
UNIVERSITY OF NEWCASTLE-UPON-TYNE
CIVIL ENGINEERING DEPARTMENT

COMPUTER MODELLING OF WATER SUPPLY DISTRIBUTION NETWORKS

USING THE GRADIENT METHOD.

by

Ruben 0. Salgado-Castro

VOLUME TWO

APPENDICES

NEWCASTLE UNIVERSITY LIBRARY

088 22971 9

11\4 G, S Is	 L3 4-1-1

Thesis submitted in fulfilment of the re quirements for the

degree of Doctor of Philosophy in Civil Engineering.

November, 1988.

TABLE OF CONTENTS

VOLUME TWO

List of Figures 	
List of Tables 	
List of main Symbols 	 vii

APPENDIX A

EFFICIENT SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

IN THE CONTEXT OF THE GRADIENT METHOD FOR THE

ANALYSIS OF WATER SUPPLY DISTRIBUTION NETWORKS

A.1. Introduction 	 A-1
A.1.1. Need for efficient linear solvers in water

distribution network analysis 	 A-1
A.1.2. Different classes of linear problems 	 A-2
A.1.3. Direct methods and iterative methods for

solving determined systems of linear
equations 	 	 A-10

A.2. Review of direct methods for the solution of
general dense linear systems of equations 	 A-13
A.2.1. Gaussian elimination 	 A-13
A.2.2. Gauss-Jordan elimination 	 A-28
A.2.3. Matrix factorization methods 	 A-31
A.2.4. Comparison of the different algorithms for

the direct solution of general dense linear
systems 	 A-45

A.2.5. Error analysis in the solution of linear
systems 	 A-48

A.3. Review of sparse direct methods for the solution of
linear systems of equations 	 A-57

A.3.1. Data structures 	 A-57
A.3.2. Fill-in 	 A-62
A.3.3. Sparse methods for banded matrices 	 A-69
A.3.4. The envelope ("skyline") method 	 A-71
A.3.5. Minimum degree algorithms 	 A-77
A.3.6. Quotient tree algorithms 	 A-89
A.3.7. One-way dissection methods 	 A-104
A.3.8. Nested dissection methods 	 A-108
A.3.9. Frontal and multifrontal methods 	 A-110

A.4. Review of iterative methods for the solution of
linear systems of equations 	 A-115

A.4.1. Introduction 	 A-115
A.4.2. Jacobi's method (method of simultaneous

displacements) 	 A-117

A.4.3. Gauss-Seidel method (method of successive
displacements) 	 A-119

A.4.4. Successive over (or under) relaxation method 	 A-120
A.4.5. Relationship between the previous methods 	 A-120
A.4.6. Convergence conditions for the previous

methods 	 A-124
A.4.7. Standard conjugate gradient method for the

solution of linear systems of equations.
(Hestenes and Stiefel, 1952) 	 A-127

A.4.8. Preconditioning 	 A-133
A.4.9. Preconditioned (modified) conjugate gradient

method for the solution of linear systems 	 A-142

APPENDIX B

DERIVATION OF THE KRIGING ESTIMATOR EQUATIONS

B.1. Introduction 	 B-1

B.2. Statistical inference 	 B-5

B.3. Estimation via Kriging 	 B-16
B.3.1. Kriging under stationary conditions 	 B-16
B.3.2. Relaxing the second-order stationarity

condition: the intrinsic hypothesis 	 B-25
B.3.3. Introducing uncertainty in the measurement

data 	 B-30
B.3.4. Universal Kriging and k-th order random

functions (k-IRF) 	 B-32

APPENDIX C

DERIVATION OF THE BI-CUBIC SPLINES APPROXIMATION EQUATIONS

C.1. Introducing cubic splines 	 C-1

C.3. Data fitting using one-dimensional cubic splines 	 C-8

C.4. Data fitting using bi-cubic B-splines 	 C-13

C.5. The statistical problem in splines fitting 	 C-19

APPENDIX D

NUMERICAL RESULTS OF THE CALIBRATION EXERCISE 	 D-1

LIST OF FIGURES

FIGURE	 PAGE

Fig. A.1. Different linear systems of equations 	 A-4
Fig. A.2. Arrow shaped linear system 	 A-63
Fig. A.3. Cholesky factor of arrow shaped matrix

(without reordering) 	 A-63
Fig. A.4. Reordered arrow shaped linear system 	 A-63
Fig. A.5. Cholesky factor of reordered arrow-shaped

linear system 	 A-64
Fig. A.6. Undirected graph corresponding to symmetric

matrix given by equation (98) 	 A-65
Fig. A.7. Permutation matrix for interchanging rows 3

and 4 	 A-66
Fig. A.8. Reordered matrix [eq.(98)] and its

associated graph 	 A-66
Fig. A.9. Diagonal storage scheme for banded matrices 	 A-69
Fig. A.10. Minimum band ordering for arrow shaped

linear system 	 A-70
Fig. A.11. Two examples of Cuthill-McKee orderings for

reducing bandwidth, from George (1981) 	 A-71
Fig . A.12. Skyline representation 	 A-72
Fig . A.13. Graph for level structure example, from

George and Liu (1981) 	 A-74
Fig. A.14. Level structure rooted at x5, for graph

shown in Fig. A.13, from George and Liu
(1981) 	 A-74

Fig. A.15. Algorithm for finding a pseudo-peripheral
node, from George and Liu (1981) 	 A-76

Fig . A.16. Example of application of minimum degree
algorithm, from George (1981) 	 A-81

Fig . A.17. Elimination graphs representing the process
of creation of fill-in 	 A-82

Fig. A.18. The filled graph of F = L + L T 	 A-83
Fig. A.19. Filled (reordered) matrix 	 A-83
Fig. A.20. Sequence of quotient graphs r i used for

finding the reachable set of nodes in the
elimination process 	 A-87

Fig . A.21. An example of a monotonely ordered tree
(rooted at node 8) 	 A-96

F ig . A.22. Matrix corresponding to the monotonely
ordered tree shown in Fig. A.21 	 A-97

Fig. A.23. Network example for quotient tree methods 	 A-98
Fig. A.24. Quotient tree corresponding to the tree of

Fig. A.23 	 A-100
Fig. A.25. Matrix corresponding to the quotient tree

of Fig. A.24 	 A-100
Fig. A.26. Level structure rooted at node "a" and its

corresponding quotient tree 	 A-101
Fig. A.27. Matrix corresponding to refined quotient

tree of Fig. A.26. b) 	 A-102
Fig. A.28. Level structure rooted at node "t" and its

corresponding quotient tree 	 A-103
Fig. A.29. Matrix corresponding to refined quotient

tree of Fig. A.28. b) 	 A-103
Fig. A.30. Rectangular grid partitioned with 2

dissectors 	 A-105

iii

FIGURE

Fig.	 A.31. Example of a 40 nodes rectangular shaped

PAGE

graph, partitioned using one-way dissection A-106
Fig. A.32. Matrix structure corresponding to graph of

Fig.	 A.31	 	 A-107
Fig. A.33. Example of a 40 nodes rectangular-shaped

graph, partitioned using nested dissection A-109
Fig. A.34. Matrix structure corresponding to graph of

Fig.	 A.33	 	 A-109
Fig. A.35. Finite element definition and ordering for a

frontal solution scheme,	 from Livesley
(1983)	 	 A-112

Fig. A.36. The elimination sequence in a frontal
solution scheme, 	 from Livesley (1983) 	 	 A-113

Fig. A.37. Geometric interpretation of the convergence
of the conjugate gradient algorithm for n=2
and n=3,	 from Gambolatti and Perdon (1984),
solving	 A h = b 	 A-134

Fig. B.1. Estimated semi-variogram 	 B-9
Fig. B.2. Nugget effect and corresponding true semi-

variogram 	 B-13
Fig. B.3. Relationship between covariance and semi-

variogram 	 B-17
Fig. C.1. Representation of a B-spline 	 C-4
Fig. C.2. B-splines involved in the spline function

for the interval (Xi_i,Xi)	 	 C-5
Fig. C.3. Extended set of B-splines: 	 interior and

exterior knots 	 C-6
Fig. C.4. Rectangular subspace R for the independent

variables x and y, divided into panels RiA
by knots	 Xi	 i=1,2,...h+1 and Pi	 j=1,2,...k+1 C-15

LIST OF TABLES

TABLE	 PAGE

Table A.1. Comparison of the algorithms used in the
direct solution of dense linear systems of
equations 	 A-46

Table B.1. Computation of the experimental semi-
variogram 	 B-8

Table B.2. Basic analytical models for the experimental
semi-variogram 	 B-14

Table B.3. Possible polynomial models for generalised
covariances, from Delhomme (1978) 	 B-37

Table D.1. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example A 	 D-1

Table D.2. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example B 	 D-2

Table D.3. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example C 	 D-3

Table D.4. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example C 	 D-4

Table D.5. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example E 	 D-5

Table D.6. Summary of the comparison between true,
initial and calibrated piezometric heads.
Example F 	 D-6

Table D.7. Summary of the performance of the
calibrated heads. Example A 	 D-7

Table D.8. Summary of the performance of the
calibrated heads. Example B 	 D-8

Table D.9. Summary of the performance of the
calibrated heads. Example C 	 D-9

Table D.10. Summary of the performance of the
calibrated heads. Example D 	 D-10

Table D.11. Summary of the performance of the
calibrated heads. Example E 	 D-11

Table D.12. Summary of the performance of the
calibrated heads. Example F 	 D-12

Table D.13. Summary of the comparison between true,
initial and calibrated flows. Example A 	 D-13

Table D.14. Summary of the comparison between true,
initial and calibrated flows. Example B .. 	 D-14

Table D.15. Summary of the comparison between true,
initial and calibrated flows. Example C 	 D-15

Table D.16. Summary of the comparison between true,
initial and calibrated flows. Example D 	 D-16

Table D.17. Summary of the comparison between true,
initial and calibrated flows. Example E 	 D-17

Table D.18. Summary of the comparison between true,
initial and calibrated flows. Example F 	 D-18

Table D.19. Summary of the performance of the
calibrated flows. Example A 	 D-19

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

D.20.

D.21.

D.22.

D.23.

D.24.

D.25.

D.26.

D.27.

D.28.

D.29.

D.30.

D.31.

D.32.

D.33.

D.34.

D.35.

D.36.

TABLE	 PAGE

Summary of the performance of the
calibrated flows. Example B 	
Summary of the performance of the
calibrated flows. Example C 	
Summary of the performance of the
calibrated flows. Example D 	
Summary of the performance of the
calibrated flows. Example E 	
Summary of the performance of the
calibrated flows. Example F 	
Summary of the comparison between true,
initial and calibrated C's. Example A 	
Summary of the comparison between true,
initial and calibrated C's. Example B 	
Summary of the comparison between true,
initial and calibrated C's. Example C 	
Summary of the comparison between true,
initial and calibrated C's. Example D 	
Summary of the comparison between true,
initial and calibrated C's. Example E 	
Summary of the comparison between true,
initial and calibrated C's. Example F 	
Summary of the performance of the
calibrated C's. Example A 	
Summary of the performance of the
calibrated C's. Example B 	
Summary of the performance of the
calibrated C's. Example C 	
Summary of the performance of the
calibrated C's. Example D 	
Summary of the performance of the
calibrated C's. Example E 	
Summary of the performance of the
calibrated C's. Example F 	

D-20

D-21

D-22

D-23

D-24

D-25

D-26

D-27

D-28

D-29

D-30

D-31

D-32

D-33

D-34

D-35

D-36

LIST OF MAIN SYMBOLS

APPENDIX A

Symbol	 Description

A, B	 A capital letter denotes a matrix, particularly:

L Denotes a lower triangular matrix.

U Denotes an upper triangular matrix.

D Denotes a diagonal matrix.

a, A, Li	 A lower case letter, or a capital (or lower case)

underlined letter denotes a vector.

a, P	 A greek letter denotes a scalar.

ai	 A lower case subindexed letter denotes a scalar,

normally the i-th component of a vector.

aij A lower case doubly subindexed letter denotes a scalar,

normally the coefficient of a matrix A, located at the

intersection of row "i" and column "j".

Ai	 A capital subindexed letter denotes either a matrix in

a sequence of matrices or a block-partitioned matrix.

(.)T	 Denotes transposition, either of a vector or matrix.

A-1	 Denotes matrix inversion.

(.)(k)	 Refers to the k-th value of the variable (scalar,

vector or matrix) within an iterative procedure.

1011	 Denotes the norm of a variable (vector or matrix).

lx1	 Denotes the absolute value of a scalar.

Xi	 Denotes a particular eigenvalue of a matrix.

e(A)	 Spectral radius of?matrix A.

<x,y>	 Inner (scalar) product of vectors "x" and "y":

n
<x,y> = xT y = yT x = E xi yi

i=1

vii

APPENDIX B

Symbol	 Description

(x, H)	 State variable representing the piezometric head at any

point x of the domain:

(x,H) = (xi, x2, H) T in a two-dimensional space.

Z(x, H) Random function representing the value of the state

variable H at a location x (in general).

Z(x0 , H) Random variable (at the particular location x=x0.

Simplified notation:

[2(xi, H) <=> Zx i <=> Z i I

E[Z(xl, H)] expected value of the random variable at x=x1.

r(xl, x2) Semi-variogram:

r(xl , x2) a k E[1Z(x 11 H)Z(x2 ,H)1 2]

Cov(Z(x11H),Z(x2,H)) Covariance:

Cov(Z(x 11 H),Z(x2,H)) = E[Z(x 1 ,H)Z(x2 ,H)]

Var(Z(x,H)) Variance of the random variable:

Var(Z(x,H)) = E[Z(x, H) 2] - {EC Z(x, H)]1 2 = C2

xoi Unknown weight of the Kriging estimator, where"i"

refers to the measurement Yi and "o" to the point being

estimated xo, i.e.:

n.
Yo* = 'I0 * (X0) = E '> 1 V-\ID	 -1

i=1

APPENDIX C

Symbol	 Description

One dimensional splines:

s(x)	 General spline polynomial function.

Xi	 Set of knots associated to the spline.

h	 Number of knots (Xi , i=1,2,..,h)

(xr, f(xr)) , r=1,2,..,m set of data points.

M(x)	 Cubic Basic (or fundamental) spline (B-spline).

Mn,i(x)	 General B-spline of degree (n-1). For a cubic spline

n=4, i.e.: M4(x) = M(x) (simplified notation).

r i	Linear (unknown) weights, combining the cubic B-splines

into a general cubic spline polynomial:

h+4
s(x) =E r i M1(x)

i=1

r	 (h+4)*1) column vector of linear weights ri.

A	 Matrix of observation equations (observation matrix),

of order m*(h+4) in a cubic spline: An 	 = Mi(x).

A r = f Observation equations, overdetermined system.

f	 (m*1) column vector with the value of the spline

polynomial at each data point:

fi = f(xi) = s(xi)	 i=1,2,...,m

ATAr=ATf Normal	 equations. Linear system of	 (h+4)*(h+4)

equations (determined system).

Bi-cubic splines:

s(x,y)	 General spline polynomial function.

Xi	 Set of knots associated to the independent variable x.

Pi	 Set of knots associated to the dependent variable y.

ix

Symbol	 Description

h Number of knots in the x-axis (Xi , i1,2,. .,h)

k	 Number of knots in the y-axis (Pj , j=1,2,. .,k)

Rij	 Set of (h+1)*(k+1) panels in which the x-y space is

sub-divided.

(xr,yr,f(xr,yr)) , r=1,2,..,m set of data points.

M(x)	 Cubic B-spline related to the independent variable x.

N (y)	 Cubic B-spline related to the dependent variable y.

Linear (unknown) weights, combining the cubic B-splines

into a general cubic spline polynomial:

h+4 k+4
s(x,y) = E 	E r

i=1 j=1

r	 ((h+4)(k+4)*1) column vector of linear weights rij.

A	 Matrix of observation equations (observation matrix),

of order m*(h+4)(k+4).

A r = 1 Observation equations, overdetermined system.

f (m*1) column vector with the value of the spline

polynomial at each data point:

fi = f(xi) = s(xi)	 i=1,2,...,m

ATAr=ATf Normal equations.Linear system of (h+4)(k+4)*(h+4)(k+4)

equations (determined system).

APPENDIX A

EFFICIENT SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

IN THE CONTEXT OF THE GRADIENT METHOD FOR THE

ANALYSIS OF WATER SUPPLY DISTRIBUTION NETWORKS

A.1. Introduction.

A.1.1. Need for efficient linear solvers in water distribution

network analysis.

From a mathematical viewpoint, we have already seen in Chapter

Two that the water distribution network analysis problem reduces

to the solution of a set of non-linear simultaneous equations;

different ways of assembling these equations lead to different

network analysis algorithms.

Because a direct solution for simultaneous non-linear systems

does not exist, the usual approach is to transform the problem

into a sequence of linear problems, whose solution approximates

step by step the solution of the original non-linear set.

As a result, for solving a non-linear system of equations we

have to solve a number of linear systems and consequently , very

efficient linear solvers are required in order to keep the

computational resources needed under a reasonable limit.

Thus, network analysis algorithms rely heavily on the solution

of linear systems of equations and, consequently, efficient

linear solvers which can take advantage of the particular

A-1

be stated as that of finding the "n 111 unknown values, x.'s1 ,	 in

features of the linear systems generated in network analysis are

needed. In the context of the gradient network analysis method,

we shall be especially interested in linear solvers for symmetric

Positive definite systems.

This Appendix presents a review of the methods currently

available for the solution of linear systems of equations.

Because most of the real water distribution networks generate

linear systems in the range of hundreds of unknowns, and since

the matrices produced are sparse (i.e. with very few non-zeros

per row), special consideration will be paid to those methods

allowing the efficient storage and handling of matrices of this

kind.

A.1.2. Different classes of linear problems.

In its most general format, the solution of a linear system can

the following system of "m" linear equations:

all xl + a12 x2 + a13 x3 + ... 4. aln xn = bl

a21 xl + a22 x2 + a23 x3 + ... 4" a2n xn = b2
(1)

:

ami xl + am2 x2 + am3 x3 + ...+ amn xn = bm

where the coefficients aij and the right hand side terms bi are

all known. These coefficients normally emerge from some physical

property of the system under study.

In order to simplify the notation we shall use, whenever

possible, capital letters to denote matrices, lower case letters

A-2

to represent vectors and greek letters to denote scalar numbers.

In some instances, when the use of lower and upper case letters

to differentiate vectors from matrices is not possible (or when

it is not convenient), for the sake of clarity we shall denote

vectors by an underlined letter (e.g.:P ,Q,H,h, g are all

vectors). Also notice that, in general, sub-indexed lower case

letters will represent scalars. Thus, the linear system (1) can

be expressed in matrix notation as:

where:

A

A x = b

a ll	 a 12 a 13		 aln
a21	 a22	 a23		 a21

aml am2 am3	 amn I

(2)

A	 : is the matrix of coefficients and it has "m" rows and

"n" columns,	 i.e.	 it is an (mxn) matrix.

x = (xi,	 x2,x3,	 xn)T

x	 : is the vector of unknowns, a column vector in the space

Rn ; this is a (n x 1) vector.

and

b = (bi, b2, b3,	 bm)T

b : is the right hand side vector, a column vector in the

space Rm ; this is a (m x 1) vector.

Depending on the relative values of "m" and "n", we may face

different kinds of problems:

i) Underdetermined systems of equations:

In this particular case m < n . Clearly, in this case we have

less equations than unknowns and the system has, in general, more

A-3

L 1 = a x l + b x2 + c = 0
	 Al. xi

system of equations. 	 system of equations.

x2

L3

x2

X1

x2

than one "exact" solution, by which we mean that the equality in

(1) or (2) holds.

A very simple example of an underdetermined system can be shown

in a 2-dimensional plane, as in Fig. A.1.

The straight line Li in Fig. A.1 a) represents a "system" of

just one equation in the unknowns xi and x2. The solution points

of this system are simply all the infinite points on Li.

In underdetermined systems it is possible to find two cases:

a) Homogeneous case: where the right hand side (RHS) vector b

is null (i. e. b = Q , or bi = 0 i=1,2, 	 n).

a)Non-homogeneous underdetermined b)Homogeneous underdetermined

c) Overdetermined system of
	

d) Determined system of
linear equations.	 linear equations.

Fig. A.1. Different linear systems of equations.

A-4

b) Non-homogeneous case: where some bi / 0 (at least one of

them must be non-zero).

In the previous example L1 represents a non-homogeneous problem

if and only if c 0. If c = 0, we are in the homogeneous case

and the straight line becomes L2 = a xi + b x2 = 0 , where L2

passes now through the origin, as shown in Fig. A.1. b)

In practice, it is not often that we need to solve an

underdetermined system of equations, but one of these cases

arises when, for example, we are trying to find an initial flow

distribution in a pipe network, where we need to guarantee the

fulfilment of the node balance; in this case, and using the

notation defined in Chapter Two (Section 2.3.7), we need to solve

the system:

A21	 = q	 (3)

where:

A21 = Al2T ; with Al2 the topological (connectivity)

matrix. Al2 is of order (NP x (NN-NS)), where NN

is the number of nodes, NS is the number of

sources and NP is the number of branches (pipes,

valves, etc.). Then, A21 is an ((NN-NS) x NP)

matrix.

Q : (NP x 1) vector of initial flows (unknown).
and

q : ((NN-NS) x 1) vector of nodal consumptions, which are

given as data. This vector can be zero or non-zero,

leading either to homogeneous or non-homogeneous

problems.

A-5

We shall not study in more detail the solution of this kind of

problem. O'Neil (1983) and George, Heath and Ng (1984), give a

more detailed treatment of this problem.

ii) Overdetermined systems of equations.

In this particular case we have m > n , i.e. we have more

equations than unknowns. No exact solution is possible and the

equality in (1) and (2) does not hold.

In the context of our small previous example, this can be

represented in a 2-dimensional space by a set of 3 straight lines

Li, L2 and L3, where it is clear that no single point can satisfy

simultaneously the 3 equations: point A represents the

simultaneous fulfilment of Li and L2, B that of Li and L3 and C

the corresponding to L2 and L3. See Fig. A.1. c)

The best we can do in an overdetermined problem is to find a

solution that minimizes the difference between the RHS vector and

the product A x. In other words we can minimize the residual

vector:
r =Ax- b	 (4)

A well-known technique for finding a solution to this problem

is the "least square" algorithm, where the unknown "x" is chosen

so that the square of the euclidean norm of "r" is minimized:

m n
2min 11 r 11 2 = rTr = E r 1 2 =	 - -E (E a	 x- - b i) 2	(5)j

i=1	 i=1 j=1

There is a wide variety of numerical methods available to solve

this problem, but we shall not include them here; for details see

for example Duff and Reid (1976), Golub and van Loan (1983).

A-6

In practice, as before, it is not common to have to solve

overdetermined systems in civil engineering problems.

Nevertheless, one example arises in estimation problems, when

using weighted least squares estimators with less parameters to

be estimated than the number of measurements available. With this

same kind of problem we can get an underdetermined system if the

number of measurements is less than the number of parameters to

be estimated and also, we can get a determined system when both

the number of measurements and parameters to be estimated

coincide. In either underdetermined or overdetermined systems,

because the matrices are not square matrices, their inverse does

not exist and the concept of "pseudo-inverse" or "generalised

inverse" is used instead; see Gelb (1974), Rao (1962) and Penrose

(1955) for details.

In the context of an explicit calibration algorithm for water

distribution networks [see Chapter Six], we have used a bi-cubic

splines approach to approximate the piezometric head of

unmeasured nodes, based on some measured heads. The estimation of

the coefficients of the spline polynomial leads to an

overdetermined system of equations, which is solved via the

least-square technique (normal equations); see Appendix C for

details on the cubic splines fitting.

iii) Determined systems of equations.

In this particular case m = n, then we have as many equations

as unknowns. The matrix A is said to be square of order "n" (or

.m”).

A-7

In the context of our small example in a 2-dimensional space,

the determined case corresponds to the problem of finding the

intersection of two straight lines L1 and L2: i.e. the

coordinates of point A: (xl*,x2*), as shown in Fig. A.1. d)

The condition for the existence of a solution is that A must be

invertible, this means that, from the mathematical point of view,

one of the following statements must be true:

a) The determinant of A is non-zero (i.e. A is non-singular).

b) The rank of the matrix is equal to the order of the matrix

(the rank is defined as the order of the largest submatrix

of A with a non-vanishing determinant).

A simple representation of a non-invertible A matrix, arises

when the straight lines of the previous figure are parallel.

Numerical difficulties are found when both lines are "almost"

parallel.

Most of the engineering problems involve the solution of

determined systems of linear equations, and different methods of

solution have been proposed, depending on the particular

properties of the matrix A (symmetry, sparseness, positive or

negative definiteness, etc.) and the computational resources

available.

Since real engineering problems lead generally to positive

definite systems, we shall concentrate our attention on methods

for solving such problems, although different methods are

available to solve systems of equations with indefinite matrices

A-8

[see Duff, (1980)].

The model problem for a determined linear system of equations

is:

Solve :	 Ax = b
	

(6)

where:

A : is a known non-singular square matrix of order "n",

b : a known (n x 1) column vector.

We need to find the vector x = (xi, x2,...., xn) T, which

satisfies equation (6).

The structure and numerical values of the matrix A and vector b

are usually obtained from a mathematical model of the physical

problem being studied.

From a strictly algebraic point of view, the solution of the

linear system represented by equation (6) can be easily obtained

if we know the inverse matrix of A, say A -1 , (A-1 is such that

A A-1 = A-1 A = I : the identity matrix); thus, premultiplying

equation (6) by A-1 , we get

A-1 A x = A-1 b
or

x = A-1 b
	

(7)

Although from the algebraic viewpoint the solution looks quite

simple, the process of inverting a matrix (especially a large

one, as is usual in many practical problems) is a very expensive

process, demanding a significant amount of work (n3 mathematical

operations) and storage (n 2 storage positions, since the

inverse matrix can be completely filled).

A-9

As we shall see, looking at the most computationally efficient

way of solving equation (6), the explicit inversion of A is not

needed and a variety of methods can be used, according to the

specific properties of A. If for some special reason the inverse

of the matrix is needed, the efficient way of doing it is through

the repeated application of our model problem (6), changing the

right hand side vector, but maintaining the matrix A.

A.1.3, Direct methods and iterative methods for	 solving

determined systems of linear equations.

From the numerical standpoint, a first sub-division of methods for

solving a linear system of equations like (6) arises:

a) Direct methods: where an exact solution of the linear system

is reached in a finite number of steps (or elementary arithmetic

operations), provided that no rounding errors exist.

Usually direct methods are associated with algorithms like

Gaussian or Gauss-Jordan elimination.

b) Iterative methods: where starting from an approximate

initial solution (say x = 0, or a better one if available), an

appropriate algorithm is applied in order to improve the initial

solution and obtain an approximate solution of the linear system.

In this case, the number of steps and elementary arithmetic

operations is not finite and it depends on various factors, e.g.:

on the algorithm used, on how approximate the final solution

required is, or on how close is the initial solution to the final

A-10

one.

In general, an approximate solution to the linear system at the

k-th step of the iterative process will be denoted by x (k) and is

such that:
A x (k)	 b
	

(8)

In this iterative context, we can define a residual vector

such that:

r = b - A x (k)	 (9)

and the iterative procedure for solving the linear system has

the goal of producing a residual vector whose norm (or "length",

roughly speaking) is smaller than some pre-specified value

(accuracy). In other words, the iterative process will be stopped

when the approximate solution x(k) produces a residual vector

whose norm is smaller than a pre-specified accuracy (scalar), say

E , i.e.

b - A x (k) = r	 such that lirli < E 	 (10)

x(k) will be the solution corresponding to this level of

accuracy. However, equation (10) relies on the definition of a

norm for the residual vector, which can be any one of a variety

of norms available in vector analysis, such as:

i) Euclidean norm :
11 r 112 = 1-1.7-17	 (11)

ii) Maximum norm : lIrII= max Ir i l	 (12)
1SiIn

iii) Weighted p-norm

11 111 p , w = (
i	

wi)(1/P)	 (13)
=1

Iterative methods for the solution of linear systems are

associated with algorithms like Jacobi, Gauss-Seidel, etc.	 We

A-11

shall review most of these methods in some detail in the next

sections.

In practice, and since computers do work with a finite word

length, direct methods do not produce exact solutions in a finite

number of arithmetic operations (effect of roundoff errors). As

a result, in the computational sense, all the methods are in

practice iterative. Nevertheless, we shall maintain the

distinction between both approaches since it is important from

the conceptual point of view.

The decision on which approach to be used depends on the

characteristics of the matrix A and the computer resources

available. Thus, it has been accepted for a long time that, for

sparse matrices, iterative methods are the best ones, both from

the storage and amount of work point of view; nowadays the

availability of efficient direct solutions challenges this

assertion. For dense matrices it has been accepted that direct

methods are the best choice [Conte & de Boor,(1983)], although

either big storage computers or special out-of-core data handling

routines should be available for really big problems. A

considerable amount of research has been carried out in the last

decade in this field, resulting in new efficient methods becoming

available, both in the direct and iterative fields.

Since water distribution network analysis using the gradient

method produces symmetric linear systems of equations, we shall

concentrate our search for efficient linear system solvers on

these special systems.

A-12

A.2, Review of direct methods for the solution of general dense

linear systems of equations.

A.2.1. Gaussian elimination.

i) Introduction.

The basic idea behind all kinds of elimination methods can be

expressed in the following terms. Let us suppose that we have a

linear system of equations such that:

T x = b	 (14)

where:

T : is a triangular matrix of coefficients, i.e.: only the

upper or lower part has non-zeros. Let us assume that

we are dealing with an upper triangular matrix U:

T = U	 (15)

then, the problem (14) can be represented as:

U x = b	 (16)

The system (16) is then of the form:

U11 x 1 4- u 12 x2 -I- u 13 x3 +	 	

U22 x2 .4 u23 x3 4-	 	

+ u 1n xn

4- u2n X

= b1

b2

U33 x3 + 	 + u3n xn = b3 -	 (17)

un-1n-1 xn-1 4- un-ln xn = bn-1

unn xn = bn

It is easy to see that, from the last equation of the system

(17), the solution for the last component of "x" can be obtained

in a direct manner:

A-13

xn = bn / U

Following the same idea, the (n-1)th component of x (i.e. xn_l)

can be computed directly from the (n-1)th equation of (17),

provided that we have computed xn from equation (18) previously:

xn-1 = (bn-1	 un-ln xn) / u n-in-1
	

(19)

The key here is that, since we know xn from equation (18), we

can eliminate it from the rest of the system; this is done simply

by sending the terms involving xn to the right hand side vector.

The same is valid for xn_i, after computing it via equation (19).

Following the same procedure, we can express any unknown, say

xk, in terms of the previously eliminated unknowns xk+i, xk+2, .

xn, via the following relationship:

xk = (bk - E ukj xj) / ukk	 (20)
j=k+1

Equation (20) defines an algorithm to eliminate successively

all the variables, producing the values of the "n" unknowns in

the linear system represented by equation (16). This process is

known as a Pack-substitution process. Back-substitution arises

from the fact that the matrix of coefficients in equation (16) is

upper-triangular. In the case of T = L, a lower triangular

matrix, equation (14) becomes:

L x = b	 (21)

and, instead of back-substitution, forward substitution can be

implemented following the same pattern as before, but in the

opposite direction, i.e. the order of the elimination starts with

xl, followed by x2, x3, etc. up to xn. The equation which

A-14

Number of divisions	 = n

Number of multiplications = n(n-1)/2 1 n(n+1)/2
-	 (23)

defines the forward substitution algorithm becomes:

k-1
xk = (bk - E 1jk xk) / lkk

j=1

where:

is the coefficient corresponding to row i and column j

of L.

It can be easily demonstrated that the amount of work demanded

by either backward or forward substitution is the same, and is

equal to:

Number of subtractions 	 = n(n-1)/2

(22)

Since normally we count the amount of work in terms of the

number of multiplications/divisions (dropping the additions and

subtractions), equation (23) leads to a simpler result which says

that the amount of work for the substitution process is of the

order of n2/2.

Also, it is easy to see that the solution of any triangular

linear system exists, provided that the diagonal elements

, (either ukk or lkk) are all non-zero, and that, in this case, the

solution is unique.

In summary, we have shown so far that, if we have a linear

system of equations where the matrix of coefficients is

triangular, then the solution for "x" is easily obtainable via a

substitution process.

A-15

Hence, to solve a linear system where A is a general matrix,

all we need to do is to transform it into a trianaular matrix,

since we already know that the rest is simply a substitution

step.

Gaussian elimination provides an algorithm for transforming a

general matrix into a triangular one. This algorithm is based on

the following theorem from linear algebra [Conte and de Boor

(1983)]:

On solving the linear system Ax = b we are allowed to perform

any of the following elementary operations:

- Multiplication of any equation by an arbitrary scalar.

- Add one equation to the multiple of any other.

- Interchange any two equations.

In so doing, we shall obtain a new system, say A* x = b*, which

is equivalent to the original one (Ax = b); i.e. the solution of

both systems is exactly the same (x).

Hence, we can use a combination of these elementary operations

to transform our original system Ax = b into another one A* x

b*, adding the additional condition that A*, the 'transformed

matrix, must be triangular (upper or lower).

From now on, and for simplicity, we shall assume that we want

to obtain an upper-triangular transformed matrix. It is

straightforward to see that the same reasoning is valid in the

case of a lower-triangular matrix.

A-16

To produce the upper triangular matrix from the original

matrix, all we need to do is to proceed column by column (though

a row by row approach is also possible), eliminating (i.e.

leaving a zero in) all the positions under the diagonal elements.

To do so, we are allowed to perform any combination of the

elementary operations mentioned before. This process finishes

with an upper triangular matrix.

An example helps to illustrate how Gaussian elimination works.

Let us suppose we want to solve the linear system:

	

2 xi + 3 x2 -	 x3 = 5

	

4 xi + 8 x2 -	 3 x3 = 3
	

(24)

	

-2 xi + 3 x2 -	 x3 = 1

The first step is to eliminate all those terms under the

diagonal corresponding to the first row (i.e. under 2 in the

upper left hand corner of the matrix, which is the so called

"pivot element" at this stage); using a combination of elementary

operations we get:

	

2 xi + 3 x2 -	 x3 = 5

	

2 x2 -	 x3-7
	

(25)
6 x2 - 2 x3 = 6

The second step is to eliminate the 6 under the diagonal of the

second row, which leads to:

2 xi + 3 x2 - x3 =5

	

2 x2 -	 x3-7
	

(26)
X3 =27

And we have got an upper triangular linear system, which can be

easily solved by back-substitution, leading to the solution:

X3 = 27
X2 = 10
xi = 1

A-17

This is the basic algorithm for Gaussian elimination, which can

be easily implemented in a computer. The only probable cause of

problems can be the eventual presence of zeros in the current

pivot element (at any stage of the elimination), in that case the

procedure breaks-down.	 Moreover, even if the pivot is not

exactly zero, but very small, the process can produce

unacceptable errors leading to a completely wrong solution. The

remedy to this stability problem is to determine a different

strategy for the selection of the pivot element.

ii) Pivoting strategies.

As far as the stability of Gaussian elimination is concerned,

when A is a general matrix, there are two main strategies for the

selection of the pivot, in order to avoid a zero (or nearly

zero) in the current pivot and to minimize the effect of rounding

errors: scaled partial pivoting and total pivoting.

a) Scaled Partial Pivoting: under this strategy we are allowed

to decide which equation (or row) will be picked up as pivotal

equation. Let us assume that we are at the k-th step, then we

shall choose the j-th equation as the new pivotal equation if and

only if the j-th element in column k is the largest one (in

absolute value), i.e.:

I wkjI 2 I wkil	 i=k,k+1,	 n i � j

Once the new pivotal equation has been found, we perform a

permutation between rows "k" and "j" and carry on with the

elimination of the elements under this new pivot. Notice that if

the original matrix is symmetric, this property is lost on

A-18

following this kind of pivoting.

In the previous example, represented by equation (24), partial

pivoting, as described before, is performed in the following

sequence:

Original system:

2 xi + 3 x2 - x3 = 5

	

4 xi + 8 x2 - 3 x3 = 3
	

(24)

	

-2 xi + 3 x2 -	 x3 = 1

The first pivot is found by looking at the first column and

finding out that the second row has the biggest (absolute value)

element. Then, the first and second rows are permuted, leading

to:

4 xi + 8 x2 - 3 x3 = 3

	

2 xi + 3 x2 -	 x3 = 5
	

(27)

	

-2 xi + 3 x2 -	 x3 =1

The elimination of the terms under the pivot produces:

4 xi + 8 x2 - 3 x3 = 3
-

	

	 x2 +1/2x3 = 7/2
	

(28)
7 x2 -5/2x3 = 5/2

Now, the second pivot is chosen looking at the second column of

the system (28); we have to choose between the second and third

rows, and we find that the third row is the new pivotal equation.

On permuting the second and third rows of (28), we get:

4 xi + 8 x2 - 3 x3 = 3

	

7 x2 -5/2x3 = 5/2
	

(29)
-	 x2 +1/2x3 = 7/2

Eliminating the term under the pivot (7), we get:

4 xi + 8 x2 - 3 x3 = 3

	

7 x2 -5/2x3 = 5/2	 (30)
2/14x3 = 54/14

A-19

Hence, the solution obtained via back-substitution becomes:

as before.

X3 = 27
X2 = 10
x l = 1

Scaled partial pivoting is a powerful complement of the

standard Gaussian elimination, which avoids most of the sources

of trouble of the original method, at a very low expense.

Although the example does not show the full advantages of

scaled partial pivoting in some "pathological" cases, such

examples are presented in the literature (e.g. Conte and de Boor,

(1983) chapter 4.3.)

b) Total pivoting (complete or full pivoting): in this case we

are allowed to decide which equation (row) and which variable

(column) will be picked-up as pivotal equation and pivot element.

Thus, we have now two degrees of freedom for choosing the pivot,

and the search of the pivot will be carried out looking both at

the columns and rows to the left and under the last pivot.

Obviously we shall choose that corresponding to the element with

the maximum absolute value.

In our previous example, represented by equation (24):

2 X 1 4- 3 x2 -	 x3 = 5
4 x1 + 8 x2 - 3 x3 = 3
	

(24)
-2 X + 3 X2 - X3 =1

When choosing the first pivot, we find out that the maximum

absolute value in the whole matrix is in the second row and

second column (8), then, we permute both first and second rows

and columns, obtaining:

A-20

8 x2 + 4 x i - 3 x3 = 3
3 x2 + 2 xi -	 x3 = 5
	

(31)
3x2 - 2 xi - x3 =1

The elimination of the elements under the pivot leads to:

8 x2 + 4 xi - 3 x3 = 3
1/2 xi +1/8x3 = 31/8
	

(32)
-28 xi +	 x3 =•1

We choose the second pivot looking at all the elements in the

second and third rows and we find that the new pivot is -28

(third row, variable xi), then we have to permute the second with

the third rows:

8 x2 + 4 xi - 3 x3 = 3
-28 xi +	 x3 =-1
	

(33)
1/2 xi +1/8x3 = 31/8

Hence, eliminating the element under the second pivot:

8 x2 + 4 xi - 3 x3 = 3
-28 xi +	 x3 =-1
	

(34)
8/3x3 = 216/7

which produces by back-substitution:

x3 = 27
X2 = 10
xi = 1

as before.

Although total pivoting is recognised as more powerful than

scaled partial pivoting, it is not frequently used, mainly

because of the additional amount of work involved, which is

relevant in large systems, since this involves a search through

the whole matrix .

iii) Amount of work and storage required.

The amount of work involved by Gaussian elimination is:

A-21

- Number of additions :	 (n3-n)/3

- Number of multiplications :	 (n3-n)/3 (35)

- Number of divisions :	 n(n-1)/2

Hence,	 we	 have

multiplications/divisions:

the	 following number	 of

n3	n2	 5n
(36)

3	 2	 6

and, as far as the amount of work is concerned, the Gaussian

elimination process is said to be of the order of n3/3.

Thus, the complete solution of a linear system via Gaussian

elimination plus back-substitution, requires the following amount

of work:

Stage
	

Additions
	

Multiplications/divisions

Factorization (n3-n)/3 n3 /3'+ n2 /2 - 5/6n
Substitution n2 /2 - n/2 n2 /2 + n/2

Total n3/3 + n 2/2 + 5/6n n3 /3 + n2 -n/3

As a result, we note that the solution of linear systems via

a sequence of Gaussian elimination and back-substitution requires

an amount of work which is, roughly speaking, of the order of

n3/3; the factorization process, i.e. the transformation of the

original matrix into a triangular one is the most expensive item

in the total cost.

As far as the cost of pivoting is concerned, scaled partial

pivoting requires of the order of n 2 comparisons, while total

p ivoting needs of the order of n 3/3 comparisons [Golub and Van

Loan (1983)].

