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Abstract

Development of behavioural strategies for indoor mobile navigation has become a challeng-

ing and practical issue in a cluttered indoor environment, such as a hospital or factory, where

there are many static and moving objects, including humans and other robots, all of which

trying to complete their own specific tasks; some objects may be moving in a similar direction

to the robot, whereas others may be moving in the opposite direction. The key requirement

for any mobile robot is to avoid colliding with any object which may prevent it from reaching

its goal, or as a consequence bring harm to any individual within its workspace. This chal-

lenge is further complicated by unobserved objects suddenly appearing in the robots path,

particularly when the robot crosses a corridor or an open doorway. Therefore the mobile

robot must be able to anticipate such scenarios and manoeuvre quickly to avoid collisions.

In this project, a hybrid control architecture has been designed to navigate within dynamic

environments. The control system includes three levels namely: deliberative, intermediate

and reactive, which work together to achieve short, fast and safe navigation. The deliberative

level creates a short and safe path from the current position of the mobile robot to its goal

using the wavefront algorithm, estimates the current location of the mobile robot, and ex-

tracts the region from which unobserved objects may appear. The intermediate level links the

deliberative level and the reactive level, that includes several behaviours for implementing

the global path in such a way to avoid any collision.

In avoiding dynamic obstacles, the controller has to identify and extract obstacles from the

sensor data, estimate their speeds, and then regular its speed and direction to minimize the

collision risk and maximize the speed to the goal. The velocity obstacle approach (VO) is

considered an easy and simple method for avoiding dynamic obstacles, whilst the collision

cone principle is used to detect the collision situation between two circular-shaped objects.

However the VO approach has two challenges when applied in indoor environments. The

first challenge is extraction of collision cones of non-circular objects from sensor data, in

which applying fitting circle methods generally produces large and inaccurate collision cones

especially for line-shaped obstacle such as walls. The second challenge is that the mobile

robot cannot sometimes move to its goal because all its velocities to the goal are located

within collision cones. In this project, a method has been demonstrated to extract the colli-
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sion cones of circular and non-circular objects using a laser sensor, where the obstacle size

and the collision time are considered to weigh the robot velocities. In addition the principle

of the virtual obstacle was proposed to minimize the collision risk with unobserved moving

obstacles. The simulation and experiments using the proposed control system on a Pioneer

mobile robot showed that the mobile robot can successfully avoid static and dynamic obsta-

cles. Furthermore the mobile robot was able to reach its target within an indoor environment

without causing any collision or missing the target.
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Chapter 1

Introduction

1.1 Motivation for the Research

The ability of mobile robots to move autonomously provides a significant scope for numerous

applications including routine tasks such as office cleaning and delivery, and particularly ac-

cess to dangerous areas that are unreachable by humans such as cleaning up hazardous waste

sites in nuclear power stations and planetary exploration. The development of intelligent be-

havioural strategies for indoor mobile navigation in cluttered indoor environments such as

hospitals or factories, has recently become a challenging practical issue, where many static

and moving objects, including humans and other robots, all of which are trying to complete

their own specific missions; some objects may be moving in a similar direction to the robot,

whereas others may be moving in the opposite direction. The key requirement for any mobile

robot is to avoid colliding with any object which may prevent it from reaching its goal, and to

avoid causing harm to any individual or another object within its workspace. This challenge

is further complicated by some objects suddenly appearing in the robot’s path, particularly

when it crosses a corridor or an open doorway. The motivation of this research is to develop

a behavioural strategy for indoor mobile navigation which allows the robot to reach its goal

and manoeuvre among humans and moving obstacles. In this project, the robot will have the

ability to react to intelligent (human) and unintelligent (dumb) obstacles, and thus has the

potential to be used in number of service applications.
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1.2 Aim and Objectives

The aim of the project is to design and develop intelligent behavioural strategies for indoor

mobile robot navigation in dynamic environments. To achieve this aim, the following objec-

tives have been defined:

• To conduct an extensive literature review of existing behaviour-based mobile robot

architectures.

• To develop an algorithm which provides the ability to recognize and discriminate static

and dynamic obstacles.

• To develop a robust algorithm to predict the actions of dynamic obstacles.

• To develop a control system by which a robot can manoeuvre among dynamic obstacles

while considering areas where unexpected objects may appear.

• To validate the indoor mobile robot navigation algorithm using Matlab and Player/Stage

simulation.

• To implement and test the navigation algorithm using an existing robot in a cluttered

environment such that it can demonstrate its ability to avoid dynamic obstacles.

1.3 Research Hypothesis

The hypothesis of this research is that it is feasible to use a behavioural strategy to produce an

accurate and safe robot manoeuvre, and to minimize the collision risk with unobserved ob-

jects suddenly appearing in the robot’s path in a workspace cluttered by humans and moving

obstacles.

1.4 Contributions

A behavioural strategy algorithm has been developed for a mobile robot to navigate in indoor

environments. The proposed behavioural strategy system includes deliberative and reactive
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models. The velocity obstacle approach (VO) is considered to be an easy and simple method

to detect the probability of collision between two circular-shaped objects, using the colli-

sion cone principle. Many studies have implemented the VO algorithm using simulation,

where they considered that obstacles have circular shapes and their velocities and positions

are known [Yamamoto et al., 2001;Kluge, 2003; Kluge and Prassler, 2004;Zhiqiang et al.,

2008; Fulgenzi et al., 2007;Shiller et al., 2010]. However, the VO approach has two limi-

tations when applied in indoor environments. The first challenge is that in the real world,

not all obstacles are circular, while the second is that the mobile robot sometimes cannot

move towards its goal because all its velocities to the goal are located within the collision

cones. Hence, in this project, a method is proposed to extract the collision cones of non-

circular objects, where the obstacle size and collision time are considered in weighting ve-

locities of the robot, and a virtual obstacle principle is proposed to avoid unobserved mov-

ing objects. Many simulations and experiments have been posted on the following website:

https://www.facebook.com/pages/Robotics-Group/173949736063997

1.5 Thesis Outline

Chapter 1 introduces the project’s contributions and its aim and objectives. An extensive

literature review and the background of mobile robots is provided in Chapter 2, in which

the advantages and disadvantages of many methods used in mobile robot applications are

explained. Chapter 3 focuses on the deliberative model of the proposed control architec-

ture system, where simulation tests are implemented to verify the global path planning and

localization system. The reactive model is explained in the Chapter 4, in which the capa-

bility of navigation algorithm has been tested in avoiding both static and dynamic obstacles.

Chapter 5 illustrates the human tracking algorithm, where human motion is modelled using

Player/Stage, and various simulation tests are implemented. Chapter 6 focuses on the overall

implementation and evaluation of the proposed navigation system. Finally the achievements

of this study and recommendations for future work are provided in Chapter 7.
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Chapter 2

Literature Review

A robust avoidance algorithm can produce safe navigation but it is not enough to achieve

sufficient navigation. The locomotion method of the robot must be chosen depending on the

nature of the robot workspace. A control architecture, localization and global path planning

algorithms are required to organize the robot behaviours and to produce an optimal long-

term path and robust estimation of the robot position. Furthermore, to interact with dynamic

obstacles (including humans) the sensor data are clustered, and then a velocity estimation

algorithm is applied to estimate the obstacle’s actions. This chapter includes a shortline of

the history of mobile robots and their locomotion methods, control architectures, localization,

global path planning, velocity estimation, clustering sensor data and robot software.

2.1 History of Mobile Robotics

In 1948 and 1949, William Grey Walter of the Burden Neurological Institute at Bristol cre-

ated the first electronic autonomous robots with complex behaviours named Elmer and Elsie

(Figure 2.1). Walter’s robots had simple mechanical structure,; they are front wheel drive

tricycle-like robots covered by a clear plastic shell. However, these robots were capable

of phototaxis which is ,“ the ability of organisms to move directionally in response to a light

source“, therefore they could plan their path to find a recharging station [LeBouthillier, 2014].

Twenty years later saw the development of the first computer controlled mobile robot (Shakey)

built at the Stanford Research Institute in 1969 (see Figure 2.2). Shakey used a camera, laser
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range finder and binary tactile sensors to recognize its surrounding environment, where radio

and video links were utilized for transferring sensor data to a DEC PDP 10 Computer which

controlled actions such as travelling from one location to another, turning light switches on

and off, opening and closing doors, and pushing movable objects [Nilsson, 1984].

Figure 2.1: William Grey Walter robot[Online, 2105]

Figure 2.2: Shakey [Nilsson, 1984]

At Stanford in the late 1970s, Moravec developed the CART mobile robot, which used a

camera to recognize the surrounding workspace and avoid statics obstacles [Moravec, 1983].

It was very slow because of the limited performance of the microcontrollers available in 1970s

and its image processing algorithm took a long time to model a two-dimensional world map,

5



CHAPTER 2. LITERATURE REVIEW

where nine pictures of the same place are captured, and a series of steps are implemented

such as digitizing the pictures, performing low level reduction, and planning a safe path.

Subsequently, Moravec developed Rover, which comprised of TV camera, sonar and infrared

sensors [Moravec, 1982].

HILARE is considered to be the first mobile project developed in Europe, at LAAS in

Toulouse in the 1970s. It used sonar sensors, a camera and laser range finder [Laas, 2003].

However, HILARE was heavy (400kg), and also slow due to the slow speed of the pro-

cessors. Although all early research focused on the software, the robot’s motion was slow.

However, rapid improvements in mobile hardware (sensors and actuators) and microproces-

sors have nowadays allowed the development of robust hardware/software architectures for

mobile robots which can be used in various applications.

Nowadays, the Roomba mobile robot can be found in the market as a vacuum cleaning robot

(see Figure 2.3). The task of this robot is to automatically clean floors [Layton, 2005], for

which it uses four behaviours namely: obstacle avoidance, cliff avoidance, wall following and

self-charging. A bumper sensor is used to avoid obstacles, where as soon as the robot knocks

into something, it repeats a series of actions of backing up, rotating and moving forward

until its path becomes clear. Cliff sensors are used to avoid steps; when the robot detects

a cliff it turns and changes its direction. One infrared sensor is used for the wall following

behaviour, by which the robot can move along walls without touching them. When the power

of the batteries becomes low, the robot reaches the charging station by following the IR signal

emitted by the charger.

However, the proposed navigation system for this project is suitable the Roomba robot, where

its simple task does not require such a complex control system which requires adding more

sensors(laser sensors) and a more powerful CPU. As a consequence, the price of the robot

increases, while it has been designed to be affordable by most people.

TUG autonomous delivery robot is another commercial robot which was built by the Aethon

Company to work in hospitals (see Figure 2.4). It has a hybrid control architecture, in which,

the localization system depends on the AMCL localization system to estimate the actual

position of the robot using a predefined map, odometry data and external sensor data [Aethon,

2007]. This robot does not have any long path planning algorithm, but instead users or the
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implementation team of the Aethon company create a map with all available routes including

auto-opening doors, delivery points and charging stations. In the reactive level, the TUG uses

external sensors (a scanning laser and 27 infrared and ultrasonic sensors) to detect and avoid

obstacles.

Figure 2.3: Roomba robot [Layton, 2005]

The proposed navigation system can improve the performance of the TUG robot. The robot

will be able to automatically plan its long path and re-plan a new path if the optimal path is

blocked. Furthermore, the proposed reactive model will enable the robot to track and avoid

obstacles and humans in the hospital environment.

Figure 2.4: Tug robot [Aethon, 2007]

2.2 Mobile Robot Locomotion

Mobile robots can be classified into three general types with respect to their environments

as follows (see Figure 2.5): Aerial, underwater, and ground robots. Aerial and underwater
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robots operate in a three-dimensional workspace. For a ground robot, wheeled locomotion

is a simple mechanism which moves and turns by changing the velocities or directions of its

wheels. There are four types of wheeled robots; namely, differential , synchronic, tricycle

and car-type drives (see Figure 2.6).

The wheeled robot differential drive is suitable for navigation in flat ground indoor envi-

ronments such as hotels, hospital and factories, and also it is considered easy to build and

control, and can turn in the spot. However, it has nonholonomic constraints because there is

a coupling between the robot speed and its direction [Salem, 2013]. The wheeled robot with

synchronic drive is able to turn in the spot, move easily in rough terrain, but it has a com-

plex mechanical structure because eight (or six) motors are required to power the wheels and

control their steering. Consequently the control system is considered very complex [Wadai,

2000]. The wheeled tricycle robot has a simple mechanical structure and simple control sys-

tem. However, it cannot turn on the spot and has a nonholonomic structure. The wheeled

car-type robot has a simple control system, and moves easily in rough terrain. However, it

has nonholonomic and complex mechanical structure.

(a) Underwater [stearman, 2014] (b) Aerial [Percussion, 2014]

(c) Ground robot [FrontPage,

2014]

Figure 2.5: Mobile robot locomotion
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(a) Differential Drive[Pioneer,

2105]

(b) Synchronic [Xiao, 2014]

(c) Tricycle[Tricycle, 2105] (d) Car[Car, 2105]

Figure 2.6: Wheeled robot

In this project, the mobile robots are required to navigate in flat ground environment, hence, a

simple differential drive wheeled robot is chosen to implement the developed control system.

2.3 Mobile Robot Control Architectures

An autonomous mobile robot is an intelligent system which can navigate within its workspace

without human interference. In this context, the robot must be able to perceive the surround-

ing environment through data collected from sensors, plan a trajectory which guarantees safe

and accurate goal attainment, and then track this trajectory by generating suitable motion

commands. The control architecture is defined as the ability of a mobile robot to develop and

integrate its tasks in order to achieve successful autonomous navigation. Many studies have

been conducted to develop autonomous mobile robot navigation, aiming to achieve a robust,

flexible and reliable control architecture [Nakhaeinia et al., 2011; Droge et al., 2012].

The control architectures used can be classified in three main categories; namely, deliberative,

reactive and hybrid architectures. The deliberative architecture plans an optimal trajectory

depending on a global world model which is built from sensor data. The reactive architecture
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does not require the building of a global world model, but it depends on current sensor data

to implement its actions, which makes it much quicker than the deliberative architecture. The

hybrid architecture aims to combine advantages of the powerful planning of the deliberative

architecture and the rapid response of the reactive architecture.

2.3.1 Deliberative Architecture

The deliberative architecture or top-down architecture repeats a series of steps: sense, plan

and act (SPA) [Chatila and Laumond, 1985; Pruski et al., 2008]. The robot’s tasks are de-

composed into five serial modules; namely, perception, modelling, planning, execution and

action (Figure 2.7). The perception model processes the collected sensor data, and proceeds

to build or update the world model. The planning model plans an optimal trajectory to the

goal, which is carried out by the execution and action models.

The SPA model has a powerful ability to plan and act, but fusing sensor data to build a world

model is sometime difficult, and planning a serial sequence of actions may produce a slow

response [Mataric, 2005]. Furthermore, if any task does not work properly, the whole system

may fail. Hence, this method is suitable for a static environment, while it does not work well

in complex environments which make the modelling of the robot map and planning a safe

path more difficult.
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Figure 2.7: Deliberative architecture

2.3.2 Reactive Architecture

The reactive architecture decomposes the control system into multiple parallel tasks or be-

haviours which can access the sensor data and actuators directly, as shown in Figure 2.8. The

reactive architecture can be classified into two basic types, namely: subsumption architecture
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and motor schema.

Sensors Actuators 

Behaviour 1

Behaviour 2

Behaviour

Behaviour N

Figure 2.8: Reactive architecture

The subsumption architecture was first developed by Brooks [Brooks, 1986], where the con-

trol architecture includes multiple levels of competences which are not totally independent

because the upper layers can control the lower layers by stopping their outputs or suppress-

ing their inputs. Hence, the higher level must be able to implement the lower layer functions

(see Figure 2.9). In the subsumption architecture, the complexity of a layer function in-

creases as its level increases. Brooks defined eight levels for his control architecture, namely:

avoid objects, wander, explore, build maps, monitor changes, identify objects, plan changes

to world, and reason about behaviour of object [Toal et al., 1996]. Guzel and Bicker [2012]

used a subsumption architecture with five behaviours, namely: goal seeking, approach, col-

lision avoidance, completed and wander behaviours. The goal seeking behaviour is respon-

sible for finding the robot’s goal using a monocular camera and the SIFT algorithm. If the

goal is founded, the approach behaviour is activated to generate optimal control commands

to reach the goal; otherwise the robot moves randomly using the wander behaviour. If the

distance between the robot and an obstacle is less than a minimum threshold, the obstacle

avoidance behaviour is activated to avoid collision. When the robot gets very close to the

target, the completed behaviour is activated.
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Sensors

Actuators 
Behaviour 1

Behaviour 2

Behaviour

Behaviour N

Figure 2.9: Brooks’ Subsumption Architecture

The motor schema architecture was developed by Arkin [Arkin, 1987]. It consists of inde-

pendent tasks or behaviours, each of which produces its output according to sensor data, and

then those outputs are fused together to produce optimal motion commands. The behaviour

outputs can be combined using arbitration or fusion methods [Yan et al., 2006]. In the arbitra-

tion method (Figure 2.10), each behaviour has a priority, and the output of the control system

is assigned to the active output of the highest priority. Beom and Cho designed a selector

unit to switch between goal-seeking and avoidance behaviours [Beom and Cho, 1995]. In

the fusion method, the behaviours’ outputs are weighted according to special values (w), and

then summed to produce one output vector (see Figure 2.11). The potential field approach

(PFA), which is explained later on in this chapter, uses the fusion method to combine between

goal-seeking and obstacle avoidance behaviours [Khatib, 1985].

The reactive architecture has several advantages compared to the deliberative architecture:

• Its response is quicker in dynamic environments.

• There is no need for world modelling.

• It is more robust because the behaviour units work independently.

On the other hand it has the following disadvantages:
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• Fusing the behaviour outputs becomes complex as the number of tasks or behaviours

increases.

• It is not suitable if some tasks require planning.

Sensors Actuators 

Behaviour 1

Behaviour 2

Behaviour

Behaviour N

Figure 2.10: Arbitration method of the motor schemas

Σ

Figure 2.11: motor schema
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2.3.3 Hybrid Architecture

The hybrid architecture overcomes the problem of the lack of planning in reactive architec-

ture by combining the two previous architectures (Figure 2.12). The deliberative architecture

forms the top level which is responsible for the long-term planning or global path, localiza-

tion and human interaction. The intermediate layer (sequencer layer) links the top and lower

levels, and transfers information from the top layer such as passing waypoints and observ-

ing the reactive layer to provide feedback to the top level. The lower level of the hybrid

architecture is the reactive layer which works to implement the global path through fusing its

behaviours. In other words it implements local path planning [Li and Jiang, 2007; Peng et al.,

2009; Milford and Wyeth, 2010]. At Newcastle University, an intelligent hybrid architecture

was developed for navigation in indoor environments, where the deliberative level includes

the global path planning and localization system, while the reactive level comprises five be-

haviours, namely: go to goal, laser avoid, sonar avoid, wall follow and wander [Nattharith,

2010].

2.4 Localization

Many solutions have been proposed to solve the problem of estimating the mobile robot’s

location. Localization systems can be classified into three categories, namely: relative, abso-

lute and hybrid localization systems. In the relative localization system, the mobile robot’s

location is calculated with respect to a known starting location by integrating the wheel speed

measured by encoders. This technique is considered to be self-contained, simple, cheap and

easy to implement in real time applications. However, its major disadvantage is the accumula-

tion of error produced by wheel slippage. Several solutions have been proposed to minimize

the integration error. De et al [2002] suggested to fix two additional encoders on the cas-

tor wheel; one is used to indicate the robot direction, and another measures its speed. The

measurements collected from the encoders fixed on the driving wheels and two additional

encoders were fused using a fuzzy logic algorithm. Using additional sensors such as the ac-

celerometer, gyroscope and compass was proposed in [von der Hardt et al., 1996; Zhou and

Loulin, 2011]. However, these solutions increase hardware cost and also are unable to define
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an accurate absolute position of the mobile robot because the robot’s location is calculated

with respect to the starting location.

Sensors Actuators 

Deliberative Layer

Intermediate Layer

Reactive Layer

Localization 

Mapping
Global Path 

Planning

Obstacle 
Avoidance

Wall 
Following

GO to Goal

Figure 2.12: Hybrid architecture

Absolute localization systems are more complex and accurate than relative localization sys-

tems. The robot’s location is estimated with respect to known reference points in its workspace,

where different sensors can be employed such as GPS, vision and ultrasonic sensors. The

GPS localization system is simple and does not need landmarks. However, it is only suitable

for outdoor applications [Sakamoto et al., 2012]. Several researchers have developed an in-

door global system (IGS) using RFID and sonar sensors for an indoor environment [Schmitt

et al., 2010; Byoung-Suk and Ju-Jang, 2009; SeungKeun et al., 2008]. The IGS system uti-

lizes many active beacons fixed in known positions, where the robot estimates its current

position by measuring the arrival time (TOF) of ultrasonic signals from three beacons, but

needs more beacons as the robot workspace area increases, which makes the localization sys-

tem expensive and more complex. Vision based localization is currently an active research

area, in which natural or artificial landmarks are extracted from the workspace to estimate

the current position of a mobile robot [Heesung and Kyuseo, 2005; Chi et al., 2013]. How-
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ever, there are many weaknesses in this type of localization system and it is unsuitable for

fast moving navigation because the slow image processing algorithm, and illumination also

effects the performance of the vision system.

