.0415 0.0312

0.0629 0.0489 0.0471 0.0327

0.0853 0.0641 0.0430 0.0428

0.0916 0.0667 0.0423 0.0515

 ,

P (3) =


0.0329 0.0285 0.0328 0.0379

0.1070 0.0853 0.0949 0.0814

0.0789 0.0599 0.0288 0.0222

0.1058 0.0671 0.1431 0.0603

 , P (4) =


0.1322 0.0641 0.0708 0.0853

0.1381 0.1116 0.0872 0.1186

0.1050 0.1255 0.0757 0.0936

0.0751 0.0965 0.0750 0.0473

 ,

P (5) =


0.2524 0.1185 0.1083 0.1508

0.2294 0.1473 0.1626 0.1499

0.2157 0.1457 0.0818 0.1188

0.1627 0.2241 0.2882 0.0761

 , Λ =


0.003 0.002 0.002 0.002 0.002

0.001 0.009 0.009 0.004 0.008

0.003 0.006 0.009 0.007 0.004

0.013 0.010 0.004 0.013 0.004

0.011 0.005 0.005 0.007 0.015

 ,

These matrices are very similar to the posterior transition structures found for the FET

proteins without segment one randomised for segments types one to three which shows that

randomising the sequence of segment type one does not change the structure of segment

type one. This agrees with the experimental results. The standard deviations for the

transition matrices for segment types 1–3 are generally lower than the transition matrices

for segment types 4 and 5 which indicates more uncertainty around segment types 4 and 5.
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Figure 5.15: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group 1 proteins, Cabeza and FUST–1. The proteins are joined together
with TAF15 first, FUS second, EWS third, Cabeza forth and FUST–1 fifth. The separation between
the proteins is shown by the vertical red lines. On the changepoint plot the position of the most
probable changepoints are labelled.
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Figure 5.16: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for Cabeza and FUST–1. The proteins are joined together with Cabeza first
and FUST–1 second. The separation between the proteins is shown by the vertical red lines. On
the changepoint plot the position of the most probable changepoints are labelled.
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Figure 5.17: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for Cabeza and FUST–1. The proteins are joined together with Cabeza first
and FUST–1 second. The separation between the proteins is shown by the vertical red lines. On
the changepoint plot the position of the most probable changepoints are labelled.
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Figure 5.18: Plot of the posterior probability functions for r, π(r|y) for the group 1 proteins, Cabeza
and FUST–1 for f = 2 (black), f = 3 (red) and f = 4 (green) respectively. The prior distribution
is given in blue.
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Figure 5.19: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group 1 proteins, Cabeza and FUST–1. The proteins are joined together
with TAF15 first, FUS second, EWS third, Cabeza forth and FUST–1 fifth. The separation between
the proteins is shown by the vertical red lines. On the changepoint plot the position of the most
probable changepoints are labelled.
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Figure 5.20: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group 1 proteins, Cabeza and FUST–1. The proteins are joined together
with TAF15 first, FUS second, EWS third, Cabeza forth and FUST–1 fifth. The separation between
the proteins is shown by the vertical red lines. On the changepoint plot the position of the most
probable changepoints are labelled.
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Figure 5.21: Plots of (a)–(h): the probability of being in each segment and (i) the probability of
changing segments for the group 1 proteins, Cabeza and FUST–1. The proteins are joined together
with TAF15 first, FUS second, EWS third, Cabeza forth and FUST–1 fifth. The separation between
the proteins is shown by the vertical red lines. On the changepoint plot the position of the most
probable changepoints are labelled.
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Figure 5.22: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group 1 proteins, Cabeza and FUST–1. The proteins are joined together
with TAF15 first, FUS second, EWS third, Cabeza forth and FUST–1 fifth. The separation between
the proteins is shown by the vertical red lines. On the changepoint plot the position of the most
probable changepoints are labelled.
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Figure 5.23: Plots of (a)–(b): the probability of being in each segment and (c) the probability of
changing segments for the group 2 proteins with f = 2. The proteins are joined together with p53
first, MDM2 second and CBP third. The separation between the proteins is shown by the vertical
red lines. On the changepoint plot the position of the most probable changepoints are labelled.
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Figure 5.24: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group 2 proteins with f = 3. The proteins are joined together with p53
first, MDM2 second and CBP third. The separation between the proteins is shown by the vertical
red lines. On the changepoint plot the position of the most probable changepoints are labelled.

80



Chapter 5. Application of methodology

0.
0

0.
6

(a)

Position in the sequence

P
ro

ba
bi

lit
y 

in
 s

eg
m

en
t 1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

0.
0

0.
6

(b)

Position in the sequence

P
ro

ba
bi

lit
y 

in
 s

eg
m

en
t 2

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

0.
0

0.
6

(c)

Position in the sequence

P
ro

ba
bi

lit
y 

in
 s

eg
m

en
t 3

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

0.
0

0.
6

(d)

Position in Sequence

P
ro

ba
bi

lit
y 

of
 c

ha
ng

ep
oi

nt

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

72 147 503 603 689 760 822 958
1229

1261
1306

1323 1471 1558 1851 1962 2432 2465 2751 2849 3305

Figure 5.25: Plots of (a)–(c): the probability of being in each segment and (d) the probability of
changing segments for the group 2 proteins with f = 4. The proteins are joined together with p53
first, MDM2 second and CBP third. The separation between the proteins is shown by the vertical
red lines. On the changepoint plot the position of the most probable changepoints are labelled.
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Figure 5.26: Constructs used in the biological experiments. Construct (a) is FUSCHOP which is
the whole protein FUS fused to CHOP, (b) is SEGCHOP which is segment 1 of FUS fused to chop,
(c) is CABCHOP which is segment 1 of Cabeza fused to CHOP, (d) is RCHOP which is randomised
segment one of FUS fused to CHOP and (e) is CHOP alone which is the control. CMV stands for
cytomegalovirus, a DNA virus which is the source of the promoter element used in the plasmid
which is then transfected into cells.

Figure 5.27: Microscope images of colonies of cells (black spots).

82



Chapter 5. Application of methodology

(a) (b)

Figure 5.28: Images to show ImagePro software in use. Image (a) is the original microscope image
and Image (b) shows how the software has identified the colonies.
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Figure 5.29: Plots to show the results of Prof. Doug Gray’s experiments. We have boxplots of
the number of colonies, total area and mean area for each of the constructs for the first set of
experiments in plots (a), (b) and (c) and the second set of experiments in plots (d), (e) and (f).
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Figure 5.30: Plots of (a)–(e): the probability of being in each segment and (f) the probability of
changing segments for the group 1 proteins and FUS with a randomised segment one. The proteins
are joined together with TAF15 first, FUS second, EWS third and FUS with a randomised segment
one last. The separation between the proteins is shown by the vertical red lines. On the changepoint
plot the position of the most probable changepoints are labelled.
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Discussion and conclusion

6.1 Statistical conclusion

One of the strengths of the statistical techniques we have used are that it is straightforward to

include prior knowledge about important quantities, for example the length of segment types.

Also the MCMC method used is fairly simple to implement as it is just Gibbs sampling

and, as we can simulate from the conditional distribution of the entire segmentation using

a forward-backward algorithm, it has good convergence properties. The analysis allows us

to detect the (rough) locations of different segment types and allows for uncertainty in

their structure and location. The MCMC sampler converges very quickly, often within 100

iterations, and autocorrelation is often very low. In addition, determining an appropriate

number of segment types via the power posterior analysis is accurate and fairly easy to

implement. The joint posterior density for the model parameters and the segmentation

process is relatively insensitive to small changes in the prior distributions for the transition

structures. Similarly, the marginal posterior distribution for the number of segment types

is also relatively insensitive to small changes in the Poisson prior distribution.

A potential weakness of this method of analysis is that of label switching and if we do

not correct for it we would obtain similar estimates for the transition structure of each

segment type. However we can correct for label switching using an ‘on–line’ algorithm

as described in Section 4.2.5. Unfortunately this does slow down the code considerably,

especially for larger values of r. For example, when f = 4 the Gibbs sampling algorithm

takes 6.9 seconds when r = 3 and 1588.1 seconds when r = 6 to complete 100 iterations.

Another problem concerns the value for r calculated using the marginal likelihood (from the

power posterior method). Often the posterior mode is the maximum value of r allowed by

the prior distribution. However the algorithm takes much longer to run for large values of r,

and therefore to allow large values for r in the analysis is not feasible. Another weakness of

this type of analysis is that, although the method gives a segmentation of a protein sequence
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with corresponding transition structures for the segment types, there is the possibility that

these segment types do not have an obvious biologically relevance. That said, it might

lead experimentalists to undertake additional experiments to investigate possible biological

reasons behind the segmentation. Additionally there is also a possible problem that the

segmentation we get depends on how we categorise the protein sequences, for example,

using hydrophobicity (f = 2), charge (f = 3) or both (f = 4). Thus these HMM analyses

are fundamentally empirical investigations and provide suggestions of possible biological

structure for further scientific analysis and hypothesis driven investigations. We have

shown that these HMMs can give insight into the location of biologically significant areas

but further experimental work is required to confirm or disprove this.

6.2 Biological conclusion

In this part of the thesis we have shown that HMMs can be used to reveal particular

regions of IDPs that have biological relevance. We found that in the FET proteins the

first segment can be linked to oncogenic fusion proteins which we have backed up using

experimental data from Prof. Doug Gray’s laboratory at the University of Ottawa. In

these experiments we found that when segment one from FUS was fused with the CHOP

transcription factor it had similar transforming properties to the whole of FUS fused to

CHOP. In addition, it was found that segment one of cabeza has the strongest transforming

activity. In a separate experiment, it was found that if segment one in FUS was randomised,

the resulting construct had almost the same level of transforming ability, which was backed

up when analysed computationally. This indicates that the order of amino acids is not as

important as the frequency of amino acids.

Overall, we have shown that our HMM analysis reveals a pattern in the sequence

of amino acids in the FET proteins that has biological meaning. Also these segments

can be revealed by using only the specific physical properties of the amino acid sequence

without the need to consider linear sequence motifs (small sections of protein that bring

about protein–protein interaction) or three dimensional structures (Gray, 2014). We have

demonstrated that using statistical techniques can help guide biological experiments, and

with the biologists’ knowledge and expertise, further insight into sequence structure can be

found. We have shown this in particular with the structure and function of FUS.

6.3 Future work

There are many ways in which this work could be extended. For example, a natural extension

to our model would be to generalise the dependence between the amino acids within the

HMM. Currently we assume this has first order dependence, that is the distribution of the
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amino acid at location t depends only on that at the previous location (and the segment

type). This assumption could be generalised to allow this distribution to depend on the

amino acids at the previous q locations, that is, we allow the observation model to be a

qth order Markov chain. Within this extended model we could use the methods in Boys

and Henderson (2004) to facilitate inference on both the number of segments (r) and the

order of dependence (q) in the analysed sequence.

The current HMM assumes conditional independence of the amino acids in different

segments. In general this is not appropriate for protein sequences as the different segments

would interact in 3D space (Schmidler et al., 2000). Therefore it might be interesting to

extend the model to allow interactions between segments via the use of higher orders in

the HMM.

The data we have studied come from experiments that look into the oncogenic properties

of FUS. However it might be interesting to look at links with neurodegenerative diseases.

FUS has been linked to normal and abnormal function in neurodegenerative diseases; for

example, Amyotrophic lateral sclerosis (ALS), where it is likely that the gene for FUS

contains a mutation (Da Cruz and Cleveland, 2011). Here the C terminus contains most

of these mutations; however some have been found in segment one of FUS (Da Cruz

and Cleveland, 2011). Some mutations delete one or more of the residues glycine or

serine or both. In segment one of FUS there are many of these residues so it is difficult

to understand why this should make a difference. Experiments have shown that if we

randomise the sequence of segment one then there is still transforming activity and so it

would be interesting to see if the same is true for neurodegeneration. All neuronal functions

are linked to the metabolism of RNA, that is, RNA splicing, RNA transport and RNA

stability. Therefore we could investigate the effect of introducing the constructs given in

Figure 5.26 into neurons using lentiviral vectors and analysing the RNA using sequencing

methods (RNA–SEQ) (Pareek et al., 2011). It could be that transforming activity acts

similarly or differently to RNA regulatory functions.

This far we have looked at experimental validation on segment one of the FET proteins.

We could look at the other segments but we believe that these segments are less interesting

as the RNA binding domain of FUS in segment two will lose function if it is altered and

the RGG repeats in segment three of FUS have already been well studied due to their

abundance in RNA binding proteins (Da Cruz and Cleveland, 2011).

Finally, we may gain more insight into protein structure by considering different

properties of the amino acids in the analysis. This would result in a new recoding of the

amino acid sequence and might lead to the discovery of structures with a more plausible

biological relevance.
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Chapter 7

Stochastic kinetic models

In this chapter we introduce stochastic kinetic models using chemical reaction notation.

The aim of the second part of this thesis is to construct optimal experimental designs for

stochastic kinetic models and the key problem here is that all but the most simple models

suffer from having intractable likelihoods. The solution we provide to this problem is based

on that of Müller (1999), who describes an algorithm where forward simulation can be

used to avoid likelihood evaluations in the Metropolis–Hastings ratio.

We begin by examining exact methods of simulation including the direct method

and then consider approximate methods of simulation, such as the τ–leap algorithm,

the Chemical Langevin equation (CLE) and the linear noise approximation (LNA). We

introduce two stochastic kinetic models in this chapter, namely the (pure) death model

and the Lotka–Volterra (LV) model, and show example realisations from both models.

7.1 Introduction to stochastic kinetic models

Biological systems are often represented using a stochastic kinetic model (SKM) as these

models include random variability that would occur in nature. It is important to represent

such variation because it takes into account the different ways that a process can evolve.

For example, a population could become extinct or explode with the same parameter set

in a stochastic kinetic model, but not in a deterministic model. Reactions are stochastic

and they are driven by Brownian motion. A reaction results in species changing by integer

amounts which means that the species numbers do not change smoothly, species numbers

jump in discrete values. These models come under the heading of stochastic kinetic models.

For an overview of SKMs, see Wilkinson (2011) and Golightly and Gillespie (2013).
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7.2 Chemical reaction notation

Consider a system at a cellular level. When molecules collide and a change occurs, this

is called a chemical reaction. We are interested in the levels of each molecule type or

chemical species in a cell and describe this system by a set of chemical reactions. Denote

the number of molecules or species as Y1, . . . ,Yu and the reactions as R1, . . . , Rv. We

represent v reactions involving u species in chemical reaction notation as

R1 : p1,1Y1 + p1,2Y2 + . . .+ p1,uYu → q1,1Y1 + q1,2Y2 + . . .+ q1,uYu
R2 : p2,1Y1 + p2,2Y2 + . . .+ p2,uYu → q2,1Y1 + q2,2Y2 + . . .+ q2,uYu

...
...

...
...

...

Rv : pv,1Y1 + pv,2Y2 + . . .+ pv,uYu → qv,1Y1 + qv,2Y2 + . . .+ qv,uYu

(7.1)

where P = (pi,j) is a matrix with dimension v × u which contains the coefficients of the

reacting species and Q = (qi,j) is of the same dimension as P and it contains the coefficients

of the products (Wilkinson, 2011). The stoichiometry matrix is S = (Q − P )′ which

represents the net change in molecules or species each time a reaction occurs. Let Yt,j

be the number of molecules of species Yj at time t then we can represent the numbers of

molecules for all species at time t as Yt = (Y1,t, . . . , Yu,t)
′.

7.2.1 Markov jump process

An example of a reaction in chemical reaction notation is

Y1 + Y2 → Y3. (7.2)

In this case, a reaction occurs due to a collision between one molecule of Y1 and one

molecule of Y2 to give a molecule of Y3. Define y = (y1, . . . , yu)′ to be the current state of

the system. This means in this example that y1 and y2 reduce by one and y3 increases by

one. This reaction occurs randomly due to Brownian motion. If we think about molecules

in a container that has a fixed volume, Gillespie (1992) showed that for a small interval

∆t, the reaction rate is constant. If we consider again reaction (7.2), the probability of Y1
reacting with Y2 in a small time interval of length ∆t is θ∆t, where θ is is the constant rate

at which the reaction occurs. If the number of Y1 and Y2 are y1 and y2 respectively then

these molecules can pair up in y1y2 ways. Hence the probability of Y1 and Y2 reacting and

producing Y3 in a small time interval of length ∆t is θy1y2∆t. Note that this probability

only depends on the current state of the system. This system is an example of a Markov

jump process as it has this Markov property and it is a continuous time, discrete valued
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Order Reaction Hazard Description

0 ∅ → Y1 θ1 Influx
1 Y1 → ∅ θ2y1 Degradation
2 Y1 + Y2 → Y3 θ3y1y2 Catalysation
2 2Y1 → Y2 θ4y1(y1 − 1)/2 Dimerisation
3 3Y1 → Y3 θ5y1(y1 − 1)(y1 − 2)/6 Trimerisation

Table 7.1: Examples of possible reactions and hazards.

process. The overall hazard for this reaction occurring is defined as

h(y, θ) = θy1y2.

An example of a more complex system is given by the reactions and their hazards

in Table 7.1. Such systems are typically governed by the law of mass action kinetics

which states that the rate of a chemical reaction is proportional to the product of the

concentration of reactants (Waage and Gulberg, 1986). We can consider the general system

of reactions given in Equations (7.1) and write the overall hazard for each reaction as

hi(y, θi) = θi

u∏
j=1

(
yj
pi,j

)
, for i = 1, . . . , v.

Here the hazards are a product of the binomial coefficients multiplied by the rate constant

due to the fact that the hazard depends on the number of ways that the reactants can

collide.

7.2.2 Chemical master equation

Define py(t) to be the probability of y = (y1, y2, . . . , yu)′ molecules of each species at a

particular time, t, representing the system state at time, t. Another description is that

py(t) is the transition kernel of the Markov jump process. If we consider ∆t to represent a

small time interval, by considering all possible ways in which state, y, can be obtained and

adding up the probabilities of these different possibilities, we obtain

py(t+∆t) =

v∑
i=1

hi(y − Si, θi)py−Si(t)∆t+

{
1−

v∑
i=1

hi(y, θi)∆t

}
py(t), (7.3)

where Si is a vector of the ith column of S. The first term in Equation (7.3) represents

the probability of the system reaching state y via a reaction Ri, while the second term

represents the probability of no reactions occurring in the time interval. We can form the

chemical master equation (CME) by rearranging Equation (7.3) and letting ∆t → 0, to

91



Chapter 7. Stochastic kinetic models

give

dpy(t)

dt
=

v∑
i=1

{
hi(y − Si, θi)py−Si(t)− hi(y, θi)py(t)

}
. (7.4)

7.2.3 Direct method

The direct method (Gillespie, 1977) is widely used in stochastic modelling to obtain exact

realisations from an SKM. Let θ = (θ1, . . . , θv)
′ where θ is a vector of the reaction rates

for each reaction. The algorithm works by simulating the time of the next reaction. This

time follows an exponential distribution with rate parameter h0(Yt,θ), where h0(Yt,θ) is

the sum of the hazards of each individual reaction

h0(Yt,θ) =
v∑
i=1

hi(Yt, θi).

We can calculate the probability of each reaction taking place at this next reaction time as

hi(Yt, θi)

h0(Yt,θ)
i = 1, . . . , v,

and then use these probabilities to sample which reaction has occurred. The direct method

is described in Algorithm 14. Although this method is an exact solution to the CME, it

can be computationally very time consuming to simulate from models, especially as they

become more complex, for example, as the number of reactions or the number of species

increases. Increasing the reaction rates θi can also increase the time it takes to obtain a

realisation in a fixed time interval as this decreases the time until the next reaction and so

increases the total number of reactions in the interval.

7.3 Example systems

7.3.1 The death model

This process has a single reaction

Y θ−→ ∅ (7.5)

and the population is monotonically decreasing. As this model has only one species, we

write the species as Y instead of Y1. The hazard function corresponding to reaction (7.5) is

h(y, θ) = θy. (7.6)

It is often illuminating to compare the solution of a stochastic kinetic model with that of

its deterministic equivalent. For example, the solution to the deterministic system may not

be too far from the mean of the stochastic system. Such points raise questions that are
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Algorithm 14 Direct method (Gillespie, 1977)

1. Initialise t = 0, rate constants θ = (θ1, . . . , θv)
′ and the molecule numbers y =

(y1, . . . , yu) at time t.

2. For every possible reaction calculate the hazard hi(y, θi) for i = 1, . . . , v.

3. Calculate the overall hazard rate h0(y,θ) =
∑v

i=1 hi(y, θi).

4. Calculate the time of the next reaction by simulating t� ∼ exp (h0(y,θ)) and set
t = t+ t�.

5. Determine which reaction has occurred by simulating from a discrete distribution
with probabilities

hi(y, θi)

h0(y,θ)
, i = 1, . . . , v,

and update y accordingly.

6. Record t and y. If t < tmax go to step 2.

interesting in their own right but not considered further here. Let Y (t) be the number of

individuals of species Y at time t. Then in a small time interval of length ∆t, we have

Y (t+∆t) = Y (t)− θY (t)∆t.

Rearranging and letting ∆t→ 0, yields

dY (t)

dt
= −θY (t).

This ordinary differential equation (ODE) can be solved to obtain

Y (t) = y0 exp (−θt)

where Y (0) = y0.

The stochastic version of this model assumes that in a small time step ∆t, the probability

of a death occurring in the population of species Y is

P (Yt+∆t = y − 1|Yt = y) = θy∆t+ o(∆t), y = y0, y0 − 1, . . . , 0.

where Y0 = y0. Suppose that py(t) is the probability that there are y individuals of species

Y at time t. Then in time interval (t, t+∆t) we have

py(t+∆t) = py+1(t)θ(y + 1)∆t+ py(t)(1− θy∆t). (7.7)

93



Chapter 7. Stochastic kinetic models

Rearranging and letting ∆t→ 0, we obtain the forward Kolmogorov equation (also known

as the CME)
dpy(t)

dt
= θ(y + 1)py+1(t)− θypy(t).

This system can be solved analytically, to obtain the probability of y individuals at time t

as

py(t) =

(
y0
y

)
exp−θyt(1− exp−θt)y0−y,

where y = y0, y0 − 1, . . . , 0 and Y0 = y0. We can see that the solution of the stochastic

model is binomially distributed and therefore the mean of this stochastic process is

m(t) = y0 exp−θt which is equivalent to the solution of the deterministic process.