A-22

Since the triangular matrix produced by Gaussian elimination

can be completely filled with non-zeros, the amount of storage

required is:

n(n+1)/2 = n2 /2 + n/2	 (37)

that is to say, from the storage point of view, Gaussian

elimination, for general dense matrices, requires of the order of

n2 /2 locations.

Because the explicit inversion of a matrix requires of the

order of n3 multiplications/divisions, it is now clear why

Gaussian elimination with substitution is a more efficient method

for solving linear systems. Indeed, we can produce the same

results with just a third of the work. From the storage

viewpoint, the solution of linear systems via Gaussian

elimination requires only a half of the storage needed for an

explicit inversion of the matrix.	 Unless it is specially

justified, matrix inversion should be avoided.

We have to emphasise that, in the evaluation of the work and

storage required presented so far, we have not taken into account

that, in some cases, the special structure of the matrix

(symmetry, sparseness) can be exploited, in order to reduce both

the amount of work and the storage needed . Since most of the

matrices produced in engineering applications have some special

feature, and since in particular, the matrices generated in the

context of water distribution analysis via the gradient method

are always symmetric and positive definite, then we do have to

take these properties into consideration, since we can get

important savings in the amount of computation and storage

A-23

zeros in all upper
triangular elements.

0

required.

iv) The product form of Gaussian elimination.

The whole process of Gaussian elimination can be understood as

a transformation process, from a general matrix A into a

triangular matrix. In fact, each step of Gaussian elimination can

be formally expressed as a transformation, which in this case

takes the form of the product of a matrix by another; in so

doing, the whole elimination process becomes just a sequence of

matrix operations. This concept is relevant from the practical

point of view, since it can lead to important savings in the

amount of work to be done, as will be shown in subsequent

sections.

Gaussian elimination is equivalent to premultiplying the

original system by a sequence of transformation matrices (Ti).

The structure of these matrices is such that, if we are

eliminating the terms under the diagonal of the j-th column, the

corresponding transformation matrix is of the following form:

j-th column

T j =	 1	 (38)

1

x 0 1
	

all diagonal elements = 1
zeros elsewhere 	 	 non-zero values

where the j-th column has indeed the following form:

A-24

1 j-1 zeros
j_th row

aj,j

-aj+2,j

aj,j

an ,j

aj , j

Note that the values of the coefficients aij are those of the

current matrix in the elimination process, rather than those of

the original matrix .

Thus, the original system is successively premultiplied by the

matrices Ti , i=1,2,...,n, such that:

Original system: A x = b

1 st step	 : Tl A x = Tl b

or	 Ai x = TI b

with	 Ai = TI A

2nd step	 : T2 Al x = T2 Tl b

or	 A2 x = T2 TI b

with	 A2 = T2 Al = T2 Tl A

n_th step	 : Tn An_i x = Tn Tn_i T2 Tl b 	 (40)

or	 An x = Tn Tn_i T2 Tl b 	 (41)

with	 An = Tn Tn_i T2 Tl A 	 (42)

After the n-th step, An must be an upper triangular matrix,

and the system (41) can be solved by back-substitution.

In the context of our previous small example [equation (24)]:

(39)

A-25

	

= [

1	 0	 0

	

-2	 1	 0

	

1	 0	 1
T 1 >	 Ai = T i A =

[

2	 3 -1
O 2 -1
O 6 -2I

2 xi + 3 x2 - x3 = 5
4 xi + 8 x2 - 3 x3 = 3
	

(24)
-2 xi + 3 x2 - x3 =1

The sequence of transformation matrices is:

For the first step:

For the second step:

	

T2 =[

1	 0	 0
O 1	 0	 -->
O -3	 1 i

A2 = T2 T I A =

[

2
0
0

3	 -1
2	 -1
0	 1

Note that the matrices Tj are highly sparse and that they can

be handled implicitly with a vector of length "n".

The practical importance of the product form of Gaussian

elimination lies in the fact that, if we need to solve different

linear systems with the same matrix of coefficients, for example:

A x = b

Ay =c

Az = d

then, in this case, all we need to do is to transform the matrix

A into:

An = Tn Tn i 	 T2 Ti A

and apply back-substitution to the transformed systems:

An x = b*
An y = c*
An z = d*

with:
b* = Tn Tn_iT2 TI b

c* = Tn Tn_iT2 TI c

and
	

d* = Tn Tn_iT2 TI d

A-26

	[1

	 0	 0
T =	 -2	 1	 0	 = T2 T l (note that T3 = I)

7 -3 1

Hence, in this case, we can compute and store a transformation

matrix:

T = Tn Tn_iT2 Tl	 (43)

with Tj as specified in (38) and (39), which can be used as

many times as different right hand side vectors are given to us.

As can be seen in our small example, the matrix T takes the form:

which is a lower triangular matrix with l's in the diagonal.

Another immediate application of the product form of Gaussian

elimination is matrix inversion , since this problem can be

formulated as the solution of "n" linear systems of the form:

A x(i) = e (i)	 (44)
where:

are the columns vectors of the matrix A-1.

e (i) : are vectors of the form (0,0,...,1,...,0)T ,i.e. null

vectors with a one added in the i-th position.

Hence, we need to solve "n" times the same linear system, with

"n" different right hand side vectors; the corresponding "n"

solution vectors are assembled by columns to produce the inverse

matrix:

A-1	 = [x(1) : x(2) 1 ...	 x(n)]	 (45)

v) Gaussian elimination as a LU decomposition.

Gaussian elimination can also be interpreted as an equivalent

triangular decomposition of the matrix A, since when multiplying

T A we are actually getting an upper triangular matrix, say U

T A = U
	

(46)
then,	

A = T-1 U
	

(47)

where T-1 is a lower triangular matrix: L , such that:

L = T-1	 (48)
and then

A = L U	 (49)

in terms of our small example:

	

[1

	 0	 0 1
L = T-1 =	 2	 1	 0

	

-1	 3	 1

and

	

2	 3 * -1 I
	U = [0	 2 -1

	

0	 0	 1

Hence, Gaussian elimination is closely related to a family of

factorization methods, which shall be reviewed in subsequent

sections.

A.2.2. Gauss-Jordan elimination.

i) Introduction.

Gauss-Jordan elimination is similar to Gaussian elimination,

the difference being that instead of producing a triangular

matrix, eliminating only the non-zeros below the diagonal, we can

carry on the elimination both below and above the diagonal,

performing as many elementary operations as needed, until we get

a transformed matrix which is an identity matrix .

A-28

zeros everywhere
except j-th column
and diagonal.

(50)

j-th column

1 0 x1

1

ii) The product form of the inverse.

In a similar manner to Gaussian elimination, Gauss-Jordan

elimination can be explained in terms of the product of a

succession of transformation matrices Tj*.

The structure of these transformation matrices is now the

following:

all diagonal elements = 1
non-zero values

the j-th column has the following form:

-a1
•j

ai,j

-a23j

a it j

1

-an-1,j

aj,j

an,j

a-	 •
.33.]

(51)

A-29

Equations (50) and (51) are for Gauss-Jordan, as equations (38)

and (39) are for Gaussian elimination.

Note that the values of the coefficients au j are those of the

current matrix in the elimination process, rather than those of

the original matrix.

Thus, the successive premultiplications are carried out in the

following sequence:

Original system: A x = b

1 st step

or

with

2nd step

or

with

n-th step

or

with

Ti* A x = Ti* b

Al* x = Tl* b

Al* = Tl* A

: T2* Al* x = T2* Tl* b

A2* x = T2* Tl* b

A2* = T2* Al* = T2* Tl* A

Tn*	 x = Tn* Tn_i*	 T2* Ti* b

An* x = Tn* Tn_i* T2* Tl* b

An* = Tn* Tn_i* T2* Tl* A

(52)

(53)

(54)

after the n-th step, An * must be an identity matrix and the

solution is exactly the current right hand side vector, hence no

back-substitution is needed, i.e.:

An* = Tn* Tn_1* T2* Tl* A = I
	

(55)

then:
A-1 = Tn*	 T2* Tl*
	

(56)

this is the so-called product form of the inverse of the matrix

A.

Gauss-Jordan elimination provides us with another way to build-

up	 the	 inverse of a matrix by simply multiplying 	 " ..n

A-30

transformation matrices of the form of Tj*, which are very

sparse.

The amount of work needed for Gauss-Jordan elimination is:

- Number of additions 	 : n 3 /2 - n/2

- Number of multiplications : n 3/2 + n 2 - n/2

- Number of divisions	 : n

Since the inverse of a matrix can be a completely filled

matrix, the storage requirements are n 2 positions.

As before, in the case of Gaussian elimination, the usefulness

of Gauss-Jordan elimination for the repeated solution of linear

systems which differ only in the right hand side vector is quite

clear, with no need for further explanation.

A,2.3. Matrix factorization methods.

i) Introduction.

We have already seen that Gaussian elimination is, in essence,

equivalent to factorizing the matrix of coefficients into the

product of a lower and an upper triangular matrix, although in

the standard Gaussian algorithm both matrices are not explicitly

determined.

In fact we can follow different strategies for obtaining this

factorization, each one leading to a different direct method for

the solution of linear systems of equations. We shall review

some of these factorization (or decomposition) strategies in the

following sections.

A-31

The common idea behind any factorization strategy is that

instead of having to solve the original system:

A x = b	 (57)

if we factorize A as:

A = L U	 (58)
where:

L is a lower triangular matrix.

U is an upper triangular matrix.

then, because the original problem is now

LUx= b
	

(59)

if we define:
U x = y	 (60)

where y is an auxiliary vector, the solution of the original

system for x, can be split up into two substitution stages:

a) Forward substitution:

solve	 L y = b	 (61)

determining "y", and

b) Backward substitution: with "y" already known

solve equation (60)	 U x = y

determining "x", the original unknown.

Of course, this two stage process can be effectively used for

solving multiple right hand side problems, where we only need to

factorize the original matrix at the beginning, the rest being

just a succession of forward and backward substitutions.

ii) LU triangular factorization (Crout method).

In this case the lower-upper triangular factorization takes the

following form:

A = L U	 (62)

A-32

or:

a ll a12	 aln
a21 a22 ".. a2n

anl an2	 ann

	ull u12	 uln

	

U22	 u2n

unn1
•

(63)

where:

A : is a general unsymmetric matrix of coefficients.

L : is a lower triangular matrix whose diagonal elements are

all 1.

U : is an upper triangular matrix.

Under these conditions, L and U are unique factors.

From equation (63) it can be seen that a recurrent scheme can

be devised to compute the elements of the factors L and U, from

the original elements of A.

On multiplying the first row of L by the columns of U, and

identifying it with the first row of A, we find that the first

row of U is simply the same first row of A and no computation is

needed, i.e.:

u l i = ali	 V i=1,2,. ..,n	 (64)

The following step is to determine the elements of the first

column of L; in this case, multiplying the first column of L by

the first row of U and identifying the result with the first

column of A, we get:

	

ull = ail	 V i2,3,.. .,n	 (65)

then,

	

lii = a11/u11	 V i2,3,. ..,n	 (66)

At this stage we are able to compute the second row of U, by

A-33

multiplying the second row of L by the columns of U and

identifying the result with the second row of A, to obtain:

1 21 u li + u2i = a21	 II i=2,3,...,n	 (67)

then,

u2i = 82i - 121 uli	 V i=2,3,...,n	 (68)

Following the same pattern, the whole set of elements of L and

U can be computed. Since we need to compute the terms l/uii, the

algorithm breaks down when uii = 0 . Also, the stability of the

method can be affected when a very small uii is found. As in

Gaussian elimination, partial or complete pivoting can help to

stabilise the algorithm.

The amount of work demanded by this L U factorization is:

- Number of multiplications : n 3 /3 - n/3

- Number of divisions 	 :n

- Number of additions	 : n 3 /3 - n2 /2 + n/6

Having determined the factors L and U, the solution of the

linear system requires a forward and a backward substitution

which, as we already know each substitution requires n(n+1)/2

multiplications/divisions, giving a total of n 3/3 + n2 +2/3n

multiplications/divisions for the solution of the linear system

(factorization plus substitutions), which is basically the same

amount of work needed for the Gaussian elimination process. The

storage required is n 2 positions.

iii) L LT factorization.

In the particular case when A is symmetric and positive

definite, it can be seen that Crout's method leads to a symmetric

A-34

[

1
-'" 1 21	 1

1n1 1n2 ..	 1

d 11
d22

'

1	 11 12 ui-in
1 u2n

1. dnn

.N.

(71)

decomposition:

A =LU=L LT	(69)

where U = LT is the transpose of L.

The amount of work is reduced to almost one half (n 3/6 + n2/2

multiplications/divisions in the factorization stage) and the

storage requirements are also halved.

Of course, the solution of a linear system using this symmetric

decomposition demands a forward and a backward substitution, as

before:

- Solve L y = b for y

- Solve LT x = y for x

We shall return to this kind of factorization later on, when

dealing with Cholesky factorizations.

iv) L D U factorization.

An extension of the LU factorization consists of decomposing

ever further the upper triangular matrix defined in equation

(63), into the product of a diagonal matrix (D) and an upper

(unit diagonal) triangular matrix:

A = LDU	 (70)
or:

_

all a12 aln
a21 a22 a21 =

anl an2 .." ann_	 -

A-35

where:

A : is a general non-symmetric matrix of coefficients.

L : is a lower triangular matrix whose diagonal elements are

all 1.

D : diagonal matrix

U : is an upper triangular matrix whose diagonal elements

are all 1.

Thus, instead of solving the original system:

A x = b	 (72)

we are solving:
LDUx= b	 (73)

and in this case the solution involves a three stage process:

a) Forward substitution:

solve	 L z = b	 (74)

for z, an auxiliary vector

b) Diagonal inversion:

solve	 D y = z	 (75)

for y, by computing directly

y = D-1 z (76)

this stage demands only n divisions, due to the fact that D

is diagonal.

c) Back-substitution:

solve
	

U x = y	 (77)

for x, the original unknown vector.

For the factorization, the algorithm requires n 3/3 + n2/2 + n/6

multiplications/divisions. The advantage of this kind of

factorization over LU factorization, becomes apparent in the

handling of storage and in the implementation of the algorithms.

A-36

More details can be found for example in Golub and Van Loan

(1983), algorithm 5.1.1.

v) L D LT factorization.

If the matrix of coefficients of the linear system is a non-

singular symmetric matrix, it can be proved [Golub and Van Loan

(1983), theorem 5.1.2.] that in the L D U factorization the upper

triangular matrix U is equal to the transpose of the lower

triangular matrix, i.e.:

=LT
	

(78)

and
A = L D LT	(79)

It is easy to see that the amount of work for the decomposition

stage now reduces to almost half of that of the L D U

decomposition (n 3 /6 multiplications/divisions, approximately),

i.e. it is almost the same amount of work needed for the L LT

factorization.

Of course, the solution of the linear system demands successive

forward substitution, diagonal inversion and backward

substitution, in a similar way as in the case of the previous

L D U decomposition.

From the stability point of view the decomposition is not

numerically stable and the condition of non singularity of A

does not seem to be sufficient, a more restrictive condition is

needed. An example provided by Gill, Murray and Wright (1981) is

useful to illustrate this problem:

A-37

d 11
d22

dnn

lii
'21 '22	 •

1n1 1n2-1nn

111 112-11n
122-12n

(81)

inn

	

the matrix A = E	 1

	

1	 E

has a L D LT factorization given by:

L
 = [

1,	 D = [E	 0	 and LT =	 1 1/1
1/E 1	 0 E-1/E	 0	 1

hence, for E << 1 the elements of the factors can become very

large.

vi) Complete Cholesky factorization.

If we have, as usually occurs in engineering problems, a

symmetric positive definite matrix A, the L D LT factorization

previously seen has the property that all diagonal elements of D

are strictly positive [see theorem 5.2.1, Golub and Van Loan

(1983) for a proof] and then, two alternative decompositions can

be developed:

a) L D LT Cholesky complete decomposition.

The matrix of coefficients of the linear system of equations

can be decomposed as:

A = L D LT	(80)

that is to say:

all a12	 aln
a21 a22	 a2n

anl an2	 ann.

where:

A-38

then,

!. 11 "i11

L* =
-,L 21
'31

11
u 11

L* = L D	 (82)

1 22 1-22 ,	 A
1 32 '22 '33 '33 (83)

111112.—.11n1

(84)
'21 uli

1n1 dll

122.d22

1	 ei-n2 -22.....lnn dnn

122..."2n

inn

aij = aji, since the matrix A is symmetric, and

> 0 V i=1,2,.. .,n

An algorithm for the computation of the elements of L and D can

be developed in a constructive fashion, considering first the

product of L D as:

1n1 d11 1n2 d22 1n3 d33 	 1	 dnn

Thus, A = L D LT = L* LT , and it takes the form:

all a12	 aln
a21 a22	 a2n

anl an2	 ann

To determine the elements lij and dij we have to multiply the

elements of L* by those of L T and identify the results with the

corresponding elements of A. In so doing, we find that we have

one degree of freedom at our disposal, for example, we can impose

the condition that all the diagonal elements of L* are 1:

liidii = 1	 V i=1,2,. .,n	 (85)

and then the algorithm becomes:

Step 1 : Compute for j=i

i-1
lji = aij - E

k
lik ljk dkk	 (86)

=1

A-39

(at the beginning j=i=1 and lji=aij, then 111a11)

Step 2 : Compute

= (lii) -1	(87)

[this is due to equation (85)]

the algorithm is stable at this stage, since if A is

positive definite then liiX 0 V i

Step 3 : Compute

lji for j > i , using equation (86).

The amount of work required for the decomposition stage is of

the order of n3 /6 + n2 multiplications/divisions.

A couple of examples will illustrate the main features of the

algorithm. First of all, an example with a symmetric matrix which

is not positive definite will be considered, in this case we know

in advance that the algorithm is not applicable:

Solve	 [21
1
2 3

0
1 [x

x
l	 [

3
61

2 =
3 0 3	 x3	 6

determinant of A =-18, then the matrix is negative.

the factorization algorithm gives:

131 = 3

1 22 = 1-1 11 2 dll = 1 - 1 = 0

d22 = 1/0	 not defined !!, so the factorization is not possible.

An example where the factorization is possible is:

A-40

A LT

1.

d
11

1/2
D1/2 =	

d2 2
1/2

•
d
nn

1/2

(89)

Solve	 2 2 1 I [xl
2 5 2 . x2 = b
1 2 1	 x3

determinant of A = +1, then the matrix is positive definite

the factorization algorithm gives

2
2
1

2
5
2

1
2
1

=
2
2
1

0	 0
3	 0
11/6

.
1/2
0
0

0	 0
1/30
06

.
2
0
0

2
3
0

Note that d i i > 0	 V i ; also lij > 0 V i,j.

b)	 R RT Cholesky complete factorization (square	 root

factorization).

Using the fact that if A is symmetric and positive definite

then D is also positive, then the factorization:

A = L D LT

can be expressed as:

where:

A = L D1/2 D1/2 LT (88)

The matrix D I /2 exists since D is positive, the square roots in

equation (89) being the reason for the restriction of

positiveness in D.

Then, A can be expressed as:

A = R RT	(90)
where:

R = L D1/2

and	 ET = D I /2 LT

A-41

which	 is	 exactly	 the same L

before.

LT	factorization	 we	 obtained

The	 algorithm can be derived from the fact that equation 	 (90)

is of the form:

'11 '12	 '—'	 '1n r11
"21 "22 — "2n

[

= r21 r22 r11 rg....1:gr

anl an2 — ann rnl rn2 — rnn

(91)

Then, multiplying R RT and identifying with A term by term,	 we

get (note that rij = r ji , because A is symmetric):

all = r 11 2	 	 >	 rll = (all)1/2

al2 = r 11 r 12	 	 >	 r12 = al2 / rll

amn = rim r in	 	 >	 rin = amn / r ll .

a22 = r 12 2 + r22 2 	
>	 r22 = (a22 - r122)1/2

etc.

This is a row-oriented version of the Cholesky factorization

and, of course, a column-oriented algorithm can be derived

following the same pattern; see for example Golub and van Loan

(1983), algorithm 5.2.1., which is efficient since the elements

au j are overwritten by rij (i a j).

The algorithm requires n 3/6 multiplications/divisions and

additions, and n square roots. If A is not positive definite, the

terms under the square root become negative and the algorithm

breaks down. Our previous non-positive small example helps to

illustrate this point:

Solve

A-42

21 21 03 1 . Hx21	 61 = [31

the determinant of A =-18, then the matrix is negative.

the factorization al gorithm gives:

rll = (1)1/2
	

r ll =

rll r12 =2	 r12 =2

= (1 _ 22)1/2r12 2 4- r22 2 = 1 ---- >	 r22	 not defined !!

The main advantage of this version of Cholesky factorization is

the fact that no permutations are needed to ensure stability,

like in Gaussian elimination with pivoting. This is due to the

step in the algorithm, where the diagonal elements are computed:

E rik2 = akk	 V k=1,2,.. .,n
i=1

which implies that the terms rik cannot grow indefinitely (like

in the example of the L D LT factorization) and their maximum

limit is indeed (akk) k . This is always true. even if a very small

pivot is found during the factorization. The implications of this

will become clearer when dealing with direct sparse methods,

because it will allow us to concentrate on reducing the creation

of fill-in, without having to worry about stability.

vii) Orthogonalization methods.

A completely different alternative to Gaussian elimination

methods is the use of orthogonal factorization. A number of

orthogonal methods have been proposed, all of them exploiting the

fact that, in an orthogonal matrix, say Q, the product Q TQ is the

A-43

identity matrix; i.e. the inverse of an orthogonal matrix is its

transpose.

As a result, if we want to solve our model problem A x = b and

if we are able to factorize A such that:

A = Q U	 (92)

where:

Q is orthogonal

U is an upper triangular matrix

then, the linear system becomes:

	

QUx= b
	

(93)

and premultiplying by QT, we get:

	

U x = QT b
	

(94)

where a back substitution determines the unknown "x".

There are thus as many methods as factorizations that can be

imagined.

The main advantage of all these methods is that they are

especially well suited for ill-conditioned problems, where the

matrix A becomes singular or nearly singular.

A method of this kind is the "singular value decomposition",

briefly described by Press et al. (1986), where a FORTRAN

implementation can be found. A more detailed description is

provided by Golub and Van Loan (1983).

Unfortunately, these methods are much more costly than Gaussian

elimination [Reid et al. (1986) reported at least twice the

arithmetic cost of Gaussian elimination]. On top of that, the

methods are not efficient in handling sparse matrices, since the

A-44

orthogonal factors get a great deal of fill-in. Because of these

reasons, orthogonal methods are not widely used, their use being

restricted to solve ill-conditioned problems.

A.2.4. Comparison of the different algorithms for the direct

.solution of general dense linear systems.

We have briefly reviewed most of methods for solving general

dense linear systems of equations, the main algorithm being

Gaussian elimination, while all the rest can be understood as

variations of that method.

Because the main objective in this section has been to

introduce the basic ideas behind the solution of linear systems

of equations, for the particular case of general dense matrices, -

we have avoided a number of details and we shall maintain the

same policy in this comparison. This is due to the fact that most

of the methods we are interested in are described in the

following sections, since sparsity is a feature that must be

explicitly considered when solving efficiently linear systems

arising from water distribution network analysis.

Because all the methods described so far can be programmed to

overwrite the original matrix of coefficients, the storage ceases

to be relevant in comparative terms. Hence, the amount of work

and stability remain as the only relevant factors of the

comparison.

Table A.1 summarises the amount of work and storage

requirements of the different algorithms reviewed. From a

A-45

Table A.1. Comparison of the algorithms used in the direct
solution of dense linear systems of equations.

Algorithm	 Matrix	 Multiplications/divisions

Substitution:	 Triangular

back or forward

— — — —

Gaussian	 Unsymmetric

elimination

Amount	 of	 work	 required

Additions/subtractions

n
2
 + n	 n

2
 - n

2	 2	 2	 2

1	 2
n' + n	 -5 n	 n

3
 - n

3	 2	 6	 3	 3

Storage required

Positions (*)

n
2

2

Notes

Pivoting and permutations

needed for stability .

Gauss elimin.	 Unsymmetric

+ substitution

Gauss-Jordan	 Unsymmetric

elimination

n
3
 + n2 -In

3	 3

n
3
 + n

2
-1 n

2	 2

n
3
 + n

2
- 5n

3	 2	 6

n
3
 - n

2	 2

n
2

2

n
2

Idea

Ides

L U	 Unsymmetric

factorization

n
3
	-I n

3	 3

n
3
 - n

2
+ n

3	 2	 6

n2

L U factoriz.+	 Unsymmetric

back+forw.subst.

,n3 + n2 +‘ n

3	 3

n'1 + n2 - 5 n

3	 2	 6

n
2

L L
T 	

Symmetric

factorization	 Pos.Defin.

' n
3

+ n
2

6	 2

' n
3

+ n
2.

_

6	 4

n
2

2

Good from the stability

point of view.

LL
T

factoriz.+	 Symmetric

back+forw.subst. Pos.Defin.

' n
3

+3n
2
 + n

6	 2

' n
3

+5n
2
 - n

6	 4

n
2

2

L ou	 Unsymmetric

factorization

n
3
 + n

2
+1 n

3	 2	 6

n3
 - n

2
+ 1 n

3	 2	 6

n2

LOU factoriz.+	 Unsymmetric

back.+diag.inv+

forw.substitut.

n
3
 +3n

2
 +13 n

3	 2	 6

n
3
 + n

2
- 5 n

3	 2	 6

n
2

L D L
T	

Symmetric

factorization	 Pos.Defin.

!	 n
3

+ n
2

+ n

6	 2

' n
3

+3n
2
 - In

6	 4	 2

.
n

2

2

LDI
T
 factoriz.+	 Symmetric

back.+diag.inv+	 Pos.Defin.

forw.substitut.

' n
3

+ 2n
2
 +5 n

6	 2

' n
3

+ 7n
2
 - 3 n

6	 4	 2

,
n

2

2

Explicit	 Unsymmetric

inversion

n
3

-1 n
3
 - 2n

2
 + n n

2

Notes:

01 It does not consider the fact that most of the algorithms can overwrite the original matrix.

A-46

comparative point of view we can say that:

a) The explicit inversion of the matrix should be avoided when

solving a linear system, unless it is explicitly needed for other

purposes; in the latter case the product form of the inverse

should be used since only requires of the order of n3/2

multiplications and divisions.

b) When solving non-symmetric linear systems, Gaussian

elimination either with partial or full pivoting can be the best

choice, with Gauss-Jordan elimination being more expensive than

Gaussian elimination. L D LT factorization presents some

stability problems and should be used with due care.

c) When solving multiple right hand side linear systems, a

factorization of the matrix A is imperative, since this allows the

solution for the different right hand sides with additional

forward and backward substitutions.

d) For symmetric positive definite systems, the complete

Cholesky factorization (square root method) seems to be the

best choice, both from the stability and amount of work

viewpoints. Symmetry must be exploited, since this reduces both

storage and amount of work by 50 % .

e) For ill-conditioned problems try a method based on

orthogonalization.

i) Introduction.

Although we have defined "direct methods" as those where an

exact solution is reached in a finite number of elementary

mathematical operations, in practice and due to the fact that all

computers have a fixed word length, which determines its maximum

accuracy, exact solutions are never reached. Then, there are no

exact olutions just approximate solutions.

Two main sources of error can be identified when solving a

linear system of equations like:

A x = b	 (95)

a) Both the coefficients of the matrix A and the right had side

vector b are computed based on some physical properties of the

problem under study. As a result, both A and b are subject to

errors in their estimation. This means that in practice we are

dealing with a system like:

(A + SA) x = (b + Sb)	 (96)

where:

SA : error in the estimation of the matrix of coefficients, which

is another matrix of the same order of A.

Sb : error in the estimation of b, which is another vector of the

same order of b.

b) The second source of error appears even if we have exact

estimates for A and b, and is due to rounding errors in the

process of determining the vector x (Gaussian elimination or

whatever method we are using).

A-48

Depending on the sensitivity of the solution for the unknowns

x, either with respect to small changes in the coefficients of A

and b or with respect to the solution process, we may be dealing

with a well-conditioned problem (if the sensitivity is small) or

with an ill-conditioned problem (if the system is highly

sensitive to these changes). In the next sections we shall define

more precisely the terms well-conditioned and ill-conditioned. In

general, ill-conditioned will refer to systems which are close to

being singular.

The main aim of this section is to find ways and means to

assess if the computed solutions are accurate and, eventually,

how to improve them.

ii) Effect of roundoff errors.

Let us assume that our estimation of A and b is exact. Then, we

know that, because of roundoff errors, any computed solution is

approximate, irrespective of whether it has been computed via a

direct or an iterative method. The question to be resolved is how

accurate is that computed solution.

Let R be the approximate computed solution of the system (95),

then we can define the error of our computed solution as:

ex- R	 (97)

Such an error cannot be computed directly from equation (97),

since we do not know the value of the exact solution x.

A-49

If we premultiply our computed solution by the matrix A, we

shall obtain a vector (i.e. A R), which is not exactly the

original right hand side vector b; the difference between both

will be referred to as the residual r:

r =b-AR	 (98)

The residual can be directly calculated from the computed

solution R, and from the right hand side vector b (which is

known).

Then, the residual tells us, in an indirect way, how far is the

computed solution from the exact solution.

The error and the residual are closely related. In simple

terms, it can be seen that if the residual is zero, then it means

that our computed solution is exact and the error is zero as

well. But the question still remains open in terms of whether a

small residual is synonymous with a small error or not.

iii) An algorithm to compute the error: iterative improvement

(iterative refinement).

To find a direct relationship between the error and the

residual, we have to introduce equation (95) into equation (98):

r =b-AR=Ax-AR	 (99)

then, factorizing by A:

r = A (x - R)
	

(100)

which, by equation (97) becomes:

r = A e
	

(101)

A-50

Hence, once we know the residual (r) produced by the computed

value (R), we can compute the error (e) by simply solving the

following linear system:

A e = r	 (102)

which is basically the same original system, but now with a

different right hand side vector.

As we saw in previous sections, the solution of the linear

system (102) can be obtained very easily if we have stored the

original factorization of A from the solution for R and, in so

doing, implies (n2+n) multiplications/divisions plus (n2-n)

additions. Having calculated the error e, a new estimate of the

vector x can be computed by:

Rnew = 2 + e	 (103)

The process can stop here if Ile11/11xii is smaller than a pre-

specified accuracy, otherwise a new residual can be computed

assigning Rnew to R and repeating the previous sequence from

equation (98) up to equation (103).

This is the iterative improvement procedure and it should

converge to the exact solution, provided that the matrix A is

well-conditioned. A high rate of convergence in the iterative

improvement procedure is a good indication of a well-conditioned

system.

In the previous computations, since the residual (r) becomes

very small, its computation normally involves the use of double-

precision arithmetic.

A-51

iv) Estimating limits for the error.

Returning to the question of the relationship between residual

and error, equation (102) can be written as:

e = A-1 r	 (104)

This relationship can be understood in the sense that e is

proportional to r, with a proportionality constant represented by

A-1 ; unfortunately, we do not know A -1 . Furthermore, we do not

have a way for measuring the "size" of a matrix, if this size is

going to be used as a proportionality factor. The latter problem

is solved in a similar way as in the case of defining the "size"

of a vector, i.e. using the concept of "norm", but this time

applied to a matrix:

II All = max
II Ax II	

(105)
x	 11 x II

where the maximum is considered over all non-zero (nxl) vectors

and A is a (nxn) matrix.

Again, as in the case of vector norms, we can have different

matrix norms: euclidean norm, maximum norm, etc.

On using the following property of norms:

11 A B II	 11 A 1111 B 11

and considering equation (104) we get:

11	 e 11	 11A-111	 11	 r 11

but, on applying the same to equation (101), we get:

11	 r II	 II	 A 11	 lie uI

which can be reordered as:

(106)

(107)

A-52

(112)

(113)

II	 r	 II
1	 II	 e 11

II	 All

Hence, upon combining equations (108) and (106) we get:

II	 r	 II
1	 II	 e 11	 S IIA -1 11	 11	 r 11

(108)

(109)

From equation (109) we can obtain lower and upper bounds for

the relative error (11e11/11x1I) in terms of the relative

residual (
II

r1 I /I I 131 I)

II	 b II	 II	 r II c	II	 e II	 4	 II A -1 11	 II	 b II	 II	 r II
(110)

II	 A II	 II	 x II	 II	 b II	 II	 x II	 II	 x II	 II	 b 11

But, from equation (109), for the particular case when R=42,

where e = x and r = Ax = b, we get:

II	 A II

This means that, from the second part of (111):

ii	 x	 II
1 IIA-111

II	 b	 II

and, from the first part of (111):

II	 b II
1	 II All

II	 x II

Introducing equations (112) and (113) into equation (110)

gives:

1	 II	 r	 II	 II	 e 11	 II	 r II
1	 S IIA - 1 11 II A 11	 (114)

II	 A II	 II A -1 11	 II	 b II	 II	 x II	 II	 b II

II	 b II
1	 II	 x II	 1 11 A 'hl	 II	 b II*

A-53

Equation (114) defines the lower and upper limits for the

relative error 11e11/11x11'

The quantity I I A ll 11A- 1 11 is defined as the condition number

of the matrix A:

Cond (A)	 11A11 IIA-111	 (115)

The condition number depends on the norm being used (euclidean,

maximum, etc.), but it is always greater than 1.

For the particular case when Cond (A) = 1, equation (114)

becomes:

I I	 r I I	 s II	 e II	 II	 r II
	

(116)

II	 b	 II	 II	 x II	 II	 b II

which means that, in this case, the relative error	 is

approximately the same as the relative residual. But, the greater

the condition number, the less the information brought by the

relative residual on the relative error.

In practice, the condition number is difficult to obtain,

because the inverse matrix is usually not available.

The simplest estimate of 11e11 is the scalar 11811, where 8 is

the solution of equation (102): A e = r.

An ill-conditioned system has a "large" condition number, where

the value of "large" must be defined according to the particular

computer being used. A large number is normall y greater than 107

in single precision and greater than 10 16 in double precision.

A-54

v) Effect of the errors in the matrix of coefficients.

Let us assume that the right hand side vector has been

estimated accurately, then we are solving:

(A + SA) x = b	 (117)

where:

SA : matrix containing the error in the estimation of A.

Let:

A = A + SA (118)

be the estimated A matrix, and R be the computed solution of

equation (117), then:

A R = b	 (119)

From equation (95):

x = A-1 b	 (120)

and introducing equation (119), we get:

x = A-1 A R	 (121)

but
A =A+A- A	 (122)

and equation (121) becomes:

x = A-1 (A+A-A) R	 (123)
or

x =R + A-1 (A-A) R	 (124)

recalling that SA = A - A, from (118), and introducing it into

equation (124), we get, after reordering:

x - R = A-1 (SA) R .	 (125)

Then, using the norm property: IIA BII i IIAII IIBII, we get:

II x-51 II � H A-1 1i II sti II II RII	 (126)

but,
II SA II

11 A-1 11 	 II	 8A II	 II	 11	 =	 11 A-1 11	 ll A ll	 	 11 All
II	 A II

A-55

and so, equation (126) becomes:

x-kIl
� I I

A_11,
	 All

11 SA II

11 51 11	 II	 A II

that is to say:

II x -	 II
	 S	

SA I
Cond (A)

II	 I

011	 II A

(127)

(128)

Equation (128) establishes that the greater the condition

number of A, the greater the effect of the relative errors of the

coefficients of A in the relative accuracy of the solution.

In addition, from equation (128), we know that if our

estimation of the matrix of coefficients is accurate just up to

the s-th decimal, and if Cond (A) .11 10t then, the maximum

possible relative accuracy for x is 10 t-s ; there is no point in

trying to get a better solution because of the limited quality of

the original data.

vi) Concluding remarks.

We have seen that computer solutions of linear systems of

equations are in essence approximate, independent of whether the

solution has been produced via a direct or an iterative

algorithm.

The relative error depends on the condition number of the

matrix of coefficients but, because condition numbers are

difficult to estimate, a good and simpler approximation to the

error is the norm	 where 8 is the solution of A e = r.

A-56

An approximate solution R can be improved in its accuracy via

the iterative improvement algorithm, which is not too

computationally expensive if the factorization of A has been

previously saved. There is a limit in the accuracy of R in the

iterative improvement stage, since we cannot expect an estimate R

more accurate than that allowed by the quality of the data.

A.3. Review of sparse direct methods for the solution of linear

systems of equations.

A.3.1. Data structures.

As far as many engineering problems are concerned, 	 the

corresponding matrices generated in their solution are such that,

even though their order may be in the range of hundreds or

thousands, the number of non-zero elements is relatively small in

comparison with the total number of elements. This is also the

case in water distribution network analysis, where typically the

matrices generated by the different algorithms have at most 5-6

non-zero elements per row, irrespective of the size of the

network. In practice, this means that for a network of, say,

1,000 nodes, i.e. producing a matrix with 1,000,000 elements,

only 5,000-6,000 of these elements are actually non-zero. All

these kinds of matrices are known as sparse matrices, where the

relatively few non-zeros are scattered throughout the matrix.

Obviously, important savings of computer storage and execution

time can be obtained by explicitly taking into account the

sparsity of the matrix, since it is rather inefficient to store

zeros and carry out additions or multiplications by zero.	 The

A-57

larger the size of the network, the bigger the relative savings

of computer resources. In addition to that, some sparse matrices

have special structures, like symmetric matrices, banded matrices

or tridiagonal matrices; by explicitly taking into account the

special structure of a matrix we can reduce even further the

requirements of storage and computer time.

To take full advantage of the presence of a great deal of zeros

in the sparse matrix, we need to store and operate only on the

non-zeros and, to do so, we need some efficient way for keeping

track of the position of all the non-zeros within the full matrix

and, of course, of its numerical value. Roughly speaking, this

means that we need to store the "coordinates" corresponding to

the position of each non-zero within the matrix, which is

normally dealt with by "cheap storage", say Integer*2 in a

FORTRAN code, while the numerical value is kept in more lengthy

storage, say Real*4 or Real*8 in a FORTRAN program.

There are a number of schemes for accessing the non-zeros in a

sparse matrix, with a very different complexity/efficiency ratio.

Simple data structures lead to relatively low efficiency schemes,

while more complex data structures lead to the more efficient

schemes.

Duff et al. (1986), Pissanetzky (1984) and George and Liu

(1981), amongst others, give a detailed description of different

data structures for sparse matrices; we are going to describe

only some of them, especially those used in this Appendix. Since

the matrices generated in water distribution network analysis are

A-58

symmetric positive definite matrices, we shall look carefully in

that direction, although most of the topics covered in the next

sections are applicable to more general matrices as well.

a) Coordinate scheme.

In this case we use two integer arrays to store the row and

column indices of each non-zero, and a real number to store its

non-zero value. The length of all these arrays is the same and

equal to the total number of non-zeros within the matrix, say NZ.

This data structure allows us to store the non-zeros in any

order, and it can be be used straight-away for the case of non-

symmetric matrices.

The retrieval on the non-zero elements from the data structure

is quite simple; the following example illustrates this point:

Example: Let a lower triangular matrix L of order N = 7 and

non-zeros (NZ = 16) be as follows:

16

lii	 0
1 21	 122

133

L= 141 142	 1 44
1	 1	 1,53	 54	 ,55	 ,
1 63	 ;65 ;66 ,

1 75 1 76 '77

then, the coordinate storage scheme, storing the	 elements by

rows, would be:

Row index: IROW

IROW =	 (1,	 2,

Column index:

2,	 3,

ICOL

4, 4,	 4, 5, 5, 5, 6, 6, 6, 7, 7, 7)

ICOL =	 (1,	 1, 2,	 3, 1, 2,	 4,

A-59

3, 4, 5, 3, 5, 6, 5, 6, 7)

Non-zero values array: VALUE

VALUE= (1 	1—11 , -21 ,1 22 ,1 33 ,1 41) 1 42, 1 44, 153,154,155,163,165,166,175,

176,177)

The length of each array is 16 (= NZ).

b) Implicit storage scheme.

A more elaborate scheme arises from observing that some further

storage reduction can be achieved from the previous scheme. This

can be done by avoiding the repetition of the row indices (a

column oriented implicit scheme is also possible) and storing

them in an implicit indexing scheme. The previous row index

vector of length NZ is replaced by a new row index vector of

length N+1, where N is the order of the matrix; the new row index

points to the position of the first non-zero element in each row,

which in our previous example means:

New row index: IROWI

IROWI= (1 ,	 2 ,	 4 ,	 5 ,	 8 ,	 11 ,	 14 ,	 17)

ICOL = (1, 1, 2, 3, 1, 2, 4, 3, 4, 5, 3, 5, 6, 5, 6, 7)

VALUE= (111,121, 122,133,141,142,144,153,154,155,163,165,166,175,

176,177)

The column and non-zero array are the same as before.

Notice that since the difference between successive elements of

the vector IROWI gives the number of non-zeros per row, we then

need the element of order N+1 for completeness. Also note that

IROWI(N+1)-1 corresponds to the amount of non-zero elements (NZ).