Many systems have been proposed to combine relative and absolute localization systems to

increase the accuracy of the estimation of the position of the mobile robot [Haoxiang et al.,

2008; Bischoff et al., 2012]. The Adaptive Monte Carlo localization system (AMCL) is a

good example of a hybrid localization system which uses odometry data acquired by dead-

reckoning sensors and measurements collected by laser range finder, ultra sonic sensors or

vision to estimate the robot location [Xudong et al., 2005]. However, AMCL requires the

map of the robot workspace.

2.5 Global Path Planning

Global path planning is a key task of the deliberative layer, involving finding a safe and short

trajectory from the robot’s current location to its destination. Path planning methods can be

classified as either topological or metric. In the topological method, the route of the robot is

determined by a set of landmarks, while in the metric method the path is divided into many

subgoals which are given as Cartesian coordinates. Global path planning requires two stages:

world representation and path search.

2.5.1 World Representation

World representation is a procedure in which the robot’s map is made suitable for applying a

path search algorithm. The meadow maps method is an example of the world representation

algorithm, which divides the robot’s map into many convex polygons to establish safe paths

for the mobile robot. Each polygon consists of lines which connect between interesting fea-

tures in the map such as corners and doors [MURPHY, 2000]. However, in some cases, there

is no intersection between some convex polygons as shown in Figure 2.13; and therefore, the

robot may not find a continuous path between its current location and its target. To solve this

problem, lines are used to connect the midpoints of the convex polygons as shown in Figure

2.14 [MURPHY, 2000].
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There are two main disadvantages of the meadow method:

• It involves complex computation.

• It uses artificial landmarks.

Figure 2.13: Convex polygons in the meadow map [MURPHY, 2000]

Figure 2.14: Convex polygons connections [MURPHY, 2000]

The GVDs method draws lines called Voronoi edges, in which each point is equidistant from

the two nearest points on two different lines as shown in Figure 2.15. The Voronoi edges rep-
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resent safe trajectories for the mobile robot which will always be in the middle area between

the nearest objects [Huiying et al., 2010; Gomez et al., 2013].

Figure 2.15: GVDs method[MURPHY, 2000]

The Occupancy Grids method describes the world map using a grid; and the centre of each

square in this grid is considered as a node [Moravec and Elfes, 1985]. However, if any small

part of a square is occupied then the whole square will be marked as occupied which wastes

much free spaces for the path search algorithm. This problem can be resolved by reducing

square size, but this requires a large memory for storing the large number of cells, and further-

more the path planner will require more time to find an optimal path. An alternative solution

is the Guardtrees algorithm which divides the map into many large squares, and if any square

is occupied by an obstacle it is divided into four squares [MURPHY, 2000].

2.5.2 Path Planning Algorithm

Path planning algorithm is applied to the graphic representation of the robot’s workspace to

find an optimal path between the current and target locations. The Dijkstra algorithm is one

of the most adopted algorithms for global path planning [Jasika et al., 2012]. Here each node

is assigned as unvisited, and the current location of the robot is given a value of 0. Then all

its neighbouring nodes are weighted with the distance to the starting point. Next, the node
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of the lowest weight is selected as the current node, and all neighboring nodes are weighted

with the distance to the current node plus the weight of the current node. This procedure is

repeated until the goal is reached.

The A* search algorithm is an extension of the Dijkstra algorithm, and is used frequently for

path planning for holonomic robots [Zeng and Church, 2009]. A cost function f (n) defined

by (2.1) is applied to find a sequence of nodes which achieve the shortest path to the goal.

f (n) = g(n)+h(n) (2.1)

where g(n) and h(n) represent the distance between node n and the goal, and the distance

between the starting point and node n respectively.

The A* algorithm can be applied to any graphic representation. However, the path planning

becomes more difficult if additional factors such as the topology of the ground is considered.

The wavefront algorithm is another example of path planners. It is only suitable for applying

to a grid representation of the workspace map [Hughes et al., 1992]. It uses the principle of

heating radiation in a conductive material, where the initial position of the mobile robot is

considered as a heating source. Thus, if there is any path to the goal, the heat will radiate to

it; otherwise obstacles which are considered as having zero conductivity will isolate the heat

from reaching the goal. In this method, the free areas are assigned large conductivities, while

undesired areas are considered to be low conductivity. To find the global path, all obstacle

cells are assigned to a fixed value of 1, while the goal is given a value of 2 which is increased

to cover all free cells in the world map, and then the path starts from the current position of

the robot and follows a sequence of nodes which decreases the numeric value.

2.6 Avoiding Obstacles

The obstacle avoidance behaviour is a key issue for executing successful navigation and pro-

tecting the mobile robot, other objects and humans from collisions. The global path planning

considers just the fixed obstacles such as walls in the workspace map. However, many objects

may change their locations under their own power or due to the actions of others, which is
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not considered during the global path planning procedure. Hence, the robot must detect and

avoid such obstacles, which can be classified into two types, namely: static and dynamic.

2.6.1 Avoidance of Static Obstacles

Mobile robot navigation among static obstacles is simple because the robot has to calculate

only the distances to the obstacles, can spend an uncertain amount of time in executing an

optimal action, and can stop in an emergency. It can use the previously mentioned global path

planning algorithms to avoid static obstacles using a deliberative control architecture, where

the workspace map is updated using sensor data, and then the path is re-planned. Al-Jumaily

and Leung [2005] utilized the wavefront algorithm for global path planning depending on

a predefined map which is updated using a laser sensor, and then the planning algorithm is

applied to define a safe path.

Several algorithms have been proposed to avoid static obstacles using a reactive control archi-

tecture. The Bug algorithm uses contact sensors to detect obstacles (see Figure 2.16). When

the robot detects an object O1 it detours around the object until arriving at the intersection

point with the straight line between the starting point S and the goal g, after which it follows

the straight line. The Bug algorithm is simple, however, it has some weaknesses, e.g. it does

not consider the robot’s kinematic constraints, and the path is not optimized [Lumelsky and

Skewis, 1990].

The Potential Field Algorithm (PFA) proposed by Khatib [Khatib, 1985] depends on the

principle of the electric force produced between two charges, where an attractive force Fatt

is generated between two particles if they have different charges and a repulsive potential

force Fr is generated if they have the same charge. The magnitude of the force is inversely

proportional to the square of the distance between particles. The PFA treats a robot as a charge

(for example, negative), obstacles have the same charge as the robot, and the goal has the

opposite charge as mobile robot (positive). When the robot navigates within a workspace it

will experience both repulsive forces generated by obstacles and an attractive force generated

by the goal. The resultant force of the repulsive and attractive forces allows the robot to

minimize the collision risk with obstacles and seek its goal. However, the disadvantages of

the PFA algorithm concern the local minima and oscillatory behaviour in a narrow space.
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The latter occurs when the repulsive and attractive forces cancel each other because of the

symmetry of the environment, while local minima occurs in concave obstacles (see Figure

2.17). Chatila and Khatib [1995] extended the PFA algorithm by introducing two potentials:

the rotation potential which considers the angle between the robot and obstacle to weight the

repulsive force, and the task potential which filters out all obstacles which do not affect the

robot’s motion.

Figure 2.16: Bug method
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Figure 2.17: Problems of the PFA approach

The Vector Field Histogram method (VFH) implements two-stage data-reduction processes

to generate optimal control commands [Borenstein and Koren, 1991]. In the first stage, a

2D Cartesian histogram grid of the representation of the obstacle is reduced in a 1D polar

histogram; the 2D Cartesian histogram is built using the certainty grid for obstacle repre-

sentation algorithm, where the world map is divided into a grid, and each cell in this grid is

assigned a certainty value (CV) which represents the probability of an obstacle existing in the
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cell [Elfes, 1987]. In the second stage, all sufficiently large open areas are found, and then a

cost function is applied which considers the alignment of the robot’s path to its goal, wheel

direction, and previous direction. The sector with the lowest value is selected as an optimal

direction for the mobile robot to achieve its goal successfully. However, the VFH method has

the following limitations:

• The local minima might not be overcome

• Dynamic constraints are not considered

• Passing narrow areas might be problematic.

The VFH algorithm was subsequently extended to the VFH+ algorithm, in which two ad-

ditional stages were introduced to take into consideration the dynamic constraints and to

smooth the robot’s path [Ulrich and Borenstein, 1998]. The VFH* algorithm combines the

VFH+ and A* algorithms to avoid the robot becoming trapped in the local minima [Ulrich

and Borenstein, 2000].

The Dynamic Window Approach (DWA) plans a short term path taking into consideration

the kinematic constraints of the mobile robot, such as maximum velocity and acceleration.

In the DWA method, a robot avoids obstacles by following circular trajectories whose radii

are determined by pairs of linear and rotation velocities. The optimal path for the mobile

robot is selected using the maximum value returning from a cost function, which includes

three factors, namely: the alignment of the robot path with the goal, forward velocity, and

the distance to obstacles. The DWA was extended in the Model Based Dynamic Window

approach [Fox et al., 1997].

2.6.2 Avoidance of Dynamic Obstacles

Dynamic obstacle is any object which changes location with the time during the robot naviga-

tion. Kanet and Zucker [1986] proposed the path-velocity decomposition principle, in which

a long-term path is planned to avoid static obstacles, and then the robot velocity is modi-

fied along this path to avoid dynamic obstacles. The main drawback of this method is that

modifying the velocity is sometimes not enough to avoid dynamic obstacles especially those
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obstacles moving towards mobile robot. Fraichard and Laugier [1993] proposed the princi-

ple of adjacent paths to overcome the previously defined problem, where several paths are

planned to avoid static obstacles, and for dynamic obstacles a collision-free path is chosen,

however, this method is time consuming.

In [Zhuang et al., 2006], an autoregressive model proposed in [Sen and Srivastava, 1990] is

used to estimate the path of a dynamic obstacle, where a path planner plans a straight path

for free space, creates a subgoal to avoid a static obstacle, while the estimated future position

of a dynamic obstacle is considered before creating the subgoal. The main drawback of this

method is that the optimal path cannot always be found.

The velocity obstacle (VO) approach is an easy and simple method to avoid moving obstacles,

in which the collision cone principle is used to predict a collision situation between two

circular-shaped objects moving with linear motions [Fiorini and Shiller, 1998]. In the VO

approach, collision between a robot R and obstacle O is predicted if the resulting vector vro of

the robot speed vr and obstacle speed vo is located in the collision cone as illustrated in Figure

2.18. Hence, any speed vr which leads the relative speed vro to be located in the collision cone

will cause collision. Consequently, the collision risk is minimized if the relative speed vector

is controlled and located outside of the collision cone. The VO approach has two challenges

when applied in indoor environments. The first challenge is to extract collision cones of non-

circular objects from sensor data, where applying fitting circle methods generally produce

large and inaccurate collision cones specially for line shaped obstacle such as walls. The

second challenge is that the mobile robot cannot sometimes move to its goal because all its

velocities to the goal are located within collision cones.

The Non-linear V-Obstacle (NLVO) method was proposed as an extension of the VO method

for avoiding obstacles moving in arbitrary trajectories [Frederic Large and Shiller, 2005].

Consider the case shown in Figure 2.19, in which an obstacle O at time to moves in an

arbitrary trajectory. To avoid the obstacle, the intersection point C(t) between the current

straight path of the robot R and the obstacle’s path is calculated, the time t at which the

obstacle reaches the intersection point is also calculated, and then an approximation is made

by considering the obstacle O
′

moves at a tangent to the obstacle path at point C(t) and at a

constant speed in which the obstacle O
′
reaches the intersection point at time t. Now the VO

approach can be applied to define the collision situation between the robot and obstacle O
′
.
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Figure 2.18: VO approach
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Figure 2.19: NLVO approach

Many studies have adopted this method to avoid moving obstacles using simulation [Zhiqiang

et al., 2008; Fulgenzi et al., 2007]. In [Yamamoto et al., 2001], all obstacles were assumed

to be circular, and the principle of the collision distance index was introduced to quantify

collision risk, where obstacles are enlarged according to their distances from the robot. In

[Kluge, 2003; Kluge and Prassler, 2004], the probabilistic velocity obstacle (PVO) principle

and a recursive model were proposed. According to the PVO principle, the grown obstacle

is extended by uncertainty to the exact radii of the obstacle and robot, where the collision

probability in the exact collision cone is given a value of 1, while in the uncertain area, the

collision probability is given a value between 0 and 1. The recursive model estimates the level

of intelligence of the obstacles to predict their behaviour. However, only circular obstacles

were used and the time to collision was not considered. The Optimal Time Horizon Principle

has been proposed by [Shiller et al., 2010], where the smallest time horizon is used to define
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the collision course velocities. In their simulation, circular obstacles of known speeds were

used. However, in the real world the robot has to extract the shapes of the obstacles from

sensor data, enlarge them using the robot radius, and then extract the collision cones.

2.7 Estimation of Obstacle Speed

A key requirement in avoiding dynamic obstacles is to estimate their directions and speeds

using an estimation algorithm such as the Kalman filter or Particle filter. Any tracked object

can be described by a N-dimensional state vector, which is unknown precisely because of

measurement noise; and also some states cannot be measured directly. The tracked obstacle

can be defined by two types of models: a dynamic model (motion model or state model) and

a measurement model (observation model) as shown in Figure 2.20.

In the dynamic model, the state vector changes with time, where its probability P(xt) at

sample time t is calculated using the probability P(xt−1) of the state vector at t −1.

P(xt) =

ˆ
P(xt/xt−1).P(xt−1) (2.2)

where P(xt |xt−1) is the process density.

In the measurement model, zt is defined as the measurement vector at sample time t, while

the historical measurement vectors are described by Zt = {z1,z2,z3, ...,zt} . The measurement

model is described as follows:

zt = h(xt ,vt) (2.3)

where h is the measurement function and vt is the measurement noise. To track an object,

the probability of the initial state P(x0) must be known, and also the measurement zt depends

only on the state xt to produce the probability P(zt |xt).
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Figure 2.20: State transition and measurement process

A Kalman filter (KF) is a set of mathematical equations which implement a recursive function

to estimate hidden state variables by minimizing the squared error between the observed

and estimated outputs. However, the KF algorithm was not originally used for estimation

purposes due to the large computation involved, but developments in microcontrollers and

digital computing have made it suitable for many applications such as senseless control and

autonomous navigation [Vatavu and Nedevschi, 2013; Sivaraj et al., 2012]. The estimated

state xk and measurement state zk are given as follows:

xk = Axk−1 +Buk +wk (2.4)

zk = Hxk + vk (2.5)

where A, H, and B represent the state, measurement and input matrices respectively, and wk

and vk represent process and measurement noise respectively .

The observed system in the KF algorithm is linear, and therefore its matrices are assumed to

be constant, and the process and measurement noise are both treated as white noise with a

normal probability.

The KF algorithm includes two steps, the prediction and measurement stages (see Figure
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2.21). The matrices Kk and Pk are defined as the Kalman gain and posterior estimate error

respectively, while Q and R represent the process noise covariance and measurement noise

covariance respectively. In the predication stage, the estimated state x̂−k and estimate error P−
k

are calculated and returned to the measurement stage, where the Kalman gain is calculated

and then the estimated state and estimate error are updated.

The Kalman filter algorithm consumes less time for tracking a signal obstacle than that con-

sumed by the Particle filter but it becomes more complex as the number of tracked obstacle

increases.
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Figure 2.21: Kalman filter algorithm

The Particle filter (PF) is sometime referred to as sequential importance sampling (SIS) and

sequential Monte Carlo methods. PF was not used extensively until Isard and Blake inserted

the resampling stage [Isard and Blake, 1998]. The mathematical derivations of the PF algo-

rithm are not analyzed in depth here; however further details can be found in [Doucet et al.,

2000]. The standard PF consists of five steps, namely: initialization, propagation, impor-

tance, resampling, and generating output, as follows:

1. Initialization - implemented only at t = 0, where the sample set S of N particles and

their weight W are initialized.
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2. Propagation stage - the particle set S is updated by the dynamic model described in

Equation 2.4, and this produces a new particles set S
′
.

3. Importance stage - the weights of the particles are calculated from the likelihood P(zt/x)

depending on the error between the outputs of the observation model and the particles.

4. Resampling stage - the particle set S
′
is reselected depending on their weights, produc-

ing a new particle set S
′′
, where high weight particles are multiplied, while low weight

particles are rejected.

5. Output stage - the estimated state is calculated by the mean of S
′′
.

6. Go to step 2 for the next sample time the particle set S
′′

at sample time t becomes the

particle set S at sample time t +1.

The PF method has been used to track multiple objects [Orton and Fitzgerald, 2002], but

this technique has the following disadvantages; i.e a newly appearing object is not tracked

unless it is very close to one of the tracked objects, and some objects can be rejected in the

resampling stage.

To avoid the disadvantages of the standard particle filter, the extended particle filter (EXPF)

or extended condensation algorithm was proposed for tracking multiple obstacles using only

signal distribution [Marron et al., 2004; Koller-Meier and Ade, 2001]. The basic idea of the

EXPF algorithm is to add a re-initialization step in each loop of the PF algorithm, where a

new group of M samples is redistributed for obstacles clustered from the sensor data.

In the EXPF algorithm, any new object appearing in the sensor data will be tracked in the next

cycle, and also no object will be rejected because the inserted samples in the re-initialization

step have high weights since they are very close to the objects. However, choosing a small

value of M does not affect the overall probability distribution of particles, which overcomes

the risk of objects disappearing during the Resampling stage. For the Propagation stage, there

is no modification on this step, and the whole particle set S is updated through the state model.

In the Importance stage, only a single distribution is used, where the likelihood P(zt xt) of

each particle is calculated according to the nearest object, as follows:

P(zt |xt) = e−d2
t /a (2.6)
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where dt is the minimum value of the distances of the particle from the all objects.

In the Resampling stage, N −M particles are reselected. The estimated state cannot be cal-

culated directly from the mean values of the samples, hence various solutions have been

proposed to solve this problem such as the Nearest Neighbour technique as used by [Koller-

Meier and Ade, 2001], whereas related studies have used K-means clustering [Cox (1993);

Marron et al. (2004)].

2.8 Clustering Laser Data

The robot has to define the number, locations and sizes of obstacles to achieve successful

dynamic obstacle avoidance. Hence, it is crucial to segment the sensor data using clustering

methods. This section focuses on the clustering of 2D laser range finder (LRF) data, which

consists of N points and each point can be described by pairs of polar coordinates (r,a) or in

Cartesian coordinates (x,y), as shown in Figure 2.22.
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Figure 2.22: Schematic representation of scan laser data

The clustering process involves dividing the sensor data into separate groups which repre-

sent the existing objects in the robot’s workspace. Clustering methods can be divided into

two types; point-distance-based methods (PDBS) and Kalman-filter-based methods (KFBS)

[Nunes and U., 2005; Rebai et al., 2009]. For the PDBS methods, the distance between two
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consequent points is given as follows:

d(ri,ri+1) =
√

r2
i + r2

i+1 −2riri+1cos�a (2.7)

where r and Δa define the calculated distance and the angular resolution.

The distance d(ri,ri+1) is compared with a threshold value Dth, and if the condition d(ri,ri+1)<

Dth is met, the two points belong to the same object; otherwise they belong to two different

objects. However, different methods can be used to determine the threshold distance, which

can be held constant, but then the clustering process does not segment the sensor data prop-

erly because the distance between the laser points changes depending on distance from the

laser sensor. In [Lee, 2001], the threshold is calculated as:

Dth =
|ri − ri+1|
|ri + ri+1| (2.8)

It should be noted that the threshold distance is calculated using the distance between the

detected object and the laser sensor, which can make separating the objects more difficult as

they are further away. In [Dietmayer et al., 2001], the threshold distance is given according

to the following equation:

Dth =C0 +C1min(ri,ri+1) (2.9)

where C0 is a constant value used to reduce noise, and C1 is given as follows:

C1 =
d(ri,ri+1)

ri
(2.10)

In this method the threshold distance depends on the distance to the sensor. In [Santos et al.,

2003], a new parameter β is introduced to reduce the effect of object distances, where the

threshold distance is defined as follows:

Dth =C0 +
C1min(ri,ri+1)

cos(β )(cos( �a
2 )− sin( �a

2 ))
(2.11)
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It is very important to tune β , since a large value can segment an object into two, while two

objects can be interpreted as one object for a small value.