7.3.2 The Lotka–Volterra (LV) model

The Lotka–Volterra model (LV) model describes the interaction between prey, Y1 and

predators, Y2 (Lotka, 1925; Volterra, 1926). It has three reactions and two species. The

three reactions in the LV model are

Y1
θ1−→ 2Y1, Y1 + Y2

θ2−→ 2Y2 and Y2
θ3−→ ∅.

The parameters can be interpreted as

• θ1 is the rate of prey reproduction,

• θ2 is the rate of prey death and predator reproduction,

• θ3 is the rate of predator death.

Let y = (y1, y2) be the current states of the system at time t. By assuming the laws of

mass action, the hazard functions for the reactions are

h1(y, θ1) = θ1y1, h2(y, θ2) = θ2y1y2 and h3(y, θ3) = θ3y2.

The deterministic ODEs for the LV process are

dY1(t)

dt
= θ1y1 − θ2y1y2 and

dY2(t)

dt
= θ2y1y2 − θ3y2.

We can also describe the LV model stochastically. Let Y1,t = y1 and Y2,t = y2 be the

current states of the system. The evolution of the system in a small time interval (t, t+∆t)
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can be described as

P (Y1,t+∆t = y1 + 1, Y2,t+∆t = y2|Y1,t = y1, Y2,t = y2) = θ1y1∆t+ o(∆t),

P (Y1,t+∆t = y1 − 1, Y2,t+∆t = y2 + 1|Y1,t = y1, Y2,t = y2) = θ2y1y2∆t+ o(∆t),

P (Y1,t+∆t = y1, Y2,t+∆t = y2 + 1|Y1,t = y1, Y2,t = y2) = θ3y2∆t+ o(∆t).

Let py1,y2(t) be the probability that Y1,t = y1 and Y2,t = y2. Then

py1,y2(t+∆t) = py1,y2(t)(1− θ1y1∆t− θ2y1y2∆t− θ3y2∆t)

+ py1−1,y2(t)θ1(y1 − 1)∆t+ py1+1,y2−1(t)θ2(y1 + 1)(y2 − 1)∆t

+ py1,y2+1(t)θ3(y2 + 1)∆t. (7.8)

Rearranging Equation (7.8) and letting ∆t→ 0 we obtain the forward Kolmogorov equation

dpy1,y2(t)

dt
= py1−1,y2(t)θ1(y1 − 1) + py1+1,y2−1(t)θ2(y1 + 1)(y2 − 1) + py1,y2+1(t)θ3(y2 + 1)

− py1,y2(t)(θ1y1 + θ2y1y2 + θ3y2).

7.3.3 Example simulations from these stochastic kinetic models

Figure 7.1 shows example stochastic simulations from the death model and the Lotka–

Volterra model. Figure 7.1(a) has five realisations from the stochastic version of death

model in red and the deterministic solution in black. This process has been initialised

with 50 individuals in the population and we observe that the population decreases until

extinction.

Figure 7.1(b) has five realisations from the Lotka–Volterra model. The green lines are

the prey and the blue lines are the predators. The black line is the deterministic solution.

The graph clearly shows the cyclic nature of the process. The logic behind this is that, as

the number of prey increase, the predators shortly follow due to an increase in the amount

of food available but as the number of predators increase this causes the prey to begin to

decrease. The lack of food then causes more predators to die, decreasing the number of

predators and this continues. We note that there are other scenarios in which the specie

levels do not cycle. For example, this happens when all the prey die out, in which case the

predators also eventually die out. Also, if the predator all die then the prey levels simply

continue to grow.

7.4 Other methods of simulation from SKMs

The simple death process is analytically tractable as an expression can be found for the

transition probability. However, in more complex models (such as the LV model) this
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Figure 7.1: Realisations from the two models. Plot (a) is the death model (θ = 1, Y (0) = 50). The
red lines are stochastic realisations from the models and the black line is the deterministic solution.
The LV model (θ1 = 0.5, θ2 = 0.0025, θ3 = 0.3, Y1(0) = 71, Y2(0) = 79) is in plot (b). The green
lines are the prey and the blue lines are the predators. The black line is the deterministic solution.

is generally not the case. Fortunately, even when a model has analytically intractable

transition probabilities, it can be straightforward to simulate from the model and obtain

realisations. This means that the behaviour of the model can be observed. We have already

discussed an exact simulation method called the direct method. Simulation methods can

be split into two categories: exact and approximate algorithms.

7.4.1 Exact simulation

The advantage of an exact method is that we can simulate exact realisations from the model.

However these methods can be very slow to run computationally. In Subsection 7.2.3 we

discussed the direct method (Gillespie, 1977). Other popular exact algorithms are the next

reaction method and the first reaction method (Gillespie, 1977; Gibson and Bruck, 2000).

The first reaction method is an equivalent version of the direct method but it is

computationally more expensive (Gillespie, 1977). The first reaction method works by

calculating a time for every reaction to happen if no other reaction had happened first.

Then the reaction that is chosen is that which has the smallest next reaction time. This

algorithm uses a random number each time it simulates a possible time for a reaction to

occur and is slow to update the hazards and find the smallest next reaction time (Gibson

and Bruck, 2000).

The next reaction method is an adapted version of the first reaction method which is

more computationally efficient. The next reaction method is improved mainly by reusing
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the possible times where possible and only recalculating the hazards and times if they are

going to change by the use of a dependency graph (Gibson and Bruck, 2000). The next

reaction method is also called the Gibson–Bruck algorithm.

7.4.2 Approximate simulation algorithms

As the size of the model increases in terms of the number of reactions and species, exact

algorithms become increasingly impractical to use (due to their long computation time)

and advantages may be gained by considering approximate simulation methods.

τ–leap algorithm

A commonly used approximate method is the τ–leap algorithm, introduced by Gillespie

(2001). This method relies on the assumption that the time interval ∆t is small enough to

assume that the hazard rate is constant within the interval. It works by simulating the

number of each type of reaction by assuming that the number of each type of reaction in

each time interval has an independent Poisson distribution. Therefore each reaction, Ri,

has a Po(hi(y, θi)∆t) distribution for the number of occurrences of each reaction within

each time interval ∆t.

Choosing the time step, ∆t, is a balance between accuracy and speed, as smaller

time steps produce more accurate realisations but slower simulations. The idea is that

∆t is chosen so that it is as large as possible without sacrificing accuracy. It is possible

to determine if a suitable level of accuracy is met by using a particular timestep and a

constraint. An example of a constraint is given by Gillespie (2001) in which the difference is

calculated between the system’s hazard for the expected new state, ye, and for the current

state, y. This must be less than a value proportional to the total hazard for the current

state of the system, that is,

|hi(ye, θi)− hi(y, θi)| ≤ ε h0(y,θ)

where ε is a specified value to satisfy 0 < ε < 1. As ε→ 0 the algorithm becomes exact but

slower. Other approaches for determining the value of τ to use are given in Gillespie and

Petzold (2003) and Cao et al. (2006). A detailed description of the τ–leap algorithm is

given in Gillespie (2001). A summary of the τ–leap algorithm and its possible alterations

is given in Sandmann (2009).

Chemical Langevin equation (CLE)

We will follow the informal approach of Wilkinson (2011) and Golightly and Gillespie (2013)

to construct the Chemical Langevin equation (CLE). To see a formal derivation please

see Gillespie (1992, 2000, 2001). As described for the τ–leap algorithm, in a small time
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interval (t, t+∆t] the hazards of each reaction can be assumed to be constant and reactions

occur according to a Poisson process. Let dRt be the number of reactions that occur in

(t, t+∆t], then each element of dRt has a Poisson distribution with λ = hi(Yt, θi) where

i = 1, . . . , v. We can capture the stochastic evolution of the system using the stochastic

differential equation (SDE) for dRt, which is based upon the mean and variance of the

Poisson distribution for each element of dRt with rate λ = hi(Yt, θi). The SDE is

dRt = h(Yt,θ)dt+ diag{
√
h(Yt,θ)}dW ∗t ,

where Yt is the current system state at time t and dW ∗t is an increment of Brownian motion.

As dYt = SdRt, where S is the stoichiometry matrix, we obtain

dYt = Sh(Yt,θ)dt+ Sdiag{
√
h(Yt,θ)}dW ∗t ,

where the Brownian motion W ∗t has dimension v. As Var(dYt) = Sdiag{h(Yt,θ)}S′dt, we

obtain the Chemical Langevin equation as

dYt = Sh(Yt,θ)dt+
√
Sdiag{h(Yt,θ)}S′dWt, (7.9)

where now dWt is an increment of standard Brownian motion in u dimensions which now

matches the dimensions of the state Yt. This equation provides a continuous approximation

to the Markov–Jump process (MJP) in the form of an Itô stochastic differential equation

(SDE). The CLE captures the dynamics of the system well, while assuming continuous

states, and it returns the stochastic element of an MJP. Here Sh(Yt, θ) is the drift term

and Sdiag{h(Yt, θ)}S′ is the diffusion coefficient.

We can use the CLE to simulate from a SKM by numerically integrating the CLE. This

could be done by using an Euler–Maruyama discretisation to approximate the change in

the states of the process (Golightly and Wilkinson, 2011). For the simple death model, the

CLE is

dYt = −θydt+
√
θydWt.

We have introduced the CLE in order to be able to introduce the linear noise approximation

in the next section, however for a detailed explanation of how to simulate from the CLE

please see Golightly and Gillespie (2013).

Linear Noise Approximation

The linear noise approximation (LNA) was first introduced by Kurtz (1970, 1971). It

approximates the CLE and has the advantage that it is more numerically and analytically

tractable. The LNA is a normal approximation to a system in which the mean and variance
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are represented as a set of ODEs. We can use the LNA to simulate close approximate

realisations from a SKM (Van Kampen, 2007). It is a popular approximation because it

just requires solving a set of ODEs numerically.

A derivation of the LNA and a description of how the LNA is valid for any system that

is sufficiently large in terms of the concentration of reacting species is given in Wallace

et al. (2012). Ferm et al. (2008) investigate the accuracy of the LNA and Hayot and

Jayaprakash (2004) provide examples of the LNA working accurately in simple genetic

systems and also a case when the LNA fails due to the probability distribution of proteins

being non–Gaussian. Elf and Ehrenberg (2003) use the LNA to produce fast realisations

which show the stochasticity of a system at a cellular level, particularly in cases when

there are low numbers of reactants and fluctuations can be large. While Komorowski et al.

(2009) use a LNA approximation to construct a likelihood function in order to perform

parameter inference for gene expression data.

We now derive the LNA approximation of the CLE. Let Ω be the volume of the

container in which the reactions happen. Rescaling the hazard function by setting h(Yt,θ) =

Ωf(Yt/Ω,θ) and replacing the hazard function in the CLE given in Equation (7.9), gives

dYt = ΩSf

(
Yt
Ω
,θ

)
dt+

√
ΩSdiag

{
f

(
Yt
Ω
,θ

)}
S′dWt. (7.10)

As the system becomes close to its thermodynamic limit (Ω and Yt become large) the LNA

becomes a more accurate approximation to the CLE (Golightly and Gillespie, 2013). By

considering how the system would scale according to the container volume, and thinking

about the Central Limit Theorem and Poisson process variation, we can write Yt as

Yt = Ωzt +
√
ΩMt, (7.11)

where zt is the deterministic process and Mt is the residual stochastic process. The idea is

that when the average concentration (Yt/Ω) is constant relative fluctuations will decrease

with 1/
√
Ω (Elf and Ehrenberg, 2003). Therefore, if we replace Yt in Equation (7.10) with

Equation (7.11), the CLE becomes

dzt +
1√
Ω
dMt = Sf

(
zt +

Mt√
Ω
,θ

)
dt+

1√
Ω

√
Sdiag

{
f

(
zt +

Mt√
Ω
,θ

)}
S′dWt.

The Taylor expansion of f
(
zt + Mt√

Ω
,θ
)

can be used to linearise the rate function and

obtain

f

(
zt +

Mt√
Ω
,θ

)
= f(zt,θ) +

1√
Ω
FtMt +O(Ω−1),
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where Ft =
(
∂fi(zt,θ)
∂zj,t

)
for i = 1, . . . , v and j = 1, . . . , u. Using the Taylor expansion and

collecting terms of O(1) we get the deterministic rate equation

dzt
dt

= Sf(zt,θ) (7.12)

which is the large volume asymptotic limit of the CLE. By collecting terms of O
(

1√
Ω

)
we

get the SDE for the residual process

dMt = SFtMtdt+
√
Sdiag{f(zt,θ)}S′dWt. (7.13)

Therefore the LNA approximation of the CLE is given by Equations (7.11), (7.12) and (7.13).

Initialising the system with Mt1 ∼ N(mt0 , Vt0), where t0 is the initial timepoint, the solution

to Equation (7.13) is

(Mt|θ) ∼ N(mt, Vt),

where
dmt

dt
= SFtmt and

dVt
dt

= VtF
′
tS
′ + Sdiag{h(zt)}S′ + SFtVt.

Note that the parameters mt and Vt depend on zt and θ but we have removed this from

our notation for simplicity. We now have a set of ODEs to solve to find the solution to

Equation (7.13). Using Equation (7.11), it can be shown that

Yt ∼ N(Ωzt +
√
Ωmt, ΩVt).

We will assume that Ω = 1 and so obtain

Yt ∼ N(zt +mt, Vt). (7.14)

This solution to the LNA can be used to simulate (approximate) realisations from a SKM

by first using numerical integration to find zt and Vt over a small time interval and using

Equation (7.14) to simulate the state of the system.

The LNA can become less accurate over time in a simulation due to the ODE for zt

being numerically integrated over the whole time range as this can lead to a difference

between zt and the true stochastic simulation. Fearnhead et al. (2012) suggest a remedy

to this problem by setting zt to be yt at each timepoint, in which case we numerically

integrate from t to t+∆t with zt = yt and Vt as a matrix with entries all equal to zero.

Note that mt is zero for all t so we do not need to solve the ODE for mt. The algorithm

for simulation using the LNA is given in Algorithm 15. More information can be found

in Fearnhead et al. (2012) and Golightly and Gillespie (2013).

The LNA can also be used for parameter inference. The likelihood for the fully observed
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system is approximated as π(y|θ) =
∏n
i=1 π̂LNA(yi|yi−1,θ) which is a product of normal

densities (Fearnhead et al., 2012). MCMC algorithms can be used to approximate the

posterior distribution π(θ|y) by using this LNA approximation to the likelihood. This

means that the MCMC scheme will target π(θ)π̂LNA(y|θ). Giagos (2011) shows that the

LNA provides a good approximation to π(θ|y) for the LV model.

Algorithm 15 Linear noise approximation (LNA).

1. Set t = 0. Initialise values of θ and initialise y0 to be the initial values of all of the
species. Let z0 = y, m0 = y − z0 (all elements of m0 should be zero) and V0 is a
u× u matrix with all entries being zero.

2. Use numerical integration to solve the set of ODEs for zt, mt and Vt over the time
interval (t, t+∆t].

3. Simulate yt+∆t ∼ N(zt+∆t +mt+∆t, Vt+∆t).

4. Set t = t+∆t, mt = y − zt and reset Vt to be a matrix of zeros.

5. If t < tmax go to Step 2, otherwise output t and y.

7.4.3 Hybrid simulation techniques

Hybrid simulation techniques combine the use of exact simulation and approximate simula-

tion. If reactions are present in a system where there are a low concentration of reacting

species, generally these reactions would happen very slowly. In this case the discrete nature

of these reactions become important and should not be ignored and so using the Chemical

Langevin equation (CLE) or the linear noise approximation (LNA) can give quite inaccu-

rate realisations. In this situation, hybrid algorithms can be used effectively by splitting

reactions into slow and fast reactions and using exact methods for the slow reactions and

approximate algorithms for the fast algorithms. This technique takes advantage of the

efficiency of the approximate algorithm but also tries to improve the accuracy for reactions

where the approximation would not be suitable, and hence providing a middle ground for

speed and accuracy. Examples of the use of hybrid methods include Kiehl et al. (2004)

and Alfonsi et al. (2005), who numerically solve ODEs for the fast reactions, Higham et al.

(2011) and Salis and Kaznessis (2005), who use a CLE approximation, and Puchalka and

Kierzek (2004) who use the τ–leap algorithm.
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Introduction to Bayesian

Experimental Design

8.1 Introduction

Consider an experimentalist who is thinking about how to design an experiment whose

output is essentially a continuous trace of various possible measurements. If we assume

that costs prohibit measuring these continuous traces, key questions are at how many

time points should measurements be taken and at what times should the measurements

be made. We will focus on the determination of such “optimal designs” by choosing the

design to optimise a statistical criteria. More generally, a design could comprise of, for

example, the sample size, proportions of observations to each treatment, the experimental

units, the duration of the experiment, as well as the times to take observations or the

species to observe (Chaloner and Verdinelli, 1995). Generally experimentalists design their

experiments with reference to information already available from previous and/or similar

experiments (Chaloner and Verdinelli, 1995). This leads naturally to framing the problem

from a Bayesian perspective. The topic of Bayesian experimental design has had much

interest in recent times. Within the literature, there are examples of where the optimal

design found using Bayesian techniques has been applied to real experiments (Flournoy,

1993). Also, there are many examples in which previous experimental results have been

used to construct a prior distribution for model parameters in order to design a more

efficient version of the experiment; see, for example, Clyde et al. (1995a,b); Drovandi and

Pettitt (2013).

Choosing an efficient (or optimal) design can save time and money as it reduces the

risk of having to undertake repeat experiments. Good designs increase the information

content of the experimental data and so it is natural to seek optimal designs which reduce

(posterior) parameter uncertainty (Chaloner and Verdinelli, 1995).
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The design of experiments from a Bayesian perspective takes into account prior knowl-

edge about unknown quantities or parameters θ, together with the potential cost and

benefits of performing the experiment expressed as a utility function. Prior informa-

tion could be obtained from pilot studies, observational studies or by eliciting expert

beliefs (Clyde, 2001). The utility function takes high values for experiments with large

benefits and small costs and low values for experiments with small benefits and large costs.

It is clear that we should choose the design that maximises the prior expectation of the

utility function (Farrow, 2013). The utility function u(d,y,θ) is a function of the (yet

unobserved) experimental data y, the parameters θ in the stochastic model and design

chosen d. As the utility function depends on the unknown quantities, the design should

be chosen by studying the utility function after accounting for the uncertainty of these

quantities, that is, chosen to maximise the expectation of u(d,y,θ) with respect to the

joint distribution of (θ,y). We write this expected utility as

u(d) = Eθ,y[u(d,y,θ)] =

∫
y

∫
θ
u(d,y,θ)π(y|d,θ)π(θ)dθdy, (8.1)

where π(y|d,θ) is the likelihood function of the observations when using design d given

the parameters θ and π(θ) is the prior for θ.

8.1.1 The utility function

In general utility functions describe the reward from declaring a value θ̂ for θ, from

declaring a posterior distribution for θ or, in our case, from declaring an optimal design d.

In each case, the utility function should reflect the aims of the specific problem.

A popular choice of utility function is the expected gain in Shannon information given

by the experiment (Shannon, 1948). Here the optimal design is chosen to be the design that

maximises the expected gain in Shannon information. This gain in Shannon information is

also the same as the expected Kullbeck–Leibler divergence between the posterior and prior

distributions

u(d) =

∫
y

∫
θ

log

(
π(θ|y,d)

π(θ)

)
π(y|θ,d)π(θ)dθdy.

As the prior distribution is independent of the design, this can be simplified to

u(d) =

∫
y

∫
θ

log {π(θ|y,d)}π(y|θ,d)π(θ)dθdy,

that is, the expected Shannon information of π(θ|y,d) (Chaloner and Verdinelli, 1995). This

utility is often used when the aim of the experiment is to perform parameter inference on θ,

and is the analogue of D–optimality which maximises the determinant of the information

matrix over all possible designs.
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Another possible choice of utility function is a quadratic loss function, which can be

used when the experimental aim is to find a point estimate of the parameters θ̂ (Chaloner

and Verdinelli, 1995; Clyde, 2001). This utility is a function linear in −(θ̂−θ)′A(θ̂−θ) and

is an analogue of A–optimality which minimises the trace of the inverse of the information

matrix over all possible designs (Farrow, 2013). For example, the expected utility could be

u(d) = −
∫
y

∫
θ
(θ̂ − θ)′A(θ̂ − θ)π(y|θ,d)π(θ)dθdy,

where A is a symmetric non–negative definite matrix.

8.1.2 Utility functions for models with intractable likelihoods

The choice of optimal experimental design for models with tractable likelihoods is often

based on a utility function that is a scalar function of the Fisher information matrix.

In Bayesian experimental design, a common utility function uses the expected gain in

Shannon information from prior to posterior or considers the concentration of the pos-

terior distribution. In this case, when the posterior distribution can not be determined

analytically, evaluations of the likelihood are required in order to sample from the posterior

distribution (Drovandi and Pettitt, 2013). In all but the most simple models and designs,

the posterior is not analytically tractable due to the discrete nature of the designs within a

continuous–time stochastic model.

Pagendam and Ross (2013) base their utility function on the Fisher information matrix

and numerically evaluate the matrix by taking the exponential of the matrix of transition

rates as described in Podlich et al. (1999). Pagendam and Pollett (2009, 2010) use a

Gaussian diffusion approximation for the stochastic kinetic model with large initial values,

that is, they approximate the likelihood with a Gaussian distribution. Komorowski et al.

(2011) use the linear noise approximation to a Markov process to estimate the likelihood,

which they then use to evaluate the information matrix. This approach converts evaluation

of the Fisher information matrix to solving a system of ODEs. We note that low molecule

numbers reduce the accuracy of this approximation. Finally, moment closure is used

in Cook et al. (2008) to approximate the likelihood.

It is possible to have a utility function that does not explicitly depend on y or θ (Drovandi

and Pettitt, 2013). One such example is a utility function based on the posterior distribu-

tion for θ. A utility function based on the Fisher information matrix is an example of a

utility that does not depend on y as the expectation with respect to y has already been

computed (Drovandi and Pettitt, 2013).