A-60

The column-wise implicit scheme is straightforward. A further

improvement of this scheme can be obtained by storing the

diagonal non-zeros in a separate array, thus reducing the length

of the column index array to NZ-N, and keeping the rest of the

storage unchanged.

c) Compressed scheme.

One of the most efficient schemes is due to Sherman (1975)

which takes advantage of the fact that, in the previous row-wise

implicit scheme, the column index can be compressed even further

by adding a new integer index of length N (integer array NZSUB).

In the case of a column-wise implicit scheme it is the row index

that can be compressed further.

In our previous example, presented by George (1981), this

scheme is used for storing a lower triangular matrix by columns

(the row-wise version is straightforward)

Diagonal vector: DIAG

DIAG = (111,122,133,144,155,166,177)

Non-diagonal non-zero vector: LNZ

LNZ =1(-21 , -41, _42,153,163,154,165,175,176)

XLNZ = (1, 3, 4, 6, 7, 9, 10)

NZSUB = (2, 4, 5, 6, 5, 6, 7)

XNZSUB = (1, 2, 3, 5, 6, 7, 8)

The compressed scheme splits the non-zero values into two real

arrays, one for the diagonal elements DIAG (neither row nor

column indices are needed for these elements) and another LNZ for

the non-diagonal non-zeros.

A-61

The array XLNZ gives the amount of non-zeros per column

(excluding the diagonal) and NZSUB gives the corresponding row

index of these non-zeros using XNZSUB as a pointer to the first

non-zero in NZSUB, as illustrated by the arrows in the previous

structure. The extra savings produced by this scheme are due to

the fact that in the array NZSUB some elements play a double (or

even greater !!) role, like the 4 and 7 in the second and seventh

position of NZSUB respectively.

The advantages of this more complex scheme become apparent in

large systems, of the order of hundreds or thousands of

equations.

A.3.2. Fill-in.

On using a direct method for the solution of a general linear

system, we already know that the elimination process consists of

transforming the original matrix into an upper (or lower)

triangular matrix, which is subsequently solved via a backward

(or forward) substitution. The fact that the original matrix is

sparse does not generally imply that the transformed triangular

matrix has the same sparsity pattern; in fact, it may not be

sparse at all. Due to the elementary operations performed

between the rows (or columns) of the original matrix, new non-

zeros can be produced in places where a zero element existed.

The newly created non-zeros are referred to as fill-in (or simply

fill).

A-62

L=

However, if we permute rows and columns 1 and 5 in the original

A* inmatrix A, producing the reordered matrix shown Fig. A.4,

x	 x x x
x	 x x x

x	 x x = x
x x x x

xxxxx x x
I.	 .

A*	 .x	 =	 b*

One of the worst cases of fill-in that can be expected is shown

in Figures A.2 and A.3. The original system has the arrow shaped

matrix shown in Fig. A.2.

If we factorize A into the Cholesky factors L L T, then L has

the structure shown in Fig. A.3, which corresponds to a lower

triangular fully populated (dense)

_

matrix.

XXXXX x x
x x x x
x	 x x = x
x	 x x x
x	 x X x

- J

A	 . x	 =	 b

Fig. A.2. Arrow shaped linear system.

Fig. A.3. Cholesky factor of arrow shaped matrix 	 (without
reordering).

Fig. A.4. Reordered arrow shaped linear system.

A-63

The corresponding new Cholesky factor L* will have the sparsity

pattern shown in Figure A.5.

L* =

xxxxx

Fig. A.5. Cholesky factor of reordered arrow-shaped linear
system.

Comparing A* with its factor L*, we can see that no fill-in has

been produced.

This extreme example illustrates very clearly the main feature

on which most of the sparse techniques are based, namely, the

fact that fill occurs only because of the way in which the

original matrix has been set up; consequently, fill can be

reduced and minimized via a sensible reordering of the original

system. Thus, one of the first tasks to be tackled in sparse

matrix handling is the search for an efficient ordering scheme

that can reduce the amount of fill.

Formally, the reordering process can be understood as applying

some permutation matrix P to the original linear system. That is

to say, instead of solving:

A x = b	 (95)

we solve:

(PAPT)Px=Pb	 (96)

This is because a permutation matrix P is also an orthogonal

matrix, i.e.:

p pT = pT p =	 (identity matrix)	 (97)

A-64

A = (98)

In this context, finding an adequate reordering strategy can be

equivalent to find the matrix P which minimizes the fill in the

matrix P A PT.

Graph theory provides a good representation of the reordering

process; for example, for the symmetric matrix given by equation

(98):

17	 8
7 2 9 10

	

9 3	 11
10	 4

	

11	 5 12
8	 12 6

-	 ..

the associated graph representation is shown in Fig. A.6. A

graph associated with a matrix is the set GA = (X,E), where X is

the set of nodes (one node per row or column) and E is the set of

edges (one per each non-diagonal non-zero).

GA:

X = {1,2,3,4,5,6}

E= {(6,1),(1,2),(2,4),(2,3),
(3,5),(b,S)1

Fig. A.6. Undirected graph corresponding to symmetric matrix
given by equation (98).

Although graph theory concepts are very useful to understand

some aspects of sparse matrices, we shall try to keep its use at

a minimum level, to avoid further complexities. Any definition

will be given immediately before it is needed; for details see

either Wilson (1985), Deo (1974), Harary (1972) or Harris (1970).

A-65

P=

P A PT=

Note that for non-symmetric matrices, directed graphs (i.e.

graphs whose edges have a direction associated with them) are

needed to account for the non-symmetric connectivity.

To permute the 3 rd and 4th rows and columns of A is equivalent

to transforming A into (P A PT), with the permutation matrix

shown in Fig. A.7. which is an identity matrix with its 3 rd and

4th rows interchanged.

1
1
01
10

1
1

Fig. A.7. Permutation matrix for interchanging rows 3 and 4.

On performing the pre and post-multiplication of A by P and PT,

we get the matrix and associated graph shown in Fig. A.8.

17	 8
7 2 10 9
10 4
9	 311

11 5 12
8	 12 6

a)	 b)

Fig. A.8. Reordered matrix [eq.(98)] and its associated graph.

Thus, in graph terms, we can see that reordering does not mean

a change in the structure of the matrix graph, but only changes

in its labelling ; in the previous example this swap of labels

happens between nodes 3 and 4.

A-66

From the previous example it is also evident that if A is

symmetric, then P A PT is symmetric as well; this is due to the

fact that the premultiplication by P interchanges the rows, while

the postmultiplication by PT swaps the columns.

Another important consideration apparent from the last example

is that for finding a "sensible" reordering (or re-labelling in

the graph of the original system), we do not actually need its

numerical values but only its structure. This is a very

important feature, since it means that we can split the Gaussian

elimination problem into a sequence of independent stages. This

is true for symmetric positive definite matrices only. 	 Usually

the whole process is separated into the following stages:

i) ANALYSIS stage: this finds the minimum fill-in ordering and

sets up the corresponding data structures.

ii) FACTORIZATION stage: where the numerical part of the

factorization of A is carried out.

iii) SOLUTION stage: where the solution of the system takes

place, for a given right hand side vector.

This three-stage process allows us to make more efficient the

overall solution process, since if, for example, we need to solve

a linear system for different right hand side vectors, then we

only need to repeat the last SOLUTION stage, provided that we

have stored the information from the ANALYSIS/FACTORIZATION

stages. At the same time, if only the numerical values of the

matrix are changed (but not its structure), then we need to

repeat the FACTORIZATION and SOLUTION stages. This maximizes the

A-67

performance of the Gaussian elimination process, since it is

quite usual that the ANALYSIS needs to be performed only once,

while the remaining stages can be repeated as many times as

needed, using the same ANALYSIS results.

As pointed out by many researchers in this area: Irons (1970),

Reid (1977) and George (1981), the separation of the whole

process into 3 independent stages is only suitable for symmetric

positive definite matrices, where no risk of instability occurs.

That is to say, in symmetric positive definite matrices we do not

need to pivot for stability and then, we can concentrate our

attention in reducing the fill-in. For more general sparse

matrices, permutations are needed for stability reasons and then,

the data structures are dependent on the numerical values and not

only on the structure (or connectivity) of the matrix. This is

clearly a conceptual problem, with very important practical

consequences.

As a result, we have seen that the amount of fill produced in

the Gaussian elimination process depends on the way we set up and

reorder the original matrix. The problem is, as far as reducing

the fill is concerned, to find an adequate reordering scheme that

minimizes the amount of fill (if such a reordering exists). It

must be emphasised that normally minimizing the amount of fill

not only leads to a reduction in the storage requirements, but

also to a reduction in the amount of computational work to be

done.

A-68

[all	 symmetric

a21 a22
a33

a42 a43 a44

ann

A,3.3. SParse methods for banded matrices.

Historically, banded matrices such as those arising from many

differential equation problems, have been the starting point of

the development of sparse matrix techniques. Even if the original

linear system does not emerge in a banded form naturall y, the aim

has been to reorder it in such a way that the reordered system

could have all its non-zeros "clustered" around the diagonal.

The key observation in sparse banded methods is that when

factorizing a banded matrix, the eventual fill is concentrated

within the band; thus, all the zeros outside the band can be

ignored (or "exploited" in the sense of sparse matrix handling),

and only the elements within the band are stored, irrespective of

the fact that some of them may be zeros.

The storage scheme used for dealing with banded matrices has

not been explained before, but simply reshapes the sub-diagonals

of the banded matrix into vertical columns as shown in Fig. A.9.

O 0 ann

<---->	 <---->
half band width	 half band width

Fig. A.9. Diagonal storage scheme for banded matrices.

The main advantage of this approach is its simplicity, both in

terms of the data structures and in terms of programming. Of

course, it is evident from Fig. A.9., that it is a sub-optimal

A-69

- all 1
- a9 1 a92
o b- -a33

8.12 a43 a44

•	 •

solution, in the sense that some fill-in can still be exploited

with very little extra effort. This is done in the next method.

Additionally, the lack of optimality of banded methods is due

to other reasons, as can be shown using the same arrow shaped

matrix already seen in Fig. A.2, where a band minimization

approach produces the matrix (P A P T) shown in Fig. A.10.

P A PT =
x x

xxxxx
x x

Fig. A.10. Minimum band ordering for arrow shaped linear system.

Clearly, the ordering shown in Fig. A.10 is poorer than that

shown in Fig. A.4, where the permutation of rows and columns 1

and 5 produced no fill-in at all in the Cholesky factorization

stage.

Cuthill and McKee (1969) developed an algorithm for producing

minimum bandwidth orderings. The algorithm needs a starting or

"root" node (r), and the original graph is relabelled starting

from "r" and renumbering first those nodes with the minimum

number of edges connected to them (i.e. minimum degree nodes).

The example shown in Fig. A.11, taken from George (1981)

illustrates how the algorithm works.

Fig. A.11. Two examples of Cuthill-McKee orderings for reducing
bandwidth, from George (1981).

Two important features of the algorithm become apparent from

this example:

a) The ordering (or labelling) depends on the selected root

node.

b) Even for the same root node, different orderings can be

obtained when the neighbouring unnumbered nodes have the same

degree (like when numbering nodes 2 and 3 in Fig. A.11).

The classical example of the arrow shaped matrix showed quite

clearly that minimizing the bandwidth has nothing to do with

minimizing the fill-in (and nothing to do with minimizing the

amount of work to be done). As a result, the method is sub-

optimal and because the extra effort needed for a further

improvement is small, the band methods are not widely used today,

except for problems where the banded structure comes up naturally

(e.g. tridiagonal matrices and similar).

A.3.4. The envelope ("skyline") method.

The key observation leading to the envelope method is that

fill-in actually occurs only in those positions between the first

A-71

non-zero in each row and the diagonal of the matrix, that is to

say, within the "skyline"-shaped bordering line which surrounds

all the non-diagonal non-zeros in the matrix. Figure A.12 shows

this feature, by shading the location of possible fill-in.

- - •	
symmetric

Fig. A.12. Skyline representation.

In this example, fill in maY only occur in the fourth and sixth

rows, but never outside of the envelope (shaded area).

The number of non-zero elements inside the envelope is usually

referred to as the Profile of the matrix; thus, in the previous

symmetric example [equation (98)], the profile is equal to 7.

In this context, orderings minimizing the profile of a matrix

lead to low fill, and algorithms producing minimum profile are

efficient from the storage point of view. One of the most widely

used profile reduction algorithms was proposed by George (1974),

who found that by simply reversing the ordering produced by the

Cuthill-McKee algorithm eventually reduces the profile (in fact

it does not make it worse), and the algorithm has been called

"Reverse Cuthill-McKee" algorithm.

As pointed out in the case of the standard Cuthill-McKee

algorithm, the ordering depends on the selection of the root

node. Obviously the same happens in the Reverse Cuthill-McKee

A-72

(or RCM) algorithm. Hence, we need to find a root node useful for

our purposes.

It has been empirically found that good root nodes are those

lying on the periphery of the graph (peripheral nodes); these are

nodes such that the amount of edges between them and any other

node in the graph (which is defined as the "eccentricity" of the

node) is maximum.

George and Liu (1981) proposed the following algorithm for

finding peripheral nodes; because the algorithm does not

guarantee peripheral nodes, the nodes found by it are referred to

as "pseudo-peripheral" nodes.

The algorithm relies on the concept of rooted level structure,

which is explained immediately. Following the George and Liu

(1981) definition, a level structure rooted at node "x" is a

partitioning E(x) of the set of nodes of the matrix graph, such

that:

E(x) = { Lo(x), Li(x), ... , Li(x)(x) 1

where:

x : is the root node of the level structure.

1(x) : is the eccentricity of node "x".

Rooted at "x", the following levels are defined, each one

containing the adjacent nodes not previously included in a level:

Lo(x) ={x}

Li(x) = { Nodes adjacent to Lo(x) 1

Li(x) = { Nodes adjacent to Li-1(x), except those in Li-2(x) }
V i=2,3, ... , 1(x)

A-73

root

a

Figure A.14 is an example of a rooted level structure,

corresponding to the matrix whose graph is shown in Fig. A.13

In the level structure shown in Fig. 14 E(x5) the eccentricity

of x5 is 1(x5) = 3 and

f (x5) = f L0 (x5), L1(x5), L2(x5),L3(x5) I

Fig. A.13. Graph for level structure example, from George and
Liu • (1981).

a) Node labelling:
	 root

b) Level structure:

L0(x5) = f x51

1,1(X5) = f X3, X7, X6 1

L2(x5) = f x2, x4, x6 1

L3(x5) = f xi 1

Fig. A.14. Level structure rooted at x5, for graph shown in Fig.
A.13, from George and Liu (1981).

A-74

The algorithm proposed by George and Liu (1981) for finding

pseudo-peripheral nodes is reported to be based on a previous

one, proposed by Gibbs et al. (1976) and its steps are:

a) Pick up an arbitrary root node "r".

b) Generate the level structure rooted at node "r".

c) Choose a node in the last level Li(r)(r) with the minimum

possible degree, say node "x".

d) Generate another level structure now rooted at "x".

If the eccentricity of "x" is greater than the eccentricity of

"r", then assign r <-- x and repeat the process from step c),

otherwise:

e) "x" is a pseudo-peripheral node and stop.

For the previous example, the process of finding a pseudo-

peripheral node can be represented as in Fig. A.15.

Notice that in the previous example, node xi can be labelled as

a pseudo-peripheral node as well.

On using the previous ideas, the following is the sequence for

the Reverse Cuthill-McKee algorithm:

Step 1) Determine a pseudo-peripheral node "r" and label it as

xi. This can be done via the algorithm already

introduced or another one.

Step 2) Loop : label the unlabelled neighbours of xi in an

increasing order of degree, V i=1,2, , N. This is

the standard Cuthill-McKee algorithm.

Step 8) Reverse the labelling: producing a new ordering

A-75

eccentricity = 2

eccentricity = 4

root

eccentricity = 4
same as before, stop:

x8 is a pseudo-
peripheral node).

(labelling), say:

y1 , Y2 , •	 , yN such that yi = x(N_i+i) V i1,2,. .,N

As we have already pointed out, step 1 can be replaced by any

other algorithm or, indeed, the root node can be specified by the

user. In the context of water distribution networks which are fed

gravitationally, a good candidate can be the node corresponding

to the upstream reservoir in the system. In more general

networks, with supply coming from gravitational and pumped

sources, the previous choice might not be the best one.

First try: steps a) and b), r = x3

root

Second try: steps c) and d), x = xi

root

Third try: r <-- x and back to steps e) and d)

Fig. A.15. Algorithm for finding a pseudo-peripheral node,
from George and Liu (1981).

A-76

We have implemented the envelope method, with the RCM ordering,

using the subroutines published by George and Liu (1981). We used

this implementation for solving the linear systems generated in

water distribution analysis. We would like to emphasise here that

one of the main drawbacks found, deals with the amount of storage

needed for the non-zeros out of the diagonal (array ENV). The

real storage required is not Predictable before running the

program and an upper bound has to be defined on a trial-and-error

basis using the program with problems of different sizes

(although this procedure does not guarantee an upper limit); we

found, using synthetic networks of up to 5000 nodes (z 5000

equations), that the maximum length of the array ENV tends to

N 1.5 .	 Also, the execution time obtained with this method is of

the order of 3 times the corresponding time of the efficient

methods. For this reason we do not elaborate more on this

algorithm.

A.3.5. Minimum degree algorithms

One of the main shortcomings of the previous envelope method

was its sub-optimality in terms of storage; in fact a great deal

of the storage for the non-zeros enveloped within the skyline was

indeed occupied by zeros, and the idea is now try to exploit all

the zeros. The price to be paid is obviously further

complications in data structures, algorithms and programming.

Algorithms based on the minimum degree concept have been used

since Markowitz (1957), in linear programming applications, and

subsequently by Tinney and Walker (1967), Ogbuobiri, Tinney and

A-77

Walker (1970) and Ogbuobiri (1970), in power networks.

Zollenkopf (1970) used a minimum degree approach for pivot

selection within a sparse factorization method for symmetric

positive definite matrices in power systems. Pivoting is

apparently needed in this case because the author considered also

the case when the matrix is asymmetrical in the element values

(but remaining symmetric in its structure).

Shamir (1973) applied the concepts of minimum degree to water

distribution networks, though he used a mixed strategy, pivoting

both for size (partial pivoting) and density (to reduce fill-

in).

Nowadays it is understood that, for symmetric positive definite

linear systems, pivoting is not necessary to ensure stability. As

we said earlier, this means that in symmetric positive definite

matrices, we can concentrate in the reduction of fill-in

exclusively, without risking instabilities. Thus, the ANALYSIS

stage does not include the numerical values of the non-zeros, but

only their structure. Recall that for general sparse matrices

this is not valid, and pivoting for stability is essential.

As we saw earlier, pivoting for stability meant that during the

Gaussian elimination process, the next pivot element was chosen

from the row which had the biggest diagonal absolute value

(partial pivoting). We also mentioned full pivoting as another

alternative.

Minimum degree consists basically in choosing the next pivot

element, at each stage of the elimination sequence, from the row

A-78

with the fewest amount of non-zero elements.

It has to be said that when pursued simultaneously, pivoting

for density and pivoting for stability are rather conflicting

objectives, but this is not our problem in symmetric positive

definite matrices.

An example of the use of the minimum degree algorithm is

presented in Figure A.16, which has been taken from George

(1981).

In its traditional implementation, which stores the Cholesky

factors explicitly, the minimum degree algorithm generates a

great deal of fill, requiring important quantities of storage;

unfortunately, to make things worst, it happens that the amount

of required storage is unpredictable until the factorization is

completed. Thus, when using this implementation the user does not

know how much storage will be needed, and the only way to tackle

this problem is via experimentation.

George and Liu (1981) published a solution to this problem,

using an implicit storage scheme, which has a predictable storage

at the ANALYSIS stage. Thus, the computer program can determine,

before the numerical part of the solution is started, what is the

amount of storage required. A so-called fast hybrid

implementation, which lies in between the explicit and implicit

storage scheme, was compared by George and Liu (1981), chapter 9,

and was found to be one of the best available from the point of

view of the execution time; that comparison was carried out with

problems of up to 2233 equations arising from finite element

A-79

problems.

Since we have used this imp lementation in our comparisons in

the context of water distribution networks, we shall spend the

rest of this section explaining, in the simplest possible terms,

how this scheme works; for a more detailed explanation, see

George and Liu (1981, chapter 5). The implementation relies

heavily on graph theory concepts, especially in what is called

" quotient graph", which is also the base for other forthcoming

methods reviewed in this section.

Before explaining what is the fast hybrid implementation of

George and Liu, we need to explain what is the implicit scheme.

To do so, we shall introduce graphs into this problem, in order

to visualise the process of creation of fill-in. The same problem

of Gaussian elimination shown in Fig. A.16, can be represented

using graphs as in Figure A.17.

Figure A.17 is self-explanatory and shows how the elimination

sequence, using the minimum degree algorithm, takes place. The

order of elimination is then:

(a,c,g, i, f,e,b,h,d)

In graph terms, fill-in, i.e. the creation of new darker edges

in Fig. A.17, can be explained as follows: let us consider for

example the elimination of "a" in G O (see Fig. A.17), since

is "reachable" from "b" through "a". Then, in order to maintain

the same "reachability" of the original graph G°, after the

elimination of "a", we need to add a new edge which accomplishes

this purpose, otherwise the "reachability" or connectivity

A-80

A4

pd *

A8

P	 P

	

abcdefghi	 bcdefghi

	

p a * * *	 b * * CI *
b * * * *	 p c * *	 *
c	 * *	 *	 d CA.:,	 * *	 *
d *	 * * *	 e * * * * *
e * * * * *	 f	 * * *	 *
f	 * * *	 *	 g	 *	 * *
g *	 * *	 h	 * * * *
h *	 * * *	 i	 *	 * *
i	 *	 * *

A0
	 A1

P	 P	 P

	

bdefghi	 defbhi	 efbhd
b * ED * ED	 a * * cx)	 e * * * * *
d ED * * *	 e * * * * *	 p f * * 0 0
e * * * * *	 f	 * * ED *	 b *+* ED

f ED * *	 *	 b	 * ED *	 h	 * ED

P g	 *	 * *	 h®*	 * *	 d	 @@*
h * * * *	 p i	 * * *
i	 *	 * *

	

A2	 A3

P p	 P
e bhd	 b h d	 h d

	

p e * * * *	 p b *® 0	 p h *®
	b * * 0 GlID	 h Q * ®	 d e*

h * ® * (1	 d (-1)0*
d * C) 0 *

A5	 A6	 A7

Notes:

(1) "p" marks the new pivot.

(2) denotes fill-in.

(3): the pivots are always swapped with the first row (and

column), and then eliminated from the following graph.

Fig. A.16. Example of application of minimum degree algorithm,
from George (1981).

Next pivot = a

Minimum degree of a = 2

Note that c, g and i have
also degree 2, and can be
chosen as next pivot as well

p Next pivot = c

Minimum degree of c = 2

Note that again we have
multiple choices: c, g and i.

Next pivot = g

Minimum degree of g = 2

Next pivot = i

Minimum degree of i = 2

Next pivot = f

Minimum degree of f = 3

Next pivot = e

Minimum degree of e = 3

Next pivot = b
Minimum degree of b = 2

G°

G1

G2

G3

G4

G5

G6

G7	 0e	 Next pivot = h	 G8
	

Next pivot = d
Min. degree of h = 1	 Min. deg d = 0

Notes:(1) The darker lines are created by the elimination process
and represent the new non-zeros in the factorization.

(2) "p" marks the chosen pivot element.

Fig. A.17. Elimination graphs representing the process	 of
creation of fill-in.

A-82

G F

(F=L+LT)

a
C
g
i
f
e
b
h
d

-

-

-

information contained in G° will be lost. On using the same idea

throughout the whole elimination process, the new graph

corresponding to the filled matrix of the original linear system

becomes that shown in Fig. A.18.

Note: darker lines indicate that fill-in will occur in the
original matrix, when the factorization is carried
out following a minimum degree algorithm.

Fig. A.18. The filled graph of F = L + LT.

The corresponding filled (reordered) matrix is shown in Fig.

A.19, where an "plus" (+) sign denotes fill, which corresponds to

the darker lines in Fig. A.18.

a c gifebhd

* *	 *
* *	 *

* * *

	

* *	 *
* * * * e 0

* * * * *
* *	 e * * e e

* * e * 0 * e
* *	 * e e *

Fig. A.19. Filled (reordered) matrix.

Notice that GF (Fig. A.18) has been found using only the

information on the matrix structure, the numerical values not

having been used at all.

A-83

According	 to Fig. A.17, the whole elimination 	 can	 be

represented as a succession of graphs: G O , G l , G2 ,	 .	 , G8.

This is an explicit representation.

The implicit scheme arises on formalising the "reachability"

concept used to explain the development of Fig. A.17. Following

George and Liu (1981), for a graph G = (X, E) and S being a

subset of the nodal set X and taking x f S, then x is said to be

reachable from another node "y" if there is a path through S

connecting x and y (i.e. a series of nodes in between them). That

path is formally written as:

(Y, Pi, P2, ..., Pk, x / from y to x such that PE S, liiik

with k 2 0)

Note that a neighbouring node of y not in S is also reachable

from y (with k=0).

The set of all the reachable nodes from y through S is defined

as:

Reach(y,S) = { xS such that x is reachable from y through S }

The practical application of the reach operator, as defined

above, becomes clear if we define S as a variable set in the

elimination process represented by Fig. A.17, which changes at

each stage of the elimination process according to:

Si = { xi, x2, . . , xi }

where xi represent the nodes in the order in which they are

eliminated.

Hence, for the elimination process shown in Fig. A.17 we have:

A-84

Reach(a,S0) = { b, d }	 , So ={ 0 }
Reach(c,S1) = { b, f }	 , S1 ={ a }
Reach(g,S2) = { h, d }	 , S2 ={ a, 0 }
Reach(i,S3) = { f, h }	 , 53 ={ a, c, g }
Reach(f,S4) = { e, b, h }	 , S4 ={ a, c, g, i }
Reach(e,S5) = { b, h,d }	 , S5 ={ a, c, g, i, f }
Reach(b,S6) = { h, d }	 , S6 ={ a, c, g, i, f, e }
Reach(h,S7) = { d }	 , 57 ={ a, c, g, i, f, e, b }
Reach(d, SO = { 0 }	 , S8 ={ a, c, g, i, f, e, b, h }

Then, on comparing the results of equation (99) with Fig. A.19

we can see that the Reach operator applied successively on a, c,

. . etc., and Si being the set of previously eliminated

nodes, gives the column indices (or row indices because of the

symmetry) corresponding to all the non-zeros in the Cholesky

factorization in the subset of the uneliminated nodes (i.e. after

the diagonal in Fig. A.19).

With this representation and with the Reach operator already

defined, we have an implicit scheme; the sequence of graphs is no

longer needed and all we have to do is to find a way of handling

the Reach operator in the computer.

As we can intuitively assess, the main shortcoming of the

implicit scheme is the fact that the amount of work involved in

determining the reachable sets can become too large.

The fast hybrid solution proposed by George and Liu (1981) is a

compromise between the explicit and implicit schemes. It arises

by observing that because the computation of Reach(x i , Si)

depends on the length of the paths between the node being

eliminated and that in its reachable set (through Si), the longer

the paths, the more work needed to find the reachable nodes. The

solution is then to reduce the length of these paths. 	 On the

(99)

A-85

other hand, because we are interested only in finding the

reachable nodes from the set of uneliminated nodes, we do not

need the already eliminated nodes. In the explicit approach (

Fig. A.17) we have actually deleted the eliminated nodes from the

sequence of elimination graphs. In the formal implicit model,

using the Reach operator, we can reduce the length of the path by

"glueing" the neighbouring nodes already eliminated, creating

what might be called "supernodes", like those shown in Fig. A.20,

which is a graphical representation of the process of finding the

reachable sets through the subsets Si, where each Si is formed by

the already eliminated nodes. Each graph of Fig. A.20 is a

quotient grah (or a "supergraph",i.e. a graph consisting of

supernodes").

In so doing, the paths between pivots and reachable nodes

through Si have a length of 2 (when it is through Si) or 1 (when

the reachable node is the neighbour of the pivot and it does not

belong to Si). We have then reduced the path lengths up to a

maximum of 2.

The relationship between the fast hybrid approach using

quotient graphs (Fig. A.20) and the explicit elimination scheme

(Fig. A.17) becomes quite evident. It can also be deduced from

Fig. A.20 [proved by a theorem in George and Liu (1981)] that the

sequence of quotient graphs can be implemented using the same

storage locations used for storing the original matrix. Then, the

results of the ANALYSIS stage do not need more storage than that

required for storing the original matrix.

A-86

1	 r2

r3	 r4

r7	 rg

Fig. A.20. Sequence of quotient graphs r i used for finding the
reachable set of nodes in the elimination process.

In summary, on applying the fast hybrid scheme of George and

Liu (1981), we are able to determine the sequence of reachable

sets [equation (99)] for each elimination step, which formally

gives the structure of the Cholesky factorization L LT of the

original matrix. This means that we get the amount of fill-in and

the locations within the factorized matrix where the fill-in

A-87

takes place, which allows us to set up the data structures needed

for the following stages (FACTORIZATION/SOLUTION). All this can

be done, when dealing with a symmetric positive definite matrix,

without using the numerical values of the non-zeros . The search

of the reachable sets is now meant to be efficient in terms of

storage and speed, due to the introduction of "supernodes" and

quotient graphs.

The minimum degree concepts give us the order in which the

nodes are eliminated (e.g.: a, c, g, , h, d in our example)

while the hybrid scheme gives the structure of the fill-in which

such ordering produces.

An additional improvement has been used in the implementation

provided by George and Liu (1981), and it is geared to reducing

the time spent on searching for a minimum degree node (see Fig.

A.17). The idea is, because we usually find more than one node

with minimum degree (as c, g and i in Fig. A.17, during the

first and second stages of the elimination), then we can use

this information in order to eliminate these nodes as well,

without having to carry out another minimum degree search in the

next elimination stage. The enhancement used by George and Liu

(1981) is based on that idea, and these nodes are said to be

indistinguishable with respect to elimination. For more details

see George and Liu (1981), chapter 5.

Despite the long reputation of the minimum degree algorithm and

the much proclaimed advantages of the George and Liu (1981)

implementation, we found in our testing that it is not as

A-88

All	 Al2 I	 x i I	 bi I
A21 : A22	 x2	 b2

(101)

successful either from the storage or from the execution time

point of view. Moreover, we could not solve networks larger than

900 nodes within a reasonable execution time. So far, we have not

been able to find an explanation for this behaviour; possible

causes are the particular computer implementation used and the

fact that the connectivity and "shape" of our test networks is

too different from that used by George and Liu (1981).

A.3.6. Quotient tree algorithms.

These algorithms take advantage of the fact that an efficient

way to deal with the sparseness of a linear system is to

partition the matrix in blocks, some of which may eventually be

dense matrices, but of a much more reduced order than the

original system.

The advantages of this block-partitioning approach can be

shown, for example, when instead of solving our model problem:

A x = b	 (100)
where:

A : is a symmetric positive definite (n x n) matrix.

we solve an equivalent 2x2 block partitioned system:

where:

All : a (p x p) submatrix.

A22 : a (q x q) submatrix , such that p + q = n.

A21 : a (q x p) submatrix, such that A21 = Al2T.

x l , x2 : partitioned vector of unknowns.

A-89

(102)

[

LB LB T :	 LB W	 All 1 Al2

u	 =	 A21 1 A22
wT LB T	 wT w Lc L_T

(104)

131, b2 : partitioned right hand side vector.

Then, the corresponding Cholesky factorization of A = L LT

can be expressed as a block-partitioned matrix as well:

[L

B : 0
L =	 ----4-----

wT : Lc

where:

LB : is the Cholesky factor of All, a (p x q) submatrix.

Lc : is the Cholesky factor of A22, a (q x p) submatrix.

W : is a (q x q) submatrix and W T its transpose.

The Cholesky factors can be computed al gebraically by imposing

the equivalence A = L LT and using equations (101) and (102):

LB : 0	 LBT	 W	 A11 ' A12 I'
(103)

wT	 Lc	 0 1 LcT	 A21 1 A22

Performing the multiplication on the left hand side of (103) we

get:

Then, identifying block by block in (104), we obtain:

a) Upper left hand side block:

All = LB	 LB T	 (105)

which simply states that LB is the Cholesky factor of All . In

other words, we can obtain LB (or LB T) from All via Cholesky

factorization.

A-90

b) Upper right hand side block:

LB W = Al2
	 (106)

which implies that having obtained LB from (105), we can then

obtain W by solving "q" linear systems of the form:

LB W(* ,i)	 = Al2(*,i)
	

V i=1,2, .. , q	 (107)

where:

W(*,i) : denotes the i- th column (vector) of matrix W.

Al2(*,i) : denotes the i-th column (vector) of matrix Al2.

c) Lower right hand side block:

WT W + Lc Lc T = A22	 (108)

which, on defining the auxiliary matrix C:

C = Lc Lc T	(109)

becomes, after reordering

C = A22 - WT W	 (110)

Hence, after having obtained W from step b) we can compute the

auxiliar matrix C from (110) and, with C, we can get Lc which is

the Cholesky factor of C in equation (109).

Thus, in this three stage process we are obtaining the Cholesky

factors L and LT by computing their corresponding submatrices LB,

W and Lc from All, Al2 and A22.

With the Cholesky factorization of A, the solution stage of our

original problem can be carried out by replacing our original

linear system (using equation 103) by:

	

[

LB : 0 1 [LB T : W 1	 [x1 1	 [b 1 1

wT i Lc	0 : LcT	x2	 b2

A-91

[LBT : W I [xi I	 [Yl]

0 : LcT 	 x2	 Y2

(117)

and then, because we already know LB, Lc and W T, its solution

becomes just a series of substitution processes; indeed on

defining the auxiliar vector:

Y1 LBT_ :__141 x1y =

[

= .
(112)

Y2 0	 :	 LcT x2

equation (111) becomes:

LB	:	 0 y l	bl[I

•
(113)

[I	 [I

wT	 : Lc
Y2	 b2

and the auxiliary vector y = (yi ; y2) T can be computed by the

following steps:

i) Solving the upper part of (113):

LB yi = bi	 (114)

we obtain yi, by forward substitution.

ii) Compute, from the lower part of (113):

WT Y1 + LC Y2 = b2	 (115)

which reordered gives:

Lc y2 = b2 - W T yi	 (116)

iii) Having yi from step i), y2 can again be computed by a

forward substitution from equation (116), which completes

the computation of the auxiliary vector "y".

Now, having computed the vector y, we replace it into

equation (112) and solve this last equation for x:

A-92

which can be done via the following steps:

iv) Solving the lower part of (117):

LcT x2 = y2

we obtain x2, by back substitution.

v) Compute the upper part of (117):

LBT xi + W x2 = yi

which reordered gives:

LBT xi = yi - W x2

(118)

(119)

(120)

vi) Having x2 from step v), xi can be obtained by back

substitution from (120).

What we have done so far is a bit of algebra, but the full

advantage of the block partitioning approach has not become

clear. The point is that, in the solution stage [steps i) to

vi)], we have used the matrices LB, Lc and W explicitly, and,

because W is normally a full (dense) matrix, a great saving of

storage can be achieved via a sensible way of handling this

matrix. In fact, the ideal approach would be not to store it but

to handle it in an implicit way; this can be possible by

recalling that W can be written from equation (106) as:

W = LB-1 Al2	 (121)

i.e.

WT = Al2 T LB-T
	

(122)

This means that whenever we need to multiply W or WT by a

vector, like in equations (116) and (120), we can do it without

including W or WT in an explicit way; in fact, using equation

(122), equation (116) becomes:

LC Y2 = b2 - (A l2 T LB-T) Y1
	

(123)

and, using (121), equation (120) becomes:

A-93

LBT x l = Y 1 - (LB-1 Al2) x2
	

(124)

We can also use the implicit form of W and WT [equations (121)

and (122)] to compute the product W T W in equation (110):

WT W =	 A l2 T [LB-T (LB-1 Al2)	 /
	

(125)

where the computations are carried out following the

parenthesis sequence in (125) from the inside out, which is

referred to as an asymmetric block factorization. The method

then relies heavily on back and forward substitution routines,

which normally are used in the SOLUTION stage.

With the implicit scheme, the factorization and solution stages

require LB, Lc and Al2, instead of LB, Lc and W. Because Al2 is

much sparser than W, equations (123), (124) and (125) are -

preferred instead of (116) and (120) and in the evaluation of the

product WT W. Now the full advantage of a block partitioning,

with an implicit handling of W becomes clearer: we do not need to

store the Cholesky factor L explicitly, we only need its diagonal

components LB and Lc plus the off-diagonal block of the original

matrix, i.e. Al2.

It can be shown that the combination of block partitioning and

asymmetric factorization produces not only storage savings, but

also reduces the amount of arithmetic operations.

The process can be extended from a (2x2) block system to a more

general one of, say, (rxr) blocks; in that case George and Liu

(1981),section 6.2.2. showed that the off-diagonal submatrices of

the Cholesky factor L can be computed implicitly as:

A-94

Lij = A i j L jj -T = (L ii -1 Aji)T	 i,j=1,2, .	 , r

that is to say, we only need to store the diagonal block

components of L (i.e. Ljj) and the off-diagonal blocks of the

original matrix (i.e. Aij or Aji), which is the same conclusion

obtained in the case of a (2x2) block partitioning.

Obviously the greater the number of blocks (r), the greater the

efficiency of this scheme.

Having illustrated with a small example the convenience of

using the block partitioning approach, the remaining problem is

to find some way of producing "good" block partitioning.

First of all, we have to define what we mean by a good

partitioning.	 There is a close link between block partitioning

and the concept of quotient graph, which was introduced

previously, where the idea of "supernode" and, by extension, that

of "supergraph" were introduced. In order to formalise that

relationship, we have to return to these graph theory concepts.

Recall that a quotient graph is nothing more than a graph

formed by "supernodes", which are simply a subset of nodes

"glued" together; formally, if the original linear system has a

graph defined by G = (X, E), and if we have a partitioning of

X, say P, such that:

P = { Y l , Y2 , • • , Yr }
	

(126)

a quotient graph of G with respect to P, denoted as G/P, is

the graph (P, E*) where:

{ yi , yj } E E* if and only if Ad j (Yi) n Yj	 0	 (127)

A-95

Loosely speaking, equation (127) simply says that a link

{Yi,Yi} exists if and only if two supernodes Yi and Yj are

adjacent.

A particular kind of connected graph in which there are no

cycles (loops), is called a tree, say T = (X, E) and, as a

result, every pair of nodes is connected by a unique path. Of

course, we can also have "supertrees", or quotient graphs without

loops. A rooted tree is a tree where every single node emanates

from a root node, determining an ancestor-descendent structure.

If we label (or number) the nodes of a rooted tree in such a

way that every node is numbered before its ancestor, we get a

tree which is known as a monotonely ordered tree. Fig. A.21 is an

example of a monotonely ordered tree rooted at node 8.

Fig. A.21. An example of a monotonely ordered tree (rooted at
node 8).

The matrix corresponding to the monotonely ordered tree shown

in Fig. A.21 is as follows:

1
2
3
4
5
6
7
8

n••

* *

Fig. A.22. Matrix corresponding to the monotonely ordered tree
shown in Fig. A.21.

As can be easily seen from Fig. A.22, the matrix of a

monotonely ordered tree has a very interesting property indeed:

it does not suffer fill-in during the factorization. Because of

the labelling system used, where each node is numbered before its

ancestor, we are generating a matrix structure which shows a

series of arrow shaped arrangements pointing into the diagonal

(see	 shaded	 "arrows"	 in	 Fig.	 A.22).

In other words, the numbering system adopted allows all the

nodes to cluster themselves optimally, i.e. minimizing the

Profile of the matrix and thus reducing the amount of fill-in to

the very minimum (i.e. no fill-in at all).

The results of the previous paragraph look quite interesting,

but unfortunately in our water distribution networks we do not

get trees (in general); we do get trees in sewage and drainage

networks. Because loops are almost always found in water supply

networks, we have to adapt this tree-oriented labelling system

to a looped network (or graph) and the way of doing it is via the

use of supernodes; we shall define the supernodes in such a way

that the resulting quotient graph is a monotonely ordered

A-97

quotient tree	 ("supertree"). Thus the origin of the name of

these methods has become clear.

To do so, we use again the concept of level structure, more

precisely a rooted level structure.

First, note that we are looking for a tree with as many

branches as possible; for example, if we use the matrix whose

tree is shown in Fig. A.23, its level structure rooted at node

"a" is that given in (128).

Fig. A.23. Network example for quotient tree methods.

Lo = { a }
L 1 ={13,f}
L2 =lc,g,k 1
L3 ={d,h, 1 ,m}
L4 = {e,i,n,s }
L5 ={j,o,t }
L6 ={p, q }
L7 = { r }

(128)

in this case, somebody would like to use the level structure

itself as a partitioning, e.g.:

A-98

Y 1 =	 a
Y2 ={b, f
Y3 ={ c ,g,k}
Y4 = { d , h , 1 , m }
Y5 = {e, i , n, S }
Y6 =	 j , o , t }
Y7 =	 q}
Y6 = { r }

(129)

with the corresponding quotient tree shown in Fig. A.24.