The K-means clustering algorithm is another PDBS method, but it does not depend on the dis-

tance between the object and sensor [Napoleon and Lakshmi, 2010]. The K-means algorithm

consists of five steps:

1. Define the number of clusters K.

2. Initialize the cluster centres randomly.

3. Define the class membership of points by assigning them to the nearest cluster centre.

4. Recalculate the cluster centre using the mean value of memberships.

5. Repeat steps 3 and 4 until no point changes its class membership.

The K-means clustering is easy, simple, and efficient, however, it is not suitable for clustering

non-convex shapes, and the number of clusters K needs to be defined in advance. The K-

means algorithm was improved to tune the clusters number automatically using the following

steps [Marron et al., 2004]:

1. Select a random number of clusters K.

2. Initialize the cluster centres randomly.

3. Define the class memberships of the N points by assigning them to the nearest cluster

centre.

4. If the distance between a point to its cluster centre is bigger than a threshold, a new

cluster is added.

5. Recalculate the centres of clusters using the mean value of memberships.

6. Remove cluster centres which have very few points.

7. Repeat steps 3, 4, 5 and 6 until there are no changes in class membership.

KFBS methods are used to segment laser data by applying the following algorithm for all

laser points pi [Kmiotek, 2009]:
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1. Filter initialization: in this stage, the system state vector x is assigned to the first laser

point p0, and the covariance matrix is initialized P = P0.

2. Implement the prediction stage of the KF algorithm.

3. Test the gating situation for point pi: if it is located inside the gate, the update stage is

implemented; otherwise pi is selected as a break point.

The laser point pi is considered to be inside the gate if the condition pT
i S−1 pi < Dth is met,

where S−1 is the measurement covariance matrix. For 2D laser data, the linear dynamic

equations can be written as follows:

rt+1 = rt +�a.
drt

da
(2.12)

drt+1

da
=

drt

da
(2.13)

xt = [rt
drt

da
]T (2.14)

where r and a represent the length and the angle of a laser line respectively, while xt is the

state vector. For the Extended Kalman filter the dynamic equations are given as follows:

φt+1 = φt +�a (2.15)

rt+1 =
sin(φt)

sin(φt +�a)
rt (2.16)

xt = [rt φt ] (2.17)

where φ represents the angle between the laser line and the object surface, as shown in Figure

2.23. The extended Kalman filter gives more precise estimations than the standard Kalman

filter. However, these methods are more complex than distance-based methods and require

large computation.
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Figure 2.23: KF-based methods (KFBS)

2.9 Mobile Robot Software

Mobile robots can be programmed to execute the navigation algorithm using programming

languages such as C,C++, Python and JAVA. However, the user code will be very complex

and is not portable. Also it is very difficult to simulate the robot’s performance. Several

open source and commercial robot development environments have been proposed to solve

these problems, where they provide several libraries to interface between the user code and

the robot hardware. Consequently the user code can be employed on different mobile robot

platforms, and is easy to debug and develop [Kramer and Scheutz, 2007]. In this section, three

robot development environments namely: Player/Stage, Robot Operating System (ROS) and

Microsoft Robotics Developer Studio are described.

Player/Stage is an open source robot environment developed at the University of Southern

California, and utilizes the Linux operating system [Gerkey et al. 2001]. Player is a device

server using the TCP/IP protocol to interface between the user code and the robot devices. It

is easy to use, supports 13 robot platforms such as Pioneer , Roomba, and Segway robots, and

offers several packages to simplify the user code such VHF, AMCL and Wavefront Planner

[Kerr and Nickels, 2012]. Stage is a 2D simulation tool which models the robot hardware to

execute the user code written in the Player environment. The workspace and the robot devices
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are simulated in Stage using a configuration file and a world file, where the user defines the

shapes of objects and the robot, sensors, and workspace map. However Player can use the

Gazebo simulation platform which is a 3D simulator. Like Stage, it is capable of simulating

robot hardware, sensors and objects, furthermore, the dynamic of the robot can be simulated.

Robot operating System (ROS) is another open source software suite used to control mobile

robots under Linux operating systems. It supports approximately 60 robots, can use Stage and

Gazebo as simulation environments, and supports UDP and TCP/IP for information passing.

However, it can take a long time to become proficient in using the ROS structure effectively.

Microsoft Robotics Developer Studio (RDS) is a commercial software suite working under

the Windows operating system, and uses the C# programming language. Virtual Simulation

Environment (VSE) has been developed to simulate and verify the navigation algorithm. RDS

is easy to learn, but it supports few robots.

2.10 Summary

This literature review has provided the necessary background to start this project, discussing

the control architectures; deliberative, reactive and hybrid by which a mobile robot inte-

grates its tasks to achieve successful autonomous navigation. To produce a robust navigation

system, the hybrid architecture can be used, where it overcomes the problems of the slow

response of the deliberative architecture and the lack of planning in the reactive architecture

by combining the two architectures. This requires a robust localization system to estimate

the current position of the mobile robot, where the AMCL system is simple and easy to im-

plement for map-based navigation. A global path planning system is also required to find

a safe and optimal path from the current location to the destination, where many methods

have been proposed to represent the world map and various other methods to plan an optimal

path. For local path planning, several algorithms have been used to avoid static and dynamic

obstacles. Avoiding static obstacles does not require any estimator to measure the obstacle

speed, but for dynamic obstacle avoidance, sensor data must be segmented to define locations

of the obstacles and then their speeds and directions are estimated using an estimator such as

Kalman or particle filters.
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Proposed Control Architecture

For indoor environments, a mobile robot must have the ability to reach its goal from any

point within its workspace and avoid any collision which can cause harm to the robot or other

objects. To meet these requirements, a hybrid control architecture has been chosen to control

the mobile robot. As mentioned previously, this architecture combines the powerful planning

capability of the deliberative architecture with the fast response of the reactive architecture.

The next section discusses tasks that should be included in of the control architecture.

3.1 Mobile Robot Architecture

The proposed control architecture includes three models: deliberative, intermediate and reac-

tive. Each model must contribute some function or behaviour to produce an optimal naviga-

tion. The required tasks from each model will be discussed and then suitable functions will

be designed to fulfil the requirements.

3.1.1 Deliberative Model

The deliberative model builds the world map of the robot workspace based on the sensor data

returned from the surrounding environment. Next the world map is processed to compute a

path planning algorithm. However, this will take a long time resulting in a slow response. The

hybrid control architecture used in this project is designed to work in indoor environments,
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where the workspace maps is usually known. Therefore there is no need for building the map.

Walls and other obstacles may prevent the robot implement a straight line path between its

current location and its goal, and also in most cases, the robot has to select an optimal route

among several available routes to its final target. In this project, the deliberative model covers

this task by including a long path planning algorithm which produces an optimal path defined

by several subgoals.

The reactive level has to deal with any change in the robot’s workspace, and sometimes the

changes in the robot’s workspace may block the robot’s path such as when a corridor is closed

for cleaning. In this case, the robot must wait until the planned route becomes available which

may take a long time. The user can resolve this problem by modifying the map, however, in

this project an alternative solution is proposed to avoid this problem by using an updating

function which automatically updates the map when ever the mobile robot is trapped in a

local minima.

The long path planning algorithm cannot work without defining the absolute position of the

start point, and also the robot may lose its path when the accumulation of error produced

by wheel slippage increases too much. As a consequence, the deliberative model must use

a localization system to produce a robust estimation of the robot position. The robot needs

be aware of the moving obstacles suddenly appearing from open doorways. To this, the wall

extraction function is added, where it defines surrounding walls and then locations of open

doors. The proposed control architecture needs a intermediate model (sequencer model)

which links the deliberative and reactive levels.

3.1.2 Reactive Model

The robot can increase its response speed using the reactive model, when there is no need to

continuously apply the long path planning algorithm . Here, the reactive level comprises the

go to goal behavior which calculates the optimal angle and speed of the robot to implement

a short path between its current location and its subgoals.

To avoid static and dynamic obstacles that were not considered during the global path plan-

ning, the reactive model uses the obstacle avoidance behaviour which extracts obstacles from

the sensor data, estimates their speed and then defines free collision velocities to minimize
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the collision risk. The robot may work in a workspace cluttered by humans, therefore in this

project, the reactive model uses the human avoidance behaviour to detect human and estimate

their speeds from the laser data returned from their legs.

In a dynamic environment, there could be many open doorways and corridor crossing which

are considered as blind spots from which unexpected obstacles may appear. As a conse-

quence, the reactive level uses the unobserved obstacle avoidance behaviour to reduce the

collision risk with objects appearing from those locations. Furthermore, the reactive model

eases the robot task using the follow the leader behaviour, in which the robot follows other

obstacles moving in the same direction and a similar speed. Sometimes the robot does not

have enough time or space to avoid collisions, therefore the emergency stop behaviour is

added to stop the robot when a collision becomes unavoidable.

3.1.3 Proposed Control Architecture

Based on the previous discussions in this chapter, the block diagram of the control architec-

ture is proposed as shown Figure 3.1, in which the deliberative model includes four functions

namely: global path planning, localization, map updating and wall extraction. The inter-

mediate model is responsible for the transfer of the information between the reactive and

deliberative models, such as the subgoals and locations of the walls, and also to monitor the

reactive model to define when a lcoal minma occurs. When the robot is trapped in a local

minima, the map updating function is activated to update the robot map, and then the long

path planning algorithm is applied to reselect a new optimal path.

The reactive level includes six behaviours namely go to goal, obstacle avoidance, unobserved

obstacle avoidance, human avoidance, follow the leader and emergency stop. The outputs

of behaviours are integrated using the coordination model to produce optimal control com-

mands.
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Figure 3.1: Proposed control system

3.2 Hardware Limitations

Experiments will be implemented using two mobile robots; a modified Pioneer robot (the

intelligent robot) and the Nubot robot (whose role is a dynamic obstacle) (see Figure 3.2).

The Pioneer robot was fitted with two Hokuyo laser sensors, a Kinect camera and sonar

sensors.

Sonar Sensors: the standard Pioneer robot comes with an Onboard sensor array of eight

sonar sensors which are triggered sequentially to avoid cross talking. However, an additional
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array of 12 Devantech SRF05 ultrasonic sensors have been attached to the robot to cover

180º and a range of 1cm up to 4m. However,the sonar sensor has a low firing rate of 3Hz

[Nattharith, 2010] makes the these sensors are unsuitable to detect and estimate the speeds of

dynamic obstacles.

Figure 3.2: Mobile robots used in this project

Kinect sensor: Kinect sensor is a depth camera developed by Microsoft for tracking players

and people motions for playing games. Recently it has been used in robotic navigation [El-

laithy et al. 2012]. Although the update rate of the Kinect sensor is high, it has a narrow field

of view ( 57oH and 43oV)

Laser Finder range: Two Hokuyo URG-04LX scanning laser sensors were mounted on

the pioneer robot at heights 0.40m and 0.70m. The main specifications of the Hokuyo laser

sensor are given:

• Scanning range 240º

• Angular resolution 0.36º

• Update rate 10Hz

• Maximum distance 5.6m
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In this project, only the two laser sensors will be used to recognize the surrounding workspace.

The maximum range and update rate of the sensor restrict the maximum speed of the robot

to 0.5m/s and allow it to avoid only slow motion obstacles. If the robot or dynamic obstacles

move at a higher speed and towards each other, the relative speed of the robot will be high and

the robot will not have enough time and distance to avoid the collision. Furthermore, the high

speed of the robot and the time delay (100ms) of updating the control commands will make

the robot’s movement quite erratic especially in narrow spaces. However, the same proposed

control system can be used to avoid faster obstacles if the update rate and maximum range of

the sensor are increased by using a different version of the laser sensor such as the Hokuyo

UTM-30LX which has a maximum distance of 30m, angular resolution of 0.25º, scanning

range of 270º and update rate 40Hz.

3.3 Simulation Environment

It is crucial to validate the proposed navigation algorithm in a simulation environment before

using existing robots (Pioneer and Nubot robot). Using simulation tests helps in saving time,

where the experiment’s workspace can be reinitialized very quickly just by restarting the

simulation program. In contrast, in the real world, each time the robot must be returned to

its initial point and connected to its charger when the power of its batteries becomes low.

Furthermore, any fault in the robot’s hardware may lake a long time to fix. On other hand

during the simulation tests, the navigation algorithm code can be safely tested without any

concern about damaging the robot hardware or causing harm to any individual or another

object within its workspace.

For this project, Player/Stage has been chosen to validate the navigation algorithm for the

following main reasons :

1. Player/Stage was already installed in the Pioneer and Nubot On-board PCs. Using

different software will consume a lot of time to install, especially for the Nubot robot

which is not supported by other software.

2. It is free and very easy to learn, as simple commands are used to read the sensor data

and control the motor speed. Furthermore, a lot of documents about the programming
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in Player/Sage can be found on the internet.

3. It is very simple to prepare the simulation environment and to configure the sensor

drivers inside the algorithm code.

In this project, simulation experiments are designed to show that each function block in the

proposed control system is able to successfully implement its task. On other hand, the laser

range finder will be configured as the real Hokuyo scanning laser, in this case the same code

can be implemented on the physical robot without any modification.

The long path planning algorithm is tested using a predefined map with a known starting

point; for successful long path planning, the robot must easily reach its goal without using

the obstacle avoidance behaviour. Next, the ability of the localization system to estimate the

real position of the robot is validated by choosing an unknown starting point of the long path

planning, where the robot can only reach its goal if the localization system is activated. The

wall extraction algorithm is tested to define the surrounding wall using a predefine map and

laser data.

The reactive model is first tested to avoid static obstacles and then to avoid dynamic obsta-

cles in both free space and indoor environments.The importance of the unobserved obstacle

avoidance, and follow the leader behaviours is explained by comparing the collision results

when these behaviours are inactive and active. A simulation experiment will be designed to

show that the stop emergence behaviour will be automatically activated to save the robot and

other objects when there is not enough space and time to avoid collision. Another simulation

test will be designed to show that the map updating and long path planning algorithms can

solve the problem of trapping in local minima. For the human avoidance behaviour, the hu-

man gait will be modelled in Player/Stage and then human tracking and avoidance algorithms

will be tested before applying the navigation algorithm within a physical robot.

3.4 Summary

This chapter introduced a general explanation about the proposed control architecture and the

hardware used in this project. The functions of the deliberative model were chosen to pro-

duce a long term path, estimate the absolute location of the robot, define the blind spots and
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update the map when the robot is trapped in a local minima. On other hand, the behaviours

of the reactive model were chosen to minimize the collision risks with static and dynamic

obstacles including humans, also to ease the robot task in cluttered environments and to stop

the robot during emergency situations. For this project, Player/stage has been chosen to vali-

date the navigation algorithm because it is free, easy , simple and no need for writing a new

communication protocol for the Nubot robot.
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Deliberative Model

This chapter explains more the deliberative level. The deliberative level includes four models

namely: global path planning, localization, map updating and wall extraction. Simulation

tests using the Player/Stage platform showed that the localization system provides a robust

estimation of the robot position, likewise the path planning algorithm can establish an optimal

and safe path between the goal and the current location of the robot, and the wall extraction

algorithm is able to determine the positions of walls around the mobile robot. However, an

simulation test in the next chapter explains how the map updating function helps to avoid a

local minima.

4.1 Importance of the Deliberative Model

Producing safe and successful navigation is considered to be a key challenge for a mobile

robot. Imagine that some people want to go to a train station, although they know the location

of the train station they cannot go there if they do not know their current location. Similarly

for a mobile robot, the first challenge to find its goal is to estimate its current position, which

requires a robust localization system.

The second challenge for the mobile robot is to plan a safe and optimal path from its current

location to its goal. Car drivers, for example, may navigate using a map-based GPS as well as

landmarks. Likewise, the mobile robot must have a long-term path planning system to create

subgoals between its current position and its goal.
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The third challenge to produce safe navigation is that during navigation in an indoor environ-

ment, the robot will have to navigate among many walls which represent long static obstacles,

and at the end of each wall there could be an open door from which an unobserved moving

obstacle may suddenly appear in its path. Hence, it is crucial for the robot to find walls in the

surrounding space in order to detect open doors and corridor crossings, and then to execute

suitable actions to minimize the collision risk with unobserved dynamic obstacles.

The fourth challenge to produce successful navigation is that when any change in the robot

workspace blocks the planned path the robot will be trapped, therefore the map must be

updated and then the long path planning algorithm is applied to find new path to the target.

4.2 Mobile Robot Localization System

Localization is the process of estimating a position with respect to a general reference frame.

To achieve successful localization, it is very important to understand the mobile robot sur-

rounding environment, which can normally be classified into two types; unknown and known

environments.

Unknown environment - here the robot does not have sufficient information about its workspace,

and therefore it must build up its own map and estimate its current position depending on the

information collected from sensors such as laser or sonar. Many studies have been carried out

in this area, which is referred to as simultaneous localization and mapping (SLAM) [Chakra-

vorty and Saha, 2009; Min et al., 2009; Jinseok and Kubota, 2011]. Here, the navigation al-

gorithm of the mobile robot is relatively complex and requires huge computations to build the

workspace map, and then to determine its goal through extracting landmarks. Furthermore,

the complexity of the navigation system increases considerably in dynamic environments.

Known environment - in this type of workspace, the robot has complete information about

its environment, and so the navigation algorithm is easy to implement, particularly for lo-

calization and path planning. In this project, mobile robots have been designed to work in

indoor environments which are considered to be known environments.

For a wheeled mobile robot, the localization system can be implemented using odometry

sensors. Although this method is cheap and simple to implement, its major disadvantage is
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integration error caused by wheel slippage. However in a known environment, the integration

error can be cancelled using the adaptive Montecarlo filter localization (AMCL) algorithm,

which estimates the robot’s position by combining information coming from both external (

laser and sonar) and odometry sensors. The core of the AMCL algorithm is the particle fil-

ter, which uses a group of samples (particles), each of which is considered as a virtual robot

having a 2D location, direction and sensors. The sample sensor data are computed depending

on the current location of the sample in a predefined workspace map. The term “adaptive”

is added to the Montecarlo filter because the number of samples is changed according to un-

certainty in the estimated location of the mobile robot. In other words, the sample number

increases as uncertainty in the robot position increases, while it decreases as the estimated

position becomes closer to the real location. The AMCL algorithm has the following advan-

tages:

• It is easy and simple to implement.

• It can deal with non-Gaussian noise.

• It estimates the global position of the mobile robot even if the initial position is un-

known.

However, it also has the following disadvantages:

• It requires a large number of samples at the beginning of the robot navigation localiza-

tion algorithm, which makes computation size huge.

• It is not suitable for use in unmapped areas.

4.2.1 AMCL Implementation

Figure 4.1 shows the block diagram of the AMCL localization system, which has three inputs:

the workspace map, external sensor data and odometry data, while its output is the estimated

position of the mobile robot. If the initial position of the mobile robot is unknown the particle

samples are distributed to cover the whole map, where all particles are initially given the

same weight. When the mobile robot moves, the samples update their locations depending
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on the position update coming from the real robot, and then random noise is added. In the

Importance step of the particle filter, the weights of the samples are modified depending on

the likelihood produced by the comparison between the sensor data from the real robot and

that coming from samples. In the Resample step, the samples are redistributed depending on

their weights, where the high weight particles are duplicated, while very low weight particles

are removed.

An example of the AMCL localization system was implemented using Matlab. In Figure

4.2.a, a set of 4000 samples was initially chosen for estimating the position of the mobile

robot, which moved with a constant speed of 0.5m/s. Each sample was given the same initial

likelihood weight 1/4000. Note that the sum of the sample weights must be 1. As shown in

Figure 4.2.b, the number of the particle was reduced to 2793 at t = 9s, and also the sample

distribution was reduced. At t = 13s, the samples number was reduced to 2029 (see Figure

4.2.c), and at t = 24s almost all samples converged to the real position, as illustrated in Figure

4.2.d.

Workspace Map

External Sensor Data

Odometry Data

AMCL

Robot Position

Figure 4.1: Block diagram of the AMCL localization system

4.2.2 Limitations of the AMCL

A major problem with AMCL is the relatively large amount of computation required in the

early stages due to the large number of samples. However, choosing a smaller number of

samples may result in failure of the localization system. Also, if the sensor data is updated

faster than the AMCL algorithm can handle, a large delay is produced in position estimation.

However, this problem can be avoided by decreasing the speed of the robot at the beginning.

Another limitation is that failure in the localization system may sometimes occur because

of the symmetry of the workspace, where different samples produce the same sensor data in
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different locations.

Practicle Number= 4000

Robot

(a) t = 1s

Practicle Number= 2808

(b) t = 9s

Practicle Number= 2169

(c) t = 13s

Practicle Number= 1525

(d) t = 24s

Figure 4.2: AMCL implementation in Matlab

4.3 Global Path Planning

Global path planning or long-term path planning is a process of finding a safe and optimal

path from the current location of the mobile robot to its goal with respect to a general world

frame. The inputs of this algorithm are the workspace map, current location and goal, while

the output is a group of subgoals or waypoints which represent odometry landmarks. As

mentioned in Chapter 2, global path planning requires two steps: a world representation

stage and path search. In this project, the wavefront path planning algorithm was chosen to

establish the global path because it has several advantages, namely:

• Ease of implementation.
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• Low computation.