Recent work by Drovandi and Pettitt (2013) provides an algorithm based on Markov

chain Monte Carlo sampling and approximate Bayesian computation (ABC) which finds

optimal Bayesian designs for a Markov process. The method only requires simulation from
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the stochastic kinetic model. They use a utility function that is not a function of θ, based

on the posterior variance matrix of θ, that is, they use the posterior generalised precision

u(d,y) =
1

det{V ar(θ|d,y)}
, (8.2)

as their utility function. This function takes higher values when there is less uncertainty

about θ. Note that, as the utility function does not depend on θ, we drop the θ argument

in the function’s notation. The authors approximate the utility function using ABC

techniques. Their aim, like that in this thesis, is to determine the optimal timepoints to

observe a stochastic kinetic model (assuming a fixed number of timepoints). Their method

is more computationally expensive than typical parameter inference as the parameter

posterior distribution needs to be estimated everytime they wish to evaluate the utility

function which is required at every iteration of their MCMC scheme.

8.2 The Drovandi and Pettit approach

The optimal design d∗ is the design which maximises the expected utility u(d) in Equa-

tion (8.1). However, u(d) is typically analytically intractable. Although it is possible to

evaluate u(d) using Monte Carlo integration, this technique becomes impractical as the

design dimension increases. Müller (1999) suggests an alternative approach to evaluating

the expected utility by sampling from the joint density

h(d,y,θ) ∝ u(d,y)π(y|d,θ)π(θ) (8.3)

using MCMC (see Algorithm 16). This method is very efficient in comparison to Monte

Carlo sampling which is the commonly used alternative (Müller, 1999). This method works

because this distribution has a marginal distribution (over θ and y) which is proportional

to u(d). The optimal design is then determined by locating the mode of this marginal

distribution using the posterior samples of d.

Drovandi and Pettitt (2013) use the MCMC scheme suggested by Müller (1999) which

is given in Algorithm 16. This algorithm is useful in experimental design for models with

intractable likelihoods as the likelihood terms in the Metropolis–Hastings ratio cancel as a

result of simulating from the model as a proposal for the data.

Often the marginal distribution for d is fairly flat and so it can be advantageous to

amplify the signal for the location of the mode by modifying the design to have J replicates

of the experiment (Müller, 1999). In this case, the target for the MCMC algorithm is the

density

h(d,θ1, . . . ,θJ ,y1, . . . ,yJ) ∝
J∏
j=1

u(d,yj)π(yj |d,θj)π(θj). (8.4)

105



Chapter 8. Introduction to Bayesian Experimental Design

Algorithm 16 MCMC algorithm for experimental design by Müller (1999).

1. Initialise d0, sample θ0 ∼ π(θ) and simulate y0 ∼ π(y|θ0,d0).

2. Calculate u0 = u(d0,y0).

3. Set i = 1. While i ≤ n

(a) Propose dc ∼ q(d|di−1), θc ∼ π(θ),yc ∼ π(y|θc,dc).
(b) Calculate uc = u(dc,yc).

(c) Accept proposed states with probability

min

(
1,

ucq(di−1|dc)
ui−1q(dc|di−1)

)
.

(d) Set i = i+ 1 and return to step 3(a).

This distribution has a marginal distribution over θj and yj for j = 1, . . . , J which is

proportional to u(d)J (Drovandi and Pettitt, 2013; Müller, 1999). Therefore the optimal

design is the mode of this marginal distribution. This modification requires an alteration to

the MCMC algorithm as, for each design d, we need to simulate J independent samples of

θ from the prior and then J independent samples of y given these values of θ. The utility

is then calculated for each pair (θj ,yj) and then their product is taken. This is described

in Algorithm 17. A larger value of J indicates that they have a tighter distribution around

the mode. However, larger values of J will increase the time taken to perform each iteration

of the MCMC scheme linearly (Drovandi and Pettitt, 2013).

This work uses the generalised precision as the utility function given in Equation 8.2.

Although Drovandi and Pettitt (2013) could have made other choices such as the Kullback–

Leibler divergence between the prior distribution and the posterior distribution (Kullback

and Leibler, 1951), this type of utility function requires that the likelihood be evaluated: a

problem for the types of model we consider in this thesis. That said, Liepe et al. (2013)

have suggested estimating this quantity using the difference between histograms for the

prior and posterior distribution computed using the samples from each distribution. They

estimate their utility function using ABC methods as the ABC posterior distribution

does not require the likelihood to be evaluated. If we measure the distance between the

simulated “true” data y and an ABC dataset x using a metric ρ(y,x) and require this

distance to be within ε then the ABC posterior is

π(θ|y, ε) =

∫
x
π(x|θ)π(θ)1(ρ(y,x) ≤ ε)dx, (8.5)
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Algorithm 17 MCMC algorithm for experimental design by Müller (1999) amplifying the
mode.

1. Initialise d0, sample θ0j ∼ π(θ) and simulate y0j ∼ π(y|θ0,d0) for j = 1, . . . , J .

2. Calculate u(d0,y0j ) for j = 1, . . . , J .

3. Calculate u0 =
∏J
j=1 u(d0,y0j ).

4. Set i = 1. While i ≤ n

(a) Propose dc ∼ q(d|di−1), θcj ∼ π(θ),ycj ∼ π(y|θcj ,dc) for j = 1, . . . , J .

(b) Calculate u(dc,ycj) for j = 1, . . . , J .

(c) Calculate uc =
∏J
j=1 u(dc,ycj).

(d) Accept proposed states with probability

min

(
1,

ucq(di−1|dc)
ui−1q(dc|di−1)

)
.

(e) Set i = i+ 1 and return to step 4(a).

where 1(A) is a binary function which is one if A is true. Drovandi and Pettitt (2013) use

the metric

ρk ≡ ρ(y,xk) =

D∑
i=1

|yi − xi,k|
std(xi,·)

,

where D is the number of design points and std(·) is the sample standard deviation. The

utility function is calculated by replacing the true posterior with the ABC posterior,

and the ABC posterior is determined for each simulated dataset y at every iteration in

Algorithm 16. The ABC rejection algorithm is given in Algorithm 18.

The ABC algorithm requires a tuning parameter α, where ε = ραNABC and NABC is the

number of ABC simulated datasets. This parameter controls the proportion of particles

that are used to approximate the ABC posterior. Choosing α is a balance between posterior

accuracy and Monte Carlo error. A low value of α provides a sample that is closer to the

true posterior distribution. However, for a particular NABC , a low α means that fewer

samples are kept and this increases the Monte Carlo error of the utility function. We note

that substantial computational savings can be achieved by performing steps 1 and 2 of

Algorithm 18 and storing the output before running the full analysis.

The designs d considered consist only of the timepoints at which measurements should

be taken. Pragmatically, their method discretises the time axis and so they need only

simulate data at each of the (relatively small number of) design points when constructing

the ABC datasets xk. This also allows calculation of the sample standard deviations in
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Algorithm 18 ABC rejection algorithm.

1. Generate θk ∼ p(θ) for k = 1, . . . , NABC.

2. Simulate xk ∼ p(y|θk,d) for k = 1, . . . , NABC.

3. Calculate discrepancies ρk for k = 1, . . . , NABC, making particles {θk, ρk}NABC
k=1 .

4. Sort the particles according to the discrepancy ρ.

5. Discard (1 − α)NABC of the particles with the highest discrepancy. Note that
ε = ραNABC .

advance, for use in the ABC discrepancy function.

8.2.1 Finding the multivariate modal design

Müller (1999) advises that the boosting parameter J should be chosen so that the dis-

tributions of the designs have low variability, in which case the (trimmed) sample mean

will be a good approximation to the optimal design. However, having J too large can

cause problems in the MCMC scheme if the utility surface is multimodal as the scheme

becomes stuck in a local mode (Hainy et al., 2013). Müller et al. (2004) suggest increasing

J slowly during the MCMC scheme since, as J increases, the MCMC samples focus on

the mode which corresponds to the highest utilities (Hainy et al., 2013). This strategy

produces an inhomogeneous Markov chain of the design variables (Hainy et al., 2013) and

the whole design space is explored by the MCMC sampler initially, ensuring that all modes

are covered.

Drovandi and Pettitt (2013) restrict the range of J values they consider as large values

lead to very long run times for their algorithm. This leads to their marginal modes

(of the designs) being less accurate estimates of the multivariate modal design. In this

thesis, we follow their approach to estimating the multivariate modes which employs the

non-parametric approach described in Algorithm 19.

8.2.2 Example using the death model

We illustrate this method using the example given in Drovandi and Pettitt (2013) of the

death model described in Chapter 7.3. We use Algorithm 16 and, in steps 2 and 3b)

where the utility function is evaluated, we use Algorithm 18 to obtain an approximation

of the posterior variance matrix for θ. This matrix is then used in Equation (8.2) to

approximate the utility function. We replicate their example by taking their log–normal

prior θ ∼ LN(−0.005, 0.01) and discretising the time axis tmin = 0.01, tmax = 10 into steps

of size ∆t = 0.01. The MCMC scheme in Algorithm 17 is run for n = 100k iterations. Also
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Algorithm 19 Finding the multivariate mode (Drovandi and Pettitt, 2013)

Suppose the design takes the form d = (t1, . . . , tnd
).

1. For i = 1, . . . , nd find the bandwidth, hi, of the kernel density estimator for each
timepoint, ti, i = 1, . . . , nd using the marginal samples of ti.

2. For each of the smoothing factors h = (1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5,
1.6, 1.7, 1.8, 1.9, 2, 2.25, 2.5, 2.75, 3, 3.5, 4), use a multivariate Gaussian smoothing
kernel with hdiag(hi) as the bandwidth matrix to find a set of points of highest
density (one for each h).

3. Approximate the expected utility u(d∗) at each of the possible designs using

u(d∗) =
1

N

N∑
i=1

û(d∗,yj)

where yj ∼ π(y|θj ,d∗) and θj ∼ π(θ). The utility û is approximated using ABC as
described in Algorithm 18.

4. Choose the optimal design to be the modal design that produces the highest approxi-
mated expected utility.

the ABC algorithm uses NABC = 200k pre–computed model simulations and keeps 200

values for the ABC posterior (α = 0.001).

Figure 8.1 shows plots of the marginal distributions for the designs; the multivariate

modes of these distributions are the optimal times to take observations. Estimates of the

optimal designs have been calculated as the multivariate mode using Algorithm 19 and

are given in Tables 8.1. These results are similar to those given in Drovandi and Pettitt

(2013). It is likely that these differences are due to the dependence on the pre–computed

datasets to be used in the ABC. This dependency is probably due to the way in which the

‘closeness’ of datasets is judged within the ABC algorithm. Usually, a maximum value ε for

the discrepancy is specified. However this ABC algorithm simply selects the closest, say

200 datasets, some of which may not be particularly close to the simulated ‘real’ dataset.

We study this aspect more fully in the next section. It is clear from these runs that the

algorithm requires lots of memory to store the ABC datasets and so the method will not

scale well to larger models with more species and designs with a large number of timepoints.

In the next chapter we explore a method which does not require such large amounts of

memory which is based on using Gaussian Processes.
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# timepoints ABC1 ABC2 Exact D&P
(d)

1 (1.623) (1.571) (1.60) (1.60)
0.005% 0.005% 0.000% 0.000%

2 (1.14, 2.85) (1.07, 2.76) (1.03, 2.65) (1.15, 3.05)
0.078% 0.018% 0.000% 0.198%

3 (0.90, 2.00, 3.83) (0.86, 2.00, 3.76) (0.76, 1.79, 3.42) (0.75, 1.90, 3.90)
0.116% 0.075% 0.000% 0.125%

4 (0.74,1.69, (0.74,1.69, (0.60,1.36, (0.75,1.70,
2.74,3.94) 2.74,3.94) 2.38,3.98) 2.75,4.35)

0.214% 0.214% 0.000% 0.214%

Table 8.1: Optimal design results for the death model. Optimal designs, d∗ = (t∗1, . . . , t
∗
d) are

given in brackets and the sub–optimalities of those designs are given as a percentage below each
design. ABC1 and ABC2 are two repeats of the Drovandi and Pettitt (2013) methods, D&P are
the Drovandi and Pettitt (2013) results and using numerical integration we have calculated the
exact optimal design which is given in the Exact column.

8.2.3 Dependence of the expected utility on the pre–computed ABC

datasets

The above results suggest that there is some variability in the optimal design due to the

actual simulated ABC datasets used. We investigate this proposition by a series of analyses

using different collections of ABC datasets. In each case, the ABC dataset collections

contain 200k datasets. In the ABC algorithm, a simulated ‘real’ dataset is compared

to those in an ABC dataset collection. We have investigated how the variability in the

(estimated) expected utility depends on m = 1000 different simulated ‘real’ datasets and 20

different ABC dataset collections. Note that in each case we keep 200 parameter values (and

ties) corresponding to those simulations in the ABC dataset with the lowest discrepancy.

The additional tied values are those resulting from datasets which have equal discrepancy

to that of the 200th ranked dataset.

The different sources of variability in the (estimated) expected utilities can be assessed

by using a two–way analysis of variance (ANOVA). This model can be written as

uij = µ+ αi + βj + εij ,

where εi,j ∼ N(0, σ2). Here µ is the overall mean expected utility, αi is the (additive

mean) effect using the simulated ‘real’ dataset i, and βj is the (additive mean) effect of

making comparisons to ABC dataset collection j. The ANOVA table given in Table 8.2

shows that there are considerable differences in the (estimated) expected utility between

different ABC dataset collections. The accuracy of these (estimated) expected utilities (in
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SS Df MS F ratio

Within ABC dataset collection 5350806 999 5356.2 1210.359
Between ABC dataset collections 4795 19 252.3 57.023
Residual 83996 18981 4.4

Table 8.2: ANOVA table for dataset collections containing 200k ABC datasets, keeping 200
parameter values (and ties) for the ABC posterior. Note the upper 0.1 percentiles F999,18981 = 1.1483
and F19,18981 = 2.380.

say collection j) is

s.e.(u.,j) =

√
4.4

20000
+

252.3

20
=
√

12.61522 ' 3.552.

Figure 8.2(a) shows 95% confidence intervals for the (estimated) expected utility calculated

for each ABC dataset collection. The figure highlights the high variability in these estimates,

though we note that each interval contains the exact expected utility of 133.13.

If instead we keep 100 parameter values (and ties) for the ABC posterior so that the

ABC datasets are closer to the simulated ‘real’ dataset, then we obtain the results shown

in Table 8.3. Again we see that there are considerable differences between ABC dataset

collections, suggesting that there are still many of the included 100 ABC datasets that are

not particularly close the the simulated ‘real’ datasets. The accuracy of the utilities can be

seen in their 95% confidence intervals, shown in Figure 8.2(b). These intervals have similar

widths to those obtained when keeping 200 parameter values (and ties).

We now increase the number of datasets in the dataset collections to 1M in an attempt

to ensure that the top 200 matching datasets are indeed close to the simulated ‘real’

datasets. The results are given in Table 8.4. Although there are still large differences

between the dataset collections, this source of variability has reduced considerably: see the

95% confidence intervals for the expected utility in Figure 8.2(c). These intervals are much

narrower. We repeated this analysis but kept only the top 100 parameter values for the

ABC posterior and found this gave exactly the same results as in Table 8.4. This suggests

that, in these runs, the discrepancies for the 100th closest ABC dataset and the 200th

closest ABC dataset were the same (or very close).

This investigation has showed that a very large number of ABC datasets need to be

used before the (estimated) expected utility can be determined accurately. Unfortunately

this poses a very real problem for the memory usage and computing time for any ABC

determination of optimal designs.
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SS Df MS F ratio

Within ABC dataset collection 5351632 999 5357.0 1054.631
Between ABC dataset collections 4972 19 261.7 51.514
Residual 96414 18981 5.1

Table 8.3: ANOVA table for dataset collections containing 200k ABC datasets, keeping 100
parameter values (and ties) for the ABC posterior. Note the upper 0.1 percentiles F999,18981 = 1.1483
and F19,18981 = 2.380.

SS Df MS F ratio

Within ABC dataset collection 5325218 999 5330.5 5536.194
Between ABC dataset collections 384 19 20.2 20.965
Residual 18276 18981 1.0

Table 8.4: ANOVA table for dataset collections containing 1M ABC datasets, keeping 200 parameter
values (and ties) for the ABC posterior. Note the upper 0.1 percentiles: F999,18981 = 1.1483 and
F19,18981 = 2.380.
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Figure 8.1: Marginal distributions for d for a (a) single, (b) two, (c) three and (d) four timepoint
design for the death model for the first repeat and marginal distributions for d for a (e) single, (f)
two, (g) three and (h) four timepoint design for the death model for the second repeat.
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Figure 8.2: Plots showing the confidence intervals (black lines) for each ABC dataset collection,
j = 1, . . . , 20 with the mean as a black point for collections containing (a) 200k datasets in which
200 are kept, (b) 200k datasets in which 100 are kept and (c) 1M datasets in which 200 (or 100)
are kept in the ABC posterior.
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Chapter 9

Experimental design using

Gaussian processes

In this chapter we consider how we might use Gaussian processes to reduce the computa-

tional cost of determining optimal experimental designs. We begin by introducing Gaussian

processes, describe how a Gaussian process can be fitted to data, and then describe some

diagnostic tools to assess fit. We also consider how to select the size and location of the

training data which is used to fit the Gaussian process. Finally, we discuss how the fitted

Gaussian process can be used to find the optimal design.

Recall that the objective of this part of the thesis is to determine the optimal times at

which to observe a stochastic kinetic model. Using the same notation in Chapter 8, we

write d = (t1, . . . , td) for the d-timepoint design at which we take observations y from the

experiment. For example, in a single timepoint design, we have d = t1 and the observations

taken are y = yt1 . We note that all observations (without noise) from a stochastic kinetic

model are integers, that is, are discrete. Also the likelihood function when using design d

is π(y|d,θ).

The optimal design is chosen to maximise the expected utility

u(d) = Ey [u(d,y)] (9.1)

which can be rewritten as

u(d) = Eθ [u(d,θ)] =

∫
θ
π(θ)u(d,θ)dθ (9.2)

where

u(d,θ) = Ey|θ,d [u(d,y)] =

∫
y
u(d,y)π(y|d,θ)dy. (9.3)
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Throughout this thesis we use the utility function

u(d,y) =
1

det{(V ar(θ|d,y)}
(9.4)

which is the posterior generalised precision as this utility function takes the optimal design

as that which reduces posterior uncertainty about θ. Note that the utility function (9.4)

does not depend explicitly on θ. Also, as y is discrete, Equation (9.3) simplifies to

u(d,θ) = Ey|θ,d [u(d,y)] =
∑
y

u(d,y)π(y|d,θ). (9.5)

We choose to fit a Gaussian processes to u(d,θ) rather than to u(d,y) as this makes the

calculation of the expected utility straightforward by using realisations from the prior for

θ using Equation (9.2) and avoids the need to average u(d,y) over the much large range

of values for y (from its prior predictive distribution).

The main problem in determining the optimal design is the time it takes to evaluate

the expected utility at a particular iteration in the MCMC scheme, that is, for a particular

choice of (d,θ). Therefore we seek a Gaussian process approximation to the expected

utility u(d,θ). Here the inputs to the process are the model parameters θ and the design d.

In this chapter, we illustrate the general method using the death model as the likelihood

can be determined exactly for this model, and hence we can determine the accuracy of

using the Gaussian process approximation.

9.1 Introduction to Gaussian processes

Rasmussen and Williams (2006) define a Gaussian process as a collection of random

variables any finite number of which have a joint Gaussian distribution. A Gaussian

process is specified by its mean and covariance functions. The flexibility of a Gaussian

process to fit a variety of response variable surfaces makes them a popular choice for

emulation (Kaufman et al., 2011). It also satisfies the intuitively appealing property of

relatively low uncertainty close to design points and increasing uncertainty as the distance

from a design point increases (Kaufman et al., 2011).

In this chapter we will introduce Gaussian processes with training data inputs denoted

as X = (xi) and outputs denoted as y = (yi), i = 1, . . . , nd. Suppose we have data

D = {(xi, yi), i = 1, 2, . . . , nd} where yi = f(xi), that is, we observe y exactly at a

collection of input points. We need to specify a mean function m(x) and usually this

depends on parameters β. For example, we might take the mean function to be the least

squares regression of a function in x. Using such a function we can then fit a zero mean
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Gaussian process to the residuals

z(xi) = f(xi)−m(xi) for i = 1, . . . , nd.

The covariance function K(xi,xj) describes the dependence that is believed to be between

the function f at two input points xi and xj . Essentially it describes the smoothness of the

function and it usually depends on additional parameters, known as hyperparameters. It

is this assumption of smoothness of the output space which is fundamental to the accuracy

of a Gaussian process.

The purpose of fitting a Gaussian process is to be able to describe the values the

function will take at input values other than those used for fitting the process (in the

form of a distribution). Suppose we already have the data D but would like to know the

value of the function at a set of test inputs X∗ = (x∗1, . . . ,x
∗
n∗)
′, that is, learn the value of

f∗ ≡ f(X∗) = (f(x∗1), . . . , f(x∗n∗))
′. If we assume a Gaussian process prior for y = (f(xi))

then we have

y ∼ N(m(X),K(X,X)) and f∗ ∼ N(m(X∗),K(X∗,X∗)).

Now Cov(f∗,y) = Cov(f(X∗), f(X)) = K(X∗,X) and similarly Cov(y,f∗) = K(X,X∗).

Also, as (y,f∗) can be described by the Gaussian process we have that their joint distribu-

tion is normal with(
y

f∗

)
∼ N

{(
m(X)

m(X∗)

)
,

(
K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

)}
. (9.6)

Conditioning this joint density on the data y gives the ‘posterior’ distribution

f∗|y ∼ N(µ∗,Σ∗)

where

µ∗ = m(X∗) +K(X∗,X)K(X,X)−1(y −m(X))

and

Σ∗ = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗).

Suppose now that the observations on y are noisy with yi = f(xi) + ε and ε ∼ N(0, σ2).

The aim is still to make statements about f∗ = (f(x∗1), . . . , f(x∗n∗))
′. Following a similar

derivation to that above alters the posterior mean function to

µ∗ = m(X∗) +K(X∗,X)
[
K(X,X) + σ2I

]−1
(y −m(X))
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and variance matrix to

Σ∗ = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2I

]−1
K(X,X∗).