This quotient tree (Fig. A.24) generates a block-tridiagonal

matrix, since each supernode is connected with only two others in

a chained structure. The pattern of the generated block

tridiagonal matrix is shown in Fig. A.25.

We can easily see that in this case no fill-in will occur,

which is in fact due to the dense characteristics of the non-zero

blocks of the matrix. The approach is clearly non-optimal, since

if we compare the level structure (for example at level 5) with

Fig. A.23, nodes "o" and "t" are quite far from each other and a

different partitioning criterion is needed. An alternative is

presented in Fig. A.26 where, for the same network of Fig. A.23,

the partition is not the level structure itself, but a refinement

has been used; in this case, we no longer glue nodes like "o" and

"t", because they are in completely different branches. The new

partitioning is produced by the following heuristic algorithm:

Let •B j be the graph defined by:

1
Bj = G (U Li)
	

(130)
i=j

which is referred to as the section graph. This graph is simply

the union of all the nodes below the j_th level structure,

including the nodes in Lj. The j-th level is refined in subsets

Y such that:

A-99

Fig. A.24. Quotient tree corresponding to the tree of Fig. A.23.

r pqj oteinsdhlmcgkbf a

1

a

* * *
* * * * * *
* * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *

* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * *
* * * * * *

* * *
4.

Fig. A.25. Matrix corresponding to the quotient tree of
Fig. A.24.

A-100

a) Level structure
	

b) Refined quotient tree

Fig. A.26. Level structure rooted at node "a" 	 and	 its
corresponding quotient tree.

{ Y = Li n C, G(C) results in a connected component of B i } (131)

In other words, at a certain level "j", the nodes in that level

are kept together (forming a unique supernode), if and only if

the corresponding section graph spanned by these nodes is

connected; otherwise, the nodes are re-grouped into separate

supernodes, like in the case of nodes d, h, 1 and m at level L3.

We can see immediately the advantage of this new partitioning

approach, in the block tridiagonal matrix (Fig. A.25), we had 174

non-zeros and now in the refined quotient tree rooted at node "a"

we have only 112 non-zeros. This means obviously less storage

and less arithmetic operations.

As we saw before in the case of the quotient minimum degree

algorithm, the level structures are dependent on the root node.

In the level structure used in Fig. A.26 we chose "a" as the root

A-101

node just by chance, but we have to ask ourselves what is the

best choice (if any) for such a root node. Since a partitioning

with a maximum number of members will produce a matrix with the

minimum number of non-zeros, it has been proposed that the

concept of pseudo-peripheral nodes should be used to generate a

root [George and Liu (1981), chapter 6]. Following this

approach, if we generate the level structure rooted at node "t",

and the corresponding refined partitioning of those levels using

(131), see Fig. A.28, we get the matrix shown in Fig. A.29, which

has only 108 non-zeros.

rpqjoeidhtsnlmcgkbf a

r
p
q
j
o
e
i
d
h
t
S
n
1
m
C
g
k
b
f
a

* * •
* *

*
*

* *
* * * *

* * *
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

1
* * *

Fig. A.27. Matrix corresponding to refined quotient tree of
Fig. A.26. b)

a) Level structure

00
b) Refined quotient tree

Fig. A.28. Level structure rooted at node "t" 	 and	 its
corresponding quotient tree.

rqpedjociblaagflknmst

a

1

* *
* *

*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

* * * *
* * *

* *

Fig. A.29. Matrix corresponding to refined quotient tree of
Fig. A.28. b)

A-103

In our water network problems, we believe that this method is

dependent on the shape of the networks under study; clearly in

regular squared or round-shaped networks we obtain block

tridiagonal matrices, whereas in branched networks we tend to

obtain the sort of arrow shaped matrices we obtained at the

beginning of this section (Fig. A.22).

The usefulness of some of these ideas for sewage and drainage

networks looks very attractive and should be explored.

A.3.7. One-way dissection methods.

These methods were originally developed for solving linear

systems arising in finite element applications. The background

is again the quotient trees, and the one-way dissection

algorithms are just another way of producing monotonely ordered

supertree partitionings, as an alternative to the partitionings

produced by the application of (131).

In essence, all dissection methods seek the division of the

graph (and the associated matrix) into different members, in such

a manner that the dissected graph produces a matrix with some

desirable properties. Of course, these properties are related

to low fill-in and the minimum number of arithmetic operations.

The idea of one-way dissection is to split up the network

graph, by identifying some subset of nodes of the graph, which

will be referred as "dissectors", and numbering each separated

member sequentially, following a pre-specified direction. 	 In

A-104

0 (D 0.)
---> ---> --->---> ---> --->---> ---> --->:

a=2

Fig. A.30, a = 2 dissectors were used and 2 a + 1 members were

obtained (each dissector being a member itself).

< 	 >

S=(1-.7)/(a+1)
<
	

1
	
	 >

Fig. A.30. Rectangular grid partitioned with 2 dissectors.

Each non-dissector member is numbered following an horizontal

left-to right and top-down sequence (see arrows in Fig. A.30),

while the dissectors are numbered after all the non-dissectors

members have been numbered, following a top-down left-to-right

sequence (see Fig. A.30). The same result can be obtained with a

right-to-left, down-top strategy.

As a result of this particular numbering system the reordered

matrix has a very special form. Fig. A.31 shows an example of a

40 nodes graph, renumbered according to this method, and Fig.

A.32 presents the corresponding matrix structure induced by this

numbering.

From Fig. A.32 we can see that the labelling system introduced

by the one-dissection scheme produces (2 a + 1) blocks ; (0+1)

blocks of size (mS x mS) and a blocks of size (m x m). All the

possible fill in the Cholesky factors is concentrated in the

lower part of the matrices (see shaded areas in Fig. A.32).

A-105

m=5

q = 2
	- 1 = 8 	

1+-6=2

431110% VOA I 101 104 I IP11111
Vel I 94 1 I I ft1°M0$4Ms4OTWI r

411,4 q)4 111,4 Pillf°4 P°1

Fig. A.31. Example of a 40 nodes rectangular shaped graph,
partitioned using one-way dissection.

The selection of .7 presents some practical problems, since it

has to be an integer; non-dissectors members of different size

can be defined, in order to cope with some cases when 1 and the

chosen a do not produce a constant 8=(1-0 .)/(0. +1). A sensible

selection of 0. allows us to get an optimum matrix structure,

which either minimizes fill-in or arithmetic operations.

In fact, because the storage requirements can be expressed as a

function of q (or 8), it is possible to explicitly find the

which minimizes the storage. The same thing can be done to

minimize the amount of work in the Cholesky faotorization wiy!L

its solution stage. Because storage and amount of work are

conflicting objectives, we either choose one the other, thus

"tuning" the algorithm for one of them, which usually is the

storage. According to the testing carried out by George and Liu

(1981), their one-way dissection implementation was found to be

the least demanding on storage algorithm, when compared with the

envelope method, the refined quotient tree method and the nested

dissection method.

A-106

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 3 0 31 32 33 34 35 36 37 3E1 39 40
- — - —	 — — - — —

t	 t

7	 1	 *5*

4	 *5 *

5	 is:
6	 It 1

7	 s 1 t t

8	 t	 t
9	 1	 I

10	 I t t

11
12
13
14
15
16
17
18
19
20
21
72
23
24
25

27

29

31
32

35
36

38
39

40_

Fig. A.32. Matrix structure corresponding to graph of Fig. A.31.

We implemented the subroutines published by George and Liu

(1981), with the gradient method for the solution of water

distribution networks, and we can confirm the results of George

and Liu. Furthermore, we extended the comparison to include the

A-107

MA27 package of the Harwell Subroutine Library and we also found

that one-way dissection was still the best of the direct methods,

from the storage viewpoint.

A.3.8. Nested dissection methods.

Nested dissection is a further development of one-way

dissection and it can be explained as follows.

When applying one-way dissection to the matrix whose graph is

Fig. A.31 , we only considered vertical dissectors; actually,

there is nothing to prevent us splitting the graph even further

by using horizontal dissectors as well, as shown in Fig. A.33.

The result of applying nested dissection to the graph shown in

Fig. A.33, as far as the corresponding matrix is concerned, is

shown in Fig. A.34. On comparing the structures generated by

one-way dissection and nested dissection (see Figs. A.32 and

A.34), we can find that one of the main effects of nested

dissection is to reduce the size of the diagona2 submatrices, by

increasing its number and its density; this is highly desirable,

since we do have to store these diagonal submatrices.

We have used the nested dissection subroutines published by

George and Liu and obtained the fastest execution time of all

the direct methods we have reviewed so far, though in storage the

algorithm is not as good as the one-way dissection.

According to George and Liu (1981) and George (1981), their

algorithm is not as efficient as other implementations, but it is

simpler and suitable for tri-dimensional meshes (in 3-D finite

A-108

678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 401

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

21
22
23
24
25
26
27
28

29
30
31

33
34
35
36
37
38

r-.71

eabei fai(Amighlosw .	 04)=C
Viii1P41 bel
44 634 I I I UMWo 0 sL. J

11,u1.4)1110 6111110 I Ilk,
1 I I Ellt" PALO

1 I Doll littrig
I 4 I I Mell

Fig. A.33. Example of a 40 nodes rectangular-shaped graph,
partitioned using nested dissection.

Fig. A.34. Matrix structure corresponding to graph of Fig. A.33.

A-109

element	 problems,	 for	 example),	 whereas	 some	 other

implementations are restricted to 2-D problems (planar meshes).

Nested dissection seems to be better for problems where the

network has a squared or rounded shape, while one-way dissection

is more appealing for problems generating a strongly rectangular-

shaped graph.

George (1981) warned about the reliability of this routines:

"there are no results guaranteeing the quality of its outputs";

in our testing with water distribution networks, we have found

full agreement between the results obtained with this method and

others.

A.3.9. Frontal and multifrontal methods.

The frontal method derives from the search for efficient

methods for solving the huge linear systems generated in the

application of the finite element method. Although the ideas

behind the method had been used for a long time, the name and its

formal presentation are due to Irons (1970).

The frontal method aims primarily at the reduction of storage,

since the amount of operations is basically the same as in other

Gaussian elimination-based algorithms, though the order in which

these operations are carried out is different.

The foundations of the frontal method are strongly tied up with

the way in which finite element matrices are produced. In the

finite element method (FEM) a problem is discretized over its

A-110

continuous domain, aiming at evaluating the unknowns only at

certain points (nodes) within the domain, rather than at all its

(infinite) points. The discretization usually generates a mesh of

nodes, which are joined by edges, forming basic geometric figures

(typically triangles and/or rectangles). Each one of the

elementary figures constitutes a "finite element" or simply

"element".

The global matrix (or "stiffness" matrix, as a reminiscent

from the structural analysis problems where FEM was originally

developed) is actually assembled from each one of the elementary

matrices relating the value of the unknown variable at the finite

element nodes with the boundary conditions and with the

corresponding physically meaningful parameters. This is usually

formalised as:

A = E B (k)	 (132)

and	 h = E Q (k)	 (133)

where:

A	 : global "stiffness" matrix.

B (k) : is the matrix coming from the k- th finite element,

with its order equal to the number of nodes in the

k-th element.

c (k) : right hand side vector corresponding to the k-th

finite element.

b	 : right hand side vector of the global system.

The key observation here is that the finite element definition,

i.e. its shape, size and nodes, provides the adequate basis for

producing a desirable structure for the Gaussian elimination

A-111

process. In all the previous methods (like quotient tree and

dissection algorithms), a great deal of effort was spent in

producing the adequate orderings. In FEM, this structure comes up

"naturally", from the finite element specification. In fact, the

elimination order in FEM is determined by the sequence in which

the global matrix A is assembled.

Another basic observation leading to the development of the

frontal method, deals with the fact that we do not have to wait

until the global matrix is fully assembled (and indeed stored)

to start the elimination process. In fact all we need for

eliminating a row and column, say "1", is to wait until its

coefficients in the global matrix have been completely added; at

that point, the elimination of the variable "1" can be carried

out, and because we no longer need it, the corresponding row can

be stored out of core until the substitution stage requires it.

The following example, from Livesley (1983), illustrates the

elimination sequence. Fig. A.35 shows the element definition and

ordering, while Fig. A.36 shows the corresponding elimination

sequence.

Fig. A.35. Finite element definition and ordering for a frontal
solution scheme, from Livesley (1983).

A-112

Element introduced Nodes eliminated Frontal nodes

1 -4-3

2 -4-3

none -8-5-4-3

-8-7-4-3

-8-7-6

5

3 , 4

Fig. A.36. The elimination sequence in a frontal solution scheme
from Livesley (1983).

The "front" advances across the mesh following the assembly

sequence, which defines the elimination order. The frontal nodes

(or variables) lie in the border between the already assembled

elements and the un-assembled ones. The rows and columns

corresponding to the frontal nodes are usually kept in a full

(dense) matrix known as the "frontal matrix".

A-113

From Fig. A.36 it is clear that a node cannot be eliminated

until the contributions from all its related elements have been

assembled, like node 5, which has to wait until element D is

assembled.

From the previous example it is also clear that the front-width

(i.e. maximum number of frontal nodes) depends on the order in

which the finite elements are assembled, which is reflected by

its numbering. This leads to the conclusion that an efficient

frontal method implementation has to include some way of

minimizing the front width. This can be done using some of the

ideas described previously for ordering sparse matrices.

In the previous example, the sequence for assembling the global

matrix A ,using the notation of equation (132), is defined by:

A = [[[[[B(A)] A. B(8)] 4. g(C)]	 B(D)]	 B(E)]	 .	 (134)

where the assembling takes place from the inner brackets

outwards. This sequence corresponds with the elimination sequence

shown in Fig. A.36.

Equation (134) can indeed be assembled in many different ways,

for example:

A = { WA) 4. B(B)] 4.[B(C)	 B(D)]	 4.	 [B(E)]	 ...1	 (135)

where, again, the assembling is carried out following the

outwards direction of bracketing. This implies that we can

actually assemble A in such a way as to produce more than one

"front", each one with its corresponding frontal matrix, which

can be processed and kept aside temporarily. This is an extension

of the frontal method, leading to the "multifrontal" method,

A-114

where a sensible selection of the fronts allows extra savings in

terms of number of operations.

The complexity of the computer implementation of the frontal

methods is considerable. We have used the routine MA27 of the

Harwell Library, which consists of 15 subroutines with 2920

Fortran records (cards). As an additional feature, MA27 allows

the solution of indefinite sparse symmetric linear systems,

because some pivoting is performed within the frontal matrix. The

results of the comparison between the multifrontal method

implemented in MA27 and other methods, for the solution of water

distribution networks, is presented in Chapter Five.

Reid (1981), describes the main features of frontal methods,

while Duff and Reid (1982a, 1982b) describe the main

characteristics of the MA27 routine. Duff, Erisman and Reid

(1986, Chapter 10) give an up to date description of frontal and

multifrontal methods for finite element problems.

It has to be emphasised that, even though frontal and

multifrontal methods have been developed for and from FEM

applications, their use is open to non-FEM problems.

A.4. Review of iterative methods for the solution of linear

systems of equations,

A.4.1. Introduction.

When solving a linear system of equations there are a number of

reasons why, sometimes, an iterative (approximate) approach can

be most appropriate:

A-115

a) For example, if we are solving a non-linear system of

equations via an iterative scheme, which builds up a sequence of

linear systems, there is no point in getting an "exact" solution

in the first iterations of the non-linear algorithm, since we

know beforehand that this is not the true solution of our

original non-linear system, and all we want is an approximate

one. In those cases, considerable effort can be spared with an

approximate/iterative solution of the first successive linear

systems, provided that the iterative solution is cheaper than a

direct solution.

b) In engineering practice, real problems usually imply linear

systems of the order of hundreds or thousands and, in these cases

a direct solution can become very expensive from the amount of

work and storage point of views. This has been the main argument

in favour of iterative methods for quite a long time, but

nowadays the development of fast sparse direct algorithms is

challenging this argument.

c) The availability of fast and accurate algorithms for the

iterative solution of linear systems of equations, on the one

hand, and the widespread use of cheaper microcomputers in real-

life problems, on the other hand, makes the use of iterative

methods for the efficient solution of linear systems very

attractive indeed.

Thus, in the past 10-20 years, direct methods have been

associated with big computers, with massive storage capacity and

iterative methods have been linked to mini and microcomputers.

A-116

Though this situation is changing very rapidly, it is still

considered like a kind of rule of thumb by a number of people.

In essence, when storage is a critical constraint, an iterative

method seems to be the right choice for the solution of linear

systems, at least to start with.

We shall review the most widely used iterative methods, in an

increasing degree of complexity and so phistication.	 Starting

with some traditional methods (like Jacobi, Gauss-Seidel,

Successive over relaxation, etc.), a unified view of all these

methods is presented, since all of them can be studied as

particular cases of a single general method. Finally, we shall

review a conceptually different approach to solving linear

systems, based on optimisation methods (conjugate gradients). We

shall not include iterative methods like "alternating directions"

and "block iterative methods", which are applied especially to

solve linear systems arising from differential equations (see

Ortega and Poole (1981) and Stoer and Bulirsh (1980) for details

on these methods).

Basically, all iterative methods aim at producing a sequence of

solution vectors such as:

x(o) , x(1) , x(2) , 	x(k)

which converge towards the desired solution. The different

methods have particular ways of producing this sequence.

A.4.2. Jacobi's method (method of simultaneous displacements).

Let us consider our model problem:

Solve	 A x = b	 (136)

A-117

all xl + a12 x2 + a13 x3 1- + aln xn = bl

a21 xl + a22 x2 + a23 x3 + + a2n xn = b2

a31 x l + a32 x2 + a33 x3 + + a311 xn = b3

:

ari l x1 + an2 x2 + an3 x3 + + ann xn = bn

that is to say:

(137)

If we assume that aii/0 V i=1,2,. .,n , then we can apply the

same idea of the simple iteration method (in one variable) to an

n-dimensional space, and calculate x ,in an iterative fashion,

by reordering equation (137) as:

all xi = b l - (a12 x2 4- a13 x3 4- ... + amn xn)

a22 x2 = b2 - (a21 xl + a23 x3 + ... -4- a2n xn)

a33 x3 = b3 - (a31 xl + a 32 x2 + ... + a3n xn)	 (138)

ann xn = bn - (anl x2 + an2 x2 "I" ... + ann-1 xn-1)

from which the values of the unknowns can be expressed in a

compact form as:

1
x i (k+1) , 	 (bi - E a u j x j (k))	 V i=1,..,n	 (139)

	

an	 iXi

where (k+1) and (k) refer to the iteration index.

Then, Jacobi's algorithm can be expressed as:

Step 1. Startin g with k=0 and an initial solution x(o), which can

be zero or a better solution, if available.

Step 2. Compute x(k+1) using equation (139)

Step 3. Compute E = 11 x(k+1)_x(k)11
II	 or

A-118

x(k+1)_x(k)11

I 1X(k)11

or any other index that can be useful as a detention

(convergence) criterion.

and, if E > E : a given small termination value, then go

to step 4, otherwise stop; x(k+1) is the result for that

level of accuracy.

Step 4. If (k+1) > M : a prescribed maximum number of iterations,

then stop, because an accurate solution has not been

found in a reasonable number of iterations. Otherwise

[(k+1) S M], increase k to k+1 and go to step 2 again.

The convergence conditions for this algorithm are given in a

subsequent section.

As it can be seen from equation (139), when we are computing

the value of x(1), the right hand side uses x(k) from the

previous iteration. A better approximation can be obtained using

the last value (of the current iteration) for those xi whose

index j is smaller than i [i.e. for those values xi which have

been already calculated in the (k+1) iteration]. This idea leads

to the next method: Gauss-Seidel method.

A,4.3. Gauss-Seidel method (method of successive displacements).

This is the extension of Jacobi's method using the updated

values of xi in the computation of the following xi for i > j,

then equation (139) is replaced by:

1
x1(k+1) =	 [bi-Eaii xj (k+1) - Eaij x(k)] Vi=1,..,n	 (140)

j<i	 j>i

E =

A-119

and the algorithm described for Jacobi's method remains the

same, replacing equation (139) by (140).

No extra effort is needed for the Gauss-Seidel method, in

comparison with Jacobi's method, since all we have to do is to

consider the last updated values of the unknowns, rather than

those of the previous iteration. As a result, there is no reason

for using Jacobi's method instead of Gauss-Seidel.

A.4.4. Successive over (or under) relaxation method.

It has been found that further improvements in the rate of

convergence can be achieved by varying the magnitude of the step

[x(k+1)-x(k)] taken in the Gauss-Seidel method.

In fact, if we define the new value found via equation (140) as

an intermediate value, say it] , then we can compute the final new

value as:

xi(k+1) = x j (k) 4. w { Ri _ xj(k) }	 (141)

is called a relaxation parameter, more precisely, we have

over-relaxation if w>1 and under-relaxation if w<1. Of course, in

the case w = 1, we are simply applying the original Gauss-Seidel

method. We shall discuss in the next sections how to choose

to get the maximum acceleration in the iterative procedure.

A.4.5. Relationship between the previous methods.

If we express our model problem A x = b as:

[B + (A - B)] x = b
	

(142)

where B is an arbitrary matrix, then:

B x + (A - B) x = b
	

(143)

A-120

(145)

(146)

k1.41)

(148)

where:

and

Using the same idea behind simple (Picard) iteration, we can

solve (143) via the following iterative scheme:

B x(k+1) + (A - B) x (k) = b	 (144)

where the superscript refers to the iteration counter.

Since we have the freedom to choose B, we can assume that we

select a non-singular matrix B; thus, the unknowns in (144) can

be computed as:

x(k+1) = B-1 [b - (A - B) x(k)]
or

x(k+1) = B-1 b - B -1 A x (k) + B-1 B x(k)

then, reordering and considering 8 -1 B = L:

x(k+I) = x(k) _ B-I i\	 b
or

x(k+1) = [I - B-1 A] x (k) + B-1 b

Equation (148) represents a common matrix formulation for all

the iterative methods already seen.

Although interest in equation (148) is mainly theoretical,

since for programming purposes we must consider the subindexed

expressions (139), (140) and (141), the fact is that from

equation (148) we can generate all the previous methods by

choosing an adequate B matrix. The key factor for the

successfulness of any method is that B has to be easily

invertible, and that B must be as similar to A as possible.

Equation (148) can be rearranged in a more general expression:

x(k+1) = m x(k)	 d

M = [1- B- 1 A]

d = B-1 b

(149)

A-121

(151)

all
a22

•
D =

coefficients of A.

0

F = -

i.e. an upper triangular matrix with the

(153)

same corresponding

• aln

0 an-18

We shall look at the iterative methods from the perspective of

equation (149), especially the conditions for their convergence.

On decomposing matrix A as:

A=-E+D-F	 (150)

where:

E = -

0

a21 °

anl an2 ••• ann-1 °

same correspondingi.e. a lower triangular matrix with the

coefficients of A.

(152)
armn

i.e. a diagonal matrix with the same diagonal coefficients of A.

Then, assuming ai1/0 Vi = 1,..,n (i.e. D non-singular):

a) The Jacobi method can be obtained from equation (148)

by choosing B such that:

B=D ;	 (154)

in so doing:

M = I - B -1 A = I - D-1 (- E + D - F)

= I - D-1 (- E - F) - D-1 D

M = D-1 (E + F)

A-122

(155)

b) The Gauss-Seidel method can be obtained from equation (148)

by choosing B as:

B = D - E ;	 (156)

in that case:

M = I - B-1 A = I -(D - E) -1 (D - E - F)

= I - [(D - E) -1 (D - E) - (D - E)-1F]

= I - [I - (D - E) -1 F]

= (D - E) -1 F (157)

c) The iterative improvement method for the correction of a

solution of the linear system, which has been previously

obtained by a factorization methcvl, can also be exvresse.ul

as a member of this family of iterative methods.

Suppose we have decomposed the matrix of 	 ê.. in a_

LU fashion. If we acknowledge that, because of rounding

errors during the factorization stage the equality A = LU

does not hold, we have instead:

A=I LU	 (158)

Let us take:

B = L U	 (159)
then

B-1 = (L U) -1 = U-1 L-1
and

M = I - U-1 L-1 A	 (160)

d) The successive over-relaxation method can be obtained from

equation (148) by choosing B such that:

B = (1/w) (D - w E) (161)

where now B and M depend on the relaxation factor (scalar)

"w". Then

M = I - B-1 A = I - w(D - w E) -1 (- E + D - F)

A-123

M = (D - wE) -1 [(D - wE) - w(- E + D - F)]

= (D - wE) -1 [(1-w)D + wF] (162)

which, for the particular case w = 1, gives the Gauss-Seidel

method (equation 157).

A.4.6. Convergence conditions for the Previous methods.

There is a very close relationship between the convergence

behaviour of a linear system of equations and the way their

eigenvalues are distributed. It is known (Duff, 1985), that slow

convergence is associated with evenly distributed eigenvalues,

while the presence of clustered eigenvalues implies fast

convergence. So, the eigenvalues are the key to the study of the

convergence of the iterative methods we are interested in.

Unfortunately, the process for obtaining the eigenvalues of a

matrix is quite costly from the computational viewpoint,

involving some iterative procedure. Nevertheless, a number of

computer codes are available to compute the eigenvalues.

We shall summarise the results of applying some linear algebra

concepts to the conditions for convergence of the iterative

methods already seen. The details of most of these concepts,

fully proven, can be found for example in Stoer and Bulirsh

(1980).

We shall not involve ourselves in the mathematics, but we will

introduce only the main concepts. A complete review of the

computational procedures available to determine eigenvalues and

eigenvectors can be found in Ruhe (1977).

A-124

The eigenvalue problem is usually defined in terms of finding a

set of scalars Xi for i=1,...,n such that:

Ax= XBx
	

VxX.S2	 (163)

where B is usually taken as the identity matrix, i.e.:

VxXQ	 (164)

If A is a (nxn) matrix, there are "n" values satisfying this

condition, some of them real or complex numbers. Nevertheless, if

A is symmetric, its eigenvalues are all real; furthermore, if A

is positive definite, its eigenvalues are all positive.

Let Xi, X2, Xn be the eigenvalues of A, the matrix of

coefficients of the linear system (where some of them can be

repeated); then the spectral radius of the matrix A is defined

as:

e(A) = max{lXii, i=1,..,n, where M. is an eigenvalue of Al	 (165)

Because the spectral radius represents the scatter of the

eigenvalues, it can be used to find some information about the

convergence rate of an iterative method. In order to avoid the

explicit computation of the eigenvalues, it is possible to relate

the spectral radius and the norm of the matrix . On applying the

norm operator to equation (164), it is easy to prove that:

IXI S HAH	 (166)

which is valid for any norm. Then, from the definition of

spectral radius, we have:

e (A) I II A II
	

(167)

This means that any norm of A is an upper limit for its

spectral radius. This result is useful, since it avoids the

A-125

explicit computation of the spectral radius and eigenvalues, when

trying to determine the convergence properties of a method.

The basic (necessary and sufficient) condition for the

convergence of any iterative algorithm, represented by its

general formulation:

x(k+1) , [1 _ B-1 A] x(k) 4. B-1 b	 (148)

or
x(k+1) , m x(k) 4. d	 (149)

is
f(I-B-1A) < 1	 (150)

or simply:

f(M) < 1	 (151)

On applying the result of equation (167), we find that a

sufficient condition for convergence of the algorithm represented

by (148) is simply:

II I - B- 1 A II < 1
	

(152)

In general, the more distant from 1 the spectral radius or the

norm of M is, the faster the convergence of the method. Equation

(152) provides a quick means for getting a first check if a

method is convergent or not, since this only implies the

evaluation of any norm, say for example the maximum norm.

The results of applying these concepts to the iterative methods

seen so far, can be summarised as follows:

a) Jacobi's method: in general converges when the matrix A is

strictly diagonally dominant (laiiplaikl, V k� i and V i).

b) Gauss-Seidel method: always converges when either

* A is strictly diagonally dominant, or

A-126

* A is a positive definite matrix.

In addition, if J=D-1E+D-1F is non-negative, the Gauss-Seidel

method converges faster than Jacobi's method.

c) Successive over-relaxation: this method always converges when

A is positive definite or when the relaxation parameter

is such that:
0 < w < 2

In practice, the relaxation parameter must be found through a

trial and error procedure, within its range of convergence.

The successive over-relaxation method converges faster than

Gauss-Seidel, provided that D-1E and D-1F are non-negative

matrices.

In general, although Jacobi and Gauss-Seidel methods may

converge, their rate of convergence can be quite slow and, due to

rounding errors, the whole process can be spoiled.

A.4.7. Standard conjugate gradient method for the solution of

linear systems of equations.(Hestenes and Stiefel, 1952).

When A is a (nxn) symmetric and positive definite matrix, the

solution of the model problem Ax = b can be understood as a

minimization problem.

The main idea behind this method comes from the fact that the

quadratic function:

Q = (1/2) z T A g - gT h	 (153)

has a minimum which is exactly the solution of the model linear

problem A z = b. Then, instead of solving the original problem,

A-127

we solve:

minimize (1/2) xT A x - xT h	 (154)

The method was developed by Hestenes and Stiefel (1952), and is

basically an unconstrained minimization algorithm, where the

successive direction vectors, are conjugate with respect to the

matrix A and parallel to the error vectors (difference between

true and computed x's).

We shall introduce the algorithm first and review 	 its

mathematical background afterwards.

We use <x,y> to denote the inner (scalar) product of two

vectors:

<x3y> a xT y = yT X	 •

The standard conjugate gradient method consists in:

1. a) Determine an initial solution vector x (°) .

b) Compute the residual vector: .0 0) = b - A x(0)

c) Initialise the counter k=0 and take the direction

o)	 (o)

2. a) Compute the auxiliary vector k(k) , A R(k).

b) Compute the scalar ak= <r(k),R(k)v<R(k),k(k)>

c) Compute the new vector x(k+1) = x(k) + ak R(k)

d) Compute the new residual r(k+1) = r(k) _ ak k(k)

e) Check for convergence: is i1r(k+1)11 S E ?

If yes, stop.

If not, continue

E is the user specified accuracy.

3. a) Compute the scalar 13k = <r(k+1) , k (k) v<p(k) , k (k) >

A-128

b) Compute 2 (k+1) . r(k+1) _ ak 2(k)

c) Increase k by 1 and go to step 2.a)

Thus, the al gorithms builds up a sequence of vectors:

x(cp) , x(1) , x(2) , , x(n)

which converges to the solution of the linear system A x = b

As we shall see in the next paragraphs, it is implicit in the

algorithm that consecutive directions p (k) and 2(k+1) are A-

conjugate. This property guarantees that the solution can be

reached in at most "n" steps, where "n" is the order of A,

provided that the calculations are carried out in exact

arithmetic. Then, at least in theory, this method fits into the

category of the direct methods but, in practice, since rounding

errors are present in all calculations, its behaviour corresponds

to an iterative method.

Now we shall review the mathematical concepts benina the

algorithm:

In the first step of the algorithm an initial solution vector

x (°) has to be provided; usually a null vector is the easiest

starting point, but if a better approximation is available, the

algorithm will find the final solution quicker.

Then, the algorithm moves the solution vector from x (k) to

x(k+1) following the direction p (k) . The algorithm finds the best

step size in the direction p (k) via a one-dimensional

optimisation of the step length; this is done by minimizing the

objective function in that direction:

minimize (1/2)(x(k)-1-aR(k)
a

)TA(x(k)+0(R(k)) _ (x(k) 4_ 0(2 (k))Tio	 (155)

A-129

<r(k) , p(k) >

<2 (k) , A 2(k)›
=ak

On differentiating equation (155) to determine the optimum

value of a, say *Iv we get:

A (x(k) + ak p(k)) - b = 0

then,	
A x(k) + ak A p(k) = b

or
ak A R(k) = b - A x(k) = r(k)	 (156)

where r(k) is the residual vector at the k-th iteration.

Premultiplying equation (156) by p(k) (using the inner product)

and recalling that <x,y> = <y,x> , we can determine ak:

ak <R(k) , A R(k)› = <r(k),p(k)›

finally,

(157)

which is the scalar we compute in step 2.b) of the algorithm.

In the computer implementation of the algorithm we do not need

explicitly the matrix A, only its product by the vector p(k),

which is kept in an auxiliary vector, say k(k).

Now we are able to update the vector of unknowns:

(k+1) = x(k) + ak n(k)	 (158)

and the new residual:

r(k+1) = h - A x(k+1)	 (159)

which can be simplified in order to avoid the product A x(k+1)

because, on introducing x(k+1) from equation (158) into equation

(159), we get:

r(k4) = h _ A { x (k) 4. ak R (k) 1

or

A-130

r(k+1) „ h _ A x (k) _ ak A 2(k)

then	
r(k+1) . r(k) _ ak A ROO	 (160)

This means that we can overwrite the residual vector r (k) with

its new value r (k+1) by just subtracting ak k(k) [since we

stored the product A p (k) in the auxiliary vector R (k)]• In so

doing, we have avoided the explicit computation of the product

Ax(1+1) in equation (159). Equation (160) corresponds to step

2.d) of the algorithm.

If convergence is not achieved in step 2.e), we need to

generate a new direction for the improvement of the solution;

because we are looking for a new direction A-conjugate with the

previous one; this means that we need:

<2 (k+1) , A 2(k)› . 0	 - (161)

We shall find the new direction as a linear combination of the

residual and the previous direction, i.e.:

2(k+1) , r(k+1) _ f3k 2(k)

Imposing the A-conjugate condition [equation (161)], we get:

<r(k+1) _ 1-6k 2 (k) , A 2 (k)› , 0

or
<r(k+1), A 2 (k)› _ fsk	 A 2 (1)› = 0

which gives us the value of In we are looking for:

<r(k+1) , A 2(k)›

<2 (k) , A 2(1o)›
(162)

where again we can use the stored auxiliary vector E(k) instead

of A p(k).

It is at this stage that rounding errors affect the finite

A-131

termination property of the conjugate gradient method, since with

exact arithmetic the vectors p(k) and p(101) are exactly A-

conjugate (or A-orthogonal), but in the presence of rounding

errors orthogonality is lost.

The amount of work needed at each step of the algorithm is

mainly due to the product A p (k) , which makes the method very

attractive from the computational point of view; the rest of the

computations are mainly scalar operations. Only 4 vectors need to

be stored: x(k) , r(k) [which can overwrite the original right

hand side vector 12], p(k) and k(k) = A p(k).

These features have gained the conjugate gradient method a

reputation for large sparse linear systems in reduced storage

computers. In practice, the method is not recommended for dense

(non-sparse) matrices.

The conjugate gradient method was developed in 1952, when it

was originally regarded as a direct method, but it was abandoned

shortly afterwards, due to convergence problems created by the

lack of orthogonality. These problems and a comparison of

different versions of the algorithm were analysed by Reid (1971),

and interest in the method , now regarded as an iterative

algorithm was renewed . Of the several possible versions of the

conjugate gradient algorithm we have presented one of the most

widely used ones.

Gambolatti and Perdon (1984) compared the conjugate gradient

method with other iterative methods and offered a geometrical

interpretation of the algorithm, which is summarised in Fig.

A-132

A.37. for 2 and 3-dimensional problems.

Parlett (1980) has shown the mathematical relationship between

conjugate gradient methods and the Lanczos algorithm for solving

eigenvalue problems, the conjugate gradient being a particular

case of the Lanczos algorithm. We have used a Lanczos

implementation for solving the linear systems in the early stages

of the development of the gradient method for pipe distribution

network analysis [Lewis (1977)]; as expected, for normally-

conditioned problems, the convergence of the preconditioned

conjugate gradient was faster than the Lanczos implementation by

a factor of about two.

Nevertheless, the Lanczos algorithm is expected to behave

better than the conjugate gradient for ill-conditioned problems.

For more details on the Lanczos method see, for example, Scott

(1981).

A.4.8. Preconditioning.

Any direct or iterative method for the solution of linear

systems can be improved in its convergence rate via a technique

known as "preconditioning".

In an earlier section (The effect of rounding errors in the

solution of linear systems), we defined the condition number of a

matrix as the norm product IIAII.I'A-
I l l I '

and we associated this

number with the stability of the solution of the linear system.

Matrices with low condition numbers (about 1) are said to be

"well-conditioned" matrices, whereas those with larger condition

A-133

/	 \/	 \/x	 \/	 \

	

/	 1

	

I	 1

	

/	 1I	
t

/	 I
I	 1
I	 1
t	 1
1	 1

I 1

1 1
1 i
t /
1	 /
1	 /

1	 I
1	 /

1	 /

1	 //

\	 ,
N.	 a,

...	 /
.....	 ...0.... ..1... ay.

Fig. A.37. Geometric interpretation of the convergence of the
conjugate gradient algorithm for n=2 and n=3,
from Gambolatti and Perdon (1984), solving A h = b

A-134

\	 /\	 /\	 /\	 /\	 /\	 /

numbers (say, 104 or even greater) are considered as "ill-

conditioned". We may get convergence problems with ill-

conditioned matrices.

The main idea behind preconditioning is to transform an ill-

conditioned problem into a well-conditioned one, via a suitable

modification of the original system. Algebraically, this is done

by a pre and/or post-multiplication of the original system of

equations by some suitable matrices, which are referred to as

preconditioning matrices (or simply preconditioners).

Clearly, the aim is to produce a new linear system, with a

better behaviour from the rate of convergence viewpoint. A

complete review of preconditioning methods, applied both to

direct and iterative methods, can be found in Evans (1983).

We shall concentrate on the application of preconditioning to

iterative methods.

The concept of preconditioning can be formalised as follows:

instead of solving our original model problem A x = b, solve

either

(MA)x= (M b)
	

(163)
or

(N A NT)(N-T x) = (N b)
	

(164)

where M and N are square preconditioning matrices.

The form of the preconditioning given by equation (163) seems

simpler, but the main advantage of (164) is that, if A is

symmetric, the new matrix of coefficients (N A NT) remains

symmetric, although in that case we need to determine a

A-135

transformed unknown variable, say y = N-T x. Apart from our main

objective, in the sense that the new system has to be better

conditioned than the original one, we look for a new system which

may be eventually easier to solve as well.

There are as many preconditioning methods as matrices M and N

can be imagined. From an ideal point of view, the best choice for

M in equation (163) would be M = A -1 , since then the solution for

the vector x could be obtained in one single step. In general,

with an adequate selection of M and N, the preconditioned problem

will converge faster than the original one but, unfortunately,

there is no simple rule to determine a general purpose

preconditioning scheme.

Some possible preconditioning matrices are:

a) Diagonal matrices:

For example M= diag(mll , m22 , ..., mnn) with mii = 1/aii. This

kind of preconditioning matrix is more effective in highly

diagonally dominant systems, since in this case (M A) is close

to the identity matrix.

b) Complete factorizations of A:

Different kinds of factorizations of A can be used as

preconditioners, since in general they are easier to invert than

the original matrices. Thus, L U, L L T, L D U, L D L T, or

Cholesky complete factorizations can be used as preconditioners

[see section A.2.3.], because all of them produce easily

invertible matrix factors.

A-136

c) Incomplete factorizations of A:

Since complete factorizations lead to loose the sparseness of

the	 original system (because of fill-in), this	 kind	 of

factorization does not seem adequate when dealing with large sparse

linear systems; instead, an incomplete factorization is usually

the correct answer to this problem. In an incomplete

factorization we look for factors which have a similar sparseness

pattern in relation to the original matrix. That is to say, we

are now dealing with factorizations of the form:

A 2: Ls Us
or

A x Ls D Us

where Ls and Us correspond to sparse matrix factors, whose

product approximates the original matrix A. Note that now we are

just asking for an approximation to A.

In order to produce an incomplete factorization, there are at

least two strategies:

i) Fixed pattern scheme: in this case the original matrix is

decomposed in factors that have exactly the same sparsity pattern

as A.

Kershaw (1978), used successfully the incomplete Cholesky

factorization given by:

A = L D LT + E	 (165)

where A = symmetric and positive definite matrix.

L = lower triangular matrix with the same sparsity as A.

D = diagonal matrix

E = error matrix containing all the non-zero elements which

lie in the positions where A has zero values.

A-137

all a 12	 aln
a22	 a21

symmetric	 ann

111-
- 1 21 122

1n21 n 1	 inn

	

111 1 21	 • •	 lnl

	

1 22	 . •	 1n2

inn

(169)

Then, the following approximation holds:

A z LD LT	(166)

Of course, in the case of symmetric positive definite systems,

the same idea can be applied to the Cholesky "square root"

factorization:

A = L LT + E	 (167)

with the approximation:

A z L LT	(168)

The algorithm to perform this last factorization can be derived

easily, from equation (168), expressed term by term:

The first row of LT is determined multiplying the first row of

L by each column of L T and comparing element by element with the

coefficients of A:

all = 1 11 111 --> 111 = J-;11
	

(170)

a12 = 1 11 121 --> 121 = a12/111

a u i = 1 11 1 i1 --> l	 = a ii /1 11 V
	

(171)

Equations (170) and (171) give us the first row of the matrix

LT.