• Low sensitivity to map resolution.

• It can deal with obstacles of any shape.

• Player/Stage already has a wavefront planner implemented.

The wavefront algorithm can only be suitably applied using the grid representation of the

robot workspace, which divides the workspace map into a grid of cells. A cell is considered

as occupied if any part of it is occupied by an obstacle; otherwise, it is considered to be a free

cell. The size of the grid square is very important, as a large cell can waste a lot of space,

whereas small cell size increases the computation time. To make the global path planning

easier, the mobile robot is treated as a singular point by enlarging all obstacles by the robot

radius plus a safety distance.

To establish the global path, all occupied cells are given a numerical value of 1, while free

cells are given numerical value of 0 as illustrated in Figure 4.3.a. The white and gray colours

represent free and occupied cells respectively, and R and G refer to the robot current position

and its goal. It can be observed from Figure 4.3.b that the target cell is given a numerical

value of 2 , and then all zero-weight neighbouring cells are given a numerical value of 3. In

the next step, all neighbouring cells of a cell having the numerical weight 3 will be given a

value of 4, if they are free; otherwise they are given the lowest of its current values and the

value of 4. The same procedure is repeated until the cell occupied by the robot is reached.

The global path search algorithm begins from the cell occupied by the robot, where the path

follows a decrease in the numerical values until the goal is reached. The cells of the global

path are called waypoints or subgoals, which are represented by the green cells as shown in

Figure 4.3.c. The path can be optimized by eliminating some waypoints; the ith waypoint is

eliminated if there is no obstacle between the subgoals i-1 and i as shown in Figure 4.3.d.

4.4 Wall Extraction

A wall can be extracted offline from a known map of the robot workspace or online depending

on the sensor data. In this section, offline wall extraction is implemented using the Hough
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transform (HT), where the start and end points and the slope for each wall are determined.

The HT algorithm aims to define the direction and location of certain features such as lines

and circles from a digital image [Hough, 1962]. Hence, walls in the mobile robot workspace

can be defined by extracting lines from the robot map, where the line can be defined by the

following equation:

y = ax+b (4.1)

where a and b represent the slope and intercept of the line respectively.

Lines passing through a point (x,y) can be found by rearranging (4.1) as follows:

b = y−ax (4.2)

(a) (b)

(c) (d)

Figure 4.3: Wavefront algorithm implementation

The possible lines that pass through point (x,y) are defined by changing a and calculating b,

where x and y are considered constant parameters. However, for a vertical line, the parameter
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a becomes infinite for all points. To solve this problem, the line equation can be written as

follows:

xcosθ + ysinθ = ρ (4.3)

where ρ refers to the distance between the line and the original point (0,0), and θ represents

the angle between the x-axis and the line, as shown in Figure 4.4.

Figure 4.4: Line parameters

4.4.1 Hough Transform Implementation

The HT algorithm uses an accumulator to extract features from a digital image, where the

angle θ and distance ρ are discretized using a suitable step size. Note that a small step

increases the computation size. On the other hand a large step may cause the loss of some

feature lines. Figure 4.5 shows the HT accumulator, where the original point is chosen as the

pixel (0,0), the range of the angle θ is chosen to be (−90,90), and the range of the distance ρ

is (0,image diameter (d)). To extract lines, each cell (θ , ρ ) in the accumulator is initialized

with a numerical value of 0, and then firstly the line angle θ is changed, while the distance

ρ is calculated for each occupied point in the robot map (xi,yi). Next the numerical value of

the cell (θ , ρ ) is increased by 1.

Consider the image shown in Figure 4.6.a which includes two lines. Applying the HT algo-

rithm produces the (θ , ρ ) grid shown in Figure 4.6.b, in which the two brightest points form

parameters of lines passing from most of the points in the digital image. The lines are found
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by applying a threshold to the numerical values of the accumulator. However, the HT algo-

rithm does not provide the start and end points of the extracted lines, and does not consider

the distance between points belonging to the same line. To solve this problem, the distance

between two sequential points located on a line is calculated, and if this distance is greater

than the threshold the first point is assigned as the end of the current line and the second point

is assigned as the start point for a new line.

−90 0 90
0

d

θ

ρ

Figure 4.5: HT accumulator

(a) 2D Image (b) HT accumulator

Figure 4.6: HT implementation
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4.4.2 Wall Extraction from Laser Data

As mentioned previously, in indoor navigation, walls can be extracted offline from the known

map, and then walls surrounding the robot are defined using its current position, where a

precise localization system is required. However, the incremental error of the odometry lo-

calization system may lead to mistakes in detection of the surrounding wall locations. Note

that off-line wall extraction cannot be applied in mapless-based navigation, since the mobile

robot does not have enough information about the surrounding environment. It can avoid

this problem by using 2D laser sensors which have become popular in indoor mobile robot

navigation.

Several methods have been proposed for extracting lines from laser data such as hough trans-

form, line regression method, line tracking algorithm and iterative-end-point-fit algorithm

[Nguyen et al., 2005]. The HT algorithm has two drawbacks for extracting lines from 2D

laser data, namely:

• It is difficult to define the size of the HT grid because the laser reading depends on the

distance to the obstacles.

• It is considered complex and computation takes a relatively long time.

The line regression algorithm is used for map-based localization systems, in which the line

parameters are transformed into the model space in a similar way to the HT algorithm, and

then the adjacent line points are defined by applying the agglomerative hierarchical cluster-

ing algorithm [Siegwart., 1997]. A disadvantage of this method is that it is quite slow and

complex to implement.

The line tracking algorithm is simple, and uses the total least square method to fit the laser

point into lines. It finds a line from a laser cluster by constructing a line between the first two

points, the next point is added to the current line, and then the line parameters are recomputed.

If the new parameters of the line achieve the line condition; angle and distance thresholds,

the point is added to the line, otherwise the last point of the current line becomes a start point

[(Vandorpe et al., 1996b)].

This project utilizes the iterative-end-point-fit algorithm which is a simple and robust method

for extracting lines from 2D laser data [HUSSON., 1997]. Before applying the wall extraction
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algorithm, the laser data is clustered to separate obstacles, which are classified as dynamic and

static clusters. Thus, there is no need to calculate the distance between laser points during

wall extraction, and also all dynamic clusters are removed which reduces the computation

time of the wall extraction algorithm.

The following steps are implemented to define lines from a laser cluster of n points:

1. The first point p0 is considered as a start point Si (i is the wall index) and the last point

pn as the end point Ei of the line.

2. The distance between the current lines and point p(n−i) (i = 1,2..E − S) is calculated

and if it is greater than the threshold distance, the point p(n−i) is chosen as a new end

point, otherwise the index i is increased.

3. If all points between the start point and end point have distances less than the threshold

distance, the current line is considered between these two terminal points.

4. The end point of the current line is considered as the start point of the new line.

Figure 4.7 gives an example of a group of 7 points. The line extraction algorithm selects

the first point as the start point S0 = p1 , while the end point is selected as the last point

in this group E0 = p7 as shown in Figure 4.8.a. The distance between the current line and

the point p6 is calculated, where it is > 0.2m which is the threshold distance. Therefore the

point p6 becomes the new end (see Figure 4.8.b). The procedure is repeated until point p4 ,

where all the points between the start and end points of the line have distances smaller than

the threshold (Figure 4.8.c). The last end point p4 is chosen as the new start point S1 = p4,

while the last point of the group p7 becomes the last point of the new line E1 = p7. It can be

observed from Figure 4.8.d that the line extraction method produces two lines.
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Figure 4.7: Group of points
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Figure 4.8: Line extraction implementation
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4.5 Simulation Results

Simulation tests were undertaken using the Player/Stage platform and C++ programming

language to verify the following issues:

• The global path planning algorithm is able to produce a safe path between the current

known position of the mobile robot and its goal.

• Fatal collision may occur if the initial position is unknown and the robot is not pro-

gramed to avoid obstacles.

• The localization system can estimate the current position of the mobile robot even if

the initial position is unknown.

• The wall extraction algorithm can find the walls surrounding the robot in both situa-

tions; offline using robot map and online using laser data.

4.5.1 Global Path Planning

Consider the case in Figure 4.9, which shows a virtual robot map of several rooms, and

the robot position and the goal position were chosen to be (0,0) and (6,5) respectively with

respect to a global reference frame. The wavefront algorithm produces a global path including

waypoints as shown in Figure 4.10, where the robot can move from a subgoal to the next

subgoal without using sensor data to avoid obstacles.

Figure 4.9: Workspace map for the wavefront algorithm
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Figure 4.10: Waypoints produced by the wavefront algorithm

In this stage, just one behaviour, which is go to goal in the reactive layer, is used to carry

out the global path planning, where the robot uses its odometry system to estimate its current

position, while the angle θt and distance dt between the current location of robot and the

subgoal are calculated as follows:

θt = arctan(
yt − yr

xt − xr
) (4.4)

dt =
√
(xt − xr)2 +(yt − yr)2 (4.5)

where (xt ,yt) and (xt ,yt) represent the target and robot positions with respect to the global

reference frame. The robot angular velocity can be calculated as follows:

ω = Kω�θ (4.6)

where Kω is constant for steering, and �θ is the difference between the robot angle θr and

target-robot angle θt , which is written as:

�θ =

⎧⎪⎨
⎪⎩

θt −θr i f θt −θr < 1800

360− (θt −θr) else
(4.7)

The linear speed v is given as follows:
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v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i f |�θ |> θthr

vmax i f dt > dthr

vmax
dt

dthr
else

(4.8)

where θthr and dthr represent the angle and distance threshold respectively, and vmax is the

maximum speed of the robot.

According to this scheme, the mobile robot stops at each subgoal and turns until �θ becomes

less than θthr, and then accelerates to its maximum speed. Figure 4.11 shows the implemented

path from the initial position of the robot to its goal. It can be observed that the global path

consists of three straight line segments, and the mobile robot was able to reach its goal without

using any external sensor to avoid obstacles.

4.5.2 Localization Systems

Previously the initial position of the mobile robot was known, but if the initial position is

changed to (−3,−0.3) as shown in Figure 4.12, it can be observed that the new waypoint

locations with respect to the world reference frame prevent the mobile robot from reaching

its goal due to the fatal error in the estimated position of the robot. Consequently the robot

will collide with an obstacle if it is not programmed to avoid obstacles as shown in Figure

4.13.

Figure 4.11: Global path planning implementation
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Figure 4.12: New waypoint locations

Figure 4.13: Collision caused by the localization error

To test the localization system, the AMCL localization system is incorporated to estimate the

mobile robot position using the robot map and laser sensor, and the initial position of the

robot was chosen to be as (−3,−0.3) with an initial orientation of 300. The robot was able to

safely reach its goal using AMLC as shown in Figure 4.14 and 4.15.

Figure 4.16 shows that the actual path started at the location (-3,0.3), while the estimated path

started at the location (0,0). It can be observed that the estimated position of the mobile robot

converged to its actual position, more details of which are shown in Figure 4.17, in which the

initial position error was 3.1m at t = 0s, this increased gradually to reach a maximum error

of 4.4m at t = 4s, and then decreased sharply to less than 0.15m after t = 5s. Figure 4.18
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shows that the error in the estimated direction was 300 at the time t = 0s , which increased to

a maximum error of 1800 when t = 1s, then decreased sharply to −1440 at the time t = 4s,

and finally became less than 50 after t = 6s.

Figure 4.14: First part of the robot path using the AMCL algorithm

Figure 4.15: Second part of the robot path using the AMCL algorithm
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Figure 4.16: Actual and the estimated robot path
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Figure 4.17: Error in the estimated position
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Figure 4.18: Error in the estimated direction
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4.5.3 Wall Extraction

Figure 4.19 shows the offline extracted walls of a workspace map using the HT algorithm,

in which each wall is assigned a number, start point and end point in the world reference

frame. If the mobile robot is located at position (2,0), the wall extraction algorithm defines

the surrounding walls shown as blue lines in Figure 4.20. However, any error in the estimated

position of the mobile robot will cause errors in the locations of the surrounding wall, and to

avoid this problem the laser data can be used.
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Figure 4.19: Wall extraction offline

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

12 13
16 17

38

39

48

49

Y
 (m

)

X (m)

Figure 4.20: surrounding walls
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Figure 4.21 shows the laser data returning from surrounding walls at the position (2,0), where

the cluster algorithm produced four clusters. The iterative-end-point-fit algorithm was ap-

plied and extracted six straight lines as shown in Figure 4.22. It can be observed that each

of the first and fourth clusters included one wall, while each of the second and third clusters

included two walls. However, the offline wall extraction gives more information about the

surrounding walls, but it requires an accurate workspace map and robust localization system,

and also the computation size increases as the number of walls increases.
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Figure 4.21: Collected laser data
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Figure 4.22: surrounding walls
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4.6 Summary

The simulation results show that the wavefront algorithm produces a safe path between the

current position of the mobile robot and its goal, where the robot was able to reach its target

using only the go to goal behaviour. However, an error in the estimated position caused a

collision and the robot was unable to find the right path to its goal. To solve this problem,

the AMCL algorithm was used to produce a robust localization system, where the estimated

position of the mobile robot converged to the actual position. In this chapter, two methods

were used to extract the walls around the mobile robot. The HT algorithm was used to

extract all walls in the robot map offline, and then the walls around the robot were detected

depending on the location of the robot. Although this method gives more information about

the surrounding walls, it requires a known workspace map and accurate localization system,

while the iterative-end-point-fit algorithm can be used to extract walls form 2D laser data

online without using the workspace map.

Theoretically, the robot can reach its goal by following the long path without using sensor

data to avoid obstacles, but the global path planning does not considered all obstacles in the

workspace such as tables or other mobile robots. Furthermore, any error in the localization

system may cause a fatal collision, therefore the robot must use its sensors to avoid static

obstacles such as wall and table and moving obstacles such as humans and other robots.
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Reactive Level

The global path using the wavefront algorithm produces a safe path for successful naviga-

tion, which requires an accurate map and a robust localization system. However, errors in

the localization system can lead to collisions, and also if there is any small change in the

workspace the robot has to first update its map, and then execute the global path planning

algorithm again, which makes the robot navigation slow and more complex. This chapter

focuses on the reactive level, which attempts to overcome the above deficiencies in the delib-

erative level, and tries to maximize the robot speed to the goal and to minimize the collision

risk with obstacles. It includes six behaviours, namely go to goal, obstacle avoidance, unob-

served obstacle avoidance, human avoidance, follow the leader and emergency stop (Figure

3.1). The human avoidance behaviour will be discussed in the next chapter.

5.1 Go To Goal Behaviour

This behaviour utilizes the current position of the robot obtained from the localization sys-

tem and the goal position to define optimal speed and direction to the target. In the global

reference frame, the angle θt to the target and distance dt are given as follows:

θt = arctan(
yt − yr

xt − xr
) (5.1)
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dt =
√
(xt − xr)2 +(yt − yr)2 (5.2)

where (xt ,yt) and (xr,yr) represent the target and robot positions with respect to the global

reference frame.

The desired speed to the target is given as:

Vt =

⎧⎪⎨
⎪⎩

vmax i f dt > dth

vmax
dt
dth

otherwise
(5.3)

where vmax and dth denote the robot’s maximum speed and threshold distance respectively.

5.2 Obstacle Avoidance Behaviour

The velocity obstacle (VO) algorithm is used to avoid static and dynamic obstacles [Fiorini

and Shiller, 1998]. The VO approach is considered an easy and simple method to avoid dy-

namic obstacles, where the collision cone principle is used to detect a situation of collision

between two circular-shaped objects. The VO approach has two challenges, the first of which

is to extract collision cones for non-circular objects from sensor data, where simply applying

circle fitting methods produce large and inaccurate collision cones, especially for long obsta-

cles such as walls. The second challenge is that the mobile robot cannot sometimes move to

its goal if all of its velocity vectors to the goal are located within collision cones.

As mentioned in Chapter 2, many studies have implemented the VO algorithm using sim-

ulation with circular obstacles and known velocities. However, in the real world, the robot

has to extract the shapes of the obstacles from sensor data, grow them using the robot radius

and then extract the collision cones. In the VO algorithm, the robot R is treated as a point

by enlarging the circular obstacle O with the robot radius as shown Figure 5.1, in which the

grown obstacle Ô is considered to be static, while the robot moves with the relative speed.

If the relative speed vro passes through the grown obstacle or within the collision cone, this

implies that there will be a collision, and therefore the robot should control its relative speed

outside the collision cone.
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Figure 5.1: VO method

5.2.1 Collision Cone

The VO method supposes that the robot and obstacle have circular shapes, where the bound-

ary of the collision cone is defined by the two tangents of the grown obstacle circle Ô to the

centre of the robot R (Figure 5.2). Angles of the left and right tangents (θL and θR) of the

tangents with respect to the robot reference frame are given as follows:

θR =−arctan(
r
L
)+φ (5.4)

θL = arctan(
r
L
)+φ (5.5)

where r , L and φ refer to the grown obstacle radius, tangent length, and obstacle angle with

respect to the robot reference frame.
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Figure 5.2: Collision cone

If each point pi in the obstacle’s circumference is grown by the robot radius rr as shown in

Figure 5.3, the outer boundaries of the grown points produce the grown obstacle circle Ô. If

the left and right tangent angles θri,θli of the grown point p̂i are calculated using Equation

5.4 and 5.5, the collision cone boundaries of the obstacle can be determined from the tangent

of the minimum right angle and the tangent of the maximum left angle with respect to the

robot reference frame. Hence, a method is proposed to find the actual collision cone of an

obstacle from laser data using the three following steps:

• Each laser point is enlarged by the robot radius.

• Determine the left tangent angles [θl1, , ,θln] and right tangent angles [θr1, , ,θrn] of the

enlarged laser points.

• The tangent of the maximum left angle is selected as the left boundary of the collision

cone, while the tangent of the minimum right angle is considered as the right boundary.
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Figure 5.3: Grown obstacle

5.2.2 Influence of Collision Time

The output of the VO approach has two situations for the robot velocities: 0 for the collision

velocity and 1 for collision-free velocity. Consider the case in Figure 5.4, where the robot

must navigate within an indoor environment in which there are two walls and two static

obstacles. The robot cannot move to its goal because all of its velocities to the goal are

located within collision cones. Whilst there are many possible paths between the robot and

its target, one of them is shown as a red path in Figure 5.4. However, the robot will be

able to reach its target if both collision time and obstacle size are considered. To meet this

requirement, a cost function is proposed where the collision-free velocity are given a weight

of 1, and collision velocity is given as follows:

Wobs =

⎧⎪⎨
⎪⎩

0 i f tc < tct

exp(− a
tc
)(1−bδ tc) otherwise

(5.6)

δ = min(θL −θ ,θ −θR) (5.7)

where tc refers to the collision time, a and b are constants, tct is the critical collision time, θ
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is the robot direction, and δ represents the minimum angle between the relative speed and

the collision boundaries, therefore, the collision risk within the collision cone increases as

the relative speed increases and becomes close to the obstacle centre.

Figure 5.4: The robot cannot reach its target according to the VO method

5.2.3 Static and Dynamic Obstacle Classification

The PDBS clustering method developed in [Santos et al., 2003] is used to segment laser data,

and then the extended particle filter algorithm is used to estimate obstacle speeds, and there-

fore as the number of obstacles increases, the number of particle samples assigned to each

obstacle decreases. However, the tracking algorithm must be used to estimate the speed and

direction of moving obstacles, where there is no need to apply the particle filter algorithm for

static obstacles. Also sometimes the estimator defines fuse speeds of static obstacles because

the laser range finder does not provide sufficient information about the whole workspace, due

to the following reasons:

• Some areas are occluded behind obstacles.

• Some areas are unknown because of the limited range of the sensor.

• Some areas disappear behind the robot as it moves due to the limited angular range.

To explain this more fully, consider the situation in Figure 5.5, where a robot R and obstacle

O are moving at the same speed of 0.24m/s in the same direction. Figure 5.6 shows two laser

scans, where the black colour represents the laser data at the sample time n− 1, while the

red colour represents the laser data at sample time n. The clustering algorithm produced four

laser clusters, and the tracking algorithm shows that the four clusters are dynamic, although
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only one of them is a dynamic obstacle whilst the rest are static. Therefore the particle filter

samples were distributed to track four obstacles.

Hence, it is crucial to define static and dynamic obstacles before applying the tracking algo-

rithm. The occupancy grid can be used to classify the laser cluster as static or dynamic, in

which the grid cell has three situations, namely occupied (1), unknown (0.5), and empty (0),

and also the eight childbearing cells are used to address the uncertainty in the measurement

using a simple averaging filter.