Notice that the measurement error σ2 appears in the mean function µ∗ and so the mean

function will only pass through the training data outputs, y if σ2 = 0, that is, if there is

no measurement error. Put another way, the mean function will no longer pass though all

of the training data outputs y when σ2 > 0, though the smaller σ2 is, the closer the mean

function will be to the design points.

The so called nugget term σ2 is important as it accounts for error in the training data

output and can also help with computational problems when inverting the variance matrix.

These problems occur when the condition number, the ratio of the biggest and smallest

eigenvalues, becomes large. This difficulty is well known (Ababou et al., 1994) and adding

the nugget term to the diagonal of the variance matrix reduces the numerical instability.

Gramacy and Lee (2012) state that the addition of this jitter term can protect against

small violations of the assumption of stationarity of the covariance function.

9.1.1 The mean function

The mean function m(·) is chosen to reflect prior knowledge of the structure of f(x).

Typically this will take the form

m(x) =

p∑
i=1

β̂ihi(x)

where h(·) is a specified function of inputs. A very simple mean function would take p = 1

and h1(x) = 1 so that m(x) = β̂1. This means that β̂1 is an average value for the output

f(x) and would be appropriate if it was thought that the function was essentially constant.

However, care must be taken in specifying the mean function as the fitted Gaussian process

is mean reverting, that is, the process reverts to the mean function in areas not close to the

training data. This is particularly a problem if there are large distances between training

data inputs. That said, the constant mean function has been a popular choice; see, for

example, Oakley and O’Hagan (2004) and Williams and Barber (1998).

We will use another commonly used mean function, namely a fitted regression function,

that is, use

m(x) =

p∑
i=1

ˆ̂
βihi(x) (9.7)

where the
ˆ̂
βi are the least squares estimates of the β̂i. In this case the residuals z(X)

have shorter range correlations and result in more efficient predictions (Kaufman et al.,
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2011). More complex mean functions can be used; for example, Kaufman et al. (2011) use

Legendre polynomials.

9.1.2 The covariance function

After specifying the mean function, the covariance function needs to be chosen before

the Gaussian process prior is fully described. The covariance function is important as it

describes the relationship of two outputs based on how close any two inputs are. Typically

we would expect to observe similar outputs for inputs that are close to each other (Bastos,

2010). The covariance function describes the covariance between the corresponding outputs

when the inputs are xi and xj . Therefore the choice of covariance function must be

restricted to ones which result in a non-negative definite, symmetric and invertible variance

matrix for all inputs. Often stationary covariance functions are used in which the covariance

function depends simply on xi − xj , the distance between two inputs, rather than their

actual position. In this case the covariance function does not depend on where the inputs

are in the input space, just on the distance between them. These covariance functions have

the property that they do not change under translation of the input space (Rasmussen

and Williams, 2006). In cases where the assumption of stationarity is not appropriate, a

suitable mean function is often fitted in order to remove large scale variation, with the

hope that a stationary covariance function is more suitable for the residuals.

A widely used covariance function, and one we used repeatedly in this thesis, is the

squared exponential covariance function which is of the form

K(xi,xj |a, r) = a exp
{
−(xi − xj)′diag(r1, r2, . . . , rnp)−2(xi − xj)/2

}
. (9.8)

This function depends on hyperparameters (a, r). The hyperparameter a is a variance

term as it describes the vertical scale of variation of the output. The hyperparameters r

describe the length scale and dictate the smoothness the function f (Bazi and Melgani,

2010), that is, they describe how far we can move away from a particular input before the

output is classed as uncorrelated. When r is large the covariance is essentially constant

and so is independent of the input values (Rasmussen and Williams, 2006). Note that each

dimension of the input has its own length scale so that the covariance function can depend

on each input dimension differently.

One key difficulty in fitting a Gaussian process to data is that this involves inverting

the np×np covariance matrix: an O(n3p) algorithm. However, we reduce the computational

cost by avoiding directly inverting the matrix by using a Cholesky decomposition and

solving a linear equation. This roughly halves the computation time.

Figure 9.1 shows some Gaussian processes that have been fitted to training data

assuming a zero prior mean function. Here the input is x = t1 and the output is the utility
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Figure 9.1: Examples of fitting a Gaussian process with input t1 and output u(t1, θ), where
θ = 1. The posterior mean is plotted as a black line and the posterior mean ± 2 standard
deviations are plotted as blue lines. Plot (a) has the hyperparameters fitted at their posterior means
(r = 3.56, a = 1533, σ = 0.65), (b) has (r = 3.56, a = 1533, σ = 0.0.05) to show the effect of reducing
noise σ, (c) has (r = 1.2, a = 1533, σ = 0.65) and (d) has (r = 3.56, a = 1, 000, 000, σ = 0.65). The
black points are the training data used.

u(t1, θ) for a single timepoint design (therefore d = t1) for the death model assuming θ = 1.

The figure clearly shows how reducing σ leads to the mean function becoming closer to the

training data; see Figure 9.1(b). Decreasing r decreases the influence of nearby training

data; see Figure 9.1(c). Also increasing the hyperparameter a increases the variance and

widens the prediction intervals of the Gaussian process; see Figure 9.1(d). Finally the

figures show the effect of the prior mean function as the function is fitted to input values

away from the training data.

9.1.3 Determining the hyperparameters

When fitting a Gaussian process, we need appropriate values for its unknown parameters.

As we assume a zero prior mean function, these parameters are the hyperparameters (a, r)′
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Algorithm 20 Inferring (a, r, σ)

1. Initialise (a0, r0, σ0) by sampling from their prior distributions and set j = 1.

2. While j ≤ m

(a) Propose (ac, rc, σc) from a symmetric random walk with independent components
on the log scale.

(b) Accept proposed states with probability

π(ac)

π(aj−1)

π(rc)

π(rj−1)

π(σc)

π(σj−1)

π(z|ac, rc, σc)
π(z|aj−1, rj−1, σj−1)

q(aj−1|ac)
q(ac|aj−1)

q(σj−1|σc)
q(σc|σj−1)

q(rj−1|rc)
q(rc|rj−1)

=
π(ac)

π(aj−1)

π(rc)

π(rj−1)

π(σc)

π(σj−1)

π(z|ac, rc, σc)
π(z|aj−1, rj−1, σj−1)

ac

aj−1
σc

σj−1

np∏
i=1

rci

rj−1i

.

If the ri’s are assumed to be independent a priori then the above becomes

π(ac)

π(aj−1)

π(σc)

π(σj−1)

π(z|ac, rc, σc)
π(z|aj−1, rj−1, σj−1)

ac

aj−1
σc

σj−1

np∏
i=1

rciπ(rci )

rj−1i π(rj−1i )
.

(c) Set j = j + 1.

of the covariance function. If, in addition, the dataset is noisy then the hyperparameters

are (a, r, σ)′. These parameters can be estimated from the residuals z as follows. As

y ∼ N(m(X),K(X,X) + σ2I), the likelihood function is

π(z|a, r, σ) = (2π)−
n
2 |K(X,X) + σ2I|−

1
2 exp

{
−1

2
z′(K(X,X) + σ2I)−1z

}
(9.9)

where the covariance function K(X,X) also depends on the hyperparameters. To proceed

with a Bayesian analysis, after a prior distribution is specified for (a, r, σ), this information

can be combined with that in the likelihood function using Bayes Theorem to obtain

the posterior distribution π(a, r, σ|z). Typically this posterior distribution is intractable

and an MCMC scheme is needed to obtain posterior samples of the hyperparameters; we

use Algorithm 20. We suggest using a prior distribution with independent log-normal

components as these distributions are appropriate for positive quantities and are quite

flexible: ri ∼ LN(ci, 1/di) for i = 1, . . . , np, a ∼ LN(c0, 1/d0) and σ ∼ LN(e, 1/f). Using

this prior gives the logged Metropolis-Hastings ratio as a difference between terms of the
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form

log

{
π(y|a, r, σ)aπ(a)σπ(σ)

n∏
i=1

riπ(ri)

}
= k − 1

2
log |K(X,X) + σ2I|

− 1

2
z′
[
K(X,X) + σ2I

]−1
z − d0

2
(log a− c0)2 −

f

2
(log σ − e)2 − 1

2

n∑
i=1

di(log ri − ci)2.

We can use the posterior samples for (a, r, σ) to fit a Gaussian process by fixing these

hyperparameters at their posterior mean. Ideally, we would use a process which averaged

over the posterior uncertainty in the hyperparameters but this can lead to a very slow

evaluation of the fitted process.

9.1.4 Choice of training data

Before fitting a Gaussian process to training data we need to consider how best to select

the input values in order to give a good coverage of the input space, as having a good

coverage will reduce uncertainty in Gaussian process predictions. Of course, an accurate

fitted Gaussian process can be almost guaranteed by taking a very large number of training

points. However, in general it is not sensible for the training set to be too large as each

training point requires a function evaluation and, in fitting the Gaussian process, the

computational load of working with a large matrix can be high. We also want to develop

generic methods that are scalable to larger models which require high dimensional Gaussian

process approximations. Chapman et al. (1994) suggest that nd = 10np training points,

where np is the dimension of the input space, is the minimum needed. We use nd = 100np

training points throughout this thesis.

Consider a Gaussian process with a two dimensional input. It seems reasonable to

equate ‘good coverage’ with the training points having roughly uniform distributions in

each input dimension. To obtain such training points we could simply simulate uniform

realisations in each dimension. These points would also form a uniform scatter over

the input space. However, this does not guarantee an even spread of the training data

throughout the input space – the stochastic element in the production of the training

points can lead to areas of the input space that are not well represented.

Another option is to use a Latin hypercube which produces uniform marginal coverage of

the whole design space (Bastos, 2010).Latin hypercube sampling was introduced by Mckay

et al. (1979). Using Latin hypercube sampling produces a lower asymptotic variance of the

mean simulator output when compared to simple random sampling (Stein, 1987). In two

dimensions, Latin hypercube sampling works by splitting the input space (a square) into

nd rows and nd columns and points are placed so that each row and column contains only

one point. Note that such a scheme would produce points that were roughly uniform in
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Figure 9.2: Comparison of maximin Latin hypercube sampling (left) and Latin hypercube sampling
(right) with nd = 20.

each input dimension. However, a drawback of this sampling method is that it also can

lead to poor coverage of the input space; for example, having training data points along

the diagonal would be a possibility.

To avoid such poor coverage in training data, Morris and Mitchell (1995) introduced

the maximin Latin hypercube design. The maximin approach works by choosing the Latin

hypercube design which maximises the minimum Euclidean distance between all of the

points and so provides better coverage than Latin hypercube sampling. Figure 9.2 shows

a 20 point maximin Latin hypercube design and an inferior randomly generated Latin

hypercube design. It is clear that the maximin Latin hypercube design provides a better

coverage of the input space.

In this work, we seek a Gaussian process which approximates the expected utility over

both the model parameters θ and the design d = (t1, . . . , tnd
). As the timepoints are

ordered, this introduces an additional complication into the choice of training points. For

example, in a two timepoint design, we must have t1 < t2. Figure 9.3 shows both suitable

and unsuitable points from a maximin Latin hypercube design. There are many ways to

circumvent this problem, the most simple of which is just to ignore the time ordering,

evaluate the expected utility at the ordered version of unordered sequence of timepoints

and then fit the Gaussian process to this training set. However, using such a training set

is very wasteful as the Gaussian process will never need to be evaluated at an unordered

sequence. Further, distances in this space cannot be adequately described using a standard

metric such as the squared exponential; for example, in Figure 9.3, u(1, 0) = u(0, 1) and

u(0.49, 0.51) = u(0.51, 0.49). Instead we consider three possible methods for creating the

training data within the temporally ordered input space.
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Figure 9.3: Plot showing unsuitable points (red) in a maximim Latin hypercube with the constraint
t1 < t2.

The fold method

The fold method works by creating a Latin hypercube over the full input space and then

ordering the timepoints. Essentially the points that are not temporally ordered are folded

back onto that part of the space that is ordered. For example, in the case of a two

timepoint design over time interval (0, T ), we simulate a Latin hypercube over 0 < t1 < T

and 0 < t2 < T and any points in the region t1 > t2 are reflected into the correct region.

The uniform method

This is a rejection method which uniformly samples timepoints and then rejects any points

that are not in the correct region. For a two timepoint design, we simulate t1 ∼ U(0, T )

and t2 ∼ U(0, T ) and reject points with t1 > t2. The algorithm runs until the correct

number of training points have been produced.

The cut method

The third approach is essentially the same as the uniform method but without the repeated

simulation of points until the correct number have been determined. Instead a larger

number of points is generated from a Latin hypercube design and then any timepoints that

are not ordered are simply cut. Any design which does not have the correct number of

training points is rejected. This last step makes this algorithm quite slow as it is quite

unlikely that a cut design will produce the required number of training points.
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Method comparison

It is not clear which of these methods will give the best coverage of the input space as

judged by the maximum minimum distance. Therefore for each method we determined the

maximum minimum distance for 1M designs with nd = 100. This was repeated for 2, 3 and

4 timepoint designs; see Table 9.1. The cut method performs best for lower dimensional

designs, although the coverage does not look appreciably better than those for the other

methods; see Figures 9.4, 9.5 and 9.6. We note that, because of its rejection of any designs

not having the correct number of points, the cut method required ten times as many designs

to be simulated and therefore took ten times as long to generate. Another problem with

the cut method is that when we require a good emulator design for the expected utility

u(d,θ), and hence need a design over both (d,θ), cutting points which are temporally

unordered can lead to a poor coverage of points within the θ subspace.

The uniform method is also time consuming as a result of rejecting points that do

not have the correct ordering. For example, in a two timepoint design, roughly half of

the simulated designs will not satisfy the ordering constraint. Table 9.1 shows that the

uniform method has the smaller maximum minimum distances, as we no longer have the

space filling properties of the Latin hypercube. However, this effect becomes smaller as the

number of timepoints in the design increases.

The fold method produces maximum minimum distances which are quite close to those

of the other two methods. However, the greatest advantage of using this method is that it

is relatively quick (as no designs are rejected) and there are no problems in the θ subspace

when using this method to cover a temporally ordered (d,θ) input space. Therefore we will

use the fold method to construct the designs of training points for the Gaussian process

fits in this thesis.

To verify that the uniform and cut methods are not mathematically equivalent we found

the maximum minimum distance over 100k designs and repeated this 2k times. The mean

maximum minimum distance for the cut method and the uniform method were 0.5314 and

0.5681 with standard errors 0.0003 and 0.0004 respectively. The mean absolute difference

between the two methods is 0.0367 with standard error 0.005. If we assume no difference

between the two methods then only 3.6% would have differences as large as those we see in

this sample.

9.1.5 Diagnostics

When using a fitted Gaussian process as an approximation to a function it is important to

check that the approximation is accurate and that the underlying normality assumptions

(that any finite collection of function evaluations have a multivariate normal distribution)

of the process are plausible. One simple way of diagnosing deviations from the multivariate
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Method Two timepoints Three timepoints Four timepoints

Fold 0.024 0.052 0.080
Uniform 0.021 0.049 0.074
Cut 0.025 0.054 0.073

Table 9.1: Maximum minimum distances for the fold, uniform and cut methods for selecting training
data for ordered timepoints.
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Figure 9.4: Comparison of methods to obtain ordered training data with nd = 100 for a two
timepoint design.

normality of the function values at any collection of inputs is to see how plausible a

univariate normality assumption is for individual function evaluations. Such evaluations

need to be made at inputs other than those used in the training data and comparisons are

made between the predicted values from the Gaussian process and the actual value of the

function. For example, standardised differences between the fitted and observed values

should follow (roughly) a standard normal distribution and so (roughly) 5% of standardised

differences should be greater or less than two. We note that problems with normality can

sometimes be tackled using a transformation of the training data (Bastos and O’Hagan,

2009), that is, the Gaussian process is fitted to some function of the output function f .

Other problems that can occur in using a Gaussian process concerns the adequacy of

the kernel and the representativeness of the training data. Here, for example, a stationary

kernel might be used when a non-stationary kernel is needed. Also if the training data

are not representative of the input space then hyperparameter estimates may not be

very accurate, even if stationarity can be assumed (Bastos and O’Hagan, 2009). If the

parameters σ2 or a are underestimated then credible intervals for predictions from the

Gaussian process are too small, whereas if σ2 or a is overestimated, the intervals are too

large. In addition, if r is misspecified then the relationships between outputs which have

inputs the same distance apart will be inappropriate and this affects the accuracy of the

credible intervals near training data. If an incorrect mean function is assumed, predictions
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Figure 9.5: Comparison of methods to obtain ordered training data with nd = 100 for a three
timepoint design.

from the Gaussian process may be generally too high or too low (Bastos and O’Hagan,

2009).

Generally diagnostics used to validate the use of a Gaussian process involve using a new

set of training data and looking at the predictions of the Gaussian process in comparison

to these data. Other possible diagnostics include those based on a jackknife comparison in

which each individual training point is compared with its predicted value from a Gaussian

process fitted to the training data after excluding the individual training point (Rougier

et al., 2009). Methods also exist which leave out more than one data point (Kennedy and

O’Hagan, 2001).

In this work, we calculate the u(d,θ) at a new training dataset which we call the

validation data. Diagnostics are then produced which compare the validation data with

the predictions made by the fitted Gaussian process.
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Figure 9.6: Comparison of methods to obtain ordered training data with nd = 100 for a four
timepoint design.

In general terms, the validation data will consist of a new set of inputs

X♦ = (x♦
1 , . . . ,x

♦
n♦
d

)

and their outputs

y♦i = (f(x♦
1 ), . . . , f(x♦

n♦
d

)).

9.1.6 Individual prediction errors

The individual prediction error (IPE) for the validation data is given by

IPE(x♦
i ) = f(x♦

i )−m∗(x♦
i ),

that is, the difference between the validation output data for the validation inputs and the

Gaussian process predictive mean for the validation inputs. The IPE can be standardised

to account for its uncertainty, giving the standardised prediction error (SPE) as

SPE(x♦
i ) =

f(x♦
i )−m∗(x♦

i )√
K(x♦

i ,x
♦
i )

for i = 1, . . . , n♦d .
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If the fitted Gaussian process is a good representation of the utility function then the

SPEs should have a standard normal distribution. This means that if more than 5% of

the SPEs are outside the interval [−2, 2] then this suggests that the Gaussian process is

not a good fit. An example of how the SPEs should look when the assumptions are valid

is given in Figure 9.7 (a). If there are a small number of outliers then these can either be

ignored or investigated further by looking at new validation points close to the inputs of

the outliers (Bastos and O’Hagan, 2009).

If many SPEs are outside the interval [−2, 2], it could suggest a systematic problem.

For example, if these errors are of the same sign, it may be that the mean function is not

removing enough variability in the output, or β is not estimated well, or that stationarity

should not be assumed. If large errors occur for validation points close to training data

points then it could be that some or all of correlation length parameters ri are too large

and the Gaussian process predictions are affected too much by close by training data.

Another possible reason for too many errors outside of the range [−2, 2] is that the σ2

estimate is not accurate. This may occur when large errors have no systematic pattern.

The opposite of the above would follow for SPEs that are too small (Bastos and O’Hagan,

2009).

9.1.7 Mahalanobis distance

The IPEs do not take into account the correlations between the outputs. One diagnostic

which does account for this correlation (and variance) is the Mahalanobis distance

MD(X♦) = {f(X♦)−m∗(X♦)}′K∗(X♦,X♦)−1{f(X♦)−m∗(X♦)}.

The MD has a χ2 distribution with n♦d degrees of freedom, conditional on the training

data and the hyperparameters, as

f∗(X♦) ∼ Nn∗d
(m∗(X♦),K∗(X♦,X♦)).

Particularly large or small values of the MD may indicate that the Gaussian process is

not a good fit and this should be investigated.

9.1.8 Probability integral transform

Another diagnostic used to check the Gaussian process assumptions is the probability inte-

gral transform (PIT ), described in Gneiting et al. (2007). This diagnostic focusses attention

on the marginal standard normality of the SPE values and assesses the distributional fit

by using

PIT (x♦
i ) = Φ(SPE(x♦

i )) for i = 1, . . . , n♦d .
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Figure 9.7: Example diagnostics using 100 training data points. Plot (a) shows the standardised
prediction errors and plot (b) is the probability integral transform.

If the assumptions about a fitted Gaussian process are satisfied then the PIT (x♦
i ) values

should follow a standard uniform distribution. This is easily checked using a histogram

of the PIT values. If the assumptions are correct then this histogram should be uniform.

An example of how the histogram should look when the assumptions are valid is given in

Figure 9.7(b).

9.2 Experimental design

In the following sections we will describe how Gaussian processes can be used in experimental

design but first we will consider how the expected utility can be calculated almost exactly

when the likelihood is tractable and how a delta approximation can approximate the

expected utility. We then compare the optimal designs found using all three methods to

those found using the Gaussian process approach.

9.3 The exact method

The expected utility u(d) can be calculated using numerical integration. In particular,

it is straightforward to calculate for the death model, as the likelihood can be expressed

analytically, and then used in the integral in Equation (9.1). Numerical integration is

performed using the GNU Scientific Library (Galassi, 2013) in C using an adaptive Gaussian

quadrature method (Laurie, 1997). We will refer to this method of calculation as the exact

method as this can be done with good accuracy and will give us a standard against which

to judge other approximate solutions.
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Chapter 9. Experimental design using Gaussian processes

9.4 The delta approximation method

A delta approximation can be used to approximate the expected utility using

u(d) = Eθ,y [u(d,y)] ' u(d,y∗d)

where

y∗d = E [y|d, E(θ)]

is the expected experimental realisation if all prior mass is located at the prior mean. This

expected realisation can be determined analytically for simple models. However for larger

models we might need to use the linear noise approximation mean or even the solution of

the deterministic (ODE system) model equivalent to the stochastic model.

The delta method ignores variation in both θ and y and so might only provide a crude

approximation to u(d). However, a delta method based optimal design should provide a

good initial guess to the actual optimal design. In particular, it should give insight into

the appropriate part of design space containing the actual optimal design.