The diagonal elements of L T are determined by multiplying row

"i" of L and column "i" of LT:

A-138

= lil lil + 112 1i2 + ... + lii. lii

then

l ii =

	

	
i-

1/-a ii - E 1 lik2k=1
(172)

The i-th row of LT is determined by multiplying the i- th row of

L by each column of LT:

au j = 'ii 1j1 + li2 1j2 + ... + 1i(i-1) 1j(i-1)

then
i-1

lji = (aij - E l ik l jk) / lii	 Vj=(i+1),(i+2),..,n	 (173)
k=1

The main advantage of this decomposition dies in the fact that,

when a sparse data structure is used to store A , then we only

need to store the numerical part of L T, since the same data

structure (row and column indices) describe both A and L T . Of

course, the symmetry of A implies that only half of the matrix is

actually stored, i.e. A is also stored like a triangular matrix,
a

and the symmetry is handled implicitly. As a result, great

economy in storage is achieved, although an auxiliary (integer)

vector is required to scan L T by columns, when a row-wise data

structure is being used.

A couple of examples are shown to illustrate some features of

this factorization scheme:

Example a)

_
8.3 -3.2 0.0 -2.7

-3.2 13.7 -5.6 0.0
A= 0.0 -5.6 10.5 -2.2

-2.7 0.0 -2.2 9.2
-

A-139

LT

L LT =

2.881 -1.111	 0.0	 -0.937
3.531 -1.586 0.0

2.826 -0.779
2.778

	

8.299 -3.2	 0.0	 -2.699

	

-3.2	 13.7	 -5.6	 1.041

	

0.0	 -5.6	 10.499 -2.200

	

-2.699	 1.041 -2.200 9.199
-

We can see that the only apparent discrepancy seems to be the

element in the second row and fourth column of L L T which is

1.041 instead of 0.0.

Example b)

16.0	 0.0	 0.0	 -2.0	 -1.0

	

0.0	 9.0	 -2.0	 -1.0	 0.0

	

0.0	 -2.0	 10.0	 1.0	 0.0

	

-2.0	 -1.0	 1.0	 20.0	 1.0

	

-1.0	 0.0	 0.0	 1.0	 25.0

4.0	 0.0	 0.0	 -0.5	 -0.25

	

3.0	 -0.67 -0.33	 0.0
3.091 0.252 0.0

4.424 0.198
4.990

A

LT

L LT =

	16.0	 0.0	 0.0	 -2.0	 -1.0

	

0.0	 9.0	 -1.999 -0.999 0.0

	

0.0	 -1.999 9.999 0.999 0.0

	

-2.0	 -0.999 0.999 19.999 1.0

	

-1.0	 0.0	 0.0	 1.0	 25.0

Now the agreement between A and L L T seems to be better than in

example a).

These two examples "suggest" some of the most relevant features

of this sort of factorization: they behave better in the case of

large matrices, and also when a strong diagonally dominant matrix

A-140

is factorized.

ii) Relative magnitude scheme: now the criterion for keeping

the factors with a similar sparseness changes and, instead of

their relative position with respect to the original non-zeros,

some terms of the factorization are "rejected" or "thrown away"

because their magnitude is less than a pre-established amount.

Meijerink and Van der Vorst (1977) proposed a decomposition

along this line, for symmetric M-matrices (i.e. when all the

non-diagonal coefficients are less or equal to zero).

Munksgaard (1980) proposed an incomplete L D L T factorization

of this type, for symmetric positive definite matrices (without

extra requirements on its structure).

Ajiz and Jennings (1984), following the same idea, presented a

L LT factorization, though some adjustments are recommended to

the diagonal values in order to maintain positive definiteness.

The advantage of this proposition is its flexibility, because

it allows a wide set of possible incomplete factorizations to be

obtained, ranging from a complete Cholesky decomposition up to

one where all off-diagonal terms are rejected. The disadvantage

is that it is not possible to predict beforehand the fill-in

created, and so it is quite possible to run out of storage during

the factorization, unless a dense factor L has been dimensioned,

in which case it is obvious that a complete factorization should

have been used. Less evident as a disadvantage is the fact that

this approach needs a more complex data structure, because the

original data structure does not represent the incomplete factor.

A-141

Mainly because of storage constraints we prefer the incomplete

factorization proposed by Kershaw (1978), though in some cases,

if storage is less restrictive, the approach of Ajiz and Jennings

(1984) can produce faster execution times.

Chen and Tewarson (1986) have shown how incomplete

factorization can be applied to solve some banded shifted

coefficient matrices.

A.4.9. Preconditioned (modified) conjugate gradient method for

the solution of linear systems.

Although there are as many preconditioned conjugate gradient

methods as possible preconditioning matrices, we have followed a

scheme proposed by Ajiz and Jennings (1984), but with an

incomplete Cholesky factorization based on the "square root"

decomposition [see equations (170) to (173)], instead of the

incomplete factorization proposed by Ajiz and Jennings (based on

the magnitude of the non-zero values). This is exclusively in

order to keep the storage needs under control.

The subroutine MA31 of the Harwell Library implements a

preconditioned conjugate gradient algorithm, based on the

incomplete factorization proposed by Munksgaard (1980).

Given the incomplete Cholesky factorization:

A z L LT ,	 (174)

the "standard" conjugate gradient algorithm is applied to the

following preconditioned linear system:

(L-1 A L-T) (LT x) = (L-1 b)
	

(175)

A-142

1

(177)

which is equivalent to solving the system:

(L-1 A L-T) y = b*	 (176)

where:

(L-1 A LT) is the new (preconditioned) symmetric matrix

y = LT x is the new transformed unknown

b* = L-1 h is the new transformed right hand side vector.

Thus, the preconditioned conjugate gradient method is, loosely

speaking, no more than the standard conjugate gradient applied

over a transformed (preconditioned) linear system. When the

solution of the preconditioned system has been obtained for the

vector y, a back substitution is needed to compute the original

unknown x.

From the computational point of view, we do not need to store

the transformed matrix (L -1 A L-T) explicitly, because all we

need to do with this matrix is to multiply it by the conjugate

direction vector p(k), to form the auxiliary vector:

E(k) = (L-1 A LT) p(k)

which is similar to that computed in step 2.a of the standard

conjugate gradient method. As a result, we can buila up the

auxiliary vector k in a three stage process:

a) Back substitution: solve L T v(k) = p(k) for v(k)

b) Premultiplication: compute x(k) = A m(k)

c) Forward substitution: solve L k(k) = E(k) for k(k)

Then, the preconditioned conjugate gradient algorithm can be

carried out in the following steps (compare with the standard

method in section 6.7):

A-143

0. Compute the corrected right hand side vector h* = L -1 b

which is a simple premultiplication.

1. a) Determine an initial solution vector y (°) .

(y (°) =Q or a better approximation , if available,

see Note 1 at the end of the algorithm).

b) Compute the residual vector: r(0) = b* - (L-1AL-T) y(o)

(r(0)=h* if we started with y (o)=0, see Note 1)

c) Initialise the counter k=0 and take the direction

R(o)=r(o)

2. a) Compute the auxiliary vector k(k) with the three stage

process given in equation (177)

b) Compute the scalar ak= <r(k),r(k)>/‹.p(k),(k)›

(see Note 2).

c) Compute the new vector y(k+1) = y(k)	 ak R(k)

d) Compute the new residual r(k+1) = r (k)	 c(k. k(k)

e) Check for convergence: is Ilr(k+1)11 S E

If yes, go to step 4.

If not, continue

E is the user specified accuracy.

3. a) Compute the scalar 131c. = <r(k+1),r(k+1)>/<r(k),r(k)›

(see Note 3).

b) Compute R(k+1) = r(k)	 Bk 2(k)

(see Note 4).

c) Increase k by 1 and go to step 2.a)

4. Solve LT x = y for x via a back substitution process and

stop, because x is the solution of the original system (see Note

5).

A-144

Notes:

1. When solving iterativel y a system of non-linear equations,

via a sequence of linear systems, it appears logical to keep the

solution of the k-th linear system (say y (k)), and use it as an

initial solution vector for the (k+1)-th linear system.

We have applied this approach in the context of the gradient

method for the water distribution analysis problem but, when

solving systems of more than 165 unknowns we reached a break even

point, balancing the time saved starting with the vector y from

the previous (non-linear) iteration with the additional work

involved in computing the new matrix (L -1 A L-T) via the three

stage process (177). In this case, we recommend a start with the

initial solution y (0) =Q, as in step 1.a), i.e. r(0)=1)*

Gambolatti (1980) suggested that further improvement in the

convergence rate of the preconditioned conjugate gradient can be

obtained via the pre-computation of the initial solution by the

Newton iterative algorithm, but we have not experimented with his

recommendation.

2. There is an alternative formulation of the algorithm, for

step 2.b), which is equivalent to that used in the standard

conjugate gradient algorithm:

Compute c<k=
<r(k),2(k)>/<2(k),k(k)›

3. Here there is an alternative formulation for step 3.a),

equivalent to that used in the standard method:

Compute f3k = <1.(k+1),m(k)>/<p(k),k(k)›

4. If the alternative 131(of Note 3 has been used, the new

direction vector p(k+1) in step 3.b) must be computed with:

A-145

2 (k+1) = r(k+1) _ 131(2(k)

i.e. only a change of sign.

5. Obviously, because the preconditioned conjugate gradient

solved the transformed problem for the auxiliary unknown y = L T x

, we need to find the value of the original unknown x via a back

substitution process, which is done in step 4.

We shall not repeat here the reasons for the computation of the

optimal parameters ak and Bk, because they remain the same as

those explained in the case of the standard conjugate gradient.

Gambolatti and Perdon (1984) interpreted the conjugate gradient

method in geometric terms. The standard conjugate gradient

involves the minimization of a functional which represents a

hyper-ellipsoid in an n-dimensional space; the more "spherical"

this hyper-ellipsoid the faster is the convergence of the

algorithm. Thus, the preconditioning can be interpreted as an

effort to turn the hyper-ellipsoid into a sphere.

The development of conjugate gradient methods for the solution

of linear systems of equations is still a very active research

field. Sartoretto (1984) compared the preconditioned conjugate

gradient with other iterative techniques used in microcomputers,

using problems coming from the finite element analysis of

structures. Some tests demonstrating the goodness of

preconditioning are presented in Jackson and Robinson (1985).

Samuelsson,	 Wiberg	 and	 BernspEtng	 (1986)	 compared	 some

preconditioned conjugate methods with direct methods 	 for

structural mechanics problems.

A-146

APPENDIX B

DERIVATION OF THE KRIGING ESTIMATOR EQUATIONS

B.1. Introduction.

The estimation technique known as Kriging owes its name to D.

G. Krige, a South African geologist who, in the early fifties,

approached the problem of estimating the ore content in a

deposit, based on limited sampling.

G. Matheron and co-workers in the School of Mines of Paris at

Fontainebleu (France), in the sixties and seventies, extended the

ideas of Krige, introducing the terms "geostatistics" and

"regionalized variables". Geostatistics refers to the application

of statistic concepts to natural phenomena, whereas regionalized

variable stands for variables describing phenomena which are

spatially and, eventually, temporally distributed, with an

underlying structure, the structural characteristics being a

consequence of the genesis of the phenomena.

So far, geostatistics has been applied to a vast variety of

fields, some of them well apart from the original mining

engineering: the petroleum industry, geophysics, geotechnical

engineering, forestry, geochemistry, pollution problems, etc.

[Huijbregts (1973)]. In water resources engineering,

geostatistics has been used to study the spatial variation of

rainfall, to interpolate and to determine average values of

rainfall depths within a basin [Delhomme, (1978)], to the

B-1

identification of parameters in groundwater flow [Hoeksema and

Kitanidis (1983), (1984) and (1985)] and other problems .

We shall review the statistical and mathematical background of

Kriging, looking at its application to the problem of piezometric

head estimation in the context of water supply distribution

networks. Most of the concepts presented here can be found, with

much more detail, in the publications by de Marsily (1986) and

Journel and Huijbregts (1978), but they are reviewed here for

completeness.

The geostatistical process is usually carried out in a two-

stage procedure:

a) Representation of the model structure: which accounts for

the construction of an experimental variogram, based on the field

data, and the determination of the best analytical model

corresponding to that experimental variogram. This is also known

as the "statistical inference" or the "structural analysis"

stage.

b) The estimation of the unmeasured states (Kriging): based on

the previously determined structure, Kriging provides the best

linear unbiased estimates of the unknown states.

Both stages involve completely different activities and require

different techniques. In the first stage (statistical inference),

we are dealing with an analytical process, trying to specify in

statistical terms (through the variogram) the structure of the

phenomenon under study; this is clearly an activity which demands

B-2

a great deal of judgement, even though the computer can be used

in an interactive way to ease the calculations involved. The

second stage (Kriging itself) is the numerical part of the

process and is usually carried out with the help of the computer,

since it basically involves the assembly and solution of linear

systems of equations. The success of the overall process relies

heavily on the ability of the modeller to incorporate the

structure of the phenomenon into the variogram model and, to a

lesser extent, into the Kriging itself.

We shall review each stage with some more detail, but first

some notation needs to be introduced.

Because we are dealing with a water supply distribution

network, which is physically spread under the ground level, the

geometrical space over which the problem is defined is a two-

dimensional space. It can be argued that the alternative is a

one-dimensional space, since we are dealing with pipes, which are

basically one-dimensional objects, but we believe the two-

dimensional representation is more appropriate because we are (in

general) concerned with looped networks, in which case the heads

and flows are not dependent on the properties of one isolated

pipe, but depend on the interaction of the different elements of

the network, which do not necessarily need to be located in a

one-dimensional arrangement. In fact, looped water distribution

networks are essentially two-dimensional arrangements of pipes

and nodes, whereas open (branched) water distribution networks

are easily handled in a one-dimensional fashion.

B-3

Nevertheless, we restrict ourselves to the study of the

piezometric heads over a discrete set of points in the two-

dimensional space, these points are the nodes of the water

distribution network. Occasionally, we may also consider other

points, located in the pipes joining those nodes, but in either

case we are dealing with a discrete phenomenon rather than a

continuous one. As a result, head measurements are available at

some points of the space and head estimates (based on those

measurements) are required at unmeasured points.

Let x = (xi, x2) T be the two-dimensional vector representing

the location, projected into an horizontal plane, of the nodes

and any point within the network.

Since we are interested in the description of the piezometric

head plane (surface actually) we introduce the state variable H,

representing the piezometric head at any point of the network,

thus:

(x, H) = (xi, x2, H)T

represents a point in the piezometric plane at coordinates

(xi, x2) with a piezometric head of value H.

Due to the fact that we are modelling the phenomenon as a

stochastic process, instead of a deterministic one, the previous

definition is better represented as a random function	 say

Z(x,H), whereas Z(x 0,H) denotes a random variable at	 the

particular	 location xo and Z(x,H1) denotes	 a particular

realisatioR of the random function.

B-4

In order to simplify the notation of the random variables,

sometimes we may drop the state variable (H) or, even simpler,

we may use sub-indices to represent the value of a random

variable at a particular location; thus, the following

expressions are all equivalent:

Z(xi,H) <==> Z(xi) <==> Zi

B.2. Statistical inference.

In the geostatistical sense, the fact that Z(xl,H) is a

"regionalized variable" (i.e. it has an underlying structure or

"spatial distribution"), means that there is a correlation

between Z(1H) and another variable Z(x2,H), separated by a

distance d = xi - x2.

The variability of the regionalized variables is characterised

by a statistical function referred to as the semi-variogram,

which is defined as:

Semi-variogram: r(x1,x2) E k E [{Z(xl,H) - Z(x2,H)1 2]	 (1)

where E denotes mathematical expectation.

Some authors [de Marsily (1986), for example], refer to the

semi-variogram as simply the variogram, the only difference being

the scalar factor k applied to the expectation in the previous

definition. We shall try to keep the present notation (semi-

variogram) since it does not lead to any confusion, although we

may refer to it occasionally as simply the variogram.

B-5

Hence, in theory, the semi-variogram depends on xi and x2, and
its estimation requires the availability of a great number of

realisations:	 [Z(x1,H1), Z(x2,H1)] , [Z(x1,H2),	 Z(x2,H2)],

. . . , [Z(xl,Hr), Z(x2,Hr)] of the regionalized variable.

In practice, these numerous realisations are not available and

we only have one realisation at different points of the space;

physically, this corresponds to a set of head measurements at the

different nodes in the network.

In order to be able to estimate the semi-variogram from the

measured data some simplifying assumptions are made. Firstly, the

random process (or random function) is assumed to be ergodic,

which allows us to use the information from the unique

realisation available to determine the properties of the ensemble

of all possible realisations. Secondly, assumptions with

different degree of stringency are made with respect to the

behaviour of the statistics of different order (mean, variance

and higher order moments) associated with the random process. The

most stringent assumption used is that of stationarity, which

means that all the statistics, including higher order moments,

are assumed to be constant. Because for many practical problems

this hypothesis is too demanding and far from the real

characteristics of the random process under study, a more relaxed

assumption known as weak stationarity (or second-order

stationarity) is often used, whereby only the mean and variance

are assumed to be invariant. Further relaxation in the

stationarity of the random process occurs when the weak

stationarity is not required for the random process itself, but

B-6

for its increments, which is the intrinsic hypothesis. We shall

follow the usual procedure of deriving the Kriging equations for

different stationarity conditions, starting with the most

stringent one (stationarity) and we shall relax it successively

to second-order stationarity and second-order stationarity for

the increments (intrinsic hypothesis). However, the question

concerning which conditions are applicable to a particular

problem has to be answered from the data available and from a

physical understanding of the process being studied.

On assuming that the intrinsic hypothesis holds (the weakest

assumption so far), it is possible to estimate the semi-variogram

from the measurement data. Indeed, the intrinsic hypothesis

formally establishes that:

E[Z(xl,H) - Z(x2,H)] = 0 	 (2)

	

var[Z(xl,H) - Z(x2,H)] = 2 r(d)
	

(3)

where d = xi - z2.

With these hypotheses, the semi-vario gram r(d) can be computed,

because from (3):

	

r(d) = k var[Z(xl,H) - Z(x2,H)]	 (4)

which can be expanded to:

r(d) = k ECIZ(x l ,H) - Z(x2 ,H)1 2] - {E[Z(x1,H)-Z(x2,H)11 2	(5)

The last term of (5) vanishes because of the stationarity

assumption on the mean of the increments [equation (2)], hence:

	

r(d) = k ENZ(x l ,H) - Z(x2,H)1 2]	 (6)

B-7

Equation (6) allows us to estimate the semi-variogram from the

data, as the arithmetic mean of the squared differences between

two pairs of measurements [Z(x1,H),Z(x2,H)]:

1 N(d)
r*(d) = k 1	 E	 [Z(xl,H) - Z(2,11)] 2 1	 (7)

N(d) i=1

where N(d) represents the number of pairs of data at distance

For computational purposes we define classes of distance

between pairs of measurements, for example:

Class Between distances (m)

C1 (0	 , 100]
C2 (100, 200]
C3 (200, 300]
C4 (300, 400]

and, for each class, we simply average the squared differences:

k f [Z(xl,H) - Z(x2,H)] 2 1 , for all xi and 2c2 belonging to

this particular class. The process can be carried out in a

tabular format [de Marsily (1986)], as presented in Table B.1.

Table B.1. Computation of the experimental semi-variogram.

Class C1 C2 C3	 . .	 Ck

Number of pairs: N(d) N1 N2 N3 .	 Nk	 ..

Average distance: d d1 d2 d3 .	 dk

Average of f1/(2N(d))1[Zi-Zi] 2 a l a2 a3 ak	 (*)...

(*)
1	 Nk

ak =	 E [Zi - Zj]2
2 Nk i=1

B-8

The estimated semi-variogram r*(d) is the resulting plot with

the average distance as abscissa and the corresponding average of

the squared differences as ordinate, as shown in Fig. B.1.

The estimated semi-variogram is then a broken line obtained by

joining the successive points produced by the previous

computation, i.e. we get as many points as distance classes.

Some details on the semi-variogram become relevant:

* Note that for a set of "n" measurements, ,we get n(n-1)/2

pairs; each one has to be classified according to its distance

(d) and allocated into the corresponding distance class (Ci).

This is without considering the direction, in which case the

number of pairs is reduced, since we only have to include the

pairs belonging to a certain direction; this implies that a

sectorization of the geometrical space is needed for

computational purposes.

*r (d)

,...
:	 •	 •	 d (m)•

0
	

100	 200	 300	 400

Fig. B.1. Estimated semi-variogram.

B-9

Because the number of pairs decreases with the distance, it

means that the uncertainty in the estimated semi-variogram

increases with the distance. Because of that, sometimes it can be

convenient to discard the pairs too distant from each other; this

implies the use of a "moving neighbourhood", made up of all the

points surrounding the point to be Kriged, which are contained

within a circle of a pre-specified radius, thus reducing the

uncertainty in the semi-variogram at longer distances. Also, some

improvement in the estimation of the semi-variogram in the

shorter distances can be obtained by defining the distance

classes with a variable length, taking into consideration the

number of pairs included.

Some data points (outliers) can induce great errors in the

estimated semi-variogram, and it might be necessary to eliminate

some of them in order to stabilise the numerical computations.

The practicalities in the semi-variogram estimation are key

factors in its robustness and representativeness, as a "summary"

of the spatial correlation between the regionalized variables;

Armstrong (1984) discusses a number of the common causes of

problems in estimating the semi-variogram and also proposes the

corresponding corrective measures.

Some relevant features of the semi-variogram need to be

stressed:

a) Continuity: Due to the spatial continuity of the

regionalized variable, the semi-variogram is also continuous. For

a particular direction in the distance vector d, and because of

B-10

the increments vanish at a zero distance, the semi-variogram

starts, in theory, at the origin [r(0)=0] and it increases with

the distance (absolute value of the distance). The way in which

the semi-variogram increases with the distance is an indicator of

the degree of spatial correlation of the regionalized variable.

b) Range and sill: we restrict ourselves to a particular

direction in the distance vector, and if we carry on increasing

the distance (modulus), we may reach a point where the

correlation no longer exists; the distance corresponding to this

situation, say "r", is referred to as the "range" of the semi-

variogram, while its associated value, r(r) say, is known as the

"sill". Changing the direction in the distance vector normally

implies that different ranges and sills can be obtained for the

same regionalized variable; in the three-dimensional case, in

mining or groundwater for example, we may have two completely

different values for the range and sill, depending on whether we

are moving in an horizontal or a vertical direction. In water

supply distribution networks, we may expect different semi-

variograms in the case, for example, of long networks where the

flow pattern in the longitudinal direction is very different with

respect to the flow distribution in the transverse direction. The

study of the effect of anisotropies in the regionalized variable

on the semi-variogram is important in the statistical inference

process, in order to obtain a robust variogram.

c) Existence of the sill: As we implied before, the presence of

a range and sill in the semi-variogram may be possible. In fact,

there are some cases where the semi-variogram does not reach a

B-11

sill for any value of the distance; this implies that the

regionalized variable has an infinite variance, and only the

introduction of additional assumptions (intrinsic hypothesis) can

allow us to study the behaviour of such a phenomenon. We might

expect the lack of a sill in the case of water supply

distribution networks with a steep p iezometric plane.

d) Behaviour near the origin: In theory, the value of the semi-

variogram at the origin (distance=0) is null, but this may not

become clear from the measurement data. First of all, because we

only compute the value of points of the semi-variogram centred at

the average distance of each class, we may not get points close

enough to the origin (depending on how we have chosen the class

length). This may produce an apparent "jump" in the semi-

variogram near the origin, as shown in Fig. B.2., this is known

as the "nugget effect".

The second practical issue leading to the nugget effect is

related to the sampling procedure itself, and it explains the

name of the effect; in the mining field, if a sample contains a

nugget, i.e. a small piece of mineral in its natural state (gold

is the typical case), the ore content will be very high, whereas

a very close sample, taken just outside the vein of high mineral

content, will show a very low ore content (if any at all). This

may explain the erratic behaviour of the semi-variogram at the

origin, in some cases. We do not expect this kind of behaviour in

the semi-variogram of water supply distribution systems, and we

shall assume that a continuous variogram, passing through the

origin is the best representation of the phenomenon under study.

B-12

r*(d)
points from data analysis

nugget effect

(a) The nugget effect

r*(d)

d (m)

d (m)

(b) The true semi-variogram

Fig. B.2. Nugget effect and corresponding true semi-variogram

Measurement errors can produce a small nugget effect, and we

have to be aware of this in the event that the data show some

discontinuity near the origin.

Once the experimental semi-variogram is available from the

data, the next step is to fit an analytical expression to it, in

order to set up the theoretical basis for the Kriging equations.

However, not any analytical function can be used to represent the

estimated semi-variogram, due to the main features of the semi-

variogram which have been reviewed in the previous paragraphs. In

B-13

addition, for reasons which will become apparent later on, only

positive definite functions can be accepted as suitable models.

In practice, only a few analytical models are commonly used;

Table B.2 summarises these common models.

All the previous basic models, except the monomial one, are

models with a sill, although only the spherical and cubic models

reach the sill in a finite distance, given by the parameter Bo;

the exponential and Gaussian models only reach the sill

asymptotically. Another difference between all the basic models

is concerned with their behaviour near the origin, where

different concavities are obtained in different models.

Table B.2. Basic analytical models for the experimental semi-
variogram.

Model	 Analytical expression for r(d): 	 Conditions
r(d) = Ao + B0 .[function(d, Co)]

Monomial	 Bo dC°	 C0<2
in dC°	 A0=0

B0 [1.5(d/C0) - 0.5(d/C 0) 3]	 d<C0 ; A0=0
Spherical 	

Bo	 d>C0 ; A0=0

Exponential Bo [1 _ e(1/C0)]	 A0=0

Gaussian	 B0l1-e[-(d/C0)2]1	 A0=0

B0 [7(d/C0)-8.75(d/C0) 3 +3.5(d/C0) 5 -	 d<C0
- 0.75(d/C0) 7]	 A0=0

Cubic
Bo	 d>C0 ; A0=0

Having determined the experimental variogram on the one hand,

and having a set of available models on the other hand, the aim

is to find out which model (or a combination of them) fits the

experimental semi-variogram best. This process can be greatly

simplified by a computer program which can be run interactively

by the user to produce the best fit model in an interactive way;

eventually, if the computer program is designed to compute an

index of the goodness of fit (i.e. squared sum of residuals or

any other index), the process can be automated to give the best

model, leaving to the user the decision to accept it, reject it

or modify it. Huijbregts (1975) warns about the automatic fitting

of variogram models without performing the physical (structural)

interpretation of them, the main shortcoming of this being the

loss of insight into the behaviour of the regionalized variable.

An important feature of these programs is the ability to display

graphically (on the screen or in a printout) both the

experimental variogram and data and the fitted analytical model,

since such a plot can be very helpful when accepting or rejecting

the model.

For a more detailed exposition on statistical inference, in the

geostatistical context, see Journel and Huijbregts (1978),

Chapter III: Structural Analysis, where some FORTRAN program

listings for this purpose are included. Also, the paper by

Armstrong (1984) is relevant to this subject.

Perhaps the most important feature in the inference of the

semi-variogram, is that everything we have said so far is valid

only when the intrinsic hypothesis holds (which is expressed

B-15

through equations (2) and (3)]. If a drift or trend is detected

(i.e.: E[Z(x+d)-Z(x)]=m(d)X0), then the semi-variogram cannot be

estimated from the data and a more complex method is required,

such as that known as "intrinsic random functions" [see Delfiner

and Delhomme (1973) and de Marsily (1986)]. We shall review this

case later on.

B.3. Estimation via Krigina.

In order to derive the Kriging estimation equations, we shall

start from some ideal situation, assuming stationarity in the

random function; then we shall see how a non stationary process

can be dealt with and also how measurement errors can be handled

within Kriging. Finally, the most general version of Kriging,

known as "universal Kriging" will be outlined. In this case the

mean is not constant and the drift is explicitly handled using

the concept of an order-k intrinsic random function.

B.3.1. Kriging under stationary conditions.

A stochastic process is said to be second-order stationary or

weakly stationary if its mean is a constant value and its

covariance depends only on its lag; in our case, this means that

E [Z(x, H)] = m	 (8)

and

Cov(x1,x2) = E [{Z(xi,H)-m} .[Z(x2,H)-ml] = C(d)	 (9)

where d = xi - x2 : distance (vector) between points xi and x2;

we are primarily concerned with the magnitude of this

vector rather than its direction.

B-16

In these conditions, we can expand the expectation in (9) to

give:

C(d) = E[Z(x1,H)Z(x2,H)] - mE[Z(xl,H) - mE[Z(x2,H)] + m2

then, on introducing the constant mean condition, we obtain:

C(d) = E[Z(xl,H)Z(x2,H)] - m 2 - m2 + m2

which reduces to

C(d) = E[Z(x1,H)Z(x2 3 H)] - m2 .	 (10)

The covariance, under stationary conditions, is related to the

semi-variogram [see de Marsily, (1986)] through the relationship:

r(d) = C(Q) - C(d) (11)

and the relationship can be seen graphically in Fig. B.3, where

the semi-variogram ordinates are simply the differences between

the horizontal line through C(0) and the covariance curve (shaded

area).

d (m)

Fig. B.3. Relationship between covariance and semi-variogram.

B-17

Thus, because we already know how to estimate the semi-

variogram from the measurement data, we can assume that the

covariance is actually known. Additionally, we can also assume

that the mean "m" is also known and, under these conditions, we

can introduce a change of variable, to obtain the following zero

mean process (dropping the state H in the notation from now on):

Y(X) = Z(X) - m
	

(12)

i.e.: we are dealing with a zero mean process: E[Y(x)]=0.

Now we can proceed to compute an estimate (Y 0*) of the unknown

variable Yo at a point xo, based on the available measurements at

the other points Yi

Yi = Y(xi)	 ,	 i = 1 ,..., n	 (13)

The Kriging estimate Yo* , corresponding to an unmeasured point

X01 is then computed as a linear weighted combination of the

measurements:

n
Yo* = 11*(Xo) = E	 y
	

(14)
i=1

where the Xo i are the unknown weights of the Kriging estimator,

the superscript "i" refers to the measurement Yi, whereas the

sub-index "o" refers to the point being estimated xo. We are

dealing basically with a point estimator, where equation (14) is

applied one point at a time, using the same set of measurements;

we then get a different set of weights for each point to be

estimated.

B-18

Yo* is then an estimate of the true value of the variable Yo,

which is not known. Kriging estimates an optimum Yo* in the sense

that it minimizes the square of the errors: Yo* - Yo; because Yo

is not known, we have to formalise the optima]ity condition

stating that the expected value of the square of the errors is

the quantity to be minimized:

min E [(Yo* - Yo) 2]	 (15)

In other words, we are minimizing the variance of the errors of

the estimation; the expectation is taken at a fixed point, one

point xo at a time, over all the possible realisations of the

variable Y(xo, H).

On developing expression (15) and introducing the Kriging

estimator from equation (14), we get:

E [(Y0* - Y0) 2] = E [(E Xo i Yi - Y0)2]i
E[(Yo* - Y0) 2] = E[(E Xo i Yi)(E Xo i Yi)]-2 E[(E Xo i Y 1Y0)] +

i	 j	 i

+ E[Y02]

E [(y0* - Y0) 2] = E E Xo i Xo i E[Yi Yi] - 2 E Xo i E[YiYo] +
13	 i

+ E[Y02]	 (16)

On reordering equation (10), we can compute the expected value

of the product Yi Yj, assuming that the covariance and mean are

known:

E[t i Y j] = c (x i - xi) + m2
	

(17)

but, because of the variable change (12), Y is a process with

zero mean, hence:

B-19

E[Yi Yj] = C(xi - xj)	 (18)

and, in particular, for

E[Y02] = C(Q)	 (19)

which is the dispersion variance of Y or var(Y).

Introducing the results of equations (18) and (19) into

equation (16), we obtain:

E [(ilo* - Y0) 2] = E E Xo i Xoi C[X i-x] - 2 E Xo i C [Xi-x0] +
13	 i

+ C(0)	 (20)

which is a quadratic function of the weights X 0 i . According to

our optimality criterion [equation 15], this function ought to be

minimized, the variables being the weights X 0 i . The necessary

conditions for a minimum of (20) are given by the following set

of equations in the unknowns

i.e.

a

6 Xol

hence:

a
E

a Xoi

	 .	 E[(Y0* - Y0) 2]

[(Y0* - Y0) 2

= 2 E X0 i C[x i -x]
i

]	 =	 0	 i=1,	 ...,

- 2 C[x i -x0]

i	 =	 1,	 ...,	 n

i	 =	 1,	 ...,	 n

n

= 0

(21)

(22)

(23)E ko j C[Xi-x]i = C[Xi-X0]

B-20

A sufficient condition for a unique solution of (23) is that

the matrix of covariances (C) has to be positive definite, and

that is the reason why we wanted positive definite functions for

the semi-variogram model.

Some important features of the Kriging estimator become

apparent from equation (23), namely:

i) The weights Xo i do not depend explicitly on the value of the

measurements Zi. The weights determined with (23) depend on the

structure of the regionalized variable, expressed through the

semi-variogram or covariance matrix C. This means that the same

set of weights can be used with different sets of measurements

for the same location, provided that the information brought up

by the new measurements does not alter the structure of the

problem (semi-variogram). This rather striking property Of

Kriging can be used advantageously in real-time estimation, the

semi-variogram being updated off-line, if necessary, or a bank of

different time-dependent semi-variograms can be made available

based on past measurements.

ii) The estimation considers both the distances between the

point being estimated and the measurement points [xi-x 0] and the

distances between the measurement points [xi-x]. The former

means that Kriging gives a higher weight to data closer to the

point being estimated and the latter means that Kriging

discriminates redundant information [see Delfiner and Delhomme

(1973; Fig. 1) for an example of an estimator which does not

discriminate redundant information].

B-21

iii) If we set xo = xi, i.e.: xo coincides with one measurement

point x i , the solution of (23) gives X0 j =1 and X0k=0 V kXj, which

produces Yo*=Y(xi), i.e.: the estimate coincides with the

measurement. This is why Kriging is said to be an exact

interpolator, in other words: the estimates "replicate" exactly

the measurements.

iv) Armstrong (1984) showed that, even in reduced order cases

(4x4 systems), the Kriging linear system can be ill-conditioned.

In that case, small changes in the variogram produce such changes

in the matrix of coefficients, which may lead to significant

changes in the weights (X0 1). Armstrong recommended that the

computation of the condition number of the Kriging matrix be

incorporated as a standard step in the estimation process, so

that some warning can be given to the user in the presence of an

ill-conditioned system [see Appendix A for details of ill-

conditioned linear systems of equations].

v) The right hand side of (23) is the only term dependent on

the point to be estimated (xo); this means that for estimating

Yo* for different locations, we only need to solve equation (23)

for different right hand side vectors. Thus, efficient solutions

of the linear system (23) can be obtained via Gaussian

elimination with a triangular decomposition, which can be carried

out only once, stored and used repeatedly for each different

point (xo) to be estimated.

Appendix A includes a review of the theory and performance of

the most widely used linear solvers; all of them are applicable

B-22

to solve the linear systems generated by Kriging, due to the

symmetry and positive definiteness of the system.

Having computed the weights X0 i , we go back to equation (14) to

compute the Kriging estimate Yo* corresponding to the particular

location xo , i.e.:

n
Yo* = Y*(Xo) = E	 y

i=1

Now, the last problem to be solved is the determination of the

estimation variance. Since we do not know Yo, the true value of

the variable at xo, we cannot compute the error Y 0*-Y0 directLy,

only its variance:

var(Y0*- 110) = E[(Y0*-Y0)2] - { E[Y0*-Y0] 12
	

(24)

Introducing equation (14):

E[Yo* - Yo] = E{ E Xo i Yi] - E[Yo]
i

or

E[Y0* - Yo] = E Xo i E[Y1] - E[Yo]
i

but, because of the change of variable (equation 12), in general

E[Y]0 V j, then:

E[Y0* - Yo] = 0
	

(25)

As a result, equation (24) simplifies to:

var(Y0*-Y0) = E[(Y0*-Y0)2]	 (26)

Note that the right hand side of (26) is simply the quadratic

function we had to minimize [equation (20)]. But we already know

B-23

the right hand side in equation (20) after determining the

weights X0 i by solving the linear system (23); therefore:

var(Y0*-Y0) = E E Xo i Xo i C(xi-x) - 2 E Xo i C(xi-x0) + C(0)
1,)	 i

Introducing (23) into the above equation gives:

var(Y0*-Y0) = E Xo i C(xi-x0) - 2 E X0 1C(Xi-X0) + C(0)
i	 i

which, on simplifying, yields:

var (Y0*-110) = - E Xo i C(x- 0) + CM
i

and recalling that C(0) = var(Y):

var(Y0*-Y0) = var(Y) - E lko i C(Xi-x1)
i

In words, (27) means that the estimation variance is less than

the dispersion variance of the random function; only when xo = xi

is the variance of the estimation exactly equal to the

measurement variance. The optimum combination of measurements

with a given variance produces then, via Kriging, an estimate

which, on average, has a minimum mean square error.

Finally, having solved the problem in terms of the transformed

variable Y, we need to go back to the original variable Z:

Z = Y + m

Then,

n

Zo* = Z*(x0) = m +	 E l o i. (Z i - m)
i=1

(27)

(28)

B-24

and the Kriging variance (c0 2) becomes:

0.0 2 = var(Z0*-Z0) = var(Z) - E ko i C(Xi-X0)
i

The second term on the right hand side of equation (29) is

known as the variance reduction, i.e.: the variance reduction

brought about by the optimal combination of measurements.

It must be stressed that, strictly speaking, the variance given

by (27) and (29) is the estimation variance, or the variance of

the estimator, rather than the variance of the estimates. In

other words, it is a sort of "average" of the variance of the

estimates.

B.3.2. Relaxing the second-order stationarity 	 condition: the

intrinsic hypothesis.

The second-order stationarity conditions used to derive the

previous equations apply to stochastic processes where the mean

of the random function is known and where the covariance is

finite; then the variogram tends to a sill. The stationarity

conditions may not represent the real conditions in some

applications where the mean . may not be known and the variance may

not be finite; to overcome these problems a less stringent set of

conditions is introduced, which is referred to as the "intrinsic

hypothesis".

In the intrinsic hypothesis the process satisfies the following

conditions:

B-25

E [Z(xl,H) - Z(x2,H)] = m

where m is an unknown constant.

and

var [Z(xl,H) - Z(x2,H)] = 2 r(d)

i.e.: the variance is a function of d, the distance vector given

by d = xi - x2, and not of xi and x2 .

Under these conditions we shall define the following Kriging

estimator:

n
Zo* = Z * (x0) = E Xo i Zi	 (30)

i=1

where, as before, xoi is a set of weights which has to be

determined.

For the moment we shall assume that the mean is constant,

though unknown, i.e.:

E[Zon = E[Z 0] = m	 (31)

Since we are looking for an unbiased estimator, this means

that:

E[Zo* - Zo] = 0

where:

Zo is the true value of the variable Z at Xo, which is

unknown.

Introducing the estimator (30) into (31), we get

n.
E[E X0 1 Zi] = E[Zo] = m

i=1
or

B-26

n
E Xo i E[Zi] - m

i=1
i. e.

n
E X0 i m = m

i=1

which implies that:

n
E Xoi = 1
	

(32)
i=1

Now, as before in the second-order stationarity case, we impose

the condition of minimum variance on the estimator, i.e. we need:

	

minimum E [(Z0* - Zo) 2] .	 (33)

Introducing the estimator (30) into (33) gives:

E [(Z0* - Z 0) 2] = E [(E)o i Zi - Z 0) 2]	 (34)
i.

But now, because of (32), we can have the identity:

n
Zo =z Xso i Zo	 (35)

i=1

and introducing (35) into (34):

E [(Z 0* - Z 0) 2 1 = EL(E)o i Zi - E)(0 i Z0)2]

and factorizing:

E [(Z 0* - Z 0) 2] = E[{ E X0 i (Zi - Z0)}2]
i

or

E [(Z 0* - Z 0) 2] = EC E Xo i (Zi-Z0) E Xo i (Zj - Z0)]
i	 i

which leads to

E [(Z 0* - Z 0) 2] = E E Xo i X0 i ENZi-Z0)(Zj - Z 0)].	 (36)
ii

B-27

Recalling the definition of the semi-variogram in equation (1):

Nxi , xj) a k E [{Z(xi,H) - Z(xj,H)1 2]

or simply

r(xi -x) = k E [(Zi - Zj) 2]	 (37)

which can be re-arranged (adding and subtracting Z0) as

Nxi-xj) = k E [{(Zi -Z 0) - (Zj-Z0)12]

On developing the squared binomial:

r (xi-x 3) = kE[(Zi -Z 0) 2]-E[(Zi-Z 0)(Zj-Z 0)]+kE[(Zi -Z 0) 2]	 (38)

and using the semi-variogram definition [equation (37)] again, in

the first and third terms on the right side of (38), we get

N x i -x) = r(xi -x0) -E[(Zi -Z 0) (Z j -Z 0)] +r(xj -x0)

which allows us to compute the expectation needed in equation

(36), i.e.