Figure 5.5: Robot and obstacle moving in the same direction and speed

To classify a laser cluster as static or dynamic, two consecutive laser scans are considered

and the following steps are implemented:

1. Cluster the laser data.

2. The data association is implemented depending on the nearest neighbour method.

3. Each occupied cell in the first map is compared with that from the second map.

4. A threshold value is applied to find dynamic cells in each cluster.

5. For each cluster, if the ratio of the dynamic point number to the total point number is

greater than a minimum certain value, then the obstacle is classified as dynamic.
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6. Each occupied cell in the second map is compared with that in the first map, and steps

4 and 5 are repeated.

Figure 5.6: Estimated speeds of laser clusters

Figure 5.7 shows two grid maps of consecutive laser scans, in which the black, white and

grey areas represent the free space, laser data and unknown area respectively. A comparison

of the two images produces an image shown in Figure 5.8.a, where it can be observed that

several cells of the static obstacle were classified as dynamic, and these can be removed by

applying the averaging filter (see Figure 5.8.b).

The maximum reading of the laser sensor used in this project is 5.6m, and therefore the grid

map must cover an area of 5.6m x 5.6m. Suppose that the cell size is chosen as 4mm x

4mm, which generates an image of 140 x 140 pixels. Each cell must be firstly initialized and

checked to define its situation, and at every step the two grid maps are subtracted and fil-

tered. Consequently the classification procedure is relatively time consuming. This problem

is solved by considering only the cells occupied by the laser data.
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(a) Laser scan at n−1

(b) Laser scan at n

Figure 5.7: Consecutive grid maps

(a) Dynamic cells

(b) Applying the averaging filter

Figure 5.8: Extracting dynamic clusters
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5.3 Unobserved Obstacle Avoidance Behaviour

Unobserved moving objects may appear suddenly in the robot path, particularly when the

robot crosses a corridor or passes an open doorway. Therefore the robot has to consider

these obstacles and take suitable action to minimize the collision risk with them. The virtual

obstacle principle is proposed to avoid potentially unobserved moving objects, where a vir-

tual circular obstacle is created at the starting point of each open door threshold and corridor

crossing as shown in Figure 5.9, in which the robot has to move away from the door threshold

to avoid the virtual obstacle, but sometimes there is no enough space for the robot to move

away from the door threshold. In the latter case, the robot must reduce its speed to minimize

the collision risk with unobserved obstacles. To meet this requirement, the virtual obstacle

radius is modified depending on the robot speed using the following equation:

r0 = R0vr (5.8)

where Ro is constant, and vr represents the robot speed
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Figure 5.9: Virtual obstacle principle

In this behaviour, the robot velocity is weighted according to the following rule:
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Wunobs =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i f tc < tth

1 dro > Dth

exp(−aunobs
tc

) (1−bunobs.δ .tc) else

(5.9)

where aunobs, bunobs , tth and Dth are constants, dro and tc represent the distance between

the robot and the virtual obstacle, and collision time respectively, and δ is calculated using

Equation (5.7).

5.4 Follow the Leader Behaviour

In congested areas such as shopping malls, humans sometimes prefer to walk behind someone

going in the same direction to ease their passage. This behaviour can be considered to a useful

aid to mobile robot navigation in a cluttered environment. In this study, the robot classifies a

moving obstacle as a suitable leader to follow if the obstacle meets the following criteria:

• The distance between the robot and moving target is below a minimum threshold value

(1m).

• The difference between the angles of the moving obstacle and target is below a thresh-

old value (100).

• The velocity of the moving obstacle (vo) is such that vo > max(vr.Wv), where Wv is a

velocity weight.

In selecting this behaviour, the go to goal behaviour is deactivated, where the orientation and

distance to the moving target are calculated using Equation (5.1) and (5.2), while the desired

robot speed is calculated as follows:

vt =

⎧⎪⎨
⎪⎩

vmax i f dt > dmax

vmax
dt−dmin

dmax−dmin
else

(5.10)

where vmax , dmax and dmin denote the robot’s maximum velocity, maximum and minimum

distance thresholds respectively.
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5.5 Emergency Stop Behaviour

In some situations, the distance between the robot and obstacle can become very small. How-

ever, sometimes all weights of the robot speed produced by the obstacle avoidance, human

avoidance and unobserved obstacle avoidance behaviours become zero which means the

robot has no collision-free velocity. Consequently, the emergency stop behaviour should be

activated and the robot must immediately be brought to a stop, and then it reverses until the

emergency conditions disappear. The inputs of the emergency stop behaviour include the sen-

sor data and the maximum weight of the robot speed, where this behaviour becomes active if

the minimum distance to the obstacle is below a minimum specific threshold or the maximum

weight of the robot velocity is zero.

5.6 Coordination Model

With reference to Figure 3.1, the main challenge for the coordination model block is to fuse

the outputs of the behaviours and then generate control commands to minimize the collision

risk and maximize the robot speed to its goal. To achieve this requirement, the robot velocity

is weighted against the output of the Go to Goal behaviour and those computed from the

obstacle avoidance, human avoidance and unobserved obstacle avoidance behaviours. The

weight of the robot velocity is calculated according to the following function:

Wv = min(Wunobs,Whum,Wobs) (5.11)

where Wunob, Wobs and Whum represent the robot velocity weights coming from the unobserved

obstacle avoidance, obstacle avoidance and human avoidance behaviours. To maximize the

speed to the target and minimize the collision risk the following weighting function is applied

:

W =Wv ∗ (a1+ cos(θt −θ))(a2−|Vt − v|) (5.12)

where a1 and a2 are constant.
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The robot speed vr and direction θr which achieve the maximum weight are chosen to produce

control commands for angular velocity ωc and linear velocity Vc as follows:

ωc = kw ∗θr (5.13)

Vc =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vr i f vr <Vcmax

0 i f 0 >Vcmax

Vcmax otherwise

(5.14)

Vcmax = vmax − kv ∗ ωc

ωmax
(5.15)

where kw and kv are constants, and vmax and ωmax represent the maximum linear and rotational

velocities of the robot.

5.7 Simulation Results

The maximum speeds of the robot is limited to 0.5m/s and 100degree/s. The parameters in

Equation 5.6 and 5.9 are selected as a = aunobs = 3s, b = bunobs = 0.5rad−1s−1 and tct = tth =

1s, while a1 and a2 of the weighting function described by Equation 5.12 are chosen to be

0.5 and 0.6 respectively.

5.7.1 Obstacle Collision Cone

The proposed collision cone finding method in this study is compared with two circle fitting

algorithms proposed in [Gander et al., 1994; Vandorpe et al., 1996b]. Figure 5.10 shows a

virtual irregular shaped obstacle and projected laser lines, with an angular resolution of 5◦.

The returned laser points are given in Table 5.1. Figure 5.11 shows the fitted circles; circle

C1 is produced by applying the method proposed in [Vandorpe et al. 1996b], while circle

C2 is produced using the method proposed by [Vandorpe et al., 1996a]. It can be observed

that circle C1 is relatively large (diameter of 1.34m) and will consequently produce a very
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large collision cone. Hence, a comparison is made between the collision cones produced

by circle C2 and the algorithm developed in this study. The calculated radius of circle C2

is 0.36m, which is enlarged by the robot radius (0.5m), and then Equation 5.4 and 5.5 are

applied to find the collision cone boundary; the resulting angle of the collision cone of circle

C2 is 70º. However, it can be noted from Figure 5.12 that the cone does not touch the grown

laser points. For the proposed collision cone finding method in this study, Table 5.2 lists

the calculated tangent angles of each enlarged laser point, of which the second point has the

maximum left angle and minimum right angle, where these angles define the collision cone.

Thus, it is not always correct to define the collision cone based on the first and last points of

the laser cluster. The resulting angle of the collision cone defined by the proposed method

is 60º (see Figure 5.13), and the collision cone touches the grown obstacle at two points.

Clearly the proposed method produces a collision cone which is more accurate and smaller

than that produced by either of the circle fitting methods.

Table 5.1: Collected laser points

laser point 1 2 3 4

Angle(degree) 40 45 50 55

Distance (m) 1.4 1 1.14 1.8
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Figure 5.10: Laser data returned from a non-circular obstacle
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Table 5.2: Collision cones subtending angles

laser point 1 2 3 4

left angle(degree) 60.1 75 70.1 71.1

Right angle(degree) 19 15 29 38.8
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Figure 5.11: Fitted obstacle circles
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Figure 5.12: Collision cone of circle C2
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Figure 5.13: fitted obstacle circles

5.7.2 Obstacle Avoidance

5.7.2.1 Avoiding Static Obstacle

The Player/Stage simulator is used to model this behaviour, with the robot’s task is to navigate

from its current point (0, 0) to its target (7 , 0) and to avoid collision with a static obstacle

which prevents the robot from executing a straight line to its target. Figure 5.14 shows the

resulting path to avoid static obstacles using the reactive model. It can be observed that the

robot almost immediately begins to take avoiding action and moves away from the obstacle,

negotiates the gap between the wall and obstacle, and then proceeds towards its goal taking

18s to complete its task.

5.7.2.2 Re-plan The Global Path

This simulation test aims to show that although the reactive level has fast response to imple-

ment a global path which is initially planned by the deliberative level, but sometimes it is

trapped in local minima caused by a change in the robot workspace. Hence, the workspace

map must be updated, and then the global path planning algorithm is required to regenerate
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the global path based on the new map and current robot position. Assume the case shown

in Figure 5.15 where the robot has to navigate in an indoor environment to reach its goal(2,-

3). The wavefront algorithm initially generates waypoints listed in Table 5.3. It can be

observed Figure 5.16 that the robot is able to implement successfully the global path. When

the workspace is changed as shown in Figure 5.17, in which the robot stops to avoid collision

and the reactive level is enable produce successful navigation. In such case, the workspace

map is updated based on the laser date (see Figure 5.18) and the global planning model in the

deliberative level re-plans a global path which is defined in Table 5.4. Figure 5.19 shows that

the robot implements the new global path and successfully researches its goal.

Figure 5.14: Static obstacle avoidance using the reactive model

Table 5.3: Waypoints of the global Path

Waypoint index (x(m),y(m))

1 (-4.50,+0.00)

2 (+1.75,-0.25)

3 (+2.00,-3.00)

Table 5.4: Waypoints of the new global Path

Waypoint index (x(m),y(m))

1 (1.92, -1.42)

2 (2.25, -0.17)

3 (4.15, -0.25)

4 (4.07, -4.15)

5 (2.25, -4.15)

6 (2,-3)
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Figure 5.15: Robot successfully reaches its goal

Figure 5.16: Robot successfully reaches its goal
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Figure 5.17: Robot is trapped in local minima

Figure 5.18: Mobile robot’s Workspace
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(a)

(b)

Figure 5.19: Robot carries out the new global path
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5.7.2.3 Avoiding Dynamic Obstacles

In the previous simulation, the robot successfully managed to avoid static obstacles; however,

moving obstacles are more problematic given the influence of their speeds, and hence the

robot must estimate the speed of the dynamic obstacle and control its relative speed to avoid

collision. Assume the case shown in Figure 5.20, which the initial positions of a robot,

goal and dynamic obstacle in a relatively large free space, where the robot and obstacle are

moving towards each others. When the robot does not consider the speed of the obstacle, the

manoeuvre results in a collision as shown in Figure 5.21, and whilst the robot controls its

speed outside the collision cone to avoid collision, the relative speed is within the collision

cone (see Figure 5.22).

However, when the robot considers both the speed and direction of the moving obstacle, it

is able to avoid it as shown in Figure 5.23, since the relative speed remains outside of the

collision cone (see Figure 5.24).

Figure 5.20: Initial positions and velocities of the robot and obstacle

Figure 5.21: Robot collides with obstacle
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Figure 5.22: Relative speed is inside the collision cone

Figure 5.23: Robot avoids the dynamic obstacle

If the obstacle and robot move in the same direction, and when the robot does not consider

the obstacle speed, the robot attempts to avoid the obstacle by taking a relatively long path

as shown in Figure 5.25. Here, the robot controls its speed so to remain outside the collision

cone, resulting in a relatively large angle between the collision cone and the relative speed

(see Figure 5.26).
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Figure 5.24: Relative speed is outside the collision cone

Figure 5.25: Robot is taking a long path

However, when the robot considers both the speed and direction of the obstacle, its path is

much more direct than that in the previous case, as shown in Figure 5.27. It can be observed

from Figure 5.27 that the robot speed is within the collision cone, while the relative speed is
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outside the collision cone.

These simulation cases demonstrate that if moving obstacles are considered to be static there

is a very high risk of collision or else the path traveled to the goal is longer. Consequently it

is very important that both the speed and direction of moving obstacles are accommodated in

order to achieve a short path to the goal and minimize the collision risk.
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Figure 5.26: Relative speed and robot speed are outside of the collision cone

Figure 5.27: Robot is taking a short path
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Figure 5.28: Robot speed is inside the collision cone

In previous cases, the robot moves in a large free space. Here assume the robot has to navigate

within a relatively narrow corridor and avoid a dumb (non-intelligent) moving obstacle which

has a fixed speed of 0.5m/s. The start points of the robot and moving obstacle were chosen

as (0,0) and (7,0) respectively. In Figure 5.29, the red markers represent the obstacle path,

while the green markers represent the robot path. Note that the robot easily manages to avoid

the moving obstacle without any collision.

Figure 5.29: Avoiding non-intelligent moving obstacle

When the obstacle is provided with limited intelligence and is programmed to avoid static
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obstacles using the PFA algorithm and laser sensor, the robot successfully avoids the obstacle,

while the obstacle takes limited avoiding actions to pass (see Figure 5.30). However, when

the obstacle has the same navigation algorithm as that of the mobile robot, the robot and the

obstacle successfully avoid each other as shown in Figure 5.31, and here the two paths are

nearly symmetrical.

Figure 5.30: Avoiding low intelligent obstacle

Figure 5.31: Avoiding intelligent moving obstacle

5.7.3 Unobserved Obstacle Avoidance Behaviour

This scenario aims to evaluate how effectively the robot is able to avoid dynamic obstacles

that may suddenly appear at a corner. When the unobserved obstacle avoidance behaviour

is deactivated (see Figure 5.32), the robot executes a straight line path and collides with a

moving obstacle which appeared suddenly in the robot path. However, when the unobserved

obstacle avoidance behaviour is activated, the robot moves away from the corner and then
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reacts to the obstacle by stopping, turning to allow it to pass (Figure 5.33), and resuming to

its goal after the obstacle safely passes as shown in Figure 5.34.

Figure 5.32: Robot collides with the dynamic obstacle

Figure 5.33: Robot Stopped and turned to avoid collision with obstacle
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Figure 5.34: Overall path of the robot in avoiding unobserved obstacle

5.7.4 Follow the Leader Behaviour

Figure 5.35 shows a heavily populated corridor, where the robot has to avoid many moving

obstacles, most of which are moving in the opposite direction. One obstacle T is moving

ahead of the robot in the same direction as the robot at a speed of 0.3m/s. Two simulation

tests were conducted. The first simulation demonstrates the robot reaction when the follow

the leader behaviour is inactive and the robot continually attempts to pass the obstacle T (see

Figure 5.36), where its movement becomes quite erratic, and it succeeds in overtaking once

the crowd of approaching obstacles have passed by the obstacle T.

Figure 5.35: Cluttered environment
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Figure 5.36: Robot is trying to avoid Obstacle-a

When the follow the leader behaviour is activated, it can be observed that the robot motion is

much less erratic. Figure 5.37 illustrates the robot behaviour, in terms of its change in direc-

tion during the manoeuvre for both states; with the follow the leader behaviour active, there

is less than +/− 20 variation, whereas when it relies on the obstacle avoidance behaviour,

this variation increases to +/− 60 until such a time as it is safe for the robot to pass by the

obstacle T.

Figure 5.37: Improved performance with the follow the leader behaviour
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5.7.5 Emergency Stop Behaviour

Consider the following scenario, where the robot is required to navigate from its current

location (4,0) to its goal (2,0) through a narrow gap, as shown in Figure 5.38. A moving

obstacle will simultaneously appear at the gap from the opposite direction. Figures 5.39-5.41

illustrate how the mobile robot is able to safely detect the obstacle, stop, and then reverse its

direction to allow it to pass before resuming its journey to its goal.

Figure 5.38: Simulation of the Emergency Stop behaviour

Figure 5.39: Robot stopped to avoid collision

5.8 Summary

A method has been proposed to estimate the collision cone for circular and non-circular ob-

stacles, which is more accurate than that produced using the circle fitting algorithms. Also,
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the results of simulation showed that the mobile robot is able to avoid obstacles with differ-

ent levels of intelligence in an indoor environment. Several novel behaviours have also been

developed which provide the robot with improved avoidance capability to include multiple

dynamic obstacles as well as anticipating potential collisions resulting from restricted unob-

served obstacles. In particular, the follow the leader behaviour provides a much smoother

motion when passing among multiple moving obstacles, and the emergency stop behaviour

ensures that the robot stops and reverses to prevent collision with a moving obstacle when

passing a door threshold. In the next chapter, the human avoidance behaviour will be de-

veloped to allow it to recognize and avoid human walking using laser data within the virtual

Player/Stage environment.

Figure 5.40: Robot reverses

Figure 5.41: Robot passed the narrow gap
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Human Detection, Following and

Avoidance

The previous chapter focused on five behaviours at the reactive level, namely go to goal,

obstacle avoidance, unobserved obstacle avoidance, follow the leader and emergency stop.

The simulation results show that the robot is able to avoid and minimize the collision risk

with static and dynamic obstacles within crowded indoor environments. This chapter focuses

on reactive behaviour associated with human detection, tracking and avoidance.

To move around a workspace occupied by humans, the mobile robot has to interact with

them in an appropriate social and technological manner, and in doing so it has to first detect

them and then define their direction and speed. Numerous studies have been carried out

on tracking humans; and for example in [Kim et al., 2007], radio-frequency identification

(RFI) was used on a mobile robot to follow another mobile robot. The same technology

can be utilized to follow a human who carries a RFID tag, while the robot is fitted with a

direction-finding antenna receiver. In [Belotto and Hu, 2009], a 2D laser range finder (LRF)

was used to detect human legs, and a camera to detect the human face. The major problem

with this technique is that when the human moves at an acute angle with respect to the camera

axis, the face detection algorithm may fail. In [Carballo et al., 2009], two LRF sensors were

mounted at different heights on a mobile robot to detect human legs and chests. Stereo vision

technology has also been utilized for tracking humans in [Petrovic et al., 2013], with some

limitations such as changes in illumination, the vibration of the camera during robot motion,
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and the large computation required. Furthermore, many people do not feel comfortable when

they are monitored by a camera. The 3D Kinect sensor is another option to detect humans,

however, this has a relatively narrow field of view [Machida et al., 2012].

Many studies used a single LRF sensor for detecting and tracking humans using the laser

data returned from legs [Jinshi et al., 2006; Sung and Chung, 2013; Chang and Lian, 2012].

However, the human detection algorithm is challenged by the relative distance between the

two legs during the bipedal walk, and variability due to trouser flexibility. In [Woojin et al.,

2012], three parameters were proposed for detecting leg clusters namely girth, width and

depth. In their study, 3258 laser images of legs in different positions were studied to define

the relationship between the three parameters. [Lutz et al., 2010] used the diameter and

curvature of the cluster, although they did not experience a problem of hiding one leg behind

another leg because when the leg detection algorithm finds just one leg it considers this leg

as a human, consequently there will be an error in the estimated position which leads to

problems in estimating the speed and direction. In [Jinshi et al., 2006], the principle of the

accumulated distribution of laser frames was used to extract the legs from laser data, where

there is intensive difference between the standing leg and swinging leg, which is produced

by accumulating the count of laser data at the same pixel of the grid map. They used several

laser sensors with a high scan rate (30 fps). However for avoiding humans, their algorithm is

not effective when the walking speed is relatively fast, also when the robot moves, a different

part of the leg may be observed by the laser sensor.

In this project, the three parameters proposed in [Woojin et al., 2012] have been used to detect

humans walking from laser data, taking in the consideration situations when a leg (or a part

of it) is hidden, and when the two legs are interpreted as one cluster.

6.1 Human Tracking

The human tracking algorithm using laser data includes two stages; namely, leg detection and

human detection, where leg detection stage classifies the laser clusters into 4 classes, while

the human detection stage determines the classified laser clusters which could return from

humans.
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6.1.1 Leg Detection

The human leg can be considered as a circle or eclipse, but laser points returned from a leg

may form different shapes according to the cut of the trousers. To explain this issue, a real

experiment was carried out in which a person 180cm tall walked in front of a laser sensor

mounted at a height of 40cm. Figure 6.1 presents laser images of a leg captured at different

distances from the laser sensor, and Table 6.1 gives the distances between the leg and the laser

sensor, the number of returned laser points and the leg width. As expected, it can be observed

that the number of returned laser points increases as the distance to laser sensor decreases;

for example, 57 points at a distance of 0.40m compared to 4 points at a distance of 4.0m. On

other hand, the width of the leg cluster decreases as the distance increases.