9.5 The Gaussian process method

We now describe how a Gaussian process approximation to u(d,θ) can be used to determine

the optimal design d∗. The first task is to decide on an appropriate training set for (d,θ)

to use to fit the Gaussian process. It makes sense to focus this training set in an area

of design space that contains the optimal design; we do this using delta approximation

method. We restrict the input space to this reduced design space and take θ values with

99% central coverage with respect to its prior distribution. The training points are then

determined via the fold method described in Section 9.1.4. The utility u(d,θ) is then

calculated at each training point either by an ‘exact’ evaluation using numerical integration

or by using the LNA approximation to the likelihood function.

The evaluation of u(d,θ) at each training point proceeds a follows. First a realisation

y is simulated for the particular θ and design d using the Gillespie algorithm as given

in Algorithm 14. Then u(d,y) is approximated by using the LNA approximation to the

likelihood πLNA(y|d,θ) within an MCMC scheme described in Algorithm 21. Details of

the LNA method are given in Chapter 7. Finally u(d,θ) is approximated using m1 repeats

of the above, giving

u(d,θ) ' 1

m1

m1∑
i=1

u(d,yi). (9.10)

This approximation becomes more accurate as m1 increases.

A Gaussian process is then fitted to the training data using an appropriate mean
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function that represents the training data well. We choose to use a fitted regression

function as the mean function as described in Section 9.1.1. The resulting (fitted) Gaussian

process is then used to approximate the u(d,θ) for other data inputs. Note that a nugget

term σ2 is required to account for the approximation of u(d,θ).

For low dimensional designs (d small) and simple models, the optimal design can then

be calculated by approximating the integral in Equation (9.2) to estimate u(d) by averaging

u(d,θ) over the prior, using

u(d) ' 1

m2

m2∑
i=1

u(d,θi), (9.11)

where the θi are a random sample of size m2 from the prior π(θ). We then choose the

design which maximises u(d).

For higher dimensional designs, the above method does not give an efficient way of

determining the optimal design. Therefore we adopt the strategy of d (Müller, 1999) and

use an MCMC scheme to obtain the marginal distribution of d by targeting the joint

distribution

g(d,θ) ∝ π(θ)u(d,θ).

This MCMC scheme is given in Algorithm 22. Note that we use an independent proposal

for θ which is the prior distribution.

For easier identification of the mode, we also follow Müller (1999) and sample from the

joint distribution

g(d,θ1, . . . ,θJ) ∝
J∏
j=1

π(θj)u(d,θj)

as this amplifies the signal for the location of the mode. This changes the MCMC algorithm

scheme to that in Algorithm 23. The optimal design d∗ is then estimated by the multivariate

mode of g(d,θ) using marginal posterior samples of d as described in Algorithm 19. As

Algorithm 23 is not computationally expensive, it is feasible to use high values of J , in

which case, the trimmed mean of the d iterates is a good estimate of the multivariate

mode (Müller, 1999). A step by step description of the procedure to find the optimal

design using Gaussian processes is given in Algorithm 24.

9.6 Application of the Gaussian process method to the death

model

The death model has a single species Y and reaction Y
θ→ ∅, where θ is the rate parameter

for the reaction. Consider the d timepoint design d = (t1, . . . , td). Suppose that yk is the

observation at time tk. We will assume that the value of the process at t0 = 0 is known to
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Algorithm 21 MCMC scheme to approximate u(d,θ) using the LNA.

For a particular d†,θ† and for i = 1, . . . ,m1:

1. Simulate yi ∼ π(y|d†,θ†).

2. Initialise θ0 ∼ π(θ).

3. For j = 1, . . . , n:

(a) Propose θc ∼ q(θ|θj−1) where q is a symmetric random walk on the log scale.

(b) Calculate the MH ratio α = min(1, A) where

A =
π(θc)π̂LNA(yi|θc,d†)q(θj−1|θc)

π(θj−1)π̂LNA(yi|θj−1,d†)q(θc|θj−1)

and accept proposed values with probability α.

(c) Set j = j + 1 and return to 3(a).

4. Calculate

u(d†,yi) '
1

det{V̂arLNA(θ|y,d†)}
.

5. Set i = i+ 1 and return to step 1.

6. Calculate

u(d†,θ†) ' 1

m1

m1∑
i=1

u(d†,yi).

be y0 = 50. For the death model, we can solve the CME to obtain the likelihood to obtain

π(y|d,θ) =
d∏

k=1

(
yk−1
yk

)
exp {−θyk(tk − tk−1)} (1− exp {−θ(tk − tk−1)})yk−1−yk .

Values for the training data for the Gaussian process can be found almost exactly (within

2× 10−2) using this likelihood function via numerical integration. Since such calculations

are almost exact, the nugget term σ2 will be very small. Unfortunately this can cause

numerical instabilities when inverting the covariance matrix. However such problems can be

avoided using a Cholesky decomposition and solving a linear equation instead of inverting

the matrix.

9.6.1 Delta approximation to the death model

The delta approximation evaluates the utility function at the mean experimental outcome

y∗d = E [y|d, E(θ)] .
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Algorithm 22 MCMC scheme to find the optimal design using the Gaussian process
approximation to u(d,θ).

1. Set i = 1. Initialise d0 and θ0 ∼ π(θ).

2. Estimate u(d0,θ0) from the Gaussian process.

3. Propose a new dc ∼ q(d|di−1) and a new θc ∼ π(θ).

4. Estimate uc = u(dc,θc) from the Gaussian process.

5. Calculate the MH ratio α = min (1, A) where

A =
u(dc,θc)π(θc)q(di−1|dc)π(θi−1)

u(di−1,θi−1)π(θi−1)q(dc|di−1)π(θc)
=

u(dc,θc)q(di−1|dc)
u(di−1,θi−1)q(dc|di−1)

.

and accept proposed values with probability α.

6. Set i = i+ 1 and return to step 3.

Algorithm 23 MCMC scheme to find the optimal design using the Gaussian process
approximation to u(d,θ) amplifying the mode.

1. Set i = 1. Initialise d0 and θ0j ∼ π(θ) for j = 1, . . . , J .

2. Estimate u(d0,θ0j ) from the Gaussian process for j = 1, . . . , J .

3. Calculate u0 =
∏J
j=1 u(d0,θ0j ).

4. Propose a new dc ∼ q(d|di−1) and a new θcj ∼ π(θ) for j = 1, . . . , J .

5. Estimate u(dc,θcj) from the Gaussian process for j = 1, . . . , J .

6. Calculate uc =
∏J
j=1 u(dc,θcj).

7. Calculate the MH acceptance probability α = min (1, A), where

A =
ucπ(θc)q(di−1|dc)π(θi−1)

ui−1π(θi−1)q(dc|di−1)π(θc)
=

ucq(di−1|dc)
ui−1q(dc|di−1)

, where π(θ) =
J∏
j=1

π(θj),

and accept proposed values with probability α.

8. Set i = i+ 1 and return to step 4.

In the case of the death model, y∗d = (y∗1, . . . , y
∗
d)
′ and has components

y∗t = E [yt|d, E(θ)] = y0 exp (−E(θ)t). (9.12)
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Algorithm 24 Algorithm for experimental design using Gaussian processes.

1. Sample nd training data inputs using a folded Latin hypercube over d× θ.

2. Estimate u(d,θ) for each of the nd training data inputs.

3. Fit a Gaussian process to the training data using Algorithm 20.

4. Fix hyperparameters at their posterior mean.

5. (a) For small models and small dimensional designs, determine the optimal design d∗

by approximating u(d) for all possible d, where u(d) is calculated by averaging
over realisations of the fitted Gaussian process for u(d,θ) evaluated at a random
sample from the prior for θ:

u(d) ' 1

m2

m2∑
i=1

u(d,θi).

(b) If it is not possible to evaluate u(d,θ) for all possible d within a reasonable
computational time, use the MCMC scheme described in Algorithm 23 to obtain
marginal posterior distributions for d and then use Algorithm 19, the marginal
modes or the trimmed sample mean of the marginal distributions for d to
estimate the optimal design d∗.

Under the delta approximation, the expected utility is calculated as

u(d,y∗d) =
1

Var(θ|d,y∗d)
.

9.6.2 Optimal single timepoint design

We begin by selecting nd = 100np = 200 training data points (t1,θ)′i for the single timepoint

design using the fold method. We aim to match the analysis of Drovandi and Pettitt

(2013) described in Section 7.3. Therefore we use their prior θ ∼ LN(−0.005, 0.01), with

99% central prior interval 0.7681 < θ < 1.2873, and restrict the time range to (0, T = 10).

At each training point, the utility u(t1, θ) is calculated using numerical integration. The

Gaussian process prior mean function we use takes the form (9.7) and so we need to

investigate an appropriate set of functions on which to regress the utility values. Figure 9.8

shows that u(t1, θ) is decreasing in θ for fixed t1 and is first increasing and then decreasing

in t1 for fixed θ. This suggests fitting a linear function with inverse powers of θ and powers

of t1, and their interactions. Keeping only those terms with significant coefficients leads to

the mean function

m(t1, θ) = β̂0 + β̂1t1 + β̂2
1

θ
+ β̂3t

2
1 + β̂4

1

θ2
+ β̂5t

3
1 + β̂6

1

θ3
+ β̂7

t1
θ
.
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Figure 9.8: Graphs showing exact u(t1, θ) plotted over (a) time and (b) θ.

This function fits the training data very well, with R2 = 0.8619. The squared exponential

covariance function (9.8) has four hyperparameters (a, r1, r2, σ)′. The hyperparameter

r1 represents the influence of θ on the output and r2 represents the influence of t1 on

the output. Including the nugget term σ2 means that the fitted mean function will not

necessarily go through the points.

Hyperparameter estimation for the single timepoint design

In this and the next section, we fit Gaussian processes to the utility functions of designs

of various sizes d. These Gaussian processes have input space (t1, . . . , td, θ) with dimen-

sion np = d + 1. Throughout we take the prior distribution for the Gaussian process

hyperparameters (a, r, σ) to have independent log–normal components, with

ri ∼ LN(0, 1), i = 1, . . . , d+ 1, a ∼ LN(0, 1) and σ ∼ LN(0, 0.5).

Note that these component priors are not particularly vague and, as we expect σ to

be very small due to the utilities being estimated almost exactly, σ has a particularly

concentrated prior near zero. The algorithm to estimate the hyperparameters is described

in Section 9.1.3.

We first consider the case when we have a single timepoint design, that is, we need

a Gaussian process approximation to u(t1, θ). The marginal posterior distributions for

the hyperparameters in this case are given in Figure 9.9. These distributions are strongly

unimodal and we estimate the hyperparameters by their posterior means. Later in this

section we investigate the sensitivity of the optimal design to using this posterior mean
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Figure 9.9: Marginal posterior distributions for the hyperparameters for a single timepoint design
for the death model. Prior distributions are given in red.

rather than taking full account of its posterior uncertainty.

Diagnostics

The diagnostics for the single timepoint design are given in Figure 9.10. Looking at the

standardised prediction errors plotted over θ, we can see that the largest errors occur near

zero. This is due to u(t1, θ) being constant over θ at time zero as we know the start value of

the death process. This means u(t1, θ) is one over the prior variance for θ. Therefore, using

a constant value for σ is not suitable for timepoints near zero. As we know the value of

the process at time zero, it is unlikely that the optimal design will be near zero. Therefore

the expected utilities calculated for t1 < 1 should be ignored. The second row of graphs

gives the individual prediction errors. These show that the Gaussian process predictions

are very accurate as the largest individual prediction error is 0.1, which is near zero. The

probability integral transform looks roughly uniform. The MD for this Gaussian process

is 331.63 which is large as χ2
100 = 135.81 at the 99% point suggesting that the Gaussian

process is not a good fit.

We have re–produced the diagnostics, but ignoring any validation data less than one, to

see if the diagnostics improve, in Figure 9.11. We can see that the standardised prediction

errors now have only a couple of the points outside the bounds [−2, 2]. Looking at the
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Figure 9.10: Diagnostics for the single timepoint design Gaussian process

individual prediction errors, the predictions of the Gaussian process are very accurate

as the posterior mean function is not out by more than 0.007. The probability integral

transform looks roughly uniform. The MD is 72.05 which is less than the critical value

(χ2
90=124.12 at the 99% point). This means that the Gaussian process is suitable for values

greater than one. This problem should only be a feature of the single timepoint design as

we intend to use the delta approximation to reduce the design space for more complicated

designs and models.

Optimal design

A Gaussian process approximation has been produced for the death model. In Figure 9.12

we give a plot comparing three different methods of calculating the expected utility; the

exact method, the delta method, and the Gaussian process approximation. For the death

model the likelihood is known so the expected utility, u(d), can be calculated exactly with

only very small errors due to numerical integration. In this graph it can be seen that the

three methods produce very similar results. It is not important whether the expected

utility values are the same, the key is that the maximum is in the same position.

The exact method gives an optimal design of d∗ = 1.60, the delta approximation gives
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Figure 9.11: Diagnostics for the single timepoint design Gaussian process with t1 > 1.

d∗ = 1.58 and the Gaussian process approximation gives d∗ = 1.58. Therefore the Gaussian

process and delta approximations provide good approximations to the optimal design. This

also matches the optimal design found in Drovandi and Pettitt (2013). A comparison of

the optimal designs from the different methods is given in Table 9.2. We can see that both

the delta and Gaussian process approximations only have a sub–optimality of 0.003%. In

Table 9.2, ABC1 and ABC2 are repeats using the methods of Drovandi and Pettitt (2013),

which we discussed in Chapter 8. We can see that each repeat has a sub–optimality of

0.005% which means the Gaussian process produces a design closer to the optimal design.

Uncertainty in hyperparameters

So far we have determined the optimal design by using a fitted Gaussian process in which

the hyperparameters ζ = (a, r, σ) in the covariance function are fixed at their posterior

mean. However, this ignores posterior uncertainty in these quantities. Here we examine

the extent to which the expected utility is sensitive to ignoring this posterior uncertainty

and, if it is not, how sensitive it is to various choices of ζ.
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Figure 9.12: Graph comparing the exact, delta and Gaussian process (GP) approximation for a
single timepoint design.

Method Optimal design (d∗) Exact expected utility (u(d∗)) % sub–optimality

Exact (1.60) 133.13 0.000
D&P (1.60) 133.13 0.000
Delta (1.58) 133.12 0.003
GP (1.58) 133.12 0.003
ABC1 (1.57) 133.12 0.005
ABC2 (1.62) 133.12 0.005

Table 9.2: Comparison of optimal designs for different methods for a three timepoint design. Exact
is the optimal design found using numerical integration, D&P are the Drovandi and Pettitt (2013)
optimal designs, Delta is the optimal design found using the delta approximation, GP is the optimal
design found using the Gaussian process methods and ABC1 and ABC2 are the optimal designs
from two repeats of the Drovandi and Pettitt (2013) methods.

As the fitted Gaussian process is

f(X∗|X, ζ) ∼ N(µ∗(X∗|X, ζ), Σ∗(X∗,X∗|X, ζ)),
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we can allow for posterior uncertainty in ζ by using posterior draws {ζi, i = 1, . . . , n} and

f(X∗|X) = Eζ|X [f(X∗|X, ζ)] ' 1

n

n∑
i=1

f(X∗|X, ζi) ∼ N (µ∗∗, Σ∗∗) ,

where

µ∗∗ =
1

n

n∑
i=1

µ∗(X∗|X, ζi) and Σ∗∗ =
1

n

n∑
i=1

Σ∗(X∗,X∗|X, ζi).

One potential problem in using this approximation is that it can be time consuming for

large n. An alternative is to make a further approximation (using the delta method) in

which we use f(X∗|X, ζ = E(ζ|X)). Figure 9.13 shows the expected utility determined

by averaging over posterior realisations of the hyperparameters and also by fixing them

at various values, namely, their posterior mean, posterior mode, posterior median, lower

2.5% and lower 97.5% values (determined from their posterior realisations). The plot

appears to show only one curve and this is because all these methods for determining

the expected utility give extremely close approximations of the expected utility – so close

that they cannot be distinguished on the plot. This shows that, in this case, evaluating

the expected utility is quite insensitive to the choice of hyperparameter used (but within

posterior support) in fitting the Gaussian process. In general, we cannot rely on such a high

level of insensitivity and so we will use a Gaussian approximation with the hyperparameter

fixed at its posterior mean. This has the advantage of being quicker to evaluate than when

averaging the Gaussian process over hyperparameter uncertainty but is still a principled

evaluation in that it is a delta approximation.

Number of training points

We now consider how many training points should be used when fitting the Gaussian

process. Figure 9.14(a) shows the fitted Gaussian process for the expected utility when

using 25, 50, 100 and 200 training data points in a folded Latin hypercube design for

(t1, θ), where t1 ∈ (0, 10) and θ ∈ (0.7681, 1.2873), the central 95% prior interval. Some of

these curves are difficult to distinguish and so Figure 9.14(b) provides a more focussed plot

around the peak of the expected utility. We note that the optimal single timepoint designs

d∗ are at 1.68, 1.53, 1.57 and 1.58 for the Gaussian processes fitted using 25, 50, 100 and

200 training points respectively and that the exact optimal design is d∗ = 1.60. Therefore,

not surprisingly, larger numbers of training points give more accurate estimates of the

optimal design. Clearly focusing in on a smaller region within the design space (using the

delta approximation method) will yield a more efficient use of the nd training points.

Chapman et al. (1994) suggest that using nd = 10np training points, where np is the

number of inputs for the Gaussian process, is sufficient. However the above results show
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Figure 9.13: Graph showing the Gaussian process approximation to u(t1), determined by fixing
the hyperparameters at their posterior mean, posterior mode, posterior median, lower 2.5%ile
and lower 97.5%ile. Also shown is a curve in which the Gaussian process has been averaged over
hyperparameter uncertainty. These methods produce very similar approximations of the expected
utility which is why the curves overlap.

that even using 25np training points does not give a sufficiently accurate approximation

and so we will fit the Gaussian process using nd = 100np training points.

9.6.3 Optimal two timepoint design

We now determine the optimal two timepoint design by using the fold method to construct

the training points used to fit the Gaussian process with input x = (t1, t2, θ)
′. However,

before doing this we will reduce the design space by evaluating a delta approximation to

the expected utility over a grid of feasible points with mesh size 0.01. This approximation

gives the (approximate) expected utility shown in Figure 9.17(a). Here the optimal design

is d∗ = (1.01, 2.59) and so we need to reduce the design space to a region around this

point. There are many ways for doing this but it is perhaps helpful to use a formal (rather

than informal) approach. We will make use of the approximate utilities calculated using

the delta approximation. Here there are two simple ways of using this information to

reduce the design space: one is to only include designs which have approximate utilities

within say 5% of the optimal approximate utility and another is to take the feasible region

within a square defined by say the central 95% posterior univariate intervals of d. In this
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Figure 9.14: (a) Graph showing the Gaussian process approximation to u(t1), determined using
t1 ∈ (0, 10) and θ ∈ (0.7681, 1.2873), the central 95% prior interval, and different training data
sets with either 25, 50, 100 or 200 points in the folded Latin hypercube over (t1, θ). (b) As (a) but
focused in around the modes.

example, the optimal approximate utility is 140.85 and so we could take those designs with

approximate utility larger than 133.81. Unfortunately this region is rather complex and

not amiable to the generation of training points along the lines we have discussed (which

use a folded Latin hypercube design). That said, we could take the smallest rectangle

containing approximate utilities larger than 133.81. However, the second strategy is much

more straightforward to apply and so we will adopt this method to reduce the design space

before attempting to determine the fully optimal design.

Using this second strategy leads us to take training points from the folded Latin

hypercube restricted to the ranges

0.11 < t1 < 2.14 and 1.2 < t2 < 6.59.

Again we take θ ∈ (0.7681, 1.2873) as this is the central 95% region for our prior distribution.

The training points (d, θ)i are constructed via the fold method as described in Section 9.1.4.

The Gaussian process for x = (t1, t2, θ)
′ is fitted with mean function

m(t1, t2, θ) = β̂0 + β̂1t1 + β̂2t2 + β̂3
1

θ
+ β̂4t

2
1 + β̂5t

2
2 + β̂6t

3
1 + β̂7t

3
2

+ β̂8
t1
θ

+ β̂9t2θ + β̂10t1t2 + β̂11
t22
θ

+ β̂12
t2
θ2

and squared exponential covariance function as in Equation (9.8) which has five hyper-

143



Chapter 9. Experimental design using Gaussian processes

parameters (a, r1, r2, r3, σ)′. Here the mean function has been determined by fitting a

full linear model which includes up to cubic terms and two way interactions and then

removing any terms that were not significant. This fit has R2 = 0.9816 and this very high

value shows that this prior mean function is a good fit to the training data. Note that

the coefficients in the mean function are the least squares estimates obtained through the

fitting process.

We now attempt to get an even better fitting model to the training data by fitting a

Gaussian process to the residuals of this mean function. The marginal distributions for

the hyperparameters are given in Figure 9.15. We now look at the fit of this Gaussian

process when fixing the hyperparameters at their posterior mean. The diagnostics of this

fitted Gaussian process are given in Figure 9.16. The validation points that produce large

standardised prediction errors tend to be when t1 < 0.5. We believe this is due to the

assumption of a constant σ being unsuitable near to the initial timepoint: the initial value

for the death process is known and so the utility u(d,θ) is close to constant over θ near

the initial timepoint. The overall goodness-of-fit (MD) for this Gaussian process is 312.46

which is again large (upper χ2
100(0.01) = 135.81) and mainly due to large contributions

from points with t1 < 0.5. The probability integral transform plot looks roughly uniform,

as it should if a Gaussian process is appropriate.

A contour plot of the expected utility calculated using this Gaussian process is shown

in Figure 9.17(c). This looks very similar to those resulting from using the delta method

(Figure 9.17(a)) and the exact method (Figure 9.17(b)). The optimal design using this

Gaussian process method is d∗ = (1.01, 2.60) and this is very close to the exact optimal

design; see Table 9.3. Also the optimal design from the Gaussian process is only 0.003%

sub–optimal and is better than the other approximations listed in the table. By contrast

the Drovandi and Pettitt (2013) method is the worst performing, giving a solution which

is 0.198% sub–optimal. However, it must be noted that we use the exact utilities in the

training data for the Gaussian process.

9.6.4 Optimal three and four timepoint designs

In this section we determine the optimal three timepoint design and the optimal four

timepoint design. As before, nd = 100np training points from a folded Latin hypercube are

used to fit a Gaussian process to expected utilities calculated via the delta approximation.