ENZi-Z 0)(Zj-Z0)]= - Nxi-xj) + Nx i -x0) + Nxj -x0)

which, when introduced into (36) gives:

E[(Z0*-Z0)2] = -E E Xoi X0j Nxi-xj) + E EX0i Xoj r(-0)+
i j 	 13

E E Xo i	Jr(XoXj -xo)	 (39)

ii

This can be simplified, beOause we can factorize by E X0 i or

EX0 3 in the last two terms of (39), both factors being exactly 1

according to (32); in addition

E Xo i r (Xi-X0) = E Xo i r(Xj-X0)

whence (39) reduces to

EUZ 0*-Z 0) 2] = -E E Xo i Xo j Nxi-xj) + 2 E Xo i Nxi-x0)	 (40)

ii

B-28

(43)

This is the quadratic form corresponding to equation (20) in

the second-order stationary case. Equation (40) has to be

minimized, subject to the equality constraint represented by

equation (32). The minimization can be carried out via the

Lagrange multipliers technique, minimizing (without restrictions)

the expanded objective function:

L(X0 1 ,P) = k E[(Z0*-Z0)2] - P [E Xoi -1]	 (41)

where the factor k in the first term and the negative sign in

the second have been added for convenience, but do not alter the

main objective. The coefficient "P" is the (unknown) Lagrange

multiplier, which has to be determined, together with the set of

weights X0 1 ; to do so we have to make the partial derivatives of

(41), with respect to P and Xo i (i=1,...,n), equal to zero, which

leads to a set of (n+1) linear equations in (n+1) unknowns:

E ko i	 P = r(Xi-Xo)
	

i=1,...,n

E ko i = 1

On introducing the notation:

(42)

= r(z i - xj)

the linear system represented by (42) can be expanded as follows:

n••

e 1 r10Ao2
r20

Xon	 rn0
1

0	 r 12	 r 13 •
r 12	 0

:	
r
?3 •:

rn1 rn2	 rn3 .	 .	 0	 1

1	 1	 1	 .	 .	 1	 0
_

B-29

.The solution of (43) exists and is unique provided that the

matrix of coefficients is positive definite. The matrix is

symmetric and it only needs to be solved once, since it is just

the right hand side vector that depends on the point (x 0) being

estimated.

We now proceed to compute the variance of the error of the

estimator, which is:

var(Z 0*-Z 0) = E[(Z0*-Z0)2] - { E[Z 0*-Z 0] }2 (44)

which, on introducing the condition of unbiased estimator

[equation (29)], reduces to

var(20 *-20) = EUZ0*-Z0)2]

which has already been computed in (40). In addition, we can use

the results of the linear system (42) to get:

var(Z0*-Z0 1 = - E (X0 1 r(1 - 0)-P)+ 2EX0 i r(x1-x0)

or

(1.02 = var(Z 0*-Z 0) = E	 r(-0)+	 (45)

)3.3.3. Introducing uncertainty in the measurement data.

In the Kriging estimation procedures already reviewed, we have

implicitly assumed that the data were actually error-free. This

is not the case in practical applications, where, as in water

distribution networks, the data come from measurements, which do

have an associated error, say Ei, corresponding to each

B-30

+ P = r(xi-X0)

ji=1,. ..,n

E Xo i = 1
i

E Xo i r (Xi-x) -)ko i
0-i 2

measurement Zi.

To handle the measurement errors within Kriging, the following

assumptions are made:

Vi=1,2,..,n- The errors are random with zero mean: E[E1]=0

- The errors are uncorrelated to each other:

Cov(Ei,Ej) = 0	 V i � j

- The errors are uncorrelated with the measurements:

Cov(Ei,Z(x)) = 0 	 Vi	 Vx

- The error variance is known: Ti 2 and criXTj	 ViXj

Of course, in the event that some measurements are error-free

we only need ok=0, where k is the index of that particular

error-free measurement.

Under these assumptions, the impact of measurement errors on

the Kriging equations is noticeable only in equation (43), the

linear system of equations, where the first "n" zero diagonals

are replaced by -Ci 2 ; the restriction for the Xo i adding up to 1

and the computation of the Kriging variance remains unchanged. In

summary, we get:

To determine the weights X0 i and the Lagrange multiplier P:

(46)

or, using the notation

B-31

—cr 1 2

r 12
•

rn1
1

r 13
—3.2

:
:

rn2
1

r 13
r23

rn3
1

•

'
..

•

•

•

= r(x i -

r 1n	 1
r in	 1

:
-.7n 2	 1

1	 0

xi)

*

r10
r?0

=

rn0

1p

(47)

To determine the Kriging variance:

0. 0 2 = var(Z 0*-Z 0) = E1 r(x 1 -x0) + p
i

i.e. exactly the same as equation (45).

(48)

B 3.4. Universal Kriging and k-th order random functions (k-IRF).

In many practical applications the mean cannot be assumed

constant, i.e.: we have E[Z(x)] = m(x), a function of x. Because

of this, the real semi-variogram cannot be obtained from the raw

measurement data. This is evidenced in:

rraw(211-x2) = rreal(xl-x2) + k f EN(x1)-Z(2)]}2
	

(49)

Thus, the real semi-variogram coincides with that extracted

from the raw data only when E[Z(x1)]=E[Z(x2)]=m=constant. If a

drift exists, i.e.: mm(), then equation (49) says that the

semi-variogram estimated from the raw data will be a biased

estimate of the real semi-variogram.

B-32

Nevertheless, some authors [Delhomme, (1979)] accept the

possibility that, when the drift or trend of the mean is "small",

the intrinsic hypothesis can still give relatively accurate

results for short distances. We shall concentrate on the most

general case, where that approximation is not acceptable, i.e. in

the case where a strong trend is present; in that case, a

generalisation of the intrinsic hypothesis will allow us to

tackle the problem within the framework of Kriging.

In fact, in the intrinsic hypothesis, what we did was to assume

that if the original process Z(x) was not stationary, then the

differences (or increments) were indeed stationary. The

generalisation we are looking at does not stop there; if this

difference is still not stationary, then why not take the

difference again, and again and again, until a stationary process

is found. The successive differences are then removing the non-

stationarity. The idea is not new; in fact it is widely used in

stochastic processes, particularly in detrending time series

data.

Then, from now on, we are going to assume that Z(x) has been

differenced as many times as needed in order to produce a

stationary process. Thus, Z(x) represents the differenced

stationary process and not the original one.

We shall follow the same sequence as before, firstly we address

the problem of how to infer the semi-variogram from the raw data

and, secondly, how to carry out the estimation itself via

universal (or "generalised") Kriging.

B-33

1

(51)

Following Delhomme (1978) and de Marsily (1986), both based on

previous work by Matheron, and for a random function Z, we shall

n.
refer to E X 1 Zi as a generalised increment of order k if the

i=0

weights X i satisfy the condition:

n
E xi fl(x i) = 0	 (50)

i=0

for all the monomial functions f l (xi) of degree less or equal

than "k"; e.g. in a two-dimensional geometrical space, where

x=(x1 1 x2) T, this implies that the maximum degree must be x1y*x2c1

with 0 1 p+q 1 k.

In other words, in a first-order generalised increment we are

asking for the simultaneous fulfilment of:

n .
E xi = 0

i=0

n .
E xi xi i =

i=0

n .
E xi x2 1 = 0

i=0

where the superscript "i" is just an index, not an exponent.

Similarly, in the case of a second-order generalised increment

we shall be asking for the extended conditions:

0

0
n .
E xi =

i=0

n .	 .
E X 1 (x1 1) 2 = 0

i=0

(52)
n .	 .
E xi xl i = 0

i=0

n .	 .
Ex1 (x2 1) 2 = 0

i=0

n .
E xi. x2 i =

i=0

n .
0	 EX1 x1 1 x2 1 = 0

i=0

Of course, the intrinsic hypothesis already seen in previous

sections implies a generalised increment of order zero, i.e. only

n .
E X 1 = 0

i=0

is fulfilled.

The concept of the generalised covariance of order k is now

introduced simply as the covariance of a generalised increment of

order k. The generalised covariance is denoted by K(d). For k=0,

the generalised covariance of order zero is simply the semi-

variogram, with a negative sign.

Thus, according to the theory of the intrinsic random functions

[Matheron, (1973)], if

n .
E X 1 Zi

i=0

is a generalised increment of order k, its variance is given by:

n .
var(E X i Zi) =	 E E X i X j K(Xi-x)	 (53)

i=0	 ii

As before, in the semi-variogram case, only some functions can

be used to represent a generalised covariance; basically, they

B-35

must guarantee that the variances of generalised increments must

be always positive.

Matheron (1973) showed that appropriate models for the

isotropic generalised covariance of order k can be represented by

polynomials of order 2k+1; he also demonstrated that the even

powers are redundant and, as a result, they do not need to be

used in the polynomials.

Delfiner (1976) presented an analytical expression for these

polynomials and also formalised the conditions for positive

definiteness. Table B.3 presents some of the most widely used

models for generalised covariances.

As can be seen from Table B.3, the generalised covariances are

linear functions of the parameters Ai, which can then be computed

via regression analysis or similar techniques.

Kitanidis (1983) evaluated different techniques for the

estimation of the parameters of the generalised covariance

models. He stressed the point that the determination of the

parameters Ai of the generalised covariance model is a process

involving considerable errors; he recommended a maximum

likelihood technique and a minimum variance unbiased quadratic

technique as adequate methods for fitting the unknown parameters

to the generalised covariance.

Table	 B.3.	 Possible	 polynomial	 models	 for	 generalised
covariances , from Delhomme (1978).

Drift
Drift
	

order	 Model for the generalised covariance
k

Constant	 0	 K(d) = A06 + A l Id'

Linear	 1	 K(d) = A06 + A l Id' + A3 IdI3

Quadratic	 2	 K(d) = A06 + A l Idl + A 3 IdI 3 + A5 IdI5

Constraints: A0 20 , A110 , A5 10 and

A3 2 -(10/3) diTA5	 (in R2)

A3 2 - ,a(5 Al A5	 (in R3)

6=1 if d=0, 6=0 otherwise

Having produced and checked a valid model for the generalised

covariance, we can proceed to determine the universal Kriging

equations, which is done, as usual, imposing the unbiased

condition on the estimator Zo* and the minimum variance on the

residual Zo*-Zo. The difference now is in the fact that the mean

is no longer constant, but has a trend or drift:

E[Z(X)] = m(X)	 (54)

Although the value of m(x) is not known, we assume that it can

be	 represented (at least locally) in terms of a 	 linear

combination of basis functions (usually polynomials), e.g.: in

the two-dimensional case, where 	 = (x1,x2)T

B-37

(57)

(58)

(59)

m(x) = al + a2x1 + a3x2 + a4x1 2 + a5x1x2 + a6x2 2 + ...	 (55)

or, in general

w
m(X) = E ak Pk(X)
	

(56)
k=1

where

- the coefficients ai have to be determined by fitting, applying

some knowledge of the physical behaviour of the variable Z.

- the polynomials pk(x) are usually monomials of first or second

degree (linear or quadratic drift), for example in a two-

dimensional space:

* linear drift:

m(x) = al + a2x1 + a3x2

* quadratic drift:

m(x) = al + a2x1 + a3x2 + a4x1 2 + a5x1x2 + a6x2 2

* constant mean (no drift):

m(X) = al

As before, the Kriging estimator is

n.
Zo* = E X0 1 Zi

i=1

The unbiased estimator must satisfy:

E[Zo*] = E[Z0]

where Zo is the true (unknown) parameter being estimated.

Introducing (54) and (57) into (58) gives:

E[E X0 1 Zi] = E[Z 0] = m(x0)

and introducing (56) into (59):

B-38

E K i k
'Co P (Xi) = P

k (X0)
i

k=1,..,m

n	 .	 w	 w

E Xo l 1 EakPk(X i) 1 = E
ak Pk(2ç)

i=1	 k=1	 k=1

or, reordering the first term:

w	 n	 .	 w
E ak { E x01 pk(x) } = E ak pk(x0)

k=1	 1=1	 k=1

which is satisfied when:

(60)

This is a generalisation of the previous condition E X0i=1

which is obtained from (60) when no drift is assumed, i.e.:

m(X)=a1.

The rest of the Kriging equations are obtained from the minimum

variance condition. For this purpose we could use the generalised

covariance concept, provided that E X i li is a generalised

increment of order k, which is true since:

n.
E Xo l Z i = Zo

i=1

can be re-written as:

n.

E Xol Zi =0
i=0

with Xo° = -1

and provided that the mean (drift) is expressed as a function of

monomials of order "k" or lower.

Then, we can minimize the generalised covariance (equation 53)

subject to the condition (60) by making zero all the pArtial

derivatives with respect to Xo i of the Lagrangian function:

B-39

N	 Tr,	 k,	 ,
E 'v3

j
N tXi-Xj) + E Pic P lXii = K(Xi-X0)]

jk	 1=1,...,n

E ko i Pk (Xi) = Pk (X0)]
	

k=1 m

and

L(X0 1 , Pk) = E E X0 1 X0 3 K(xi-xj)+Pk[E ko i Pk (Xi)- Pk(X.0)]
	

(61)
13

which leads to the following set of linear equations:

This	 is	 a system of (n+m) equations

i=1,. ..,n and Pk k=1,...,m,	 which can be

K11 K12 K 13	 •	 •	 •	 K 1n	 1	 P 12	 •••	 Plk
K21 K22 K23	 '	 •	 •	 K 1n	 1	 P22	 •••	 P2k

•	 •	 •

K
n1

K
n2n3 • •	 •	 K r 	 1	 Pn2	 Pnk

1	 1	 1	 .	 .	 .	 1	 0	 0	 0
P21 P22 P23	 •	 •	 •	 P2n	 0	 0	 0

•	 •

•	 •	 •	 •

Pm1 Pm2 Pm3	 •	 •	 •	 Pmn	 0	 0	 ...	 0

in

expanded

(n+m)

x01
x02

Ikon
-P1
-P2

-Pm

as:

unknowns:

K2o

KnO
1

P20

Pm0

x0i

(63)

using the notation

and
	 = K(Xi - Xj)

Pij = Pi(Xj)

Note that the system (63) is symmetric. Its size is (n+m)x(n+m)

which is not particularly large in water resources applications,

since is mainly dominated by "n", the amount of data points

(piezometric head measurements in our case). Appendix A includes

a review of efficient linear solvers for symmetric positive

definite linear systems and, because of that, we do not go into

more details here.

(62)

B-40

(64)

In the particular case of the intrinsic random functions of

first order, the linear system (62) reduces to:

E Xo i K(x i -x j)-P 1 -P 2 x 1 1--P 3 x2 i = K(xi-x0)]
1=1,..„n .j
xi=(xi1,x21)T

n	 n	 n

E Xo 1 = 1	 E Xo 1 x 1 1 = x1 0	 E Xo 1 x2 1 = x2°
i=1	 i=1	 i=1

and

and in the case of intrinsic random functions of second order,

the linear system becomes:

6
E Xo i K(Xi-x ,) + E Pk Pk (Xi) = K(Xi-Xn)]
j	 k=1	 i=1,...,n

and
..	 (65)

E Xo i Pk (Xi) = Pk(X0)]	 k=1,...,m
i-

with p l (x), ..., p6 (x) being 6 polynomials in xl, x2 as defined

in equation (52).

To compute the corresponding Kriging variance we need to go

back to the expression for the generalised covariance (equation

53) and to introduce EX j K(xi-x) from the linear system (62),

obtaining:

ivar(Z 0*-Z 0) = K(0) + E Pk Pk(X0) - r- ko K(Xi-Xo)
k	 i

(66)

which, for the particular case of an intrinsic random function of

first order reduces to:

var(Z 0*-Z 0) = K(0) + P 1 + P2x1° + P3x2° - E Xo i K(s1-x0)	 (67)
i

B-41

Equations (62) and (66) are the equations for the universal

Kriging and the Kriging variance respectively, in the most

general case of intrinsic random function of order k. It is not

too difficult to re-derive all the previous equations obtained

by assuming stationarity or the intrinsic hypothesis, by simply

considering them as particular cases of the most general

intrinsic random function of order k.

APPENDIX C

DERIVATION OF THE BI-CUBIC SPLINES APPROXIMATION EQUATIONS

C.1. Introducing cubic splines.

In words, a cubic spline is a set of cubic polynomials joined

end to end in a continuous and smooth manner.

Mathematically, and following Hayes and Halliday (1974), a

polynomial function s(x) is a cubic spline with ordered interior

knots Xi, X2, •••h (i.e.: Xi < X2 <	 <)q.) if it satisfies

the following conditions:

i) In each interval defined by the knots, the function s(x) is

a polynomial of degree less or equal than 3.

ii) The function s(x), its first and second derivatives [s1(x)

and s"(x), respectively] are continuous. Higher order

derivatives do not need to comply with the continuity condition,

in particular, a cubic spline will have third derivatives which

are discontinuous at the knots [Xi , 1=1,2,	 h].

The set of interior knots (another set of knots known as

exterior knots will be defined later on) divides the domain over

which the independent variable (x) is defined into h+1 intervals.

A cubic spline is defined as a piecewise polynomial function (of

degree less or equal than 3) on each one of these intervals and,

provided that the specified knots are different (i.e. simple

knots), the cubic spline will be twice-differentiable over its

domain.	 When two coincident knots are s pecified,	 the

C- 1

differentiability of the spline is reduced in one order, at the

particular point where the coincident knots are located. Thus, by

an adequate knot selection, we are allowed to specify

discontinuities in the derivatives of the splines and, indeed, in

the spline polynomial itself.

The one-dimensional splines fitting problem consists of finding

the analytic expression for s(x) which best approximates a set of

"m" data points { xr, f(xr) } , r=1,2, ... m , for a given set of

knots Xi i=1,2, ... h. "Best" here is used in the least-

squares sense. Note that we are not asking for the function s(x)

to pass through the data points, which is the interpolation

problem, but only to approximate them; "fitting" is used as an

equivalent term for "approximation".

Cox (1987a)	 argues that in the case of noisy data,

approximation methods should be used instead of interpolation.

Besides, reliable computer software for splines interpolation,

particularly for two-dimensional splines interpolation with

scattered data, is not widely available [Anthony and Cox (1987

b)]. For these reasons, we shall apply a spline approximation

approach to the piezometric head estimation problem.

From a mathematical point of view, a spline can be represented

in various ways, but the B-splines representation (also known as

"basic" or "fundamental" or "normalised" splines) has gained a

reputation as being the most adequate and stable representation

[see Cox (1972) and Cox (1982b) for a discussion on this

subject].

C-2

Also, cubic splines, rather than splines of any other order,

have became the most widely used splines in engineering

applications, mainly due to their continuity properties and to

the availability of proven and reliable software. The NAG

subroutine library deals with cubic splines, while NFL's Data

Approximation Subroutine Library deals with splines of any order.

Cubic B-splines are bell-shaped functions, which are defined to

be non-zero only within four adjacent knot intervals (defined by

five different knots Xi), being zero everywhere else. Fig. C.1

shows the shape of a B-spline M(x) with knots

and Xi. Different basic splines can be defined, leading to

different magnitudes for their peak point or area under the

curve; this degree of freedom in the definition of a B-spline is

used to scale-up the shape of the B-spline.

The following explicit representation of the B-spline, Mi(x),

has been shown to have some advantages over earlier divided-

difference representations.

4
Mi(x) = E vis (x - Xi_sq

	
(1)

s=0

with

4
vis = 1 / { Tr (Xi-s -Xi-r) 1
	

(2)
r=0
r�s

and where the notation (x - xpy stands for:

C-3

(3)

f(x)	 #
1

Fig. C.1. Representation of a B-spline.

(x -	 =	

(x - Xj) 3	 if x	 Xj

0	 if x S ki

i.e. the function (x - Xjq has non-zero non-negative values

only from x= Xj onwards.

The weighting factors vis in equation (2), have been defined

such that the area under the cubic B-spline is exactly equal to

1/4. Note that the weights do not depend either on the data

points or on the the points to be approximated, but only on the

knots; they can therefore be pre-computed and kept in storage,

before the actual approximation process is carried out.

The cubic B-splines previously defined are the "building

blocks" of splines fitting. The idea is now to express the

polynomial function s(x), describing the spline as a linear

combination	 of the B-splines, having one B-spline associated

with each knot. As a result, a cubic spline combines four B-

splines in an interval (Xi i.e.: the B-splines Mi(x),

Mi 4.1(x), Mi+2(x) and Mi 4.3(x), as shown in Fig. C.2.

C-4

Since normally we shall be interested in defining a spline for

a limited range of the independent variable x, say x E [a,b], and

due to the fact that for a convenient representation of the

spline in any interval we want to combine 4 B-splines (as shown

in Fig. C.2), and assuming that:

a < X 1 < X2 <	 < Xh < b

this implies that, for completeness, we need 8 extra knots,

known as exterior knots, to be able to produce 4 B-splines in the

first and last intervals: [a,X1] and [Xh,b], respectively. These

exterior knots are normally labelled as:

Xi-3 < Xi-2 < Xi-1 < Xo 1 a

and

b 1 Xh+1 < Xh+2 < Xh+3 < Xh+4

Thus, the extended set of B-splines looks like that shown in

Fig. C.3.

M1 (x) Mi+1(x): Mi+2(x) Mi+3(x) M4(X)

-4	 j-3 Xi-2	 -1)k i	 Xi+1 Xi+2 Xi+8 Xi+4

t,

Fig. C.2. B-splines involved in the
interval (Xi-1 1 X 1) .

spline function for the

C-5

Mh+1 (x) Mh+2(x)	
mh+4(x)

b X11+1	 Xh+2 Xh+3 Xh+4

Cox (1972) demonstrated the conveniences of using a recursive

relationship for the numerical representation of the B-spline

Mi (x), instead of the explicit representation of equation (1).

The reasons for such a preference are mainly concerned with

stability considerations, particularly when two or more knots are

placed very close to of each other, in which case the explicit

representation "blows up". This does not change most of what we

have previously said, but only changes the way the B-splines are

computed.

The recursive expression proposed by Cox (1972), and adopted by

Hayes and Halliday (1974) for evaluating B-splines, both in the

NFL and NAG libraries is:

(x-X i _n)	 + (Xi-x) Mn_i,i(x)
M(x) =

	

	 	 (4)
(X i - Xi-n)

where:

M(x): represents a B-spline of degree (n-1), given as a

linear combination of B-splines of lower degree.

Thus, n=4 for our cubic B-splines and M4(i)

becomes the equivalent of our previous Mi(x).

Fig. C.3. Extended set of B-splines: interior and exterior knots.

C-6

1./(ki - Xi-1)
M1,i (x) =

0.0

if x E [Xi-1,Xi)

if x 9 Di-1,j)
(5)

The evaluation of the B-splines using equation (4) starts with:

The recursive definition for the B-splines given by equations

(4) and (5) implies that the area under its curve is exactly 1/n,

that is to say, for the cubic B-spline (n=4), the area is exactly

the same as before: 1/4.

For a point, either a data point or a point where an

approximate value is needed, lying in the interval (X j _ i , Xj),

the sequence for evaluating a cubic B-spline is given in the

following array, where all B-splines not shown are considered as

zero, and we are proceeding from left to right:

The recursive scheme for the evaluation of B-splines

represented by equation (4) is stable, even in the case of

coincident knots (Xi = Xi_1). Sometimes, it may be desirable to

have coincident knots, in order to introduce discontinuities in

the second derivatives, first derivatives or in the function

itself.

C-7

C.3, Data fitting using one-dtmensional cubic splines.

It has already been said that the idea is to combine the cubic

B-splines linearly, in order to produce a general cubic spline

polynomial function s(x), that is to say:

h+4
s(x) = E ri M(x)
	

(6)
1=1

where:

r 1 are the linear weights (to be determined) corresponding

to the different B-splines for each interval (Xi_lOki)

The curve fitting problem consists of representing the set of

data points (measurements for example): {xr, f(xr)}, r1,2,.. .,m,

in the form of equation (6). This implies that the coefficients

r . have to be determined as the solution of the following linear

system of equations:

h+4
s(x1) = E r i M(x1) = f(x) = fl

i=1

h+4
s(x2) = E r i M 1 (x2) = f(x2) = f2

i=1

h+4
s(xm) = E r i M i (xm) = f(xm) = fm

i=1

(7)

or, in a compact format:

h+4
E r i Mi(xr) = f(xr) = fr	 r=1,2,... m	 (8)

i=1

C-8

which is clearly a linear system of "m" equations in the h+4

unknowns r i . Because normally m > h+4, (7) is an overdetermined

system of equations and an exact solution does not exist; a

solution in the least-squares sense in sought. This system is

known as the observation equations.

An even more compact matrix representation of such a system is:

where:

A is a rectangular mx(h+4) matrix with coefficients:
•

An = Mi(xr).

r and f are column vectors of lengths (h+4)xl and mxl,

respectively.

The structure of the matrix A has some important features:

i) Due to the fact that for every data point there are only 4

non-zero B-splines involved, and they are adjacent: Mi_3(x),

Mi_2(x), Mi_1(x) and M(x) (if the data point lies in the

interval Xj_i<x<XJ), this implies that A has only four non-zero

elements per row and they are adjacent. In addition, if the data

points are sorted in ascending order, according to their

magnitudes, the first of the four non-zeros of each row of A will

never lie at the left of the first non-zero of the previous row.

Two or more non-zeros will lie in the same column of A, if and

only if they lie in the same knot interval, say

ii) This means that A has a special banded structure and, as a

result, this represents some advantages as far as the storage and

handling of the system is concerned.

C-9

A=

>x

A=

To illustrate this point, some examples of the structure of the

observation matrix A are as follows:

Example a:

X1 X2	 X3 X4 X5 X6 X7
+ 	 + 	 +- + x x- + x +-x--x--+-x-x-+---+---+---+--> x
II	 I	 I	 I	 I	 I
I	 I	 1	 I	 I	 1	 1	

I	 I	 1	 I
X-3	 X-2	 X-1 Xo	 X1	 X2)(3	 X4 X5 X6 X7

a	 b

the corresponding structure of the observation matrix is:

where "x" represents a non-zero value.

Example b:

X1 X2	 X3	 X4 X5 X6	 X7 X8 X9

	

X X 4. X 4. 	 +x x x- +x x+ x

X1

1
1

	X2	 X3
1

	

1	 1
1

X4
1
1

)1(5

1
1

'N-3=X-2=X-1=)(0=a=x1

the corresponding structure of the observation matrix is:

6=X7=X8=X9=b=X9

Since normally m > h+4 , i.e. there are more measurements than

unknowns, the linear system (9) is overdetermined. Clearly, a

C-10

unique solution is not possible, and the best we can expect is a

solution in a statistical sense, such as to minimise some pre-

established criterion; this is normally achieved by resolving the

overdetermination in the least-squares sense, which leads to the

following set of "normal" equations [premultiplying equation (9)

by the transpose of the observation matrix A]:

AT A r =AT f	 (10)

where:

[AT A] is a squared (h+4)x(h+4) banded symmetric matrix,

with bandwidth (2n-1).

The system (10) is not a very large linear system; it does not

have hundreds or thousands of equations, and its banded structure

allows us to use efficient specialised linear solvers.

The numerical solution of (10) can be obtained via a direct

method, i.e. a Cholesky factorization [see Appendix A for a

review on the solution of linear systems of equations]. However,

the system (10) can present instabilities which may require a

more stable numerical solution, i.e. orthogonal factorization,

Givens rotations or Householder transformations [see Golub and

Van Loan (1983) for details on these methods]. The ill-

conditioning of (10) becomes manifest particularly when m >>h+4.

Iterative solutions (like the conjugate gradient method) of the

normal equations have also been reported [Cox (1982a)].

A few words ought to be said with respect to the existence of

the solution of the normal equations. The solution indeed exists,

if and only if the data fulfil some conditions known as the

C-11

Schoenberg and Whitney conditions; for interpolation problems,

these conditions establish a relationship between the location of

data points and knots, which is normally expressed as:

xi < Xi < xi+n
X2 < X2 < x24.h

xh < Xh < xm

For one-dimensional approximation problems, the Schoenberg and

Whitney conditions are restricted to any subset of the data

abscissae; if the conditions hold for any such subset, then the

solution of the normal equations exists and is indeed unique.

In essence, the solution of equation (10) leads to the weights

r corresponding to each inter-knot interval, from Xi onwards. The

weights r represent the way in which the B-splines are linearly

combined together to approximate the data set.

Having determined r from equation (10), they can be introduced

in the expression for the general cubic spline:

h+4
s(x) = E ri M1(x)

i=1

to obtain a polynomial function that can be used to approximate

any unmeasured point x E [a,b]. For any of these points, say x,

we need to evaluate the set of 4 B-splines M i (x) corresponding to

x, using the recursive stable equation (4).

One of the critical aspects of spline fitting is concerned with

the placement of the knots Xi . They not only determine the

number of unknowns in the normal equations, but they also

C-12

influence the conditioning of the problem and the accuracy of the

approximation. In principle, it would seem that adding more knots

should lead to an improved approximation, but this is not always

true, since too many knots may produce overfitting of the data

set, which is manifested through unwanted oscillations of the

fitted spline [see Cox, Harris and Jones (1987)]. The automatic

placement of knots in splines approximation is a subject of

ongoing research.

C.4. Data fitting using bi-cubic B-siolines.

So far, the application of cubic splines for approximating data

with only one independent variable has been reviewed. In Chapter

6 of this Thesis, the convenience and inconvenience of modelling

the piezometric heads of the water distribution system as a

continuous surface, "floating" above the network has been

discussed; in following this line of thinking, the one-

dimensional cubic spline approach is clearly insufficient for

describing the piezometric plane, and two independent variables

(x,y) are needed.

The one-dimensional cubic B-splines concepts can be extended to

the two-dimensional case in a relatively straightforward manner,

leading to a bi-cubic spline (or doubly cubic spline). In the

two-dimensional case the measurement data and any point in the

space, will be represented by the triples: {x, y, f(x,y)}, where

(x,y) caters for the horizontal coordinates of each point, and

f(x,y) represents the value of the function (piezometric head in

C-13

our case) at that particular point (x,y).

As in the one-dimensional case, the basic splines (which have

not been defined yet) will be associated with a set of knots. To

introduce the knots, let us consider the plane defined by the

independent variables (x,y), and let us define a rectangle R on

it, such as:

R =1(x,y) such that aSxSb and ciyidl

where:

a is the minimum value of the independent variable x.

b is the maximum value of the independent variable x.

c is the minimum value of the independent variable y.

d is the maximum value of the independent variable y.

In this rectangle R, two different set of interior knots Xi

i=1,2, ... h+1 and Pj j=1,2,... k+1 are introduced, with similar

characteristics as in the one-dimensional case although here, for

convenience, b = X11 .1.1 and d = Pk+1• These two sets of interior

knots divide the rectangle R into a set of (h+1)(k+1) panels Rij,

as shown in Fig. C.4.

For completeness, similar to the one-dimensional case, let us

add exterior knots to the sets Xi and Pj such that:

X-3 < X-2 < X-1 < Xo = a

b = Xh+1 < Xh+2 <)kh+3 < Xh+4

and
P-3 < P-2 < P-1 < Po = c

d = Pk+1 < Pk+2 < Pk+3 < Pk+4

C-14

R.1+1, k+1

R12 R22 R32 Ri2

R21 R31 Ril Rh+1,1

1

	 7I••• X

1	 1	 1	 1

1	 I	 1	 I	 1	 1	 1	 1	 1

Xi Xh b=Xh+1a X1 X2 X3 Xi-4

°j-4

Fig. C.4. Rectangular subspace R for the independent variables
and y, divided into panels Rij by knots Xi i=1,2,
h+1 and Pj j=1,2,	 k+1.

As in the one-dimensional case, where the B-splines were

defined as the basis functions (or "building blocks") for

representing general cubic splines functions, we need to specify

basis functions for the two-dimensional problem. To do so, the

concept of B-splines can be extended to the two-dimensional space

in the following way.

Let us define two sets of one-dimensional B-splines, one

related to the independent variable "x" and to the set of knots

Xi, say Mi(x), and the second related to the independent variable

"y" and to the set of knots 0j, say Nj(y). Both one-dimensional

B-splines [i.e. M(x) and Nj(y)], have similar properties to

C-15

those used in the previous section.

Let us think of the sets of B-splines M(x) and Nj(y) as two

one-dimensional structures; then, we can consider the set of all

cross-products (or tensor products) of M 1 (x) with N(y) as the

basis functions for the bi-cubic spline. Although the

mathematical concept of a tensor product is rather abstract, in

this case it can be thought of simply as a summation of the set

of all possible combinations of scalar products of the elements

of the B-splines M(x) and Nj(y), at each point of the (x,y)

space (or at each panel Rij of the subspace R). For more details

on tensor products see: de Boor (1978; chapter XVII).

The general bi-cubic spline polynomial function becomes, then,

a linear combination of the new basis function Mi(x)Nj(y), i.e.:

h+4 k+4
s(x,y) = E	 E rij M(x)N(y)

i=1 j=1

where:

r- - is the new vector of "weights" (to be determined).1J

Note that, because the original basis functions M(x) and N(y)

were non-zero over four adjacent intervals only (X i _4 , Xi_3,

Xi_2, Xi_1,)ki and Pj_4, Pj_33 Pj_2, Pj_i, Pj, respectively), and

because of the cross-product properties, the new basis function

M(x)N(y) will be non-zero over only 4x4 = 16 adjacent panels

[see shaded area in Fig. C.4]. Similarly, as the originals M(x)

and N(y) had only 4 non-zero basis functions at any point "x",

the new basis functions M 1 (x)N(y) will have only 16 non-zero

basis functions at any point (x,y). If this (x,y) point lies in

C-16

(12)= fr

the panel Ri j , the non-zero M(x)N 3 (y) will be those within the

shaded area of Fig. C.4.

Thus, with the help of vectorial cross-products 	 (tensor

products), the new bi-cubic B-splines have been introduced, based

on the one-dimensional B-splines previously defined. The

evaluation of each one-dimensional B-spline [Mi(x) or N(y)]

remains exactly as before, i.e. the stable method (recursive

algorithm) proposed by Cox (1972) will be used [equations (4) and

(5)], rather than the explicit form [equation(1)], based on the

same stability reasons mentioned earlier.

Having the basis functions, the problem of approximating the

data points fxr,yr,f(xr, yr)I, r=1,2,...m has to be tackled. The

spline fitting problem now consists of determining the

coefficients rij, as the least-squares solution of the following

overdetermined linear observation system:

h+4 k+4
E	 E	 r- •1J
i=1 j=1

Mi(xr)Nj(yr) = f(xr,yr)
r=1,2, ... m

which, in matrix format, becomes:

A r = f	 (13)
where:

A is a (mx(h+4)(k+4)) matrix.

r is an (h+4)(k+4)x1 column vector of unknowns.

f is a mxl column vector, with the data values of the function

being approximated.

As in the one-dimensional fitting problem, the structure of A

is determined by the way the data are re-ordered; thus, if the

data points are sorted according to the panel Rij to which they

C-17

belong, allowing the index "i" to run faster than "j" (i.e.

following the panels in Fig. C.4 from left to right and from

downwards upwards), then the observation matrix has the following

structure:

A11 A12 A13 A14
A22 A23 A24 834

A=

Ak+1,k+1 Ak+1,k+2 Ak+1,k+3 Ak+1,k+4

where:

is a rectangular (rx(h+4)) sub-matrix.

is the number of data points within the panels R1,i,

R2 , i,

▪ 	

, Rh+1 , i (i.e. the number of data points in

the i-th row of panels in Fig. C.4).

With this data arrangement, the vector r gets its elements

ordered by i=1,2,	 h+4 for fixed "j", where j=1,2,	

▪ 	

k+4.

Note that if rij is associated with the panel Rij, then the

arrangement of r follows the panels in Fig. C.4, from left to

right and from downwards upwards.

The problem now becomes that of solving the overdetermined

linear system (13). In principle, we can proceed as in the one-

dimensional case, and form the corresponding normal equations by

pre-multiplying (13) by AT:

[AT A] r = AT f	 (14)

which is now a (h+4)(k+4)x(h+4)(k+4) linear system of equations.

Unfortunately,	 for bivariate approximation problems with

scattered data, there is no equivalent of the Schoenberg and

C-18

Whitney conditions, to guarantee the existence and uniqueness of

the solution. To make things worse, it is often the case that the

observation matrix A is rank-deficient, usually due to the fact

that it may happen that some panels Rij remain without data

points within them, which implies that the least squares solution

of the observation system has infinite solutions. A unique

solution is produced via the addition of a new condition, usually

in the sense that, of all the infinite possible solutions, a

"minimum norm" solution is sought. This forces us to use more

sophisticated linear solvers, able to cope with rank deficiency

in a stable manner: singular value decomposition and orthogonal

transformations are cited as safe methods to solve the problem

(Cox (1986), Cox (1987a)]. These methods belong to a very

specialised field of numerical linear algebra and, because of

that, we do not present more details here.

C.5. The statistical problem in splines fitting.

From a statistical point of view, the values of the "weights",

r, determined through the solution of the normal equations (10)

or (14), for the one-dimensional and two-dimensional cases,

respectively, can be interpreted in the case of noisy

measurements as the expected values of the weights.

Always in the statistical sense of the problem, we may not only

be interested in the expected values of the weights, but also in

the corresponding dispersion statistics (as the variance and

covariance), in order to estimate the error associated with the

approximates computed by the cubic-splines at unmeasured points.

C-19

c11 c12 	
c21 c22 	

 clr
c2rC = [ATM -1 = (15)

This is particularl y true when the measurements are subject to

errors, where we want to know the impact of those errors on the

spline estimates.

The solution to the latter problem can be obtained in a

straightforward manner, when solving the least squares estimation

problem, as we did through the normal equations. In fact, all the

information required is already contained in the inverse of the

matrix ATA [see Walpole and Myers (1985), section 10.4].

Under the assumption that the measurement errors are

independent, with zero mean and variance T 2 , the matrix a2[ATA]-1

represents the variance-covariance matrix, and displays directly

the variances of the weights in the main diagonal, and the

covariances in the off-diagonal coefficients. Thus, if:

crl cr2 	 crr

then, the variances are given by:

g2 ri = var(ri) = T 2 ci i	V i=1,2,..,r

and the covariances by:

crrirj = cov(ri,rj) = q2 Cij V

(16)

(17)

The problem now is basically a numerical one, namely: how to

obtain the coefficients of the matrix C = [A TA] -1 in (15), in an

efficient way. In practice, this means without having to compute

explicitly the inverse of ATA.

C-20

The solution can be almost direct, and very efficient from the

computational point of view, provided that the normal equations

have been solved using a direct Gaussian elimination method, with

a Cholesky factorization [see Appendix A for details]. This is

actually the main argument in favour of direct solutions when

solving the normal equations, since if an iterative scheme

(conjugate gradient) is used, the statistical information becomes

unavailable [see Cox (1982a)].

Let us assume that we do have the Cholesky factorization of the

normal system of equations, say:

ATA = RTR	 (18)

where:

R is an upper triangular matrix and

RT is a lower triangular matrix.

Hence,	 following Cox (1986 and 1987a), to compute the

covariance coy (r .) r .) we need to specify two (rxl) auxiliary1

column vectors hi and h2, such that:

hi = (0,0,...,0,1,0,0,...0) T 	(19)
and	

h2 = (0,0,...,0,0,1,0,...0) T 	(20)

where the "1" is in the i-th and j-th position, respectively.

Then, the covariance coy (r i ,r i) can be computed as:

coy (ri,ri) = q2 hiT [ATA]-1h2
	

(21)

on introducing the Cholesky factorization (18):

cov (r i ,r i) = 0. 2 hi T [RTR]-1h2	 (22)

C-21

var(r i) = 0. 2 uT u (30)

which can be re-written as:

coy (r i , r j) = 0. 2 (R—Thi)T(R—Th2)	 (23)

Upon defining the auxiliary vectors ui and u2 such that:

RTIa l = hi	 (24)

and
RT112 = h2	 (25)

and noting that ui and u2 can be computed via a forward

substitution process, since RT is a lower triangular matrix (the

Cholesky factor) and hi and h2 are known vectors, [once r i and rj

have been chosen, (equations 19 and 20)3, then equation (23) can

be re-written as:

coy (r i , r j) =	 ulT 142	 (26)

which gives the covariance.

To compute the variance [var(r i)], the process is similar,

though simpler, because now hi =h2 = h, such that:

h= (0,0,...,0,0,1,0,...0)T
	

(27)

with the "1" in the i-th position. Then, on applying:

var(r i) = 2 hT (ATA)-1 h	 (28)

and following the same procedure as before, we need to solve:

RT u = h	 (29)

and compute the variance as:

This is the efficient way to compute the variance and

covariances, since it only requires two forward substitutions

plus one inner product, to compute each covariance, and only one

C-22

forward substitution plus an inner product for each variance. The

explicit inversion of [A TM has been avoided.