Table 6.1: Distance, laser point number and leg width

Distance to the laser sensor (m) Laser point number Leg width (mm)

0.4 57 158

2.4 8 122

2.9 7 131

4.0 4 84

Assuming that the returned laser points from a leg are as shown in Figure 6.2, then the width

of a cluster is given as follows:

W = |P1Pm| (6.1)

where P1 and Pm are the first and last laser points of the leg cluster.

The girth is defined as the sum of the distances between two sequential points D j which is

given by:

D j =
√

P2
j +P2

j+1 −2PjPj+1cos(σ) (6.2)

where σ represents the angular resolution of the laser sensor. The girth can be written using

the following equation:
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G =
i=m−1

∑
i=1

Di (6.3)
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Figure 6.1: Scanned Leg images at different distances

The cluster depth is defined as the maximum distances between the cluster points and the

line passing from the first to last points of the cluster. However, the distance between the

points and the line between the first and last points in the leg cluster is given by the following

equation:

d j =
(LT

2 L2)(LT
1 L1)− (LT

1 L2)
2

(LT
1 L1)

(6.4)

where j is the index of the cluster points, L1and L2 are given as:
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L1 = Pm −P1 & L2 = Pj −P1 (6.5)

The cluster depth is given as:

ddepth = max(d) (6.6)
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Figure 6.2: Leg detection using three parameters

In [Woojin et al. (2012)], any cluster is classified as a leg if it meets the three following

conditions:

• The cluster width Wmin <W <Wmax.

• The cluster girth satisfies Gmin < G < Gmax.

• The cluster depth ddepth < dmax

In their study, the estimated values of the leg parameters were defined as follows: dmax =

0.25m; [Wmin,Wmax]=[0.09 m, 0.18 m]; [Gmin,Gmax] =[0.091 m, 0.34 m].
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6.1.2 Human Detection

Being able to successfully avoid collision with a human requires a fast and robust detection

algorithm using 2D laser data to distinguish two leg clusters. The human detection algorithm

proposed in [Woojin et al. (2012)] is shown in Figure 6.3, where it attempts to determine a

pair of legs. However, it may fail if some parts of one leg are occluded by another leg, or if

the distance between the two legs is too short. To overcome this problem, an algorithm has

been developed in this project in which the laser clusters are classified into four classes:

Laser clusters

Leg detection
i=1

J=i+1

D(I,j)<dth

Legs

Connect legs 
I,j as persons

i=n-1i=i+1

J=i+1

Figure 6.3: Finding the leg pairs

• Clusters having a width bigger than 2Wmax are classified as L0.

• Any cluster which meets the condition Wmax <W < 2Wmax is classified as L1.

• A cluster which satisfies the condition Wmin <W <Wmax and does not meet the condi-

tions of leg detection is classified as L2.

• A cluster which meets the conditions of leg detection is classified as L3.
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To detect humans in time n, two steps are required. First the detected humans in time n− 1

are associated with the laser clusters at n. The second step is to detect new people present on

the laser cluster at n.

The detected humans in time n−1 are associated with the nearest laser clusters at n if one of

the following criteria is met:

• Two clusters of class L3.

• Two clusters of class L2.

• One cluster of class L3 AND another of class L2.

• One cluster of class L1.

• One cluster of class L3 If there is no cluster of L3 or L2 within the step length.

However, a new human present in the laser data is defined by one of the following situations:

• Two clusters of the class L3.

• One cluster of the class L3 and an other of the class L2.

To verify the performance of the human tracking algorithm, a person was asked to walk in

front of the mobile robot. The tracking algorithm successfully tracked the person (see Figure

6.4). Figure 6.5 shows different situations of legs captured using a Hokuyo laser sensor;

where the human is detected by two clusters of class L3 (Figure 6.5.a), one cluster of class

L1 (Figure 6.5.b), two clusters of classes L3 and L2 (Figure 6.5.c), and one cluster of class L3

(Figure 6.5.d)
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Figure 6.4: Human path

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

X (m)

Y
 (m

)

L3

L3

(a)

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

X (m)

Y
 (m

) L1

(b)

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X (m)

Y
 (m

)

L3

L2

(c)

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

X (m)

Y
 (m

) L3

Obscured leg

(d)

Figure 6.5: Different situations of the two human legs
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6.2 Human Model in Player/Stage

It is necessary to model the human gait in Player/Stage and implement human tracking and

avoidance before applying the navigation algorithm within a physical robot. Two methods

can be used to model the human in Player/Stage.

First method: the human model is built as one object, where the body and legs are attached as

one piece, as shown in Figure 6.6.a. In this case, the relative distance between the legs is fixed.

Kinematic control of the human model motion is easy because one object in Player/Stage is

controlled.

Second method: the human is represented by two legs, as shown in Figure 6.6.b, where the

upper part of the human body is not modelled because the laser sensor is only able to detect

the legs. The distance between the legs changes with time according to the gait model (Figure

6.7). The equation describing the distance traveled �dt by a leg is given as follows:
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(a) First human model

(b) Second human model

Figure 6.6: Human modelling in Player/Stage

�dt =

⎧⎪⎨
⎪⎩

A
2 cos( 2π

tswing
t1)+ A

2 +�dstance t1 < tswing

�dstance i f t1 > tswing

(6.7)

A =�dswing −�dstance (6.8)

t1 = rem(t/ttotal) (6.9)
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ttotal = tswing + tstance (6.10)

where tmax and tstance are provided by the swing and standing phases respectively, dswing and

dstance represent the maximum movement during the swing and standing phases, respectively,

and rem is a function which returns the remainder of a division.

Figure 6.7: One cycle of the human walking [Woojin et al. (2012)]

6.3 Human Avoidance Behaviour

The Human avoidance behavior uses the extended particle filter algorithm to estimate the

directions and speeds of humans, where the weighting function of this behaviour is given as:

WHum =

⎧⎪⎨
⎪⎩

0 i f tc < tcth

exp(− a
tc ) else

(6.11)

where tcth and tc represent a threshold and the collision time respectively, and a is constant.
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6.4 Human Following

The mobile robot uses the wavefront algorithm to generate long path planning, but in some

applications the mobile robot may have to follow a human carrying some items or it may be

travelling within a unknown environment. The follow the leader behaviour can easily be

modified to follow a moving human target, if the location of the moving target at time n is

(xHt ,yHt), and the new location of the target is updated by calculating the distance between

the target and all humans detected at n+1 as follows:

D(i) =
√
(xHt −Hx(i))2 +(yHt −Hy(i))2 (6.12)

where Hx(i) and Hy(i) are the coordinates of the ith human.

The target is associated with the nearest human using the algorithm shown in Figure 6.8, in

which the minimum distance dmin is initialized with a numerical value of 100, while the index

Indx is initialized with a numerical value of 0. The minimum distance dmin is compared with

the distance D(i), and if the condition dmin > D(i) is met, the minimum value dmin and index

Indx are updated by the values of D(i) and i respectively. If the final value of dmin is less than

a threshold, the target location is updated using the human position having the index Indx,

whereas otherwise the target location is updated depending on its estimated speed. However,

if the robot does not find the target in a specific time, it will stop.

The control algorithm has to compute a suitable speed and direction to minimize the collision

risk with the target by maintaining a safe distance and speed to the target. To meet this

requirement, the linear speed command is given as follows:

Vt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vmax i f dt > Dmax

0 i f dt < Dmin

vmax
dt−Dmin

Dmax−Dmin
else

(6.13)

where Dmax and Dmin define the tracking area, and dt refers to the distance between the robot

and target.

The robot always maintains a safe distance to the target as a function of the target speed using
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equation 6.13, and the distance between the robot and target is computed using:

dHR =
vHt

vmax
.(Dmax −Dmin)+Dmin (6.14)

where vHt is the target speed.
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Figure 6.8: Finding the target

From equation 6.14, the distance between the robot and its target is Dmin if the target stops,

whereas it is Dmax if the target moves with the maximum speed of the robot. The human

avoidance behaviour should not consider the target as an obstacle. However, if the target

moves towards the robot, it has to take avoidance action in order to allow him/her to pass

safely. To overcome this problem, the follow the leader behaviour transmits the signal S

(written in equation 6.15) to inform the human avoidance behaviour when it considers the

target to be an obstacle.

S =

⎧⎪⎨
⎪⎩

Indx i f |θr −θHt |< π
2

−1 else
(6.15)
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where θHt is the direction to the target human.

If the difference in the angle between the robot and target is greater than 90o, the follow the

leader behaviour sets the signal S =−1 to consider the target as an obstacle, otherwise it sets

S = Indx to ignore the target as an obstacle. Note that the follow the leader behaviour can be

used for global path planning, where a human can guide the robot through its workspace, and

then the robot can be programmed to reproduce the same path.

6.5 Simulation Results

6.5.1 Human Tracking in an Open Environment

Consider the case shown in Figure 6.9, in which the mobile robot has to follow a guide (G)

passing between two stationary humans (S1, S2). The initial positions of the robot, target,

and two persons are (0,0), (2.5 , 0.5), (5.6, 0.7), and (5.6, 1.7) respectively.

Figure 6.9: Mobile robot is Following a human

To simplify the algorithm, the target used only the go to goal behaviour to implement a

predefined path determined by several subgoals SGi listed in Table 6.2. The linear vtH and

rotation wtH velocities of the target are given as:

vtH = 0.3 m/s (6.16)
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wtH = k.�θ (6.17)

where k=0.5, and �θ is obtained using the following equation :

�θ = arctan(
yHt − yt(i)
xHt − xt(i)

) (6.18)

where xt(i) and yt(i) are the coordinates of the subgoal ith.

In each sample period, the algorithm checks the distance between the human target and the

subgoal, and if the distance is < 0.3m the subgoal index i is incremented to move to the next

subgoal.

Table 6.2: Subgoals for the target

subgoals x y
1 4.5 0.5

2 5 1

3 8 1

Figure 6.10 illustrates that the robot is able to successfully follow the target guide and pass

between the two persons without collision or losing the target. It can be observed that the

robot path does not coincide with the target path because the robot attempts to navigate the

shortest path to the target.

Figure 6.10: Human tracking in an open workspace
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Figure 6.11 presents a laser scan, where the robot is able to detect the target G, S1 and

S2 even though the distance between the target and S2 is < 0.11m . Person S1 and the

target were defined by two leg clusters, while one of legs of person S2 was occluded. The

maximum distance dmax and minimum distance dmin in Equation 6.13 were chosen to be

1.75m and 0.75m respectively, and the robot has to maintain a safe distance of 1.3m to the

target according to Equation 6.14. Figure 6.12 shows that the proximity between the robot

and its target was initially 1.72m, which was decreased and maintained at approximately

1.3m for several seconds before increasing to a distance of 1.6m, as the robot had to navigate

the gap between persons S1 and S2, after which it was able to recover the tracking distance

of 1.3m for the remainder of the mission.
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Figure 6.11: Laser image at moment 11s

To increase the complexity of the task, another person S3 was added to the workspace at

an initial position of (3.5, 3.5). The velocities of the moving person S3 were chosen to be

v = 0.3m/s and w =0.1rad/s to navigate a circular path to cross between the robot and its

target. Figure 6.13.a shows that the robot turned right to avoid S3, and then turned left to

follow the target which turned right to the next subgoal. However, the robot was able to

follow the target without causing any collision with the moving human or with the two static

human obstacles (Figure 6.13.b).
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Figure 6.12: Variation in the distance between the robot and target

(a)

(b)

Figure 6.13: A person is passing between the robot and target
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Consider the case in Figure 6.14.a, in which the initial positions of the robot and target were

chosen to be (0, 0) and (2 , 0) respectively, and the target moves with a fixed speed of 0.3m/s

towards the mobile robot. When the human avoidance behaviour does not consider the target

to be an obstacle, they collide as shown in Figure 6.15.b, but when the robot considers the

target to be an obstacle it avoids the target (Figure 6.15.a) and follows the target after it had

passed (Figure 6.15.b).

(a)

(b)

Figure 6.14: Robot collides with the target moving toward the robot
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(a)

(b)

Figure 6.15: Robot avoids with the target moving toward the robot

6.5.2 Global Path Planning Using Human Tracking

The user can assist the robot to plan a global path by guiding it between points, after which

the robot can easily navigate those points without any further help from the user. Figure

6.16.a provides an example where the robot R follows a guide G to navigate between points

A, B, and C. The target was moved using a mouse to guide the robot from A to B (Figure

6.16.b), from B to C (Figure 6.16.c), and from C to A (Figure 6.16.d). It can be observed

that the robot stops short of the goal points during training because it is programmed to keep

a safe distance from the human. The path planner generated three paths listed in Table 6.3,

along with a number of waypoints. In the implementation stage, the user requests the robot

to execute a counter-clockwise path from A to C to B (see Figure 6.17). It can be observed

that the robot was able to navigate the path successfully.
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(a) (b)

(c) (d)

Figure 6.16: Path planning stage by following a human

Table 6.3: Long path planning outputs of the planning stage

path Start Goal Number of

waypoints

Locations of

Waypoints

1 A

(0.0,0.0)

B

(5.0,3.0)

4 (0.00,0.00 )

(1.44 ,-0.03)

(3.04,0.54 )

(4.85,2.90 )

2 B

(5.0,3.0)

C

(5.0,-3.0)

3 (4.82, 2.87)

(3.13, -0.55)

(4.73, -2.98)

3 C

(5.0,-3.0)

A

(0.0,0.0)

4 (4.80, -2.98)

(3.48, -2.08)

(2.74, -0.1)

(0.13,0.00)

114



CHAPTER 6. HUMAN DETECTION, FOLLOWING AND AVOIDANCE

(a)

+
(b)

(c)

Figure 6.17: Implementation stage of global path planning

6.5.3 Human Avoidance

Here the ability of the navigation system to successfully avoid humans and dynamic obstacles

within cluttered environments is tested. The robot task is to navigate from its initial positions

(0,0) to its goal (5,0) and to avoid human (3,0) moving in the opposite direction as shown

in Figure 6.18.a. Figure 6.18.b shows that the robot turns left to avoid the human moving

towards it and then continues to its goal after the successful avoidance action. More details
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(a)

(b)

Figure 6.18: Passing a human in a corridor

of the robot path are shown in Figure 6.19, where the robot begins to turn left at t = 1s and

resumes its path to its goal at t = 4s after the human passes by the robot .
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Figure 6.19: Robot avoided a human moving towards the robot

In the following test, the robot (3.5, 1.5) is tasked to cross a corridor with a human (5.5, -0.5)

walking along the corridor (see Figure 6.20). It can be observed from Figure 6.21 that the
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robot reduces its speed at t = 3s to allow the human to pass, and then increases its speed after

the human passes at t = 5s.

Figure 6.20: Avoiding a human during passing in a corridor

0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

X (m)

Y
 (m

)

1s

1s

2s

2s

3s

3s

4s

4s

5s

5s

6s

6s

Robot path
Human path

Figure 6.21: Robot path for avoiding a human during passing a in corridor

In the third simulation, a dynamic obstacle is located at (1.5, 0.3) with a speed of 0.3 m/s

and moving in the same direction as the mobile robot, and simultaneously a human (4, -

0.3) moves in the opposite direction with a speed of 0.5 m/s as shown in Figure 6.22.a. The
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robot having observed the human coming towards it, turns left to follow the dynamic obstacle

(Figure 6.22.b) before resuming its path to avoid the dynamic obstacle (see Figure 6.22.c).

(a)

(b)

(c)

Figure 6.22: Avoiding a human and dynamic obstacle

A simulation test which was carried out to avoid two humans can be seen in appendix C.

In the fourth simulation, the navigation system was tested to avoid numerous persons moving

with different speeds and directions. The initial positions of the robot and humans are shown

in Figure 6.23.a and listed in Table 6.4. Figure 6.23.b shows that the robot turns right to avoid

A and B, after which it turns left to avoid colliding with F and H, turning right again to avoid

humans B, I, and G (Figure 6.23.c) . Figure 6.23.d shows the full path of the robot which is

able to successfully complete its mission.
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(a)

(b)

(c)

(d)

Figure 6.23: Avoiding multiple humans
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Table 6.4: initial position and speeds of the humans

Actors Position (x (m), y(m)) direction degree Speed m/s

A (+4.00,+0.30) 180 0.50

B (+1.5,+0.36) 0.00 0.30

C (+3.85,+1.90) -135 0.40

D (+4.85,+1.10) 185 0.40

E (+6.85,+190) -115 0.40

F (+6.80,-1.06) 180 0.40

G (+10.8,+1.80) 190 0.40

H (+8.00,-1.50) 182 0.50

I (+9.00,0.000) 182 0.350

6.6 Summary

In this chapter, the human motion was modelled using the Player/Stage simulation. A method

was developed for tracking humans using a single laser sensor, where laser clusters are clas-

sified into four classes. A tracking algorithm was developed to allow the robot to follow a

moving human and maintain a safe distance depending on the target speed. The simulation

tests showed that the mobile robot using the proposed navigation system and a single laser

sensor is successfully able to track and avoid humans and both static and dynamic obstacles

within indoor environments.
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Chapter 7

Implementation and Evaluation

The navigation system proposed in this project has been extensively tested using the Player/Stage

simulation platform as mentioned in earlier chapters. The simulation results showed that the

mobile robot is able to detect and avoid both static and dynamic obstacles (including hu-

mans), and minimize the risk of collision with objects which may suddenly appear in the

robot’s path. This chapter focuses on implementing and evaluating the proposed navigation

system using physical robots in cluttered indoor environments.

7.1 Experimental Procedures

As mentioned in the third chapter, the experiments were implemented using two mobile

robots; a modified Pioneer robot (intelligent robot) and the Nubot robot (dynamic obstacle)

developed in Newcastle University (see Figure 3.2). In this project, only the two laser sensors

were used to recognize the surrounding workspace. During avoiding dynamic obstacles, the

speed and direction of the robot are measured depending on the data collected from the robot

encoders.

The navigation algorithm has been written using C++, where its classes and structures help

in reducing the code’s complexity. To evaluate the robot performance during navigation,

the collected sensor data are saved as text files, which are processed off-line using Matlab.

The sampling time of the navigation algorithm is chosen to be 0.1s which coincides with the

update rate of the 10Hz Hokuyo laser sensors. The maximum speed of the robot is chosen
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as 0.5m/s for achieving safe navigation. An HP laptop was used as a client to execute the

navigation algorithm, and to collect data from the sensors through USB ports.

All experiments were conducted within two indoor environments. The first comprised an

open and uncluttered laboratory space 8.0m x 3m in which hardboard panels were used to

simulate walls. The second space comprised a more complex network of corridors and door-

ways, namely the ground floor of Stephenson building at Newcastle University.

The experiments were designed to establish the following:

• A physical mobile robot using the proposed navigation system is able to successfully

avoid static obstacles such as walls, and to pass safely through narrow gaps without an

oscillatory behaviour as in the potential field algorithm.

• The robot is able to avoid dynamic obstacles. As mentioned previously, obstacles are

classified into three types: non-intelligent obstacles (not programmed to avoid obsta-

cles), semi-intelligent obstacles (able to avoid static obstacles) and intelligent obstacles

which are able to detect and estimate the speeds of dynamic obstacles and take optimal

avoiding actions to minimize the risk of collision.

• The robot can identify locations form which moving obstacles may appear suddenly,

and then is able to take appropriate avoidance manoeuvre to minimize risk of collision.

• The robot can successfully navigate within a workspace cluttered with humans,where

the low-level (0.4m) Hokuyo laser sensor can detect human legs at only relatively short

distance, thus, another laser sensor was fitted at a height of 0.70m (as illustrated in

Figure 3.2) to detect the human upper torso, to increase the distance and time to detect

humans.

7.2 Performance Metrics

To quantify the performance of the robot during its navigation, and to allow comparison, three

sets of performance metrics have been adopted namely: to consider the potential for collision,

the travel distance and time to the goal, and the quality of the robot motion (smoothness).
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The following six parameters, derived from [Ceballos et al., 2010], are utilized to quantify

the performance of the robot navigation system:

• Minimum time to collision (tmin) in avoiding obstacles, the collision risk not only de-

pends on distance, but also on the relative speed of the robot, and hence, it is necessary

to consider the time to collision tc and minimum collision risk tmin which are defined

as follows (see Figure 7.1):

tc(i) =
dc(i)
�V (i)

(7.1)

tmin = min(tc) (7.2)

where dc, �V and tc refer to the collision distance, relative velocity and collision time, re-

spectively.

Figure 7.1: Collision Risk

• Minimum distance to collision (dmin) refers to the minimum perceived distance be-

tween the robot and any obstacle, and is given as:

dmin = min(dc) (7.3)

• Total travel time (Tt) represents the time consumed during the robot’s navigation to

reach its goal, and is inversely proportional to the average speed of the robot during its

journey, and as Tt decreases, the average speed increases. It can be written as:
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Tt = n.Ts (7.4)

where Ts and n are the sampling period and the total number of cycles respectively.

• Path length (PL) refers to the total distance travelled by the robot to achieve its goal,

and is computed as follows:

PL =
i=n−1

∑
i=1

√
(xi+1 − xi)2 +(yi+1 − yi)2 (7.5)

where x and y represent the robot coordinates.