This fitted Gaussian process is then used to determine the smallest cube containing expected

utilities within 5% of the maximum expected utility. The optimal design is then determined

using a Gaussian process fitted to a set of training points within this reduced space. This

space has θ ∈ (0.7681, 1.2873), the central 95% region for our prior distribution and, for
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Figure 9.15: Marginal posterior distributions for the hyperparameters for the two timepoint design
for the death model.
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Figure 9.16: Diagnostics for the two timepoint design for the death model.

the three timepoint design

0 < t1 < 1.9, 0.4 < t2 < 4.6 and 1.5 < t3 < 10.0

and for the four timepoint design

0 < t1 < 1.8, 0 < t2 < 4.1, 0.5 < t3 < 9.9, and 1.6 < t4 < 10.0.
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(a) (b)

(c)

Figure 9.17: Contour plots of the expected utility calculated using (a) the delta method; (b) the
exact method and (c) the GP method.

In the case of a three timepoint design, we take the mean function for the Gaussian process

with inputs x = (t1, t2, t3, θ)
′ as

m(t1, t2, t3, θ) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4
1

θ
+ β̂5t

2
1 + β̂6t

2
2 + β̂7t

2
3 + β̂8

1

θ2
+ β̂9t

3
2

+ β̂10t
3
3 + β̂11

1

θ3
+ β̂12t1t2 + β̂13t2t3 + β̂14t1t3 + β̂15

t1
θ

+ β̂16
t3
θ

and use the squared exponential covariance function in Equation (9.8) which has six

hyperparameters (a, r1, r2, r3, r4, σ)′. For the four timepoint design we fit a Gaussian
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Method Optimal design (d∗) Exact expected utility (u(d∗)) % sub–optimality

Exact (1.03, 2.65) 142.29 0.000
D&P (1.15, 3.05) 142.01 0.198
Delta (1.01, 2.59) 142.28 0.004
GP (1.01, 2.60) 142.28 0.003
ABC1 (1.07, 2.76) 142.26 0.018
ABC2 (1.14, 2.85) 142.18 0.078

Table 9.3: Comparison of optimal designs for different methods for a three timepoint design. Exact
is the optimal design found using numerical integration, D&P are the Drovandi and Pettitt (2013)
optimal designs, Delta is the optimal design found using the delta approximation, GP is the optimal
design found using the Gaussian process methods and ABC1 and ABC2 are the optimal designs
from two repeats of the Drovandi and Pettitt (2013) methods.

process with inputs x = (t1, t2, t3, t4, θ)
′, mean function

m(t1, t2, t3, t4, θ) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t4 + β̂5
1

θ
+ β̂6t

2
1 + β̂7t

2
2 + β̂8t

2
3 + β̂9

1

θ2

+ β̂10t
3
2 + β̂11t

3
3 + β̂12t1t2 + β̂13t2t3 + β̂14t2t4 + β̂15

t1
θ

+ β̂16
t2
θ

+ β̂17
t3
θ

+ β̂18
t4
θ

and use a squared exponential covariance function in Equation (9.8) which has seven

hyperparameters (a, r1, r2, r3, r4, r5, σ)′. The linear models with these fitted mean functions

have R2 = 0.9831 and R2 = 0.9803 respectively and these high values again show that

these prior mean functions provide a good fit to the training data.

Fitting a Gaussian process to the residuals of the linear model in each case, the marginal

posterior distributions for the hyperparameters for the three and four timepoint designs

are as in Figure 9.18 and Figure 9.20 respectively. We see fairly symmetric unimodal

densities in all cases and again examine the diagnostics of the Gaussian processes with

the hyperparameters fixed at their posterior mean. The graphical diagnostics are given

in Figures 9.19 and 9.21. Just over 5% of the individual prediction errors are outside of

the range (−2, 2), with the problematic points occurring when the first timepoint is near

zero; see the plot of standardised and individual prediction errors against t1 in Figures 9.19

and 9.21. We note that the standardised error plots suggest are some potential problems in

the fit of the Gaussian processes. This is confirmed by the large values for the goodness-of-fit

measures (MD) of 180.92 and 238.00 respectively (upper χ2
100(0.01) = 135.81). However,

the individual error plots suggest that, despite these statistical diagnostics indicating poor

fit, the Gaussian processes do actually produce quite accurate predictions. Therefore, we

will proceed by using these fitted Gaussian processes to determine the optimal designs.

Tables 9.4 and 9.5 give the optimal three and four timepoint designs respectively
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Figure 9.18: Marginal posterior distributions for the hyperparameters for a three timepoint design
for the death model. Prior distributions are given in red.
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Figure 9.19: Diagnostics for the three timepoint design Gaussian process for the death model.

determined when using several methods. For the three timepoint design, the Gaussian

process method gives an optimal design which is only 0.003% sub–optimal and better

than the other non-exact methods. Similarly the Gaussian process method gives a four

timepoint optimal design which is very close to the exact optimal design, being only 0.002%

sub–optimal. We note that, for both three and four timepoint designs, the Drovandi and

Pettitt (2013) and our implementation of their methods have higher sub–optimalities.

9.6.5 Summary

Table 9.6 contains a summary of the optimal one to four timepoint designs and their

expected utilities. Designs with more timepoints have higher expected utilities and so with

no other restrictions, we would also choose to use a design with more timepoints. However,
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Figure 9.20: Marginal posterior distributions for the hyperparameters for a four timepoint design
for the death model. Prior distributions are given in red.
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Figure 9.21: Diagnostics for the four timepoint design Gaussian process for the death model.

it is plausible that in practice taking measurements has a cost of its own. Indeed this is

likely to take the form of a (constant) cost for each timepoint. Such considerations allow

us to determine both the optimal number of timepoints to use in a design and also the

actual times to use. For example, the increase in the expected utility from one to two

timepoint designs, two to three timepoint designs and three to four timepoint designs is

9.16, 3.80 and 1.92 respectively. Here, the marginal benefit of adding another timepoint to

the design decreases with each additional timepoint. This is to be expected as the amount

of remaining uncertainty decreases as the number of timepoints in the design increases.

Therefore, if the cost per timepoint was 2 units then the optimal number of timepoints

would be three: adding a fourth timepoint adds a further 1.92 units but costs 2 units,

giving a negative benefit.

It is interesting to see the optimal timing of the observations in the death model when
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Chapter 9. Experimental design using Gaussian processes

Method Optimal design (d∗) Exact expected utility (u(d∗)) % sub–optimality

Exact (0.76, 1.79, 3.42) 146.08 0.000
D&P (0.75, 1.90, 3.90) 145.90 0.125
Delta (0.75, 1.76, 3.34) 146.07 0.005
GP (0.75, 1.76, 3.35) 146.08 0.003
ABC1 (0.86, 2.00, 3.76) 145.97 0.075
ABC2 (0.90, 2.00, 3.83) 145.91 0.116

Table 9.4: Comparison of optimal designs for different methods for a three timepoint design. Exact
is the optimal design found using numerical integration, D&P is the Drovandi and Pettitt (2013)
optimal design, Delta is the optimal design found using the delta approximation, GP is the optimal
design found using the Gaussian process method and ABC1 and ABC2 are the optimal designs
from two repeats of the Drovandi and Pettitt (2013) methods.

Method Optimal design (d∗) Exact expected utility (u(d∗)) % sub–optimality

Exact (0.60, 1.36, 2.38, 3.98) 148.01 0.000
D&P (0.75, 1.70, 2.75, 4.35) 147.80 0.214
Delta (0.60, 1.35, 2.36, 3.94) 148.01 0.002
GP (0.60, 1.39, 2.38, 3.98) 148.00 0.002
ABC1 (0.74, 1.69, 2.74, 3.94) 147.70 0.214
ABC2 (0.74, 1.69, 2.74, 3.94) 147.70 0.214

Table 9.5: Comparison of optimal designs for different methods for a four timepoint design. Exact
is the optimal design found using numerical integration, D&P is the Drovandi and Pettitt (2013)
optimal design, Delta is the optimal design found using the delta approximation, GP is the optimal
design found using the Gaussian process method and ABC1 and ABC2 are the optimal designs
from two repeats of the Drovandi and Pettitt (2013) methods.

increasing the number of timepoints. Figure 9.22 shows these timings as the joins between

blocks of grey and white. The figure also shows the stochastic mean of the death model,

fixing the death rate at its prior mean (θ = 1). It is clear that the optimal two timepoint

design is roughly evenly spaced around the optimal single timepoint design. The optimal

three timepoint design has its second timepoint close to the optimal single timepoint design

and then the first and third timepoints either side. The optimal four timepoint design has

its second and third timepoints roughly evenly spaced around the optimal single timepoint

design and the first and fourth timepoints are either side of the second and third.

It is not surprising that none of the optimal designs have timepoints very close to zero

as the initial number of individuals in the population is known and a very high death

rate is pretty implausible (from the prior for θ). Also none of the optimal designs have

timepoints after time 5. This is probably because it is likely that population would be

extinct beyond this point; for example, the probability that the population is extinct by
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# timepoints (d) Optimal design (d∗) Exact expected utility (u(d∗))

1 (1.58) 133.12
2 (1.01, 2.60) 142.28
3 (0.75, 1.76, 3.35) 146.08
4 (0.60, 1.39, 2.38, 3.98) 148.00

Table 9.6: Optimal designs for one to four timepoint designs found using the Gaussian process
methods and their exact expected utility.
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Figure 9.22: The red line is the stochastic mean of the death model when the parameter is fixed at
the prior mean (θ = 1). The edges of the grey and white blocks represent the optimal designs for
one, two, three and four timepoint designs.

time 5 is over 70% if θ = 1, with similar sized extinction probabilities for other plausible

values from the prior distribution for θ. In such cases, taking further observations would

not yield additional information about the death rate θ and so it would not be sensible (or

indeed optimal) to take observations in the time interval (5, 10).
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Chapter 10

Experimental design for the

Lotka–Volterra model

In this chapter our goal is to determine the optimal timepoints for observations to take

place in the Lotka–Volterra (LV) system (Lotka, 1925; Volterra, 1926). This model is fully

described in Section 7.3.2 but briefly it is governed by three reactions

Y1
θ1−→ 2Y1, Y1 + Y2

θ2−→ 2Y2 and Y2
θ3−→ ∅,

where Y1 are predators and Y2 are prey. The parameters in the model are θ1, prey

reproduction rate, θ2, the prey death/predator reproduction rate and θ3, the predator

death rate.

As in the previous chapter, we solve this experimental design problem by taking a

two step approach. First, we approximate the expected utility function using the delta

approximation and use this to reduce the design space. We then focus on this reduced

space, incorporate parameter uncertainty described by the prior distribution for the rate

constants, and finally estimate the optimal design using the mode of the expected utility.

We use the same utility function as before, namely, the posterior generalised precision and,

as the likelihood for this model is intractable, we use the linear noise approximation to

estimate the posterior variance matrix.

10.1 Design space reduction

In Chapter 9 we illustrated that the delta approximation can be used effectively to ‘zoom’

into the mode of the utility function. However since the design space of the Lotka–Volterra

system is larger than that of the death model, instead of constructing a regular grid of

design points, we will fit a Gaussian process to the hypercube generated training data.

For each scenario we consider we use nd = 100np points generated via the fold method,
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Chapter 10. Experimental design for the Lotka–Volterra model

where np is the dimension of the point (see Chapter 9). At each design point, we use the

delta approximation to estimate the expected utility, that is, we fix the parameters at their

prior means and then generate an ‘average’ realisation y∗d using the mean equations from

the linear noise approximation. Therefore the expected utility is

u(d,y∗d) =
1

det{VarLNA(θ |d,y∗d)}
.

A Gaussian process is then fitted to the training data using the techniques described in

Section 9.1.3. The prior mean function is chosen by fitting a multiple linear regression

model up to and including cubic terms in d (including all two way interactions) and

removing any non significant terms. Throughout this chapter we take the prior distribution

for the Gaussian process hyperparameters (a, r, σ) to have independent diffuse log–normal

components, with

ri ∼ LN(0, 10), i = 1, . . . , np, a ∼ LN(0, 10) and σ ∼ LN(0, 20).

In the fitted Gaussian process approximation to the expected utility, the hyperparameters

are fixed at their posterior mean.

Next, we embed this fitted Gaussian process within an MCMC scheme to find the

marginal distribution of d. The scheme used is given in Algorithm 25. To aid the

multivariate mode estimation, we amplify the utility function using the method suggested

by Müller (1999). For the delta approximation this means we approximate J expected

utilities for each proposed design and then set the expected utility to be a product of the

J approximated expected utilities. This results in a more peaked multivariate expected

utility surface, from which the mode is easier to identify. Note that the marginal modes

are not necessarily the same for different values of J but the multivariate mode is the same

for different values of J as, for each J , the multivariate mode is the mode of the Jth power

of the expected utility. Again following Müller (1999), to select a value for J we start with

J = 1 and slowly increase J until simulated designs are tightly clustered. In this study, we

use J = 1, 2, 5, 10 and 20. If J is increased too quickly, local modes can become isolated

resulting in the MCMC scheme having poor or indeed no mixing.

Finally, the design space is reduced by taking the cube formed from the central 95%

interval of the marginal samples for d.
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Chapter 10. Experimental design for the Lotka–Volterra model

Algorithm 25 MCMC scheme to find the optimal design using the Gaussian process
approximation to u(d,y∗d) amplifying the mode.

1. Set i = 1 and initialise d0 ∼ π(d) for j = 1, . . . , J .

2. Estimate uj(d
0,y∗d) from the Gaussian process for j = 1, . . . , J .

3. Calculate u0 =
∏J
j=1 u(d0,y∗d).

4. Propose a new dc ∼ q(d|di−1) for j = 1, . . . , J .

5. Estimate u(dc,y∗d) from the Gaussian process for j = 1, . . . , J .

6. Calculate uc =
∏J
j=1 u(dc,y∗d)

7. Calculate the MH ratio α = min (1, A) where

A =
ucq(di−1|dc)
ui−1q(dc|di−1)

.

8. Accept proposed values with probability α.

9. Set i = i+ 1 and return to step 4.

10.2 Fitting a Gaussian process to u(d, θ)

In this chapter we use a prior distribution for the rate constants θ which has independent

log-normal components, with

θ1 ∼ LN(−0.69, 0.01), θ2 ∼ LN(−6, 0.01) and θ3 ∼ LN(−1.21, 0.01).

These have been chosen to represent a similar level of prior knowledge to that used

in Drovandi and Pettitt (2013) for the death model. Note that the prior mean rate is

E(θ) = (0.5, 0.0025, 0.3)′.

The Gaussian process is built by first generating a set of training points within the

reduced design space and the central 99% prior intervals for the rate parameters. At each

input x = (d,θ), we simulate m1 realisations of the LV process using Gillespie’s Direct

method and then estimate u(d,y) for each realisation. At a particular design point, we

calculate the expected utility as

u(d,θ) ' 1

m1

m1∑
i=1

u(d,yi). (10.1)

The prior mean function for the Gaussian process is chosen by fitting a multiple linear
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regression model up to cubic terms in d and θ including all two way interactions and

removing any non significant terms. The prior distribution for the hyperparameters is that

given in Section 10.1. The Gaussian process approximation to u(d,θ) is then incorporated

into an MCMC scheme (Algorithm 23) and used to find the marginal distribution of d.

The mode is amplified using a value of J , chosen by slowly increasing J .

10.3 Estimating the mode

We approximate the multivariate mode of d by using marginal samples of d obtained from

the MCMC scheme (Algorithm 23) in three ways:

• approximate the multivariate mode using Algorithm 19 as suggested by Drovandi

and Pettitt (2013);

• use a 10% trimmed sample mean of the marginal samples of d (Müller, 1999);

• use the modes of the marginal samples of d.

Once we obtain estimates to the multivariate mode from each of the three methods, we

use the Gaussian process of the utility function to estimate the expected utility at each of

the three estimates. We then choose to use the the estimated multivariate mode which has

the highest expected utility as a guide to where the optimal design is.

To further improve the estimate of the multivariate mode, we evaluate the expected

utility using the Gaussian process for a set of designs around the chosen multivariate mode.

This is done by selecting a small range of values for each timepoint around the chosen

multivariate mode, and evaluating the expected utility using the Gaussian process at all

possible combinations of design in the range to two decimal places. For example, if the

approximate multivariate mode chosen from the three methods for a two timepoint design

is d∗ = (3, 6) then we evaluate u(d) using the Gaussian process at all possible combinations

of designs with 2.90 < t1 < 3.10 and 5.90 < t2 < 6.10 to two decimal places. The design

with the highest expected utility is chosen as the optimal design. The whole process is

summarised in Algorithm 24.

10.4 Optimal design with only one unknown rate constant

We begin our search for optimal designs by considering first the case in which two of the

three rate constants are known. Specifically we fix θ2 = 0.0025 and θ3 = 0.3 at their prior

mean values. This reduces the problem to be one with only one unknown parameter θ1.
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10.4.1 Design space reduction

The first step is to reduce the design space. The prior distribution is θ1 ∼ LN(−0.69, 0.01)

and so the (delta) mean path y∗d is obtained by setting θ1 to its prior mean and then

calculating the mean of the linear noise approximation.

Single timepoint design

Since the design space for the single timepoint design is relatively compact, we use a

regular grid to generate the training data inputs t1 = 0, 0.2, 0.4, . . . , 20. For the delta

approximation, all parameters are fixed at their prior means and so we take the prior mean

function as

m(t1) = β̂0 + β̂1t1 + β̂2t
2
1 + β̂3t

3
1,

that is, it does not depend on θ1. We take the covariance function as the squared

exponential function in Equation (9.8), where x = t1. This covariance function has three

hyperparameters (a, r1, σ)′.

The marginal posterior distributions for the hyperparameters are given in Figure 10.1.

The posterior distributions for log r1 and log a are both positively skewed whereas that of

log σ is symmetric. The associated diagnostics are shown in Figure 10.2. Although the

diagnostic plots indicate that the Gaussian process may have issues, Figure 10.3(a) shows

that the posterior mean function captures the training data surprising well. That said,

there appears to be more noise in the training data around the peak of u(t1).

The marginal distribution of t1, for J = 1, 5 and 20, is given in Figure 10.3(b). The

mode of the marginal distribution occurs at exactly the same place for each value of J

but the density becomes tighter around the mode with increasing J , as expected since the

design space is one dimensional. To obtain the reduced design space for t1, we extract the

central 95% interval of the J = 20 marginal distribution and obtain

5.02 < t1 < 7.88.

Multiple timepoints

Training data for the two to four timepoint designs are generated from a folded Latin

hypercube with nd = 200, 300 and 400 points respectively. The prior mean functions used
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Figure 10.1: Marginal posterior distributions for the hyperparameters for the Gaussian process
used to reduce the design space for a single timepoint design. Prior distributions are given in red.
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Figure 10.2: Diagnostics for the Gaussian process used to reduce the design space for the single
timepoint design.

are

m(t1, t2) = β̂0 + β̂1t1 + β̂2t2 + β̂3t
2
1 + β̂4t

2
2 + β̂5t

3
1 + β̂6t

3
2,

m(t1, t2, t3) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t
2
1 + β̂5t

2
2 + β̂6t

2
3 + β̂7t

3
1 + β̂8t

3
2 + β̂9t

3
3

+ β̂10t1t2 + β̂11t2t3,

m(t1, t2, t3, t4) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t4 + β̂5t
2
1 + β̂6t

2
2 + β̂7t

2
3 + β̂8t

2
2 + β̂9t

2
3

+ β̂10t
3
2 + β̂11t

3
3 + β̂12t1t2 + β̂13t2t3 + β̂14t3t4

after non–significant terms have been removed. We again used the squared exponential

covariance function. The marginal posterior distributions of the hyperparameters and

the diagnostic plots are given in appendix A.1.1. They indicate a similar fit to the single

timepoint design.

Using the resulting fitted Gaussian processes, we can then estimate the marginal
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Figure 10.3: (a) The Gaussian process mean function ± 1.96 sd (blue lines) with the training data
(black points). (b) Marginal distribution of t1 with J = 1 (dark blue line), J = 5 (medium blue
line) and J = 20 (light blue line).
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Figure 10.4: Marginal distributions of d with J = 1 (dark blue line), J = 5 (medium blue line) and
J = 20 (light blue line). Plotted are the (a) two, (b) three and (c) four time point designs. The first
to fourth time points are solid, small dashed, medium dashed and large dashed lines, respectively.

distribution of d for J = 1, 5 and 20; see Figure 10.4. Notice that as J is increased the

marginal distributions become more peaked indicating the optimal timepoints more clearly.

The resulting central 95% intervals which form the reduced space are

2–dim design: 2.33 < t1 < 7.00, 5.82 < t2 < 15.92

3–dim design: 1.86 < t1 < 6.76, 4.74 < t2 < 11.37, 6.29 < t3 < 19.93,

4–dim design: 1.09 < t1 < 5.95, 3.94 < t2 < 9.02, 6.27 < t3 < 17.05, 9.14 < t4 < 19.94.
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Figure 10.5: Marginal posterior distributions for the hyperparameters for a single timepoint design.
Prior distributions are given in red.

10.4.2 Optimal designs using a Gaussian process fitted to u(d, θ1) in the

reduced space

Single timepoint design

Training data for the single timepoint design are generated using a maximin Latin hypercube

on the truncated design space obtained from the delta approximation in the previous section.

We take the mean function as

m(t1, θ1) = β̂0 + β̂1t1 + β̂2θ1 + β̂3t
2
1 + β̂4t1θ1 + β̂5t

3
1 + β̂6θ

3
1,

and use the squared exponential covariance function in Equation (9.8). This prior mean

function provides an excellent overall fit to the data (R2 = 0.932). The hyperparameter

marginal posterior distributions are given in Figure 10.5. All of these posterior distributions

are fairly symmetric. The diagnostics are given in Figure 10.6. Again the diagnostic plots

indicate potential issues with standardised prediction errors outside the range (−2, 2).

However, the individual prediction errors are very low, with the largest error being 0.7%.

Using this fitted Gaussian process to estimate the marginal distribution of t1 with

J = 20 gives the distribution in Figure 10.7. The optimal design here is d∗ = 6.12 with

expected utility 1402. The location of this optimal timepoint is just after the typical prey

peak as shown in Figure 10.9.
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Figure 10.6: Diagnostics for the single timepoint design Gaussian process.
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Figure 10.7: Marginal distribution of t1 with J = 20.