The variance can be computed for r i i=1,2,...,r , where "r" is

the number of weights, i.e.: r=h+4 and r=(h+4)(k+4), for the one-

dimensional and two-dimensional cubic splines, respectively.

Upon having the variance, and because the spline polynomial is

just a linear combination of weighted B-splines, we can compute

the respective variance of the splines estimates using the

definition of the spline, and the following property of the

variances of two independent random variables X and Y:

var(aX+bY) = a 2 var(X) + b 2 var(Y)	 (31)

Thus, for the one-dimensional spline case:

h+4	 h+4
var(s(x)) = var(E M1(x) r i) = E { M1(x) }2 var(r i)	 (32)

i=1	 i=1

while, for the bi-cubic splines, a similar formula is obtained.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 62.136954 1.780894 1.334501

INITIAL 62.040502 1.810364 1.345498 0.130198 0.096452 0.001502 0.998448
I INTERPOL. 62.123656 1.766405 1.329062 0.053762 0.014019 0.000439 0.999786

KRIGING 62.343461 1.602880 1.266049 0.643541 0.211023 0.088072 1.003323

SPLINES 36.283353 403.289659 20.082073 51.459823 25.900618 402.249599 0.583926

TRUE 62.136954 1.780894 1.334501

INITIAL 62.040502 1.810364 1.345498 0.130198 0.096452 0.001502 0.998448
II INTERPOL. 62.122005 1.768055 1.329682 0.055034 0.015274 0.000431 0.999759

KRIGING 62.356386 1.589679 1.260825 0.657572 0.220374 0.090076 1.003531

SPLINES 33.503773 617.070146 24.841299 76.383997 28.680198 631.640732 0.539192

TRUE 62.136954 1.780894 1.334501

INITIAL 62.040502 1.810364 1.345498 0.130198 0.096452 0.001502 0.998448

III INTERPOL. 62.124011 1.765906 1.328874 0.053375 0.013766 0.000383 0.999792

KRIGING 62.354969 1.591085 1.261382 0.655473 0.219276 0.089847 1.003509

SPLINES 33.578977 617.007472 24.839635 76.361830 28.604794 631.661541 0.540403

TRUE 62.136954 1.780894 1.334501

INITIAL 62.040502 1.810364 1.345498 0.130198 0.096452 0.001502 0.998448

IV INTERPOL. 62.109964 1.684000 1.297690 0.195602 0.055025 0.005610 0.979566

KRIGING 62.355181 1.590768 1.261257 0.654835 0.219255 0.089969 1.003512

SPLINES 33.560687 624.443795 24.988873 76.545792 28.623284 639.937675 0.540108

TRUE 62.136954 1.780894 1.334501

INITIAL 62.040502 1.810364 1.345498 0.130198 0.096452 0.001502 0.998448

V INTERPOL. 62.110472 1.798262 1.340993 0.108172 0.026649 0.001488 0.999574

KRIGING 62.339564 1.606536 1.267492 0.646702 0.209684 0.086764 1.003261

SPLINES 34.046619 540.108914 23.240243 71.219991 28.137352 546.933422 0.547929

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2 1 / (N-2)

SSAVR : SUMMATION SHARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

D-1

APPENDIX D

NUMERICAL RESULTS OF THE CALIBRATION EXERCISE

Table D.1. Summary of the comparison between true, initial and
calibrated piezometric heads. Example A.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.(2] RES.	 (3] EST/TRUE [4]

TRUE 53.068512 35.740184 5.978309

INITIAL 52.717053 35.932102 5.994339 0.500262 0.351459 0.023382 0.993377

I INTERPOL. 53.068335 35.250806 5.937239 0.204632 0.046582 0.004287 0.799997

KRIGING 53.932906 32.593471 5.709069 2.741375 0.865810 1.712570 1.016288

SPLINES 34.311754 425,290821 20.622580 49.416708 19.209650 279.293286 0.646556

TRUE 53.068512 35.740184 5.978309

INITIAL 52.717053 35.932102 5.994339 0.500262 0.351459 0.023382 0.993377

II INTERPOL,

KRIGING

53.065770

53.938091

35.261951

32.571324

5.938177

5.707129

0.204608

2.747570

0.046917

0.869579

0.004126

1.716390

0.999948

1.016386

SPLINES 34.253451 425.983291 20.639363 49.413179 19.267953 279.822898 0.645457

TRUE 53.068512 35.740184 5.978309

INITIAL 52.717053 35.932102 5.794339 0.500262 0.351459 0.023382 0.993377

III INTERPOL 53.069100 35.247428 5.936954 0.204608 0.046862 0.004300 1.000011

KRIGING 53.940904 32.559316 5.706077 2.751158 0.872392 1.716841 1.016439

SPLINES 34.399069 423.970079 20.590534 49.423569 19.122335 278.393582 0.648201

TRUE 53.068512 35.740184 5.978309

INITIAL 52.717053 35.932102 5.994339 0.500262 0.351459 0.023382 0.993377

IV INTERPOL. 53.102704 33.922002 5.824260 0.749739 0.178470 0.071623 1.000644

KRIGING 53.934059 32.588918 5.708670 2.742666 0.866494 1.713824 1.016310

SPLINES 35.306851 372.016585 19.287731 45.259086 18.214553 225.682231 0.665307

TRUE 53.068512 35.740184 5.978309

INITIAL 52.717053 35.932102 5.994339 0.500262 0.351459 0.023382 0.993377

V INTERPOL. 52.805732 36.798907 6.066210 1.098131 0.266632 0.110035 0.995048

KRIGING 53.767893 33.305292 5.771074 2.539383 0,887150 1.332804 1.013179

SPLINES 33.952638 422.206230 20.547658 50.320178 19.568768 274.153415 0.639789

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

(2) : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

(3) : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS =	 SSAVR - N I AVRI*2) / (N-2)

SSAVR : SUMMATION SHARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 1 NUMBER OF DATA POINTS

(4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.2. Summary of the comparison between true, initial and
calibrated piezometric heads. Example B.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE (4]

TRUE	 62.136956	 1.780891	 1.334500

INITIAL	 62.878059	 0.938416	 0.968719	 1.066049	 0.741103	 0.149333	 1.011927

I	 INTERPOL. 62.201538	 1.641184	 1.281087	 0.243984	 0.082440	 0.009005	 1.001039

KRIGING	 62.341660	 1.604408	 1.266652	 0.645151	 0.210333	 0.087045	 1.003294

SPLINES	 33.516220 621.797560 24.935869 76.730861 28.667753 636.829002	 0.539393

TRUE	 62.136956	 1.780891	 1.334500

INITIAL	 62.878059	 0.938416	 0.968719	 1.066049	 0.741103	 0.149333	 1.011927

II	 INTERPOL. 62.199914	 1.642798	 1.281717	 0.240220	 0.082454	 0.008611	 1.001013

KRIGING	 62.350918	 1.595251	 1.263032	 0.654034	 0.216252	 0.089106	 1.003443

SPLINES	 33.473344 622.038356 24.940697 76.725757 28.710629 637.057828 	 0.538703

TRUE	 62.136956	 1.780891	 1.334500

INITIAL	 62.878059	 0.938416	 0.968719	 1.066049	 0.741103	 0.149333	 1.011927

III	 INTERPOL. 62.202519	 1.640165	 1.280689	 0.245286	 0.082802	 0.009111	 1.001055

',RISING	 62,355235	 1.590922	 1.261317	 0.658027	 0.219529	 0.089857	 1.003513

SPLINES	 33.602055 621.290876 24.925707 76.734329 28.581918 636.377371 	 0.540774

TRUE	 62.136956	 1.780891	 1.334500

INITIAL	 62.698589	 0.981271	 0.990591	 0.900043	 0.561633	 0.142984	 1.009039

IV	 INTERPOL. 62.150291	 1.651821	 1.285232	 0.163188	 0.075048	 0.006495	 1.000215

KRIGING	 62.350108	 1.595858	 1.263273	 0.649373	 0,215389	 0.089098	 1.003430

SPLINES	 33.560637 624.445852 24.988915 76.545904 28.623336 639.939976 	 0.540108

TRUE	 62.136956	 1.780891	 1.334500

INITIAL	 62.741539	 1.102719	 1.050104	 0.847173	 0.604583	 0.090009	 1.009730

V	 INTERPOL. 62.186270 	 1.752223	 1.323716	 0.208746	 0.056611	 0.005916	 1.000794

KRIGING	 62.314798	 1.631318	 1.277231	 0.619053	 0.203224	 0.077470	 1.002862

SPLINES	 34.226023 523.721954 22.884972 70.013527 27.957950 528.936504 	 0.550816

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX,(ABS(TRUE-ESTIMATED))

(2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 NUMBER OF DATA POINTS

(4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.3. Summary of the comparison between true, initial and
calibrated piezometric heads. Example C.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 23.469569 92.318030 9.608227

INITIAL 22.684429 93.275043 9.657901 1.141310 0.785140 0.009442 0.966546

I INTERPOL. 23.391649 90.859003 9.531999 0.868950 0.082335 0.036972 0.996680

KRIGING 24.309381 154.818543 12.442610 23.097968 1.403829 17.676265 1.035783

SPLINES 23.644199 118.963877 10.907056 13.247504 0.818050 4.345164 1.007441

TRUE 23.469569 92.318030 9.608227

INITIAL 22.684429 93.275043 9.657901 1.141310 0.785140 0.009442 0.966546

II INTERPOL. 23.389110 90.875278 9.532853 0.870788 0.083621 0.036733 0.996572

KRIGING 24.327721 154.661081 12.436281 23.103627 1.385520 17.701572 1.036564

SPLINES 23.668704 118.754159 10.897438 13.253927 0.804035 4.380930 1.008485

TRUE 23.469569 92.318030 9.608227

INITIAL 22.684429 93.275043 9.657901 1.141310 0.785140 0.009442 0.966546

III INTEPPOL. 23.401347 90.809464 9.529400 0.856382 0.086661 0.035715 0.977093

kRIGING 24.313210 154.788988 12.441422 23.098135 1.412530 17.727623 1.035946

SPLINES 23.705721 118.721159 10.895924 13.247997 0.795535 4.367497 1.010062

TRUE 23.469569 92.318030 9.608227

INITIAL 22.684429 93.275043 9.657901 1.141310 0.785140 0.009442 0.966546

IV INTERPOL. 23.388163 90.417509 9.508812 1.236070 0.123363 0.056530 0.996531

kRIGING 24.323520 154.703687 12.437994 23.097073 1.412602 17.745359 1.036385

SPLINES 23.705645 118.719071 10.895828 13.248164 0.795328 4.368942 1.010059

TRUE 23.469569 92.318030 9.608227

INITIAL 22.684429 93.275043 9.657901 1.141310 0.785140 0.009442 0.966546

V INTERPOL. 23.195262 89.943616 9.483861 1.785770 0.274644 0.184791 0.988312

KRIGING 23.661852 155.801525 12.482048 22.440190 1.908507 15.371171 1.008193

SPLINES 22.795223 120.156063 10.961572 12.332561 1,492429 3.159400 0.971267

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)}

[2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2	 / (N-2)

SSAVR ; SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.4. Summary of the comparison between true, initial and
calibrated piezometric heads. Example D.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 90.580945	 6.435581	 2.536845

INITIAL	 90.565063	 6.444084	 2.538520	 0.078798	 0.019310	 0.000276	 0.799825

I	 INTERPOL. 90.576717	 6.438456	 2.537411	 0.091366	 0.009282	 0.000274	 0.959953

KRIGING	 91.090711 10.609632	 3.257243	 5.828270	 0.580414	 1.460438	 1.005628

SPLINES	 90.641002	 8.703889	 2.950235	 3.736779	 0.372636	 0.419807	 1.000663

TRUE	 90.580945	 6.435581	 2.536845

INITIAL	 90.565063	 6.444084	 2.538520	 0.098798	 0.019310	 0.000276	 0.999825

II	 INTERPOL. 90.576821	 6.438314	 2.537383	 0.090545	 0.009197	 0.000275	 0.999954

KRIGING	 91.099321 10.613703	 3.257868	 5.833304	 0.580345	 1.472233	 1.005723

SPLINES	 90.633813	 8.681062	 2.946364	 3.723417	 0.369745	 0.406742	 1.000584

TRUE	 90.580945	 6.435581	 2.536845

INITIAL	 70.565063	 6.444084	 2.538520	 0.098798	 0.019310	 0.000276	 0.999825

III	 INTERPOL. 90.576989	 6.438518	 2.537423	 0.087223	 0.009100	 0.000273	 0.979956

KRIGING	 91.119078 10.677210	 3.267600	 5.965369	 0.586325	 1.521479	 1.005941

SPLINES	 90.696569	 8.683292	 2.946743	 3.877208	 0.345688	 0.448671	 1.001276

TRUE	 90.580945	 6.435581	 2.536845

INITIAL	 90.565063	 6.444084	 2.538520	 0.098798	 0.019310	 0.000276	 0.999825

IV	 INTERPOL. 90.581264	 6.431398	 2.536020	 0.128526	 0.013024	 0.000556	 1.000004

KRIGING	 91.116472 10.675143	 3.267284	 5.959070	 0.585652	 1.517881	 1.005912

SPLINES	 90.679997	 8.646093	 2.940424	 3.792621	 0.342484	 0.429829	 1.001094

TRUE	 90.580945	 6.435581	 2.536845

INITIAL	 90.565063	 6.444084	 2.538520	 0.098798 0.019310 0.000276	 0.999825

V	 INTERPOL. 90.560459	 6.430524	 2.535848	 0.121307	 0.022875 0.000486	 0.999774

KRIGING	 91.124170 10.672372	 3.269919	 5.985603	 0.589721	 1.531876	 1.005797

SPLINES	 90.686189	 8.691012	 2.948052	 3.864142	 0.349365	 0.444341	 1.001162

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS= (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)IN

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = { SSAVR - N t AVRIt2 J / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.5. Summary of the comparison between true, initial and
calibrated piezometric heads. Example E.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES,[2] RES.	 (3] EST/TRUE [4]

TRUE 68.544348 376.086468 19.392949

INITIAL 68.415341 370.880707 19.258263 0.376937 0.165889 0.014416 0.998118

I INTERPOL. 68.528709 374.788283 19.359449 0.290282 0.041405 0.003382 0.999772

KRI6ING 69,688396 388.812582 19.718331 8.010388 1.381892 2.680300 1.016691

SPLINES 55.582129 865.717269 29.423074 36.994771 13.295901 207.565165 0.810893

TRUE 68.544348 376.086468 19.392949

INITIAL 68.415341 370.880707 19.258263 0.376937 0.165889 0.014416 0.998118

II INTERPOL. 68.518600 374.463647 19.351063 0.306612 0.050655 0.003443 0.999624

KRIGING 69.696173 389.074867 19.724981 8.031336 1.380769 2.690190 1.016804

SPLINES 55.349084 894.105688 29.901600 36.911984 13.841272 211.172737 0.807493

TRUE 68.544348 376.086468 19.392949

INITIAL 68.415341 370.880707 19.258263 0.376937 0.165889 0.014416 0.998118

III INTERPOL. 68.509465 374.194520 17.344108 0.329019 0.058857 0.003935 0.999491

KRIGING 69.705559 390.055931 19.749834 8.085776 1.395836 2.709800 1.016941

SPLINES 58.515908 661.971743 25.728812 38.447331 10.777761 139.034831 0.853694

TRUE 68.544348 376.086468 19.372949

INITIAL 68.415341 370,880707 19.258263 0.376937 0.165889 0.014416 0.998118

IV INTERPOL. 68.497198 373.883877 19.336077 0.460254 0.071618 0.007033 0.999312

KRIGING 69.700594 389.899959 19.745885 8.076814 1.393295 2.701085 1.016869

SPLINES 58.511196 661.797609 25.725427 38.451710 10.7810E3 138.996665 0.853625

TRUE 68.544348 376.086468 19.392949

INITIAL 68.415341 370.880707 19.258263 0.376737 0.165889 0.014416 0.998118

V INTERPOL. 68.476801 372.963306 19.312258 0.448014 0.091037 0.012138 0.999015

KRIGING 69.674382 389.029010 19.723818 7.999846 1.381557 2.654147 1.016486

SPLINES 58.658442 646.886053 25.433955 38.507682 10.611937 134.807513 0.855774

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.[ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRii2	 / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

(4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.6. Summary of the comparison between true, initial and
calibrated piezometric heads. Example F.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.981	 0.758	 0.829	 0.915
KRIGING	 -3.584 -35.488 -23.431 -999.999
SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.976	 0.810	 0.821	 0.918
II	 KRIGING	 -4.176 -41.100 -24.508 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.982	 0.741	 0.832	 0.935
III	 KRIGING	 -4.109 -40.483 -24.346 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.922	 -9.810	 -1.257 -12.950
IV	 KRIGING	 -4.119 -40.622 -24.296 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.925	 0.653	 0.310	 0.019
V	 KRIGING	 -3.413 -34.004 -23.672 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.957	 -1.370	 0.307	 -2.033
KRIGING	 -3.880 -38.340 -24.051 -999.999
SPLINES	 -999.999 -999.999 -999.999 -999.999

	•

FREQUENCY OF IMPROVEMENT (%)

AVERAGE VARIANCE MAX.RES VAR.RESPROCEDURE

INTERPOL.
KRIGING
SPLINES

100.000 80.000
0.000

80.000
0.000

80.000
0.000
0.000 0.000 0.000 0.000

Table D.7. Summary of the performance of the calibrated heads.
Example A.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 1.000	 -5.502	 0.833	 0.966
KRIGING	 -5.049 -267.833 -29.029 -999.999
SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 1.000	 -5.209	 0.833	 0.969
II	 KRIGING	 -5.122 -271.631 -29.165 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 1.000	 -5.592	 0.833	 0.966
III	 KRIGING	 -5.161 -273.701 -29.244 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.991 -88.752	 -1.246	 -8.383
IV	 KRIGING	 -5.065 -268.612 -29.057 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.441 -29.432	 -3.819 -21.146
V	 KRIGING	 -2.960 -159.964 -24.767 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.886 -26.898	 -0.513	 -5.326
KRIGING	 -4.671 -248.348 -28.252 -999.999
SPLINES	 -999.999 -999.999 -999.999 -999.999

FREQUENCY OF IMPROVEMENT (%)

AVERAGE VARIANCE MAX.RES VAR.RESPROCEDURE

INTERPOL.
KRIGING
SPLINES

100.000
0.000

0.000 60.000
0.000

60.000
0.0000.000

0.000 0.000 0.000 0.000

Table D.8. Summary of the performance of the calibrated heads.
Example B.

PERFORMANCE INDEX

CASE PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID.	 RESID.

INTERPOL. 0.992 0.973 0.948 0.996
I KRIGING 0.924 0.956 0.634 0.660

SPLINES -999.999 -999.999 -999.999 -999.999

INTERPOL. 0.993 0.973 0.949 0.997
II KRIGING 0.917 0.951 0.624 0.644

SPLINES -999.999 -999.999 -999.999 -999.999

INTERPOL. 0.992 0.972 0.947 0.996
III KRIGING 0.913 0.949 0.619 0.638

SPLINES -999.999 -999.999 -999.999 -999.999

INTERPOL. 0.999 0.974 0.967 0.998
IV KRIGING 0.856 0.946 0.479 0.612

SPLINES -999.999 -999.999 -999.999 -999.999

INTERPOL. 0.993 0.998 0.939 0.996
V KRIGING 0.913 0.951 0.466 0.259

SPLINES -999.999 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE	 INDEX
PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.994	 0.978	 0.950	 0.997
KRIGING	 0.905	 0.951	 0.564	 0.563
SPLINES	 -999.999 -999.999 -999.999 -999.999

FREQUENCY OF IMPROVEMENT (%)

AVERAGE VARIANCE MAX.RES VAR.RESPROCEDURE

INTERPOL.
KRIGING
SPLINES

100.000 100.000 100.000 100.000
100.000 100.000 100.000 100.000
0.000 0.000 0.000 0.000

Table D.9. Summary of the performance of the calibrated heads.
Example C.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.990	 -1.324	 0.420 -14.333
I	 KRIGING	 -0.144 -999.999 -408.581 -999.999

SPLINES
	

0.951 -774.217 -133.729 -999.999

INTERPOL.	 0.989	 -1.273	 0.418 -14.135
II	 KRIGING	 -0.195 -999.999 -408.782 -999.999

SPLINES
	

0.936 -762.062 -133.860 -999.999

INTERPOL.	 0.992	 -1.485	 0.437 -13.308
III	 KRIGING	 -0.155 -999.999 -408.587 -999.999

SPLINES
	

0.910 -760.159 -133.739 -999.999

INTERPOL.	 0.989	 -2.944	 -0.173 -34.845
IV	 KRIGING	 -0.183 -999.999 -408.550 -999.999

SPLINES
	

0.910 -760.038 -133.742 -999.999

INTERPOL.	 0.878	 -5.156	 -1.448 -382.031
V	 KRIGING
	

0.940 -999.999 -385.586 -999.999
SPLINES
	

0.262 -845.138 -115.761 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.968	 -2.436	 -0.069 -91.730
KRIGING
	

0.053 -999.999 -404.017 -999.999
SPLINES
	

0.794 -780.323 -130.166 -999.999

FREQUENCY OF IMPROVEMENT (%)

AVERAGE VARIANCE MAX.RES VAR.RESPROCEDURE

INTERPOL.
KRIGING
SPLINES

100.000 0.000 60.000 0.000
20.000 0.000 0.000 0.000
100.000 0.000 0.000 0.000

Table D.10. Summary of the performance of the calibrated heads.
Example D.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.929	 0.886	 0.145	 0.014
KRIGING	 -999.999 -999.999 -999.999 -999.999
SPLINES	 -13.299 -999.999 -999.999 -999.999

INTERPOL.	 0.933	 0.897	 0.160	 0.007
II	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -10.081 -999.999 -999.999 -999.999

INTERPOL.	 0.938	 0.881	 0.184	 0.022
III	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -52.001 -999.999 -999.999 -999.999

INTERPOL.	 1.000	 0.758	 -0.692	 -3.058
IV	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -37.897 -999.999 -999.999 -999.999

INTERPOL.	 -0.664	 0.646	 -0.508	 -2.101
V	 KRIGING	 -999.999 -999.999 -999.999 499.999

SPLINES	 -42.912 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.627	 0.813	 -0.142	 -1.023
KRIGING	 -999.999 -999.999 -999.999 -999.999
SPLINES	 -31.238 -999.999 -999.999 -999.999

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 80.000 100.000	 60.000	 60.000
0.0000.000 0.000 -0.000KRIGING

SPLINES 0.000 0.000 0.000 0.000

Table D.11. Summary of the performance of the calibrated heads.
Example E.

•

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.985	 0.938	 0.407	 0.945
I	 KRIGING	 -77.643	 -4.976 -450.616 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.960	 0.903	 0.338	 0.943
II	 KRIGING	 -78.716	 -5.225 -452.981 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.927	 0.868	 0.238	 0.925
III	 KRIGING	 -80.021	 -6.201 -459.157 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.866	 0.821	 -0.491	 0.762
IV	 KRIGING	 -79.329	 -6.041 -458.137 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.726	 0.640	 -0.413	 0.291
V	 KRIGING	 -75.728	 -5.181 -449.428 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.893	 0.834	 0.016	 0.773
KRIGING	 -78.288	 -5.525 -454.064 -999.999
SPLINES	 -999.999 -999.999 -999.999 -999.999

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE

INTERPOL.
KRIGING
SPLINES

AVERAGE VARIANCE MAX.RES VAR.RES

100.000 100.000 60.000 100.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

4

Table D.12. Summary of the performance of the calibrated heads.
Example F.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 2.856538 14.284065 3.779427

INITIAL 2.859369 14.272675 3.777919 0.047100 0.019569 0.000320 1.000991

I INTERPOL. 2.859375 14.271362 3.777746 0.050200 0.018475 0.000272 1.000993

KRIGING 2.817956 14.436289 3.799512 0.617300 0.169644 0.041886 0.986494

SPLINES 2.880875 14.210631 3.769699 0.389500 0.137150 0.021196 1.008520

TRUE 2.856538 14.284065 3.779427

INITIAL 2.859369 14.272675 3.777919 0.047100 0.019569 0.000320 1.000991

II INTERPOL. 2.855188 14.280479 3.778952 0.039200 0.012700 0.000137 0.999527

KRIGING 2.851169 14.420433 3.797424 0.196100 0.057406 0.004129 0.998121

SPLINES 2.840825 14.138351 3.760100 0.392700 0.101812 0.019210 0.994499

TRUE 2.856538 14.284065 3.779427

INITIAL 2.859369 14.272675 3.777919 0.047100 0.019569 0.000320 1.000991

III INTERPOL. 2.858187 14.280074 3.778898 0.029200 0.010775 0.000092 1.000578

KRIGING 2.856588 14.384611 3.772705 0.191700 0.063800 0.003917 1.000018

SPLINES 2.877188 14.141629 3.760536 0.369200 0.090925 0.013911 1.007229

TRUE 2.856538 14.284065 3.779427

INITIAL 2.859369 14.272675 3.777919 0.047100 0.019569 0.000320 1.000991

IV INTERPOL. 2.859187 14.282264 3.779188 0.160800 0.049100 0.002967 1.000928

KRIGING 2.856431 14.387656 3.793106 0.190100 0.078156 0.004605 0.999963

SPLINES 2.879231 14.147690 3.761342 0.280900 0.102869 0.009580 1.007944

TRUE 2.856538 14.284065 3.779427

INITIAL 2.859369 14.272675 3.777919 0.047100 0.019569 0.000320 1.000991

V INTERPOL. 2.857250 14.282359 3.779201 0.037200 0.011712 0.000186 1.000249

KRIGING 2.953675 14.927282 3.863584 0.493500 0.175388 0.023376 1.034005

SPLINES 2.967669 14.557097 3.815376 0.750500 0.175556 0.049815 1.038904

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)}

[2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

(3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N I AVRIK2) / (N-2)

SSAVR SUMMATION SHARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.13. Summary of the comparison between true, initial and
calibrated flows. Example A.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 6.364231 59.767118	 7.730920

INITIAL	 6.370150 59.722451	 7.728030	 0.120100	 0.052619	 0.002130	 1.000930

I	 INTERPOL.	 6.370125 59.721357	 7.727959	 0.119800	 0.052544	 0.002133	 1.000926

KRIGING	 6.364119 59.754468	 7.730101	 0.129000	 0.054500	 0.001539	 0.999982

SPLINES	 6.403319 59.590010	 7.719457	 0.625300	 0.228337	 0.050065	 1.006142

TRUE	 6.364231 59.767118	 7.730920

INITIAL	 6.370150 59.722451	 7.728030	 0.120100	 0.052619	 0.002130	 1.000930

II	 INTERPOL.	 6.362062 59.781664	 7.731860	 0.118800	 0.039534	 0.001774	 0.999659

KRIGING	 6.362281 59.814570	 7.733988	 0.142300	 0.051950	 0.001880	 0.997694

SPLINES	 6.355156 54.281006	 7.699416	 0.545200	 0,167837	 0.041532	 0.998574

TRUE	 6.364231 59.767118	 7.730920

INITIAL	 6.370150 59.722451	 7.728030	 0.120100	 0.052619	 0.002130	 1.000930

III	 INTERPOL.	 6.364687 59.778066	 7.731628	 0.118800	 0.034981	 0.002042	 1.000072

KRIGING	 6.364988 59.814052	 7.733955	 0.094900	 0.040094	 0.001251	 1.000119

SPLINES	 6.372306 59.203720	 7.694395	 0.580600	 0.177437	 0.042499	 1.001269

TRUE

IN

IV	 INTERPOL.

KR! SING

SPLINES

6.364231 59.767118

6.370150 59.722451

6.365875 59.765616

6.364444 59.832539

6.381637 58.795146

7.730920

	

7.728030	 0.120100	 0.052619	 0.002130	 1.000930

	

7.730822	 0.11'9800	 0.036169	 0.001956	 1.000258

	

7.735150	 0.340500	 0.103550	 0.017282	 1.000033

	

7.667799	 1.008700	 0.327106	 0.129761	 1.002735

TRUE

INITIAL

V	 INTERPOL.

KRIGING

SPLINES

6.364231 59.767118

6.370150 59.722451

6.360250 59.776458

6.636481 63.835945

6.681875 62.332049

7.730920

	

7.728030	 0.120100	 0.052619	 0.002130	 1.000930

	

7.731524	 0.495800	 0.185394	 0.024362	 0.999374

	

7.989740	 1.157000	 0.382650	 0.096651	 1.042778

	

7.895065	 3.847700	 0.910531	 1.259681	 1.049911

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)1

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N I AVRti2 	 / (N-2)

SSAVR	 SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.14. Summary of the comparison between true, initial and
calibrated flows. Example B.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 2.856538 14.284065	 3.779427

INITIAL	 2.858787 14.277518	 3.778560	 0.073300	 0.031275	 0.000477	 1.000788

I	 INTERPOL.	 2.858813 14.280935	 3.779013	 0.139800	 0.053012	 0.002114	 1.000796

KRIGING	 2.843750 14.320438	 3.784235	 0.204500	 0.061863	 0.004110	 0.995523

SPLINES	 2.883269 14.204004	 3.768820	 0.427900	 0.146269	 0.025934	 1.009358

TRUE	 2.856538 14.284065	 3.779427

INITIAL	 2.858787 14.277518	 3.778560	 0.073300	 0.031275	 0.000477	 1.000788

II	 INTERPOL.	 2.864813 14.226220	 3.771766	 0.138800	 0.046013	 0.001928	 1.002897

KRIGING	 2.853413 14.393494	 3.793876	 0.161600	 0.041737	 0.002391	 0.798906

SPLINES	 2.841006 14.132745	 3.759354	 0.378800	 0.099606	 0.018068	 0.994563

TRUE	 2.856538 14.284065	 3.779427

INITIAL	 2.858787 14.277518	 3.778560	 0.073300	 0.031275	 0.000477	 1.000788

III	 INTERPOL.	 2.857250 14.293493	 3.780674	 0.144200	 0.051950	 0.002589	 1.000249

kRIGING	 2.856688 14.386401	 3.792941	 0.195100	 0.057787	 0.003410	 1.000053

SPLINES	 2.880925 14.132468	 3.759317	 0.360100	 0.093737	 0.015501	 1.008537

TRUE	 2.856538 14.284065	 3.779427

INITIAL	 2.865569 14.252602	 3.775262	 0.150500	 0.062294	 0.003243	 1.003162

IV	 INTERPOL.	 2.858187 14.284406	 3.779472	 0.067600	 0.026787	 0.000526	 1.000578

KRIGING	 2.855669 14.370472	 3.790841	 0.151000	 0.067819	 0.003061	 0.999696

SPLINES	 2.879236 14.147652	 3.761337	 0.280900	 0.102875	 0.009580	 1.007947

TRUE	 2.856538 14.284065	 3.779427

INITIAL	 2.971406 14.869644	 3.856118	 0.383700	 0.161781	 0.013103	 1.040388

V	 INTERPOL.	 2.843750 14.330026	 3.785502	 0.326600	 0.093087	 0.008230	 0.995523

KRIGING	 2.950088 14.859979	 3.854864	 0.342900	 0.155000	 0.013841	 1.032749

SPLINES	 2.966525 14.538424	 3.812929	 0.733500	 0.178225	 0.045836	 1.038504

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS= (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = 	 SSAVR - N	 AVRtt2) / (N-2)

SSAVR SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.15. Summary of the comparison between true, initial and
calibrated flows. Example C.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM

RES.[1]

AVERAGE

RES.[2]

VARIANCE

RES.	 [3]

RATIO AVERAGES

EST/TRUE [4]

TRUE 5.000003 46.933771 6.850823

INITIAL 4.999995 46.941706 6.851402 0.523500 0.064099 0.008231 0.999998

I INTERPOL. 5.000039 47,312672 6.878421 3.840300 0.294291 0.307374 1.000007

KRIGING 4.999993 62.404206 7.899633 16.024600 2.165528 10.264412 0.999978

SPLINES 4.999997 57.302259 7.569826 10.014300 2.081771 5.146496 0.999999

TRUE 5.000003 46.933771 6.850923

INITIAL 4.999945 46.941706 6.851402 0.523500 0.064099 0.008231 0.997998

II INTERPOL. 4.997800 47.360765 6.881916 4.315300 0.308802 0.355305 0.997559

KRIGING 5.061739 69.411966 8.331384 21.050000 2.454491 15.383614 1.012387

SPLINES 5.116812 57.417879 7.577459 9.752800 2.017170 5.133868 1.023362

TRUE 5.000003 46.933771 6.850823

INITIAL 4.999995 46.941706 6.851402 0.523500 0.064099 0.008231 0.999998

III INTERPOL. 5.005050 47,203915 6.870511 3.332300 0.220570 0.224825 1.001009

RISING 4.993333 72.743998 8.540726 33.209000 2.555598 10.477858 0.978666

SPLINES 5.074139 57.927176 7.610991 12.566800 2.059450 5.654480 1.014827

TRUE 5.000003 46.933771 6.850823

INITIAL 4.999995 46.941706 6.851402 0.523500 0.064099 0.008231 0.999998

IV INTERPOL. 5.002828 47.563499 6.896630 3.905700 0.437233 0.312139 1.000565

KRIGING 4.994833 74.154957 8.611327 33.654300 2.615462 19.334366 0.948766

SPLINES 5.073988 57.994937 7.615441 12.644100 2.067881 5.680241 1.014797

TRUE 5.000003 46.933771 6.850823

INITIAL 4.999995 46.941706 6.851402 0.523500 0.064099 0.008231 0.999998

V INTERPOL. 4.999900 51.326560 7.164256 9.799800 1.020781 2.927971 0.999979

KRIGIN6 5.072791 75.137247 8.668174 34.481700 2.632107 19.451386 1.014557

SPLINES 5.152630 59.058413 7.684947 12.571500 2.103636 5.817014 1.030525

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.[ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVM?.) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AYR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.16. Summary of the comparison between true, initial and
calibrated flows. Example D.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE -0.714126 21.495997 4.636378

INITIAL -0.717209 21.352192 4.620843 0.269600 0.044977 0.002412 1.004318

I INTERPOL. -0.716406 21.372964 4.623090 0.443100 0.071807 0.004806 1.003193

KRIGING -0.336327 18.456918 4.296152 4.446700 1.235058 1.213173 0.470963

SPLINES -0.647950 23.764316 4.874866 5.367700 1.073869 1.134717 0.907333

TRUE -0.714126 21.495997 4.636378

INITIAL -0.717209 21.352192 4.620843 0.269600 0.044977 0.002412 1.004318

II INTERPOL. -0.706772 21,416409 4.627787 0.365100 0.058980 0.004430 0.989703

KRIGING -0.318991 18.719249 4.326575 4.053400 1.094189 1.018508 0.446687

SPLINES -0.657779 24.470366 4.946753 7.343000 1.092908 1.740104 0.921097

TRUE -0.714126 21.495997 4.636378

INITIAL -0.717209 21.352192 4.620843 0.269600 0.044977 0.002412 1.004318

III INTERPOL. -0.714139 21.494502 4.636216 0.383100 0.053401 0.003729 1.000019

KRIGING -0.695466 24.594553 4.959290 9.004900 1.113822 2.452523 0.973870

SPLINES -0.694970 24.164441 4.915734 8.409400 1.006849 1.309989 0.973176

TRUE -0.714126 21.495997 4.636378

INITIAL -0.717209 21.352192 4.620843 0.269600 0.044977 0.002412 1.004318

IV INTERPOL. -0.713978 21.502128 4.637039 0.491700 0,074714 0.008010 0.999793

KRIGING -0.695793 24.834116 4.983384 9.338200 1.148873 2.625475 0.974329

SPLINES -0.699783 26.184839 5,117112 13.391900 1.251661 2.556300 0.979916

TRUE -0.714126 21.495997 4.636378

INITIAL -0.717209 21.352192 4.620843 0.269600 0.044977 0.002412 1.004318

V INTERPOL. -0,715056 21.522782 4.639265 0.835100 0.127837 0.018792 1.001302

KRIGING -0.685712 23.741603 4.872536 7.792400 0.989923 1.780893 0.960212

SPLINES -0.685941 24.260616 4.925507 8.177600 1.040444 1.295714 0.960533

NOTES:

(1] : MAXIMUM ABSOLUTE VALUE RESIDUAL	 MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS. (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

(3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N I AVRII2) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

d.

Table D.17. Summary of the comparison between true, initial and
calibrated flows. Example E.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAM.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE (4]

TRUE	 4.255524 31.234204	 5.588757

INITIAL	 4.274763 31.246031	 5.589815	 0.838200	 0.084158	 0.009166	 1.004521

I	 INTERPOL.	 4.276528 31.246759	 5.589880	 0.875700	 0.102532	 0.016960	 1.004736

KRIGING	 4.269430 35.985537	 5.998795	 9.800500	 1.573010	 2.849809	 1.003268

SPLINES	 2.848872 43.911869	 6.626603 28.928800	 4.924292 18.056179	 0.669453

TRUE	 4.255524 31.234204	 5.588757

INITIAL	 4.274763 31.246031	 5.589815	 0.838200	 0.084158	 0.009166	 1.004521

II	 INTERPOL.	 4.251584 31.305232	 5.595108	 0.822700	 0,082948	 0.012840	 0.999074

KRIGING	 4.256825 36.907174	 6.075128 11.222500	 1.557878	 3.487768	 1.000306

SPLINES	 2.807373 32.011668	 5.657885 14.799500	 4.107767 10.423112	 0.657701

TRUE	 4.255524 31.234204	 5.588757

INITIAL	 4.274763 31.246031	 5.589815	 0.838200	 0.084158	 0.009166	 1.004521

III	 INTERPOL.	 4.252107 31.164734	 5.582538	 0.860700	 0.075950	 0.011884	 0.999197

KRIGING	 4.281368 35.606763	 5.967140	 7.750000	 1.369353	 2.605558	 1.006073

SPLINES	 2.961984 37.289550	 6.106517 18.144300	 3.621890 10.546634	 0.696033

TRUE	 4.255524 31.234204	 5.588757

INITIAL	 4.274763 31.246031	 5.589815	 0.838200	 0.084158	 0.009166	 1.004521

IV	 INTERPOL.	 4.252837 31.158797	 5.582007	 0.865700	 0.069032	 0.009102	 0.999369

KRIGING	 4.281750 35.596979	 5.966320	 7.757700	 1.364954	 2.608005	 1.006163

SPLINES	 2.960927 37.272008	 6.105081 18.150000	 3.628024 10.512316	 0.675784

TRUE	 4.255524 31.234204	 5.588757

INITIAL	 4.274763 31.246031	 5.589815	 0.838200	 0.084158	 0.009166	 1.004521

V	 INTERPOL.	 4.248747 31.307175	 5.595282	 1.871000	 0.195638	 0.109416	 0.998407

kRIGING	 4.275504 36.298322	 6.024809	 7.906800	 1.393187	 2.585588	 1.004695

SPLINES	 2.961483 37.480801	 6.122157 18.416000	 3.614879 10.534920	 0.695915

NOTES:

(1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS= (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALSO

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.18. Summary of the comparison between true, initial and
calibrated flows. Example F.

•
PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 -0.004	 -0.244	 -0.136	 0.278
I	 KRIGING	 -184.733 -177.615 -170.771 -999.999

SPLINES	 -72.902 -40.567 -67.387 -999.999

INTERPOL.	 0.773	 0.901	 0.307	 0.817
II	 KRIGING	 -2.597 -142.343 -16.335 -165.491

SPLINES	 -29.806 -162.665 -68.515 -999.999

INTERPOL.	 0.661	 0.877	 0.616	 0.917
III	 KRIGING	 1.000 -76.926 -15.565 -148.833

SPLINES	 -52.206 -155.384 -60.444 -999.999

INTERPOL.	 0.124	 0.975 -10.655 -84.968
IV	 KRIGING	 0.999 -81.717 -15.290 -206.090

SPLINES	 -63.255 -142.358 -34.568 -895.254

INTERPOL.	 0.937	 0.978	 0.376	 0.662
V	 KRIGING	 -999.999 -999.999 -108.782 -999.999

SPLINES	 -999.999 -573.619 -252.898 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.498	 0.697	 -1.898 -16.459
KRIGING	 -237.066 -295.720 -65.349 -504.082
SPLINES	 -243.633 -214.918 -96.763 -979.050

,

FREQUENCY OF IMPROVEMENT (20

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

80.000 80.000
0.000

60.000 80.000
0.00040.000 0.000

0.000 0.000 0.000 0.000

Table D.19. Summary of the performance of the calibrated flows.
Example A.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.008	 -0.050	 0.005	 -0.003
KRIGING
	

1.000	 0.920	 -0.154	 0.478
SPLINES	 -42.610 -14.722 -26.108 -551.471

INTERPOL.	 0.866	 0.894	 0.022	 0.306
II	 KRIGING
	

0.891	 -0.129	 -0.404	 0.221
SPLINES	 -1.351 -117.440 -19.608 -379.195

INTERPOL.	 0.994	 0.940	 0.022	 0.081
III	 KRIGING
	

0.984	 -0.104	 0.376	 0.655
SPLINES	 -0.861 -158.095 -22.371 -397.106

INTERPOL.	 0.923	 0.999	 0.005	 0.157
IV	 KRIGING
	

0.999	 -1.145	 -7.038 -64.831
SPLINES	 -7.648 -472.515 -69.540 -999.999

INTERPOL.	 0.548	 0.956 -16.042 -129.818
V	 KRIGING	 -999.999 -999.999 -91.807 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.668	 0.748	 -3.198 -25.855
KRIGING	 -199.225 -200.091 -19.805 -212.695
SPLINES	 -210.494 -352.554 -227.525 -665.554

FREQUENCY OF IMPROVEMENT (%)

AVERAGE VARIANCE MAX.RES VAR.RESPROCEDURE

INTERPOL.
KRIGING
SPLINES

100.000 80.000 80.000 60.000
80.000 20.000 20.000 60.000
0.000 0.000 0.000 0.000

Table D.20. Summary of the performance of the calibrated flows.
Example B.