• Smoothness is measured by the bending energy BE ; where less bending energy indi-

cates a smoother path, and for a straight line motion, the bending energy should be

zero. To compute BE the curvature of the robot path must be calculated, where the

curvature k is a measure of how quickly a tangent line turns on the curve (see Figure

7.2) i.e it is the rate of change of the tangent angle ψ as a function of arc length s (see

Appendix E for more details).

Figure 7.2: Curvature of a curve

The curvature k at a point (xi,yi) of the robot path and the bending energy can be defined as

follows:

k(xi,yi) =
y
′′
i

(1+(y′
i)

2)3/2
(rad/m) (7.6)

BE =
1

n

i=n−1

∑
i=1

k2(xi,yi) (rad2/m2) (7.7)

where

y
′
i =

�yi

�xi
(7.8)
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�yi = yi − yi−1 (7.9)

�xi = xi − xi−1 (7.10)

• Number of collision Nc: this refers to the number of collision events during exper-

iments. Note each experiment in this study is repeated five times, and the previous

factors are represented by their average values.

7.3 Ability to Avoid Static Obstacles

The robot may be required to work in environments which are free of dynamic obstacles. In

this case the robot has to avoid only static obstacles. However, passing through a narrow space

is the most challenging for the mobile robot. As mentioned in the literature review several

avoidance algorithms were designed to avoid static obstacle have a problem of the oscillatory

behaviour. Hence, In order to evaluate the robot performance while avoiding static obstacles

only the obstacle avoidance and emergency stop behaviours are used.

7.3.1 Definition of Scenarios

The Pioneer robot navigates from its current position (0,0) to its goal (5,0) with maximum

linear and angular velocities of 0.5m/s and 100 degree/s respectively.

Three different scenarios were evaluated with an increasing level of complexity as follows:

Scenario 1 (SS1) : the robot navigates in a relatively free open area, where there is no obstacle

preventing the robot from implementing a straight line path to its goal.

Scenario 2 (SS2) : the robot has to navigate a narrow gap and can implement a straight line

path to its goal.

Scenario 3 (SS3) : the robot navigates a narrow gap and can not implement a straight line

path to its goal.
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7.3.2 Implementation of Scenarios

Scenario 1 (SS1)

This test aims to define the values of the performance metrics when there is no collision risk

(Figure 7.3 and 7.4). It can be observed in Figure 7.5 that the robot accelerates achieving the

maximum speed (0.5m/s) at x=0.5m which is maintained till the robot becomes close to its

goal, where the speed is decreased to stop the robot at its goal.

Figure 7.3: Pioneer navigates in a free open area
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Figure 7.4: Straight line path

126



CHAPTER 7. IMPLEMENTATION AND EVALUATION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

X (m)

Sp
ee

d 
(m

/s
)

Figure 7.5: Robot speed in a relatively free open area

Scenario 2 (SS2)

Sometimes the mobile robot may be required to pass through an open door or narrow gap in

order to achieve its mission (see Figure 7.6).

Figure 7.6: Passing a narrow gap in a straight path

Figure 7.7 shows that the mobile robot (Pioneer P3-DX) using the proposed navigation sys-

tem navigates successfully from its starting point to its goal, implementing a straight line

while passing a narrow gap located at x = 2.60m. Note that the robot has a safe gap of 75
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mm on each side whilst passing through the narrow space with the widths of the robot and

narrow gap are 0.45m and 0.6m respectively, where using the laser sensor enables the ob-

stacle avoidance behaviour to detect that the narrow space in enough for the robot to pass

without any collision risk, therefore, the average speed of the robot as in SS1 is maintained

at 0.5m/s (Figure 7.8).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

X (m)

Y
 (m

)

Robot
Goal
Robot path

Figure 7.7: Robot passes a narrow gap in a straight path
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Figure 7.8: Robot speed while passing a narrow gap

Scenario 3 (SS3) :

In this scenario, the complexity of the robot’s task is increased using a static obstacle which
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prevents the robot from implementing a straight line path to its goal (see Figure 7.9). As

illustrated in Figure 7.10, the Pioneer robot implements an approximately straight line while

passing the narrow gap located at x = 2.60m, and then turns to its goal (5,0) in a curved path.

Figure 7.11 shows that the robot speed decreased to 0.35m/s while passing the narrow gap,

after which it increased before decelerating to stop the robot at its goal.

Figure 7.9: Passing a narrow gap
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Figure 7.10: Robot passes a narrow gap
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Table 7.1 illustrates the performance metrics of the mobile robot during the three scenarios,

where the total time Tt(s) and path length PL in SS3 are greater than that when implement

straight lines paths in both SS1 and SS2, and also it can be noted that there is no collision

risk in both SS1 and SS2, while its is relatively very high in SS3 although there was no

dynamic obstacles which restrict the robot motion, also the robot paths in both SS1 and SS2

is smoother that in SS3 in which the robot achieved a curved path.

Table 7.1: Performance metrics for avoiding static obstacles

avoiding static obstacles Tt(s) PL(m) BE (rad2/m2) tmin(s) dmin(m) Nc

SS1 13.5 4.91 0 - - 0

SS2 13.7 4.92 0 - - 0

SS3 14.6 5.05 0.95 0.46 0.22 0
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Figure 7.11: Robot speed while passing a narrow gap

To explain if the robot has a problem of the oscillatory behaviour let evaluate the changes in

the robot’s direction shown in Figure 7.12, in which there is no change in the robot’s direction

during SS1 and SS2, while in SS3, the robot starts to turn anti-clockwise, then it maintains

its direction while passing the narrow gap, and then turns clockwise to reach its goal. This

verify that the navigation system does not produce oscillatory behaviour in the robot motion

while passing narrow spaces. Note decreasing the sampling time of the control system will

make the changes in the robot’s angle in SS3 much smoother.
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Figure 7.12: Changes in the robot’s direction

7.4 Dynamic Obstacle Avoidance

The previous three experiments illustrated that the mobile robot can be employed to imple-

ment successful navigation tasks among static obstacles. However, the robot may encounter

some mobile robots which are programmed in different methods to reach their goals. To

evaluate the performance of the proposed navigation system during avoiding dynamic obsta-

cles, the Pioneer robot has to navigate from its current position (0,0) to its goal (5,0), while

the Nubot robot is used as a dynamic obstacle which was located at (5,0) and moves in the

opposite direction to the Pioneer robot (Figure 7.13).

7.4.1 Definition of Scenarios

Three different scenarios were carried out with increasing the intelligent level of the dynamic

obstacle as follows:

Scenario 1 (DS1) : the Nubot robot is used as a dumb obstacle moving at a fixed speed of

0.5m/s.

Scenario 2 (DS2) : the Nubot robot is programmed to avoid obstacles using the PFA algo-

rithm and a laser sensor.

Scenario 3 (DS3) : the Nubot is used as an intelligent obstacle programmed with a navigation

algorithm as the Pioneer robot.
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Figure 7.13: Pioneer P3-DX and Nubot

7.4.2 Implementation of Scenarios

Scenario 1 (DS1)

The mobile robot may face some dynamic obstacles which move on predefined path with-

out using an obstacle avoidance algorithm, for example a mobile robot follows a black line

[Hasan et al. (2012)]. Here the Pioneer robot successfully detects and avoids a dumb obstacle

(Nubot) as shown Figure 7.14, in which the robot initially moves on a straight line towards

its goal, where the relatively long distance between the robot and the obstacle produces very

low collision risk. However, the robot begins to avoid the dumb obstacle at t = 3.6s, and then

resumes its path to the goal at t = 7.5s after the dumb obstacle passes.

Scenario 2 (DS2)

The Nubot robot was reprogrammed to avoid obstacles using the PFA algorithm. Figure

7.15 shows how the Pioneer robot begins avoiding the Nubot robot at t = 3s, and then returns

toward its goal after Nubot passes. It can be observed that the Nubot (low-level intelligent ob-

stacle) carried out a small avoidance manoeuvre to avoid the Pioneer robot at t = 5s. Clearly
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the Pioneer robot started the avoidance manoeuvre 2s before the Nubot robot.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

X (m)

Y
 (m

) 2s

2s

3s

3s

4s

4s

5s

5s

6s

6s

7s

7s

8s
9s

10s
11s

Start
Goal
Obstacle path
Robot path

Figure 7.14: Robot avoided a non-intelligent obstacle
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Figure 7.15: Robot passed a low-level intelligent obstacle

Scenario 3 (S3)

In this test, both the Pioneer and Nubot were programmed with the same intelligent navigation

algorithm. Figure 7.16 shows that both robots initial their avoidance much sooner ( Pioneer

at t = 3.4s, Nubot at t = 4s), and then both resume their respective path to their targets just

after t = 6s with near symmetrical paths.
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It can be noted from the performance metrics listed in Table 7.2 that the robot executed

a short and smoother path during avoiding an intelligent obstacle than that for both dumb

and low intelligent obstacles, with a significantly reduced risk of collision as evidenced by

increased values of tmin and dmin. The early avoidance action of the intelligent obstacle gave

the robot more space and time to make a path with less curvature and relatively long distance

(0.56m) to the adjacent wall. While the dumb obstacle and the late avoidance action of the

low intelligent obstacle forced the robot to move a way from the straight line to the goal and

making relatively short distances to the wall.
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Figure 7.16: Avoiding Intelligent obstacle

Table 7.2: Performance metrics for avoiding a dynamic obstacle

Avoiding

dynamic

obstacle

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(m) Nc

DS1 (Avoiding

dumb obstacle)
14.3 5.14 1.10 1.22 0.40 0

DS2 (Avoiding

low intelligent

obstacle)

14.2 5.16 1.22 1.20 0.38 0

DS3 (Avoiding

intelligent

obstacle)

13.9 5.08 0.81 2.10 1.30 0
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7.5 Unobserved Obstacles

The unobserved obstacle avoidance (UOA) behaviour allows the mobile robot to detect lo-

cations from which dynamic obstacles may suddenly appear, and then apply the virtual ob-

stacle principle to minimize the collision risk. Here, the robot performance using the UOA

behaviour is tested in two different situations. First the robot task is to navigate from its initial

location (0,0) to its target (5,0) passing in front of an open doorway (Figure 7.17). Second

the robot navigates a corridor crossing to its target (7.5,-3.5) and avoids a dynamic obstacle

which appears suddenly at the corner (Figure 7.18).

Figure 7.17: Pioneer robot and an opened door

7.5.1 Passing an Open Doorway

Four scenarios were designed for passing an open doorway as follows:

Scenario 1 (OS1) : the Pioneer robot passes the open doorway while the UOA behavior is

inactive.

Scenario 2 (OS2) : the UOA behavior is activated.

Scenario 3 (OS3) : the robot avoids a static obstacle which is located opposite the door

threshold (Figure 7.19).
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Scenario 4 (OS4) : the robot avoids a dynamic obstacle (Nubot) while passing the door

threshold.

Figure 7.18: Pioneer robot navigates a corridor crossing

Figure 7.19: Static obstacle is located opposite the door threshold

7.5.2 Implementation of Scenarios

Scenario 1 (OS1)
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OS1 aims to show the performance of the robot when the UOA behaviour is inactive. Figure

7.20 illustrates that the obstacle avoidance behaviour does not detect any collision risk pre-

venting the robot to implement a straight line path leaving a safe distance of 0.50m from the

adjacent wall and keep its speed at its maximum value during passing the open doorway.
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Figure 7.20: Robot path while Passing an open doorway

Scenario 2 (OS2)

When the UOA behavior is activated, the robot begins at t = 4s to manoeuvre further away

from the wall leaving a safe distance of 0.85m as it anticipates a potential collision and then

it resumes its path to the goal after the door threshold is passed (see Figure 7.20). It can be

noted that the robot direction and the relatively long distance to the door threshold minimizes

the collision risk with obstacles which may suddenly appear from the opened door.

Scenario 3 (OS3)

A static obstacle was located opposite the door threshold. It can be observed from Figure

7.21 and 7.22 that the robot executes a straight line path at speed of 0.5m/s until x = 2.5m,

whereupon it decreases its speed to 0.1m/s while negotiating the door threshold and static

obstacle, before accelerating back to 0.5m/s. Here, the low speed while passing the door

threshold minimizes the collision risk and permits the robot to stop quickly before colliding

with any obstacle which may suddenly appear.
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Figure 7.21: Robot avoiding a static obstacle at a door threshold
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Figure 7.22: Robot speed while avoiding a static obstacle at a door threshold

Scenario 4 (OS4)

The complexity of the robot task was increased by introducing a dynamic obstacle (Nubot)

moving at a speed of 0.4m/s. Figure 7.23 shows that the robot starts to move away from the

door threshold at t = 4.3s, but then turns to avoid the oncoming obstacle whilst maintaining

a safe distance of 0.64m to the door threshold. It can be observed form Figure 7.24 that the

robot speed decreases to 0.24m/s while passing the door threshold, and then increases after

the robot had passed by the door threshold.
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Figure 7.23: Robot avoids a dynamic obstacle at a door threshold
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Figure 7.24: Robot speed while avoiding a dynamic obstacle at a door threshold

It can be noted from Table 7.3 that the robot had the highest collision risk in OS1 when

the UOA behaviour was inactive, although the path is the smoothest. Whilst OS2 has the

maximum travel distance, where the relatively free space allowed the robot to move away

from the door threshold with a relatively high speed. OS3 has the maximum travel time,

where the static obstacle prevented the robot from moving away from the door threshold,

therefore the robot reduced its speed to minimize risk of collision. In OS4, the robot manged

to balance between avoiding the dynamic obstacle and minimizing the collision risk with any

obstacle which may have appeared suddenly.
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Table 7.3: Performance metrics for avoiding a door threshold

Open door avoidance Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(s) NC

OS1 13.60 4.91 0.002 0.14 0.27 0

OS2 14.30 4.99 0.78 4.4 2.00 0

OS3 15.10 4.93 0.25 2 0.6 0

OS4 14.80 4.95 0.88 1.6 1.02 0

7.5.3 Navigating a Corridor Crossing

Three scenarios were conducted to evaluate the robot performance during maneuvering a

blind corner. In the first scenario, the robot navigates the corridor crossing in a free-dynamic

area, while in the second and third scenarios, the robot avoids a dumb obstacle moving at a

fixed speed of 0.5m/s and appearing suddenly from a blind corner.

7.5.4 Implementation of Scenarios

Scenario 1 (CS1):

Figure 7.25 illustrates the robot maneuvering the blind corner, where the robot implements

a straight line until t =9.5s, after which it directs its path away from the corner to allow

sufficient reaction time and distance to any obstacle which may navigate the corridor crossing,

and then it resumes its path to its goal after passing the corner.

Scenario 2 (CS2) and Scenario 3 (CS3):

Figure 7.26 and Figure 7.27 illustrate two cases (CS2 and CS3 respectively) of how the

robot takes suitable avoidance actions depending on the proximity and speed of an obstacle,

relatively to its own position and speed. If the obstacle is perceived early enough, the robot

can negotiate its path ahead of the obstacle without slowing down as shown in Figure 7.26,

in which the obstacle appeared in the laser data at t = 14.2s and disappeared at t = 18s.

While if there is no enough time and space for the robot to resume its path as in CS3, it

must slow down to allow the object to pass safely with consequential longer journey time,

but corresponding short path (see Table 7.4). It can be observed from Figure 7.27 the robot

reduces its speed to avoid the dynamic obstacle which appears in the laser data at t = 13.2s,

and after it safely passes, the robot begins to increase its speed and resume its path.
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Table 7.4: Performance metrics for avoiding a unobserved obstacle

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(m) NC

CS1 28.40 11.40 0.64 2.03 1.67 0

CS2 31.20 11.90 0.92 0.7 0.8657 0

CS3 32.85 11.20 0.90 0.61 0.59 0
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Figure 7.25: Minimizing the collision risk at a corridor corner
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Figure 7.26: Avoiding an unobserved obstacle which appeared at the time 14.2s
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Figure 7.27: Avoiding an unobserved obstacle which appeared at the time 13s

7.6 Avoiding Humans

7.6.1 Definition of Scenarios

Six scenarios were designed to evaluate the robot performance while navigating among hu-

mans within indoor environments.

Scenario 1 (HS1) : the robot uses only the lower laser sensor to navigate from its starting

location to its goal, and avoid a human (6,0) moving in the opposite direction of the robot

(see Figure 7.28).

Scenario 2 (HS2) : the robot uses the both laser sensors to avoid the human. In S1 and S2,

the human is required to maintain a constant speed and to walk in a straight line.

Scenario 3 (HS3) : the human is required to start avoiding the robot much sooner.

Scenario 4 (HS4) : the human is required to walk in a straight line and then to walk to the

same side that is chosen by the robot to avoid collision.
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Scenario 5 (HS5) : the robot avoids two humans; one of them walks in the opposite direction

of the robot, while the another one walks in the same direction of the robot.

Scenario 6 (HS6) : the robot avoids an obstacle and human moving in the opposite direction

of the mobile robot.

(a) Robot and a human
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Figure 7.28: Single human avoidance
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7.6.2 Implementation of Scenarios

Scenario 1 (HS1)

When only the lower laser sensor is used, the robot can reliably detect a human using the

laser data coming from the two legs at a distance of 3.5m as shown Figure 7.29.a in which

the right leg is leading the left leg, and then it begins taking avoiding action at a distance of

2.6m (Figure 7.29.b), having to turn through a relatively large angle of 72o to avoid collision

as shown in Figure 7.29.c in which the human is defined by one leg. The robot resumes its

path to its goal after the human passed (Figure 7.29.d).

Scenario 2 (HS2)

Using both laser sensors increases the range of human detection to 4.85m (Figure 7.32.a),

where the human is detected by integrating laser data returned from the two legs and human

upper torso. The robot starts early the avoidance action at a distance of 3.55m (Figure 7.32.b)

turning through 33o (Figure 7.32.c and 7.31), this increases the time and distance to collision

(Table 7.5), and produces a smoother path than carried out in HS1 (Figure 7.32.d).

It can be observed from Figure 7.33 and 7.34 that the human walked during the previous

two experiments with approximately 0.78m/s and 1760. However, the human appears in the

sensor data for 3s when only the lower sensor is used, and 4s when both sensors are used.

Hence, using two laser sensors extends the human detection range and time by 2.15m and 1s

respectively.

Table 7.5: Performance metrics of avoiding a human moving in a straight line

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(s) Collision

HS1 14.0 5.12 1.044 0.36 0.18 0

HS2 13.7 5.08 0.728 0.71 0.33 0
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Figure 7.29: Human avoidance using a single laser sensor
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Figure 7.30: Robot is turning a relatively large angle

Figure 7.31: Two laser sensors to avoid a human
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Figure 7.32: Human avoidance using two laser sensors
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Figure 7.33: Estimated speed and direction of the human using single laser sensor
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Figure 7.34: Estimated speed and direction of the human using two laser sensors

Scenario 3 (HS3)

In this experiment, the human is required to begin avoiding the robot as soon as possible. The

robot initially moves in a straight line and then recognizes the avoidance action of the human

who appeared in the returned laser data at t = 3s (Figure 7.35.a ), after which the robot starts

to move away through a relatively small angle of 26o.

Scenario 4 (HS4)

Figure 7.35.b shows that the robot and human initially move in straight lines opposite each

other, but after the robot starts the avoidance action, the human changes his orientation and

walks toward the robot which quickly changes its direction to avoid collision producing less

smoother path than that executed in HS3 with less time and distance to collision (see Table
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7.6).

Table 7.6: Performance metrics of avoiding a human

Tt(s) PL(m) Smoothness(rad2/m2) tmin(s) dmin(s) NC

HS3 13.7 5.08 0.242 1.93 1.13 0

HS4 13.9 5.04 1.097 1.5 1.39 0
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Figure 7.35: Human tries to avoid the robot

Scenario 5 (HS5)

In this experiment, the robot navigates in the indoor environment with two humans A and B at

(1.5,-0.5) and (8,0.5) respectively as shown in Figure 7.6, in which human A walks slowly at

an approximate speed of 0.4m/s in the same direction as the robot, and human B walks faster

than A at an approximate speed of 0.82m/s in the opposite direction. Figure 7.37 illustrates
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the robot executing the avoidance action for human A in t ∈ [3s−5s], after which it changes

its direction and follows human A to avoid collision with human B who appears in the sensor

data at the time t = 2.9s. At t = 8.3s the robot resumes its path to the goal moving away

from human B with minimum distance and time to collision of 0.30m and 2.23s respectively

(Table 7.7).