Multiple timepoints

Training data for the two to four timepoint designs was generated using the fold method

with nd = 400, 500 and 600 respectively (see Appendix A.1.2). The prior mean functions
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Figure 10.8: Marginal distributions of d with J = 20, for the (a) two time point, (b) three timepoint
and (c) four timepoint design. The first to fourth timepoints within a design are shown using solid,
small dashed, medium dashed lines and large dashed lines respectively.

used in the following analyses are

m(t1, t2, θ1) = β̂0 + β̂1t1 + β̂2t2 + β̂3θ1 + β̂4t
2
1 + β̂5t

2
2 + β̂6t

3
1 + β̂7t

3
2

+ β̂8t2θ1 + β̂9t1t2,

m(t1, t2, t3, θ1) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4θ1 + β̂5t
2
2 + β̂6t

2
3 + β̂7θ

2
1 + β̂8t

3
1 + β̂9t

3
2

+ β̂10t
3
3 + β̂11t1t2 + β̂12t2t3 + β̂13t2θ1 + β̂14t3θ1,

m(t1, t2, t3, t4, θ1) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t4 + β̂5θ1 + β̂6t
2
2 + β̂7t

2
3 + β̂8t

2
4 + β̂9θ

2
1

+ β̂10t
3
1 + β̂11t

3
2 + β̂12t

3
3 + β̂13t

3
4 + β̂15t1t2 + β̂16t2t3 + β̂17t3t4

+ β̂18t2θ1 + β̂19t3θ1 + β̂20t4θ1,

having removed all non–significant terms. The associated R2 values for these prior mean

functions are 0.8429, 0.8775 and 0.9279 respectively, all of which show that the prior mean

functions are a good fit. The marginal posterior distributions of the hyperparameters

and associated diagnostics are given in Appendix A.1.2. Again, although standardised

diagnostic plots indicate potential problems, the individual prediction errors are relatively

small.

Figure 10.8 shows the marginal distribution of a design d with J = 20. Interestingly, for

the three timepoint design in (b), the distribution of the third timepoint is bi–modal with

peaks close to both t3 = 20 and t3 = 8. These then become the third and fourth timepoints

in the four timepoint design. We estimate the multivariate mode using samples from the

posterior distribution of d via the methods described in Section 10.3. The modes are given

in Table 10.1. We note that the multivariate mode method usually produces a design with

higher expected utilities than the trimmed mean and the marginal mode methods (apart

from the four timepoint case). The optimal designs found using all methods are similar
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Method Optimal design d∗ Expected utility u(d)

Multivariate mode (4.72, 7.47) 2084.96
(5.16, 8.37, 19.29) 2507.92
(3.94, 6.26, 8.80, 19.4) 2956.55

Trimmed mean (4.25, 7.63) 2077.15
(4.50, 7.45, 18.25) 2385.94
(3.83, 6.34, 9.42, 17.70) 2773.42

Marginal mode (4.92, 7.26) 2075.73
(4.67, 7.26, 19.43) 2478.29
(3.74, 6.33, 8.74, 19.52) 2964.41

Gaussian process (4.72, 7.70) 2085.41
(5.18, 8.30, 19.35) 2518.08
(3.79, 6.28, 8.79, 19.57) 2983.97

Table 10.1: Estimates of the optimal design using various techniques for one to four timepoints (see
Section 10.3 for details). Multivariate mode uses Algorithm 19. Trimmed mean uses the mean of a
10% trim of the marginal samples of d. Marginal mode uses the marginal modes of the marginal
distributions of d. Gaussian process uses the Gaussian process to evaluate a small range of designs
around the optimal design from the other three methods with the highest expected utility. The
expected utility is calculated using Equation 10.1 with the Gaussian process approximation to the
utility.

# timepoints (d) Optimal design (d∗) Estimated expected
utility (u(d∗))

1 (6.13) 1402
2 (4.72, 7.38) 2085
3 (5.18, 8.30, 19.35) 2518
4 (3.79, 6.28, 8.79, 19.57) 2983

Table 10.2: Optimal designs for one to four timepoint designs with the estimated expected utility.

and their expected utilities differ by no more than 0.4%.

To ensure that we have indeed found the optimal designs, we have explored regions

around the putative optimal designs and gauged their expected utility by direct evaluation of

the fitted Gaussian processes. The optimal designs found using this direct local exploration

can also be found in Table 10.1. We note that the designs with the highest expected

utilities in this summary table are d∗ = (4.72, 7.38), d∗ = (5.18, 8.30, 19.35) and d∗ =

(3.79, 6.28, 8.79, 19.57) respectively. These optimal timepoints are mostly focused on the

first prey cycle with, in the three and four timepoint designs, the final timepoint at the

beginning of the next prey cycle.
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Summary

Table 10.2 gives a summary of the results for one to four timepoint designs. As each

additional timepoint is incorporated into the design, parameter inference becomes more

accurate and so the expected utility increases. We could determine an optimal number of

timepoints to use by including a cost in the utility function for each new design timepoint.

The increase in expected utility from a single to a two timepoint design, a two to a three

timepoint design and a three to a four timepoint design are 682.48, 432.67 and 465.89

respectively. It is interesting to see that the increase from two to three timepoints is smaller

than three to four timepoints. This probably reflects the bimodality in the distribution of

the third timepoint (for a three timepoint design) with this indecision being resolved when

moving to a four timepoint deign in which the bimodal peaks are the locations of the third

and fourth timepoints. Figure 10.9 shows the optimal designs as the vertical edges of the

blocks of grey and white over the stochastic mean of the LV model with the parameters

fixed at the prior mean. This graph shows that the timepoints in a two timepoint optimal

design are either side of the one timepoint optimal design. This is also the case for the first

two timepoints of the three timepoint design and the third optimal point is at the start of

the next cycle of the prey. For the four timepoint optimal design, the second optimal point

is very close to the single timepoint optimal design, the first and third timepoints are either

side of the single timepoint optimal design and the forth timepoint is at the start of the

next cycle. It appears that the optimal designs focus on the prey cycle which is perhaps

not surprising as the utility function depends on knowledge of θ1, the rate governing prey

reproduction, and not on predator reproduction or death (as these rates are known).

10.5 Fully optimal design

We now consider the case where all three rate constants are unknown and the prior

distribution has independent log–normal components, with

θ1 ∼ LN(−0.69, 0.01), θ2 ∼ LN(−6, 0.01) and θ3 ∼ LN(−1.21, 0.01),

and prior mean rate E(θ) = (0.5, 0.0025, 0.3)′. Note that now we have three unknown

parameters, the capacity to learn about parameters is increased and will probably lead to

large changes in the expected utility over choices in design and number of timepoints.

10.5.1 Design space reduction

We now use the delta approximation, in which θ is fixed at its prior mean, and estimate

the expected utility using the average realisation y∗d. We then fit a Gaussian process to

this (approximate) expected utility and then reduce the design space to the product of the
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Figure 10.9: The red solid and dashed lines are the stochastic mean of the prey and predators,
respectively. The parameters are fixed at their prior means (E(θ1) = 0.5, E(θ2) = 0.0025 and
E(θ3) = 0.3). The edges of the blocks of grey and white represent the optimal designs for when θ1
is unknown for the one, two, three and four timepoint designs.

central 95% posterior intervals for the timepoints.

Single timepoint design

Here the design is univariate (d = t1) and so we use a regular grid t1 = 0, 0.2, 0.4, . . . , 20

for the training data inputs. A Gaussian process is fitted to the training data which has

mean function

m(t1) = β̂0 + β̂1t1 + β̂2t
2
1 + β̂3t

3
1,

and squared exponential covariance function (as in Equation (9.8)); the Gaussian process

has three hyperparameters (a, r1, σ)′.

The marginal distributions of the hyperparameters are given in Figure 10.10. The

posterior density of log r1 is negatively skewed and the other two are fairly symmetric.

The Gaussian process diagnostics are given in Figure 10.11. These plots and that in

Figure 10.12(a) again indicate a problem of fit around the peak expected utility. However

the Gaussian process does fit the data pretty well as almost all of the points lie between

the upper and lower 95% limits. Figure 10.12(b) gives the estimated marginal distribution

of the design (t1) for J = 1, 5 and 20. We again see the focusing effect around the mode

of t1 when J is increased. For J = 20 this results in truncated training data ranges of

6.16 < t1 < 7.91.
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Figure 10.10: Marginal posterior distributions for the hyperparameters for the Gaussian process
used to reduce the design space for a single timepoint design. Prior distributions are given in red.

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●●●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●
●

● ●

●

●

●
●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

−10

−5

0

5

10

0 5 10 15 20
t1

S
ta

nd
ar

di
se

d 
P

re
di

ct
io

n 
E

rr
or

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●
●

● ●

●

●

●
●

●
●

●●
●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

−20

−10

0

10

20

0 5 10 15 20
t1

In
di

vi
du

al
 P

re
di

ct
io

n 
E

rr
or

0.0

0.5

1.0

1.5

2.0

0.0 0.4 0.8
Probability Integral Transform

D
en

si
ty

Figure 10.11: Diagnostics for the Gaussian process used to reduce the design space for the single
timepoint design.

Multiple timepoints

The training data used for fitting a Gaussian process to designs with two to four timepoint

is chosen using the fold method with nd = 200, 300 and 400 respectively. The prior mean

functions used are

m(t1, t2) = β̂0 + β̂1t1 + β̂2t2 + β̂3t
2
1 + β̂4t

2
2 + β̂5t

3
1 + β̂6t1t2,

m(t1, t2, t3) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t
2
1 + β̂5t

2
2 + β̂6t

2
3 + β̂7t

3
1 + β̂8t

3
2

+ β̂9t
3
3 + β̂10t1t2 + β̂11t2t3,

m(t1, t2, t3, t4) = β̂0 + β̂1t1 + β̂2t2 + β̂3t3 + β̂4t4 + β̂5t
2
1 + β̂6t

2
2 + β̂7t

2
3 + β̂8t

2
4 + β̂9t

3
2

+ β̂10t
3
3 + β̂11t

3
4 + β̂12t1t2 + β̂13t2t3 + β̂14t3t4

and we use the squared exponential covariance function in Equation (9.8) with x =

(t1, . . . , td)
′ where d = 2, 3 and 4 respectively.
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Figure 10.12: Figure (a) Gaussian process mean function ± 1.96sd (blue lines) with the training
data (black points). Note that utilities have been divided by 1012. (b) the marginal distribution of
t1 with J = 1 (dark blue line), J = 5 (medium blue line) and J = 20 (light blue line).

The marginal posterior distributions for the hyperparameters and diagnostic plots are

given in Appendix A.2.1. Although the standardised errors are problematic, the individual

prediction errors are small, and so we proceed with inference based on these fitted Gaussian

processes.

Figure 10.13 shows the marginal distribution of d, for J = 1, 5 and 20. Note that the

marginal modes changes as J is increased as the marginal modes are not equivalent to

the multivariate mode. However as J is increased the marginal mode becomes a better

approximation to the multivariate mode. We now reduce the design space to the (folded)

cubes formed by the 95% univariate interval for the timepoints, namely

2–dim design: 5.70 < t1 < 7.63 10.03 < t2 < 14.78

3–dim design: 3.89 < t1 < 6.58 7.22 < t2 < 10.48 11.63 < t3 < 18.98

4–dim design: 2.59 < t1 < 6.03 5.83 < t2 < 8.77 8.42 < t3 < 13.28 14.36 < t4 < 19.81.

10.5.2 Optimal designs using a Gaussian process fitted to u(d, θ) in the

reduced space

Single timepoint design

The analysis using the delta approximation in section 10.5.1 has reduced the design space

to 6.16 < t1 < 7.91. We also restrict the training data in the parameter space to the cube
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Figure 10.13: Marginal distributions of d (with J = 1,5 and 20) for the (a) two, (b) three , and (c)
four timepoint design. The first to fourth timepoints are shown as the solid, small dashed, medium
dashed and large dashed lines, respectively.

defined by the central univariate 99% prior intervals, that is

0.3877 < θ1 < 0.6489, 0.0019 < θ2 < 0.0032 and 0.2305 < θ3 < 0.385 .

A Gaussian process, which has inputs x = (t1, θ1, θ2, θ3)
′, is then fitted to training data

generated from a maximin Latin hypercube over this space. We use the mean function

m(t1, θ1, θ2, θ3) = β̂0 + β̂1t1 + β̂2θ1 + β̂3θ2 + β̂4θ3 + β̂5t
2
1 + β̂6θ

2
1 + β̂7θ

2
2 + β̂8t

3
1 + β̂9t1θ1

+ β̂10t1θ2 + β̂11t1θ3 + β̂12θ1θ2 + β̂13θ2θ3 + β̂14θ1θ3

and the squared exponential covariance function in Equation (9.8), which has six hyperpa-

rameters (a, r1, r2, r3, r4, σ)′. We note that this prior mean function is an excellent fit to

the data (R2 = 0.9239). The hyperparameter marginal posterior distributions are given in

Figure 10.14 and the diagnostics are given in Figure 10.15. Overall, the marginal posterior

distributions are symmetric and uni-modal and the individual prediction errors are small.

Figure 10.16 gives the marginal distribution of d for J = 20. From this we estimate the

optimal design to be d∗ = (7.431), with an estimated expected utility of 9.8458× 1013. We

note that this marginal mode is a higher value of t1 compared to the optimal design when

only one parameter (θ1) is unknown. We discuss this point further in Section 10.5.2.

Multiple timepoints

We fit Gaussian processes, with inputs x = (t1, . . . , td, θ1, θ2, θ3)
′, where d = 2, 3 and 4

respectively, for each of two to four timepoint designs to training data generated using the

fold method within the reduced design space determined via the delta approximation in
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Figure 10.14: Marginal posterior distributions for the hyperparameters for a single timepoint design.
Prior distributions are given in red.
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Figure 10.15: Gaussian process diagnostics for the single timepoint design.

Section 10.5.1. We use prior mean functions

m(t1, t2, θ1, θ2, θ3) = β̂0t1 + β̂1t2 + β̂2θ1 + β̂3θ2 + β̂4θ3 + β̂5t
2
2 + β̂6θ

2
1 + β̂7θ

2
2

+ β̂8θ
2
3 + β̂9t

3
1 + β̂10θ

3
1 + β̂11θ

3
2 + β̂12θ

3
3 + β̂13t1θ1 + β̂14t2θ2

+ β̂15t2θ3 + β̂16t1t2 + β̂17t1θ2 + β̂18θ2θ3 + β̂19θ1θ3

168



Chapter 10. Experimental design for the Lotka–Volterra model

0.00

0.25

0.50

0.75

6.5 7.0 7.5
t

D
en

si
ty

Figure 10.16: Marginal distribution of t1 with J = 20.

m(t1, t2, t3, θ1, θ2, θ3) = β̂0t1 + β̂1t2 + β̂2t3 + β̂3θ1 + β̂4θ2 + β̂5θ3 + β̂6t
2
2 + β̂7t

2
3

+ β̂8θ
2
1 + β̂9t

2
2 + β̂10θ

2
3 + β̂11t

3
1 + β̂12θ

3
1 + β̂13θ

3
2 + β̂14θ

3
3

+ β̂15t1θ3 + β̂16t2θ1 + β̂17t2θ2 + β̂18t1t2 + β̂19t2t3

+ β̂20θ1θ2 + β̂21θ1θ3

m(t1, t2, t3, t4, θ1, θ2, θ3) = β̂0t1 + β̂1t2 + β̂2t3 + β̂3t4 + β̂4θ1 + β̂5θ2 + β̂6θ3 + β̂7t
2
2

+ β̂8t
2
3 + β̂9θ

2
2 + β̂10t

3
1 + β̂11θ

3
2 + β̂12t1θ1 + β̂13t1θ2 + β̂14t2θ1

+ β̂15t4θ1 + β̂16t1t2 + β̂17t2t3 + β̂18t3t4 + β̂19θ1θ2

+ β̂20θ2θ3 + β̂21θ1θ3

and the squared exponential covariance function in Equation (9.8).

Again, the prior mean functions provide an excellent fit to the data, with R2 = 0.9450,

0.9629 and 0.9478, for d = 2, 3, 4 respectively. The Gaussian process diagnostics (given in

Appendix A.2.2) show that although the standardised prediction errors appear problematic,

the individual prediction errors are relatively small. The univariate marginal distributions

of the design d, for J = 1, 5 and 20, is given in Figure 10.17. As before, we estimated the

mode of the distribution using four different techniques; the results given in Table 10.3.

Each of the methods yields similar designs. Comparing Figures 10.18 and 10.9, it is

interesting to note that the timepoints in these optimal designs tend to occur later than

those determined when θ2 and θ3 are fixed at their prior mean values.

Summary of the optimal designs

A summary of the fully optimal one to four timepoint designs is given in Table 10.4. Designs

with more timepoints have higher expected utilities, since observing the process at additional

timepoints reduces parameter uncertainty and so the expected utility u(d) increases. The
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Figure 10.17: Marginal distributions of d with J = 1, 5 and 20. Plot (a) is for the two timepoint
design, (b) is for the three timepoint design, (c) is for the four timepoint design. The first timepoints
within a design are the solid lines, the second timepoints are the small dashed lines, the third time
points are the medium dashed lines and the forth timepoints are the large dashed lines.

Method Optimal design (d∗) Estimated expected utility (u(d))

Multivariate mode (6.86, 12.13) 5.7382× 1014

(5.23, 8.40, 14.00) 1.2482× 1015

(4.54, 7.25, 11.13, 17.69) 1.8440× 1015

Trimmed mean (6.82, 12.34) 5.7311× 1014

(5.28, 8.51, 15.10) 1.2485× 1015

(4.38, 7.31, 10.83, 17.15) 1.8674× 1015

Marginal mode (7.10, 12.07) 5.7397× 1014

(5.31, 8.22, 14.16) 1.2623× 1015

(5.06, 7.33, 11.04, 18.89) 1.8255× 1015

Gaussian process (6.96,12.23) 5.7527× 1014

(5.20, 8.12, 14.07) 1.2694× 1015

(5.04, 7.35, 11.02, 19.90) 1.9033× 1015

Table 10.3: Estimates of the optimal design using various techniques for one to four timepoints.
These techniques are discussed in Section 10.3. Multivariate mode uses Algorithm 19. Trimmed
mean uses the mean of a 10% trim of the marginal samples of d. Marginal mode uses the marginal
modes of the marginal distributions of d. Gaussian process uses the Gaussian process to evaluate
a small range of designs around the multivariate mode from the other three methods (trimmed
mean, marginal mode, multivariate mode) with the highest expected utility. The expected utility is
calculated using the Gaussian process as shown in Equation 10.1.

largest increase in expected utility is from two to three timepoints. Figure 10.18 shows

the location of the optimal designs – these are indicated by the change between grey and

white blocks – and the stochastic mean of the LV model. All two to four timepoint optimal

designs have one of their timepoints near the single timepoint optimal design, which is

just before the predator peak. The second timepoint in the two timepoint optimal design

is after the predator peak. The three timepoint design has its first and third timepoints
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# timepoints (d) Optimal design (d∗) Estimated expected utility (u(d∗))

1 (7.43) 9.8458× 1013

2 (6.96, 12.23) 5.7527× 1014

3 (5.20, 8.12, 14.07) 1.2694× 1015

4 (5.04, 7.35, 11.02, 19.90) 1.9033× 1015

Table 10.4: Optimal designs for one to four timepoint designs with the estimated expected utility.

either side of the predator peak and the four timepoint design is similar but has the fourth

timepoint near the very end of the time interval (near the start of the next cycle).

It is interesting to see the differences between the optimal designs determined using all

prior uncertainty (as in this section) and when fixing θ2 and θ3 at their prior mean values.

This comparison involves comparing Figure 10.9 and Figure 10.18. For the single timepoint

design in Figure 10.9 the optimal design is just after the peak of the prey curve, whereas

in Figure 10.18 the optimal design is after the prey peak and just before the predator peak.

This is not surprising because the unknown parameter in Figure 10.9 is θ1 which represents

prey reproduction and so we expect the optimal designs to be at timepoints where there

are prey numbers change by larger amounts and therefore focussed around the prey cycle.

Looking at the optimal timepoints in the two cases studied we see that in general when

all three parameters are unknown, the optimal timepoints take higher values. That said,

the first and second timepoints in the three timepoint design are roughly in the same

position. Overall, it is clear that increasing overall parameter uncertainty (by not fixing

θ2 and θ3) leads to optimal designs which balance observations more evenly around the

predator and prey cycles.

Table 10.4 shows as each additional timepoint is incorporated into the design, parameter

inference becomes more accurate and so the expected utility increases. We could determine

an optimal number of timepoints to use by including a cost in the utility function for each

new design timepoint. The increase in expected utility from a single to a two timepoint

design, a two to a three timepoint design and a three to a four timepoint design are

4.7681 × 1014, 6.9313 × 1014 and 6.3490 × 1014 respectively. The increase from two to

three timepoints is the largest. This probably reflects that the three timepoint optimal

design can provide better coverage of the predator and prey cycles providing much more

information about θ than the two timepoint design. It is interesting to see the considerable

change in the scale of the difference of the expected utility between adding additional

timepoints, compared to when only the prey reproduction rate (θ1) is unknown. This is

due to the large difference in prior information between these scenarios and hence the very

large benefit in taking additional observations when all three rates are unknown.
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Figure 10.18: The red solid line is the stochastic mean of the prey and the red dashed lines
represent the stochastic mean of the predators when the parameters are fixed at their prior means
(E(θ1) = 0.5, E(θ2) = 0.0025 and E(θ3) = 0.3). The edges of the blocks of grey and white represent
the optimal designs when θ is unknown for the one, two, three and four timepoint designs.
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Conclusions and future work

11.1 Conclusion

In this second part of the thesis we have shown for that Gaussian processes can be used in

Bayesian experimental design to provide a fast and accurate approximation of the expected

utility and thereby determine accurate optimal designs. We showed that optimal designs

determined using the Gaussian process approximation of the expected utility were close

to the exact optimal designs for the pure death model. We then described how to use

Gaussian processes in Bayesian experimental design for models with intractable likelihoods

and illustrated this using the Lotka–Volterra model.