PERFORMANCE	 INDEX

CASE PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID.	 RESID.

INTERPOL. -0.023	 0.771 -2.638	 -18.641
I KRIGING -31.332	 -29.866 -6.784	 -73.242

SPLINES -140.271 -148.540 -33.078 -999.999

INTERPOL. -12.538	 -77.063 -2.586	 -15.337
II KRIGING -0.931 -278.370 -3.860	 -24.126

SPLINES -46.695 -533.205 -25.706 -999.999

INTERPOL. 0.900	 -1.074 -2.870	 -28.460
III KRIGING 0.996 -243.327 -6.084	 -50.106

SPLINES -116.581 -535.163 -23.135 -999.999

INTERPOL. 0.967	 1.000 0.798	 0.974
IV KRIGING 0.991	 -6.542 -0.007	 0.109

SPLINES -5.318	 -17.798 -2.484	 -7.726

INTERPOL. 0.988	 0.994 0.275	 0.605
V KRIGING 0.342	 0.033 0.201	 -0.116

SPLINES 0.091	 0.811 -2.654	 -11.237

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

	,
AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 -1.941 -15.074	 -1.404 -12.172
KRIGING	 -5.987 -111.615	 -3.307 -29.496
SPLINES	 -61.755 -246.779 -17.411 -603.792

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 60.000
	

60.000
	

40.000
	

40.000
KRIGING
	

60.000
	

20.000
	

20.000
	

20.000
SPLINES
	

20.000
	

20.000
	

0.000
	

0.000

Table D.21. Summary of the performance of the calibrated flows.
Example C.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL. -19.250 -999.999 -52.814 -999.999
KRIGING	 -0.563 -999.999 -936.003 -999.999
SPLINES
	

0.437 -999.999 -364.938 -999.999

INTERPOL. -999.999 -999.999 -66.950 -999.999
II	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -999.999 -999.999 -346.077 -999.999

INTERPOL. -999.999 -999.999 -39.519 -745.078
III	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -999.999 -999.999 -575.257 -999.999

INTERPOL. -999.999 -999.999 -54.663 -999.999
IV	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -999.999 -999.999 -582.368 -999.999

INTERPOL. -164.766 -999.999 -349.430 -999.999
V	 KRIGING	 -999.999 -999.999 -999.999 -999.999

SPLINES	 -999.999 -999.999 -575.688 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL. -636.803 -999.999 -112.675 -949.015
KRIGING	 -800.112 -999.999 -987.200 -999.999
SPLINES	 -799.912 -999.999 -488.865 -999.999

FREQUENCY OF IMPROVEMENT (26)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

0.000
0.000

0.000 0.000
0.000

0.000
0.0000.000

20.000 0.000 0.000 0.000

Table D.22. Summary of the performance of the calibrated flows.
Example D.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 0.453	 0.268	 -1.701	 -2.970
I	 KRIGING	 -999.999 -445.618 -271.042 -999.999

SPLINES	 -459.738 -247.806 -395.403 -999.999

INTERPOL.	 -4.690	 0.694	 -0.834	 -2.373
II	 KRIGING	 -999.999 -371.842 -225.047 -999.999

SPLINES	 -333.037 -426.801 -999.999 -999.999

INTERPOL.	 1.000	 1.000	 -1.019	 -1.390
III	 KRIGING	 -35.633 -463.270 -999.999 -999.999

SPLINES	 -37.607 -343.325 -971.949 -999.999

INTERPOL.	 0.998	 0.998	 -2.326 -10.028
IV	 KRIGING	 -34.361 -537.835 -999.999 -999.999

SPLINES	 -20.644 -999.999 -999.999 -999.999

INTERPOL.	 0.909	 0.965	 -8.595 -59.700
V	 KRIGING	 -83.941 -242.848 -834.416 -999.999

SPLINES	 -82.577 -368.592 -919.051 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL.	 -0.266	 0.785	 -2.895 -15.292
KRIGING	 -430.787 -412.283 -666.101 -999.999
SPLINES	 -186.721 -477.304 -857.280 -999.999

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

80.000 100.000
0.000 0.000

0.000
0.000

0.000
0.000

0.000 0.000 0.000 0.000

Table D.23. Summary of the performance of the calibrated flows.
Example E.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL.	 -0.192	 -0.127	 -0.091	 -2.424
I	 KRIGING	 0.478 -999.999 -135.710 -999.999

SPLINES	 -999.999 -999.999 -999.999 -999.999

INTERPOL.	 0.958 -35.067	 0.037	 -0.962
II	 KRIGING	 0.995 -999.999 -178.260 -999.999

SPLINES	 -999.999 -999.999 -310.745 -999.999

INTERPOL.	 0.968 -33.502	 -0.054	 -0.681
III	 KRIGING	 -0.804 -999.999 -84.489 -999.999

SPLINES	 -999.999 -999.999 -467.582 -999.999

INTERPOL.	 0.980 -39.651	 -0.067	 0.014
IV	 KRIGING	 -0.858 -999.999 -84.659 -999.999

SPLINES	 -999.999 -999.999 -467.876 -999.999

INTERPOL.	 0.876 -37.067	 -3.983 -141.496
V	 KRIGING	 -0.079 -999.999 -87.983 -999.999

SPLINES	 -999.999 -999.999 -481.720 -999.999

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 0.718 -29.083	 -0.832 -29.110
KRIGING	 -0.054 -999.999 -114.220 -999.999
SPLINES	 -999.999 -999.999 -545.584 -999.999

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.	 80.000	 0.000	 20.000	 20.000

	

0.000	 0.00040.000 0.000KRIGING
SPLINES 0.000 0.000 0.000 0.000

Table D.24. Summary of the performance of the calibrated flows.
Example F.

CASE PROCEDURE AVERA6E VARIANCE	 STAN,DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 122.500000 566.666667 23.804761

INITIAL 122.890938 596.145498 24.416091 6.221000 2.022688 2.243039 1,003191

I INTERPOL.	 119.379625 453.853417 21.303836 17.267000 5.442625 37.148687 0.974528

KRIGING 116.812375 452.467591 21.271286 17.267000 11.506250 21.444892 0.953570

SPLINES 111.619937 416.452325 20.456107 17,267000 11.454188 12.881961 0.911183

TRUE 122.500000 566.666667 23.804761

INITIAL 122.890938 596.145498 24.416091 6.221000 2.022688 2,243039 1.003191

II INTERPOL.	 119.185125 459.350265 21.432458 17.267000 5.537625 36.315976 0.972940

KRIGING 116.401375 477.925369 21.861504 17.267000 11.809750 15.638503 0.950215

SPLINES 111.619937 418.452325 20.456107 17.267000 11.454188 12.881961 0.911183

TRUE 122.500000 566.666667 23.804761

INITIAL 122.890938 596.145498 24.416091 6.221000 2.022688 2.243039 1.003191

III INTERPOL.	 119.301563 456.534883 21.366677 17.267000 5.457187 36.825283 0.973840

KRIGING 116.396250 478.276939 21.869544 17.267000 11.814875 15.567570 0.950173

SPLINES 111.619937 418.452325 20.456107 17.267000 11.454188 12.881961 0.911183

TRUE 122.500000 566.666667 23.804761

INITIAL 123.736213 702.925795 26.512748 19.671900 6.396437 22.428561 1.010092

IV INTERPOL.	 122.858750 788.387341 28.078236 18.461000 10.110000 29.841839 1.002929

KRIBING 117.225062 578.875420 24.059830 22.372000 12.627313 36.986530 0.956939

SPLINES 112.284687 494.513023 22.237649 22.372000 11.053438 32.087600 0.916610

TRUE 122.500000 566.666667 23.804761

INITIAL 122.890938 596.145498 24.416091 6.221000 2.022688 2.243039 1.003191

V INTERPOL. 124.703875 923.377391 30.387125 18.461000 8.890500 37.744147 1.017991

KRIGING 116.555125 467.769095 21.627970 17.267000 11.656000 18.185262 0.951470

SPLINES 111.619937 418.452325 20.456107 17.267000 11.454188 12.881961 0.911183

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)}

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N 	 AVRti2) / (N-2)

SSAVR	 SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.25. Summary of the comparison between true, initial and
calibrated C's. Example A.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 122.500000 566.666667 23.804761

INITIAL	 122.890938 596.145498 24.416091	 6.221000	 2.022688	 2.243039	 1.003191

I	 INTERPOL. 119.657187 424.691198 20.608037 17.267000 	 5.532688 31.803443	 0.976793

KRIGING	 122.622563 675.892952 25.997941 18.461000 12.730688 14.750940 	 1.001001

SPLINES	 113.200125 465.662323 21.579210 17.267000 11.631000 13.326076 	 0.924083

TRUE	 122.500000 566.666667 23.804761

INITIAL	 122.890938 596.145498 24.416091	 6.221000	 2.022688	 2.243039	 1.003191

II	 INTERPOL. 118.330875 418.961833 20.468557 17.267000 	 6.111125 36.077826	 0.965966

KRIGING	 122.622563 675.892952 25.997741 18.461000 12.730688 14.750940 	 1.001001

SPLINES	 113.200125 465.662323 21.577210 17.267000 11.631000 13.326076 	 0.924083

TRUE	 122.500000 566,666667 23.804761

INITIAL	 122.890938 596.145498 24.416091 	 6.221000	 2.022688	 2.243039	 1.003191

III	 INTERPOL. 118.872063 436.324698 20.888387 17.267000 	 5.567937 31.063965	 0.970384

KRIGING	 122.622563 675.892952 25.997941 18.461000 12.730688 14.750940 	 1.001001

SPLINES	 113.200125 465.662323 21.579210 17.267000 11.631000 13.326076 	 0.924083

TRUE	 122.500000 566.666667 23.804761

INITIAL	 123.736213 702.925795 26.512748 19.671900 	 6.396437 22.428561	 1.010092

IV	 INTERPOL. 118.616813 360.368703 18.983380 17.267000	 8.423312 30.098341	 0.768301

KRIGING	 127.067375 935.437515 30.584923 32.639000 13.667000 65.855510 	 1.037285

SPLINES	 113.903062 551.062498 23.474720 22.372000 11.612562 34.150292 	 0.929821

TRUE	 122.500000 566.666667 23.804761

INITIAL	 122.890938 596.145498 24.416091 	 6,221000	 2.022688	 2.243039	 1.003191

V	 INTERPOL. 120.268812 574.629776 23.971437 17.843000 10.084187 26.602814 	 0.981786

KRIGING	 124.253625 700.411627 26.465291 18.461000 12.791250 14.790742 	 1.014315

SPLINES	 114.718687 490.040616 22.136861 17.267000 11.816563 13.506217 	 0.936479

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = 1iAX.(ABS(TRUE-ES1IMATED)1

[2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : PATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.26. Summary of the comparison between true, initial and
calibrated C's. Example B.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 122.500000 566.666667 23.804761

INITIAL	 147.219062 860.341005 29.331570 34.684000 24.719062 40.564291 	 1.201788

I	 INTERPOL. 136.497437 980.301513 31.307767 46.620000 13.997438 158.885550 	 1.114265

KRIGING	 137.472625 734.690323 27.105172 35.814000 14.972625 112.078718 	 1.122226

SPLINES	 132.877187 663.085449 25.750446 15.518000 10.377187 10.626910	 1.084712

TRUE	 122.500000 566.666667 23.804761

INITIAL	 147.219062 860.341005 29.331570 34.684000 24.717062 40.564291 	 1.201788

II	 INTERPOL. 134.497375 874.575216 29.573556 46.506000 11.997375 103.276303 	 1.077938

KRIGING	 137.472688 734.686817 27.105107 35.930000 14.972688 112.107661	 1.122226

SPLINES	 132.877187 663.035449 25.750446 15.518000 10.377187 10.626910	 1.084712

TRUE	 122.500000 566.666667 23.804761

INITIAL	 147.219062 860.341005 29.331570 34.684000 24.719062 40.564291	 1.201788

III	 INTER POL. 136.49E625 980.540824 31.313588 46.634000 13.938625 158.953740 	 1.114274

KRIGING	 137.380813 730.457963 27.026986 35.959000 14.880813 108.113884 	 1.121476

SPLINES	 132.877187 663.085449 25.750446 15.518000 10.377187 10.626910	 1.084712

TRUE	 122.500000 566.666667 23.804761

INITIAL	 148.4835001012.213738 31.815307 45.606000 25.983500 140.251862 	 1.212110

IV	 INTERPOL. 137.3849381041.147562 32.266818 47.007000 14.884938 158.527745 	 1.121510

KRIGING	 138.228250 799.584177 28.276920 38.470000 15.728250 163.225904 	 1.128374

SPLINES	 134.533500 729.374341 27.006931 30.045000 12.033500 69.358936	 1.038233

TRUE	 122.500000 566.666667 23.804761

INITIAL	 147.219062 860.341005 29.331570 34.684000 24.719062 40.564291	 1.201788

V	 INTERPOL. 138.0623121208.461234 34.762929 54.153000 15.562312 217.351680 	 1.127039

KRIGING	 138.420125 757.052749 27.514592 41.867000 15.920125 151.195141 	 1.129960

SPLINES	 133.010000 652.365222 25.541441 15.518000 10.510000 10.524881	 1.085796

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)}

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)!N

[3] : VAFIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS =C SSAVR - N t AVRt12	 / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.27. Summary of the comparison between true, initial and
calibrated C's. Example C.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 140.000000 0.000000 0.000000

INITIAL 139.958833 7.499320 2.738489 8.522000 2.237533 2.480356 0.999706

I INTERPOL. 139,192178 86.478615 9.279388 18.792000 7.526600 30.338138 0.994230

KRIGING 136.527167 181.567801 13.474710 20.412000 13.387444 13.492355 0.975194

SPLINES 137.622156 190.145060 13.789310 20.412000 13.640400 8.779885 0.983015

TRUE 140.000000 0.000000 0.000000

INITIAL 139.958833 7.499320 2.738489 8.522000 2.237533 2.480356 0.999706

II INTERPOL.	 138.995589 95.519798 9.773423 20.379000 7.970922 32.827118 0.992826

KRIGING 136.333611 184.074020 13.567388 20.412000 13.601756 11.615097 0.973812

SPLINES 136,728044 180.292340 13.427298 20.412000 13.450600 9.179766 0.976629

TRUE 140.000000 0.000000 0.000000

INITIAL 139.958833 7.499320 2.738489 8.522000 2.237533 2.480356 0.999706

III INTERPOL. 139.758500 75.524815 8.690501 18.792000 6.708589 30.497248 0.498275

KRIGING 136.327722 184.567057 13.585546 20.412000 13.657544 10.616752 0.973769

SPLINES 135.940489 182.494425 13.509050 21.670000 13.761400 8.680518 0.971003

TRUE 140.000000 0.000000 0.000000

INITIAL 139.941799 14.978452 3.872783 12.052300 3.164327 4.760670 0.999584

IV INTERPOL.	 141.093283 139.496700 11.810872 20.018000 10.585194 28.183798 1.007809

KRIGING 136.465333 193.623291 13.914859 23.067000 13.705056 17.406331 0.974752

SPLINES 135.895606 189.202131 13.755077 24.847000 13.765272 15.688661 0.970683

TRUE 140.000000 0.000000 0.000000

INITIAL 139.958833 7.499320 2.738489 8.522000 2.237533 2.480356 0.999706

V INTERPOL.	 140.077217 158.886754 12.605029 21.670000 11.411817 28.092593 1.000552

KRIGING 136.113194 184.420192 13.580140 20.412000 13.702972 10.852023 0.972237

SPLINES 136.254539 183.084631 13.530877 20.412000 13.649317 9.902152 0.973247

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED)}

[2] : AVERAGE OF THE RESIDUALS = (SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N I AVRt12	 / (N-2)

SSAVR : SUMMATION SOUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.28. Summary of the comparison between true, initial and
calibrated C's. Example D.

CASE	 PROCEDURE	 AVERAGE	 VARIANCE STAN.DEV.	 MAXIMUM	 AVERAGE	 VARIANCE	 RATIO AVERAGES

RES.[1]	 RES.[2]	 RES. [3]	 EST/TRUE [4]

TRUE	 140.000000 0.000000 0.000000

INITIAL	 139.958833	 7.479320	 2.738489	 8.522000	 2.237533	 2.480356	 0.999706

I	 INTERPOL. 139.959117 85.458171 	 9.244359 19.986000	 7.114017 34.762087	 0.999708

KRIGING	 133.260300 167.756177 12.952072 21.670000 14.315844 	 7.386423	 0.951859

SPLINES	 134.701350 166.904531 12.919154 20.412000 13.577439 	 9,815186	 0.962153

TRUE	 140.000000 0.000000 0.000000

INITIAL	 137.758833	 7.499320	 2.738489	 8.522000	 2.237553	 2.480356	 0.999706

II	 INTERPOL. 139.964678 83.243194 	 9.123771 19.986000	 6.903667 35.515988	 0.999748

KRIGING	 133.278372 161.905021 12.724190 21.670000 14.057872 	 8.658260	 0.951988

SPLINES	 134.189333 163.255766 12.777080 20.412000 13.731356 	 7.645472	 0.958495

TRUE	 140.000000 0.000000 0.000000

INITIAL	 159.958833	 7.499320	 2.738489	 8.522000	 2.237533	 2.480356	 0.999706

III	 INTERPOL. 140.051139 84.346600 	 9.184040 19.986000	 7.002450 35.237848	 1.000365

KRIGING	 132.354694 147.510161 12.145376 21.670000 14.047183 	 7.905840	 0.945391

SPLINES	 134.730900 167.586697 12.945528 21.670000 13.562789 10.587471	 0.962364

TRUE	 140.000000	 0.000000	 0.000000

INITIAL	 139.941799 14.948452	 3.872783 12.052300	 3.164327	 4.960670	 0.997584

IV	 INTERPOL. 139.628606 104.934688 10.243763 17.986000 	 8.321639 35.635932	 0.997347

KRIGING	 132.401378 156.283385 12.501335 24.847000 14.074833 15.222409 	 0.945724

SPLINES	 134.281450 171.450543 13.073912 24.847000 13.686539 16.056918	 0.959153

TRUE	 140.000000 0.000000 0.000000

INITIAL	 139.958833	 7.499320	 2.738489	 8.522000	 2.237533	 2.480356	 0.997706

V	 INTERPOL. 137.235400 118.755303 10.897491 20.298000	 9.453600 36.776641	 0.980253

KRIGING	 132.666867 152.716219 12.357840 21.670000 14.022656 	 9.108982	 0.947620

SPLINES	 134.993917 171.974287 13.113897 21.670000 13.682317 	 8.973663	 0.964242

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.(ABS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[5] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = (SSAVR - N t AVRtt2) / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.29. Summary of the comparison between true, initial and
calibrated C's. Example E.

CASE PROCEDURE AVERAGE VARIANCE	 STAN.DEV. MAXIMUM AVERAGE VARIANCE RATIO AVERAGES

RES.[1] RES.[2] RES.	 [3] EST/TRUE [4]

TRUE 140.000000 0.000000 0.000000

INITIAL 139.469736 7.491670 2.737092 8.522000 2.222908 2.537376 0.999784

INTERPOL. 139.866701 52.512202 7.246530 20.412000 5.242322 25.033985 0.999048

KRIGING 132.113661 118.103721 10.867554 21.670000 12.927937 12.632965 0.943669

SPLINES 133.594437 165.135903 12.850522 21.670000 14,063609 7.519413 0.954246

TRUE 140.000000 0.000000 0.000000

INITIAL 139.969736 7.491670 2.737092 8.522000 2.222908 2.537376 0.999784

II INTERPOL. 139.530891 54.774347 7.404169 /0.41N40 5:51703% 25.8411)54 0.91bb4/

KRIGIN8 132.308672 119.922215 10.950900 21.670000 12.835730 13.792095 0.945062

SPLINES 133.784931 162.353426 12.741798 21.670000 13.870092 7.757154 0.955607

TRUE 140.000000 0.000000 0.000000

INITIAL 139.969736 7.491670 2.737092 8.522000 2.222908 2.537376 0.999784

III INTERPOL. 139.469500 50.787031 7.126502 20.412000 5.150810 24.527662 0.996211

KRIGING 133.351609 141.238452 11.884379 21.670000 13.129943 12.374684 0.952511

SPLINES 134.002477 167.204936 12.930775 21.670000 13.913879 8.718445 0.957161

TRUE 140.000000 0.000000 0.000000

INITIAL 139.957221 14.983226 3.870817 12.052300 3.143651 5.074737 0.999694

IV INTERPOL. 139.767529 59,377350 7.705670 19.255000 5.887805 24.707900 0.998339

KRIGING 133.245954 144.269356 12.011218 24.847000 13.060161 18.704550 0.951757

SPLINES 134.011236 176.107339 13.270544 24.847000 14.000236 15.127812 0.957223

TRUE 140.000000 0.000000 0.000000

INITIAL 139.969736 7.491670 2.737092 8.522000 2.222908 2.537376 0.999784

INTERPOL. 140.410747 94.910647 9.742210 20.412000 7.831782 33.583106 1.002934

KRIGING 133.654310 140.366317 11.847629 21.670000 12.962885 11.928107 0.954674

SPLINES 134.123264 171.372956 13.090949 21.670000 14.042563 7.820383 0.958023

NOTES:

[1] : MAXIMUM ABSOLUTE VALUE RESIDUAL = MAX.PBS(TRUE-ESTIMATED))

[2] : AVERAGE OF THE RESIDUALS=(SUMMATION OF ABSOLUTE VALUES OF THE RESIDUALS)/N

[3] : VARIANCE OF THE ABSOLUTE VALUE OF THE RESIDUALS = C SSAVR - N t AVRIt2 } / (N-2)

SSAVR : SUMMATION SQUARES ABSOLUTE VALUES RESIDUALS

AVR	 : AVERAGE ABSOLUTE VALUE RESIDUALS

N	 : NUMBER OF DATA POINTS

[4] : RATIO AVERAGE ESTIMATED VALUES/AVERAGE TRUE VALUES

Table D.30. Summary of the comparison between true, initial and
calibrated C's. Example F.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL. -62.709 -13.645
I	 KRIGING	 -210.664 -14.007

SPLINES	 -773.546 -24.279
..I.

INTERPOL. -70.898 -12.253
II	 KRIGING	 -242.359	 -8.062

SPLINES	 -773.546 -24.279

-6.704 -273.295
-6.704 -90.406
-6.704 -31.983

-6.704 -261.133
-6.704 -47.609
-6.704 -31.983

INTERPOL. -65.936 -12.957	 -6.704 -268.537
III	 KRIGING	 -242.769	 -7.990	 -6.704 -47.169

SPLINES	 -773.546 -24.279	 -6.704 -31.983

INTERPOL.	 0.916	 -1.648	 0.119	 -0.770
IV	 KRIGING	 -17.207
	

0.992	 -0.293	 -1.719
SPLINES	 -67.284
	

0.720	 -0.293	 -1.047

INTERPOL. -30.780 -145.424 	 -7.806 -282.156
V	 KRIGING	 -230.244 -10.255	 -6.704 -64.730

SPLINES	 -773.546 -24.279	 -6.704 -31.983

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AP

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

-45.881 -37.185
-188.649	 -7.865
-632.293 -19.279

-5.560 -217.178
-5.422 -50.327
-5.422 -25.796

AVERAGE INDEX

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

20.000 0.000 20.000 0.000
0.000 20.000 0.000 0.000
0.000 20.000 0.000 0.000

	•

INTERPOL.
KRIGING
SPLINES

Table D.31. Summary of the performance of the calibrated C's.
Example A.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID. RESID.

INTERPOL. -51.879 -22.196	 -6.704 -200.036
KRIGING	 0.902 -12.729	 -7.806 -42.248
SPLINES	 -564.898 -10.740	 -6.704 -34.296

INTERPOL. -112.730 -24.106	 -6.704 -257.706
II	 KRIGING	 0.902 -12.729	 -7.806 -42.248

SPLINES	 -564.898 -10.740	 -6.704 -34.296

INTERPOL. -85.120 -18.550 	 -6.704 -190.796
III	 KRIGING	 0.902 -12.729	 -7.806 -42.248

SPLINES	 -564.898 -10.740	 -6.704 -34.296

INTERPOL.	 -8.867	 -1.292
	

0.230	 -0.801
IV	 KRIGING	 -12.650	 -6.325	 -1.753	 -7.621

SPLINES	 -47.362
	

0.987	 -0.293	 -1.318

INTERPOL. -31.573	 0.927	 -7.227 -139.664
V	 KRIGING	 -19.121 -19.584	 -7.806 -42.482

SPLINES	 -395.178	 -5.757	 -6.704 -35.257

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL. -58.034 -13.043	 -5.422 -157.801
KRIGING	 -5.813 -12.819	 -6.596 -35.369
SPLINES	 -427.447	 -7.398	 -5.422 -27.893

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

0.000
60.000

20.000
0.000

20.000 0.000
0.000

0.000 20.000 0.000 0.000

Table D.32. Summary of the performance of the calibrated C's.
Example B.

PERFORMANCE INDEX

CASE	 PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE

INTERPOL. 0.679 -0.984

RESID.

-0.807

RESID.

-14.342
I KRIGING 0.633 0.673 -0.066 -6.634

SPLINES 0.824 0.892 0.800 0.931

INTERPOL. 0.764 -0.099 -0.798 -5.482
II KRIGING 0.633 0.673 -0.073 -6.638

SPLINES 0.824 0.892 0.800 0.931

INTERPOL. 0.679 -0.986 -0.808 -14.355
III KRIGING 0.638 0.689 -0.075 -6.104

SPLINES 0.824 0.892 0.800 0.931

INTERPOL. 0.672 -0.134 -0.062 -0.278
IV KRIGING 0.634 0.727 0.288 -0.354

SPLINES 0.786 0.867 0.566 0.755

INTERPOL. 0.604 -3.776 -1.438 -27.710
V KRIGING 0.585 0.580 -0.457 -12.893

SPLINES 0.819 0.915 0.800 0.933

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	 INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL.	 0.680	 -1.196	 -0.782 -12.433
KRIGING	 0.625	 0.668	 -0.077	 -6.525
SPLINES	 0.815	 0.892	 0.753	 0.896

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL. 100.000	 0.000	 0.000	 0.000
0.000100.000 100.000 20.000KRIGING

SPLINES 100.000 100.000 100.000 100.000

Table D.33. Summary of the performance of the calibrated C's.
Example C.

Example D.

PERFORMANCE	 INDEX

CASE PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID.	 RESID.

INTERPOL. -384.064 -131.976 -3.863 -148.606
KRIGING -999.999 -585.184 -4.737	 -28.590
SPLINES -999.999 -641.875 -4.737	 -11.530

INTERPOL. -594.284 -161.234 -4.719 -174.161
II KRIGING -999.999 -601.478 -4.737	 -20.929

SPLINES -999.999 -576.977 -4.737	 -12.697

INTERPOL. -33.414 -100.423 -3.863 -150.180
III KRIGING -999.999 -604.710 -4.737	 -17.321

SPLINES -999.999 -591.182 -5.466	 -11.248

INTERPOL. -351.862	 -85.504 -1.759	 -31.279
IV KRIGING -999.999 -165.657 -2.663	 -11.312

SPLINES -999.999 -158.133 -3.250	 -9.002

INTERPOL. -2.518 -447.881 -5.466 -127.279
V KRIGING -999.999 -603.746 -4.737	 -18.142

SPLINES -999.999 -595.019 -4.737	 -14.938

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL. -273.228 -185.404	 -3.934 -126.301
KRIGING	 -999.999 -512.155	 -4.322 -19.259
SPLINES	 -999.999 -512.637	 -4.585 -11.883

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000 0.000 0.000 0.000

Table D.34. Summary of the performance of the calibrated C's.

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL. -207.997 -134.856 	 -3.985 -173.947
KRIGING	 -999.999 -374.333	 -5.023	 -9.823
SPLINES	 -999.999 -424.031 	 -4.731 -12.389

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

40.000
0.000

0.000 0.000 0.000
0.0000.000 0.000

0.000 0.000 0.000 0.000

Table D.35. Summary of the performance of the calibrated C's.
Example E.

PERFORMANCE	 INDEX

CASE PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID.	 RESID.

INTERPOL. 0.014 -128.856 -4.500 -195.419
KRIGING -999.999 -499.395 -5.466	 -7.868
SPLINES -999.999 -494.328 -4.737	 -14.659

INTERPOL. 0.264 -122.212 -4.500 -204.031
II KRIGING -999.999 -465.098 -5.466	 -11.185

SPLINES -999.999 -472.896 -4.737	 -8.501

INTERPOL. -0.543 -125.500 -4.500 -200.832
III KRIGING -999.999 -385.901 -5.466	 -9.159

SPLINES -999.999 -498.385 -5.466	 -17.220

INTERPOL. -39.720	 -47.949 -1.750	 -50.605
IV KRIGING -999.999 -107.576 -3.250	 -8.416

SPLINES -999.999 -129.673 -3.250	 -9.477

INTERPOL. -999.999 -249.762 -4.673 -218.845
V KRIGING -999.999 -413.693 -5.466	 -12.487

SPLINES -999.999 -524.876 -5.466	 -12.089

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

PERFORMANCE	 INDEX

CASE PROCEDURE AVERAGE VARIANCE MAXIMUM VARIANCE
RESID.	 RESID.

INTERPOL. -18.400	 -48.132 -4.737	 -96.340
KRIGING -999.999 -247.525 -5.466	 -23.788
SPLINES -999.999 -484.876 -5.466	 -7.782

INTERPOL. -239.267	 -52.456 -4.737 -102.722
II KRIGING -999.999 -255.237 -5.466	 -28.545

SPLINES -999.999 -468.641 -5.466	 -8.346

INTERPOL. -306.269	 -44.957 -4.737	 -92.442
III KRIGING -999.999 -354.426 -5.466	 -22.785

SPLINES -999.999 -497.128 -5.466	 -10.806

INTERPOL. -28.531	 -14.705 -1.552	 -22.705
IV KRIGING -999.999	 -91.712 -3.250	 -12.585

SPLINES -999.999 -137.148 -3.250	 -7.886

INTERPOL. -183.203 -159.499 -4.737 -174.175
V KRIGING -999.999 -350.050 -5.466	 -21.099

SPLINES -999.999 -522.272 -5.466	 -8.499

NOTE: A VALUE OF -999.999 INDICATES THAT THE INDEX
IS ACTUALLY LESS THAN OR EQUAL TO -999.999

AVERAGE
	

INDEX

PROCEDURE AVERAGE VARIANCE MAX. RES VAR. RES

INTERPOL. -155.134 -63.950	 -4.100 -97.677
KRIGING	 -999.999 -259.790	 -5.023 -21.760
SPLINES	 -999.999 -422.013	 -5.023	 -8.664

FREQUENCY OF IMPROVEMENT (%)

PROCEDURE AVERAGE VARIANCE MAX.RES VAR.RES

INTERPOL.
KRIGING
SPLINES

0.000 0.000 0.000
0.000

0.000
0.0000.000 0.000

0.000 0.000 0.000 0.000

Table D.36. Summary of the performance of the calibrated C's.
Example F.

	DX085772_2_0001.tif
	DX085772_2_0003.tif
	DX085772_2_0005.tif
	DX085772_2_0007.tif
	DX085772_2_0009.tif
	DX085772_2_0011.tif
	DX085772_2_0013.tif
	DX085772_2_0015.tif
	DX085772_2_0017.tif
	DX085772_2_0019.tif
	DX085772_2_0021.tif
	DX085772_2_0023.tif
	DX085772_2_0025.tif
	DX085772_2_0027.tif
	DX085772_2_0029.tif
	DX085772_2_0031.tif
	DX085772_2_0033.tif
	DX085772_2_0035.tif
	DX085772_2_0037.tif
	DX085772_2_0039.tif
	DX085772_2_0041.tif
	DX085772_2_0043.tif
	DX085772_2_0045.tif
	DX085772_2_0047.tif
	DX085772_2_0049.tif
	DX085772_2_0051.tif
	DX085772_2_0053.tif
	DX085772_2_0055.tif
	DX085772_2_0057.tif
	DX085772_2_0059.tif
	DX085772_2_0061.tif
	DX085772_2_0063.tif
	DX085772_2_0065.tif
	DX085772_2_0067.tif
	DX085772_2_0069.tif
	DX085772_2_0071.tif
	DX085772_2_0073.tif
	DX085772_2_0075.tif
	DX085772_2_0077.tif
	DX085772_2_0079.tif
	DX085772_2_0081.tif
	DX085772_2_0083.tif
	DX085772_2_0085.tif
	DX085772_2_0087.tif
	DX085772_2_0089.tif
	DX085772_2_0091.tif
	DX085772_2_0093.tif
	DX085772_2_0095.tif
	DX085772_2_0097.tif
	DX085772_2_0099.tif
	DX085772_2_0101.tif
	DX085772_2_0103.tif
	DX085772_2_0105.tif
	DX085772_2_0107.tif
	DX085772_2_0109.tif
	DX085772_2_0111.tif
	DX085772_2_0113.tif
	DX085772_2_0115.tif
	DX085772_2_0117.tif
	DX085772_2_0119.tif
	DX085772_2_0121.tif
	DX085772_2_0123.tif
	DX085772_2_0125.tif
	DX085772_2_0127.tif
	DX085772_2_0129.tif
	DX085772_2_0131.tif
	DX085772_2_0133.tif
	DX085772_2_0135.tif
	DX085772_2_0137.tif
	DX085772_2_0139.tif
	DX085772_2_0141.tif
	DX085772_2_0143.tif
	DX085772_2_0145.tif
	DX085772_2_0147.tif
	DX085772_2_0149.tif
	DX085772_2_0151.tif
	DX085772_2_0153.tif
	DX085772_2_0155.tif
	DX085772_2_0157.tif
	DX085772_2_0159.tif
	DX085772_2_0161.tif
	DX085772_2_0163.tif
	DX085772_2_0165.tif
	DX085772_2_0167.tif
	DX085772_2_0169.tif
	DX085772_2_0171.tif
	DX085772_2_0173.tif
	DX085772_2_0175.tif
	DX085772_2_0177.tif
	DX085772_2_0179.tif
	DX085772_2_0181.tif
	DX085772_2_0183.tif
	DX085772_2_0185.tif
	DX085772_2_0187.tif
	DX085772_2_0189.tif
	DX085772_2_0191.tif
	DX085772_2_0193.tif
	DX085772_2_0195.tif
	DX085772_2_0197.tif
	DX085772_2_0199.tif
	DX085772_2_0201.tif
	DX085772_2_0203.tif
	DX085772_2_0205.tif
	DX085772_2_0207.tif
	DX085772_2_0209.tif
	DX085772_2_0211.tif
	DX085772_2_0213.tif
	DX085772_2_0215.tif
	DX085772_2_0217.tif
	DX085772_2_0219.tif
	DX085772_2_0221.tif
	DX085772_2_0223.tif
	DX085772_2_0225.tif
	DX085772_2_0227.tif
	DX085772_2_0229.tif
	DX085772_2_0231.tif
	DX085772_2_0233.tif
	DX085772_2_0235.tif
	DX085772_2_0237.tif
	DX085772_2_0239.tif
	DX085772_2_0241.tif
	DX085772_2_0243.tif
	DX085772_2_0245.tif
	DX085772_2_0247.tif
	DX085772_2_0249.tif
	DX085772_2_0251.tif
	DX085772_2_0253.tif
	DX085772_2_0255.tif
	DX085772_2_0257.tif
	DX085772_2_0259.tif
	DX085772_2_0261.tif
	DX085772_2_0263.tif
	DX085772_2_0265.tif
	DX085772_2_0267.tif
	DX085772_2_0269.tif
	DX085772_2_0271.tif
	DX085772_2_0273.tif
	DX085772_2_0275.tif
	DX085772_2_0277.tif
	DX085772_2_0279.tif
	DX085772_2_0281.tif
	DX085772_2_0283.tif
	DX085772_2_0285.tif
	DX085772_2_0287.tif
	DX085772_2_0289.tif
	DX085772_2_0291.tif
	DX085772_2_0293.tif
	DX085772_2_0295.tif
	DX085772_2_0297.tif
	DX085772_2_0299.tif
	DX085772_2_0301.tif
	DX085772_2_0303.tif
	DX085772_2_0305.tif
	DX085772_2_0307.tif
	DX085772_2_0309.tif
	DX085772_2_0311.tif
	DX085772_2_0313.tif
	DX085772_2_0315.tif
	DX085772_2_0317.tif
	DX085772_2_0319.tif
	DX085772_2_0321.tif
	DX085772_2_0323.tif
	DX085772_2_0325.tif
	DX085772_2_0327.tif
	DX085772_2_0329.tif
	DX085772_2_0331.tif
	DX085772_2_0333.tif
	DX085772_2_0335.tif
	DX085772_2_0337.tif
	DX085772_2_0339.tif
	DX085772_2_0341.tif
	DX085772_2_0343.tif
	DX085772_2_0345.tif
	DX085772_2_0347.tif
	DX085772_2_0349.tif
	DX085772_2_0351.tif
	DX085772_2_0353.tif
	DX085772_2_0355.tif
	DX085772_2_0357.tif
	DX085772_2_0359.tif
	DX085772_2_0361.tif
	DX085772_2_0363.tif
	DX085772_2_0365.tif
	DX085772_2_0367.tif
	DX085772_2_0369.tif
	DX085772_2_0371.tif
	DX085772_2_0373.tif
	DX085772_2_0375.tif
	DX085772_2_0377.tif
	DX085772_2_0379.tif
	DX085772_2_0381.tif
	DX085772_2_0383.tif
	DX085772_2_0385.tif
	DX085772_2_0387.tif
	DX085772_2_0389.tif
	DX085772_2_0391.tif
	DX085772_2_0393.tif
	DX085772_2_0395.tif
	DX085772_2_0397.tif
	DX085772_2_0399.tif
	DX085772_2_0401.tif
	DX085772_2_0403.tif
	DX085772_2_0405.tif
	DX085772_2_0407.tif
	DX085772_2_0409.tif
	DX085772_2_0411.tif
	DX085772_2_0413.tif
	DX085772_2_0415.tif
	DX085772_2_0417.tif
	DX085772_2_0419.tif
	DX085772_2_0421.tif
	DX085772_2_0423.tif
	DX085772_2_0425.tif
	DX085772_2_0427.tif
	DX085772_2_0429.tif
	DX085772_2_0431.tif
	DX085772_2_0433.tif
	DX085772_2_0435.tif
	DX085772_2_0437.tif
	DX085772_2_0439.tif
	DX085772_2_0441.tif
	DX085772_2_0443.tif
	DX085772_2_0445.tif
	DX085772_2_0447.tif
	DX085772_2_0449.tif
	DX085772_2_0451.tif
	DX085772_2_0453.tif
	DX085772_2_0455.tif
	DX085772_2_0457.tif
	DX085772_2_0459.tif
	DX085772_2_0461.tif
	DX085772_2_0463.tif
	DX085772_2_0465.tif
	DX085772_2_0467.tif
	DX085772_2_0469.tif
	DX085772_2_0471.tif
	DX085772_2_0473.tif
	DX085772_2_0475.tif
	DX085772_2_0477.tif
	DX085772_2_0479.tif
	DX085772_2_0481.tif
	DX085772_2_0483.tif
	DX085772_2_0485.tif
	DX085772_2_0487.tif
	DX085772_2_0489.tif
	DX085772_2_0491.tif
	DX085772_2_0493.tif
	DX085772_2_0495.tif
	DX085772_2_0497.tif
	DX085772_2_0499.tif
	DX085772_2_0501.tif
	DX085772_2_0503.tif
	DX085772_2_0505.tif
	DX085772_2_0507.tif
	DX085772_2_0509.tif
	DX085772_2_0511.tif
	DX085772_2_0513.tif
	DX085772_2_0515.tif