Table 7.7: Performance metrics for avoiding two humans

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(m) Collision

HS5 20.0 8.20 0.95 2.23 0.30 0
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Figure 7.36: Avoid two humans
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Figure 7.37: Paths of the robot and the two humans

Scenario 6 (HS6)

The robot task is to avoid an obstacle and human moving in the opposite direction of the

robot. The robot initially moves in a straight line, and then at t = 3s begins to move away
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to avoid the moving obstacle which appears in the laser data in t ∈ [2.2s−7.4s], after which

the robot starts to implement avoidance manoeuvre to avoid the high collision risk with the

human (Table 7.8) who is detected at t = 6s (Figure 7.38.b). Similarly, the robot is able to

avoid a dynamic obstacle moving in the same direction and a human moving in the opposite

direction (see appendix D).
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Figure 7.38: Avoiding a human and dynamic obstacle

Table 7.8: Avoiding a human and dynamic obstacle

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(s) NC

20.6 8.11 1.32 0.31 0.27 0

151



CHAPTER 7. IMPLEMENTATION AND EVALUATION

7.7 Navigation in a Crowded Environment

In this experiment, the proposed hybrid control architecture is tested by implementing a rela-

tively long path (140m, see Table 7.10) in a crowded environment as shown Figure 7.39. The

workspace is divided into four regions; namely A,B,C, and D ( see Figure 7.40). Region A is

crowded with static obstacles, while through regions B and C, many students are moving to

their lecture rooms using stairs and lift. Region D is free from dynamic and static obstacles

except walls.

Figure 7.39: Ground floor, Stephenson Building, Newcastle University

The robot’s task is to travel from P0 (robotics lab) to P1, and P2 and then return to the start

point P0. The long path planning algorithm produced seven waypoints listed in Table 7.9.

Table 7.9: Waypoints produced by the wavefront algorithm

Start Goal Number of waypoints Waypoints

(-35.3, 6.5) (-35.3, 6.5) 7 (-35.3, +06.5)

(+0.00, +15.5)

(+26.0,+08.7)

(+20.0, -06.0)

(-22.7, -06.0)

(-28.0, +07.0)

(-35.3, +06.5)

The robot carries out successful navigation without collision or losing the target as shown in

Figure 7.41, from which it can be observed that the robot motion in region D is much less

erratic than that in region A, B and C which are cluttered with static and dynamic obstacles.
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(a) Region A (b) Region B

(c) Region C (d) Region D

Figure 7.40: Regions of the robot workspace
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Figure 7.41: Navigation in a crowded environment

Figure 7.42 shows some laser images captured during the robot navigation; the robot passes

through doors as shown in Figure 7.42.a and 7.42.b which were captured at 18s and 120s

respectively. One human appears in laser data at t=140s (Figure 7.42.c). In Figure 7.42.d,
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four humans are waiting for the lift and another human is coming from the main entrance at

t=160s. Figure 7.42.e shows three humans are walking in the same direction of the robot at

t=180s, while in Figure 7.42.f three humans are trying to pass a door in the opposite direction

of the robot at t=195s.
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Figure 7.42: Regions of the robot workspace

By zooming in on the area of the subgoal S5 (Figure 7.43), it can be observed that the robot

stopped and moved back because several students were passing the narrow gap, and as a

consequence there was not enough space for the robot to pass. However, when the students

left enough space, the robot continued to its target. Table 7.10 lists the performance metrics

of the robot which took 298.5s and 148.2m to navigate from its starting point to its goal,

while the collision risk was relatively very high; the minimum time and distance to collision

are 0.36s and 0.2m respectively.

154



CHAPTER 7. IMPLEMENTATION AND EVALUATION

Table 7.10: Performance metrics for navigation in a crowded environment

Tt(s) PL(m) Smoothness (rad2/m2) tmin(s) dmin(m) NC

298.5 148.2 1.52 0.36 0.2 0
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Figure 7.43: Emergency stop behaviour

7.8 Summary

Physical robot programmed by the proposed hybrid control system is able to produce safe

navigation through planning an optimal and safe long-term path, producing robust position

estimation, maximizing the speed to the goal, and minimizing collision risk with surrounding

obstacles which have different shapes and speeds.

The experiments showed that the reactive behaviours enable the robot using the low laser

sensor to successfully pass through narrow gap without an oscillatory behaviour, avoid and

estimate actions of dynamic obstacles which are programmed with different algorithm, and
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produce optimal maneuvers to minimize the collision risk with obstacles which may appear

in the robot path from the open doorways.

The robot can use the laser data returned from human legs to avoid humans, however, using

another laser sensor to detect the human upper torso increases the distance and time of detect-

ing humans. This results in reducing the collision risk and increasing the smoothness of the

robot path. The experiment implemented to achieve long-path navigation in a crowded envi-

ronment showed that the long path planning can plan an optimal path between the robot and

its goal and and localization system is able produce a robust estimation of the robot position.
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Chapter 8

Conclusions and Future Work

This chapter provides a summary of the project achievements, and gives recommendations

for future work to improve the robot performance in dynamic environments.

8.1 Conclusions

The aim of this project was to develop a behavioural strategy for mobile robot navigation

in cluttered indoor environments, occupied not only with static obstacles, but also dynamic

ones which have different shapes, velocities and intelligence levels. To meet this aim, a

hybrid control architecture was proposed to combine advantages of powerful planning using

a deliberative architecture with quick response of a reactive architecture. At the deliberative

level, this includes three requirements namely global path planning, localization and feature

extraction. The global path planning is responsible for establishing a safe and optimal path

between the current position of the robot and its target using the wavefront algorithm and

workspace map. Theoretically, the robot can successfully navigate to its goal by following

the global path without using an obstacle avoidance algorithm, however, any change in the

workspace or any error in the estimated position of the robot may cause a collision. To solve

this problem, sensor data can be used to update the robot map, and then the global path

panning is applied, although the robot path may be more optimal in avoiding static obstacles,

but the responsiveness of the robot will be slow. Therefore, the robot must be programmed

to avoid obstacles using its sensor data to minimize the risk of collision.
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In this project, mobile robots have been developed to work in indoor environments which

are considered to be known environments, therefore, the Adaptive Montecarlo Localization

algorithm (AMCL) was used to produce a robust estimation of the current position of the

mobile robot based on sensor data and workspace map. With AMCL, the estimated position

of the mobile robot converges to its actual position even if the initial position is unknown. A

wall extraction model determines locations from which an obstacle may suddenly appear in

the robot path. Defining surrounding walls offline using Hough Transform (HT) algorithm

provides additional information about the surrounding environment, but requires a known

workspace map and accurate localization system. However, more robust wall extraction can

be carried out online using sensor data and the iterative-end-point-fit algorithm. The subgoals,

estimated position and locations of surrounding walls are transferred through an intermediate

level to the reactive level which includes six behaviours namely: go to goal, obstacle avoid-

ance, unobserved obstacle avoidance, human avoidance, follow the leader and emergency

stop. The go to goal behaviour produces an optimal speed and direction to the target using

the the estimated robot position and the position of the target (subgoal), whilst The obstacle

avoidance behaviour utilizes the velocity obstacle (VO) approach to avoid both dynamic and

static obstacles. In this project, a method was developed to estimate the collision cone for

circular and non-circular obstacles using laser data, where each laser point returned from the

obstacles is enlarged using the robot radius and then the outer tangents of the enlarged obsta-

cle forms the collision cone which is more accurate than that produced using the circle fitting

algorithms. The unobserved obstacle avoidance (UOA) behaviour uses the virtual obstacle

principle, which has been proposed to minimize the collision risk with unobserved moving

objects appearing from around corners and doorways, where a virtual circular obstacle is cre-

ated at the starting point of each open doorway threshold and corridor crossing. Simulation

showed that if the UOA behaviour is inactive the robot may collide with a moving obstacle

suddenly appearing in the robot path, whereas here the robot reduces the collision risk by

moving away or reducing its speed while passing an open door threshold. The robot is also

able to use the follow the leader behaviour to move behind someone going in the same direc-

tion to ease its passage, this behaviour provides much smoother motion when passing among

multiple moving obstacles (including humans). The emergency stop behaviour monitors sen-

sor data and the outputs of other behaviours to ensure that if there is no collision-free velocity
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the robot stops, and reverses to prevent collision. The human avoidance behaviour is used

to recognize and avoid humans using data returned from their legs. In some instances, some

parts of one leg are occluded by another leg, or the two legs are interpreted as one cluster if

the distance between the two legs is too short. Hence in this project, a human recognition

algorithm has been developed in which the laser data are put into four classes depending on

their width, girth and depth.

The outputs of the reactive level behaviours are fused using different stages; in the first stage,

the outputs of the go to goal and follow the leader behaviours are coordinated using the sub-

sumption approach; when the follow the leader behaviour is activated it stops the output of

the go to goal behaviour and produces the optimal direction and speed to follow a moving

target. Next the outputs of the obstacle avoidance, unobserved obstacle avoid, and human

avoidance behaviours are integrated using an arbitration approach based on the motor schema

architecture, where the minimum output is selected. The outputs of the first and second stages

are coordinated using a cost function fusion method. Again, the third stage and emergency

stop behaviours are coordinated using the arbitration method, where the emergency stop be-

haviour is selected if it is active.

For saving time and protecting the robot and others from any injure, the behavioural strat-

egy proposed in this project was extensively tested in cluttered indoor environments using

the Player/stage platform before evaluating it using two physical mobile robots; a modified

Pioneer robot and Nubot robot which was developed in Newcastle University. Performance

metrics of six factors were utilized to quantify the mobile robot performance; the minimum

time and distance to collision were used to measure the collision risk, while the bending en-

ergy was used to measure the smoothness of the robot path. The experiments showed that

using a single laser sensor mounted at a height of 0.40m enable the robot to avoid dynamic

obstacles which have different levels of intelligence, and also is able to minimize the colli-

sion risk and avoid dynamic obstacles which suddenly appear from corridor crossings. For

human detection, another laser sensor was mounted on the robot at a height of 0.70m, where

the lower laser sensor is used to detect human legs, while the upper laser detects the human

upper torso. The experiments showed that the robot performance using two laser sensors is

better than when using only the lower one.
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8.2 Summary of Achievements

The achievements described in this thesis are summarized as follows:

• Hybrid control architecture was developed for mobile robot navigation in dynamic en-

vironments, which includes three layer namely deliberative, intermediate and reactive

layer, and was extensively tested in a cluttered environment using the Player/Stage

simulation platform and existing robots. Experiments and simulation results showed

that the mobile robot is able to navigate successfully among both static and dynamic

obstacles (including humans).

• Algorithms were developed to cluster the sensor data, recognize and discriminate be-

tween both static and dynamic obstacles using the grid map, detecting human using

four different types of the sensor clusters, and then apply the extended particle filter

algorithm to estimate the speed and direction of the dynamic obstacles.

• A method has been demonstrated to estimate the collision cone for circular and non-

circular obstacles using laser data, where this method produces a collision cone is more

accurate than that produced using the circle fitting algorithms.

• Several novel behaviours have been developed which provide the robot with improved

avoidance capability to include multiple dynamic obstacles as well as anticipating po-

tential collisions resulting from restricted unobserved obstacles, and smoothing and

easing the robot path in very cluttered workspace.

8.3 Recommendations for Future Work

The hybrid control architecture developed in this study provides a robot with the capability

to autonomously navigate in a known environment from its current position to a goal defined

by a user. This study can be extended by improving the hardware and software of the robot.

For the hardware, the wide scan range (240o) and relatively high angular resolution 0.36o

of 2D laser sensors provide accurate information which is used to produce robust estimation

of the robot position and dynamic obstacle velocities. However, in a 3D real world, a fatal
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collision may occur because the robot can not detect the obstacles (for example the upper part

of tables) which locate out side of the laser plane. Furthermore, the update rate (10Hz) and

reading range (5.6m) restrict the anticipating of relatively fast dynamic motion of obstacles,

this reduces the maximum speed of the robot to execute safe navigation. Kinect sensor can

be used to provided a 3D view with an update rate of 30fps, however, its narrow field of

view and short range (4.0m) will limit the robot performance. Hence, a stereo vision system

can be integrated with laser sensors to improve the robot sensing. The stereo vision gives

3D information about the robot workspace, and can be build in the lab using two identical

cameras and a suitable software such as OpenCv. However for saving time and effort, it is

recommended to use a commercial stereo vision system such as Bumblebee which provides

a field of view of 1000 with an update rate of 40fps.

For the software, the current localization system (AMCL) and global path planning require

an accurate map of the workspace. Hence, when the robot moves to a new workspace, a user

must provide an accurate map of the new workspace, and provide the Cartesian coordinates

of the goal. The navigation system can be more flexible by utilizing the simultaneously

mapping and localization (SLAM) and multiple modes systems, where the SLAM system

builds the robot map and updates it automatically, and the multiple modes system switches

between three different modes namely manual, semi-autonomous, and autonomous, where

the robot can be guided using commands generated using a joystick, smart phone, location

on a map, and voice commands. In the manual mode, the robot follows exactly the commands

generated by the user using joystick or smart phone, however, the emergency stop behaviour

can be used to avoid collision. The semi-autonomous mode combines commands coming

from the user and the outputs of the reactive behaviours. In the autonomous mode, the robot

uses the proposed navigation algorithm in this project.

The cost function parameters used in the reactive level behaviours were chosen using the

trial and error method. Hence, using artificial intelligence (AI) such as Fuzzy Logic and

Neural Network can enhance the robot performance and optimize the local path planning by

updating the cost functions depending on collected sensor data. Also, to interact with people

in a social and technological manners, more behaviours can be added such as using the lift

behaviour which makes the robot leaving enough spaces for other people to enter a lift, and

passing human behaviour says a suitable statements (“excuses me”) when the robot passes a
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person moving in the same direction.
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Appendix A

Line Extraction Using Hough Transform

clc

clear all

close all

%Generate an image of two lines

E=zeros(300,300)

for i=50:250

E(i,i+5)=1;

E(300-i,i+5)=1;

end

imshow(E)

imwrite(E,’Houghimage.jpg’)

RGB = imread(’Houghimage.jpg’);

% Convert to intensity.

I = RGB;

% Extract edges.

BW = edge(I,’canny’);

% Apply Hough Transform
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APPENDIX A. LINE EXTRACTION USING HOUGH TRANSFORM

[H,T,R] = hough(BW,’RhoResolution’,2,’Theta’,-90:0.5:89.5);

axis off

figure()

imshow(imadjust(mat2gray(H)),’XData’,T,’YData’,R,... ’InitialMagnification’,’fit’);

%title(’Hough Transform of Gantrycrane Image’);

xlabel(’\theta’), ylabel(’\rho’);

set(gca, ’ytick’, []) ;

set(gca, ’xtick’, []) ;

xlabel(’\theta’,’fontsize’,20,’FontAngle’,’ITALIC’,’color’,’k’);

ylabel(’\rho’,’fontsize’,20,’FontAngle’,’ITALIC’,’color’,’k’);

set(gca,’LooseInset’,get(gca,’TightInset’));

figure imwrite(imadjust(mat2gray(H)),’Houghimage2.jpg’)

TY = imread(’Houghimage2.jpg’);

imshow(TY)

xlabel(’\theta’,’fontsize’,20,’FontAngle’,’ITALIC’,’color’,’k’)

ylabel(’\rho’,’fontsize’,20,’FontAngle’,’ITALIC’,’color’,’k’)
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Appendix B

Wavefront Algorithm

function Wavefront planner

clc

clear all

close all

COL=’mrkg’

COL=[COL COL COL COL COL];

% Global Parameter global MP;

global x1 x y y1 COL F

r=0.05; % Map resulation

w=.5; % robot raduis

R=[0 0]; % initial position

G=[6 5]; % Goal location

ad=round(w/r); % number of pixles to enlarge obstacles

Me=imread(’a.png’); % read robot map

M=Me’;

mm=size(M);

RC=round(R/r)+round(mm/2) % location of the robot on the map
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APPENDIX B. WAVEFRONT ALGORITHM

Gg=round(G/r)+round(mm/2) % location of the goal on the map

ML=M;

imshow(M)

for i=1:mm(1)

for j=1:mm(2)

if(M(i,j)==0)

ai1=i-ad;

if(ai1<1)

ai1=1;

end

ML(ai1:i,j)=0;

ai2=i+ad;

if(ai2>mm(1)) ai2=mm(1); end ML(i:ai2,j)=0; aj1=j-ad; if(aj1<1)

aj1=1;

end

ML(i,aj1:j)=0;

aj2=j+ad;

if(aj2>mm(2))

aj2=mm(2);

end

end

ML(ai1:ai2,aj1:aj2)=0;

end

end

figure imshow(ML)
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APPENDIX B. WAVEFRONT ALGORITHM

s1=8; s2=8;

[x,y]=meshgrid(1:s1:mm(1),1:s2:mm(2));

plot(x,y,’k’)

hold on

[y1,x1]=meshgrid(1:s2:mm(2),1:s1:mm(1));

plot(x1,y1,’k’)

for i=1:length(1:s1:mm(1))-1

length(1:s1:mm(1))-i

for j=1:length(1:s2:mm(2))-1

MP(i,j)=5000;

for ik=x1(i) :x1(i+1)

for jk= y(j) :y(j+1)

if(ML(ik,jk)==0)

fill([x1(i) x1(i+1) x1(i+1) x1(i) ],[y(j) y(j) y(j+1) y(j+1)],’b’)

MP(i,j)=1;

end

end

end

end

end

F=round(RC./[s1 s2])

i=F(1)

j=F(2)

fill([x1(i) x1(i+1) x1(i+1) x1(i) ],[y(j) y(j) y(j+1) y(j+1)],’g’)

F1=round(Gg./[s1 s2])
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i=F1(1)

j=F1(2)

MP(i,j)=2;

fill([x1(i) x1(i+1) x1(i+1) x1(i) ],[y(j) y(j) y(j+1) y(j+1)],’g’)

plot(RC(1),RC(2),’*’)

CK()

end

function CK()

global MP; global x1 x y y1 COL F

for ty=2:376

clear I J

[I J]=find(MP==ty)

if( isempty(I)==1)

break;

end

for kf=1:length(I)

ik=I(kf);

jk=J(kf)

for xk= ik-1:ik+1

for yk=jk-1:jk+1

MP(xk,yk)=min( MP(xk,yk),ty+1);

if( MP(xk,yk)>2)

i=xk;

j=yk;

fill([x1(i) x1(i+1) x1(i+1) x1(i) ],[y(j) y(j) y(j+1) y(j+1)],COL( MP(xk,yk)))
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end

end

end

end

end

io=1;

sb(io,:)=[F(1),F(2)]

for ty=MP(F(1),F(2))-1:-1:2

tyy=ty;

ik=sb(io,1);

jk=sb(io,2)

for xk= [ik ik-1 ik+1]

for yk=[jk jk-1 jk+1]

MP(xk,yk)

if( MP(xk,yk)==tyy)

tyy=900;

sb(io+1,:)=[xk,yk]

i=xk;

j=yk;

fill([x1(i) x1(i+1) x1(i+1) x1(i) ],[y(j) y(j) y(j+1) y(j+1)],’w’)

end

end

end

io=io+1;

end ; end
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Appendix C

Avoiding Two Humans

Consider the case shown in Figure C.1, in which the robot task is to avoid two humans

namely: human A and human B moving in straight lines at speeds of 0.3m/s and 0.5m/s

receptively. The mobile robot initially begins to move away from human A who moves in

the same direction as the robot, then avoids human B who moves in the opposite direction

by following human A (Figure C.2), after human B passes the robot avoids human A and

resumes its path (Figure C.3).

Figure C.1: Initial positions of the robot and humans
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Figure C.2: Robot avoids human B by following human B

Figure C.3: Avoiding two humans
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Appendix D

Avoiding a Human and Moving Obstacle

In this test, the robot has to avoid a dynamic obstacle (Nubot) moving at a speed of 0.30m/s

in the same direction, and a human walking in the opposite direction. As shown in Figure

D.1, the human appears at the laser data at t=2.6s, this forces the robot at t=4s to follow

the dynamic obstacle for minimizing reduce the collision risk, at t=6.5 the human passes the

robot and disappear from the laser data, therefore at t=8s the robot starts to avoid the dynamic

obstacle.
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Figure D.1: Avoiding an obstacle and human
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Appendix E

Curvature

Curvature of a curve at point (x,y) is given a function of tangent angle ψ and curve length s:

k = |dψ
ds

| (E.1)

dψ
ds can be written as following:

dψ
ds

=
dψ
dx

dx
ds

(E.2)

Form Figure E.1, it can write the following expressions:

δ s2 = δx2 +δy2 (E.3)

(
δ s
δx

)2 = 1+(
δy
δx

)2 (E.4)

It can write in this relation as a derivative form:

ds
dx

=

√
1+(

dy
dx

)2 =
√

1+(y′
)2 (E.5)

tan(ψ) is given as :
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tan(ψ) =
dy
dx

= y
′

(E.6)

Differentiation of this relation is given as:

(1+ tan(ψ))
dψ
dx

=
d2y
dx2

(E.7)

(1+
dy
dx

)
dψ
dx

=
d2y
dx2

(E.8)

dψ
dx

=
y
′′

(1+ y′
)

(E.9)

Form Equation 1, 2, 5 and 9 it can write

k =
y
′′
i

(1+(y′
i)

2)3/2
(E.10)

Figure E.1: Curvature of a curve
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