Using a Gaussian process has the advantage that the utility only needs to be evaluated

at a certain number of inputs for the training data. This has the advantage that we no

longer have to perform parameter inference at every iteration of an MCMC scheme in order

to evaluate the utility (as we can use the Gaussian process instead). A further advantage of

using a Gaussian process is that all training data is calculated in advance and, in particular,

can be calculated in parallel, which can save considerable computing time. Our analysis

took advantage of the HT-condor system to evaluate the training data for the Gaussian

processes in parallel.

Drovandi and Pettitt (2013) reduce the time taken to perform ABC at each iteration

of the Müller (1999) MCMC algorithm by pre–computing 200k simulations from the

stochastic kinetic models. However these simulations must be stored, and this creates

memory issues as model complexity increases. Clearly their optimal designs depend on

these pre–computed datasets. We showed that their method can be quite inaccurate in

approximating the utility for a particular (unobserved) dataset y as they do not require

any absolute measure of closeness of y to the pre-computed dataset (they just use those

that are closest). In contrast, using the Gaussian process approximations to the utility

does not have this particular memory problem. However, there can be problems if they are
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constructed using a very large number of training points due to the need to invert large

square matrices.

A recurring problem when fitting the Gaussian process to the utility function was

that the diagnostics indicated a poor fit. While the individual prediction errors were very

small, the standardised errors suggested an issue with the assumption of constant variance.

Future work could investigate more appropriate covariance functions that would ameliorate

the diagnostics.

Estimating the hyperparameters of the Gaussian process can be a time consuming

process as evaluation of the likelihood involves an inversion of a nd × nd matrix. Therefore,

choosing the number of training points is a balance between computing time and accuracy

of the Gaussian process. We have considered designs with up to four timepoints and

so we were able to construct Gaussian processes using 100np training points, where np

is the dimension of the Gaussian process inputs. This led to very accurate Gaussian

process predictions. Unlike the ABC method to determine optimal designs, using Gaussian

processes scales well to more complex problems. However, for large dimensional designs, to

increase the speed of parameter estimation, some accuracy of the Gaussian process would

need to be sacrificed.

It is interesting to measure the efficiency of the ABC method for determining the

optimal design with that of our Gaussian process method. The following calculations refer

to the analysis of the pure death model. For the Drovandi and Pettitt (2013) ABC method

with J = 20, running the MCMC scheme for 100k iterations took 28.7, 39.8, 51.4 and

57.1 hours for the one to four timepoint designs respectively. However, the time taken

by our MCMC was less (per iteration) and in some cases much less. Most of the time

was spent fitting the Gaussian process hyperparameters: running the MCMC scheme for

500k iterations took 5.8, 14.6, 32.2 and 52.7 hours respectively. Some additional was

spent calculating the training data and then finding the optimal design using the Gaussian

process approximation. However, this time was very small (less than two minutes) as we

use numerical integration to calculate the utility and take advantage in evaluating the

Gaussian process in parallel. We note that our Gaussian process method appears to scale

roughly as badly as the ABC method, with the ratio of the ABC and GP times being 4.9,

2.7, 1.6, 1.08 for designs with one to four timepoints. However, in practise the timings

for the ABC method should be much larger as, if they were to provide the same accuracy

in the optimal design as our Gaussian process method, they would need to use a much

larger number of pre-simulated datasets. Further, should the Gaussian process timings

be prohibitive, we could decide to determine our optimal design by using a less accurate

fitted process determined via fewer points in our training data.

Numerical instabilities can occur when inverting the covariance matrix of the Gaussian

process. However, this well known problem can be addressed by introducing a nugget term
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into the matrix (along its diagonal); see, for example, Ababou et al. (1994) and Gramacy

and Lee (2012). In our methods we attempt to alleviate this problem by working with

the Cholesky decomposition of the matrix and solving a set of linear equations. Adopting

this solution is also more efficient: it halves the computation time of a Gaussian process

prediction. We also encountered problems when the training data outputs were large, for

example, when then the utilities were O(1012). The problem concerned the evaluation

of the quadratic form in the log-likelihood when inferring the hyperparameters. Here

evaluating a quadratic form with very large values in the vector but very small values in

the inverse matrix induced numerical inaccuracies. However we found that scaling the

utility function so that it is O(1) reduced this problem.

11.2 Future work

One possible extension of the experimental design methodology is to consider designs in

which not all species are observed. For example, in the LV model, we could consider designs

in which only the prey are observed (and not the predators) at some or all timepoints.

Calculation of the utility function is still possible as we can adapt our LNA analysis to take

account of unobserved species at particular timepoints. In more complex scenarios/models

it might be that the design needs to take account of the fact that certain species cannot be

observed experimentally or cannot be observed at particular times.

In this work we have considered a simple utility function. However, we could consider

other utility functions and examine whether the choice of optimal design is sensitive to the

choice of utility function. One alternative utility function is based on the Kullbeck–Leibler

divergence; this is particularly appropriate when the aim of the experiment is to perform

parameter inference. We could also include more sophisticated costs in the utility function

so that, for example, measuring the system at later timepoints is more expensive.

It would be interesting to see the sensitivity of the optimal design to having a well

fitting Gaussian process approximation. In our current analyses, the Gaussian processes

have not been a particularly good fit, with the main discrepancy appearing to be due

to non-constant noise in the training data output. Another aspect might be to consider

a process approximation which has heavier tails than the Gaussian process, such as a

Student–t process. Such a process has the benefit of reduce the influence of outliers and

improve predictions (Jylnki et al., 2011). However a disadvantage of this approach is that

the posterior distribution for the hyperparameters is intractable. That said, a Laplace

approximation (Lindley, 1980) or data augmentation can be used to fit the process; here

data augmentation consists of rewriting the Student–t process as a continuous (inverse

χ2) mixture of Gaussian processes. MCMC techniques for the Gaussian process model

can be extended to include auxiliary variables and thereby obtain posterior samples of the
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hyperparameters from the Student–t process fit.

Finally, and quite importantly, the optimal design should be examined to determine its

sensitivity to the chosen prior distribution. Hopefully the optimal design will not be too

sensitive to the prior because, if it is, then much more effort is needed to ensure that the

prior distribution used really does quantify true prior beliefs about the parameters. We

have not studied this aspect in this thesis due to the considerable computational cost of

examining such sensitivities.
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Appendix

A.1 Optimal design for one unknown parameter

A.1.1 Design space reduction

Figures A.1, A.3 and A.5 are the marginal posterior distributions for the hyperparameters

for the Gaussian processes fitted to the delta approximation to the expected utility for

the two, three and four timepoint designs which are referred to in Subsection 10.4.1.

Figures A.2, A.4 and A.6 are the associated diagnostic plots.
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Figure A.1: Marginal posterior distributions for the hyperparameters for the Gaussian process used
to reduce the design space for a two timepoint design.
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Figure A.2: Diagnostics for the Gaussian process used to reduce the design space for the two
timepoint design.
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Figure A.3: Marginal posterior distributions for the hyperparameters for the Gaussian process used
to reduce the design space for a three timepoint design.
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Figure A.4: Diagnostics for the Gaussian process used to reduce the design space for the three
timepoint design.
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Figure A.5: Marginal posterior distributions for the hyperparameters for the Gaussian process used
to reduce the design space for a four timepoint design.
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Figure A.6: Diagnostics for the Gaussian process used to reduce the design space for the four
timepoint design.

A.1.2 Gaussian process fitted to u(d, θ1) using the reduced space

Figures A.7, A.9 and A.11 are the marginal posterior distributions for the hyperparameters

for the Gaussian processes fitted to u(d, θ1) for the two, three and four timepoint designs

which are referred to in Subsection 10.4.2. Figures A.8, A.10 and A.12 are the associated

diagnostic plots.
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Figure A.7: Marginal posterior distributions for the hyperparameters for the two timepoint design
Gaussian process.

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−6

−3

0

3

3 4 5 6 7
t1

S
ta

nd
ar

di
se

d 
P

re
di

ct
io

n 
E

rr
or

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

3 4 5 6 7
t1

In
di

vi
du

al
 P

re
di

ct
io

n 
E

rr
or

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−6

−3

0

3

6 8 10 12 14 16
t2

S
ta

nd
ar

di
se

d 
P

re
di

ct
io

n 
E

rr
or

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

6 8 10 12 14 16
t2

In
di

vi
du

al
 P

re
di

ct
io

n 
E

rr
or

●

● ●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−6

−3

0

3

0.40 0.45 0.50 0.55 0.60 0.65
θ

S
ta

nd
ar

di
se

d 
P

re
di

ct
io

n 
E

rr
or

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

0.40 0.45 0.50 0.55 0.60 0.65
θ

In
di

vi
du

al
 P

re
di

ct
io

n 
E

rr
or

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.4 0.8
Probability Integral Transform

D
en

si
ty

Figure A.8: Diagnostics for the two timepoint design Gaussian process.
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Figure A.9: Marginal posterior distributions for the hyperparameters for the three timepoint design
Gaussian process.
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Figure A.10: Diagnostics for the three timepoint design Gaussian process.
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Figure A.11: Marginal posterior distributions for the hyperparameters for the four timepoint design
Gaussian process.
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Figure A.12: Diagnostics for the for the four timepoint design Gaussian process.

A.2 Optimal design when all parameters are unknown

A.2.1 Design space reduction

Figures A.13, A.15 and A.17 are the marginal posterior distributions for the hyperparameters

for the Gaussian processes fitted to the delta approximation to the expected utility for

the two, three and four timepoint designs which are referred to in Subsection 10.5.1.

Figures A.14, A.16 and A.18 are the associated diagnostic plots.
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Figure A.13: Marginal posterior distributions for the hyperparameters for the Gaussian process
used to reduce the design space for a two timepoint design.
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Figure A.14: Diagnostics for the Gaussian process used to reduce the design space for the two
timepoint design.
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Figure A.15: Marginal posterior distributions for the hyperparameters for the Gaussian process
used to reduce the design space for a three timepoint design.
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Figure A.16: Diagnostics for the Gaussian process used to reduce the design space for the three
timepoint design.
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Figure A.17: Marginal posterior distributions for the hyperparameters for the Gaussian process
used to reduce the design space for a four timepoint design.
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Figure A.18: Diagnostics for the Gaussian process used to reduce the design space for the four
timepoint design.

A.2.2 Gaussian process fitted to u(d, θ) using the reduced space

Figures A.19, A.21 and A.23 are the marginal posterior distributions for the hyperparameters

for the Gaussian processes fitted to u(d,θ) for the two, three and four timepoint designs

which are referred to in Subsection 10.5.2. Figures A.20, A.22 and A.24 are the associated
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diagnostic plots.
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Figure A.19: Marginal posterior distributions for the hyperparameters for a two timepoint design.
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Figure A.20: Diagnostics for the two timepoint design Gaussian process.
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Figure A.21: Marginal posterior distributions for the hyperparameters for a three timepoint design.
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Figure A.22: Diagnostics for the three timepoint design Gaussian process.
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Figure A.23: Marginal posterior distributions for the hyperparameters for a four timepoint design.
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Müller, P., Sansó, B., and De Iorio, M. (2004). Optimal Bayesian design by inhomogeneous

Markov chain simulation. Journal of the American Statistical Association, 99(467):788–

798.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models:

a Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 66(3):751–769.

Pagendam, D. and Pollett, P. (2009). Optimal sampling and problematic likelihood functions

in a simple population model. Environmental Modeling & Assessment, 14(6):759–767.

Pagendam, D. and Pollett, P. (2010). Robust optimal observation of a metapopulation.

Ecological Modelling, 221(21):2521 – 2525.

Pagendam, D. and Ross, J. (2013). Optimal use of GPS transmitter for estimating species

migration rate. Ecological Modelling, 249(0):37 – 41.

Pareek, C. S., Smoczynski, R., and Tretyn, A. (2011). Sequencing technologies and genome

sequencing. Journal of Applied Genetics, 52(4):413–435.

197



Bibliography

Podlich, H. M., Faddy, M. J., Smyth, G. K., and Statistics, C. F. (1999). Likelihood

computations for extended poisson process models.

Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann,

J. S., Silman, I., and Sussman, J. L. (2005). FoldIndex: a simple tool to predict whether

a given protein sequence is intrinsically unfolded. Bioinformatics, 21(16):3435–3438.

Puchalka, J. and Kierzek, A. M. (2004). Bridging the gap between stochastic and determin-

istic regimes in the kinetic simulations of the biochemical reaction networks. Biophysical

Journal, 86(3):1357–1372.

Raftery, A. E. and Lewis, S. (1992). How Many Iterations in the Gibbs Sampler? In In

Bayesian Statistics 4, pages 763–773. Oxford University Press.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.

MIT Press.

Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown

number of components. Journal of the Royal Statistical Society. Series B (Statistical

Methodology), 59(4):731–792.

Robert, C., Ryden, T., and Titterington, D. (2000). Bayesian inference in hidden Markov

models through the reversible jump Markov chain Monte Carlo method. Journal of the

Royal Statistical Society. Series B (Statistical Methodology), 62(1):57–75.

Roberts, G. . (1996). Markov chain concepts related to sampling algorithms. In Gilks,

W. R., Richardson, S., and Spiegelhalter, D., editors, Markov Chain Monte Carlo in

Practice, pages 45–57. London: Chapman & Hall.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal scaling

of random walk metropolis algorithms. The Annals of Applied Probability, 7(1):110–120.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings

algorithms. Statistical Science, 16(4):351–367.

Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D. (2009). Analyzing the

climate sensitivity of the HadSM3 climate model using ensembles from different but

related experiments. Journal of Climate, 22(13):3540–3557.

Salis, H. and Kaznessis, Y. (2005). Accurate hybrid stochastic simulation of a system of

coupled chemical or biochemical reactions. Journal of Chemical Physics, 122(5).

Sandmann, W. (2009). Streamlined formulation of adaptive explicit-implicit tau-leaping

with automatic tau selection. In Winter Simulation Conference, WSC ’09, pages 1104–

1112. Winter Simulation Conference.

198



Bibliography

Schmidler, S. C., Liu, J. S., and Brutlag, D. L. (2000). Bayesian segmentation of protein

secondary structure. Journal of Computational Biology, 7(1-2):233–248.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical

Journal, 27:379–423, 623–656.

Sisson, S. A. and Fan, Y. (2010). Likelihood-free Markov chain Monte Carlo. Available

from http://arXiv:1001.2058.

Sorensen, P. H., Lessnick, S. L., Lopez-Terrada, D., Liu, X. F., Triche, T. J., and Denny,

C. T. (1994). A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to

another ETS-family transcription factor, ERG. Nature Genetics, 6(2):146–51.

Spiegelhalter, D. J. (1998). Bayesian graphical modelling: a case-study in monitoring

health outcomes. Journal of the Royal Statistical Society. Series C (Applied Statistics),

47(1):115–133.

Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling.

Technometrics, 29(2):143–151.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal

Statistical Society. Series B (Statistical Methodology), 62(4):795–809.

Tan, A. Y. and Manley, J. L. (2009). The TET family of proteins: functions and roles in

disease. Journal of Molecular Cell Biology, 1(2):82–92.

Tavare, S., Balding, D. J., Griffiths, R. C., and Donnelly, P. (1997). Inferring coalescence

times from DNA sequence data. Genetics, 145(2):505–518.

Turchin, V. F. (1971). On the Computation of Multidimensional Integrals by the Monte

Carlo Method. Theory of Probablility and its Applications, 16(4):720–724.

Turoverov, K. K., Kuznetsova, I. M., and Uversky, V. N. (2010). The protein kingdom

extended: ordered and intrinsically disordered proteins, their folding, supramolecular

complex formation, and aggregation. Progress in Biophysics and Molecular Biology,

102(2-3):73–84.

Urano, F., Umezawa, A., Hong, W., Kikuchi, H., and Hata, J.-i. (1996). A novel chimera

gene between EWS and E1A-F, encoding the adenovirus E1A enhancer-binding protein,

in extraosseous Ewing’s sarcoma. Biochemical and Biophysical Research Communications,

219(2):608–612.

Uversky, V. N. (2009). Intrinsic disorder in proteins associated with neurodegenerative

diseases. Frontiers in Bioscience (Landmark Edition), 1(14):5188–238.

199



Bibliography

Uversky, V. N. (2011). Intrinsically disordered proteins from A to Z. The International

Journal of Biochemistry & Cell Biology, 43(8):1090–103.

Uversky, V. N., Dave, V., Iakoucheva, L. M., Malaney, P., Metallo, S. J., Pathak, R. R.,

and Joerger, A. C. (2014). Pathological unfoldomics of uncontrolled chaos: intrinsically

disordered proteins and human diseases. Chemical Reviews, 114(13):6844–6879.

Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2008). Intrinsically disordered proteins in

human diseases: introducing the D(2) concept. Annual Review of Biophysics, 37:215–246.

Uversky, V. N., Oldfield, C. J., Midic, U., Xie, H., Xue, B., Vucetic, S., Iakoucheva, L. M.,

Obradovic, Z., and Dunker, A. K. (2009). Unfoldomics of human diseases: linking protein

intrinsic disorder with diseases. BMC Genomics, 10(Suppl 1):S7.

Van Kampen, N. G. (2007). Stochastic Processes in Physics and Chemistry. North Holland,

3rd edition.

Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically.

Nature, 118:558–560.

Waage, P. and Gulberg, C. M. (1986). Studies concerning affinity. Journal of Chemical

Education, 63(12):1044–1047.

Wallace, E. W. J., Gillespie, D. T., Sanft, K. R., and Petzold, L. R. (2012). Linear noise

approximation is valid over limited times for any chemical system that is sufficiently

large. IET Systems Biology, 6(4):102–115.

Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., and Jones, D. T. (2004). The

DISOPRED server for the prediction of protein disorder. Bioinformatics, 20(13):2138–9.

Weathers, E. A., Paulaitis, M. E., Woolf, T. B., and Hoh, J. H. (2004). Reduced amino

acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS

letters, 576(3):348–52.

Wilkinson, D. J. (2011). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC,

second edition.

Williams, C. K. I. and Barber, D. (1998). Bayesian classification with Gaussian processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351.

Yamada, J., Phillips, J. L., Patel, S., Goldfien, G., Calestagne-Morelli, A., Huang, H.,

Reza, R., Acheson, J., Krishnan, V. V., Newsam, S., Gopinathan, A., Lau, E. Y.,

Colvin, M. E., Uversky, V. N., and Rexach, M. F. (2010). A bimodal distribution of two

distinct categories of intrinsically disordered structures with separate functions in FG

nucleoporins. Molecular & Cellular Proteomics, 9(10):2205–24.

200


	Introduction
	Overview of thesis

	Introduction to Bayesian inference
	Bayesian Inference
	Prior elicitation

	Markov chain Monte Carlo (MCMC)
	Gibbs sampling
	Metropolis–Hastings algorithm
	Analysing MCMC output
	Likelihood free MCMC


	I An Analysis of intrinsically disordered proteins using hidden Markov models
	Introduction
	Background
	Description of the data
	Aims and objectives

	Literature review of intrinsically disordered proteins
	Introduction
	Why find disordered segments?
	IDPs and disease
	Properties of disordered proteins
	Predicting protein disorder
	Structure of the Group 1 and 2 proteins

	Statistical review
	Summary

	Bayesian analysis using hidden Markov models
	Introduction
	First order Markov chain model
	Extension to the HMM

	Bayesian analysis
	Specification of prior parameters
	Likelihood
	The posterior distribution
	Gibbs sampling
	Label switching
	Parameter reduction
	Calculating the posterior probability function for r
	Calculating the marginal likelihood exactly
	Power posterior method and application to HMMs
	Chib's method and application to HMMs
	Choosing a method to determine r


	Application of methodology
	Gibbs sampling using simulated data
	Comparing methods to calculate the marginal likelihood for r
	The power posterior method
	Chib's method
	Using the forward filter

	Applying the power posterior method to the group 1 and group 2 proteins
	Group 1: TAF15, FUS and EWS
	Group 2: p53, MDM2 and CBP

	Inference for the transition structures in the group 1 and group 2 proteins
	Group 1
	TDP–43
	Are the group 1 segment types in the group 2 proteins?
	Are these structures found in the homologues of FUS?
	How could this information be used to guide experiments?
	Group 2

	Experimental methods and results

	Discussion and conclusion
	Statistical conclusion
	Biological conclusion
	Future work


	II Experimental design of stochastic kinetic models
	Stochastic kinetic models
	Introduction to stochastic kinetic models
	Chemical reaction notation
	Markov jump process
	Chemical master equation
	Direct method

	Example systems
	The death model
	The Lotka–Volterra (LV) model
	Example simulations from these stochastic kinetic models

	Other methods of simulation from SKMs
	Exact simulation
	Approximate simulation algorithms
	Hybrid simulation techniques


	Introduction to Bayesian Experimental Design
	Introduction
	The utility function
	Utility functions for models with intractable likelihoods

	The Drovandi and Pettit approach
	Finding the multivariate modal design
	Example using the death model
	Dependence of the expected utility on the pre–computed ABC datasets


	Experimental design using Gaussian processes
	Introduction to Gaussian processes
	The mean function
	The covariance function
	Determining the hyperparameters
	Choice of training data
	Diagnostics
	Individual prediction errors
	Mahalanobis distance
	Probability integral transform

	Experimental design
	The exact method
	The delta approximation method
	The Gaussian process method
	Application of the Gaussian process method to the death model
	Delta approximation to the death model
	Optimal single timepoint design
	Optimal two timepoint design
	Optimal three and four timepoint designs
	Summary


	Experimental design for the Lotka–Volterra model
	Design space reduction
	Fitting a Gaussian process to u(bold0mu mumu ddunitsdddd,bold0mu mumu units)
	Estimating the mode
	Optimal design with only one unknown rate constant
	Design space reduction
	Optimal designs using a Gaussian process fitted to u(bold0mu mumu ddunitsdddd,1) in the reduced space

	Fully optimal design
	Design space reduction
	Optimal designs using a Gaussian process fitted to u(bold0mu mumu ddunitsdddd,bold0mu mumu units) in the reduced space


	Conclusions and future work
	Conclusion
	Future work

	Appendix
	Optimal design for one unknown parameter
	Design space reduction
	Gaussian process fitted to u(bold0mu mumu ddunitsdddd,1) using the reduced space

	Optimal design when all parameters are unknown
	Design space reduction
	Gaussian process fitted to u(bold0mu mumu ddunitsdddd,bold0mu mumu units) using the reduced space




